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Symbol

Units

ft/sec

ft

't

1b/ft°

ft/sec2

ft

ft
ft

1b/£t2

ft
't

1b/ft2

sec
sec
ft/sec

ft/sec

NOMENCLATURE

ix

Description
Cross sectional area of pipe
Velocity of pressure wave
Thickness of pipe wall
Factor of pipe restriction
Inside diameter of pipe

Modulus of elasticity of pipe wall
material

Friction factor
Acceleration of gravity

Piezometric head at a given time and
place on the pipe; H = P + 7

Y
Head at the reservoir
Friction loss in feet
Bulk modulus of elasticity of the liquid
Minor loss coefficient
Total length of pipe

Length of any uniform section of pipe

Pressure intensity at any point in a
pipe

Reynolds number

Time

Time of gate closure

Velocity in pipe for surge conditions

Velocity in pipe for initial steady
conditions



NOMENCLATURE*T ( CONT'D)

Symbol Units Description

X ft Distance measured positive from upstream
Z Tt Elevation

a _— Angle of slope of pipe

y 1b/t3 Specific weight of the liquid

€ ft Roughness height

K _ Poisson's ratio for the pipe wall

material

vl lb-sec/ft2 Viscosity

v ftg/sec Kinematic viscosity

0 slug/ft3 Density of the liquid

T _— The ratio of effective gate opening

to the full gate opening

See also Figure 1.

t  Somewhat different notations are used in the examples of "MAD"
language programs because there are only twenty-six Roman capital
letters available in the keypunch. They will not cause any con-
fusion since they appear only in the appendices.,
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I. INTRODUCTION

Not too many problems in water hammer including friction losses
have been solved, partly owing to the comparatively small, insignificant
guantity of friction loss in this phenomenon, where rapid changes in flow
are most likely to occur, and partly owing to the fact that no entirely
satisfactory method has been devised for their inclusion in water hammer
analysis.(15’15116> However, this effect sometimes cannot be disregarded
in cases of slow gate closure, a long pipe, or a high friction factor.

The existing methods for estimating friction losses are inade-
quate, owing to some rough approximations. A few authors have developed
graphical methods,(2’15) whereby the effect of losses can be approximated
by placing éne or more hypothetical obstructions at certain selected lo-
cations along the pipe line and by lumping the friction losses of each sec-
tion at these points. These methods will produce an abrupt drop of pres-
sure at each obstruction, which evidently is not the true case. Although
the accuracy can be augmented by increasing the number of obstructions,
this increases greatly the complexity of the graphical solution.

Some analytical solutions for this class of study have been pub-
lished also. All of them have employed a linear approximstion for fric-
tion effect which is different from the actual situation. They generally
involve difficult matheﬁatical operations or tedious series.(l7’2u)

It is, viewed as necessary and useful to devise a better method
which can be used to solve the problems in water hammer including friction

losses more directly and more rapidly, with closer agreement to the
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actual situation. An attempt has been made by the author to attack the
problem directly from the basic partial differential equations, without
resort to graphical methods, indirect mathematical transformations,

or linear approximations. In recent years, the coming into existence
of electronic digital computers has made accurate calculations describ-
ing many complex physical phenomena practical in cases formerly beyond
reach. The numerical solutions by digital computer will play an impor-
tant role in the analytical part of the present study.

In following chapters, the basic partial differential equations
for water hammer including friction losses are reviewed first. The di-
rect solution of these nonlinear equations with aid of the computer is
then presented with mathematical analysis, computer approach, flow dia-
gram and some notes in programming. The method of characteristics has
been employed in the present study. The next part is devoted to a study
of the application of the theoretical work. This is necessary for better
description of the computer method, for appraisal of the validity of the
present method, for comparison with the earlier methods and for the guid-
ance in obtaining experimental verification.

The experimental equipment was built in the Fluid Engineering
Laboratory at the University of Michigan for the investigation of the
attenuation of pressure surges due to friction losses. The experiments
were performed for flow in a long pipe line and their results were com-
pared with the theoretical solutions. The discussion of these results
is given in Chapter VI.

This study ends with a comparison with earlier methods, conclu-

sions, and brief suggestions for further investigations.



The analysis has been started from the assumptions of homogen-
eous and elastic liquid and pipe, uniform velocity and pressure over
any cross section, and sufficient minimum pressure to exceed the vapor
pressure.,

It has been assumed in this study that the effect of hysteresis
is negligibly small in comparison with the wall friction. By applying
the principle of energy to the problem, and comparing the original kinetic
energy in the moving water column and the work done in compressing the
water and stretching the pipe walls, it may be shown that during the ac-
tion no energy is lost or converted into heat, if the pipe and water are
perfectly elastica(lu) When the stresses of pipe material are below the
elastic limit, the assumption of perfect elasticity is very nearly true
and the energy loss due to hysteresis of the pipe is very small°(6:12)
This is at least quite true compared with the wall friction for the case
of experiments made in this study. The elastic hysteresis of water, al-
though no reliable date are available, is also considered to be very small,
because the pressure changes take place in a very short time and compara-

tively little heat energy will be lost.



II. THE WATER HAMMER EQUATIONS INCLUDING FRICTION EFFECT

Fundamental water hammer equations are derived for a gen-
eral case of variable flow. The elasticity of the pipe walls, the com-
pressibility of the water, and the hydraulic losses due to the pipe
friction in both directions are taken into account. The method employed
is generally the same as that described in Reference 15, except more
terms are involved in this case. The following assumptions are made:

(a) The pipe line remains full of water at all times,

i.e., the law of continuity holds.

(b) The static pressure in the pipe is sufficiently high

to sustain the minimum pressure above the vapor
pressure,

(c) The velocity of water in the axial direction of the

pipe is uniform over any cross section of the pipe.
(d) The pressure is uniform over any transverse cross sec-

tion and is the same as that at the center line of

the pipe.

(e) The water level at the reservoir remains constant dur-

ing the period of investigation.

For the derivation of equations, an element of water which is
bounded by two parallel cross sections normal to the pipe axis is con-
sidered. The general water hammer equations, then, can be obtained from

the conditions of dynamic equilibrium and continuity.



A. Condition of Dynamic Equilibrium

The condition of dynamic equilibrium can be set up for an
element dx at a distance x along the pipe measured from the reser-
voir towards the valve, as illustrated by Figure 1. If the cross-
sectional area at M 1is A, that at N is A + %%‘dx’ and the angle
of slope of pipe is «, then the forces acting on these two faces can
be expressed as 7yA(H-Z) and y(A + oA dx)[H-Z + (BH + sin a)dx] re-

7 7 3% 3x
spectively. Here, 7, H, and Z are the specific weight of water, the
piezometric head and the elevation at point x.

The gravitational force acting on the mass of element at its

center of gravity is

1 0A
y(A + > 5% dx)dx .

The wall resistance acting against the flow in the element isg
dhe feet of water.
The unbalanced force acting on the element of water along the

axis of the pipe is

y(A + §é-dx)[H-Z + (%g + sin a)dx] - yA(H-Z)

ox

1 0A . 1 0A
-7(A+ = 5% dx)dx sin o + y(A + §-5§-dx)dhf s

where the positive direction of the force is taken opposite to the direc-
tion of the normel flow. Neglecting the terms of higher order and sim-

plifying, this force reduces to

y[A %}% dx + g% (H-Z) dx + Adhr] .
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The mass of the element of water to be moved by this unbalanced

force is

y(a + &2 axjax

g

and its deceleration is - %% y in which g 1s the acceleration of gravity,
V 1s the velocity of flow in plpe and t 1is the time. Again, neglect-
ing the term of higher order, this mass reduces to Z%?ﬁ - Then from

Newton's second law of motion

y[8%E ax + A (H-7) dx + Adnp) = Z2AdX 4V
ox ox g dt

Since V 1is a function of both x and t,

dt ot ox dt ot ox

Then
O , 1 OA (gpy + dbf _ _ 1OV | y V) (1)
ox A ox ax g ot Bx

which is the equation of motion for the element of water.

When the friction is negligible, this reduces to

SE L LOA vy _ L3V, OV
__.+.._..(Hz)_ g(at”vax)“ (2)

If, i gA (H-Z) is negligible, as is always the case compared with other
X

terms,(l5) Equation (1) reduces to

X —i=-§(%cv—+vg—1-)n (3)
When both %-%%- and g;f. are negligible, then Equation (1) reduces to
the familiar form

OH _ _ _(BV BV) . (1)

5% g ot v 3%
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Since dhp is a very small quantity, the assumption

for the element of water d4dx, i1s made. Here, f and D are the friction
factor and the inside diameter of the pipe respectively. The friction
factor is a function of Reynolds number R and relative roughness e/D,
or f =7f(R, ¢/D) = £(V,D,v,e/D), 1in which v 1is the kinematic viscosity
and ¢ 1is the roughness height of the pipe. The value of f can be ob-
tained from the Moody diagram,(go’gl) or from experimental evaluations

for a specific pipe of interest.

Substituting dhe

]

2
f %5 V= into (1) and (3) respectively, we

2g
obtain
%+%%§-(H-Z)+§§=-é—(§%+Vg{Qv (5)
and
%-E+§Z—Z—=-§(g%+vg—p' (6)

B. Condition of Continuity

There will not be any change in the equation of continuity
whether the wall friction is neglected or considered. Hence, the equa-

tions shown in Reference 15 will be used.

OH Véﬂ:-ﬁ@.‘[ '
ot ¥ ox g ox (7)

where the velocity of pressure wave, a, can be expressed as

. (8)




It is apparent from Equation (8) that the velocity of pressure
wave depends on the diameter and the wall thickness of the pipe, the
properties of the pipe material and of the fluid, and the ability of
the pipe to move in the longitudinal direction. This indicates that a
wave reflection occurs at every change in pipe thickness, area, or

change in the pipe material, i.e.,
a =a[b(x), D(x), E(x)].

The factor of pipe restriction, cj, takes the following

valueso(l5)

(a) Cq = % - U for a pipe anchored at the upper

end and without expansion Jjoint,

(b) ¢1 =1 -4 for a pipe anchored against longi-
tudinal movement throughout its
length,

(¢) ¢ =1 - % for a pipe with expansion joints.

In these relationships, p represents the Poisson's ratio for

the pipe wall material.

C. Summary
Summarizing the equations shown in the preceding pages, and

_ oV OH

denoting V, = %’ Hy = ol etc., we have the general differential
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equations for water hammer in a pipe,

2
Be + 25 = - 2 (Vg 4 Ty) (6)
D2g &

2
Hy + VH, = - =V, (7)

0je}

When the wall friction is negligible,

Hy = - % (Vt + VVx) (4)
2
Ht+VHX=-§—VX., (7)

It is often assumed that in Equations (4) or (6) the term VvV,
is small compared with V¢, and in Equation (7) the term VHx is small
compared with Ht°<l5’25) Then Equations (6) and (7), and Equations (4)

and (7) are again reduced to

2
fv 1
Hy + 5-28 =Tz Vi (9)
2
H = - =V, , (10)
g
and
Hy = - évt (11)
2
H, = - g_ . (10)
respectively.

In these equations,




ITT. A METHOD FOR THE SOLUTION OF WATER HAMMER
EQUATIONS BY DIGITAL COMPUTER
The governing partial differential equations, presented in the
previous chapter, can be solved by the .method of characteristics with
the aid of a computer, using specified time intervals and an extrapola-
tion procedure, as described in the following sections.* The abbreviated

flow diagram 1s shown at the end of this chapter.

A. Characteristic Equations for Water Hammer

The partial differential equations for water hammer including

friction effect, (6) and (7), are rewritten in a modified form as follows:

J| = Wy + Vg + gHy + =V =0 (12)
2
a;

Jr2=-£_;;«-vX + VHy + Hy =0 (13)

where

oV OH

V = e H = © 0500

£ ox ] TS

These are two simultaneous quasi-linear partial differential equations of
the first order with two independent and two dependent variables.

Combining (12) and (13) linearly,

J =J1 +\p

2
(V+}\§—)Vx+Vt+(g+}\_V)Hx+}\Ht+£—DV2=O° (14)

* For the general and thorough mathematical treatment of hyperbolic
partial differential equations by the method of characteristics,
see Reference 10.

