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Abstract

This paper addresses the modelling and performance evaluation of a loosely coupled
parallel computer system. This is a new type of computer system which can be used to
solve many important problems in operations research, management science and statistics.
The system provides affordable parallel computation in that it can be created on a network
of workstations or even microcomputers. No only do these systems offer substantial, yet
affordable, computing power, they raise interesting modelling and performance evaluation
problems.

This paper describes loosely coupled parallel computing systems and presents many exam-
ples of their application. The system is modelled by the superposition of renewal processes,
and some associated performance evaluation problems are studied. Data from the execution
of large problems on a loosely coupled system is presented and compared with models. The
models are shown to fit very well to the data.
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1 Introduction

In recent years, there has been a profound increase in the sophistication of affordable computer
technology available to most corporations and universities. Microcomputers now have the com-
puting power of the mainframe computers of five years ago, and scientific workstations have
become widely affordable. Only sophisticated parallel computers and supercomputers are not
generally available for large scale operations research, management science or statistics problems.
This increase in computing power has allowed researchers and analysts to address problems of
ever increasing size and complexity, and this means that the available computing power never
seems to be adequate.

This paper discusses loosely coupled computer systems consisting of networks of microcom-
puters or workstations. Such networks can be used to create a large grained parallel computer
system and, therefore, can be used to solve a large class of problems arising in operations re-
search, management science and statistics. Consequently, this approach to computing offers the
promise of making parallel computing widely available for a wide range of important problems.
Moreover, loosely coupled computer systems also raise very interesting questions in stochastic
modelling, performance evaluation and performance optimization. It is these latter issues which
are the focus of this paper.

Loosely coupled computer systems lie toward one end of the spectrum of distributed com-
puter systems and are sometimes referred to as workstation-LANs (Local Area Network). Each
of the workstations has its own private memory, and communication among processors is done
exclusively over the LAN. Such systems permit parallel processing on a single problem; how-
ever, it must be coarse grained parallelism, that is the amount of computing done by a single
processor between communication steps is relatively large. These systems are in marked con-
trast to tightly coupled systems (e.g. systems with shared memory multiprocessors) for which
fine grained parallelism with more frequent interprocessor communication is practical. While
tightly coupled systems are suitable for both coarse and fine grained parallelism, these systems
do not yet represent an easily affordable technology, whereas loosely coupled systems of work-
stations are increasingly inexpensive and commonplace. The survey paper by Bal, Steiner and
Tanenbaum (1989) offers an introduction to distributed computing systems and programming
languages which are suitable for writing distributed programs. The interested reader is strongly
encourage to read the survey article of Carriero and Gelenter (1989) which provides an excellent
introduction to the various concepts of parallelism and to writing parallel programs.

The loosely coupled approach to parallel computing applies to problems that can be decom-
posed into smaller subproblems, each of which can be solved independently and concurrently.
A surprisingly large number of important problems fit into this framework including problems
ranging from combinatorial optimization to computing the equilibrium distribution of a large
Markov chain to doing multivariate time series analysis and forecasting. A discussion of these
and other examples is given in Section 3.

A loosely coupled computer system utilizes one of the processors as a parent, master or
coordinating processor, while the other processors in the network are child or servant processors.
The master processor takes the large problem and divides it into pieces or subproblems. These



subproblems are sent over the network to the child processors, and these processors execute the
subproblems along with any other work they may be doing. Upon completion of a subproblem,
the child sends the results over the network back to the master. The master receives the results
of the subproblems and sends more subproblems for solution back to the child processors. This
process continues until the original large problem is solved. For this system to be practical, the
communication time cost must be kept to a minimum. This means that the subproblems sent
to the child processors must be relatively large so that the time to communicate the problem
and its solution are a small fraction of the computation time required for a subproblem, that
is the parallelism is coarse grained. In addition, the child processors must be able to solve a
subproblem independently of the other subproblems. Many problems have this form; however,
they may require the subproblems to be of small size which will make the communication costs
too high.

As the above discussion suggests, loosely coupled computing systems are not only an im-
portant new approach to offering affordable, but powerful computing, they are also interesting
systems to model and optimize. One must develop models for their behavior and optimize sys-
tem performance given consideration to quantities such as the time spent in communication, the
size of the subproblems and the load on each of the child processors.

The requirement for the implementation of a loosely coupled system is a collection of mi-
crocomputers or workstations connected by a local area network. The computers must have
an operating system capable of interprocessor communication. The network used for the ex-
periments reported in this paper was the Carnegie Mellon Department of Statistics network of
Microvax workstations using the VMS operating system and connected by Decnet. Nevertheless,
the concepts discussed in this paper apply to more modest networks such as those consisting of
IBM PS/2 processors using OS-2 or Macintosh II processors. The approach can be applied to a
wide range of problems, but the communication overhead must be kept relatively small to make
this approach attractive.

This paper is organized as follows: In Section 2, the loosely coupled parallel computer system
developed by Eddy and Schervish (1986) is described. A description of some of the problems
in operations research and statistics that can be implemented by such a system is given in
Section 3. Sections 4 and 5 develop a stochastic model for loosely coupled computer systems,
and we focus on minimizing the expected completion time of a task. Numerical examples are
given in Section 6 to illustrate the method and system performance. Simulations are carried out
in Section 7 to validate exponential approximations used in the numerical examples. Finally,
Section 8 of this paper discusses areas of future research.

