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Abstract — This paper presents algorithms for deriving optimal maintenance
policies to minimize the expected long run cost rate for continuous-time Marko-
vian deteriorating systems. The degrees of deterioration (except failures) of the
system are known only through inspection. The time durations of inspection
and replacement are non-negligible. The costs incurred are inspection cost, re-
placement cost, operating cost, and downtime (idle) cost. In particular, the
replacement time, replacement cost and operating cost rate increase as the sys-
tem deteriorates. Five maintenance strategies are considered — failure replace-
ment, age replacement, sequential inspection, periodic inspection, and contin-
uous monitoring strategies. Iterative algorithms are developed to derive the
optimal maintenance policy and the corresponding cost rate for each strategy.

Under sufficient conditions, structural optimal policies are obtained.



1. INTRODUCTION

Most manufacturing systems continuously deteriorate due to usage or age and are sub-
ject to random shocks which result in unexpected failures. For example, a machine may
continuously deteriorate due to cumulative wear, fatigue, corrosion, or erosion, and it may
also suddenly fail due to accidental changes in temperature or electrical voltage. Due to
the inevitable deterioration and random shocks, manufacturing systems may not retain in
a condition in which goods of an acceptable quality can be produced. To restore a highly
deteriorated or failed system is usually time-consuming and costly. Frequent inspection and
repair/replacement might reduce the chances of high deterioration and failure, however, it
also incurs unnecessary maintenance costs. Therefore, there are incentives to derive a main-
tenance policy to avoid failures or operating the system in an unacceptable condition while

reducing the total cost.

Maintenance policies of stochastically failing systems have been widely investigated in the
literature. Valdez-Flores and Feldman [17] provided a survey of recent works and [8, 12, 14]
are excellent reviews of earlier papers in this area. By assuming that the condition of a
system is always known without inspection or inspection time is negligible, many previous
works studied only replacement policies [1, 2, 15, 16, 18]. In practice, this assumption may
be invalid. In this paper, we investigate maintenance policies for systems whose degrees of
deterioration can be identified only through inspection. The deteriorating process is modeled
by a multi-state continuous-time Markov process. Our objective here is to determine an
optimal inspection and replacement policy such that the expected long run cost rate is
minimized.

To determine an optimal inspection and replacement policy, a particular strategy is usu-

ally pre-specified by maintenance planners under some practical considerations such as the
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limitation of technology, the cost of equipment, and the simplicity of implementation. Five
maintenance strategies are investigated in this paper — failure replacement, age replace-
ment, sequential inspection, periodic inspection, and continuous monitoring strategies. Spe-
cial cases of our model and strategies are given in [7, 9, 11, 13]. For these five strategies,
we provide iterative algorithms to derive the optimal policies and their corresponding cost

rates. The structures of the optimal maintenance policies are also investigated.
2. CHARACTERISTICS OF THE SYSTEM

1. At any point of time, the deteriorating process of the system can be classified into one of
a finite number of states 0,1, ,n,n+1. State 0 represents the initial new state of the
system. State n + 1 represents the terminal (failure) state of the deteriorating process.
The intermediate states 1,2, - - - ,n are ordered to reflect the degree of deterioration (in

ascending order).

2. The transition from one state to another follows a continuous-time Markov process
with an absorbing state n + 1. From state 7, a direct transition can occur only to state

1 + 1 due to deterioration or to state n + 1 due to a random shock.
3. Each inspection can reveal the state of the system perfectly.

4. Failures can be detected immediately without inspection. A failed system must be

replaced.

5. The repair/replacement cost and time are state-dependent. After the completion of

each repair/replacement, the deteriorating process is renewed (back to state 0).

6. During an inspection or a repair/replacement, the system is neither operating nor

deteriorating.



3. DESCRIPTION OF STRATEGIES

The five inspection and replacement strategies considered here are as follows:

1. Under a failure replacement strategy, no inspection is performed and the system is

replaced only when it fails.

2. Under an age replacement strategy, the deteriorating system is replaced at age t or
at failures, whichever occurs first. Since the replacement cost and time are state-
dependent, if the system does not fail before age ¢, an inspection is performed so that

we can repair/replace the system at lower cost in less time.

3. Under a sequential inspection strategy, the system is inspected sequentially to identify
the current state of the system. Once the system is identified to be in state 2, one
of the following decisions is selected: replace the system immediately, or inspect the
system ¢; units of time later. If the system fails before the next inspection, it is replaced

immediately at the time it fails.

