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Abstract

In this paper, we study the superposition of finitely many Markov renewal processes
with countable state spaces. We define the S-Markov renewal equations associated with
the superposed process. The solutions of the S-Markov renewal equations are derived and
the asymptotic behaviors of these solutions are studied. These results are applied to calcu-
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queueing networks with bulk service, system availability, and continuous superposition re-

maining and current life processes.

S-MARKOV RENEWAL EQUATION; SUPERPOSITION MARKOV RENEWAL THE-
OREM; SUPERPOSITION OF MARKOV RENEWAL PROCESSES; QUEUES WITH
SUPERPOSITION SEMI-MARKOVIAN ARRIVALS; QUEUEING NETWORKS WITH
BULK SERVICE; STATE DEPENDENT SERVICE RATES; SYSTEM AVAILABILITY;
CONTINUOUS SUPERPOSITION REMAINING AND CURRENT LIFE PROCESSES

AMS 1991 SUBJECT CLASSIFICATION : PRIMARY 60K15
SECONDARY 60K10; 60K20

*Research Supported in part by a fellowship from Horace H. Rackham School of Graduate Studies, The
University of Michigan.



1 Introduction

The problem of superposing two or more stochastic processes has been dealt with in a number
of ways in previous research. One of these was originated by Palm (1943-1944) in his work
of telephone traffic. He conjectured that under appropriate conditions, the superposition of a
large number of uniformly sparse processes can be approximated by a Poisson process. This
provides a theoretical basis for the use of a Poisson arrival process in many queueing models.
Since then, the conjecture and related results have been discussed and proved by many authors.
Some authors also considered the problem of finding necessary and sufficient conditions such
that the superposition of finitely many processes is a renewal process or a Poisson process. The
paper by Cinlar (1972) is an excellent review of these areas. Other works in the superposition of
two or more streams concentrate on obtaining the distributions of the intervals between events
or the distributions of counts in events in the superposed processes. The papers by Cox and
Smith (1954), Lawrance (1973), Kshirsagar and Becker (1981) are devoted to these tasks. Their

results were applied to the study of neuron firing and predator-prey models.

Recently, Lam and Lehoczky (1991) considered the problem of the superposition of finitely
many renewal processes, and studied the asymptotic behavior of the superposed process when
the time ¢ is large. In particular, they generalized the concepts of renewal functions, renewal
equations and the key renewal theorem to the superposition of renewal processes. They applied

their superposition key renewal theorem to the study of (Y"r_, GI;)/M/1/1 queueing systems.

In this paper, we consider the superposition of finitely many Markov renewal processes de-
fined on countable state spaces, and again, we study the asymptotic behavior of the resulting
superposed process. In particular, we define the S-Markov renewal equation, and show that
under appropriate conditions, the solution of this equation exists and is unique. Furthermore,
by letting t — oo, we derive the superposition Markov renewal theorem. The S-Markov re-
newal equations and superposition Markov renewal theorem are generalization of the S-renewal
equations and the key superposition renewal theorem in Lam and Lehoczky (1991) to the su-
perposition of Markov renewal processes. Also, it is a generalization of the Markov renewal

equations and Markov renewal theorem introduced in Cinlar (1969a).



The superposition of two independent Markov renewal processes with countable state spaces
was studied before by Cherry (1972), Cherry and Disney (1983). In these papers, they showed
that the superposed process is again a Markov renewal process defined on a more general state
space. The structures and properties of this general state space Markov renewal process were
studied in detail. The samé argument can be extended to show that the superposition of more
than two (finitely many) independent Markov renewal processes with countable state spaces
is also a Markov renewal process defined on a general state space. Hence, the superposed
process is a special case of the semi-Markov pfocesses on arbitrary state spaces defined in
Cinlar (1969b). The S-Markov renewal equation defined in this paper is a special case of the
fundamental equation defined in Cinlar (1969b) for an arbitrary state space semi-Markov process.
The solutions of the fundamental equations and their asymptotic behaviors were studied in
Cinlar (1969b) and Kesten (1974). In this paper, we show that the same results hold for the
S-Markov equations under less restrictive assumptions and apply these results to study queueing

and reliability problems.

It is also worth pointing out here that the superposition of finitely many independent Markov
renewal processes can also be modeled by a generalized semi-Markov process. More details will
be given in Section 3 Example 2. Generalized semi-Markov processes have been widely studied in
the literature, see for example, Schassberger (1976, 1977, 1978a, 1978b, 1978c), Burman (1981),
Barbour (1982) and references there. The existence of stationary distributions of these processes
as well as a certain insensitivity property of those distributions were studied in these papers.
These results have been applied to study insensitivity properties of certain queueing or reliability
problems. Just like the superposition of finitely many independent Markov renewal processes,
generalized semi-Markov processes are also épecial cases of semi-Markov processes on arbitrary

state spaces introduced by Cinlar (1969b).

As shown in Cinlar (1969a, 1975b), Markov renewal equations and the related limit theorems
have been applied to the study of steady state behavior of queueing systems, probability that a
system is working at time ¢ when ¢ is large, and distribution of the delay to a pedestrian in traffic
theory. Cherry and Disney (1983) applied their results to describe the joint departure process of

two independent M/G/1 queues and a classic problem in machine repair and maintenance. In



this paper, we show that the extension of the Markov renewal theorem or the key superposition
renewal theorem to the superposition of finitely many independent Markov renewal processes
enables us to analyze more complex queueing systems or reliability problems. In particular, the
main theorem in this paper allows us to study the characteristics of a single server queue with
superposition semi-Markovian arrivals and no waiting room, and the system availability of a

device with different types of components connected both in series and in parallel.

The paper is organized as follows : In Section 2, we present definitions and results of Markov
renewal theory from the literature which are useful to us in later sections. The S-Markov
renewal equations are defined in Section 3. The solution of the S-Markov renewal equation
is also presented in the same section. In Section 4, we study the asymptotic behavior of the
solution of the S-Markov renewal equation and apply it to various examples. This leads to the
generalization of the Markov renewal theorem and the superposition key renewal theorem to
the superposition Markov renewal theorem. Theorems stated in Sections 3 and 4 are proved in

Section 5.

2 Preliminaries

In this section, the definitions of Markov renewal processes and delayed Markov renewal processes
are given. Some notations are also defined which will be referred to in later sections. For each
n €N ={0,1,2,...}, let X,, be a random variable taking values in a countable set E, and T,
be a random variable taking value in IR} = [0,00) such that 0 = To < T3 < T < .... In this
paper, we view Tp, T}, T3, ... as the successive times of occurrence of some events and we think

of X,, as the type of the event that has occurred at time T,.

