THE UNIVERSITY OF MICHIGAN

INDUSTRY PROGRAM OF THE COLLEGE OF ENGINEERING

A STUDY OF WATERHAMMER INCLUDING EFFECT OF HYDRAULIC LOSSES

Chintu Lai

A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy in the University of Michigan Department of Civil Engineering 1961

December, 1961

IP-546

Doctoral Committee:

Professor Victor L. Streeter, Chairman

Professor Ernest F. Brater

Assistant Professor Bernard A. Galler Associate Professor Arthur G. Hansen

Professor Chia-Shun Yih

ACKNOWLEDGMENTS

The author wishes to express his sincere appreciation to Professor Victor L. Streeter, chairman of the committee, for his suggestion of the topic, and for his unfailing encouragement, advice and guidance during the course of this study.

The author also wishes to express his gratitude to each of the other committee members for their interest and cooperation in supervising his work.

Thanks are extended to the many people with whom he has been associated while doing this work, and by whom his work has been greatly accelerated.

The research was partly supported by the Civil Engineering Department of the University of Michigan. The author also received a fellowship and a scholarship from the University of Michigan, which enabled him to pursue his graduate study with no financial worries. He is deeply obliged to these sources of support.

The work would have been impossible without the use of the facilities of the computing center of the University of Michigan. The author gratefully acknowledges this convenience rendered by the center.

The aid of the Industry Program of the College of Engineering in the final preparation of the manuscript is also much appreciated.

TABLE OF CONTENTS

			Page
ACKNOW	LEDGI	MENTS	ii
LIST O	EAT F	BLES	v
LIST O	F FIC	GURES	vi
LIST O	F PL	ATES	viii
NOMENC	LATUI	RE	ix
I.	INT	RODUCTION	1
II.	THE	WATER HAMMER EQUATIONS INCLUDING FRICTION EFFECT	4
	A. B. C.	Condition of Dynamic Equilibrium	5 8 9
III.		ETHOD FOR THE SOLUTION OF WATER HAMMER ATIONS BY DIGITAL COMPUTER	11
	A. B. C. D. E. F.	Characteristic Equations for Water Hammer Finite Difference Approximations Specified Time Intervals Boundary Conditions Extrapolation Procedures The Procedure in Machine Computation and Flow Diagram Further Remarks	11 13 15 18 21 22 24
IV.		LICATIONS TO VARIOUS PIPE CONNECTIONS AND FERENT GATE CLOSURES	26
	A. B. C. D. E.	Variable Friction Factor	27 28 29 35 35
V.	EXP	ERIMENTAL SET-UP AND PROCEDURES	38
VI.	DISCUSSION OF THEORETICAL AND EXPERIMENTAL RESULTS		
VII.	COMPARISON WITH EARLIER METHODS6		
VIII.	CON	CLUSIONS	68

TABLE OF CONTENTS (CONT'D)

			Page
APPENDIX	I	- A MAD LANGUAGE PROGRAM FOR CASE I	71
APPENDIX	II	- A MAD LANGUAGE PROGRAM FOR CASE II	78
APPENDIX	III	- A MAD LANGUAGE PROGRAM FOR CASE III	86
APPENDIX	IV	- A MAD LANGUAGE PROGRAM FOR THE MOODY DIAGRAM	92
APPENDIX	٧	- THE TABLE OF SYMBOLS USED IN THE MAD STATEMENTS	94
BIBLIOGRA	APHY.		95

LIST OF TABLES

Table			Page
I	Experimental	Data	52
II	Appendices I	in the MAD Statements Through ~ IV and Their Equivalent Conventional Descriptions	94

LIST OF FIGURES

Figure		Page
1	Definition Sketch	6
2	An Intersection of Two Characteristics	17
3	The Specified Time Interval	17
14	The Procedure of Computation	17
5	The Right-End Boundary	20
6	The Left-End Boundary	20
7	Abbreviated Flow Diagram for the Solution of Water Hammer Including Friction Effect in a Simple Pipe Line of Constant Cross Section and Constant Wall Thickness	23
8	Valve Closure Time Relations	30
9	Variation of Water Hammer Pressure with Time, at Valve End, Rapid Closure, $T_c = 2L/a$, for Different Valve Closure Time Relations	31
10	Variation of Water Hammer Pressure with Time, at Valve End, Rapid Closure, $0 < T_c < 2L/a$, for Valve Closure Time Relation 1	32
11	Variation of Water Hammer Pressure with Time, at Valve End, Instantaneous Closure, $T_{\text{C}} = 0 \dots$	32
12	Variation of Water Hammer Pressure with Time, at Valve End, Slow Closure, $T_{c}\!$	33
13	Pipe Line with Stepwise Change in Diameter	34
14	A Junction Where Three Pipes Meet	34
15	Three Examples of Compound Complex Pipes	3 6
16	Resistance Diagram for 1/2 in. O.D. Copper Tube	46
17	Resistance Diagram for 3/8 in. O.D. Copper Tube	47
18	Pressure-Time Curve at P1; Case I; (No. 1)	56

LIST OF FIGURES (CONT'D)

Figure		Page
19	Pressure-Time Curve at P1; Case I; (No. 2)	57
20	Pressure-Time Curve at P2; Case II; (No. 3)	58
21	Pressure-Time Curve at P3; Case III; (No. 4)	59
22	Pressure-Time Curve at P1; Case I; (No. 5)	60

LIST OF PLATES

<u>Plate</u>		Page
I	The Experimental Set-Up	3 9
II	The Close-Up of the Solenoid Valve and the Pressure Pick-Up Element	42
III	The Calibration of Pressure Reading	43
IV	The Experimental Results (No. 1 and No. 2)	5 3
V	The Experimental Results (No. 3 and No. 4)	54
VI	The Experimental Results (No. 5)	55

NOMENCLATURE

Symbol	Units	Description
A	ft^2	Cross sectional area of pipe
a	ft/sec	Velocity of pressure wave
Ъ	ft	Thickness of pipe wall
cl		Factor of pipe restriction
D	ft	Inside diameter of pipe
E	lb/ft ²	Modulus of elasticity of pipe wall material
f		Friction factor
g	ft/sec ²	Acceleration of gravity
H	ft	Piezometric head at a given time and place on the pipe; $H = \frac{P}{\gamma} + Z$
H_{O}	ft	Head at the reservoir
hf	ft	Friction loss in feet
К	lb/ft ²	Bulk modulus of elasticity of the liquid
K,K'	-	Minor loss coefficient
L	ft	Total length of pipe
L_n	ft	Length of any uniform section of pipe
P	lb/ft ²	Pressure intensity at any point in a pipe
R		Reynolds number
t	sec	Time
T_{C}	sec	Time of gate closure
V	ft/sec	Velocity in pipe for surge conditions
v_{o}	ft/sec	Velocity in pipe for initial steady conditions

NOMENCLATURE*† (CONT'D)

Symbol	<u>Units</u>	Description
х	ft	Distance measured positive from upstream
Z	ft	Elevation
α		Angle of slope of pipe
γ	lb/ft ³	Specific weight of the liquid
€	ft	Roughness height
μ		Poisson's ratio for the pipe wall material
μ	lb-sec/ft ²	Viscosity
ν	ft^2/sec	Kinematic viscosity
ρ	$slug/ft^3$	Density of the liquid
τ ,		The ratio of effective gate opening to the full gate opening

^{*} See also Figure 1.

Somewhat different notations are used in the examples of "MAD" language programs because there are only twenty-six Roman capital letters available in the keypunch. They will not cause any confusion since they appear only in the appendices.

I. INTRODUCTION

Not too many problems in water hammer including friction losses have been solved, partly owing to the comparatively small, insignificant quantity of friction loss in this phenomenon, where rapid changes in flow are most likely to occur, and partly owing to the fact that no entirely satisfactory method has been devised for their inclusion in water hammer analysis. (13,15,16) However, this effect sometimes cannot be disregarded in cases of slow gate closure, a long pipe, or a high friction factor.

The existing methods for estimating friction losses are inadequate, owing to some rough approximations. A few authors have developed graphical methods, (2,15) whereby the effect of losses can be approximated by placing one or more hypothetical obstructions at certain selected locations along the pipe line and by lumping the friction losses of each section at these points. These methods will produce an abrupt drop of pressure at each obstruction, which evidently is not the true case. Although the accuracy can be augmented by increasing the number of obstructions, this increases greatly the complexity of the graphical solution.

Some analytical solutions for this class of study have been published also. All of them have employed a linear approximation for friction effect which is different from the actual situation. They generally involve difficult mathematical operations or tedious series. (17,24)

It is, viewed as necessary and useful to devise a better method which can be used to solve the problems in water hammer including friction losses more directly and more rapidly, with closer agreement to the

actual situation. An attempt has been made by the author to attack the problem directly from the basic partial differential equations, without resort to graphical methods, indirect mathematical transformations, or linear approximations. In recent years, the coming into existence of electronic digital computers has made accurate calculations describing many complex physical phenomena practical in cases formerly beyond reach. The numerical solutions by digital computer will play an important role in the analytical part of the present study.

In following chapters, the basic partial differential equations for water hammer including friction losses are reviewed first. The direct solution of these nonlinear equations with aid of the computer is then presented with mathematical analysis, computer approach, flow diagram and some notes in programming. The method of characteristics has been employed in the present study. The next part is devoted to a study of the application of the theoretical work. This is necessary for better description of the computer method, for appraisal of the validity of the present method, for comparison with the earlier methods and for the guidance in obtaining experimental verification.

The experimental equipment was built in the Fluid Engineering Laboratory at the University of Michigan for the investigation of the attenuation of pressure surges due to friction losses. The experiments were performed for flow in a long pipe line and their results were compared with the theoretical solutions. The discussion of these results is given in Chapter VI.

This study ends with a comparison with earlier methods, conclusions, and brief suggestions for further investigations.

The analysis has been started from the assumptions of homogeneous and elastic liquid and pipe, uniform velocity and pressure over any cross section, and sufficient minimum pressure to exceed the vapor pressure.

It has been assumed in this study that the effect of hysteresis is negligibly small in comparison with the wall friction. By applying the principle of energy to the problem, and comparing the original kinetic energy in the moving water column and the work done in compressing the water and stretching the pipe walls, it may be shown that during the action no energy is lost or converted into heat, if the pipe and water are perfectly elastic. (14) When the stresses of pipe material are below the elastic limit, the assumption of perfect elasticity is very nearly true and the energy loss due to hysteresis of the pipe is very small. (6,12) This is at least quite true compared with the wall friction for the case of experiments made in this study. The elastic hysteresis of water, although no reliable data are available, is also considered to be very small, because the pressure changes take place in a very short time and comparatively little heat energy will be lost.

II. THE WATER HAMMER EQUATIONS INCLUDING FRICTION EFFECT

Fundamental water hammer equations are derived for a general case of variable flow. The elasticity of the pipe walls, the compressibility of the water, and the hydraulic losses due to the pipe friction in both directions are taken into account. The method employed is generally the same as that described in Reference 15, except more terms are involved in this case. The following assumptions are made:

- (a) The pipe line remains full of water at all times, i.e., the law of continuity holds.
- (b) The static pressure in the pipe is sufficiently high to sustain the minimum pressure above the vapor pressure.
- (c) The velocity of water in the axial direction of the pipe is uniform over any cross section of the pipe.
- (d) The pressure is uniform over any transverse cross section and is the same as that at the center line of the pipe.
- (e) The water level at the reservoir remains constant during the period of investigation.

For the derivation of equations, an element of water which is bounded by two parallel cross sections normal to the pipe axis is considered. The general water hammer equations, then, can be obtained from the conditions of dynamic equilibrium and continuity.

A. Condition of Dynamic Equilibrium

The condition of dynamic equilibrium can be set up for an element dx at a distance x along the pipe measured from the reservoir towards the valve, as illustrated by Figure 1. If the cross-sectional area at M is A, that at N is $A + \frac{\partial A}{\partial x} dx$, and the angle of slope of pipe is α , then the forces acting on these two faces can be expressed as $\gamma A(H-Z)$ and $\gamma (A + \frac{\partial A}{\partial x} dx)[H-Z + (\frac{\partial H}{\partial x} + \sin \alpha)dx]$ respectively. Here, γ , H, and Z are the specific weight of water, the piezometric head and the elevation at point x.

The gravitational force acting on the mass of element at its center of gravity is

$$\gamma(A + \frac{1}{2} \frac{\partial A}{\partial x} dx)dx$$
.

The wall resistance acting against the flow in the element is $\mbox{\ensuremath{\mbox{dh}}}_{\mbox{\ensuremath{\mbox{f}}}}$ feet of water.

The unbalanced force acting on the element of water along the axis of the pipe is

$$\gamma(A + \frac{\partial A}{\partial x} dx)[H-Z + (\frac{\partial H}{\partial x} + \sin \alpha)dx] - \gamma A(H-Z)$$

$$- \gamma(A + \frac{1}{2} \frac{\partial A}{\partial x} dx)dx \sin \alpha + \gamma(A + \frac{1}{2} \frac{\partial A}{\partial x} dx)dh_f ,$$

where the positive direction of the force is taken opposite to the direction of the normal flow. Neglecting the terms of higher order and simplifying, this force reduces to

$$\gamma [A \frac{\partial H}{\partial x} dx + \frac{\partial A}{\partial x} (H-Z) dx + Adh_f]$$
.

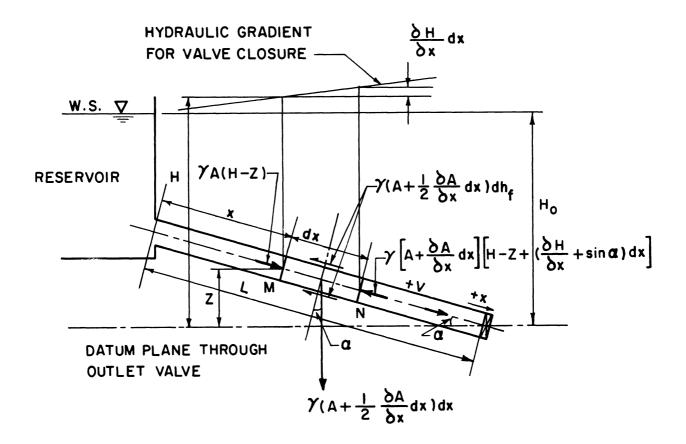


Figure 1. Definition Sketch.

The mass of the element of water to be moved by this unbalanced force is

$$\frac{\gamma(A + \frac{1}{2} \frac{\partial A}{\partial x} dx)dx}{g},$$

and its deceleration is $-\frac{dV}{dt}$, in which g is the acceleration of gravity, V is the velocity of flow in pipe and t is the time. Again, neglecting the term of higher order, this mass reduces to $\frac{\gamma Adx}{g}$. Then from Newton's second law of motion

$$\gamma[A\frac{\partial H}{\partial x} dx + \frac{\partial A}{\partial x} (H-Z) dx + Adh_f] = \frac{-\gamma Adx}{g} \frac{dV}{dt}$$

Since V is a function of both x and t,

$$\frac{dv}{dt} = \frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} \frac{dx}{dt} = \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x}.$$

Then

$$\frac{\partial H}{\partial x} + \frac{1}{A} \frac{\partial A}{\partial x} (H-Z) + \frac{dhf}{dx} = -\frac{1}{g} (\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x}) , \qquad (1)$$

which is the equation of motion for the element of water.

When the friction is negligible, this reduces to

$$\frac{\partial H}{\partial x} + \frac{1}{A} \frac{\partial A}{\partial x} (H-Z) = -\frac{1}{\alpha} (\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x}) . \tag{2}$$

If, $\frac{1}{A} \frac{\partial A}{\partial x}$ (H-Z) is negligible, as is always the case compared with other terms, (15) Equation (1) reduces to

$$\frac{\partial x}{\partial H} + \frac{\partial x}{\partial h} = -\frac{1}{2} \left(\frac{\partial y}{\partial t} + V \frac{\partial x}{\partial x} \right) . \tag{3}$$

When both $\frac{1}{A}\frac{\partial A}{\partial x}$ and $\frac{dh_f}{dx}$ are negligible, then Equation (1) reduces to the familiar form

$$\frac{\partial x}{\partial H} = -\frac{1}{2}(\frac{\partial x}{\partial V} + V\frac{\partial x}{\partial V}) . \tag{4}$$

Since $dh_{\mathbf{f}}$ is a very small quantity, the assumption

$$dh_f = f \frac{dx}{D} \frac{v^2}{2g}$$

for the element of water dx, is made. Here, f and D are the friction factor and the inside diameter of the pipe respectively. The friction factor is a function of Reynolds number \mathbf{R} and relative roughness ϵ/D , or $f = f(R, \epsilon/D) = f(V,D,\nu,\epsilon/D)$, in which ν is the kinematic viscosity and ϵ is the roughness height of the pipe. The value of f can be obtained from the Moody diagram, (20,21) or from experimental evaluations for a specific pipe of interest.

Substituting $dh_f = f \frac{dx}{D} \frac{V^2}{2g}$ into (1) and (3) respectively, we obtain

$$\frac{\partial H}{\partial x} + \frac{1}{A} \frac{\partial A}{\partial x} (H-Z) + \frac{f}{D} \frac{V^2}{2g} = -\frac{1}{g} \left(\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} \right) , \qquad (5)$$

and

$$\frac{\partial H}{\partial x} + \frac{f}{D} \frac{V^2}{2g} = -\frac{1}{g} \left(\frac{\partial V}{\partial t} + V \frac{\partial V}{\partial x} \right) . \tag{6}$$

B. Condition of Continuity

There will not be any change in the equation of continuity whether the wall friction is neglected or considered. Hence, the equations shown in Reference 15 will be used.

$$\frac{\partial H}{\partial t} + V \frac{\partial H}{\partial x} = -\frac{\alpha^2}{g} \frac{\partial V}{\partial x} \tag{7}$$

where the velocity of pressure wave, a, can be expressed as

$$a = \sqrt{\frac{1}{\frac{\gamma}{g}(\frac{1}{K} + \frac{Dc_1}{Eb})}}$$
 (8)

It is apparent from Equation (8) that the velocity of pressure wave depends on the diameter and the wall thickness of the pipe, the properties of the pipe material and of the fluid, and the ability of the pipe to move in the longitudinal direction. This indicates that a wave reflection occurs at every change in pipe thickness, area, or change in the pipe material, i.e.,

$$a = a[b(x), D(x), E(x)].$$

The factor of pipe restriction, c_1 , takes the following values. (15)

- (a) $c_1 = \frac{5}{4} \mu$ for a pipe anchored at the upper end and without expansion joint,
- (b) $c_1 = 1 \mu^2$ for a pipe anchored against longitudinal movement throughout its length,
- (c) $c_1 = 1 \frac{\mu}{2}$ for a pipe with expansion joints.

In these relationships, $\,\mu\,$ represents the Poisson's ratio for the pipe wall material.

C. Summary

Summarizing the equations shown in the preceding pages, and denoting $V_{\rm x}=\frac{\partial V}{\partial x}$, $H_{\rm t}=\frac{\partial H}{\partial t}$, etc., we have the general differential

equations for water hammer in a pipe,

$$H_{x} + \frac{f}{D} \frac{V^{2}}{2g} = -\frac{1}{g} (V_{t} + VV_{x})$$
 (6)

$$H_{t} + VH_{x} = -\frac{a^{2}}{g} V_{x} \quad . \tag{7}$$

When the wall friction is negligible,

$$H_{X} = -\frac{1}{g} (V_{t} + VV_{x}) \tag{4}$$

$$H_t + VH_x = -\frac{a^2}{g} V_x . \tag{7}$$

It is often assumed that in Equations (4) or (6) the term VV_X is small compared with V_t , and in Equation (7) the term VH_X is small compared with H_t . (15,25) Then Equations (6) and (7), and Equations (4) and (7) are again reduced to

$$H_{X} + \frac{f}{D} \frac{V^{2}}{2g} = -\frac{1}{g} V_{t}$$
 (9)

$$H_{t} = -\frac{a^2}{g} V_{x} , \qquad (10)$$

and

$$H_{X} = -\frac{1}{g} V_{t} \tag{11}$$

$$H_{t} = -\frac{a^2}{g} V_{x} \tag{10}$$

respectively.

In these equations,

$$a = \sqrt{\frac{1}{\frac{\gamma}{g}(\frac{1}{K} + \frac{Dc_1}{Eb})}} \quad . \tag{8}$$

III. A METHOD FOR THE SOLUTION OF WATER HAMMER EQUATIONS BY DIGITAL COMPUTER

The governing partial differential equations, presented in the previous chapter, can be solved by the method of characteristics with the aid of a computer, using specified time intervals and an extrapolation procedure, as described in the following sections.* The abbreviated flow diagram is shown at the end of this chapter.

A. Characteristic Equations for Water Hammer

The partial differential equations for water hammer including friction effect, (6) and (7), are rewritten in a modified form as follows:

$$J_1 = VV_X + V_t + gH_X + \frac{f}{2D}V^2 = 0$$
 (12)

$$J_2 = \frac{a^2}{g} V_X + VH_X + H_t = 0$$
 (13)

where

$$V_{X} = \frac{\partial x}{\partial V}$$
, $H_{t} = \frac{\partial H}{\partial t}$,

These are two simultaneous quasi-linear partial differential equations of the first order with two independent and two dependent variables.