4. In the special case when we constrain all the ¢; in the sequential inspection strategy
to be identical and independent of states, a sequential inspection strategy reduces to

a periodic inspection strategy.

5. Under a continuous monitoring strategy, the deteriorating system is operating and
being monitored continuously at the same time. The state of the system is known with
certainty at all time. Once the system enters state i, the decision is either to replace

the system immediately or to continue monitoring.
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4. NOTATION

The set of all states of the system, S = {0,1,---,n + 1}.

The set of all nonnegative real numbers, R* = [0, ).

The operating cost per unit time in state 1 € S\ {n + 1}.

The fixed repair/replacement cost in state 2 € S.

The mean repair/replacement time in state : € S.

The fixed inspection cost.

The mean inspection time.

The loss per unit time when the system is not operating.

The transition rate from state 7 to state n + 1 forz € S\ {n + 1}.

The transition rate from state  to state 1 + 1 for i € S\ {n,n + 1} (B = 0).
The total transition rate out of state i € S\ {n + 1}, i.e.,, i = a; + Bi.

The probability of the system presently in state ¢ will be in state j after ¢ units of
time.

The failure time distribution of the system starting from state 7. Note that F(t) =
n

Pin1(t) and Fit) = 1 = F(t) = Y P;(t).
i=i

The expected time that the system spent in state j during [0, ] given it starts from

t
state 1, i.e., Qi;(t) = ‘/0 P;j(u) du.

The expected operating cost of the system during [0,t] given it starts from state 3,
ie., Ai(t) = ) a;Qu(t).

3=
The expected time to failure given the system starts from state 3, i.e., pi =

/0 " Fi(u) du.

The time instant when the system is identified to be in statez € S.



The decision to repair/replace the system immediately.

The decision to inspect the system ¢ € IRT units of time later.

The decision to operate the system without inspection until it fails.

A sequence of decisions selected at time instant F;, 2 € S.

The decision at the time instant E; under policy é. In particular, we restrict
ourselves to Dg(n + 1) = R for all strategies.

The set of five strategies, f, a, s, p, and ¢ which represent failure replacement, age
replacement, sequential inspection, periodic inspection, and continuous monitoring
strategies, respectively.

The set of all policies, §, under strategy § € © with Ds(n + 1) = R.

The expected time from E; to the completion of next replacement under policy §
of strategy 6 € ©.

The expected cost from E; to the completion of next replacement under policy é of
strategy 6 € ©.

The optimal maintenance policy under strategy 6 € ©.

The optimal expected long run cost rate under strategy 8 € ©.

5. OPTIMAL POLICIES

The objective here is to derive optimal maintenance policies to minimize the expected long

run cost rate. Consider the renewal process formed by successive replacements and using the

standard results in renewal theory, the expected long run cost rate is equal to Y;(0)/X£(0)

for policy 6 under strategy § € ©. We want to find é; € Ag such that

.. Y0)  YR(0)
99 = 6l€nAfe X6g(0) - XG;(O)' (1)




For each g € IR*, define Wy(g) = 6i€nAfe[lQ9(0) — gX{(0)]. From [11], solving Equation (1) is
equivalent to finding a g; € R* and a policy § € Ay such that We(g;) = Y;(0) — g5 X5, (0)
= 0. It can be verified easily that Wj(g) is a continuous and nonincreasing function in ¢ € R*
for all 6 € © [5]. Note that minimizing the unavailability is a special case of the problem

considered here when m =1 and C; =a;, =M =0forallz € S.

Before presenting algorithms to obtain optimal policies, let us first introduce the following
sufficient conditions on the cost and time structures. Under these sufficient conditions, it

will be shown that the optimal policies of various strategies have structural properties.

(A1) 0<do< A <... <A
(A2) 0<ap <y <...<ay

(A3) 0<ro < <...<Pa <Tpy1— ¢

CO+M<01+M< <C,,+1+M<C,,+1

(A4) 0< < <...< <
To+ ¢ T +q Tnt1 ¢ Tntl
(A5) (—)‘13—(Co+mro)§ %—(Clﬁ-mrl)g...g %—(C’,ﬁ-mr,,)
0 1 n

