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This paper analyzes a unit-contingent power purchase agreement between an electricity distributor and a

power plant. Under such a contract the distributor pays the plant a fixed price if the plant is operational and

nothing if plant outage occurs. Pricing a unit-contingent contract is complicated by the fact that the plant’s true

status is its private information. The difference between the electricity spot price and the unit-contingent contract

price provides an incentive for the plant to misreport its status and earn profit at the distributor’s expense. To

prevent misreporting, the distributor may inspect the plant and levy penalties if misreporting is discovered. We

show that some type of misreporting can actually benefit both the plant and the distributor, because it serves

as a risk-allocation mechanism between the two parties, and we identify which type of misreporting under what

circumstances is beneficial. We also explore the structural properties of the optimal contracts and design an

implementation method using state-contingent options and analyze risk allocation over multiple periods.

1. Introduction

Electric power plants typically sell electricity to distributors pursuant to either “unit-contingent” or

“financially firm” power supply contracts (Zaccaria et al. 2006). For example, Wabash Valley Power

Association (WVPA), a generation and transmission cooperative that provides wholesale electricity

to 28 distribution systems in the Midwest, has increased its unit-contingent power supply from about

24% of its total energy supply resources in 2005 to about 58% in 2009 (WVPA 2005, 2009). In the

summer of 2009, WVPA’s energy supply resources totaled 2,200 megawatts (MW), including 1,280

MW of unit-contingent contracts and 920 MW of firm contracts. In another example, California

Independent System Operator (2003) reported that the net unit-contingent imports into California

were as high as 3,000 MW, which accounted for about half of the total net imports.

In both firm and unit-contingent contracts, the distributor purchases a certain amount of power

from a specific power generating unit at a predetermined price per megawatt hour (referred to as

the firm contract price and unit-contingent contract price, respectively). Under the unit-contingent

contract, the distributor pays the plant only when the power generating unit is operational (hence
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the transaction is unit-contingent), and in the event of an unplanned outage (e.g., generation facility

failures or transmission facility failures that force the plant to be down), the plant is not financially

responsible to the distributor and, consequently, the distributor has to purchase replacement power

in the spot market. In contrast, under a firm contract, the plant must compensate the distributor for

the cost of replacement power in the case of an unplanned outage. Thus, the financial risk associated

with purchasing replacement power is borne by the power plant under the firm contract, and borne

by the distributor under the unit-contingent contract. By shifting the risk of purchasing replacement

power from the plant to the distributor, the unit-contingent contract stabilizes the power plant’s

income, which is often a necessary requirement for the plant to obtain financing.

To compensate the distributor for taking on the risk of purchasing replacement power, the price

of the unit-contingent contract is typically lower than the firm contract price. It might not seem

difficult to determine the unit-contingent contract price based on the unit-specific outage frequency

and the spot price distribution. However, pricing the unit-contingent contract is complicated by

the fact that the distributor cannot directly observe whether the plant indeed has an outage. In

practice, the electricity flows are determined by the system operator and the distributor does not

receive power directly from the plant. Each day, the plant reports to the distributor whether or not

the power generating unit was operational on the previous operating day. The distributor pays the

plant at the unit-contingent price if and only if the unit is reported to be on.

There is a potential incentive for the plant to misreport its status. When the electricity spot

price is higher than the unit-contingent contract price, the plant that is up has an incentive to report

to the distributor that the generating unit is down and sell electricity to the spot market. This hurts

the distributor who has to buy replacement power at the higher spot price.

Conversely, when the spot price is lower than the unit-contingent contract price, the plant that

is down has an incentive to buy electricity on the spot, supply it to the distributor, and report to

the distributor that the generating unit is up. The distributor is also hurt because it could have

bought the electricity at the lower spot price. Note that the plant reporting up when down is very

different from a supplier’s extra effort to fulfill the contract in the context of other manufacturing

environments. It is typically costly to mitigate supply disruptions in a manufacturing environment

due to higher procurement cost from alternative sources and logistic cost, whereas in the electricity

industry, the grid provides easy access to the spot market for purchasing replacement power. Because

of the electricity market’s volatility, the spot price is frequently lower than the contract price. When

that happens, plant outages allow the distributor to lower its procurement cost, but the plant’s
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misreporting up deprives the distributor of that opportunity.

In the appendix, we present an example of possible misreporting behavior and its financial impact.

We discuss related market regulations and explain why misreporting behavior in bilateral contracts

is not monitored and why the system operator protects the plant’s private information. Here we

continue to discuss how the distributor views the misreporting problem.

It might appear that the distributor prefers the plant to always truthfully report its status. To

enforce truthful reporting, the distributor could inspect the plant at a cost, e.g., administrative cost

and legal fees for access to the plant’s internal records or its account at the system operator. If

misreporting is found, penalties can be levied. In practice, however, the distributor typically does

not conduct inspections to recover potential damages. A manager at an electricity distributor firm

revealed to us that they were aware of some plant’s suspicious behavior but never conducted an

inspection, because they found the unit-contingent contracts were lucrative after all: The risk-free

profit during the “up” times outweighed the loss during the “down” times in the past. Furthermore,

the distributor may have an impression that a little bit of misreporting by the plant brings extra

profits to the plant, and thus the plant is willing to accept a lower unit-contingent contract price.

However, the manager was not sure whether tolerating misreporting is really better or worse than

prohibiting misreporting and offering a higher contract price.

We aim to address the following questions: Can the seemingly undesirable misreporting bring

benefit to both parties? If so, under what circumstances should the distributor tolerate what type

of misreporting? If tolerating some type of misreporting is not practical, what is a practical way to

manage misreporting?

We show that, indeed, under some conditions the plant’s misreporting benefits both the plant

and the distributor because a certain type of misreporting reallocates the risk between the two

parties. Specifically, misreporting is beneficial when the plant is down and the spot price falls into

a region below the contract price. By purchasing electricity on the spot market to deliver to the

distributor and misreporting up, the down plant gains a positive profit, which should belong to the

distributor under truthful reporting. Anticipating this loss, the distributor lowers the contract price

upfront. If the plant is risk-averse, the reduction in the contract price can exceed the expected

increase in the plant’s profit from misreporting, while keeping the plant’s expected utility constant.

This benefits the risk-neutral distributor. A risk-averse distributor would also benefit, because this

type of misreporting increases the plant’s apparent reliability, reducing the distributor’s exposure to

the spot price. If both parties are risk-neutral, risk allocations do not improve the expected profit,
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and a truth-telling contract is optimal.