Combining (12) and (13) linearly,

$$J = J_{1} + \lambda J_{2}$$

$$= (V + \lambda \frac{a^{2}}{g}) V_{X} + V_{t} + (g + \lambda V)H_{X} + \lambda H_{t} + \frac{f}{2D} V^{2} = 0. \quad (14)$$

^{*} For the general and thorough mathematical treatment of hyperbolic partial differential equations by the method of characteristics, see Reference 10.

$$dV = \frac{\partial V}{\partial x} dx + \frac{\partial V}{\partial t} dt, \quad dH = \frac{\partial H}{\partial x} dx + \frac{\partial H}{\partial t} dt, \quad (15)$$

or

$$\frac{dV}{dt} = V_X \frac{dx}{dt} + V_t, \qquad \frac{dH}{dt} = H_X \frac{dx}{dt} + H_t . \qquad (15')$$

Now, by examination of Equation (14), with Equations (15') in mind, let

$$(V + \lambda \frac{a^2}{g})V_x + V_t = V_x \frac{dx}{dt} + V_t = \frac{dV}{dt}, \qquad (16)$$

$$\left(\frac{g}{\lambda} + V\right)H_{X} + H_{t} = H_{X} \frac{dx}{dt} + H_{t} = \frac{dH}{dt}, \qquad (17)$$

then Equation (14) may be reduced to a form

$$dtJ = dV + \lambda dH + \frac{f}{2D} V^2 dt = 0.$$
 (18)

The conditions for Equation (14) to be in this form are, therefore,

$$\frac{dx}{dt} = V + \lambda \frac{a^2}{g}, \qquad \frac{dx}{dt} = \frac{g}{\lambda} + V , \qquad (19)$$

from which

$$V + \lambda \frac{a^2}{g} = \frac{g}{\lambda} + V$$

$$\lambda = \pm \frac{g}{a}, \qquad (20)$$

and the characteristic equations for V and H become

$$dtJ = dV + \frac{g}{a} dH + \frac{f}{2D} V^2 dt = 0$$
 (21)

$$dtJ = dV - \frac{g}{a} dH + \frac{f}{2D} V^2 dt = 0$$
 (22)

Here, from (19) and (20), the two different characteristic directions at the point (x,t) are given by

$$\zeta_{+} = \frac{dt}{dx} = \frac{1}{V+a} , \qquad \qquad \zeta_{-} = \frac{dt}{dx} = \frac{1}{V-a} . \qquad (23)$$

Equations (21) and (22) are two separate total differential equations with t as an independent variable and V and H as two dependent variables. If V = V(x,t) and H = H(x,t) satisfy the Equations (12) and (13), then Equations (23) become two separate ordinary differential equations of the first order. These determine two families of characteristic curves, or shortly "characteristics", C_+ and C_- in the (x,t) plane belonging to this solution V(x,t), H(x,t).

Equations (21) to (23) can be rearranged to the following four characteristic equations,

$$dt - \frac{dx}{V+a} = 0$$

$$dV + \frac{g}{a} dH + \frac{f}{2D} V^2 dt = 0$$

$$dt - \frac{dx}{V-a} = 0$$

$$dV - \frac{g}{a} dH + \frac{f}{2D} V^2 dt = 0$$

$$dV - \frac{g}{a} dH + \frac{f}{2D} V^2 dt = 0$$

$$(24)$$

$$(25)$$

$$(25)$$

Equations (24) to (27) are of a particularly simple form and are satisfied, according to the derivation, by every solution of the original system (12) and (13).

B. Finite Difference Approximations

The characteristic equations for water hammer containing the friction terms, (24) to (27), may be solved by employing the first-order

or the second-order finite difference approximation. They are

$$\int_{x_0}^{x_1} f(x)dx \approx f(x_0)(x_1-x_0), \qquad (28)$$

and

$$\int_{\mathbf{x}_{O}}^{\mathbf{x}_{1}} f(\mathbf{x}) d\mathbf{x} \approx \frac{1}{2} [f(\mathbf{x}_{0}) + f(\mathbf{x}_{1})] (\mathbf{x}_{1} - \mathbf{x}_{0})$$
(29)

respectively. The former is a linear approximation, whereas the latter uses the trapezoidal rule.

If the extrapolation procedures which is described later are employed with the linear approximation, the degree of accuracy will be increased to that obtainable from the second-order process. Inasmuch as the second-order approximation has the disadvantage of requiring some iterative method, the first-order approximation will be used here.

Referring to Figure 2, C_+ and C_- are two characteristics passing through R and S, and P is their intersection point. Denoting the value of x at R by x_R , etc., for known values of x_R , t_R , V_R , H_R , x_S , t_S , v_S and v_S , the values of v_S , v_S and v_S , the values of v_S , v_S and v_S , the values of v_S , v_S and v_S , the values of v_S , v_S and v_S are two characteristics passing the linear approximation (28) to Equations (24) to (27).

$$(t_P - t_R) - (\frac{1}{V+a})_R (x_P - x_R) = 0$$
 (30)

$$(V_P - V_R) + \frac{g}{a_R} (H_P - H_R) + (\frac{f}{2D} V^2)_R (t_P - t_R) = 0$$
 (31)

$$(t_P - t_S) - (\frac{1}{V-a})_S (x_P - x_S) = 0$$
 (32)

$$(V_P - V_S) - \frac{g}{a_S} (H_P - H_S) + (\frac{f}{2D} V^2)_S (t_P - t_S) = 0$$
. (33)

These four equations have four unknowns and therefore are solvable.

There are two most typical ways of using the set of Equations (30) to (33) to obtain an approximate numerical solution to the original set of partial differential equations; i.e., (i) Grid of characteristics, (ii) Specified time intervals.

The latter uses specified intervals in the t-direction and relates the values of V and H at the beginning of the interval to those at the end by means of (30) to (33). This method is preferred over the former in case of water hammer problems, because x_P and t_P are known exactly, or they will be assigned exactly, and only two values V_P and H_P are to be determined. Secondly, with method (ii) it is possible to apply extrapolation procedures* to increase the accuracy. Moreover, in the calculation of water hammer problems, method (ii) has an advantage of directly providing the velocity V and the pressure H along the pipe distance x at different times t, in the form most desirable for such studies.** Further, with method (ii) the quantities Δx , Δt are under the control of the individual user. This is a great benefit in treating many different pipe conditions during this study. The process of solving (30) to (33) by method (ii) is described in the following section.

C. Specified Time Intervals

Referring to Figure 3, t_i and t_{i+1} are the beginning and the end of the time interval Δt , and A, C, B are three adjacent points on the line $t=t_i$, Δx apart from each other. Let the point P of

^{*} See p.

^{*} See Appendices I to III.

Figure 2 fall on the intersection of $t=t_{i+1}$ and $x=x_C$, and R, S on the line $t=t_i$. Two characteristics C_+ and C_- pass through P, R and P, S as before. Here, the values of V and H at $t=t_i$ are assumed to be known and their values at P are to be found. The steps for the computation are as follows:

(a) From Equations (30) and (32), remembering $x_P = x_C$, $t_R = t_C = t_S$, x_R and x_S can be readily evaluated.

$$x_{R} = x_{C} - (V+a)_{C} (t_{P} - t_{C})$$
 (34)

$$x_S = x_C - (V-a)_C (t_P - t_C)$$
 (35)

Here, it is assumed that $(V+a)_R = (V+a)_C$, $(V-a)_S = (V-a)_C$ because of the sufficiently short distances AC and CB.

(b) Using a linear interpolation,

$$(\zeta_{+})_{C} = \frac{\Delta t}{\Delta x} \frac{V_{C} - V_{R}}{V_{C} - V_{A}} = (\frac{\Delta t}{\Delta x}) \frac{V_{C} - V_{A}}{V_{C} - V_{R}} ,$$

$$V_{C} - V_{R} = (\frac{\Delta t}{\Delta x})(\zeta_{+})_{C}^{-1}(V_{C} - V_{A}) ,$$

$$V_{R} - V_{C} = -(V + a)_{C} (\frac{\Delta t}{\Delta x})(V_{C} - V_{A}) ,$$

$$V_{R} = V_{C}[1 - \Theta(V+a)_{C}] + V_{A}\Theta(V+a)_{C}$$
 (36)

Similarly

$$V_{S} = V_{C}[1 + \Theta(V-a)_{C}] - V_{B}\Theta(V-a)_{C}, \qquad (37)$$

$$H_{\mathsf{P}} = H_{\mathsf{C}}[1 - \Theta(\mathsf{V} + \mathsf{a})_{\mathsf{C}}] + H_{\mathsf{A}}\Theta(\mathsf{V} + \mathsf{a})_{\mathsf{C}} , \qquad (38)$$

$$H_{S} = H_{C}[1 + \Theta(V-a)_{C}] - H_{B}\Theta(V-a)_{C},$$
 (39)

where

$$\Theta = \frac{\triangle t}{\triangle x}$$
.

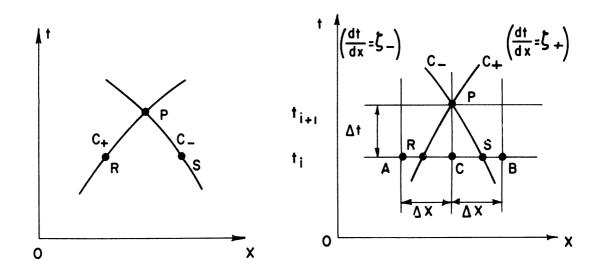


Figure 2. An Intersection of Two Characteristics.

Figure 3. The Specified Time Interval.

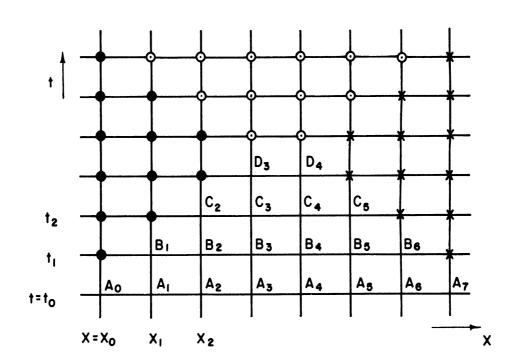


Figure 4. The Procedure of Computation.

As in (a), the assumption of sufficiently small $\triangle t$ has been made here that C_+ between P and R, and C_- between P and S are straight lines, and that $(\zeta_+)_R = (\zeta_+)_C$, $(\zeta_-)_S = (\zeta_-)_C$ respectively.

(c) Rewriting Equations (31) and (33) as

$$(V_P - V_R) + \frac{g}{a_C} (H_P - H_R) + (\frac{f}{2D} V^2)_C (t_P - t_C) = 0$$
, (40)

$$(V_P - V_S) - \frac{a}{g_C}(H_P - H_S) + (\frac{f}{2D} V^2)_C(t_P - t_C) = 0$$
 (41)

Solving (40) and (41) simultaneously, V_{P} and H_{P} are found as

$$V_{P} = \frac{1}{2} (V_{R} + V_{S}) + \frac{g}{2a_{C}} (H_{R} - H_{S}) - (\frac{f}{2D} V^{2})_{C} (t_{P} - t_{C}) , \qquad (42)$$

$$H_{P} = \frac{a_{C}}{2g}(V_{R}-V_{S}) + \frac{1}{2}(H_{R}+H_{S}) . \tag{43}$$

With these equations, (34) to (43), the computation can be performed as follows: First V and H will be given at A_0 , A_1 , ..., A_7 in Figure 4, then using Equations (34) - (43), V and H at B_1 , ..., B_6 can be evaluated. In a similar manner V and H can be obtained at C_2 , ..., C_4 , and finally at D_3 , D_4 . The number of known points at $t=t_0$ will determine how far the computation can proceed. However, if suitable boundary conditions on $x=x_0$ are given, V and H at those points marked by a black circle can be calculated. The same procedures apply to the right end. Those points are marked by a cross. It is then self-evident that once suitable boundary conditions are given at both ends, the computation can be carried out as far as desired.

D. Boundary Conditions

(a) The Right End:

Let $x = x_C$ be the boundary line as shown in Figure 5. Then Equation (34), Equation (36) and Equation (38) can be used for calculating

the values x_R , V_R and H_{R° Finally, H_P can be obtained by rearranging Equation (40) as

$$H_{P} = H_{R} - \frac{a_{C}}{g}(V_{P}-V_{R}) - (\frac{af}{2gD}V^{2})_{C}(t_{P} - t_{C}),$$
 (44)

when $V_{\rm P}$ is obtainable from the given boundary conditions. Alternatively, $V_{\rm P}$ can be obtained from the following equation

$$V_{P} = V_{R} - \frac{g}{a_{C}}(H_{P}-H_{R}) - (\frac{f}{2D}V^{2})_{C}(t_{P}-t_{C})$$
, (45)

when $H_{\mathbf{p}}$ is obtainable.

If the boundary line is at the gate-end, $x = x_C = L$, in which L is the length of the pipe. Then, Equation (34) can be written as

$$x_R = L - (V+a)_C(t_P-t_C)$$
 (46)

Other equations remain the same and Equation (44) should be used in this case, because $V_{\hbox{\scriptsize P}}$ can be obtained, when $t < T_{\hbox{\scriptsize C}}$ (time of closure), by solving

$$\Delta H = \frac{a\Delta V}{g} \tag{47}$$

and

$$\frac{V_{C} - \Delta V}{V_{O}} = \tau_{P} \sqrt{\frac{H_{C} + \Delta H}{H_{O}^{\dagger}}}$$
 (48)

simultaneously for ΔH and ΔV , (21) and by using the relationship

$$V_{\mathbf{P}} = V_{\mathbf{C}} - \Delta V . \tag{49}$$

Here, τ_P is the ratio of the effective gate opening at time P during the gate closure to the effective gate opening at time zero, and H' is the head across the gate when V = Vo. For t > Tc,

$$V_{\mathbf{P}} = 0 . ag{50}$$

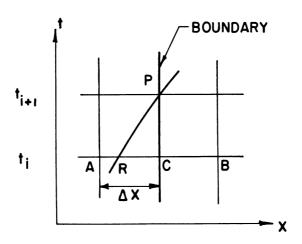


Figure 5. The Right-End Boundary.

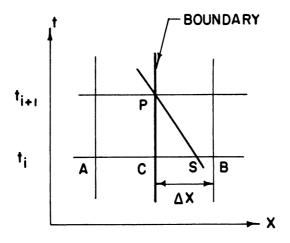


Figure 6. The Left-End Boundary.

(b) The Left End:

Again let $x = x_C$ be the boundary line as shown in Figure 6. Equation (35), Equation (37) and Equation (39) are used to evaluate x_S , V_S and H_S this time. Now V_P can be found by rewriting Equation (41) as

$$V_P = V_S + \frac{g}{a_C}(H_P - H_S) - (\frac{f}{2D} V^2)_C(t_P - t_C)$$
 (51)

if H_{p} is obtainable from the boundary conditions. Alternatively,

$$H_P = H_S + \frac{a_C}{g}(V_P - V_S) + (\frac{a_f}{2gD} V^2)_C(t_P - t_C)$$
, (52)

if V_{P} is obtainable.

E. Extrapolation Procedures (10,11,18)

Since the method of specified time intervals has been used, it is possible to employ extrapolation procedures to increase the accuracy of the computation.

According to the study made by M. Lister and L. Roberts, (11) if a function f(x,t) is to be determined at $t=2n\Delta t$, in terms of its given value at t=0, this may be achieved by taking n steps of size $2\Delta t$, repeating a linear process at a constant value of x. Let the value of f(x,t) thus obtained be $f_A(x,t)$. Alternatively, we may use 2n steps of Δt and the value of f(x,t) thus obtained will be denoted as $f_B(x,t)$. Now, we define

$$\overline{f}(2n\Delta t) = 2f_B(x,t) - f_A(x,t) . \qquad (53)$$

If $\overline{f}(2n\Delta t)$ is computed, this value and the true value $f(2n\Delta t)$ agree when terms of the order $(\Delta t)^3$ are neglected. After n steps if $n\Delta t = O(1)$, then the error is of $O(\Delta t)^2$.

The linear procedure given by Equations (34) to (43) is of this form. Computing V and H for two different step sizes $2\Delta t$ and Δt , and combining them by using (53), the error in V and H after n steps is of $O(\Delta t)^2$. This is the accuracy achieved when the second-order process of finite difference approximation is employed [see Equation (29)].

F. The Procedure in Machine Computation and Flow Diagram

The steps in the actual machine computation are stated briefly as follows:

- (a) Calculate V and H for a time interval $2\Delta t$, using (34) to (43), (44) to (52).
- (b) Calculate V and H for Δt , using the same equations.
- (c) Using the results of step (b), calculate V and H for Δt again.
- (d) Combining the results of steps (a) and (c) by using (53), calculate extrapolated values of V and H.
- (e) Repeat steps (a) (d) as far as desired. The output is the results obtained at (d).

The abbreviated flow diagram for the solution of water hammer including friction effect in a simple pipe line of constant cross section and constant wall thickness (Figure 7) is shown on the following page.

The emphasis is placed on a more logical presentation, omitting some machine programming details.

One of the features in this basic structure of computer programming is that the same block of instructions, which is the core of the analytical solution in this study, can be used repeatedly for the

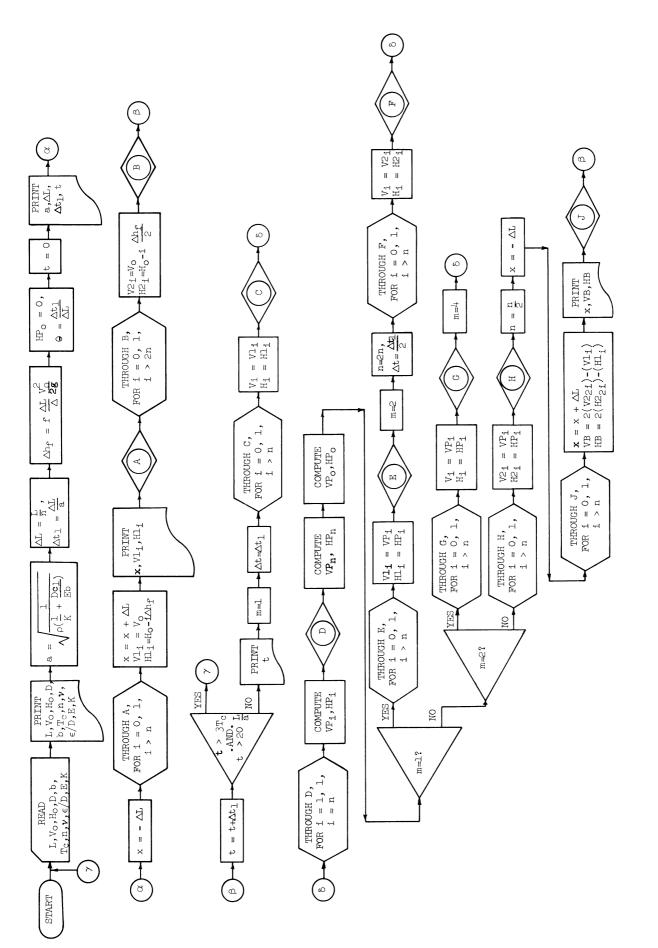


Figure 7. Abbreviated Flow Diagram for the Solution of Water Hammer Including Friction Effect in a Simple Pipe Line of Constant Cross Section and Constant Wall Thickness.

computation of V and H. By suitably storing the previous values of V and H and by using a number m as in Figure 7, the computation can be carried out ingeniously and economically to any desired length.

With this flow diagram as a skelton, MAD language programs (3) can be written by isolating different ways of gate closure and the evaluation of friction factor, $f = f(V,D,\nu,\epsilon/D)$, as subroutines. Some examples of MAD statements can be found in Appendices I to III.

G. Further Remarks

It is well known that the friction always acts against the direction of motion. That means for the reversal of flow the friction term must change its sign accordingly. Unfortunately the effect of friction is expressed in terms of V^2 in the basic differential equations and is incapable of satisfying this requirement. This difficulty can be eliminated by writing V^2 as V |V| which has the same magnitude as before and changes its sign automatically when the flow is reversed. This modification has been provided in the computer programming.

As mentioned in the summary of the previous chapter, usually the nonlinear terms VV_X and VH_X may be neglected in engineering practice. These have been retained in this chapter, inasmuch as the omission of them will not mathematically reduce the difficulty of solution due to one more nonlinear term $\frac{f}{D} \frac{V^2}{2g}$, and by treating the solution more generally it may serve helpfully in some occasions when their effect comes to be appreciable. In the earlier analytical solutions, authors solved the differential equations linearly by omitting these two terms and applying a linear approximation to the friction term.

It is true that in the actual application of the present method to an engineering problem, some computer time can be saved by neglecting these two terms. This can be easily achieved by replacing all terms of (V+a) and (V-a) in the computer program by a and -a respectively.

In case of gradually changing cross-section or wall-thickness a = a(x) must be computed at each point along x. In case of abrupt changes in the pipe line, the pipe can be divided into segments and the same water hammer computation can be performed in each segment with new boundary conditions at each junction. Some further details of computer solution and its application to a few compound systems are presented in the next chapter and Appendices.

IV. APPLICATIONS TO VARIOUS PIPE CONNECTIONS AND DIFFERENT GATE CLOSURES

As briefly mentioned in the preceding chapter, with Equations (36) and (43) and the method of computation as a core, the solution of water hammer phenomena can be extended to a great many different problems, e.g., to various pipe connections and different gate closures. These solutions can be found by adding modifications to the program, by providing appropriate boundary conditions, or by combining sets of computations.