Definition 2.1 The stochastic process (z,X,T) = {2, Xn,Tn;n € IN} is said to be a Markov
renewal process with state space E and initial state + € E provided that Xo = = and for all

ne€lN,y€e E,andt € R,

P(Xn+1 = y,Tn-{-l -T. <t l XOs'“vXn;TO,'--aTn)
= P(Xnt1= Y, Tns1 = Tn < t| Xn). (2.1)



Furthermore, given any z,y € E, t € Ry,
P(Xn+1 = ?/,Tn-H -T, <t | X = :I:) = Q(x>?/,t) (2'2)

independent of n € IN.

The family of probabilities @ = {Q(z,y,t);z,y € E,t € R;} is called a semi-Markov kernel.
Let F(z,t) = Yyep Q(2,9,t) and m(z) = [7°(1 — F(z,t))dt. Thus, F(z,t) is the probability
distribution of the sojourn time of the process in state € F and the expected sojourn time
during each visit to z is given by m(z). Note that we are allowing m(z) = 400 for some z € E.
Define the age (current life) of the process at time ¢ to be the time since the last event occurred
in the process. For each z € E, define u(z) = sup{t € R; : F(z,t) < 1}. If F(z,t) < 1 for all
t € R, then define u(z) = cc.

Definition 2.2 The stochastic process (z,a,X,T) = {z,a,X,,Tn;n € IN} is said to be a de-
layed Markov renewal process with state space E, initial state z € E and initial age 0 < a < u(z)

if Xo = z, Equation (2.1) holds for all n € IN, Equation (2.2) holds for all n € {1,2,...}, and
P(Xl = y,Tl - TO <t | XO = l’) = Qa(l‘,y,t)

where
a _ Q(a:,y,t+a)—Q(x,y,a)
Q (zvy,t) - 1-— F(z,a)

and F(z,a) <1 forall0 < a< u(z), z € E.

Define Q%(z,y,t) = 0if @ < 0 or a > u(z). Note that Q%(z,y,t) is the probability that
knowing the current state is z and the age of the process is a, the next transition state is to
state y and the remaining sojourn time in the current state is less than or equal to ¢. Let
F%(z,t) = 3,e5 Q%(2,y,t). Denote the delayed Markov renewal process with initial age @ and
initial state z by N(z,a). If a = 0, a delayed Markov renewal process becomes a Markov renewal
process. The Markov renewal process defined here is the same as the time homogeneous Markov

renewal process given in Cinlar (1975a).

Consider the class of bounded functions G: these are functions f: E X E X Ry — R4 such

that for all z,y € E, the function t — f(z,y,t) is nondecreasing and continuous from the right.
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Fort € Ry, let f,g € G and define the convolution of f and g, denoted by f % g, by
f*g ay’ Z/ IL‘ZdS ,y,t—S).
2€E

Forallt € Ry, let

1 ify=
Qo(z’y,t)zf(z,y)z ny=s

0 otherwise

and for n > 0, define recursively Q"*(z,y,t) = Q *Q"(z,y,t). Note that Q™(z,y,t) € G and
Q'(z,y,t) = Q(z,y,t). To avoid certain difficulties, for the remainder of the paper, we assume
that @™(z,y,0) = 0 for all z,y € E and n € IN. This means that instantaneous transitions are

impossible. With probability one, a non-zero time is spent between transitions.

Now, put H = 3 72,Q" R = Y o2oQ", H* = Q* xR and R* = I + H®. The functions
t — H(z,y,t) are called Markov renewal functions and the collection H = {H(z,y,-);z,y € E}
of these functions is called a Markov renewal kernel of the Markov renewal process with initial
state z. H(z,y,t)! is the expected number of visits of this process to state y in the time interval
(0,t]. Define H(z,t) = 3 g H(z,y,t). It is the expected number of transitions in the process
during (0,t]. Similarly, define the functions ¢t — H%(z,y,t) to be the delayed Markov renewal
functions and the collection H* = {H%(z,y,');z,y € E} of these functions to be the delayed
Markov renewal kernel of the delayed Markov renewal process with initial state z and initial age
a. H%(z,y,t) is the expected number of visits of this delayed Markov renewal process to state
y in the time interval (0,t]. Also, H*(z,t) = ¥ eg H%(z,y,t). It is the expected number of

transitions in the delayed process during (0,t].

Let P(z,y) = Q(z,y,00) and P be the matrix {P(z,y);z,y € E}. Consider the Markov
chain X induced by P. Throughout the remainder of this paper, we shall assume that all
the Markov renewal processes are irreducible recurrent aperiodic. Let A be a strictly positive
invariant measure for a Markov renewal process X, i.e., for all y € E,

> A(@)P(z,) = A(y)-

z€E

!Unlike the Markov renewal functions defined in Cinlar (1975a), we exclude the event that takes place at the

origin.



From Cinlar (1975a), the mean recurrence time of state z in N(z,a) is given by Am/A(z) where
Am =37 g A(y)m(y). It is understood that the mean recurrence time is +o0 if m(z) = +o0 or

Am = +o00.

Define a new kernel Q by

A¥)Q(y,2,t) = A(2)Q(z, 3, ).

From Cinlar (1969a, 1975a), Q is again a semi-Markovian kernel. Furthermore, if A are the

Markov renewal functions corresponding to @, then

My)H(y,2,1) = A(z)H(z,y,1) (2.3)
and fI(:v,:c,t) = H(z,z,t). Let G(z,y,t) be the distribution of the first passage time of the

Markov renewal process with semi-Markov kernel @) to move from state z to state y. Then

H(z,9,t) = G(z,y) * Ry, y)(t) = /[ RCARLLOYARE

* here represents the usual convolution. Let G%(z,y,t) be the distribution of the first passage
time of the delayed Markov renewal process with semi-Markov kernel @, initial age a and initial
state z to enter state y. Similarly, if G’(y, z,t) is the distribution of the first passage time of the

Markov renewal process with semi-Markov kernel  to move from state y to state z, then

H(y,z,t) = G(y,z) * R(z,z)(2). (2.4)

In this paper, all the Markov renewal processes are assumed to be conservative, this means
that P(sup,evTn < 00) = 0. Let {X(t);t € IR} be the semi-Markov process associated
with the Markov renewal process (z,X,T). Define N(t) to be the number of transitions in the
process during the time interval (0,t]. Write V*+(t) = Tiyyy41 — t and V(t) = t — Tiy(y. Call
{X(),V*(t);t € R4} and {X(t),V~(t);t € IR} the continuous remaining and current life
processes associated with the Markov renewal process. From Cinlar (1969a), provided that the

Markov chain X is irreducible recurrent aperiodic, then
lim PX(1) =3, V¥ (1) > 0| X(0)=2] = Jim PIX(t)=9,V"(t) > v| X(0) = 2]

'-/\-(-22 - u)] du. .
ol R (29

Other properties of Markov renewal processes or semi-Markov processes can be found in Pyke

(1961a, 1961b, 1964, 1966) and Smith (1955).



