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Abstract

In this paper, we study the new better than used in expectation and new worse than used
in expectation properties of Markov renewal processes. We show that a Markov renewal pro-
cess belongs to a more general class of stochastic processes encountered in reliability or
maintenance applications. We present sufficient conditions such that the first passage times
of these processes are new better than used in expectation. The results are applied to the

study of shock and repair models, random repair time processes, inventory, and queueing

models.

NBUE AND NWUE PROCESSES; INCREASING MARKOV RENEWAL PROCESSES;
FIRST PASSAGE TIMES; QUEUEING; RANDOM REPAIR TIME PROCESSES; SHOCK
AND REPAIR MODELS; INVENTORY

1 Introduction

First passage times of appropriate stochastic processes have often be used to represent times
‘to failure of devices or systems which are subject to shocks and wear, random repair time, and
random interruptions during their operation. The life distribution properties of these processes
have therefore been widely investigated in the reliability and maintenance literature. Conditions
under which the first passage times have increasing failure rate (IFR), increasing failure rate

average (IFRA), new better than used (NBU) and new better than used in expectation (NBUE)



properties have been studied. It is well known that IFR = IFRA = NBU => NBUE for life distri-
butions. IFR characterization of birth and death processes, nonnegative diffusion processes, pure
jump processes, Levy wear processes and Markov chains were presented in Keilson (1979), Der-
marn, Ross and Schechner (1983), Abdel-Hameed (1984a, b), and Brown and Chaganty (1983)
respectively. IFRA properties of Markov jump processes, Poisson shock models and Markov
chains were considered by Shaked and Shanthikumar (1987), Ohi and Nishida (1983), Brown
and Chaganty (1983) and references there. Marshall and Shaked (1979), and Block and Sav-
its (1981) studied multidimensional IFRA processes. Marshall and Shaked (1983, 1986), and
Shanthikumar (1984) considered processes with NBU first passage times. Shock models with
NBUE survival were discussed in Block and Savits (1978). Karasu and Ozekici (1989) studied
new better than used in expectation (NBUE) and new worse than used in expectation (NWUE)

properties of increasing Markov processes and Markov chains.

In this paper, we consider the NBUE and NWUE properties of Markov renewal processes.
This extends the results in Karasu and Ozekici (1989). We introduce a general class of stochastic
processes and show that Markov renewal processes are special cases. The class of stochastic
processes considered here is closely related to those discussed by Marshall and Shaked (1983),
and Shanthikumar (1984). In their papers, they presented conditions such that the first passage
times of their processes are NBU. However, as illustrated by an example in Section 2 of this
paper, not all NBUE stochastic processes which are used to represent times to failures of certain
devices are also NBU. This motivates us to look at a weaker characterization of stochastic

processes encountered in reliability or maintenance applications.

In Section 3 of this paper, we consider sufficient conditions such that an increasing Markov
renewal process is NBUE or NWUE. The results will then be generalized to characterize the
NBUE and NWUE properties of a general Markov renewal process. In Section 4, we introduce
the general class of stochastic processes of interest to us, and show that under some conditions,
these stochastic processes are NBUE. The results in Sections 3 and 4 are applied to study shock

and repair models, random repair processes, inventory and queueing models.



2 An Motivating Example

In this example, we show that not all NBUE processes are also NBU. The set of NBU processes

are therefore strictly included in the set of NBUE processes.

Consider a stochastic process Z = {Z(t);t > 0} with state space S C R*. R* here represents
the set of all nonnegative real numbers. Z(0) = 0 with probability 1. Let T,(Z) be its first

passage time to level z € S, i.e.,
T:(Z) =inf{t >0: Z(t) > z}. (2.1)
T:(Z) is said to have NBU (respectively, new worse than used (NWU)) distribution if

P(T(Z) > t+s| T(Z) > t) < (respectively, >YP(T,(Z) > s) (2.2)

for all t,s > 0. T;(Z) is said to have NBUE (respectively, NWUE) distribution if
E(Tx(2) -t | Tx(Z) > t) < (respectively, >)E(Tx(Z)) (2.3)
or

: P(Tz(Z) > t + s)ds < (respectively, >YP(Tx(Z) > t)/ P(T:(Z) > s)ds  (2.4)
0,00) ,00
for all t > 0. The process Z is said to be NBU (respectively, NWU, NBUE, NWUE) if the first

passage times T;(Z) have NBU (respectively, NWU, NBUE, NWUE) distributions for all z € §.