It is helpful and worthwhile here to introduce some applications, because:

- (a) The effectiveness and flexibility of this method can be best demonstrated through these applications.
- (b) It is useful for comparison with the results obtained by other methods.
- (c) Some details in the experimental verification necessitates this kind of study. Since the experiment must be conducted in conformity with the conditions studied in the theoretical analysis, when it is impossible to achieve the theoretical conditions, the theoretical solution should be modified accordingly to meet experimentally feasible conditions.

In the following parts of this chapter, several examples of solutions of water hammer problems are presented. Some of them are essential tools for the comparison of the analytical and experimental results. It is not the purpose of this chapter to attempt to cover the entire field of water hammer, but merely to indicate the usefulness of this tool.

A. Variable Friction Factor

Since the friction factor f in the equation

$$dh_f = f \frac{dx}{D} \frac{v^2}{2g}$$

is a function of the Reynolds number and the relative roughness of the pipe, i.e., a function of D, V, ν , and ϵ/D , it is found more convenient to keep the evaluation of f values outside of the main program. Thus the main program can be kept neat and its structure be kept free from any influence due to change in evaluation of f. Unlike a constant friction factor used hitherto, the variable friction factor f, calculated from given D, V, ν and ϵ/D , should theoretically be able to take care of any flow cases.

For the laminar flow, the value f in a pipe will be,

$$f = \frac{64}{R} = \frac{64}{DV\rho} = \frac{64\nu}{DV} , \qquad (54)$$

in which $\,\rho\,$ and $\,\mu\,$ are the density and the viscosity of the liquid.

For other flow cases with different sizes and materials of pipe, the corresponding equations or values of f can be found from friction factor charts or tables. (20,21)

If for a specific pipe, the friction factor be evaluated in terms of $h_f/(\frac{L}{D}\,\frac{V^2}{2g})$, then theoretically there should be no need for classifying the type of flow.

In this study, a few subroutines for the evaluation of friction factor have been made. One is a subroutine for the Moody diagram, which employed the same equations used in producing that diagram. With this subroutine, the machine is able to provide any current value of f at any point along the pipe, from the given current data for that point.

Needless to say, the usefulness of this subroutine is not limited to this study, but can be extended to any other pipe problems in connection with the computer. (See Appendix IV.)

Others are special subroutines for the particular pipes used in the experiments. They were obtained by careful determination of friction loss through those pipes, and were used in producing the theoretical results in Chapter VI. (See Appendix I.)

B. Rapid and Slow Gate Closures

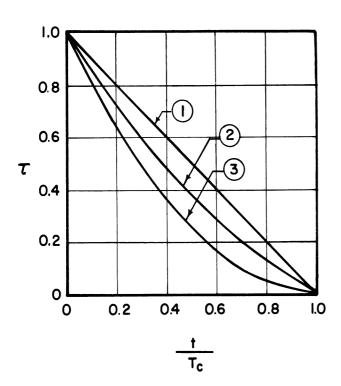
It was mentioned in the previous chapter that many different types of gate closures can be handled by imposing suitable boundary conditions. In this case, it is also found that the program can be kept orderly and the computation can be carried out more efficiently by providing boundary conditions for gate operation in a subroutine, because:

(a) In case of an instantaneous gate closure, the main program can simply skip the step of calling this subroutine; thus the structure of the main program will remain unaffected. The same applies to the time after the gate closure is completed.

(b) By applying many different ways of gate closure, we can solve a number of water hammer problems produced by those closures. Since all these boundary conditions due to gate closure are supplied by subroutines and can be easily replaced without any change in the main program, great flexibility in computation, results especially in designing gate operations for keeping the pressure below a fixed maximum value.

Some examples of water hammer produced by different gate closure time relations for a simple pipe line are shown in Figure 8 to Figure 10. The examples of instantaneous and slow gate closures for the same pipe are shown in Figure 11 and Figure 12.

C. Pipe Line with Stepwise Changes in Diameter


In the case of a pipe line with stepwise changes in diameter, the pipe line can be divided into segments at each step, and the same water hammer computation can be performed in each segment with suitable boundary conditions at each junction. At junction A, the conditions, (see Figure 13)

$$V_1 D_1^2 = V_2 D_2^2 (55)$$

and

$$H_{A_1} = H_{A_2} , \qquad (56)$$

in which V_1 , D_1 and V_2 , D_2 are velocity and pipe diameter before and after the junction respectively, may be used when the velocity head and the minor loss at the junction are negligible. An example of applying the relationships (55) and (56) can be found in Appendix II.

- 2 $\tau = 0.5(1.5 t/T_c)^2 0.125$ 3 $\tau = \left(\frac{T_c t}{T_c}\right)^2$

Figure 8. Valve Closure Time Relations.

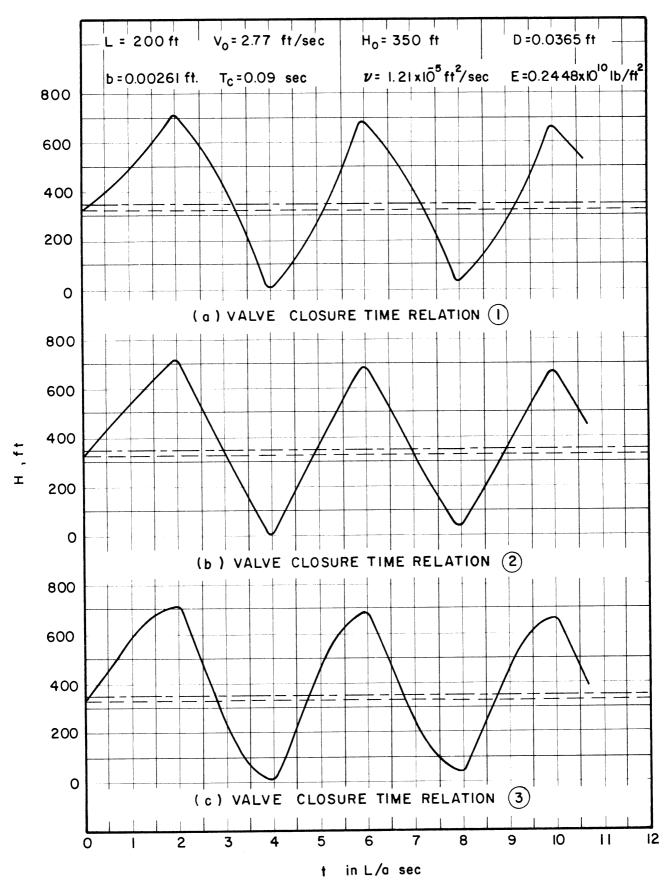


Figure 9. Variation of Water Hammer Pressure with Time, at Valve End, Rapid Closure, $T_C \neq 2L/a$, for Different Valve Closure Time Relations (See Figure 8).

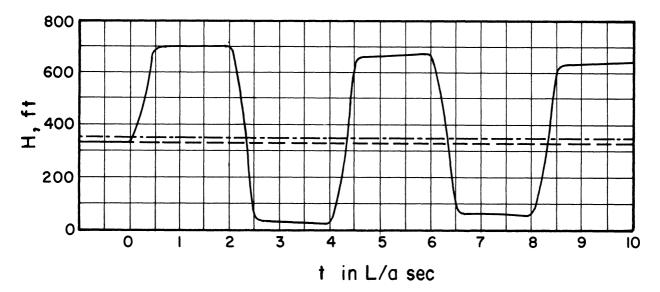


Figure 10. Variation of Water Hammer Pressure with Time, at Valve End, Rapid Closure, 0 < T < 2L/a, for Valve Closure Time Relation \bigcirc (See Figure 8).

L = 200 ft
$$V_0$$
 = 2.77 ft/sec H_0 = 350 ft D = 0.0365 ft b = 0.00261 ft T_c = 0.022 sec γ = 1.21 x 10⁻⁵ ft²/sec E = 0.2016 x 10¹⁰ 1b/ft²

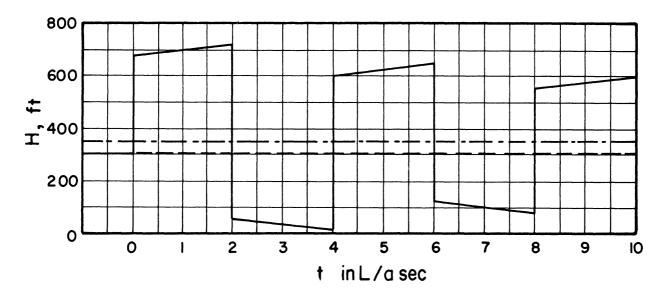
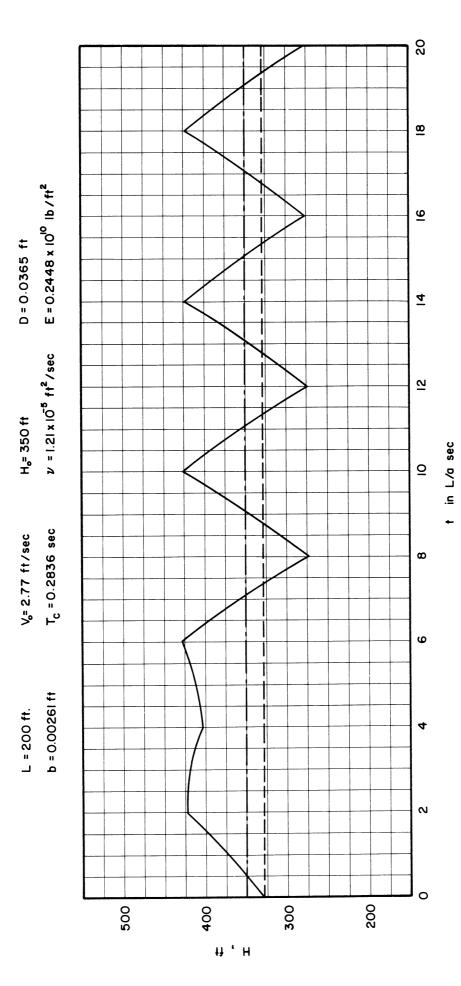



Figure 11. Variation of Water Hammer Pressure with Time, at Valve End, Instantaneous Closure, $T_{\rm C}=0$.

L = 300 ft
$$V_0$$
== 2.77 ft/sec H_0 = 350 ft D = 0.026 ft b = 0.00261 ft T_c = 0 V = 1.21 x 10-5 ft²/sec E = 0.2448 x 10¹⁰ 1b/ft²

Variation of Water Hammer Pressure with Time, at Valve End, Slow Closure, $T_C > \!\!\! 2L/a$, for Valve Closure Time Relation \bigoplus (See Figure 8) Figure 12.

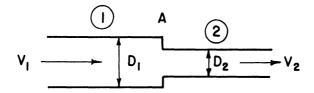


Figure 13. Pipe Line with Stepwise Change in Diameter.

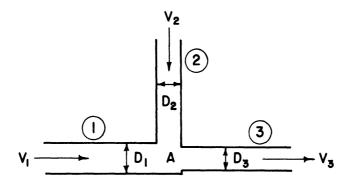


Figure 14. A Junction Where Three Pipes Meet.

D. Compound Pipes

With the same principle mentioned in the previous section, but with more involved boundary conditions, the method of characteristics by the computer can be developed to almost any kind of pipe system. Three examples, which are the conditions employed in the following experiments, are shown here. They are:

- (a) a simple pipe line with a dead-end branch connection,
- (b) a pipe line with a stepwise change in cross section and a dead-end branch connected near the valve end,
- (c) a pipe line with a stepwise change in cross section and a dead-end branch connected at the junction of two segments, as shown in Figure 15.

The conditions to be satisfied at junction A, (see Figure 14) where three pipes meet, are

$$V_1 D_1^2 + V_2 D_2^2 = V_3 D_3^2 \tag{57}$$

and

$$H_{A_1} = H_{A_2} = H_{A_3}$$
 (58)

if the velocity head and the minor loss are neglected.

The detailed MAD Language Programs for cases (a), (b) and (c) are shown in the Appendices I to III. Minor losses and velocity heads have been neglected because they are very small compared with the loss due to pipe friction.

E. Nonuniform Pipes

In case of gradually varying cross-section or wall-thickness, the computation introduces no major difficulty so far as the one-dimensional

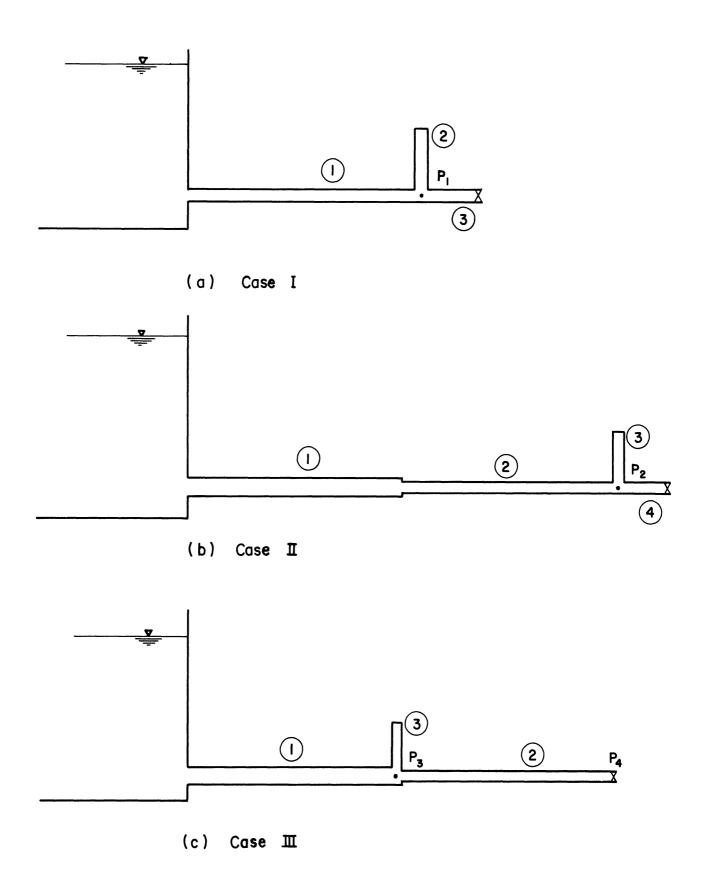


Figure 15. Three Examples of Compound Complex Pipes.

method is applicable; i.e., the change of factors should not be so large that the assumption of uniform velocity and uniform pressure distribution at any cross section would not be valid. In those computations, instead of using constant a and D, a = a(x), D = D(x) should be used at each point along x.

V. EXPERIMENTAL SET-UP AND PROCEDURES

An experimental check was planned as the next phase in this study. In order to make the friction effect easily observable, a pipe which would produce appreciable head loss between two ends had to be used. Although this can be achieved by increasing the length of pipe and reducing its diameter, there are some difficulties in actual installation in a laboratory. Owing to the limited space in a building, it is usually very difficult to place a sufficiently long straight pipe indoors. Moreover, a long pipe needs many supports, which will produce undesirable disturbances at each point of support. It is also not advisable to bend the pipe, since it gives disturbances to the pressure wave also.

Under these restrictions, two coiled copper tubes, as shown in Plate I, were finally used. One was 300 ft in length, 0.032 in. in thickness and 1/2" 0.D., the other one 300 ft.* in length, 0.032 in. in thickness and 3/8" 0.D. A core, on which the tubes were to be coiled, was built. It consisted of two wooden plates at each end, about 3'-8" apart, and twelve 1/2" steel bars connecting the plates to frame a core. Each bar was wrapped with a soft rubber tube in order to protect the copper tubes from any damage due to direct contact with the steel bars and to prevent possible disturbance to the transmission of pressure waves at the point of direct contact. The copper tubes were then coiled very carefully, uniformly and loosely around this core. The diameters of the coils were about

^{*} At the end of the experiments, the former was reduced to 299.05° and the latter to 294.30', because by handling, in determination of friction factor, by connection and disconnection to various sources and fittings, the ruined tips had to be cut off each time.

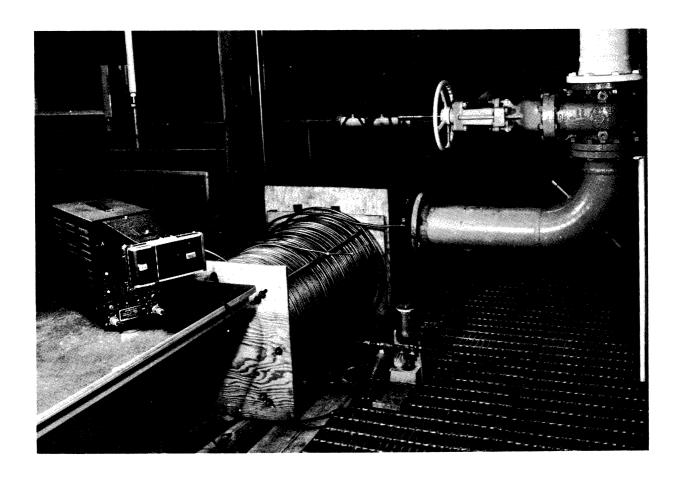


Plate I. The Experimental Set-Up.

two feet. It was considered that although the copper tubes were not straight but coiled, due to the uniform curvature along the entire length of the tubes, there would be no abrupt disturbance along the tubes, and they would act in a manner similar to straight tubes.

The reservoir should have a capacity to provide a constant head during the experiment. A large pipe connected to a very small pipe in which the water hammer phenomena will be investigated, can serve as a reservoir. Two sources were used as intake in the experiments. One was from the 2" I.D. outlet pipe of a pressure pump which could produce about 200 psi. The other one was from a 8" pipe which was connected to a head tank, the elevation of which was about 44' above the outlet of the tube. The former has an advantage of being able to maintain a high pressure inside the tube and thus can provide a higher velocity without causing the minimum pressure to drop below the vapor pressure. However, there is a doubt of it possibly creating some transmission of pressure wave towards upstream from the junction of the tube and the outlet pipe, by which the reflection will be reduced by that amount. The latter, on the contrary, does not have such trouble, because the pipe is sufficiently large in comparison with the tube, but unfortunately the head is quite low in this case.

A considerable time had been consumed for the selection of the valve. If the slow valve closure were also to be investigated, the area of valve opening had to be accurately controllable as a function of time, or at least the time and the way of valve closure should be known. Since there were no such valves in all manuals searched, and the primary interest in the present experiment was to check the analytical solution of

differential equations into which the nonlinear friction term was introduced, rather than to observe the difference caused by rapid and slow valve closures, it was decided to limit the test to the instantaneous closure. It was not too difficult to find a solenoid valve which could be closed practically instantaneously as compared to the time of the traveling of pressure wave; however, most of the valves were disc type and there was a possibility of bouncing of the disc during its operation. On that account, a slide-gate type solenoid valve was finally chosen. This type not only has the capability of tight instantaneous closure but also can possibly be used for the case of slow valve closure in the future if a good method is devised to slow down the speed of closure, or at least it can be used for the case of partial valve closure by providing some check. The sluice-gate type solenoid valve used in the test and its connection with the copper tube are shown in Plate II. The gate is closed when no voltage is applied, i.e., it is a normally closed type.

A hydrauliscope, as shown in Plates I and III, was used for the pressure measurements. This is a high speed electronic analyzer which can respond to pressure changes of high frequency and high rate, and is furnished with attachments to permit photographic recording of the curves traced on the screen of the cathode-ray tube.

The pressure pick-up element used in connection with the hydrauli-scope is of the resistance type, having a linear response with pressure variation thus permitting the direct static calibration. It is also designed for temperature compensation.

The friction factors of the experimental tubes were determined with great care.

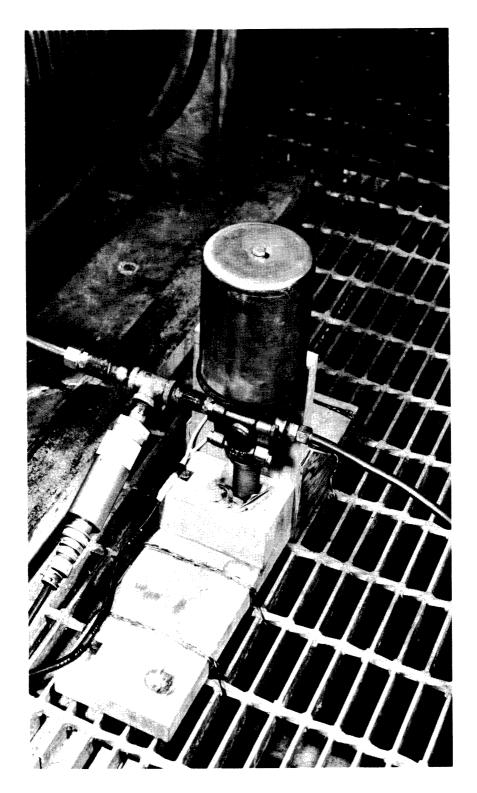


Plate II. The Close-Up of the Solenoid Valve and the Pressure Pick-Up Element.

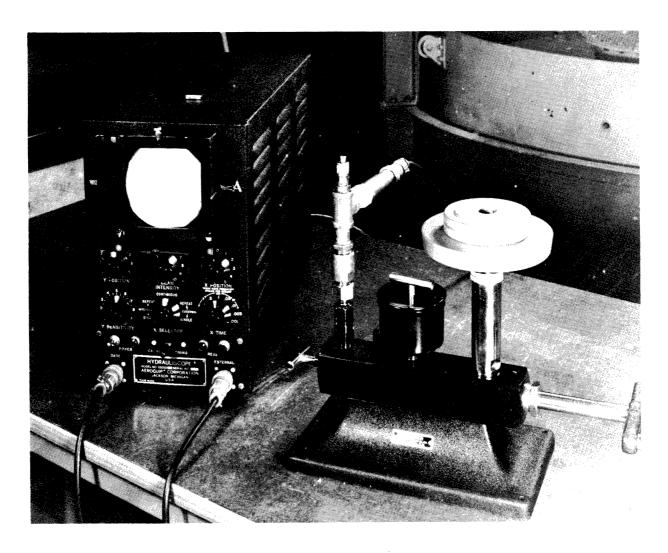


Plate III. The Calibration of Pressure Reading.