3 S-Markov Renewal Equations

In this section, the definition of the S-Markov renewal equation for the superposition of Markov
renewal processes is given. The S-Markov renewal equation is a generalization of the S-renewal
equation for the superposition of renewal processes introduced in Lam and Lehoczky (1991) to
the superposition of Markov renewal processes. It will be shown that under some regularity
conditions on the component Markov renewal processes, the solution of the S-Markov renewal

equation exists and is unique.

Suppose that there are p > 2 independent delayed Markov renewal processes in operations
simultaneously. From now on, § = {1,2,...,p} and the subscript i refers to the ith component
process. Let E; be the state space of the ith process, put E = Ey X ... X E,. Suppose that,
at time 0, the processes have ages a,...,a, and in states 21,...,z,. Let x = (21,...,2,) and
a = (ay,...,ap). Let T, be the time of the nth event in the superposition process, and let
Y, = (Ya1,...,Ysp) and A, = (Apa,..., Anp) be the vectors indicating the states and ages of
the component processes at time T,,. Put Z, = (Y,,A;) and let ¢ = minjesa;. Denote the
superposition process by N(x,a) and let N(x,a,t) = max{n € IV : T,, < t}. The same argument
extended to p > 2 in Cherry and Disney (1983) can be used to show that the stochastic process
((x,4),a,Z,T) is a delayed Markov renewal process with state space @ = E x IR, initial state
(x,a) = (z1,...,%p,81 — &,...,a, — @) and initial age a. The semi-Markov kernel Q of this

Markov renewal process can be computed from the @;.

Let F be the class of functions f : E x R’f’l — IRy such that (x,a) — f(x,a,t) is bounded
for each t, and (a,t) — f(x,a,t) is Borel measurable in a and right continuous in ¢. Note that,

then, t — f(x,a,t) is bounded over bounded intervals. Define the convolution of f € F and Q,

denoted Q o f, by

Qe f(x,a,t) (3.1)
= T Jo Jo QR () )bt =)
= Z Z Q?‘(:v,',y,',du) { H [1 - FJ('zj(xj’u)]} f(ri(x,y,-),s,-(a,u),t - u)

i€S yieE; 701 €S

where §; = S\ {i}, for any i € S, r; : E x E; —» E is a function such that ri(x,y) =



(T15..03Tic1, Y Tip1, .., Tp) and s; : IRﬂ_+1 — IR is a function such that s;(a,u) = (a; +
Uy..ry@ic1 +4,0,8i41 + ,...,a, +u). Note that Qe f € F. A function f € F is said to satisfy
an S-Markov renewal equation if for all x € E, a € IR} and t € Ry,

f(x,a,t) = g(x,a,t) + Q o f(x,a,t) (3:2)

for some function ¢ € F. Equation (3.2) reduces to the S-renewal equation considered in Lam
and Lehoczky (1991) if for all ¢ € S, E; consists of a single point (| E; |= 1). When p = 1,
the S-Markov renewal equation becomes the Markov renewal equation given in Cinlar (1969a,
1975a, 1975b). If p = 1 and | E; |= 1, the S-Markov renewal equation reduces to the ordinary

renewal equation.

Examples:

1. It is not difficult to verify that f(x,a,t) = E[N(x,a,t)] = Y;cs H;"(2i,t) satisfies the
S-Markov renewal equation with g(x,a,t) = 1 — [[;cs[1 — F{¥(zi,1)).

2. Let X(t) = (Xa(t),...,Xp(t), Vt(t) = (Vl+(t),...,l/;,+(t)) and V=(t) = (V" (t),...,V, (1)
where X;(t), V;¥(t) and V;~(t) are defined in Section 2. Call (X(t), V*(¢)) and (X(¢), V(%))
the continuous superposition remaining and current life processes respectively. The pro-
cess X is a generalized semi-Markov process. (X,V*) and (X, V™) are both supple-
mented generalized semi-Markov processes as discussed in Schassberger (1977, 1978b)
and Burman (1981). Let W*(t) = Tyxas41 —t and z = (21,...,2,) € E. Now
faw(x,a,t) = P[X(t) = 2z, W*(t) > w | (X(0),V~(0)) = (x,a)] satisfies the S-Markov
renewal equation with g .(x,a,t) = I(x,2)[[;cs[l — F*(2i,t + w)] where I(x,z) = 1

when z = x and zero otherwise.

3. Queues with superposition semi-Markovian arrivals: Consider a single server
queueing system with no waiting room. The arrival process is the superposition of p
independent point processes. For the ith arrival process, suppose there are N; types of
customers. N; here may be finite or infinite. Let X;, be the type of the nth arriving
customer in the ith stream, n € IV and X;o = z; € E; = {1,2,...,N;}. Let the instants
of arrivals be —a;,T;4,T;2,.... Suppose (a;,z;,X;,Ti) = {ai, i, Xin,Tin;n € IN} can



be modeled by a delayed Markov renewal process. We assume that the service times are
independent and identically distributed whose common distribution function is 1 — =5t
t € Ry. There is no waiting room in this system. This means that a customer arrives and
finds the server busy leaves the system and never returns. Assume that at time ¢t = 0, the
server is busy. Let f(x,a,t) be the probability that the server is busy at time ¢ and X be
an exponentially distributed random variable with parameter 3. Conditional on the time
Ty of the first arrival in the superposed‘ process, and using the memorylessness property