The other type of misreporting – reporting down when the plant is up – will expose the distributor

to the spot price risk while the plant earns a random profit. This increases the uncertainties of both

firms’ profits and is generally undesirable.

In general, we show that when the spot price falls into a certain region, misreporting behavior

benefits both parties, but when spot price is not in that region, misreporting should be prohibited. In

practice, the distributor can prohibit undesirable misreporting behavior by imposing a high penalty,

but a clause encouraging misreporting is not likely to be part of a contract. Thus, we propose an

implementation method using state-contingent options. Such options provide the plant with the

same benefit as it would obtain from misreporting.

The contract gaming in this paper does not involve market manipulation (we assume the plant

does not withhold power from the market). However, we show that contract gaming affects firms’

cash flows and risk profiles, which in turn affect the firms’ competitiveness. Our paper informs the

regulators about the consequences of contract gaming in the unit-contingent contracts and proposes

a method to improve risk allocation.

The rest of the paper is organized as follows. §2 reviews the relevant literature. §3 models the

firms’ interaction as a game with asymmetric information. §4 analyzes the role of misreporting in

risk allocation. §5 extends the analysis to a two-period game. §6 discusses implementation issues

and aggregate risk allocation. §7 presents numerical results. §8 concludes the paper with a summary

of managerial insights and a discussion on model extensions.

2. Related Literature

We apply the theory of Bayesian games originally developed by Harsanyi (1967, 1968a,b) to model

the interactions between the power plant and the distributor. Bayesian games have been applied to

the electricity markets to model the suppliers’ bidding processes in which each power plant’s marginal

cost is private information. Such a game has been analyzed in various market conditions by Ferrero

et al. (1998), Shahidehpour et al. (2002), Li and Shahidehpour (2005), and Correia (2005), among

others. Hortaçsu and Puller (2008) analyze bidding processes in which contract positions are private

information. Unlike previous works, in this paper information asymmetry comes from the fact that

the plant’s status cannot be directly observed by the distributor, and the unit-contingent power

purchase agreement introduces incentive conflicts into the system.

Several economics papers on contract theory are related to our work. For example, Laffont

and Martimort (2002, Section 3.6) discuss an adverse selection problem with audits and costly
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state verification. The costly audit allows the principal to detect an untruthful agent’s report and

impose penalties. The Revelation Principle still applies, and under the truth-revealing mechanisms,

punishments are never used, but the existence of punishments reduces agent’s incentive to lie and,

hence, reduces informational rents. Mookherjee and Png (1989) and Reinganum and Wilde (1985)

apply the adverse selection problems with costly state verification to insurance and taxation. In

contrast to these papers, our analysis is focused on a particular contract form commonly seen in

practice. Because of the restriction on the contract set, instead of invoking the mechanism design

approach (as in Myerson 1981, 1979, Guesnerie and Laffont 1984), we find the equilibrium of the

Bayesian game directly. Within the unit-contingent contract space, we show the truth-revealing

mechanism is not necessarily optimal.

Our work shares some similarities to the economics literature on contracting with costly state

verification (e.g., Townsend 1979) and literature on incomplete contracts (e.g., Demski and Sapping-

ton 1991, Boot et al. 1993, Bernheim and Whinston 1998) in that by allowing flexibility to act to one

party, a better equilibrium outcome can be achieved. However, there are a number of essential dif-

ferences between our work and this literature. For instance, Townsend (1979) and related economics

literature on bonding and insurance are concerned with the problem of signaling private information,

when doing so involves a cost for the party that sends a signal – that is, the party with information

can initiate a costly verification process, during which a part of the value of the firm is destroyed. In

our problem, the firm without information can initiate a costly inspection to verify the other firm’s

report. Papers on incomplete contracts listed above use models where actions of one of the players

are observable, but not contractible (this is the meaning of “non-verifiable” in their context). In our

problem, actions of the plant, other than its report, are not observable (without an inspection). This

is important, because analyses of incomplete contracts (e.g., Bernheim and Whinston 1998) rely on

the second player knowing the actions of the first player when deciding whether or not to punish

her for deviating from the desired equilibrium. Literature on incomplete contracts studies contracts

that are not specified for all states of the world (by choice or due to non-verifiability). This affords

tit-for-tat strategies as in Bernheim and Whinston (1998). Specifically, the main insight in Bernheim

and Whinston (1998) is that if not all actions of the first player are contractible (but all actions

are observable), some of the actions of the second player should be made non-contractible too (thus

introducing strategic ambiguity), so that the second player has the flexibility of punishing the first

player for “shirking”. In contrast, our contract is not strategically ambiguous. It is fully specified

based on all observable information. Thus, although there is some similarity between our and these
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economic literatures, the frameworks and the results are different.

Our game is similar to the inspection games used to study problems of arms control and treaty

violations (e.g., Dresher 1962, Diamond 1982, Avenhaus and Canty 2005, among others). The settings

of these games range from unobservable inspection and simultaneous moves (Diamond 1982) to

observable inspection and sequential moves (Avenhaus and Canty 2005). Our problem differs from

the inspection games in two aspects. First, the payoffs to the players in our problem depend on

both a publicly observable stochastic process and a private information process observed only by

the inspectee. The inspectee’s incentive to violate depends on both processes, while the inspector’s

incentive to inspect depends on the public signal and the inspectee’s report. Second, in our setting,

before the game begins, the inspector offers a contract to the inspectee that affects players’ incentives

during the game.

Examples of inspection games in procurement are Reyniers and Tapiero (1995a,b), who study

static quality-inspection games where the seller chooses product quality (unobservable by the buyer)

and the buyer decides whether to inspect the product. They find non-cooperative and cooperative

mixed strategy equilibria of the quality-inspection games. Reyniers and Tapiero (1995a) also design

a contract that leads to a cooperative equilibrium. We design contracts that can benefit both players

in a non-cooperative setting.

Heese and Kemahlioglu-Ziya (2009) study the misreporting of revenues by a retailer in a revenue-

sharing contract between a supplier and the retailer, who enjoys private information about demand.

Although the motivation of their research and the contracts considered are different from our paper,

some results are similar: Heese and Kemahlioglu-Ziya (2009) also find that it might be beneficial to

limit cheating by the retailer, but not eliminate it altogether.

3. Unit-Contingent Contract and Subsequent Inspection Game

A distributor buys electricity from a plant on a unit-contingent basis. The plant has two states: UP

and DOWN (denoted in capital letters for visual convenience). In the UP state the plant produces

power at its full capacity, which we normalize to be one unit, and the production cost is denoted

as c . In the DOWN state the plant cannot produce anything. The two-status model is a reasonable

approximation (e.g., in the example shown in appendix A, the plant’s output falls between 0% and

90% of its capacity for only 5% of the time). The distributor sells the energy to satisfy a firm

contract with a fixed price f . Unit-contingent contracts are often used for base-load plants, and the

firm service contracts are part of the base-load.

