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Abstract

We study a manufacturer’s strategic use of a dual-sourcing option when facing suppliers

who possess private information about their likelihood of experiencing a supply disruption. The

manufacturer can diversify its supply by ordering from both suppliers, but we find that the

cost of doing so is inflated under asymmetric information due to the suppliers’ incentives to

misrepresent their reliabilities. If the manufacturer instead sole-sources, competition between

the suppliers curbs their informational rents. Therefore, asymmetric information pushes the

manufacturer away from diversification and towards sole-sourcing. Surprisingly, the additional

cost that asymmetric information imposes on diversification may cause the manufacturer to

cease diversifying in reaction to uniformly eroding supply base reliability, while it would do

just the opposite under symmetric information. Despite these trends away from diversification,

the value of the dual-sourcing option should not be underestimated for manufacturers who are

unsure of their suppliers’ reliabilities — the dual-sourcing option is actually more valuable un-

der asymmetric information than under symmetric information if the manufacturer’s cost of

replacing a unit lost due to a disruption is moderate. We also analyze the effect of codepen-

dence between supply disruptions, and find that a reduction in supplier codependence increases

the manufacturer’s value of information. Therefore, strategic actions to reduce codependence

between supply disruptions should not be seen as a substitute for learning about the suppliers’

reliabilities.
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1. Introduction

The average US manufacturer spends roughly half its revenue procuring goods and services (U.S.

Census Bureau, 2006). While outsourcing production of a critical component can offer cost advan-

tages for the manufacturer, it can also introduce the risk that a supplier’s failure to deliver will halt

the manufacturer’s production. A supplier’s facility might suffer from fire, flood, or an earthquake.

A labor strike or financial bankruptcy might shut down supplier operation (see Babich, 2007, for

examples). Changes in a supplier’s ownership status can also trigger disruptions. For example, after

it purchased Dovatron in April 2000, Flextronics announced that it would completely shut down

Dovatron’s low-volume specialty circuit board facility in Anaheim as part of restructuring to focus

on low-mix, high-volume products. As a result of Flextronics’s decision, Beckman Coulter Inc.,

a medical device manufacturer who single-sourced a critical component from Dovatron’s Anaheim

facility, lost its supplier. The supply disruption cost Beckman Coulter millions of dollars.1

To mitigate such risks, manufacturers often employ a dual-sourcing option:2 they widen a

critical component’s supply base to include more than one supplier. Practitioner surveys (Wu

and Choi, 2005) identify two main benefits of a dual-sourcing option. First, a dual-sourcing option

enables the manufacturer to reduce risk by diversifying it supply, that is, by simultaneously ordering

the component from two suppliers. Second, a dual-sourcing option encourages competition among

suppliers, resulting in lower procurement costs for the manufacturer.

Previous research assumes that the manufacturer and suppliers have identical knowledge about

the possibility that a supplier experiences a disruption. However, suppliers might be privileged

with better information about their susceptibility to disruptions. For instance, Dovatron likely

enjoyed better information than Beckman Coulter had about Dovatron’s acquisition by Flextron-

ics. A supplier might also outsource sub-components to second-tier suppliers without telling the
1For more details, see www.callahan-law.com/verdicts-settlements/fraud-beckman-coulter/index.html.
2In this paper, we refer to the case in which there is only one supplier in the supply base as single-sourcing, and

the case in which there are two suppliers as dual-sourcing. In the case of dual-sourcing, we refer to the manufacturer’s
action of ordering from only one supplier as sole-sourcing, and the action of ordering from both as diversification.
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manufacturer it is doing so, creating risks of disruptions caused by second-tier suppliers.3

Intuitively, asymmetric information about suppliers’ reliabilities might change the way the man-

ufacturer mitigates disruption risks. For instance, Beckman Coulter might have sought to diversify

its circuit board supply had it known that Dovatron was in talks with Flextronics and that a restruc-

turing might follow. Conversely, employing risk-mitigating strategies might make the manufacturer

more or less sensitive to asymmetric information about suppliers’ reliabilities. In this paper, we seek

to understand how the use of a dual-sourcing option is affected by asymmetric information about

suppliers’ reliabilities and how the value of information is affected by the dual-sourcing option.

To this end, we utilize a stylized, one-period model with a manufacturer and two suppliers.

Each supplier privately knows whether they are a high or a low reliability-type supplier. The

manufacturer seeks to contract with one or possibly both suppliers for production. In addition to

setting quantity and payment terms, contracts ensure that the suppliers have an incentive to deliver

by specifying penalties for non-delivery.4 The manufacturer maximizes its expected profit, and in

so doing must strategically account for each supplier’s incentive to misrepresent their reliability.

Using a mechanism design approach, we solve this model (detailed in §3), and explore the effect

of asymmetric information about suppliers’ reliabilities on a manufacturer’s application of a dual-

sourcing option to mitigating disruption risks. Next, we highlight some of our findings and briefly

describe the paper’s organization.

§4 presents the benchmark model of symmetric information. In §5 we analyze how asymmetric

information about suppliers’ reliabilities changes the manufacturer’s use of its dual-sourcing option.

Asymmetric information pushes the manufacturer towards sole-sourcing (and away from diversifica-

tion) as a way to leverage supplier competition and limit each supplier’s ability to misrepresent its

reliability. Moreover, as the reliabilities of both the high and low supplier-types decrease, a manu-

facturer will diversify more under symmetric information, but may diversify less under asymmetric
3This is what happened to Menu Foods in March 2007. Its supplier ChemNutra outsourced production of wheat

gluten, an ingredient in the pet food, to a Chinese supplier Xuzhou Anying Biologic Technology Development Co.
Ltd.. In an effort to increase its profit margin, Xuzhou Anying introduced melamine into wheat gluten, resulting in
deaths of numerous pets. More examples are provided in Yang et al. (2008).

4In practice, such penalties are commonly referred to as “liquidated damages”, e.g., Corbin (2007).
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information. Thus, even if diversification is a useful tool under symmetric information for a manu-

facturer facing a supply base whose overall reliability has declined (e.g., as the supply base moves

offshore), the same need not be true under asymmetric information about suppliers’ reliability.

In §6 we study the manufacturer’s value of information about suppliers’ reliabilities. It is con-

ceivable that better information about suppliers’ reliabilities could be obtained by the manufacturer,

at least for risk factors the manufacturer can identify and learn about. For instance, the manufac-

turer might audit the suppliers for bankruptcy risk, the soundness of their fire prevention measures,

structural earthquake proofing, or location relative to flood-prone coastlines. We find that informa-

tion about reliability, which would likely be costly to obtain, is most beneficial for the manufacturer

when the item’s value is high. In such a case, the manufacturer forgoes leveraging competition and

instead uses diversification to help mitigate the overall risk of non-delivery. Surprisingly, we also

find that information may become more valuable even as a high-type supplier’s reliability becomes

closer to that of a low-type, because in such a case supply diversification becomes more important.

Thus, having “less to learn” about the suppliers’ reliabilities (more similarity between supplier

reliability types) should not be seen as a substitute for information.

In §7 we examine the value of the dual-sourcing option for the manufacturer, that is, the in-

cremental benefit the manufacturer enjoys by having a supply base with two suppliers instead of

one. Expanding the supply base can be difficult and time-consuming for the manufacturer. For

example, it took Beckman Coulter months of searching and testing before Dovatron was discovered

and deemed capable of producing the specialty circuit boards that Beckman Coulter needed (see

Footnote 1). Furthermore, this process may not reveal full information about the suppliers. Beck-

man Coulter was shocked to learn in May 2000 of Dovatron’s impending closure of the Anaheim

plant (see Footnote 1). Thus, the manufacturer might like to know when it is most beneficial

to have either an additional supplier (the dual-sourcing option) or better information (symmetric

information about suppliers’ reliabilities), or both. We find that better reliability information and

the dual-sourcing option are substitutes when the manufacturer’s value for the item being procured
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is low. However, information and the dual-sourcing option become complements when the man-

ufacturer’s value for the item being procured is high, at which point having two suppliers whose

reliabilities are known makes the dual-sourcing option more valuable for the manufacturer.

In §8 we examine the possibility that the suppliers’ disruption probabilities are correlated, for

instance, the suppliers share vulnerabilities to the same underlying risk factors such as earthquakes

or floods. We find that as the two suppliers’ disruptions become more correlated, the manufacturer

finds diversification less desirable and, hence, relies more on sole-sourcing and leveraging supplier

competition. Due to increased competition, the suppliers have smaller incentives to misrepresent

their reliabilities, and thus asymmetric information about suppliers’ reliabilities is less of a concern

for the manufacturer. In §9 we provide concluding remarks. All proofs are in the e-companion.

2. Literature Review

Our paper contributes to the important and fast growing research and applications area of supply

disruptions management (see review papers by Kleindorfer and Saad, 2005; Tang, 2006). We study

multi-sourcing as the risk-mitigation tool. This tool is commonly used in operations and examples

of recent articles that consider it are Babich et al. (2005); Tomlin (2006); Tomlin and Wang (2005);

Dada et al. (2007). These papers focus on the risk-reduction benefits of multi-sourcing due to

diversification. However, as we highlight in this paper, multi-sourcing has additional strategic

benefits, because it encourages competition among suppliers. Babich (2006) and Babich et al.

(2007) also found that, similar to our results, the manufacturer must strike the balance between

diversification and competition.

Unlike the majority of papers on supply risk (including the ones mentioned in the paragraph

above), we model the practical situation where the suppliers are better informed about the like-

lihoods of supply disruptions than the manufacturer is. Note that our paper is different from

those in procurement and economics literatures, where asymmetric information is about suppliers’

costs (e.g., Dasgupta and Spulber, 1989; Corbett, 2001; Beil and Wein, 2003; Elmaghraby, 2004;
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Kostamis et al., 2006; Wan and Beil, 2008). As discussed in Yang et al. (2008), asymmetric infor-

mation about disruptions affects not only procurement cost but also the manufacturer’s risk profile.

Our paper is not unique in studying asymmetric information about disruption risks. Examples of

other papers that do the same are Tomlin (2005); Gurnani and Shi (2006); Lim (1997); Baiman et

al. (2000). The latter three, unlike our paper, do not use multi-sourcing. Tomlin (2005) studies

multi-sourcing, but relies on Bayesian updating over time as a mechanism for the manufacturer to

learn the supplier’s reliability, whereas we invoke optimal incentive-compatible contracts instead.

The work closest to the present paper is Yang et al. (2008). In that model, the manufacturer

sources from one supplier and uses backup production options to manage supply disruption risk.

The supplier’s reliability (the likelihood of disruption) is its private information. The manufacturer

designs a menu of incentive contracts to reveal the supplier’s private information. The present

paper studies a wholly different risk-management tool: dual-sourcing. Our findings broaden the

understanding of how asymmetric information about suppliers’ reliabilities interacts with the man-

ufacturer’s risk management policies.

Another work related to our paper is by Chaturvedi and Mart́ınez-de-Albéniz (2008). They

assume that the supplier’s reliability and cost are its private information and study a procurement

auction with multi-sourcing. Furthermore, they use contracts with a structure similar to that in

our paper, consisting of transfer payment, order quantity, and penalty. Similar to us, they find

that under asymmetric information the manufacturer diversifies less. However, there are several

important differences between the two papers including the following. We focus explicitly on

valuing the manufacturer’s dual-sourcing option as a risk-management tool and relating this value

to asymmetric information about supply risk. Our penalty in the contract between the manufacturer

and a supplier is variable, depending on the size of the shortfall in the delivery from the supplier.

We find that as the suppliers become less reliable the manufacturer could actually stop diversifying

under asymmetric information about suppliers’ reliabilities, which we believe will not happen in

their model. In addition, we study the case in which the suppliers’ disruptions are correlated.
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3. Model

We model a stylized supply chain with a manufacturer and two suppliers. The suppliers’ production

processes are subject to random disruptions. When a disruption occurs, the production process

yields zero output and the supplier delivers nothing. For instance, fire could destroy inventory and

halt production, or contamination could force a pharmaceutical firm to scrap vaccines. There are

two types of suppliers in the market: high reliability (H ) and low reliability (L). The two supplier

types differ from each other in their likelihoods of disruptions and their costs of production, with

low-reliability suppliers being more prone to production disruptions. Let tn ∈ {H,L} denote the

type of supplier n = 1, 2. The commonly known probability of a supplier being of high-type is αH ,

and the probability of a supplier being of low-type is αL, where αH + αL = 1. We assume that

the two suppliers’ types are independent of one another.5 To capture the manufacturer’s lack of

visibility into the suppliers’ reliabilities and costs, we assume that a supplier’s reliability type is its

private information, unknown to the manufacturer and the other supplier.6

In keeping with our assumption that a disruption results in non-delivery, we represent supplier-

n’s proportional random yield as a Bernoulli random variable, and denote it by ρtnn :

ρtnn
def=

{
1 with probability θtn

0 with probability 1− θtn ,
(1)

where θH = h and θL = l, h > l. For the time being, we assume that the two suppliers’ production

disruption processes are independent of each other, that is, ρt11 and ρt22 are independent (§8 relaxes

this assumption). The probability θtn is a measure of supplier-n’s reliability. Notice that reliability

depends only on the supplier’s type.