Conditions (A1) to (A3) above are reasonable since they assume that it is more time
consuming and expensive to replace system with deterioration, and the transition rates
to higher states increase as the system deteriorates. Some of these conditions, especially
condition (A5), may seem to be very restrictive. As we will see later, these conditions are
not required in applying the algorithms to derive the optimal policies. However, if these
conditions are satisfied, the optimal policies have certain structural properties which can
help to facilitate the search of the optimal policies. The proofs of all the theorems presented

in this section are given in the appendix.



o Failure Replacement Strategy:

Under this strategy, Ay = {6:68 = [I(00),I(0),--+,I(c0), R]}. The expected long run
cost rate can be obtained easily as follows.

g = Y5I(O) _ Ag(00) + Cpyr + MTnt1
7 Xx1(0) Ho + Tnt1

Since both Ag(oo) and po are positive and finite, g; 1s also finite and it lies somewhere
between the expected average operating cost rate Ag(o0)/uo and the expected average failure
replacement cost rate m + Cry1/Tn1. If Ag(00)/po > m+ Cry1/Tas1, it is easy to show that
g3 > m. This means that the cost rate of operating the system is greater than the loss per
unit time in shutting down the system. To avoid triviality, we exclude this case and only

consider g} < m in our study.
o Age Replacement Strategy:

Under this strategy, A; = {§ =t :t € [0,00]}. Given any age t € [0, 0o] for replacement,
X2(0) = X7(0) and Y(0) = Y;%(0) can be calculated by the following equations.

n+1

X2(0) = /Fo Jdu + gFot) + Y Poj(t)rs, 2)
7=0
and
n+l
0 = Ade)+ (O +ma)Fs) + 3 Po(OCy + ). (3)

Define go(t) = Y;*(0)/X?(0), then gt = tel[g,io]g“(t)' Since g,4(t) is a continuous function
of t with gs(00) = g} and g,(0) = m + (M + Co)/(q + 7o), g. exists and we have 0 <
92 < min[g}, ga(0)]. Furthermore, let A(t,g) = ¥?(0) — gX2(0). Then, finding the optimal
expected long run cost rate g} and the optimal inspection time ¢ is equivalent to finding g?

and t} such that W,(g}) = tei[élf ]A(t,g;) = A(t;,9:) = 0.

To obtain the optimal age t; and the optimal expected long run cost rate g7 is straight-

forward. For each fixed g € [0, min[g},4a(0)]], A(t,g) is a continuous function of ¢t with
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A(07g) = M + CO + (m - g)(q + TO) a‘nd A(oo,g) = AO(OO) + Cn+1 + (m - Q)Tn+1 - 9#0 It
is clear that tei[gf ]A(t,g) exists and its value is finite. Since W,(0) = i[nf ]Yt"(O) > 0 and
00 te(0,00

Wa(g) < 0 when g € {g},92(0)}, g; exists and can be obtained by the following iterative

algorithm.

Step 0: Select an initial value g, e.g., set g = min[g}, ga(0)].
Step 1: Find t*(g) such that

Walg) = inf Alt,9) = A(t'(9),9)-
Step 2: If W,(g) =0, then g} = g and t; = t*(g). STOP.

Otherwise set g = ¥;2(;(0)/ X} (4)(0), GOTO Step 1.

The above algorithm is an example of a policy improvement algorithm as discussed in [6]. It
has been proved in [6] that the sequence of g obtained from a policy improvement algorithm

is monotonically decreasing and the algorithm converges in a finite number of iterations.

The following theorem facilitates the search of the infimum of A(t,g) for each fixed

g € [0, min[g}, ga(0)]].

Theorem 1. Under condition (A1) to (A5), for each fixed g € [0, min[g}, g(0)]], the function
A(t,g) has one and only one minimum value with respect to ¢t € [0,00]. Furthermore, if

A(t*(9),9) = tei[gf ]A(t,g), then t*(g) is unique.
o Sequential Inspection Strategy:

Under this strategy, A, = {§: Ds(i) = I(t;) or R,1 € S, t; € [0,00], Ds(n+1)= R}.

Given any D;s(3), X2(2) and Y;(¢) can be calculated using Equations (4) and (5) below.

[ Fwdut oFit) + 3 Pot)XIG) i Duli) = 1)
X6 = P @
r.- if Ds(s) = R

and
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Ai(t) + (M + mq)F(t:) + %1 P;(t:)Y5 () if Ds(i) = I(t)

Yi@) = (3)

Ci; + mr; if Ds(1) =R
When the transition rates of the continuous-time Markov process are finite and non-zero,
and Dg(2) # 1(0), it is easily shown that both X}(¢) and Y(2) are finite but unbounded on
A,. Obviously, there are three trivial decisions at Ey: I(0), I(co) or R. The corresponding
expected long run cost rates are m + M/q, g}, and m + Co/ro, respectively. Let gmin =
min[m + M/q, g;,m + Co/ro. The optimal expected long run cost rate g; is clearly bounded

above by gmin.

