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This paper studies the steady state behavior of the superposition of p independent
Markov renewal processes. The number of Markov renewal processes, p, is fixed,
and we are interested in deriving the steady state behavior of the superposed process
at the times of occurrence of events. In particular, we define the discrete superposi-
tion remaining and current life processes. The stationary distributions and related
steady state properties of these processes are given. These results are applied to

study both queueing and reliability problems.

1. Introduction and Summary. Let (X;,T;) = {Xin,Tin;n € {0,1,2,...}},1=1,2,...,p, be
p > 2 independent stochastic processes. For each n € N = {0,1,2,...} and i € S = {1,2,...,p},
Xin is a random variable taking values in a countable set &;, and T; , is a random variable taking
value in R4 = [0,00) such that 0 =T;o < Ti; < Tip < .... For each ¢ € S, the stochastic process
(Xi, T;) = {Xin,Tin;n € N} is said to be a Markov renewal process with state space & provided
that for all n € NV, v;,(; € & and t € Ry,

PXint1 =Gy Tint1 = Tin <t Xigyo o s Xin =vis Ti0y- -y i)
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= PXint1=CiyTint1 = Tin < t| Xig = vi) = Qi(vi, (i, 1) (1.1)

independent of n. The family of probabilities @; = {@Q:(vi,(i,t);vi,( € &yt € Ry} is called a

semi-Markov kernel of the ith process.

Suppose that there are p > 2 independent Markov renewal processes in operations simultane-
ously. Consider the sequence of events formed by superposing the individual processes. Assume
that concurrent events cannot occur with positive probability in the superposed process. Hence, at
the time when an event occurs in the superposition process, only one of the process, say process i,
moves from one state to another state and the process is semi-regenerate. This means that process
i probabilistically starts over with initial conditions depending only on the state of the process at
that time. In addition, the other processes have age Dy,...,D;_1,Dit1,...,Dp and are in states
Ey,...,E,respectively. D;sand E; s are all random variables. Let T;, > 0 be the time of occurrence
of the nth event in the superposed process. Let £ = & x...x &, & ={1,2,...,i—-1,i+1,...,p},
¥; = {s:se R x {0} x %i'i} and ¥ = UP_,¥,.

Define a stochastic process {Xpn;n € N} such that

Xn

(Sn,Rn)
where

Sn = (Sins--r9pm)s
and

Rn = (Rl,n’ cee aRp,n) = (Rl,ny ) Ri-l,na 0, Ri+1,m ceey Rp,n)

if the nth event of the superposed process comes from the ith component process. For j € S;, R; »
is the remaining life of the jth component process at time 7', and this component process is in state
Sin € €. Also, the ith component process moves to state S, at time T}, and define R;, = 0. Let
us call {Xp;n € N'} the discrete superposition remaining life process (DSRLP). The state space of

this process is given by T = £ x ¥ and denote the associated o-algebra by =.

Similarly, we can define a stochastic process {Ypn;n € N'} such that

Yn = (Sn,Cn),

where
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Sn = (S1my---rSpin)s
and

Cn = (Cl,n"-'vcp,n):(Cl,ns“"Ci—l,n’O’CH—l,n,'",Cp,n)

if the nth event of the superposed process comes from the ith component process and this ith
process moves to state S;,. For j € S, Cj, is the current life of the jth component process at
time T, and this component process is in state S;, € £;. Note that C;, is the current life of the
ith process at time T, and it is equal to zero. Let us call {Yn;n € N} the discrete superposition

current life process (DSCLP). Again, the state space of the process is given by T = & x V.

In the case when | & |=] & |= ... =| & |= 1, DSRLP and DSCLP reduce respectively to the
remaining life process {Rp;n € N’} and the current life process {Cn;n € N'} of the superposition
of p independent renewal processes studied in Lam (1990a). When p = 2, DSCLP is closely related
to the stochastic process {1Z,,2 Z,,In,V,,Un;n € N} presented in Cherry (1972), Cherry and
Disney (1983).

In this paper, we show that both DSRLP and DSCLP are Markov chains. Under certain
regularity conditions on the individual component Markov renewal processes, DSRLP and DSCLP
have a common unique stationary distribution II. DSRLP and DSCLP are useful in characterizing
the steady state behavior of the superposition process at the times of occurrence of events. The

continuous time properties of the superposed process are presented in Lam (1990b).

This paper is organized as follows : Preliminaries and notations are given in Section 2. In
Section 3, we derive the stationary distributions and related steady state properties of DSRLP and
DSCLP. These results are applied to study individual blocking probability of queueing systems
with superposition semi-Markovian arrivals, and system availability of a device with components

connected both in parallel and in series.