of the exponential distribution, we have

1 Ty >tand X >t
f(x,a,t)=14 0 Ty >tand X <t (3.3)
f(ri(x,9:),si(a,u),t —u) Ty =u<tand I = (i,y)
where I; = (i,y;) indicates that the jth arrival to the system comes from the ith component
process and is of type y;. f(x,a,t) satisfies the S-Markov renewal equation with
g(x,a,t) = P(Ty > t,X >t) = e P [ - Ffi(ai, )] (3.4)
i€S
The queueing system (Y5, GI;)/M/1/1 studied in Lam and Lehoczky (1991) is a special
case of our problem where N; = 1 for all : € §. Queues with a single semi-Markovian
arrival stream were studied by Cinlar (1967). It is well known that the output of a M/G/1
queue with either finite or infinite waiting room is a semi-Markov process whose states are
queue sizes. Suppose that there are p independent M/G/1 queues, the merged output of
these p M/G/1 queues becomes the input of a single server queue with no waiting room.
Call this the second stage queue. The queueing characteristics of the second stage queue
with superposition semi-Markovian arrival streams can be studied by the methods in this
paper.
There are other instances where the output processes of M/G/1 queues can be character-
ized by semi-Markov processes. For example, the number of customers served during a
service time, instead of being one, is a random variable depending on the number of cus-
tomers in the system just at the start of that service. The queue lengths after departure
together with the times between departures form a semi-Markov process. For details on

semi-Markov analysis of a bulk queue, see Neuts (1965, 1966). Similarly, we can allow the
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service times of the M/G/1 queues to be dependent on the queue size. Again, we have a

Markov renewal process whose states are queue sizes after departure.

Suppose there are p independent M/G/1 queues with bulk service or state dependent
service times, and the merged output from these queues becomes the input of a single
server queue with exponential service times and no waiting room. Call this queue the
second stage queue. In the case of the bulk service queues, assume that customers in the
same batch are also served at the same time by the server in the second stage queue and
the service times are independent of batch size. Equations (3.3) and (3.4) above can be

used to study the blocking probability at time ¢ of the second stage queue.

. System availability: Consider a device with p components connected in parallel. The
device is not working when all the components are under repair. The i¢th component
consists of a finite number of subcomponents connected in series. There are N; < o
different types of subcomponents for component i, ¢ € S. If any one subcomponent
fails, the whole component fails. Let X;, be the type of the subcomponent causing the
nth failure in the ith component and —a;,T; 1,7} 2,... be the times of successive failures.
The times T; n4+1 — T;n, n 2 1, between two failures are the sum of the repair time of
the subcomponent which failed at T;, and a failure free interval following the repair.
Furthermore, T ; + a; is also the sum of the repair time of the subcomponent which failed
at time —a; and a failure free interval following the repair. Assume X;o = z; € E; =
{1,2,...,N;}, 1 € S. We suppose that subcomponent of type y; in the ith component has
exponential lifetimes with parameter ¢(3,y;), and suppose its repair time has distribution
©(%,¥i, ). Under these assumptions, the failure process of the device can be modeled by the
superposition of p delayed Markov renewal processes. Let Z(t) = (3, 2;) if the last failure
before time ¢ comes from the ith component and is of subcomponent type z;. Define
W(t) to be equal to 1 or 0 according as the device is working or under repair at time ¢.
Let fi . (x,a,t) = P[Z(t) = (3,2),W(t) = 0| (X(0),V~(0)) = (x,a)] where X(0) and
V~(0) are defined in Example 2 above. Conditional on the time of the first failure of the

subcomponent of the device, f; ;;(x,a,t) satisfies the S-Markov renewal equation with

(eat) = Iz 2\ (@ = o) TT |12 25,0i +) '
9i,:(x,a,1) I(‘ irzi)I(a; _)JES[ 1- Fy(z;,q;) ] (3.5)

11



where
Fi(zj,t) = Z Qj(zj,y5»1),
y;€E;

Qj(zj,y;,t) = [Ot]¢(j,yj)€"‘b(j)“<ﬂ(i,xj,t—U)du,

8(J) = Ly,ek; 9(5,95), [(@ai =a) = 1if ¢; < gjforall j € S and 0 otherwise. Similarly,

I(zi,z;) = 1 when z; = z; and 0 otherwise.

As discussed in Section 1, the S-Markov renewal equation is also a special case of the fun-
damental equation introduced in Cinlar (1969b) for semi-Markov processes on arbitrary spaces.
The results derived in Cinlar (1969b) assumed that the functions f and g are bounded. In this
paper, we are working with the class of functions F. In Cinlar (1969b), he derived the solutions
of the fundamental equations and their asymptotic properties by assuming that the interevent
time of the semi-Markov process is independent of the terminating state. Since given any semi-
Markov process, we can always define another semi-Markov process such that the interevent
time of this new semi-Markov process is independent of the terminating state, the results in
Cinlar (1969b) is very general mathematically. In this paper, we present the solutions of the
S-Markov renewal equations and their limiting results for the superposition of general Markov
renewal processes. Our results can therefore be applied directly to study the queueing and reli-
ability problems above without first defining a new semi-Markov process who interevent time is

independent of the terminating state.

Note that Equation (3.1) above can be rewritten as

Q [ ] f(x,a,t) = gx,a[f(zl,t -.Tl)].

Hence, the S-Markov renewal equation can also be written as

f(xaa, t) = g(x; aat) + gxya[f(zl»t - Tl)]

Theorem 3.1 Suppose that t — sup,,cp, Hi(z:i,t) is bounded on bounded intervals. Then, for
each g € F there is a unique f € F that is the solution of the S-Markov renewal equation (3.2).
That f is

f(x,a,t) = g(x,a,t) + Uy(x,a,t) (3.6)

12



where the second term, Uy(x,a,t), is given by

I / HY znyndvz){ II H* (2k, Ye, dve)[1 = Fi(ye, vi = vk)]}

YEE €S LCS; keS;\L (0,vi
1 - Fy(z), 05 + vi)
X I(z7y) g(y,b,t'—vi)
ng; 1- Fi(zj,a5) 777

where I(z,y) is 1 or Qasz =y or z # y, and b = (by,...,by) is given by

ar+v; ifk€L
bp=< vi—v ifkeS\L - (3.7
0 ifk=1

The proof of the theorem will be given in Section 5. Here, we offer some explanatory comments.
The function t ~ sup, g, Hi(z;,t) is bounded on finite interval ensures that regardless of
initial state, the expected number of transitions in the delayed Markov renewal process is finite

on bounded interval. Note that this condition is stronger that the regularity assumption defined

in Cherry (1972), Cherry and Disney (1983), Pyke (1961), Pyke and Schaufele (1964).

The expression for Uy(x,a,t) may be explained as follows: There is a last event around the
time v;, that event belongs to the ith component process and is of type y;. The set L is the
collection of component processes j that have no events during [0,¢]. The processes k outside

L U {i} have at least one event during [0, v;], its last event around the time vx < v; and is of

type Y.