A production attempt costs a type-t supplier (t ∈ {H,L}) ct per unit regardless of whether it

is successful or not. Although we allow cH and cL to be different, the high-type is assumed to be

more cost-efficient than the low-type, that is, the expected cost of successfully producing one unit

is smaller for high-type suppliers: cL/l > cH/h.7

5See §9 for discussion of dependent types.
6Our results can be extended to the case where the suppliers perfectly know the type of each other.
7Note that, for one unit of input going into production, the expected output of a type-t supplier is θt. Hence,

were repeated production attempts allowed, the expected cost of successfully producing one unit would be ct/θt.
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The manufacturer incurs a setup cost for ordering from a supplier, denoted by K, in addition

to the cost of purchasing parts.The setup cost can be the cost of transferring technology to the

supplier, or administrative costs incurred to manage the procurement process. We assume the parts

from the two suppliers are perfect substitutes, for example, the suppliers produce the part to the

manufacturer’s specifications or the part is standardized.

The manufacturer uses the parts to produce a product and sells it to meet demand. To focus

on the effects of supply risk, we assume that the manufacturer faces a demand, D, that is known

at the time the manufacturer places its orders. When supplier deliveries do not cover the entire

demand D, the manufacturer loses r per unit shortfall. The value r represents the manufacturer’s

revenue per item, or alternatively its per item recourse cost to secure a backup supply.8

To govern its relationship with the two suppliers, the manufacturer uses a pair of contracts,

one for each supplier. Each contract consists of a transfer payment, X, an order quantity q, and a

non-delivery unit penalty, p. The penalty serves to hold the supplier liable in case of disruption.

Intuitively, the manufacturer would like the transfer payments, order quantities and penalties to

depend on the suppliers’ true reliabilities. However, the manufacturer does not know the suppliers’

true reliabilities, and instead—as is standard in the economics literature—we assume that the

manufacturer offers several contract options (a contract “menu”) from which the suppliers choose.

To find the manufacturer’s optimal contract menu, we apply the Revelation Principle (Myerson,

1979) and focus on the class of incentive-compatible direct-revelation menus. Under such a contract

menu, both suppliers will truthfully report their reliability types to the manufacturer. For simplicity

in the analysis, we assume that the suppliers cannot collude.9

The contract menu is a modeling construct that captures the general practice of tailoring con-

tracts to specific suppliers in a procurement process. In particular, the contract menu captures two

salient features of a typical contracting process. First, the contract for a supplier (e.g., the size

of non-delivery penalty) is tailored according to the reliability risk perceived by the manufacturer.
8For instance, after its supplier Dovatron’s production was shut down, Beckman Coulter created their own in-house

specialty circuit board production line, which cost them 2.1 million dollars to construct (see Footnote 1).
9For instance, the suppliers might not even know who they are competing against. Jap (2003) surveys implemen-

tations of reverse auctions for procurement and notices that most bidding events are anonymous.
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Thus, a high- and a low-type suppliers can end up with different contracts. Second, the contract

for one supplier depends on the reliability of the other supplier, both of whom compete for business

from the manufacturer: intuitively, a supplier’s likelihood of receiving an order decreases as the

other supplier becomes more reliable. Therefore, the contract for one supplier must be a function

of the reliability types of both suppliers.

Thus, the contract menu in this model consists of four pairs of contracts, each pair corresponding

to one of four combinations of supplier types:

{
[Xn(tn, tn), qn(tn, tn), pn(tn, tn)], n = 1, 2

}
for t1, t2 ∈ {H,L},

where n indicates the supplier other than supplier n (e.g., if n = 2, then n indicates supplier 1).

To ease the notation, we use the shorthand notation (Xn, qn, pn)(tn, tn) to denote the contract.

We consider a single-period problem in which the manufacturer has only one contracting op-

portunity. The timing of events is shown in Figure 1. The problem can be divided into two stages:

contracting and execution. At the beginning of the contracting stage, nature selects the types of the

two suppliers and reveals each supplier’s type to that supplier only. Next, the manufacturer offers

a menu of contracts to the suppliers. The suppliers make their participation decisions and then

report their types to the manufacturer. Based on their reports, the manufacturer chooses a pair of

contracts from the contract menu and assigns them to the respective suppliers. This concludes the

contracting stage. In the execution stage, the suppliers receive their transfer payments from the

manufacturer, run production, make delivery, and pay a penalty, if necessary.

Nature reveals 
the types to 
the suppliers

The manufacturer offers 
a menu of contracts to 
the suppliers

The suppliers make 
participation decisions 
and report their types to 
the manufacturer

The suppliers 
commence 
production

Contracting stage Execution stage

The suppliers 
deliver the 
product

Time

The manufacturer 
chooses a pair of 
contracts 

Figure 1: Timing of events.
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We solve the problem by working backward from the execution stage. The next subsection

presents the analysis of the supplier’s execution stage decisions.

3.1 Supplier’s Production Decisions

To simplify the notation in this subsection, we suppress subscript n for the suppliers. In the

execution stage, given a contract (X, q, p) from the manufacturer, a supplier of type t ∈ {H,L}

chooses the size of its production run, z, to maximize its expected profit. Subsequently, if the

production output, ρtz, is less than the order quantity q, the supplier pays a penalty p per unit of

shortfall (q − ρtz)+. (The + operation is defined such that x+ = x if x > 0 and x+ = 0 if x ≤ 0.)

The following is supplier n’s optimization problem:10

πt(X, q, p) = max
z≥0

{
X − ct z − pE(q − ρt z)+

}
. (2)

When choosing the size of production run, z, the supplier trades off the cost of production, ctz,

against the expected non-delivery penalty, pE(q−ρt z)+. Notice that the choice of z is independent

of the transfer payment X, and, hence, the optimal z depends on q and p only (although X affects

the supplier’s participation decision). Let zt(q, p) denote the optimal size of the production run,

given contract (X, q, p). The lemma below presents the supplier’s optimal production run size and

optimal expected profit. As the lemma shows, the supplier will produce the entire order quantity

as long as its expected cost of successfully producing one unit, ct/θt, is lower than the penalty, p.

Lemma 1. For a given contract (X, q, p), the supplier’s optimal production size, zt(q, p), and

expected profit, πt(X, q, p), are:

Case zt(q, p) πt(X, q, p)
(1) p < ct/θt 0 X − p q
(2) p ≥ ct/θt q X − ct q − (1− θt)p q

In case (1) of Lemma 1, where the penalty is even lower than the expected cost of successfully

producing one unit, the supplier makes no production attempt. As we will see later, this situation

never arises under the manufacturer’s optimal contract menu.
10This is a special case of the supplier’s problem (2) in Yang et al. (2008).
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Lemma 1 shows that the supplier’s expected profit is increasing in its reliability, θt. (In this

paper, we use increasing and decreasing in the weak sense.) Thus, a high-type supplier earns a

larger expected profit than a low-type supplier if both suppliers are offered the same contract.

We define a high-type supplier’s reliability advantage over a low-type supplier to be the difference

between their optimal expected profits under the same contract.

Definition 1. Under contract (X, q, p), the supplier’s reliability advantage for being of high-type

as opposed to low-type is Γ(q, p) def= πH(X, q, p)− πL(X, q, p).

Notice that Γ is not a function of the transfer payment, X, because it cancels out in the calculation.

Applying the expression for the supplier’s optimal profit in Lemma 1 to the definition yields:

Γ(q, p) =


0 p < cH/h

(h p− cH)q cL/l > p ≥ cH/h
[(h− l) p− (cH − cL)]q p ≥ cL/l .

(3)

Using equation (3), Γ(q, p) can be shown to be positive for all q ≥ 0 and p ≥ 0, increasing in p,

q, and h, and decreasing in l. These properties of Γ(q, p) will be instrumental in developing insights

about the effects of asymmetric information on the manufacturer’s procurement actions.

3.2 Manufacturer’s Contract Design Problem

We now explore the manufacturer’s decisions in the contracting stage. Recall that we model the

manufacturer’s decisions as a mechanism design problem, and, by the Revelation Principle, we

focus on incentive-compatible direct-revelation contract menus.

Recall that tn and tn are the reliability types of supplier n and supplier n. At the beginning of

the contracting stage, the manufacturer, who does not know the suppliers’ types, designs and offers

a contract menu to maximize its expected profit. Let sn, sn ∈ {H,L} denote the types reported by

supplier n and the other supplier upon observing the contract menu offered by the manufacturer.

(Notice that if sn 6= tn, then the supplier is misrepresenting itself.) Based on the reported types,

supplier n receives a contract (Xn, qn, pn)(sn, sn), runs production of optimal size ztnn [(qn, pn)(sn, sn)]

and earns a profit of πtnn [(Xn, qn, pn)(sn, sn)] (see Lemma 1). At the time supplier n is reporting
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its type, it does not know the type of the other supplier and hence supplier-n’s expected profit is

Πtn
n (sn) def= Etn

{
πtnn [(Xn, qn, pn)(sn, tn)]

}
, where the expectation is taken over supplier-n’s type.

The manufacturer designs its contract menu to optimize its expected profit while inducing the

suppliers to report their true reliability types. The manufacturer’s contract design problem is the

following optimization problem:

max
(Xn,qn,pn)(tn,tn)
n=1,2; t1,t2∈{H,L}

{ ∑
t1,t2∈{H,L}

αt1αt2
[
rEmin

{
D, ρt11 z

t1
1 [(q1, p1)(t1, t2)] + ρt22 z

t2
2 [(q2, p2)(t2, t1)]

}
−X1(t1, t2) + p1(t1, t2)E

[
q1(t1, t2)− ρt11 z

t1
1 [(q1, p1)(t1, t2)]

]+
−K 1{q1(t1,t2)>0} (4a)

−X2(t2, t1) + p2(t2, t1)E
[
q2(t2, t1)− ρt22 z

t2
2 [(q2, p2)(t2, t1)]

]+
−K 1{q2(t2,t1)>0}

]}
,

Subject to For n = 1, 2

(I.C.) ΠH
n (H) ≥ ΠH

n (L), ΠL
n(L) ≥ ΠL

n(H) (4b)

(I.R.) ΠH
n (H) ≥ 0, ΠL

n(L) ≥ 0 (4c)

qn(tn, tn) ≥ 0, pn(tn, tn) ≥ 0, for t1, t2 ∈ {H,L}.

The manufacturer’s objective function (4a) is the manufacturer’s expected revenue minus the

transfer payments to the two suppliers minus the setup costs of ordering from the suppliers plus

the expected penalties received, where the expectation is over the suppliers’ true types t1 and t2.

Constraints (I.C.) are incentive compatibility constraints for high-type and low-type supplier-n,

respectively. The left-hand-side of each of these constraints is supplier-n’s expected profit when

it truthfully reports its type, given that supplier-n’s type is unknown. The right-hand-side is

supplier-n’s expected profit when it misrepresents itself. The constraints ensure that supplier n

finds it optimal to report its true type. Constraints (I.R.) are the individual rationality constraints

for high-type and low-type supplier-n. These constraints ensure that supplier-n’s expected profit

is greater than its reservation profit, which is normalized to zero. This assumption is common in

the mechanism design field, and is adopted in both the economics (e.g., Myerson, 1981; Che, 1993)

and operations management (e.g., Lim, 1997; Corbett et al., 2004) literatures.
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For problem (4), we have assumed that neither supplier perfectly knows the other supplier’s

reliability type, leading to a Bayesian mechanism. However, there are situations where each of the

two suppliers has perfect information about the other supplier’s reliability type. The contract menu

under such an assumption is called a dominant-strategy mechanism in the information economics

literature. For a general mechanism design problems in which the payoff functions of the principal

and the agents are quasilinear in the transfer payments (as in our model), the optimal dominant-

strategy mechanism is also an optimal Bayesian mechanism (Mookherjee and Reichelstein, 1992).

That is, the set of optimal Bayesian mechanisms subsumes the set of optimal dominant-strategy

mechanisms. We later show that in our model we can choose a Bayesian-mechanism optimal

contract menu such that it is also an optimal dominant-strategy mechanism.

4. Optimal Contracts under Symmetric Information

To provide a benchmark we first solve a variant of problem (4) in which suppliers’ reliabilities are

common knowledge. We refer to this variant as the symmetric information model and use it to

explore the effect of asymmetric information. The incentive compatibility constraints (4b) are no

longer required. The individual rationality constraints (4c) become

πHn [(Xn, qn, pn)(H, tn)] ≥ 0 and πLn [(Xn, qn, pn)(L, tn)] ≥ 0, for n ∈ {1, 2}, tn = H,L.

Given two suppliers with types t1, t2 ∈ {H,L}, we refer to the more reliable supplier as the

primary supplier, and the less reliable one as the secondary supplier. If both suppliers are of

the same reliability type, we use the convention of designating supplier 1 as the primary supplier.

Hereafter, we use subscripts m and m to indicate the primary and the secondary suppliers. The

following proposition states the manufacturer’s optimal procurement actions, illustrated in Figure 2.

Proposition 1. Under symmetric information, given the reliability types of the primary and sec-

ondary suppliers, tm and tm, there exist two thresholds, r̃tm and r̃tm,tm (given in Table AT-1), such

that the manufacturer does not order from either supplier if r ≤ r̃tm, orders only from the primary
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supplier if r̃tm < r ≤ r̃tm,tm, and orders from both suppliers if r > r̃tm,tm. The manufacturer’s

optimal contract menu, {(X̃∗n, q̃∗n, p̃∗n)(tn, tn), n = 1, 2}, t1, t2 ∈ {H,L}, is provided in Table AT-2.