Assume that {Z(t);t > 0} is a Markov process with state space S = {0,1,2,3} and Z(0) =0
with probability 1. Suppose the process can jump from state 0 to state 3 with probability p or
to state 1 with probability 1 — p. Furthermore, the process jumps from state i to state ¢ + 1
with probability 1, 1 = 1,2. Assume that the sojourn times of the process in each state are
exponential with mean 1 and let T be the first passage time of the process to a state greater

than 2. Obviously,

P(T>t)=pe ' +(1-ple~t(1+t+ %) =e I+ (1-pt+(1- p)g-], (2.5)
8(T)=/ P(T > t)dt = p+3(1 - p) = 3 - 2p, (2.6)
[0,00)
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and
2

o P> 8= B2+ 20(1-p) 4 %(1 ! 2.7)
0,00

It is easily shown that if p = 0.5, then for all s > 0, £(T) - &E(T - s | T > s) > 0. However,
P(T > 0.5) =0.7961 and P(T > 1.5| T > 1) = 0.8015. Hence Z is NBUE but not NBU.

The Markov process considered here can be used to model the performance of certain elec-
tronic devices. The states 0, 1, 2 and 3 can be used to represent perfect, minor damage, major
damage and failure conditions of the unit. The device either fails soon after it is used (fails upon

the initial surge of current) or deteriorate gradually until it fails.

A similar example to the one given here was also studied by Marshall and Shaked (1983) to
show that Markov process with positive skip (sample paths with positive jumps greater than 1)

need not be NBU.

Z(t) here usually represent the state of a device, and the device fails if the state exceeds a
certain level z. The first passage time to level z is therefore the lifetime of a device. However,
Z(t) here can also represent the virtual waiting time or work-backlog of a queueing system,

inventory level in a warehouse, or the content in a dam.

3 NBUE and NWUE properties of Markov Renewal Processes

In this section, we first consider the NBUE and NWUE properties of increasing Markov renewal
processes. The results will then be extended to more general Markov renewal processes. It will
be shown that a general Markov renewal process can be used to model the accumulated damage

to a device that is subjected to both shocks and repairs.

Consider a Markov renewal process (X,S) = {X5,Sn;n € {0,1,2,...}} with state space
S C {0,1,2,...} and So = 0. Let Z = {Z(t),t > 0} be the semi-Markov process associated
with (X,5). This means that S;,53,... are the successive jump times of Z and X, Xy, ...
are the successive states visited by Z. Assume that P(sup, Sn < o) = 0. Let the family
of probabilities @ = {Q(s,4,t) : i,j € S,t > 0} be the semi-Markov kernel over S. Assume
that 3-;es Q(i,J,00) = 1 for each i € S. Here, Q(3,7,) is the probability that knowing the



current state is i, the next transition state is to state j and the sojourn time in the current
state is less than or equal to ¢t. (X,S) is an increasing Markov renewal process (or Z is an
increasing semi-Markov process) if Q(7,7,t) = 0 for all ¢ > j and ¢ > 0. The embedded process
X is then an increasing Markov chain with transition probability Q(7,7,00) = Q(¢,7). Let
F(i,t) = ¥es Q(i,J,1), ie., it is the distribution of the occupation time during each visit to state
i. If Q(4,7) = 0 for some pair (¢,5), then Q(¢,7,t) = 0 for all ¢ and define Q(3,7,t)/Q(4,7) = 1.
With this convention, we define for all ¢,j € S and t > 0,

. Q(i,4,t)
G(1,],t) = —=——. 3.1
(h5:) Qi J) 31
For each pair (3, ), the function t — G(3, j, 1) is the distribution function of the occupation time
in state ¢ given the next state will be in state j. Let Tyz(Z) be the first passage time of the
process Z starting from state a at time ¢t = 0 to state z € S. For 4,5 € §, let
0
R(i,j,t) = ) Q"(i,4,1) (3-2)
n=0 '

be the Markov renewal function. Hence, R(z, j,t) is the expected number of visits to state j in

the finite interval [0,¢]. Write

Py(i,7) = P(Z(t) = j | Z(0) = Xo = 1) (3.3)
and
Ui, 1) = 5[ /[0 2 ds | Xo = i] - /[0 Pl i) (3.4)

