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To evaluate the risk of a disease associated with the joint effects of genetic susceptibility and environmental exposures,
epidemiologic researchers often test for non-multiplicative gene-environment effects from case-control studies. In this
article, we present a comparative study of four alternative tests for interactions: (i) the standard case-control method; (ii) the
case-only method, which requires an assumption of gene-environment independence for the underlying population; (iii) a
two-step method that decides between the case-only and case-control estimators depending on a statistical test for the gene-
environment independence assumption and (iv) a novel empirical-Bayes (EB) method that combines the case-control and
case-only estimators depending on the sample size and strength of the gene-environment association in the data. We
evaluate the methods in terms of integrated Type I error and power, averaged with respect to varying scenarios for gene-
environment association that are likely to appear in practice. These unique studies suggest that the novel EB procedure
overall is a promising approach for detection of gene-environment interactions from case-control studies. In particular, the
EB procedure, unlike the case-only or two-step methods, can closely maintain a desired Type I error under realistic
scenarios of gene-environment dependence and yet can be substantially more powerful than the traditional case-control
analysis when the gene-environment independence assumption is satisfied, exactly or approximately. Our studies also
reveal potential utility of some non-traditional case-control designs that samples controls at a smaller rate than the cases.
Apart from the simulation studies, we also illustrate the different methods by analyzing interactions of two commonly
studied genes, N-acetyl transferase type 2 and glutathione s-transferase M1, with smoking and dietary exposures, in a large
case-control study of colorectal cancer. Genet. Epidemiol. 32:615–626, 2008. Published 2008 Wiley-Liss, Inc.y
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INTRODUCTION
The completion of the Human Genome Project and rapid

advancement of genotyping technologies now hold great
promise for discovering the inherited causes of a complex
disease by studying genetic variations across candidate
genes, biochemical pathways and the whole genome. To
realize the full potential of these advances, however, it is
critical to recognize that most common human diseases
have a multifactorial etiology involving complex interplay
of genetic susceptibility and environmental exposures and

studying these factors together can improve the statistical
power for detection of the underlying risk factors, give
insight into their biologic effects and lead to public health
strategies for prevention. An important step for character-
ization of gene-environment joint effects involves evalua-
tion of statistical interaction or effect modification; i.e.
whether the effect of one exposure, measured in a suitable
scale, varies by the level of the other and vice versa.

Population-based case-control studies are now com-
monly used to study the roles of genes and gene-
environment interactions in determining the risk of
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complex diseases. The goal of this article is to evaluate
performances of alternative analytic methods and study
designs for testing of non-multiplicative gene-environ-
ment effects from case-control studies. It is well known
that standard case-control analysis often has poor power
for detection of multiplicative interaction due to small
numbers of cases or controls in cells of crossing genotypes
and exposures. In contrast, under the assumption of gene-
environment (G-E) independence for the underlying
population, one can test for multiplicative interaction in
a very powerful fashion based on the genotype-exposure
odds-ratio among the cases alone [Piegorsch et al., 1994],
but the method can have seriously inflated Type I error
when the underlying assumption of gene-environment
independence is violated [Albert et al., 2001]. To resolve
the bias vs. efficiency dilemma, practitioners may natu-
rally adapt to a two-stage procedure where, at first, one
formally tests for the adequacy of the gene-environment
independence assumption based on the data itself and
then uses the outcome of that test to decide whether to use
the powerful case-only or the more robust case-control test
for estimation. For a given study of modest sample size,
however, the power of the tests for gene-environment
independence would be typically low and consequently
the two-stage procedure, as a whole, could still remain
significantly biased. Moreover, a proper variance calcula-
tion for the two-stage estimator accounting for the under-
lying model uncertainty can be fairly complicated. The
standard two-stage testing procedure that ignores this
model uncertainty maintains a higher Type I-error level
than desired even when the gene-environment indepen-
dence assumption is satisfied [Albert et al., 2001].

We have recently proposed a solution to the bias vs.
efficiency dilemma by considering a novel composite
estimator of the multiplicative interaction parameter
obtained by taking a simple weighted average of the
case-control and case-only estimators [Mukherjee and
Chatterjee, 2007; referred to as MC from here onwards].
The weights are constructed in a data-adaptive way, so
that in large sample the estimator has no bias irrespective
of whether the G-E independence assumption holds or not
and yet it can gain efficiency over the standard case-
control estimator when the independence assumption is
satisfied, exactly or approximately. We have shown that
the proposed method, termed as empirical-Bayes (EB)-
type shrinkage estimator, can achieve balance between
bias and efficiency in the sense that it maintains optimal or
close to optimal mean-squared-errors among all of the
different estimators of interactions irrespective of the true
state of the gene-environment association.

The purpose of this article is to provide a comparative
study of alternative estimators of gene-environment
interactions in terms of Type I error and power of the
corresponding testing procedure. Our study has two
unique aspects. We consider novel case-control designs
where controls are sampled at a smaller ratio than the
cases. Traditional power calculations suggest that power
for a case-control study with 1:m case-control sampling
ratio depends on m, the number of controls per case,
through the ratio m/m11 [Breslow and Day, 1987,
pp289–294]. Such calculations suggest that while sampling
controls at a much higher ratio than the cases (e.g. m44) is
not very beneficial, sampling them at a lower rate than the
cases (e.g. m 5 0.5 or 0.25) can seriously hurt efficiency.
Thus, case-control studies generally sample controls at

least with an equal rate as the cases with the value of m
typically ranging between 1 and 4. In contrast, if one could
rely on the gene-environment independence assumption
for the underlying population, then one could perform the
test of interaction based on the case-only design, without
sampling any controls at all. In this article, we consider
intermediate study designs where controls are sampled to
protect against inflated Type I error of the case-only
approach when the G-E independence assumption is
violated; but unlike traditional settings we consider
case:control sampling ratio of 1:m with m � 1. The
performance of the novel EB estimator both in terms of
Type I error and power in such settings reveals interesting
design considerations for future case-control studies.

Researchers traditionally evaluate performance of fre-
quentist statistical methods under a fixed set of values for
the underlying unknown parameters. A key parameter
that determines the performance of alternative gene-
environment interaction test is the log-odds-ratio between
genotype-exposure in the underlying population, say
denoted by yGE. When yGE ¼ 0, i.e. the gene-environment
independence assumption is satisfied, the case-only test
maintains Type I error at the nominal level and has the
highest power among all of the different tests for detecting
interactions. When yGE departs from zero, on the other
hand, the case-only estimator will perform poorly in terms
of Type I error and one of the alternative methods may
perform the best depending on the magnitude of yGE. For
large-scale association studies, such as a genome-wide
scan, it is expected that the gene-environment odds-ratios
over different genes or/and exposures will have a
distribution that has a large mass at or near the likely
independence assumption, but would also include a range
of values for yGE that corresponds to substantial violation
of the independence assumption. In this article, we
evaluate average power of alternative tests for interaction
under some distributions for the genotype-exposure odds-
ratio parameters that are likely to hold in large-scale
association studies. These unique studies will help us to
judge the overall performance of alternative statistical tests
for interactions in light of the variations of the gene-
environment association that are likely to appear in
practice.