Examples:

1. When g(x,a,t) = 1if t € IR} and 0 otherwise, it is easily checked that the solution of the

S-Markov renewal equation is given by f(x,a,t) =14+ 3 ;cs H"(2i,1).

2. For each ¢ € S, let g; : E; X Ry — IRy be a function such that for every z; € E;, the
function ¢ — g¢(z;,t) is bounded over finite intervals, and for every fixed ¢t € IRy, the
function z; — g(z;,t) is bounded. When f(x,a,t) = [[;cs{gi(2i,ai +t)/[1 — Fi(zi,a:)]},
an argument similar to the proof of Corollary (2.3) in Lam and Lehoczky (1991) applies

to show that the solution of the S-Markov renewal equation is also of product form. The
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solution is
gi(zi,ai + 1) o
f(x’a’t)‘_‘ H —_—t Z H,"(zivyhds)gi(yi,t—s) .
€S 1- -Fi(xiva'i) vi€E; [0,4]
Now, letting t — oo and using the Markov renewal theorem, provided that for all i € S,

gi is directly integrable with respect to A; as defined in Cinlar (1975a), we have

tlil&f(x,a,t) = H |:Z :\iT(:?Li)‘/m.,. 9i(yi,u)du .

1€S |yi€E; A

We know from above that fz,(x,a,t) = P[X(t) = z, W*(t) > w | (X(0),V~(0)) = (x,a)]
satisfies the S-Markov renewal equation with g5, (x,a,t) = I(x,2) [[;cs[1 — Fi(zi, t + w)].

9z,w(X,a,t) therefore has the required product form. Hence,

lim P[X(1) = 2,W+(1) > v | (X(0), V=(0)) = (x,a)]

A=) — Fi(z;,u)]du .
tIG-‘IS{ Aim; \/(w,oo)[l E( " )]d } (3 8)

which is the product of the individual limiting continuous remaining or current life dis-
tributions of the component processes. A Similar argument in Cinlar (1969a) page 163
can be used to show that limiting distribution of the continuous superposition current life

process is also given by Equation (3.8).

3. Similarly, we can write down the solutions of the S-Markov renewal equations when
g(x,a,t) are given by Expressions (3.4) and (3.5) in the queueing and system availability
examples above. These solutions look rather complicated. However, in the next section,
it will be shown that as ¢t — oo, the limit of the solution f(x,a,t) exists and the resulting

expression is very simple.

4 Superposition Markov Renewal Theorem and Applications

In this section, it will be shown that under some regularity conditions on g(x,a,t), in the limit
as t — 00, the limit of f(x,a,t) exists and is independent of both the initial ages and states

of the individual delayed Markov renewal processes. This result is a generalization of the key
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superposition renewal theorem in Lam and Lehoczky (1991) and the Markov renewal theorem in

Cinlar (1969a, 1975a, 1975b). Before the theorem is given, we need the following two definitions.

Definition 4.1 Let h be a function defined on IR%. For every positive 6, n = (ny,...,n,) and

p,n;=1,2,...,1 €S, let

hn(6) = inf{h(b):(n;-1)6 < b; < nid;i€ S},
Fa(6) = sup{h(b): (ni—1)§ < b < ni6;i € S},
h(6)=6") > ha(8) and R(8)=8)_ Y hn(é).
€S ni=1 1€S ni=1
Then h is said to be directly Riemann integrable (notation: h € D(IRY)) if both series h(6) and
h(6) converge absolutely for every positive 8, and the difference h(8) — h(6) goes to 0 as § — 0.

If h € D(IRY), then

lim h(8) = lim B(6) = /mi h(b) db.

Definition 4.2 Let h be a function defined on E x IR, and v be a positive measure on E. For
every positive §, n = (ny,...,%p), p,ni =1,2,..., 1€ S andy € E, let

hy(8) = 3 v(y)inf{h(y,b): (ni — 1)6 < b < mif; i € 8},
YEE

hn(6) = Z v(y)sup{h(y,b) : (n; —1)§ < b; < n;0; i € S},
YeE

B(6)=6°)" > hkn(6) and h(8)=b")_ D hn(6).
1€S n;=1 t€S ni=1
Then h is said to be directly Riemann integrable with respect to v (notation: g € D,(IRY)) if
both series h(8) and h(6) converge absolutely for every positive §, and the difference h(8) — h(6)

goes to 0 as 6§ — 0.

For i € S and b € IRY, define

Kig(y,b,t) = g(y,Ib,t) T [1 - Fe(yk,b%)]
k€ES;
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where I;b = (b1,...,0i-1,0,bi41,...,bp), and let p;(db) = dby ...db;_1db;y; ... db,6o(db;). Note
that & is the Dirac delta function. For any nonempty L C Sand y € E, let Ar(y) = [L;er Ni(%i),
and in particular put A(y) = As(y) = [Lies Ai(¥i)-

Theorem 4.3 (Superposition Markov Renewal Theorem)

Let g € F and let f be the solution of the S-Markov renewal equation (3.2). Suppose that
t > sup,, g, Hi(zi,t) is bounded on finite intervals, K;, considered as a mapping from E X R}
into Ry (mapping (y,b1,...,bi-1,bit1,...,bp,t) into Kiy(y,b,t)) is directly Riemann integrable
with respect to A, for every nonempty L C S with i € L, and for each fizedy € E, Kiy(y,) con-
sidered as a mapping from RY. — Ry (mapping (by,...,bi—1,bi11,...,bp,t)) is directly Riemann
integrable. Then,

hm f(x,a,t) A du i{(db)Ki4(y,b,u) (4.1)
- ( Am )Lwé(y/ /“ v }

Proof: The proof will be given in Section 5.

Note that in Equation (4.1),

/lRi ui(db) Ky (v, by ) = /mp_l dby ... di_ydbigs ... dby Kiy(y, Iib,2).