The timeline of the interactions between the distributor and the plant is illustrated in Figure 1.
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During the contracting stage, the distributor determines the contract parameters, which consist of a

pair of functions: (v(p), φ(p)), where p is the spot price to be realized in the contract execution stage,

v(p) > 0 is the unit-contingent contract price (i.e., the payment from the distributor to the plant if

the realized spot price is p and the plant delivers electricity to the distributor; otherwise, no payment

is made), and φ(p) ≥ 0 is the penalty paid by the plant to the distributor if the plant is found to

have misreported its status. In practice, unit-contingent contract prices are typically independent

of the spot price, i.e., v(p) = v. The main insights hold regardless of whether the contract price

is constant or dependent on the spot price. For a discussion on the importance of connecting the

long-term contract prices with spot prices see Boyabatlı et al. (2011).

Figure 1: Timeline of the Unit-Contingent Contract

Distributor 
offers contract

Plant 
accepts/
declines

Nature 
determines 

plant’s status

Plant reports 
its status to 
distributor

Final 
payoffs 
realize

Distributor 
randomly 
inspects

Contracting Contract Execution

Distributor 
schedules 
with ISO

Plant 
schedules 
with ISO

Distributor 
withdraws energy 

from the grid

Plant 
supplies energy 

to the grid

Spot 
price 

realizes

In this section, the contract execution stage is modeled as a single-period inspection game. Con-

tract execution in a multi-period setting will be analyzed in §5 and §6. The differences between our

game and the inspection games in the literature are reviewed in the previous section.

Nature’s move: During the execution stage, it is common knowledge that nature lets the plant

to be UP with probability γ ∈ (0, 1) and DOWN with probability 1− γ. The plant’s actual status is

its private information. Nature also determines the spot price, p, based on the supply and demand

balance in the market. It is common knowledge that the spot price follows a continuous distribution

with probability density function g(p), and the realized spot price is public information. We assume

that the power generating unit is small so that its status has negligible influence on the distribution

of the spot price.

Plant’s move: Based on its realized status, the plant schedules with the ISO (system operator)

and supplies energy to the grid if UP. The plant is prohibited to misreport to the ISO (see appendix B

for regulations). After observing the realized spot price, the plant reports a status to the distributor.

In practice, the price and status uncertainties are resolved when the plant reports its status. (See

appendix B for more details on contract execution in practice and why the system operator protects

7



the plant’s private information from being accessible to the distributor.)

Distributor’s move: The distributor schedules with the ISO and withdraws energy from the

grid to meet its firm contract obligation. (The distributor cannot tell where the energy is actually

produced.) After receiving the plant’s status report, the distributor may inspect the truthfulness of

the the plant’s report at an inspection cost k > 0, which involves administrative cost and legal fees

for access to the plant’s internal records or its account at the system operator.

Table 1: Profits from Contract Execution
In each formula cell, the top expression is the plant’s profit, the bottom expression is the distributor’s profit.

Nature determines the plant’s status

UP DOWN

Plant reports Plant reports

UP DOWN UP DOWN

Distributor

Inspect
v(p)− c

f − v(p)− k

v(p)− c− φ(p)

f − v(p)− k + φ(p)

−φ(p)

f − p− k + φ(p)

0

f − p− k

Do Not
Inspect

v(p)− c

f − v(p)

p− c

f − p

v(p)− p

f − v(p)

0

f − p

Given the moves by nature, the plant, and the distributor, the profits (or losses) of both firms

are summarized in Table 1. For example, when the plant is UP but reports DOWN, if the distributor

does not inspect, the plant earns a profit of p − c (selling its output on the spot market), while the

distributor’s profit is f − p (buying on the spot market to cover its firm contract). If the distributor

inspects (at cost k), misreporting will be uncovered, and the cash flows are then corrected based on

the true status (the plant effectively pays compensatory damages); furthermore, the plant must pay

the punitive damages φ(p) specified in the contract. In practice, both penalties are specified in some

contracts (see, e.g., Bachrach et al. 2003).

The spot price is set by the marginal generating unit on the grid and, therefore, is typically

higher than the production cost c of a base-load plant. The spot price may sporadically drop below

the production cost c, but the plant continues production due to high switching cost. Thus, when

the plant is UP, it always produces energy at cost c.

The payoffs of the game are expressed as the utilities of the profits given in Table 1. In the

multi-period settings in §5 and §6, the utility will be on the aggregate profit over multiple periods.

The utility functions of the plant and the distributor are UP (·) and UD(·), respectively. We assume

(i) both utility functions are concave and strictly increasing, (ii) UP (0) = 0, and (iii) UD(x) → ∞ as

x → ∞. The last two assumptions are not crucial for the results, but help with the exposition.
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3.1 Bayesian Equilibrium of the Inspection Game

In this section, we find the Bayesian equilibrium of the execution stage game for any given contract

(v(p), φ(p)) ≥ 0 and any given realization of the spot price p. The mixed strategies of the plant and

the distributor are characterized by the following probabilities:

xU = Probability that the plant tells the truth (i.e., reports UP) when it is UP;

xD = Probability that the plant tells the truth (i.e., reports DOWN) when it is DOWN;

yU = Probability that the distributor inspects if the plant reports UP;

yD = Probability that the distributor inspects if the plant reports DOWN.

How the game is played depends on whether the spot price p is higher or lower than the unit-

contingent contract price v(p), and in the case of p > v(p), it further depends on whether the penalty

is above or below the following threshold:

φ̂(p)
def
= v(p) + k − f + U−1

D

(
1

γ
UD(f − p)− 1− γ

γ
UD(f − p− k)

)
, for p > v(p). (1)

If the distributor is risk-neutral, (1) becomes φ̂(p) = v(p)−p+k/γ. Then, φ(p) < φ̂(p) is equivalent to

γ
(
φ(p)+p−v(p)

)
< k. When the distributor inspects, the expected compensation to the distributor

does not exceed γ
(
φ(p)+p−v(p)

)
, because φ(p)+p−v(p) is the total payment that the plant compen-

sates the distributor if misreporting DOWN is found, and P
{
plant is UP | plant reports DOWN

}
=

(1−xU)γ
(1−xU)γ+(1−γ) ≤ γ. Therefore, if γ

(
φ(p) + p− v(p)

)
< k, the expected compensation from inspection

cannot cover the inspection cost and the distributor will not conduct an inspection.

