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Abstract

This paper presents results on point and interval estimation problems for proportion
of conformance. Proportion of conformance is defined as the proportion of products
with quality characteristic inside the specification limits. Five point estimators are pre-
sented and compared with respect to their root mean squared error. Two approximate
methods for constructing lower confidence limits are proposed and the performance
of each is assessed by simulation. In the case when the nominal value of the quality
characteristic is not centered in the middle of the specification range, a modified pro-
portion of conformance is introduced. Numerical examples are also given to illustrate

the procedures.
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Introduction

The quality of any manufacturing product is ultimately determined by customer satisfac-
tion. The purpose of any quality improvement process should aim to improve customer
satisfaction by reducing and eliminating defects, and to continuously improve processes
throughout the organization, thereby reducing sources of variation and improving quality
and productivity. The quality of a product can usually be quantified by observable char-
acteristics of the product or the manufacturing process which produces the product. The
performance of a quality characteristic can often be specified by a nominal (target) value,
and a tolerance (acceptable) region. These specifications are set by engineering requirements
or by customers. Ideally, the quality characteristic value should be at the nominal value with
no variation. In reality, variation in a manufacturing process is unavoidable and hence there

is a statistical distribution associated with the quality characteristic.

Let X be the quality characteristic of interest with a nominal value T', a lower specification
limit L and an upper specification limit U. Also, let p, = P[X < L] and py = P[X >
U] be the proportion of products with its quality characteristic X below L and above U,
respectively. If pc represents the proportion of conformance, that is, the proportion of
products with its quality characteristic X within the specification limits L and U, then it is
given by

pc=P[L<X<U]=1-p,-pu. (1)

Proportion of conformance is a measure of how well the output of a process meets the
specification limits. In recent years, process capability indices have been widely used for
assessing the performance of manufacturing processes. However, as pointed out by Pearn,
Kotz, and Johnson (1992), the underlying motives for the introduction of process capability
indices are clearly related to monitoring the proportion of conforming products. Proportion
of conformance is, thus, a more direct and casily understood measure. Furthermore, under
proper distributional assumptions, proportion of conformance can usually be estimated not
only for univariate but also multivariate quality characteristics over fairly general shapes
of tolerance regions. Since there is no consensus on how to extend the capability indices

developed for univariate processes to multivariate processes, proportion of conformance is



perhaps a preferable measure of process performance.

The minimum variance unbiased estimator (MVUE) of p;, (and py) has been derived
by several authors. In particular, Folks, Pierce, and Steward (1965) derived the MVUE
of py, under various distributional assumptions of X. When X is normally distributed,
Wheeler (1970) obtained the variance of the MVUE, and Owen and Hua (1977) derived
confidence limits on pr, and py. Chou and Owen (1984) constructed one-sided simultaneous
confidence limits for p;, and py when X has a normal distribution. However, there is no

known general procedure for constructing confidence intervals for pc.

In this paper, we consider point and interval estimation of po when X is normally dis-
tributed with unknown mean p and variance o?. Specifically, we compare five different
estimators of pc with respect to root mean squared error of the estimate. We also present
two methods for constructing approximate lower confidence limits for pc. Only lower confi-
dence limits are considered here since, in practice, we would like pc to be greater than some
threshold in order for us to conclude that a process is capable. Simulations are used to com-
pare the five different estimators and to assess the performance of the proposed confidence

limits.

When the nominal value T is centered between L and U, ie., T = M = (L 4 U)/2, the
tolerance region for the quality characteristic is symmetric. If T' is off-center, the tolerance
region is not symmetric. Also, if T = M, pc is maximized when p = T (for fixed o).
However, in many assembly-fit processes, the nominal value of the quality characteristic is
off-center, indivclating that deviation in one direction is less acceptable than deviation in the
other. In such cases, we would like to maximize pc with the additional constraint that the
majority of products be produced near the nominal value. We introduce a modified pc which
is maximized when the process mean p is located at the nominal value T for both symmetric
and nonsymmetric tolerance regions. A lower confidence limit is also given for the modified

proportion of conformance.