-11-
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If V =V(x,t) and H = H(x,t) are solutions to (12) and

(13), then
oV oV OH OH
av = = 4 = 4t = o— 4 —
S X+ 5% dt, dH S &5 at , (15)
or
av dx dH dx
=V ZZ 4+ VT == = Hy = + Ht . 15'
0 faw T Fa ¢ (151)

Now, by examination of Equation (14), with Equations (15') in mind, let

2
a dx d
(Vo 2 SV o+ Vg = Ve o+ Vg = (16)
d Sl
(E+ Vg + By = Hx ¢ + e = 5 » (17)
then Equation (14) may be reduced to a form
atJ = 4V + ME + L VPt = 0. (18)

The conditions for Equation (14) to be in this form are, therefore,
X -v g, —=5g\-+V, (19)

from which

2
V+rEZ B4

g A

=+ £ 0
A "_'&: (20)
end the characteristic equations for V and H become
- g £ =

atJ = av + £ an + 5= Vedt = 0 (21)

_av - & f_ -
4ty = av - S aH + = Vedt =0 . (22)
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Here, from (19) and (20), the two different characteristic directions

at the point (x,t) are given by

1
= (23)

oy
vyfas

(=& = T7a 6. =

Equations (21) and (22) are two separate total differential
equations with t as an independent variable and V and H as two de-
pendent varisbles. If V = V(x,t) and H = H(x,t) satisfy the Equations
(12) and (13), then Equations (23) become two separate ordinary differential
equations of the first order. These determine two families of character-
istic curves, or shortly '"characteristics", C, and C. in the (x,t)
plane belonging to this solution V(x,t), H(x,t).

Equations (21) to (23) can be rearranged to the following four

characteristic equations,

dx
at - T = 0 (2k)
L along C,
g f 23t -
dv + 2 dH + 55 Vedt =0 (25)
</
B
dx
at - F==0 (26)
v along C._
-8 f veat =
av a.dH+2]5th 0 ) (27)

Equations (24) to (27) are of a particularly simple form and
are satisfied, according to the derivation, by every solution of the

original system (12) and (13).

B. Finite Difference Approximations

The characteristic equations for water hammer containing the

friction terms, (24) to (27), may be solved by employing the first-order



=1ha

or the second=-order finite difference approximation. They are

X1
] f(x)dx = f(x0)(x1-%0), (28)
X0
and
X L
[ f(x)ax zzg{f(xo) + £(x)) (x71-%0) (29)

respectively. The former is a linear approximation, whereas the latter
uses the trapezoidal rule.

If the extrapolation procedures which is described later are em-
ployed witha the linear approximation, the degree of accuracy will be in-
creased to that obtainable from the second-order process. Inasmuch as
the second-order approximation has the disadvantage of requiring some
iterative method, the first-order approximation will be used here.

Referring to Figure 2, C, and C. are two characteristics pass-
ing through R and S, and P 1is thelr intersection point. Denoting the
value of x at R by XR, etc., for known values of xg, tg, Vg, Hg,
xg, tg, Vg and Hg, the values of xp, tp, Vp and Hp can be found

by epplying the linear approximation (28) to Equations (24) to (27).

(tp - tR) - (Fg)y (xp - xR) =0 (30)
(Ve - Vg) + & (5 - HR) + (55 Vg (2 - tm) = 0 (31)
(tp - tg) - (v%g)s (xp - xg) =0 (32)
(Vp - Vg) - &= (ip - Hg) + (5= ¥2)_ (tp - tg) = O . (33)

as 2D S

These four equations have four unknowns and therefore are solvable.
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There are two most typical ways of using the set of Equations
(30) to (33) to obtain an approximate numerical solution to the original
set of partial differential equations; i.e., (i) Grid of characteristics,
(ii) Specified time intervals.

The latter uses specified intervals in the t-direction and re-
lates the values of V and H at the beginning of the interval to those
at the end by means of (30) to (33). This method is preferred over the
former in case of water hammer problems, because xp and tp are known
exactly, or they will be assigned exactly, and only two values Vp and
Hp are to be determined. Secondly, with method (ii) it is possible to
apply extrapolation procedures* to increase the accuracy. Moreover, in
the calculation of water hammer problems, method (ii) has an advantage
of directly providing the velocity V and the pressure H along the
pipe distance x at different times t, in the form most desirable for
such studies.** Further, with method (ii) the quantities Ax, At are
under the control of the individual user. This is a
great benefit in treating many different pipe conditions during this study.
The process of solving (30) to (33) by method (ii) is described in the

following section.

C. ©Specified Time Intervals

Referring to Figure 3, t4i and ti41 are the beginning and
the end of the time interval At, and A, C, B are three adjacent points

on the line t = ti, Ax apart from each other. Let the point P of

* See p.

**See Appendices I to ITII.
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Figure 2 fall on the intersection of t =1t5,7 and x = Xoy, and R,

S on the line t = tj. Two characteristics C, and C_ pass through
P, R and P, S as before. Here, the values of V and H at t =ty
are assumed to be known and their values at P are to be found. The
steps for the computation are as follows:

(a) From Equations (30) and (32), remembering xp = Xg, tg = to = tg,

Xg and Xg can be readlly evaluated.

XR = XC - (V+a)c (tP - tc) (3&)

X - (V-a)c (tP - tc) (35)

X3

Here, it is assumed that (V+a)g = (V+a)g, (V-a)g = (V-a)g because of
the sufficiently short distances AC and CB.

(b) Using a linear interpolation,

At _ Oty Vo=Va
Ax
Vo=Va
-1
Vo-Tg = (E)(8)8 (Ve-Va)
At
Vr=Vg = - (+a)e (&) (Vo-Va) »
Vg = Voll - 6(v+a)a] + Vpe(v+a)g - (36)
Similarly
Vg = Ve[l + 6(v-a)c] - vee(v-a)c , (37)
Hp = Holl - 0(V+a)q) + Hpo(V+a) g (38)
Hg = Hgll + 6(V-a)c) - Hpe(V-a)c , (39)
where
6 =4t
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As in (a), the assumption of sufficiently small At has been made here
that C; between P and R, and C_ between P and S are straight
lines, and that (t ) = (¢.)¢, (¢.)g = (§.)o respectively.

(¢c) Rewriting Equations (31) and (33) as

(Vp-Vg) + S—C(HP-HR) + (%5 V) a(tp-tg) =0 , (4o)

(Vp=Ts) - {rtp-tis) + (55 )eltp-te) =0 . (1)
Solving (L40) and (41) simultaneously, Vp and Hp are found as

Vp = 32"— (VgVg) + §.i_c.(H;,..@{—HS) - % V) o(tp-tg) (42)

Ep = 3&(Vg-Vg) + 5(Hg+Hg) . (43)

With these equations, (34) to (43), the computation can be
performed as follows: First V and H will be given at Ag, Al, coe) A7
in Figure 4, then using Equations (34) - (43), V and H at Bi, ..., B4
can be evaluated. In a similar manner V and H can be obtained at
Coy wvoy Cy, and finally at D3, Dy. The number of known points at
t = t, will determine how far the computation can proceed. However,
if suitable boundary conditions on x = x, are glven, V and H at
those points marked by a black circle can be calculated. The same pro-
cedures apply to the right end. Those points are marked by a cross. It
is then self-evident that once suitable boundary conditions are given at

both ends, the computation can be carried out as far as desired.

D. Boundary Conditions

(a) The Right End:

Let x = Xg be the boundary line as shown in Figure 5. Then

Equation (34), Equation (36) and Equation (38), can be used for calculating
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the values xg, Vg and Hg. Finally, Hp can be obtained by rearrang-

ing Equation (LO) as

Hp = HR - g'qWP"VR) - (% Vz)c(tp - te), (L4L)

when Vp 1is obtainable from the given boundary conditions. Alterna-

tively, Vp can be obtained from the following equation

Vp = Vg - EE(HrHR) - <§5 V) o(tpte) (45)

when Hp 1is obtainable.

If the boundary line is at the gate-end, x = X = L, 1in
which L 1is the length of the pipe. Then, Equation (34) can be written
as

xg = L - (V+a)o(tp-tg) (46)

Other equations remain the same and Equation (L44) should be used in this

case, because Vp can be obtained, when t < T, (time of closure), by

solving
A = alv (47)
g
and
Vo=-AV - - Hp+AH (}-LB)
- P -
Vo HO

simultaneously for AH and AV,(El) and by using the relatlonship

Vp = Vg = AV . (49)

Here, rp 1s the ratlo of the effectlve gate opening at time P during
the gate closure to the effective gate opening at time zero, and Hé is
the head across the gate when V =V . For t2> T, ,

VP =O ° (50)
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(b) The Left End:
Again let x = xp Dbe the boundary line as shown in Figure 6.
Equation (35), Equation (37) and Equation (39) are used to evaluate

Xgy Vg and Hg this time. Now Vp can be found by rewriting Equation
(41) as
g I 2
Vp =V =(Hp- - (2= tp-
P St aC( P HS> (2D v )C( P tC) (51)

if Hp 1s obtainable from the boundary conditions. Alternatively,
a af
Hp = Hg + 2AVp-Vg) + (3g5 )c(tp-tc) (52)
if Vp 1s obtainable.

E. Extrapolation Procedures(lO:ll,l8)

Since the method of specified time intervals has been used, it
is possible to employ extrapolation procedures to increase the
accuracy of the computation.

According to the study made by M. Lister and L. Roberts, (11)
if a function f(x,t) is to be determined at t = 2nAt, in terms of
its gilven value at t =0, this may be achieved by taking n steps
of size 2At, repeating a linear process at a constant value of x.
Let the value of f(x,t) thus obtained be fp(x,t). Alternatively,
we may use 2n steps of At and the value of f(x,t) thus obtained
will be denoted as fp(x,t). Now, we define

f(enat) = EfB(X)t) = fA(X:t) . (53)

If F(2nAt) is computed, this value and the true value f(2nAt) agree
3
)

when terms of the order (At are neglected, After n steps if

nAt = 0(1), then the error is of 0(At)Z.
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The linear procedure given by Equations (34%) to (43) is of this
form. Computing V and H for two different step sizes 2At and At,
and combining them by using (53), the error in V and H after n steps
is of O(At)eo This is the accuracy achieved when the second-order pro-
cess of finite difference approximation is employed [see Equation (29)].

F. The Procedure in Machine Computation
and Flow Diagram

The steps in the actual machine computation are stated briefly
as follows:

(a) Calculate V and H for a time interval 2At, using

(34) to (43), (k) to (52).
(b) Calculate V and H for At, using the same equations.
(¢c) Using the results of step (b), calculate V and H for
At again.
(d) Combining the results of steps (a) and (c) by using (53),
calculate extrapolated values of V and H.
(e) Repeat steps (a) - (d) as far as desired. The output
is the results obtained at (d).

The abbreviated flow diagram for the solution of water hammer
including friction effect in a simple pipe line of constant cross section
and constant wall thickness (Figure 7) is shown on the following page.
The emphasis is placed on a more logical presentation, omitting some ma-
chine programming details.

One of the features in this basic structure of computer program-
ming is that the same block of instructions, which is the core of the

analytical solution in this study, can be used repeatedly for the
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computation of V and H. By sultably storing the previous values
of V and H and by using a number m as in Figure 7, the computa-
tion can be carried out ingeniously and economically to any desired
length.

With this flow diagram as a skelton, MAD language programs(3)
can be written by isolating different ways of gate closure and the evalua-
tion of friction factor, £ = f(V,D,v,e/D), as subroutines. Some examples

of MAD statements can be found in Appendices I to III.

G. Further Remarks

It is well known that the friction always acts against the di-
rection of motion. That means for the reversal of flow the friction term
must change its sign accordingly. Unfortunately the effect of friction is
expressed in terms of V2 in the basic differential equations and is in-
capable of satisfying this requirement. This difficulty can be eliminated
by writing V© as V|V| which has the same magnitude as before and changes
its sign automatically when the flow is reversed. This modification has
been provided in the computer programming.

As mentioned in the summary of the previous chapter, usually the
nonlinear terms VV, and VHy may be neglected in engineering practice.
These have been retained in this chapter, inasmuch as the omission of them
will not mathematically reduce the difficulty of solution due to one more
nonlinear term %‘%ﬁ , and by treating the solution more generally it may
serve helpfully in some occaslons when their effect comes to be appreciable.
In the earlier analytical solutions, authors solved the differential equa-
tions linearly by omitting these two terms and applying a linear approxi-

mation to the friction term.
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It is true that in the actual application of the present method
to an engineering problem, some computer time can be saved by neglecting
these two terms. This can be easily achieved by replacing all terms of
(V+a) and (V-a) in the computer program by a and -a respectively.

In case of gradually changing cross-section or wall-thickness
a = a(x) must be computed at each point along x. In case of abrupt
changes in the pipe line, the pipe can be divided into segments and the
same water hammer computation can be performed in each segment with new
boundary conditions at each Jjunction. Some further details of computer
solution and its application to a few compound systems are presented in

the next chapter and Appendices.



