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ABSTRACT 
 

Tallgrass prairies are one of the most threatened ecosystem types in Michigan and 

throughout North America.  Dow Field is a small remnant prairie in the University of 

Michigan’s Nichols Arboretum in Ann Arbor, Michigan, that is being actively restored after 

many years of fire suppression.  Starting in 1991, the prairie was divided into 10 

management zones that were burned on 1 or 3 year intervals in April or November, and 

vegetation in 60 2m2 sample plots was monitored annually until 2007.  In this study, I 

examined trends in the plant community over time, including diversity, species abundance, 

and community compositional change.  I also explored the environmental and management 

factors that most influenced diversity and compositional change, and evaluated successional 

trajectory in the context of restoration goals. 

Over time, native species richness increased slightly, but exotic species richness and 

dropped dramatically after several years of burning.  Andropogon gerardii (big bluestem) 

was the most dominant species in the prairie and reduced diversity through competitive 

exclusion, but there were no clear patterns in how the different fire regimes affected 

diversity or the abundance of A. gerardii.  Instead, soil depth and soil clay were found to be 

the most reliable predictors of diversity, likely because increased soil moisture led to higher 

A. gerardii productivity and competitive ability.  Year-to-year change in community 

composition was found to be affected by time since fire and fluctuations in growing season 

temperature and rainfall.  Examining successional trajectory showed that the restoration has 

been most successful at reducing exotic species and increasing species heterogeneity, but 

has largely failed to increase native species richness to the level of remnant prairies, likely 

because of high A. gerardii abundance and low availability of native propagules. 
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Chapter 1: Background, Site Characteristics, and Data Collection 
 
 
Prairie Conservation, Restoration, and Research 
 

Once one of the most extensive ecosystem types in North America, the tallgrass 

prairie now remains in about 0.1% of its original range (Samson and Knopf 1994).  Most 

prairies, because of their rich soils and absence of trees, have been lost to agriculture 

(Howe 1994).  Others face less obvious but also serious problems such as overgrazing, 

fire suppression, invasive species, and landscape fragmentation (Simberloff and Gotelli 

1983, Risser 1988, Howe 1994, Cully et al. 2003, Lett and Knapp 2003).  The loss of 

prairie habitat since the time of European settlement has led to a sharp decline of prairie-

dependent biodiversity.  For example, grassland bird species have shown steeper and 

more consistent declines than any other group of North American species (Knopf 1994). 

The degradation of prairies also alters ecosystem functions such as erosion control, water 

filtration, and nutrient cycling (Raison 1979, Wedin and Tilman 1990, Seastedt 1995).  In 

addition, the deep roots of many prairie plants store large amounts of carbon in the soil, 

an important ecosystem service in the context of global climate change (Seastedt and 

Knapp 1993, Contant et al. 2001, Derner et al. 2006).  In order to preserve or expand 

remaining prairie ecosystems, it is critically important for ecologists, land managers, and 

restoration practitioners to have a firm knowledge of prairie ecology and to understand 

how management practices affect prairie ecosystems.   
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Michigan Prairies in Context 

 Unlike the Great Plains region, there were never large, continuous expanses of 

prairies in Michigan, but about 25,000 ha of the southern part of the state was covered 

with open grassland at the time of European settlement (Kost 2004).  These prairies were 

the easternmost extension of the so-called prairie peninsula, a finger of the Great Plains 

prairie biome that extended into Southern Michigan, Northern Indiana, and Northwestern 

Ohio (Transeau 1935, Anderson 1982).  Throughout this entire region, prairies were once 

part of a heterogeneous landscape that was an extensive patchwork of prairies, oak 

savannas, and open oak-hickory forests (Albert 1995).   

Much of the remaining prairie flora in Southern Michigan and other parts of the 

eastern Midwest persists on marginal land such as railroad rights-of-way (Thompson 

1975 , Kost 2004), historic cemeteries (Pleznac 1982), or areas otherwise unsuitable for 

agriculture or development.  These small prairie remnants often have low ecological 

integrity due to fragmentation, fire suppression, and invasion by non-native or woody 

species (Leach and Givnish 1996, Chapman and Brewer 2008).  According to the 

Michigan Natural Features Inventory, there are only about 195 ha (less than 1% of the 

original landcover) of upland prairie left in the state (Kost 2004), making tallgrass 

prairies one of the most threatened ecosystems in the area, in need of informed 

management and restoration. 

  Despite the importance and rarity of eastern prairies, there has been a surprising 

lack of published research on their ecology or management.  Some studies from the 

region have focused on recreated or replanted prairies (Suding and Gross 2006, 

MacDonald et al. 2007); others have been merely descriptive (Gleason 1917, Thompson 
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1975, Anderson 1982).  However, there are few if any studies that have focused on plant 

community dynamics in remnant prairies, especially within the context of restoration.  In 

this thesis, I explore the plant community at a restored remnant Michigan prairie and the 

factors that influence its diversity, composition, and dynamics.  Ultimately, by 

investigating the plant community of the prairie, I hope to progress our understanding of 

the ecology of small eastern prairies, both with respect to theoretical community ecology 

and applied restoration and management.   

Study Site Description 

 Dow Field is an approximately 4 ha tallgrass prairie in the University of 

Michigan’s Nichols Arboretum, a 50 ha park and natural area in the city of Ann Arbor in 

Washtenaw County, MI (42°16’ N, 83°43’ W).  The climate is humid continental with 

cold winters and hot summers.  Over the course of the study (1991-2007), monthly means 

of daily maximum temperature ranged from 0° C in January to 29° C in July, and mean 

annual precipitation was 97.3 cm, about half of which fell during the growing season 

(May-Sept).  Climate data were gathered from a weather station located at the University 

of Michigan North Campus, about 1 km away from the study site (Dennis Kahlbaum, 

University of Michigan, Department of Atmospheric, Oceanic, and Space Science, 

unpublished data).  Dow Field is located on a flat glacial outwash terrace in the Huron 

River valley, and the soils are classified as Boyer loamy sand.  A layer of coarse gravel 

lies beneath the sand at a depth of up to 1 m.  The site is bordered by rolling glacial 

moraines that support an oak-hickory forest to the south and west, and the outwash 

terrace continues to the north and east to the river, which supports a planted conifer stand, 
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an oak savanna remnant, a wet prairie remnant, and bands of dry-mesic prairie vegetation 

along a set of railroad tracks.       

Management History 

 Prior to European settlement, there is evidence that the area along the Huron 

River in Washtenaw County was extensively burned by Native Americans for agriculture, 

hunting, or cultural purposes.  A stone plow and fire-cracked rocks found adjacent to 

Dow Field indicate that the site was burned and possibly cultivated by Native Americans 

during this time although sustained cultivation is unlikely given the droughty soil 

conditions (Bob Grese, personal communication).  The Michigan Central Railroad 

between Ann Arbor and Detroit was completed in 1839, and thereafter sparks from coal 

locomotives routinely maintained prairie vegetation along the Huron River (Sheldon 

1967).  Interestingly, the influential community ecologist Henry Gleason used these 

Huron River Valley railroad corridor prairies to inform his founding theories of plant 

associations, although we do not know if he studied Dow Field in particular (Gleason 

1917).  Until the 1940s, the land was owned by the utility company Detroit Edison.  Little 

is known about how the land was used during this time, though some county records 

show a built structure and an orchard on part of the site in the late 1800s (Evarts and 

Stewart 1874).  The land came under the management of the Nichols Arboretum in the 

1940s, and was mowed as a rough lawn for 35-40 years.  In the mid 1970s, the field was 

allowed to grow all year, but was mowed once each fall.  Under the guidance of 

University of Michigan professor Bob Grese, who noticed the characteristic prairie 

species at the site, a plan was implemented in 1988 to mow some of the field and burn 

other sections in the fall or spring.  Volunteers inventoried the plant community in Dow 
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Field along transects every 25 meters along a center line through the field in 1988 and 

1989. 

 In 1990, a more structured plan was implemented to systematically restore and 

manage the prairie through reintroduction of prescribed fire.  A series of 60 permanent 

sampling plots were established to monitor the progress of the restoration and plant 

community changes in each of the treatments.  The prairie was divided into two sections 

based on the dominant grasses found in the 1988 and 1989 surveys; a small section at the 

north edge was dominated by Schizachyrium scoparium (little bluestem) (stratum 1), but 

the majority of the prairie was dominated by Andropogon gerardii (big bluestem) 

(stratum 2).  Within each stratum, three major treatments were initiated in different 

sections of the prairie: triennial spring burns, annual spring burns, and annual fall burns.  

The triennial burns were staggered, starting in 1991, 1992, or 1993.  In 2000, in part 

because of concerns over the negative response of arthropod populations to annual fires 

(Treemore-Spears 2000), the burn pattern was altered so that all annual burns were 

changed to 3 year burns.   Also, the burn season of all the treatments was reversed so that 

spring-burned plots were burned in the fall and vice versa (Table 1.1, Fig 1.1).  Since 

1991, woody species that have invaded the prairie were removed periodically by cutting.  

There were no burns from fall 2006 to fall 2007 due to unforeseen restrictions to fire 

emergency vehicle access.  Throughout the study, there was no intentional planting or 

seeding in the study area.  Thus, the restoration was completely reliant on the existing 

seedbank and possibly some seed rain from nearby plantings and remnants of prairie 

vegetation.  
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Treatment Zone Burn Schedule 
Stratum Substratum Section 1991-1998 1999-2007 

2 1 1 Triennial spring, starting in 1993 Triennial fall, starting in 2002 
2 1 2 Triennial spring, starting in 1991 Triennial fall, starting in 2000 
2 1 3 Triennial spring, starting in 1992 Triennial fall, starting in 2001 
2 2 1 Annual spring Triennial fall, starting in 1999 
2 2 2 Annual spring Triennial fall, starting in 2000 
2 3 1 Annual fall Triennial spring, starting in 2000 
2 3 2 Annual fall Triennial spring, starting in 2000 
1 1 - Triennial spring, starting in 1992 Triennial fall, starting in 2001 
1 2 - Annual fall Triennial spring, starting in 2001 
1 3 - Annual spring Triennial fall, starting in 2002 

 
Table 1.1.  Treatment zones in Dow Field.  Stratum 1 is dominated by S. scoparium; 
stratum 2 is dominated by A. gerardii. 
 



 

Figure 1.1.  Map of management zones and sampling plots in Dow Field.  The treatment zone labels correspond to Stratum-
Substratum-Section as described in Table 1.1.  
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Field Sampling 

 In 1990, 60 1m x 2m plots were arranged along transects down the approximate 

centerline of each treatment.  There were 15 plots in each substratum in stratum 2, and 5 

plots per substratum in stratum 1.  Data were collected annually from 1991-2003, and in 

2007.  Data were gathered in early September, when grass height reached its maximum.  

In each plot, species were identified and assigned a percent cover at canopy height, such 

that total percent cover for each plot equaled 100%.  Species with less than 5% cover 

were assigned 0%.  As another measure of abundance, individuals of each species were 

counted, but for bunchgrasses, the number of genets was estimated instead of taking on 

the tedious task of counting individual stems.  A series of 5 measurements of the height 

of the tallest grass was taken down the lengthwise centerline of the plot, and the mean 

height of A. gerardii, S. scoparium, and Sorghastrum nutans (Indian grass) were visually 

estimated.    

To compare the diversity of Dow Field with reference sites, I surveyed 5 dry-

mesic prairie remnant sites near Ann Arbor (Shanghai Prairie, Highland Cemetery, Swift 

Run Preserve, Barton Park, and Dexter-Huron Metropark) in August, 2008.  At each site, 

I took stem counts and percent cover estimates from 5 randomly-placed 1 x 2 m sample 

plots.  Shanghai Prairie and Highland Cemetery both have areas of wet prairie, but I 

surveyed only the upland portions.  For direct comparison, I also surveyed Dow Field in 

the same manner as the other sites in 2008. 

Soil Analysis 

 Soil depth was measured by professors Bob Grese and Gary Fowler in 1999 by 

inserting a 2.5 cm diameter metal soil corer in the center of each plot until the corer 
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stopped at the hard gravel layer (see Nelson and Anderson 1982, also Tepley 2001).  In 

early April, 2008, I used a 2.5 cm diameter soil corer to collect 3 soil samples along the 

centerline of each plot to a depth of 20 cm, including the organic (O) horizon where 

present (n = 3 samples x 60 plots = 180).  The three samples from each plot were 

combined, roots and other particles greater than 2 mm were removed, and the combined 

samples were analyzed for texture and organic matter.  I used the hydrometer method 

(Bouyoucos 1962) to determine percent of sand, silt, and clay (i.e., soil texture).  Organic 

matter content was determined by wet combustion using the modified Walkley-Black 

method (Walkely and Black 1934), where organic carbon is oxidized by chromic acid and 

the spectral absorbance of the product is compared against a set of known standards. 

General Approach 

 The main objective of this study is to examine the interrelated role of fire and site 

conditions in influencing vegetation patterns and dynamics in Dow Field.   Because of 

the complex nature of community data and the wide variety of questions that range from 

theoretical to practical, the analyses were split into three chapters.  The following lists the 

major questions addressed in each chapter. 

Chapter 2 

• What species were found in Dow Field, and how did they contribute to 

community composition? 

• How did native and exotic species differ in their responses to management? 

• How did diversity levels in Dow Field compare to nearby prairie remnants? 

Chapter 3 

• Which environmental and management factors most influenced diversity? 
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Chapter 4 

• How did species composition change over time? 

• What factors most influenced year-to-year compositional change? 

• How did successional trajectory relate to restoration goals? 
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Chapter 2: Long-Term Patterns of Plant Diversity in Dow Field 
 
 
Introduction 

 
Species identity, number, and abundance are the fundamental components of all 

ecological communities and can give indications of ecosystem structure and function.  

Biodiverse ecosystems can enhance ecosystem productivity (Tilman and Downing 1994), 

preserve nutrient cycles (Risser 1988), resist disturbances and invasion by exotic species 

(Tilman and Downing 1994, Kennedy 2002), provide wildlife habitat (Van Dyke et al. 

2007), or serve recreational or aesthetic purposes (Munro 2006).  The number of species 

in a given area (species richness) is the simplest index of diversity (Magurran 2004), can 

give a general indication ecosystem health (Woodward et al. 1999), and is the basis for 

many studies.   Species richness can be measured across spatial scales (Whittaker 1960) 

or be partitioned by functional group (Howe 1994) or native status (Suding and Gross 

2006) to give more information about the composition of a community. 