The article is organized as follows. In the section
Different Tests for Interaction in a 2� 4 Table, we first
describe the different estimators that we consider. In the
section Simulation Settings, we describe the simulation
methods to evaluate the Type I error and power for
different procedures. The section Data Examples presents
data from the Colorectal Cancer (MECC) study [Poynter
et al., 2005] to illustrate the behavior of the alternative
estimators under a range of gene-environment association
scenarios. In the section Simulation Findings, we present
Type I error and power for these different estimators
under different sample sizes, sampling ratios and varying
strength of G-E association. The last section contains
discussion and concluding remarks.

MATERIALS AND METHODS

DIFFERENT TESTS FOR INTERACTION
IN A 2� 4 TABLE

We consider the simple setup of an unmatched case-
control study with a binary genetic factor G and a binary
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environmental exposure E. Let E 5 1 (E 5 0) denote an
exposed (unexposed) individual and G 5 1 (G 5 0) denote
whether an individual is a carrier (non-carrier) of the
susceptible genotype. Let D denote disease status, where
D 5 1 (D 5 0) stands for an affected (unaffected) indivi-
dual. Let n0 and n1 be the number of selected controls and
cases, respectively. The data can be represented in the form
of a 2� 4 table as displayed in Table I.

Let r0 ¼ ðr000; r001; r010; r011Þ and r1 ¼ ðr100; r101; r110; r111Þ

denote the vector of observed cell frequencies in the
controls and cases, respectively. The population para-
meters, namely, the cell probabilities corresponding to a
particular G-E configuration in the underlying control
and case populations are denoted as p0 ¼ ðp000; p001;
p010; p011 ¼ 1� p000 � p001 � p010Þ and p1 ¼ ðp100; p101;
p110; p111 ¼ 1� p100 � p101 � p110Þ, respectively. The
observed vectors of cell counts can be viewed as
realizations from two independent multinomial
distributions, namely, r0 �Multinomialðn0; p0Þ and
r1 �Multinomialðn1; p1Þ. Let OR10 ¼ p000p101= p001p100

denote the odds-ratio associated with E for non-
susceptible subjects (G 5 0), OR01 ¼ p000p110= p010p100

denote the odds-ratio associated with G for unexposed
subjects (E 5 0) and OR11 ¼ p000p111= p011p100 denote the
odds-ratio associated with G 5 1 and E 5 1 compared to
the baseline category G 5 0 and E 5 0. Therefore,

c ¼ OR11=ðOR10OR01Þ

¼ ðp001p010p100p111Þ=ðp000p011p101p110Þ

is the multiplicative interaction parameter of interest.
In the following we describe the four estimators of

interaction considered in the article.

1. The case-control estimator: The classical estimator of the
interaction log-odds-ratio, namely, logðcÞ ¼ b, obtained
from case-control data is given by

b̂CC ¼ log
r001r010r100r111

r000r011r101r110

� �
:

Note that b̂CC is the maximum likelihood estimate (MLE)
of b based on the likelihood of the data given in Table I
allowing for any valid joint distribution for G and E,
without any constraints like gene-environment indepen-
dence. Employing standard asymptotic theory, variance of
the case-control estimator can be estimated as
ŝ2

CC ¼
P1

d¼0

P1
g¼0

P1
e¼0ð1=rdgeÞ. We will use the Wald test

for interaction based on the standardized Z statistic
ZCC ¼ b̂CC=ŝCC.

2. The case-only estimator: The odds-ratio interaction
parameter c can be expressed as a ratio of two odds-ratios,

namely,

c ¼
Odds-ratio between G and E among cases

Odds-ratio between G and E among controls|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ 1 under G�E independence and rare disease

: ð1Þ

The denominator in c, namely, the population odds-ratio
between G and E among the disease-free subjects, reduces
to unity under gene-environment independence and rare
disease assumption. Thus, under those two assumptions,
c can be unbiasedly estimated by the sample odds-ratio
between G and E among the cases alone [Piergorsch et al.,
1994]. The case-only estimator gains efficiency over its
case-control counterpart by reduction of the variance
associated with estimation of the odds-ratio between G
and E among the controls.

More formally, the case-only estimator of the interaction
log-odds-ratio is given by

b̂CO ¼ log
r100r111

r101r110

� �
:

It has been shown that b̂CO is the MLE of b under the
constraint of G-E independence in control population
[Umbach and Weinberg, 1997]. The asymptotic variance of
the case-only estimator can be obtained as ŝ2

CO ¼P1
g¼0

P1
e¼0ð1=r1geÞ: The test for interaction associated with

the case-only procedure is again based on the asymptotic
normality of the constrained MLE, using the standardized
Z statistic ZCO ¼ b̂CO=ŝCO.

The case-only estimator is unbiased under G-E inde-
pendence assumption and has a much reduced variance
compared to the case-control estimator; note that
ŝ2

COoŝ2
CC. As a result, the tests based on the case-only

estimator have significantly enhanced power to detect
gene-environment interaction, compared to their case-
control counterparts. However, the case-only estimator is
subject to potential bias under departures from gene-
environment independence assumption. From the repre-
sentation in (1), for example, it is clear that if gene-
environment independence does not hold, i.e. when the
odds-ratio in the denominator of (1) departs from unity,
the case-only estimator of the interaction parameter will
remain asymptotically biased by a magnitude that is
exactly equal to the G-E odds-ratio in the control
population. This leads to a highly inflated Type I-error
rate for the corresponding case-only testing procedure.

3. The two-step estimator: A measure of G-E association in
the control population is given by the log-odds-ratio
between G and E among subjects with D 5 0, namely,

yGE ¼ logfðp000p011Þ=ðp001p010Þg: ð2Þ

The assumption of G-E independence, together with the
rare disease approximation, implies, yGE ¼ 0. The MLE of
yGE is given by ŷGE ¼ logfðr000r011Þ=ðr001r010Þg with an
estimate of the asymptotic variance given by
ŝ2
yGE
¼
P1

g¼0

P1
e¼0ð1=r0geÞ. One could use ŷGE to first test

the hypothesis H0 : yGE ¼ 0. If the null hypothesis is
rejected, one could then use the case-control estimator,
and if one fails to reject the null hypothesis of gene-
environment independence, one could proceed to use the
case-only estimator.