2 Description of a Loosely Coupled System

The Department of Statistics of Carnegie Mellon University has a cluster of workstations con-
sisting of Microvax II and III processors which communicate via DECnet over Ethernet cables.
Eddy and Schervish (1986) developed a set of FORTRAN subroutines which allowed for the
creation of processes on each of these machines which can communicate with each other. Eddy
and Schervish (1986) presented the results of using this loosely coupled system to solve a discrete



finite inference problem. They were able to divide the large problem up efficiently among the
other processors in the network and reported dramatic reductions in elapsed computation times.
This example is discussed briefly in the next section and more extensively in Section 6. The
system described by Eddy and Schervish is general enough to be able to handle any problem in
which the task is decomposable into parts which can be performed independently of each other.
The system they created works as follows. There are essentially two programs, and there are
two types of processes on the network. One process will be called the parent, while the others
will be called the child. One of the two programs is run by the parent, and the other program is
run by all of the children simultaneously. Both programs are required to perform interprocess
communication, which will be described in more detail below. The parent program divides the
task into decomposable parts which are called messages and sends the messages to the children
via the communication network. Each message consists of sufficient information for the child to
execute or carry out the required calculations. When a child finishes its calculations, it sends
its results back to the parent. The parent is responsible for combining the individual results
in an appropriate fashion. This system is an example of a data flow system as described by
O’Leary and Stewart (1985). The concept of a data flow algorithm is that, once the program
has started, the flow of data controls the distribution of work and the program itself. In the
Eddy and Schervish system, after the child begins its work, program control is handled by the
return of results from the child which initiates the subsequent sending of the next message to it.

Network communication

Communication between parent and child is done over DECnet. There are two communication
channels, one called the mailboz channel and the other called the data channel. The mailbox
channel is used to keep track of the network status. For example, when each child is created,
the parent sends no data until it receives a message in its. mailbox saying that the child has been
created. When a child dies, the parent is sent a mailbox message saying the child is dead, and
the parent must reassign the task on which the child was working to a different processor. The
data channel is used by the parent to send its messages (data) to the child and by the child to
return the results of its processing.

Asynchronous communication

Because the program control is data driven, the parent only deals with data arriving from a
child when it arrives. That is, the parent does not wait for messages or data, but rather issues
asynchronous read requests and then goes on with whatever other work it may be performing.
For example, upon starting a child process, the parent opens the data and mailbox channels and
issues an asynchronous read for a mailbox message. Then it goes to the next child and does the
same until it has done this for all available children or is interrupted by the arrival of a mailbox
message. When it reads a mailbox message saying that a child is alive, it issues an asychronous
read for a mailbox message, sends data to the child, and then issues an asynchronous read for
data. When the parent reads the results, it sends more data and issues another asynchronous
read command for more data. The child on the other hand, operates synchronously by reading
data from the parent, performing its computations, sending the results back to the parent, and
waiting for the next set of data. The child may perform other tasks while waiting for the next
message. The crucial features of this system are that



1. the parent goes back to whatever it was doing after it issues an asychronous read request
and

2. when an asynchronous read request is answered, the parent is interrupted from what it
was doing and deals with the message it received. (The one exception to this is if the
parent is already reading the answer to an asynchronous read when another one is also
answered, the second and all subsequent answers queue up and are dealt with in order of
arrival).

The parent process

Because the answers to asynchronous reads interrupt the parent and begin execution of a separate
set of code, they behave like subprocesses. In fact, the program flow following one of these
asynchronous answers is completely separate from the basic parent program. The basic parent
program consists solely of the following:

1. Initialize with input data.
2. Loop through the children one at a time.

o Open a link, if it is not currently open.

e Issue an asynchronous read request for mailbox message.
3. Wait some fixed amount of time.

4. Return to step 2.

All of the data handling is done by the data subprocess described below. Each subprocess is
initiated when a read is answered by one of the children. Hence, the subprocess is associated
with that child for the duration of its existence.

The mailbox subprocess

The first thing the mailbox subprocess does is check to see if the message is a birth message or
a death message. A birth message means that the child is alive. In this case, data is sent to the
child, and an asynchronous read on the data channel is issued for the results. A death message
means that the child is dead, and must be removed from the list of living children. In addition,
if the child had been working on a set of data, the data must be requeued for delivery to another
child at a later time. If, on the other hand, the child is dead because the parent killed it (when
there is no data left to be sent), we need only remove it from the list of living children. When
the last living child dies and there are no more data to be sent, results are summarized and
execution ceases.

The data subprocess

The data subprocess begins when the asynchronous read for the first set of results issued by
the mailbox subprocess is answered. At that time, the results are accumulated. If there are no
more data, a special data set is sent to the child which causes it to cease execution and send



a death message back the parent on the mailbox channel. If there is still data to be sent, the
child receives the next packet of data. The subprocess then issues an asynchronous read for
the results and quits. Notice that this last part of the subprocess is identical to part of the
mailbox subprocess. In fact, these two subprocesses use the same code (which is reentrant for
this purpose). As pointed out in Schervish (1988), it is possible to implement a data-flow system
on any network of processors that supports some simple communication primitives, and nearly
every computer installation has a network of processors. Programming a data-flow system is
simple, it is not necessary to have any special purpose languages or special understanding to
program the system. Similar systems can therefore be developed on other networks of processors,
including networks of microcomputers running operating systems such as OS-2. Besides the
system of loosely coupled processors described above, there are many other distributed parallel
processing systems. For example, Whiteside and Leichter (1988) implemented a distributed
parallel processing system based on the “Linda” programming constructs on a local area network
of computers. Their system allows a single application program to utilize many machines on
the network simultaneously. Gardner et. al. (1986) described a library of utilities that support
distributed concurrent computing on a local area network of computers. The reader should also
consult the article by Carriero and Gelernter (1989) described earlier.