where I;(k) = 1 or 0 according as k = j or k # j. Note that U(z,,t) is called the potential
function of Z and it represents the expected time spent in state j during [0,¢] by the process

starting at 1. Furthermore,
UG,j) = UGi,4,00) = g[ | 1@s)ds | Xo = i] = [ RGids. (39
[0v°°) [0,00)
Starting at state ¢, U(3,j) is the total expected time spent in j. From Cinlar (1975a),
U(i,5) = R(i,5)m(j) = R(i, J, 00)m(j) (3.6)

where m(j) is the mean sojourn time in state j. For notational convenience, we define the

cumulative potential matrix, {U(3,j);i,j € S}, by

0G,5) = Y UG, k). (3.7

k<
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P,(i,7) and R(i, ;) are defined similarly.

Let N(t) be the number of transitions of the process in the interval (0,t]. Then for all
t,j,k € S and t > 0, we have

P(Xn(y4r =k, Xn) = | Xo =14)

= ZP(Xn+1 =k, Xn= ]7N(t) =n I Xo= 1)
n=0
= ip(Xn+l = kvXﬂ = j’sn <t< S"H-l l XO = 2)
n=0
= Z/ Qnt],ds)P(Xn+1—k Sn+1 S >t—8|Xn= )
n—O
= Z l .77d3 [Q( k)—Q(j,k,t—S)] (38)
n=0 [Ot]
= [, BG5490QUK) QG Kyt = )] (39)

Expression (3.9) follows from (3.8) by the monotone convergence theorem. Furthermore,

P(Xngy =1 Xo=i) = /[0  Rid de)L = Fit = ) (3.10)

The interchange of the summation and integral signs is again justified by the monotone conver-

gence theorem. It follows that
R(i’j’ dS)[Q(], k) - Q(jvkat - 3)]

6l k1) = P(Xnyar = k | Xy = 5, Xo = i) = =24
/[ ]R(i,j, ds)[1 - F(j,t - s)]
0,t

(3.11)
Let M; be the sojourn time of the process in state j, j € S,
Wi(d, k,t) = E(M;)L(5) + D U (b, k)gi(5,b,2) (3.12)
bes
and
Wi(j,z,t) ZW Jyk,t). (3.13)

k<z
Wi(j, z,t) - Lk<z E(M;)Ii(7) is the expected time of the process (X, S) spent in states below
or equal to z during the time interval [Sx(;)41,00) given that Xo = i and Xy = j. In the
case when G(1,7,t) = Q(4,7,t)/Q(i,7) = G(3,t) independent of j for all i,j € S and ¢t > 0, we
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have F(i,t) = G(i,t), qi(4,k,t) = Q(4,k), Wi(5,k,t) = U(4,k) and W,-(j,x,t) = (7(]',2:) for all
i,j,k,z €S andt> 0.

Increasing Markov chains and Markov processes are both special cases of increasing Markov
renewal processes. A review of the literature in the characterization (PF, densities, [FR, IFRA,
NBU) of first passage times of increasing Markov chains and Markov processes are given in
Karasu and Ozekici (1989). Furthermore, in their paper, they showed that an increasing Markov
process and its the embedded Markov chain are NBUE (NWUE) if U(s,j) and R(,j) are
decreasing (increasing) in i on ¢ < j for all j € S respectively. In the theorems and corollaries

below, we study conditions under which an increasing Markov renewal process is NBUE or

NWUE.

Theorem 3.1 Suppose

1. (X,S) is an increasing Markov renewal process,
2. the sojourn time in state i, M;, is NBUE for all i € S,

3. U(i,j) > Wi(k,j,t) foralli < k< j, i,j €S andt > 0.

Then (X,S) is an NBUE Markov renewal process.