More formally, the two-step procedure [Albert et al.,
2001] tests for G-E independence in the control population,
namely, H0 : yGE ¼ 0, at a chosen level of significance a

TABLE I. Data for a unmatched case-control study with a
binary genetic factor and a binary environmental
exposure

G 5 0 G 5 1

E 5 0 E 5 1 E 5 0 E 5 1 Total

D 5 0 r000 r001 r010 r011 n0

D 5 1 r100 r101 r110 r111 n1
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using the test statistic ZGE ¼ ŷGE=ŝyGE
. If jZGEj4Za=2,

where Za=2 is the upper 100ð1a=2Þ-th percentile of the
standard normal distribution, one uses ZCC and if jZGEj �

Za=2 the test is based on ZCO. The two-step test statistic can
be expressed in a concise form as

ZTS ¼ ZCCI½jZGEj4Za=2� þ ZCOI½jZGEj � Za=2�;

where I[A] is the indicator function if A holds and is zero
otherwise.

4. EB type shrinkage estimator: We have recently proposed
a new estimator of the interaction parameter, which
attempts to relax the G-E independence assumption in a
data-adaptive way (MC). The proposed method involves a
weighted combination of the case-control and the case-
only estimator in the form of

b̂EB ¼
ŝ2

CC

ðŷ
2

GE þ ŝ2
CCÞ

b̂CO þ
ŷ

2

GE

ðŷ
2

GE þ ŝ2
CCÞ

b̂CC: ð3Þ

The EB perspective for constructing this estimator is
described in detail in MC and is motivated by Greenland
[1993]. We note that although it was constructed from a
Bayesian perspective, this estimator is purely a functional
of data depending on four ingredients: b̂CO, b̂CC, ŝCC and
ŷGE, which are all functions of the cell counts in the 2� 4
table.

To understand the intuitive rationale behind the estima-
tor, observe that as ŷGE ! 0, i.e. as the data provide
evidence in favor of G-E independence, b̂EB ! b̂CO, and as
ŷGE !1, i.e. as the uncertainty regarding G-E indepen-
dence in control population becomes stronger, b̂EB ! b̂CC.
Also, when the true yGE 6¼ 0, i.e. the independence
assumption is violated, then as the sample size n!1,
s2

CC ! 0 and hence b̂EB ! b̂CC, the unbiased case-control
estimator.

MC used Taylor’s approximation to propose an estima-
tor of the variance of b̂EB in the form

bVAðb̂EBÞ � ŝ2
CO þ

ŷ
2

GEðŷ
2

GE þ 3ŝ2
CCÞ

ðŝ2
CC þ ŷ

2

GEÞ
2

 !2

ŝ2
yGE
: ð4Þ

In the simulation results presented by MC, this variance
approximation was shown to work fairly well even for
smaller sample sizes. Figure 1 in the supplementary
material presents the sampling distribution of the EB
estimator, which appears to be fairly normal though the
asymptotic distribution theory for this shrinkage estimator
needs to be rigorously established. We will base the EB test
for the interaction based on the Wald statistic

ZEB ¼ b̂EB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibVAðb̂EBÞ

q
.

In this article, we also consider a slightly modified
version of the EB estimator proposed by MC. The
interaction log-odds-ratio b in a 2� 4 table is given by

b ¼ bCO � yGE: ð5Þ

The case-only estimator is obtained from (5) by assuming
yGE ¼ 0, whereas the case-control estimator is obtained by
substituting yGE ¼ ŷGE (with bCO estimated by its sample
counterpart b̂CO). Another possible estimation strategy
with Bayesian flavor is to estimate yGE by a weighted
estimator of the prior guess 0, reflecting gene-environment
independence and the empirical estimate of gene-environ-
ment association, namely, ŷGE. An EB estimate of yGE,

following arguments similar to those for the construction
of bEB described in MC, is given by ŷEB ¼

f1þ ðŝ2
yGE
=ŷGE

2 Þg�1ŷGE. Substituting yGE by ŷEB in (5), we
obtain an estimate of the interaction parameter, which can
be also expressed as a weighted average of the case-only
and case-control estimators with weights of similar form
as those in (3), except that is ŝ2

CC is replaced with ŝ2
yGE

. We
will label this modified estimator as b̂EB2. The variance
expression for b̂EB2, V̂Aðb̂EB2Þ, say, is exactly of the
same form as in (4) but replacing ŝ2

CC by ŝ2
yGE

. A Wald-
type test is again constructed based on the statistic

ZEB2 ¼ b̂EB2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V̂Aðb̂EB2Þ

q
.

SIMULATION SETTINGS

In our simulation, we first investigate the Type I error
and power of these four different testing procedures under
various alternative values of b across a spectrum of
association scenarios for G and E and varying sample
sizes and sampling ratios. All Type I error and power
calculations are based on simulated data sets under
different parameter settings.

In the fixed parameter setting, we fix the values for the
prevalences of G and E, namely, PG and PE, and the value
of the odds-ratio yGE in the control population. Fixing
these three quantities, one is able to obtain the control
probability vector p0 by solving the following system of
equations:

yGE ¼
p000ðp000 � ð1� PG � PEÞÞ

ð1� PG � p000Þð1� PE � p000Þ
;

p001 ¼ 1� PG � p000;

p010 ¼ 1� PE � p000:

We then set the values of OR10, OR01 and c, which together
with p0 define the case-probability vector [Satten and
Kupper, 1993]. We generate data independently from the
two multinomial distributions corresponding to the case
and control populations. We then compute the case-
control, case-only, two-step and the two proposed EB-type
estimators, their standard errors and the corresponding Z
statistics. The Z statistics are then compared with the
critical value from the standard normal distribution for a
given a. Type I error and power are then estimated by the
proportion of null hypotheses rejected at a given level of
significance, i.e. the proportion of times jZj4Za=2 for each
method in 10,000 replications. We considered prevalence
values of G and E, namely, PG ¼ PE ¼ 0:3, and values of
yGE in the range of 0–log(2). For the disease-risk
parameters, we consider a setting with no main effects
(OR10 ¼ OR01 ¼ 1) and varying values of b again in the
range of 0�log(2). We consider two levels of significance 5
and 0.5% and number of cases n1 ¼ 500 and 1,000.

We would now like to emphasize two major aspects of
our simulation study.

1. Effect of varying sampling ratio: In this article we assess
the effect of varying number of controls while fixing the
number of cases on alternative tests for gene-environment
interaction. In the case-only analysis, controls do not play
any role in the inference on the interaction parameter. In a
traditional case-control study, one typically tries to main-
tain approximately the same number of controls as the
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number of cases. In the current simulation, we consider
intermediate study designs where we vary the case:control
sampling ratio from 1:1, 2:1, 4:1. From a design perspec-
tive, we investigate (a) the loss of power in alternative
methods due to recruitment of fewer number of controls
and (b) the ability of the methods to maintain a desired
Type I-error level with decreasing number of controls.