The suppliers earn zero profit, πHn [(X̃∗n, q̃
∗
n, p̃
∗
n)(H, tn)] = πLn [(X̃∗n, q̃

∗
n, p̃
∗
n)(L, tn)] = 0, for tn ∈

{H,L}, n = 1, 2. The manufacturer’s expected profit is(
αH
)2 ([

(h r − cH)D −K
]+

+
{[

(1− h)h r − cH
]
D −K

}+
)

+2
(
αHαL

) ([
(h r − cH)D −K

]+
+
{[

(1− h)l r − cL
]
D −K

}+
)

+
(
αL
)2 ([

(l r − cL)D −K
]+

+
{[

(1− l)l r − cL
]
D −K

}+
)
.

(5)
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Figure 2: The manufacturer’s optimal pro-
curement actions under symmetric informa-
tion in relation to the revenue, r. The label
0 marks the regions where a supplier receives
no order, and the label D marks the regions
where a supplier receives an order of size D.
The manufacturer orders only from the pri-
mary supplier if the revenue, r, is small, and
diversifies if r is large.

Given two suppliers of known types, once the unit revenue, r, becomes sufficiently large, the

manufacturer will diversify, that is, it will order from both suppliers. Observe from Figure 2 that

when the two suppliers are of different types, the threshold for diversification is greater compared to

the cases where the suppliers are of the same type, i.e., r̃HL > r̃HH and r̃HL > r̃LL. In other words,

having two suppliers with different types makes it less appealing for the manufacturer to diversify.

Intuitively, the secondary supplier in the case where the two suppliers have different types is less

reliable than the secondary supplier in the case where both suppliers are of high-type. Similarly,

the primary supplier in the case where the two suppliers have different types is more reliable than

the primary supplier in the case where both suppliers are of low-type. Either way, the additional

value from the secondary supplier is smaller when the two suppliers have different types.

Per Proposition 1, under symmetric information the manufacturer extracts all channel profit.

Therefore, the channel’s profit is also maximized at the manufacturer’s optimal contract menu. We
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let πt1,t2C [(q1, p1), (q2, p2)] be the channel’s profit under a pair of contracts {(X1, q1, p1), (X2, q2, p2)},

when the two suppliers are of types t1 and t2. Note that πt1,t2C is independent of the transfer

payments X1 and X2, because they are payments within the channel. The optimal channel profit

equals πt1,t2C [(q̃∗1, p̃
∗
1)(t1, t2), (q̃∗2, p̃

∗
2)(t2, t1)]. The channel loses a profit when {(q1, p1), (q2, p2)} are

different from the channel-optimal contract terms in Proposition 1. We define the channel loss as:

Definition 2. The channel loss under a pair of contracts {(X1, q1, p1), (X2, q2, p2)}, when the two

suppliers’ types are t1 and t2, is

∆t1,t2 [(q1, p1), (q2, p2)] def= πt1,t2C [(q̃∗1, p̃
∗
1)(t1, t2), (q̃∗2, p̃

∗
2)(t2, t1)]− πt1,t2C [(q1, p1), (q2, p2)].

5. Optimal Contracts under Asymmetric Information

In this section we explore the manufacturer’s contract design problem (4) under asymmetric infor-

mation. We first explain the tradeoff underlying the manufacturer’s contracting decisions in the

face of privately informed suppliers. Proposition 2 presents the optimal contract menu. We then

compare the optimal contract menus under symmetric and asymmetric information to identify the

effect of asymmetric information.

The manufacturer’s tradeoff. Incentive problems arise when the suppliers have private

information. Recall that the optimal contract menu under symmetric information, denoted by

(X̃∗n, q̃
∗
n, p̃
∗
n)(tn, tn), n = 1, 2, t1, t2 ∈ {H,L}, is designed so that the manufacturer extracts the

entire channel profit and leaves zero profit to the suppliers. Under asymmetric information, if the

manufacturer offered the same contract menu, then a high-type supplier would have an incentive

to misrepresent itself. For example, if supplier n is a high-type supplier, it would claim to be

a low-type supplier and receive the contract (X̃∗n, q̃
∗
n, p̃
∗
n)(L, tn). This contract, which yields zero

profit to a low-type supplier, would bring a strictly positive profit to high-type supplier-n equal

to its reliability advantage, denoted by Γn[(q̃∗n, p̃
∗
n)(L, tn)] (see Definition 1). Therefore, under

asymmetric information, if the manufacturer offered contract menu (X̃∗n, q̃
∗
n, p̃
∗
n)(tn, tn), n = 1, 2,

t1, t2 ∈ {H,L}, it would have to make an incentive payment to high-type supplier-n in the amount of
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Γn[(q̃∗n, p̃
∗
n)(L, tn)]. Alternatively, the manufacturer may offer a different contract menu to reduce

this incentive payment, which nonetheless may not optimize the channel profit. The resulting

channel loss (see Definition 2) will then be borne by the manufacturer. Hence, in designing the

contract menu, the manufacturer must strike a balance between the incentive payment to a high-

type supplier and the channel loss.

The optimal contract menu. The next proposition describes the optimal contract that

achieves this goal. Using the analytical results in Proposition 2, we illustrate the manufacturer’s

optimal procurement actions on the right panel of Figure 3. We continue to use the convention

that when both suppliers are the same type, supplier 1 is designated as the primary supplier.

Proposition 2. Under asymmetric information, given the reliability types of the primary and

secondary suppliers, tm and tm, there exist two thresholds, rtm and rtm,tm (given in Table AT-

3), such that the manufacturer does not order from either supplier if r ≤ rtm, orders only from

the primary supplier if rtm < r ≤ rtm,tm, and orders from both suppliers if r > rtm,tm. The

manufacturer’s optimal contract menu, {(X∗n, q∗n, p∗n)(tn, tn), n = 1, 2}, t1, t2 ∈ {H,L}, is presented

in Table AT-4. Without loss of optimality, we choose the optimal transfer payments X∗n(tn, tn) such

that the optimal contract menu is also a dominant-strategy mechanism (i.e., when the suppliers

perfectly know the type of each other).

The high- and low-type supplier-n’s profits are πHn [(X∗n, q
∗
n, p
∗
n)(H, tn)] = h

(
cL

l −
cH

h

)
q∗n(L, tn),

and πLn [(X∗n, q
∗
n, p
∗
n)(L, tn)]=0; the manufacturer’s expected profit (before knowing supplier types) is(

αH
)2([

(h r − cH)D −K
]+

+
{[
h(1− h)r − cH

]
D −K

}+)
+2
(
αHαL

)([
(h r − cH)D −K

]+
+

{[
l(1− h)r − cL

]
D −K − αH

αL
h

(
cL

l
− cH

h

)
D

}+
)

+
(
αL
)2
([

(l r − cL)D−K− αH

αL
h

(
cL

l
− cH

h

)
D

]+
+

{[
l(1− l)r − cL

]
D −K− αH

αL
h

(
cL

l
− cH

h

)
D

}+
)
.

(6)

Effect of asymmetric information on ordering decisions. As in the case of symmetric

information, under the optimal contract menu the manufacturer places no orders when the unit

revenue is sufficiently small, orders only from the primary supplier once the unit revenue becomes

larger, and orders from both the primary and secondary suppliers once the unit revenue is sufficiently
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Figure 3: The manufacturer’s optimal procurement actions in relation to the revenue, r, under
symmetric information (the left panel) and asymmetric information (shaded with solid color on
the right panel). The difference between the manufacturer’s procurement actions under symmetric
and asymmetric information is shown on the right panel. Under asymmetric information, the
manufacturer forgoes ordering from the low-type supplier when r falls in the intervals corresponding
to the dotted bars.

large. However, as the right panel of Figure 3 shows, the thresholds for ordering from the low-type

supplier, be it a primary or secondary supplier, are higher under asymmetric information than under

symmetric information. In particular, the manufacturer stops diversifying when max{rL, r̃LL} ≤

r < rLL and both suppliers are of low-type, or r̃HL ≤ r < rHL and the two suppliers are of different

types. Under symmetric information, the manufacturer sole-sources when the anticipated revenue

brought by the secondary supplier does not outweigh the additional ordering costs. However,

under asymmetric information there is an additional benefit to sole-sourcing, which pushes the

manufacturer to diversify less. If the manufacturer will not order from a secondary supplier of

low-type, then a high-type supplier knows that pretending to be of low-type might backfire – they

could lose the order. Thus, when the manufacturer rolls back diversification, the suppliers find

themselves in more intense competition, reducing their incentives to misrepresent themselves.

As a consequence of forgoing ordering from a low-type supplier, the manufacturer receives less

supply under asymmetric information. Thus, we have the following result:

Corollary 1. The total quantity received by the manufacturer from the two suppliers under asym-

metric information is stochastically smaller than under symmetric information.
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Sensitivity to supply-base reliability. A worsening of reliability in the supply base may

have different effects on the use of diversification under symmetric and asymmetric information.

One may intuitively expect that whenever the supply base becomes less reliable, the manufacturer

will find it more attractive to diversify. Indeed, with symmetric information under a mild restriction

on supplier reliabilities, h + l > 1, the manufacturer may start diversifying when the supply base

becomes less reliable, but will never stop diversifying. However, under asymmetric information, the

opposite may be true: a worsening of reliability may cause the manufacturer to stop diversifying

under asymmetric information. These observations are formalized in the following corollary.

Corollary 2. Suppose the non-disruption probabilities are such that h+l > 1. Consider the optimal

contract pair offered to one high- and one low-type suppliers. Under asymmetric information, there

exist h, l and unit revenue r such that the manufacturer diversifies, but if both h and l decrease

by some ε ∈ (0, l) the manufacturer will stop diversifying. Under symmetric information, the

manufacturer would never stop diversifying in response to a reliability decrease.

The explanation of this result lies in high-type suppliers’ incentives to misrepresent themselves.

When both supplier types are sufficiently unreliable (as made precise in the proof of the above

corollary), a further reduction in their reliabilities leads to an increase in a high-type supplier’s

reliability advantage, which in turn translates into a larger incentive payment from the manufac-

turer. Even though a worsening of the supply base reliability increases the chance that a low-type

supplier’s delivery would be critical for meeting demand, the manufacturer can find it attractive to

stop diversifying in order to circumvent a ballooning incentive payment for the high-type supplier.

Informational rents and channel loss. We use Proposition 2 to compute the suppliers’

incentive payments and the channel loss under the optimal contract menu. These results will be

crucial in analyzing the value of information. Following standard information economics termi-

nology, we refer to high-type supplier-n’s expected incentive payment under the optimal contract

menu as its informational rent, denoted by γn(r), where the expectation is over supplier-n’s type:

γn(r) def= Etn

{
Γ[(q∗n, p

∗
n)(L, tn)]

}
.
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Revenue, r
Informational Rent

γ1(r), for supplier 1 γ2(r), for supplier 2
r ≤ rL 0

0
rL < r ≤ rLL

αLh
(
cL

l −
cH

h

)
D

rLL < r ≤ rHL αLh
(
cL

l −
cH

h

)
D

r > rHL h
(
cL

l −
cH

h

)
D h

(
cL

l −
cH

h

)
D

Table 1: Informational rents earned by high-type supplier-n, γn(r), n = 1, 2.

The optimal penalty p∗n(L, tn) and optimal order quantity q∗n(L, tn) are given by Proposition 2.

Table 1 presents the closed-form expressions for γn(r), n = 1, 2, revealing that a high-type supplier’s

informational rent increases in the revenue, r. In particular, as revenue increases it becomes

important for the manufacturer to avoid lost sales, encouraging the manufacturer to order from a

low-type supplier and thereby allowing a high-type supplier to exploit its reliability advantage.

Given the optimal contracts for two suppliers of types t1 and t2 under asymmetric information,

the channel loss is denoted by δt1,t2 and is given by δt1,t2(r) def= ∆t1,t2
[
(q∗1, p

∗
1)(t1, t2), (q∗2, p

∗
2)(t2, t1)

]
.

Revenue, r δHH(r)
r > 0 0

Revenue, r δHL(r) or δLH(r)
r̃HL < r ≤ rHL

[
(1− h)l r − cL

]
D −K

All other r 0
Revenue, r δLL(r)

r̃L < r ≤ rL (l r − cL)D −K
r̃LL < r ≤ rLL

[
(1− l)l r − cL

]
D −K

All other r 0

Table 2: The channel loss under the optimal contract menu, δt1,t2(r).

Table 2 provides a closed-form expression for the channel loss, δt1,t2(r), t1, t2 ∈ {H,L}. Un-

der the optimal contract menu, channel loss is strictly positive whenever asymmetric information

causes the manufacturer to stop ordering from a low-type supplier from whom it would order

under symmetric information. For example, given two suppliers, one of high-type and the other

of low-type, if revenue r is such that r̃HL < r ≤ rHL, then introducing asymmetric information

causes the manufacturer to stop ordering from the low-type supplier, resulting in a profit loss of
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[
(1− h)l r − cL

]
D −K, equal to channel loss δHL(r).

