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Standard methods for the analysis of survey data assume that the data arise from a simple random sample of
the target population. In practice, analysts of survey data sets collected from nationally representative probability
samples often pay little attention to important properties of the survey data. Standard statistical software procedures
do not allow analysts to take these properties of survey data into account. A failure to use more specialized procedures
designed for survey data analysis can impact both simple descriptive statistics and estimation of parameters in
multivariate models. In this article, the author provides trauma researchers with a practical introduction to
specialized methods that have been developed for the analysis of complex sample survey data.

Many analysts of data collected in sample surveys are comfort-
able with using standard procedures in statistical software pack-
ages to analyze the data; descriptive statistical procedures are used
to compute estimates of parameters such as means and propor-
tions for selected variables in specific subgroups being studied,
and regression models might be fitted to estimate the relationships
between multiple variables. These standard procedures (e.g., the
linear regression procedure in SPSS statistical software program)
assume that the data being analyzed are arising from a simple ran-
dom sample from some population of interest, where all sample
respondents were randomly selected without replacement from
the population, and all respondents had equal probability of being
included in the sample (Cochran, 1977, p. 18). Simple random
samples have many nice statistical properties: Most important,
observations on a given variable are assumed to be independent
and identically distributed. Assumptions of simple random sam-
pling are often applied to convenience samples or snowball samples
without formal probability designs (where a known probability of
inclusion in the sample can be assigned to all population units of
analysis).

Unfortunately, in the real world, simple random samples are
often quite expensive and difficult to collect. When probability
samples from a population of interest are being designed, lists of
individual people in a population of interest (or sampling frames)
are difficult to locate or produce. Even if a sampling frame enu-

merating all people in a population of interest is available, the costs
of transportation and administration required to collect data from
each randomly selected person can be extremely high. As a result,
survey statisticians responsible for designing probability samples
look for easier, more cost-efficient ways to collect samples from
populations. These sample designs, although more cost-efficient
and administratively convenient, introduce complications for anal-
ysis of the survey data. These designs are often referred to as complex
sample designs.

In this article, I will introduce readers to issues surrounding the
development and analysis of complex samples, including (a) recog-
nizing complex sample designs, (b) the use of sampling weights in
analyses of survey data to ensure that computed estimates of desired
population parameters are unbiased and representative of the pop-
ulation of interest, (c) the calculation of estimated standard errors
for survey estimates that are robust and correctly reflect sampling
variability due to the complex design of the sample from which
the survey measures were collected, (d) alternative approaches to
making inferences based on survey data, (e) the choice of appro-
priate statistical software to perform unbiased analyses of complex
sample survey data, and (f) how to communicate the results of
complex sample survey data analyses correctly. All of these points
are introduced through an example of analyzing a real survey data
set that includes several trauma-related measures: the National
Comorbidity Survey-Replication (NCS-R; Kessler et al., 2004).
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Complex Sample Designs

When designing complex samples, survey statisticians often strat-
ify (or divide) a population of interest into groups that are similar
within and different between (in terms of the features being mea-
sured in the survey). This process of stratification, which often
relies on all possible geographical divisions of the population for
administrative convenience, generally has the favorable statistical
property of decreasing the standard errors (or increasing the pre-
cision) of statistical estimates computed using the survey data.
Survey statisticians then assign codes to each respondent indicat-
ing his or her stratum, thus producing a stratum variable in the
survey data set (for example, the variable containing these codes in
the NCS-R data set analyzed in this article is STR). This stratum
variable is used by specialized statistical software procedures to
compute the proper (and presumably reduced) variance estimates.
Readers should note that the stratum variable will include codes for
all possible strata of the population; in other words, strata are not
randomly selected from the population of interest, and all strata
are included in the design.

In addition to stratifying the population of interest, survey
statisticians often turn to the sampling of clusters from within
the strata; this adds to the complexity of these sample designs.
Clusters are groups (or organizations) containing multiple sample
elements (or units of analysis in the population, such as trauma
patients, if those are the people from whom the survey data will be
collected). Examples of clusters might include schools or hospitals,
and clusters are nested within sampling strata. For example, after
the Oklahoma City bombing, suppose that a survey researcher
wished to collect a sample of trauma-related measures from school
children in Oklahoma City. The school districts in the city may
have represented the sampling strata (ensuring that all possible
districts would contribute to the sample), and schools of children
may have represented the sampling clusters within the strata. The
researcher could then sample schools from within each stratum,
and children from within each sampled school.