, +
If the imbedded Markov chains, X;, are all irreducible recurrent aperiodic nonnull, then there

exist invariant measures ); for X;, i € § such that )7, .z Ai(2) = 1. In this case, Result (4.1)

) m]) { /m+ Elg((Y,A),u)] du}

can be rewritten as

hmfxat (E

JES

where

1. From Lam (1990), 1 /[¥ ;es(1 /Aim;)] is the mean interevent time of the stationary super-
posed process and A\;m; is the mean interevent time of the ith stationary Markov renewal

process.
2. (Y,A) is a random row vector such that
(YaA) = (}/17"',Yi—laf}i,}/i+l,-"7YpaA17'"7Ai—1,07Ai+1,'°"Ap)
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with probability (1/Aim;) / [Cies(1/Aimi)l. P(Yi = wi) = Mi(w:), vi € Ei. {(Yi, Ai)}ies
are independent pairs of random variables such that for all y; € E; and w € Ry,

PY; = 4, Ai > w) = }:\L::)/( )[1 - Fi(yi,u)] du. (4.2)

Note that (4.2) is just limiting continuous remaining or current life distribution given in Equa-
tion (2.5). As mentioned earlier on that the stochastic process ((x,d),a,Z,T) is a delayed
Markov renewal process with state space & = E x IRY, it is not difficult to show that Z, is a
Markov chain (discrete time superposition current life process) with state space . Furthermore,
from Lam (1990), Z,, has a unique stationary distribution which is the same as the distribution
of (Y,A). Hence, the superposition Markov renewal theorem study here is closely related to the
renewal theorem given by Kesten (1974) for a Markov chain with separable metric state space.
However, the conditions of the theorem given in Kesten (1974) are restrictive, very unintuitive
and hard to check in practice. See also Jacod (1971, 1974) for other results related to those of
Cinlar (1969b) and Kesten (1974).

Examples:

1. Queues with superposition semi-Markovian arrivals: In this example, f(x,a,t)
is the probability that the server is busy at time ¢t and it satisfies the S-Markov renewal

equation with g(x,a,t) given by Expression (3.4). By the superposition Markov renewal

theorem,
tlirgo f(x,a,1) (43)
= M e'ﬂv — F(u:.v M Folwade b do b
16253% Ami {/m+ - Rl {216_:!.' Ajm; 'év,m)[l Fi(y;,u)] } }

Suppose the ith semi-Markov arrival stream is the output of a M/G/1 queue with infinite
waiting room. Assume that the arrival rate of this M /G/1 queue is ¢; and the mean service
time is ;. Provided that a;0; is strictly less than one for all : € S, the stationary distribu-
tion \; exists for each Markov chain X;. The stationary distribution A; is derived in Cin-
lar (1975a) and its generating function is given in Prabhu (1965) and Cherry (1983). Fur-
thermore, from Cherry (1983), Aim; = 1/a;. The function Fi(y;,t) = ¥, ¢p, Qi(¥i, 2irt)
and the matrix Qi(t) = {Qi(yi, zi,1);vi, z € E;} are also given in Cinlar (1975a).
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Similarly, the stationary distribution and the semi-Markov kernel of the queue length
at departure points of a M/G/1 queue with finite waiting room, bulk service or state
dependent service times are given in Cinlar (1975a), Neuts (1966) and Harris (1967a,
1967b) respectively. Substituting those expressions into Equation (4.3), we obtain the
limiting blocking probability at time ¢ of the second stage queue. The blocking probability
that an arbitrary customer arrives to a stationary second stage queue and finds the server

busy is derived in Lam (1990).

2. System availability: From Cinlar (1975a), Example (10.6.23), for ¢ € S, the station-
ary distribution is given by A(yi) = ¢(3,9:)/¢(?), yi € E;. If the mean repair time of
type y; subcomponent of the sth component is (i, y;), then m;(y;) = ¥(¢,y:) + [1/(?)).
Let (i)4(i) = Tyrem 80> u)0(i, ) and &(i,u) = 6(6,3)/[1 + SiV(0)]. Now, by the

superposition Markov renewal theorem,

Jlim P[Z(2) = (i,z:), W(t) = 0] (X(0), V7(0)) = (x,2)]

= 863 [ 1= (i 0] { Il { S ) |

J€Si \y;€E; (v,

oo)[l - ¢(4, Y5, u)] du}} dv.

5 Proof of Theorems

Proof of Theorem 3.1: The proof is a direct extension of the proof of Theorem (2.2) in Lam

and Lehoczky (1991) for the superposition of p independent renewal processes.

We first verify that f specified by Equation (3.6) fulfills the requisite boundedness properties.
First note that by assumption, sup,, ¢, Hi(z;,t) is bounded over finite intervals, this implies for
every finite t € R4, a = (aq,...,a,) € RY, there exists a finite constant C; such that

P p
sup H[l + H"(zi,t)] < sup H[2 + Hi(z;,t)] < Cy.

xeFE i=1 X€E i=1

Also, g € F means that for every finite ¢t € IR, there exists a finite constant x; such that
Ig(x,a,t) IS Kt

for all x € E and a € IR} . Hence, for each t € IR, we have

18



| f(x,a,t) |

YEE i€ LCS; | kesi\L 70w jeL

IN

= ke {1+ Z Z Z / Ha' (i, i, dv;) H sz(zk,yk,v;)} [H I(Q?j,yj)}}

YEE i€S LCS; | k€S\L JEL

i€S LCS; keS\L

= {1+Z Z / H} (zi,dv;) [ H H,‘:"(a:k,vi)}}
= K H[l + H(z;,1)] € k:Cy < 00.
i€S

Hence, f € F. Before we show that Expression (3.6) solves the S-Markov renewal equation, let us
define the following. For each m > 1, consider the process N(Y,A,,), this is the superposition
of p independent delayed Markov renewal processes with initial state Y,, and initial age A,.
Let T n represents the time of the nth event that occurs in the process N(Ym,An). Also, let
Yom,» and Ap, » be respectively the state and the age of the superposition process N(Yn,,An)
at time Trp 5. Let Zim o = (Ymns Amn)-

For n > m, conditional on T, and Z,, = (Ym,An), we have T, = Tpy + Tnnem, Yn =
Y n-m,and A, = Ap, n—m. In words, knowing Ty, Yy, and A,,, then the times of n events in
the process N(x,a) are equal to T}, plus the times of n — m events in the process N(Y,,, An).
Also, the state and the age of the superposition process at the time of n events, T, is the same

as those of N(Yy,, A,,) at the times of n — m events. It follows that for all n > m > 1,

5x,a[f(zn,t - Tn)] Sx,a{gYm,Am[f(Zn,t - Tn) | Tm,zm]}

Ex,ally, Anlf(Zmn-m:t = Tm = Tmn-m) | TmsZm]}.  (5.1)

We can now solve the S-renewal equation by successive approximations, and we use equality (5.1)

to simplify each step in the approximation to obtain
f(x,a,t) = g(x,a,t)+ Exalf(Z1,t - T1)]
= g(x,a,t)+ &x,al9(Z1,t - Th)] + Ex,a{éy, A,[f(Z1,1,t = Ty = T1y) | Ty, Z4]}
= g(x,a,t)+ &xalg(Z1,t — T1) + Exalf(Z2,t - T2))
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n-1

= ...=g(x,a,t)+ Z Ex,alg(Zi,t - T0)] + Exa[f(Zn,t — Ty (5.2)
=1

Next we want to show that for each fixed ¢,
n]LIIQlQ | gx'a[f(zn,t - Tn)] |= 0. (53)

To show Result (5.3), it is sufficient to show that the number of T}, belonging to [0,¢] is almost
surely finite. Now, for the latter, it is sufficient to show that the expected number of renewals
or events in the superposed process in [0, ] is finite.
Exa[N(x,a,t)] = ZH?‘(xi,t) < ZH;(zi,t) < o0
1€S 1€S

by assumption. Result (5.3) therefore follows. Letting n — oo in Equation (5.2), the solution
of the S-Markov renewal equation becomes

)

f(x,a,t) = g(x,a,t) + st,a[g(z,,t -T)].