6. Value of Information

Section 5 shows that asymmetric information about suppliers’ reliabilities changes the manufac-

turer’s procurement actions and causes losses in the manufacturer’s and the channel’s profits. These

losses can be avoided by acquiring information, which could be costly and, thus, needs to be justified

by the benefits of having such information. In this section, we study the value of information for

the suppliers, channel and manufacturer, where the value of information for an entity is defined to

be the difference between its expected profits in symmetric and asymmetric information models.11

For a high-type supplier, the value of information is the negative of its informational rent

(Table 1). For the channel, the value of information equals channel loss (Table 2) weighted by

the probability of drawing suppliers of types t1, t2 ∈ {H,L}. From the manufacturer’s perspective,

information about suppliers’ reliabilities creates value by eliminating both informational rent and

channel loss. Hence, the manufacturer’s value of information equals the sum of the informational

rents paid to the two suppliers (each weighted by the probability that the supplier is of high-type)

and the expected channel loss: αH
[
γ1(r) + γ2(r)

]
+
[
2
(
αHαL

)
δHL(r) +

(
αL
)2
δLL(r)

]
.

r
Revenue

Value of information 
for the manufacturer

Lr LLr HLr0
Lr LLr HLr

Figure 4: The values of information for the manufacturer increases in the revenue, r.

Figure 4 plots the manufacturer’s value of information as a function of r, revealing that as the

revenue increases, the manufacturer’s value of information increases, alternating between regions

where it is strictly increasing and regions where it is flat. For example, when r̃L < r ≤ rL, given two

low-type suppliers, the manufacturer would order from one of them under symmetric information,
11Recall from Proposition 2 that in the asymmetric information model, even if a supplier perfectly knows the other

supplier’s reliability type, it would receive the same contract and thus earn the same profit. Therefore, in this model
there is no value for the suppliers only to acquire information about the reliability type of the other supplier.
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but would strategically not order at all under asymmetric information. Hence, the manufacturer

incurs channel loss, which becomes all the more costly as r continues to increase. This explains

the increase in the value of information as r increases from r̃L to rL. Once r is slightly above rL,

the channel loss becomes so onerous that the manufacturer starts ordering from one of the two

low-type suppliers even under asymmetric information. While this strategic decision allows the

manufacturer to avoid channel loss, it risks incurring informational rent if a high-type supplier is

drawn. The information rent does not change with r, so the value of information levels off. This

behavior repeats itself as further increases in r create new strategic shifts in the manufacturer’s

decision to order from a low-type supplier under asymmetric information. Overall, as the revenue,

r, increases, the manufacturer becomes more willing to order to avert lost sales, allowing more

opportunities for the high-type supplier(s) to exploit their private information and thus enhancing

the value of information.

Sensitivity of the manufacturer’s value of information to reliability gap h− l. Intu-

itively, one may expect that the manufacturer’s value of information increases if the reliability gap

between the two supplier-types expands, because high-type suppliers would have stronger incentives

to misrepresent their reliabilities. In fact, in the case where there is only one supplier in the supply

base, the manufacturer’s value of information increases as the reliability gap increases (see Yang et

al., 2008, Corollary 6). However, we find that in the dual-sourcing model the value of information

may decrease, depending on the size of revenue, r.

Corollary 3. Suppose that the low-type’s reliability, l, is fixed. If max{r̃HL, cL/l2} < r ≤ rHL,

then the manufacturer’s value of information is decreasing in h.

Note that when l > 1
2 , we have r̃HL > cL/l2. Therefore, when l > 1

2 , for all r̃HL < r ≤ rHL

the value of information is decreasing in h. To see the intuition behind Corollary 3, note that

when r̃HL < r ≤ rHL, asymmetric information causes the manufacturer to strategically forgo

diversification when facing one high- and one low-type supplier. Doing so puts the manufacturer

in peril of regretting its decision to not contract with a secondary supplier, but intuitively this risk

diminishes as the high-type supplier (the primary supplier) becomes more reliable.
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Corollary 3 implies that, even as the reliability gap between the high and low reliability supplier-

types shrinks — meaning there is “less to learn” about the suppliers — information is actually more

valuable. Thus, having “less to learn” about the suppliers’ reliabilities (more similarity between

supplier reliability types) should not be seen as a substitute for information.

7. Effect of Dual-Sourcing Option

In this section, we analyze the manufacturer’s benefit of acquiring the dual-sourcing option. We

find that the dual-sourcing option increases the manufacturer’s expected profit while reducing the

informational rent of a supplier. We further show that the benefit of the dual-sourcing option for

the manufacturer could be enhanced or diminished by improved information about the suppliers.

In e-companion D, we examine a benchmark model with a single supplier in the supply base, while

retaining all other assumptions of our main model (§3). To differentiate from the sole-sourcing case

in the dual-sourcing model, we hereafter refer to this model as the single-sourcing model.

7.1 Effect of the Dual-Sourcing Option on the Informational Rent

We now examine how the manufacturer’s dual-sourcing option affects a high-type supplier’s infor-

mational rent. Without loss of generality, we assume that the supplier in question is the one that is

favored in case of a tie in the dual-sourcing model (i.e., supplier 1). We compare the informational

rent extracted by high-type supplier-1 when it is the only supplier against the rent when it is one

of two suppliers that the manufacturer can order from. The result is presented in Table 3.

Revenue, r Reduction in informational rent

rL < r ≤ rHL αHh
(
cL

l −
cH

h

)
D

r ≤ rL or r > rHL 0

Table 3: Reduction in informational rent extracted by high-type supplier-1 if the manufacturer
switches from single-sourcing to dual-sourcing.

From Table 3, the dual-sourcing option reduces the high-type supplier’s informational rent, if

and only if the revenue, r, is such that rL < r ≤ rHL. In region r > rHL, the revenue is large

enough that even when there are two suppliers both of them will receive an order regardless of

21



their reliability types. Hence, when a high-type supplier is one of two suppliers, it has just as

much incentive to misrepresent itself as it does when it is the only supplier. This explains why the

dual-sourcing option does not change the high-type supplier’s profits when r > rHL.

In region rL < r ≤ rHL, under the single-sourcing model, the manufacturer will order from a

supplier regardless of its reliability type. Therefore, a high-type supplier will earn informational

rent, because it can always pretend to be of low-type and still receive an order. In contrast, under

the dual-sourcing model, a low-type supplier will not receive an order if the other supplier is of high-

type. Given the manufacturer’s reluctance to order from a low-type supplier, the high-type suppliers

now know that pretending to be of low-type comes with the risk of not receiving an order. Thus, by

not ordering from a low-type supplier, the manufacturer in effect creates competitive pressure that

limits the high-type suppliers’ incentive to misrepresent themselves. This competition manifests

itself in the reduction of supplier 1’s informational rent, shown in Table 3.

Finally, when r ≤ rL, the revenue is low enough that a low-type supplier does not receive an

order with or without the dual-sourcing option. Hence, in this region, the high-type supplier has

no incentive to misrepresent itself and cannot earn informational rent, regardless of whether or not

the dual-sourcing option exists.

7.2 Value of the Dual-Sourcing Option for the Manufacturer

We now compute the manufacturer’s values of the dual-sourcing option in the symmetric and

asymmetric information models, and then compare them to examine the effect of asymmetric

information on the benefit of having a dual-sourcing option. We define the value of the dual-sourcing

option for the manufacturer as the difference between its expected profits in the dual-sourcing and

single-sourcing models, given by (5) and (A.1) for the symmetric information model, and (6) and

(A.2) for the asymmetric information model.

Symmetric information. Consider the scenario where in the single-sourcing model the only

supplier is of low-type and in the dual-sourcing model the additional supplier is of high-type. In this

scenario, the manufacturer enjoys one of two kinds of benefits by moving from the single-sourcing
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model to the dual-sourcing model. First, if revenue is high and the manufacturer orders from both

suppliers in the dual-sourcing model, then the manufacturer benefits from diversification, reducing

the probability of lost sales. Second, if revenue is low and the manufacturer chooses to order from

only one supplier in the dual-sourcing model, the manufacturer enjoys the benefit of having access

to the more efficient, high-type supplier. In the other scenarios, where either the single supplier is

of high-type or both suppliers in the dual-sourcing model are of low-type, the dual-sourcing option

does not yield benefits of having access to a more reliable supplier. Nonetheless, the dual-sourcing

option continues to generate diversification benefits when the revenue is large enough.

Asymmetric information. The value of the dual-sourcing option under asymmetric infor-

mation is similar to that under symmetric information. One important difference, however, is that

the manufacturer yields informational rent(s) to the high-type supplier(s), and the dual-sourcing

option may increase or decrease the total informational rent to be paid by the manufacturer. On

one hand, the dual-sourcing option has the potential to reduce the informational rent paid to a

supplier. As discussed in §7.1, this happens when a manufacturer with the dual-sourcing option

chooses not to order from a low-type supplier, thus putting a competitive pressure on high-type

suppliers. On the other hand, in cases where the dual-sourcing option enables the manufacturer

to order from two high-type suppliers, the manufacturer may have to pay informational rents to

both suppliers, reducing the appeal of the dual-sourcing option. Thus, it is not necessarily obvious

whether the dual-sourcing option is more or less valuable under asymmetric information compared

to under symmetric information. We next explore this comparison.

Information and the value of the dual-sourcing option for the manufacturer. Propo-

sition 3 below formalizes the comparison between the values of the dual-sourcing option under

symmetric and asymmetric information, which are plotted in Figure 5.

Proposition 3. Information and the dual-sourcing option are substitutes when the revenue is small

and are complements when the revenue is large. Specifically, there exists a value r0, rHL > r0 > r̃LL,

such that, for r > r0, the manufacturer’s value of the dual-sourcing option is larger under symmetric

information than under asymmetric information; the converse is true for r̃L < r < r0.
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Figure 5: The values of the dual-sourcing
option for the manufacturer under symmet-
ric and asymmetric information. The value
of the dual-sourcing option under asymmet-
ric information is greater than under sym-
metric information for r̃L < r < r0, but is
smaller for r > r0.

Intuitively, one may expect that the manufacturer would always benefit more from the dual-

sourcing option under symmetric information because the manufacturer’s ability to identify the

suppliers’ types may help it take better advantage of the option. Proposition 3 shows that infor-

mation reduces the value of the dual-sourcing option when revenue, r, is small (i.e., r̃L < r < r0),

but increases the value of the dual-sourcing option when revenue, r, is large (i.e., r > r0).

This observation is a manifestation of the manufacturer’s tradeoff between the benefit of sup-

plier competition and the benefit of diversification. When the revenue is small, the competition

effect dominates and hence the manufacturer prefers not to order from a secondary supplier. This

reduces the informational rent extracted by a high-type supplier. Because this benefit is absent

under symmetric information, the dual-sourcing option is more valuable under asymmetric infor-

mation. When the revenue is large, the benefit of diversification becomes larger than the benefit

of competition, and hence the manufacturer finds it useful to diversify. The resulting inflation of

informational rents makes the dual-sourcing option less valuable under asymmetric information.

8. Codependent Supplier Production Disruptions

Thus far we assumed that the two suppliers’ production disruption processes are independent.

In reality, they could be correlated due to common infrastructure, geographic proximity, similar

production technologies, overlapping supply bases and other factors. In this section we extend our

model and analysis to capture codependence between the two suppliers’ disruption processes.
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8.1 Model and Optimal Contract Menu

We capture codependence between the two suppliers’ disruption processes by allowing the Bernoulli

yield random variables of the two suppliers to be statistically dependent. If the two suppliers are of

reliability types, t1, t2 ∈ {H,L}, we may represent codependence between their disruption processes

via a joint probability matrix:

Ωt1,t2 def=

[
ωt1,t2(1, 1) ωt1,t2(1, 0)
ωt1,t2(0, 1) ωt1,t2(0, 0)

]
, (7)

where ωt1,t2(x1, x2) = P{ρt11 = x1, ρ
t2
2 = x2}, x1, x2 ∈ {0, 1}, is the joint probability that the yield

rates of the two suppliers’ production runs are x1 and x2, respectively. Matrix Ωt1,t2 can be uniquely

characterized by one of its four elements and the two suppliers’ marginal probabilities of successful

production, P{ρt11 = 1} = θt1 and P{ρt22 = 1} = θt2 , because θt1 = ωt1,t2(1, 1) + ωt1,t2(1, 0) and

θt2 = ωt1,t2(0, 1) + ωt1,t2(1, 1).12 We choose the two suppliers’ joint success probability, ωt1,t2(1, 1),

to be the indicator of the level of codependence between the two suppliers’ disruption processes.

The larger ωt1,t2(1, 1), the greater the codependence.

The manufacturer’s contract design problem under asymmetric information is given by prob-

lem (4), where the manufacturer’s expected sales, Emin
{
D, ρt11 z

t1
1 + ρt22 z

t2
2

}
in (4a), is now an

expectation over Ωt1,t2 , the joint probability distribution of ρt11 and ρt22 . To obtain an analytical

solution, we assume that ωHL(1, 1)/l ≥ ωHH(1, 1)/h. This assumption is equivalent to the following

restriction on the conditional probability of high-type supplier-1 producing successfully, given that

supplier 2 produced successfully:

P{ρH1 = 1|ρL2 = 1} > P{ρH1 = 1|ρH2 = 1}. (8)

In words, high-type supplier-1’s probability of successful production conditional on supplier 2 pro-

ducing successfully is decreasing in supplier-2’s reliability. For example, consider a situation where

the two suppliers are located in the same region and share an unreliable infrastructure and where
12In the exhaustive set of joint probability matrices, {ΩHH ,ΩHL,ΩLH ,ΩLL}, matrix ΩLH is the transpose of ΩHL,

because we assumed that the two suppliers are symmetric if they are of the same type.
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a supplier’s reliability increases in its experience of working with this infrastructure. Production

success of an inexperienced supplier-2 provides a stronger signal than success of an experienced

supplier-2 regarding the chance that the other supplier (supplier 1) will succeed as well.