IV. APPLICATIONS TO VARIOUS PIPE CONNECTIONS
AND DIFFERENT GATE CLOSURES

As briefly mentioned in the preceding chapter, with Equations
(36) and (L43) and the method of computation as a core, the solution of
water hammer phenomena can be extended to a great many different problems,
€.8., to various pipe connections and different gate closures. These
solutions can be found by adding modifications to the program, by provid-
ing appropriate boundary conditions, or by combining sets of computations.

Tt is helpful and worthwhile here to introduce some applications,

because:

(a) The effectiveness and flexibility of this method can be
best demonstrated through these applications.

(b) It is useful for comparison with the results obtained by
other methods.

(c) Some details in the experimental verification necessitates
this kind of study. ©Since the experiment must be con-
ducted in conformity with the conditions studied in the
theoretical analysis, when it 1s impossible to achileve
the theoretical conditions, the theoretical solution
should be modified accordingly to meet experimentally

feasible conditions.

-26-
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In the following parts of this chapter, several examples of solu-
tions of water hammer problems are presented. Some of them are essential
tools for the comparison  of the analytical and experimental
results. It is not the purpose of this chapter to attempt to cover the
entire field of water hammer, but merely to indicate the usefulhess of this

tool,

A. Varilable Friction Factor

Since the friction factor f in the equation

o
&l Fo

ax
D

dhp = f
is a function of the Reynolds number and the relative roughness of the pipe,
i.e., a function of D, V, v, and e/D, it is found more convenient to
keep the evaluation of f values outside of the main program. Thus the
main program can be kept neat and its structure be kept free from any influ-
ence due to change in evaluation of f. Unlike a constant friction factor
used hitherto, the variable friction factor f, calculated from given
D, V, v and ¢/D, should theoretically be able to take care of any flow

cases.

For the laminar flow, the value f 1in a pipe will be,

_ v (54)

in which p and p are the density and the viscosity of the liquid.
For other flow cases with different sizes and materials of pipe,
the corresponding equations or values of f can be found from friction

factor charts or tables.<go’2l)
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If for a specific pipe, the friction factor be evaluated in
terms of hf/(%'gg), then theoretically there should be no need for
classifying the type of flow.

In this study, a few subroutines for the evaluation of friction
factor have been made. One is a subroutine for the Moody diagram, which
employed the same equations used in producing that diagram. With this
subroutine, the machine is able to provide any current value of f at
any point along the pipe, from the given current data for that point.
Needless to say, the usefulness of this subroutine is not limited to this
study, but can be extended to any other pipe problems in connection with
the computer. (See Appendix IV.)

Others are special subroutines for the particular pipes used
in the experiments. They were obtained by careful determination of fric-
tion loss through those pipes, and were used in producing the theoretical

results in Chapter VI. (See Appendix I.)

B. Rapid and Slow Gate Closures

It was mentioned in the previous chapter that many different
types of gate closures can be handled by imposing suitable boundary con-
ditions. In this case, it is also found that the program can be kept
orderly and the computation can be carried out more efficiently by pro-
viding boundary conditions for gate operation in a subroutine, because:

(a) In case of an instantaneous gate closure, the main

program can simply skip the step of calling this
subroutine; thus the structure of the main program
will remain unaffected. The same applies to the

time after the gate closure is completed.
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(b) By applying many different ways of gate closure, we
can solve a number of water hammer problems produced
by those closures. Since all these boundary condi-
tions due to gate closure are supplied by subroutines
and can be easlly replaced without any change in the
maln program, great flexibility in computation, re=-
sults especilally in designing gate operations for
keeplng the pressure below a fixed maximum value.
Some examples of water hammer produced by different gate closure
time relations for a simple pipe line are shown in Figure 8 to Figure 10.
The examples of instantaneous and slow gate closures for the same pilpe

are shown in Figure 11 and Figure 12,

C. Pipe Line with Stepwise Changes in Diameter

In the case of a pipe line with stepwise changes in diameter,
the pipe line can be divided into segments at each step, and the same
water hammer computation can be performed in each segment with suiltable
boundary conditions at each junction. At junction A, the conditions,

(see Figure 13)

VD5 = VD3 (55)

and

in which Vi1, D1 and Vo, D2 are velocity and pipe diameter before and
after the junction respectively, may be used when the velocity head and
the minor loss at the junction are negligible. An example of applying

the relationships (55) and (56) can be found in Appendix II.
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Figure 8.

Valve Closure Time Relations.
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Vi —— | D, 'Dz —V,

Figure 13. Pipe Line with Stepwise Change in

Diameter.
Va
®
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© ®
vy — D, A 1Dy ——=V,

Figure 14. A Junction Where Three Pipes Meet.
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D. Compound Pipes

With the same principle mentioned in the previous section, but
with more involved boundary conditions, the method of characteristics by
the computer can be developed to almost any kind of pipe system. Three
examples, which are the conditions employed in the following experiments,
are shown here. They are:

(a) a simple pipe line with a dead-end branch connection,

(b) a pipe line with a stepwise change in cross section

and a dead-end branch connected near the valve end,
(c) a pipe line with a stepwise change in cross section
and a dead-end branch connected at the junction of
two segments, as shown in Figure 15.
The conditions to be satisfied at junction A, (see Figure 14)

where three pipes meet, are

ViDE + VoD3 = V3D§ (57)
and

HA]_ = HA2 = HA3 (58)

if the velocity head and the minor loss are neglected.

The detailed MAD language Programs for cases (a), (b) and (c) are
shown in the Appendices I to III. Minor losses and velocity heads have been
neglected because they are very small compared with the loss due to pipe

friction.

E. Nonuniform Pipes

In case of gradually varying cross=section or wall-thickness,

the computation introduces no major difficulty so far as the one-dimensional
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Figure 15. Three Examples of Compound Complex Pipes.
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method is applicable; i.e., the change of factors should not be so large
that the assumption of uniform velocity and uniform pressure distribution
at any cross section would not ©be valid. In those computations, in-
stead of using constant a and D, a =a(x), D =D(x) should be used

at each point along x.



V. EXPERIMENTAL SET-UP AND PROCEDURES

An experimental check was planned as the next phase in this study.
In order to make the friction effect easily observable, a pipe which would
produce appreciable head loss between two ends had to be used. Although
this can be achieved by increasing the length of pipe and reducing its
diameter, there are some difficulties in actual installation in a laboratory.
Owing to the limited space in a building, it is usually very difficult to
place a sufficiently long straight pipe indoors. Moreover, a long pipe
needs many supports, which will produce undesirable disturbances at each
point of support. It is also not advisable to bend the pipe, since 1t
gives disturbances to the pressure wave also.

Under these restrictions, two coiled copper tubes, as shown in
Plate I, were finally used. One was 300 ft in length, 0.032 in. in thick-
ness and 1/2” 0.D., the other one 300 ft.* in length, 0.032 in. in thick-
ness and 3/8" 0.D. A core, on which the tubes were to be coiled, was built.
Tt consisted of two wooden plates at each end, about 3'-8" apart, and
twelve 1/2" steel bars comnnecting the plates to frame a core, Fach bar
was wrapped with a soft rubber tube in order to protect the copper tubes
from any damage due to direct contact with the steel bars and to prevent
possible disturbance to the transmission of pressure waves at the point
of direct contact. The copper tubes were then coiled very carefully, uni-

. formly and loosely around this core. The diameters of the colls were about

* At the end of the experiments, the former was reduced to 299.05' and the
latter to 294.30', because by handling, in determinatlon of friction
factor, by connection and disconnection to various sources and fittings,
the ruined tips had to be cut off each time.

-38-
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Plate I. The Experimental Set-Up.



two feet. It was considered that although the copper tubes were not
straight but coiled, due to the uniform curvature along the entire length
of the tubes, there would be no abrupt disturbance along the tubes, and
they would act in a manner similar to straight tubes.

The reservoir should have a capacity to provide a constant head
during the experiment. A large pipe connected to a very small pipe in
which the water hammer phenomena will be investigated, can serve as a
reservoir. Two sources were used as intake in the experiments. One was
from the 2" I.D. outlet pipe of a pressure pump which could produce about
200 psi. The other one was from a 8" pipe which was connected to a head
tank, the elevation of which was about L44' above the outlet of the tube.
The former has an advantage of being able to maintain a high pressure in-~
side the tube and thus can provide a higher velocity without causing the
minimum pressure to drop below the vapor pressure. However, there is a
doubt of it possibly creating some transmission of pressure wave towards
upstream from the junction of the tube and the outlet pipe, by which the
reflection will be reduced by that amount. The latter, on the contrary,
does not have such trouble, because the pipe is sufficiently large in
comparison with the tube, but unfortunately the head is quite low in this
case,

A considerable time had been consumed for the selection of the
valve, If the slow valve closure were also to be investigated, the ares
of valve opening had to be accurately controllable as a function of time,
or at least the time and the way of valve closure should be known. Since
there were no such valves in all manuals searched, and the primary inter-

est in the present experiment was to check the analytical solution of
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differential equations into which the nonlinear friction term was intro-
duced, rather than to observe the difference caused by rapid and slow
valve closures, it was decided to limit the test to the instantaneous clo-
sure, It was not too difficult to find a solenoid valve which could be
closed practically instantaneously as compared to the time of the travel-
ing of pressure wave; however, most of the valves were disc type and
there was a possibility of bouncing of the disc during its operation. On
that account, a slide-gate type solenoid valve was finally chosen. This
type not only has the capability of tight instantaneous closure but also
can possibly be used for the case of slow valve closure in the future if
a good method is devised to slow down the speed of closure, or at least
it can be used for the case of partial valve closure by providing some
check. The sluice-gate type solenoid valve used in the test and its con-
nection with the copper tube are shown in Plate II. The gate is closed
when no voltage is applied, i.e., it is a normally closed type.

A hydrauliscope, as shown in Plates I and III, was used for the
pressure measurements., This is a high speed electronic analyzer which
can respond to pressure changes of high frequency and high rate, and is
furnished with attachments to permit photographlc recording of the curves
traced on the screen of the cathode-ray tube.

The pressure pick-up element used in connection with the hydrauli-
scope 1s of the resistance type, having a linear response with pressure
variation thus permitting the direct static calibration. It is also de-
signed for temperature compensation.

The friction factors of the experimental tubes were determined

with great care.
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Plate II. The Close-Up of the Solenoid Valve
and the Pregsure Pick-Up Element.
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Plate III. The Calibration of Pressure Reading.
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Four peizometer rings were made and attached at each end of the two tubes°<8)
Four radial holes were carefully drilled at a distance not too close to

the end of the tube but within the reach of a small round file so that all
burrs could be removed from the inside. The four orifices were placed
symmetrically about the vertical bisecting plane with equal spacing, allow-
ing no orifice to be located at the top of the tube, lest air bubbles should
enter the hose connected with the manometer. Then the rings were soldered
to the outside and at each set of measurements they were connected by rub-
ber hoses to two ends of a differential manometer.

Two kinds of liquid were used for the manometer. Acetylene tetra-
bromide, specific gravity of which is 2.94, was used for the sensitive
measurements in the range of low velocity, and mercury for larger pressure
dropso<22) Water was taken from a head tank located under the roof of the
Fluid Engineering Laboratory. The water level in the tank was maintained
constant during the measurement. The height of weir in the tank above the
tube was approximately 43 ft.

Before each series of the measurements, the fastest flow of
water, obtainable from the tank, was made to go through the tube to expel
any possible bubbles trapped inside. The waste cocks on the top of two
limbs of the differential manometer were also widely opened to bleed out
the water in order to get free of any trapped air bubbles. The connect-
ing hoses were made short and were continually sloping upward from the
rings toward the waste cocks,

The determination of friction factor was then made. The dis-

charge, the temperature of water and the difference in height of the two
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menisci of the manometer were measured for each different opening of the
discharge cock. From these data, the velocity, the kinematic viscosity
and the friction loss were evaluated and the curve of friction factor f
vs. Reynolds number F? was plotted. Hach pair of these two values were

obtained from

£ o= (59)

and

R=% (60)

The curves, and the MAD program made thereby, are shown in Figure 16,
Figure 17, and Appendix I, respectively.