Point Estimation

In this section, we consider five different estimators for pc defined in equation (1). In the

discussion below, let X7, Xs,..., X,, be a random sample from a normal distribution with

unknown mean g and variance 62, Let X = ", X;/nand S? = 3% (X;—X)?/(n—1) be the

sample mean and sample variance respectively. Define £y = (u — L)/o and k2 = (U — u)/o.

Then, pc can be written equivalently as
pc = ®(k2) — ®(—£1)

where @(-) is the cumulative distribution function of the standard normal. Let K; and K,
be the estimators of x; and &5, respectively, obtained by substituting X for y and S for o.

The five estimators of pc we consider are:

1. Uniformly minimum variance unbiased estimator (UMVUE) :

From Wheeler (1970), the UMVUE of py = 1 — py is given by

0 if K< —(n-1)/y/n
py=11 if K> (n—1)/\n (2)
T.—2(wy) otherwise
where 7, _,(+) is the cumulative distribution function of a Student’s ¢ distribution with
n -2 degrees of freedom and wy = [n(n —2)]Y2K; [(n = 1)* = nK2]™/%. Similarly, the
UMVUE pL for pp 1s given by equation (2) with K, replaced by K;. Since
1 fL<X,<U

0 otherwise

(X)) =
is an unbiased estimator for pc, it follows from the Blackwell-Rao Theorem (e.g., see
Mood, Graybill and Boes (1974) page 321) that the UMVUE of p¢ is

pewarver) = E[I(X1) | X, 8).

Using the arguments given by Johnson and Kotz (1970, page 73) and Wheeler (1970),
we find that

PcUMVUE) = Py — PL-



2. Modified mazimum likelihood estimator 1 (MMLEL) :
Since X and Sy/(n — 1)/n are maximum likelihood estimators for x and o respectively,

it follows that
. no_ n
PommLEy) = @ (\/n — 11&2) -9 (— — lKl)

is the maximum likelihood estimator for pe.

3. Modified mazimum likelihood estimator 2 (MMLE2) :
If we estimate u by X and o by the biased estimator S, then pc can be estimated by

pommrez) = @ (K2) — @ (—Ky).

4. Modified mazimum likelthood estimator 8 (MMLE3) :

Alternatively, we can estimate o by its unbiased estimator S/c; and pe by

Pommies) = @ (caly) — @ (—caKy)

where
o \/‘zF(n/‘Z)
V= TI(n-1)/2)

and I'(-) is the gamma function.

5. Modified mazimum likelthood estimator 4 (MMLE4) :
It is readily verified that \/nK\; follows a noncentral ¢ distribution with n—1 degrees of
freedom and noncentrality parameter \/nx,. From Johnson and Kotz (1970, page 203),
we know that cK, is an unbiased estimator for x, where
3 V2I((n = 1)/2)
~ o i((n=2)2)
Similarly, ¢/ is an unbiased estimator for ;. This suggests that we can estimate pc

by

PemaLey = O (cKy) — & (—ckKy).



We compare the five estimators listed above using the root mean squared error criterion.

The root mean squared error of an estimator p¢ of p¢ is defined as the square root of

Ex x, [(ﬁC - PC)2]

which is a function of k; and ;. We want to choose an estimator with the smallest root

mean squared error for all practical values of x; and &,.

The root mean squared errors of the five estimators can be computed either by numerical
integrations or by simulations. Simulations are conducted in this paper to evaluate the root
mean squared errors. Given n, a standard normal random deviate Z and an independent chi-
squared random deviate ¥ with n — 1 degrees of freedom were generated using IMSL (1987)
routines RANNOR and RNCHI. For each pair of values k; and «,, the resulting values

-7
Ky = M and K, = _@____/_‘/E_

3
Y/(n-1) Y/(n-1) )

were used to calculate each of the five estimates of po. Monte Carlo estimates of the root
mean squared error for each pc were obtained by repeating the procedure above 10000 times.
Simulations were carried out for sample size n = 5(1)15(5)30 and a wide range of values of

k1 and kj.