In ecological restoration, diversity is particularly important because a common 

goal is to recreate plant communities similar to those found in historic records or remnant 

sites (Sluis 2002, Cipollini et al. 2005, Martin et al. 2005).   Most restorations seek to 

increase species richness because the initial degraded state has few species in comparison 

with the reference ecosystem.  Restored communities, however, often have lower 

diversity than the remnant they are trying to mimic even after several years of 

management (Kindscher and Tieszen 1998, Sluis 2002, Polley et al. 2005) and thus do 
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not achieve a “complete restoration” (Howell and Jordan 1989).   In prairie ecosystems, 

this may be a result of having relatively little information on how species composition 

and richness change over long time scales in response to restoration and management 

(Gibson and Hulbert 1987, Sluis 2002), and the patterns of diversity found in those 

studies may depend on the specific climate or site conditions where the study took place.  

Thus, describing changes in diversity over time is critical for our understanding of how 

specific communities function and for our ability to restore those systems.   

My objective in this chapter is to describe the patterns of species diversity in Dow 

Field, a restored remnant prairie, in response to 16 years of restoration.  I partitioned total 

species richness into native and exotic species richness, because I predicted that native 

and exotic species richness would have vastly different responses to repeated fire (Smith 

and Knapp 1999).  I also compared levels of diversity in Dow Field to 5 nearby prairie 

remnants that have similar soil conditions and plant communities as Dow Field.  This 

chapter ultimately defines the plant community in Dow Field in terms of species 

composition and richness, which then allows investigation into the factors that influence 

diversity (chapter 3) and species composition (chapter 4). 

Methods 
 

A description of the study site and data collection procedures can be found in 

chapter 1.   

Species richness is the number of species in a given area (Magurran 2004).  In this 

study, I used plot-level species richness (alpha richness), treatment-level species richness 

(the number of unique species occurring in all plots within a treatment), or prairie-level 

species richness (the number of unique species occurring in all plots combined, or gamma 
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richness) for a given year, depending on the scale of interest (Whittaker 1960).  I used 

average plot-level species richness to compare diversity between management zones in 

Dow Field, which allowed direct comparisons between treatments with different numbers 

of plots (Hurlbert 1971).  Also, to account for the two components of diversity, richness 

and evenness, I calculated the Shannon diversity index (H’ = -Σ piln(pi), where pi is the 

proportion of individuals of a species to the number of individuals in the community) for 

each management zone in each year.  I used the Shannon evenness index (E = H’/ln(S), 

where S is treatment-level species richness) to isolate the evenness component.  Because 

H’ was highly correlated with species richness (r = .879) and species richness is a more 

intuitive index of diversity, I primarily used species richness in the analysis. 

All statistics were generated in SPSS 16.0.2 for Windows (SPSS, Inc. 2008).  I 

performed linear correlations of year vs. richness to identify dominant increasing or 

decreasing trends in species richness, native species richness, or exotic species richness 

over time at the prairie level, the plot level averaged for the entire prairie, and the plot 

level averaged by management zone, or substratum (Wilson et al. 1996).  I focused my 

analysis on stratum 2, which was dominated by Andropogon gerardii (big bluestem) and 

was much larger and had three times more sample plots than stratum 1. 

  A one-way ANOVA with Tukey’s HSD multiple comparison test was used to 

identify significant differences in species richness between sites (α < 0.05).  No 

assumptions were seriously violated for any statistical test. 

In addition to species richness, I calculated the average plot level percent cover of 

grasses, native grasses, forbs, and native forbs.  Stem count differences between 1991 and 

2007 were used to calculate the change in abundance of the top 5 most frequently 
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occurring native and exotic species.  I used stem counts because some species, 

particularly those with low biomass (e.g., Panicum oligosanthes, panic grass), were not 

abundant enough to be assigned a percent cover (see chapter 1). 

Results 

Prairie-Level Diversity and Species Occurrence 
 
 Seventy-three species were observed in Dow Field from 1991 to 2007, 50 (68%) 

of which were native, and 23 (32%) of which were exotic.  Based on presence-absence 

data at the plot level, by far the most frequently occurring species in Dow Field during 

the study was A. gerardii, which occurred in 751 (89%) of the 840 sample units (SUs) 

(60 plots x 14 years = 840).  In contrast, the second most frequently occurring C4 grass, 

Schizachyrium scoparium (little bluestem), occurred in only 39% of SUs.  Solidago 

speciosa (showy goldenrod) was the forb with the highest occurrence and the second 

most common species overall (62% of SUs).  Poa pratensis (Kentucky bluegrass) (61% 

of SUs) was by far the most prevalent exotic species.  Most species (62%) were 

uncommon, occurring in less than 5% of the sample units.  Appendix 2.1 lists the species 

in order of occurrance based on plot-level presence-absence data.  

 There were 69 species observed in stratum 2 over the course of the study.  A. 

gerardii was nearly ubiquitous, occurring in 613 (97%) of the 630 of the sample units (45 

plots x 14 years = 630).  Stratum 2 also had a high occurrence of P. pratensis (86% of 

SUs) and S. speciosa (56% of SUs).   

 S. scoparium was the most frequently occurring species in Stratum 1, found in 

182 (87%) of the 210 sample units (15 plots x 14 years = 210).  S. speciosa (79% of 

SUs), Panicum oligosanthes (panic grass) (70% of SUs), and A. gerardii (65% of SUs) 
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were also very common.  There were only 52 species observed in stratum 1 over the 

course of the study.  The bulk of the difference in richness compared to stratum 2 is likely 

because stratum 1 had one-third the sample area of stratum 2.  

 There were 6 species observed in the 1988 and 1989 transect surveys that were 

not found in the study plots in subsequent years.  These were Juglans nigra (black 

walnut), Monarda fistulosa (bee balm), Asclepias tuberosa (butterfly milkweed), 

Veronicastrum virginicum (Culver’s root), Vernonia missourica (Missouri ironweed), and 

Ratibida pinnata (yellow coneflower).  Since the transect surveys covered slightly 

different areas of the field than the study plots, their absence after 1990 could be due to 

the location of the transects, not local extinction.  On the other hand, since most of these 

species except J. nigra are fairly common in adjacent areas that have been restored on an 

ad hoc basis over the same time period, it is rather surprising that they did not colonize 

any of the study plots. 

Prairie-Level Changes in Species Richness over Time 
 

From 1991 to 2007, the total number of species observed in all plots throughout 

the prairie fluctuated between 40 and 51 but did not have a significant increasing or 

decreasing trend over time (Fig. 2.1).  However, richness did increase considerably from 

the transect surveys in 1988 and 1989, although there was not a perfect correspondence 

between transect and plot location and area.   Native species richness did not show a 

significant trend over the 16 year period, but there was a steady increase from 1992 to 

1997 followed by a period of oscillation between years.  Exotic species richness declined 

over time from 16 species in 1991 to 11 species in 2007 (p = 0.003, r2 = 0.542 for linear 

trend). 
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Figure 2.1.  Prairie-level species richness, native species richness, and exotic species 
richness, including data from 1988 and 1989 transect surveys.  
 

Over the 16 year period, mean plot-level species richness for all treatments 

combined ranged from 9.4 species per plot to 6.6, and showed a significant linear decline 

through time (p = 0.024, r2 = 0.360 for linear trend, Fig 2.2).  Species richness varied 

most in the first several years of restoration, and declined steadily from 1997 to 2002, 

after which there was a gain of about 1 species per plot by 2007.  Meanwhile, average 

plot native species richness increased from 5.1 to 6.3 (p = 0.011, r2 = 0.428 for linear 

trend), while exotic species richness declined from about 3.9 to about 1.3 (p < 0.0005, r2 

= 0.764 for linear trend), with the sharpest decline in the first several years after fire 

reintroduction (Fig. 2.2).  Also, there was a highly significant increase in plot-level 
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evenness (E) over time from 0.687 to about 0.829 (p < 0.0005, r2 = 0.706 for linear 

trend).  

 
Figure 2.2. Average native, exotic, and total plot-level species richness for all plots in the 
prairie from 1991 to 2007.   
 
Prairie-Level Trends in Abundance 
  

From 1991 to 2000, there was a considerable increase in average plot level native 

grass percent cover, while total grass abundance did not change substantially due to the 

decrease in exotic grasses (Fig 2.3).  From 2000 to 2007, grass and native grass percent 

cover were nearly equal and showed a slight decline over time.  Average plot-level forb 

and native forb percent cover showed an approximately opposite trend; there was little 
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movement in either from 1991 to 2000, but both increased by about 10 percent from 2000 

to 2007. 

 
Figure 2.3.  Average plot-level forb percent cover, grass percent cover, native forb 
percent cover, and native grass percent cover for the entire prairie from 1991 to 2007.  

 

For individual species responses of the most frequently occurring species, S. 

speciosa increased the most (178%), while the native bunchgrasses had more modest 

increases (Tab 2.1).  Two native species (a C3 grass and a legume) declined in abundance 

over the 16 year period.  Only one exotic species (Hypericum perfolatum, St. John’s 

wort) showed increased abundance.  Most notably, P. pratensis and C. maculosa, two 

problematic invasives in many prairies, decreased by 85% and 97%, respectively.  
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Native Species 
Percent 
Change 

Solidago speciosa + 178 
Andropogon gerardii + 42 
Schizachyrium scoparium + 4 
Panicum oligosanthes - 15 
Desmodium canadense - 57 

Exotic Species  
Hypericum perforatum + 29 
Rumex acetosella - 13 
Poa pratensis - 85 
Hieracum sp. - 97 
Centuarea maculosa - 97 

 
Table 2.1. Change in abundance of frequently occurring native and exotic species 
between 1991 and 2007.   
 
Diversity in Stratum 2  
  

Stratum 2 is the large section of the prairie dominated by A. gerardii and has 3 

substrata which were burned on different schedules (see chapter 1).  Average plot-level 

species richness decreased over time in substrata 1 and 2, but not in substrata 3, which 

had wide fluctuations in species richness but consistently had the highest total species 

richness and native richness throughout the study (Fig 2.4a, Tab 2.2).  Substratum 3 also 

underwent the greatest increase in native species richness, from 5.8 to 8.1 species per 

plot.  In contrast, substratum 1 had the lowest species richness and native species 

richness, and neither substrata 1 nor 2 underwent a significant increase or decrease in 

native species richness over time (Fig 2.4a and 2.4b, Tab 2.2).   

Exotic species richness declined throughout time but leveled out after 2000 or 

2001 in all substrata, but the hyperbolic trend was most pronounced in substrata 2 and 3 

(Fig 2.4 c).  Because of this, I compared best-fit quadratic curves to the linear trend.  

Indeed, for all three substrata, a quadratic curve described the data better than a linear 

curve, although the difference was minimal for substratum 1 (substratum 1: r2
quad  = 
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0.616, p = 0.001; substratum 2: r2
quad  = 0.913, p < 0.0005; substratum 3: r2

quad  = 0.853, p 

< 0.0005).  The greatest decrease in exotic species richness was in substratum 3, which 

dropped from 5.0 to 1.3 species per plot. 
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a. 

 
b. 

 
Figure 2.4. Average plot-level species richness (a), average plot-level native species 
richness (b), average plot-level exotic species richness over time for each substratum in 
stratum 2. 
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c. 

 
d. 

 
Figure 2.4.  Average plot-level exotic species richness (c), and average plot-level native 
percent cover (d) over time for each substratum in stratum 2. 
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Stratum 2 Subs tum tra     r2 
Species Richness 1 0.383* 
 2 0.518** 

ative Richness 
  3 0.094 
N 1 0.009 
 2 0.154 
  3 0.746** 
Exotic Richness 1 0.559** 
 2 0.797** 
  3 0.789** 

 
Table 2.2. Linear trends between averaged plot-level diversity measures and year for e
substra

ach 
tum in stratum 2.  * = significant at the 0.05 level; ** = significant at the 0.01 

vel. 
 

p 

roughout the study, 

A. gerardii. 

 

ubstrata, is reflected 

in the significant decline in total species richness (13.0 to 6.6). 

had very similar changes in species richness and native species richness over time, even 

le

Native species percent cover increased dramatically in all treatments over time (

< 0.0005 for linear trend in all substrata; Fig. 2.4d).  By 2000, all of the treatments had 

between 95% and 100% native cover.  However, most of the native cover in each 

treatment was contributed by A. gerardii.  In substratum 1, which began with the highest 

native percent cover and had the highest A. gerardii percent cover th

80% to 90% of native abundance was contributed by 

Diversity in Stratum 1 
 
Average plot-level native species richness significantly increased over time in 

substrata 1 (3.8. to 7.2 species per plot) and 2 (5.0 to 7.8), whereas exotic species richness 

decreased in substrata 2 (2.8 to 1.0) and 3 (4.4 to 0.4; Tab 2.3).  The decrease in exotic 

species richness in stratum 3, which was the most dramatic of the 3 s

Substratum 3, which was burned annually in the spring until 1999 and then was 

burned every three years in the fall, had the highest species richness for the first half of 

the study and the highest native species richness for all but two years.  Subtrata 1 and 2 
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though substrata 2 began with annual fall burns, while substrata 1 only had triennial 

burns.  

Stratum 1 Substratum     r2 
Species Richness 1 0.075 
 2 0.038 
  3 0.593** 
Native Richness 1 0.396* 
 2 0.558** 
  3 0.162 
Exotic Richness 1 0.057 
 2 0.430* 
  3 0.687** 

 
Table 2.3.  Linear trends between averaged plot-level diversity measures and year for 
each substratum in stratum 1.  * = significant at the 0.05 level; ** = significant at the 0.01 
level. 
 
Comparison to Reference Prairies 
 

 
Figure 2.5.  Average plot-level richness of Dow Field and 5 nearby prairie remnants in 
2008.  Bars with the same letters are not significantly different (α = 0.05). 
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Site 
Species 

Richness 
% Native 
Species H' 

Shanghai 30 86.7 2.95 
Highland 28 89.3 2.68 
Swift Run 24 95.8 2.68 
Barton 32 65.6 2.77 
Dexter-Huron 20 90.0 2.65 
Dow 19 78.9 2.57 

 
Table 2.4.  Prarie-level diversity of Dow Field and 5 nearby prairie remnants in 2008. 
 

Appendix 2.2 lists the species found in each of the sites.  Dow field had the lowest 

average plot species richness of all the sites surveyed (F = 4.926; df = 5,24; p = 0.003, 

Fig 2.5).  At the site level, Dow Field also had the lowest species richness and Shannon 

index value (H’), and the second-lowest percentage of native species (Tab 2.4).   

