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SUMMARY

We consider the inference problem of estimating covariate and genetic effects in a family-based case-
control study where families are ascertained on the basis of the number of cases within the family. However,
our interest lies not only in estimating the fixed covariate effects but also in estimating the random effects
parameters that account for varying correlations among family members. These random effects parameters,
though weakly identifiable in a strict theoretical sense, are often hard to estimate due to the small number
of observations per family. A hierarchical Bayesian paradigm is a very natural route in this context with
multiple advantages compared with a classical mixed effects estimation strategy based on the integrated
likelihood. We propose a fully flexible Bayesian approach allowing nonparametric modeling of the random
effects distribution using a Dirichlet process prior and provide estimation of both fixed effect and random
effects parameters using a Markov chain Monte Carlo numerical integration scheme. The nonparametric
Bayesian approach not only provides inference that is less sensitive to parametric specification of the
random effects distribution but also allows possible uncertainty around a specific genetic correlation
structure. The Bayesian approach has certain computational advantages over its mixed-model counterparts.
Data from the Prostate Cancer Genetics Project, a family-based study at the University of Michigan
Comprehensive Cancer Center including families having one or more members with prostate cancer, are
used to illustrate the proposed methods. A small-scale simulation study is carried out to compare the
proposed nonparametric Bayes methodology with a parametric Bayesian alternative. Copyright © 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Genetic epidemiology is a relatively new field that applies conventional epidemiologic designs and
methods to explore the role genetic factors play in determining the etiology of a disease. Both
theoretical and empirical studies have shown that traditional linkage studies may be inferior in
power compared with studies directly utilizing allele status. On the other hand, population-based
case—control association studies are subject to bias due to population stratification. As a compro-
mise between linkage studies and population-based case—control studies, family-based association
designs have received great attention recently due to their potentially higher power to identify
complex disease genes and their robustness in the presence of population substructure [1-3].

A common phenomenon in genetic epidemiologic research is that sampled families are not
representative of the targeted population as they are ascertained through probands with known
phenotypic values. It is well known in the literature that statistical inference without proper
ascertainment corrections would lead to biased estimations of the key parameters of interest. One
simple remedy is to condition on the observed phenotypic values of the probands. In family-based
case—control studies, a natural approach to account for the family effect will be to conduct a
matched case—control analysis with controls selected from the same family and to use conditional
logistic regression (CLR) conditional on the number of cases in each family (there could be more
than one person affected by the disease in a family). However, one must use caution if controls
are selected from outside of the case-ascertainment region [4, 5].

Despite the need to estimate family-specific random effects parameters, a mixed-model approach
can lead to substantial gain in efficiency, relative to the conditional likelihood [6, 7]. Whittemore,
Zhao et al. and Neuhaus et al. [§—10] proposed marginal or population-averaged models to analyze
family-based data. However, often we are interested in family-specific effects that relate the
probability of the response to changes in covariates within a family. Neuhaus ef al. [11] compared
and contrasted the estimates from the family-specific model and the marginal model. A standard
route to model a correlated binary response as illustrated in [12] is to introduce a random effect as
a linear predictor in a generalized linear model. Akin to this approach, Pfeiffer et al. [13] proposed
a two-level mixed effects model to estimate environmental effects while accounting for varying
genetic correlations among family members and adjusting for ascertainment by conditioning on the
number of cases in the family. Pfeiffer et al. [13] based their analysis on the marginal conditional
likelihood after integrating with respect to the joint random effects distribution of individual and
family-level genetic effects. This approach took into account unmeasured familial and genetic
effects that induce correlated responses and yielded consistent estimators of covariate effects under
certain conditions, even with a misspecified random effects distribution.

The approach presented in [13] has certain flexibilities but comes with the drawback of compu-
tational complexity as one has to approximate the integrated likelihood by Monte Carlo samples.
Although the Monte Carlo approach worked well in the examples presented therein, larger Monte
Carlo samples or other methods may be needed for larger pedigrees. The optimization algorithm
proposed in [13] requires fixing certain parameters and then searching for an optimum in the
space of other parameters to overcome numerical instability; this conditional grid search may
not always be quite efficient. We propose a full Bayesian approach to construct a hierarchical
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pedigree structure assuming priors on the genetic random effects, which offers an appealing
alternative.

Pfeiffer et al. [13] modeled the covariance matrix of the genetic random effects as a function
of the degree of kinship between members in each family by assuming no dominance compo-
nent of the genetic variance [14]. Thus, their inference regarding the parameters related to the
individual-level random effects was reduced to inference on only one scalar common variance
parameter aﬁ as they assume a fixed correlation structure. Instead of assuming a fixed correlation
structure, we introduce generation-specific variances, and interclass (between two generations,
e.g. parent—offspring) and intraclass (within the same generation, e.g. offspring—offspring) corre-
lations. Neuhaus et al. [15] presented family-specific models in a similar general structure and
provided an elegant semiparametric likelihood estimation strategy. Pfeiffer et al.’s [13] two-level
mixed model can be viewed as a special case of this more general class of models. Our proposed
Bayesian methodology is not restricted to any specific model description or genetic correlation
structure. However, we consider for illustration purposes the two specific situations: (i) parent—
offspring familial data and (ii) Pfeiffer e al.’s [13] mixed effects model with a general pedigree
structure.

Though the hierarchical Bayesian approach with parametric priors on the random effects is also
novel to this specific problem, we take our approach an additional step further by nonparametric
modeling of the random effects distribution using a Dirichlet process (DP) prior [16]. Pfeiffer ef al.
[13] pointed out that in many cases one does not know the precise nature of the genetic influences
and hence the distribution of familial or individual-level genetic effects. The estimated random
effects for each individual and family will be modified by changing the distribution of the random
effects. This point is quite critical because there are many applications in which estimates of the
random effects parameters themselves are desired. Given the nature of the current problem in mind,
we allow this additional layer of model uncertainty via a flexible nonparametric Bayesian approach
to attain robust inference. There has been a significant volume of recent literature on parametric
Bayesian approaches to random effects logistic models [17, 18]. Bayesian nonparametric modeling
of random effects distribution has been considered by several authors [19-21], but the application
to family-based studies becomes especially interesting due to the sparsity of the information in
each family, the familial correlation structure and the ascertainment correction in the likelihood.

In this paper, we provide a fairly general framework for nonparametric Bayesian modeling of
the random effects distribution for family-based association studies. The primary advantages of our
hierarchical Bayesian approach are: (i) it allows the possibility of incorporating prior information
on the correlation and variance components parameters, which are hard to estimate due to limited
observations per family, (ii) the DP prior works as an automated data-adaptive dimension reduction
technique to handle the family-specific parameters as well as provide a model-robust alternative for
the random effects distribution and (iii) it provides a comprehensive computing algorithm based
on the exact posterior distribution of model parameters as enumerated via a Markov chain Monte
Carlo (MCMC) numerical integration scheme avoiding complex optimization and approximation
issues involved with the classical integrated likelihood approach.

The rest of the paper is organized as follows. In Section 2, we present the likelihood, the
integrated likelihoods and the conditional likelihoods under different model structures. We intro-
duce the proposed Bayesian approaches with description of priors, and details of parametric and
nonparametric modeling of the random effects distribution in Section 3. In Section 4, we apply our
proposed method to data from the University of Michigan Prostate Cancer Genetics Project (PCGP),
a family-based study of inherited prostate cancer susceptibility, and then end the section with a
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small-scale simulation study to illustrate the advantage of our Bayesian nonparametric method.
Section 5 contains concluding discussion, while some proofs, model extension and computational
details are relegated to the Appendix.