2. Preliminaries and Notations. In this section, we present some definitions and results
of Markov renewal theory from the literature which are useful in establishing the characteristics of
DSRLP and DSCLP. In addition, we describe the assumptions which are made throughout the rest

of the paper. The following definitions are adopted from Cherry and Disney (1983).
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Definition 2.1. For i € S, the Markov renewal process (X;,T;) is said to be conservative if
P (sup Tin < oo) =0. (2.1)
neN

Definition 2.2. For i € S, define the random process M;(t) associated with the Markov renewal
process (Xi,T;) by Mi(0) = 0 and M;(t) = n for Tin <t < Ting1. The process (X;,T;) is said to
be regular if

E(M;(t)) < o for allt < o0. (2.2)

Definition 2.3. Fori € S, let M;.,(t) be the random process which counts the number of entrances
of the Markov renewal process (X;,T;) to state e; € &; during the interval [0,t) including, if appli-
cable, the initial state at time T; o = 0. The Markov renewal process (X;,T;) is said to be normal

if, regardless of initial state,

E(M; e, (1)) < o0 for allt € [0,00). (2.3)

The implications of the definitions above are discussed in Cherry and Disney (1983). In this
paper, we exclude conditions which could cause non-regularities and, in particular, we assume that
instantaneous transitions are impossible, that is, @;(v;,(;,0) = 0 for all v;,(; € & and 1 € S.
For all component processes, with probability one a non-zero time is spent between transitions.
Furthermore, we assume that all the Markov renewal processes to be studied here are conservative,

normal and regular.

Let Qi(vi,Gi) = Qi(vi,G,00) and Q; = {Qi(vi,Gi);vi, ¢ € &}. Consider the Markov chain
X; induced by @;. By the usual decomposition theorems, we can partition the Markov chain X;
into disjoint classes of recurrent and transient cases. To study the steady state behavior of the
superposed process, it is sufficient to consider component processes whose imbedded Markov chains
are irreducible recurrent. Throughout the remainder of this paper, we shall assume that X; is

irreducible recurrent non-null and aperiodic for all ¢ € S. Let A; be the stationary distribution of

X;, ie., forall (; € &,

D A)Qi(n,G) = M) and > Am) = 1. (24)

vi€&; vi€E;
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For each i € S and v; € &, let Fi(v,t) = 2t Qi(vi, Gyt). Fi(vi,t) is the probability
distribution of the sojourn time of the ith process in state v; € £;. Assume the mean sojourn time
inv; is mi(vi) = [{°(1-Fi(vi,t))dt < 0o. Let p; = 3, cg, Ai(vi)mi(vi). We assume that all sojourn
time probability distributions are absolutely continuous with respect to the Lebesgue measure and
the probability density function is given by fi(v;,-). Furthermore, for each : € S, v;,(; € &, the
semi-Markov kernel Q;(v;, (;,t) is also an absolutely continuous function in t € R4, i.e., the function
t = Qi(vi,(;,t) has a derivative equal to ¢;(v;,(;,t) almost everywhere. The absolute continuity
of the functions t — Q;(v;,(;,t) ensure that simultaneous occurrence of events in the superposed

process has probability zero.

For each i € S, let {X;(t);t € R4} be the semi-Markov process associated with the Markov
renewal process (X;,T;). From Definition (2.2), M;(t) is the number of transitions in the ith process
during the time interval (0,t]. Write V;*(t) = Tag,5)41 — t and V™ (t) = t = Tyy, ). Vi is therefore
the time until the next jump and V;™ is the time since the last jump. Both are defined with
respect to epoch t, and they are well defined for all ¢ € R4 because all the component processes
are conservative. {X;(t),V:¥(t);t € R4} and {X;(t),V:™(t);t € R4} are the continuous remaining
and current life processes associated with the ith process. From Cinlar (1969), provided that the
Markov chain X; is irreducible recurrent, then

lim P(X,‘(t) = ﬂ,‘,Vi+(t) >z X,'(O) = €;

t—o00

~
I

Jlim P(Xi(t) = B;, V™ () > 2| Xi(0) = &)

)] [ - R (2.5

1

For a detailed study of the stationary measures of the continuous remaining and current life pro-

cesses for Markov renewal processes, see Pyke and Schaufele (1966).