2. Evaluating integrated Type I error and power: We assess
the Type I error and power of alternative procedures
averaged over a distribution of yGE that might reflect
varying scenarios of gene-environment association in
large-scale studies. In dealing with thousands of genes
and their interactions with environmental factors, one is

more interested in assessing the average performance of the
methods across the whole ensemble of gene-environment
configurations, rather than a specific single parameter
setting. In particular, we consider a mixture distribution of
yGE that assigns 80% weight to a point mass at zero and
20% weight on a normal distribution centered at zero and
an SD of log(1.5)/2. The scenario, for example, may
correspond to a study where a large variety of genotype-
exposure combinations are being studied, and for 80% of
those combinations the gene-environment independence
assumption is satisfied and for the rest the genotype-
exposure log-odds-ratios have a distribution with 95%
mass within 7log(1.5) limits. To enumerate average
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Fig. 1. Type I-error rates for different estimators under two settings: (a) 500 cases with varying number of controls for a 5 0.05 and (b)

1,000 cases with varying number of controls for a 5 0.005. The horizontal axis in each plot represents the true G-E log-odds-ratio among

controls, namely, yGE. We consider PG ¼ PE ¼ 0:3, OR10 ¼ OR01 ¼ 1 in all settings. Color figure can be viewed in the online issue, which

is available at www.interscience.wiley.com.
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performance of the different procedures, we first enumer-
ate their Type I error and power on a fixed grid of values
for yGE and then take weighted average of those values
with weights obtained from the specified mixture dis-
tribution.

RESULTS

DATA EXAMPLES

The MECC study is a population-based case-control
study of patients who received a diagnosis of invasive
colorectal cancer in northern Israel between March 31,
1998, and March 31, 2004. Controls were matched
according to age, sex, clinic and ethnic group (Jewish vs.
non-Jewish). Participants were interviewed to obtain
demographic information, personal and family history of
cancer, medical history, medication use and health habits.
They also completed a dietary questionnaire and a blood
sample was collected. Dietary data were collected from in-
person interviews using a 187-item semi-quantitative food-
frequency questionnaire (FFQ). The FFQ was based on the
instrument originally developed by Willett and Reynolds
[1987], and was expanded and tailored to the Israeli diet.
The semi-quantitative FFQ was assessed for reliability and
validity with repeated measures and validation against a
3-day dietary diary with good correspondence.

Genomic DNA was extracted from blood using the
Puregene kit (Gentra Systems, Inc., Minne-
apolis, MN). Genotyping was performed for glutathione
S-transferase M1 (GSTM1) and N-acetyl transferase type
2 (NAT2) by allele-specific polymerase chain reaction
and polymerase chain reaction-restriction fragment
length polymorephism, respectively. GSTM1 genotyping
results permitted dichotomous classification as GSTM1
null or non-null. NAT2 genotyping was used to classify
individuals as fast or slow acetylators for consistency
with previously published literature [Roberts-Thomson
et al., 1996]. We study the interaction between GSTM1
and NAT2 with smoking and several measures of dietary
consumption to illustrate our different methods. Analy-
sis in each case was based on complete case data for each
gene-diet configuration. The observed cell counts for
each 2� 4 configuration is presented in Table II. The
dichotomization scheme for the genetic and behavioral
exposures is described at the bottom of Table II.

The acetylator phenotype has been hypothesized to
modulate the relationship between red meat and risk of
colorectal cancer (CRC), with increasing red meat con-
sumption associated with increased risk of CRC among
fast, but not slow, acetylators in some [Roberts-Thomson
et al., 1996], but not all, studies [Barrett et al., 2003]. NAT2
has also been suggested as a potential modifier of the
relationship between cigarette smoking and CRC as well
as colorectal adenomas, although studies are not consistent
[Moslehi et al., 2006; Barrett et al., 2003].

Homozygous deletion of the GSTM1 allele corresponds
to a null phenotype that has been suggested to modify the
well-known protective association between increasing
cruciferous vegetable consumption and decreased risk of
CRC [Lin et al., 1998]. However, this relationship is also
inconsistent in the literature. Since GSTM1 also metabo-
lizes components of tobacco smoke, GSTM1 has been
studied as a modifier of the relationship between smoking

and CRC. However, meta-analyses do not support an
interaction [Smits et al., 2003].

One can notice the adaptive feature of the EB-type
estimators depending on the strength of G-E association
across the six different cases. For example, while
estimating GSTM1�fruit interaction, ŷGE ¼ 0:00 (P-va-
lue 5 0.96), providing strong evidence in favor of G-E
independence, the EB estimator of interaction log-odds-
ratio b̂EB ¼ �0:19 (P-value 5 0.08, CI 5 (�0.39,0.02)) is
identical to the case-only estimator. The results suggest
possible effect modification of fruit consumption on the
risk of CRC by GSTM1 genotype status. However, the
case-control analysis in this context does not detect this
marginal interaction effect (b̂CC ¼ �0:18, P-value 5 0.23,
CI 5 (�0.47,0.11)).

In contrast, for estimation of GSTM1�beef interaction
where ŷGE ¼ �0:20 (P-value 5 0.05), presenting evidence
against the independence assumption, EB inference regard-
ing the interaction log-odds-ratio (b̂EB ¼ 0:23, P-va-
lue 5 0.14, CI 5 (�0.08,0.53)) is closer to case-control
inference (b̂CC ¼ 0:30, P-value 5 0.05, CI 5 (�0.01,0.59))
than the case-only inference (b̂CO ¼ 0:10, P-value 5 0.34,
CI 5 (�0.11,0.32)). Similarly, under a strong violation of the
independence assumption between NAT2 and smoking
(ŷGE ¼ �0:26, P-value 5 0.01), EB estimate regarding the
interaction parameter (b̂EB ¼ 0:09, P-value 5 0.55,
CI 5 (�0.20, 0.38)) resembles the case-control estimate
(b̂CC ¼ 0:15, P-value 5 0.29, CI 5 (�0.13,0.42)), while the
case-only estimate is in the entirely opposite direction
(b̂CO ¼ �0:11, P-value 5 0.26, CI 5 (�0.31,0.08)).