Clustered samples are often selected for two primary reasons:
(a) sampling frames often do not list individual sample elements
(e.g., people), but rather clusters of elements (e.g., schools, hos-
pitals); and (b) cluster sampling dramatically reduces the costs of
data collection, in that the sampling of clusters within strata (rather
than individuals, who might be widely distributed throughout the
stratum) facilitates subsequent data collection from samples of in-
dividuals within the clusters. There are some statistical trade-offs
to cluster sampling, however. Most important, individuals from
the same cluster will tend to be similar in terms of the survey mea-
surements of interest, violating the assumption of independent
observations for simple random samples. This dependence within
a cluster is sometimes referred to as an intraclass correlation. This
intraclass correlation complicates procedures for the estimation of
population parameters and the calculation of standard errors for
the estimates, and generally increases the standard errors of the
estimates (in contrast to stratification).

In some survey research projects, there are multiple stages of
cluster sampling leading to the final selection of a sample element.
For example, a complex sample design may feature the random se-
lection of schools from within a stratum (such as a school district),
followed by the random selection of classrooms within a school,
and followed by the selection of children within the classrooms.
These multiple stages of selection also have an impact on the stan-
dard errors of survey estimates, in that the standard errors tend
to be increased (meaning precision is decreased) due to the mul-
tistage cluster sampling. As a result, survey statisticians also assign
codes to individuals identifying the sampling clusters to which
they belong, for variance estimation purposes; this leads to the
inclusion of a cluster variable in public-use survey data sets, which
analysts need to identify in preparation for an analysis (the vari-
able containing cluster codes in the NCS-R data set is “SECU”).
In multistage cluster sample designs, variance in sample statistics
between the primary sampling units (or the first-stage clusters that
include multiple lower stage clusters) is of most importance to
research analysts, because this variance includes all variance in es-
timates due to the lower stages of cluster sampling. This is why
survey statisticians generally only include a single cluster variable
in a survey data set, identifying these first-stage cluster codes.

When analyzing data collected from samples with complex de-
signs, it is the responsibility of the data analyst to understand
whether a complex design was used, and identify the important
variables containing stratum and cluster codes in the survey data
set. Analysts are not responsible for designing these complex sam-
ples; they are responsible for analyzing the data correctly given the
complex sample design that was used, so that variances of survey
statistics are computed properly. This makes it essential for ana-
lysts to understand whether or not a survey data set contains these
design codes, and use the design codes properly when perform-
ing statistical analyses. A thorough review of the documentation
accompanying a survey data set, with special attention to any sec-
tions concerning estimation of variances or estimation of sampling
errors, can be quite helpful with this process.

Complex sample designs tend to result in (a) possible unequal
probability of selection into the sample for individual units of
analysis, due to the varying sizes of clusters and strata, which
is unlike simple random sampling; (b) lack of independence of
individual units within randomly sampled clusters, which is also
unlike simple random sampling; and (c) increased precision of
estimates due to stratification, but decreased precision of estimates
due to the use of clustering (in general). These general properties
of a complex design led to the development of a unit-less index
known as the design effect (Kish, 1965), which quantifies the net
loss in precision of a survey estimate derived from a complex sample
relative to a simple random sample of the same size. The design
effect is calculated as follows:

Var(estimate) compiex

Design Effect = ~1+b—-1)xICC

Var(estimate)sgrs
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The general form of the design effect is a ratio of the variance of a
survey estimate according to the complex design (where the vari-
ance is estimated using specialized methods that incorporate strat-
ification and clustering) to the variance of a survey estimate had
a simple random sample of the same size been collected. In the
cases of means and proportions, & corresponds to the average size
of the clusters in the population, while /CC corresponds to the
intraclass correlation of observations within a cluster. Therefore,
a higher within-cluster correlation will tend to result in a larger
design effect, or increased variance of the survey estimates relative
to simple random sampling. Because of nonzero intraclass correla-
tions within clusters, design effects generally tend to be larger than
1 when cluster sampling defines an aspect of the complex sample
design. So there are trade-offs: Complex samples are cost-efficient
and administratively convenient, but the precision of survey esti-
mates tends to decrease relative to simple random samples.