Given any g € R*, 1 € S, and § € A,, define Vj(i,9) = Y{(¢) — ¢X;(¢). From Equa-

tions (4) and (5) above, we have

Gs(1,9,t:) if Ds(3) = I(t:)

Vs(i,9) =
Ki(9) if Dg(i) = R
where
| 1 oo . N
Gs(1,9,t:) = 1= Pu(ty) A;(t;)+MF,-(t.-)+j§qH,-(t,')%(],g)—g/o Fi(u)du

M =M+ (m-g) and Ki(g) = Ci + (m — g)ri, 1 € S. Now, we want to find §' and
g: such that W,(g?) = 6i€nAf'%(0,g:) = V5:(0,9;) = 0. Since W,(0) = aienAf. Y7 (0) > 0 and
W,(g9) <0 when g € {m+ M/q,g},m+ Co/ro}, there always exists a g} € [0, gmin] such that
W,(g;) = 0. Furthermore, we know that Vs(n + 1,9) = Kpnt1(g) for all § € A,, it can be

verified easily
an—g¢ -
1— e”\n‘n + An + K’H’l(g) -M

Gs(n,g,tn) =

which is a decreasing function in t, € IR* provided that ¢ < m + M/q. The optimal policy

6; and the corresponding g} can therefore be obtained by the following iterative algorithm.
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Step 0:

Step 1:

Step 2:

Step 3:

Select an initial value g € [0, gmin] and construct a policy é; € A, as follows.
Set V*(n+1,9) = Kny1(g) and Ds,(n + 1) = R.

Set V*(n,g) = min [G,sg(n,g, oo),Kn(g)].

If V*(n,g) = Gs,(n,g,00) < Kn(g), then Ds,(n) = I(0).

If V*(n,g) = Kn(g), then Ds,(n) = R.

Forir=n-1,n-2,---,1,0,

Find t!(g) such that G*(i,9,t}(g9)) = inf G*(3,g,t), where

t€(0,00)
G 1 n+1 t _
*( t R — y — :
(,0:0) = Ty | A0+ HRWO+ X POV i) =9 [| Rl

Set V*(4,9) = min[G*(4, g, t{(9)), Ki(g)]-

If V*(4,9) = G*(3,9,ti(9)) < Ki(g), then Dy, (i) = I(¢(g))-
If V*(i,9) = Ki(g), then Ds,(2) = R.

If V*(0,g) =0, then g} = g and §; = §,. STOP.
Otherwise, set g = ¥7,(0)/X;,(0). GOTO Step 1.

In Step 1 above, it is obvious that for all g € [0, gmw|, Ds,(n) € {I(c0), R}. Note

that G*(4,g,t) defined in Step 2 above is a continuous function of t for all ¢ € (0, 00).

Furthermore, for each fixed g, we have tlim G*(3,9,t) = Ai(00) + Knt1(g) — gpi which is

finite. Also, fori € S\ {n + 1},

lim G*(3,9,%) = 4

(

o if0<g<m+M/q
i WV 1, Vit 1,9) - i

e+ a (’n+ g);'ﬁ (1’+ g) g>—oo 1fg=m+M/q
o ifg>m+ M/q

\

Therefore, for each g € [0,m + M/q], 1[nf G*(1,9,t) exists and is finite, and it may occur

at t = 0 or co. Step 2 above is therefore justified.

Theorem 2. If conditions (A1) to (A5) hold, then &, constructed in Step 2 of the algorithm
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above has the following structures for each fixed g € [0, gmin].

1. There exists a critical state k,(g) € S such that

Ds,(1) = R ifk(9)<i<n+1,
Ds,(3) = I(ti(g)) 0 <i<ky(g)

2. 00 2 t}(g) > t3(g) > 0for 0 <1 < 5 < ku(g).