Proposition 4. Given that the two suppliers’ disruption processes are codependent and condition

(8) holds, the manufacturer’s optimal contract menu and the suppliers’ profits under symmetric

and asymmetric information are as given in Propositions 1 and 2, respectively, with the thresholds

r̃tm,tm and rtm,tm redefined per Table AT-5. The manufacturer’s expected profits under symmetric

and asymmetric information are obtained by replacing (1 − h)h, (1 − h)l and (1 − l)l in (5) and

(6) with h− ωHH(1, 1), l − ωHL(1, 1) and l − ωLL(1, 1), respectively.

To obtain the optimal contract menu and the profits of the suppliers and the manufacturer, we

can simply rewrite the joint probabilities (1−h)h, (1−h)l and (1− l)l in the thresholds of revenue

and profits in the previous sections as h− ωHH(1, 1), l− ωHL(1, 1) and l− ωLL(1, 1), respectively.

8.2 Sensitivity Analysis

We analyze how the manufacturer’s ordering decisions, the supply chain firms’ profits, and the

value of information for the manufacturer change as the codependence between the two suppliers’

disruption processes increases. To model an increase in codependence, we increase at least one of

the three joint success probabilities, ωHH(1, 1), ωHL(1, 1) and ωLL(1, 1), by a small amount ε, while

keeping the others fixed. We further restrict the increment ε to be such that the resulting level of

codependence does not violate inequality (8).

The manufacturer’s diversification decision. From Proposition 4, the thresholds for the

manufacturer to diversify in both symmetric and asymmetric information models, r̃HH , r̃HL and

r̃LL; rHH , rHL and rLL, increase as codependence increases. In other words, greater supplier

codependence makes diversification statistically less valuable and pushes the manufacturer towards

sole-sourcing, in both symmetric and asymmetric information models.

The supply chain firms’ profits under asymmetric information. As the joint suc-

cess probabilities, ωHH(1, 1), ωHL(1, 1) or ωLL(1, 1), increase, both the manufacturer’s expected
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profit (6) and the high-type suppliers’ informational rents (provided in Table 1, with rLL and

rHL redefined as in Proposition 4) decrease in the asymmetric information model. To explain this

observation, we note that greater codependence makes diversification less valuable for the manu-

facturer. This reduces the manufacturer’s profit in both symmetric and asymmetric information

models. Under asymmetric information, however, greater codependence also causes an increase in

supplier competition, leading to a reduction in the informational rents extracted by the high-type

suppliers. This compensates for the reduction in the benefit of diversification for the manufacturer,

making the manufacturer’s profit under asymmetric information less sensitive to an increase in

codependence than under symmetric information.

Manufacturer’s value of information. We replace joint probabilities (1− h)h, (1− h)l and

(1−l)l in the expression for the manufacturer’s value of information with h−ωHH(1, 1), l−ωHL(1, 1)

and l − ωLL(1, 1). As codependence increases, the manufacturer’s value of information decreases.

Thus, as the two suppliers’ disruptions become more correlated, the manufacturer becomes less

concerned with asymmetric information despite the fact that higher codependence between supplier

disruptions makes the supply base less reliable overall. To see why, recall that greater codependence

makes diversification less desirable, leading to increased supplier competition. This in turn reduces

the suppliers’ incentives to misrepresent their reliability, and hence reduces the value of information

for the manufacturer. The managerial implication is that strategic actions to reduce codependence

between supplier disruptions (e.g., sourcing from different geographic regions) should not be seen

as a substitute for obtaining better information about suppliers’ reliabilities.

9. Concluding Remarks

Supply disruptions lead to significant losses in shareholders’ value (Hendricks and Singhal, 2003).

A common operational tool for controlling supply disruption risks is placing orders with several

suppliers (diversification), so that if one of the suppliers experiences a problem, others might still

deliver parts to the manufacturer. However, working with several suppliers is administratively ex-

pensive, and managers must carefully weigh the benefits of diversification against its costs. This
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tradeoff depends on a number of factors such as whether suppliers are located in the same geo-

graphical area (and are exposed to the same causes of disruptions) and how much the manufacturer

would lose if a disruption did occur. Furthermore, this paper shows that another important factor

is whether suppliers are better informed than the manufacturer about the disruption likelihood.

First, we observe that a dual-sourcing option (the option of the manufacturer to order from

one or two suppliers) has several benefits, with the risk-reduction due to diversification being just

one of them. The other important benefit comes from competition. Consistent with the extant

economics and operations literatures, we find that suppliers use their private information about

their reliabilities to extract informational rents from the manufacturer. If the manufacturer orders

from both suppliers (i.e., diversifies) then it pays high rents to both suppliers, which leads to very

high effective diversification costs. On the other hand, if the manufacturer commits to ordering from

only one of the two suppliers, the competition between suppliers keeps these rents down. Thus, we

find that asymmetric information about suppliers’ reliabilities pushes the manufacturer away from

diversification and towards sole-sourcing. As a consequence, the additional cost that asymmetric

information imposes on diversification may cause the manufacturer to cease diversifying even as

the supply base reliability erodes, which would never happen under symmetric information.

Second, diversification is still used by the manufacturer under asymmetric information about

suppliers’ reliabilities, but only if the manufacturer’s costs in case of a disruption are very high.

Because diversification results in high informational rents, manufacturers that choose to diversify

have a strong incentive to learn about suppliers’ reliabilities, for example, by investing in long-term

relationships with suppliers, sending representatives to supplier factories, etc. In contrast, when

costs of disruptions are low and consequently the manufacturer orders from only one supplier, com-

petition between suppliers is very effective in curtailing informational rents and the manufacturer

would not gain much by knowing everything suppliers know. Thus, in such cases, arm’s-length

relationships between the manufacturer and the suppliers are more tenable. Moreover, we find

that information may become more valuable even as a high-type supplier’s reliability becomes

closer to that of a low-type, because in such a case supply diversification becomes more important.
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Thus, surprisingly, having “less to learn” about the suppliers’ reliabilities (more similarity between

supplier reliability types) should not be seen as a substitute for information.

Third, having less information about supplier reliability does not necessarily decrease the value

of a dual-sourcing option for the manufacturer. If disruptions costs are low, this option is more

valuable for a manufacturer who is not as knowledgeable as the suppliers, because it enables such

a manufacturer to leverage competition to drive down suppliers’ informational rents.

Fourth, introducing codependence between supplier disruptions does not alter any of the above

insights, but adds new findings. Although greater supplier codependence reduces the manufacturer’s

profit, it also heightens supplier competition by making suppliers more similar. Consequently, the

decrease in the manufacturer’s profit due to greater supplier codependence is less severe under

asymmetric information (where competition is more vital) than under symmetric information. In

fact, greater codependence between supplier disruptions reduces the suppliers’ incentives to misrep-

resent their reliabilities and reduces the value of information for the manufacturer. Hence, strategic

actions to reduce supplier codependence (such as choosing suppliers from different regions) should

not be seen as a substitute for learning suppliers’ reliabilities.

We believe that if we extended our analysis to include multi-sourcing, the effects of competition,

the benefits of selecting the best available supplier(s), and additional costs of diversification due to

informational rents would continue to shape the solution of the manufacturer’s problem. In fact, our

insights suggest that with more suppliers these effects will intensify and the manufacturer will rely

more on competition and less on diversification. However, there will be many more combinations

of suppliers that are candidates for receiving an order, increasing the complexity of the analysis.

In our model each supplier can be one of two possible types, and the manufacturer’s demand is

known at the time it places its order. While we suspect that having more than two supplier types

or modeling random demand would leave the spirit of our insights unchanged, we believe that

the analysis would become substantially more complex. In particular, the monotonicity condition,

which enables the incentive compatibility conditions to be verified, might be violated, making the

derivation of the optimal contract very cumbersome.
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Finally, we assumed that the supplier types are independent. Applying the results from Fu-

denberg and Tirole (1991, page 292), if the suppliers’ types in our model were correlated, the

manufacturer could implement the same contract as if the supplier types were public information.

Additionally, as in Maskin and Tirole (1990) (also see discussion in Yang et al., 2008), we could

allow the demand to be the manufacturer’s private information, but the manufacturer would not

do any better than if the demand information were public.

In future work, it could be interesting to consider the effects of supplier collusion on the contract

design and the value of the dual-sourcing option. We expect that supplier competition will be

weakened in the presence of supplier collusion, while at the same time informational rents could

be significantly higher if the manufacturer diversifies. Therefore, it is difficult to say, a priori, if

collusion will encourage or discourage diversification.
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Electronic Companion for “Supply Risk, Asymmetric Information

and a Dual-Sourcing Option”
Zhibin (Ben) Yang, Göker Aydın, Volodymyr Babich, and Damian R. Beil

A. Tables for Proposition 1

Primary Secondary r̃tm r̃tm,tm

High-type High-type r̃H = cH

h + K
hD r̃HH = cH

h(1−h) + K
h(1−h)D

High-type Low-type r̃H = cH

h + K
hD r̃HL = cL

l(1−h) + K
l(1−h)D

Low-type Low-type r̃L = cL

l + K
lD r̃LL = cL

l(1−l) + K
l(1−l)D

Table AT-1: Expressions for thresholds r̃tm and r̃tm,tm separating revenue into intervals within
which the manufacturer does not order from either supplier, orders from only the primary supplier,
or orders from both suppliers, under symmetric information.

Revenue Supplier X̃∗
n q̃∗

n p̃∗
n

Two high-type suppliers
r ≤ r̃H Both - No contract -

r̃H < r ≤ r̃HH Supplier 1 [cH + (1− h)p̃∗1]D D any p̃∗1 ∈ [ c
H

h , r)
Supplier 2 - No contract -

r > r̃HH
Supplier 1 [cH + (1− h)p̃∗1]D D any p̃∗1 ∈ [ c

H

h , r)
Supplier 2 [cH + (1− h)p̃∗2]D D any p̃∗2 ∈ [ c

H

h , r)

High-type supplier-m and low-type supplier-m
r ≤ r̃H Both - No contract -

r̃H < r ≤ r̃HL Supplier m [cH + (1− h)p̃∗m]D D any p̃∗m ∈ [ c
H

h , r)
Supplier m - No contract -

r > r̃HL
Supplier m [cH + (1− h)p̃∗m]D D any p̃∗m ∈ [ c

H

h , r)
Supplier m [cL + (1− l)p̃∗m]D D any p̃∗m ∈ [ c

L

l , r)

Two low-type suppliers
r ≤ r̃L Both - No contract -

r̃L < r ≤ r̃LL Supplier 1 [cL + (1− l)p̃∗1]D D any p̃∗1 ∈ [ c
L

l , r)
Supplier 2 - No contract -

r > r̃LL
Supplier 1 [cL + (1− l)p̃∗1]D D any p̃∗1 ∈ [ c

L

l , r)
Supplier 2 [cL + (1− l)p̃∗2]D D any p̃∗2 ∈ [ c

L

l , r)

Table AT-2: The optimal contract menu under symmetric information.
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B. Tables for Proposition 2

Primary Secondary rtm rtm,tm

High-type High-type rH = r̃H rHH = r̃HH

High-type Low-type rH = r̃H rHL = r̃HL + αH

αL
h

l(1−h)

(
cL

l −
cH

h

)
D

Low-type Low-type rL = r̃L + αH

αL
h
l

(
cL

l −
cH

h

)
D rLL = r̃LL + αH

αL
h

l(1−l)

(
cL

l −
cH

h

)
D

Table AT-3: Expressions for thresholds rtm and rtm,tm separating revenue into intervals within
which the manufacturer does not order from either supplier, orders from only the primary supplier,
or orders from both suppliers, under asymmetric information.