We now turn to an example of a complex sample survey data
set to further introduce these concepts. The working example
for this article considers sample data from the NCS-R, which were
collected between the years of 2001 and 2003. These data were col-
lected from a nationally representative sample of English-speaking
household residents aged 18 years and older in the coterminous
United States. The primary aim of the NCS-R was to build on
the original National Comorbidity Survey (Kessler, 1990) by con-
tinuing to address psychiatric disorders among adults in the U.S.
population with improved methods of measurement. The NCS-R
sample design was complex in that it involved stratification of the
population and multiple stages of cluster sampling leading to the
selection of a sample element (a U.S. aduly).

Careful assessment of the technical documentation accompa-
nying large survey data sets like the NCS-R is essential for analysts
of survey data. The following passage is taken directly from the
NCS-R technical documentation (Collaborative Psychiatric Epi-
demiology Surveys [CPES] online documentation; Heeringa &
Berglund, 2008):

Regardless of whether the linearization method or a resam-
pling approach is used, estimation of variances for complex
sample survey estimates requires the specification of a sam-
pling error computation model. CPES data analysts who
are interested in performing sampling error computations
should be aware that the estimation programs identified
in the preceding section assume a specific sampling error
computation model and will require special sampling error
codes. Individual records in the analysis data set must be as-
signed sampling error codes that identify to the programs the
complex structure of the sample (stratification, clustering)
and are compatible with the computation algorithms of the
various programs. To facilitate the computation of sampling
error for statistics based on CPES data, design-specific sam-
pling error codes will be routinely included in all versions
of the data set. Although minor recoding may be required
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to conform to the input requirements of the individual pro-
grams, the sampling error codes that are provided should
enable analysts to conduct either Taylor Series or Replicated
estimation of sampling errors for survey statistics. (Using
CPES, Weighting, Section VIL.D)

This passage stresses the need for analysts to use specialized
statistical software procedures when analyzing the NCS-R data.
Readers should note the comments about the complex design
effects and the need to take the design structure of the NCS-R
sample into account when using specialized software to perform
analyses of the survey data. We will revisit the NCS-R example in
all of the subsequent sections of this article.

Sampling Weights

Complex sample designs often result in unequal probabilities of
selection into the sample for population units of analysis (e.g.,
people). If certain individuals have a higher probability of being
included in a sample than others, population estimates based on
that sample design may be biased. In addition, sampled individuals
may choose not to respond to a survey, even if incentives are used as
apart of the research, and the distribution of a sample may not be in
alignment with known population characteristics (e.g., a sample
might be 30% men and 70% women, when the population of
interest is known to be 50% men and 50% women). These three
complications result in the need to use sampling weights when
analyzing the survey data, so that these potential sources of bias in
the survey estimates are reduced (or even eliminated). Here a very
general description of sampling weights is provided; for additional
technical information on the computation of sampling weights,
interested readers can refer to Kish (1965), Cochran (1977), or
Lohr (1999).

Computed sampling weights for people who respond to a sur-
vey incorporate (a) unequal probability of selection (people with
a lower probability of being included get more weight when es-
timates are computed); (b) nonresponse rates (people belonging
to groups that are not as likely to respond to the survey get more
weight when estimates are computed); and (c) poststratification
factors, or adjustments to match population distributions across
certain strata (e.g., men and women). The first two components
of a sampling weight are generally computed by taking the inverse
of an individual’s probability of selection and the inverse of the re-
sponse rate for a certain group to which an individual belongs, and
multiplying the two components together. For example, consider
a survey respondent who has a 1/100 chance of being included in
a sample, and belongs to a demographic group where 50% of peo-
ple who were sampled actually responded. This individual would
have a sampling weight of 100 x 2 =200, meaning that they rep-
resent themselves and 199 other people. This weight might then
be further adjusted by a poststratification factor to match known
population distributions.
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The final computed sampling weight is also generally included
in a survey data set as a weight variable, in addition to the stratum
and cluster variables (the appropriate weight variable in the NCS-
R data set for the examples in this article is FINALP2W). The
analyst has the responsibility of identifying this final weight vari-
able so that specialized estimation routines in statistical software
can incorporate the sampling weights when computing unbiased
estimates of population parameters such as means and regression
coefficients. A failure to incorporate sampling weights in analyses
can result in severely biased estimates of important parameters for
a population of interest.

