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We derive the polarization-dependent displacements parallel and perpendicular to the plane of incidence for
a Gaussian light beam reflected from a planar interface, taking into account the propagation of the beam.
Using a classical-optics formalism we show that beam propagation may greatly affect both Goos—Hénchen
and Imbert—Fedorov shifts when the incident beam is focused. © 2008 Optical Society of America
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It is known that the behavior of bounded beams of
light reflected from and transmitted through a pla-
nar interface differs from that exhibited by plane
waves, the latter being ruled by Snell’s law and the
Fresnel equations [1]. For bounded beams diffractive
corrections occur, the most prominent of which are
the so-called Goos—Hanchen (GH) [2] and Imbert—
Fedorov (IF) shifts [3] of the beam, occurring in the
directions parallel and perpendicular to the plane of
incidence, respectively. In principle, both reflected
and transmitted beams are subject to such shifts. A
great deal of literature exists about experimental
[4,5] and theoretical [6—9] demonstrations of both GH
and IF shifts but generally the effects of beam propa-
gation are not accounted for [10]. A notable exception
is a recent paper by Hosten and Kwiat [11] where the
authors report, among other issues, on a dramatic
signal enhancement technique (~100X) for a quan-
tum version of the IF shift, the spin Hall effect of
light (SHEL), based on beam propagation [12]. The
theoretical discussion in [11] uses the quantum for-
malism of weak measurements [13], although the au-
thors note that the beam propagation enhancement
(BPE) is essentially a classical phenomenon.

The purpose of this Letter is to present a purely
classical analysis of the BPE; we feel that this is use-
ful since a classical description will make this impor-
tant technique, which allows subnanometer sensitiv-
ity [11], more accessible to the metrology community.
Furthermore, our classical framework covers both
the GH and the IF cases, whereas the treatment in
[11] is restricted to the IF case only. A last, minor, dif-
ference between the present work and that of Hosten
and Kwiat [11] is that the latter authors measure the
beam that is transmitted across an air—glass inter-
face, while we study the beam that is reflected by
such an interface. Since the transmission and reflec-
tion cases have a very similar mathematical struc-
ture, all our main conclusions regarding reflective
GH and IF shifts remain qualitatively valid for the
transmission case.

We begin by considering optical reflection from a
planar interface; Fig. 1 illustrates the coordinate sys-
tem. The z axis of the laboratory Cartesian frame
(xyz) is normal to the planar interface (z=0), that
separates empty space (in practice air), where z <0,
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from an optically dense region (either a dielectric or a
metal [14]), where z>0. We use a Cartesian frame
(x;,yi,2;) attached to the incident beam and another
one (x,,y,,z,) attached to the reflected beam. Note
that the coordinate x, is associated with the longitu-
dinal GH shift, while y, is associated with the trans-
verse IF shift. Consider a monochromatic Gaussian
beam of light propagating in air parallel to the posi-
tive z; axis. The electric field amplitude of such a
beam can be written as [9]
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where we have introduced the dimensionless vari-
ables X;=kx;, Y;=ky;, Z;=kz;, A=kL, and where the
paraxial approximation corrected up to first-order de-
rivatives has been used [15]. The Gaussian ampli-
tude of the beam is characterized by the minimum
waist w, located at z;=0 and the Rayleigh range L
=kw?2/2. The polarization of the beam is determined
by the complex-valued wunit vector f=(fpX;

+1s9)/(Ifp|?+|fs|?>)2, which corresponds experimen-
tally to a polarizer perpendicular to the beam central

Fig. 1. (Color online) Geometry of beam reflection at the
air-medium interface.
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wave vector k;=%Z,. Across the interface z=0 the tan-
gential components of the electric and magnetic field
must be continuous. From this boundary condition
and Eq. (1) the electric and magnetic fields of the re-
flected beam can be determined under the same con-
ditions. A straightforward calculation [9] yields
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where X,=kx,, Y,.=ky,, Z,=kz,, and ry,drn/ d0; are the
Fresnel reflection coefficients and their first deriva-
tives evaluated at the “central” angle of incidence 6;
=arccos(k;-z/k), respectively. The index A € {P,S} is
a label for a linearly polarized plane wave whose elec-
tric field vector is either parallel (P) or perpendicular
(S) to the plane of incidence (x,z), which is defined as
the common plane of the central wave vector k;=kZ,,
and the normal to the interface z. In a similar man-
ner the magnetic field B™f of the reflected beam can
be obtained and used to calculate the beam intensity
spatial profile I(X,,Y,,Z,) as the flux of the time av-

eraged Poynting vector S« Re(E™ x B™) through a
surface perpendicular to the central direction of
propagation z,: I(X,,Y,,Z,)*xS-z,.. At any given
plane Z,=const., the intensity I(X,.,Y,,Z,) can be con-
sidered as the distribution of the “quasi-Gaussian”
variables X=X,%,+Y,y, with means M=(X)X,
+(Y,)¥,, where

J J XI(X,,Y,,Z,)dX,dY,
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determines the centroid of the reflected beam [16]. As
the result of a straightforward calculation one ob-
tains for the GH shift
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and for the IF shift
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where =R, exp(ioy), Ae{P,S}, [p=apelR,
fs=agexp(in), and pa=Re(d1nr,/96),

ea=Im(dInr,/a6;).