2. MODELS AND LIKELIHOODS

Let the family data consist of a binary disease status variable Y;;, together with a collection of
covariate vectors X;; for the jth member of the ith family, i=1,...,1 and j=1,...,n;. Let
Y; :(Yil,...,Yinl.)T and X; =(X,~1,...,X,~nl.)T denote the data corresponding to the ith family.
We specify a vector of random parameters b; specific to the ith family, capturing familial random
effects. In its most general specification, we essentially consider the following mixed effects logistic
model [22, 23]:

Pii
10g{%}=#+ﬁxij+zijbi )]
— Pij

where p;j=P(Y;j=1|b;, X;;,Z;;) and f stands for the effects of the covariates on the disease
status. With an appropriate choice of Z;;, we can model different pedigree structures and correla-
tions [15].

2.1. Mixed model for parent—offspring familial data

Case-siblings and case-parents designs are fairly common family-based designs that may be
viewed as special cases of the parent—offspring data that we consider. We propose the following
mixed effects model to account for generation effects (e.g. parent and offspring variance compo-
nents) and different correlations among family members. We introduce a model with interclass
(parent—offspring) correlation within family, induced through the random effects and an intraclass
(offspring—offspring) correlation through disease responses (Y -values) in the bivariate familial
data.

For simplicity in illustration, in the description below, we consider #; =4 members in each family,
among whom two are parents and the other two are offspring. Let b;; and b;> denote the random
genetic effects for the parent and the offspring in each family i, respectively. Z;;1 =1, Z;j> =0, if
the jth member in family i is the parent; and Z;;; =0, Z;j> =1, if the jth member in family i is the
offspring. Z; is a 4x2 matrix of indicator variables with (Z;;1, Z;;2) as the jthrow, j=1,...,4.
Thus (1) becomes

Dii
log{l——l;)“}='u+ﬁxij+zijlbi1+Zij2bi2 )
ij

b; follows a bivariate distribution with the expectation of b; = (bj1,bi2)T being ubz(,ubl,ubz)T
and the variance—covariance matrix

2
o PpcOpOc
2b=< b ) ) A3)
PpcOpOc o,

C
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Table 1. The joint probability P (Y3 =d;3, Yia=d;4|X;, Z;,b;) under the
mixed model for parent—offspring familial data.

Y; Y; P(Yi3=d;3, Yia=djs|X;, Z;, b;)

1 Pi3Pia+Piey/Piz(1—piz) pia(1—pis)

0 pis(1=pia) = piey/Pis (1= pi3) pia(1—pis)
1
0

(1= pi3) pia—Picy/Piz(1— pi3) pia(1 = pia)
(1= pi3) (1= pig) + pie/ Piz(1—=pi3) pia(1— pia)

S O = =

Note that p;, is not part of fixed effect of . X, allows separate variance components for parents
(af,) and offspring (ag) and the correlation between random effects b;; and b;; corresponding to
parents and offspring, denoted by p .

In each family we assume that conditional on the random effects, the parents are unrelated,
but there could be potential correlation among offspring, which in this model we define by p.
through the direct correlation between Y-values rather than being imposed on the logistic scale
via the random effects. Therefore, conditional on b;, the responses Y;; of two parents within a
given family i are independent; so are the responses of the subjects from two different gener-
ations in family i, but the responses Y;; for two offspring are correlated. Hence without loss
of generality, let the first two members in each family be the parents, P(Y;1, Yi2|X;,Z;,b;)=
P(Yi11Xi,Zi, b)) P(Yi2|X;, Zi,b;), and P(Yij, Yy |Xi, Zi, b)) = P(Yij|Xi,Z;,b;) P(Y;j/|Xi, Zi, b;)
for ] = 1, 2 and j/=3,4, but P(Yi?,, Y,‘4|Xl‘, Z,‘, b,’) 75 P(Y,‘3|X,‘, Z,’, bl')P(Yl‘4|X,', Zl', b,‘). The calcu-
lation of the joint probability of Y;3 and Y;4 given b; is just treating Y;3 and Y;4 as two correlated
binary variables with correlation p}.. The results are shown in Table I (for detailed calculation,
see Appendix A.1).

Thus, the joint probability for each family i can be written as the following:

P(Y;=d;|X;,Z;,b;)
=PYi1=di|Xi, Z; b)) P(Yio=di2|X;, Z;,b;) P(Yi3=d;3, Yia=d;is|X;, Z; , b;)
=pi1pi2 x P(Yi3=d;3,Yia=dis|X;, Z;,b;) “4)

In many situations, we may have more than two offspring in each family. In the Appendix,
we show how to calculate the joint probability P (Y;3, Yi4, Yi5|X;,Z;,b;), i.e. when we have three
offspring in each family, with some discussion of possibilities to extend the structure to the case of
a general number of offspring. However, for illustration purposes, we restrict our attention to this
special case. Please note that the essential idea of introducing varying correlations across degree
of relation could be extended to any larger pedigree structures.

The model we propose for parent—offspring data departs from the standard class of mixed
effect models where the Y-values are typically independent, conditional on the family-specific
random effects. In our model conditional independence holds except for the offspring—offspring
correlations, which remain even after conditioning on the random effects. In that sense, this model
may be viewed as a hybrid blend of a population-averaged and family-specific approaches. Note
also that the parent-offspring interclass correlation p,. may be viewed as a measure of genetic
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correlation, while the offspring—offspring intraclass correlation p}. measures the correlation of
the disease responses between the offspring and does not have an interpretation in terms of pure
genetic correlations only.

2.2. Mixed model of Pfeiffer et al. [13] with modified covariance structure for familial random
effects

We now describe the two-level mixed model proposed by Pfeiffer et al. [13]. Let a; denote the
random familial effect for each family i and g;; stand for an individual random genetic effect for
the jth individual in the ith family. The g;;’s are correlated within the ith family, but independent
across families. Model (1) can be rewritten as follows:

P(Yij=1la;, gij, Xij) }
1 =u+pXij+ai+gij %)
{P(Yij=0|ai,gij,Xij) Vo

where a; and g; =(g;1, ..., 8in;) have expectation zero, and (a;, g;) are assumed to be independent.
Following [14] and assuming no dominance component of the variance, Pfeiffer et al. [13]
modeled the covariance matrix of the g;’s (i=1,...,1),2%;, as a function of degree of kinship

between members in the family:

2

—2(R); =8 6
cov(gij, git) =0y ( i)j,l—m (6)

where k(j,l) denotes the degree of kinship between members j and / in the ith family. For
example, k(j, j)=0 and k(j,l)=1 if j and / are first-degree relatives. For unrelated members,
such as spouses, k(j,I)=o00.

Instead of fixing the genetic correlations, we rather introduce the covariance matrix of the g;’s
(i=1,...,I) with the variance parameters for each generation and the correlation parameters,
which can flexibly formulate most pedigree structures. For example, suppose in each family i there
are two parents and n; —2 offspring and without loss of generality, let the first two members in
each family be parents, thus Zgi has the structure of

2
o 0 PpcOpOc =+ PpcOp0c
2
0 o, PpcOpOc ** PpcOp0Oc
. 2 2
Eg' =| PpcOpPc PpcOpIc Oc T PecOc (7)
2 2
PpcTpOc  PpcOpOc PecO¢ Tt Oc

where similar to the parent—offspring familial model, af, and ag are the variances for parents
and offspring, respectively, and p . is the correlation between the random effects corresponding
to the parent and offspring. But, different from p., p.. is the correlation between the random

Copyright © 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:113-139
DOI: 10.1002/sim



SEMIPARAMETRIC BAYESIAN MODELING OF RANDOM GENETIC EFFECTS 119

effects corresponding to the two different offspring. Thus, in contrast to the parent—offspring model
discussed in Section 2.1, conditional on the random effects a; and g;, the disease outcomes are
independent. Note here that both p . and p,. are interpretable as genetic correlations.

The joint probability corresponding to each family i is simply the product of disease probabilities
of each family member:

n;
P(Y;=d;X;,a;,g) =[] P(Yij=d;j|Xij,ai, gij)
j=1

_oexpldj (ut+BXij+ai+8ij)}
je1 L+exp{u+BXij+ai+gij}

®)

The entire likelihood is the product of these family-specific contributions, namely, l_[i1=1 P(Y;=
d;|X;,a;,8).