In the NCS-R example, a subsample of 5,692 of the originally
sampled 9,282 respondents (those indicating a lifetime mental
health disorder in addition to a sample of other respondents screen-
ing as completely healthy) answered a second set of questions in the
NCS-R (Part II) measuring risk factors and additional disorders,
including posttraumatic stress disorder. The original NCS-R sam-
pling weights were adjusted for this additional subsampling, and
the NCS-R technical documentation explains to analysts that the
FINALP2W variable contains these adjusted weights that should
be used for all analyses involving Part II respondents.

Variance Esfimation

Survey statisticians compute sampling weights for the informa-
tion provided by sample respondents to enable survey analysts to
compute unbiased estimates of population parameters. What this
means is that on average (or in expectation), the estimates (or statis-
tics) will equal the population parameter of interest. This makes
the estimates unbiased in theory; in practice, different samples
from a population will result in different estimates of a population
parameter that “bounce around” the true value of the parameter.
Generally speaking, the standard error of a survey estimate de-
scribes how far away an estimate from any one sample tends to be
from the expected value of an estimate (the parameter it is esti-
mating), on average. Methods for variance estimation in analyses
of complex sample survey data are used to compute estimates of
the standard errors of complex sample survey statistics.

The need to compute estimates of standard errors often raises
questions among researchers. Why not just compute the true value
of a variance (and a standard error, which is the square root of the
variance) for a given sample estimate of a population parameter?
Unfortunately, when analyzing data collected from a sample with a
complex design, true values of population parameters are needed to
compute the true theoretical variances of sample statistics, and we
will never know these “true” values. As a result, good approxima-
tions of the theoretical standard errors based on sample estimates
of the required population parameters are used to estimate the
standard errors in a robust way that accounts for the stratification,
clustering, and sample weighting underlying a given complex de-
sign. Survey statisticians research variance estimators that are as

close to being unbiased estimators of the true theoretical variances
for sample statistics as possible.

In general, the estimated variance of a given survey statistic is
based on within-stratum variances in sample statistics (such as to-
tals) between first-stage sampling clusters. As a result, at least two
clusters are required per stratum for variance estimates to be cal-
culated; otherwise, within-stratum variances (and therefore overall
variance estimators) cannot be calculated. If only a single cluster
is found in a particular stratum by the software processing the
sample design variables, errors or warning messages may appear
that could prevent the software from reporting estimated standard
errors for survey statistics of interest. Survey sampling statisticians
therefore do their best to provide users of survey data sets with vari-
ables identifying the strata and clusters to which each respondent
belongs such that each stratum code has at least two associated
cluster codes for variance estimation purposes.

Three of the mathematical methods most frequently used to
estimate the variances of complex sample survey statistics include
Taylor series linearization, jackknife repeated replication, and bal-
anced repeated replication. Taylor series linearization, which is the
default variance estimation technique in many statistical software
procedures designed for survey data analysis, first “linearizes” com-
plex, nonlinear statistics (such as ratios of sample totals) into lin-
ear functions of sample totals, using results from calculus (Taylor
series approximations). Variances of these linearized approxima-
tions of the original nonlinear statistics can then be calculated
by using simpler known formulas for the variances and covari-
ances of sample totals within strata. Each different survey statistic
will have a unique variance estimator based on Taylor series lin-
earization. In contrast, jackknife repeated replication and balanced
repeated replication are very general techniques for variance esti-
mation based on resampling, where the same methods are used
to estimate variances regardless of the form of the survey statistic.
Essentially, replication methods involve drawing repeated samples
from the available survey data set, calculating the statistic of in-
terest for each of the repeated samples, and then describing the
variance of the repeated statistics around the overall statistic based
on the overall sample. Software packages with procedures available
for complex sample-survey data analysis are at various stages of
incorporating these three techniques; however, Taylor series lin-
earization is generally sufficient for most practical applications.

