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Dental enamel forms through the concerted activities of specialized extracellular matrix 
proteins, including amelogenin, enamelin, MMP20, and KLK4. Defects in the genes encoding 
these proteins cause non-syndromic inherited enamel malformations collectively designated 
as amelogenesis imperfecta (AI). These genes, however, account for only about a quarter of 
all AI cases. Recently we identified mutations in FAM83H that caused autosomal dominant 
hypocalcified amelogenesis imperfecta (ADHCAI). Unlike other genes that cause AI, 
FAM83H does not encode an extracellular matrix protein. Its location inside the cell is 
completely unknown, as is its function. We here report novel FAM83H mutations in four 
kindreds with ADHCAI. All are nonsense mutations in the last exon (c.1243G>T, p.E415X; 
c.891T>A, p.Y297X; c.1380G>A, p.W460X; and c.2029C>T, p.Q677X). These mutations 
delete between 503 and 883 amino acids from the C-terminus of a protein normally 
comprised of 1179 residues. The reason these mutations cause such extreme defects in the 
enamel layer without affecting other parts of the body is not known yet. However it seems 
evident that the large C-terminal part of the protein is essential for proper enamel 
calcification. © 2008 Wiley-Liss, Inc. 
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INTRODUCTION 

Dental enamel is the hardest tissue in the human body. It consists of a highly organized layer of calcium 
hydroxyapatite crystals that covers dentin to form the crown of a tooth. Dental enamel contains less than 1% 
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organic material, whereas other mineralized tissues contain about 20% organics (Nanci, 2008). Amelogenesis 
imperfecta (AI) is a collection of inherited conditions exhibiting malformations in tooth enamel, usually in the 
absence of other symptoms (Hu, et al., 2007; Wright, 2006). The enamel phenotype in AI varies, but can be 
broadly categorized as hypoplastic (abnormally thin), hypomaturation (normal thickness, but soft), and 
hypocalcified (irregular thickness and soft) (Witkop, 1988). 

Dental enamel forms in an extracellular space by matrix-mediated biomineralization (Simmer and Fincham, 
1995). Defects in the genes encoding four secreted enamel matrix proteins are known to cause non-syndromic 
hereditary enamel defects. Mutations in the amelogenin gene (AMELX; MIM# 300391) cause X-linked hypoplastic 
and hypomaturation AI. Mutations in the enamelin gene (ENAM; MIM# 606585) cause autosomal dominant or 
recessive hypoplastic AI, while mutations in the genes encoding the enamel proteases enamelysin (MMP20; MIM# 
604629) and kallikrein 4 (KLK4; MIM# 603767), cause autosomal recessive hypomaturation AI. These genes, 
however, were found to cause the disease in only 6 out of 24 AI families screened by mutational analyses using the 
known candidate genes (Kim, et al., 2006). 

Recently, a form of autosomal dominant AI was linked to a 2.1 MB region of chromosome 8 (Mendoza, et al., 
2007), and we discerned that defects in FAM83H (family with sequence similarity 83 member H) within this 
linked interval caused autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI) in two Korean 
families (Kim, et al., 2008). The aim of this study was to further investigate for FAM83H (8q24.3) mutations in 
other kindreds with ADHCAI.  

 

MATERIALS AND METHODS 

Subjects 
The study protocol and subject consents were reviewed and approved by the Institution Review Boards at the 

Seoul National University Hospital and the University of Michigan and appropriate informed consent was obtained 
from all subjects. Among the 37 AI families, we selected 7 ADHCAI families based on the clinical phenotype.  

DNA extraction, PCR amplification and Mutational Analysis 
Ten cc of peripheral whole blood was obtained from participating family members. Genomic DNA was 

obtained by a conventional salting out method. we amplified and sequenced all exons and exon/intron boundaries 
of the FAM83H gene as previously described (Kim, et al., 2008). PCR amplifications were performed using the 
HiPi DNA polymerase premix (ElpisBio, Korea). PCR amplification products were purified by the PCR 
Purification Kit and protocol (ElpisBio, Korea) and used as template for DNA sequencing, which was performed at 
the DNA sequencing center (Macrogen, Korea). DNA mutation numbering system is based on cDNA sequence. 
For cDNA numbering, nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the 
ATG translation initiation codon in the reference sequence (NM_198488.3), according to journal guidelines 
(http://www.hgvs.org/mutnomen).  

Paternity Testing 
Genomic DNA from the proband of family 2 (AI#12) and his parents were analyzed by a commercial laboratory 

(DowGene, Korea) using 15 genetic markers (D3S1358, D21S11, D5S818, D13S317, D7S820, CSF1PO, TPOX, 
FGA, VWA, D16S539, D8S1179, D18S51, THO1, PentaE, PentaD). 