In the real data analysis, another set of family pedigree structures will be presented, which we
would discuss in Section 4. The crux of the modeling approach is to data-adaptively estimate the
genetic correlation structure and use available prior information on these parameters.

2.3. Conditional likelihood

In family-based case—control studies, a natural approach to account for the ascertainment effect
will be to conduct a matched case—control analysis with controls selected from the same family and
to use CLR conditional on the number of cases in the family. Statistical techniques for analyzing
matched case—control data were first developed in [24]. The generated conditional likelihood is
free of the nuisance parameters and yields the optimum estimating function [25] for estimating .

With finer association structures across family members such as in [13], the conditioning is
applied to the marginal likelihood of the data, and this marginal likelihood is obtained by integrating
with respect to the joint random effects distribution. For example, for the mixed model in (5), the
marginal probability of the disease in the ith family can be written as

Pr(Yi:di|Xz‘)=/P(Yi=di|Xi7ai’gi)dF(ai7gi) 9

where F'(a;, g;) is the joint distribution of random effects a;, g;. If the number of affected family
members is Z'}’: 1 Yij =my,, then the conditional likelihood for family 7 is given by

n
> Yij=m;

i (10)
j=1

Pr(Y;=d;, Y, Y =m;|X;)
Pr (Y[:d”X,‘, )= i i j=11ij il

Pr(Z?i:l Yij=m;|X;)

The full conditional likelihood is the product of such I likelihoods as given in (10). For illustration
purposes and to avoid cumbersome conditioning notations, in the following, we assume that in
each family there are exactly two cases, i.e. m; =2.

One can continue estimation of the parameters based on maximizing the above integrated
likelihood in a classical frequentist framework. But the main challenge is integration over the joint
random effects. Pfeiffer et al. [13] used Monte Carlo integration. For the mixed model proposed
by Pfeiffer et al. [13], the above marginal conditional likelihood can be explicitly written as
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follows:
CXP(Zaz-FZ 11]81/)
exp ﬁ(Z, ]dlelj)}/ /= dF(a;,gi)
ﬁ 1_[ 1+exp(ﬂ+a1+ﬁxz]+gz/)}
exp(2a; +gik +gi1)
ex Xir+X )/ dF(a;,g)
U3 ke expiB(Xix+ Xin)} T, O+ exp(tai+ BXy+ )] (ai, g

The summation in the denominator is overall n;(n; —1)/2 pairs in the set #%; that consists of
selections of two possible ‘cases’ from any of the n; family members. For each family i, they drew

1ndependent 1dentlcally distributed samples a(k) and gl(.k) from the random effects distributions for

each k=1,..., N, and used the approx1mat10n
i k
/ exp(Zai—FZ? 1dij&ij) Fla g~)Ni§: exp(2a<)_|_2] | ug,,))
1y &1
H] 1{1+€Xp(,u+a,+ﬁxl] +gij)} N = 1_[ {l—l—exp(/,t—i-a(k)—i-ﬁxu—}—g(k))}

They chose N =100 and used the same Monte Carlo sample for the numerator and denominator
of the conditional likelihood of each family to ensure that the conditional likelihood was smooth
in f. Different families were evaluated using independent Monte Carlo samples.

However, there is often very little information on the genetic random effects in the ascertainment
corrected likelihood (which is the conditional likelihood conditioning on the ascertainment event),
i.e. leading to numerical instabilities and computational challenges. This is because less information
in the likelihood makes it harder to maximize the likelihood surface and obtain MLEs for the
parameters but in the Bayesian context leads to prior-sensitive inference. Hence, instead, we
consider a full Bayesian alternative by assuming a hierarchical prior structure on the random effects,
but we continue to implement inference based on the conditional likelihood as we propose in
the following, which is not a marginal conditional likelihood as proposed in [13]. Treating the
conditional likelihood as a valid likelihood and proceeding with Bayesian inference may raise some
concerns; however, [26] provides an interpretation of the conditional likelihood as a marginal
likelihood and characterizes the nuisance distribution on a;, which renders this equivalence and
provides a justification for using this likelihood as an initial point in conducting Bayesian inference.
A referee has pointed out the possibility of using a direct retrospective likelihood by posing a
model for the exposure distribution conditional on disease status. However, such an approach may
lead to robustness issues when the exposure vector is high dimensional and a mixture of categorical
and continuous variables, and thus we choose the stratified prospective model as the basis of our
inference.

Model 1
The conditional likelihood for the model in (2) corresponding to parent—offspring familial data is

1 4
L(B,b1,....by, pll)=T] P <Yi=di|Xz’,Zi,bi, > Yij=2> (11)
i=1 =

where

(12)

4
P (Yi:di|Xi,Zi,bia Z Yij:z

_ Pdi|X;,Z;,b))
j=1

>0 P(DiIXi,Zi,b;)
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The summation in the denominator is over all 4(4—1)/2=6 pairs in the set that consists of
selections of two possible ‘cases’ from any of the four family members, i.e. Dy is the kth row of
the matrix

1 100
1 01 0
D 1 0 0 1 13
o110
01 0 1
0 0 1 1
Hence,
I
L(B.b1,....by, pil) = [T exp{dit (BXi1+bi1) +din(BXi2+bi1)}
i=1
X [exp{dia(ﬁxn +bi2) +dia(BXis+bi2)}
* \diz+dia 1
+(=pe)™ T exp Eﬁ(xi3+xi4)+bi2)
6
x 1 > exp{Dk1(BX;1+bi1)+Di2(fXi2+bi1)}
k=1
X [GXP{Dks(ﬁXi3+bi2)+Dk4(ﬁXi4+bi2)}
| -1
+(—ph) Pt P exp{iﬁ(xi3+xi4)+bi2)}i| } (14)
The above conditional likelihood can be easily extended to any choice of m;=1,...,4 and

Zj‘:l Y;j>m;. For example, in the case when we have more than one diseased individual in each

family, the summation in the denominator of (12) is over all Zi:z le =11 combinations in the
set that consists of selections of two, three and four possible ‘cases’ from any of the four family
members. In that case, D would be an 11 x 4 matrix.

Model 2
For the mixed model of [13], the conditional likelihood is
1 ni
L(B.g1,....gl)=T1 P\ Yi1,....Yin;lGi, g1+ -+ &iny» Xits ooy Xings D Yi=2 (15)
i=1 j=l1
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where
n;
P\ Yit,....Yinlai, 8i1s o 8ing» Xits oo Xings Y Yi=2
j=1

P(Yilv-“’YinnZ’;i:l Yi=2la;, i1, 8iny» Xits -+, Xin;)
P(Z}}I:I Yi:2|ai7gi11 '-'7ginl‘7 Xl'17 ey Xin,-)
Z’}izl exp{d;j(gij+BXij)}
B >t ke, €XPLgir+gik + B(Xir + Xin) }

(16)

Note that this conditional likelihood only involves the random effects parameters g;=
(git,-- .,gini)T, (i=1,...,1) and B, while p and @; (i=1,...,I) are canceled out. Similarly, the
conditional likelihood can be extended to any choices of m; =1,...,n; and Z;l’:l Yij=zm;.

3. BAYESIAN ESTIMATION METHOD

In a Bayesian paradigm, inferential interests lie in the posterior distribution of the fixed effects
as well as the random effects. Posterior inference corresponding to the regression coefficient f§ is
generally straightforward by choosing a normal prior and starting with the conditional likelihood
we described in the previous section. The major question arising in Bayesian analysis concerns the
sensitivity of the results to the chosen priors on the random effects; hence, modeling the random
effects distribution is substantially more challenging in this context. In the following we discuss
several choices.