These variance estimation methods will tend to result in ro-
bust overestimates of what the true theoretical variances should
be (keeping in mind that stratification will generally decrease vari-
ances while clustering and weighting will increase variances), and
this is a better scenario in practice than underestimating the vari-
ances, or overstating the precision of the survey estimates. As a
result, the methods tend to provide conservative estimates of vari-
ances for the survey statistics, protecting the survey analyst against
the risk of overstating the precision of survey estimates. The choice
of the variance estimation method generally depends on software
availability; Taylor series linearization is currently more widely
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available than the replication techniques. Linearization and jack-
knife repeated replication are generally more accurate and more
stable when the survey statistics represent functions of means,
whereas balanced repeated replication has been shown to be better
for the estimation of quartiles. As mentioned earlier, Taylor series
linearization is generally a reasonable choice for most applications.
For more details, interested readers can refer to a simulation study
by Kovar, Rao, and Wu (1988) that compares the variance estima-
tion techniques.

Analysts have the important responsibility of identifying the
appropriate complex design variables in a survey data set (e.g.,
FINALP2W, STR, and SECU in the NCS-R data set) and using
them properly in statistical software procedures designed for these
analyses, so that robust estimates of standard errors incorporating
the complex design features will be calculated correctly.

Design-Based Versus Model-Based Inference

Generally speaking, statistical inference refers to the art of making
statements about a population based on a sample of data col-
lected from that population. Design-based inference refers to an
approach to making inferences using survey data that utilizes con-
fidence intervals determined by estimates of survey statistics and
their standard errors. The estimates and standard errors are de-
termined using nonparametric methods (without assuming prob-
ability distributions for the variables) that incorporate features of
the complex sample design and rely on how representative the
sample is of the population of interest. Researchers examine the
computed confidence intervals (Cls) to determine whether they
include the hypothesized value of a population parameter of in-
terest. One would interpret a 95% CI (corresponding to a type I
error rate of .05) for a population parameter by stating that 95%
of Cls constructed in the exact same way across repeated samples
would include the true population parameter.

In contrast, model-based inference relies on assumptions of spe-
cific probability distributions for the variables being analyzed. This
method of inference is extremely powerful if the assumed proba-
bility distributions for the variables are correct. One example of
a model-based approach to the analysis of survey data is multi-
level (or mixed-effects) modeling, where the effects of clustering
are treated as random effects in linear models (e.g., Pfefferman,
Skinner, Holmes, Goldstein, & Rasbash, 1998). This article’s pri-
mary focus is on methods for design-based inference, or robust,
nonparametric inference that directly recognizes the complex de-
sign features of a representative probability sample. For further
details on these two forms of inference for survey data, interested
readers can refer to Hansen, Madow, and Tepping (1983).

Current Software Options

A wide variety of software procedures capable of analyzing sur-
vey data are currently available to survey researchers. Consider-
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ing commercial statistical software packages first, the SAS soft-
ware (Version 9.1.3; SAS Institute, Cary, NC) currently offers
procedures for descriptive analysis of continuous and categorical
variables (PROC SURVEYMEANS and PROC SURVEYFREQ),
in addition to two procedures for regression modeling (PROC
SURVEYREG and PROC SURVEYLOGISTIC). The SPSS soft-
ware (Version 16; SPSS Inc., Chicago, IL) currently offers the
complex samples add-on module, which needs to be purchased
in addition to the base SPSS package; this module enables several
descriptive analyses, in addition to regression modeling for contin-
uous, categorical, count, and time-to-event outcomes. Here we will
consider the complex samples module for the NCS-R analysis. The
Stata software package (Version 10; StataCorp LP, College Station,
TX) and the SUDAAN software package (Version 9.0.1; Research
Triangle Institute, Research Triangle Park, NC) currently offer
the widest variety of procedures for survey data analysis, includ-
ing survival analysis and estimation of percentiles. Other software
packages including WesVar (http://www.westat.com/wesvar/) and
IVEware (http://www.ist.umich.edu/src/smp/ive/) are freely avail-
able for survey data analysis, and the IVEware package is especially
useful for missing data problems (which are beyond the scope of
this article).