Figure 1 shows the root mean squared errors of the five estimates when n = 5 and «; = 3.0.
The root mean squared errors of all estimates attain their maximum at x, = 0.0, correspond-
ing to the situation where the process mean p is located at the upper specification limit U.
This is not surprising since a normal density function has the most mass concentrated around
mean p and with g = U, a small discrepancy in sample value of K; would result in a large
difference in pc. As k, deviates from zero, the root mean squared errors decrease rapidly for

all five estimators. Similar conclusions apply to other values of n, k; and .

In practice, we expect both «; and &, to be positive and greater than 3.0, meaning that
the process mean lies within the specification limits and the process standard deviation
consumes no more than one-sixth of the specification range (see for examples, Kane (1986)
and McFadden (1993)). In Figure 1, UMVUE has the lowest root mean squared error whereas
MMLE4 has the highest for all k&, > 3. Keeping x; = 3.0, the maximum differences of the



root mean squared errors among the five estimates over the range of k3 > 2.0 are computed
for different sample sizes and are plotted in Figure 2. As the sample size increases, this
maximum difference decreases rapidly. When n > 15, the root mean squared errors of the
five different estimation methods become essentially indistinguishable from each other. The
performance of UMVUE and MMLEI are very close for all sample size and all practical value

of k1 and k5. Both can be recommended in practice.
Example

As an illustration, consider n = 30, K; = 2.4 and K; = 3.0. In this case, pcwmvue) =
0.99351, po(mmrer) = 0.99154, po(mmrEz) = 0.99045, pommLes) = 0.98986 and po(mmirEs) =

0.98855. Note that pevmrer) > PommLE2) > Po(MMLES) > Po(MmLE4)- This is as expected
since \ﬂz/(n —1)>1>ci>c

Confidence Limits for Proportion of Conformance

We are interested in constructing lower ¢onfidence limits on pg; i.e., with a pre-specified

confidence coefficient 1 — a, we seek p(a, Ny, K3) such that
Pr, .k, [pc 2 pla, K1, Kr)] = 1 - a.

Since
pc=1-pL—pu
we first obtain confidence limits for py and py and then attempt to find a confidence limit

for pc based on these limits. A 1 — a upper confidence limit, p; = py(a, K1), for p;, satisfies
Plp <p)=1-c.
Owen and Hua (1977) showed that p, can be obtained by solving the equation
Pr,_, [T -1 ("‘\/ﬁ‘b'l (Pl)) < \/;1_1\’1] =l-a (4)

where T,(8) is distributed as a noncentral ¢t distribution with v degrees of freedom and

noncentrality parameter §, and ®~'(-) is the inverse distribution function of the standard

7



normal. A 1 — o upper confidence limit, p, = ps(a, K3), for py is similarly obtained by

solving the equation
fﬁﬂ[ﬂq(—Vﬁﬁqwﬂ)Sv%K4=l—a. (5)
Now,

Plpr+puv <pr+p] > Plpr <p, pv < pa)
> 1- Plpr > p1] = Plpv > p2]
= 1-2a.

The last inequality is justified by the Bonferroni inequality (e.g. see Graybill (1976), page 360).
Thus, a conservative lower-limit for a 100(1 — 2a)% one-sided confidence interval for pc is
given by

pc21-pi—p. (6)
Values of p; and p, can be found in Odeh and Owen (1980, Table 7). They provide tables
of p; and p, for 1 — o = 0.5, 0.75, 0.9, 0.95, 0.975, 0.99, 0.995 and for n = 2(1)18(3)30,
40(20)120, 240, 600, 1000, 1200.