 

RESULTS 

Nonsense mutations were identified in the last exon (exon 5) of FAM83H in four families with hypocalcified 
amelogenesis imperfecta (Table 1). In three of the families (1,3,4) the pattern of inheritance is autosomal dominant 
(Figure 1). The mutation in family 2 is spontaneous, as the mutation is present in the proband but absent in his 
biological parents (confirmed by paternity testing), who have normal dentitions. 
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Table 1. Novel FAM83H mutations of detected in this study 

 
Site Family* Race Mutation** Protein Pattern of Inheritance 
Exon 5 1(AI#8) Hispanic c.1243G>T p.E415X autosomal dominant 
Exon 5 2(AI#12) Asian c.891T>A p.Y297X spontaneous 
Exon 5 3(AI#21) Caucasian c.1380G>A p.W460X autosomal dominant 
Exon 5 4(AI#24) Caucasian c.2029C>T p.Q677X autosomal dominant 

*Family ID in parenthesis correspond to families in previous report (Kim, et al., 2006). 
**DNA mutation numbering system is based on cDNA sequence. For cDNA numbering, nucleotide numbering reflects cDNA 
numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence (NM_198488.3), 
according to journal guidelines (http://www.hgvs.org/mutnomen). 
 
 

 
Figure 1. A: Pedigree of family 1 (p.E415X). Oral photographs show the proband (IV-4). Upper photo is the mandibular 
incisors at age 7 years and 11 months. Lower one is a photo at age 10 years and 10 months. B: Pedigree of family 2 (p.Y297X) 
and oral photograph of proband (II-1). C: Pedigree of family 3 (p.W460X) and oral photograph of proband at age 8. D: 
Pedigree of family 4 (p.Q677X) with panorex and oral photographs of proband (IV-2) at age 13 years and 5 months. 
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The dental enamel in the affected members of our four AI kindreds is cheesy soft in consistency, light yellow in 
shade, and nearly normal in thickness until erupting into function. Thereafter the enamel layer is rapidly lost due to 
attrition. The abraded teeth lose contour, often becoming tapered toward the incisal edge or occlusal surface. The 
abraded surfaces are rough in texture, take up stain rapidly, and are sensitive to thermal changes. Most of the 
enamel crown is rapidly lost, but sporadic islands of enamel are retained for years and appear to be of near-normal 
hardness. The clinical phenotype is most consistent with a diagnosis of hypocalcified AI. 

There are now 6 FAM83H mutations that have been identified in families affected with autosomal dominant 
hypocalcification amelogenesis imperfecta (ADHCAI). All of the observed mutations introduce premature 
translation termination codons in exon 5 (Figure 2). 
 

 
Figure 2. Gene diagram showing the 5 exons (boxes) and 4 introns (bars) of FAM83H. The non-coding regions in exons are 
shaded. The number of base pairs (bp) in an intron is shown above the intron. The number of base pairs in an exon is below the 
exon, followed by the number of amino acid codons in the exon and the range of amino acids encoded by the exon. The 
disease-causing mutations reported here are marked in bold above exon 5. The disease-causing mutations reported previously 
are marked in bold below exon 5. 
 

DISCUSSION 

Previously we conducted mutational analyses on 24 kindreds with amelogenesis imperfecta (Kim, et al., 2006). 
Seven candidate genes for AI were studied: amelogenin (AMELX), enamelin (ENAM), ameloblastin (AMBN), 
tuftelin (TUFT1), distal-less homeobox 3 (DLX3), enamelysin (MMP20), and kallikrein 4 (KLK4). The causative 
mutation was identified in 6 of the 24 families: two in the amelogenin, three in the enamelin and one in the 
enamelysin gene. We have now found non-identical FAM83H mutations in the affected members of four of these 
families, so the genetic etiologies of about half of the families are now known. These findings suggest that 
FAM83H is a major contributor to the etiology of AI, but other causative genes remain to be discovered. 

 FAM83H is unique among the candidate genes for AI because it does not encode an enamel matrix protein. 
FAM83H maps to chromosome 8q24.3, comprises 5 exons and encodes a protein having 1179 amino acids, most 
of which (933 aa) are encoded by the last exon. It is particularly intriguing that the 6 FAM83H mutations are all 
premature stop codons in the last exon, which allows the mutated transcripts to avoid nonsense-mediated mRNA 
decay. This means that FAM83H translation products lacking between 503 and 883 amino acids are synthesized 
along with an equal number of molecules expressed from the normal FAM83H allele. If the amino-terminal half of 
the FAM83H protein normally associates with another protein (as in homo- or heteromeric interactions) then the 
mutant and full-length proteins might be equally capable of forming these associations, but only complexes 
containing the full-length FAM83H protein could carry out their combined function. If so, expressing the truncated 
protein would be worse than expressing the normal protein in diminished amounts. Another possibility is that 
protein(s) functionally interacting with FAM83H might play a role in the pathogenesis of AI. Currently it is not 
known if FAM83H interacts with other proteins or if FAM83H haploinsufficiency results in an enamel phenotype. 
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However it seems evident that the large C-terminal part of the protein (after 676 amino acids) is essential for 
proper enamel calcification, based on mutational spectrum of the FAM83H in the ADHCAI families. 
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