Before proceeding with the experiments of water hammer, the
hydrauliscope was checked and adjusted. Then it was calibrated very
carefully with the aid of a dead weight gage tester, as shown in Plate
III. The Y-sensitivity of the hydrauliscope, which 1s to adJjust the
height of the curve or to set the vertical scale at any desired value,
say 200 psi for each vertical inch, was calibrated for the two pressure
pick-ups used in the experiments. One of them had a 0-500 psi system
operating range with 750 psi maeximum continuous shock pressure and 1250
psi maximum static pressure permitted. The other one had a 0-200 psi
pressure range with 300 psi and 500 psi corresponding permissible values.
The pressure pick-up element was installed in the dead weight gage tester,
The desired dead weights were applied on the tester and the Y-sensitivity
was adjusted to give a desired vertical movement of the beam for the given

weight. This value of Y-sensitivity was noted for the experiments.
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The experiments were planned for two different flow cases; one
for a simple line of a constant cross-section, with the pressure pick-up
attached at the valve end, the other one for a line with a stepwise change
in cross=-section, to which the pressure pick=-up would be attached at the
valve end and at the Jjunction. However, the practical situation turned
out to be the three cases shown in Figure 15 of Chapter IV, owing to the
additional projection caused by attaching the pick-up element to the main
line. The length of this element is so short in comparison with that of
the copper tube that the friction loss caused by its wall shear and by the
tee-joint (See Plate II) is quite negligible, yet the effect of storing
the additional volume of water in this element can by no means be ignored.
Because of the compressibility of water and the elasticity of the pick-up
tube, the water stored in this part would be compressed and expanded al-
ternatively, generating a pressure wave moving back and forth with
very high frequency as compared to that of the main line. This buffering
effect and disturbances caused by emitting successive tiny pressure waves
in all directions from the Jjunction soften what otherwise would be a more
abrupt pressure versus time curve. This effect has been clearly demon-
strated by comparing the photographs taken in the experiments and the two
analytical solutions by omitting and including the dead~end branch. (See
Plate IV, Figure 11 and Figure 18)

Each flow case was investigated for both water sources, the pres-
sure pump and the head tank. A micro-switch was connected to the "external"
plug=-in to facilitate the operation of the hydrauliscope. The camera was
installed over the screen of the hydrauliscope, as shown in Plate I, in order

to take photographs of pressure versus time curves. The camera consisted
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only of a metal box with a fixed f 5.6 lens which could focus the screen
image continuously on a standard 2-1/4 x 3-1/4 film pack, and with a black
plate which could be pulled out for exposure, because there was no shutter
or iris.

The steps for the experiments are as follows: to start the flow,
the solenoid valve was opened by pressing the switch; then the discharge
cock attached at the downstream side of the valve was adjusted to obtain
approximately the desired velocity in the tube. The discharge was then
measured by using a stop watch and a measuring cylinder or weighing the
water. At the same time, the temperature of water was also recorded. The
"X-selector" dial of the hydrauliscope was turned to the "external single"
(see Plate III) so that only one sweep of the beam would appear on the
screen for one push of the microswitch. To start taking a photograph the
exposure plate was first pulled out of the camera, and five sweeps of beam
were recorded successively to represent five distinct features. (See
Plates IV to VI.) The first horizontal sweep is a pressure line at the
pressure pick-up for the steady flow. Then the switch of the solenoid
valve and the button of the micro-switch were pushed down almost at the
same time so that the curve of the water hammer produced by valve closure
could be traced out on the screen. After the pressure wave died out due
to friction, the third horizontal line was recorded. This represents the
static pressure in the reservoir. The zero~pressure line, or the re-
ference line, was recorded fourth, then followed by the last line, the
timing wave, which would indicate the time scale used, by providing sine
waves of a definite frequency. The screen illumination was increased be-

fore the exposure plate was inserted back into the camera, in order to
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show the grid lines clearly on the film. When the water was taken from
the pressure pump, tiny ripples indicating the pressure fluctuation
caused by pumping action were observed.

The experimental results thus obtained are shown in the next

chapter for the comparison with the theoretical results.



VI. DISCUSSION OF THEORETICAL AND
EXPERIMENTAL RESULTS

A number of experiments for water hammer under different condi-
tions were performed in the Fluid Engineering Laboratory at the University
of Michigan. Owing to the limitation of space and computer time, only
several runs which best represent each flow case are listed in Table I.
The photographs of pressure versus time curves taken in these runs are
also shown in Plates IV, V, and VI. The frequency of timing wave on the
hydrauliscope was get at 5 cps for those shown in the photographs. How-
ever, a careful calibration of the timing wave, later, indicated that the
actual frequency of the hydrauliscope used in the experiments was 5.285
cps. From these photographs and the data given in Table I, the pressure
head versus time curves were plotted by solid lines in Figure 18 to Figure
22,

The same data used in the experiments were fed into the electronic
computer. The factor of pipe restriction c¢; was taken as cp =1 - H/2
in these computations. [See Chapter II, B., Case (c).] The velocity and
the piezometric head (strictly speaking) at various points along the lines
for every assigned time interval were computed and printed out in a tabular
form as shown in a few examples glven in Appendices I to III. Since in
these experiments the datum plane was taken at the level of the pressure
pick-up element and the velocity heads are so small, the total head, the
piezometric head, and the pressure head at the pick-up are practically
identical. From these answers, the pressure head versus time curves

at the point of pressure pick-up were plotted by dotted lines in

-51-
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No. 2

Plate IV. The Experimental Results.
(See Table I and Figures 18 and 19)
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Plate V.

The Experimental Results.
(See Table I and Figures 20 and

21)
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Plate VI. The Experimental Results.
(See Table I and Figure 22)
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Figure 18 to Figure 22 for comparison. These are the theoretical
solutions corresponding to the above-mentioned experiments.

A few words worth mentioning here are the effect of
attaching the pressure pick-up to the main line. The significance of this
effect and what type of pipe system has to be employed have been described
in the previous two chapters. However, a major difficulty arises in the
actual computer application. Since the length of pick-up is so short com-
pared with the length of main line, formidable computer time will be re-
quired if the actual length of pick-up be used. This difficulty can be
reduced considerably by using a much longer hypothetical dead-end branch
so long as its length is sufficiently small relative to the main line,
because the significant effect is caused not by the extra wall friction of
the short branch, which is essentially negligible, but by its buffering
effect and tﬁe emission of successive pressure waves therefrom, due to its
existence., This effect should cause tiny ripples along the primary curve
(this was observed in some plottings which are not shown here), but it did
not appear in the theoretical curves shown in this chapter due to the scale
used in plotting and the time interval used in printing.

The comparison of the computed and experimental results shows
good agreement for the flows with higher velocities. The computer programs,
which were compiled according to the analytical procedures described in
Chapters II, III, and IV, not only could depict the shape of the curve very
closely to the experimental one - even for a very complicated curve -, but
also gave numerical values of pressure heads very close to those obtained

from the experiments.
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The most important value for pipe design is usually the value of
the first pressure peak after the valve closure. All of the computed values
showed an excellent agreement with the corresponding experimental ones.
They also indicate remarkable agreement in rate and way of attenuation of
pressure surges. It 1s not uncommon in a complex or compound pipe system
that the different concentrations of reflected pressure waves from differ-
ent points cause the magnitude of a succeeding peak or trough to exceed
that of the previous one. The good agreements between computation and ex-
periment in this respect will warrant the extensive application of this
method to complicated pipe systems.

The situation is somewhat different in flows with extremely low
velocities. Observing No. 5 in Table I and Figure 22, we find a lack of
resemblance in their shapes between the computation and experiment. The
speed of pressure wave in the experiment is slower than that obtained by
computation. The discrepancy in the case of laminar flow could be con-
jectured as the violation of the assumption of uniform velocity distribu-
tion over any cross section made in Chapter II. For the exact solution
of such flow we may have to consider the three-dimensional case, starting
from the general Navier-Stokes equations. It may also require some re-
examination or refinement in the experimental technique. These are out

of the scope of this study and will be left for a future investigation.



VII. COMPARISON WITH EARLIER METHODS

As already mentioned in the introduction, the existing methods
for estimating friction losses in water hammer are not only few but
inadequate, The direct analytical solution of the
basic partial differential equations is the only method capable of dis-
tributing the effect of friction losses along the pipe line in agreement
with the actual situation., However, the effect of friction losses, which
are assumed to vary with.VE, makes the basic differential equations non-

linear even when the terms ng and Véﬁ are neglected, as indicated in

X oxX
the equation of dynamic equilibrium (6). The simultaneous solution of
this equation with the equation of continuity(7), had been considered as
(13,15,16,2k4)

impossible, Thus some approximations, some of which appeared
as graphical methods, some as operational mathematics and so forth, had
been employed as substitutions because of no exact solution,

Among those exigsting methods, the graphical methods are probably
most widely used. The first approximation of this class is an estimation
of loss by a hypothetical obstructlon located either at the upstream end(l5>

(16)

or at the valve end of the pipe line, This obstruction has the same
total friction loss as the entire pipe line, The gist of the method is to
proceed along the same fundamental network of solid lines as in the non-
frictional case of the graphical solution but adding the correction of
head loss each time at the obstruction. The basic system of equations,

from which the graphical method has been developed, remains the same as

in the non-friction case, and the entire method is simply & combination

-63-
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of nonfriction case and abrupt pressure deduction at the obstruction.
Although this i1s a simple, good approximation for estimating pressure
at a point at certain fixed times, it gives no information about other
points along the pipe line.

A Dbetter graphical approximation could be achieved by taking
a number of hypothetical obstructions at various points along the pipe
line lumping the friction losses of each section at these points. As
in the first approximation, the same network must be applied, the cor-
rection of friction effect must be added at each point, and those lines
would be interwoven and developed further as the time goes. In this
case, 1t generally involves some trial-and-error method to locate two
points at each side of an obstruction, except those defined by some
boundary conditions. This method, as the first one, produces an abrupt
drop of pressure at each obstruction which evidently is not be true case.

In the graphical methods, although closer and closer approxi-
mations can be obtained by increasing the number of obstructions, this
rapidly complicates the solution. This is quite evident if one considers
the fact that each obstruction has two points of different heads at each
side and each point of each pair emits two lines of different slope, and
moreover, the dlstance between these two points, as well as their loca-
tions on the graph, has to be determined by trial-and-error method.
These lines develop further and further into a great tangle as time pro-
gresses., Successive trial-and-error often results in the accumulation

of errors and the values thus obtained mey sometimes become doubtful.



Some authors have developed methods of estimating the effect
of losses by operational mathematics or other analytical solutions,<17’24’5)
They differ in degree of accuracy and complexity, in method of approaching
the problem, and in range of application, but they have one thing in common -
the linearization of the frictlon term, Since the effect of friction is
expressed in terms of V2 in the basic differential equations, and since
most cases 1n engineering practice are turbulent flows, the linearization
of the friction term cannot exactly represent the actual situation, In
other words, they are approximations and hence not wholly satisfactory.

Wo@d(24>

introduced Heaviside's operational calculus in the

fi=1d of water hammer and presented one example of a simple line with
instantaneous gate closure at the lower end, allowing for friction., He
assumed friction to be linear and for this purpose he replaced V2 by

( K_fvm)v, Here, V, 1s the initial velocity prevailing in the pipe and

Ke 1s & constant for linear approximation, Besides the linear approximation,
it gives only "surge pressure” and not the actual pressures and velocities
along the pipe.

The pioneer work of Wood was improved by Rich(lY), superseding
Jeaviside's operation by the Laplace-Mellin transformation, It permitted
working directly with total pressureg and velocities instead of surge
pressures and velocities. The solutions have rather involved serles in
Bessel functions, but the method required replacement of nonlinear terus,
as KVQ, by a linear approximation.

The author also tried some Laplace transformations before the

present study, and by taking advantage of the digital computer, he used

several different values of Ky for corresponding values of V, instead of
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using a single constant Ky as was done by earlier authors. This is
tantamount to dividing the parabolic curve of friction versus velocity
into several segments, replacing each segment of curve by a straight line.
This naturally should give better agreement with the actual situation.

However, there are still some disadvantages in employing the
operational mathematics, even with aid of the computer. The transforma-
tion and inverse transformation involve many difficult mathematical
manipulations and often result in long  series., It has certain
limitations because of necessary approximations, and consequently
is not quite flexible in application. It is sometimes very difficult
or impossible to determine constants in the operational solutions for
come given boundary conditions,

The direct analytical solution of the basic partial differ-
entizl equations, which has been presented in the previous chapters,
naturally has greater accuracy over other methods because of its
directness, It can handle the V2 term and consequently is able to
distribute the effect of friction losses along the pipe line in accordance
«ith nature, without lumping, approximation or indirect transformation,

Besides its accuracy, this method possesses some other advantages,
Since the computation is carried out by the electronic digital computer, it
is much faster than old methods., Unlike the case in the present study,
much computer time can be saved in actual applicatibns, because there
will not be a small pressure pick-up in an actual pipe, and even if the
pipe system has a dead-end branch, it will be of the same order of length.
Many other details, which were retained in this study for greater accu-
racy, may be omitted in practical cases, For most purposes, the computer

time will not be more than a few minutes to several minutes,
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Great flexibility is one of the remarkable features of this
method. With the same form of basic program, it can be developed to
extensive problems of complicated pipe systems and gate operations. It
may also serve in solving some problems formerly beyond scope.