3 Examples

There are many examples of numerical algorithms in which calculations can be done in par-
allel using the software system described in Section 2. These include problems in statistics,
management science and engineering.

(a) Finding the Maximum Likelihood Estimators

Suppose that we want to find the maximum likelihood estimators of a complicated log-likelihood
function based on a large data set. The evaluation of the log-likelihood for any single parameter
value may take a long time if the dataset is large or density function is complicated. Typically,
a maximization program must evaluate the log-likelihood for many different parameter values
in order to estimate the gradient and the Hessian numerically between every two iterations.
An attractive approach is to divide the large dataset into smaller sub-datasets and let the
processors calculate the log-likelihood of the sub-datasets in parallel. As soon as a processor
finishes its calculation, it sends the result back to the parent where it is added to the accumulated
contributions of the log-likelihood from other processors. Once the log-likelihoods of all the sub-
datasets are calculated and added to the total, one has the log-likelihood evaluated at a particular
value of the parameters. The maximization program can continue to evaluate the log-likelihood
at another parameter value using the processors in parallel or to update the maximum likelihood
estimator.

(b) Monte-Carlo Analysis

Suppose we want to calculate K quantities based on a large number N of simulations. We
can divide N into small pieces of size M, and have each message cause a child to execute M
simulations. Let the processors do the M simulations in parallel. If the K quantities we want to
calculate are all sums, each child can accumulate the results from its simulations. As soon as it



finishes the calculations, it sends the results back to the parent where they are combined with the
accumulated contributions of the quantities from other processors. This distributed approach is
especially attractive for simulation based statistical analysis based on Gibbs sampling, a topic
of intense current interest, see Gelfand and Smith (1990) for an introduction.

(c) Asynchronous Iterative Method for Solving a System of Equations
Suppose we want to solve the system of equations z = F( z), where z € R" and n is large.

For example, this problem might arise in computing the equilibrium distribution of a finite state
Markov chain numerically. To compute a solution iteratively, one begins with some starting
value zo. One implements an iteration procedure by computing a sequence of successive ap-

proximations, Zn+1 = G( z,) where G may equal F or be some modification of F to accelerate

the rate of convergence. This can be done using a loosely coupled system by having each child
compute a subset of the components of z,4; using all of the components of z,. The parent

combines the results to form z,4; and repeats this process until it has converged. It is possible

to speed this process by using asynchronous iterations. In this case, the parent does not wait for
all child processors to send their results before sending the next problem. Rather it sends the
partially updated vector z,4+;. This approach can be much faster than synchronous iteration

and will converge under mild conditions, see Baudet (1978) for details.

(d) Knapsack Problem and the Traveling Salesman Problem

These problems frequently are solved by branch and bound methods which dynamically construct
a tree of simpler subproblems, from whose solutions the solution of the original problem is
obtained. The parallel methods use the parent process to generate the tree of subproblems and
monitor progress, and distribute the solution of the subproblems to the various computers on
the network.

(e) Multiprocess Models

Schervish and Tsay (1988) developed Bayesian models for autoregressive processes which allow
for changes in the model to occur. For example, the models allow a particular observation to
be treated as an outlier, that is it may have a distribution other than the one used to derive
the autoregressive model. Since we can rarely, if ever, be certain that an observation is an
outlier, we might wish to consider two different models, one which says that the observation
is an outlier, and another which says that it is not. The posterior probabilities of these two
models will tell us how likely it is that the observation is indeed an outlier. Next consider the
possibility that two different observations are outliers. It could be that either of them, both,
or neither are outliers. This results in 4 possibilities. Indeed, if there are n observations, there
are 2" possibilities. For even moderate sized n, this is too many possibilities to consider. The
method of Schervish and Tsay (1988) is to ignore all but a fixed number of the possibilities
with the highest posterior probabilities. The larger that fixed number, the longer an unlikely
possibility can be entertained to see if later data might make it appear more likely. In order to
keep large numbers of possible models available, Schervish and Tsay (1988) divide the possible
models among several processors and allow each processor to work on one model at a time as
each new observation arrives. After Bayes’ theorem has been applied to a new observation, the
possible models with the highest posterior probability are maintained.



(f) Discrete-Finite Models

In 1986, Eddy and Schervish studied models for discrete random variables specified by prob-
abilities which can only assume a finite number of values, d. They assumed a discrete prior
distribution which is constrained to be equal to one of m possible values, and they wanted to
calculate the predictive distribution of a single future observation. They claimed that when
d = 10 and m = 300, the number of possible models is 6 x 10'%, and the estimated time to
compute the predictive distribution of a single future observation is roughly one million years of
CPU time on a VAX 11/750. Consequently, they considered two smoothness conditions for their
models and hence reduced the number of model vectors in the calculation. These, combined with
very high speed computation made some previously infeasible discrete-finite models computa-
tionally tractable. In particular, they made use of the local area network and different numbers
of DEC VAXes on their network in order to perform most of the required computations in par-
allel. As pointed out in their paper, this breakthrough has two important advantages. First, it
dramatically reduces the “wall clock time” required to perform discrete-finite calculations. Sec-
ond, it provides a numerically more stable algorithm for computing the results. This is because
parallel computation also facilitates the partitioning of numerical results into sums which can
be accumulated with greater numerical accuracy.