Four peizometer rings were made and attached at each end of the two tubes. (8)

Four radial holes were carefully drilled at a distance not too close to

the end of the tube but within the reach of a small round file so that all

burrs could be removed from the inside. The four orifices were placed

symmetrically about the vertical bisecting plane with equal spacing, allowing no orifice to be located at the top of the tube, lest air bubbles should

enter the hose connected with the manometer. Then the rings were soldered

to the outside and at each set of measurements they were connected by rubber hoses to two ends of a differential manometer.

Two kinds of liquid were used for the manometer. Acetylene tetrabromide, specific gravity of which is 2.94, was used for the sensitive measurements in the range of low velocity, and mercury for larger pressure drops. (22) Water was taken from a head tank located under the roof of the Fluid Engineering Laboratory. The water level in the tank was maintained constant during the measurement. The height of weir in the tank above the tube was approximately 43 ft.

Before each series of the measurements, the fastest flow of water, obtainable from the tank, was made to go through the tube to expel any possible bubbles trapped inside. The waste cocks on the top of two limbs of the differential manometer were also widely opened to bleed out the water in order to get free of any trapped air bubbles. The connecting hoses were made short and were continually sloping upward from the rings toward the waste cocks.

The determination of friction factor was then made. The discharge, the temperature of water and the difference in height of the two menisci of the manometer were measured for each different opening of the discharge cock. From these data, the velocity, the kinematic viscosity and the friction loss were evaluated and the curve of friction factor f vs. Reynolds number R was plotted. Each pair of these two values were obtained from

$$f = \frac{h_f}{(L/D)(V^2/2g)} \tag{59}$$

and

$$\mathbf{R} = \frac{\mathrm{DV}}{\mathrm{v}} \tag{60}$$

The curves, and the MAD program made thereby, are shown in Figure 16, Figure 17, and Appendix I, respectively.

Before proceeding with the experiments of water hammer, the hydrauliscope was checked and adjusted. Then it was calibrated very carefully with the aid of a dead weight gage tester, as shown in Plate III. The Y-sensitivity of the hydrauliscope, which is to adjust the height of the curve or to set the vertical scale at any desired value, say 200 psi for each vertical inch, was calibrated for the two pressure pick-ups used in the experiments. One of them had a 0-500 psi system operating range with 750 psi maximum continuous shock pressure and 1250 psi maximum static pressure permitted. The other one had a 0-200 psi pressure range with 300 psi and 500 psi corresponding permissible values. The pressure pick-up element was installed in the dead weight gage tester. The desired dead weights were applied on the tester and the Y-sensitivity was adjusted to give a desired vertical movement of the beam for the given weight. This value of Y-sensitivity was noted for the experiments.

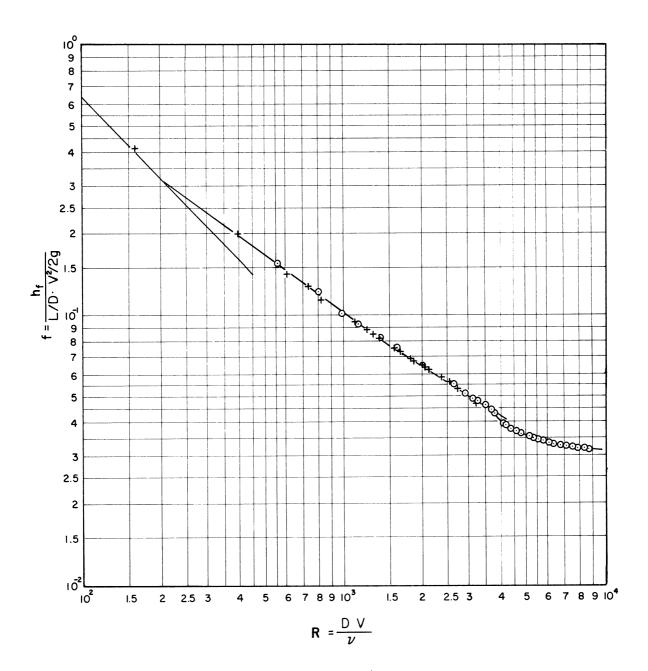


Figure 16. Resistance Diagram for 1/2 in. O.D. Copper Tube.

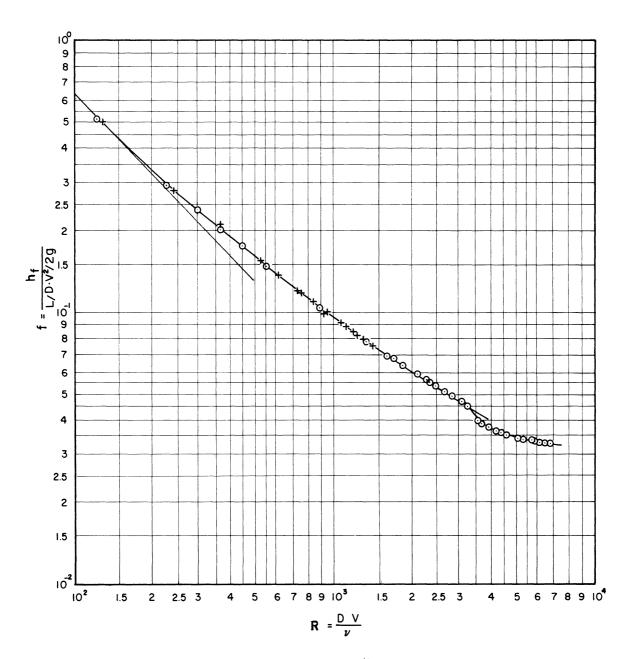


Figure 17. Resistance Diagram for 3/8 in. O.D. Copper Tube.

The experiments were planned for two different flow cases; one for a simple line of a constant cross-section, with the pressure pick-up attached at the valve end, the other one for a line with a stepwise change in cross-section, to which the pressure pick-up would be attached at the valve end and at the junction. However, the practical situation turned out to be the three cases shown in Figure 15 of Chapter IV, owing to the additional projection caused by attaching the pick-up element to the main The length of this element is so short in comparison with that of the copper tube that the friction loss caused by its wall shear and by the tee-joint (See Plate II) is quite negligible, yet the effect of storing the additional volume of water in this element can by no means be ignored. Because of the compressibility of water and the elasticity of the pick-up tube, the water stored in this part would be compressed and expanded alternatively, generating a pressure wave moving back and forth with very high frequency as compared to that of the main line. This buffering effect and disturbances caused by emitting successive tiny pressure waves in all directions from the junction soften what otherwise would be a more abrupt pressure versus time curve. This effect has been clearly demonstrated by comparing the photographs taken in the experiments and the two analytical solutions by omitting and including the dead-end branch. (See Plate IV, Figure 11 and Figure 18.)

Each flow case was investigated for both water sources, the pressure pump and the head tank. A micro-switch was connected to the "external" plug-in to facilitate the operation of the hydrauliscope. The camera was installed over the screen of the hydrauliscope, as shown in Plate I, in order to take photographs of pressure versus time curves. The camera consisted

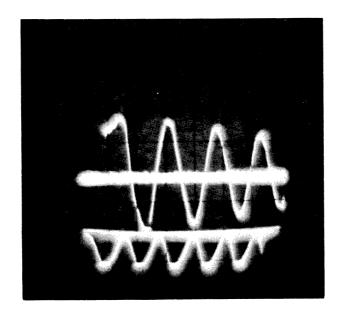
only of a metal box with a fixed f 5.6 lens which could focus the screen image continuously on a standard $2-1/4 \times 3-1/4$ film pack, and with a black plate which could be pulled out for exposure, because there was no shutter or iris.

The steps for the experiments are as follows: to start the flow, the solenoid valve was opened by pressing the switch; then the discharge cock attached at the downstream side of the valve was adjusted to obtain approximately the desired velocity in the tube. The discharge was then measured by using a stop watch and a measuring cylinder or weighing the water. At the same time, the temperature of water was also recorded. "X-selector" dial of the hydrauliscope was turned to the "external single" (see Plate III) so that only one sweep of the beam would appear on the screen for one push of the microswitch. To start taking a photograph the exposure plate was first pulled out of the camera, and five sweeps of beam were recorded successively to represent five distinct features. (See Plates IV to VI.) The first horizontal sweep is a pressure line at the pressure pick-up for the steady flow. Then the switch of the solenoid valve and the button of the micro-switch were pushed down almost at the same time so that the curve of the water hammer produced by valve closure could be traced out on the screen. After the pressure wave died out due to friction, the third horizontal line was recorded. This represents the static pressure in the reservoir. The zero-pressure line, or the reference line, was recorded fourth, then followed by the last line, the timing wave, which would indicate the time scale used, by providing sine waves of a definite frequency. The screen illumination was increased before the exposure plate was inserted back into the camera, in order to

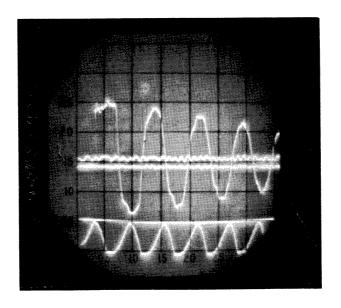
show the grid lines clearly on the film. When the water was taken from the pressure pump, tiny ripples indicating the pressure fluctuation caused by pumping action were observed.

The experimental results thus obtained are shown in the next chapter for the comparison with the theoretical results.

VI. DISCUSSION OF THEORETICAL AND EXPERIMENTAL RESULTS

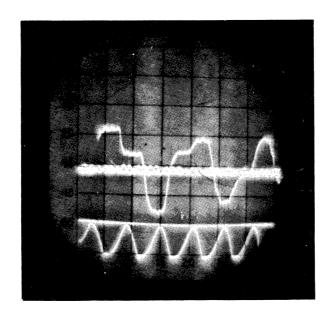

A number of experiments for water hammer under different conditions were performed in the Fluid Engineering Laboratory at the University of Michigan. Owing to the limitation of space and computer time, only several runs which best represent each flow case are listed in Table I. The photographs of pressure versus time curves taken in these runs are also shown in Plates IV, V, and VI. The frequency of timing wave on the hydrauliscope was set at 5 cps for those shown in the photographs. However, a careful calibration of the timing wave, later, indicated that the actual frequency of the hydrauliscope used in the experiments was 5.285 cps. From these photographs and the data given in Table I, the pressure head versus time curves were plotted by solid lines in Figure 18 to Figure 22.

The same data used in the experiments were fed into the electronic computer. The factor of pipe restriction c_1 was taken as $c_1 = 1 - \mu/2$ in these computations. [See Chapter II, B., Case (c).] The velocity and the piezometric head (strictly speaking) at various points along the lines for every assigned time interval were computed and printed out in a tabular form as shown in a few examples given in Appendices I to III. Since in these experiments the datum plane was taken at the level of the pressure pick-up element and the velocity heads are so small, the total head, the piezometric head, and the pressure head at the pick-up are practically identical. From these answers, the pressure head versus time curves at the point of pressure pick-up were plotted by dotted lines in

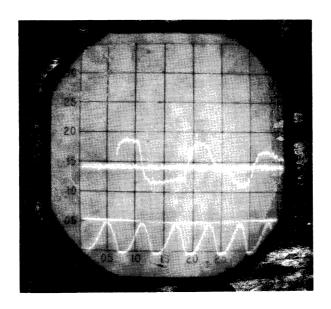

TABLE I

EXPERIMENTAL DATA

- II					
Theoretical and Experimental Results	Fig. 18 Plate IV	${ m Fi}_{ m g.}$ 19 Plate IV	Fig. 20 Plate V	Fig. 21 Plate V	Fig. 22 Plate VI
Source of Water	Pressure Pump	P res sure Pum p	Pressure Pum p	Pressure Pump	Head T a nk
"Y" Scale Factor psi/in	500	200	500	200	O tt
Frequency of Timing Wave f	5.285	5.285	5.285	5.285	5.285
Bulk Modulus of Elasticity K lb/ft2	0.475 x 108	994.0	0.471	0.473	0.462
Reynolds' Number R	15330	0 666	5556 779 0	5530 7740	1340
Kinematic Viscosity " ft ² /sec	0.692	0.799	0.726	0.712	0.993
Temperature °F	106.0	93.1	101.8	103.8	76.9
Head at Reservoir Ho ft.	451	984	7445	432	45.0
Initial Velocity V ft/sec	2.94	3.08	1.112	1.083 2.127	0.367
Inside Diameter D ft.	0.03633	0.02592	0.03633	0.03633 0.02592	0.03633
Type of Line System	Fig. 15 (a) Case I	Fig. 15 (a) Case I	Fig. 15 (b) Case II	Fig. 15 (c) Case III	Fig. 15 (a) Case I
No.	7	α	m	4	10

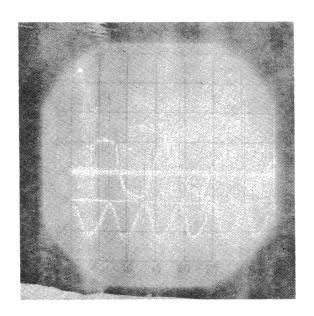


No. 1



No. 2

Plate IV. The Experimental Results. (See Table I and Figures 18 and 19)



No. 3

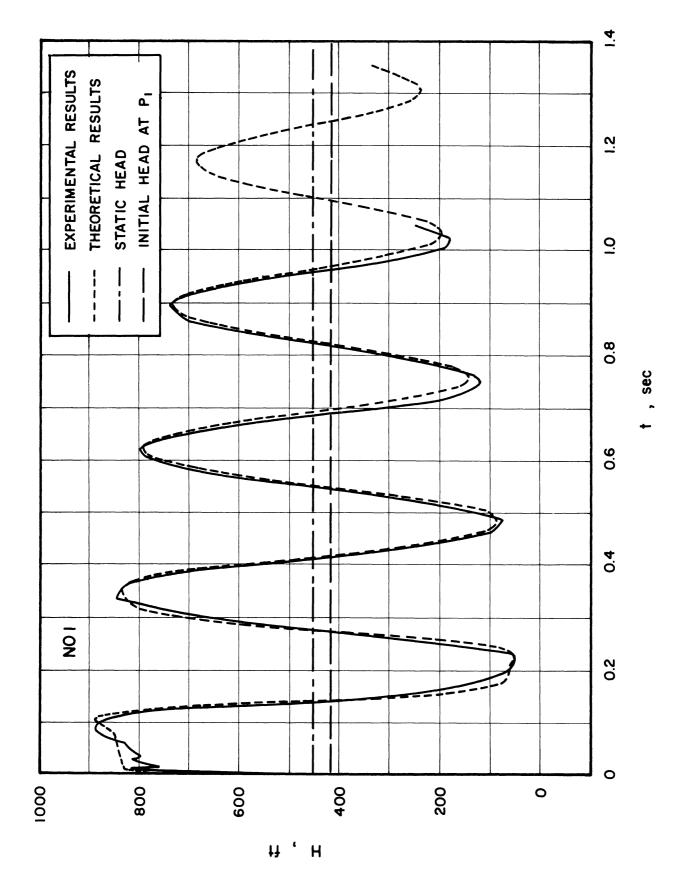
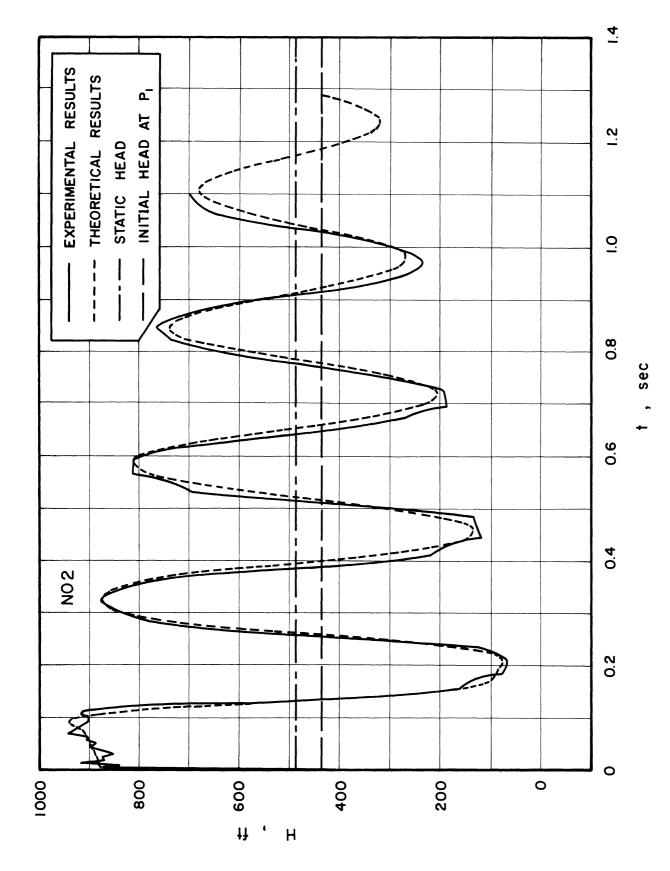
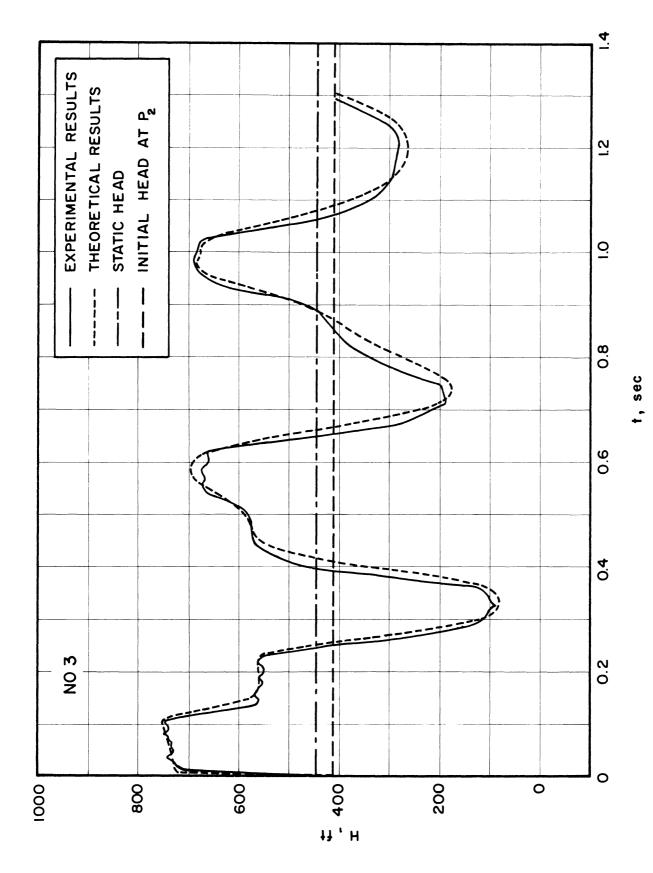
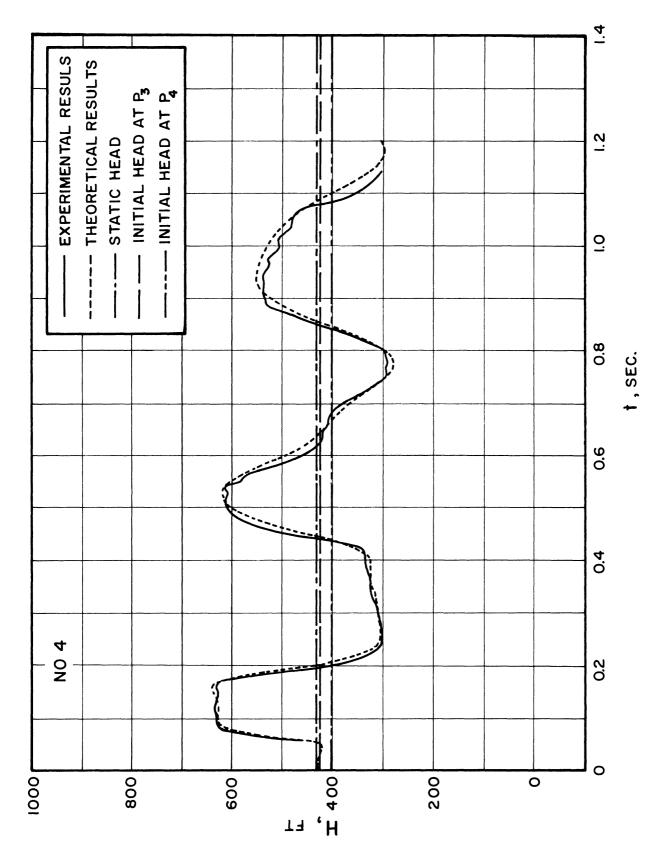

No. 4

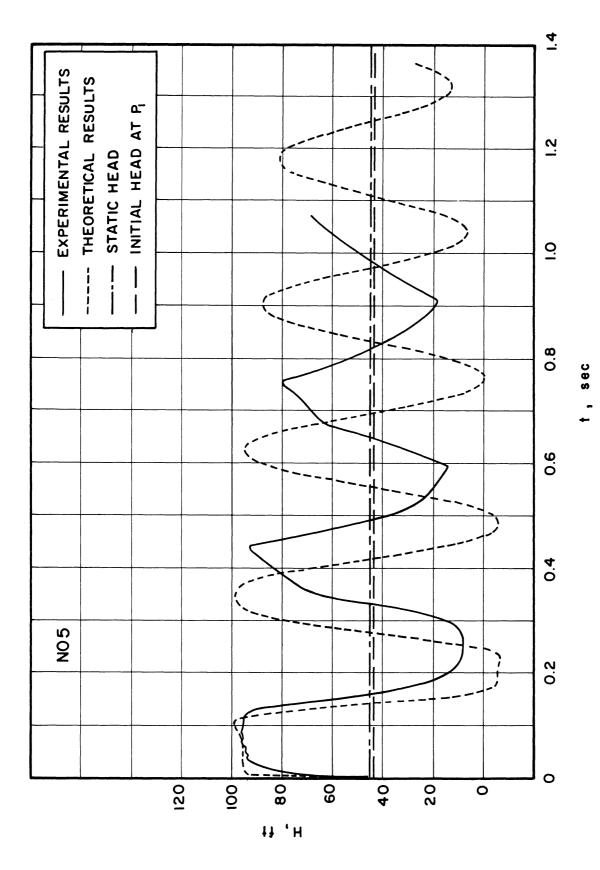
Plate V. The Experimental Results. (See Table I and Figures 20 and 21)

No. 5

Plate VI. The Experimental Results. (See Table I and Figure 22)

Pressure-Time Curve at P_1 ; Case I (See Figure 15a). Figure 18.