Theorem 3. Under conditions (A1) to (AS5), for any g € [0, gmin] and ¢ € S\ {n + 1},
G*(%,9,t) has one and only one minimum value in ¢ € [0, 0o0]. Furthermore, if G*(s,g,t!(g)) =

f G*(i,9,t), then t*(g) is unique.
tel[g | (z,9,t), then t¥(g) is unique

o Periodic Inspection Strategy:

As mentioned before, periodic inspection strategy is a special case of sequential inspection
strategy, i.e., Ap = {6 : Ds(i) = I(t) or R,i € S,t € [0,00], Ds(n + 1) = R} which is a subset
of A,. Therefore, g; is bounded below by g; and also bounded above by gmi,. Given an
inspection period ¢, X§(¢) and Y§ (i) can be calculated using Equations (4) and (5) with
t; = t. Using the same argument given for sequential inspection strategy, the following

iterative algorithm can be used to search for ¢, §; and g;.

Step 0: Select an initial value g € [0, gmin].
Step 1: Select an initial value ¢, e.g., set t = o and construct a policy &, as follows.
Step 2: Set V*(n+1,9,t) = Kny1(g) and Ds,(n + 1) = R.
Step 3: For:=n,n-1,---,1,0,
Set V*(4,9,t) = min[G*(4,9,t), Ki(g)],where

n+1

g (7' g)t) T—;;_(){A( +MF + Z PiJ .7)9) —thF((u)dU}.

7=1+1

If V*(i,g,t) = G*(i,9,t) < Ki(g), then Dy, (i) = I(t).
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If V*(3,9,t) = Ki(g), then D5 (z) = R.
Step 4: If V*(0, g,t) achieves its infimum at ¢, then GOTO Step 5.

Otherwise, update ¢ by Fibonacci or Secant search methods and GOTO Step 2.
Step 5: If V*(0,g,t) =0, then t; = ¢, §; = é;, and g; = g. STOP.

Otherwise, set g = Y7 (0)/X7 (0). GOTO Step 1.

Theorem 4. If conditions (A1) to (A5) hold, then é, constructed in Step 3 of the algorithm

above has the following structures for each fixed g € [0, gmin) and t € (0, 00).

1. There exists a critical state ky(g) € S such that
Ds,(i) = R ifky(g)<i<n+1,
Ds,(3) = I(t) if0<i<ky(yg),

2. If Gs,(n,g,00) < Kn(g), then Ds,(2) = I(o0) for alli € S\ {n + 1}.

The following theorem compares the optimal cost rates of the four strategies considered

so far.
Theorem 5. g; > g5 2 gp 2 95
o Continuous Monitoring Strategy:

Under this strategy, since the current state of the systern. is always known, we only
need to restrict ourself to the set of all policies § such that Ds(i) = Rif k <1 <n+1,
and Ds(i) = CM (continue monitoring) if 0 < 4 < k for some critical state k € S. For
éasier interpretation, let X§(¢) = Xg(3) and Y5 (2) = Y£(4) if k € S is the critical state for
replacement. They can be calculated recursively using the following equations.

l+-°ﬁrn+1+@X{;(i+1) f0<i<k<n+l1

Xi(3) = AN A ,
Tk ifi=k
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and

B O Gt + i) + DY +1) HOSi<h<nt ]
YeG) = (A A Ai
k

Ck+m7'k fi=k

Let g.(k) = Y¢/Xs. We want to find a k! € S such that

9 = jnof g.(k) = ;ggykg = X

Obviously, we have g.(0) = m + Co/ro < oo and gc(n+1) = g} < co. Therefore, the value of
g2 is finite and bounded above by min [g.(0), g.(n + 1)]. Since there is only a finite number of
states, the optimal cost rate g7 and the optimal policy k! can be obtained by searching k € S
such that g.(k) is minimal. It has been shown that under appropriate conditions, g < g?

[4]. For a detail theoretical comparison of continuous and sequential inspection strategies,

see [4].
6. CONCLUSION

In this paper, we present algorithms to derive optimal maintenance policies for five differ-
ent strategies. Under sufficient conditions (A1) to (A5), we show that the optimal policies
have structural properties. These structural properties are summarized in Theorems 1 to 4
and they help to simplify the numerical search of the optimal cost rates and the correspond-
ing optimal policies. Theorem 5 indicates that sequential inspection strategy is preferred if
it is applicable in practice. It is worth pointing out here that although Theorems 2 to 4 in
this paper are extension of [9, 11] for a more general model, the proofs of our theorems are

much simpler.

Even though conditions (A1) to (A5) may be difficult to obtain in practice, the iterative
algorithms developed in this paper are still applicable when these conditions are not satisfied.