3. Stationary Distributions of DSRLP and DSCLP. In this section, we will show
that both DSRLP and DSCLP are Markov chains. Furthermore, the stationary distributions of
these processes both exist and are unique. We first define some notations. Let e = (e1,...,ep),
B = (b1,...,B,) and I(B) be an indicator function such that I(B) = 1 whenever event B occurs
and zero otherwise. Define the reduced state space Y = € x ¥ where ¥ = Ufﬂlﬁi and ¥; C ¥,

such that if s = (s1,...,8i-1,0,8i41,...,p) € U;, then
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1. s; s Vi, k€S and j#k,

2. 5; #0Vj €S

For any n > 1, we can now derive

P(Sn = ﬁs Ri,‘n =0,0< Rj,n < Tj;j €S ] Sn-—l =e, Rk,n—l = OyRu,n-—l = SyjUu € Sk,

Xn-2,..-,Xp)

where e,3 € £, 1j € Ry, 7 € Si, s = (81y++++5k=1,0,8k41,.+.,8p) € ¥, and i,k € S. Note that it
is sufficient to consider sy € U, this is because we have assumed that simultaneous occurrence of

events in the superposed process has probability zero. By conditioning on

1. ifi =k, T, — Th—y = z, or equivalently, R;, = s; — 2 for all j € Sk,

2. if i # k, Rip = 2,

we have

P(sn = ﬁ,Ri,n =0,0< Rj,n < Tj;j € Si | Sn—l =€, Rk,n—l = OsRu,n—l =Sy U € Slc,
Xn_z2,. .., X0)

min S,
/uesk qk(ekaﬂk)x) H [I(O <sy-z< Tu)I(,Bu = eu)] dz ifi=k
0 ‘uESk
Qilei, Bi) — Qiles, B, )
1 - Fi(ei,si)

= § [ fewssi+ 218, = en)l(si = min s [

u€Sk

x [ [HO0<sj—si<rj)I(Bi=¢)de ifi#k
\ JESNS)

= PSn=B,Rni=0,0< Ry ;<757 €S8i|Sn-1=€Rp_1t =0,Rn_1,u = su;u € S)

Px ({8} x Ai| (e,sx)) (3.1)

where 4; = {x = (21,...,2i-1,0,%i41,...,2p) € ¥; | z; < rj,r; € R4, 7 € i} and s =
(S1y++y8k=1,0,8k41,---,5p) € Uy. Forn>1,e,8€&, ri € Ry, j €Si,and i € S, define

P(Sn=B,Rin=0,0< Rjn <7;;5€Si|Sp-1 =€, R pn_1 =0, (3.2)

Ru,n—l =Sy, U € Sk7xn—2a- .. ,XO) =0
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whenever sy = (S1,---,5k=1,0,Sk+1,..-,5p) € \I‘k\\i'k and k € S. DSRLP is therefore a Markov
chain with state space T and stationary transition probabilities given in (3.1) and (3.2). From
Breiman (1968), the nonempty set A € = is called closed for the Markov chain {Xp;n € N} if for
all (e,s) € A, P(Xp41 € A | Xn = (e,8)) = 1, i.e,, it is almost surely not possible to leave the
nonempty measurable set A. Furthermore, the chain is called indecomposable if there are no two
disjoint closed sets A, A? € =. For each i € S, the Markov chain X; is assumed to be irreducible
recurrent aperiodic in Section 2, this together with the regularity conditions on the sojourn time
distributions and semi-Markov kernels ensure that the Markov chain {Xp;n € M} with transition

probabilities given by (3.1) and 3.2) is indecomposable.

Theorem 3.1. DSRLP has a unique stationary distribution given by

P(S=B,Ri=0,0<R<ri;j€S) = (#i/i) 28 I [5——@—) [la- Fj(ﬁj,y))dy] ,

: j=Ligi L
(3.3)
where S = (S1,...,8), In=2_11/nj, i €Ry, jES;, i€Sand BEE.
Proof. It is easily checked that
p
Y S P(S=B,Ri=0,0<R; <;j€S)
i=1'3€£
é 1 /1 PN e
=y (—_/—) NGB TI [—’(—EJ—)—/ (1- Fj(ﬁj,y))dy] = 1. (34)
i=1Gee Hl R j=1gi L Hi IO

Equation (3.3) is therefore a probability measure on Z. By definition a distribution II is stationary
for the stochastic process {Xp;n € N'} if
m(4)= 3 / P(Xz € A| X1 = (e,5)) TI((e, ds)) (3.5)
ece VY
for all A € =. Since the Markov chain is indecomposable, whenever the stationary distribution
exists, it is unique (see Breiman (1968)). For reason of symmetry, it is sufficient to consider the

event

A={B}xA; and A;={s=(0,82,...,8) € ¥1|s; <rj,r; €R;,j €S} (3.6)
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Then the theorem is equivalent to
_(L/1 TIABD [P pes
H({B}xAl)-(ﬂl/ﬂ)h(ﬂl)g[ 2 ["a E(ﬂ],y))dy]~ (1)

To show that (3.7) satisfies Equation (3.5), we substitute (3.7) into the right hand side of (3.5).
Results follow after some tedious but straightforward calculations. The details are given in the

Appendix. a

Before the stationary distribution of DSCLP is given, we first define some notations. Let ¢; € R4

forall 1 € S.