(g) A Charged Particle Transport Program

The BOHR program was used by Olson and Salop (1977) to study early events in the radiation
damage of semiconductors. These computations examine the interactions between a high-energy
incoming projectile and a target system. For example, one computation studies an argon pro-
jectile scattering from a silicon target. This Monte Carlo technique uses a few random numbers
to initialize the projectile direction and velocity. It then follows the trajectory by numerically
integrating the classical equations of motion until the collision is completed. The results of
the collision are then assessed. Electrons in the target, for instance, may have been ejected,
excited, or transferred to the projectile. The recoil energy of the target is computed. After this,
another trajectory is set up and followed. One run of BOHR consists of following thousands
of trajectories for which various possible outcome results are averaged, counted and tabulated.
The parallel implementation of this is straightforward, since each trajectory is completely inde-
pendent of the next. Each child repeatedly follows one trajectory and sends the results back to
the parent. The technique proposed by Percus and Kalos (1987) can be used to provide each
child processor with its own independent sequence of random numbers. The parent receives and
tabulates trajectory results until the required number has been received and writes the output
file.

4 Message sizes

Ideally, if a loosely coupled system behaves in a deterministic way, the communication time
between processors is linear in the message size. As soon as the smaller pieces are sent to the
processors, each processor starts working on the subproblem at a constant rate. The elapsed
time to complete the problem will then be minimized by sending one message to each processor
so that all the subtasks finish at the same time. However, in a loosely coupled time-sharing
system, calculations are performed at different rates by the same processor at different times.



The rate depends on the demands on that particular processor at that time. If one of the
processors has considerably more work to do from other users than the other processors, then
sending a large computation to each processor can be counterproductive. It is better to divide
the work into a large number of messages and to send them to the children as they are needed.
That is, when a child finishes a message and returns the results to the parent, the parent then
sends the child the next available message. There are advantages and disadvantages to having
small message sizes. One advantage of small sizes is that a slow child (either a slow CPU or a
busy machine) will receive only a few messages, leaving the bulk of the work to be performed
by those children who have the time and resources to do it. An added advantage to partitioning
the computation into small parts is that the numbers being combined are more nearly the same
size than would result from a serial algorithm which increases numerical accuracy. A definite
advantage to small messages appears when one considers the possibility of one child “dying”
prematurely. All the work done by that child since it last reported results to the parent is
lost and must be redone. Since the network is not as reliable as one would wish, and systems
sometimes crash for unanticipated reasons, it pays to have small messages. On the negative side,
if there are too many messages (hence very small ones), then most of the processors answer back
almost immediately to the parent, and they request more work to be sent. Time is therefore
wasted, while the parent deals with all the asynchronous requests from the other processors. At
the same time it can cause a communication bottleneck for the parent. Furthermore, there is
an overhead associated with each subtask. This is the total communication time for the parent
to send a message to the other processors and for the other processors to report back to the
parent. As the number of subtasks increases, the total overhead of the task increases as well.
An understanding of the underlying working environment and a flexible message distribution
system are therefore required to optimize the total elapsed time to complete a task on a loosely
coupled parallel system. In the next section of this paper, we present a study of the tradeoffs
between the overhead and the size of the subproblems.

5 Tradeoffs between overhead and block slize

As mentioned in the previous section, if a problem is divided into subproblems and if the size
(in term of blocks) of each subproblem (message) is too large, then time will be wasted at the
end of the computation in waiting for the last processor to finish. On the other hand, if the
message size is too small, then there is communication bottleneck for the parent processor. The
overhead associated with each subproblem is defined to be the mean total communication time
for the parent to send a message to the child and for the child to send the results back to the
parent when the child has completed the subproblem. In this section, we study the tradeoffs
between the overhead and the size of the subproblems.

It is assumed that there is a computation or problem of size w, meaning that a single processor
working alone at normal rate 1 would require w time units to complete it. Assume there are p
loosely coupled independent processors working in parallel. Suppose that the problem is divided
into n equal size subproblems. Let T; be the total time taken by the ith processor to receive
a subproblem from the parent, to complete it and to send the results back. Assume that T}
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ith processor, a; is the fixed overhead, b; is t}}Je rate at which messages are transmitted and
¢ is the message size. The subproblem size, —, and the message size z are not related. Let

¢; = a; + b;z where ¢; can be thought of as the mean overhead time of the ith processor. Assume
that as soon as the parent receives the results from the i¢th processor, it immediately sends
out another message to the ith processor. Let N;(t) be the number of subproblems that the ith
processor has completed at time ¢. Then N;(t) is a renewal process, and the successive occurrence
times between events are {Tx}3>,, where Tj; are independent and identically distributed and
have the same distribution as T; for all ¥ = 1,2,... From now on, let us assume that the
number of subproblems, n, is large. By the Renewal Central Limit Theorem given in Karlin and
Taylor (1975), as t — oo, \
Ni(t) ~ N(=, 25),
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Since all processors are independent, it follows that as ¢t — oo,
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Let Ty x be the time for the system of p processors to complete k subproblems. From Lam and
Lehoczky (1991), we can invert the asymptotic result given by (5.1) so that as k — oo,
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At time 7, ,_p41, one of the processors completes a subproblem. However, there are no more
subproblems to be sent. From Result (5.2) above, 7, n—p+1 is asymptotically normal with mean
depending on n —p+ 1 and p;, ¢ = 1,2,...,p. Let Ty, be the random time required for the
system to complete the n messages. Then

Tp,n = 7;’“_1’"'1 + van

where Yy, = m:.‘x(Yj(T,,,_p;l)) if the (n — p + 1)th subproblem is finished by the ith pro-
i

cessor. Yj(Tpn-p+1) is the remaining life distribution of the jth processor, j = 1,2,...,p, at
time Tpn-ps1. Let Bpn = (Yi(Tpn-pt1)s-- s Yo(Tpn—p+1)) and 1 = (r4,...,7,) > 0. From