Figure 19. Pressure-Time Curve at P_1 ; Case I (See Figure 15a).

Pressure-Time Curve at P_2 ; Case II (See Figure 15b). Figure 20.

Pressure-Time Curve at P_3 ; Case III (See Figure 15c). Figure 21.

Pressure-Time Curve at P1; Case I (See Figure 15a). Figure 22.

Figure 18 to Figure 22 for comparison. These are the theoretical solutions corresponding to the above-mentioned experiments.

A few words worth mentioning here are the effect of attaching the pressure pick-up to the main line. The significance of this effect and what type of pipe system has to be employed have been described in the previous two chapters. However, a major difficulty arises in the actual computer application. Since the length of pick-up is so short compared with the length of main line, formidable computer time will be required if the actual length of pick-up be used. This difficulty can be reduced considerably by using a much longer hypothetical dead-end branch so long as its length is sufficiently small relative to the main line, because the significant effect is caused not by the extra wall friction of the short branch, which is essentially negligible, but by its buffering effect and the emission of successive pressure waves therefrom, due to its existence. This effect should cause tiny ripples along the primary curve (this was observed in some plottings which are not shown here), but it did not appear in the theoretical curves shown in this chapter due to the scale used in plotting and the time interval used in printing.

The comparison of the computed and experimental results shows good agreement for the flows with higher velocities. The computer programs, which were compiled according to the analytical procedures described in Chapters II, III, and IV, not only could depict the shape of the curve very closely to the experimental one - even for a very complicated curve -, but also gave numerical values of pressure heads very close to those obtained from the experiments.

The most important value for pipe design is usually the value of the first pressure peak after the valve closure. All of the computed values showed an excellent agreement with the corresponding experimental ones. They also indicate remarkable agreement in rate and way of attenuation of pressure surges. It is not uncommon in a complex or compound pipe system that the different concentrations of reflected pressure waves from different points cause the magnitude of a succeeding peak or trough to exceed that of the previous one. The good agreements between computation and experiment in this respect will warrant the extensive application of this method to complicated pipe systems.

The situation is somewhat different in flows with extremely low velocities. Observing No. 5 in Table I and Figure 22, we find a lack of resemblance in their shapes between the computation and experiment. The speed of pressure wave in the experiment is slower than that obtained by computation. The discrepancy in the case of laminar flow could be conjectured as the violation of the assumption of uniform velocity distribution over any cross section made in Chapter II. For the exact solution of such flow we may have to consider the three-dimensional case, starting from the general Navier-Stokes equations. It may also require some reexamination or refinement in the experimental technique. These are out of the scope of this study and will be left for a future investigation.

VII. COMPARISON WITH EARLIER METHODS

As already mentioned in the introduction, the existing methods for estimating friction losses in water hammer are not only few but inadequate. The direct analytical solution of the basic partial differential equations is the only method capable of distributing the effect of friction losses along the pipe line in agreement with the actual situation. However, the effect of friction losses, which are assumed to vary with V^2 , makes the basic differential equations nonlinear even when the terms $V\frac{\partial V}{\partial X}$ and $V\frac{\partial H}{\partial X}$ are neglected, as indicated in the equation of dynamic equilibrium (6). The simultaneous solution of this equation with the equation of continuity (7), had been considered as impossible. (13,15,16,24) Thus some approximations, some of which appeared as graphical methods, some as operational mathematics and so forth, had been employed as substitutions because of no exact solution.

Among those existing methods, the graphical methods are probably most widely used. The first approximation of this class is an estimation of loss by a hypothetical obstruction located either at the upstream end (15) or at the valve end (16) of the pipe line. This obstruction has the same total friction loss as the entire pipe line. The gist of the method is to proceed along the same fundamental network of solid lines as in the non-frictional case of the graphical solution but adding the correction of head loss each time at the obstruction. The basic system of equations, from which the graphical method has been developed, remains the same as in the non-friction case, and the entire method is simply a combination

of nonfriction case and abrupt pressure deduction at the obstruction. Although this is a simple, good approximation for estimating pressure at a point at certain fixed times, it gives no information about other points along the pipe line.

A better graphical approximation could be achieved by taking a number of hypothetical obstructions at various points along the pipe line lumping the friction losses of each section at these points. As in the first approximation, the same network must be applied, the correction of friction effect must be added at each point, and those lines would be interwoven and developed further as the time goes. In this case, it generally involves some trial-and-error method to locate two points at each side of an obstruction, except those defined by some boundary conditions. This method, as the first one, produces an abrupt drop of pressure at each obstruction which evidently is not be true case.

In the graphical methods, although closer and closer approximations can be obtained by increasing the number of obstructions, this rapidly complicates the solution. This is quite evident if one considers the fact that each obstruction has two points of different heads at each side and each point of each pair emits two lines of different slope, and moreover, the distance between these two points, as well as their locations on the graph, has to be determined by trial-and-error method.

These lines develop further and further into a great tangle as time progresses. Successive trial-and-error often results in the accumulation of errors and the values thus obtained may sometimes become doubtful.

Some authors have developed methods of estimating the effect of losses by operational mathematics or other analytical solutions. (17,24,5) They differ in degree of accuracy and complexity, in method of approaching the problem, and in range of application, but they have one thing in common - the linearization of the friction term. Since the effect of friction is expressed in terms of V^2 in the basic differential equations, and since most cases in engineering practice are turbulent flows, the linearization of the friction term cannot exactly represent the actual situation. In other words, they are approximations and hence not wholly satisfactory.

Wood⁽²⁴⁾ introduced Heaviside's operational calculus in the field of water hammer and presented one example of a simple line with instantaneous gate closure at the lower end, allowing for friction. He assumed friction to be linear and for this purpose he replaced V^2 by $(K_f V_m) V_o$. Here, V_m is the initial velocity prevailing in the pipe and K_f is a constant for linear approximation. Besides the linear approximation, it gives only "surge pressure" and not the actual pressures and velocities along the pipe.

The pioneer work of Wood was improved by Bich⁽¹⁷⁾, superseding Reaviside's operation by the Laplace-Mellin transformation. It permitted working directly with total pressures and velocities instead of surge pressures and velocities. The solutions have rather involved series in Bessel functions, but the method required replacement of nonlinear terms, as KV², by a linear approximation.

The author also tried some Laplace transformations before the present study, and by taking advantage of the digital computer, he used several different values of $K_{\mathbf{f}}$ for corresponding values of V, instead of

using a single constant $K_{\hat{I}}$ as was done by earlier authors. This is tantamount to dividing the parabolic curve of friction versus velocity into several segments, replacing each segment of curve by a straight line. This naturally should give better agreement with the actual situation.

However, there are still some disadvantages in employing the operational mathematics, even with aid of the computer. The transformation and inverse transformation involve many difficult mathematical manipulations and often result in long series. It has certain limitations because of necessary approximations, and consequently is not quite flexible in application. It is sometimes very difficult or impossible to determine constants in the operational solutions for some given boundary conditions.

The direct analytical solution of the basic partial differential equations, which has been presented in the previous chapters, naturally has greater accuracy over other methods because of its directness. It can handle the V^2 term and consequently is able to distribute the effect of friction losses along the pipe line in accordance with nature, without lumping, approximation or indirect transformation.

Besides its accuracy, this method possesses some other advantages. Since the computation is carried out by the electronic digital computer, it is much faster than old methods. Unlike the case in the present study, much computer time can be saved in actual applications, because there will not be a small pressure pick-up in an actual pipe, and even if the pipe system has a dead-end branch, it will be of the same order of length. Many other details, which were retained in this study for greater accuracy, may be omitted in practical cases. For most purposes, the computer time will not be more than a few minutes to several minutes.

Great flexibility is one of the remarkable features of this method. With the same form of basic program, it can be developed to extensive problems of complicated pipe systems and gate operations. It may also serve in solving some problems formerly beyond scope.

As can be seen in the examples given in the appendices, the answers can be printed out in tabular form so that it becomes extremely easy for anyone to understand the phenomena and the results are ready to plot in any form desired. It supplies all historical and geographical data for both velocity and pressure. These have all been included automatically in the course of computation. For any fixed point along the pipe, we can trace the velocity and pressure following the time variation, or for any particular instant, we can observe how velocity and pressure are distributed along the pipe. Indeed, by this method, we can gather extensive valuable information from answer sheets simultaneously, whereas the earlier methods could give answers for only limited points and limited time intervals.

The program is easily controllable both in time and in location according to accuracy and necessity. After we make up a computer program for one type of pipe system, we can solve as many as we desire for the same type of problems by simply feeding in the data. Those advantages mentioned above are also good for non-friction cases. If we prepare many programs for typical water hammer problems, a great number of solutions can be readily obtained in a form similar to data from mathematical tables.

VIII. CONCLUSIONS

From the foregoing chapters of this study the following conclusions may be drawn:

- l. The basic partial differential equations of water hammer including effect of friction, which contain nonlinear terms and have not been solved, can be solved directly by the method of characteristics, with the aid of digital computer.
- 2. Solutions by the above mentioned method agree with solutions made by earlier methods when the friction term is neglected. Inclusion of this term clearly and sensitively depicts the damping effect.
- 3. The variety of examples given in this study shows that the method is capable of handling many different gate operations and pipe connections easily and adequately.
- 4. The experimental studies made for the case of instantaneous valve closure check the validity of the theoretical solutions. The
 attenuation of pressure due to friction evaluated by this method, agrees
 with experiment unless the velocity is too low. Hence, the method is
 able to provide an accurate evaluation of friction effect in most engineering cases.
- 5. The experiments also verify that the theoretically obtained curves of pressure versus time for different pipe systems and branch connections can correctly and sensitively describe the actual pressure variations.

- 6. From the analytical work and experimental verification, it is believed that the method presented in this study affords an adequate and rapid means of analyzing water hammer phenomena allowing friction in any pipe system and branch connection for any desired boundary conditions.
- 7. It has been observed that this method has remarkable advantages of exactness, directness, quickness, flexibility, and wide applicability over earlier methods, whether the friction is included or not.

For a more thorough verification of the analytical work, further experimentation for slow valve closure and for non-uniform pipes are recommended. During the course of experimental investigations, it was observed that the minimum pressure inside the pipe dropped below the vapor pressure a few times. A better analytical study for this case, considering the energy dissipation due to both ordinary wall friction and resurge effect, are also suggested. The theoretical solutions and experimental results showed unsatisfactory agreements in case of extremely low velocity. A further study for this case, both in theoretical analysis and experimental investigation, are highly desired. It may require a three-dimensional analysis or re-examination of assumptions. It may more likely require further modification or improvement in experimental equipment and technique as the first step of the study. Research on water hammer in a very elastic pipe will also be an interesting subject.

It may be worthwhile to prepare at a later date a library of problems in water hammer, in which complete workable computer programs for the rapid solution of many representative problems based upon the principle and method presented in this study will be collected, so that a great number of solutions can be readily found by simply providing the type of problem and necessary data.

There will be certain cases in which the effect of hysteresis plays a significant role in the energy dissipation. Since there are little rigorous mathematical expressions and reliable data available for this effect, the theoretical solution of these problems may become very difficult. Nevertheless, experimental evaluations may be feasible by deducting the computed loss due to wall friction, minor losses, etc., from the total observed loss.

APPENDIX I

A MAD Language Program(3) for the solution of water hammer including effect of friction losses for the pipe system Case I and a part of its computed results.

[See Figure 15a.] Subroutines included.*

[See also APPENDIX V.]

^{*} F = 1 for R.L. 64 is used in order to prevent $F(=f) \rightarrow \infty$. In this case V $\stackrel{*}{=} 0$.

005

```
030
                                        Q042N 11
        CHINTU LAI
       * EXECUTE, DUMP
                                                                            WH11
                                                                                   7
       * COMPILE MAD, PUNCH OBJECT
                   INTEGER I,J,K,M,N,TREC,TP
                   DIMENSION V(40), H(40), V1(20), H1(20), V2(40), H2(40), VP(40
                  2), HP(40)
                   PRINT FORMAT TITLE
                   READ FORMAT CARD, L,L2,L3,V0,H0,N,TC,D,D2,B,B2,NU,S1,S2,TP,E,
        HERE
                  2E2,EW
                   PRINT FORMAT GIVEN, L, L2, L3, V0, H0, N, TC, D, D2, B, B2, NU, S1, S2, E,
                  2E2, EW
                   Q=1./EW+0.81*D/(B*E)
                   Q2=1./EW+0.81*D2/(B2*E2)
                   A = SQRT \cdot (1 \cdot / (1 \cdot 93 \times Q))
                   A2=SQRT • (1 • /(1 • 93 * Q2))
                   J=2
                   K=1
                   DELL=L/N
                   HF=FR.(D.VO.NU.S1)*DELL*VO*VO/(D*64.332)
                   HF3=HF*L3/DELL
                   DELTI=L2/A2
                   DELV=0.01
                   DELH=0.01
                   T=0
                   HP(0)=H0
                   PRINT FORMAT TEST, Q, A, Q2, A2, DELL, DELTI
                   PRINT FORMAT TIME, T
                   X=-DELL
                   THROUGH ANN, FOR I=0, 1, I.G.N
                   X=X+DELL
                   V1(I)=V0
                   H1(I)=H0-I*HF
                   PRINT FORMAT RESULT, X, V1(I), H1(I)
        ANN
                   PRINT FORMAT BLANK
                   THROUGH ARBOR, FOR I=N+J+K,1,1.G.N+2*J
                   V1(I)=V0
                   H1(I)=H1(N)-(I-N-J-K)*HF3
                   PRINT FORMAT RESULT, X, V1(I), H1(I)
        ARBOR
                   X = X + L3
                   HE=H1(N+2*J)
                   PRINT FORMAT BLANK
                   X = 0
                    THROUGH MICH, FOR I=N+K,1,I.G.N+J
                    V1(1)=0.
                   H1(I)=H1(N)
                    PRINT FORMAT RESULT, X, V1(I), H1(I)
        MICH
                    X=L2
                   HF12=HF/2.
                    HF32=HF3/2.
                    THROUGH USA, FOR I=0, 1, I.G.2*N
8.....
                    V2(I)=V0
                    H2(I) = H0-I*HF12
JUSA
                    THROUGH CANADA, FOR I=2*(N+J+K),1,I,G,2*(N+2*J)
                    V2(I)=V0
                    H2(I)=H2(2*N)-(I-2*(N+J+K))*HF32
         CANADA
                    THROUGH ENGLAD, FOR I=2*(N+K),1,1,G,2*(N+J)
                    V2(I)=0
                    H2(I)=H2(2*N)
   ____ENGLAD
                    TH=DELTI/DELL
```

```
TH2=DELTI/L2
                  TH3=DELTI/L3
       PHILA
                  TREC=0
                  T=T+DELTI
       NEW
                  WHENEVER T.G.3*TC.AND.T.G.20.*(L+L3)/A, TRANSFER TO HERE
                  TREC=TREC+1
                  WHENEVER TREC.NE.TP. TRANSFER TO YORK
                  PRINT FORMAT TIME, T
       YORK
                  M=1
                  DELT =DELTI
                  TI=T
                  THROUGH WASH, FOR I=0,1,I.G.N+2*J
                  V(I)=V1(I)
                  H(I)=H1(I)
       WASH
                  THROUGH LONDON, FOR I=1, 1, I.E.N
       BOSTON
                  VR=V(I)*(1.-TH*(V(I)+A))+V(I-1)*TH*(V(I)+A)
                  VS=V(I)*(I\circ+TH*(V(I)-A))-V(I+1)*TH*(V(I)-A)
                  HR=H(I)*(1 - TH*(V(I) + A)) + H(I-1)*TH*(V(I) + A)
                  HS=H(I)*(1+TH*(V(I)-A))-H(I+1)*TH*(V(I)-A)
                  VP(I)=0.5*(VR+VS)+(16.083/A)*(HR-HS)-0.5*FR.(D,V(I),NU,S1)*.A
                 2BS.V(I)*V(I)*DELT/D
                  HP(I) = (A/64 \cdot 332) * (VR-VS) + 0.5* (HR+HS)
       LONDON
                  VS=V(0)*(1+TH*(V(0)-A))-V(1)*TH*(V(0)-A)
                  HS=HO*(1+TH*(V(0)-A))-H(1)*TH*(V(0)-A)
                  VP(0)=VS+(32.166/A)*(H0-HS)-0.5*FR.(D.V(0).NU.S1)*V(0)*.ABS.V
                 2(0)*DELT/D
                  WHENEVER M.E.1. TRANSFER TO SPAIN
                  THROUGH BELG, FOR I=N+K+1, 1, I.E.N+J
                  VR=V(I)*(1.-TH2*(V(I)+A2))+V(I-1)*TH2*(V(I)+A2)
                  VS=V(I)*(1.+TH2*(V(I)-A2))-V(I+1)*TH2*(V(I)-A2)
                  HR=H(I)*(1 - TH2*(V(I)+A2))+H(I-1)*TH2*(V(I)+A2)
                  HS=H(I)*(1+TH2*(V(I)-A2))-H(I+1)*TH2*(V(I)-A2)
                  VP(I)=0.5*(VR+VS)+(16.083/A2)*(HR-HS)-0.5*FR.(D2,V(I),NU,S2)*
                 2V(I)*.ABS.V(I)*DELT/D2
                  HP(I) = (A2/64 \cdot 332) * (VR-VS) + 0.5 * (HR+HS)
____BELG
                  THROUGH CZECHO, FOR I=N+J+K+1,1,I.E.N+2*J
                  VR=V(I)*(1.-TH3*(V(I)+A))+V(I-1)*TH3*(V(I)+A)
                  VS=V(I)*(1.+TH3*(V(I)-A.))-V(I+1)*TH3*(V(I)-A)
                  HR=H(I)*(1.TH3*(V(I)+A))+H(I-1)*TH3*(V(I)+A)
                  HS=H(I)*(1.+TH3*(V(I)-A.))-H(I+1)*TH3*(V(I)-A.)
                  VP(I)=0.5*(VR+VS)+(16.083/A)*(HR-HS)-0.5*FR.(D,V(I),NU,S1)*.A
                 2BS.V(I)*V(I)*DELT/D
                  HP(I)=(A /64.332)*(VR-VS)+0.5*(HR+HS)
       CZECH0
                  VS=V(N+K+1)*TH2*A2
        SPAIN
                  HS=H(N+K)*(1.-TH2*A2)+H(N+K+1)*TH2*A2
                  HP(N+K)=HS-(A2/32.166)*VS
                  VP(N+K)=0
                  WHENEVER TI.G.TC, TRANSFER TO ITALY
                  EXECUTE BC.(TC.TI.A.VO.HE, V(N+2*J), H(N+2*J),DELV.DELH)
                  VP(N+2*J) = V(N+2*J) - DELV
                  HP(N+2*J) = H(N+2*J)+DELH
                  TRANSFER TO OHIO
                  VP(N+2*J)=0
        ITALY
                  VR=V(N+2*J)*(1_{\bullet}-TH3*(V(N+2*J)+A))+V(N+2*J-1)*TH3*(V(N+2*J)+A)
        OHIO
                  HR=H(N+2*J)*(1.-TH3*(V(N+2*J)+A))+H(N+2*J-1)*TH3*(V(N+2*J)+A)
                  HP(N+2*J) = HR - (A/32 \cdot 166) * (VP(N+2*J) - VR) - A*FR \cdot (D*V(N+2*J) * NU*S1
        VENUS
                 2)*V(N+2*J)*.ABS.V(N+2*J)*DELT/(64.332*D)
                  WHENEVER TI.G.TC. TRANSFER TO STAR
```

```
EXECUTE BC. (TC.TI.A.VO.HE.VP(N+2*J), HP(N+2*J), DELV.DELH)
                    VP(N+2*J)=VP(N+2*J)-DELV
                    HP(N+2*J)=HP(N+2*J)+DELH
                     WHENEVER (.ABS.DELV.GE.0.001) .AND. (.ABS.DELH.GE.0.001), TRA
                    2NSFER TO VENUS
                     VP(N+J+K)=V(N+J+K)+VP(N+J+K+1)-V(N+J+K+1)
         STAR
                     VR1=V(N)*(1_{\bullet}-TH*(V(N)+A))+V(N-1)*TH*(V(N)+A)
                    HR1=H(N)*(1_{\bullet}-TH*(V(N)+A))+H(N-1)*TH*(V(N)+A)
                     VR2=V(N+J)*(1.-TH2*(V(N+J)+A2))+V(N+J-1)*TH2*(V(N+J)+A2)
                     HR2=H(N+J)*(1_{\bullet}-TH2*(V(N+J)+A2))+H(N+J-1)*TH2*(V(N+J)+A2)
                    VS3=V(N+J+K)*(1*+T+3*(V(N+J+K)-A))-V(N+J+K+1)*(V(N+J+K)-A)
                   2)
                    HS3=H(N+J+K)*(1_{\bullet}+TH3*(V(N+J+K)-A))-H(N+J+K+1)*TH3*(V(N+J+K)-A)
                   2)
         GREECE
                    HP(N+J+K) = HS3+(A/32 \cdot 166)*(VP(N+J+K)-VS3)+A*FR_{\bullet}(D_{\bullet}V(N+J+K)_{\bullet}NU_{\bullet}
                    2S1)*V(N+J+K)*.ABS.V(N+J+K)*DELT/(64.332*D)
                    HP(N) = HP(N+J+K)
                    HP(N+J)=HP(N+J+K)
                    VP(N) = VR1 - (32 \cdot 166/A) * (HP(N) - HR1) - 0 \cdot 5 * FR \cdot (D \cdot V(N) \cdot NU \cdot S1) * V(N) * o
                   2ABS.V(N)*DELT/D
                    VP(N+J)=VR2-(32.166/A2)*(HP(N+J)-HR2)-0.5*FR.(D2,V(N+J),NU,S2
                   2)*V(N+J)*•ABS•V(N+J)*DELT/D2
                    VEL=VP(N)+VP(N+J)*D2*D2/(D*D)
                    DIF=VEL-VP(N+J+K)
                    WHENEVER .ABS.DIF .L.O.001, TRANSFER TO POLAND
                    VP(N+J+K)=VP(N+J+K)+DIF/3.
                    TRANSFER TO GREECE
                    WHENEVER M.NE.1, TRANSFER TO BERLIN
         POLAND
                     THROUGH PARIS, FOR I=0,1,1.G.N+2*J
                    V1(I) = VP(I)
                    H1(I)=HP(I)
         PARIS
                    M=2
                    N=2*N
                     J=2*J
                    K=2*K
                    DELT=DELT/2.
                    TI=T-DELT
                     THROUGH ROME, FOR I=0,1,I.G.N+2*J
                    V(I)=V2(I)
         ROME
                    H(I)=H2(I)
                    TRANSFER TO BOSTON
                    WHENEVER M.NE.2, TRANSFER TO UNIV
         BERLIN
                    THROUGH TOKYO, FOR I=0,1,1.G.N+2*J
                    V(I) = VP(I)
                    H(I)=HP(I)
10----TOKYO
                    M=4
                    TI=T
                    TRANSFER TO BOSTON
                    THROUGH SUN, FOR I=0,1,1.G.N+2*J
         UNIV
                    V2(I)=VP(I)
                    H2(I)=HP(I)
         SUN
                    N=N/2
                    J=J/2
                    K=K/2
                    WHENEVER TREC. NE. TP. TRANSFER TO NEW
                    X=-DELL
                    THROUGH MOON, FOR I=0,1,I.G.N
                    X=X+DELL
```

```
VB = 2 \times V2(2 \times I) - V1(I)
           HB = 2 * H2(2 * I) - H1(I)
           PRINT FORMAT RESULT, X, VB, HB
MOON
           PRINT FORMAT BLANK
           THROUGH TURKEY, FOR I=N+J+K,1,1.G.N+2*J
           VB = 2 \times V2(2 \times I) - V1(I)
           HB = 2 * H2(2 * I) - H1(I)
           PRINT FORMAT RESULT, X, VB, HB
TURKEY
           X = X + L3
           X = 0
           PRINT FORMAT BLANK
           THROUGH CONGO, FOR I=N+K+1+I+G+N+J
           VB=2*V2(2*I)-V1(I)
           HB = 2 * H2(2 * I) - H1(I)
           PRINT FORMAT RESULT, X, VB, HB
CONGO
           X=12
           TRANSFER TO PHILA
           VECTOR VALUES TITLE=$64H1WATERHAMMER PRODUCED BY GATE CLOSURE
          2 INCLUDING FRICTION EFFECT /1H0,S10,50HPIPE LINE WITH A SHOR
          3T DEAD-END BRANCH CONNECTION *$
           VECTOR VALUES CARD = $5F10.3, I4/5F8.5, 3F10.8, I3/3E12.5*$
           VECTOR VALUES GIVEN = $5H4L = F10.3,S8,5HL2 = F10.3,S8,5HL3 =
          2 F10.3,58,5HV0 = F10.3,58,5HH0 = F10.3/5HON = I4,58,5HTC = F8
          3.5.58.4HD = F8.5.58.5HD2 = F8.5.5HD8 = F8.5.58.5HB2 = F8.5.58
          4,5HNU = F10.8,58,5HS1 = F10.8,58,5HS2 = F10.8/5H0E = E12.5,54
          5,5HE2 = E12.5,S4,5HEW = E12.5*$
           VECTOR VALUES TEST = $1H0,4HQ = E12.5,S5,4HA = E12.5,S5,5HQ2
          2= E12.5,S5,5HA2 = E12.5/8HODELL = E12.5,S5,8HDELTI = E12.5*$
           VECTOR VALUES TIME = $8H4TIME = F10.5/1H0.512.1HX.S15.8HVELOC
          2ITY, $12,8HPRESSURE*$
           VECTOR VALUES RESULT = $1H ,57,F10.3,58,E12.4,58,E12.4*$
           VECTOR VALUES BLANK = $2H0 *$
           END OF PROGRAM
                                                                            3
                                                                    WHS8
* COMPILE MAD, PUNCH OBJECT
           EXTERNAL FUNCTION (D.V.NU.K)
           ENTRY TO FR.
           R=D*.ABS.V/NU
           WHENEVER D .G. 0.027, TRANSFER TO LARGE
           WHENEVER R.L.64.
             F=1.0
           OR WHENEVER R.L. 200.
             F=64./R
           OR WHENEVER R.L.1050.
              F=17.77*R.P.(-0.7581)
           OR WHENEVER R.L.3250.
              F=6.948*R.P.(-0.6232)
           OR WHENEVER R.L.3600.
             F=498.31*R.P.(-1.1516)
           OR WHENEVER R.L.4200.
              F=8.0349*R.P.(-0.6476)
            OR WHENEVER R.L.5000.
              F=0.51216*R.P.(-0.3176)
            OR WHENEVER R.L.6000.
              F=0.13672*R.P.(-0.1625)
            OTHERWISE
              F=0.076236*R.P.(-0.09538)
            END OF CONDITIONAL
```