Equations (4) and (5) are the first main result of
this Letter. They give both the GH and the IF shift as
functions of the beam propagation distance Z,. For a
well-collimated beam, the condition Z,/A <1 is trivi-
ally satisfied at optical frequencies and the
Z,-independent terms in both Egs. (4) and (5) are
dominant. Such terms represent the “traditional” GH
and IF shifts. In fact, when Z,=0 Eq. (4) is a straight-
forward generalization of the well-known Artmann
formula [17]; Eq. (5) is in agreement with Bliokh and
Bliokh [18]. However, for a focused beam the condi-
tion Z,/A>1 may hold and the Z,-dependent terms
become relevant. For example, if a typical He—Ne la-
ser operating at wavelength A\ of 633 nm with a mini-
mum waist w; of 1.5 mm is focused by a lens with a
focal length f of 100 mm, a waist of wo=Nf/(7w,)
=13 pum is produced. If this beam propagates over a
distance of 250 mm from the lens, we easily obtain
Z,/A=168 [19]. Thus, depending on the actual ex-
perimental conditions, either Z,-dependent or
-independent terms in Egs. (4) and (5) may be domi-
nant and, as a consequence, the measured GH and IF
shifts will change dramatically.

To show the connections between the results above
and the ones presented in [11], we must take a step
backward and calculate, as an illustrative example,
the quantity %,-E™f evaluated for ag=0 on the plane
of incidence Y,=0. This corresponds to an experimen-
tal configuration apt to measure the GH shift of a
P-polarized beam. From Eq. (2) it readily follows that
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A careful inspection of the equation above shows that
it represents a Gaussian beam tilted clockwise by an
angle pp/ A with respect to the axis z, and displaced
by ¢p/k along the axis X,. In other words, for a
Gaussian beam an imaginary position shift is equiva-
lent to an angular tilt, while a real one represents a
spatial shift. It is easy to see that the complex-valued
nature of the shift controls its behavior under beam
propagation. To demonstrate this we note that calcu-
lation of the centroid of the distribution |&,-E™f|?
yields

(6)
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which coincides with Eq. (4) evaluated for ag=0. This
expression of (X,) shows that only the imaginary part
pp of the complex shift ¢p—ipp couples to the coordi-
nate Z, and it is enhanced by a factor Z,/A as the re-
flected beam propagates along the optical distance
Z,.. As will be shown below, such a factor Z,/A coin-
cides with the propagation enhancement factor F' of
[11], which lies at the core of their signal enhance-
ment technique. Although in the reasoning above we
have considered a specific example, it is not difficult
to realize that the conclusions reached are perfectly
general; in particular, positioning of the waist of the
Gaussian beam at the interface is not essential (see
also [11]). This is the second main result of our Let-
ter.

We conclude this Letter by demonstrating that, as
anticipated, the term Z,/A in our Eq. (7) coincides
with the propagation enhancement factor F' of Hosten
and Kwiat [11]. According to their scheme the inci-
dent beam is first preselected in the P polarization
state—namely, fp=1, fg=0—and then postselected
(after reflection by an air—glass interface) in the v po-
larization state, where v=%X,sin A+y,cos A and A
==|A|. In addition, after reflection the beam is ob-
served along the transverse plane X,=0. Thus, the
relevant amplitude of the reflected field can be writ-
ten as
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where the purely imaginary term iD cotA is de-
scribed in [11] as the product of the SHEL-induced
photon displacement D=(1+rg/rp)cot §; and the
weak value of the photon spin component i cot A.
However, by comparing Eq. (8) with Eq. (6) it is clear
that at a classical level such an imaginary shift
amounts to a tilt by the small angle D cot A/A of the
reflected beam. From the discussion above we know
that an imaginary shift couples with coordinate Z,
and, therefore, increases as the beam propagates. In
fact, calculation of the centroid of the distribution
V- Erfy _o|* yields

(Y,)=(ZJA)D cot A, (Y2 =(A?+Z2)/(27A), (9)
where Z,/A=F (=156 in [11]) is just the propagation
enhancement factor. This last equality can be easily
proved by combining the two formulas in Eq. (9) to
obtain, in terms of dimensional variables,
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where 6=D/k; R(z)=(2?+L?)/z=z is the radius of
curvature of the beam wavefront at the lens L2 posi-

tion [20]; and the last approximate equality holds in
the experimental conditions of [11], where z/L > 1.
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From Eq. (10) it readily follows that F=4m(y?)/(z\),
in agreement with Eq. (4) in [11].

In summary, we have furnished analytic expres-
sions, based upon classical optics, for both the GH
and the IF shifts, as functions of the beam propaga-
tion distance. These give in a natural way the dra-
matic changes of the GH and IF displacements in-
duced by using a focused beam. Moreover, from the
analysis of such expressions we derived a fully clas-
sical interpretation of a very recently introduced sig-
nal enhancement technique employed to measure the
spin Hall effect of light [11].

We acknowledge Michele Merano for useful discus-
sions. This project is supported by FOM.
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