For a risk-averse distributor, φ(p) < φ̂(p) is equivalent to γUD(f−v(p)−k+φ(p))+(1−γ)UD(f−
p− k) < UD(f − p), where the left side is the distributor’s maximum expected utility if it inspects a

DOWN report, and the right side is the distributor’s expected utility if it does not inspect. Hence,

the distributor will not conduct an inspection when the penalty φ(p) is below the threshold φ̂(p).

The Bayesian equilibrium under p > v(p) is summarized in the following proposition, with the

proof relegated to the online supplement.

Proposition 1a When the spot price is above the contract price, p > v(p), the Bayesian equilibrium

of the contract execution stage game is as follows:

(i) If the penalty φ(p) does not exceed the threshold φ̂(p) defined in (1), we have a pooling equilibrium

where the plant always reports DOWN (x∗
U
= 0, x∗

D
= 1) and the distributor does not inspect (y∗

U
=

y∗
D
= 0), and the equilibrium utilities of the plant and the distributor are:

E[UP | p] = γUP (p− c), E[UD | p] = UD(f − p). (2)
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(ii) If φ(p) > φ̂(p), we have a mixed strategy equilibrium:

x∗U = 1− (1− γ)α̂

γ(1− α̂)
, where α̂ =

UD(f − p)− UD(f − p− k)

UD(f − v(p)− k + φ(p))− UD(f − p− k)
,

y∗D =
UP (p − c)− UP (v(p) − c)

UP (p− c)− UP (v(p) − c− φ(p))
,

x∗
D
= 1, and y∗

U
= 0. The firms’ equilibrium utilities are:

E[UP | p] = γUP (v(p)− c), E[UD | p] = γx∗UUD(f − v(p)) + (1− γx∗U)UD(f − p). (3)

Note that the firms’ expected utilities in (3) do not directly involve the penalty. This is because

the plant balances gains from misreporting and losses due to penalty, while the distributor balances

the cost and benefit of inspection. In the resulting equilibrium, the plant’s expected utility is the same

whether it misreports or reports truthfully; the distributor’s expected utility is the same whether it

inspects or not. Note that the distributor uses the penalty to influence the equilibrium misreporting

probability x∗
U
, which in turn affects the distributor’s expected utility.

Figure 2 illustrates a few useful properties of the above equilibrium. When the plant is UP, the

probability of truthful reporting increases in the penalty φ(p) and approaches to one as φ(p) → ∞.

If the plant reports DOWN and φ(p) > φ̂(p), the distributor may conduct an inspection and the

Figure 2: Effect of Penalty φ(p) on Equilibrium Strategies and Utilities
Parameters: γ = 0.8, k = 8, p = 75, v(p) = 70, UD(x) = x, φ̂(p) = v(p)− p+ k/γ = 5
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probability of inspection, ŷD, decreases in φ(p) and approaches zero when φ(p) → ∞. Intuitively, a

very large penalty with a very small inspection probability can effectively deter misreporting. When

the penalty φ(p) increases, the plant’s expected utility decreases (in a step-function fashion, see

Figure 2) and the distributor’s expected utility increases.

When the spot price p is below the contract price v(p), the analysis is in parallel and we summarize

the equilibrium below. The penalty threshold is

φ̂(p)
def
= p+ k − f + U−1

D

(
1

1− γ
UD(f − v(p))− γ

1− γ
UD(f − v(p)− k)

)
, for p < v(p). (4)

The Bayesian equilibrium under p < v(p) is summarized in the following proposition.

Proposition 1b When the spot price is below the contract price, p < v(p), the Bayesian equilibrium

of the contract execution stage game is as follows:

(i) If the penalty φ(p) does not exceed the threshold φ̂(p) defined in (4), we have a pooling equilibrium

where the plant always reports UP (x∗
U
= 1, x∗

D
= 0) and the distributor does not inspect (y∗

U
= y∗

D
=

0), and the equilibrium utilities of the plant and the distributor are:

E[UP | p] = γUP (v(p) − c) + (1− γ)UP (v(p) − p), E[UD | p] = UD(f − v(p)). (5)

(ii) If φ(p) > φ̂(p), we have a mixed strategy equilibrium:

x∗D = 1− γβ̂

(1− γ)(1 − β̂)
, where β̂ =

UD(f − v(p))− UD(f − v(p)− k)

UD(f − p− k + φ(p)) − UD(f − v(p)− k)
,

y∗U =
UP (v(p) − p)

UP (v(p) − p)− UP (−φ(p))
,

x∗
U
= 1, and y∗

D
= 0. The firms’ equilibrium utilities are:

E[UP | p] = γUP (v(p)− c), E[UD | p] = (1− (1− γ)x∗
D
)UD(f − v(p)) + (1− γ)x∗

D
UD(f − p). (6)

4. Misreporting as a Risk Allocation Mechanism

Anticipating the equilibrium in the execution stage game, the distributor now chooses the contract

parameters (v(p), φ(p)) to influence the plant’s misreporting behavior. Assume the plant’s reservation

utility is UP > 0 (recall UP (0) = 0). The distributor’s utility-maximization problem is:

max
{v(p), φ(p)}

E[UD], s.t. E[UP ] ≥ UP . (7)

Because we are analyzing a specific type of contract, the unit-contingent contract, we look for the

optimal contract based on the explicit solution to the Bayesian game derived in the previous section,
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rather than taking the general mechanism design approach. In fact, general mechanism design

leads to an impractical contract: Let v(p,UP) and v(p,DOWN) be the distributor’s payment to the

plant which reports UP and DOWN, respectively. The incentive compatibility requires v(p,UP) −
v(p,DOWN) = p for all p, because if this equality were < (or >), it would provide incentive for

misreporting DOWN (or UP). Any contract satisfying this equality exposes the plant to the spot

price risk (outage leads to a payment reduction of p) and, therefore, does not possess the key feature

of the unit-contingent contract.

4.1 Unit-Contingent Truth-Telling Contracts

We first analyze the unit-contingent contracts that enforce truth-telling. From the analysis in §3.1,
we see that truth-telling is the equilibrium outcome when the penalty for misreporting is infinite

in theory, but as shown in Figure 2, the truth-telling probability approaches to one quickly and

the distributor’s expected utility converges quickly when the penalty increases. Thus, a reasonably

large penalty is sufficient to deter misreporting. For analytical tractability, we approximate the

distributor’s expected utility under a large penalty by its expected utility under infinite penalty.