TABLE II. The 2� 4 tables for studying several gene-
environment interactions in the Molecular Epidemiology
of Colorectal Cancer (MECC) studya

G 5 0 G 5 1

E 5 0 E 5 1 E 5 0 E 5 1 Total

NAT2�Smoking D 5 0 623 540 398 266 1,827
D 5 1 607 479 397 280 1,763

NAT2�Beef D 5 0 867 291 487 176 1,821
D 5 1 798 234 474 176 1,682

GSTM1�Smoking D 5 0 808 118 765 124 1,815
D 5 1 746 58 796 81 1,681

GSTM1�Beef D 5 0 735 275 781 240 2,031
D 5 1 727 225 650 223 1,825

GSTM1�Vegetable D 5 0 210 801 238 788 2,037
D 5 1 258 705 266 620 1,849

GSTM1�Fruit D 5 0 228 783 232 792 2,035
D 5 1 244 720 258 632 1,854

aFor each configuration of G and E, observations with missing
data on either G and E were deleted.
Dichotomization schemes for G and E:
NAT2 (fast vs. slow) and Smoking (ever vs. never).
NAT2 (fast vs. slow) and Beef (upper 25% vs. lower 75%).
GSTM1 (non-null vs. null) and Smoking (current vs. former).
GSTM1 (non-null vs. null) and Beef (upper 25% vs. lower 75%).
GSTM1 (non-null vs. null) and Vegetable (upper 75% vs.
lower 25%).
GSTM1 (non-null vs. null) and Fruit (upper 25% vs. lower 75%).
NAT2, N-acetyl transferase type 2; GSTM1, glutathione
S-transferase M1.
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The other three scenarios in Table III, corresponding to
NAT2�beef interaction, GSTM1�smoking interaction and
GSTM1�vegetable interaction, all represent data scenarios
where there is not much evidence against the gene-
environment independence assumption. There is
very little evidence against independence, for example,
between NAT2 and beef consumption ((ŷGE ¼ 0:07, P-
value 5 0.51). In this case, EB inference regarding interac-
tion (b̂EB ¼ 0:22, P-value 5 0.08, CI 5 (�0.03, 0.47)) is quite
close to case-only inference (b̂CO ¼ 0:24, P-value 5 0.04,
CI 5 (0.01,0.46)), both suggesting modest evidence of non-

multiplicative interaction. The case-control estimator
cannot detect any evidence of such an interaction.

The various association and interaction scenarios con-
sidered in the above real data example serve as an
illustration of how inference could drastically change by
assuming gene-environment independence when it is not
true and how the conclusions from case-control and case-
only analysis could be widely different depending on the
G-E association present in a particular data situation. The
examples clearly emphasize the need and usefulness of a
data-adaptive compromise where one does not have to
specify or rely on unverifiable model assumptions and
simply let the data determine the evidence in favor of or
against the independence assumption. However, as we
will note in the following section, one is still able to
maintain significant efficiency advantages without losing
much of the desired robustness properties.

SIMULATION FINDINGS

We now summarize the main findings in the simulation
setting mentioned above. Table IV and Figure 1 present the
Type I-error values for testing H0 : b ¼ 0 at n1 ¼ 500,
a5 0.05 and n0 ¼ 1; 000, a5 0.005, respectively, for all the
five methods under a two-sided alternative and varying
values of yGE. One can notice the highly inflated Type I-
error levels for the case-only method and also the two-step
procedure under violation of G-E independence. The Type
I-error inflation of the case-only method can be noticed
even under very small departures from the independence
assumption, say when yGE ¼ logð1:1Þ, a5 0.05 and
n1 ¼ 500, the Type I error of CO is 0.077. With
yGE ¼ logð1:2Þ, a5 0.05 and n1 ¼ 500, the Type I error for
CO is 0.143, much above the nominal level. With increase
in yGE to log(1.5), the Type I error for CO reaches 0.498,
which is unacceptable for any testing procedure. The two-
step procedure often also has unacceptably high Type I
error. However, the Type I error for the TS procedure,
unlike that of CO, does decrease with larger values of yGE

and increasing sample size. For example, when n1 ¼ 500,
a5 0.05 and sampling ratio of 1:1, Type I error for TS is
0.278 when yGE ¼ logð1:5Þ, but reduces to 0.111 when
yGE ¼ logð2:0Þ. The effect of sample size on Type I-error
rates for different methods has been reported in Table I of
supplementary materials. Increasing sample size does not
reduce the Type I error of case-only procedure; however,
the Type I error of TS procedure does decrease with
increasing sample size (compare the results of Table IV in
the text with n1 ¼ 500, a5 0.05 to the results of Table I in
the supplementary materials with n1 ¼ 1; 000, a5 0.05).

The EB-type estimators provide a much better control of
Type I error, especially under smaller departures from the
independence assumption. For example, when n1 ¼ n0 ¼

500 and a5 0.05, the EB procedure maintains close to
nominal level of Type I error (0.052) at yGE ¼ logð1:1Þ. The
Type I error for EB increases to 0.076 at yGE ¼ logð1:2Þ, and
then to 0.097 for yGE ¼ logð1:5Þ and eventually drops to
0.059 when yGE ¼ logð2:0Þ. Increasing sample size reduces
Type I error for EB procedures (see Table I in supplementary
material). The EB2 method has consistently slightly smaller
Type I error than EB. Figure 2 shows the basic variation
pattern of Type I error with changes in yGE for all five
estimators considered. Note that while the TS procedure has
similar behavior patterns like EB procedure, the Type I curve
lies much above EB for all simulation settings.

TABLE III. The results from the MECC study on
analyzing interaction effects of NAT2 and GSTM1 with
smoking and dietary exposures on the risk of colorectal
cancer

Interaction log-odds-ratio b

Estimate SE P-value LCI UCI

NAT2�Smoking Case-only �0.11 0.10 0.26 �0.31 0.08
Case-control 0.15 0.14 0.29 �0.13 0.42

ŷGE ¼ �0:26 Two-step 0.15 0.14 0.29 �0.13 0.42
P-value 5 0.01 EB 0.09 0.15 0.55 �0.20 0.38

EB2 0.11 0.15 0.43 �0.17 0.40

NAT2�Beef Case-only 0.24 0.12 0.04 0.01 0.46
Case-control 0.16 0.16 0.31 �0.15 0.48

ŷGE ¼ 0:07 Two-step 0.24 0.12 0.04 0.01 0.46
P-value 5 0.51 EB 0.22 0.13 0.08 �0.02 0.47

EB2 0.21 0.14 0.13 �0.06 0.49

GSTM1�Smoking Case-only 0.27 0.18 0.13 �0.08 0.62
Case-control 0.16 0.23 0.47 �0.28 0.61

ŷGE ¼ 0:10 Two-step 0.27 0.18 0.13 �0.08 0.62
P-value 5 0.45 EB 0.25 0.19 0.19 �0.123 0.62