The Bonferroni inequality has been used by other authors in many similar problems,
especially, in interval estimation for variance components, e.g., see Williams (1962), Wang
(1991, 1992). In variance components problems, it was shown, analytically or numerically,
that the confidence coefficient 1 — 2a can be replaced by 1 — . This also seems to be the

case for the interval in (6) as indicated by the simulation studies described below.

To evaluate the true confidence coefficient of the interval (6), simulation studies described
in the previous section were again carried out. For each value of k1 and &, K; and K, were
computed as given in equation (3). Also. p; and p, were obtained by solving equations (4)
and (5), respectively. The procedure was repeated 10000 times and the percentage of times
that

L —p1 = p2 < pe = O(k2) — O(~k1)
was recorded. Table 1 reports the results for 1 — a = 0.95, n = 10,30, 50, and for some
selected values of k; and ;. Since the interval in (6) is symmetric about x; and &9, only

cases with k9 > K, are shown in the table.



The results indicate that the proposed interval is successful in maintaining the stated
confidence level. The sample size n seems not to play an important role on the converge of
the interval except when either &; or , are negative, a rare situation in practice. In Table 1,
the proposed confidence interval is conservative when k; is near &;, and as the difference
between k; and &y increases (or py becomes smaller) the confidence coefficient approaches

to 1 — « (0.95 in this example). The latter can be verified by observing that

Plpc >1—pi—p2] = Plpr+pv <p1+po)

PlpL < p1] + Plpr + puv < p1+p2, P> 1] —

PlpL +pu > p1+ P2y pL <1 < pr + pul

and the second and third terms vanish as py approaches to zero. A similar argument can also
be used to verify the findings reported by Kushler and Hurley (1992) regarding the coverage
of several confidence intervals for the process capability index Cpx = min(&1/3, 2/3). That
is, the intervals are conservative when g is near T’ and give nominal coverage when y moves

away from 7.

In the case when & is near k,, an alternative lower confidence limit p* = p*(a, K, K>) is

derived in the appendix and is given by

- (b 1 _*_ (1' 1’ ) /\/(2}:71—1 q) 1 . (1{ I( ) Xgln—l
=& | — + max(hy, K - & | — — min(X;, SRS
P vn DA Vvn DN R S
The simulated confidence coefficient corresponding to confidence limit p* is given in Ta-
ble 2. Again, the interval is successful in maintaining the nominal confidence level and the
sample sizes considered have little effect on the performance of the interval. For the purpose

of comparing with confidence limit 1 — p; — p;, Table 2 also includes the simulated value of

E[p]/E[l = p1 — pa]-

From Tables 1 and 2, we can conclude that confidence limit 1 — p; — pj is less conservative
and produces a tighter bound for most cases. On the other hand, the confidence limit p*
is easier to compute and performs better when both x; and x, are small and are close to
each other. However, p* is derived based on the assumption that the probabilities of K; < 0

or I\ < 0 are negligible, meaning that u lies between L and U. Although in practice, we

9



expect the process mean to lie within the specification limits, nevertheless, it is a limitation

for p*.
Examples

For illustration, again consider n = 30. The 95% lower confidence limits 1 — p; — p; and
p* for pc are tabulated in Table 3 for a few combinations of K; and Kj. For other values of
a, n, K1 and K3, a computer program to compute these lower confidence limits is described
in Lam and Wang (1993). Table 3 confirms that the confidence limit 1 — p; — p, provides a
tighter bound for pc.

Modified Proportion of Conformance

It is common that the nominal value of a quality characteristic is not centered between
the upper and lower specifications. This generally occurs in an assembly-fit process where
deviation of the quality characteristic in one direction is less acceptable than deviation in
the other. The primary goal for design engineers in this case is not to simply maximize
the proportion of conformance. Instead, the engineers want to maximize proportion of
conformance under the additional constraint that the majority of products be produced

near to the nominal value.