3.1. Bayesian parametric modeling

The intuitive and traditional prior on the random effects is the normal distribution centered at their
mean with a specific covariance matrix. More specifically, for the model in (2) corresponding to the
parent—offspring familial data, we consider a bivariate normal (BVN) prior on the random effects,
1e. b; ~Na(p,, 2p). To avoid certain numerical computational problems, we reparameterize the
random effects as, b; =p,, —}—Ell)/ 2c,- with the prior on ¢; being ¢; ~N3(0, 1), I,, denoting an n xn
identity matrix. We consider normal priors on p,; and gy, log{p’./(1—p})} ~N@mcc, sczc), and
the following set of priors on the hyperparameters of the covariance matrix Zj:

log(a%) ~N(m,.s7)

log(62) ~ N(m,, s2) 17)

P pe 2
log { 7¢O N@m e, s2.)
{1—ppc} retee

Generally, the correlation parameters could assume any values between —1 and 1; however, within
a family, the correlations are positive, which is reflected through our prior structure. Furthermore,
we will note in our real data analysis that we can center the priors corresponding to the correlation
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SEMIPARAMETRIC BAYESIAN MODELING OF RANDOM GENETIC EFFECTS 123

parameters on the genetic covariance structure [14] proposed, but allow possible uncertainty around
that plausible structure.

Similarly, for the mixed model of [13], we consider ciz(Zg" Y~/ 2gl- ~Ny,; (0,1,), with the
similar set of priors (17) and log{p../(1 —p..)} ~N(mcc, sczc) on the hyperparameters of the covari-
ance matrix ZZ" but with the restriction on p,. and p. to keep Eg" positive definite.

3.2. Bayesian nonparametric modeling

The nonparametric Bayesian approach for modeling the distribution of random effects b; starts by
specifying a prior distribution on the space of all possible distribution functions for the random
effects. This can be accomplished by assuming a DP prior on the space of random effects distri-
butions. The construction and properties of DP priors are discussed in [16,27]. The practical
application of such priors to the random effect context has often focused on longitudinal data
[17,18,20]. In the following, we describe two modeling approaches that we have implemented.
The DP prior on the random effects distribution: We first introduce a DP prior directly on b;:

iid
biIG~G, i=1,...,1

Gla, Gy ~ DP(, Go)

where G serving as a prior on b;,i =1,..., I, is itself a random probability measure. We assume
that G 1is realization of a DP with a scalar precision parameter «>0 and a base measure (or base
prior) Go= E[G]. In practice, the base measure G specifies one’s ‘best guess’ of an underlying
model of the variation in b;’s, and o specifies the extent to which G holds. Loosely speaking,
DP may be thought of as a prior on a function space, the space of all prior distribution functions
with common support. In this sense, DP specifies prior uncertainty in G, which we consider as
a normal distribution. The precision parameter o corresponding to DP prior plays an especially
important role in the distribution of b;’s: higher values of o lead to a higher probability of more
unique values of b;’s. Following [28], we assume a Gamma(ay, b,) on « and follow the resampling
scheme proposed therein.

Dirichlet process mixture (DPM) model for the random effects distribution: The DPM structure
on b; can be expressed by the following hierarchical description:

b;|0; ~ F(0;)

»
0,1G~G, i=1,...1I

Gla, Go ~ DP(x, Go)

Now, the base measure Gy is defined as, under G, 0; follows some distribution. We again assume
a Gamma(ay, b,) on .

A property of the DP prior is that the random probability measure G is almost surely discrete,
leading to the following properties that reinterpret the DPM model structure (see [29]): (i) Any
realization of 01,...,0; generated from G lies in a set of K</ distinct values; (ii) These K
distinct values are random samples from the base prior Gg; (iii) K</ is drawn from an implicitly
determined prior distribution depending on the precision parameter « and /; and (iv) Given K</,
the I values are selected from the set according to a uniform multinomial distribution. There are
two extreme cases that lead DPM to the fully parametric case: (1) As a— oo, K — I and G — Gy,
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so that the base measure is the prior distribution for 0;; (2) As«a—0, K — 1 and all; (i=1,...,1)
equal.

Note that by assuming DP priors on random effects distribution, we assume the random effects
for different families could share the same values. But if the random effect vector for different
families have different sizes, the DP priors as specified above cannot be assumed. However by
DPM, each random effect follows the same family of continuous distributions but has its own
hyperparameters, e.g. 62, and we consider DP priors on those hyperparameters. Thus, under DPM
we avoid the inherent discreteness of the random effects distribution as is true for the direct DP
prior.

Now we specifically discuss how to apply DP and DPM to the proposed models in Section 2.

A. Nonparametric modeling for parent—offspring familial data:

(1) DP Model: To avoid some numerical computational problems, we first reparameterize b; =

n, +2,17/ 2c,~ and introduce a DP prior on ¢; in the following hierarchical manner:

»
GlG~G, i=1,...,1

G|o, Go ~ DP(a, Go)
Go~N(0,1)

The priors on p;, and %, are the same as in Section 3.1.
(2) DPM Model: First, we choose a prior for each b; as b; ~Na(n,;, Xp;), where

2
Hp1i O pi PpcOpiOci
Wy = and X = 5
Hpoi PpcOpiTci op

) . . 2 2.
We consider DP prior on 0; = (14,1, 142 » This o)

y .
Up1i Hpoir 10g(0%). log(62)IG ~ G, i=1,....1
Gla, Go ~ DP(x, Go)

Now, the base measure Gy is defined as, under G, ;5 Hpois log(olzm.) and log(afl.) are normal
distributions. Under both models, the prior to p,,. is unchanged. Note that when p;, #0, f§ is not
purely interpreted as the fixed effect.

B. Nonparametric modeling for the mixed model in [13]

For illustration purposes, here we consider the pedigree structure as in (7).

(1) DP Prior: To apply DP prior to this model, we need to restrict all families to have the same
size n, i.e. n;’s equal to n. We also reparameterize g; = (Zg)l/ 2¢; and introduce DP on ¢;:

»
GIGNG, i=1,...,1

Gla, Go ~ DP(a, Gg)
Go~ N,(0,1,)

with the priors on hyperparameters of ZZ as in (17).
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(2) DPM Prior: First, we choose a prior for each g; as g; ~N,, (0, Xg,). If each family has two
parents and n; —2 offspring, then X, has the same structure as in (7) except that each family has
its own 62, and ¢2., assuming that the first two members are parents and the rest are offspring:

pi ci’
G?)i 0 PpcOpiOci =+ PpcOpiOci
0'%,,' PpcOpiOci  *** PpcOpiOci
Zgi =| PpcOpiOci  PpcOpiOci Gg[ T pcco-gi (18)
PpcOpiOci  PpcOpiOci Pecc Ggi o Ogi

Then, we consider a DP prior on 0; = (aii, afi):

log(o2), log(@2)IG~ G, i=1,....I
Gla, Go ~ DP(x, Go)

Now, the base measure G is defined as, under G, log(a%i) and log(agi) are normal distributions.
Under both models, the priors to p,,. and p,.. are unchanged as in parametric modeling.

None of the full conditional distributions follows a standard distributional form; hence, posterior
inference is made by using the MCMC numerical integration technique. To update the parameters
in DP or DPM, we use Algorithm 5 prescribed by Neal [30]. We describe the computational details
of our algorithm in the Appendix.

4. EXAMPLE: ANALYSIS OF PROSTATE CANCER DATA

The data set is selected from families participating in the PCGP. The PCGP was initiated in 1995
to define the molecular basis of hereditary prostate cancer, including families with one or more
identified cases of prostate cancer. From this database we selected 46 families, (i) with pedigree
sizes ranging from 4 to 6, (ii) which had at least one affected family member and (iii) which only
presented relationships of brother—brother and/or father—son. There are a total of 205 observations,
among which 191 are white and 14 are black/African American. All family members have been
tested for prostate cancer with serum prostate-specific antigen (PSA) measurement. For affected
members we considered the last available PSA measurement before diagnosis of prostate cancer,
whereas for unaffected family members we considered the most recent PSA measurement as
the covariate of interest. In the original data set, about 20 per cent subjects were missing PSA
measurement. We imputed the missing PSA values based on disease status, relationship to proband
and age. We also noticed that the distribution of PSA values is right skewed with several extreme
large values; thus, we analyze the data with PSA values transformed to log scale.