1. For k € S, let Uy C R such that (sq,...,sp) € Uk if and only if

(a') (sla'"’sk—170a3k+la"'7‘9p) € \ilkv

(b) 0<Sj+3k—négn3u£€j for all j € Sk,
u€ESk

(c) 0< sj<cjforall j€ S,

(d) 0< %isr,t Sy < 8k < Jrrelgr:(sj + 8k — gelgl Su),

2. For k € S and i € Sk, let Wi; C R such that (s1,...,s,) € Wy, if and only if
, + P ,

~

(a) (81,...,Sk_1,0,3k+1,...,8p) € ‘I’k,
(b) 0< s; < ¢j forall j € Sk,
(¢) 0< s+ s <cjforall j€S5;NSk,

(d) 0 < s, < cg.

Now, forany n > 1,e,8 € &, ¢; € Ry, j € Siy sk = (51,++++5k=1,0,8k41,-..,8p) € ¥, and

i,k € S, we can derive

P(Sn=pB,Cin=0,0<C;n<¢j;J €S8 |Sn-1=€Cikn-1=0,Cyn-1=5u;u€E Sk,
Yn-2,...,Yp)

by conditioning on
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1. ifi =k, Ty — Thoq = Sk — min s, or equivalently, Cp, , = sx and s, = min sy,
ueSk uESk

2. if i # k, Tp — Th—1 = S, or equivalently, Cy, x = s.

This gives

P(Sn =B,Cin=0,0<Cjn<¢j;j€Si|Sn-1=€,Chn-1=0,Cyun-1 = sy4;u € S,
Yn_Z,..-,YO)
( o0 .
ek, Bk, Sk — min s,
/0 ak(€k; B, Sk min )

1- Fu(eu,su + S — llgjsnsl)
k — . . _
Il ( 1= Fu(eu,su) ) I(Ba = eu)] I(Up)dsy ifi=k

u€Sk
/o qi(:i %(S;,tsk)ﬂ = Fi(ex, k) 1(Bk = ex)

1 - Fu(eua Su)

uegnsk Kl - Fy(eu,su + Sk)) I(By = eu)] [(Wi,)ds, ifi#k

P(Sn = ﬁ,Ci,n =0,0< Cj,n < Cj;j €S | Sn-1=-e, Ck,n-l = O,Cu,n—l = Sy, U € Sk)

Py({B} x B; | (e,sx)) (3.8)

where B; = {x = (21,...,2i-1,0,Zit1,...,2,) € ¥; | z; < ¢j,¢; € Ry,j € S} and s =
(S15+++38k=1,0,8k41,...,8p) € ¥y. Again, for any n > 1, e,8 € &, ¢c; ERy,j€Siandi €S,
define

P(SD = ﬂ;Ci,n = 0,0 < Cj,n < chJ € Si | Sn—l = e,Ck,n—l = 07 ('39)

Cu,n—l =Sy U € SkaYn-—Zv- o 7Y0) =0

whenever sy = (S1,...,8k-1,0,8k4+1,-+.,5p) € \I‘k\\ilk and k € S. DSCLP is therefore a Markov
chain with state space T and stationary transition probabilities given by (3.8) and (3.9). Just like
DSRLP, the Markov chain {Yy;n > 1} is indecomposable. The stationary distribution of DSCLP

is given in the theorem below.
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Theorem 3.2. DSCLP has a unique stationary distribution given by

p A8 cj
P(S=B,Ci=0,0<C;<¢;j€S) = (i/%) X8 1 H?J‘)/o (1- Fj(ﬁj,y))dy} ,
j=1,g#

1

(3.10)
where S = (81,...,5), 1=ty 1/nj, ¢; €Ry, j€S;, i€S and BEE.

Proof. The proof is essentially the same as that for Theorem (3.1). Again, we need to verify for
all A={B} x B € Zand By = {s = (0,52,...,5p) € ¥1 | 8; < ¢j,c; € Ry,j € S1},

m4) =Y /@ P(Ya € A| Y1 = (e,5)) (e, ds)) (3.11)
eef
and
_(L/1 A8 [ pos
nw) = (5 /#)mm)g[ 2 [Ta Fjwy,y))dy]. (3.12)

By substituting Expression (3.12) into the right hand side of (3.11) and simplify, result follows.