Consider the two processes A and B in Figure 3, both processes have the same standard
deviation. However, the mean of process A is located at the center of the specification range
M and the mean of process B is located at the nominal value T'. Obviously, the proportion
of conformance pc of process A will be greater than that of process B even though the mean
of process B is at the nominal value. However, process B is preferable to process A if the
intent of the design engineers is to penalize deviation toward the lower specification less than
deviation toward the upper specification. This important fact is ignored in computing the

proportion of conformance of processes A and B.

This problem can be overcome by defining a modified proportion of conformance as dis-

cussed in Littig and Lam (1993). This modified proportion of conformance is maximized

10



when the process mean is located at the nominal value. Since deviation in one direction is
penalized more than deviation in the other, it is reasonable to use different distance scales
in measuring deviation from the nominal value. In particular, we choose constants d; and

d, such that
T-L U-T

dq dy

The modified ‘proportion of conformance, pg, is then given by

(G4 T2) -0 () wras

d20' d10' 10
P; = : (7)
U-p < T-L up- T) )
—0 (- - <
@ < d20' ) ¢ dl(T ng T = H

In this paper, we choose d; = 1 whenever T — L > U — T and d; = 1 whenever T' — L <
U —T. This choice of d; and d;, ensures that processes C and D in Figure 4 has the same
modified proportion of conformance. This is a desirable property since processes C and D
and their corresponding design specifications are mirror reflection of each other and should
be considered as performing equally well in meeting design specifications. Furthermore, it is
readily verified that p* defined in equation (7) is indeed maximized when the process mean
u is located at the nominal value T'. Also, if the mean of process E is T — r(T — L) and the
mean of process F is T + r(U — T') where 0 < r <1 (Figure 5), then both processes have
the same modified proportion of conformance. This is reasonable since both processes have
the identical proportion of allowable process mean deviation below and above the nominal

value.

m

The maximum likelihood estimator of p* can be readily obtained by replacing X for x and
S\/(n - 1)/n for o in equation (7). Judging by the results on p¢ in the previous section, this
should be an adequate estimator for p. Let p = (U —T)/(T — L) be the relative location of
T to the specification limits L and U. In particular, p = 1 means that the nominal value is
centered between the specification limits and pZ = pe. It is readily verified that equation (7)

is equivalent to

m

pc =1=pp —py

11



where

( .o K2 — PRa
<1>( __L_) if >0
max(1,1/p) 1+p
PL =
(k1 + K2) + (k1 — K2/p)\ ., K2 — pka
f <0
| \q’( T+ 1/p)max(1, ) ) T, s
and )
( (K1 + K2) + PE1)\ .. K2 — pKy
) f >0
( (1+p) matX(l 1/9)) T
PU =
@(-——2——’“ ) if 2P < g
~ max(1, p) 1+p =

In the equation above, (k3 — p&;)/(1+ p) = (T — p)/o. Hence, we would expect | k2 — p&; |
to increase as p deviates from the nominal value T. The same technique used to derive
the confidence limit for pc can be extended to obtain the lower confidence bound for the
modified proportion of conformance pZ. In particular, this confidence limit can be obtained
by solving for p* = pT*(a, K1, K) and p} = pi(a, K1, K3) from the following equations. If
(K — pky)/(1 + p) 2 0, the equations are

Pr._, [Tac1 (—vAmax(1,1/p) @71 (p7)) < VaKi]) =1 - e,
(8)

Pr,_, [Tn—l (—ymmax(1,1/p) @1 (pl)) < Val(Ky + K) + (K — PKl)]] —l-a

1+p

Otherwise, we solve for p™ and pT in the following e uations.
_ 4| P g eq

Va[(Ky + Ko) + (K — K‘*/”)] =l-a
1+1/p ) |

Pr,_, [Tn—n (—vnrmax(1,p) ®1(p7")) <
(9)

Pr,., [Tacs (—ymax(1,p) 071 (57)) < Viths] = 1 - .
A 1 — a lower-limit one-sided confidence interval for the modified proportion of conformance
is then given by 1 — p* — pJ*. Again, we carried out simulation studies described earlier
to evaluate the true confidence coefficient of this lower confidence limit. Simulations were

carried out for 1 —a = 0.95, n = 10,30, 50, p = 0.25,0.5,0.75 and a variety of combinations

of x; and k5. Note that the lower confidence bound is no longer symmetric about &; and

12



k, and we have to consider both k; > k; and k; < k2. Since pf = pc when p = 1 and
the definition of p# ensures that processes C and D in Figure 4 have the same modified

proportion of conformance, it is only necessary to consider p < 1 in our simulation.