We analyze the data by applying the Bayesian approach to the conditional likelihood, which
corresponds to the mixed model (5) [13]. This conditional likelihood adjusts for the ascertainment,
at least one affected member in each family, i.e. Z;”:l Y;;>1. Without loss of generality and
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assuming the first observation in the family is the father, the covariance matrix of g; has the
following structure:

2
g PpcOpOc '+ PpcOpOc
2 2
I n PpcOpOc Oc e PccOc
Tl = (19)
2 2
PpcOp0c PecO¢ T O¢

for families which have information of the father and n; — 1 sons with n; =4, 5, 6; and

1 Pec 0 Pec
o ) Pec 1 o Pee
R I 0)
Pec Pec 1

for families which only have brother—brother relationship with n; =4, 5, 6.

We are interested in both the effect of PSA measurement on prostate cancer and the genetic
correlations among the family members. We consider N(0, 4) as the prior of 5, while for the random
effect g;, we consider both parametric and nonparametric modeling. For parametric modeling, we
consider a multivariate normal (MVN) distribution with mean zero, and (19) or (20) as a covariance
matrix according to the pedigree structures, denoting this model as mMVN. For the priors on the
hyperparameters, we consider the priors on a?, and ag in such a way that they could range from
0.4 to 7.4, a reasonable range for a variance but with a relative large variability. However, for the
correlation parameters, following [14] and assuming no dominance component variance, we center
the priors on 0.5, which corresponds to the correlation between the first-degree relatives, but allow
some uncertainty through the stochastic hierarchy. Thus, log(af,) (or log(ag)) ~N(0.5,0.25). The
priors on the correlation parameters are truncated normal distributions: logit(p ,.) ~N(0, 0.25) and
logit(p..) ~N(0, 0.25) with the restriction p . — p . <(1—p..)/4 to keep Z' positive definite. For
nonparametric modeling (denoted as mDPM), we consider DPM on g;; hence, the only changes are
the priors on aii and afi. Because not all the families have the father information, we separately

2

: 2.
put DP priors on T and o7;:

iid
021Gy~ Gy, i=1,...,29

Gploy, Gpo ~ DP(ay, G po)

iid
041G~ G, i=1,...,46
Gelae, Geo ~ DP(oe, Geo)

with both the base measures G,o and G, being lognormal(0.5,0.25) and «, (and o) ~
Gamma(l, 2).
We also directly apply [13] proposed variance—covariance matrix in (6), oéR,-, with unknown

az, and known correlation matrices R;. Note that the data only involves first-degree relatives; thus,
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the correlation matrices R;’s are fixed with diagonal elements equal to 1 and others being 0.5,
whereas the dimensions of these matrices range from 4 to 6. Similar to the above, we consider
both parametric (pMVN) and nonparametric modeling (pDPM) for the random effects g;, which
in fact reduce to the parametric choice of priors log(oé) ~ N (0.5,0.25) and nonparametric choice
of priors

»
021Gy~ Gy, i=1,...,46
Gg|O(g, Ggo "‘DP(O(g» GgO)

with the base measures G, being lognormal(0.5,0.25) and og ~Gamma(l, 2).

To compare the results with the MLEs obtained by the traditional CLR method (denoted by
CMLE), we additionally analyze the data applying a logistic regression model with PSA being the
predictor, which is stratified by families and obtain the estimate of the covariate (PSA measurement)
effect by maximizing the conditional likelihood. This is done by implementing the clogit function
in the package survival in R (http://www.r-project.org/) by maximizing the conditional likelihood,
treating the families as strata.

The corresponding results are presented in Table II. The traditional conditional maximum
likelihood method is designed to obtain the estimate of the covariate effect f§, while all the Bayesian
methods can additionally obtain the inference of the variance—covariance matrix of the random
effects. Note that the CMLE of f§ is much larger with a larger standard error, indicating that there
may be appreciable genetic variability captured by the Bayesian methods.

Among the results from the four Bayesian methods, we observe that, with our nonparametric
model (mDPM and pDPM), the estimates of f§ are relatively smaller and have smaller posterior
deviance. But comparing the results from mMVN and mDPM (with our proposed covariance matrix)
with pMVN and pDPM (with Pfeiffer et al. [13] proposed covariance matrix) correspondingly,
there is little difference in the estimate of f5, which is probably because the variances of each
generation do not have much difference (estimates of aé and o2 are 1.57 and 1.62, respectively,

while the estimate of o*ﬁ is 1.43) and the genetic correlations are 0.54 and 0.58, which are close to
predefined correlation 0.5 in [13]. The nonparametric and parametric models perform comparably
to capture the random effect distribution; however, instead of providing the estimates of variances
(oéi, or ofn. and agi), DPM (both mDPM and pDPM) selects the number of distinct values of
variances (K’s) in a data-adaptive way depending on the extent of family-specific effects on the
random effects. For instance, in mDPM, the number of distinct agi’s, K., is equal to 36 (<46,
2

the number of families), which means that not all the families have the distinct effects on o oS

whilg the large o, value, 86.53, tells us that there is large variation in the family-specific effects
on 07;’s.

Incéummarizing the results, we observe that there is a large increase in the risk of prostate cancer
for the people with a higher PSA measurement. The estimated odds ratio obtained by mDPM is
exp(1.38) =3.97 for one unit increase in log (PSA measurement). All the five models present the
statistical significance in the effect of PSA measurement on prostate cancer, though the estimated
odds ratio obtained by CLR method is almost unbelievably astronomic, exp(3.26) =26.05. The
estimated genetic correlation between father and son p . is 0.54, which is slightly smaller than
the correlation between siblings p..=0.58, and both estimated correlations are larger than those

predefined, 0.5, as in [13].
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Table II. The analysis results of the partial (46 families) prostate cancer data of the University of Michigan
Prostate Cancer Genetics Project.

Model Parameter estimates
CMLE* B=3.26 (0.61)
[2.06,4.46]
pMVNT =149 (0.22) 02 =143 (0.75)
[1.14,1.97] [0.44,3.27]
pDPM B=1.42 (0.20)
[1.06,1.82]
Kg=35.73 (3.30) og =87.95 (16.81)
[29,42] (56.89,123.76]
mMVN} B=1.51 (0.23) 0% =1.57 (0.72) 02=1.62 (0.74)
[1.11,2.11] [0.53,3.14] [0.65,3.37]
P pe=0.49 (0.12) Pec=0.56 (0.11)
[0.25,0.69] [0.32,0.76]
mDPM! B=1.38 (0.20) P pe=0.54 (0.11) Pec=0.58 (0.10)
[0.96,1.74] [0.37,0.67] [0.42,0.66]
Kp=22.74 2.77) op=58.96 (14.23) K. =35.49 (3.40) e =86.53 (16.22)
[17,27] [34.70,91.07] [28,41] [57.44,121.83]

The results, except those obtained by CMLE, are attained by applying the conditional likelihood based on

the mixed model of [13]. The results presented are the estimates with standard error or standard posterior

deviance in parentheses ‘()’, and 95 per cent confidence interval or highest posterior density (HPD) interval in

bracket ‘[]’.

*CMLE: The method of maximizing the conditional likelihood based on the traditional logistic regression
model stratified by families. It is done by implementing clogit in R.

TpMVN : The proposed parametric Bayesian method with the multivariate normal prior on random effects,
which have [13] proposed covariance matrix.

J:pDPM: The proposed nonparametric Bayesian method with the Dirichlet process mixture prior on random
effects, which have [13] proposed covariance matrix.