Proof: By condition (1) of the Theorem, for all t > 0, a,z € S and a < z,

P(Tue(Z) > t| Xo = a) = P(Z(t) <z | Xo = a) = Y P(Z(t) = k| Xo = a) = By(a,2).

a<k<z
(3.14)
Z or (X,S) is NBUE if
p= I_’,(a,z)/ P,(a,z)ds - Pys(a,z)ds > 0. (3.15)
[0,00) [0,00)
Note that
Piys(a,z)ds = U(a,z) - U(a,z,t) (3.16)

[0,00)



is the expected amount of time the process stayed in the set {j € S : a < j < z} in the time

interval t,00) given that the process starts from state a at the time origin. Furthermore,

Pys(a,z)ds = ) P(Z(t+s)=k| Xo=a)ds (3.17)
[0,0) a<k<z 7 10:°)

/ Z(t+s)=k| Z(t) = u,Xo = a)Py(a,u)ds
[0,00) ue.S

a<k<z
= ¥ Pau) Z/ Z(t+)= k| 2(t) = v, Xo = a) ds
agu<z u<k<z
and
Pt(a,a:)/[o )P,(a,m)ds: E Py(a,u)U(a,z). (3.18)
10 aulz

Fora<u<k<z,
/ P(Z(t+5) = k| Z(t) = u, Xo = a)ds
0,00)
= 5[/[ )Ik(Z(s+t))d8|XN(t) =u,Xo =al. (3.19)
0,00

Equation (3.19) gives the expected time spent in state k¥ during the [t,00) given that the process
starts from state a at time 0 and is in state u at time ¢. Conditional on Xyy41 = b € S,

Equation (3.19) becomes
s[ / I(2(s)) ds | Xy = 4, Xo = a]
[t:SN(e)+1)
+ 8[/ I (Z(s))ds | Xng) = u, Xo = a]
[SN(,)+1,oo)
= g[/ Ik(Z(S))dS l XN(t) = ’u,Xo = a]
(t.SN(ty+1)
[/ 8)) ds | XN(t)+1 =b XN(t) =1u XO = a] qa(u b t) (3 20)
bes [SN(:)+1.<>°)

Since Sn(t)+1 is a stopping time for the semi-Markov process Z and it is semi-regenerative, this

means that

g[/ Ik(Z(.S))dS I XN(t)-H = b’XN(t) = u,Xo = a,]
[SN(t)+x:°°)

- g[ /[O'oo)lk(Z(s))dleo:b = U(b, k). (3.21)



Furthermore, for a < u < k,

| | o DS | T = 1 o = (0 =Sy =
= L(w)EM, - (t-3)| My, > (t-3)] (3.22)
< LWL 2

Equation (3.23) follows from Equation (3.22) because M, is NBUE. Now partially unconditioning
both sides of (3.23) with respect to N(t) = n and Sy(;) = s, we have

8[/ Ik(Z(S)) ds I XN(t) = U,Xo =a S Ik(u)S[Mu] (3.24)
[tsz(¢)+l)

Hence, for a,z € S,

P2 Z Py(a,u)[U(a,z) - Wy(u,z,t)] > 0 (3.25)
afulz
by condition (3) of the Theorem. (X, S) is therefore NBUE. a

In the case when G(4,7,t) = G(i,t) independent of j for all ¢,j € S and t > 0, Condition (3) of
the theorem can be replaced by U(i,5) > U(k,j) forall i < k < j,i,5 € S.

Corollary 3.2 If(X,S) satisfies conditions (1) and (2) of Theorem 3.1 and in addition, G(3,j,1)
= G(i,t) is independent of j for all i,5 € S and t > 0, m(i) is decreasing in i and R(3,j) is
decreasing in i € S fori < jand j € S, then (X,S5) is an NBUE Markov renewal process.

Proof: The proof is the same as the proof of Corollary 4.7 for increasing Markov process in

Karasu and Ozekici (1989). a

From Theorem 3.4 of Karasu and Ozekici (1989), if R(i, ;) is decreasing in i € S for i < j
and j € &, then the increasing Markov chain X is NBUE. Hence, provided all conditions
in Corollary 3.2 hold, the NBUE property of embedded Markov chain X is inherited by the
Markov Renewal process (X, 5)

Obviously, the NWUE characterization of an increasing Markov renewal process can be

carried out in a similar fashion. In particular, we have the following theorem.



Theorem 3.3 Suppose

1. (X,S) is an increasing Markov renewal process,
2. the sojourn time in state 1, M;, is NWUE for alli € S,

3. U(i,5) < Wi(k,j,t) foralli<k<j, i,j€S andt>0.
Then (X, S) is an NWUE Markov renewal process.

Corollary 3.4 If(X,S) satisfies conditions (1) and (2) of Theorem 3.3 and in addition, G(i, j,t)
= G(i,t) independent of j for all i,j € S and t > 0, m(i) is increasing in i and R(i,5) - R(i,!)
is increasing in1 € S for alli < jand l,j € S with | < j, then (X,S) is an NWUE Markov

renewal process.