Discussion 
 
Species Occurrence and Frequency 

 
The plant community of Dow Field was characterized by a few dominant species, 

while nearly 60% of species observed over the course of the study occurred in less than 

1% of the sample plots.  This strongly right-skewed species frequency distribution is 

characteristic of many community types (McCune and Grace 2002) and has an 

approximately lognormal distribution (Limpert et al. 2001).  Andropogon gerardii was at 

the top of the frequency distribution, which is often the case in remnant and restored 

tallgrass prairies throughout North America (Gibson and Hulbert 1987, Svejcar 1990).  

Species composition was similar to that of other prairies in the region, as Dow Field had 

23 of 34 species (68%) listed by Chapman (1984) as occurring in more than half of the 

dry-mesic prairies in southern Michigan (Kost 2004).   
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Changes in Species Richness and Abundance 

For all plots combined, both species richness and exotic species richness declined 

over time at the average plot level, and exotic richness declined at the prairie level.  A 

drop in species richness frequently occurs in early stages of ecological succession, when 

many of the opportunistic species are replaced or outcompeted by mid-successional 

perennials, such as the matrix-forming C4 grasses (Pickett 1982, Sluis 2002).  In this case, 

the decline in populations of exotic species accounted for the bulk of the drop in species 

richness.  In fact, only one native species (Asclepias syriaca, a weedy perennial) became 

extinct from the plots over the course of the study, whereas four weedy exotic species 

(Plantago major, Taraxicum officinale, Setaria glauca, and Dactylis glomerata) became 

locally extinct (see chapter 4).  

The decreasing trend in exotic species richness was likely a direct result of 

repeated fire, which has successfully controlled fire-intolerant exotic species in many 

prairie restorations (e.g., Smith and Knapp 1999, Wilson and Partel 2003, Bruvig et al. 

2007).  Some of the exotic species found in Dow Field, particularly P. pratensis and C. 

maculosa, are aggressive and persistent in many prairies and can be very difficult to 

control or eradicate (Sheley et al. 1998, DiTamoso 2000, Cully et al. 2003).  From the 

standpoint of restoration, the precipitous decline in both P. pratensis and C. maculosa 

over time in Dow Field was an unexpected, but encouraging result. 

The decrease in P. pratensis following fire in Dow Field is consistent with other 

studies (Abrams 1988, Smith and Knapp 1999).  As in this study, MacDonald et al. 

(2007) found that mid-spring burns reduced C. maculosa in a reconstructed Michigan 

prairie, but they also found that it was reduced in unburned plots, possibly because of 
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competition from C4 grasses.  However, Emery and Gross (2005) found that annual or 

biennial April or October burns did not reduce the population of C. maculosa in another 

planted Michigan prairie.  Instead, they found that mid-summer burning was the only 

treatment that reduced C. maculosa.  In reality, the reduction of persistent exotics such as 

C. maculosa may be influenced by other factors in addition to fire timing or frequency, 

such as the severity of invasion, the potential for competitive pressure from warm-season 

prairie grasses, or abiotic site conditions.   

The increase in the exotic H. perforatum over the course of the study was counter 

to my initial expectations, but other studies have found increased abundance and seed 

production in H. perforatum following fire (Tilsdale et al. 1959, Briese 1996).  Although 

H. perforatum increased by nearly 30%, it resides in the understory and has low biomass, 

so its ability to compete with native prairie species may be insignificant. 

For the management zones in stratum 2 and at the level of the entire prairie, the 

greatest drop in exotic species richness occurred from 1991 to 2000, after which exotic 

richness remained relatively stable or increased slightly.  This hyperbolic trend is most 

pronounced in substrata 2 and 3, which were burned annually for the first 8 years of the 

study.  Substratum 1, which had only triennial burns throughout the study, had the least 

and most linear decrease in exotic species richness of the three substrata.  Thus, there is a 

correlation between annual burns and a decline in exotic species, a finding supported by 

other studies (e.g., Smith and Knapp 1999).  The period of triennial burns after 1999 in 

substrata 2 and 3 and over the entire study period in substrata 1 may have allowed some 

exotics to persist by allowing two growing seasons for recovery between fires.  
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The leveling out of exotic richness after 2000 could also indicate that exotic 

species richness had reached a baseline level, and that no amount of annual burning 

would have resulted in complete eradication.  The exotic species that remained after 8 to 

10 years of restoration were apparently able to tolerate occasional fire, coexist with native 

prairie grasses and forbs, and possibly persist indefinitely at low levels in the community.  

Several studies have documented a decline in exotic species with repeated fire on short 

timescales or between communities burned at different frequencies (Pendergrass et al. 

1998, Smith and Knapp 1999, MacDonald et al. 2007), but this is the first study to my 

knowledge to show long-term dynamics within the same plots in response to changes in 

management.  Ultimately, the nonlinear trend in exotic species decline in Dow Field may 

be the combined result of reaching the baseline level of exotic species and the reduced 

fire frequency after 1999 in two of the substrata.  

Average plot-level native species richness for the whole prairie increased steadily 

over time, but native richness did not show a significant linear trend at the prairie level.  

The lack of an increase in prairie-level native richness indicates that there were few new 

immigrants of native species to the prairie over the course of the study.  Therefore, the 

gain in plot-level native richness was probably due to the increased distribution of certain 

species that were already present in the prairie.  The increase in evenness was probably 

also due to the positive response of native populations to repeated fire, causing them to 

appear in more plots, and is consistent with the notion that evenness increases as 

succession progresses (Wilson et al. 1996).  Indeed, plots with higher native species 

richness tended to have higher evenness as well (r = 0.288, p < 0.0005).  Since only 12 

native species newly colonized the prairie during the study, most of which established 
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only small or transient populations (see chapter 4), the increase in plot-level richness over 

time is likely due in part to the arrival of a few immigrants, but mostly to the spread of 

fire-dependent species over time.   

The trends in forb and grass percent cover over time are consistent with what 

others report in relation to fire frequency (Peet et al. 1975, Gibson and Hulbert 1987, 

Collins and Gibson 1990).  Native grass cover increased with higher fire frequency from 

1991 to 1999, while exotic grasses (mostly cool-season) decreased over the same time 

period.  After fire frequency was reduced after 1999, grasses lost some dominance in 

favor of forbs.  Three of the 5 most common native species in Dow Field increased in 

abundance (based on stem counts) from 1991 to 2007.  The increase in A. gerardii and S. 

scoparium, both dominant C4 grasses, is an almost axiomatic community response to 

repeated fire in prairies (Peet et al. 1975), and S. speciosa is also well adapted to fire 

(Towne and Owensby 1984).  The native C3 grass P. oligosanthes declined slightly over 

time, as is often reported for cool-season exotic grasses after fire (Cully et al. 2003).  The 

over 50% drop in the legume D. canadense was initially unexpected, but some previous 

studies have reported declines over time because of its early-successional status (Betz et 

al. 1997) or because of selective herbivory by small mammals (Howe and Lane 2004).   

 In stratum 2, substratum 3 had the greatest native species richness and was the 

only management zone that increased in native richness over time.  The differences in 

level and rate of increase in native species richness between the three substrata could be 

explained by different levels of competition from A. gerardii, the dominant grass.  

Potential colonizers may have been excluded from substratum 1, which had a very high 

abundance of A. gerardii, while there may have been more available resources (e.g., 
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space, light, nutrients) in substratum 3 because A. gerardii abundance was much lower.  

Competition can greatly shape diversity trends and community structure (Tilman 1994), 

but other spatially heterogeneous factors can also influence diversity such as disturbance 

regime, soil conditions, nutrient availability, and productivity (Tilman 1994, Grace 1999, 

Polley et al. 2005); these will be explored in chapter 3.  

Diversity in Stratum 1 
 

In stratum 1, the small area of the prairie dominated by S. scoparium, the 

differences in fire frequency and season between the three substrata did not affect the 

plant community in expected ways.   Substrata 1 and 2 had very similar trends with 

regard to species richness and native species richness despite differences in fire season 

and frequency.  Substratum 3, which shared common fire season with substratum 1 and 

fire frequency with substratum 2, underwent erratic changes in species richness and 

native richness, although it maintained the highest of both over much of the 16 year 

period.  The decline in exotic species richness in substrata 2 and 3 agreed most with my 

expectations, and was probably a result of higher fire frequency than in substratum 1 

(Smith and Knapp 1999).  Ultimately, the sample size (5 plots per substratum) may be 

too small to draw generalizations from stratum 1.   

Comparison to Reference Prairies 
 

Dow Field had lower diversity than any of the remnant sites.  Restored sites often 

have lower species richness than remnant sites, usually because the seed mix used 

establish the prairie did not reflect the diversity of remnant sites (Kindscher and Tieszen 

1998, Allison 2002, Sluis 2002).  Polley et al. (2005) suggested that greater resource 

partitioning and fewer limitations on dispersal or recruitment lead to higher species 
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diversity in remnant prairies.   In the case of Dow Field, which is a restored remnant that 

was unseeded, the level of diversity was probably equally influenced by site history as it 

was by the post-1988 management.  The period of mowing from the 1940s to 1980s 

filtered out species that were unable to survive repeated mowing or maintain a viable 

presence in the seedbank for more than 40 years.  Thus, only the species that could 

tolerate these conditions emerged after the reintroduction of fire.  Even though the 

remnants had several native species not found in Dow Field, dispersal from remnants 

probably did not significantly influence diversity.  Indeed, only one of the 10 native 

immigrants to the sample plots over the course of the study are capable of long-distance 

wind dispersal (Solidago rigida), and it probably was present in or adjacent to Dow Field 

but did not colonize the plots until midway through restoration (see chapter 4).   

Aside from site history, fire frequency may have influenced the differences in 

diversity between Dow Field and the remnant sites.  Shanghai Prairie, Highland 

Cemetery, and Dexter-Huron Metropark have all been managed sporadically in the recent 

past on the order of 1 or 2 fires per decade whereas Dow Field was burned every 1 to 3 

years.  Although Swift Run and Barton Park were burned about as often as Dow Field, 

those remnants were augmented with seed at various times since the mid 1990s (Jason 

Tallant, City of Ann Arbor Natural Areas Preservation, pers. comm.).  Frequent fire 

contributes to high productivity of matrix-forming grasses, which can then competitively 

exclude subdominant prairie forbs and reduce diversity (Collins 1990).  Kucera and 

Koelling (1964) were among the first to suggest that diversity may be maximized in 

prairies by periodic but not annual fires (the intermediate disturbance hypothesis, or 
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IDH), and later studies have supported IDH for prairies as well (Gibson and Hulbert 

1987, Peterson and Reich 2008). 

Another reason for the comparatively low species richness in Dow Field could be 

that some of the remnants had higher environmental heterogeneity.   High diversity is 

often associated with spatial variation in site conditions such as soil properties and 

topography (Grace et al. 2000).  Dow Field had some spatial variation in soil 

characteristics, but the range of difference may not have been enough to appreciably 

influence species composition (see chapter 3).  In contrast, Shanghai Prairie and Highland 

Cemetery had substantial changes in topography within the site that created gradients 

from wet to dry prairie vegetation.  Even though the samples were taken only on the 

upland portions, within-site variation in topography may have allowed some wet-mesic 

species such as Silphium terebinthinaceum (prairie dock) and Coreopsis tripteris (tall 

coreopsis) to also colonize upland areas because of their close proximity. Ultimately, the 

comparatively low diversity at the plot and prairie scales in Dow Field is probably a 

combination of management history, site characteristics, and restoration based only on 

seedbank recovery.  Moreover, the consistently low diversity over time justifies the 

restoration goal of increasing species diversity and demonstrates the need for continued 

restoration, which should include strategies to introduce additional native species to the 

prairie. 
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Appendix 2.1. Species in Dow Field listed in order of frequency of occurrence in the 
sample plots based on presence-absence data from 1991 to 2007. 
 

Rank Species Common Name Frequency 
Functional 

Group 
Stratum 

1 
Stratum 

2 

1 Andropogon gerardii Big bluestem 0.892 C4 graminoid X X 
2 Solidago speciosa Showy goldenrod 0.617 forb X X 
3 Poa pratensis Kentucky bluegrass * 0.611 C3 graminoid X X 
4 Panicum oligosanthes Panic grass 0.496 C3 graminoid X X 
5 Desmodium canadense Canada tick-trefoil 0.410 legume X X 
6 Schizachyrium scoparium Little bluestem 0.387 C4 graminoid X X 
7 Rumex acetosella Creeping sorrel * 0.348 forb X X 
8 Hypericum perforatum St. John's wort * 0.336 forb X X 
9 Solidago nemoralis Gray goldenrod 0.298 forb X X 
10 Sorghastrum nutans Indian grass 0.274 C4 graminoid X X 
11 Oxalis stricta Common wood sorrel 0.220 forb X X 
12 Potentilla simplex Common cinquefoil 0.213 forb X X 
13 Aster oolentangiensis Prairie aster 0.200 forb X X 
14 Aster laevis Smooth aster 0.192 forb X X 
15 Achillea millefolium Yarrow 0.183 forb X X 
16 Hieracium spp. Hawkweed * 0.180 forb X X 
17 Daucus carota Queen Anne's lace * 0.158 forb X X 
18 Centuarea maculosa Spotted knapweed * 0.149 forb X X 
19 Potentilla arguta Prairie cinquefoil 0.125 forb X X 
20 Phleum pratense Timothy * 0.112 C3 graminoid X X 
21 Antennaria parlinii Pussytoes 0.083 forb X X 
22 Erigeron annuus Daisy fleabane 0.082 forb X X 
23 Trifolium pratense Red clover * 0.080 legume  X 
24 Rudbeckia hirta Black-eyed susan 0.079 forb X X 
25 Digitaria cognata Fall witchgrass 0.076 C4 graminoid X X 
26 Eragrostis spectabilis Purple lovegrass 0.065 C4 graminoid X X 
27 Dactylis glomerata Orchard grass * 0.065 C3 graminoid X X 
28 Ascelpias syriaca Common milkweed 0.056 forb X X 
29 Rubus allegheniensis Blackberry 0.044 woody X X 
30 Elymus repens Quack grass * 0.044 C3 graminoid  X 
31 Rhamnus spp. Buckthorn * 0.043 woody X X 
32 Carex bicknellii Bicknell's sedge 0.040 C3 graminoid X X 
33 Cyperus lupulinus Sedge 0.038 C3 graminoid X X 
34 Solidago rigida Stiff goldenrod 0.036 forb X X 
35 Aster ericoides Heath aster 0.032 forb  X 
36 Plantago lanceolata English plantain * 0.032 forb X X 
37 Malus spp. Crab apple 0.031 woody X X 
38 Setaria pumila Yellow foxtail * 0.029 C4 graminoid X X 
39 Symphyotrichum pilosus  White aster 0.027 forb X X 
40 Vitis spp.  Wild grape 0.026 woody X X 
41 Euphorbia corollata Flowering spurge 0.024 forb X  
42 Melilotus alba White clover * 0.024 legume  X 
43 Plantago major  Common plantain * 0.021 forb X X 
44 Apocynum androsaemifolium Dogbane 0.018 forb X X 
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Rank Species Common Name Frequency 
Functional 