Again, the details are given in the Appendix. ]

It immediate follows from Theorems (3.1) and (3.2) that when the superposed process is in
equilibrium, the probability is u/p; for an event to come from the ith component process. Further-
more,

/1 /1 21 X(85)m;(8;
P=p) = (2 /3) e [T |MAmEAL, (3.13
i

and

P (3. T
P(SJ =,@j,0<RjSTj;jES,'IR,':O) = H [,\J/(I,ﬂ‘])/o (1—Fj(ﬁj,y))dy} .
J

(3.14)

Hence, conditional on knowing an event comes from the :th component process of an equilibrium
superposed process, then {(S;, B;)}?_, ;; are independent pairs of random variables and (S;, R;)
follows the limiting continuous remaining or current life distribution of the jth component process

given in Equation (2.5). The same result holds for DSCLP.

Let T be the interevent time of the equilibrium superposed process and X;(;) be a random

variable whose distribution function is given by Fi(8;,t). By Theorem (3.1), the mean interevent
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time of this equilibrium process is given by
o0
/ P(T > t)dt
0

_ ZZ/ P(S = B, R; = 0,min{Ry,. .., Rit, Xi(B), Ris1,.... Ry} > t) dt

i=1 Bee
"Lk / e/ 3) >H¢[ 2 [Ca Fj(ﬂ;,y))dyJ (1= BB 0)dt
- ;.ZH[ B " Fj(ﬁy,y))dy]
- (3.15)

Note that alternatively, we can define a stochastic process {X;l; n € N} such that

Xn = (Sn,Rln)
where
Sn = (Sinse-sSpn),

and

Ry = (RimseoosBpm) = (Rigyeoos Riciny Xi(Sin)s Riviny s Rp)
if the nth event of the superposed process comes from the ith component process and this sth
process moves to state Sin. For j € S, R;n is the remaining life of the jth component process at
time T, and this component process is in state S;, € £;. Note that the remaining life of the sth
process is given by R;, = Xi(S5i ) where X;(S; ) has distribution function F;(S;in,t). Let us call
{X,;n € N} the alternative discrete superposition remaining life process (ADSRLP). The state
space of this process is given by T = & x R%. Just like DSRLP and DSCLP, we can derive the
transition probabilities for ADSRLP and show that it is a Markov chain. Also, similar arguments
used in Theorems (3.1) and (3.2) can be applied to show that under the regularity conditions stated

in Section 2 of this paper, ADSRLP has a unique stationary distribution and it is given by

P(S=B,0< R;<ri;1€8) (3.16)

- u[ l(fz) (Birr z)] ﬁ [5—@ A”(l_pj(ﬁj,y))dy},

=1y L H
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where S = (S1,...,8), 1/ =35, 1/pj,r; € Ry, j€S and B € E.

4. Applications. In this section, the results obtained in the previous section are applied to the
study of the individual blocking probability of queueing systems with steady state superposition
of semi-Markovian arrivals, and system availability of a device with components connected both in

parallel and in series.

Example 1: Queues with superposition semi-Markovian arrivals

Consider a single server queueing system with no waiting room. The arrival process is the super-
position of p point processes. For the sth arrival process, suppose there are N; types of customers.
Assume N; < oo for all 1 € S. Let X, be the type of the nth arriving customer in the ith stream,
n € N, and the instants of arrivals be T;0,T;1,T;2,.... Suppose (X;,T;) = {Xin,Tin;n € N}
can be modeled by a Markov renewal process. We assume that the service times are independent
and identically distributed whose common distribution function is 1 — e™**, z € R;. There is
no waiting room in this system. This means that a customer arrives and finds the server busy
leaves the system and never returns. Let X and Xj(e;) be independent random variables whose
distribution function are given by 1 — e~ and F;(e;, ) respectively. Suppose the arrival process
is in equilibrium, let I be a random variable such that I = 1 if a customer arrives and finds the
server busy and zero otherwise. Let ¢; denotes the arrival instant of this arbitrary customer, and
to be the arrival instant of the immediately preceding customer. The customer arrives at time t;
and finds the system blocked if and only if the service of a preceding customer is not completed.
It does not matter when this service started. The residue service time after the time instant tg is
exponentially distributed. For i = 0,1, let (S(t;),R(%:)) = (S1(ti), ..., Sp(ti), Ri(ti),. .., Rp(t:)) be
the state of the equilibrium superposition remaining life process at time ¢;. By Theorem (3.1), we

have

)
=

I
=

0
M=

P(I = 1, Ri(to) = 0) (4.17)

-.
l
—

I
M'e

P(S(to) = e, Ri(to) = 0,
£

i
X
®

X > min{R;(to), .., Ri-1(to), Xi(e:), Riy1(to), - -, Rp(t0)})



SUPERPOSITION OF MARKOV RENEWAL PROCESSES 13

= 1- zp: Z P(S(to) = e, Ri(to) =0,

i=1 eef

X< min{Rl(to), cey R,‘_l(to), X,'(e,'), R,‘.H(to), ceey Rp(to)})

-2/

T Mes) /0°° ae™*(1 - Fi(ei,z))

eef

x [ I 2 - Fj(ej,y))dy] da.