EB2 0.23 0.21 0.28 �0.19 0.65

GSTM1�Beef Case-only 0.10 0.11 0.34 �0.11 0.32
Case-control 0.30 0.15 0.05 0.01 0.59

ŷGE ¼ �0:20 Two-step 0.10 0.11 0.34 �0.11 0.32
P-value 5 0.05 EB 0.23 0.16 0.14 �0.08 0.53

EB2 0.26 0.16 0.10 �0.05 0.57

GSTM1�Vegetable Case-only �0.16 0.10 0.12 �0.36 0.04
Case-control �0.02 0.15 0.91 �0.31 0.27

ŷGE ¼ �0:14 Two-step �0.16 0.10 0.12 �0.36 0.04
P-value 5 0.19 EB �0.09 0.15 0.53 �0.38 0.20

EB2 �0.07 0.16 0.66 �0.38 0.24

GSTM1�Fruit Case-only �0.19 0.10 0.08 �0.39 0.02
Case-control �0.18 0.15 0.23 �0.47 0.11

ŷGE ¼ �0:01 Two-step �0.19 0.10 0.08 �0.39 0.02
P-value 5 0.96 EB �0.19 0.10 0.08 �0.39 0.02

EB2 �0.19 0.10 0.08 �0.39 0.02

The sample control odds-ratio between G and E, namely, ŷGE and
the P-value for testing H0 : yGE ¼ 0 are presented in the first
column. Also included are the point estimate, corresponding large
sample standard error, P-value for testing H0 : b ¼ 0 and the 95%
CI for the interaction log-odds-ratio parameter b.
MECC, Molecular Epidemiology of Colorectal Cancer; NAT2, N-
acetyl transferase type 2; GSTM1, glutathione S-transferase M1;
EB, empirical Bayes.
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Figure 1 and Table IV also illustrate the effect of
sampling ratios on Type I-error rates of the different
procedures. One can notice that even with recruiting a
smaller number of controls (half or one-fourth the number
of cases) and using the adaptive EB-type estimators, one
can prevent the Type I-error inflation of the CO method to
a large extent. For example, for n1 ¼ 1; 000, a5 0.005,
yGE ¼ logð1:1Þ, the Type I error for CO is 0.016, whereas the
Type I error for EB with sampling ratio 2:1 is 0.004. The TS
procedure does much worse in achieving the same goal
with the same number of controls when compared to the
EB methods (TS Type I error 5 0.019 under same situation).

Table V presents some representative numerical values
for power with interaction odds-ratio fixed at 1.5 under
settings identical to the ones considered in Table IV. Tables
IV and V should be evaluated simultaneously to reiterate
that the extremely impressive gain in power for the case-
only method comes at a cost of Type I-error values much
higher than the nominal level. Under yGE ¼ 0, a5 0.005,
n1 ¼ 1; 000, CO is surely the preferred choice with power
0.52 compared to 0.19 for CC, both maintaining nominal
level of Type I error. In the same setting, EB maintains
significant gain in terms of power when compared to CC
with a power of 0.35. EB2 always has slightly less power
than EB. Note that, under modest violation of G-E
independence assumption, with yGE ¼ logð1:1Þ, a5 0.005,
n1 ¼ 1; 000, the power of CO is 0.77, but accompanied with
a Type I error of 0.016, which is 3 times more than the
designated level of significance of 0.005. In the same
setting with a sampling ratio of 1:1, the power of EB is 0.46,
but Type I error is very close to the nominal level (0.006).
The CC method has power 0.20 (Type I error 0.004) in the
same setting. Under modest departure of independence
assumption (yGE � logð1:2Þ), EB continues to maintain this
power gain over CC. However, for larger values of yGE, EB
puts most of its weight on CC and thus the power of EB
becomes closer to the power of CC.

We next study the effect of sampling ratios on the
power. It is interesting to compare the power of the EB

method to the case-control analysis when the sampling
ratio for controls decreases. Under yGE ¼ logð1:1Þ, for
a5 0.05, n1 ¼ 500 and a sampling ratio of 2:1, the power
for EB is 0.43 (Type I error 0.04), which is more than twice
the power of CC (power 5 0.20, Type I error 5 0.05) with
the same sample size and is even higher than the power
obtained by CC with double the number of controls
(power for CC 5 0.30, Type I error 5 0.05, sampling ratio
1:1). This suggests that one can detect given effect sizes
with higher level of power by recruiting fewer controls
when compared to standard case-control analysis, just by
adopting the EB testing procedure. Also note that the rate
of decrease in power with a decrease in control sampling
rates is slower for the EB procedure than the correspond-
ing case-control analysis. In Table V, for example, when
n1 ¼ 500, a5 0.05 and b5 log(1.5), as the sampling ratio
changes from 1:1 to 2:1 to 4:1 the power for EB changes
from 0.50 to 0.43 and then to 0.32, reflecting successive
percentage reduction in power of 14 and 25.6%, respec-
tively. The corresponding power values for CC decrease
from 0.30 to 0.20 and then to 0.13 with the percentage
reductions in power being 50 and 35%, respectively.
Figures 2 and 3 present power curves corresponding to
the different testing approaches under the two settings: (a)
a5 0.05 and n1 ¼ 500 and (b) a5 0.005 and n1 ¼ 1; 000
with the number of controls varying across each row of the
graphical array and with values of yGE varying across the
columns of the array. One can notice the marked power
gains of the EB estimator relative to the case-control
estimator under modest departures from the gene-envir-
onment independence assumption as well as the power
advantage when control:case ratio falls below 1:1.

We now draw our attention to the results on integrated
Type I error and power in Table VI, integrated with respect
to a mixture distribution as discussed in the section
simulation settings.

Under the mixture distribution setting considered in
Table VI, both EB methods maintain Type I error very well
for all scenarios. For example, with n1 ¼ n0 ¼ 1; 000,