YmMVN: The proposed parametric Bayesian method with the multivariate normal prior on random effects,
which have the modified covariance matrix.

mDPM: The proposed nonparametric Bayesian method with the Dirichlet process mixture prior on random
effects, which have the modified covariance matrix.

Figure 1 shows the posterior distributions of the parameters based on mDPM model. Figure 2
presents histograms for the predictive density of g,+1.1 and g,41,2 given the data based on both
pDPM and mDPM models. (Since in the data set, we either have the first subject is father and
rest are sons, or have all subjects in the same generation; hence, we just pick two elements g,41.1
and g,+1.2 from the random effect vector.) Note that under DPM, for example, pDPM, ‘7;,- |Gg~
Gg,i=1,...,1I with Gg ~DP(a;G40), E(Ggpldata) is in fact the posterior predictive distribution
p(O'z,H_  |data). Furthermore, in the hierarchical models, the posterior predictive distribution of the

2
8I+1°

the last 1000 MCMC runs, we generate 0§I+ , from the corresponding predictive distribution, then

draw g4 from an MVN with mean equal to 0 and an according covariance matrix by plugging
. The histogram is based on these 1000 generations of g;1,1 (g7+1,2) values. We also plot the

random effect g can be obtained based on the future draws of az,, i.e. o Hence for each of

o
81+1
curves based on the density of the normal distributions with the ¢ values from the corresponding
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Figure 1. Posterior distribution of the parameters for prostate cancer data analyzed by the mixed model

of Pfeiffer et al. [13] with the proposed Bayesian nonparametric model DPM on the random effect with

the proposed covariance matrix (mDPM). Histogram of last 1000 MCMC values for each parameter

overlaid with smoothed kernel density estimate: (a) posterior distribution of f§; (b) posterior distribution

of p pes (©) posterior distribution of p..; (d) posterior distribution of K; (e) posterior distribution of
K; (f) posterior distribution of ; and (g) posterior distribution of o.

parametric Bayesian models, i.e. for pDPM, we plot N(0, 1.43) (a and b); for mDPM, N(O0, 1.57)
(c) and N(0, 1.62) (d).

4.1. Simulation study

SIMULATION Setting 1: Parent—offspring familial data. To illustrate our proposed methods, now
we present numerical evidence in the form of simulation studies. We first consider to simulate
parent—offspring familial data as stated in Section 2.1, where we assume in each family there
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Figure 2. Posterior predictive densities of g,41,1 and g,41,2 for the Prostate cancer data analyzed by

the mixed model of Pfeiffer et al. [13] with the proposed Bayesian nonparametric models (pDPM and

mDPM). The histogram is based on g,41,1 and g,+1,2 values, which are generated from the corresponding

predictive distribution from each of the last 1000 MCMC runs. The curves are the densities of the

N(0,1.43) (a and b), N(0, 1.57) (c) and N(0, 1.62) (d): (a) posterior predictive density of g,41,1 under

pDPM!; (b) posterior predictive density of g, 1.2 under pDPM'; (c) Posterior predictive density of g, 1.1
under mDPM?; and (d) posterior predictive Density of 8n+1,2 under mDPM?.

are two parents and two offspring, each having a binary covariate X;; (j=1,2,3,4) with the
prevalence of 0.5. For generating the random effects b; = (b;1, bi2)T, we use the following bivariate
distributions:

(1) Mixture of three BVNs:

3 -2 0.25 0.075 1 —1 0.09 0.003
_NZ ) + _N2 )
7 -2 0.075 0.09 7 —1 0.003 0.04
3 0 0.25 0.075
+-=N» s (21)
7 0 0.075 0.09

with common p,.=0.5 in the variance—covariance matrix for each family.

First for each family, we generate the covariate X; =(X;q, ..., Xi»)T and random effects b;.
With these information in hand, following the logistic regression model for disease risk (2) and
the joint probability as shown in Table I, we generate the disease outcome for each individual. We
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set a common offspring—offspring genetic correlation p}.=0.25 for each family. Then, we select
families with exactly two diseased members from the simulated population. We consider varied
scales of the fixed effect, $=0,0.5 and 1. We simulate 200 data sets for each scenario with each
data set having 100 families.

We apply the two proposed Bayesian semiparametric models, i.e. nonparametric modeling on
b; (DP and DPM), to the simulated data, with priors set as the following: 5~ N(0,9), logit(p pe) ™

N(0,0.25), logit(p*.) ~N(—1,0.25), w, (or p,;)~N(0,4), 1og(a§) (or 1og(afn.)),1og(a§) (or

log(ogi))NN(O, 0.25), a~Gamma(l,?2). To compare with Bayesian parametric model, we also
analyze with the traditional prior, a BVN, i.e. b; ~Na(p,, 2;) on the random effects. We consider
the following reparameterization: b; =ub+le)/ 2c,~ with the prior on ¢; being N2 (0, I).

We set the priors on af,, ag, ppe and p¥. as described above. The results in Table III are fairly
clear. All three Bayesian models provide comparable results and the varied fixed effects do not
have an influence on the performance of the models, even when f=0. The CLR method also
provides similar results except no estimation of p,. and p7, this is because the variances of the
random effects were set relative small, though we did encounter some convergence problems.

To see the influence of the sample size (the number of families selected) as well as the effect
of the variances of the random effects, we also performed simulations of 100 families and 20
families, where we fix =1, and used the following random distribution:

(2) Mixture of three BVNs:

10 —4 2 V22 1 ~1 1 05)2
_N2 ’ +_N2 )
12 ((—4> (fz/z 1 )) 12 ((—1> (vo.S/z 0.5 ))

+—N» , (22)
12 0/ \V152 15

Table IV shows the corresponding results. We observe that the estimates of § obtained by the
CLR method are biased toward null with larger MSEs even when the sample size is large. This
phenomenon shows that larger variances in random effects could bring more biases in the estimates
of f§ but not in the estimation of the correlation parameters. We also see that with the number of
families selected increased, the point estimation of f§ has less biases. We notice that the Bayesian
semiparametric modeling (DP and DPM) always provides better estimation of f§ than the Bayesian
parametric modeling, and much better than the CLR method. In addition, as we expected, the
larger the sample size, the smaller the posterior deviances and MSEs. Hence, when we suspect the
data with large variances of the random effects, but with a relative small sample size, we would
recommend to consider the Bayesian semiparametric modeling.

SIMULATION Setting 2: Mixed effects model motivated by the real data analysis. Following
the mixed model of Pfeiffer er al. [13], we also performed a simulation study based on the real
data results and the exact same genetic structure, i.e. either the families having father and rest
being sons, or the families only having brother—brother relationship, with n; =4,5, 6. First, we
draw random effects g; following MVN distribution with mean equal to O and covariance as
(19) or (20) according to the family structure, where we set p,.=0.5, p..=0.6, a?, to 2, and 1

with probabilities % and 2, respectively; and 0'% to 2, 1.5 and 0.5 with equal probabilities. Then
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Table III. Simulation scenarios as stated in Section 4.1 under simulation setting 1.