Lam (1990),

1
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Figure 5.1: Number of processors working on the problem versus time
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that the (n — p 4+ 1)th subproblem is completed by the ith processor, then all the Y;(7,n-p+1),
Jj # 1, are independent, and they follow the limiting remaining life distribution of the individual
renewal process. Let Ipn_p4+1 be the indicator such that Iyn_py1 = ¢ if the (n — p + 1)th
subproblem is finished by the ith processor. Then for any y > 0,

)
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where 1 is a column vector of 1’s. Hence by (5.3) above,
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From Equation (5.4), one can then calculate £ (7}520 Y,»), and hence an approximation for the

mean limiting time to complete the problem. We obtain
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When n is large, £ (nlirgo Yp,n) is small compared to (n—p+1)/ Z l—l_ Furthermore, result (5.2)
- i=1 M
holds for all distributions of T;. This suggests that the distribution of T; has very little effect on
the mean limiting completion time of the problem.

Special case
In the case when all the T; are exponentially distributed with the same parameter, ie. 7; =7,
P
Ci=C [ =Py = 2 tcand o} = (pu)? for i = 1,2,...,p, then Z N;(t) is a renewal process,
™

1=1
and the interarrival time is again exponentially distributed. Furthermore,
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The expected elapsed time £(T}, ) is minimized when

n= \/&%. (5.6)

The second derivative of £(T},,) with respect to n is always positive. This implies that (7} 5)
is a convex function of n. Note that the optimal n increases as the size of the problem w or the
number of processors p increase. This is reasonable because when w is large or p increases, we
would want to divide the problem into small sized subproblems so as to minimize the end effect,
&(Y,n). The optimal n decreases as ¢ increases. When the mean overhead c is large, we would
want to divide the problems into fewer subproblems each with large size. Also,

12
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From Result (5.7), we can conclude that as n increases, the variance of the time to complete the
problem decreases.  Also, as w or ¢ increase, the variance of the completion time increases. In
the next section, two numerical examples are given to illustrate the applications of the results
in this section.

6 Numerical examples

In this section, the performance of the approximate analysis given in Section 5 is compared with
the actual execution of two problems carried out on a loosely coupled parallel computing system.
In particular, the observed completion times of the numerical examples on the parallel system are
compared to the expected completion times computed from the theoretical models. We should
expect similar conclusions to apply for loosely coupled parallel implementations of Monte-Carlo
analyses, knapsack problems, traveling salesman problems and many other management science
applications for which the computation can be broken into independent parts.

(a) Hierarchical models for serially correlated economic data

Suppose that there are g distinct groups of stocks, and for group p, p = 1,2,...,9, there are
m, individual stocks. For the ith stock in group p, the daily stock closing prices are recorded.
Individual stocks within the same group share some common characteristics. We are interested
in studying the differences among the groups of stocks and differences with a single stock group.
Consider the following model for the daily stock closing prices:

Yijp = f(l‘ipv A%p’ EER) A?p) + Wijp (6'1)

where p is the index for group, p = 1,2,...,g; ¢ is the index for individual stock, i = 1,...,m,
and, j is the index for observations, j = 1,2,...,7m,. yijp is, therefore, the jth observation of
the sth stock in group p, while f(ui,, A} ..,Afp) and w;;, represent the deterministic and

ip)*
stochastic components of the daily price respectively. (uip, AL, A%, ..., A%t is a random vector

ipr ipre - e
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of characteristics associated with the ith stock in group p. Assume that for each p=1,2,...,g
and : = 1,2,...,my,

- - - 9 - 2 -
Hip ’\Op )
1 2
Atép /\lp 0y ) 0
Az’p ~ N ’\273 y )

k 2
L Al | LM ] L Ok

AL, Af‘p)t are independent for all p =
1,2,...,gand i = 1,2,...,m,. The above model ena.bles us to assess differences among groups
of stocks and at the same time, it incorporates variation across individual stocks within the
same group. Furthermore, let

Also, assume that the random vectors (ip, AL, A%

@ip = (/‘ipa A;Ipa Atl'cp)t

@01) = (Agpy A1py- - .,/\kp)t
and

Yo = diag(”?)y“fv--»"ﬂ

Assume f3;, follows a prior N( Bop, £o). For each fixed i and p, let {w,Jp}"“’ be an ARMA((, s)

process, i.e.

Wijp — Z PuWij—u,p = Gijp — ZO @i j—v,p

u=1

where a;;, is normally distributed with mean 0 and variance 0. The processes {w,]p}] 1

p=12,...,9 and 7 = 1,2,...,m, are all independent of each other but they all have the
same time series parameters. In the case that the function f(uip, A} ipre A") is linear in
pipy Al .- Afp, the likelihood function of this model can be derived easily, for more details, see
Greenhouse, Kass, Lam and Tsay (1990).