Proof: The proof is the same as the proof of Corollary 4.9 for increasing Markov procgsé in

Karasu and Ozekici (1989). a

Again, provided that the conditions in Corollary 3.4 hold, the NWUE property of the in-
creasing Markov chain X is inherited by (X, 5).

Consider a device that is subjected to shocks and assume that the amount of damage to the
device at time ¢ can be modeled by an increasing Markov renewal process, (X, S), with discrete
state space S. The device fails when the accumulated damage exceeds z and Z(0) = a < z. The

survival function H = 1 — H of the device is given by
— w -
H(t)= Z PP(N(t) =k) (3.26)
k=0

where N(t) is the number of shocks that occur in the interval (0,¢] and P; = 1 — P is the prob-
ability of surviving k shocks. Provided that the conditions in Theorem 3.1 hold, the distribution
function H is NBUE, i.e.,

H(t) H(s)ds > H(s)ds. (3.27)
[0,00) [t,00)
Furthermore,
Pe=YQ%a,j). (3.28)
i<z
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The same argument used in the proof of Theorem 3.4 in Karasu and Ozekici (1989) applies to
show that if R(i,j) is decreasingin i € S for i < j and j € S, then Py is an NBUE sequence,
ie,for7=0,1,2,...,
P; z P> Z P. (3.29)
k=0 k=j

The shock model considered here is a special case of the shock model discussed in Block and

Savits (1978).

More generally, let (X,S) be a Markov renewal process (not necessarily increasing) with
state space S and semi-Markovian kernel (). Let Z be the associated semi-Markov process, and
define

Z(t) = sup{Z(s);0 < s < t}, (3.30)

in other words, Z(t) is the maximum level the process Z has ever attained during [0,t]. We
adjoin a distinguished state A to the state space and define Xoo = A, 5’00 = 00. For a subset A
of §, define N =inf{n > 1: X € A}. Set N = oo if no such N exists. Then

Fu(i,5,t) = P(Xn = 5,58 < t]| Xo = 1) (3.31)

is the probability that, starting from state ¢, the process Z enters A for the first time at state
J € A and this happens at or before t. For i € S, let A; = {i,i + 1,i + 2,...}. Then, for all
JE€ Ajand t >0,

Q1 4,t) = Fa,(3,5,1) (3.32)
is the probability that the first transition of Z is to state j and this happens before ¢. From
Cinlar (1975b), Z is an increasing semi-Markov process, and @ is the corresponding semi-
Markovian kernel. As noted in Cinlar (1975b), F4 satisfies the equation

Fa(iyit) = Q(i,3,0)+ 3 / Qa(iy k,ds)Fa(k, j,t - 5) (3.33)
kes
where Qa(i, k,t) = 0if k € A and Q4(4, k,t) = Q(3,k,t) if k € A° for all i,k € S, t > 0. This
is a Markov renewal equation with defective semi-Markov kernel Q4. From Cinlar (1969), it is
not difficult to show that the solution of Equation (3.33) exists and is unique. More specifically,
foralli,j€Sand t >0,
NEDEDD / Ra(i, k, ds)O(k, j,t - s) (3.34)

kes
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where R4(i,5,t) = Y a2 Q% (3,J,t). Now for all a < 2, if T,z(Z) is the first passage time of the

process Z starting from state a at time t = 0 to state € S, then
P(Toe(Z) > t| Xo = a) = P(Toz(Z) > t| Z(0) = a). (3.35)

It follows immediately that Z is NBUE (respectively, NWUE) if and only if the increasing
semi-Markov process Z is NBUE (respectively, NWUE).

Consider a device that is subjected to both shocks and repairs. Assume that the amount
of damage to the device at time ¢ can be modeled by a Markov renewal process, (X ,$), with
discrete state space S. If Z($,) < Z(S87), the device is said to be under repair at time S,. On
the other hand, if Z(S,) > Z(5;), then at epoch Sy, a shock with magnitude Z(S,) - Z(S;)
affects the device and causes damage. The device fails when the total damage exceeds z and
Z(0) = a < z. The survival function H of the device is again given by Equation (3.26) where
N(t) is now the number of events that occur during the interval (0,¢] in the increasing Matrkov

renewal process Z and Py = i<z QF(a, 7). Provided that all the conditions in Theorem (3.1)

hold for the increasing semi-Markov process Z, the distribution function H is again NBUE.