(
j=1g#i Hi

Result (4.17) is a generalization of the result in Willie (1990) to steady state superposition of
semi-Markovian arrivals. Suppose that there are p independent M/G/1 queues. For the ith queue,
the waiting room is of size N; — 1 < oo. It is well known that the departure process from a
M/G/1/N; queue can be modeled by a Markov renewal process whose state are queue lengths
after departure and {T;n4+1 — Tin}nen are times between departure. From Cinlar (1975a), if the
imbedded Markov chain of the ith Markov renewal process is irreducible aperiodic with finitely
many states and all states are recurrent, then the stationary distribution of this Markov chain,
\;, exists and is unique. Suppose the merged output of these p independent M/G/1/N; queues
with finite waiting room becomes the input of a single server queue with no waiting room. Call
this queue the second stage queue. When the input to the second stage queue is in equilibrium,
Equation (4.17) above gives the blocking probability of an arbitrary customer to this second stage
queue. Note that the p M/G/1 queue here can be bulk service queues or the service times of these
queues can be state dependent. For details, see Cinlar (1975b) or Lam (1990b). The result above
also applies to the case when N; = oo and the traffic intensity of the ith M/G/1 queue is less than 1.

Example 2: System Availability
Consider a device with p components connected in parallel. The device is not working when all the
components are under repair. The ith component consists of a finite number of subcomponents

connected in series. There are N; < oo different types of subcomponents for component i, € S. If
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any one subcomponent fails, the whole component fails. Let X, be the type of the subcomponent
causing the nth failure in the ith component, and T}, be the times of successive failures. The time
T;ns1 — T;n between two failures is the sum of the repair time of the subcomponent which failed
at T;, and a failure free interval following the repair. We suppose that subcomponent of type
B; € & ={1,2,...,N;} in the ith component has exponential lifetimes with parameter a(¢, 3;), and
suppose its repair time has distribution ¢(¢,8;,+). Under these assumptions, the failure process of
the device can be modeled by the superposition of p independent Markov renewal processes. In

particular, for each 7 € §, the semi-Markov kernel @); is given by

Qienfit) = [ alis B oliseit - w)du (4.18)
where e;,3; € & and a(i) = )_g,¢¢, a(1, ;). Also,
eu Z Q enﬂn —/ ( ) a(i)u(p(ivei)t - u) du. (419)
Bi€&:

From Cinlar (1975a), Example (10.6.23), Ai(8;) = a(3,6;) for all §; € & and i € S. If the mean
repair time of type §; subcomponent of the ith component is b(3, 3;), then m;(5;) = b(3, 8;)+(1/a(z)).
Let X;(8;) be a random variable whose distribution function is given by ¢(3,;,-) and a(4)b(i) =
Yp.ec; a(3,B:)b(3,5;). Suppose that the failure process of device is in equilibrium. Let I be a
random variable such that I = 1 if a failure in one of the components results in a failure of the
device. This means that at some time ¢ of the equilibrium superposed process, one component fails

. . -1
and all the other components are undergoing repair. Let ¢; = (c1,...,¢i=1,Cit1,...,Cp) € %i

H(Bi,c;) = (1/%)&(@-) I [ﬁ—(?—l /()Cj(l—Fj(ﬂj,y)>dy]. (4.20)

.ut j=1,j¢i ll’]

We can now derive the steady state probability that the device fails at some time ¢ and for the ¢th

and

component, subcomponent of type f; is undergoing repair at that time.

P(I=1,8S=p)
= i I=1,S=3,C;=0)
p

Z P(S=B,Ci=0,C; < X;(B;);j € S)
=1
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= 1-9iBie) 4.  de
- Z/w-l __1—-][# [ (ﬂj,c]) d J} H(ﬁ> ,d 1)
- (1/,§1+a(k)b(k)) Zlﬂ JIL,[ ]) & ] (4.21)

The asymptotic continuous time behavior of this system is studied in Lam (1990b).