Table 4 reports the results for p = 0.75. The results for p = 0.25,0.5 are very similar and
hence omitted here. From Table 4, it is clear that the proposed confidence interval is again
conservative. Also, as kg — pk, deviates from zero (u deviates from T') and keeping &, or
fixed (pf or p{} become smaller), the confidence coefficient approaches 1 — a. This fact can

also be verified using a similar argument as given for pc.
Examples

The 95% lower confidence limit 1 — p* — pJ* for pZ is tabulated in Table 5 for n = 30,
p = 0.75 and some common combinations of K; and K,. For other values of a, n, p, K;
and K3, a computer program in Lam and Wang (1993) can be used. Note that the lower
confidence limit is not symmetric in K; and K;. For example, when K; = 2.4 and K, = 3.0
(with K, —pK; = 1.2), the 95% lower confidence limit is 0.8954, while K; = 3.0 and K, = 2.4
(with Ky — pK; = 0.15), the 95% lower confidence limit is 0.9208. This is not surprising
since Ky — pK is smaller in the later case indicating that even though both cases have the
same sample standard deviation, the sample mean of the later case is closer to the nominal

value.

Conclusions

We have considered both point and interval estimation for the proportion of conformance
and a modified proportion of conformance. Proportion of conformance measures how well
the output of a process meets the specification limits. If the objective is to meet design
specifications and at the same time to require that the majority of products be produced
near the nominal value, then the modified proportion of conformance can be used. The

computer program used to obtain point estimates and confidence limits for pc and pZ is

described in Lam and Wang (1993).

13



All statistical procedures developed in this paper are based on the assumption that the
quality characteristic of interest can be modeled well by a normal distribution. As discussed
in Littig and Lam (1993), many quality characteristics such as flatness and goodness of
surface finish are modeled better by a skewed distribution such as a three-parameter gamma
distribution. Also, in many applications quality characteristics and tolerance regions are
multi-dimensional such as the hole location problem in a gear carrier with a circular tolerance
region (see, for example, Littig, Lam and Pollock (1993)). These topics as well as the
statistical tolerance interval problems for the distribution of pc will be the subject of future

research.
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Appendix

We seek p* = p*(a, K1, ;) such that

l-a = P[P[L<X <U}>)p]
= Pys|PIX = KiS< X < X+ K,8) > p']
p[-"—# S _Xop Xop S

g a a a

Z , Y Z , | Y .
q’('ﬁ"{"[\g :T)—(I)(ﬁ-*hl n——l) Zp:l

where Z 1s a standard normal random variable, Y is a chi-squared random variable with n—1

= Pxgs >p

= PZ,Y

degrees of freedom and is independent of Z. If the probabilities that K; < 0 and Ky < 0

14



are negligible, or if  lies between L and U, a result described in Wald and Wolfowitz (1946)

can be used to approximate the above equation. Specifically, for u > 0,
Ez @ (Z/Vn+u) -0 (Z/v/n—u)]
is closely approximated by
@ (1/vn+u) -0 (1/v/n—u)

the difference being of the order 1/n%. Making use of this approximation, an approximate

lower confidence limit p* can be obtained from the following equation.

e A s L) 2p] 1m0

Let ¢ be the solution of

1 , 1 , .
(o)l

Py [qu]=l—a

then by equation (10)

or

¢ = X2 /(n = 1)

where \2_, is the a percentile of a chi-squared distribution with v degrees of freedom. Taking

into account of symmetry, the result follows.
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Table 1. Simulated confidence coefficients for confidence limit 1 — p; — p; of po
l1-a=0.95
n