Returning to the NCS-R analysis example, we define two re-
search objectives: (a) to estimate the percentage of the adult U.S.
population that has ever participated in combat; and (b) to estimate
the percentage of older (age > 50) men in the United States that has
ever participated in combat. The second analysis objective defines
a subclass analysis, and more details on these types of analyses will
be provided in the next section. We consider the SPSS software for
this example, although this example analysis could be performed
using any of the aforementioned statistical software packages. The
following NCS-R variables will be considered in the analysis (in
addition to the FINALP2W, STR, and SECU variables, repre-
senting the sampling weights and the stratum and cluster codes,
respectively): PT1 (Has the respondent ever participated in com-
bat, as a member of a military or organized nonmilitary group?),
SC1 (respondent’s age), and SC1_1 (respondent’s gender).

The first step for SPSS users looking to analyze a complex
sample-survey data set is to purchase the complex samples add-on
module: readers can visit http://www.spss.com/complex_samples
for more information. Other general-purpose statistical software
packages like SAS, Stata, and SUDAAN have procedures for the
analysis of complex sample survey data integrated into their base
statistical packages. With the NCS-R data set open in SPSS, the
next step is to define the complex design features of the NCS-R.
From the SPSS menus, one can select Analyze — Complex Sam-
ples — Prepare for Analysis. . . This allows users to define what is
known in SPSS as a plan file, which has an extension of .csaplan.
Users first choose the option to create a plan file, and then enter
a name for the file before clicking Next to proceed. At this point,
users select the variables containing information on the strata,
clusters, and sampling weights that are critical for a design-based
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PT1: Evr in combat military/non-military

95% Confidence
Standard Interval Unweighted
Estimate Error Lower Upper Design Effect Count

Population Size 1 277.330 23.122 | 230.667 | 323.993 2.026 243
5 5413.310 247.467 | 4913.902 | 5912.718 232.024 5446

Total | 5690.640 251.750 | 5182.589 | 6198.691 . 5689

% of Total 1 4.9% 4% 4.1% 5.8% 2.102 243
5 95.1% 4% 94.2% 95.9% 2.102 5446

Total 100.0% .0% 100.0% 100.0% 5689

445

Figure 1. SPSS output from the first combat example, showing that an estimated 4.9% of U.S. adults have ever participated in combat

before (variable PT1=1).

analysis of the survey data, and click Next. The standard sampling
error calculation model selected in the next screen is WR (or with
replacement), which assumes that the first-stage clusters (not the
individual sample elements) have been selected with replacement
from within the first-stage strata (an assumption that primarily fa-
cilitates variance estimation; see Cochran, 1977, for more details).
Users then click Finish to finish the definition of the sampling
plan.

Next, one defines the analysis to be performed. Users can se-
lect Analyze — Complex Samples — Frequencies. . . to request es-
timates of percentages for categorical variables. One first has to
identify the sampling plan file to be used in the analysis, which
was created in the previous steps. Next, the variable for which
weighted percentages are desired (PT1, or the indicator of partic-
ipation in combat) is selected for frequency tables analysis, and
selected statistics (e.g., standard errors, 95% Cls, design effects)
can be requested for the output. After these options have been
selected, the user can run the analysis procedure by clicking OK
(or pasting and running the SPSS syntax). This generates the SPSS
output displayed in Figure 1.

The weighted estimate of the percentage of U.S. adults hav-
ing participated in combat is 4.9% (Linearized SE = 0.4%, 95%
CI =4.1%-5.8%). A null hypothesis that 5% of U.S. adults have
participated in combat would not be rejected, but a null hypoth-
esis stating that 10% of adults have participated in combat is not
supported by these results. The 95% CI reflects expected sampling
variability in the estimate given the complex design features of the
NCS-R sample, and the estimated standard error for the estimate
is computed using Taylor series linearization. The unweighted esti-
mate of this percentage, ignoring the complex design features and
performing a standard frequency table analysis in SPSS (Analyze —
Descriptive Statistics — Frequencies), is 4.3%, which indicates
that a more standard analysis would have resulted in an estimate
that was biased low. Further, the estimated design effect (DEFF)
is 2.1, suggesting that the complex design of the NCS-R sample
increased the variance of this estimate by around 110% relative to

a simple random sample of the same size (indicating a loss in the
precision of the estimate due to the complex design). This finding
is quite common for design effects, and is mainly driven by the
effects of clustering and weighting, as discussed earlier.