As can be seen in the examples given in the appendices, the
answers can be printed out in tabular form so that 1t becomes extrenely
easy for anyone to understand the phenomena and the results are ready
to plot in any form desired. It supplies all historical and geographi-
cal data for both velocity and pressure. These have all been included
automatically in the course of computation. For any fixed point along
the pipe, we can trace the velocity and pressure following the time
variation, or for any particular instant, we can observe how velocity
and pressure are distributed along the pipe. Indeed, by this method,
we can gather extensive valuable information from answer sheets simul-
taneously, whereas the earlier methods could give answers for only
limited points and limited time intervals.

The program is easily controllable both in time and in location
according to accuracy and necessity. After we make up a computer program
for one type of pipe system, we can solve as many as we desire for the
same type of problems by simply feeding in the data. Those advantages
mentioned above are also good for non-friction cases. If we prepare many
programs for typicel water hammer problems, a great number of solutions

can be readily obtained in a form similar to data from mathematical tables.



VIII. CONCLUSIONS

From the foregoing chapters of this study the following con~
clusions may be drawn:

1. The basic partial differential equations of water hammer
including effect of friction, which contain nonlinear terms and have
not been solved, can be solved directly by the method of characteristics,
with the aid of digital computer.

2. Solutions by the above mentioned method agree with solu-
tions made by earlier methods when the friction term is neglected. In-
clusion of this term clearly and sensitively depicts the damping effect.

3. The variety of examples given in this study shows that
the method is capable of handling many different gate operations and
pipe connections easily and adequately.

4, The experimental studies made for the case of instantane-
ous valve closure check the validity of the theoretical solutions. The
attenuation of pressure due to friction evaluated by this method, agrees
with experiment unless the velocity is too low. Hence, the method is
able to provide an accurate evaluation of friction effect in most engi-
neering cases.

5. The experiments also verify that the theoretically obtained
curves of pressure versus time for different pipe systems and branch
connections can correctly and sensitively describe the actual pressure

variations.

-68-
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6. From the analytical work and experimental verification,
1t 1s believed thet the method presented in this study affords an
adequete and rapid means of analyzing water hammer phenomena allowing
friction in any pipe system and brench connection for any desired
boundary conditions.

T. It has been observed that this method has remarksble
adventages of exactness, directness, quickness, flexibility, and wide
applicability over earlier methods, whether the friction is included

or not,

For a more thorough verification of the analyticeal work,
further experimentation for slow valve closure and for non-uniform
pipes are recommended, During the course of experimental investigations,
it was observed that the minimum pressure inside the pipe dropped below
the vapor pressure a few times, A better analyticel study for this case,
considering the energy dissipation due to both ordinary wall friction
and resurge effect, are also suggested. The theoretical solutions and
experimental results showed unsatlsfactory agreements in case of extreme-
ly low velocity. A further study for this case, both In theoreticsal
analysls end experimental investigatlion, are highly desired. It may
require a three-dimensional analysis or re-exemination of assumptions,
It mey more likely require further modification or Improvement in
experimental egquipment and technique as the first step of the study.
Research on water hammer In a very elastlc pipe will also be an inter-

esting sublect.



It may be worthwhile to prepare at a later date a library of
problems in water hammer, in which complete workable computer progrems
for the rapid solution of many representative problems based upon the
principle and method presented in this study will be collected, so that
a great number of solutions can be readily found by simply providing
the type of problem and necessary data,

There will be certain cases in which the effect of hysteresis
plays a significant role in the energy dissipation. Since there are
little rigorous mathematical expressions and reliable data available
for this effect, the theoretical solution of these problems may become
very difficult, Nevertheless, experimental evaluations may be feasible
by deducting the computed loss due to wall friction, minor losses, etec.,

from the total observed loss.



APPENDIX I

A MAD Ianguage Program(3) for the solution of
water hammer including effect of friction losses for the
pipe system Case I and a part of its computed results,

[See Figure 15a] Subroutines included. ¥

[See also APFENDIX V.]

*F = 1 for R.L, 64 1s used in order to prevent F(=f) — o,
In this case V = O,

=T1l=
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%* EXECUTEs DUMP
* COMPILE MADs PUNCH OBJECT WH11 7

HERE

ANN

ARBOR

MICH

. USA.

CANADA

ENGLAD

INTEGER TsJsKsMeNsTRECTP

DIMENSION V{(40)s H(40)y V1(20)s H1(20)s V2(40), H2(40)s VP(40
2)s HP(40)

PRINT FORMAT TITLE

READ FORMAT CARDs L’LZ’LByVOQHO,NyTC’D9DZQB!529NU051’SZiTPlEO

2E29EW
PRINT FORMAT GIVEN, L’L29L3’V09HOoN9TC9D¢DZ;B.BZ¢NUoSl952959

2E2+EW

Q=1le/EW+0481%#D/(B*E)
02=1¢/EW+0e81%D2/(B2%*E2)
A=SQRTe(1e/(1e93%Q))
A2=SQRTe(1e/(1e93%Q2))

J=2

K=1

DELL=L/N

HF=FRe (DsVOsNUsS1) XDELL*¥VO*VO/(D*644332)
HF 3=HF*L3/DELL

DELTI=L2/A2

DELV=0401

DELH=0401

T=0

HP(0)=HO

PRINT FORMAT TESTs Qs As Q29A2y DELL> DELTI
PRINT FORMAT TIMEs T

X==DELL

THROUGH ANNs FOR I1=04y 1y TeGeN
X=X+DELL

V1i(1)=v0

H1(1)=HO-I*HF

PRINT FORMAT RESULTsXsV1(I)sH1(I)
PRINT FORMAT BLANK

THROUGH ARBORs FOR I=N+J+Kslsl eGeN+2%J
V1i(I)=v0

H1(I)=H1(N)=(I-N=J=K)¥*HF3

PRINT FORMAT RESULTsXsV1{I1sHI(I)
X=X+L3

HE=H1(N+2%J)

PRINT FORMAT BLANK

X=0

THROUGH MICH, FOR I=N+KololeGeN+J
V1(11=0s

H1(I)=H1(N)

PRINT FORMAT RESULTsXsV1(I)sHI(I)

x=L2

HF12=HF /2.

HF32=zHF3/2

THROUGH USAs FOR I=0y 1y leGe2%*N
v2(1l)=vo

H2(I)= HO=I%*HF12

THROUGH CANADAs FOR I=2%(N+J+K) 9191 eGe2¥ (N+2% )
v2(1)=v0

H2(TI)=H2 (2%N)={1=2%(N+J+K) ) *¥HF32
THROUGH ENGLADs FOR I=2%(N+K)slsleGe2%(N+J)
v2(1)=0

H2(I)=H2(2*N)

TH=DELTI/DELL
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TH2=DELTI/L2

TH3=DELTI /L3

TREC=0

T=T+DELTI

WHENEVER TeGe3*TCoANDeToGa20e%(L+L3)/As TRANSFER TO HERE
TREC=TREC+1

WHENEVER TRECeNE.TPs TRANSFER TO YORK

PRINT FORMAT TIME, T

M=z1

DELT =DELTI

TI=T

THROUGH WASHs FOR I20s1,1eGeN+2%J

VII)=vl(1)

H(I)=H1(T)

THROUGH LONDONs FOR I=1, 1y IeEeN

VREVII) % (Le=THR(V(I)+A) )4V (I=1)%TH* (V(I)+A)
VSEV(I)#(1e+THRE(V(I)=A) ) =V(I+1) X TH¥(V(I)=A)

HR=H (1) %(1e=TH¥(V(I)+A)Y+H(T=1) % THX(V(I)+A)
HS=H(T)%(1e+THE(V(I)=A) ) =H{T+1)*¥TH*(V(I)=A)

VP (1)=0e5% (VR+VS)+ (166083 /A) % (HR=HS)=0e5%FRe (DsV (1) sNUsS1) *eA
2BSeV{1)#V (1) #DELT/D

HP(1)=(A/64e332)%¥(VR=VS)+0e5%(HR+HS)
VS=V(0)%(1e+TH¥(V(0)=A) )=V (1) ¥ TH¥(V(0)=A)

HS=HO* (1e+TH® (V(0)=A))=H(1)#TH*(V(0)=A)

VP (0)=VS+(32e166/A) % (HO=HS)=0e5%FRe (DsV(0) sNU»S1)*¥V(0) *eABSeV
2(0)*DELT/D

WHENEVER MeEels TRANSFER TO SPAIN

THROUGH BELGs FOR I=N+K+1s 1y leEeN+J
VREV(I)#(1e=TH2%(V(I)+A2) ) +V(I=1)#TH2*(V(1)+A2)
VS=V(I)%(1e+TH2%(V{I)=A2) ) =V(I+1)#TH2%(V(I)=A2)
HR=H(I)%(1e=TH2%(V(I)+A2) ) +H({I=1)%#TH2¥(V(I)+A2)
HS=H(T)%(1e+TH2%(V(I)=A2) )=H(I+1)%#TH2%(V(1)=A2)
VP(1)=0e5%(VR+VS)+(164083/A2) % (HR=HS)=0e5%FRe(D2sV(I)sNUsS2)*
2V(1)%4ABSeV(I)*DELT/D2

HP(1)=(A2/644332)%{VR=VS)+04¢5% (HR+HS)

THROUGH CZECHO» FOR I=N+J+K+1lslsleEeN+2%J
VR=V(I)%(1e=TH3%(VII)+A 1) +V(I=1)%TH3*(V(I)+A)
VS=V(I)*(1e+TH3X(V(I)=A ) )=V(I+1)%TH3*(V(I)=A}
HR=H(I)*(1a=TH3*(V(I)+A ) )+H(I=1)%TH3*(V(I)+A)
HS=H(T)#(1e+TH3*¥(V(I)=A ))=H{I+1)*TH3%#(V(I)=A)

VP (1)=0e5%(VR+VS)+(166083/A) % (HR-HS)=0e5%FRe (DsV(I)sNUsS1)¥aA
2BSeV(I)#V(1)#DELT/D

HP(1)=(A /64¢332)%(VR-VS)+045% (HR+HS)

VS=V(N+K+1) *TH2%A2

HS=H(N+K) % (1e=TH2%¥A2)+H (N+K+1) *#TH2 ¥A2

HP (N+K)=HS=(A2/324166) *VS

VP (N+K) =0

WHENEVER T1eGeTCy TRANSFER TO ITALY

EXECUTE BCo(TCsTIsAsVOSHEs VIN+2%J)y H(N+2%J)4DELVDELH)

VP (N+2%J)= V(N+2#J)=DELV

HP (N+2%J)= H(N+2#J)+DELH

TRANSFER TO OHIO

VP (N+2%J) =0

VR=V(N+2%J) ¥ (1e=TH3% (V(N+2%J)+A) )4V (N+2%J=1) XTH3* (VIN+2%J ) +A)
HR=H(N+2%J) % (1o=TH3*(V(N+2%J) +A) }+H(N+2%J=1) ¥ TH3 % (V(N+2%J) +A)
HP (N+2%J) =HR=(A/324166 ) % (VP (N+2%J) =VYR) ~A%FRe (D sV (N+2%J) sNUsS1
2)%VIN+2%J1 %o ABSeV(N+2%J) ¥DELT/ (644332%D)

WHENEVER TIeGeTCs TRANSFER TO STAR
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EXECUTE BCe(TCoTI9A9VOSIHE s VP(N+2%#J)9sHPIN+2%J)4DELVsDELH)

VP (N+2%J)=VP (N+2%J)=DELV

HP (N+2%J) =HP (N+2#J)+DELH

WHENEVER (eABSeDELVeGE«Qe001) ¢ANDe (2ABSeDELHeGE«04001)s TRA
2NSFER TO VENUS

VP (N+J+K) =VIN+J+K) tVP (N+J+K+1) =V (N+J+K+1)

VRI=VIN)# (1e=TH¥(V(N)+A) ) +V{N=1)*TH*(VIN}+A)

HRI=H(N)* (1lo=TH#{V(N)+A) ) +H(N=-1)X*TH*(VIN)+A)