Using these algorithms, maintenace planners can compute and compare the optimal cost
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rates of different maintenance strategies. This allows them to select a maintenance strategy

according to their practical considerations. Hence, results in this paper are both of practical

and theoretical interest.

APPENDIX

Since the transitions of the deteriorating system follow a continuous-time Markov process,

the transition probabilities P;;(t), 1,7 € S and ¢t € IR* satisfies the following Kolmogorov’s

equations.

Kolmogorov’s forward equations:

gt-a-(t) = APt = <heM  for0<i<n,

d .

Pa(t) = —APi(t) + i1 Pija(t) for0<i<j<n,

%ﬁ:(t) - jX::iajP,-j(t) for 0< i <n.
Kolmogorov’s backward equations:

%Pz’j(t) = —APy(t) + BiPiri(t)  for0<i<g<nm,

d _ _
—F(t) = NF(t) - BiFin(t)
= =-MNFE@)+BiFi(t)+ o for0<i<n,

Proof of Theorem 1:

Fori € S, let bi(g) = a;— \iKi(g)+B:Kis1(9) + o[ Knt1(g) — M] where M= M+(m—g)q
and Ki(g) = Ci + (m — g)ri. Under conditions (A1) to (A35), it is easy to show that b;(g)
is nondecreasing in j € S\ {n + 1} for g < g4(0) [5]. Using Kolmogorov’s forward equations,

for each fixed g € [0, min{g}, ga(0)}], we have

d

2 At,9) = 3 P8 s(9) — 9.
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Since b;(g) is nondecreasing in 7, b;(g) — g is nondecreasing in j and changes its sign at most
once from negative to positive. Furthermore, Py;(t) is a total positive function of order 2
(TP,) functionin j € S\ {n+1} and t € [0, 00) [5, 10, 11]. Using the variation diminishing
property of T P, functions (3], ditA(t,g) changes its sign at most once in ¢ from negative to

d d
positive. If EA(t,g) changes its sign at t*(g) € (0, 00), then t*(g) is unique since EA(t,g) is

a linear combination of a finite number of exponential distributions and it is not a constant

. : : . d
function of ¢ in any open interval unless it is a constant for all ¢t € R*. If —A(¢, g) does not

dt

d
E.A(t,g) 1s either positive or negative for all ¢ € [0, 00]. In this case,

t*(g) is either 0 or oco. J

change its sign, then

Proof of Theorem 2 part I

For each fixed g € [0, go(0)] (note that g4(0) > gmin) and 2 € S\ {n + 1}, define

:(t) = Ai(t) + ME(t) +f§P.z t)Ki(g / u) du — Ki(g).

l=1

We know that V°(7,6) = min | inf "(3,5,9), K(g>] L., V(i) < Ky(g) for all j € 5.

Hence,
®i(t) 2 1 - Pu(t)][G°(3,9,2) — Ki(g)] (A1)

whose equality holds only when V*(j,g) = K,(g) for all 7 > 1.

Using Kolmogorov’s forward equations and the definition of Q;;(t), ®;(¢) can be rewritten

as follows.

&) = M+3 Qii(t)lb(g) g

j=i

£)bi(g)
_ (/;F}(u)du> /, M= i ~q].

A Fi(u)du ZQiu(t)



Since b;(g) is nondecreasing in j € S\ {n+1} under conditions (A1) to (A5) for each fixed
g € [0,44(0)], it follows that given any arbitrary c € R*, b;(g) — ¢ changes its sign at most
once in j from negative to positive. Given any t, @;;(t) is T P; functioninz and j € S\{n+1}

[11] which in turn implies that Q;(t) Z Qiu(t) isalso TPyiniand j € S\ {n+1}. Using

u=1

the variation diminishing property of T P, functions, Y _ @:;(t)[b;(g) —¢c] /) _ Qiu(t) changes
i=i =
its sign at most once in ¢ and the only possible change is from negative to positive. Since c

is arbitrary, this implies that Y Qi;(t)b;(g) / D_ Qiu(t) is nondecreasing in 1. Furthermore,

J=t u=t

it is easy to show that M// u)du is nondecreasing in ¢ when ¢ < m + M/q [5, 10].
Since g is a constant and / :(u) du is positive, we can conclude that ®;(t) changes its sign
0

at most once in ¢ and the only possible change is from negative to positive.