=1

Next observe that

S Exalo(Z,t — T0)
=1

EREE T Lo ||

I=1yeE ieS LeS;; meL; JEL

X { H /{ v.]( Y™ (ke iy Aok )[1 = Fr(yi, vi — vi)]9(y, b, t — v;)} (5.4)

keS\L o

a m _Fj 7385 '
ZZZ Z Z/ ' 'znyi,dvi) Hl 1_%(;:{‘:;)'[(:17]7%{]

YEE i€S L€S; I=|S\L| meL, L €L

{ II (@)™ (2k, yk» dvk)[1 = Fr(yk, i — vi)lg(y, b, t - v.')}
kesi\L /0]

where I; = {m = (my,...,m,) € N? : Y .csm; =1,m; =0if j € L and m; > 0if j € S\ L}
and Sy = {L C &;:| §\ L |< min{l,p}}. Expression (5.4) above can be explained as follows:

There is a last event (the Ithe event in the superposed process) around the time v;, that event

belongs to the ith component process and it is of type y;. There is a total of m; events occurred
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in process ¢ during [0,¢]. The set L is the collection of component processes j that have no
events during [0,t]. The processes k outside L U {i} have mj > 0 event during [0, v;], its last
event around the time vy < v; and is of type yx. Finally, observe

Z Y (@F)™( %yi,d”i)[ II (sz)mk(mhyk,dvk)]

I=|S\L| meL, k€SI\L

= H?i(ziayivdvi)[ H H}:k(xk’yk7dvk)] .
keSi\L

This completes the proof of the theorem. O

For the proof of superposition Markov renewal theorem, we require the following notations and
lemmas. For the remainder of this section, let us assume that all the conditions in Theorem (4.3)

hold.

Lemma 5.1 Foralli € S, x,y € E, a € IRY, and nonempty subsets L of S;,
+

lim R (a:,,y,,dv, |: H / Rk zk,yk9d”k:| [H I(zj’yj)] I(ig(}'ab’t—vi):o

t=eo Jlog keSi\L j€eL
(5.5)

where b is defined in Equation (3.7) in Section 3.

Proof: By symmetry, it is sufficient to prove Lemma (5.1) for i = p. Let h: E x IR} — R% be

a function such that

Kpg(y,a1,...,ap-1,0,05) (5.6)

[HI i, Y;)

JEL

where L is a nonempty subset of S,. Given any § > 0 and fixed y € E, let hn(6) be as defined
in Definition (4.1) for the function h(y,-). For j € § and n; € IN, define the indicator function
I,fj(t) such that Ig}.(t) =1ift € [(nj — 1)§,n;6). Let L(t,n;,6) = [t — n;é,t — (n; — 1)6),
L(t,a;,np,6) = [(t/6) + (a;/6) — np, (t/6) + (a;/6) — np + 2] and L(m) be the set {n € IN? : n; >
m for some ¢ € S}, m € IN.

For every j € S, x,y € E and a € IR, we have
1> GY(z5,95,t) = H(2j,95,t) — H (2,95) % Gi(95,9;)(2)
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> [H(zj,y5,t) — H; (25,95, = O)][1 - G;(yj,¥5,6)]

= [R;j(zj’yj’t) - R;j(xj’yj’t - 6)][1 - Gj(yj7yj’6)]
and choosing ¢ such that G;(y;,y;,6) < 1, we have
w;i(y;,6) = sep[R;"(a:j,yj,t) - R?j(xj,yj,t - 6)] < . (5.7)

Since any interval can be partitioned into finite number of intervals of smaller length, (5.7) holds

for any 6 > 0. Hence, for any fixed y € F and § > 0,
w(y,6) = maxw;(y;,6) < oo.
JES

Observe that

/[Ot]RgP(xp,yp,dvp)[ H /[ ]R,c xk,yk,dvkjl |:HImJ,yJ Kpg(y, byt = vp)

keSp\L ¥ 10 jeL
P i
< Z Z/ zp’yp,dvp H / xkayhdvk) HIgJ(a]‘}'vp):lhn(&)
a=1 tn,,,&) kES \L L(vp,ng,6) 1|jeL
< w(y, )\ Z I1 Z H 2 En(”
np=1 | k€Sp\L nx=1] |JEL anL(t,aj,np,ﬁ)_‘
<Swy PV IT IO X | @ +e@08\H Y k)
np=1 | k€Sp\L nk=1] |j€L n;€L(t,a;np,5)] neL(m)

(5.8)

Taking limits as ¢ — oo, the first term in Equation (5.8) vanishes. Now, letting m — oo,

h(y,-) € D(IRy) for each fixed y € E implies that the second term in (5.8) also converges to 0.

O
Lemma 5.2 Foralli€ S, x,y € E anda € IRY,
lim R}i(zi,yi,dvi) / Ry*(zk, Yk, dor) | Kig(y,b,t
t—oo Jog] (&4, 4o ) |:k€S ¢ (3 k)] g(y R
A [ du [ ()i (y,b,u) (5.9)
(JI;«IS A m’) Ry IR} ’

where b is defined in Equation (3.7) in Section 3 with L = (the empty set).
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Proof: By symmetry, it is sufficient to prove the Lemma for ¢ = p. Using the notations defined

in the proof of Lemma (5.1) above, we have

Rp xpvyp’dvp [H Rk (L'k,yk,dvk) KPQ(vaat—vp)

0,4] kes, Y 0wp
< Z/ mpaypadvp Z/ Rk Ik,yk,d’l)k) hn +w ya Zhn )
np=1 L(t, "P"S) k€Sp \nx=1 L(vpnk.6) neL(m)
By ordinary renewal theory,
: Ak (yx)
lim Ri*(zk, yk, dvg) = .
U= JL,(vp,n,0) k" (@k Yk o) Ay