VR2=VIN+J) ¥ (1o=TH2¥ (VIN+J) +A2) J+V(N+J=1) % TH2% (V(N+J)+A2)
HR2=H(N+J)#(1a=TH2¥ (V(N+J)+A2) ) +H(N+J=1) %#TH2*(V(N+J)+A2)
VS3=V(N+J+K) # (1o +TH3* (V(N+J+K)=A} ) =V(N+I+K+1 ) #THI* (V(N+J+K)-A
2)
HS3=H(N+J+K)*#(1e+TH3#(V(N+J+K)=A) ) =H(N+J+K+1)#TH3* (V(N+J+K)=-A
2)

HP (N+J+K) =HS3+(A/32e166) ¥ (VP (N+J+K)=VS3 )} +A%FR4 (DsV(N+J+K) sNU»s
2S1)*V(N+J+K) *# o ABSeVIN+J+K ) ®DELT/(644332%D)

HP (N) =HP (N+J+K)

HP (N+J) =HP (N+J+K)
VP(N)=VR1=-(324166/A) ¥ (HP(N}=HR1)~0e5%FRe (DoV(N) sNUsS1)*V(N)#,
2ABSVIN)*DELT/D

VP(N+J)=VR2~(324166/A2)%* (HP(N+J)=HR2)=0e5%FRe (D29 V(N+J) 9sNU»S2
2)%V(N+J) % ABSeV(N+J) *¥DELT/D2

VEL=VP(N)+VP(N+J)#D2*D2/(D*D)

DIF=VEL=VP(N+J+K)

WHENEVER «ABSeDIF o«Le04001s TRANSFER TO POLAND

VP (N+J+K) =VP (N+J+K)+DIF /3,

TRANSFER TO GREECE

WHENEVER MeNEely TRANSFER TO BERLIN

THROUGH PARISs FOR I=03s19leGeN+2%J

Vi(I)=vP(1])

H1(I)=HP(I)

M=2

N=2*N

J=2#J

K=2*K

DELT=DELT/2

TI=T-DELT

THROUGH ROMEs FOR I1=091914GeN+2%J

V(I)=V2(I)

H{I)=H2(T1)

TRANSFER TO BOSTON

WHENEVER MeNEe2s TRANSFER TO UNIV

THROUGH TOKYO»s FOR I=091sT1eGeN+2%J
VII)=VP(1)

HOTI=HP(T)

M=4

TIaT

TRANSFER TO BOSTON

THROUGH SUNs FOR I1=0s1sIeGeN+2%J
V2(1)=VP (1)

H2(1)=HP (1)

N=N/2

J=J/2

K=K/2

WHENEVER TRECeNEeTPs TRANSFER TO NEW
X=-DELL

THROUGH MOONs FOR 1=0s1s14GeN
X=K+DELL
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VB=2%V2(2%I)=V1(I)
HB=2%¥H2(2%1)~H1(I)

MOON PRINT FORMAT RESULTs XsVBsHB

PRINT FORMAT BLANK

THROUGH TURKEYs FOR I=N+J+KslsIleGeN+2%J

VB=2%#V2(2#%1)=V1(1)

HB=2%H2(2*1)=H1(1)

PRINT FORMAT RESULTs XsVB,HB

TURKEY X=X+L3

X=0

PRINT FORMAT BLANK

THROUGH CONGOs FOR I=N+KslsleGeN+J

VB=2*v2(2*1)=-Vv1(I)

HB=2#H2(2*I)=H1(I)

PRINT FORMAT RESULTs XsVB,HB

CONGO X=L2

TRANSFER TO PHILA

VECTOR VALUES TITLE=$64H1WATERHAMMER PRODUCED BY GATE CLOSURE
2 INCLUDING FRICTION EFFECT /1HO0sS10450HPIPE LINE WITH A SHOR
3T DEAD-END BRANCH CONNECTION ¥*%

VECTOR VALUES CARD = $5F10e3914/5F84593F10¢8913/3E1245%$
VECTOR VALUES GIVEN = $5H4L = F1043»S895HL2 = F10e395895HL3 =2
2 F106395895HV0O = F104¢395895HHO = F1043/5HON = 149S8s5HTC = F8
3¢595894HD = F8e¢5,5895HD2 = FB8e5/5H0B = FB8e5s58,5HB2 = F845+S8
495HNU = F104895S895HS1 = F104895895HS2 = F10e8/5H0E = E1245554
595HE2 = E12e59S495HEW = E1245%%

VECTOR VALUES TEST = $1HO»4HQ = E1245+S594HA = E124595595HQ2
2= E12e595595HA2 = E1245/8HODELL = £124595598HDELTI = E1245%8$
VECTOR VALUES TIME = $8H4TIME = F1045/1H09S51291HX9S1598HVELOC
21TY9S12y8HPRESSURE*$

VECTOR VALUES RESULT = $1H 9S79F10e39S89E12649589E1264%*S
VECTOR VALUES BLANK = $2HO *3$

END OF PROGRAM

# COMPILE MAD, PUNCH OBUECT WHS8 3

EXTERNAL FUNCTION (DsVsNUsK)

ENTRY TO FRe

R=D%*4ABSeV/NU

WHENEVER D oGe 04027y TRANSFER TO LARGE

WHENEVER RelLebb,
F'-'-'l.O

OR WHENEVER RelLe200
F=z64¢/R

OR WHENEVER ReLe1050,
F=17¢T77*RePe(~047581)

OR WHENEVER RelLe3250.
Fz64948%RePe(=0e6232)

OR WHENEVER ReLe3600¢
Fz498¢31%RePe(~101516)

OR WHENEVER ReL 44200,
F=z840349%#RePe({=0+6476)

OR WHENEVER ReLe5000s
Fz0e51216%RePe(=0e3176)

OR WHENEVER ReL46000,
F=0e13672%RePe(~041625)

OTHERWISE
F=0s076236%RePe(~0,09538)

END OF CONDITIONAL

TRANSFER TO BACK
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BACK
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WHENEVER RoelLeb4s
F=140

OR WHENEVER RebLe200s
F=64e¢/R

OR WHENEVER RelLas10504
Fz14e49%#RePoe(=067197)

OR WHENEVER RelL¢3650,
F=7e525%RePe(=046258)

OR WHENEVER Re¢Le4000,
F=624¢98%RePe(~101643)

OR WHENEVER RelLe4700s
F=6e3212%RePe(=046104)

OR WHENEVER ReL45700,
F=066013%RePe(=0e3322)

OR WHENEVER ReLa7000,
F=0e2424%*RePe(=0e2271)

OTHERWISE
F=0407819%RePe(=0409933)

END OF CONDITIONAL

FUNCTION RETURN F

END OF FUNCTION

* COMPILE MADs PUNCH OBUECT

EXTERNAL FUNCTION (TCoeTI9AsVOsHOsVeHDELVIDELH)
ENTRY TO BCe
TAU=0e5%(1e5=TI/TC)#{1e5=T1/TC)~04125
C=A*V0/(3242%H0)

W=V/VO

Y=TAU*TAU

X=2 o #WHCHY
DLV=0e5%({X~SQRT e (X¥X=& o ¥ (WEW=Y*H/HO)}})
DLH=C*DLV

DELV=VO#DLV

DELH=HO*DLH

FUNCTION RETURN

END OF FUNCTION

WHST
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APPENDIX TI

A MAD Language Program(3) for the solution of
water hammer including effect of friction losses for the
pipe system Case II and & part of its computed results.

[See Figure 15b.] Subroutines omitted.

[See also APPENDIX V.]
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CHINTU LAI Q042N 12 005 030

¥ EXECUTE»
* COMPILE

START

e . WORLD

TOUR

FROM

— . ARBOR

7

DUMP
MADs PUNCH OBJECT WH12 5
INTEGER Gols JsKsMaNsRsTRECTP

DIMENSION V(60)y H{60)s VI(30)s H1(30)s V2(60)y H2(60)s VP(60
2)y HP(60)s L{4)s D(4)y Bl4)s S(4)y E(4)y Ql4)y Al4)s DELL(G)
IVI(2)s HF(4)y TH(4)

PRINT FORMAT TITLE

READ FORMAT CARD» VOs HO9 TCs NUs No L{1Yesel{4)s D(1)eeeD(
24)9 B(l)eeoB(4)s S(1)eeaS{4)s Ell)eesE(4)s TPy EW

PRINT FORMAT GIVENs VOs HOs TCos NUs No L{1)eeel(4)s Di(1l)eweD(
24)9 B(l)'ooB(‘P)’ 5(1)0005(4)9 E(l)booE(4)9 EW

Z=1e/EW

THROUGH WORLDs FOR G=1ly 1y GeGeé

Q(G)=2+0.81%D(G)/(B(G)*E(G))

A(G)=SQRTe(1e/(1e93%Q(G)))

J=2

K=1

THROUGH TOURs FOR G=1y 19 GeGe2

DELL(G)=L(G)/N

DELL(3)=L(3)

DELL{&4)=L(4)

VI(1)=v0

Cl=D(1)*D(1)/(D(2)*D(2))

C2=D(3)%D(3)/(D(2)%D(2))

VI(2)=vO*Cl

THROUGH FROMs FOR G=1s 19 GeGe2

HF(G)=FRe (DIG)sVI(G) sNUsS(G) ) XDELL(GIHVI(G)*VI(G)/(D(G)*644.33
22)

HF (4)=HF (2)*L (4) /DELL(2)

DELTI=L(3)/A(3)

DELV=0601

DELH=0,01

I=0 _ .

H1(0})=HO

H2(0)=HO

HP (0) =HO

PRINT FORMAT TESTs Q(l)eeeQ(é)s A({l)eseAl4)s DELL(1)s DELL(2)
2y DELTI

PRINT FORMAT TIMEs T

R=0

X=0

THROUGH ARBORs FOR G=ly 19 GeGe2

X=X=-DELL(G)

THROUGH ANNs FOR I=Rs 1y IeGeN+R

X=X+DELL(G)

V1(I)=VI(G)

H1(I)=H1(R)=(I=-R)*HF(G)

PRINT FORMAT RESULTs Xs V1(I)y HIII)

PRINT FORMAT BLANK

R=R+N+J

H1(R)=H1(R=2)

THROUGH MICHs FOR I=R+Ks ls IeGeR+J

Vi(Iy=vi{2)

H1(I)=H1(R)=(I=R=K)¥*HF {4)

PRINT FORMAT RESULTs Xs V1(I1)y HI(I)

X=X+L(4)

HE=HI1(R+J) _

PRINT FORMAT BLANK
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X=0

THROUGH USAs FOR I=R=Ks 1y I¢GeR

V1(1)=0,

H1(I)=H1(R)

PRINT FORMAT RESULTs X» V1(I)y HI{I)

X=L(3)

THROUGH OHIOs FOR G=1s 1s GeGed

HF(G) =HF (G) /2.