When penalty φ(p) = ∞, ∀p, the equilibrium truth-telling probabilities x∗
U
= x∗

D
= 1. Therefore, (3)

and (6) imply that the firms’ expected utilities are:

E[UP ] = γEUP (v(p)− c), E[UD] = γEUD(f − v(p)) + (1− γ)EUD(f − p). (8)

Solving the problem in (7) with E[UP ] and E[UD] defined in (8) gives the following lemma.

Lemma 1 The contract (v(p) = v0, φ(p) = ∞) with v0 satisfying γUP (v0 − c) = UP is optimal

among all unit-contingent truth-telling contracts.

Intuitively, when truth-telling is enforced, bilateral transactions occur only when the plant is up, and

a constant contract price stabilizes both parties’ income when the plant is up.

Note that the truth-telling contract in Lemma 1 is optimal among all contracts when both parties

are risk-neutral. This is because when truth-telling is enforced, costly inspections will not occur.

Therefore, the sum of both firms’ expected profit is maximized, and keeping the plant’s profit at its

reservation level maximizes the distributor’s expected profit.

4.2 Sub-Optimality of the Unit-Contingent Truth-Telling Contracts

If truth-telling is enforced, v0 is the lowest contract price the plant is willing to accept, but is there a

better contract with v < v0 and a lower penalty? We consider a contract (v(p), φ(p)) of the following
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form:

v(p) ≡ v < v0, φ(p) =





0, p ∈ [v − δ, v],

∞, otherwise,
(9)

where v is slightly below v0 and δ is small (we assume δ ∈ (0, k), where k is the inspection cost).

Under the contract in (9), when the spot price p ∈ [v − δ, v], the equilibrium in Proposition 1b(i) is

played.1 In this equilibrium, facing zero penalty for misreporting, the plant would report UP when

it is DOWN, obtaining a profit of v − p. Because of this benefit, the plant is willing to accept a

contract price v < v0. When p 6∈ [v − δ, v], the equilibrium is that in Proposition 1a(ii) or that in

Proposition 1b(ii). In this equilibrium, due to large penalty, the plant is truthful: x∗
U
= x∗

D
= 1.

The following proposition shows that a contract of the form (9) can allocate the risk between the

two parties more efficiently than the truth-telling enforcing contract.

Proposition 2a If either the plant or the distributor or both are risk-averse, then there exists a

unit-contingent contract of the form (9) that strictly dominates the truth-telling enforcing contract

(v0, φ(·) = ∞), i.e., strictly improves E[UD] in (7) while holding E[UP ] constant.

Intuitively, a lower contract price v < v0 reduces the plant’s profit when the plant is UP, resulting

in a utility loss of γUP (v0 − c)− γUP (v − c). To compensate for this loss, the distributor eliminates

the misreporting penalty when the spot price p ∈ [v − δ, v]. When the spot price falls in this

range, the DOWN plant can still gain a small profit, v − p, by purchasing electricity on the spot

market to deliver to the distributor and misreporting UP. This extra benefit can offset the loss, i.e.,

(1−γ)

∫ v

v−δ

UP (v−p)g(p)dp = γUP (v0− c)−γUP (v− c), thereby keeping the plant’s expected utility

unchanged. If the plant is risk-averse, the expected value of this benefit, (1 − γ)

∫ v

v−δ

(v − p)g(p)dp,

is smaller than the expected loss γ(v0 − v). Hence, the distributor’s expected profit increases.

Furthermore, the distributor now enjoys more certain profit: It obtains a fixed profit of f −v (higher

than f − v0) with a higher probability than under the truth-telling enforcing contract.

We remark that when a plant reports UP when DOWN, it buys electricity from the spot market

and sells to the distributor. Such a transaction can be easily executed because it is exactly what

the plant has to do during the outages under a firm contract. Furthermore, the opportunities of

misreporting UP when DOWN are not rare, because outages are not rare and the unit-contingent

1 To see this, note that φ̂(p) defined in (4) satisfies
UD(f − v) − UD(f − v − k)

UD(f − p− k + φ̂(p)) − UD(f − v − k)
= 1− γ < 1, which implies

that φ̂(p) > p + k − v. Thus, for p ∈ [v − δ, v] and δ < k, we have φ̂(p) > k − δ > 0. Hence, φ̂(p) > φ(p) = 0 for
p ∈ [v − δ, v], which satisfies the condition in Proposition 1b(i).
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contract price is typically close to the median spot price.

An important implication of Proposition 2a is that the seemingly undesirable action of the plant’s

reporting UP when DOWN could actually serve as a tacit risk-allocation mechanism between the plant

and the distributor. A natural question is whether plant’s reporting DOWN when UP could also serve

the same purpose. Consider a contract (v(p), φ(p)) that steers the plant to misreport DOWN when

UP for spot price p ∈ [v, v + δ]:

v(p) ≡ v < v0, φ(p) =





0, p ∈ [v, v + δ],

∞, otherwise.
(10)

Proposition 2b If either the plant or the distributor or both are risk-averse, then the unit-contingent

contract of the form (10) is strictly dominated by the truth-telling enforcing contract.

Intuitively, a truthful report of UP provides both firms with a fixed profit, whereas misreporting

DOWN introduces additional variability to both parties’ profits (the plant sells its output to the spot

market and the distributor buys replacement power at the spot price). Thus, the contract in (10)

performs worse than the truth-telling contracts. However, optimal contracts may contain both types

of misreporting, because allowing misreporting DOWN would reduce the contract price v, which

might affect the plant’s extra profit obtained from misreporting UP.

4.3 Optimal Unit-Contingent Contracts

We first make the following observation based on Proposition 1 and Figure 2.

Corollary 1 A unit-contingent contract (v(p), φ(p)) with penalty φ(p) < ∞ is strictly dominated by

the contract (v(p), φ†(p)), where φ†(p) = 0 if φ(p) ≤ φ̂(p), and φ†(p) > φ(p) if φ(p) > φ̂(p).

From Figure 2, it can be seen that (v(p), φ†(p)) defined in Corollary 1 will not change the plant’s

expected utility, but increase the distributor’s expected utility. Intuitively, any penalty level below

the threshold φ̂(p) induces misreporting without inspection, so does the zero penalty. When the

penalty is above the threshold, a higher penalty leads to higher truth-telling probability, benefiting

the distributor. Corollary 1 implies that, without loss of optimality, we can restrict our attention to

only two penalty values: zero and very high penalty.