TABLE IV. Type I error for different estimators under two settings: (a) 500 cases with varying number of controls when
a 5 0.05 and (b) 1,000 cases with varying number of controls when a 5 0.005

a5 0.05, n1 ¼ 500 a5 0.005, n1 ¼ 1; 000

yGE n1 : n0 CC CO EB EB2 TS CC CO EB EB2 TS

0 1:1 0.052 0.051 0.037 0.035 0.066 0.006 0.004 0.004 0.005 0.009
2:1 0.053 0.051 0.032 0.033 0.073 0.005 0.004 0.003 0.003 0.007
4:1 0.048 0.051 0.023 0.023 0.075 0.003 0.004 0.003 0.002 0.009

log(1.1) 1:1 0.052 0.077 0.052 0.044 0.091 0.005 0.016 0.006 0.005 0.018
2:1 0.045 0.077 0.040 0.036 0.094 0.005 0.016 0.004 0.004 0.019
4:1 0.051 0.077 0.029 0.029 0.099 0.006 0.016 0.003 0.003 0.019

log(1.2) 1:1 0.057 0.143 0.076 0.070 0.151 0.004 0.060 0.016 0.013 0.047
2:1 0.048 0.143 0.064 0.060 0.159 0.004 0.060 0.013 0.011 0.050
4:1 0.050 0.143 0.049 0.050 0.155 0.005 0.060 0.015 0.014 0.057

log(1.5) 1:1 0.044 0.498 0.097 0.075 0.278 0.006 0.472 0.019 0.014 0.110
2:1 0.050 0.498 0.113 0.098 0.381 0.006 0.472 0.046 0.038 0.242
4:1 0.051 0.498 0.139 0.132 0.447 0.005 0.472 0.066 0.060 0.334

log(2.0) 1:1 0.047 0.914 0.059 0.049 0.111 0.005 0.973 0.006 0.005 0.008
2:1 0.049 0.914 0.092 0.078 0.342 0.006 0.973 0.014 0.010 0.084
4:1 0.048 0.914 0.157 0.145 0.582 0.005 0.973 0.046 0.039 0.346

We consider PG ¼ PE ¼ 0:3, OR10 ¼ OR01 ¼ 1 in all settings.
CC, case-control; CO, case-only; EB, empirical Bayes; TS, two-step.
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a5 0.005 and b5 0, the Type I error for EB is 0.004, while
CO has a Type I error of 0.021. The power of the EB
estimators is generally much higher than that of CC with
sample sizes being equal. In fact, the power for EB is
comparable or higher than CC even when the latter
method uses twice the number of controls. For example,
when n1 ¼ n0 ¼ 1; 000, a5 0.005 and b5 log(2.0), the
power of CC is 0.726. With half the number of controls,
i.e. n0 ¼ 500, the power of EB is 0.741. As noted in the fixed
parameter setting of Table V, the rate of decrease in power
with the decreasing sampling rate for controls is slower for
EB than that for CC.

Results for several other simulation settings are avail-
able in the supplementary material accompanying the
article.

DISCUSSION

In summary, our study indicates that the novel EB-type
shrinkage estimation procedure leads to a promising
method for testing gene-environment interaction in case-
control studies. The method can gain major power over
standard case-control analysis by exploiting the likely
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Fig. 2. Power for different estimators with 500 cases and number of controls varying across each row of the graphical array. The true
value for yGE is set at 0, log(1.2) and log(1.5) across each column of the array. The horizontal axis in each plot represents the true value of

the interaction odds ratio c ¼ expðbÞ. The Type 1 error level is set at a 5 0.05. We consider PG ¼ PE ¼ 0:3, OR10 ¼ OR01 ¼ 1 in all settings.

Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.
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constraint of gene-environment independence in the
underlying population and yet can adapt itself to protect
against large inflation of Type I error when the gene-
environment independence assumption is violated.

Some specific results merit further discussion. Our
studies in fixed parameter settings (Table IV) suggest that
the EB procedure may not be able to maintain a desired
Type I-error level exactly in all different scenarios of gene-
environment dependence. Thus, if strict control of Type I
error in all different scenarios of gene-environment
dependence is used as the primary criterion for evaluating
the methods, then standard case-control analysis remains
the best option for analysis of case-control data in general.
We, however, find it encouraging that when the violation
of gene-environment independence is small, e.g.
expðyGEÞ ¼ 1:1, then the EB procedure can maintain the
Type I error at the nominal level and yet can gain
substantial power over the standard case-control analysis.
Empirical studies suggest that violation of gene-environ-
ment independence, when it occurs, would likely to be
modest in most situations [Liu et al., 2004]. Moreover, the
EB procedure is unbiased asymptotically. Thus, as sample
size increases, any inflation of Type I error eventually
disappears irrespective of the magnitude of gene-environ-
ment dependence.

We find it most interesting to compare alternative
methods in terms of their Type I error and power after
averaging them over likely scenarios of gene-environment
dependence. The scenario presented in Table VI, for
example, may correspond to a study where a large variety
of genotype-exposure combinations are being studied, and
for 80% of those combinations the gene-environment
independence assumption is satisfied and for the rest the
genotype-exposure log-odds-ratios have a distribution
with 95% mass within 7log(1.5) limits. We find that
under this kind of distribution, which we believe
represents reasonable departure from gene-environment
independence for large-scale association study, such as a
genome-wide scan, the EB procedure, unlike the case-only

and two-stage methods, on average can maintain the Type
I error at a desired nominal level and yet can gain major
power over the standard case-control analysis.

In this article, we have focussed on tests for multi-
plicative interactions. It is, however, important to recog-
nize that the value of studying genetic and environmental
exposures together does not necessarily stem from the
ability to test for statistical interactions. Various alternative
parameters, such as the joint effect of two exposures or the
sub-group effects of one exposure within strata defined by
the other exposure, may be useful for developing powerful
test of association, understanding the public health impact
of the exposures, targeting intervention and risk predic-
tion. The simple EB procedure described in this article can
be extended to carry out inference regarding such
alternative parameters of interest. In recent years, for
example, omnibus tests that can simultaneously account
for genetic main effects and gene-environment/gene-gene
interactions have received attention as a powerful
approach for detection of disease of susceptibility loci
[Chatterjee et al., 2006; Kraft et al., 2007]. The EB procedure
has been extended by MC beyond the 2� 4 table to
estimate all of the parameters of a general logistic
regression model using the framework of Chatterjee and
Carroll [2005]. The general EB procedure can be used for
developing more powerful versions of such omnibus tests.

Our consideration of case-control designs with smaller
sampling rate for the controls than the cases reveals some
intriguing observations. As m, the number of controls per
case, decreases, the power of EB procedure diminishes at a
much slower rate than that for the standard case-control
analysis. Thus, if an EB-type procedure is to be used for
analysis of interaction from case-control studies, then one
could use smaller sampling ratio for controls than the
cases, e.g. m 5 0.5 or 0.25, thus reducing the cost of the
study without reducing the efficiency proportionately. Of
course, if one could completely rely on the gene-environ-
ment independence assumption, one could test for
interaction using cases only. But the advantage of