Group 
Stratum 

1 
Stratum 

2 
45 Cornus foemina Gray dogwood 0.017 woody  X 
46 Rosa spp. Rose 0.017 woody X X 
47 Solanum nigrum Nightshade 0.017 forb  X 
48 Rubus spp. Raspberry 0.014 woody X X 
49 Toxicodendron radicans Poison ivy 0.013 woody  X 
50 Antennaria neglecta Cat's foot 0.013 forb X X 
51 Linaria vulgaris Butter and Eggs * 0.011 forb X  
52 Fraxinus pennsylvanica Red ash 0.008 woody  X 
53 Carex cephalophora Sedge 0.008 C3 graminoid  X 
54 Morus alba White mulberry * 0.007 woody  X 
55 Verbascum thapsus Mullien * 0.007 forb  X 
56 Quercus rubra Red oak 0.006 woody X X 
57 Carex pensylvanica Pensylvania sedge 0.006 C3 graminoid X X 
58 Physalis virginiana Ground cherry 0.006 forb X X 
59 Vicia americana American vetch 0.006 legume X X 
60 Taraxicum officinale Dandelion * 0.006 forb  X 
61 Quercus velutina Black oak 0.005 woody X  
62 Oenothera biennis Evening primrose 0.005 forb  X 
63 Cirsium arvense Canada thistle * 0.005 forb  X 
64 Prunus serotina Black cherry 0.004 woody X X 

65 Cerastium arvense 
Mouse-eared 
chickweed * 0.004 forb X X 

66 Dianthus armeria Deptford pink * 0.004 forb  X 
67 Abrosia artemisiifolia Common ragweed 0.002 forb  X 
68 Botrychium dissectum Grape fern 0.002 forb  X 
69 Acer ginnala Trident maple * 0.002 woody  X 
70 Carya spp. Hickory 0.001 woody  X 
71 Solidago canadensis Canada goldenrod 0.001 forb  X 

72 Conyza canadensis Horseweed 0.001 forb  X 

73 Lespedeza capitata Prairie bush clover 0.001 legume X  

  * Exotic species           
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Appendix 2.2.  Species found in nearby prairie remnants surveyed in 2008.  S = Shanghai 
Prairie, H = Highland Cemetery, SR = Swift Run Preserve, B = Barton Park, DH = 
Dexter-Huron Metropark, and D = Dow Field. 
 

Species S H SR B DH D 
Achillea millefolium   X X X X 
Ailanthus altissima*  X     
Andropogon gerardii X X X X X X 
Anemone virginiana    X   
Apocynum androsaemifolium  X    
Asclepias syriaca      X 
Asclepias tuberosa X X   X  
Asclepias verticillata X      
Aster ericoides X X X    
Aster laevis X X X   X 
Aster novae-angliae X     X 
Aster oolentagiensis X X X X X X 
Carex bicknellii      X 
Carex pennsylvanica X X X  X X 
Carex sp. X   X   
Carex stricta  X     
Centuarea maculosa*    X  X 
Comandra umbellata X      
Coreopsis tripteris  X     
Cornus foemina X X X  X X 
Corylus americana  X  X   
Cratageous sp.   X X X  
Daucus carota*    X   
Desmodium canadense     X X 
Dianthus armeria*    X   
Elymus canadensis  X     
Equisetum hyemale X X   X  
Erigeron annuus    X   
Euphorbia corollata X X  X X  
Euthamia graminifolia   X    
Fragaria virginiana X  X X   
Helianthus divericatus  X     
Hieracium spp.* X   X   
Hypericum perfolatum*    X   
Juncus sp.    X   
Juncus tenuis   X    
Juniperus communis X      
Liatris aspera X X     
Linearia vulgaris*    X   
Lithospermum canescens  X     
Lobelia spicata X      
Lonicera tatarica*   X X   
Melilotus alba* X    X  
Monarda fistulosa   X X   
Panicum oligosanthes X   X X X 
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Species S H SR B DH D 
Penstamon digitalis   X    
Penstamon hirsutus    X   
Phlox pilosa X      
Plantago lanceolata*    X   
Poa pratensis* X   X X X 
Potentilla arguta    X   
Prunus serotina   X X   
Pteridium aquilinum    X   
Pycanthemum virginanum   X    
Quercus muehlenbergii  X     
Quercus velutina  X     
Ratibida pinnata  X     
Rhamnus cathartica*  X     
Rhamnus frangula* X X    X 
Rosa carolina  X  X X  
Rubus strigosis  X X X X X 
Rudbeckia hirta X      
Rumex acetosella*    X   
Salix sp.  X     
Schizachyrium scoparium X X   X X 
Silphium terebinthinatum X  X    
Solidago canadensis   X    
Solidago juncea X     X 
Solidago nemoralis   X X X X 
Solidago rigida X   X  X 
Solidago speciosa    X X X 
Sorghastrum nutans X    X  
Spirea alba   X    
Trifolium repens*    X   
Vitis riparia  X X    
Zizia aurea     X       
* exotic species       

 
 



 
 
 
 
 
Chapter 3: Predictors of Plant Diversity in Dow Field 
 
 
Introduction 
 

The environmental factors that determine plant diversity in communities is a 

major question in ecology (e.g., Grime 1973, Tilman and Pacala 1993).  Many past and 

recent studies have examined the ecological factors or processes that influence diversity 

in grasslands including succession (Tilman 1988, Howe 1995), disturbance (Collins et al. 

1995, Suding 1999, Collins 2000), productivity (Zimmerman and Kucera 1977, Gough et 

al. 1994, Tilman et al. 1996), nutrient availability (Raison 1979, Ojima et al. 1994), soil 

conditions (Nelson and Anderson 1983, Seastedt 1995), climate (Knapp 1984, Nippert et 

al. 2006), herbivory (Anderson et al. 2001, Howe and Lane 2004), competition (Grime 

1973, Smith et al. 1999), and species pool (Rabinowitz 1980, Gough et al. 1994).  In a 

comprehensive review, Grace (1999) identified at least 12 categories of environmental 

factors that influence plant diversity in herbaceous communities, which highlights the 

complexity of the question.  

Identifying the determinants of diversity has practical applications for restoration, 

where the goal is often to recreate plant communities similar to remnants or historic 

conditions (Howe 1994).  Dow Field has low species richness compared to nearby 

remnant prairies (see chapter 2), so increasing diversity was a major goal of restoration.  

It is important for managers of Dow Field and similar prairies in the region to understand 

how management actions and uncontrolled environmental conditions affect the plant 
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community in order to achieve restoration goals.  Therefore, the objective of this chapter 

is to identify the spatially heterogeneous site conditions that influenced species richness 

in Dow Field. 

I evaluated several abiotic variables for their ability to predict plot-level species 

diversity in Dow Field.  I evaluated the effect of fire frequency on species richness, 

because fire alters environmental conditions and favors certain species over others 

(Gibson and Hulbert 1987, Anderson 1990, Collins 1992, Wilson 2007).  I analyzed 

physical soil properties (percent sand, percent silt, percent clay, and depth), which have 

been shown to influence plant communities by controlling soil moisture, nutrient 

retention, and root growth (Seastedt 1995).  I also measured soil organic matter, which 

can indicate the level of soil fertility and thereby influence community composition 

(Kindscher and Tieszen 1998).   

Because of its high abundance in Dow Field, I analyzed Andropogon gerardii (big 

bluestem) percent cover as an independent variable acting on species richness.  Its 

competitive role in regulating species diversity has been discussed in many studies (e.g., 

Abrams and Hulbert 1987, Collins and Gibson 1990, Smith et al. 1999), and is due to its 

ability to acquire aboveground resources (light and space) and belowground resources 

(water and nutrients) efficiently across a range of conditions (Silletti et al. 2004, Polley et 

al. 2007).  Andropogon gerardii generally increases in abundance with repeated fire (Peet 

et al. 1975, Gibson and Hulbert 1987, Svejcar 1990) and in response to certain soil 

conditions (Gibson and Hulbert 1987, Seastedt 1995, Turner and Knapp 1996).  

Therefore, I expected A. gerardii to play a mediating role in determining diversity:  
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factors such as fire and soil conditions may directly influence diversity, but they may also 

act indirectly by influencing the competitive ability of A. gerardii against other species.   

Methods  

Statistical Approach 

 A description of the study design and data collection is found in chapter 1.  For 

this analysis, the statistical population was defined as the section of the prairie where A. 

gerardii was the dominant grass at the beginning of the study (stratum 2).  Stratum 2 

contains 45 plots, 15 in each of three main management zones (see chapter 1).  In this 

case, the data for each plot was averaged across all years (n = 45 plot averages).  

Aggregating the time-series data reduces the detail of the dataset, but the advantage 

gained by reducing noise from autocorrelated year-to-year variability outweighs the loss 

of yearly specificity.  In chapter 4, I include data from all years to explore community 

change over time.   

I analyzed possible relationships between environmental variables and species 

richness using simple linear correlation in SPSS 16.0.1 (SPSS, Inc. 2008).  Correlation is 

useful because the results are easy to interpret and can help identify dominant trends in 

the data.  However, simple linear correlations do not take into account the effects of other 

variables, indirect effects, nonlinear relationships, or other confounding factors.  A more 

robust method of analyzing community data is ordination, a statistical technique which 

combines all variables together in a single model.  I then used the results of the ordination 

to inform a path analysis, a kind of structural equation model.  The path analysis was 

used to propose a causal model that accounts for possible indirect effects of certain 

variables. 
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Ordination 

 To determine the distribution of the plots based on species composition and to 

identify environmental factors that relate to plot-level diversity, I used Nonmetric 

Multidimensional Scaling (NMS) ordination (Kruskal 1964).  Ordination in general is a 

statistical technique for use with large, many-dimensional datasets that arranges elements 

(in this case, sample plots) along an axis or axes according to some criteria (in this case, 

species composition) so that similar elements are near each other and dissimilar elements 

are far apart (McCune and Grace 2002).  NMS ordination is an iterative technique that 

ordinates on the basis of ranked distances between sample units, foregoes the requirement 

of data normality, and avoids some other problems of using other ordination methods on 

community data (McCune 1997, McCune and Grace 2002).  The NMS procedure uses 

“stress” as a measure of distance between plots in the original many-dimensional space 

and plots in a reduced-dimensional space.  The selection of the final ordination is based 

on optimizing the tradeoff between low stress (good model fit) and low dimensionality 

(ease of interpretation).  In NMS, the axes of the resulting ordination are unitless and 

their order is arbitrary.  Axes can be assigned meaning by comparing the strength and 

direction of correlation vectors to the axes (McCune and Grace 2002).  I used PC-ORD 

5.10 (McCune and Mefford 2006) to perform the ordination.   

 Two matrices were created to conduct the ordination, one containing average stem 

counts for species in each of the 45 plots over the study period, and the other containing 

environmental variables, averaged over time where appropriate, for each of the plots.  

Rare species were retained in the species matrix despite contributing to noise in the 

 46



ordination because the question of interest involved species richness.  Outlier analysis 

was performed in PC-ORD, and plot 31 was identified as an extreme outlier, likely 

because of very high stem counts for Atennaria parlinii (smooth pussytoes), a forb that 

occurred in few other plots.  Because of this, I omitted plot 31 from the ordination and 

path analysis.   

The ordination was run using Sorenson distance and 250 runs each of real data 

and randomized data.  Assessing the change in stress as a function of dimension revealed 

that a 3-dimensional ordination was the best solution.  The starting seed of the lowest 

stress ordination was then used to perform a 3-dimensional ordination with 1 run of real 

data to obtain the final solution.  The final ordination was rotated so that the relationship 

between axis 1 and species richness, the variable of greatest interest, was maximized to 

simplify interpretation.   

Path analysis 
 
 Path analysis is a statistical modeling technique where a causal model is proposed 

based on outside knowledge of the system, and then non-significant pathways are 

removed.  I used the variables that had the strongest relationships to the data according to 

the ordination (A. gerardii abundance [stem counts], fire frequency, soil depth, and soil 

clay) as independent (exogenous) variables to explain spatial differences in species 

richness in Dow Field.  Direct pathways from fire frequency and soil characteristics to 

species richness were not included in the a priori model because evidence from the 

bivariate correlations and ordination suggested that A. gerardii abundance was by far the 

major control of diversity; thus direct effects were probably weak (Grime 1973, Smith et 
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al. 1999, Mancera et al. 2005).  Model analysis was conducted in AMOS 16.0 (Arbuckle 

2007).  

 

A. gerardii
Abundance

Species
Richness

Soil Clay

Soil Depth

Fire
Frequency

 
 
Figure 3.1. Proposed path model, which accounts for all indirect effects of fire frequency, 
soil depth, and soil clay on species richness in Dow Field mediated by A. gerardii 
abundance.  Straight lines are hypothesized causal links and curved lines are 
autocorrelations between variables.   

 

Because of the relatively low sample size, I tested the statistical significance of 

the indirect effects (i.e., the pathways where A. gerardii is a mediator) using the 

bootstrapping procedure in AMOS 16.0 (Arbuckle 2007).  The bootstrap approximation 

was obtained by using two-sided percentile-based confidence intervals (Preacher and 

Hayes 2004). 

Interpolation maps were created using the kriging feature in ArcGIS 9.2 to show 

the spatial characterization of variables that were included in the path analysis. 

Results 
 

There were 69 species observed in the 45 plots over the course of the study, and 

species richness averaged over time for each plot ranged from 3.0 to 12.8.  Bivariate 
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correlations revealed several significant linear relationships between species richness and 

several measured environmental and community variables (Table 3.1).  The strongest of 

these correlations by far was A. gerardii abundance, which had a strong negative linear 

relationship to species richness and native species richness.  A simple linear regression 

showed that species richness declined by about 1.0 for every 42% increase in A. gerardii 

percent cover (r2 = 0.542, p < 0.0005).  Interestingly, the correlation coefficients of A. 

gerardii and species richness with respect to other environmental variables had nearly 

equal magnitude but opposite sign in every case.  Fire frequency, soil depth, and percent 

clay showed weaker but statistically significant linear relationships with species richness.  

There was no significant relationship between species richness and soil sand, silt, or 

organic matter.  