4 General NBUE processes

The stochastic processes considered in this section are very general. They include Markov
renewal processes, shock models considered by Esary, Marshall and Proschan (1973), A-Hameed
and Proschan (1975), and Block and Savits (1978), and NBU processes studied by Marshall and
Shaked (1983), and Shanthikumar (1984).

Let (An,YR);° be a sequence of (not necessarily independent and identically distributed)
random variables. Suppose Y; are all nonnegative, S, = Y (=, Y;, n = 1,2,... and Sp = 0.
Let N(t) = sup{n: S, < t}. We say that {N(t);t > 0} is a point process associated with the
sequence (A,,Y,){°, and at time Sy, an event of magnitude A, occurs. For fixed a1,...,a; (some
of the a; s may be negative) and y1,...,y; (all the y; s are nonnegative), define the sequence

(hj((aiy 4i)yi = 1,...,7;+))$ and ho(-) of deterministic nonnegative real valued functions on R*.

12



Consider the stochastic process {Z(t);t > 0} defined by

ho(?) if N(t)=0
Z(t) = . (4.1)
hN(t)((A,',Y,'),i =1,2,...,N(t);t - SN(t)) ifN(t)>1

This means that the process moves deterministically between events. The deterministic pattern
between events is determined by the location and magnitude of earlier events. In particular,
in the time interval [S;, Sj+1), the function h; governs the behavior of the process. Note that
the process Z stays nonnegative. However, unlike Marshall and Shaked (1983), and Shan-
thikumar (1984), we are not restricting the process to jump an amount A, at time S,. An
increasing Markov renewal process is a special case of the general stochastic process introduced
here. In particular, it satisfies the following conditions. (A,){° is a sequence of discrete ran-
dom variables taking values on S. Assume Ay = a with probability 1 and for all n > 1,
P(An =7 | 'A,,_l =1i)=Q(47). Y(0)=0and forn > 1, P(Y, < t| Apy = 1) = F(i,t). For
all n > 1, P(A, = 5,Yn <t | Apoy = 1) = Q(4,4,t). ho(t) =aforallt> 0. Forj= 1,;‘2,‘-...
and t > 0, h;((Ai,Yi),s =0,1,...,5;t) = A;. Before we state sufficient conditions such that the

process Z is NBUE, let us define some notations.

For each m € {0,1,2,...}, let 7 = ¥ 2" | Y; and Np(t) = sup{n : ST < t}. Define the
stochastic processes {Zn(t);t > 0} and {Wn(t);t > 0} by

ho(t if No(t) =0
Zm(t) = Z(Spm + 1) = olt) if No(t)
A4 Nm(t)((Ai, Yi), 8 = 1,2,...,m + Np(t);t = S,'V"m(t)) otherwise
(4.2)
and
t if Npu(t) =0
Win(t) = ho(t) TNa=0 g

th(t)((Am+.',Ym+,'),i =1,2,...,Nn(t);t - 51’\’/1."(2)) if Np(t) 21

Observe that Z,, is obtained from Z by shifting the origin to S;n. Wy, is defined in the same
way as Z, but with the sequence (Am4i, Yn4i)2;. Also, for t > 0, let Z(t) = maXo<y<e Z(u)
and Wm(t) = maxXo<u<t Wm(u). 7 and W,, are therefore transformations of Z and W,, which

trace their historical maximum. Let H(Z,t) represents the history of the process Z upto time ¢.

For each z € S, define 7, = inf{t : ho(t) > z;t > 0}. Set r, = oo if no such 7, exists. For

13



n=1,2,..., define

Y, fY,<r
yz=¢ " T (4.4)
w Y, >7

Furthermore, from Shanthikumar (1984), a stochastic process {X(t);t > 0} stochastically

dominates a process {Y(t);t > 0} (X >, Y) if for every nondecreasing functional f

E[f(X)] 2 E[f(Y)] (4.5)
whenever the expectations exist.
For Theorem 4.1 below and the examples in this section, we will assume (A,,Y;){ is a
sequence of independent random variables.