TRANSFER TO BACK

LARGE

WHENEVER R.L.64.

```
F = 1.0
               OR WHENEVER R.L.200.
                 F=64./R
               OR WHENEVER R.L.1050.
                 F=14.49*R.P.(-0.7197)
               OR WHENEVER R.L.3650.
                  F=7.525*R.P.(-0.6258)
               OR WHENEVER R.L.4000.
                 F=624.98*R.P.(-1.1643)
               OR WHENEVER R.L.4700.
                 F=6.3212*R.P.(-0.6104)
               OR WHENEVER R.L.5700.
                 F=0.6013*R.P.(-0.3322)
               OR WHENEVER R.L. 7000.
                 F=0.2424*R.P.(-0.2271)
               OTHERWISE
                 F=0.07819*R.P.(-0.09933)
               END OF CONDITIONAL
               FUNCTION RETURN F
    BACK
               END OF FUNCTION
                                                                         WHS7
   * COMPILE MAD, PUNCH OBJECT
                EXTERNAL FUNCTION (TC+TI+A+V0+H0+V+H+DELV+DELH)
                ENTRY TO BC.
                TAU=0.5*(1.5-TI/TC)*(1.5-TI/TC)-0.125
                C=A*V0/(32.2*H0)
                W=V/V0
                Y=TAU*TAU
                X=2.*W+C*Y
                DLV=0.5*(X-SQRT.(X*X-4.*(W*W-Y*H/H0)))
                DLH=C*DLV
                DELV=V0*DLV
                DELH=H0*DLH
                FUNCTION RETURN
                END OF FUNCTION
Name and the second of the second
               . . . . . . . .
```

WRITERHAMMER PRODUCED BY GATE CLOSURE INCLUDING FRICTION EFFECT

PIPE LINE WITH A SHORT DEAD-END BRANCH CONNECTION

L =	294.300	L2 =	2.000	L3 =	2.600	V0 =	3.080	H0 =	486.000
N =	10 TC	0.00	000 0	= 0.02595	D2 =	0.02595			
В =	0.00267	B2 =	0.00267	NU = 0.00000	799	S1 = 0.0000	0000	S2 = 0.000	000000
E =	0.24480E 10	E2 =	0.24480F 10	EW = 0.4660		The same services of the same			******
						00 - 0 /50	over over		
				02 = 0.246	ASE-NT.	HZ = U.408	Z4E U4		
UELL	= 0.29430E 0	02 DE	LTI = 0.436	45E-03					
	TII	ie = c	.00000						
			- 			and the control of th			
			-0.000	0.3080E 61		FRESSURE 6.4860E 03			
			29.430 58.860	0.3080E 01 0.3080E 01		0.4807E U3 0.4754E U3	A COMPANY OF THE PROPERTY OF T		
			88.290	0.3080E 01		0.4701E 03			
			17.720 47.150	0.3080E 61 0.3080E 01		0.4648E 03 10.4595E 03			
			76.580	0.3086E 61		0.4542E U3			
			206.010 25 440	0.3080E 01		0.4489E 03			
			235.440 264.870	0.3080E 01 0.3080E 01		0.4436E UK 0.4363E US			
		2	294.300	0.3080E 01		0.4330E 03			
	-								
			294.300 296.300	0.3080E 01 0.3080E 01		0.4330E 03 0.4327E 03			
			70.000	0.00000000	100 Mar 100 100 Mar 10	0.4330E 03			
			2.000	0.00000000		0.4330E 03	THE RESIDENCE OF THE PARTY OF T		
	T I	ME = C	0.00655						
			X	VELOCITY		PRESSURE			
			-0.000 29.430	0.3080E 01 0.3080E 01		0.4860E 03 0.4807E 03			
			58.860	0.3080E 01		0.4754E 03			
			88.290	0.3080E 01 0.3080E 01	The same of the same state of	0.4701E 03 0.4648E 03			
			17.720 47.150	0.3083E 01		0.4591E 03			
			76.580	0.3101E 01		0.4512E 03			
			206.010 235.440	0.3178E 01 0.3130E 01		0.4349E 03 0.4364E 03			
		ž	264.870	0.1688E 01		0.6372E 03			
			294.300	0.4050E-02		0.87428 03			
			294.300	-0.1533E 01		0.8742E 03			
			296.300	0.00000000		0.6567E 03			
			0.000 2.000	0.000000000 -0.1537E 01		0.1092E 04 0.8742E 03			
		ME' = I	0.01309				11 - 1 - 10 - 10 - 10 - 10 - 10 - 10 -		
	, 1	ni= -							
			-0.000	VELOCITY 0.3080E 01		PRESSURE 0.4860E 03			
			29.430	0.30808 01		0.4807E 03			
			58.860 88.290	0.3081E 01 0.3086E 01		0.4753E 03 ************************************			
			117.720	0.3104E 01		0.4613E 03			
			147.150	0.3159E 01 0.3210E 01		0.4482E 03 0.4354E 03			
			176.580 206.010	0.3210E 01		0.4758E 03			
			235.440	0.1620E 01	and the same than	0.6525E 03			
			264.870 294.300	0.2141E 00 0.1586E-02		0.8498E 03 0.8774E 03			
			294.300	-0.1512E 01		0.8774E U3			
	*****		296.300	0.00000000		0.1095E 04			
			0.000	0.0000000		0.6592E 03			
			11 - 11111	0.00000000					

APPENDIX II

A MAD Language Program⁽³⁾ for the solution of water hammer including effect of friction losses for the pipe system Case II and a part of its computed results.

[See Figure 15b.] Subroutines omitted.

[See also APPENDIX V.]

```
CHINTU LAI
                                    Q042N 12
                                                          005
                                                                 030
 * EXECUTE, DUMP
 * COMPILE MAD, PUNCH OBJECT
                                                                         WH12
                                                                                 5
              INTEGER G, I, J, K, M, N, R, TREC, TP
             DIMENSION V(60), H(60), V1(30), H1(30), V2(60), H2(60), VP(60
            2), HP(60), L(4), D(4), B(4), S(4), E(4), Q(4), A(4), DELL(4),
            3VI(2), HF(4), TH(4)
              PRINT FORMAT TITLE
  START
              READ FORMAT CARD,
                                    VO, HO, TC, NU, N, L(1)...L(4), D(1)...D(
            24), B(1)...B(4), S(1)...S(4), E(1)...E(4), TP, EW
              PRINT FORMAT GIVEN, VO, HO, TC, NU, N, L(1) ... L(4), D(1) ... D(
            24), B(1) \cdot \cdot \cdot \cdot B(4), S(1) \cdot \cdot \cdot \cdot S(4), E(1) \cdot \cdot \cdot \cdot E(4), EW
              Z=1./EW
              THROUGH WORLD, FOR G=1, 1, G.G.4
              Q(G)=Z+0.81*D(G)/(B(G)*E(G))
  WORLD
              A(G) = SQRT \cdot (1 \cdot / (1 \cdot 93 \times Q(G)))
              J=2
              K = 1
              THROUGH TOUR, FOR G=1, 1, G.G.2
   TOUR
              DELL(G)=L(G)/N
              DELL(3)=L(3)
              DELL(4)=L(4)
              VI(1)=V0
              C1=D(1)*D(1)/(D(2)*D(2))
              C2=D(3)*D(3)/(D(2)*D(2))
              VI(2)=V0*C1
              THROUGH FROM, FOR G=1, 1, G.G.2
              HF(G)=FR.(D(G),VI(G),NU,S(G))*DELL(G)*VI(G)*VI(G)/(D(G)*64.33
  FROM
             22)
              HF(4) = HF(2) + L(4) / DELL(2)
              DELTI=L(3)/A(3)
              DELV=0.01
              DELH=0.01
              T=0
              H1(0) = H0
              H2(0) = H0
              HP(0)=H0
              PRINT FORMAT TEST, Q(1)...Q(4), A(1)...A(4), DELL(1), DELL(2)
             2. DELTI
              PRINT FORMAT TIME, T
              R = 0
              X=0
              THROUGH ARBOR, FOR G=1, 1, G.G.2
              X=X-DELL(G)
              THROUGH ANN, FOR I=R, 1, I.G.N+R
              X=X+DELL(G)
              V1(I)=VI(G)
              H1(I)=H1(R)-(I-R)*HF(G)
              PRINT FORMAT RESULT, X, V1(I), H1(I)
   ANN
              PRINT FORMAT BLANK
              R=R+N+J
ARBOR
              H1(R)=H1(R-2)
              THROUGH MICH, FOR I=R+K, 1, I.G.R+J
              V1(I)=VI(2)
              H1(I)=H1(R)-(I-R-K)*HF(4)
              PRINT FORMAT RESULT. X. V1(1), H1(1)
   MICH
              X=X+L(4)
              HE=H1(R+J)
              PRINT FORMAT BLANK
```

```
X = 0
                    THROUGH USA, FOR I=R-K, 1, I.G.R
                    V1(I)=0
                    H1(I)=H1(R)
                    PRINT FORMAT RESULT, X, V1(I), H1(I)
         USA
                    X=L(3)
                    THROUGH OHIO, FOR G=1, 1, G.G.4
                    HF(G)=HF(G)/2
         OHIO
                    R=0
                    THROUGH MD, FOR G=1, 1, G.G.2
                    THROUGH PA, FOR I=R, 1, I.G.R+2*N
                    V2(I)=VI(G)
         PA
                    H2(I)=H2(R)-(I-R)*HF(G)
                    R=R+2*(N+J)
         MD
                    H2(R)=H2(R-4)
                    THROUGH WASH, FOR I=R+2*K, 1, I.G.R+2*J
                    V2(I)=VI(2)
                    H2(I)=H2(R)-(I-R-2*K)*HF(4)
         WASH
                    THROUGH NEW, FOR I=R-2*K,1,1.G.R
                    V2(I) = 0.
                    H2(I) = H2(R)
         NEW
                    THROUGH YORK, FOR G=1, 1, G.G.4
         YORK
                    TH(G)=DELTI/DELL(G)
         BALTMR
                    TREC=0
         BOSTON
                    T=T+DELTI
                    WHENEVER T \cdot G \cdot 3 + TC \cdot AND \cdot T \cdot G \cdot 16 \cdot * (L(1)/A(1) + (L(2) + L(4))/A(2))
                   2TRANSFER TO START
                    TREC=TREC+1
                    WHENEVER TREC.NE.TP. TRANSFER TO PHILA
                    PRINT FORMAT TIME, T
         PHILA
                    M=1
                    DELT=DELTI
                    TI=T
                    THROUGH CANADA, FOR I=0, 1, I \cdot G \cdot 2 \times (N+K+J)
                    V(I)=V1(I)
         CANADA
                    H(I)=H1(I)
         SCOT
                    R = 0
                    THROUGH ENGLAD, FOR G=1, 1, G.G.2
                    THROUGH LONDON, FOR I=R+1, 1, I.E.N+R
                    VR=V(I)*(1.-TH(G)*(V(I)+A(G)))+V(I-1)*TH(G)*(V(I)+A(G))
                    VS=V(I)*(1*+TH(G)*(V(I)-A(G)))-V(I+1)*TH(G)*(V(I)-A(G))
                    HR=H(I)*(1.-TH(G)*(V(I)+A(G)))+H(I-1)*TH(G)*(V(I)+A(G))
                    HS=H(I)*(1+TH(G)*(V(I)-A(G)))-H(I+1)*TH(G)*(V(I)-A(G))
                    VP(I)=0.5*(VR+VS)+(16.083/A(G))*(HR-HS)-0.5*FR.(D(G),V(I),NU,
                   25(G))*V(I)*.ABS.V(I)*DELT/D(G)
                    HP(I) = (A(G)/64 \cdot 332) * (VR-VS) + 0 \cdot 5 * (HR+HS)
         LONDON
ENGLAD
                    R=R+N+J
                    VS=V(0)*(1•+TH(1)*(V(0)-A(1)))-V(1)*TH(1)*(V(0)-A(1))
                    HS=H0*(1.+TH(1)*(V(0)-A(1)))-H(1)*TH(1)*(V(0)-A(1))
                    VP(0)=VS+(32.166/A(1))*(H0-HS)-0.5*FR.(D(1),V(0),NU,S(1))*V(0
                   2)*.ABS.V(0)*DELT/D(1)
                    WHENEVER M.E.1. TRANSFER TO SWEDEN
                    THROUGH NORWAY, FOR G=3, 1, G.G.4
                    THROUGH OSLO, FOR I=R-K+1, 1, I.E.R
                    VR=V(I)*(1.-TH(G)*(V(I)+A(G)))+V(I-1)*TH(G)*(V(I)+A(G))
VS=V(I)*(1.+TH(G)*(V(I)-A(G)))-V(I+1)*TH(G)*(V(I)-A(G))
                    HR = H(I) * (I - TH(G) * (V(I) + A(G))) + H(I - I) * TH(G) * (V(I) + A(G))
                    HS=H(I)*(I_{\bullet}+TH(G)*(V(I)-A(G)))-H(I+1)*TH(G)*(V(I)-A(G))
```

```
VP([)=0.5*(VR+VS)+(16.083/A(G))*(HR-HS)-0.5*FR.(D(G),V(I),NU,
                   2S(G))*V(I)*.ABS.V(I)*DELT/D(G)
                     HP(I)=(A(G)/64 \cdot 332)*(VR-VS)+0.5*(HR+HS)
OSLO
NORWAY
                     R=R+J
SWEDEN
                     R=2*N+3*K
                     VS=V(R+1)*TH(3)*A(3)
                     HS=H(R)*(1 - TH(3)*A(3))+H(R+1)*TH(3)*A(3)
                     HP(R) = HS - (A(3)/32 \cdot 166) *VS
                     VP(R)=0
                     R=2*(N+K+J)
                     WHENEVER TI.G.TC. TRANSFER TO FINLAD
                     EXECUTE BC. (TC.TI.A(4).VI(2).HE.V(R). H(R). DELV.DELH)
                     VP(R)=V(R)-DELV
                     HP(R)=H(R)+DELH
                     TRANSFER TO MOSKVA
FINLAD
                     VP(R)=0
                     VR = V(R) * (1 - TH(4) * (V(R) + A(4))) + V(R-1) * TH(4) * (V(R) + A(4))
MOSKVA
                     HR=H(R)*(1_{\bullet}-TH(4)*(V(R)+A(4)))+H(R-1)*TH(4)*(V(R)+A(4))
                     HP(R) = HR - (A(4)/32 \cdot 166) * (VP(R) - VR) - A(4) * FR \cdot (D(4), V(R), NU, S(4))
RUSSIA
                   2*V(R)*.ABS.V(R)*DELT/(64.332*D(4))
                     WHENEVER TI.G.TC. TRANSFER TO POLAND
                     EXECUTE BC. (TC.TI.A(4), VI(2), HE, VP(R), HP(R), DELV, DELH)
                     VP(R)=VP(R)-DELV
                     HP(R) = HP(R) + DELH
                     WHENEVER (.ABS.DELV.GE.O.001).AND.(.ABS.DELH.GE.O.001). TRANS
                   2FER TO RUSSIA
                      R=2*(N+K)
POLAND
                      VP(R+J+K)=V(R+J+K)+VP(R+J+K+1)-V(R+J+K+1)
                     VR2=V(R)*(1.-TH(2)*(V(R)+A(2)))+V(R-1)*TH(2)*(V(R)+A(2))
                     HR2=H(R)*(1 - TH(2)*(V(R) + A(2)))+H(R-1)*TH(2)*(V(R) + A(2))
                     VR3=V(R+J)*(1.-TH(3)*(V(R+J)+A(3)))+V(R+J-1)*TH(3)*(V(R+J)+A(3))
                    2311
                     HR3=H(R+J)*(1,-TH(3)*(V(R+J)+A(3)))+H(R+J-1)*TH(3)*(V(R+J)+A(3))
                    2311
                     VS4=V(R+J+K)*(1_{\bullet}+TH(4)*(V(R+J+K)-A(4)))-V(R+J+K+1)*TH(4)*(V(R+J+K+1))
                    2+J+K)-A(4)
                     HS4=H(R+J+K)*(1_{\bullet}+TH(4)*(V(R+J+K)-A(4)))-H(R+J+K+1)*TH(4)*(V(R+J+K)+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+K+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+1)+H(A+J+
                    2+J+K)-A(4)
                    HP(R+J+K)=HS4+(A(4)/32\cdot166)*(VP(R+J+K)-VS4)+A(4)*FR\cdot(D(4),V(R+J+K)-VS4)
 BERLIN
                    2+J+K) , NU, S(4))*V(R+J+K)*. ABS. V(R+J+K)*DELT/(64.332*D(4))
                     HP(R)=HP(R+J+K)
                     HP(R+J)=HP(R+J+K)
                      VP(R)=VR2-(32.166/A(2))*(HP(R)-HR2)-0.5*FR.(D(2),V(R),NU,S(2)
                    2)*V(R)*.ABS.V(R)*DELT/D(2)
                     VP(R+J)=VR3-(32.166/A(3))*(HP(R+J)-HR3)-0.5*FR.(D(3),V(R+J),N
                    2U • S(3)) * V(R+J) * • ABS • V(R+J) * DEL T/D(3)
                      VEL=VP(R)+VP(R+J)*C2
                      DIF=VEL-VP(R+J+K)
                      WHENEVER .ABS.DIF.L.O.001. TRANSFER TO DEUTCH
                      VP(R+J+K)=VP(R+J+K)+DIF/3
                      TRANSFER TO BERLIN
                      VP(N+J)=V(N+J)+VP(N+J+1)-V(N+J+1)
 DEUTCH
                   VR1=V(N)*(1e-TH(1)*(V(N)+A(1)))+V(N-1)*TH(1)*(V(N)+A(1))
                      HR1=H(N)*(1.-TH(1)*(V(N)+A(1)))+H(N-1)*TH(1)*(V(N)+A(1))
                     )A-(L+N)V)*(2)HT*(1+L+N)V-(((2)A-(L+N)V)*(2)HT+•1)*(L+N)V=22V...
                    2211
                  HS2=H(N+J)*(1.+TH(2)*(V(N+J)-A(2)))-H(N+J+1)*TH(2)*(V(N+J)-A(
                    2211
```

```
HP(N+J)=HS2+(A(2)/32.166)*(VP(N+J)-VS2)+A(2)*FR.(D(2),V(N+J),
   NETH
             2NU,S(2))*V(N+J)*.ABS.V(N+J)*DELT/(64.332*D(2))
              HP(N)=HP(N+J)
              VP(N) = VR1 - (32 \cdot 166/A(1)) * (HP(N) - HR1) - 0 \cdot 5 * FR \cdot (D(1) \cdot V(N) \cdot NU \cdot S(1)
             2)*V(N)*.ABS.V(N)*DELT/D(1)
              VEL=VP(N)*C1
              DIF=VEL-VP(N+J)
              WHENEVER .ABS.DIF.L.O.001, TRANSFER TO BELG
              VP(N+J)=VP(N+J)+DIF/2.
              TRANSFER TO NETH
   BELG
              R=R+2*J
              WHENEVER M.NE.1, TRANSFER TO SWISS
              THROUGH PARIS, FOR I=0, 1, I.G.R
              V1(I) = VP(I)
              H1(I) = HP(I)
   PARIS
              M=2
              N=2*N
              J=2*J
              K=2*K
              DELT=DELT/2.
              TI=T-DELT
              THROUGH FRANCE, FOR I=0, 1, I.G.2*R
              V(I) = V2(I)
              H(I)=H2(I)
   FRANCE
              TRANSFER TO SCOT
              WHENEVER M.NE.2, TRANSFER TO ITALY
   SWISS
              THROUGH ROME, FOR I=0,1,1.G.R
              V(I) = VP(I)
              H(I) = HP(I)
   ROME
              M=4
              TI = T
              TRANSFER TO SCOT
              THROUGH SPAIN, FOR I=0, 1, I.G.R
   ITALY
              V2(I)=VP(I)
              H2(I)=HP(I)
   SPAIN
              N=N/2
              J=J/2
              K=K/2
              WHENEVER TREC.NE.TP, TRANSFER TO BOSTON
              R = 0
               X = 0
               THROUGH AUST, FOR G=1, 1, G.G.2
              X=X-DELL(G)
               THROUGH WIEN, FOR I=R, 1, I.G.N+R
              X=X+DELL(G)
               VB = 2 * V2(2 * I) - V1(I)
              HB=2*H2(2*I)-H1(I)
               PRINT FORMAT RESULT, X, VB, HB
   WIEN
               PRINT FORMAT BLANK
               R=R+N+J
   AUST
               THROUGH GREECE, FOR I=R+K, 1, I.G.R+J
               VB = 2 * V2(2 * I) - V1(I)
               HB = 2 * H2(2 * I) - H1(I)
               PRINT FORMAT RESULT, X, VB, HB
GREECE
             X=X+L(4)
               X = 0
               PRINT FORMAT BLANK
               THROUGH TURKEY, FOR I=R-K, 1, I.G.R
```