Suppose there exists an i € S\ {n + 1} such that Ds,(¢) = R, i, G*(4,9,ti(g)) =

tel[gf G*(i,9,t) > Ki(g). From Equation (A.1), we have ®;(t) > 0 for all ¢ € [0,00]. We

can now conclude that for all j > 7 and ¢ € [0, 00|, we have ®;(t) > 0. Since V*(n+1,g) =
Kni1(g), it follows from Equation (A.1) that G*(n,g,t) > Ka(g) and Ds(n) = R. Repeat

this argument for j =n —1,n —2,---,1+ 1, we have Ds(j) = R for all j > 1. ]

Before the proofs of Theorem 2 part 2 and Theorem 3 are given, let us define
Di = ai— AV°G,9) + AV (i+1,0) + & [V(n+1,9) - M|-g

and show the following Lemma holds.

Lemma A.1. For any g € [0,m + M/q], T; changes its sign at most once from negative to

positiveinz € S\ {n + 1}.
Proof. Using Kolmogorov’s backward equations, we have
d ... - .- .
1= Pu(t) 2G'(i,9,t) = it +X[V'(i,9) =G (1,9,%)]
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-{-,@,[ - 1+1 z+1( )] [G‘(7‘+ 1,g,t)— V‘(i'{' 1:9)]' (Az)

Given g € [0, + M/q], it is clear that G*(s + 1,9,t) > V*(i + 1,9) and M > 0. Since
EZG'(z g, )t=¢;(g) =0, it follows that T'; + X, [V*(z,9) — G*(4,9,t(g))] < 0. If there exists
ani € S\{n+1} such that I'; > 0, then V*(z,9)—G*(3, 9,t{(g)) < 0 which implies Ds,(:) = R
and V*(4,9) = Ki(g). From Theorem 2 part 1, we know that if D, (i) = R, then Ds,(j) = R
for all 7 > 4. In this case, I'; = b;(g) — g for all 7 > 1. Since b;(g) is nondecreasing in 7,

['; > 0 for all 7 > 2. Result follows. O
Proof of Theorem 2 part 2 and Theorem 3:

Using Kolmogorov’s forward equations, we have

n

[1- P.'.-(t)]%G'(i,g,t) =) Pi(t)0; + MPa(t) [V*(i,9) - G*(3,9,8)]  (A3)

=i

and

1= Panan@)[GG+ 1,0, - VG + 1,0 =+ Y Quuus(ly.  (A4)

J=i+1
Substituting Equation (A.4) into (A.2), we have
. . d . - =
NV(5,0) = 6(6,,0)] = (L~ Pu(t)] SC°(i,0,)~ T~ NI~ B, 3" Quea (8T
j=i+1

Equation (A.3) can now be rewritten as

1) — [1 - Pﬁ(t)]z d * ’B‘ . .
W:(t) = A,P“(t) dtG (7' g) M+ _zH:-l \: P"( ) AiQt‘H,J(t) F]'
Using Kolmogorov’s backward equation, we have
d Bi [1
at=""7p (t) _ZH P (A.5)

From Lemma A.1, we know that T'; changes its sign at most once from negative to positive

in 2. Since P4 j(t) is T P; function in j and ¢, using the variation diminishing property of
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. d
T P, functions, we can conclude that —W;(t) changes its sign at most once from negative

dt
to positive in t. Furthermore, since W;(0) = —M < 0, W;(t) changes its sign at most once

. e d .. .
from negative to positive in ¢ and so does EG‘(Z, g,t). Using the same argument given in

the proof of Theorem 1, we can show that ¢!(g) is unique.

Let Ui(t) = [1 — Pu(t)] G*(3,9,t). Using Kolmogorov’s forward equations, we have

%Ui(i) = Zn: P;(8)T5 + MPs(t)V* (1, 9).

3=t

Equation (A.5) can therefore be rewritten as

d Bi [l — Piu(2)] [d

)= S B L PV G4 10) . (a6)

By the definition of W;;1(t) and Us41(2), it is easily to verify that

[1 = Piyrisa(t)] [i
Ait1Piyr,ipa(t) |dt

For 1 < k,(g) — 1, we know that W;1(t},,(9)) = 0 and G*(3 + 1,9,1},,(9)) = V*(: + 1, 9).

Wi+1(t) = U,‘.H(t) - Ag+1Pi+1,{+1(t)G‘(i + ].,g,t):| .