 



 

  Species 
Richness 

Native 
Richness 

Exotic 
Richness 

A. gerardii 
% Cover Grass Height

Fire 
Frequency Soil Depth % Sand % Silt % Clay 

% Organic 
Matter 

Species Richness r 1.000           

Native Richness r .889** 1.000          

Exotic Richness r .606** .175 1.000         

A. gerardii % Cover r -.736** -.698** -.366* 1.000        

Grass Height r -.727** -.674** -.387** .872** 1.000       

Fire Frequency r .440** .395** .250 -.487** -.437** 1.000      

Soil Depth r -.427** -.385** -.249 .345* .330* -.387** 1.000     

% Sand r .156 .132 .107 -.108 -.224 -.207 .423** 1.000    

% Silt r -.050 -.022 -.072 .021 .098 .243 -.462** -.975** 1.000   

% Clay r -.425** -.424** -.179 .338* .534** .025 -.158 -.725** .553** 1.000  

% Organic Matter r .215 .108 .270 -.211 -.169 .437** -.493** -.503** .529** .244 1.000 

** Correlation is significant at α = 0.01.        

* Correlation is significant at α = 0.05.        

Table 3.1. Bivariate correlations between environmental and community variables in Dow Field.
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The stress of the NMS ordination dropped by 6.3 points between 2- and 3-

dimensional ordinations, but only by 2.9 points when a fourth dimension was added.  

Therefore, I concluded that a 3-dimensional ordination was the optimal solution for the 

data.  The stress of the final ordination was 11.270, indicating a good fit with the data 

(McCune and Grace 2002).  Axes 1, 2, and 3 accounted for 35.7%, 33.1%, and 20.8% of 

the observed distances in the original 69-dimensional space, respectively (total of 85.5%).  

 The strongest correlations were with axis 1, which indicates that there were strong 

relationships between species richness (which was rotated to maximize its relationship to 

axis 1) and several environmental variables (Fig 3.1).  The results of the ordination were 

not substantially different than the results of the simple linear correlations:  fire frequency 

was positively correlated with axis 1, while soil percent clay, soil depth, and A. gerardii 

percent cover had a negative correlation with axis 1 (Table 3.2).  Also, both native and 

exotic species richness were strongly positively correlated with axis 1, and thus with total 

species richness.  Soil percent sand, percent silt, and percent organic matter had r2 < 0.10, 

and were not considered to be significant predictors of community diversity. 
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Figure 3.2.  Nonmetric multidimensional scaling (NMS) ordination based on the 69 
species that occurred in 44 plots in stratum 2.  Points are sample units averaged over 
time, and the distance between points is proportional to the dissimilarity in species 
composition.  The 3-dimensional ordination is plotted against axes 1 and 2, which 
together explain 68.8% of the variability in the data.  In NMS, the order of the axes is 
arbitrary.  All correlation vectors have r2 > 0.10, and lengths of the vectors indicate the 
strengths of the correlations.   
 

Variable Direction r2 
Species Richness + 0.656 
Native Richness + 0.476 
Exotic Richness + 0.311 
Fire Frequency + 0.153 
Soil Clay - 0.178 
Soil Depth - 0.186 
A. gerardii % cover - 0.646 

 
Table 3.2.  Correlations between axis 1 and environmental variables with r2 > 0.10 in 
descending order of correlation direction and strength. 
 
 In general, plots in substratum 1 were scored low on ordination axis 1, which 

means that the average community composition was characterized by high A. gerardii 

abundance and low species richness.  Also, substratum 1 had deeper soils with higher 
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clay content.  In contrast, plots in substratum 3 scored high on axis 1 and had low A. 

gerardii abundance, high species richness and native richness, and shallower soils with 

lower clay content.  Substratum 2 was a heterogeneous mixture of these characteristics, 

likely because it was split in two sections that spanned the length of the prairie.  Figure 

3.2 shows interpolations of actual site conditions, which confirm the arrangement of the 

plots in ordination space. 

a.       

 
b. 
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c.        

 
d. 

 
 
Figure 3.3.  GIS interpolations of site characteristics relating to species richness based on 
results of Nonmetric Multidimensional Scaling ordination. Andropogon gerardii percent 
cover (a); soil depth (b); soil percent clay (c); species richness (d).  The interpolations 
show the entire prairie, but stratum 1 was not included in this chapter’s analyses. 
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Path Analysis 
 

.41

A. gerardii
Abundance

.54

Species
Richness

Soil Clay

Soil Depth

Fire
Frequency

.39

-.40

-.16

.03

-.39

.25

-.74

e1

e2
 

-.40 

Figure 3.4.  Conceptual model of factors controlling diversity in Dow Field.  
Standardized path coefficients are shown for significant pathways, and r2 values are 
given in bold for the dependent variables.  The dashed line between fire frequency and 
Andropogon gerardii abundance represents a questionable result (see discussion).  The 
model accounts for 41% of the variability in A. gerardii abundance and 54% of the 
variability in species richness. 
 
 All paths in the model were significant (p < 0.05), and the final model accounted 

for 41% of the variability in A. gerardii abundance and 54% of the variability in species 

richness.  However, the model fell outside of the range usually considered statistically 

valid (Comparative Fit Index (CFI) = 0.870, Root Mean Square Error of Approximation 

(RMSEA) = 0.013), probably due to low sample size (Laura Klem, University of 

Michigan Center for Statistical Consultation and Research, personal communication).  

Despite the low sample size and dubious statistical nature of the final model, the 

bootstrapping test for statistically significant indirect effects showed that all three indirect 

pathways were significant at the α = 0.05 level (p = 0.002 for fire frequency  A. 
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gerardii  species richness, p = 0.015 for soil % clay  A. gerardii  species richness, 

and p = 0.018 for soil depth  A. gerardii  species richness).  Thus, the model is still 

conceptually useful for envisioning the effects of soil characteristics and competition on 

species richness.   

Discussion 
 

The level of species richness was significantly correlated with A. gerardii 

abundance, fire frequency, soil depth, and soil clay content, as was shown by the 

bivariate correlations and the ordination results.  By far the strongest relationship in the 

data was the negative relationship between A. gerardii abundance and species richness.  

This relationship seems to supersede those between species richness and other variables, 

as evidenced by the equal magnitude but opposite direction of correlations of A. gerardii 

and species richness with respect to all other variables, even those with nonsignificant 

correlations.   

Andropogon gerardii, a matrix-forming C4 grass, is an integral part of nearly all 

remnant and restored tallgrass prairie communities throughout North America.  It 

contributes greatly to the physical structure of prairies and regulates ecosystem processes 

such as the cycling of water and nutrients.  The success of A. gerardii as a dominant 

species in prairies is owed largely to its ability to intercept light and uptake nitrogen and 

water efficiently across a broad range of conditions (Gibson and Hulbert 1987, Wedin 

and Tilman 1990).   

The strong negative correlation between A. gerardii and species richness indicates 

that A. gerardii displaced many of the subdominant prairie forbs in Dow Field by 

competitive exclusion, a finding supported by many other studies (e.g., Abrams and 
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Hulbert 1987, Collins and Gibson 1990, Collins 1992, Smith et al. 1999).  Dominant 

species in a variety of ecosystem types have been shown to induce interspecific 

competition on neighboring individuals, thereby decreasing overall community diversity 

(Goldberg and Barton 1992).  This is often shown experimentally by reducing the 

abundance of the dominant species and observing resulting changes in species diversity 

(e.g., Smith et al. 1999, Silletti et al. 2004).  Although there were no explicit experimental 

manipulations of A. gerardii abundance in Dow Field, there was considerable spatial 

variation in A. gerardii abundance (and thus species richness) that was directly related to 

changes in soil characteristics.  

One of the significant predictors of species richness was depth of soil to the gravel 

layer, an effect that was likely mediated by A. gerardii abundance.  Shallow soils (< 0.50 

m) tended to have a lower abundance of A. gerardii, and thus reduced competitive 

pressure on other species.  The inability for A. gerardii to dominate on shallow soils is 

likely due in part to the physical barrier of the gravel layer restricting belowground 

growth of deep-rooted species.  Rooting depth of A. gerardii can exceed 2 m (Weaver 

1958), whereas other potentially dominant C4 grasses such as Schizachyrium scoparium 

(little bluestem) have more intermediate rooting depth (Weaver 1958, Craine et al. 2002).  

Indeed, S. scoparium was the dominant grass in shallower soils throughout Dow Field.  

Some deep-rooting prairie forbs (e.g., Solidago rigida, Silphium terebinthinatum, 

Lespedeza capitata) might also have been excluded from areas of shallow soil, but any 

direct effect of shallow soil on overall diversity was probably trivial.   

Shallow soil depth also likely contributed to lower soil moisture retention because 

the water would percolate quickly through the underlying layer of coarse gravel.  
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Moreover, Tepley (2002) found that there was a much greater percentage of coarse gravel 

underneath the shallow soils than under the deeper soils in Dow Field.  Deeper soils also 

tended to have more clay content than shallow soils, which were sandier, amplifying the 

variability in water holding capacity.  A. gerardii can be competitive in a range of soil 

conditions, including soils with high soil moisture such as wet prairies and sedge 

meadows (Bowles et al. 1996, Copeland et al. 2002), whereas S. scoparium is generally 

restricted to mesic or dry-mesic sites (Anderson et al. 1984).  With less aboveground 

biomass than A. gerardii, S. scoparium may have allowed other species to coexist 

because of lower light interception.  

Soil clay was another predictor of A. gerardii abundance and thus species 

richness.  In the generally sandy and droughty soils of Dow Field, small differences in 

clay content (which ranged from 5 to 10%) may influence soil moisture enough to 

considerably impact the plant community.  Many studies have found that community 

productivity is limited by water availability, especially in frequently-burned prairies 

(Anderson 1982, Abrams et al. 1986, Briggs and Knapp 1995, Knapp and Smith 2001).  

These studies are consistent with the findings in Dow Field that average maximum stem 

height of A. gerardii in the plots (an approximation of biomass) was positively correlated 

with soil depth (p = 0.027), clay content (p < 0.005), and annual rainfall (p < 0.005).  

Some studies have found an increase in ecosystem productivity is related to an increase in 

diversity (Tilman and Downing 1994), but that relationship can be reversed when a 

highly competitive species becomes dominant (Silletti et al. 2004).  Higher clay content 

in soils also generally increases cation exchange capacity, a measure of nutrient 

availability (Seastedt 1995).  In soils with higher clay content, A. gerardii may be able to 
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capitalize on increased water and nutrient availability more efficiently that other species 

(Piper 1995, Herbert et al. 2004), possibly because of traits such as superior root structure 

(Craine et al. 2002) or mycorrhizal associations (Smith et al. 1999) that are lacking in 

subdominant species.  The result is increased aboveground A. gerardii biomass, which 

leads to competitive exclusion of other species by means of superior light interception 

(Risser 1988, Herbert et al. 2004, Collins and Steinauer 1998). 

The correlations between fire frequency, A. gerardii abundance, and species 

richness were unexpected given our knowledge how plant communities respond to 

disturbance.  Most studies conclude that diversity in prairies is more or less consistent 

with the intermediate disturbance hypothesis (IDH), which states that diversity is 

maximized when disturbance is neither very frequent nor very infrequent (Grime 1973, 

Connell 1978, Peterson and Reich 2008).  The historical fire frequency in North 

American prairies is often thought to be 3 to 5 years (Wright and Bailey 1982).  Prairies 

that undergo very frequent fire (e.g., annual burning) often have low diversity compared 

to those burned at lower intervals or not at all (Gibson and Hulbert 1987, Collins and 

Gibson 1990).  By removing aboveground biomass, fire alters nitrogen, moisture, and 

light availability so that the competitive ability of C4 grasses is increased, which then 

leads to exclusion of subdominant species and a reduction in overall diversity (Knapp and 

Seastedt 1986, Svejcar 1990, Briggs et al. 1994, Blair 1997).  

The relationship observed in Dow Field contradicts the IDH.  Fire frequency in 

the prairie ranged from 5 to 11 fires over the 16 year period, and species richness was 

highest in frequently burned management zones and lowest in infrequently burned areas.  

However, this “effect” is likely an artifact of the placement of the management zones.  
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Stratum 2, substratum 1 (burned triennially throughout the study) was coincidentally 

located in the area of highest initial A. gerardii abundance which created a correlation 

between low fire frequency and high A. gerardii abundance.  Additionally, fire frequency 

had no effect on the rate of A. gerardii increase in the treatments.  Any true effects of fire 

on A. gerardii or diversity were likely obscured by the nature of the study (i.e., 

observational, not experimental) and the lack of replication of the treatments.  However, 

the results demonstrate that lower fire frequency alone was not enough to overcome the 

opposing effects of soil characteristics (which were not known at the time of the layout of 

the management zones) to limit coexistence between A. gerardii and subdominant 

species.   

Conclusion   
 
 The specific differences in fire regime between management zones did not 

influence the spatial distribution of A. gerardii or species richness in predictable ways, 

although the frequent fire in general was probably central to increasing the abundance of 

A. gerardii and decreasing diversity over time.  Rather, variability in soil properties that 

increased soil moisture seemed to determine the spatial differences in species richness 

across Dow Field by increasing the competitive ability of A. gerardii. 
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Chapter 4: Plant Community Compositional Change in Dow Field 
 
 
Introduction 
 
 The change in communities over time, in terms of both species composition and 

abundance, is a central theme in ecology (Ives et al. 1999).  Change in plant communities 

is driven primarily by disturbance, which alters abiotic conditions and the competitive 

abilities of species in the community (Tilman 1982, Pickett et al. 1987).  In ecosystems 

such as prairies that depend on a high frequency of disturbance, plant communities can 

shift in response to individual disturbance events as well as to changes in multi-year 

trends in the disturbance regime (Collins and Gibson 1990, Howe 1995).  The high 

incidence of severe disturbance in prairies and the potential for rapid shifts in 

composition make prairies ideal systems in which to study compositional change, as 

evidenced by the large body of research on succession in grasslands (eg. Gibson and 

Hulbert 1987, Collins 1992, Howe 1995, Tilman et al. 1996, Polley et al. 2007).  

The degree to which disturbances affect compositional change in prairies can 

depend on the timescale of interest.  For example, year-to-year compositional change in 

grasslands has been shown to be influenced by time since fire and anomalous weather 

(Gibson and Hulbert 1987, Nippert et al. 2006, Wilson 2007, Anderson 2008), whereas 

changes on longer timescales can be affected by interactions between historic fire regime, 

abiotic site conditions, and species interactions (Abrams and Knapp 1986, Gibson and 

Hulbert 1987, Collins 2000).  Changes in species composition or abundance between 
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pairs of consecutive years may merely represent fluctuations around a loose equilibrium 

(DeAngelis et al. 1985).  Together, the cumulative effects of repeated disturbance can in 

part determine successional direction over time (DeAngelis and Waterhouse 1987).  