TABLE V. Power at b 5 log(1.5) for different estimators under two settings: (a) 500 cases with varying number of controls
when a 5 0.05 and (b) 1,000 cases with varying number of controls when a 5 0.005

a5 0.05, n1 ¼ 500 a5 0.005, n1 ¼ 1; 000

yGE n1 : n0 CC CO EB EB2 TS CC CO EB EB2 TS

0 1:1 0.29 0.53 0.41 0.39 0.52 0.19 0.52 0.35 0.31 0.52
2:1 0.20 0.53 0.33 0.30 0.52 0.11 0.52 0.26 0.23 0.51
4:1 0.14 0.53 0.23 0.21 0.53 0.05 0.52 0.18 0.17 0.53

log(1.1) 1:1 0.30 0.71 0.50 0.45 0.66 0.20 0.77 0.46 0.39 0.70
2:1 0.20 0.71 0.43 0.39 0.68 0.11 0.77 0.38 0.33 0.73
4:1 0.13 0.71 0.32 0.30 0.69 0.06 0.77 0.28 0.26 0.73

log(1.2) 1:1 0.29 0.84 0.51 0.45 0.72 0.21 0.92 0.43 0.35 0.71
2:1 0.21 0.84 0.45 0.41 0.77 0.11 0.92 0.38 0.34 0.79
4:1 0.13 0.84 0.38 0.35 0.78 0.05 0.92 0.34 0.31 0.83

log(1.5) 1:1 0.29 0.98 0.45 0.38 0.54 0.21 1.00 0.31 0.25 0.31
2:1 0.20 0.98 0.40 0.35 0.70 0.11 1.00 0.24 0.21 0.49
4:1 0.14 0.98 0.4.0 0.37 0.83 0.06 1.00 0.27 0.24 0.71

log(2.0) 1:1 0.30 1.00 0.40 0.36 0.32 0.20 1.00 0.26 0.23 0.20
2:1 0.21 1.00 0.31 0.28 0.38 0.12 1.00 0.16 0.15 0.15
4:1 0.14 1.00 0.28 0.26 0.61 0.06 1.00 0.12 0.11 0.35

We consider PG ¼ PE ¼ 0:3, OR10 ¼ OR01 ¼ 1 in all settings.
CC, Case-Control; CO, case-only; EB, empirical Bayes; TS, two-step.
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sampling controls is that they allow protection against
false-positive results due to violation of the gene-environ-
ment independence assumption. It is promising that the
EB procedure can provide good control of Type I error
even with fairly small number of controls.

Implementation of such designs, however, requires
careful evaluation of the main goals of a study. Epidemio-
logic researchers often design their studies with the goal of
describing the association of a disease with certain types of
exposures, such as genetic susceptibility, by itself and
stratified by some other factors, such as an environmental
exposure. In such situations, it is important to note that the
strategy of sampling controls at a smaller rate than the

cases although could be cost efficient for studying
interactions, it would generally reduce the power of
studies of main effect of the main exposure of interest.
An alternative strategy that could be powerful and yet be
cost-effective in such context would be to sample the
controls at the same rate as the cases for the evaluation of
the main exposure of interest, say the genetic markers, but
limit any expensive ascertainment of the ‘‘other’’ type of
exposure, such as biomarker-based evaluation of an
environmental exposure, only on a smaller fraction of the
controls.

Software: An Excel spreadsheet where one can input the
cell frequencies of a 2� 4 table to compute the five

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θGE=log(1)

Interaction Odds Ratio

n 1
=

n 0
=

10
00

CC
CO
EB
EB2
TS

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θGE=log(1.2)

Interaction Odds Ratio

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

θGE=log(1.5)

Interaction Odds Ratio

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction Odds Ratio

n 1
=

10
00

 n
0=

50
0

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction Odds Ratio

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction Odds Ratio

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction Odds Ratio

n 1
=

10
00

 n
0=

25
0

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction Odds Ratio

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Interaction Odds Ratio

Fig. 3. Power for different estimators with 1,000 cases and number of controls varying across each row of the graphical array. The true
value for yGE is set at 0, log(1.2) and log(1.5) across each column of the array. The horizontal axis in each plot represents the true value of

the interaction odds ratio c ¼ expðbÞ. The Type 1 error level is set at a 5 0.005. We consider PG ¼ PE ¼ 0:3, OR10 ¼ OR01 ¼ 1 in all

settings. Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.
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estimators we studied, the corresponding standard
errors, P-values and CI is available at http://www.
sph.umich.edu/bhramar/public_html/research. The
R-codes for simulating power for the different tests of
interaction under general study settings is also available
in the above web site. The matlab software for the
general EB procedure for estimating all the parameters
of a logistic regression model is available at http://
dceg.cancer.gov/about/staf f-bios/chatterjee-nilanjan]
software.
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TABLE VI. Integrated Type I error and power with
varying number of controls under two settings (a) with
n1 ¼ 500; a ¼ 0:05 and (b) n1 ¼ 1; 000; a ¼ 0:005

a n0 b CC CO EB EB2 TS

0.05 log(1) 0.050 0.070 0.042 0.039 0.072
500 log(1.25) 0.112 0.210 0.147 0.137 0.211

log(1.5) 0.289 0.528 0.408 0.376 0.522
log(2.0) 0.684 0.931 0.826 0.785 0.905
log(1) 0.054 0.070 0.035 0.035 0.086

250 log(1.25) 0.088 0.210 0.117 0.110 0.218
log(1.5) 0.197 0.528 0.321 0.299 0.522
log(2.0) 0.493 0.931 0.731 0.693 0.903
log(1) 0.044 0.070 0.031 0.031 0.095

125 log(1.25) 0.073 0.210 0.082 0.078 0.235
log(1.5) 0.130 0.528 0.234 0.218 0.519
log(2.0) 0.319 0.931 0.583 0.561 0.907
log(1) 0.004 0.021 0.004 0.003 0.013

1000 log(1.25) 0.040 0.133 0.065 0.055 0.118
log(1.5) 0.204 0.524 0.356 0.313 0.510
log(2.0) 0.726 0.969 0.873 0.835 0.946
log(1) 0.006 0.021 0.005 0.005 0.020

0.005 500 log(1.25) 0.025 0.133 0.051 0.046 0.132
log(1.5) 0.104 0.524 0.263 0.235 0.511
log(2.0) 0.465 0.969 0.741 0.704 0.938
log(1) 0.005 0.021 0.005 0.004 0.023

250 log(1.25) 0.014 0.133 0.037 0.034 0.131
log(1.5) 0.049 0.524 0.176 0.163 0.504
log(2.0) 0.228 0.969 0.551 0.519 0.943

Type I errors (the rows corresponding to the null value of b ¼
logð1Þ ¼ 0Þ and powers are approximately integrated with respect
to a mixture distribution for yGE, with 80% mass at 0 and 20% mass
at Nð0; logð1:5Þ=2Þ. The standard deviation parameter chosen such
that roughly 95% of the yGE values fall within 7log(1.5). We
consider PG ¼ PE ¼ 0:3, OR10 ¼ OR01 ¼ 1 in all settings.
CC, Case-control; CO, case-only; EB, empirical Bayes; TS,
two-step.
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