System performance

With¢( =1,8=0,k=1,9 =2, my = 2500 and n;, = 100 for all : = 1,...,2500 and
p = 1,2, the time taken to find the maximum likelihood estimators of the unknown parameters
is 13 hours 26 minutes and 35.25 seconds (48,395.25 seconds) on a single Microvax II. Five
Microvax II’s are used to do the calculation in parallel. The result is given in Table 1 and
plotted in Figure (6.1). The observed data are divided into three groups, daytime batch jobs
(9am to 5 pm), evening time batch jobs (5pm to 1 am) and night time batch jobs (lam to
8am). In this particular example, there is a total of 5,000 stocks in two groups. Each message
consists of telling the child to calculate the likelihood function for a subset of stocks. For
example, when there are 100 messages, each message tells the child to calculate the likelihood
function for 50 stocks at a time. The result is sent back to the parent which is added to the
accumulated contribution of the likelihood function from the other children. On average, the
time taken to evaluate the likelihood function once using a single Microvax IIis 46 minutes and
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time (seconds)

number of messages || first run | second run | third run
5 30843.95 | 20088.23 | 26334.97
10 24546.89 19404.92 | 17941.06
20 23163.30 18376.62 | 17456.01
25 18576.02 19811.04 | 15029.49
40 21693.64 19545.32 | 18942.60
50 20622.79 18733.76 | 18541.44
100 15866.47 13930.14 | 13199.70
125 14969.35 13482.20 | 13901.44
200 13502.17 13924.26 | 15868.98
250 17968.39 18421.23 | 18866.52
500 15467.40 19030.14 | 18728.52
1000 14964.12 |  20246.73 | 20591.94
1250 17678.10 | 21153.52 | 16075.82
2500 20882.46 | 20419.54 | 22940.89
5000 25228.65 | 28796.02 | 28455.84

Table 1: Times to compute maximum likelihood estimator

6.46 seconds (2766.46 seconds). The communication time for each message between the parent
and the children can vary from 1.21 to 1.39 seconds. Most of the time it varies from 1.21 to
1.24 seconds. The time required by that part of the computation which cannot be performed in
parallel is estimated to be 4131.89 seconds. From Table 1 above, the best timing obtained for
the five Microvax II system is 13199.70 seconds. This is remarkably close to the best timing we
could have expected from the system, namely (48395.25-4131.89)/5+4135.89=12984.56 seconds.
We have a speedup of almost a factor of 5.

Let I be the total number of likelihood function evaluations before the function meets some
convergence criterion. For example, we may want the relative change of the function values in
two consecutive steps to be less than some small number ¢. In this example, € is equal to 0.005.
Let T, be the time of the part of the computation which cannot be performed in parallel. Let T}, ;

be the time to compute the likelihood function in the ith evaluation. T} is therefore the part of
I

the work that can be done i parallel. We want to minimize T} + ZT,,,,', the time to complete

the maximum likelihood estimation. Putting w = 2766.46, ¢ = (11.211 +1.24)/2 =1.225,r =1
(corresponding to night time batch jobs) and p = 5 in Expression (5.6) in the previous section,
we have the optimal n = 120.38 or log(n) = 4.79. With the above values of w, ¢, r and p, we
can plot Expression (5.5) as a function of log(n), and it is given in Figure (6.2). Figure (6.2)
also shows the total observed elapsed time of the system for different message sizes at night
time and the 2(standard deviation) envelop curves. From Figure (6.2), we can conclude that
the exponential assumption seems to be appropriate to predict the optimal number of equal size
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Figure 6.1 : Observed data of hierarchical mode:is Figure 6.2 : Hierarchical models for serially correlated daza

messages into which to divide our problem. The plotted curve tells us the mean completion time
of the problem for different message sizes at night time. In this example, the predicted curve
is not as flat as the one given in the next example. This is because the mean communication
time in this example is much larger than that for discrete-finite models considered next. The
elapsed time to complete the problem is therefore more sensitive, and it increases sharply as the
number of messages increases. We see that the expected curve fits the data very well. Most of
the observed data lie inside 2 standard deviations of the predicted curve. Similar analyses can
be carried out for daytime and evening batch jobs. In these cases, we would expect the working
rate r to be relatively smaller than that of night time jobs.

(b) Discrete-Finite Models [Eddy and Schervish)]

Suppose X is a random variable, and it can assume one of d possible values z,...,z4. These
values can be numerical or nominal, vector or scalar. We call this set of possible values the
observation space. The distribution of X consists of a vector P = (p1,...,pq)", where

p; = P(X = z;), (6.2)

and
pPl=1 (6.3)

Since all calculations are discrete and finite, assume each p; is constrained to equal one of m
possible values, vy,...,v,. For simplicity, we only consider the case where the {v;} lies on a
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grid that is equally spaced in [0, 1]; that is, suppose that

v =(k-1)/(m-1).
One need only consider that subset of the collection of m* “possible” vectors P which satisfy
Equation (6.3). When p is specified, all inference about X can be based on Equation (6.2).
Call p the model vector and the set of all possible P vectors the model space. Next, as-

sume that one is interested in making inferences about a subset of some sequence Xi, Xs,...
of observables which are exchangeable, in the sense that their labels provide no information
about their joint distribution. Assume each X; must equal one of the values z1,...,24. A
theorem of de Finetti (1937) (also see Hewitt and Savage, 1955) shows that conditional on some
vector P satisfying Equation (6.3), the X; are independent with distribution given by Equa-

tion (6.2). Once again, the model space is a finite collection of vectors, say, { r1,..., T¢}, with
Ts = (T1s,-.-,Tds). For convenience, let the distribution of p be uniform. Use the subscript :

to index possible values. Since, for each ¢,

P(Xi=1z;| P)=p; (6.4)

The conditional distribution of P given any finite subset X* of X, Xs,... can be calculated

as follows. For j = 1,...,d, let n; be the number of observed X;’s in X* equal to z; so that

(nq,m2,...,n4) has a multinomial distribution conditional on P, we obtain
d
P(p= re| X*)=K"! ]_—I(rj,)"J fors=1,...,t (6.5)
=1
where

t d
K=Y T[(rs)™.
u=1j=1

The joint distribution of any further set of X’s is given by Equations (6.4) and (6.5) and con-
ditionally independent given p. For example, the predictive distribution of a single future X
is

t
P(X=2;| X" )= rP(P = 1,]| X" (6.6)
s=1

System performance ‘

From Eddy and Schervish (1986), with n = 15 observations on a variable assuming d = 10 differ-
ent values, the amount of time to calculate the predictive distribution of one future observation
on a VAX 11/750 for various grid sizes m is given in Table 2. The estimated time referred to in
the last line of Table 2 is approximately equal to one million years. To make the discrete finite
calculation more feasible in a reasonable amount of time, Eddy and Schervish (1986) first put
some restrictions on the model vectors, and then use parallel processing to do the calculation.