With the above observation, choosing a contract (v(p), φ(p)) is equivalent to choosing a contract

price function v(p) and a price set L, within which the penalty is zero and beyond which the penalty

is very high. Because there is no incentive for misreporting when p = v(p), we can exclude the set
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{p : p = v(p)} from L. Let L = Ll ∪ Lr, where

Ll
def
= { p : p < v(p), φ(p) = 0 }, Lr

def
= { p : p > v(p), φ(p) = 0 }.

From Corollary 1, zero penalty is never optimal when the threshold φ̂(p) < 0. Thus, the two subsets

above must be contained in the region where the threshold is non-negative:

Ll ⊆ Sl
def
= { p : p < v(p), φ̂(p) ≥ 0 }, Lr ⊆ Sr

def
= { p : p > v(p), φ̂(p) ≥ 0 }. (11)

We refer to Ll and Lr as zero-penalty regions and Sl and Sr as zero-penalty feasible regions.

Using Proposition 1, we can derive the firms’ expected utilities. When p ∈ Ll, the equilibrium

utilities are given in (5):

E[UP | p] = γUP (v(p) − c) + (1− γ)UP (v(p) − p), E[UD | p] = UD(f − v(p)).

When p ∈ Lr, the equilibrium utilities are given in (2):

E[UP | p] = γUP (p− c), E[UD | p] = UD(f − p).

When p 6∈ (Ll ∪ Lr), it is optimal for the distributor to set penalty φ(p) = ∞. Both (3) and (6)

imply that:

E[UP | p] = γUP (v(p) − c), E[UD | p] = γUD(f − v(p)) + (1− γ)UD(f − p).

Integrating utilities over the above three price regions and rearranging terms, we can express the

firms’ expected utilities as follows:

E[UP ] = γEUP (v(p) − c) + (1− γ)

∫

Ll

UP (v(p)− p)g(p)dp

+ γ

∫

Lr

[
UP (p− c)− UP (v(p)− c)

]
g(p)dp,

(12)

E[UD] =
[
γEUD(f − v(p)) + (1− γ)EUD(f − p)

]
− (1− γ)

∫

Ll

[
UD(f − p)− UD(f − v(p))

]
g(p)dp

− γ

∫

Lr

[
UD(f − v(p))− UD(f − p)

]
g(p)dp. (13)

In (12), the first term γEUP (v(p)− c) is the plant’s expected utility if it always reports the true

status, and the other two terms are the additional utility the plant can get by misreporting its status

in the zero-penalty regions Ll and Lr, respectively. In (13), the first term in the brackets is the

distributor’s expected utility when the plant is truthful, and the remaining two integrals account for

the utility loss due to the plant’s misreporting behavior.
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Using (12) and (13), the distributor’s problem in (7) now becomes:

max
{v(p), Li⊆Si, i=l,r}

E[UD], s.t. E[UP ] ≥ UP . (14)

Solving the optimization problem in (14) is complicated in general, but we are able to identify some

structural properties of the optimal contracts, as detailed in Proposition 3 and illustrated in Figure 3.

Proposition 3 Suppose either the plant or the distributor or both are risk-averse. Then, the optimal

contract (v∗(p), L∗
l , L

∗
r) has the following structural properties:

a. Properties of the contract price v∗(p):

(i) v∗(p) is constant outside of the zero-penalty regions: v∗(p) = v1, for some v1 and p 6∈ L∗
l ∪ L∗

r.

(ii) If the plant is risk-averse, v∗(p) increases in p for p ∈ L∗
l at a rate no faster than one, and

v∗(p) ≥ v1 for p ∈ L∗
l ∩ [c,∞). If the plant is risk-neutral, v∗(p) = v1 for p ∈ L∗

l .

b. Properties of L∗
l and L∗

r:

(i) If L∗
r 6= ∅, then L∗

r is to the right of L∗
l , i.e., pl < pr, ∀pl ∈ L∗

l , pr ∈ L∗
r.

(ii) If the distributor is risk-neutral, then L∗
l is on the rightmost part of Sl: L∗

l = [p∗l ,∞) ∩ Sl for

some p∗l . If the plant is risk-neutral, then L∗
l is on the leftmost part of Sl: L∗

l = [0, p∗l ] ∩ Sl for

some p∗l .

(iii) L∗
r is on the leftmost part of Sr: L∗

r = [0, p∗r ] ∩ Sr for some p∗r.

(iv) If we restrict the contract price to be invariant with the spot price, i.e., v(p) = v, ∀p, then all

structural properties of L∗
l and L∗

r in parts (i)-(iii) still hold. In addition, Sl is an interval and,

if one of the firms is risk-neutral, L∗
l is an interval.

Figure 3: Structural Properties of the Optimal Unit-Contingent Contract
The case of risk-averse plant and risk-neutral distributor
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Property a(i) shows that in the price region where misreporting is prohibited (p 6∈ Ll ∪ Lr), it

is optimal to use a fixed contract price, because it stabilizes both firms’ income when the plant is

UP. When the price falls into the zero-penalty region Ll, the plant would report UP when DOWN to

earn a profit of v(p)− p, and the plant gets v(p)− c when it is actually UP. For a risk-averse plant,

to reduce the plant’s income variability, intuitively the distributor can select v(p) so that the above

incomes, v(p) − p and v(p) − c, change mildly with p. This can be achieved if v(p) increases in p

at a rate no faster than one, which is exactly what part a(ii) prescribes. Note that for p ∈ L∗
r, any

v(p) < p is fine; no particular structure is necessary.

Property b(i) can be intuitively explained: If Lr is not to the right of Ll, then we would find

pl ∈ Ll and pr ∈ Lr such that v(pr) < pr < pl < v(pl), which implies v(pl) − v(pr) > pl − pr, i.e.,

v(p) changes faster than the price changes. Such v(p) is unlikely to be the best for stabilizing either

firm’s income.

For most settings, Sl and Sr are intervals and, consequently, properties b(ii) and b(iii) imply that

L∗
l and L∗

r are also intervals. A typical optimal contract is illustrated in Figure 3.

We intuitively explain properties b(ii) and b(iii) under a fixed contract price v. (Part (iv) states

that those properties hold when v(p) ≡ v.) Property b(ii) shows that if a risk-neutral distributor

chooses to induce a risk-averse plant to report UP when DOWN to gain a profit of v − p, then p

should be as large as possible. Intuitively, the risk-averse plant prefers high-probability small gains

(corresponding to high p in the region p < v) over low-probability large gains (corresponding to

low p) with the same expected value. Thus, by shifting the zero-penalty region Ll as close to v as

possible, the distributor can lower the plant’s expected gains from misreporting, thereby improving

the distributor’s expected profit while keeping the plant’s expected utility constant. The intuition

for the property of L∗
r in b(iii) is similar.