Alteration of the disturbance regime of a community is central to ecological restoration, 

where the goal is often to alter the successional trajectory of the ecosystem to reach a 

more desirable state (SER 2004, Prach and Hobbs 2008).   The outcome of many 

restoration projects, therefore, depends on the practitioner’s understanding of change in 

the ecosystem as well as their ability to predict how the community may change in the 

future.  Assessing successional change can be an effective way to evaluate restoration 

progress and inform adaptive management decisions (Masters 1997, Pastorok et al. 1997, 

Korb et al. 2003). 

To that end, I evaluated changes in species composition in Dow Field for year-to-

year change as well as cumulative sucessional trajectory over the entire study period.  I 

also related compositional change to environmental factors in order to determine the 

factors that most influenced compositional change and evaluate restoration progress.  I 

hypothesized that compositional change between pairs of consecutive years would be 

greatest when growing season temperature and precipitation differed the most from 

previous years, and when time since fire was minimized.  I also predicted that the 

successional trajectory of treatments over the 16 years of the study would converge on 

communities characterized by increased native diversity and abundance, and a high 

abundance of A. gerardii.   
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Methods 
 
 Site description, study design, and methods for data collection are given in 

chapter 1.  

Trends in prairie-level species composition 
 

I used presence-absence species data from the entire prairie to investigate year-to-

year changes in species composition in Dow Field.  To identify species that colonized or 

were extirpated from the prairie during the study, I identified species that were not 

present in 1991 or later, but had a presence in all subsequent years after their appearance 

(immigrations), and species that consistently occurred but were not found in any years 

after their disappearance (local extinctions).   

To quantify the magnitude of species turnover in the whole prairie between pairs 

of consecutive years, I used the Sorensen dissimilarity index based on species presence 

only (i.e., neglecting any measures of abundance).  The Sorensen index is given by the 

equation Cs = 1 – 2w/(A+B), where w is the number of species shared between 

communities a and b, and A and B are the species richness of each community (Magurran 

2004).  Thus, values close to zero indicate similar community composition, whereas 

values near one indicate many different species between years.  When multiplied by 100, 

these values indicate the percentage of species turnover in the community (McCune and 

Grace 2002).   

Treatment-level compositional change 
 
 For this finer-scale analysis, I combined plot-level stem count data to obtain 

treatment-level averages of community composition (for stratum 2, n = 7 treatments x 14 

years = 98).  I did the same for other community characteristics such as species richness 
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and percent cover of certain species groups for use in correlation overlays.  As in other 

chapters, I defined the population as the plant community in stratum 2, the large section 

of the prairie dominated by Andropogon gerardii (big bluestem). 

I used nonmetric multidimensional scaling (NMS) ordination (Kruskal 1964, 

Mather 1976), a procedure described in detail in chapter 3, to characterize plant 

community change at the treatment level.  The ordination was done using PC-ORD 5.10 

(McCune and Mefford 2006) using untransformed data because common transformations 

that can improve assumptions of normality (square root and arcsine square root) resulted 

in higher final stress in the ordination.  Species that occurred in less than 5% of the plots 

were removed to reduce statistical noise, leaving 51 out of 69 species for ordination.  The 

ordination was performed using Sorenson distance and 250 runs each of real data and 

randomized data.  Assessing the change in stress as a function of dimension revealed that 

a three-dimensional ordination was the best solution.  The starting seed of the lowest 

stress ordination was then used to perform a three-dimensional ordination with 1 run of 

real data to obtain the final solution.  I used successional vectors to connect points from 

consecutive years within each treatment, where the length of the vectors corresponds to 

the magnitude of compositional change between consecutive years.  I then used simple 

linear regression to compare vector length with environmental variables to determine the 

factors that contribute to compositional change (Anderson 2008).  

To elucidate the overall successional trajectory over the 16 years of the study, I 

performed another NMS ordination, this time using only the 1991 and 2007 data points 

for each treatment.  By using only the first and last data points, I was able to obtain a 

model of cumulative successional magnitude and direction for the entire study (Kahmen 
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and Poschlod 2004).  The ordination was obtained following the same procedure as 

above, and resulted in a two-dimensional solution.  Measured community characteristics 

relevant to restoration (e.g., species richness, evenness, native and exotic richness and 

abundance) were then overlaid to show relationships with the movement of the treatments 

through time.  To better visualize succession, the ordination was rotated to maximize the 

relationship between time and axis 1.   

Successional progress in terms of community characteristics (species richness, 

evenness, etc.) was evaluated by comparing the directional similarity between 

successional vectors and correlation vectors in relation to the ordination axes.  For 

example, if successional trajectory in a treatment was positively correlated with both 

ordination axes, then correlation vectors of community characteristics that were also 

positively correlated with both axes (or negatively correlated with both) were considered 

good descriptors of how the community changed over time.  Community changes could 

still be described by correlation vectors that related to successional direction in only one 

of the two dimensions, but they had lower descriptive power. 

As a comparison to the ordination results, simple linear regression using all years 

of data was used to calculate trends in community characteristics over time (Wilson et al. 

1996).  

Results 
 

Ten native species and two exotic species newly colonized the prairie during the 

study (Table 4.1).  Most of the colonizers first appeared in the first several years of the 

study, presumably in response to the reintroduction of fire and the resulting changes in 

resource availability.  Five species became locally extinct from the plots during the study, 
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only one of which was native (Asclepias syriaca, common milkweed).  There were also a 

few species that were observed sporadically throughout the study, but did not occur with 

enough consistency to be considered either immigrations or extinctions. 

Immigrations Extinctions 
Potentilla arguta (1992) Plantago major* (1997) 
Antennaria neglecta (1993) Taraxicum officionale* (1999) 
Cornus foemina (1994) Setaria glauca* (2000) 
Euphorbia corollata (1995) Dactylis glomerata* (2001) 
Quercus velutina (1996) Asclepias syriaca (2002) 
Carex bicknellii (1996) 
Carex pensylvanica (1996) 
Solidago rigida (1996) 
Carex cephalophora (1997) 
Botrychium dissectum (1997) 
Linaria vulgaris* (1999) 
Cirsium arvense* (2002)  
* exotic species 

 
Table 4.1. Prairie-level immigrations and extinctions.  The year indicates time of 
appearance or disappearance.   
 

At the prairie level, the Sorensen dissimilarity index between pairs of consecutive 

years ranged from 0.119 (11.9% turnover) to 0.253 (25.3% turnover) (μ = 0.173, σ = 

0.04).  The greatest year-to-year changes in species composition corresponded with the 

major alterations of the management regime (Fig 4.1).  Dissimilarity was about twice as 

high in 1989 and 1991 when the initial burning regime was being established than it was 

at its lowest point.  There was also a substantial increase in dissimilarity in 2000 and 

2001 when all annually-burned treatments were switched to triennial fires and burn 

season was changed in each treatment.  By about three years after a change in the 

disturbance regime, the rate of compositional change stabilized at a relatively low level, 

between 12% and 18% turnover between consecutive years.  Although this procedure is 

helpful to identify trends in compositional change between paired years, it does not 

account for cumulative community change or successional direction.   
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Figure 4.1.  Prairie-level community dissimilarity in Dow Field over the course of the 
study, based on species presence-absence data.  
 

For the analysis of treatment-level compositional change in Stratum 2, the stress 

of the NMS ordination dropped by 6.2 points between two- and three-dimensional 

ordinations, but only by 3.7 points when a fourth dimension was added.  Therefore, I 

concluded that a three-dimensional NMS ordination was the optimal solution for the data.  

The stress of the final ordination was 12.80, indicating a relatively good fit to the data 

(Fig. 4.2).  Axes 1, 2, and 3 accounted for 21.9%, 19.9%, and 48.7% of the observed 

distances in the original 51-dimensional space, respectively (total of 90.6%).   

The successional vectors connecting the re-sampled treatments indicate a 

considerable amount of change between years.  Vector length, which indicates the 
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magnitude of compositional change, varied from 0.130 (13.0% turnover) to 0.558 (55.8% 

turnover) between years (μ = 0.305, σ = 0.10).   

Axis 1

A
xi

s 
3

Treatment
12
22
31

 
 
Figure 4.2.  Three-dimensional nonmetric multidimensional scaling (NMS) ordination 
based on the 51 most common species in Stratum 2 plotted on axes 1 and 3, which 
together account for 70.6% of the variability in the data.  Points are the average 
composition of all sample units within a treatment in a given year, and the distance 
between points is proportional to the dissimilarity in species composition.  For clarity, 
only 3 representative treatments are shown:  212 (lowest average plot-level species 
richness, highest average plot-level A. gerardii abundance), 231 (highest average plot-
level species richness, lowest average plot-level A. gerardii abundance), and 222 (median 
average plot-level species richness and A. gerardii abundance).   

 
Linear correlations between vector length and environmental factors revealed that 

compositional change was linearly related with time (in months) since last burn (r = -
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0.225, p = 0.032), growing season precipitation (r = -0.256, p = 0.014), and change in 

average maximum July and August temperature between consecutive years (r = 0.285, p 

= 0.006) (Fig. 4.2).  Since compositional change seemed to increase the more 

precipitation deviated from average, a quadratic line was fit to better explain the data 

(rquad 
 = 0.302).  However, I found only a weak, nonsignificant positive linear relationship 

between compositional change and magnitude of year-to-year change in precipitation.  

Also, change in average maximum temperature had no apparent effect on compositional 

change until the year-to-year temperature change exceeded 3 °C.   The substantial 

variation in species composition among treatments likely contributed to the weakness of 

the correlation coefficients. 
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Figure 4.3. Relationships of environmental factors to compositional change in stratum 2. 
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Successional Trajectory 

The stress of the NMS ordination of the 1991 and 2007 data points dropped by 

15.7 points between one- and two-dimensional ordinations, but only by 2.8 points 

between two and three dimensions.  Therefore, I concluded that a two-dimensional 

ordination was the best solution for the data.  The stress of the final ordination was 7.69, 

indicating a very good fit to the data (Fig. 4.4).  Axes 1 and 2 accounted for 62.3% and 

29.1% of the observed distances in the original space, respectively (total of 91.4%).  
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Figure 4.4.  Two-dimensional NMS ordination showing the direction of compositional 

e 

ion 
 

change for each treatment from the beginning (1991) to the end (2007) of the study.  Th
distance between points is proportional to the dissimilarity in species composition.  
Correlation coefficients of community characteristics are represented by the correlat
vectors.  Total correlation strength is indicated by vector length; r2 > .200 for all vectors.
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Variable Axis 1 Axis 2 
Time 0.858 0.051 
Species Richness 

ss 

 

ance 

-0.380 -0.767 
Evenness (E) 0.739 -0.140 
Native Richne 0.343 -0.744 
Exotic Richness -0.884 -0.224 
Grass Richness -0.529 -0.339 
Forb Richness -0.293 -0.869 
Native Abundance 0.822 0.187 
Exotic Abundance -0.822 -0.187 
Native Grass Abund 0.375 0.316 
Native Forb Abundance 0.407 0.330 
A. gerardii Abundance 0.242 0.689 

 
able 4.2. Pearson correlation coefficient (r) values between environmental variables and 

The correlation vectors reveal two strong gradients in community characteristics 

that correspond to the ordination axes and thus to the successional trajectory of the 

treatments.  First, all treatments underwent an increase in evenness (Shannon’s evenness 

index, E = H’ / ln(S)) and native species abundance, and a drop in exotic species richness 

and abundance.  This gradient was closely related with the time component and axis 1.  

The second gradient, more aligned with axis 2, showed that plots with higher A. gerardii 

abundance had lower species richness, which describes a great deal of the spatial 

differences between plots (see chapter 3).  Andropogon gerardii abundance, as well as 

the successional direction of all treatments except for 231, was positively related to both 

ordination axes.  This indicates, with the one possible exception, that all treatments 

increased in A. gerardii abundance and decreased in species richness over the course of 

restoration.  However, the directional similarity between treatment succession and the A. 

gerardii vs. species richness gradient (axis 2) was weak compared to the time, evenness, 

and native abundance vs. exotic richness and abundance gradient (axis 1).  

T
ordination axes. 
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The ordination results show minor gains in native species richness and native forb 

abundance with respect to axis 1.  Any gains in native richness were apparently too minor 

to outweigh the loss of exotic species enough to significantly increase total species 

richness in any of the treatments.  Also, most of the increase in native species abundance 

was likely due to the simultaneous decrease in exotic abundance and the increase in A. 

gerardii abundance.  

The magnitude of total compositional change from 1991 to 2007 ranged from 

0.402 (40.2% turnover) in treatment 221 to 0.872 (87.2% turnover) in treatment 222 (μ = 

0.586, σ = 0.16) (Table 4.3).  The three treatments in substratum 1 (lower fire frequency), 

underwent less compositional change than treatments in substrata 2 and 3 (higher fire 

frequency) (μ = 0.548 and μ = 0.615, respectively), but there was not a significant linear 

relationship between total compositional change and fire frequency.   There was also no 

significant linear relationship between compositional change and species richness or A. 

gerardii abundance. 

Treatment 
Sorensen 
Distance 

211 0.511 
212 0.434 
213 0.699 
221 0.402 
222 0.872 
231 0.580 
232 0.604 

 
Table 4.3.  Treatment community dissimilarity from 1991 to 2007. 

The linear regression trends of community characteristics over time largely 

support the results of the NMS ordination (Appendix 4.1).  The differences between the 

ordination and regression results can be explained by the simplifying nature of the 

ordination procedure.   
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Discussion 
 
Species Immigration and Extinction 
 

Species immigration and extinction is a basic component of ecological succession 

in all plant communities, and is heavily influenced by disturbance (MacArthur and 

Wilson 1967, Pickett et al. 1987, Glenn and Collins 1992).  The pulse of immigration in 

the first several years of the study is likely a consequence of substantial changes in 

environmental conditions and resource availability following the reintroduction of fire 

(Tilman 1982, Collins and Gibson 1990).  Most of these species were likely constituents 

of the seedbank and were able to reestablish after conditions became more favorable for 

germination and growth (Rabinowitz 1981, Glass 1989), or existed at low levels as 

vegetative propagules while the field was maintained as a rough lawn for about 40 years 

(Abrams 1988).  Another possibility for colonization is wind dispersal from nearby 

prairie remnants or plantings.  However, only two of the 12 immigrant species (17%) 

have seeds capable of long-distance wind dispersal: Solidago rigida (stiff goldenrod) and 

the exotic Cirsium arvense (Canada thistle).  Four species, including a regionally 

uncommon prairie sedge (Carex bicknellii, Bicknell’s sedge), first appeared in 1996, 

which was an extreme drought year.  Altered moisture conditions and reduced 

aboveground biomass of the dominant grasses in 1996 could have allowed subdominant 

species such as C. bicknellii and Carex pensylvanica (Pennsylvania sedge) to become 

established from previously dormant propagules.    