K1 Kg 10 30 50

1.0 1.0 | 0.9889 0.9937 0.9941
1.0 2.0 09760 0.9772 0.9783
1.0 3.0 || 0.9603 0.9570 0.9563
1.0 4.0 0.9496 0.9481 0.9496
1.0 5.0 ][ 0.9479 0.9471 0.9490
1.0 6.0 || 0.9474 0.9471 0.9490
2.0 2009728 0.9738 0.9742
2.0 3.0 0.9604 0.9586 0.9583
2.0 4.0 0.9491 0.9486 0.9491
2.0 5.0/09470 0.9475 0.9486
2.0 6.0 0.9469 0.9474 0.9486
3.0 3.0 0.9657 0.9661 0.9654
3.0 4.0 0.9542 0.9521 0.9507
3.0 5.0 0.9472 0.9471 0.9475
3.0 6.0 0.9468 0.9470 0.9474
4.0 4.0 (09621 0.9611 0.9614
4.0 5.0 0.9503 0.9498 0.9493
4.0 6.0 0.9459 0.9478 0.9480
5.0 5.0 |1 0.9597 0.9587 0.9588
5.0 6.0 | 0.9196 0.9479 0.9493
6.0 6.0 0.9577 0.9574 0.9573
4.0 -1.0 || 0.9823 0.9596 0.9538
5.0 -2.0 |1 0.9948 0.9558 0.9517
6.0 -3.0 [ 0.9999 0.9561 0.9518
7.0 -1.0 || 0.9514 0.9491 0.9491
8.0 -2.0 0.9506 0.9500 0.9497
9.0 -3.0( 0.9518 0.9517 0.9512
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Table 2. Simulated confidence coefficients for confidence limit p* of pc

l1—a=0.95

n

K1 K2 10 30 50

1.0 1.0 || 0.9815% 1.470° | 0.9750* 1.169° | 0.9707¢ 1.116°
1.0 2.0 09786 1.121 | 0.9737 1.036 | 0.9747 1.021
1.0 3.0 || 0.9738 1.020 | 0.9701 0.999 | 0.9691  0.997
1.0 4.0 09726 0.986 | 0.9688 0.992 | 0.9663  0.993
1.0 5.0 | 0.9719 0.977 | 0.9682 0.989 | 0.9658  0.992
1.0 6.0 || 0.9718 0.974 | 0.9681 0.991 | 0.9658  0.992
20 2.0 09795 1.043 |0.9737 1.014 | 09701 1.010
20 3.0 09742 0.998 |0.9718 0.995 | 0.9717  0.995
20 4.0 09714 0.975 |0.9707 0.988 | 0.9709  0.993
20 5.0 09712 0.967 |0.9705 0.988 | 0.9707  0.992
20 6.0 09712 0.955 |0.9705 ~0.987 | 0.9707  0.992
3.0 3.0] 09765 1.000 |0.9720 1.000 | 0.9694  1.000
3.0 4.0 09694 0.989 |0.9676 0.997 | 0.9692  0.998
3.0 501 09668 0.983 |0.9676 0.996 | 0.9686 - 0.997
3.0 6.0 0.9663 0.981 |0.9676 0.996 | 0.9686  0.998
4.0 4.0 | 0.9735 0.997 | 0.9710 1.000 | 0.9681  1.000
4.0 5.0 0.9665 0.994 | 0.9651 0.999 | 0.9668 1.000
4.0 6.0 09643 0.992 | 0.9649 0.999 | 0.9667  1.000
5.0 5.0 0.9697 0.998 | 0.9696 1.000 | 0.9674  1.000
5.0 6.0 || 0.9643 0.998 | 0.9629 1.000 | 0.9643  1.000
6.0 6.0 09677 0.999 |0.9672 1.000 | 0.9661  1.000