In reality, in terms of firm size, distributors are often much larger than plants. Thus, for a unit-

contingent contract, we can consider the distributor is risk-neutral and the plant is risk-averse. Small

distributors and large plants do exist, and the second statement in part b(ii) states that a risk-averse

distributor who is contracting with a risk-neutral plant will try to move the zero-penalty region Ll

to the left of the feasible region Sl. Intuitively, by inducing the plant to report UP when DOWN,

the distributor essentially sacrifices a random profit of v − p in return for a lower contract price v

and lower profit variability (note that the risk-neutral plant’s expected profit is held constant, so

is the distributor’s expected profit). To minimize the profit variability, the risk-averse distributor

prefers sacrificing low-probability large profit (corresponding to low spot prices) over sacrificing high-
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probability small profit.

In practice, constant unit-contingent contract price is prevalent. Our analysis shows that the

optimal contract contains non-constant contract price in some price region while a constant price

in other regions. However, specifying the contract price as a function of the price is not easily

implementable in practice. In the analysis of a two-period model in §5 and a multi-period model in

§6, we focus on constant contract price.

5. Two-Period Interaction and Risk Allocation

In this section, we describe the main results from analyzing a two-period model. The analysis of the

two-period game involves many technical details. We refer interested readers to the Technical Note

by Wu and Babich (2011).

In the two-period model, the second period has the same sequence of events as in the single-

period model. The two periods are linked in three ways: a) The firms’ utilities are derived on the

sum of cash flows in both periods; b) The penalty can be history-dependent, e.g., higher penalty on

double misreports; c) Inspection in the second period detects misreports in both periods. These three

aspects capture the reality: Firms typically care about profit and loss aggregated over an accounting

period; penalty for repeated misreports tends to be more severe; inspection cost is a function of the

effort, not the length of the data obtained.

Recall that in a single-period game, two types of misreports can happen:

Type 1: Plant reports rt = U when its status is st = D and pt < v;

Type 2: Plant reports rt = D when its status is st = U and pt > v.

In a two-period game, two more types of misreports that benefit the distributor are possible:

Type 3: Plant reports rt = D when its status is st = U and pt < v;

Type 4: Plant reports rt = U when its status is st = D and pt > v.

In a single-period game analyzed in §3, types 3 and 4 misreports are dominated strategies for the

plant. Therefore, there is no need to consider them. However, in a two-period game, types 3 and 4

misreports may benefit the strategic plant in some circumstances. Because type 3 and 4 misreports

benefit the distributor, we assume that there is no penalty for them.

In a perfect Bayesian equilibrium, we show that type 3 and 4 misreports can occur in the fol-

lowing situation. When the plant already misreported in the first period and the penalty on double

misreports is high, the plant could make a type 3 or 4 misreport to the distributor in the second

period, which indicates that it did not make double misreports of type 1 or 2. This reduces or

eliminates the distributor’s incentive to inspect and allows the plant to keep the misreporting benefit
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from the first period.

Our analysis also shows that whenever a penalty is imposed, a higher penalty level benefits

both firms by raising both firms’ expected utilities. As the penalty level increases, the inspection

probability goes to zero. Because the inspection probability diminishes, the aforementioned benefit

of type 3 or 4 misreport shrinks as well. In fact, we show that under very high penalty, type 3 or 4

misreport will no longer occur.

A more important strategic behavior present in the two-period model is that the plant may choose

to give up the benefit from misreporting in the first period, so that it reserves the opportunity of

misreporting in the second period without being penalized for double misreports. Such a strategy

is desirable when the penalty on double misreports is high and the benefit from the first-period

misreport is small. In our analysis, we rigorously derive conditions under which such strategic

behavior will be played in the equilibrium (see Proposition TN.1).

Interestingly, through extensive numerical comparison of various contract structures, we show

that an extra penalty on double misreports is undesirable for risk allocation, because it induces the

plant to give up small benefits in the first period, and the single-period analysis tells us that small

benefits allocated to the risk-averse plant are beneficial for risk allocation between the two parties.

In short, our theoretical and numerical analysis on the two-period game conclude that although

richer strategic interactions between the contractual parties exist in the two-period game, they do

not improve the risk allocation between the firms; employing the same penalty structure for both

periods appears to be the best for risk allocation. The implication for a multi-period game is that

a more complicated penalty structure may induce strategic behaviors that are undesirable for risk

allocation.

6. Implementation Issues and Risk Allocation in Multiple Periods

In this section, we discuss how the misreporting problem can be managed in practice, and further

study a multi-period model to analyze aggregate risk allocation. In this multi-period model, the

same penalty structure (v, Ll, Lr) studied in §4.3 is used in every period. From the analysis of the

two-period model in §5, we know that a more complicated penalty structure may induce strategic

behaviors that are not desirable for risk allocation.

6.1 Implementation of the Optimal Contract

In practice, “no penalty for misreporting” is unlikely to be the type of language used in any con-

tract. How should the distributor write the contract to manage the plant’s misreporting behavior?

19



Recognizing that the purpose of the zero penalty is to give extra benefits to the plant in certain

circumstances, the distributor can specify those extra benefits in the contract.

Specifically, any unit-contingent contract with constant contract price v and zero-penalty regions

Ll and Lr can be implemented as a portfolio of the following three components:

1. A unit-contingent contract with price v and very high penalty for misreporting (effectively

prohibiting plant’s misreporting).

2. A put option to the plant with strike price v, which can be exercised only when the plant

reports down and p ∈ Ll. The value of this option upon exercising is v − p.

3. A call option to the plant with strike price v, which can be exercised only when the plant

reports up and p ∈ Lr. The value of this option upon exercising is p− v.

In the above portfolio, the put and call options are state-contingent and provide the plant with

the same benefit as having the zero-penalty regions Ll and Lr. The option premia are already

factored in the contract price, so no upfront payment is necessary.

In the analysis in §4.3, Li (i = l, r) must be contained in the feasible region Si defined in (11),

because when p falls outside of that region, the benefit of misreporting |v−p| is large and, even if the

penalty is zero, the distributor may still inspect to prevent the plant from getting the large benefit

|v− p|. However, in the call and put options specified above, Li is simply the price region where the

distributor commits to pay |v − p| to the plant that is in a certain status. Hence, Li does not have

to be contained in Si. Nevertheless, a good power purchase agreement should provide the plant with

an incentive to maintain its reliability. An Ll that contains a range of low prices would mean that

the plant may get a large benefit even if it is DOWN, which reduces the incentive for maintaining

reliability.