Appendix. To show that Expression (3.7) satisfies Equation (3.5)):

First, let us define some notations. For m > 1, let ?f%’j} C R such that if (z1,...,2,) € 5;?’_{_‘, then

1. z; #z; Vi,j € {1,2,...,m} and i # j,

2. z; £0Vi€e {1,2,...,m}.

Note that %?\éﬁﬁ is a set of Lebesgue measure zero in R7'. From equations (3.1), (3.5) and (3.7),

1
£ ()] (T ) § s 00 m  eonme

Z > / /Ork fi(Bkys1 + 2)I(s1 = gég}‘ s2)(Q1(e1,51) = Qi (e, B1,51))

k=2e1€&

H I(O <sj=-8 < rj)da: /\1(61)d81 H [(1 - Fj(ﬂj,sj))de]

JESI1NSK JES1NSK

min s,
/“651 nlen,fr,z) [T I0< su—2 < ry)de
0

u€SY

xM(er) [T UL = Fj(Bj,s5)) ds;)

JES

> / /"ESI”S* (1= F(Bes))QulensBr) - Qulen, frrs1)) dsy

k=2e1€& ]emlah‘(k{o S5 — T]}

XAp(er) H [(1 = F;(Bj,5;)) ds;]

JESINS)
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k=2e1€&1 ]erg,ah)fsk{o 85 — ”']}

_ z 3 / _2(/“551'”& ’ (1= Fi(Br, 81+ 7k))

X(Ql(ex,ﬂl)—Ql(el,ﬂl,sl))dsl)/\l(el) II (1= Fi(B;,s5)) ds;)

JESINS)

+ Z / (/15%151}3“ qi(e1, 1,2 )dz) M(e1) H[ 1 - Fj(B;,s;5))ds;]

e1€& max{O $i— TJ} JES1

k=2e1€& ]ergagfsk{o 85— T]}

= i Z /32"" (/ueslns,‘ ) (1 ‘Fk(ﬂkvsl))(Ql(ehﬁl)-‘Q1(€1»ﬂ1,81))d.91)

xM(er) I [(1- Fi(8;,s5)) dsj]

JESINS)

) / (/ ST 1 Rig)

k=2 e, €6, ;B {0,8; =1} + 7k

x(Q1(e1,51) = Qi(er, 1, v — 1)) dv) Mer) JI (1= Fi(8;,s5)) ds;]

JESINSK

-y / (@u(e1,61) - Qaes, B, i su)) max{0,s; — 73} < min s,)

e1€& €51

1(e1) H[l" i(Bjy5)) ds;]

€S

+ ), / (Q1(e1,61) - Ql(el,ﬂl,max{ﬂ Sy — Tu})) (max{O sj—ri} < mmsu)

e1€6

XA1(e1) H[ 1 - Fj(Bj,s;)) ds;]

JES

= Z E /,_, /ueslns" ) (L = Fk(Br,$1))(Q1(e1,81) = Qi(er, B1,81)) ds

k=2e16y ;Jax {0,s; —r;}

xM(er) I [(1-Fi(Bj,s;))ds;)

JESINSK
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P min_ S, + 7k
-Y X [ [ (1= Fe(Br,v))
imreree %\, ax {0, - it 4

x(Q1(e1,61) — Qi(er, B, v — k) dv [ M(er) [ [(1- F;(B;,55)) ds;]

JESINS)

- Z > /,,_2 /“esms" ) (1 = Fi(Br,sk))(Q1(e1,81) — Q1(ex, B, 3k)) dsi

k=2 61651 max {0 s] - rJ}

JESINS
xMer) [ (1= Fi(8;,5))) ds;)
JESINSK
+ 126;1/ I(0 = max{0,s; ~ rj} < min s.)(Qu(ex, 1) - Qu(er, 41,0)) (A1)
xMi(er) JT UL - F5(85,55)) ds;)
JE€ES
+ ZMEZ&/ (@u(er, Br) = Qulens By sk = i) (s = i = max{0,sj — rj} < mins.)
xArer) JTUL - Fi(B;,57)) dss)
JES)
= /p—l I(sj <r;J€ S1)M1(Br) H [(1- Fj(ﬂj,sj))dsj‘] (A.2)
® i€s
1 p
= [;/ (H1 u)] (EI ) ({8} x 41) (A.3)

Expression (A.2) above follows from (A.1) because A; is the stationary distribution of the Markov

chain induced by @, and @(e1,5,0) = 0.

To show that Expression (3.12) satisfies Equation (3.11)):
First, let us define some notations and transformations. Let ¢; € R for all i € S. Also, note that

for k € S and 7 € Sk, Uy and Wy ; are defined in Section 3.