Smoothness Specify some value € and allow only those vectors 7, with adjacent coordinates

closer than ¢ to be included in the model space.
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m | number of P’s | time (seconds)
10 48,620 29.53
15 817,190 431.5
20 6,906,900 3529
300 6 x 106 3 x 1013

Table 2: Times to compute predictive distribution

Parallel processing Eddy and Schervish (1986) used » = 14 observations on a variable
assuming d = 19 values (0 to 9 in steps of 0.5) with a model space having m = 22 and a
smoothness criterion € = 0.095. The total number of model vectors is 38,226,040 and the
calculation of the predictive distribution of one future observation took 11 hours and 8 minutes
on a single Microvax II (40,100 seconds).

o First system: It consists of 8 nodes, six Microvax II's, the 11/750 and one Microvax I.
This is roughly equivalent to seven Microvax II’s since the 11/750 runs about 80% as fast
and the Microvax I’s run about 20% as fast as the Microvax II’s.

e Second system: It consists of 15 nodes, eight Microvax II’s, the 11/750 and six Mi-
crovax I’s. This is roughly equivalent to ten Microvax II’s.

Figure (6.3) shows the total elapsed time for each system for several different sizes of messages.
The horizontal axis gives the natural logarithm of the number of messages rather than message
size. The pattern confirms that when there are few messages (hence large ones), time will be
wasted waiting for the last slow machine to finish its last message. And when there are too
many messages (hence very small ones), time is wasted while the parent deals with all of the
asynchronous read requests being answered almost immediately and the extra overhead from
message communication. Figure (6.3) also tells us that the total elapsed time is insensitive
for log(n) lying between 7.0 and 9.0, or for n lying between 1,097 and 8,103. This means that
the total elapsed time does not change much whether we divide the computation into 1,097
messages or 8,103 messages. It was reported in Eddy and Schervish (1986) that the mean
overhead in this example varied from 0.13 to 0.15 seconds regardless of which system was used
or how many messages were sent. Putting w = 40,100, ¢ = (0.13 + 0.15)/2 =0.145and r = 1
in Expression (5.6), we have

e When p=7,n =1,756 and log(n) = 7.47.
e When p = 10, n = 2,310 and log(n) = 7.745.

With the above values for w, ¢ and r, we can also plot Expression (5.5) as a function of log(n), and
it is given in Figure (6.4). From Figure (6.4), we can conclude that the exponential assumption
appears to be appropriate to help us to predict the optimal number of messages into which to
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Figure 6.3 : Observed Data for Discrete-Finite Models Figure 6.4 : Observed and Fitted Data for Discrete-Finite Mcdel:s

divide the problem. The plotted expected time curve for the system to complete the problem
seems to fit the observed data quite well. The predicted values from the model are slightly
smaller than the observed data, this is because we approximate the first system (8 children)
by 7 Microvax II’s and the second system (15 children) by 10 Microvax II's. The actual total
observed overhead should therefore be larger than that from the model. In Figure (6.5), we
plot the observed data, predicted curve and the predicted curve plus 2(standard deviation) of
the second system with 15 children running in parallel. As mentioned in the previous section,
the standard deviation decreases as n increases. From Figure (6.5), we can see that when n is
large, the observed data are more than 2 standard deviations larger than the predicted curve.
This is because in our model of the superposition of p renewal processes, we have assumed that
the parent can read the answer of all the asynchronous read of the children at the same time.
In reality, the parent in the software system developed by Eddy and Schervish (1986) can only
answer one child at a time. All the others queue up and are dealt with in the order of arrival.
When n is large, most of the processors answer back almost immediately. At the same time,
they request more work to be sent. Time is, therefore, wasted in waiting for the parent to deal
with all the asynchronous requests from all the processors. In Figure (6.6), we plot the observed
data, the predicted curve and the predicted curve plus 2(standard deviation) of the first system
with 8 children running in parallel. It has similar interpretations as in Figure (6.5).

19



seconds

11000
11000

10000
T
10000
T

o - observed data o - observed data

~ = 2 standard deviations from predicted curve ~ -~ 2 standard deviations from predicted curve

2

Yu00
T

9000
I

7000 BOUVO
T T
seconds
7000 8000
T T

©000
T

6000

5000

3 3 1 | |
g g '
T2 4 6 8 10 2 2 4 6 8 10 2
log(number of messages) log (number of messages)
Figure 6.5 : 15 children - Discrete-Finite Models Figure 6.6 : 8 children - Discrete-Finite Models