Model B Ppe Pee
p=1 BVN* Post mean 1.1073 0.5000 0.2470
Post std. dev. 0.2273 0.0825 0.0500
MSE 0.0652 6.3e—5 1.5e—4
ppt Post mean 1.0685 0.5006 0.2552
Post dev. 0.2279 0.0831 0.0515
MSE 0.0618 5.3e—5 1.2e—4
ppPMm# Post mean 1.1105 0.4879 0.2511
Post std. dev. 0.2263 0.0736 0.0474
MSE 0.0640 4.4e—5 1.1e—4
CMLE? Mean 0.9384
Std. err 0.2620
MSE 0.0806
p=0.5 BVN* Post mean 0.6149 0.5139 0.2468
Post std. dev. 0.2190 0.0829 0.0440
MSE 0.0576 6.0e—5 1.3e—4
ppt Post mean 0.5645 0.5111 0.2496
Post std. dev. 0.2138 0.0836 0.0452
MSE 0.0526 5.3e—5 1.0e—4
ppMmi Post mean 0.6065 0.5073 0.2417
Post std. dev. 0.2161 0.0745 0.0420
MSE 0.0613 5.8e—5 1.5e—4
CMLE? Mean 0.5410
Std. err 0.2845
MSE 0.07822
p=0 BVN* Post mean 0.0407 0.5054 0.2446
Post std. dev. 0.2146 0.0497 0.0335
MSE 0.0459 5.7e-5 1.1e—4
ppf Post mean —0.0120 0.5051 0.2488
Post std. dev. 0.2102 0.0499 0.0341
MSE 0.0610 6.3e—5 9.1e-5
DpMm¥ Post mean —0.0297 0.5046 0.2444
Post std. dev. 0.2100 0.0486 0.0336
MSE 0.0933 5.2e-5 1.2e—4
CMLE? Mean —0.0172
Std. err 0.2819
MSE 0.0758

b; generated from mixture of three bivariate normals (21), p,.=0.5, p%.=0.25 and I=100. The results,

except those obtained by CMLE, are attained by applying the conditional likelihood based on the mixed model

for parental-offspring familial data. post mean, post std. dev. and MSE denote the average of posterior mean,

standard deviance estimate and the estimated mean-squared error based on 200 replications.

*BVN: The proposed parametric Bayesian method with the bivariate normal prior on random effects.

TDP: The proposed nonparametric Bayesian method with the Dirichlet process prior on random effects.

iDPM: The proposed nonparametric Bayesian method with the Dirichlet process mixture prior on random
effects.

YCMLE: The method of maximizing the conditional likelihood based on the traditional logistic regression
model stratified by families. It is done by implementing clogit in R.
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Table IV. Simulation scenarios as stated in Section 4.1 under simulation setting 1.

Model p=1 Ppc=0.5 pk.=0.25
1=20 BVN* Post mean 1.2037 0.4986 0.2623
Post std. dev. 0.5429 0.1161 0.0831
MSE 0.4971 3.0e—4 0.0013
ppt Post mean 1.1148 0.4984 0.2692
Post std. dev. 0.5254 0.1179 0.0868
MSE 0.4436 1.9e—4 0.0014
ppMmi Post mean 1.1407 0.5048 0.2654
Post std. dev. 0.5437 0.1161 0.0833
MSE 0.4566 2.7e—4 0.0018
CMLE! Mean 0.8307
Std. err 0.6519
MSE 0.6009
1=100 BVN* Post mean 1.0798 0.4920 0.2484
Post std. dev. 0.2394 0.1207 0.0640
MSE 0.0662 8.7e—4 0.0020
Dpf Post mean 0.9504 0.5028 0.2769
Post std. dev. 0.2123 0.1204 0.0794
MSE 0.0516 1.5e—4 0.0021
DPMF Post mean 1.0383 0.4903 0.2690
Post std. dev. 0.2298 0.1113 0.0667
MSE 0.0589 0.0011 0.0025
CMLE! Mean 0.8673
Std. err 0.2403
MSE 0.0739

b; generated from mixture of three bivariate normals in (22), f=1, p pc=0.5 and pi-=0.25, but different

sample sizes /=20 and 100. The results, except those obtained by CMLE?, are attained by applying the
conditional likelihood based on the mixed model for parental-offspring familial data. post mean, post std. dev.
and MSE denote the average of posterior mean, standard deviance estimate and the estimated mean-squared
error based on 200 replications, respectively.

*BVN: The proposed parametric Bayesian method with the bivariate normal prior on random effects.

TDP: The proposed nonparametric Bayesian method with the Dirichlet process prior on random effects.

iDPM: The proposed nonparametric Bayesian method with the Dirichlet process mixture prior on random
effects.

YCMLE: The method of maximizing the conditional likelihood based on the traditional logistic regression
model stratified by families. It is done by implementing clogit in R.

based on P(Y;;=1]gij, Xl-j)z{l—l—exp(u—i—ﬁXij—l—gij)}_l, we simulate the disease status Y;; by
setting f=1.5, u=—2 and X =log(PSA) (obtained from the real data). Note that we only keep
the families that have at least one diseased subject, and we have 46 families and 205 subjects as
in the real data set. We analyze the simulated data by implementing the five models mentioned
above, and perform 200 such simulations. The results are presented in Table V. Our proposed
Bayesian methods provide more accurate estimates of the fixed effect f with smaller posterior
standard deviances and MSEs. By using the modified covariance structure, we can additionally
obtain inference on the correlation parameters. However, due to the limited number of simulated
data sets, the results of the simulation study should be evaluated with caution.
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Table V. Simulation scenarios as stated in Section 4.1 under simulation setting 2.

Model p=15 Ppe=0.5 Pee=0.6
CMLE* Mean 1.4223
Std. err 0.2515
MSE 0.0830
pMVN]L Post mean 1.4542
Post std. dev. 0.2289
MSE 0.0367
mMVN# Post mean 1.4635 0.5001 0.5648
Post std. dev. 0.2214 0.0490 0.0487
MSE 0.0393 3.4e—5 0.0057
pDPM} Post mean 1.4794
Post std. dev. 0.2090
MSE 0.0435
mDPM] Post mean 1.5564 0.4981 0.5897
Post std. dev. 0.2359 0.0292 0.0301
MSE 0.0517 8.2e—5 0.0046

The results, except those obtained by CMLE, are attained by applying the conditional likelihood based on

the mixed model of [13]. post mean, post std. dev. and MSE denote the average of posterior mean, standard

deviance estimate and the estimated mean-squared error based on 200 replications.

*CMLE: The method of maximizing the conditional likelihood based on the traditional logistic regression
model stratified by families. It is done by implementing clogit in R.

TpMVN: The proposed parametric Bayesian method with the multivariate normal prior on random effects,
which have [13] proposed covariance matrix.

J:pDPM: The proposed nonparametric Bayesian method with the Dirichlet process mixture prior on random
effects, which have [13] proposed covariance matrix.

YmMVN: The proposed parametric Bayesian method with the multivariate normal prior on random effects,
which have the modified covariance matrix.

ImDPM: The proposed nonparametric Bayesian method with the Dirichlet process mixture prior on random
effects, which have the modified covariance matrix.

5. DISCUSSION

In this paper, we have applied both Bayesian parametric and nonparametric techniques to address
an important class of models, the random effects model for family-based association studies. The
contribution of this paper revolves around building different flexible Bayesian models for the
distribution random effects and capturing various genetic correlation structures.

The parent—offspring familial model is a generation-specific model, explaining the genetic
information but not isolating the familial effects. We obtain inferences regarding the variances
related to each generation as well as the different genetic correlations. Srivastava [31] has proposed
maximum likelihood estimation for the interclass correlation in familial data, and Srivastava et al.
[32] derived asymptotical normal estimators of the interclass and intraclass correlations. In this
paper, besides presenting an alternative approach in Bayesian domain to obtain the estimates of
both intraclass and interclass correlations, we also introduce the intraclass correlations through
outcomes (Y -values) directly. The nice thing about this model is that the dimension of the random
effects is small and always fixed, i.e. 2, which would reduce computational complexity. Based
on the two-level mixed model by Pfeiffer et al. [13], introducing genetic correction parameters
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to a more general family-specific mixed model is also appealing. This general model can handle
different structures with more flexible degree of kinship and larger pedigrees. Instead of assuming
fixed correlation values, we proposed a less stringent genetic correlation structure and are able to
estimate the degree to which family members are correlated.

Moreover, our Bayesian technique involved specifying a nonparametric prior for the distribution
of the random effects by using a DP prior. Although assuming a DP prior directly on the random
effects distribution is attractive and could obtain the estimates of parameters of the covariance
matrix, such as generation-specific variances and correlations, the proposed DPM is also compet-
itive. In our applications with the DPM and unequal family sizes, we apply the DP prior on
the normal variances, which brings more flexibility to modeling the distributions of the random
effects. In fact, we can also consider the DP prior on the correlation parameters if we suspect the
uncertainty in the correlations, which is not illustrated in this paper.