TURKEY	VB=2*V2(2*I)-V1(I) HB=2*H2(2*I)-H1(I) PRINT FORMAT RESULT, X,VB,HB X=X+L(3) TRANSFER TO BALTMR VECTOR VALUES TITLE = \$75H1WATER HAMMER SOLUTIONS FOR COMPOUN 2D SYSTEMS INCLUDING FRICTION EFFECT (A) *\$ VECTOR VALUES CARD = \$2F10.3,2F10.8,14/4F10.3,4F8.6/4F8.6,4F1 20.8/4E12.4,13/E12.4*\$ VECTOR VALUES GIVEN = \$6H4V0 = F10.3,58,5HH0 = F10.3,58,5HTC 2= F10.8,58,5HNU = F10.8,58,4HN = I4/14H0L(1,2,3,4) = 4(55,F10 3.3)/14H0D(1,2,3,4) = 4(57,F8.6)/14H0B(1,2,3,4) = 4(57,F8.6)/1
******	44HOS(1,2,3,4) = 4(S5,F10.8)/14HOE(1,2,3,4) = 4(S3,E12.4)/6HOE 5W = E12.4*\$
The state of the s	VECTOR VALUES TEST = \$14H0Q(1,2,3,4) = 4(S5,E12.5)/14H0A(1,2,23,4) = 4(S5,E12.5)/11H0DELL(1) = E12.5,S5,10HDELL(2) = E12.5,
	3S5,8HDELTI = E12.5*\$ VECTOR VALUES TIME = \$8H4TIME = F10.5/1H0,S12,1HX,S15,8HVELOC
Marie Control	2ITY, \$12,8HPRESSURE*\$ VECTOR VALUES RESULT = \$1H , \$7, \$10.3, \$8, \$12.4, \$8, \$12.4*\$ VECTOR VALUES BLANK = \$2H0 *\$
****	END OF PROGRAM
The second secon	
2	
1	
0	THE REPORT OF THE PARTY OF THE
9	
8	
7	
6	
7	
4	
3	

WATER HAMI	1ER SOLUTIONS F	OR COMPOUND SYSTEMS	INCLUDING FRICT	ION EFFECT (A)		
V0 = 1.112	H0 =	442.000 TC =	: 0.00000000	NU = 0.00000726	N =	10
L(1,2,3,4) =	299.050	294.300	4.905	4.905		
D(1,2,3,4) =	0.036330	0.025920	0.025920	0.025920		
B(1,2,3,4) =	0.002667	0.002667	0.002667	0.002667	_	
SC1,2,3,40 =	0.00000000	0.00000000 0.	00000000 0.	0000000		
E(1,2,3,4) =	0.2448E 10	0.2448E 10 0.	2448E 10 0.	2448E 10		
EW = 0.4710E 0	 8					
Q(1,2,3,4) =	0.25739E-07	0.24447E-07	0.24447E-07	0.24447E-07		
A(1,2,3,4) =	0.44867E 04	0.46037E 04	0.46037E 04	0.46037E 04		
DELL(1) = 0.299	05E 02 DELI	L(2) = 0.29430E 02	DELTI = 0.	10654E-02		
	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 235.240 269.145 299.050	VELOCITY 0.1112E 01	PRESS 0.4420 0.4415 0.4409 0.4404 0.4398 0.4393 0.4382 0.4387 0.4387 0.4377 0.4371	E 03 E 03 E 03 E 03 E 03 E 03 E 03 E 03		
	299.050 328.480 357.910 387.340 416.770 446.200 475.630 505.060 534.490 563.920	0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01	0.4366 0.4338 0.4311 0.4284 0.4257 0.4229 0.4202 0.4175 0.4147	E 03 E 03 E 03 E 03 E 03 E 03 E 03 E 03		
	593.350 593.350 593.350 598.255 0.000 4.905	0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.00000000	0.4093 0.4093 0.4093 0.4088 0.4093 0.4093	E 03 E 03 E 03		

TIME =	0.00639			
	-0.000	VELOCITY 0.1112E 01	PRESSURE 0.4420E 03	
***************************************	29.905	0.1112E 01	0.4415E 03	
	59.810	0.1112E 01	0.4409E 03	
	89.715	0.1112E 01	0.4404E 03	
	119.620 149.525	0.1112E 01 0.1112E 01	0.4398E 03 0.4393E 03	
	179.430	0.1112E 01	0.4387E 03	
	209.335	0.1112E 01	0.4382E 03	
**************************************	239.240	0.1112E 01	0.4377E 03	
	269.145 299.050	0.1112E 01	0.4371E U3	
	# # # # # # # # # # # # # # # # # # #	0.1112E 01	0.4366E 03 `	
	299.050	0.2185E 01	0.4366E 03	Philosophia and a community of the second and the s
	328.480 357.910	0.2185E 01 0.2185E 01	0.4378E 03	
	387.340	0.2185E 01	0.4311E 03 0.4284E 03	
	416.770	0.2185E 01	0.4257E 03	
Annual control of the	446.200	0.2185E 01	0.4229E 03	NATIONAL STREET, STREE
	475.630	0.2186E 01	0.4200E 03	
	505.060 534.490	0.2205E 01 0.2247E 01	0.4146E 03 0.4058E 03	
	563.920	0.1568E 01	0.5004E 03	
	593.350	0.8376E-01	0.7112E 03	
	593.350	-0.1043E 01	0.7112E 03	
	598.255	0.00000000	0.8615E 03	
	0.000	0.0000000	0.5494E 03	
	4.905	<u>-0.1127E_01</u>	0.7112E 03	
TIME =	0.01279			The state of the s
TIME =	0.01279 X	VELOCITY	PRESSURE	Part of the second seco
TIME =	× -0.000	VELOCITY 0.1112E 01	PRESSURE 0.4420E 03	
TIME =	% -0.000 29.905	0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03	
TIME =	% -0.000 29.905 59.810	0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03	
TIME =	% -0.000 29.905 59.810 89.715	0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03	
TIME =	% -0.000 29.905 59.810	0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430	0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335	0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4382E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240	0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4382E 03 0.4377E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335	0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4382E 03	
TIME =	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145	0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4382E 03 0.4377E 03 0.4371E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050	0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4387E 03 0.4371E 03 0.4366E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 328.480	0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4366E 03 0.4366E 03 0.4338E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 328.480 357.910	0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4382E 03 0.4377E 03 0.4371E 03 0.4376E 03 0.4366E 03 0.4338E 03 0.4338E 03 0.4311E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 328.480	0.1112E 01 0.1112E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4366E 03 0.4366E 03 0.4338E 03	
TIME =	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 328.480 357.910 387.340 446.200	0.1112E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4376E 03 0.4376E 03 0.4376E 03 0.438E 03 0.4338E 03 0.4311E 03 0.4283E 03	
TIME =	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 328.480 357.910 387.340 446.200 475.630	0.1112E 01 0.2185E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4376E 03 0.4366E 03 0.4366E 03 0.4311E 03 0.4253E 03 0.4251E 03 0.4198E 03 0.4103E 03	
TIME =	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 328.480 357.910 387.340 416.770 446.200 475.630 505.060	0.1112E 01 0.2185E 01 0.2187E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4366E 03 0.4366E 03 0.4311E 03 0.4253E 03 0.4251E 03 0.4198E 03 0.4103E 03	
TIME =	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 328.480 357.910 387.340 416.770 446.200 475.630 505.060 534.490	0.1112E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2187E 01 0.2187E 01 0.2187E 01 0.2187E 01 0.2187E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4366E 03 0.4366E 03 0.4366E 03 0.4253E 03 0.4251E 03 0.4198E 03 0.4198E 03 0.4185E 03 0.4185E 03	
TIME =	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 328.480 357.910 387.340 416.770 446.200 475.630 505.060	0.1112E 01 0.2185E 01 0.2187E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4366E 03 0.4366E 03 0.4311E 03 0.4253E 03 0.4251E 03 0.4198E 03 0.4103E 03	
TIME =	% -0.000 29,905 59,810 89,715 119,620 149,525 179,430 209,335 239,240 269,145 299,050 299,050 328,480 357,910 387,340 416,70 446,200 476,630 505,630 505,920 593,350	0.1112E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2188E 01 0.2206E 01 0.2253E 01 0.2177E 01 0.1449E 01 0.2987E 00 0.5719E-02	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4366E 03 0.4366E 03 0.4311E 03 0.4253E 03 0.4251E 03 0.4198E 03 0.4198E 03 0.4198E 03 0.4198E 03 0.4198E 03 0.4185E 03 0.5202E 03 0.6832E 03 0.7238E 03	
TIME =	X -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 328.480 357.910 387.340 416.770 446.200 475.630 505.060 534.490 563.920	0.1112E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2188E 01 0.2188E 01 0.2177E 01 0.1449E 01	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4377E 03 0.4371E 03 0.4366E 03 0.4366E 03 0.4311E 03 0.4253E 03 0.4251E 03 0.4198E 03 0.4198E 03 0.4198E 03 0.4198E 03 0.4185E 03 0.5202E 03 0.6832E 03	
TIME =	% -0.000 29.905 59.810 89.715 119.620 149.525 179.430 209.335 239.240 269.145 299.050 299.050 299.050 328.480 357.910 387.340 446.200 476.630 505.060 534.490 563.920 593.350	0.1112E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2188E 01 0.2253E 01 0.2277E 01 0.1449E 01 0.2987E 00 0.5719E-02	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4387E 03 0.4371E 03 0.4371E 03 0.4366E 03	
TIME =	X -0.000 29,905 59,810 89,715 119,620 149,525 179,430 209,335 239,240 269,145 299,050 299,050 328,480 357,910 387,340 416,770 446,200 475,630 505,060 534,490 563,920 593,350 598,255	0.1112E 01 0.2185E 01 0.2185E 01 0.2185E 01 0.2188E 01 0.2188E 01 0.2187E 01 0.2177E 01 0.1449E 01 0.2987E 00 0.5719E-02	0.4420E 03 0.4415E 03 0.4409E 03 0.4404E 03 0.4398E 03 0.4393E 03 0.4387E 03 0.4377E 03 0.4377E 03 0.4376E 03 0.4366E 03 0.4366E 03 0.4366E 03 0.4253E 03 0.4253E 03 0.4198E 03 0.4198E 03 0.4198E 03 0.4185E 03 0.5202E 03 0.6832E 03 0.7238E 03	

APPENDIX III

A MAD Language Program⁽³⁾ for the solution of water hammer including effect of friction losses for the pipe system Case III and a part of its computed results.

[See Figure 15c.] Subroutines omitted.

[See also APPENDIX V.]