7 Simulations

The two numerical examples in the previous section both suggest that exponential assumption
may be appropriate to help us in choosing an optimal number of subproblems into which to
divide our problem. We know that each processor has a maximum rate R if all its resources
are devoted to the subtask. Each subtask has a fixed amount of work. Thus, there is a lower

bound 2 + ¢ on the amount of time to finish a subtask. Also, the overhead should be constant

and noi? stochastic. These suggest that the exponential assumption for the total time taken
by the child to receive a subproblem from the parent, to complete it and to send the results
back is incorrect. However, from Section 5, we know that the distribution of this total time
has very little effect on the limiting expected completion time of the problem. In the special
case that all the processors are homogeneous and the times to complete the subproblems are all
exponentially distributed with the same parameter, the completion time of the problem can be
derived easily. The exponential distribution is therefore chosen so that the calculation of the
completion time of the problem is simplified. Furthermore, from Cox (1962), we know that the
superposition of indefinitely many independent and identically distributed equilibrium renewal
processes behaves locally like a Poisson process. 'Local’ behavior when p, the number of equilib-
rium renewal processes, is large refers to behavior of the superposed process over time periods
short compared with individual renewal times. In particular, if the mean interarrival time of
the renewal processes is u, then the interarrival time in the superposition of equilibrium renewal
processes is asymptotically exponentially distributed with parameter u/p as p — oo. Also, the
adjacent intervals in the superposed process are asymptotically independently distributed for
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large p. The exponential assumption is therefore a reasonable approximation in the case when
the number of messages, n, is large. Large n means that each processor works on many sub-
problems and therefore reaches equilibrium when it starts to work on its last subproblem. We
can therefore approximate &(limp—oo Yp,n) in Section 5 by the corresponding result when all the
underlying renewal processes are independent and identical Poisson Processes. The exponential
approximation should improve as the number of processors increases.

Simulations are carried out to verify the heuristic argument in previous paragraph. Consider
the superposition of p independent and identically distributed renewal processes. The interarrival
arrival time of the individual renewal processes follow a gamma distribution with parameters g
and h. The mean interarrival time is gh. g is the shape parameter and h is the scale parameter.
In the discrete-finite models example in Section 6, w = 40100 seconds and ¢ = 0.145 seconds.
Simulations are carried out for ¢ = 2, 3,4, 5. For each g, h is chosen so that the mean interarrival

. . w . . .
time is gh = — + ¢ for different number of messages n. For different combination of g, n and

n
p, the completion time of the job is generated 100 times and the average completion time is
calculated. The results are plotted in Figures (7.1) to (7.4). The figures confirm that

1. For large n, exponential approximations perform very well. This is not surprising because
the limiting expected completion time of the problem is insensitive to the distribution of
the interarrival time of the individual renewal processes.

2. For large n, exponential approximations improve as p increases. From the figures, the
absolute error of the approximation decreases for log(n) > 8 as p increases.

3. Exponential approximations fail for small n. However, loosely coupled parallel system
is only useful if w is large and ¢, the overhead time is relatively small. Hence, in most
applications, we should expect the optimal number of subproblems into which to divide
our problem to be reasonably large.

4. Qur objective here is to find an optimal way to divide our problem into equal size sub-
problems. In all four figures, exponential approximation perform very well in predicting
the optimal number of equal size messages into which to divide our problem. By vary-
ing g between 2 to 5, we demonstrate that the exponential approximation is useful for
distributions with different shapes.

5. From the figures, when 7 is small, exponential approximation uniformly overestimate the
completion time. This is not surprising because exponential distribution has constant
failure rate but gamma distribution with shape parameter g > 1 has failure rate that
increases over time.

Although simulations are only carried out using gamma distributions, we should expect similar
results to hold for other distributions. The results in Section 6 and this section all confirm that
both exponential approximation and infinite subproblems assumption are very useful in helping
us to predict the optimal number of messages into which to divide the problem. In particular,
exponential approximation only works well when the number of subproblems are reasonably
large. As mentioned above, this is usually the case if the problem size w is large and overhead
is relatively small.
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8 Conclusion and Future Research

In this paper, our objective has been to describe a new computational method for solving
certain complex numerical problems arising in operations research and statistics and to find
an optimal way to divide our problem into equal size subproblems. In particular, we minimize
the total elapsed time required to compute the solution. However, alternative criteria may also
be considered. For example, there may be some cost functions associated with the number of
machines we use to work on the problem in parallel. Also, there may be another cost function for
the expected completion time of the problem. Our objective is to minimize the total expected
cost to complete the task.

In Section 5, 7, n—p4+1 Was defined to be the time for the loosely coupled parallel system to
complete n — p + 1 subproblems. That is, at the time 7; ,_p41, one of the processors completed
a subproblem, and there were no more subproblems to be sent. The time to complete the
problem was therefore equal to 7, n—p41, plus the maximum of the time for the other p — 1
processors to complete their last subproblems. In practice, at time 7, ,_,41, one may want to
resend some of the subproblems that are being worked on by the other processors. The parent
only accumulates the results of those subproblems from the first child who reports back. By
resending subproblems, time will not be wasted in waiting for a busy machine to complete its
last subproblem. It may be useful to extend the model in this paper to allow for resending of
subproblems.

As mentioned in Section 1, the network is not as reliable as one would wish, and systems
sometimes crash for unanticipated reasons. If one of the child “dies” prematurely, all work done
by that child, since it last reported results to the parent, is lost and must be redone. One may
‘want to extend the model in Section 5 to include this case.

So far, it has been assumed that the problem size is known, and the problem is divided
into equal size subproblems. In practice it may not be possible to know the size of a problem
beforehand. Moreover, even if the problem size is known, one may not want to divide it into
equal size subproblems. It is more efficient to send larger messages at the beginning. As the
amount of remaining work decreases, one would want to decrease the message size. This would
minimize the total overhead time for the whole problem and would also reduce the end effect
in which one must wait for the slowest processor to finish. The goal is, therefore, to develop
a dynamic control policy in which the transmission of work to the individual processors is a
function of the environment state or the time taken by each processor to complete its work if
the actual environment state is unobservable.
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