These imply iW,-(t) = 0. Since W;(0) < 0, Wi(t:(g)) = 0 and i)’V.~(t) changes

dt dt
t=¢;+1(g)
its sign at most once from negative to positive in ¢, it is obvious that Wi(t{,,(g)) < 0 and
tia(9) < ti(9)- O
Proof of Theorem 4:

The same argument used in the proof of Theorem 2 part 1 can be used to prove Theorem 4

part 1. Theorem 4 part 2 is a direct consequence of Theorem 2 part 2. O

Proof of Theorem 5:

We only need to show that g} > g5. Let 6, = [R,R,...,R] and §; = [I(t;), R, R, ..., R].
Obviously 6;,8; € A, and the expected long run cost rates of these two policies are given by

YZ(0 C
o = w0 _ G

X5,(0) o

o
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and for all t; € [0, o0]
n+1

A( )+(M+quo +EPO] C+mr])

X2 (0) t =
62( ) /; FO( )d’u,+qF0 +ZP0]

Now for all ¢2 € [0, 00], it is clear that

n+1l

Ao(t2) + (M + mq)Fo(t: +ZP0, )(C; 4+ mr;) + Poo(t3)(Co + mryo)

ga = " n+1

/OGFO( )du+qF0 +ZP0J TJ+P00( )

> min(g1,92) > g

References

[1] R. E. Barlow, F. Proschan, Mathematical theory of reliability, 1965; John Wiley & Sons.

[2] W. J. Hopp, S. Wu, “Machine Maintenance with Multiple Maintenance Actions”, IIE

Trans., vol 22, 1990, pp 226-233.

[3] S. Karlin, Total Positivity, Vol. 1, 1968; Stanford University Press, Stanford.

[4] C. T. Lam, R. H. Yeh, “Comparison of Sequential and Continuous Inspection Strategies

for Deteriorating Systems”, To appear in Advances in Applied Probability, June 1994.

[5] C. T. Lam, R. H. Yeh, “Supplementary Results in the Comparison of Various Main-

tenance Strategies for Deteriorating Systems”, Technical Report 92-33, University of

Michigan, 1992.

[6] C.T.Lam, R. H. Yeh, “Optimal Replacement Policies for Semi-Markovian Deteriorating

Systems”, Technical Report 92-41, University of Michigan, 1992.

21



[7] H. Luss, “Maintenance Policies when Deterioration can be Observed by Inspections”,

Operat. Res., vol 24, 1976, pp 359-366.

(8] J. J. McCall, “Maintenance Policies for Stochastically Failing Equipment : A Survey”,

Management Science, vol 11, 1965, pp 493-524.

(9] H. Mine, H. Kawai, “An Optimal Inspection and Replacement Policy”, IEEE Trans.

Reliability, vol 24, 1975, pp 305-309.

[10] H. Mine, H. Kawai, “An Optimal Inspection and Replacement Policy of a Deteriorating

System”, J. Operat. Res. Japan, vol 25, 1982, pp 1-15.

[11] M. Ohnishi, H. Kawai, H. Mine, “An Optimal Inspection and Replacement Policy for a

Deteriorating system”, J. Appl. Prob., vol 23, 1986, pp 973-988.

[12] W. P. Pierskalla and J. A. Voelker, “A Survey of Maintenance Models : The Control
and Surveillance of Deteriorating Systems”, Naval Research Logistics Quarterly, vol 23,

1976, pp 353-388.

[13] B. Sengupta, “Maintenance Policies under Imperfect Information”, European J. Opl.

Res., vol 5, 1980, pp 198-204.

[14] Y. S. Sherif and M. L. Smith, “Optimal Maintenance Models for Systems Subject to

Failure-A Survey”, Naval Research Logistics Quarterly, vol 28, 1981, pp 47-74.

[15] S. H. Sim and J. Endrenyi, “Optimal Preventive Maintenance with Repair”, IEEE

Transactions on Reliability, vol 37, 1988, pp 92-96.

[16] S. H. Sim and J. Endrenyi, “A Failure-Repair Model with Minimal & Major Mainte-

nance”, IEEE Transactions on Reliability, vol 42, 1993, pp 134-140.

22



[17] C. Valdez-Flores and R. M. Feldman, “A Survey of Preventive Maintenance Models

for Stochastically Deteriorating Single-Unit Systems”, Naval Research Logistics, vol 36,

1989, pp 419-446.

(18] A. P. Wood, “Optimal Maintenance Policies for Constantly Monitored Systems”, Naval

Research Logistics, vol 35, 1988, pp 461-471.

23