R=0

THROUGH MDs FOR G=1ly 1y GeGe2

THROUGH PAs FOR I=Rs 1s 1¢GeR+2%N

V2(1)=VI(G)

H2(1)=H2(R)=(1~R)*HF (G)

R=R+2% (N+J)

H2(R)=H2 (R~4)

THROUGH WASHs FOR I=zR+2%Ks 1y IeGeR+2%J

V2(1)=VI{2)

H2(1)=H2(R)=(I=R=2%K)*HF (4)

THROUGH NEWs FOR I=R=2%Ks1lsIeGeR

V2(1)=0,

H2(1)=H2(R)

THROUGH YORKs FOR G=1s 1ls GeGeb

TH(G)=DELTI/DELL(G)

TREC=0

T=T+DELTI

WHENEVER TeGe3%TC oANDs TeGel6e*(L(1)/A(L1)+(L(2)4+L(4))/AL2))
2TRANSFER TO START

TREC=TREC+1

WHENEVER TRECeNEsTPs TRANSFER TO PHILA

PRINT FORMAT TIME, T

M=1

DELT=DELTI

TI=T

THROUGH CANADAs FOR 120y 1s I4Ge2% (N+K+J)

V(I)=V1(1)

H(T)=H1(1)

R=0

THROUGH ENGLADs FOR G=13 14 GaGe2

THROUGH LONDONs FOR I=R+1ls 1y IeEeN+R
VR=V(I)%(1e=TH{G)*(V(I}+A(G)))+V(I=1)%TH(G)*(V(I)+A(G))
VS=V(I)*(1e+THIG)*#(V(I)1=A(G)))=V(I+1)*TH(G)*(V(I)=A(G))
HR=H(I)%#(1e=TH(G)*(V(I)+A(G) ) ) +H({I=1)*TH(G)*(V(I)+A(G))
HS=H(I)*#(1e+THIG)*(V(I)=A(G)))=H(I+1)*TH(G)*(V(I)=A(G))
VP(1)=045%(VR+VS)+ (164083 /A(G) ) *(HR=HS)=0e5%FRo(D(G)sV(I)sNUs
2S(G)) V(1) *eABSeV(I)*DELT/D(G)

HP(1)=(A(G)/64e332) %(VR=VS)+04s5% (HR+HS)

R=R+N+J

VS=VI0) %#(1e+THI1)#(V(0)=A(1)))=V{1)*TH(1)*(V(0)=A(1))
HS=HO* (1e+TH(1)%(V(0)=A(1)))=H(1)%TH(1) *(V(0)=A(1))
VP(0)=VS+(324166/A(1))%¥(HO=HS)=0e5%FRe(D(1)sV(0)sNUsS(1))%V(0
2)%4ABSeV(0)*DELT/D(1)

WHENEVER MeEels TRANSFER TO SWEDEN

THROUGH NORWAYs FOR G233 13 GeGek

THROUGH OSLOs FOR I=R=K+1ls 1s IeEeR
VR=V(I)%(1e=THIG)*(V(I)4+A(G)))+V(I-1)*¥TH(G) *(V(T)+A(G))
VS=VII)%#(1e+TH(G)*(V(I)=A(G)))=V(T+1)*TH(G) *(V(I)=A(G))
HR=H(T)%(1e=TH(G)*(V(I)+A(G)))+H(I=1)%TH(G) ¥ (V(TI)+A(G))
HS=H(I)*(1e+TH(GI*(V(I)=A(G)))=H({T+1)*TH(G)*(V(I)=A(G))
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VP(1)=0e5%(VR+VS)+(166083/A(G) )% (HR=HS)~0e5%FRe(D(G)sV(I)sNUs
2SIGII*¥V(I)*e ABSe V(I )*DELT/DI(G)
HP{I)=(A(G)/64e332)%(VR=VS)+045%(HR+HS)

R=R+J

Rz 2#¥N+3#K .

VS=V(R+1)*TH(3)*A(3)

HS=H(R)*{1a=TH(3)}*A(3) }+H(R+1)%TH(3)*A(3)

HP (R)=HS~(A(3)/324166)*VS

VP(R)=0

R=2%# (N+K+J)

WHENEVER TIleGeTCs TRANSFER TO FINLAD

EXECUTE BCe(TCoTIoA(4)sVI(2)9sHESV(R)y H(R)9 DELVIDELH)
VP(R)=V(R)=DELV

HP{R)=H(R)+DELH

TRANSFER TO MOSKVA .

VP(R)=0

VR=V(R)*(1e=TH(4)* (V(R)+A(4)))+VIR=1)%¥TH(4 ) ¥ (V(R)+A(4))
HR=H(R)%¥(1e~TH(4) % (V(R)+A(4)))+H(R=1)%TH(4)*(V(R)+A(4))
HP(R)=HR=-{A(4)/324166)*(VP(R)=VR)=A(4)*FRe(D(4)sV(R)sNUsS(4&})
2%V (R)*eABSeV(R)I*#DELT/(644332%D(4))

WHENEVER TIeGeTCs TRANSFER TO POLAND

EXECUTE BCoe(TCseTIsA(4)sVI(2)9sHESVP(R)sHP(R)sDELVIDELH)
VP(R)=VP(R)-DELV .

HP (R)=HP(R)+DELH

 WHENEVER (eABSeDELVeGE«0e001)aAND4 (¢ ABSeDELHeGEL,04001)9 TRANS
2FER TO RUSSIA

R=2%(N+K)

VP (R+J+K) =V(R+J+K)+VP(R+J+K+1) =V (R+J+K+1)
VR2=V(R)*(1.-TH(2)*(V(R)+A(2r))+V(R-1)*TH(2)*(V(R)+A(2))
HR2=H(R)®# (1e=TH(2)%¥({V(R)+A(2)))+H(R=1)*TH(2)%¥(V(R)+A(2))
VR3=V(R+J)#¥(1e=TH(3)}*¥(V(R+J)+A(3))I+V(R+IJ=1)*¥TH(3)*(V(R+J)+A(
23))
HR3=H(R+J)*(1e=TH{3)#(V(R+J)+A(3) ) )+H(R+J=1)*¥TH(3 ) *(V(R+J)+A(
23))

VS4=V(R+J+K)I ¥ (1o +TH(4) ¥ (V(R+J+KI=A(4)) )=V (R+J+K+1 ) *TH( &) *(V(R
2+J+K)Y=A(4))

HS4=H(R+J+K) ¥ (1o+TH(4) * (V(R+J+K)=A(4))}) =H(R+I+K+1) ¥ TH(4) ®(V(R
2+J+K)=A(4})

HP(R+J+K ) =HS4+(A(4)/32.166)%# (VP(R+J+K)=VSL)+A(4)#FRe(D(4) V(R
24J+K) sNU9S( &) ) ¥V(R+J+K ) * e ABSeV(R+J+K ) #DELT/(644332%D(4))

. HP(R)=HP(R+J+K)

HP (R+J) =HP (R+J+K)

_ VP(R)=VR2-(32¢166/A(2))*(HP(R)-HR2)=0e5%FRe (D(2)sV(R)sNU»S(2)
2)*%V(R)*4ABSeV{R)*DELT/D(2)
_ VP{R+J)=VR3=(32¢166/A(3))*(HP(R+J)=HR3)-0e5*FRe(D(3)sV(R+J) N

2UsS(3))%V(R+J)*4ABSeV(R+J)*¥DELT/D(3)
VEL=VP(R)+VP (R+J)*C2
DIF=VEL=VP (R+J+K)
_WHENEVER «ABSeDIFeLs0s001,
VP (R+J+K) =VP (R+J+K}+DIF /34

TRANSFER TO DEUTCH

. _TRANSFER .10 BERLIN .

VP (N+J) =V (N+J)+VP (N+J+1) =V (N+J+1)

C_VR1=VINI*(le=TH(L)*¥(VIN)+A{1))I+V(N=DI)*¥TH(1) ¥ (V(N)+A(1))

HRI=H(N)# (1e=TH(1)*(V(N)+A(1)))+H(N=1)*¥TH(1)*(V(N)+A(1))

L VS2=VAN+I )X (Le+TH(2) ¥ (VIN+J)=A(2) ) )=VIN+I+ 1) *TH(2) ®(V(N+J) =A(

22))
HS2=H(N+J)1*(1e#TH(2) ¥ (V(N+J)=A(2)) )=H(N+J+1) XTH(2) *(V(N+J)-A(

2219
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HP (N+J)=HS2+(A(2)/326166) ¥ {VPIN+J)=VS2)+A(2)*#FRe(D(2)sVI(N+J)
2NUsS(2) Y%V IN+J) ¥4 ABSeV(N+J)*DELT/(644332%D(2))
HP(N)=HP (N+J)
VP(N)=VR1-(32¢166/A(1))%#(HP(N)=HR1)=0e5%FRe(D{1)sVIN)sINUsS(1)
2)%#V(N)*4ABSeVI(N)}*DELT/D(1)

VEL=VP(N)*Cl

DIF=VEL~VP(N+J)

WHENEVER oABSeDIFeLe0s001s TRANSFER TO BELG
VP (N+J)Y=VP(N+J)+DIF /2

TRANSFER TO NETH

R=R+2%J

WHENEVER MeNEely TRANSFER TO SWISS
THROUGH PARISs FOR 1=0p 1y IeGeR
V1(I)=VP(1)

H1(I)}=HP(TI)

M=2

N=2#%N

J=2%J

K=2%*K

DELT=DELT/2

TI=T-DELT

THROUGH FRANCEs FOR I=09 19 IeGe2%R
vel)=va(1)

H(I)=H2(I)

TRANSFER TO SCOT

WHENEVER MeNEe«2s TRANSFER TO ITALY
THROUGH ROMEs FOR I=091914GeR
VIiT)=VP(I)

H{I)=HP(T)

M=4

TI=T

TRANSFER TO SCOT

THROUGH SPAINs FOR I=04 1s IeGeR
v2({1)=vP(1I)

H2(1)=HP (1)

N=N/2

J=J/2

K=K/2

WHENEVER TRECeNE«TPs TRANSFER TO BOSTON
R=0

X=0

THROUGH AUSTs FOR G=z=1s 1ls GeGe?2
X=X=DELL(G)

THROUGH WIENs FOR I=Rs 19 leGeN+R

. X=X+DELLI(G)

VB=2%V2(2%1)=V1(1)
HB=2%#H2(2*I)=H1(I)

PRINT FORMAT RESULTs XsVBsHB
PRINT FORMAT BLANXK

R=R+N+J

.. THROUGH GREECE» FOR I=R+K» 1ls TeGeR+J

VB=2#V2(2*1)=V1(1I)
HB=2%H2(2%1)=H1(1)

PRINT FORMAT RESULTs XsVBsHB
X=X+l (4) .

X=0

__PRINT FORMAT BLANK

THROUGH TURKEYs FOR I=R=Ks 1y IeGeR
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VB=2%V2(2%#1)=V1(I)

HB=2%#H2(2*1)=H1(1)

PRINT FORMAT RESULTs X»VBsHB

X=X+L(3)

TRANSFER TO BALTMR

VECTOR VALUES TITLE = $75HIWATER HAMMER SOLUTIONS FOR COMPOUN
2D SYSTEMS INCLUDING FRICTION EFFECT (A) *$

VECTOR VALUES CARD = $2F104392F1048914/4F10e394FB8e6/4FB4694F1
2068/4E1264913/E1244%3%

VECTOR VALUES GIVEN = $6H4VO = F10e39S895HHO = F10e395895HTC
2= F10e895895HNU = F10489S58s4HN = 14/14H0L(1929394) = 4(S54F10
3¢3)/14HOD(1929394) = 4(STsFBe6)/14HOB(1929394) = 4(ST9FB8e6)/1
44H0S{1929394) = 4(S59F10e8)/14HOE(1929394) = 4(S39E1244)/6HOE
5W = E1244%9%

VECTOR VALUES TEST = $14HOQ(1929394) = 4(S59E1245)/14H0A(142)
2394) = 4(S59E1245)/11HODELL(1) = E12e59S55s10HDELL(2) = E12e5)
3S598HDELTI = E1245%%

VECTOR VALUES TIME = $8H4TIME = F1045/1H09S51241HX951598HVELOC
21TY 512 98HPRESSURE*S

VECTOR VALUES RESULT = $1H sS79F10e395S89E12449S89E12+4%$

VECTOR VALUES BLANK = 3$2HO #%§

END OF PROGRAM
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APPENDIX ITII

A MAD Language Program<5 ) for the solution of
water hammer including effect of friction losses for the
pipe system Case III and a part of its computed results,

[See Figure 15c] Subroutines omitted.

[See also APPENDIX V.]
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LAT QLN 12 VCs N3y

DUMD
MADs PUNCH 22JECT WH13 2

INTEGER Gols JeKeMeNsRsTRECSTP

DIMENSION V{60)s H{6U)s VI(230)s HI(30)s V2(6.:)e HZ{ED)s VP(ED
2Ve HPLET) s LI3)s DI2)s 2(3)s S({3)y Z(3)s Q(2)y A(3)s DELLI3Z),
2VI(3)e HFE(3)s TiH(3)

PRINT FORYAT TITLE

READ FORMAT CARD, YVioe mos TCse Mty M LI1)eesl(2)s Di1l)eseel]
239 Pl ll)eeet®{(3)e S({1)eaaS{2)e F({l)oaer(3)s TP,y &

PRINT FORIAT GIVEMs Voe How TCas My Ny L {1)esel{3)s T(1l)eeelrf
22)9 r:(l)ooo‘v(_7)9 F‘(])oon)(’g)y (1)000 (3)9 r—"

Z=1e /2%

THROUGH wWORLDs FOR G=1s 1s GoeGel

QIC)=Z+0e315#D(0) /(2(0)*E(
=SORTe(1la/(1623%0(G))

»

_—

MmN~ e~
v

p

RN

FOR G=1s 19 CeGa?