1. For k € § and v € S, let Uy, C Uy such that (sq,...,s,) € Ui, if and only if s, = min s,

UES};
and (s1,...,8p) € Ux. Obviously, U Uk = Ug.
UESk
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2. For k € § and v € Sk, let U,’w C R such that (y1,...,9) € U;w if and only if

(a‘) (yh' --,yv—lao,yv+l,--~ 1yp) € ‘i’va

(b) 0 < y; <¢jforall j€S, NSy,

(c) 0<yo <yk < J.eglulgsk{ijcv}-
Define a transformation f: Uy, — U,'c,v such that (y1,...,9p) = f(s1,...,$p) and

(a) y; = sj+ sk — sy for all j € S, N Sk,

(b) y; =s;jif j=v,k.

Obviously, the transformation is one to one and onto. Furthermore, the Jacobian determinant

is equal to one.

3. For k € S and i € Sk, let W, . C R such that (y1,...,9,) € W, . if and only if
ki + P ki

(a') (yh ey Uiy 0’ Yit1y.-- ,yp) € \I’i’
(b) 0 < y; <¢jforall j€eS&;in Sy,
< i ; .

(c) 0<ye < min, {y;ci}
Define a transformation g : Wy ; — W,;i such that (y1,...,%p) = g(s1,...,5p) and

(a) y; = 8; + sk forall j € §; NSk,

(b) y; = s;if j = 1,k.
Again, the transformation is one to one and onto. Furthermore, the Jacobian determinant is

equal to one.

Now substituting Expression (3.12) into the right hand side of (3.11) and using the transformations

defined above, we have

1 P 1 p 1
[ﬁ/ (1} F)] (E j(ﬁj)) 3 [, P¥2 € {8} x B Ya = (o) M(e.d)

>~
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E Y / Ai(en)q(er, Bry 1 + sk)(1 = Fi(Bk, sx)) [ II 1-Fu(Busu +3k))}

k=2e1€& u€ES NSk

X I(Wg,1) {H dqu

u€eS

e1 €&, u€ES)

+ Z/ A(en)qi(er, Br, 51 = nélsnsu)[ﬂ( Fu(Bussu+ 81 - IreunSI))}

xI(Uh) [H dsu}

u€eS

= E Z / /\1 61 QI 61,ﬁ1,y1 +yk)(1—Fk(ﬂk,yk)){ H (l—Fu(ﬁu,yu)):I

k=2e; €& u€S1 NSk

< I(W)) {H dyu]

u€esS

+ Z Z / /\1 61 ql el,ﬂl,sl —Su)( - Fu(ﬁuvsl))

v=2 (3] Et‘:l

X I' H (1 = Fu(BuySu + 81 — su))} I(Uy ) [H dsu}

uESINSy u€S

k=2e1 €& u€S1 NSk

- Z Z / M(e)q(er, 81,91 + yk)(1 = Fi(Bk, yk)) [ H (1 —Fu(ﬁu,yu))}

XI(WI:,l) {H dyu:‘

u€eS

+ Z Y / 1(en)q(er, Br, 41 = 9o )(1 - Fu(ﬂu,yl))[ II a —Fu(ﬂu,yu))]

v=2¢; €&, u€S1NS,

xI(Uy,) [H dy }

u€eS
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_ i 5 [ il /Oc]} [/Oue‘&iﬂsk{yu,ck} </0°° ,\l(el)ql(el,ﬂl,yl+yk)dy1>

k=2e1€E |JESINS

x(1- Fk(ﬂkayk))dyk] [ II a- Fj(ﬁj,yj))dyj]

JESINSK

+ ZP: > [ II /OCJ] [/Ouergligs”{yu,cv} </ny Ai(er)gi(er, B, — yu)dyv>

v=2e; €€ | JESINS,

x(l—Fu(ﬁu,yl))dyl“ II (1—Fj(ﬂj,yj))dyj]

jESlnsu

0 /Oc,} [/()uergllgsk{yu,Ck} M(e1)(Q1(er, B1) — Quler, Br, vk))

X(l—Fk(ﬂk,yk))dka II (1‘Fj(ﬂja?/j))dyj}

JESINS)

+i Z [ H /OCJ} [/Ouelgligs"{yu,cv} A1(e1)(Q1(e1,P1,41)

v=2e1 €€ [JESINSy

X(l—Fu(ﬂv,yl))dm][ II (l—FJ(ﬁj,yj))dyj}

jeslnsv

i [ H /Ocj] [/Ouer'rsl:gs"{yu,cu} M(B1)(1 = Fy(Bv, 1)) dyr

v=2 [ JESINS,

x| ]I (I-Fj(yj))dyz}

_j 6'51 nsv
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