CHINTU LAI

QU42N 13

005

030

```
* EXECUTE, DUMP
* COMPILE MAD, PUNCH OBJECT
                                                                            WH13
             INTEGER G, I, J, K, M, N, R, TREC, TP
             DIMENSION V(60), H(60), V1(30), H1(30), V2(60), H2(60), VP(60
           2), HP(60), L(3), D(3), B(3), S(3), E(3), Q(3), A(3), DELL(3),
           2VI(3), HF(3), TH(3)
            PRINT FORMAT TITLE
            READ FORMAT CARD,
                                    Vu, H, TC, NU, N, L(1)...L(3), D(1)...D(
 START
           23), B(1) \cdot \cdot \cdot B(3), S(1) \cdot \cdot \cdot S(3), E(1) \cdot \cdot \cdot E(3), TP, EW
            PRINT FORMAT GIVEN, V., HU, TC, NU, N, L(1)...L(3), D(1)...D(
           23), B(1)...B(3), S(1)...S(3), E(1)...T(3), EM
            Z=1./EW
             THROUGH WORLD, FOR G=1, 1, G.G.3
            Q(G) = Z + 0.81 * D(G) / (B(G) * E(G))
WORLD
            A(G) = SQRT \cdot (1 \cdot / (1 \cdot 93 * Q(G)))
            J=2
            K = 1
             THROUGH TOUR, FOR G=1, 1, G.G.2
 TOUR
            DELL(G)=L(G)/N
            DELL(3)=L(3)
            VI(1)=V0
            C1=D(1)*D(1)/(D(2)*D(2))
            C2=D(3)*D(3)/(D(2)*D(2))
            VI(2) = V0 * C1
             THROUGH FROM, FOR G=1, 1, G.G.2
FROM
            HF(G) = FR \cdot (D(G) \cdot VI(G) \cdot NU \cdot S(G)) * DELL(G) * VI(G) * VI(G) / (D(G) * 64 \cdot 33)
            DELTI=L(3)/A(3)
            DELV=0.01
            DELH=0.01
             T = 0
            H1(0) = H0
            H2(0) = H0
            HP(0) = H0
            PRINT FORMAT TEST, Q(1) \cdot \cdot \cdot Q(3), A(1) \cdot \cdot \cdot A(3), DELL(1), DELL(2)
           2, DELTI
             PRINT FORMAT TIME, T
             R = 0
            X = 0
             THROUGH ARBOR, FOR G=1, 1, G.G.2
             X=X-DELL(G)
             THROUGH ANN, FOR I=R, 1, I.G.N+R
             X = X + DELL(G)
             V1(I) = VI(G)
            H1(I) = H1(R) - (I-R) * HF(G)
 ANN
             PRINT FORMAT RESULT, X, V1(I), H1(I)
             PRINT FORMAT BLANK
             R = R + N + J
 ARBOR
            H1(R) = H1(R-2)
            HE=H1(R)
             X = 0
             THROUGH MICH, FOR I=R+K, 1, I.G.R+J
             V1(I) = 0
             H1(I)=H1(N)
             PRINT FORMAT RESULT, X, V1(I), H1(I)
MICH
             X=L(3)
             THROUGH USA, FOR G=1, 1, G \cdot G \cdot 3
 USA
             HF(G)=HF(G)/2
```

```
THROUGH MD, FOR G=1, 1, G \cdot G \cdot 2
           THROUGH PA, FOR I=R, 1, I \cdot G \cdot R + 2*N
           V2(I)=VI(G)
           H2(I) = H2(R) - (I-R) * HF(G)
PA
           R=R+2*(N+J)
           H2(R) = H2(R-4)
MD
           THROUGH NEW, FOR I=R+2*K, 1, I.G.R+2*J
           V2(I) = 0.
           H2(I)=H2(2*N)
NEW
           THROUGH YORK, FOR G=1, 1, G.G.3
           TH(G)=DELTI/DELL(G)
YORK
           TREC=0
BALTMR
BOSTON
           T=T+DELTI
           WHENEVER T.G.3*TC .AND. T.G.16.*(L(1)/A(1)+L(2)/A(2)),
          2TRANSFER TO START
           TREC=TREC+1
           WHENEVER TREC.NE.TP, TRANSFER TO PHILA
           PRINT FORMAT TIME, T
           M = 1
PHILA
           DELT=DELTI
           T = T
           THROUGH CANADA, FOR I=0, 1, I.G.2*(N+K+J)
           \vee (I)=\vee1(I)
           H(I)=H1(I)
CANADA
SCOT
           R = 0
           THROUGH ENGLAD, FOR G=1, 1, G.G.2
           THROUGH LONDON, FOR I=R+1, 1, I.E.M+R
           VR = V(I) * (1 - TH(G) * (V(I) + A(G))) + V(I-1) * TH(G) * (V(I) + A(G))
           VS=V(I)*(1.+TH(G)*(V(I)-A(G)))-V(I+1)*TH(G)*(V(I)-A(G))
           HR=H(I)*(1.-TH(G)*(V(I)+A(G)))+H(I-1)*TH(G)*(V(I)+A(G))
           HS = H(I) * (1 \cdot + TH(G) * (V(I) - A(G))) - H(I+1) * TH(G) * (V(I) - A(G))
           VP(I)=0.5*(VR+VS)+(16.083/A(G))*(HR-HS)-0.5*FR.(D(G),V(I),NU,
          2S(G))*V(I)*.ABS.V(I)*DELT/D(G)
           HP(I) = (A(G)/64 \cdot 332) * (VR-VS) + 0.5* (HR+HS)
LONDON
           R = R + N + J
ENGLAD
           VS=V(0)*(1.+TH(1)*(V(0)-A(1)))-V(1)*TH(1)*(V(0)-A(1))
           HS=H0*(1.+TH(1)*(V(0)-A(1)))-H(1)*TH(1)*(V(0)-A(1))
           VP(0)=VS+(32.166/A(1))*(H0-HS)-0.5*FR.(D(1),V(0),NU,S(1))*V(0
          2) * • ABS • V(0) * DELT/D(1)
           WHENEVER M.E.1, TRANSFER TO SWEDEN
           THROUGH NORWAY, FOR I=R+K+1, 1, I.E.R+J
           VR = V(I) * (1 - TH(3) * (V(I) + A(3))) + V(I-1) * TH(3) * (V(I) + A(3))
           VS=V(I)*(1 \cdot +TH(3)*(V(I)-A(3)))-V(I+1)*TH(3)*(V(I)-A(3))
           HR=H(I)*(1 - TH(3)*(V(I)+A(3)))+H(I-1)*TH(3)*(V(I)+A(3))
           HS=H(I)*(1.+TH(3)*(V(I)-A(3)))-H(I+1)*TH(3)*(V(I)-A(3))
           VP(I)=0.5*(VR+VS)+(16.083/A(3))*(HR-HS)-0.5*FR.(D(3),V(I),NU,
           2S(3))*V(I)*.ABS.V(I)*DELT/D(3)
           HP(I) = (A(3)/64 \cdot 332) * (VR-VS) + 0.5* (HR+HS)
NORWAY
            R = R + K
SWEDEN
            VS=V(R+1)*TH(3)*A(3)
            HS=H(R)*(1.-TH(3)*A(3))+H(R+1)*TH(3)*A(3)
            HP(R) = HS - (A(3)/32 \cdot 166) *VS
            VP(R)=0
            R=2*(N+K)
            WHENEVER TI.G.TC, TRANSFER TO FINLAD
            EXECUTE BC. (TC,TI,A(2),VI(2),HE,V(R), H(R), DELV,DELH)
            VP(R)=V(R)-DELV
```

```
HP(R)=H(R)+DELH
          TRANSFER TO MOSKVA
FINLAD
          VP(R)=0
MOSKVA
          VR=V(R)*(1.-TH(2)*(V(R)+A(2)))+V(R-1)*TH(2)*(V(R)+A(2))
          HR=H(R)*(1.-TH(2)*(V(R)+A(2)))+H(R-1)*TH(2)*(V(R)+A(2))
          HP(R)=HR-(A(2)/32•166)*(VP(R)-VR)-A(2)*FR•(D(2),V(R),NU,S(2))
RUSSIA
         2*V(R)*.ABS.V(R)*DEL[/(64.332*D(2))
          WHENEVER TI.G.TC, TRANSFER TO POLAND
          EXECUTE BC. (TC.TI, A(2), VI(2), HE, VP(R), HP(R), DELV, DELH)
          VP(R)=VP(R)-DELV
          HP(R) = HP(R) + DELH
          WHENEVER (.ABS.DELV.GE.O.OO1).AND.(.ABS.DELH.GE.J.OO1), TRANS
         2FER TO RUSSIA
POLAND
          (1+U+M)V=(1+U+M)qV+(U+M)V=(U+M)qV
          VR1=V(N)*(1 - TH(1)*(V(N)+A(1)))+V(N-1)*TH(1)*(V(N)+A(1))
          HR1=H(N)*(1.-TH(1)*(V(N)+A(1)))+H(N-1)*TH(1)*(V(N)+A(1))
          VS2=V(N+J)*(1.+TH(2)*(V(N+J)-A(2)))-V(N+J+1)*TH(2)*(V(N+J)-A(2))
         22))
          HS2=H(N+J)*(1+TH(2)*(V(N+J)-A(2)))-H(N+J+1)*TH(2)*(V(N+J)-A(2))
         22))
          R=R+2*J
          VR3=V(R)*(1.-TH(3)*(V(R)+A(3)))+V(R-1)*TH(3)*(V(R)+A(3))
          HR3=H(R)*(1.-TH(3)*(V(R)+A(3)))+H(R-1)*TH(3)*(V(R)+A(3))
          HP(N+J)=HS2+(A(2)/32.166)*(VP(M+J)-VS2)+A(2)*FR.(D(2),V(M+J),
BERLIN
         2NU,S(2))*V(N+J)*.ABS.V(N+J)*DELT/(64.332*D(2))
          HP(N)=HP(N+J)
          HP(R) = HP(M+J)
          VP(N) = VR1 - (32.166/A(1))*(HP(N) - HR1) - 0.5*FR.(D(1), V(N), NU, S(1))
         2) * V(N) * • ABS • V(N) * DELT/D(1)
          VP(R)=VR3-(32.166/A(3))*(HP(R)-HR3)-0.5*FR.(D(3),V(R),NU,S(3)
         2)*V(R)*.ABS.V(R)*D5LT/D(3)
          VEL=C1*VP(N)+C2*VP(R)
          DIF=VEL-VP(N+J)
          WHENEVER .ABS.DIF.L.0.001,
                                       TRANSFER TO BELG
          VP(N+J)=VP(N+J)+DIF/3
          TRANSFER TO BERLIN
BFLG
          WHENEVER M.NE.1, TRANSFER TO SWISS
          THROUGH PARIS, FOR I=, 1, I.G.R
          VI(I) = VP(I)
PARIS
          H1(I) = HP(I)
          M = 2
          N=2*N
          J=2*J
          K=2*K
          DELT=DELT/2.
          TI=T-DELT
          THROUGH FRANCE, FOR I=0, 1, I.G.2*R
          V(I) = V2(I)
FRANCE
          H(I)=H2(I)
          TRANSFER TO SCOT
          WHENEVER M.NE.2, TRANSFER TO ITALY
SWISS
          THROUGH ROME, FOR I=0,1,1.G.R
          V(I) = VP(I)
          H(I) = HP(I)
ROME
          M=4
          TI = T
          TRANSFER TO SCOT
          THROUGH SPAIN, FOR I=U, 1, I.G.R
ITALY
```

```
V2(I) = VP(I)
          H2(I) = HP(I)
SDAIN
          N=N/2
           J=J/2
          K=K/2
          WHENEVER TRECOMEOTP, TRANSFER TO BOSTON
          R = 0
          X = 0
          THROUGH AUST, FOR G=1, 1, G.G.2
           X = X - DELL(G)
           THROUGH WIEN, FOR I=R, 1, I.G.N+R
           X = X + DELL(G)
           VB=2*V2(2*I)-V1(I)
           HB = 2 * H2 (2 * I) - H1 (I)
           PRINT FORMAT RESULT, X, VB, HB
WIEN
           PRINT FORMAT BLANK
           R = R + M + J
AUST
           X = 0
           THROUGH GREECE, FOR I=R+K, 1, I.G.R+J
           VR = 2 * V2 (2 * I) - V1 (I)
           HB = 2 * H2 (2 * I) - H1 (I)
           PRINT FORMAT RESULT, X, VB, HB
GREECE
           X = X + L(3)
           TRANSFER TO BALTMR
           VECTOR VALUES TITLE = $75P1WATER HAMMER SOLUTIONS FOR COMPOUN
          2D SYSTEMS INCLUDING FRICTION EFFECT (8) *5
           VECTOR VALUES CARD = $2F10.3,2F10.8,14/3F10.3,3F8.6/3F8.6,3F1
          20.8/3E12.4,I3,E12.4%$
           VECTOR VALUES GIVEN = $6844V = F10.3,58,5880 = F1.03,58,58TC
          2= F10.8, S8, 5HNU = F10.8, S3, 4HD = 14/12 HOL(1, 2,3) = 3(S6, F10.3)
          3)/12H0D(1,2,3) = 3($3,8.6)/12H0B(1,2,3) = 3($8,83.6)/12H0S(1,2,3)
          4,2,3) = 3(S6,F10.8)/12H (E(1,2,3) = 3(S4,E12.4)/6H (E/ = E12.4)
          5*$
           VECTOR VALUES TEST = $12H \times O(1,2,3) = 3($6,$12,5)/12H \times A(1,2,3)
          2 = 3(S6,E12.5)/11HCDELL(1) = E12.5,S5,10HDELL(2) = E12.5,S5,8
          3HDELTI = E12.5*$
           VECTOR VALUES TIME = $8844TIME = F10.5/180.512.18X.515.884VLLGC
          2ITY, S12,8HPRESSURE**5
           VECTOR VALUES RESULT = $1H ,87,F10.3,86,E12.4,88,E12.4*$
           VECTOR VALUES BLANK = $2H0 *$
           END OF PROGRAM
```

WATER I	HAMMER	SOLUTIONS	FOR	COMPOUND	SYSTEMS	INCLUDING	FRICTION	EFFECT	(B)

V0 =	1.083	HO =	432.000	TC = 0.00000000	NU = 0.00000712	N =	10
L(1,2,3)	=	299.050	294.300	4.905			
DC1+2+30	=	6.036330	0.025920	0.025920			
B(1,2,3)	-	0.002667	0.002667	0.002667			
S(1,2,3)	=	0.00000000	0.00000000	0.00060000			
E (1,2,3)	=	0.2448E 10	0.2448E 10	0.2448F 16			
EW = 0.	4730E 0	8					
0(1,2,3)	=	0.25649E-07	0.24357E-0	7 0.24357E-07	;		
A(1,2,3)	=	0.44946E 04	0.46122E 0	4 0.46122E 04			
DELLCID =	0.299	NSE NO DEL	.L(2) = 0.29430E	. 02 DELTI = 0.	106355-02		

TIME =	0.00000		
	Х	VELOCITY	PRESSURE
	-6.000	7.1083E 01	0.4320E 03
	29.905	0.108JE 01	0.4315E 03
	59.810	0.1083E 01	0.4315E 03
	89.715	0.1083E G1	0.4305E 03
	119.620	0.1083E 01	0.4299E 03
	149.525	0.1083E 01	0.4294F 03
	179.430	0.1083E 01	0.4289E 03
	209.335	0.1093E 01	0.4284E 03
	239.240	9.1083E 01	0.4279E 03
	269.145	0.1083E 01	0.4274E 03
	299.050	0.1083E 61	G.4268E 03
	299.050	0.2128E 01	0.4268E 03
	328.480	0.2128E 01	0.4243F 03
	357.910	0.27285 01	9.4217E U3
	387.340	0.2128E 01	0.4191E 03
	416.770	0.2128E 01	0.4165E 03
	446.200	0.2128E 01	0.4139E 03
	475.630	0.2128E 01	0.4113E 03
	505.060	0.2128E 01	0.4087E_03
	534.490	0.2128E 01	0.4061E 03
	563.920	0.2128E 01	0.4035E 03
	593.350	0.2128E 01	0.4009E 03
	0.000	0.0000000	0.4268E 03
	4.905	0.0000000	0.4268E 03
TIME =	0.00638		
			group group grown grown as a grown grown
	X	VELOCITY	PRESSURE
	-0.000	0.1083E 01	0.4320E 03
	29.905	<u> </u>	0.43158 03
	59.810	0.1083E 01	0.4310F 03 0.4305E 03
	89.715	0.1683E 61 0.1083E 01	0.4303E 03
	119.620		0.4294E 03
	149.525 179.430	0.1083E 01 0.1083E 01	0.4289E 03
	209.335	0.1083E G1	0.4254E 03
	239.240	0.1083E 01	0.4279E 03
	269.145	0.1083E 01	0.4274E 03
	299.050	0.1083E 01	0.4268E 03
	299.050	0.2128E 01	0.4268E 03
	328.480	0.2128E 01	0.4243E 03
	357.910	0.2128E 01	0.4217E 03
	387.340	0.2128E 01	0.4191E 03
	416.770	0.2128E 01	0.4165E 03
	446.200	0.2128E 01	0.4138E 03
	475.630	0.2134E 31	0.4103E 03
	505.060	0.2183E 01	0.4007E 03
	534.490	0.2139E 01	0.4044E 03
	563.920	0.9828E 00	0.5681E 03
	593.350	0.0000000	0.7076E 03
	0.000	0.0000000	0.4268E 03 0.4268E 03

APPENDIX IV

The Moody Diagram written in MAD Language (3) for the determination of friction factor in pipe flow problems, in the form of a subroutine.*

[See APPENDIX V]

^{*} F = 1 for R.L. 64 is used in order to prevent $F(=f) \rightarrow \infty$. In this case V $\stackrel{.}{=}$ 0.

	* COMPILE	MAD, PUNCH OBJECT EXTERNAL FUNCTION (D,V,NU,K) ENTRY TO FR.
	**************************************	R=D*•ABS•V/NU WHENEVER R•L•64•
and Milk State		F=1.0 OR_WHENEVER R.L.2000.
		F=64./R OR WHENEVER K.E.O.
Language Samuel Control of the Contr		TRANSFER TO SMOOTH OTHERWISE
A		TRANSFER TO ROUGH
		END OF CONDITIONAL TRANSFER TO BACK
	SMOOTH	WHENEVER R.L.3250., TRANSFER TO CRITIC F=0.043
	STURB	KP=0.86858896*ELOG.(R*SQRT.(F))-0.8
		F0=1•/(KP*KP) WHENEVER •ABS•(F-F0)•L•0•0001, TRANSFER TO BACK F=F0
	ROUGH	TRANSFER TO STURB RS=D/K
	ROUGH	WHENEVER RS.G.400.AND.R.G.3250.OR. RS.G.100.AND.R.G.3350. 2 OR. RS.G.25.AND.R.G.3550.OR. RS.LE.25.AND.R.G.3900.FTR 3ANSFER TO RTURB
	CRITIC	W=ELOG (R/2313 •)
		X=3.05396*W*W F=0.03*EXP.(X)
economistra de electrica (n. 1864).		TRANSFER TO BACK
	RTURB	W=0.86858896*ELOG.(RS)+1.14 F=1./(W*W)
	TRASN	WHENEVER R*SQRT.(F)/RS.G.200., TRANSFER TO BACK X=1.74-0.86858896*ELOG.(2./RS+18.7/(R*SQRT.(F))) F0=1./(X*X)
		WHENEVER .ABS.(F-F0).L.0.0001, TRANSFER TO BACK
*******		F=FO TRANSFER TO TRASN
	BACK	FUNCTION RETURN F END OF FUNCTION
	character of 1 · · ·	
2		
1		
0		
9		
8		
7	and the second s	
6		
-		
4	W - 6	
3		

2.....

APPENDIX V

TABLE II

SYMBOLS USED IN THE MAD STATEMENTS THROUGH APPENDICES I \sim IV AND THEIR EQUIVALENT CONVENTIONAL NOTATIONS OR DESCRIPTIONS

Symbols Used In MAD Statements	Equivalent Con- ventional Notations	Symbols Used In MAD Statements	Equivalent Con- ventional Notations
	a,a ₁ , b,b ₁ , $(D_1/D_2)^2 = A_1/A_2$ $(D_3/D_2)^2 = A_3/A_2$ D,D ₁ ,	VP VR,VS VR1,VS2, X	v_{P} $v_{\mathrm{R}}, v_{\mathrm{S}}$ $(v_{\mathrm{R}})_{1}, (v_{\mathrm{S}})_{2}, \dots$ x
	$\Delta L, \Delta L_1, \ldots$		
DELT, DELTI	Δt	Symbols Used In	
DELV	$\triangle V$	MAD Statements	Descriptions
E,El or $E(1),$	E,E_1,\ldots		
EW	K	DIF	Difference, Δ
F,FR.	f	G	Integer
Н, НО,	H, H_O, \dots	HB	Extrapolated value
HF	$\mathtt{h}_{ extsf{f}}$		of H
HP	${\mathtt H}_{\! P}$	HE	Head across the gate
HR, HS	H_{R}, H_{S}		when $V = V_0$
HR1,HS3,	$(H_R)_1, (H_S)_3, \dots$	Hl	H for n steps of 2∆t
I	i	H2	H for 2n steps of \triangle t
J	j	R	Integer
K	k	R	Reynolds number
K	€	RS	Relative smoothness
	L, L_1, \dots		D/e
M	m	TREC	Integer (for time
N	n		recording or counting)
NU	ν	TP	Integer (for the
Q	$1/K + Dc_1/Eb$		control of time in-
S,S1 or S(1),	$\epsilon, \epsilon_1, \dots$		terval in printing)
TAU	Τ	VB	Extrapolated value
TC	$^{\mathrm{T}}\mathrm{c}$		of V
TH, TH1 or TH(1),	θ, θ_1, \dots	V1	V for n steps of 2∆t
T,TI	t	₹2	V for 2n steps of Δt
V,VO,	V,V ₀ ,		
VEL	\ \(\) \(\) \(\)		
VI(1),VI(2),	$(v_o)_1, (v_o)_2, \dots$		

BIBLIOGRAPHY

- 1. Allievi, L. "Theory of Waterhammer," translated by E. E. Halmos, printed by Richardo Garoni, Rome, Italy, 1925.
- 2. Angus, R. W. "Water-Hammer Pressures in Compound and Branched Pipes," Proceedings ASCE, 64, January 1938, p. 133-169.
- 3. Arden, B., Galler, B., and Graham, R. "Michigan Algorithm Decoder," The University of Michigan, Ann Arbor, Michigan, June 1960.
- 4. Barbarosa, Nicholas L. "Hydraulic Analysis of Surge Tanks by Digital Computer," Journal of the Hydraulics Division, Proc. of ASCE, 85, No. HY4, April 1959.
- 5. Binnie, A. M. "The Effect of Friction on Surges in Long Pipe-Lines,"

 Quarterly Journal of Mechanics and Applied Mathematics, Vol. IV, Pt. 3,

 (1951) 330-343.
- 6. Cazard, R. "Fatigue of Materials," translated by Fenner, A. J., Philosophical Library, Inc., 1953.
- 7. Durand, W. F. "Hydraulics of Pipe Lines," D. Van Nostrand Company, Inc., New York, 1921.
- 8. Freeman, John R. "Flow of Water in Pipes and Pipe Fittings," Published by ASME, 1941.
- 9. Joukowsky, N. "Waterhammer," translated by Miss O. Simin, Proc. Amer. Water Works Assoc., 24, (1904) 341-424.
- 10. Lister, M. The Numerical Solutions of Hyperbolic Partial Differential Equations by the Method of Characteristics in "Mathematical Method for Digital Computers" edited by Anthony Ralston and Herbert S. Wilf, John Wiley and Sons, Inc., 1960.
- ll. Lister, M., and Roberts, L. "On the Numerical Solutions of Spherical Waves of Finite Amplitude," Technical Report on the Project of Machine Method of Computation, MIT-Proj. DIC 6915, June 1956.
- 12. Love, A. E. H. "A Treatise on the Mathematical Theory of Elasticity," Dover Publications, 1944.
- 13. McNown, J.S. Surges and Water Hammer in "Engineering Hydraulics," edited by H. Rouse, John Wiley and Sons, Inc., New York, 1950.
- 14. Moody, Lewis F. "Simplified Derivation of Water-Hammer Formula," Symposium on Water Hammer, ASME-ASCE, (1933) 25-28.

- 15. Parmakian, J. "Waterhammer Analysis," Prentice-Hall, Inc., New York, 1955.
- 16. Rich, George, R. "Hydraulic Transients," McGraw-Hill Book Co., Inc., 1951.
- 17. Rich, George, R. "Water-Hammer Analysis by the Laplace-Mellin Transformation," Trans. ASME, 1945.
- 18. Roberts, L. "On the Numerical Solution of the Equations for Spherical Waves of Finite Amplitude, II," J. Math. and Phys., Vol. XXXVI, No. 4, January, 1958.
- 19. Rouleau, W. T. "Pressure Surges in Pipelines Carrying Viscous Liquids," Journal of Basic Engineering ASME, December, 1960.
- 20. Rouse, Hunter. "Elementary Mechanics of Fluids," John Wiley and Sons, Inc., 1953.
- 21. Streeter, Victor L. "Fluid Mechanics," McGraw-Hill Book Company, Inc., 1958.
- 22. Streeter, Victor L. "Friction Resistance in Artificially Roughened Pipes," Trans. ASCE, 101 (1936) 681-713.
- 23. "Symposium on Water Hammer," ASME-ASCE, 1933.
- 24. Wood, F. M. "The Application of Heavisides Operational Calculus to the Solutions of Problems in Water Hammer," <u>Transactions ASME</u>, 59, Paper Hyd-59-15 (Nov., 1937) 707-713.