—

CUGH TOUR
)
)

23—~ 1 o~

SO MN D D =

9
—

I H<COh O <CTWU A R
fons
QW = 0w

T DN 2 e

22)
DELTI=L(3)/7A(2)
DELV=UeC1
PELH=0,01

PRINT FORNMAT TESTe G(l)eeeG(3)s A(Ll)esen(3)s DFLLIL)y vELL(Z)
2y DELTI

PRINT FORMAT TIMEs T

R=0

X=0

THROUGH ARBOR,y FOR CG=1ly 1y Gelie?
X=X=DELL(G)

THROUGH ANNs FOR [=Ry 1y leGeN+R
X=X+DELL (5)

VI(I)=VI(G)

H1(I) =HI(R)=(I=R)*HF (G)
PRIMT FORMAT RESULTs X
PRINT FORMAT BLANK
R=R+N+J

H1(R)=H1{(R=2)

HE=H1(R)

X=0

THROUGH MICHy FOR I=R+Ks 19 [aGeR+J
V1(I)=0,

H1(I)=H1(N)

PRINT FORMAT RESULTs X»s V1(I)s =1(I)
X=L(3)

THROUGH USAs FOR G=1s 1y Gelie?
HF(G)=HF(G) /2
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R=
THROUGH %Ds FOR G=1p 1s GeGae2
THROUGH PAs FOR =Ry 1 g
V2(1)=VI(G)
H2 (1) =H2(R)=(1=R)*HF (G)
R=R+2% (N+J)
H2 (R)=H2 (R=4)
THROUGH NEWs FOR I=R+2%Ks 1y leGeR+2%J
2(1)=04
(1)=H2(2%N)
THROUGH YORKs FOR G=1s 1s GeGe3
H(G)=DELTI/DELL(G)
TREC=0
=T+DELTI
WHENEVER TeGe3#¥TC oANDe TeGalbe®*(LI1)/A(LI+LI2)/A(2))

TRANSFER TO START

T?CC TREC+1

WHENEVER TRECMESTPs TRANSFER TC PHILA

PRINT FORMAT TIME, T

M=1

DELT=NELTI

TI=T7

THROUGH CAMNADAs FOR I=Cs 1y IeGe23 (N+K+J)

VI =v1l(1)

H{T)Y=H1(1)

R=0

THROUGH ENGLADs FOR G=1s 1y GeGe2

THROUGH LONDONs FOR I=R+1ls 1o TaE4M+R

VR=V (I)”(l.-TH(G)*(V(I)+A( DYV T =) %¥THIG)* (V{T)+A(G))

VSV (T )% (1e+THIG)®(VI(T)= (C)))—V(1+1)vTH(C)»(V(l)—A(G))

HR=H(I)* (1.—TH<@)«(V<I)+A (GY) )Y +H{ T =1 ¥ THIGY*(V(I)+A(G))

H% (T #(1e+TH(G)®(VIT)=A(G)) ) =H{T+1)I*¥TH(C)*(V(I)=-A(G]))
(1)=0,5%(VR+VS )+(16-163/ (G))*(AR=HS)~UaB*FR, (DIG) sV (T} sNUs

\(G}) VIT)#e ABSGYTVHDELT/DIG) T i

HP(1)Y=(A(G) /64-532)%(VR-VS)+Q.5*(ﬁR+HS)

R=R+N+J

VSEVI(U)# (LedtTHL)*(VIV)=A(L1)))=V(1)*TH(LI)*(V(0)=A(1))
HO=HO® (1o +THIL)H(V{U)=A(L)))=H{L)%#THLI#(V(T)=A(L))
VP (G)=VE+(324166/A(1)) ¥ (HU=HS)=CaB*FRa(D(1) sV () sNUsS(1))*VIO
WHENEVER MeFels TRANSFER TO SWEDEN

THROUGH NORWAYs FOR I=R+K+1s 1 I.E.R+J

VR=V(I1)#(1e=TH(3)* (V(I JEA(R)))HAVIT =10 *TH(3) % (v (T)+A(3))
VSEV(I)%(1e+TH(3)* (T)~A(3))) V(I+1)‘TH(3) (V(T)=AL3))
HR=H(I)#(1e=TH(3) *(V(I A(2)))#H(T=1)#THI3)* (v (T)+A(3))
HS=H(I)* (L.+TH(3)*(V’I)—“(“)))—4(1*1) ~(*)*tV(I)—'(3))
VP(T)—J. % (VRHAVS)+(16eUE3/A13) )% (HR=HS) =0e5%FR ¢ (D(2) 9V (I)slUs
25(3) )% I)*.A%b V(i)‘uELT/D(Q)
HP(I):(A(z)/s4.332)%(VR-v5)+;.%n(.P+h )

R=R+K

EE V(R+1) cTH(3)%A(3)

HS=H ( (1.-TH( J¥A(3) ) +H (R+1)*TH(3) #A(3)
HP(R)= S=(A(3)/324166)#VS

VP (R) =0

R=2%(N+K)

WHEMEVER TIeGeTCs TRANSFER TO FINLAD

EXECUTE BCe(TCeTIsA(2)sVI(2)sHESVIR) Y H(R)y DELVSDELH)
VP(R)=V(R)-DELV
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HP(R)=H(R)+DELH
RANSFER TO MOSKV/
VP (R) =0
VR=EV (1) # (1-—TH(2) (V(RVHA(2) ) )V (R=1)#T=(2)% (Y (R)+A(2))
HR=FR) % (1amTH 215 (V (2] #A(2)) ) 4hi (A=) TH(2) % (v () +4(2))
HP(R) = HR~(~(2)/°7 1E6)H (VP (#)=YR)=A(2)#ERe (D(2) 4V (2) sHUsS(2))

2¥V(R) e ARSSV(RI*DELT /(644322230 12))
WHENEVER \I-chQQ TRANSFER TC POLAND
EXECUTE BCal{TCoTIgA(2)sVI{2) st sVP(R)$HP(R) $DELV
VP (R)=VP(R)=DELV
d” (R)=HP(R)+DELH
ENEVER [ eAZSeDELVeGE s Do 1]
ZF:? TO RUSSIA

DELH)

VO(N+J)=V(\+J)+VD('TJ 1)—' (f4Jd+1)

VRI=VINY*(Le (1) NY+A (1)) ) +VIN=LY*T= (1) ¥V IN)+a(1))
HRI=H(N)* (1l 1y= »)+i(l)))+H(:—1)*T’(1)*(V(N)+¢(l))
VS2=Y (N+J )+ (7.+T“( FLVNFI)=A(2) ) P =V INESFR D) T2 )3 (Y N+ ) =AY
22))

HSZ=H(N+FJ ) # (Ta+TH(2) ¥V (N+J) - PYY=HRIR L) T2 (VS ) 4
22))

R=P+2%J

VRB=V(R)#(Le=TH(2) ¥ {V(R)+A(3) ) )+V(R=1)%T(3) X (v (R)+7(3))
HR3=H{R)* (1 -Tﬂ(S)* VIRYFA(Z) ) JHH(R=1IFTH(Z)H(V(R)+A{2))
HP(N+J)=H C/+(r(2)/°2 LEG)# (VP (MUY =YS2)+A(Z)HFR G (D (2) 9V (N+T)
2NUsS(2) ) ¥V INFI)*e ABSVIN+FIIXDELT/ (644222%0(2))

PN =HD (M)

HP(R)=HP (M)

VR (N)=VRI=(326186/M(1) )%
2)VRV(N)* e ABS eV (M) 3TLT/“(1)
VP(R)SVR2=(32e166/A(3) ) (HP(R)=HR2 ) =1 8%FR (D(3) 3V (F
2)FVIR)*GADRS eV (R)FDELT/D(3)

VEL= FlfVD(N) C2%VYP(R)

DIF=VEL=V? (N+J)

WHENEVER «ABSeDIFaLatel01s
VP (N+J)=VP (N+J)+DIF /2.
TRANSFER

TRANSFER TO BELG

TO BERLIN
MeNEely TRANSFER TO SWISS

PARIS, FOR I=.9 19 leGaeR

‘”7'1)=’P(I)

Hi(I)y=HP(D)

"1;7:-«!\

J=2%J

K= 2%K

DELT=DELT/ 2

TI=T=-DELT

THROUGH FRANCEs FOR I=Us 1s TeGe2%R

V(I)=v2(1)

H(I)=H2(T)

TRANSFER TO $COT

WHENEVER MeNEe2y TRANSFER TO ITALY
THROUGH ROMEs FOR I="s1sleGeR
V(I)=VP(T)

H(I)=HP (1)

Mzl

T1=T

TRANSFER TO SCOT

THROUGH SPAINs FOR I=us 1s leGeR
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N CT e PT

v T = T1 :4
2= Fl0a84S% T s 3) = A
?)/12@“:!‘\(]9}), < SEgrtie L
h92s3) 7 (S5 - 3 (She12el) A
35

VECTOR VALUES TEST = $12A4 2
2 = 3(S6451245)/1140DELLIT) =
2HDE = E12e5%%

[
T1

OR VALUE
S12484PR
- "

— <
mo— m

i e

[aS}
~< M

VECTOR VALUES RFS
VECTOR £5
END b
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APPENDIX IV

The Moody Diagram written in MAD Language(5>
for the determination of friction factor in pipe flow prob-

lems, in the form of a subroutine,*

[See APPENDIX V]

* % = 1 for R.L. 64 is used in order to prevent F(=f) - o,
In this case V = O,

-92-
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MADs PUNCH OBUJECT
EXTERNAL FUNCTION (DsVsNUK)
ENTRY TO FR.
R=D*4ABSesV/NU
WHENEVER RelLoeb4,
F=1e0
OR WHENEVER RelLe2000,
F=644 /R
OR WHENEVER KeEeOo
TRANSFER TO SMOOTH
OTHERWISE
TRANSFER TO ROUGH
END OF CONDITIONAL
TRANSFER TO BACK
WHENEVER RelL¢3250e9 TRANSFER TO CRITIC
F=04043 -
KP=0486858896*%EL0Ge (RXSQRTe(F))=0,48
FO=1e/{KP#KP)
WHENEVER oABSe(F=F0)eLe0e0001y TRANSFER TO BACK
F=FO
TRANSFER TO STURB
RS=D/K
WHENEVER RSeGe4004eANDeReGe3250¢ ¢ORe RSeGel004sANDeReG¢3350,
2 e0ORe RSeGe25¢¢ANDeReGe3550s e0ORe RSelLEe256eANDeReGe3900es TR
3ANSFER TO RTURB
W=ELOGe(R/2313,)
X=3,05396*W*W
F=0s03%EXPe(X)
TRANSFER TO BACK
W=0e86858896%EL0Ge (RS)+1e14
F=le/(WkW)
WHENEVER R*SQRTe(F)/RSeGe20049y TRANSFER TO BACK
X=1e74=0486858896*EL0Ge(2¢/RS+1847/(R*¥SQRTe(F) )}
FO=1e/(X%X)
WHENEVER o¢ABSe{F~F0)eLe0e0001y TRANSFER TO BACK
F=FO
TRANSFER TO TRASN
FUNCTION RETURN F
END OF FUNCTION



APPENDIX V

TABLE IT

SYMBOLS USED IN THE MAD STATEMENTS THROUGH APPENDICES
I ~ IV AND THETR EQUIVALENT CONVENTIONAL NOTATIONS OR DESCRIPTIONS

Symbols Used In
MAD Statements

A,AY1 or A(1),...
B,Bl or B(1),..
cl

ce

D,D1 or D(1),...
DELH
DELL,DELL(1),...
DELT,DELTT

DELV

E,El or E(1),...
EW

F,FR.

H,HO,...

HF

HP

HR,HS
HR1,HS3,...

s,s1 or S(1),...
TAU
TC

TH, THL or TH(1),..

T, TT
V,Vo,...

VEL
vIi(1),vi(2),...

Equivalent Con-
ventional Notations

a)al;o. .

b,b,,...
(D1 /D)2
(D3/D3)*
D,Dqy,...
AH
ALALy,. ..
At

AV
E,Eq1,...

Ay /Ao
As /Ao

e
e~
i

—~

Hp) 15 (Hg)z)e -

< BB H o K QP
£
K

1/K + Dey /Eb
€€15. ..
Q,gl;cco

VoVigseoo

(Vo)l) (Vo)g} e

Symbols Used In
MAD Statements

Equivalent Con-
ventional Notations

VP VP
VR, VS V.,V

RS
VR1,VS2,... (Vg)15(Vg)os.
X X
Symbols Used In
MAD Statements Descriptions

DIF
G
HB
HE
H1
H2
R
R

RS

TREC

VB

V1
V2

-9k~

Difference, A
Integer
Extrapolated value
of H

Head across the gate
when V. = Vg

H for n steps of 2At
H for 2n steps of At
Integer

Reynolds number
Relative smoothness
D/e

Integer (for time
recording or counting)
Integer (for the
control of time in-
terval in printing)
Extrapolated value
of V

V for n steps of 2At
V for 2n steps of At
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