Subclass Analyses

Analysts of survey data are often interested in restricting inferences
to a specific subpopulation, or subclass, of the population of in-
terest. For example, one may wish to restrict the estimation of a
population parameter to older men. In practice, subclass analyses
of complex sample survey data are dangerous because it is very easy
for analysts to incorrectly (and permanently) delete those cases that
do not fall into the subclass from the data set when performing the
analysis. The two primary problems with this type of conditional
approach to the subclass analysis are (a) the subclass sample size
is treated as fixed, when it should actually be treated as a random
variable (i.e., the subclass sample size will vary in theory from
one sample to another); and (b) deleting cases not falling into
the subclass may result in entire first-stage sampling clusters being
deleted from the analysis, if the subclass by random chance is not
represented in a given cluster in a given sample.

Estimated standard errors of survey statistics should reflect the-
oretical sample-to-sample variance in the statistics based on the
original complex sample design. In other words, across repeated
samples, how far off (on average) will estimates be from the true
population parameter of interest? If clusters from the original sam-
ple design are deleted in a conditional subclass analysis, when in
theory the subclass might have appeared in those clusters, standard
errors will be underestimated. The statistical software used to ana-
lyze the subclasses will not know that the deleted clusters were ever
part of the original complex design. In addition, the software will
treat the subclass sample size as being fixed from sample to sam-
ple when calculating the standard errors, when sample-to-sample
variability in the subclass sample sizes should be incorporated into
the standard errors. This also leads to underestimation of standard
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PT1: Evr in combat military/non-military

95% Confidence

Standard Interval Unweighted

oldmale Estimate Error Lower Upper [Design Effect Count
0 Population Size 1 72.700 13.169 46.123 99.277 2.415 77
5 4663.090 | 232.104 |4194.684 |5131.496 63.951 4853
Total |4735.790 | 232.953 |4265.672 |5205.908 68.260 4930
% of Total 1 1.5% 3% 1.1% 2.2% 2.478 77
5 98.5% 3% 97.8% 98.9% 2.478 4853
Total | 100.0% .0% | 100.0% | 100.0% . 4930
1 Population Size 1 204.630 20.721 162.813 | 246.447 2.176 166
5 750.220 60.064 | 629.006 | 871.434 5.537 593
Total | 954.850 66.025 | 821.606 |1088.094 5.483 759
% of Total 1 21.4% 2.0% 17.6% 25.8% 2.341 166
5 78.6% 2.0% 74.2% 82.4% 2.341 593
Total 100.0% .0% 100.0% 100.0% 759

Figure 2. SPSS output from the application of the combat example to selected population subclasses (men with age > 50 are represented
by OLDMALE = 1), showing that an estimated 21.4% of men 50 years of age or older have ever participated in combat before (as opposed

to an estimated 1.5% of other adults).

errors. Conditional subclass analyses can also result in the situation
where the software only recognizes a single cluster in a given sam-
pling stratum, and different software packages react differently to
this problem because within-stratum variance between the clusters
cannot be estimated.

To prevent these critical problems that can arise when per-
forming subclass analyses, survey data analysts should perform
“unconditional” subclass analyses. Specialized options in statisti-
cal software procedures allow users to define an indicator variable
in the survey data set for the subclass of interest, equal to 1 for
cases in the subclass, and 0 otherwise. By processing this indicator
variable, the software can recognize the full complex design of the
sample, treat the subclass sample size as random, and proceed with
the estimation of the statistics and standard errors according to
the full complex design (clusters containing no subclass elements
are still recognized in the variance calculations); interested readers
can refer to West, Berglund, and Heeringa (in press) or Cochran
(1977) for more details. We consider this unconditional approach
by analyzing older (age > 50) men in the NCS-R data set, and
estimating what proportion of this subclass has even participated
in combat.