?simulated confidence coefficient

bsimulated value of E[pl/E[l = p1 — pa]
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Table 3. Lower confidence limits for pe

l-a=0.95and n =30

x*

Ky Ky||ll=pr—p2 p
24 3.0 0.9519 0.9490
3.0 3.0 0.9771 0.9789
3.0 4.0 0.9875 0.9842
4.0 4.0 0.9979 0.9979
1.0 6.0 0.9989 0.9984
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Table 4. Simulated confidence coefficients for confidence limit of pf

l1—a=095and p=0.75

n n
K1 Ko — pKi 10 30 50 K2 K1 —Ka/p 10 30 50
1.0 0.0 0.9899 0.9957 0.9958 | | 1.0 0.0 0.9838 0.9893 0.9904
1.0 1.0 0.9767 0.9792 0.9800 | | 1.0 1.0 0.9750 0.9823 0.9819
1.0 2.0 0.9648 0.9639 0.9633 1.0 2.0 0.9620 0.9662 0.9648
2.0 0.0 0.9732 0.9777 0.9786 | | 2.0 0.0 0.9683 0.9704 0.9699
2.0 1.0 0.9625 0.9611 0.9625 | | 2.0 1.0 0.9615 0.9659 0.9645
2.0 2.0 0.9515 0.9512 0.9513 2.0 2.0 0.9516 0.9559 0.9538
3.0 0.0 0.9670 0.9684 0.9675 | | 3.0 0.0 0.9624 0.9626 0.9625
3.0 1.0 0.9559 0.9539 0.9541 3.0 1.0 0.9559 0.9570 0.9562
3.0 2.0 0.9480 0.9479 0.9481 3.0 2.0 0.9487 0.9518 0.9517
4.0 0.0 0.9624 0.9626 0.9625 | | 4.0 0.0 0.9591 0.9586 0.9595
4.0 1.0 0.9518 0.9506 0.9515 | | 4.0 1.0 0.9523 0.9526 0.9528
4.0 2.0 0.9464 0.9479 0.9482 | | 4.0 2.0 0.9475 0.9499 0.9508
5.0 0.0 0.9597 0.9591 0.9593 | | 5.0 0.0 0.9572 0.9570 0.9570
5.0 1.0 || 0.9506 0.9486 0.9505 | | 5.0 1.0 0.9508 0.9511 0.9510
5.0 2.0 0.9469 0.9470 0.9486 | | 5.0 2.0 0.9481 0.9492 0.9503
6.0 0.0 0.9581 0.9579 0.9577 | | 6.0 0.0 0.9560 0.9560 0.9561
6.0 1.0 0.9494 0.9484 0.9504 | | 6.0 1.0 0.9503 0.9501 0.9506
6.0 2.0 0.9462 0.9470 0.9491 6.0 2.0 0.9485 0.9487 0.9501
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Table 5. Lower confidence limits for p#

l1—-a=0.95 p=0.75and n = 30

Ky K| 1-pf"—py
24 3.0 0.8954
24 4.0 0.9082
24 6.0 0.9104
3.0 2.4 0.9208
3.0 3.0 0.9428
3.0 4.0 0.9542
3.0 6.0 0.9560
4.0 2.4 0.9538
4.0 3.0 0.9788
4.0 4.0 0.9880
4.0 6.0 0.9894
6.0 2.4 0.9633
6.0 3.0 0.9884
6.0 4.0 0.9987
6.0 6.0 0.9998
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Figure 1: Root mean squared error of five different estimators for pc when n = 5 and

K1 = 30
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Figure 2: Maximum difference in root mean squared errors among the five estimators over

the range of k2 > 2.0 and «; = 3.0
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Figure 3: Process B is preferable to process A since it is centered at the nominal value T
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Figure 4: Processes C and D are mirror reflection of each other
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Figure 5: Processes E and F have the same modified proportion of conformance for any

0<r<l