Theorem 4.1 Suppose

1. (An,Y3){° is a sequence of independent random variables.
2. Z(0) = ho(0) = 0 with probability 1.
3. For every realization (ai,%:)° of (Ai,Y:)°, we have for allt > 0,

(a) hi((a1,91);t) > ho(?),

(b) hm+j((ai’yi)ai = 1,°--,m+j;t) 2 hj((a'm+i7ym+i)ai = 1,...,j;t), m=0,12,...,
j=12,..,

(c) P(hj((Am+1,Ym+l)a(am+iv Ym4i)st = 2,..,55t) > p| Vi1 > 8)
2 P(hj((Am+19Ym+1)’(am+i’ym+i)’i =2... ’j;t) > P);
p,820,m=0,1,...,7=12,....

4. Foreachz € S andn =1,2,..., Y7 is NBUE, i.e., E(YF -3 | YT > 3) < E(Y,F) whenever

0<s< ;.

5. / P(Wn(t) < z)dt < / P(Z(t) < z)dt forallz € S and m =0,1,2,....
0 0

Then {Z(t);t > 0} is an NBUE process.
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Remarks:

1. Conditions (3(a)) and (3(b)) require Zp,(t) > Wy (t) with probability 1 for all ¢ > 0. In

most applications, this condition is easily verified. Some examples are given below.

Furthermore, we have Z(Sy,) > Wy,(0) = Z(0) = ho(0). Hence, if Z(t) represents the
accumulated damage of a device at time ¢ and events mean repair, this means that a used

device cannot be repaired to a better condition than a new one.

2. Condition (3(c)) in the Theorem is weaker than Condition (iv) of Theorem 3.2 in Shan-
thikumar (1984) for NBU processes. In his paper, he required that
P(hi((Am+1,Yme1), (@metis Ymti)y 8 = 2,00, 558) > p | Yimgr = 1)

2 P(hj((Am+1: Ym41)s (@mais Ymai)st = 2,.00,538) > p | Yinyr = s2),

whenever s; > s9, t,p,81,82 20, m=0,1,...,7=1,2,....

3. Note that if ho(t) = 0 for all t > 0 and Yy is NBUE, n = 1,2,..., then Condition (4) of
the theorem holds. Also, if Y, is NBU, n = 1,2,..., then it is trivially true that Y7 is also
NBU for all z € S. Hence, Y7 is NBUE.

4. If (A,,Y,){° is a pair of renewal sequences, then Z and W, are the same process distri-
butionally. Condition (5) of Theorem 4.1 always holds. If W 25 Z,m=0,1,2,..., then
P(Wn(t) < z) < P(Z(t) < z) forall 2 € S and ¢ > 0. Condition (5) of Theorem 4.1
follows. Section 4 of Shanthikumar (1984) discussed situations such that Wi >s: Z holds

for independent non-renewal sequences.

If T;(Wy) and T;(Z) are respectively the first passage times of the processes Wy, and Z
to level z € S, then Condition (5) of the theorem implies that £(T;(Wy,)) < £(Tx(Z)) for
alz e S.

Before the proof of Theorem 4.1 is given, let us look at some examples of the stochastic process

Z encountered in applications.

Example 1 : A random repair time process

Suppose (A,,Y,){° is a pair of renewal sequences. Let Z(t) represents the wear and repair
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process of an equipment at time t. Assume that wear starts at 0 at time 0 and the rate of
wear, 1, is constant independent of time. At time S, (n > 0), the equipment is repaired and the
process Z is set to level max{Z(S,)— An,min{Z(S;),a}} and @ > 0. This means that once the

equipment is used, it is not possible to repair it to perfect condition. In this example, we have

L. ho(t)=rt,r>0,t20,

2. ki((Ai,Y5),i=1,2,...,5;t) = max{Z(5; ) — Aj,min{Z(S] ),a}} +rt,j = 1,2,...,¢ > 0.

Now, provided that Y, is NBU for all n = 1,2,..., it is easily verified that all conditions in
Theorem 4.1 are satisfied and Z is therefore NBUE.