Revenue Supplier X∗
n q∗

n p∗
n

Two high-type suppliers
r ≤ rH Both - No contract -

rH < r ≤ rHH Supplier 1 [cH + (1− h)p∗1]D D any p∗1 ∈ [ cH

h , r)
Supplier 2 - No contract -

rHH < r ≤ rHL n = 1, 2 [cH + (1− h)p∗n]D D any p∗n ∈ [ cH

h , r)
r > rHL n = 1, 2 [cH + (1− h)p∗n]D + h( cL

l −
cH

h )D D any p∗n ∈ [ cL

l , r)
High-type supplier-1 and low-type supplier-2

r ≤ rH Both - No contract -

rH < r ≤ rL Supplier 1 [cH + (1− h)p∗1]D D any p∗1 ∈ [ cH

h , r)
Supplier 2 - No contract -

rL < r ≤ rHL Supplier 1 [cH + (1− h)p∗1]D + h( cL

l −
cH

h )D D any p∗1 ∈ [ cL

l , r)
Supplier 2 - No contract -

r > rHL Supplier 1 [cH + (1− h)p∗1]D + h( cL

l −
cH

h )D D any p∗1 ∈ [ cL

l , r)
Supplier 2 cL

l D D p∗2 = cL

l

Low-type supplier-1 and high-type supplier-2
r ≤ rH Both - No contract -

rH < r ≤ rLL Supplier 1 - No contract -
Supplier 2 [cH + (1− h)p∗2]D D any p∗2 ∈ [ cH

h , r)

rLL < r ≤ rHL Supplier 1 - No contract -
Supplier 2 [cH + (1− h)p∗2]D + h( cL

l −
cH

h )D D any p∗2 ∈ [ cL

l , r)

r > rHL Supplier 1 cL

l D D p∗1 = cL

l

Supplier 2 [cH + (1− h)p∗2]D + h( cL

l −
cH

h )D D any p∗2 ∈ [ cL

l , r)
Two low-type suppliers

r ≤ rL Both - No contract -

rL < r ≤ rLL Supplier 1 cL

l D D p∗1 = cL

l

Supplier 2 - No contract -
r > rLL n = 1, 2 cL

l D D p∗n = cL

l

Table AT-4: The optimal contract menu under asymmetric information.
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C. Table for Proposition 4

r̃tm,tm rtm,tm

r̃HH = cH

h−ωHH(1,1)
+ K

[h−ωHH(1,1)]D
rHH = r̃HH

r̃HL = cL

l−ωHL(1,1)
+ K

[l−ωHL(1,1)]D
rHL = r̃HL + αH

αL
h

l−ωHL(1,1)

(
cL

l −
cH

h

)
D

r̃LL = cL

l−ωLL(1,1)
+ K

[l−ωLL(1,1)]D
rLL = r̃LL + αH

αL
h

l−ωLL(1,1)

(
cL

l −
cH

h

)
D

Table AT-5: Expressions for thresholds r̃tm,tm and rtm,tm when the suppliers’ disruptions are
codependent.

D. Benchmark: Single-Sourcing Model

Lemma 2 below summarizes the manufacturer’s ordering decisions, the manufacturer’s profit, and

the supplier’s profit at the optimal contract menu under asymmetric and asymmetric information.

Thresholds r̃H , r̃L, rH and rL are defined in Propositions 1 and 2.

Lemma 2. In the symmetric information model with a single supplier, at the optimal contract

menu, the manufacturer will order from the high-type supplier if and only if r > r̃H , and will order

from the low-type supplier if and only if r > r̃L. The expected profits of both the high-type and the

low-type suppliers are zero. The expected profit of the manufacturer is

αH
[
(h r − cH)D −K

]+
+ αL

[
(l r − cL)D −K

]+
. (A.1)

In the asymmetric information model with a single supplier, at the optimal contract menu, the

manufacturer will order from the high-type supplier if and only if r > rH , and will order from the

low-type supplier if and only if r > rL. The expected profit of the low-type supplier is zero. The

expected profit of the high-type supplier equals informational rent, h
(
cL/l − cH/h

)
D, for r > rL,

and equals zero for r ≤ rL. The expected profit of the manufacturer is

αH
[
(h r − cH)D −K

]+
+ αL

[
(l r − cL)D −K − αH

αL
h

(
cL

l
− cH

h

)
D

]+

. (A.2)
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Proof. In the single-supplier model, the manufacturer’s optimization problem under asymmetric

information is as follows:

max
(X,q,p)(t)
t∈{H,L}

{ ∑
t∈{H,L}

αtrEmin
{
D, ρt zt[(q, p)(t)]

}

−X(t) + p(t)E
[
q(t)− ρt zt [(q, p)(t)]

]+
−K 1{q(t)>0}

}
,

Subject to

(I.C. H) πH [(X, q, p)(H)] ≥ πH [(X, q, p)(L)],

(I.C. L) πL[(X, q, p)(L)] ≥ πL[(X, q, p)(H)],

(I.R. H) πH [(X, q, p)(H)] ≥ 0,

(I.R. L) πH [(X, q, p)(L)] ≥ 0,

q(t) ≥ 0, p(t) ≥ 0, for t ∈ {H,L}.

Under symmetric information, the manufacturer’s optimization problem is the same except that

constraints (I.C.H) and (I.C.L) are omitted from the model.

The solution procedures for the above optimization problems under symmetric and asymmetric

information in the single-supplier model are similar to the solution procedures for the corresponding

problems in the dual-sourcing model, which are presented in the proofs for Propositions 1 and 2. �

E. Proofs of Statements

Proof of Lemma 1. The supplier’s objective function (2) is piecewise linear. We focus on corner-

point solutions: z = 0 or q. The result follows. �

Proof of Proposition 1. The manufacturer’s contract-design problem under symmetric informa-
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tion is given by the following maximization program:

max
(Xn,qn,pn)(tn,tn)
n=1,2; t1,t2∈{H,L}

{ ∑
t1,t2∈{H,L}

αt1αt2

[
rEmin

{
D, ρt1

1 z
t1
1 [(q1, p1)(t1, t2)] + ρt2

2 z
t2
2 [(q2, p2)(t2, t1)]

}
−X1(t1, t2) + p1(t1, t2)E

{
q1(t1, t2)− ρt1

1 z
t1
1 [(q1, p1)(t1, t2)]

}+

−K 1{q1(t1,t2)>0}

−X2(t2, t1) + p2(t2, t1)E
{
q2(t2, t1)− ρt2

2 z
t2
2 [(q2, p2)(t2, t1)]

}+

−K 1{q2(t2,t1)>0}

]}
Subject to for n = 1, 2, tn, tn ∈ {H,L},

πtn
n [(Xn, qn, pn)(tn, tn)] ≥ 0,
qn(tn, tn) ≥ 0, pn(tn, tn) ≥ 0.

(A.3)

From the supplier’s optimal profit (2), the manufacturer’s transfer payment to supplier n net of

the expected penalty received equals supplier-n’s optimal profit plus its cost of production. Under

contract (Xn, qn, pn)(tn, tn), this equality has the following form:

Xn(tn, tn)− pn(tn, tn)E
{
qn(tn, tn)− ρtnn ztnn [(qn, pn)(tn, tn)]

}+

= πtnn [(Xn, qn, pn)(tn, tn)] + ctnztnn [(qn, pn)(tn, tn)].
(A.4)

We substitute (A.4) into the objective function of (A.3), obtaining∑
t1,t2∈{H,L}

αt1αt2
[
rEmin

{
D, ρt11 z

t1
1 [(q1, p1)(t1, t2)] + ρt22 z

t2
2 [(q2, p2)(t2, t1)]

}
− πt11 [(X1, q1, p1)(t1, t2)]− ct1zt11 [(q1, p1)(t1, t2)]−K 1{q1(t1,t2)>0}

− πt22 [(X2, q2, p2)(t2, t1)]− ct2zt22 [(q2, p2)(t2, t1)]−K 1{q2(t2,t1)>0}

] (A.5)

Observe from (A.4) and (A.5) that, to maximize its profit given any (qn, pn)(tn, tn) for n = 1, 2, the

manufacturer must choose Xn(tn, tn) so that the suppliers’ expected profits equal their reservation

profits, that is, the individual rationality constraints for the two suppliers must be binding at the

optimal contract menu. Thus, we substitute πtnn [(Xn, qn, pn)(tn, tn)] = 0 in (A.5), and write the

symmetric information problem as the sum of four maximization problems, each over (q1, p1) and

(q2, p2) for a combination of the types of the two suppliers:

∑
t1,t2∈{H,L}

[
αt1αt2 max

(q1,p1)(t1,t2)≥0
(q2,p2)(t2,t1)≥0

{
rEmin

[
D, ρt1

1 z
t1
1 [(q1, p1)(t1, t2)] + ρt2

2 z
t2
2 [(q2, p2)(t2, t1)]

]

−
[
ct1zt1

1 [(q1, p1)(t1, t2)] +K 1{q1(t1,t2)>0}

]
−
[
ct2zt2

2 [(q2, p2)(t2, t1)] +K 1{q2(t2,t1)>0}

]}]
.

(A.6)
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From Lemma 1, supplier n will run production of size ztnn [(qn, pn)(tn, tn)] = qn(tn, tn) when pn(tn, tn) ≥

ctn/θtn , or ztnn [(qn, pn)(tn, tn)] = 0 when pn(tn, tn) < ctn/θtn . Notice that the production size

ztnn [(qn, pn)(tn, tn)] = 0 is attainable even if pn(tn, tn) ≥ ctn/θtn , by setting an order quantity of

qn(tn, tn) = 0. Furthermore, solutions {(qn, pn)(tn, tn) : pn(tn, tn) < ctn/θtn} and {(qn, pn)(tn, tn) :

pn(tn, tn) ≥ ctn/θtn , qn(tn, tn) = 0} leads to the same objective value of (A.6). Therefore, it is

sufficient to focus on the case of pn(tn, tn) ≥ ctn/θtn . (If qn(tn, tn) = 0 at the optimal solution,

then pn(tn, tn) is irrelevant.) We roll ztnn [(qn, pn)(tn, tn)] = qn(tn, tn), n = 1, 2, into each of four

maximization problems in (A.6), obtaining for t1, t2 ∈ {H,L}

max
q1(t1,t2)≥0
q2(t2,t1)≥0

{
rEmin

[
D, ρt11 q1(t1, t2) + ρt22 q2(t2, t1)

]

−
[
ct1q1(t1, t2) +K 1{q1(t1,t2)>0}

]
−
[
ct2q2(t2, t1) +K 1{q2(t2,t1)>0}

]}
.

(A.7)

Now we solve problem (A.7) above to find the optimal order quantities q1(t1, t2) and q2(t2, t1).

Recall that, for two suppliers of types t1 and t2, we use label m to indicate the primary supplier,

that is, θtm ≥ θtm . (We let m = 1 if tm = tm.) The manufacturer’s order quantities for the primary

and the secondary suppliers are qm(tm, tm) and qm(tm, tm). To ease the notation, we hereafter

write the order quantities as (qm, qm). Because the objective function (A.7) is piecewise linear

in the order quantities, without loss of optimality, we focus on the corner-point solutions only:

(qm, qm) ∈
{

(0, 0), (D, 0), (0, D), (D,D)
}

. The objective values of (A.7) at the four corner points

are
0, (qm, qm) = (0, 0),

(θtmr − ctm)D −K, (qm, qm) = (D, 0),

(θtmr − ctm)D −K, (qm, qm) = (0, D),

[(θtmr − ctm)D −K] +
[(

(1− θtm)θtmr − ctm
)
D −K

]
, (qm, qm) = (D,D).

(A.8)

Observe that (qm, qm) = (0, D) can be dropped from consideration, because it is dominated by

(qm, qm) = (D, 0). This observation holds trivially, if tm = tm. Consider tm = H and tm = L. The

difference between the objectives at (qm, qm) = (D, 0) and (0, D) is [(h r − cH) − (l r − cL)]D =

[h(r − cH/h) − l(r − cL/l)]D > [l(r − cH/h) − l(r − cL/l)]D. Under our assumption cL/l > cH/h

(see page 6 ), the rightmost term must be positive, and thus (qm, qm) = (D, 0) is strictly better.
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We now identify the condition under which each of the three candidate optimal solutions,

(qm, qm) = (D,D), (0, 0) and (D, 0), is optimal. It follows from (A.8) that (qm, qm) = (D,D)

dominates (D, 0), if and only if
(
(1− θtm)θtmr − ctm

)
D−K > 0, and (qm, qm) = (D, 0) dominates

(0, 0), if and only if (θtmr − ctm)D −K > 0. We define r̃tm,tm and r̃tm to be

r̃tm,tm
def= inf

{
r :
(
(1− θtm)θtmr − ctm

)
D −K > 0

}
(A.9a)

r̃tm
def= inf

{
r : (θtmr − ctm)D −K > 0

}
(A.9b)

Hence, when r > r̃tm,tm , (qm, qm) = (D,D) dominates both (D, 0) and (0, 0), and, thus, is optimal.

When r ≤ r̃tm , (qm, qm) = (0, 0) must be optimal. When r̃tm < r ≤ r̃tm,tm , (qm, qm) = (D, 0) is

optimal.

Finally, given the optimal order quantities qn(tn, tn) we compute the optimal transfer payments

and penalties. When qn(tn, tn) = D is optimal, it must be true that r > ctn/θtn (see equation (A.8)).

In such a case, the optimal penalty pn(tn, tn) can be chosen from interval [ctn/θtn , r). (All such

penalties will cause the supplier to attempt regular production.) When qn(tn, tn) = 0 is optimal, we

allow pn(tn, tn) to be any value in [0, r). Given the penalty, the optimal transfer payment Xn(tn, tn)

is given by equation (A.4). �

Proof of Proposition 2. First, we roll equation (A.4) into the manufacturer’s objective func-

tion (4a), obtaining the following maximization problem:

max

{ ∑
t1,t2∈{H,L}

αt1αt2

[
rEmin

{
D, ρt1

1 z
t1
1 [(q1, p1)(t1, t2)] + ρt2

2 z
t2
2 [(q2, p2)(t2, t1)]

}
−
{
ct1zt1

1 [(q1, p1)(t1, t2)] +K 1{q1(t1,t2)>0}

}
−
{
ct2zt2

2 [(q2, p2)(t2, t1)] +K 1{q2(t2,t1)>0}

}]
(A.10a)

−
∑

t1=H,L

{
αt1Πt1

1 (t1)
}
−

∑
t2=H,L

{
αt2Πt2

2 (t2)
}}

Subject to For n = 1, 2

ΠH
n (H) ≥ ΠH

n (L) (A.10b)

ΠL
n(L) ≥ ΠL

n(H), (A.10c)

ΠH
n (H) ≥ 0, (A.10d)

ΠL
n(L) ≥ 0, (A.10e)

qn(tn, tn) ≥ 0, pn(tn, tn) ≥ 0, for t1, t2 ∈ {H,L}, (A.10f)
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where Πtn
n (s) def= Etn

{
πtnn [(Xn, qn, pn)(s, tn)]

}
is supplier-n’s expected profit when it reports itself

as of type-s, s ∈ {H,L}, where the expectation is taken over supplier-n’s type.