The lower number of extinctions compared to immigrations was probably related 

to low overall diversity and few occurrences of rare or conservative species in Dow Field 

(Glenn and Collins 1992).  Asclepias syriaca, which that readily colonizes oldfields and 
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highly disturbed ground, likely disappeared as a result of increasing abundance of later-

successional perennials over time (Pickett 1982).  Two exotic forbs and two exotic 

grasses were extirpated during the course of the study, and although all of those are at 

least somewhat fire-intolerant, it took nearly a decade of prescribed fire to reduce their 

population beyond occurrence in the plots.  Future monitoring may find more extinctions 

of exotic species as some populations continue to decline, but it is likely that some exotic 

species will persist at a baseline level and be unaffected by continued management.  For 

example, Wilson and Partel (2003) found that no management strategy (combinations of 

clipping and herbicide) was able to eliminate Agropyron cristatum (crested wheatgrass) 

from a Kansas prairie.  Emery and Gross (2005) were able to reduce Centuarea maculosa 

(spotted knapweed) from a Michigan prairie through growing season burns, but the 

population persisted at low levels even after management.  In Dow Field, C. maculosa 

and Poa pratensis (Kentucky bluegrass) may be two exotic species that persist 

indefinitely, although percent cover of these species have dropped 4-fold and 6-fold since 

the beginning of the study, respectively.  As in most restoration projects, the complete 

eradication of invasive species is not a realistic goal in Dow Field and may conflict with 

other management goals (Wilson and Partel 2003, Gillespie and Allen 2004, Brudvig et 

al. 2007).     

Prairie-Level Compositional Change 
 

It is almost axiomatic that prairie community composition and structure is greatly 

influenced by the frequency and timing of fire (e.g., Gibson and Hulbert 1987, Collins 

and Gibson 1990, Howe 1995, Peterson and Reich 2008).  Repeated fire can have a 

stabilizing effect by maintaining a prairie community of relatively similar composition 
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over time, but species composition and relative abundances can oscillate around a loose 

equilibrium (Curtis 1959, DeAngelis et al. 1985, Collins 2000).  However, changes to the 

disturbance regime can cause changes in species composition and successional trajectory 

(DeAngelis and Waterhouse 1987). 

In Dow Field, the two periods of greatest prairie-level plant compositional change 

coincided with changes in the disturbance regime.  The first of these was at the beginning 

of the study, after fire was reintroduced to the site after more than 40 years.  The 

reintroduction of fire to prairie remnants can cause drastic shifts in vegetation 

characterized by increased abundance of native prairie grasses (Peet et al. 1975, Collins 

and Gibson 1990, Briggs et al. 1994) and a drop in overall forb and woody plant 

abundance (Gibson and Hulbert 1987, Collins and Gibson 1990, Henderson 1990).  

These changes also occurred in Dow Field (see chapter 2) except for a drop in woody 

plant abundance which had previously been minimized by frequent mowing.  The second 

period of high year-to-year change occurred immediately after the management in 

substrata 2 and 3 changed from annual to triennial burns.  Previous studies have found 

that fire frequencies of 3 to 5 years cause a lower abundance of grasses, higher forb 

abundance, and higher overall diversity compared to annual burned sites (Collins and 

Gibson 1990, Collins et al. 1995 Peterson and Reich 2008).  In Dow Field, decreasing the 

fire frequency to 3 year intervals affected the plant community less dramatically 

compared to the changes after the initial fire reintroduction.  Indeed, there was a slight 

decrease in grass percent cover and a gain in forb cover after 2000, but the change was 

minor compared to the substantial increase in native grass abundance in the first several 

years of the study.  It is possible that first 9 years of annual fires set the plant community 
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on a successional trajectory that did not change appreciably as a result of the modified 

fire regime (see Successional Trajectory below).  It is important to note that this site-level 

analysis identifies short-term periods of major change in species composition, but it does 

not account for cumulative change or direction over time.  

Determinants of Annual Compositional Change 
 

 Compositional change decreased with time since fire, presumably because fire 

immediately alters the availability of resources such as light, space, water, and nutrients, 

and the variation in availability of these resources typically decreases with time after fire 

(Ojima et al. 1990; Briggs et al. 1994).  The magnitude of compositional change was also 

negatively related to total growing season precipitation, which indicates that the greatest 

changes occurred in drought years.  Species composition in prairies has been found to 

vary along spatial (Nelson and Anderson 1983, Gibson and Hulbert 1987, Grace et al. 

2000) and temporal (Abrams et al. 1986, Henderson 1990, Tilman and El Haddi 1992) 

gradients in soil moisture and precipitation, although Alder and Levine (2007) reported 

no changes in composition with temporal variation in rainfall in a Kansas prairie.  The 

response of community structure to water availability stems from the role of water as a 

limiting resource in many prairies, especially those with coarse soils as in Dow Field 

(Anderson 1982, Knapp et al. 1993, Seastedt 1995).   

Tilman (1987) suggested that prairies may be nitrogen-limited in wet years and 

water-limited in drought years.  Therefore, depending on the amount of rainfall in a given 

year, one would expect to find altered competitive relationships among species that 

would lead to changes in community structure.  Higher temperatures reduce water 

availability by increasing the rate of surface evaporation and photosynthetic rate in plants 
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(Knapp et al. 1993).  Climactic factors also interact with fire to jointly influence 

compositional change (Gibson and Hulbert 1987, Anderson 2008).  The unshaded, dark 

colored soil surface following fire leads to higher soil temperatures, which increases the 

rate of evaporation, reduces soil moisture, and promotes early germination of dominant 

prairie grasses (Knapp and Seastedt 1986, Svejcar 1990).   

The statistically significant linear relationship between temperature change and 

compositional change could be due to the disproportionate influence of the two years that 

had large (> 3 C) changes in average maximum temperature from previous years.  

Nonetheless, the compositional changes resulting from temperature and rainfall 

differences between consecutive years raise questions about the stability of species 

composition in prairie communities in the context of global climate change.  The 

increased temperatures and precipitation extremes predicted by climate models (eg. Field 

et al. 2007) may have unpredictable consequences for succession in prairies (Nippert et 

al. 2006).   

Interestingly, there was no significant relationship between treatment diversity 

and compositional change.  This is at odds with the hypothesis that diverse communities 

should be more stable, popularized by Elton (1958) and later adopted by other ecologists 

(eg. Tilman and Downing 1994, see Cottingham et al. 2001).  In fact, there was a weak, 

nonsignificant relationship between diversity and compositional change that suggests that 

the lowest diversity treatments were the most compositionally stable.  Most likely, 

diversity was reduced by competitive pressure from A. gerardii, which stabilized 

community composition by preventing the coexistence of other species (Collins and 

Gibson 1990, Smith et al. 2004, Polley et al. 2007).   
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Successional Trajectory 
 

In general, the direction of compositional change over the study period was 

remarkably similar among most treatments, regardless of differences in fire frequency or 

other spatially variable site conditions.  One explanation for this is that composition had 

relatively little opportunity to change relative to other treatments because of the lack of 

diversity of available propagules and high competitive pressure from A. gerardii across 

the site from the outset of the restoration.  This is consistent with the initial floristic 

composition model of succession, which states that the majority of species are present at 

the beginning of succession (Egler 1954; Collins et al. 1995).  Indeed, there were only 15 

species that newly colonized the sample plots over the study period.  Therefore, the 

observed changes in composition resulted largely from different population responses of 

certain species to fire.  This is especially true in restorations that begin with a high 

abundance of exotic species as in Dow Field, as repeated fire tends to reduce exotic 

grasses and forbs in favor of fire-dependent native species (Peet et al. 1975; Towne & 

Owensby 1984; Gibson & Hulbert 1987; Henderson 1990; MacDonald et al. 2007). 

The relative positions of the treatments along the A. gerardii vs. species richness 

(axis 2) gradient in 1991 did not change by 2007, indicating that there was no apparent 

difference in how fire frequency influenced dominance or richness.  The treatments with 

lower fire frequencies (substratum 1) had higher A. gerardii abundance throughout time 

than substrata 2 and 3, but this was likely a coincidence of starting the triennial burns in 

the area of the prairie heavily dominated by A. gerardii (see chapter 3).  The lack of 

difference in how fire regimes affected the community is consistent with Gibson and 

Hulbert (1987), who found that A. gerardii abundance did not differ between areas 

 84



burned every 1 and 4 years in a Kansas prairie, although abundance was lower in 

completely unburned areas.  According to Wright and Bailey (1982), historical fire 

frequency in most North American prairies was 3 to 5 years.  If their estimate is accurate, 

between-treatment differences in community composition may only be affected by a 

wider range of fire frequencies than was tested in this study.  

Despite the similarities in relative position and successional direction of the 

treatments, there was some divergence in community composition by 2007 compared to 

1991.  The two treatments that differed most in direction from the other treatments were 

initially at the high and low extremes of axis 2, which was highly correlated with A. 

gerardii abundance and species richness.  Treatment 212, which had high A. gerardii 

abundance and very low species richness at the outset, shifted towards even higher A. 

gerardii abundance and lower species richness.  Conversely, the treatment with lowest 

initial A. gerardii abundance (231) was largely resistant to increases in A. gerardii and 

was able to maintain relatively high diversity.   

In contrast, Baer et al. (2005) found that plant community composition converged 

over 3 years in a prairie restoration where soil depth and nitrogen were altered to increase 

heterogeneity.  They attributed the convergence to the dominance of Panicum virgatum 

(switchgrass), which was successful across a range of soil conditions.  Although A. 

gerardii has been shown to be competitive across a wide gradient of environmental 

conditions and was dominant throughout the restoration, there was substantial variation in 

A. gerardii across the prairie that was related to soil conditions.  There may be a critical 

level of A. gerardii abundance after which the community becomes increasingly 

dominated by A. gerardii, species richness declines, and other restoration tools besides 
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fire must be used in order to deflect successional direction towards a more diverse 

community.  Dominant species have been hypothesized to alter community structure and 

successional direction by competing against neighboring individuals, although few 

studies have actually tracked community response to varying levels of dominance over 

time (Tilman 1987, Goldberg & Barton 1992; Callaway & Walker 1997).   Most field 

studies that have shown the effects of a dominant species on successional development 

have focused on invasive exotic species.  For instance, Titus and Tsuyuzaki (2003) found 

that development of an early-successional montane forest was deflected to a new 

community type as the dominance of a non-native tree species increased.  Because of its 

central importance to the physical structure of tallgrass prairies, the dominance A. 

gerardii may influence compositional change differently than would exotic species, and 

this has unique implications for prairie management.  Also, this study was limited to one 

site, so attributing the divergence in successional trajectory to the variation in A. gerardii 

abundance should be viewed with caution. 

It is possible that composition in the treatment where A. gerardii abundance 

increased will eventually converge if frequent burning is continued, and that the slight 

divergence in composition seen in the first 16 years of restoration is an intermediate point 

in succession.  Andropogon gerardii may increasingly dominate community structure 

even in areas at the margins of its preferred habitat if there continues to be a lack of 

native competitors to fill vacant resource niches (Tilman 1982, Sher et al. 2000). 

Restoration Progress 
 
Ecological restoration is largely the process of altering the successional trajectory 

of a degraded ecosystem (SER 2004).  I overlaid correlation vectors of community 
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characteristics on the NMS ordination of cumulative successional trajectory to evaluate 

restoration progress in Dow Field.  The correlation vectors that were most parallel to the 

successional vectors connecting the 1991 and 2007 treatment-level data best described 

successional changes.  The ordination output showed that changes in community 

characteristics have been both positive and negative with respect to restoration goals in 

Dow Field over the first 16 years of fire reintroduction. 

One positive outcome of the restoration derived from the ordination of cumulative 

successional trajectory is that exotic species richness and abundance dropped in all 

treatments.  The decrease in fire-intolerant exotic species was likely a direct result of 

frequent fires (Smith and Knapp 1999, Cully et al. 2003, Suding and Gross 2006).  Total 

species richness declined somewhat as well, especially in the management zones that 

began with high A. gerardii abundance and low species richness.   However, the drop in 

species richness was probably most influenced by the strong decline in exotic species 

over time.   

Native species richness had a positive but weak relationship with successional 

trajectory.  Thus, it was unable to overcome the loss of exotic species in order to increase 

total species richness.  The lack of a substantial increase in native diversity since 1991 

likely indicates that the diversity of the pre-restoration seedbank reached the limit of its 

expression in the aboveground community, probably within the first several years after 

fire reintroduction (Abrams 1988, Glass 1989).  Successful immigration from nearby 

prairie remnants and plantings was limited, likely because the few seeds of subdominant 

species that may have reached the site from other areas had little chance of competing 

with A. gerardii.  
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The correlation vector for species evenness, an important component of diversity, 

was strongly aligned with successional vectors for all treatments.  This is contrary to our 

expectations given the simultaneous increase in A. gerardii dominance in most treatments 

(Collins 1992, Smith et al. 1999).  However, successional trajectory in management 

zones with high A. gerardii abundance tended to be slightly less aligned with increasing 

evenness and more aligned with increasing A. gerardii than other treatments.  This is 

supported by the bivariate regressions, which show that although evenness was higher in 

2007 than in 1991 in every treatment, the most significant linear trends were in 

treatments 222 and 232 which had relatively low abundance of A. gerardii. 

All management zones except for 231 increased with respect to axis 2, which was 

highly correlated with A. gerardii abundance.  The dominance of A. gerardii and its 

strongly competitive relationships with other native grass and forb species is a point of 

concern for future restoration efforts.  Diversity likely will not increase until management 

practices are adopted that reduce A. gerardii dominance (Howe 1994).  Prescribed fire at 

lower intervals (5-10 years) often reduces the dominance of C4 grasses and can increase 

diversity to a point, but also can lead to invasion by fire-intolerant exotic and woody 

species (Collins et al. 1995, Peterson and Reich 2008).  In Dow Field, high fire frequency 

likely contributed to A. gerardii dominance, but it was also adept at reducing the 

populations of many aggressive exotics such as P. pratensis (a 6-fold decrease) and C. 

maculosa (a 4-fold decrease) to background components of the community.   