First, we compute an indicator variable (OLDMALE), equal
to 1 for respondents in this subclass, and 0 otherwise. Then, we
select Analyze — Complex Samples — Frequencies. . . to request
estimates of the proportion for this specific subclass. We request
frequency tables for PT1 (the indicator of participation in com-
bat), and then move the indicator variable for older men into the
subpopulations window. This will request an unconditional sub-

class analysis for the older men. Running this analysis produces
the SPSS output shown in Figure 2.

Note in Figure 2 that an estimated 21.4% of men 50 years of age
or older (Linearized SE =2.0%, 95% CI=17.6%-25.8%) ever
participated in combat, which is quite different from the estimate
of 4.9% for the overall population. There is a larger margin of
error for this smaller subclass, which is quite common in subclass
analyses; the Linearization-based standard error of the estimate
in this case is 2.0%, compared to 0.4% for the overall analysis.
The unweighted estimate for this subclass is 21.8%, suggesting
that there is not a great deal of bias in the unweighted estimate.
Further, the design effect for this estimate is 2.3, suggesting a
loss of precision relative to a simple random sample of the same
size from this subclass. Given statistics of primary interest, survey
statisticians work to minimize this design effect when designing
complex samples.

Analysts may be interested in statistically comparing selected
subclasses in terms of important descriptive parameters (e.g.,
means or proportions) when analyzing a survey data set. For exam-
ple, one may wish to compare respondents with combat experience
with respondents not having combat experience in terms of the
prevalence of PTSD. In this case, a design-based version of the
chi-square test could be performed, comparing these two groups
in terms of the prevalence of PTSD. The design-based analog of
the x? test is the Rao-Scott X test (Rao & Scott, 1984), which
has been widely implemented in the different software packages
mentioned in this article. In this case, no subclass indicator vari-
able would be required because the two groups of interest would
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define the entire population being studied. If one were to adjust
for covariates when comparing the groups in terms of this preva-
lence, a logistic regression model should be fitted, and specialized
procedures capable of fitting logistic regression models to survey
data are also widely implemented in the different statistical soft-
ware packages. Regardless of the model to be fitted or the subclass
comparison of interest, the important point for analysts is that
a specialized procedure be used to perform the analysis that can
correctly incorporate complex sample design features when gener-
ating estimates, standard errors, and test statistics used for making
inferences about populations of research interest.

Conclusion

A broad and general introduction to the analysis of complex sample
survey data has been presented in this article. Analysts of survey
data have several issues to keep in mind before beginning the
analysis of a complex sample survey data set:

1. What was the nature of the complex sample design, and are
there codes for strata and clusters included in the survey data
set?

2. What is the correct sampling weight variable to be used in
the analysis for calculating unbiased estimates of population
parameters?

3. Is a software procedure being used that can accommodate the
complex sample design features in the analysis?

4. What method of variance estimation is the software procedure
using to calculate design-based estimates of standard errors
(e.g., Taylor series linearization)?

5. Is the analysis of interest focused on a subclass of the population
from which the complex sample survey data were collected,
and has an indicator variable been computed for this subclass
enabling unconditional subclass analyses?

Example analyses in this article were presented using the com-
plex samples module of the SPSS statistical software (Version 16),
but the analyses can be easily repeated using specialized procedures
for survey data analysis in several other statistical software packages
(e.g., SAS, Stata, and SUDAAN). The author can be contacted for
examples of code that can be used to perform the analyses in these
other software packages.

The scientific design of cost-efficient probability samples and
the collection of survey data from the resulting samples in survey
research projects like the NCS-R cost granting agencies (and tax
payers) millions of dollars each year. A failure of data analysts to use

appropriate statistical software procedures for unbiased analyses of
the survey data essentially negates the substantial money and effort
used to collect the data, and can result in scientific publications
that present skewed pictures of populations of research interest.
This presentation has attempted to clarify these issues for analysts
of complex sample survey data in a relatively heuristic and practical
manner. Several additional references can be consulted for addi-
tional technical details on these analysis approaches, including a
practical handbook by Lee and Forthofer (2006), and theoretical
articles on variance estimation by Rust (1985) and Binder (1983).
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