Here is our plan to solve problem (A.10). First, we reduce the incentive compatibility and

individual rationality constraints (A.10b–A.10f) to an equivalent set of constraints, among which

there are monotonicity constraints for the two suppliers. Then, we temporarily relax the mono-

tonicity constraints. We show that the optimal solution to the relaxation satisfies the monotonicity

constraints and, thus, is optimal for the original problem.

To reduce problem (A.10), we first rearrange the incentive compatibility constraints (A.10b)

and (A.10c) and the individual rationality constraints (A.10d) and (A.10e) for supplier n = 1, 2.

Applying the definition of a high supplier-type’s reliability advantage (Definition 1) under the

contract for low-type supplier-n, (Xn, qn, pn)(L, tn), we represent high-type supplier-n’s expected

profit, when reporting itself as of low-type, as

ΠH
n (L) = ΠL

n(L) + Etn

{
Γn[(qn, pn)(L, tn)]

}
.

Similarly, applying Definition 1 with the contract for high-type supplier-n, (Xn, qn, pn)(H, tn), we

represent low-type supplier-n’s expected profit, when reporting itself as of high-type, as

ΠL
n(H) = ΠH

n (H)− Etn
{

Γn[(qn, pn)(H, tn)]
}
.

We substitute these two equalities into the right-hand-side of the incentive compatibility constraints,

(A.10b) and (A.10c), obtaining

ΠH
n (H) ≥ ΠL

n(L) + Etn

{
Γn[(qn, pn)(L, tn)]

}
, (A.11a)

ΠL
n(L) ≥ ΠH

n (H)− Etn
{

Γn[(qn, pn)(H, tn)]
}
. (A.11b)

Furthermore, inequalities (A.11a), Γn[(qn, pn)(L, tn)] ≥ 0 (see the discussion following (3)) and

ΠL
n(L) ≥ 0 (constraint (A.10e), individual rationality for the low-type) together imply ΠH

n (H) ≥ 0.

That is, the individual rationality constraint for high-type supplier-n (A.10d) is redundant.
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Using the new incentive compatibility constraint (A.11) and individual rationality constraint

(A.10e), we then choose Xn(tn, tn) optimally for any given (qn, pn)(tn, tn). The objective func-

tion (A.10a) suggests that the objective is maximized when Xn(tn, H) and Xn(tn, L) are chosen

such that the expected profit of supplier n of type-tn, Πtn
n (tn), is minimized. Thus, at the optimal

solution, the individual rationality constraint (A.10e) reduces to

ΠL
n(L) = 0. (A.12)

Similarly, at the optimal solution the incentive compatibility constraint (A.11a) reduces to

ΠH
n (H) = Etn

{
Γn[(qn, pn)(L, tn)]

}
. (A.13)

We substitute (A.12) and (A.13) in the incentive compatibility constraints (A.11), obtaining

(Monotonicity) Etn

{
Γn[(qn, pn)(H, tn)]

}
≥ Etn

{
Γn[(qn, pn)(L, tn)]

}
, n = 1, 2 (A.14)

which is commonly called the monotonicity constraint in the information economics literature.

So far, we have reduced the original incentive compatibility and individual rationality constraints

(A.10b–A.10e) to constraints (A.12–A.14). We roll (A.12) and (A.13) into the objective function

(A.10a), obtaining

max

{ ∑
t1,t2∈{H,L}

αt1αt2

[
rEmin

{
D, ρt1

1 z
t1
1 [(q1, p1)(t1, t2)] + ρt2

2 z
t2
2 [(q2, p2)(t2, t1)]

}
−
{
ct1zt1

1 [(q1, p1)(t1, t2)] +K 1{q1(t1,t2)>0}

}
−
{
ct2zt2

2 [(q2, p2)(t2, t1)] +K 1{q2(t2,t1)>0}

}]
− αHEt2

{
Γ1[(q1, p1)(L, t2)]

}
− αHEt1

{
Γ2[(q2, p2)(L, t1)]

}}
.

(A.15)

We expand the summation over t1 and t2 and the expectations over t1 and t2 in the objective

function (A.15). The manufacturer’s contract design problem (4) is reduced to

max
(qn,pn)(tn,tn)
n=1,2; t1,t2∈{H,L}

{(
αH
)2 [

rEmin
{
D, ρH1 z

H
1 [(q1, p1)(H,H)] + ρH2 z

H
2 [(q2, p2)(H,H)]

}
−
{
cHzH1 [(q1, p1)(H,H)] +K 1{q1(H,H)>0}

}
−
{
cHzH2 [(q2, p2)(H,H)] +K 1{q2(H,H)>0}

}]
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+
(
αHαL

) [
rEmin

{
D, ρH1 z

H
1 [(q1, p1)(H,L)] + ρL2 z

L
2 [(q2, p2)(L,H)]

}
−
{
cHzH1 [(q1, p1)(H,L)] +K 1{q1(H,L)>0}

}
−
{
cLzL2 [(q2, p2)(L,H)] +K 1{q2(L,H)>0}

}]
+
(
αLαH

) [
rEmin

{
D, ρL1 z

L
1 [(q1, p1)(L,H)] + ρH2 z

H
2 [(q2, p2)(H,L)]

}
−
{
cLzL1 [(q1, p1)(L,H)] +K 1{q1(L,H)>0}

}
(A.16)

−
{
cHzH2 [(q2, p2)(H,L)] +K 1{q2(H,L)>0}

}]
+
(
αL
)2 [

rEmin
{
D, ρL1 z

L
1 [(q1, p1)(L,L)] + ρL2 z

L
2 [(q2, p2)(L,L)]

}
−
{
cLzL1 [(q1, p1)(L,L)] +K 1{q1(L,L)>0}

}
−
{
cLzL2 [(q2, p2)(L,L)] +K 1{q2(L,L)>0}

}]
−
(
αH
)2

Γ1[(q1, p1)(L,H)]− αHαLΓ1[(q1, p1)(L,L)]

−
(
αH
)2

Γ2[(q2, p2)(L,H)]− αHαLΓ2[(q2, p2)(L,L)]

}
Subject to for n = 1, 2 and t1, t2 ∈ {H,L},

(Monotonicity) E
{

Γn[(qn, pn)(H, tn)]
}
≥ E

{
Γn[(qn, pn)(L, tn)]

}
,

qn(tn, tn) ≥ 0, pn(tn, tn) ≥ 0.

This concludes our first major step of reducing problem (A.10).

Now, we carry on with the second major step: to solve the equivalent problem (A.16) to find

the optimal (qn, pn)(tn, tn). We first temporarily drop the monotonicity constraint (A.14) and solve

problem (A.16) with only nonnegativity constraints. We move Γn[(qn, pn)(L, tn)] in (A.16) to be

with other terms that depend on (qn, pn)(L, tn). This allows us to rearrange problem (A.16) as a

weighted sum of four maximization problems:

(
αH
)2

max
(q1,p1)(H,H)≥0
(q2,p2)(H,H)≥0

{
rEmin

{
D, ρH1 z

H
1 [(q1, p1)(H,H)] + ρH2 z

H
2 [(q2, p2)(H,H)]

}
(A.17a)

−
{
cHzH1 [(q1, p1)(H,H)] +K 1{q1(H,H)>0}

}
−
{
cHzH2 [(q2, p2)(H,H)] +K 1{q2(H,H)>0}

}}
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+
(
αHαL

)
max

(q1,p1)(H,L)≥0
(q2,p2)(L,H)≥0

{
rEmin

{
D, ρH1 z

H
1 [(q1, p1)(H,L)] + ρL2 z

L
2 [(q2, p2)(L,H)]

}
(A.17b)

−
{
cHzH1 [(q1, p1)(H,L)] +K 1{q1(H,L)>0}

}
−
{
cLzL2 [(q2, p2)(L,H)] +K 1{q2(L,H)>0} +

αH

αL
Γ2[(q2, p2)(L,H)]

}}
+
(
αLαH

)
max

(q1,p1)(L,H)≥0
(q2,p2)(H,L)≥0

{
rEmin

{
D, ρL1 z

L
1 [(q1, p1)(L,H)] + ρH2 z

H
2 [(q2, p2)(H,L)]

}
(A.17c)

−
{
cLzL1 [(q1, p1)(L,H)] +K 1{q1(L,H)>0} +

αH

αL
Γ1[(q1, p1)(L,H)]

}
−
{
cHzH2 [(q2, p2)(H,L)] +K 1{q2(H,L)>0}

}}
+
(
αL
)2

max
(q1,p1)(L,L)≥0
(q2,p2)(L,L)≥0

{
rEmin

{
D, ρL1 z

L
1 [(q1, p1)(L,L)] + ρL2 z

L
2 [(q2, p2)(L,L)]

}
(A.17d)

−
{
cLzL1 [(q1, p1)(L,L)] +K 1{q1(L,L)>0} +

αH

αL
Γ1[(q1, p1)(L,L)]

}
−
{
cLzL2 [(q2, p2)(L,L)] +K 1{q2(L,L)>0} +

αH

αL
Γ2[(q2, p2)(L,L)]

}}

We solve each of the four maximization problems in (A.17). First, for each of the four problems,

note that as in the proof of Proposition 1 in the symmetric information case, we may assume

without loss of generality that ztnn [(qn, pn)(tn, tn)] = qn(tn, tn), where pn(tn, tn) ≥ ctn/θtn to ensure

that supplier n attempts production of size qn. Next, from equation (3), Γn[(Xn, qn, pn)(L, tn)] is

increasing in pn(L, tn). Hence, it is optimal to set pn(L, tn) to be its minimum cL/l, which gives

Γn[(Xn, qn, pn)(L, tn)] = h ( c
L

l −
cH

h ) qn(L, tn). Given these refinements, the procedure to find the

optimal order quantities is similar to that for problem (A.7) in the symmetric information case.

We present the optimal solution to the relaxation (A.17) in the following table, where we make use

of the following thresholds:

rtm
def= inf

{
r : (θtmr − ctm)D −K − αH

αL
h

(
cL

l
− c

H

h

)
D1{tm=L} > 0

}
(A.18a)

rtm,tm
def= inf

{
r :
[
θtm(1− θtm)r − ctm

]
D −K − αH

αL
h

(
cL

l
− cH

h

)
D1{tm=L} > 0

}
(A.18b)
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Problem (A.17a), t1 = t2 = H

When r ≤ rH :
q1(H,H) = 0 q2(H,H) = 0 p1(H,H) ≥ 0 p2(H,H) ≥ 0
When rH < r ≤ rHH :
q1(H,H) = D q2(H,H) = 0 p1(H,H) ≥ cH

h p2(H,H) ≥ 0
When r > rHH :
q1(H,H) = D q2(H,H) = D p1(H,H) ≥ cH

h p2(H,H) ≥ cH

h

Problem (A.17b), t1 = H and t2 = L

When r ≤ rH :
q1(H,L) = 0 q2(L,H) = 0 p1(H,L) ≥ 0 p2(L,H) ≥ 0
When rH < r ≤ rHL:
q1(H,L) = D q2(L,H) = 0 p1(H,L) ≥ cH

h p2(L,H) ≥ 0
When r > rHL:
q1(H,L) = D q2(L,H) = D p1(H,L) ≥ cH

h p2(L,H) = cL

l

Problem (A.17c), t1 = L and t2 = H

The solution is identical to the solution for problem (A.17b),
except that the indices of the two suppliers are swapped.

Problem (A.17d), t1 = L and t2 = L

When r ≤ rL:
q1(L,L) = 0 q2(L,L) = 0 p1(L,L) ≥ 0 p2(L,L) ≥ 0
When rL < r ≤ rLL:
q1(L,L) = D q2(L,L) = 0 p1(L,L) = cL

l p2(L,L) ≥ 0
When r > rLL:
q1(L,L) = D q2(L,L) = D p1(L,L) = cL

l p2(L,L) = cL

l

In Lemma 3, we show that the optimal solution to the relaxation problem (A.17) in the above

table satisfies the monotonicity constraint (A.14) for supplier 1 and supplier 2, as long as we restrict

pn(H, tn) ≥ cL

l whenever qn(L, tn) = D at the optimal solution. Therefore, with the additional

restriction on pn(H, tn), the optimal solution to the relaxation in the table above is also optimal

for the original problem (A.10).