In general, because diversity was heavily influenced by the available propagules 

at the beginning of restoration, it is unlikely that altering the fire regime alone will cause 

a substantial decrease in A. gerardii abundance or an increase in native diversity.  Other 
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methods to reduce A. gerardii, such as conducting growing season burns (Howe 1995), 

herbicide applications (Wilson and Partel 2003), or fungicide application to reduce 

mychorrhizal associations with dominant grasses (Smith et al. 1999), may be more 

effective ways to reduce competitive pressure on subdominant species.  Because the 

seedbank has reached its full potential and the possibility of immigration is low, seeds or 

plugs of native species may have to be introduced to in the reduced-A. gerardii 

environment to increase diversity to the level of high-quality prairie remnants in the 

region. 

Conclusion 

 After more than 16 years of prescribed fire in Dow Field, perhaps the greatest 

progress made towards restoration goals was the reduction of exotic species richness and 

abundance.  Native species richness did not increase appreciably, probably due to the 

combined effects of a limited species pool and high competitive pressure from A. 

gerardii, the dominant grass.  Fire frequency influenced the magnitude of annual 

compositional change along with climate variability.  Although differences in fire 

frequency had no affect on successional direction between treatments, fire in general was 

almost certainly a major driver behind the decrease in exotic species, the increase in A. 

gerardii abundance, and changes in other community attributes over time.   

The divergence in community composition over time suggests that there may be a 

critical level of A. gerardii abundance after which restoration trajectory is deflected to an 

increasingly low-diversity community.  For restoration projects that seek to increase 

species richness, the abundance of dominant competitors may have to be addressed prior 

to attempts to increase species diversity such as seeding or planting.  
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NMS ordination and restoration progress 
 

Using NMS ordination, I created an encompassing picture of community 

succession that showed simultaneously that certain attributes of the plant community in 

Dow Field shifted in ways that were congruous with restoration goals while others did 

not.  This is an advantage over conventional statistics, most of which are able to focus 

only on one or a few variables at a time.  In complex ecological systems that vary over 

time and space, it is often difficult to conceptualize the relationships between variables, 

especially if the results of univariate statistics seem to conflict.  Visualizing the system as 

a whole can reveal unexpected trends that may otherwise be obscured.  For example, it 

would have been nearly impossible to predict the divergent successional pathways with 

respect to the A. gerardii and species richness gradient using conventional procedures. 

 On the other hand, ordination seeks out the strongest patterns in the data, which 

comes at the price of specificity.  This makes it difficult to quantify elements on the 

ordination output with respect to actual community characteristics.  Statements such as  

“evenness increased” or “exotic species abundance decreased” may not provide enough 

detail in cases where restoration success is evaluated by reaching quantitative 

benchmarks (Zedler 2007).  The reduced dimensionality of the ordination, which is 

critical for interpretation, can also lead to apparent conflicts between multivariate and 

bivariate results.  For instance, treatment 231 actually decreased in species richness and 

increased in A. gerardii abundance, but the ordination shows the trajectory in 231 as 

negatively aligned with A. gerardii abundance and positively with species richness.  It is 

worth reiterating that because NMS ordination uses a reduced-dimensional model to 

describe changes in a many-dimensional ecosystem, the axes explain variation in 
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aggregate species composition, not the absolute level of any one species or community 

characteristic.   

As McCune and Grace (2002) have emphasized, ordination is primarily an 

exploratory device that can quickly highlight the strongest patterns in a dataset.  

Conventional analytical methods can then be used to expand on patterns made apparent 

by the ordination, potentially saving time by focusing the analysis on the most interesting 

trends.  Ultimately, the combination of NMS ordination with conventional statistical 

methods is perhaps a more powerful way to assess restoration projects than either 

univariate or multivariate procedures alone.  
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Appendix 4.1. Plant community changes in Dow Field between 1991 and 2007.  The 
regression coefficient (β) is the rate of increase or decrease with year.  * = regression is 
significant at α = 0.05, ** = significant at α = 0.01. 
 
Treatment 1991 2007 β 
A1 Species Richness 8.4 6.4 -0.204* 
 Evenness 0.746 0.798 0.001 
 Native Richness 5.2 4.8 -0.037 
 Exotic Richness 3.2 1.6 -0.167** 
 Grass Richness 4.2 3.4 -0.054 
 Forb Richness 3.4 2.0 -0.166** 
 A. gerardii Abundance 51.0 82.0 2.359** 
 Native Grass Abundance 62.0 89.0 2.177** 
 Native Forb Abundance  5.0 6.0 0.028 
 Native Abundance 70.0 98.0 2.233** 
 Exotic Abundance 30.0 2.0 -0.224** 
     
A2 Species Richness 4.6 3.0 -0.079 
 Evenness 0.607 0.920 0.012 
 Native Richness 2.4 1.4 -0.071* 
 Exotic Richness 2.2 1.6 -0.008 
 Grass Richness 2.6 2.2 0.017 
 Forb Richness 2.0 0.6 -0.101 
 A. gerardii Abundance 87.0 92.0 0.278 
 Native Grass Abundance 94.0 98.0 0.164 
 Native Forb Abundance  0.0 0.0 -0.022 
 Native Abundance 94.0 99.0 0.179 
 Exotic Abundance 6.0 1.0 -0.179 
     
A3 Species Richness 9.2 8.0 -0.029 
 Evenness 0.692 0.829 0.005 
 Native Richness 5.0 7.0 0.104 
 Exotic Richness 4.2 1.0 -0.133* 
 Grass Richness 3.0 3.4 -0.015 
 Forb Richness 5.6 4.0 -0.013 
 A. gerardii Abundance 97.0 57.0 -2.244** 
 Native Grass Abundance 97.0 57.0 -2.511** 
 Native Forb Abundance  1.0 43.0 2.832** 
 Native Abundance 98.0 100.0 0.327 
 Exotic Abundance 2.0 0.0 -0.327 
     
B1 Species Richness 8.4 7.6 -0.082 
 Evenness 0.729 0.775 -0.002 
 Native Richness 4.5 5.4 0.067 
 Exotic Richness 3.9 2.3 -0.149** 
 Grass Richness 4.3 2.8 -0.084* 
 Forb Richness 3.8 4.4 0.000 
 A. gerardii Abundance 62.5 74.4 1.010** 
 Native Grass Abundance 66.9 84.4 1.249* 
 Native Forb Abundance  10.0 8.8 -0.204 
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 Native Abundance 78.1 95.0 1.089** 
 Exotic Abundance 21.9 5.0 -1.040** 
     
B2 Species Richness 8.4 6.0 -0.191** 
 Evenness 0.598 0.834 0.012** 
 Native Richness 4.4 5.7 0.046 
 Exotic Richness 4.0 0.3 -0.237** 
 Grass Richness 3.3 2.6 -0.061** 
 Forb Richness 5.0 3.3 -0.128* 
 A. gerardii Abundance 35.0 63.6 2.723** 
 Native Grass Abundance 48.6 85.7 2.330** 
 Native Forb Abundance  18.6 14.3 -0.192 
 Native Abundance 67.1 100.0 2.137** 
 Exotic Abundance 32.9 0.0 -1.892** 
     
C1 Species Richness 11.9 9.9 -0.084 
 Evenness 0.691 0.771 0.005 
 Native Richness 5.3 8.1 0.251** 
 Exotic Richness 6.6 1.7 -0.335** 
 Grass Richness 4.6 3.3 -0.073* 
 Forb Richness 7.1 6.1 -0.022 
 A. gerardii Abundance 37.1 42.1 0.445 
 Native Grass Abundance 45.0 68.6 1.226* 
 Native Forb Abundance  11.4 29.3 1.710** 
 Native Abundance 58.6 100.0 3.032** 
 Exotic Abundance 41.4 0.0 -0.302** 
     
C2 Species Richness 9.9 8.9 -0.030 
 Evenness 0.805 0.860 0.007* 
 Native Richness 6.3 8.0 0.101* 
 Exotic Richness 3.6 0.9 -0.131** 
 Grass Richness 4.4 2.8 -0.103** 
 Forb Richness 5.5 5.6 0.037 
 A. gerardii Abundance 60.6 58.8 1.692* 
 Native Grass Abundance 60.6 67.5 2.039** 
 Native Forb Abundance  18.8 30.6 -0.483 
 Native Abundance 79.4 100.0 1.643** 
 Exotic Abundance 20.6 0.0 -1.609** 

 
 
 



 
 
 
 
 
Chapter 5: Conclusion 
 
 
Context and Objectives 
 
 Tallgrass prairies once covered much of central North American including 

southern Michigan, but are now one of the most threatened ecosystem types throughout 

the region (Chapman and Brewer 2008).  Dow Field is a small remnant prairie in Ann 

Arbor, Michigan, that experienced fire suppression for much of the last century.  By the 

late 1980s, the site had low native diversity and high abundance of invasive exotic 

species.  In 1988, fire was reintroduced to the site with the purpose of restoring the native 

plant community. 

 This study explored plant community data that was collected annually from a 

series of plots throughout the prairie from 1991 to 2007.  The three areas of investigation 

involved describing the differences in the plant community across time and in 

comparison to other prairie remnants (chapter 2), exploring the factors that contributed to 

diversity (chapter 3), and understanding successional change in the context of restoration 

(chapter 4). 

Study Conclusions 
 
Chapter 2 

• Seventy-three species were found in Dow Field over the study period; the native 

grass Andropogon gerardii (big bluestem) had the highest abundance in terms of 

presence-absence frequency and percent cover 
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• After fire reintroduction, exotic species declined in richness and abundance while 

native species richness did not increase appreciably 

• After nearly 20 years of restoration, species richness in Dow Field was about 70% 

that of other nearby prairie remnants 

Chapter 3 

• Andropogon gerardii reduced plot-level species richness, likely through its ability 

to acquire water, nutrients, and light efficiently 

• Soil depth and clay, which enhance A. gerardii productivity by increasing soil 

moisture, were also significant predictors of diversity. 

• Differences in fire season or frequency did not appear to affect diversity levels 

across Dow Field.  

Chapter 4 

• Growing season rainfall, average maximum summer temperature, and time since 

fire were the greatest influencers of year-to-year compositional change 

• In general, most sections of the prairie moved towards communities characterized 

by higher evenness, lower exotic richness and abundance, higher native 

abundance, higher A. gerardii abundance, and lower species richness.   

• Successional direction may be influenced by initial dominance of A. gerardii 

• The lack of increase in native species richness likely resulted from past 

management as a lawn, limited dispersal from nearby remnants, and competitive 

pressure from A. gerardii 
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Study Limitations  
 

Because this study was limited to one site, caution should be exercised when 

generalizing these conclusions to other prairies under different conditions.  Additionally, 

there was only one of each of the burn treatments, and without replication it is difficult to 

draw conclusions with certainty especially with regard to how the fire regime influenced 

the plant community.  A related problem was that the between-treatment soil and plant 

community heterogeneity at the beginning of restoration did not allow for truly 

experimental comparison, because the treatments did not start on equal footing.  These 

issues became especially apparent in chapter 3 where the relationship between fire 

frequency and A. gerardii abundance was the opposite of what is reported in the 

literature.  I ultimately concluded this to be an artifact of the initial species composition 

and treatment setup.  Finally, changing the fire regime in 1999 limited the types of 

statistical analyses that could be conducted because of crossover effects.  

However, one must keep in mind that the fire treatments and sample plots were 

initiated primarily to monitor the progress of restoration and not as a controlled 

experimental study.  Few actual restoration projects begin with a homogeneous substrate 

or many treatment replications.  Also, although the change in fire regime in 1999 limited 

the use of certain analyses, adaptive management is an important strategy in many 

restorations (Pastorok et al. 1997).  Therefore, the untidy aspects of this study are 

examples of what ecologists or practitioners might expect when analyzing the progress of 

an actual restoration.  The long-term nature of the study and the multivariate approaches 

to data analysis help to alleviate some of these methodological pitfalls.  Also, most of the 
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results are in general agreement with other theoretical or observational studies, which 

brings validity to the conclusions.   

However, similar studies are needed to confirm the results observed in Dow Field.  

Additional research is particularly important for small prairies in the eastern Midwest 

because most of our knowledge of prairie ecology and management comes from a 

handful of large Great Plains sites that have different species composition, climate, soils, 

and herbivory pressure.  Some key areas of investigation are: 

• How diversity can be optimized and rare species conserved in the small, isolated 

remnants throughout southern Michigan and the eastern prairie region 

• The role of A. gerardii dominance in determining diversity and successional 

trajectory 

• How fire season and frequency influence diversity and species composition in 

eastern prairies, particularly at a broader ranges than tested in Dow Field (e.g. 

lower fire frequencies, growing season burns) 

• The interacting effects of climate and fire in influencing short- and long-term 

compositional change 

Management Recommendations 
 

It is possible that the plant community in Dow Field will never completely reflect 

historic conditions regardless of what restoration steps are taken.  However, the 

management strategy could be altered in an attempt to include a wider range of species 

and functional groups.  This will likely require limiting the abundance of A. gerardii to 

reduce competitive pressure on subdominant species.  Many studies have suggested 

strategies to achieve this.  Howe (1994) recommended utilizing growing season burns to 
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reduce A. gerardii and other C4 grasses, thereby increasing diversity.  Moreover, several 

studies have demonstrated that dormant season burns such as those used in Dow Field 

directly increase A. gerardii dominance (Peet et al. 1975, Biondini et al. 1989, Glen-

Lewin et al. 1990, Howe 1994).  Therefore, an altered fire regime that decreases the 

frequency of spring and fall burns and possibly utilizes growing season burns may help 

slow or reverse the trend in A. gerardii dominance.  The direct application of herbicides 

(Wilson and Partel 2003) or using fungicides to reduce mycorrhizal relationships with A. 

gerardii roots (Smith et al. 1999) may also be viable management strategies to reduce A. 

gerardii in Dow Field.  

Because of the small species pool and little evidence of species immigration from 

other sites, seeding and planting species with regional conservation value or limited 

dispersal capabilities will be necessary to fill vacant resource niches once A. gerardii is 

reduced (Howe 1994, Bruvig and Mabry 2008).  Species that may be good candidates for 

introduction are those that were found in other remnants but not in Dow Field such as 

Comandra umbellata (bastard toadflax), Liatris aspera (rough blazing star), and 

Lithospermum canescens (hoary puccoon).  This strategy is reminiscent of successional 

restoration, where late-successional or conservative species are seeded into an established 

matrix of grasses (Packard 1994, Betz 1997).  However, because A. gerardii is highly 

competitive above- and belowground and native species richness peaked from 1998 to 

1999 (see chapter 2), a more aggressive approach than Packard (1994) suggested must be 

taken to allow the new species to become established in a competitive environment. 
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