To conclude, due to lack of information on the genetic effects parameters in an ascertainment
corrected likelihood, a Bayesian approach that can possibly incorporate information on the genetic
parameters is a useful tool. The advantages are greater flexibility and more precise estimation in the
presence of credible prior information. The potential disadvantages include sensitivity to the prior
and computational burden. The lack of information on the random effect-related parameters often
leads to sensitivity of these parameter estimates subject to prior choices; however, the inference
on the risk parameters generally remains robust.

APPENDIX A

A.l. Calculation of Table 1
Suppose X and Y are binary variables. Let Pr(Y =1)= Py and Pr(Y =1) = Py; thus, E(X) = Py,
E(Y)= Py, var(X)= Px(1— Px) and var(Y)= Py (1 — Py). Since

cov(X,Y)  EXY)—EX)E(Y)

Pxr= Jvar(X)var(Y) J/var(X)var(Y)

we have

P(X=1,Y=1)=E(XY)=PxPy+pyxyv/ Px(1—Px)Py(1— Py)
P(X=1,Y=0)=P(X=1)-P(X=1,Y=1)=Px(1— Py)—pxyy/ Px(1— Px)Py(1— Py)
P(X=0,Y=1)=P¥=1)—P(X=1,Y=1)=(1—Px) Py —pyyv/ Px(1— Px) Py(1— Py)
P(X=0,Y=0)=1-P(X=1,Y=0)—P(X=0,Y=1)—P(X=1,Y=1)

= (1= Px)(1—Py)+pxyy/ Px(1—Px) Py(1—Py)

A.2. Extension to the case of three offspring for the mixed model for parent—offspring familial
data

To extend to the case of three offspring, the key part is to obtain the joint probability of three
binary random variables. Suppose there are three binary variables X, Y and Z, following the same
definitions as in A.1 and letting Pr(Z =1) = Pz. Note that the results in A.1 work for either of the
two binary variables.
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We define A=1 if X=1 and Y =1, and A=0 otherwise; hence, A is also a binary variable
with PA=Pr(A=1)=P(X=1,Y =1), which can be obtained as shown in A.l1. We denote the
correlation between A and Z as p,z; thus, we have

P(X=1,Y=1,Z=1)=P(A=1,Z=1)=PPz+p sz Pa(1— PA)Pz(1— P7)

P(X=1,Y=1,Z=0)=P(A=1,Z=0)=Pa(1—Pz)—payy/ Pa(1—Pa)Pz(1— P7)
Similarly, we define
B=1 if X=1, Y=0and B=0 otherwise
C=1 ifX=0, Y=1and C=0 otherwise
D=1 if X=0, Y=0and D=0 otherwise
with the correlations with Z being pg,, pcz and pp 7, respectively. Then, we can obtain the other
six joint probabilities.
Note that P(A=1,Z=1)=P(X=1,Z=1)—P(B=1,Z=1); we have

(Pa+Pp—Px)Pz+pazv/Pa(1—Pa)Pz(1— Pz)—p/Px(1—Px) Pz(1—P7)

Ppz= (A1)
bz VPs(1—Pp)Pz(1—P7)
and P(A=1,Z=1)=P(XY =1,Z=1)—P(C=1,Z=1), we have
(Ppo+Pc—Py)Pz+psz7/Pa(1—Pa)Pz(1—Pz)—p/Py(1—Py)Pz(1—P7)
Pcz= (A2)

VPc(1—Pc)Pz(1—Pz)
We also have P4+ Pg+ Pc+ Pp=1, 0<Pz<I1, and
P;=Pr(Z=1)
=P(A=1,Z=1)+P(B=1,Z=1)+P(C=1,Z=1)+P(D=1,Z=1)
= (Pa+ P+ Pc+Pp)Pz++/Pz(1=P2)(pazy/Pa(l = Pa)+ppzv/Ps (1= Pp)

+pczv Pc(1=Pc)+ppzv/ Po(1— Pp))

Therefore,

PazV Pa(l—=Pa)+ppz/ PB(1—=Pp)+pcz/ Pc(1—Pc)+ppzy/ Pp(1—Pp)=0 (A3)

Note that now we have one more parameter p 4, in the likelihood, which though is not a parameter
of interest. Theoretically, we can implement the same calculation to the case of four offspring, or
even more, though we would encounter very complicated formulations with more parameters.

A.3. Computational details of the proposed algorithm
Drawing observations from the posterior of DP, following Algorithm 5 in [30]: The basic model
applies to data yq,...,y;, where y; (i=1,..., 1) may be multivariate. We model the distribution
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from which y; is drawn as a mixture of distributions of the form F (y|¢), with the mixing distribution
over ¢ being G. Hence, we give the following model:

yild; ~ F(yild;)
o;1G~G (A4)

G ~ DP(«Gy)
Let o= (o1, ..., ®g) denote the set of distinct ¢;’s, where K <7 is the number of distinct elements
in o=(¢;,...,0;). Let s=(sy,...,sr) denote the vector of configuration indicators defined by
s; =k if and only if ¢; =@y, i=1,..., 1. In this connection we use the term ‘cluster’ where kth

cluster is defined as I ={i :s; =k} and define n; as the size of the kth cluster. We use —i to denote
the situation when the observation i is removed. For example, n_;  is the size of the kth cluster
after removing ¢;.

Let the state of the Markov chain consist of s=(sy, ...,s7) and ¢= (¢, :5 €{s1,...,s7}). Repeat-
edly the sample is as follows:

e For i=1,...,1, repeat the following update of s; R times: Draw a candidate s;“ from the
conditional prior for s; given by

n_js
P(si=sls—j) =

T—i1a if s=s; for some j

iy (AS)
P(si #sjls—i) = m for all j
If this sl.* is not in (s1,...,$7), choose a value for <|)s;* from the base measure Go. Compute
the following acceptance probability:
. [, Ol
a(si,s,-)zmmil,m} (A6)

and set the new value of s; to s with this probability; otherwise leave s; unchanged.
e Once the configuration indicators and the associated clusters are determined, we move on to
update @’s. The full conditional distribution of ¢y

P(ag|)xdGo(or) [T F(yild;=ex) (AT)

{i:si=k}

which is not in a standard form; therefore we use Metropolis—Hastings (M-H) algorithm to
update og’s.

The steps of a cycle of Gibbs sampler under three different models for parent—offspring familial
data are illustrated as follows:

1. BVN: Under this model, draw all the parameters following the usual M-H algorithm.
2. DP:

e Step 2.1. Draw f and p,. following the usual M—H algorithm;
e Step 2.2. Draw ¢;’s (i=1, ..., I) following Algorithm 5 in [30] as illustrated above. Note,
here ¢; =c¢;, Go is a standard BVN and the distribution F is as in (11);
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e Step 2.3. Update o

(1) Sample 7 from p(nlo, K) ocn*(1—m)' 1
(2) Sample o from m,;Gamma(ay+K,b,—log(n))+(1—mny)Gamma(a,+K —1,b,—
log(n)), where m,/(1—my) = (ay+K —1) /{1 (by—log(n))};

e Step 2.4. Draw hyperparameters p,, og, af? and p . following the usual M-H algorithm.

3. DPM: Steps 3.1 and 3.3 are the same as steps 2.1 and 2.3, respectively, whereas Step 3.2 is
split up in the following three steps:

e Step 3.2.1. Draw b;’s (i=1,...,I) following the usual M—H algorithm;

e Step 3.2.2. Drawing 0; = (1417, lpoi» 0% ofn.) (i=1,...,1) following Algorithm 5 in [30]
as illustrated above. Note, here ¢; =0; and the distribution F is the distribution of b;,
which is a BVN distribution with the parameters 0;;

e Step 3.2.3. Drawing hyperparameter p . following the usual M-H algorithm.
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