We now compute the optimal transfer payments using (A.4), (A.12) and (A.13). Without loss

of optimality, we let πHn [(Xn, qn, pn)(H, tn)] = Γn[(qn, pn)(L, tn)] and πLn [(Xn, qn, pn)(L, tn)] = 0,

for tn = H,L. Hence, it is optimal to let

Xn(H, tn) =Γn[(qn, pn)(L, tn)] + ctnztnn [(qn, pn)(H, tn)] (A.19a)

+ pn(H, tn)E
[
qn(H, tn)− ρtnn ztnn [(qn, pn)(H, tn)]

]+
,
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Xn(L, tn) =ctnztnn [(qn, pn)(L, tn)] (A.19b)

+ pn(L, tn)E
[
qn(L, tn)− ρtnn ztnn [(qn, pn)(L, tn)]

]+
.

�

Lemma 3. The optimal solutions to the relaxation (A.17) (in the table above) satisfy the mono-

tonicity constraints (A.14) for supplier 1 and supplier 2, if we restrict pn(H, tn) ≥ cL

l whenever

qn(L, tn) = D, for tn ∈ {H,L}.

Proof. It is sufficient to show that, for n = 1, 2 and tn = H,L, with the additional restriction

pn(H, tn) ≥ cL

l , the optimal solution to (A.17) satisfies

Γn[(qn, pn)(H, tn)] ≥ Γn[(qn, pn)(L, tn)]. (A.20)

When Γn[(qn, pn)(L, tn)] = 0 (i.e., qn(L, tn) = 0), the inequality (A.20) holds trivially. We now

focus on the case when qn(L, tn) = D.

From equation (3), Γn(q, p) is increasing in both q and p. Therefore, it suffices to show that

qn(H, tn) ≥ qn(L, tn) and pn(H, tn) ≥ pn(L, tn) for all r. First, it can be verified that the optimal

solution to (A.17) satisfies qn(H, tn) ≥ qn(L, tn) for all r. Next, recall that when qn(L, tn) = D,

pn(L, tn) = cL

l is optimal. Since the assumption in the lemma gives pn(H, tn) ≥ cL

l whenever

qn(L, tn) = D, we have pn(H, tn) ≥ pn(L, tn). Inequality (A.20) follows. �

Proof of Corollary 2. We want to show that, for h and l such that h + l > 1, as both h and l

decrease by ε, in the symmetric information model r̃HL always decreases, but in the asymmetric

information model, there exist h and l, h+ l > 1, such that rHL increases.

Let h = l + ν for some ν > 0. We write r̃HL as a function of l:

r̃HL(l) =
cL + K

D

(1− l − ν)l
.

Its first-order derivative with respective to l is strictly positive for 2 l + ν > 1, that is, h + l > 1.

Therefore, for any h+ l > 1, as both h and l decrease by ε, r̃HL decreases.
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Similarly, we write rHL in the asymmetric information model as:

rHL(l) =
cL + K

D + αH

αL

(
l+ν
l c

L − cH
)

(1− l − ν)l
.

Its first order derivative with respect to l equals

[
rHL(l)

]′
=

(
cL + K

D

)
l(2l + ν − 1)− αH

αL

{
cL [2(l + ν)(1− ν − l)− l] + cH l(2l + ν − 1)

}
l3(1− ν − l)2

.

For any cH , cL, K
D and αH , there exist l and h = l + ν, for some ν > 0, such that h+ l > 1, h > l,

cL/l > cH/h and [rHL(l)]′ < 0. To see this, we let h = 1 − ξ + ξ2 and l = ξ, for some ξ ∈ (0, 1),

and substitute l = ξ and ν = h− l = 1− 2ξ + ξ2 into [rHL(l)]′, to obtain

[rHL(l)]′
[
l3(1− ν − l)2

]
= −α

H

αL
cLξ+

αH

αL
4cLξ2+

[
cL +

K

D
− αH

αL
(4cL + cH)

]
ξ3+

αH

αL
2cLξ4 (A.21)

As ξ approaches zero, the right-hand-side of (A.21) approaches zero from below (since the right-

hand-side of (A.21) is polynomial in ξ and its leading term is negative). Therefore, one can always

pick some ξ > 0 that will yield [rHL(l)]′ < 0. Note that h need not be extremely close to 1 and l

need not be extremely small. For instance, suppose cH = cL, K = 0 and αH > 2αL. At l = 1/2

and ν = 1/8 (i.e., h = 5/8), [rHL(l)]′
[
l3(1− ν − l)2

]
= 1

16(1− αH

2αL ) < 0. �

Proof of Proposition 3. We compare the manufacturer’s expected profits under symmetric infor-

mation in the dual- and single-sourcing models, (5) and (A.1). This yields the following expression

for the manufacturer’s value of the dual-sourcing option under symmetric information (note that

in this expression, the definitions of the thresholds r̃H , r̃L, r̃LL, r̃HL and r̃HH have been used to

replace the positive operators [ ]+ of (5) and (A.1) with indicator functions):(
αLαH

) (
[(h r − cH)D −K]1{r>r̃H} − [(l r − cL)D −K]1{r>r̃L}

)
+
(
αH
)2 {[

h(1− h)r − cH
]
D −K

}
1{r>r̃HH}

+ 2
(
αHαL

) {[
l(1− h)r − cL

]
D −K

}
1{r>r̃HL}

+
(
αL
)2 {[

l(1− l)r − cL
]
D −K

}
1{r>r̃LL}.

(A.22)
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Similarly, we compare the expected profits of the manufacturer under asymmetric information in

the dual- and single-sourcing models, (6) and (A.2), obtaining the expression for the manufacturer’s

value of the dual-sourcing option under asymmetric information:(
αLαH

)([
(h r − cH)D −K

]
1{r>rH} −

[
(l r − cL)D −K − αH

αL
h

(
cL

l
− cH

h

)
D

]
1{r>rL}

)

+
(
αH
)2{[

h(1− h)r − cH
]
D −K

}
1{r>rHH}

+ 2
(
αHαL

){[
l(1− h)r − cL

]
D −K − αH

αL
h

(
cL

l
− cH

h

)
D

}
1{r>rHL}

+
(
αL
)2
{[
l(1− l)r − cL

]
D −K − αH

αL
h

(
cL

l
− cH

h

)
D

}
1{r>rLL}.

(A.23)

The difference between the manufacturer’s value of the dual-sourcing option under asymmetric

information and symmetric information, (A.23) minus (A.22), is

(
αLαH

)(
[(l r − cL)D −K]1{r>r̃L} −

[
(l r − cL)D −K − αH

αL
h

(
cL

l
− cH

h

)
D

]
1{r>rL}

)

+ 2
(
αHαL

)({[
l(1− h)r − cL

]
D −K − αH

αL
h

(
cL

l
− cH

h

)
D

}
1{r>rHL}

−
{[
l(1− h)r − cL

]
D −K

}
1{r>r̃HL}

)

+
(
αL
)2({[

l(1− l)r − cL
]
D −K − αH

αL
h

(
cL

l
− cH

h

)
D

}
1{r>rLL}

−
{[
l(1− l)r − cL

]
D −K

}
1{r>r̃LL}

)
.

(A.24)

The key is to treat (A.24) as a function of r and show that there exists a unique r0 in the

interval (r̃LL, rHL), at which the curve changes from non-negative to strictly negative. Because the

lower bound of the interval, r̃LL, could be either greater or smaller than rL, we consider two cases:

r̃LL ≥ rL and r̃LL < rL.

Case r̃LL ≥ rL. We prove the result by tracing the value of (A.24) for r > r̃L. From the tables

describing the thresholds r̃L, . . . , r̃HL and rL, . . . , rHL in Propositions 1 and 2, respectively, and

the assumption of the case, we get r̃L < rL ≤ r̃LL < {rLL, r̃HL} < rHL. One can check that (A.24)

is equal to zero at r = r̃L, strictly positive and strictly increasing in r for r ∈ (r̃L, rL], constant

with respect to r for r ∈ (rL, r̃LL], decreasing in r for r ∈ (r̃LL, rHL] (regardless of the ordering
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of rLL and r̃HL) and constant in r thereafter. Furthermore, (A.24) is negative at r = rHL. Thus,

there must exist r0 ∈ (r̃LL, rHL) such that (A.24) changes from non-negative to strictly negative

at r0.

Case r̃LL < rL. Again using the definitions of the thresholds and the assumption of the case,

we know r̃L < r̃LL < rL < rLL < rHL. We utilize two sub-cases, depending on r̃HL.

Sub-case r̃LL < r̃HL ≤ rL. One can check that (A.24) is zero at r = r̃L, and strictly positive

and strictly increasing in r for r ∈ (r̃L, r̃LL]. As for r ∈ (r̃LL, rL], there are three possibilities for

(A.24): increasing throughout, increasing until r̃HL and then decreasing thereafter, or decreasing

throughout. Additionally, (A.24) is decreasing in r for r ∈ (rL, rHL] and constant in r thereafter.

Therefore, there exists r∗ ∈ [r̃LL, rL] such that (A.24) is strictly positive at r = r∗ and decreasing

for r > r∗. Furthermore, (A.24) is negative at r = rHL. Thus, there must exist r0 > r∗ such that

(A.24) changes from non-negative to strictly negative at r0.

Sub-case rL < {rLL, r̃HL} < rHL. Similarly, one can check that (A.24) is zero at r = r̃L, and

strictly positive and strictly increasing in r for r ∈ (r̃L, r̃LL]. As for r ∈ (r̃LL, rL], there are two

possibilities for (A.24): increasing throughout, or decreasing throughout. For r ∈ (rL, rHL], (A.24)

is decreasing (regardless of the ordering of rLL and r̃HL), and is constant for r > rHL. Therefore,

the same logic as in the previous sub-case establishes the existence of r0. �

Proof of Proposition 4. We provide a sketch of the proof by focusing on the proofs of Proposi-

tions 1 and 2 (with independent supplier disruptions) and identifying the steps that change if the

suppliers’ disruptions are now codependent.

We first consider the symmetric information model. As in the proof of Proposition 1 (inde-

pendent supplier disruptions), to find the optimal order quantities under codependent supplier

disruptions, we can focus on corner-point solutions, qn = 0 or D for n = 1, 2. Recall that, given

the two suppliers’ types, t1 and t2, index m ∈ {1, 2} is defined such that θtm ≥ θt
m

. (When

θtm = θt
m

, we break ties in favor of supplier 1.) At corner points (qm, qm) = (0, 0), (D, 0) and

(0, D), respectively, supplier disruption codependence does not change the manufacturer’s payoff,
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because the manufacturer orders from at most one supplier. At each of these three corner points

the manufacturer’s profit under codependent supplier disruptions is given by the first three rows of

(A.8) (in the case of independent disruptions).

At corner point (qm, qm) = (D,D), the manufacturer realizes a sale of D when either one or both

suppliers run production successfully. Therefore, in the case of codependent supplier disruptions,

the manufacturer’s expected payoff at (qm, qm) = (D,D) equals

[
ωtm,tm(1, 0) + ωtm,tm(0, 1) + ωtm,tm(1, 1)

]
rD −

(
ctmD +K

)
−
(
ctmD +K

)
,

where ωtm,tm(1, 0), ωtm,tm(0, 1) and ωtm,tm(1, 1) are the joint probabilities for, respectively, only

supplier-m, only supplier-m, and both suppliers running production successfully. From the suppli-

ers’ marginal probabilities ωtm,tm(1, 0) + ωtm,tm(1, 1) = θtm and ωtm,tm(0, 1) = θtm − ωtm,tm(1, 1),

we rewrite the manufacturer’s expected payoff above as

[
(θtmr − ctm)D −K

]
+
[(

[θtm − ωtm,tm(1, 1)]r − ctm
)
D −K

]
. (A.25)

Under supplier disruption codependence, the steps for identifying the optimal order quantities

among the four corner-points are the same as in Proposition 1, except that the manufacturer’s

payoff at corner point (qm, qm) = (D,D) (the last row in (A.8)) is replaced by (A.25). Comparing

(A.25) to the last row in (A.8), the only difference is that the joint probability (1 − θtm)θtm is

replaced by θtm − ωtm,tm(1, 1). Specifically, for t1, t2 ∈ {H,L}, the joint probabilities (1 − h)h,

(1 − h)l and (1 − l)l are replaced by h − ωHH(1, 1), l − ωHL(1, 1) and l − ωLL(1, 1), respectively.

Hence, the thresholds r̃HH , r̃HL and r̃LL are modified by replacing the joint probabilities (1−h)h,

(1− h)l and (1− l)l with h− ωHH(1, 1), l− ωHL(1, 1) and l− ωLL(1, 1), and the optimal contract

is the same as in Proposition 1 albeit using the redefined thresholds.

Under asymmetric information, the proof of Proposition 2 holds under codependent supplier

disruptions provided that, in the definition rtm,tm (equation (A.18b)), we replace (1 − θtm)θtm

by θtm − ωtm,tm(1, 1). (The logic behind this replacement mirrors that discussed above for the

symmetric information case.) Recall that, in Proposition 2, Lemma 3 was used to verify the
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monotonicity conditions. The same verification is needed here as well, and our assumption ωHH/h >

ωHL/l ensures that the same analysis as in Lemma 3 carries through under codependence (i.e.,

when (1− θtm)θtm is replaced by θtm − ωtm,tm(1, 1) in the definition of rtm,tm). In particular, with

restriction ωHH/h > ωHL/l, we can verify the key step that qn(H, tn) ≥ qn(L, tn) for n = 1, 2 and

tn ∈ {H,L}. That is, the order size received by a supplier is larger when it is of high-type versus

when it is of low-type. �
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