Since t — npé < v, < t — (np, — 1), hence v, — o0 as t — oo and

lim Y / R (2, ypr dvy) 3 / % (21, g1, dog) | | Fa(6)
—00 np=1 L(tnp,8) kES ng=1 L(vpyng,8)
I | mm Y S F@
- § F(6
JES /\ M a=1nqe=1

Now taking m — oo and since K,4(y,-) considered as a mapping from IR%, into IR, is directly

Riemann integrable,

lim Rp?(zp, Yp, dvy) [

= Jjo

< (1; ,\ij) Py Ep: {2 hin(6). (5.10)

a=1ng=1

Rk xk?yk’dvk) 'Kpg(yab’t - vp)
k€Sp

Also,

H/ Ry (2, Yk, dvg)

keSp

lim inf ]R ?(Tp, Yp, dVp) [ Kpg(y,b,t — vp)

> liminf / P(Zp, Yp, dvp) / xk,yk,dvk ha(6
t—o0 an_:l (tn,,s) p»Yp» dVp) |:k]é1 L(vp’m“&) )| hn(9)
)4 [e o]
> hn(6) lim R (2p, Yp, dvp) / Ivk,yk,dvk)
az—lna=l oo L(t/mp,) P [kg Up»"ky‘s)
1 P&
= T | FA) X X a(9). (5.11)
jES 37 a=1nqg=1
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The proof is completed by using (5.10), (5.11) and the definition of Riemann integrability. [

Both Lemmas (5.1) and (5.2) still hold when we replace R{!(z1,%1,t),- .-, Rp’ (p, Yp, t) in (5.5)
and (5.9) by H{*(z1,91,1),. .., Hp?(2p, Yp, ) respectively. In the case when the state space E is
finite, since Kiy(y,-) € D(IR4) when considered as a mapping from R into IRy for each y € E
and ¢ € §, it follows immediately that

lim f(x,a,1) = (H,\m)ZEA /du/ 1i(db) Ky (y, b, u).
)

Y€€ ies

In the case of infinitely but countable many states, however, we can no longer pass the limit
inside the summation without some justification. Since the delayed Markov renewal functions
and the Markov renewal functions have the same limiting behavior, it is sufficient to prove the

theorem for a = 0. 0 here represents a row vector of p zeros.

Lemma 5.3 Let h be a nonnegative function defined on IRy. For anyt € Ry, k € S and

Tk, Yk € &, we have
Hi(yx, zx) * h(t) < Rz, zk) * h(t).

Proof: Using Equation (2.4) and since Gi(yx, Zx,t) is a distribution function,
Hi(yx, o) * h(t) = [Gk(yk,zk) * Rk(xk,l‘k)] + h(t) < Ri(zk, ok) % h(2)

as desired. O

Lemma 5.4 Foralli € S, x € E, and nonempty subsets L of S;,

tli)r& Z/ Z‘,,y.,d’l), I: / Hy ka,yk,d’vk] I:HI z,],yt

kesA\L"! JEL

K’!](y,b t- ) 0

where b is defined in Equation (3.7) in Section 3.

Proof: Again, it is sufficient to consider the case when ¢ = p. Let h be as defined in Equa-

tion (5.6) and b = (by,...,b,) be as defined in Equation (3.7). Let b’ = (by,...,bp—1,t — vp).
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Using Equation (2.3) and applying Lemma (5.3) repeatedly, we have

As\L(x) Z/ Hy( m,,,y,,,dv,,)[ I1 / ]Hk(zk,yk,dvk)] h(y,b’)

yeg /I keSp\L  1Ovp

I

Y, Hy(ypy T, dvp) [ 11 /U] () Hx yk,ka,dvk)] h(y,b')
P

yeE /10 ] kesp\L !
< E Ap(yp) Hp Yps Tp, dVp) [ H Ak yk)/ Rk(zk,xhd”k)] (Yab’)
YEE keS,\L
< / Rp(xp’xp’dvp) [ H Rk(mkaxkadvk):l I:Z ’\|S\L|(y)h(Ya b’):| .
(0.1] kESp\L yeE

Since Ky considered as a mapping from E x IRY into IR, is directly Riemann integrable with
respect to A for every nonempty L C &, the same argument used in the proof of Propo-
sition (10.4.15(a)) in Cinlar (1975a) applies to show that Y-yep Ais\rj(¥)h(y,b’) is directly

Riemann integrable. The proof is now completed using Lemma (5.1). O

Lemma 5.5 For everyi € S and x € E,

tl_lf& Z/ H(znyndvz {H / Hk zk,yk,dvk)

yEE kES;

du/ llfz K; y’b u)
(JES A m’) YEE /IR* o

where b is defined in Equations (3.7) in Section 3 with L = ().

Kig(y,b,t — v;)

Proof: It is sufficient to consider the case when i = p. Using Equation (2.3) and applying

Lemma (5.3) repeatedly, we have

Kpg(y, byt — Vp)

X) Z / (Itp, yp,dvp II Hk xk,yk,d’l)k)
kes, V[0

yeE”l

< Ry(zp, Ty, dvp) [
(0st]

/ Rk(zk,zk,dvk} Z AMy)Kpg(y,b,t —vp). (5.12)

kesSp YEE

The same argument used in Lemma (5.4) can be used to show that Yyer MY)Kpg(y, byt — vp)
is directly Riemann integrable. This, together with Equation (5.12), Lemma (5.2) and the
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monotone convergence theorem imply that

t-roo Z /0 xl” yP’va) [ H Hk(zkayk’dvk)] I(pg(y,b,t - ’Up)

kESp (0,vp]

(H /\ M. ) Z A Y)/ du ”P )Kpg(y9bat_ vp) (513)
j€s 7] yeE

On the other hand, since Ky(y, -) considered as a mapping from R% into IR, is directly Riemann

integrable and from the remark after Lemma (5.2), we have for any a € RR%,

1itrgglf2/0 922, Y, AV, ) [ / Hi*(zk, Yo, dvi) | Kpg(y, byt — vp)

Lk€ESp
> tl_i'm Hp?(2p, Yp, dvp) H/ H*(zk, Yk, dog) | Kpg(y, byt — vp)
yee 704 kes, J[0]
- (Hm)}:A(y/ du/ ol db) Ky (v, b1~ v,) (5.14)
Jj€s 7] yeE
The proof is now completed by (5.13) and (5.14). O

Combining Lemmas (5.4) and (5.5), the superposition Markov renewal theorem now follows.
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