In general, let a(z,t) be a nonnegative real valued function defined on R* x R*. Assume
that at time S, the equipment is repaired to level max{Z(S; )~ A,,min{Z(S;),a(Z(S;),Sx)}}
which depends on both level and age of the equipment. In particular, Z is still NBUE when
a(z,t) is monotonically increasing in both z and ¢. Furthermore, we can also assume the rate

of wear to be both level and age dependent (Shanthikumar (1984)), i.e.,
—= =1(Z(t),t), Sn-1 <t < Sy, n=12...

r(z,t) here is a nonnegative real valued function defined on ®* x ®* and it increases on .

Example 2 : Inventory model

Let Z(t) represents the net inventory level of an item at time ¢ in a warehouse of finite capacity
z > 0. Assume Z(0) = 0. At time t, the items are consumed at rate r(Z(t)) > 0 depending on
the net inventory position at that time. This means that

dZ(t
—dg—) = -r(Z(t)), Sp-1 <t < Sy, n=12,....

Assume backlogging is permitted. Z(t) is therefore negative if the backorder level at time ¢
is positive. Furthermore, items are replenished at time S,. The number of items received at
time S, is equal to max{A,,—Z(S;)}, the maximum of the positive random variable A, and

the backorder level at that time. Let Z*(t) = max{0,Z(t)}. Z*(t) is therefore the on-hand

inventory level at time t. Assume that
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1. (An,Y5){° is a pair of renewal sequence.

2. Y, is NBUE, n =1,2,...,1i.e., given that there is no shipment of items in the last certain
period of time, the expected additional time until the next shipment is less than or equal

to the expected time between shipments.

3. P(An>p| Y. >38)>P(A, >p)yn=1,2,...,p,82>0.

Then from Theorem 4.1, the first passage time of on-hand inventory to level z € S (the time
taken to fill up an empty warehouse) is NBUE. Z* is still NBUE even if we assume that the
maximum number of backorder permitted is b > 0 (or Z(t) > —b for all t > 0).

Example 3 : Queueing model

Let (An,Y){° be a non-renewal sequence of independent random variables. Let Z(t) repre-
sents the work-backlog or the virtual waiting time in a queueing system at time t. Agsﬁme
Z(0) = 0. At time t, the service rate is r(Z(t)) > 0 depending on the work-backlbg at
that time. Suppose the nth customer arrives at time S, increases the work-backlog by A,
to Z(Sn) + An. Assume that Apyq 24t Any Yo 25t Yns1, and Yy, is NBUE, n = 1,2,.... Also,
P(An>p|Yn>38)>P(A,>p),n=1,2,...,p,8 > 0. Then from Shanthikumar (1984), Con-
ditions (1) and (2) above implies that Wy, >, Z, m = 0,1,2,.... It follows from Theorem 4.1
that the first passage time of the work-backlog to level z € § is NBUE.

Proof of Theorem 4.1: For z € S and m =0, 1,2,..., let
T3 = To(Wn) - Yiqn. (46)

Consider the conditional expectation

E(To(Z) -t | To(Z) > t,N(t) = m, H(Z, Sn))
= E(T(Z2) = Sm = (t = Sm) | To(Z) = S > t = S, N(t) = m, H(Z, Sm))
= E(Te(Zm) = (t = Sm) | Te(Zm) > t = Sm, N(t) = m, H(Z, Sm)) (4.7)
< E(Te(Wim) = (t = Sm) | Te(Wim) > t = S, Y1 > t = S 2 0) (4.8)
= E(T | To(Wm) > t = SmyYms1 > t = Sm 2 0)
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+EYE = (t=Sm) | Te(Win) > t = S, Yy > t = S 2 0)
= E(T2|YZ > =S 2 0) 4+ E(¥a4y — (1= Sn) | YE4 > 1-Sn 20)  (49)

< E(TD)+E(YEL) (4.10)
= E(To(Wn)
< E(T(2)). (4.11)

Conditions (1), (3(a)) and (3(b)) of the theorem lead (4.7) into (4.8). Note that

L &ET; | Vi >t—Sn 20) < E(T;) by Conditions (1) and (3(c)) of the theorem,
2. E(YE, —(t—=Sm) | YE L >t=8m 20) < E(YE,,) because Yr iy and Sy, are independent

and Y7, is NBUE.

Equation (4.10) therefore follows from (4.9). Finally, (4.11) follows from Condition (5) of the
theorem. Now partially unconditioning both sides of (4.11) with respect to the history and m

(including the case m = 0), we have
E(Tx(2) - t| Tu(2) > 1) < E(T(2)). (4.12)

O
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