For the rest of this paper, we assume that Ll is at least above the plant’s production cost c, so

that a DOWN plant never obtains a profit larger than v − c. Let S̃l = [p, v], p ≥ c and S̃r = [v,∞)

denote the feasible regions for exercising the options. Because S̃l and S̃r are intervals, Proposition 3

b(ii) and b(iii) imply that L∗
l and L∗

r are also intervals. Proposition 4 identifies an additional property

of the optimal contract under general utility functions for both firms.

Proposition 4 Consider solving (14) with v(p) ≡ v and Si replaced by S̃i. If L
∗
l is strictly contained

in S̃l, then L∗
r = ∅.

Proposition 4 essentially says if the portfolio contains a call option (L∗
r 6= ∅), then it must contain

a put option whose exercise region cannot be further expanded (i.e., L∗
l = S̃l).
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6.2 Multi-Period Contract Execution and Aggregate Risk Allocation

In practice, the execution of the unit-contingent contract lasts for many periods (thousands of periods

typically). Both firms derive utilities from aggregate income over several months or years, and are

concerned about the aggregate risk allocation.

If the firms’ profits were independent across all periods, then improving the risk allocation in

each period would be equivalent to improving the aggregate risk allocation. This is not the case in

practice, where a period is an hour and profits in adjacent hours are correlated. In this section, we

quantify the variability of the total profit over many periods and analyze aggregate risk allocation.

We consider contracts that have constant contract price and structural properties in Propositions 3

and 4, and contract parameters do not change over multi-period execution. As discussed in §6.1,
such contracts are straightforward to implement in practice. Finding the optimal contract with those

structural properties is already non-trivial, as we will see below.

Assume the contract execution stage comprises N periods. The spot price process and the plant’s

status process are assumed to have stationary distributions. Let us redefine g(p) as the stationary

distribution of the spot price, and redefine γ as the long-run fraction of time that plant is UP. Let

πP and πD be random variables representing the long-run stationary distribution of the single-period

profit for the plant and the distributor, respectively.

Let ΠP and ΠD denote respectively the plant’s and distributor’s total profits over N periods.

Because N is typically large in practice, we employ normal approximation for ΠP and ΠD. We apply

the Central Limit Theorem for dependent random variables (Billingsley 1995, p. 363) because profits

are serially correlated. Let the profit sequences be {πP1, πP2, . . . } and {πD1, πD2, . . . }. For ease of

exposition, assume πP1 and πD1 have stationary distributions (πP1
dist
= πP , πD1

dist
= πD) and both

sequences are stationary. Then, we have the following relations:

N−1
E[ΠP ] = E[πP ], N−1

Var[ΠP ] → Var[πP ] + 2

∞∑

k=1

Cov(πP1, πP,1+k), N → ∞, (15)

N−1
E[ΠD] = E[πD], N−1

Var[ΠD] → Var[πD] + 2

∞∑

k=1

Cov(πD1, πD,1+k), N → ∞. (16)

The relations in (15)-(16) highlight that serial correlations of the profits contribute to the ag-

gregate profit variability. Reducing the single-period profit variance, Var[πP ] and Var[πD], only

represents part of the total variance reduction. Do serial correlations also decline at the same time?

Intuitively, if we reduce the profit variability in each period, serial correlations are likely to decrease

as well – at least this is true if variability is reduced to zero.
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Unfortunately but interestingly, for our problem serial correlations may sometimes increase faster

than the decline in the single-period profit variance and, therefore, caution must be taken in analyzing

the aggregate profit variability. Because serial correlations may increase or decrease aggregate profit

variability (depending on how the spot price and plant’s status evolve), we resort to numerical

analysis in the next section to fully reveal the impact of serial correlations. Nevertheless, the following

proposition summarizes some important findings.

Proposition 5 Suppose γ > 1/2 and consider reducing the contract price v and expanding the put

option’s exercise region Ll, while holding Lr = ∅ and keeping E[ΠD] and E[ΠP ] constant. Denote the

lowest possible contract price as v†, at which Ll expands to the entire feasible region, i.e., Ll = S̃l =

[p, v†]. Let πP (v, Ll) and ΠP (v, Ll) denote respectively the plant’s single-period and aggregate profit

under the contract (v, Ll,∅); similar notations apply to the distributor.

(i) For any v > v† and Ll ⊂ S̃l that satisfy E[ΠP (v, Ll)] = E[ΠP (v
†, S̃l)], we have

Var[πP (v, Ll)] > Var[πP (v
†, S̃l)] and Var[πD(v, Ll)] > Var[πD(v

†, S̃l)]. (17)

(ii) When v decreases,
∞∑
k=1

Cov(πP1, πP,1+k) may change in the opposite direction to the changes in

Var[πP ] and, consequently, we may have

Var[ΠP (v, Ll)] < Var[ΠP (v
†, S̃l)], for some v > v†.

Proposition 5(i) essentially says that whenever the put option’s exercise region Ll is strictly

smaller than the feasible region S̃l = [p, v], we can reduce both firms’ single-period profit variability

without changing the average profit by lowering v to v† and setting Ll = S̃l.

If the inequalities in (17) could also hold for serial correlations, then from (15)-(16), any contract

with v > v† would not minimize the total profit variability. However, Proposition 5(ii) shows that the

serial correlations may sometimes increase faster than the decline in the single-period profit variance.

7. Numerical Analysis

In this section, we simulate the firms’ profit streams under various contracts of the form proposed in

§6.1, quantify the profit variability, and identify superior risk allocations.

We run a 5,000-period simulation. We assume that the logarithm of the spot price follows a

mean-reverting process:

d log(pt) = η(m− log(pt))dt+ σdWt, m = 4.2, η = 0.3, σ = 0.387.

We let the initial price have the same distribution as the long-run stationary distribution. Thus, at

22



any time t, log(pt) has a mean of 4.2 and a standard deviation of σ/
√
2η = 0.5; hence, the average

price is $75.57/MWh. (The logarithm of the spot price at the PJM hub in July-August 2008 has a

mean of 4.2 and a standard deviation of 0.5, estimated using the hourly price data.)

The plant’s capacity is assumed to be 100 MW. Its status changes in a Markovian fashion: Being

UP this period, it will be UP the next period with a probability of 0.95; being DOWN this period, it

will return to UP the next period with a probability of 0.2. It can be calculated that the long-run

fraction of time that the plant is up is γ = 0.8 (see http://www.nerc.com/page.php?cid=4|43|47 for

statistics on generating unit availability). The production cost is c = $30/MWh (average operating

cost of fossil steam engines is $29.59/MWh, reported by Energy Information Administration 2007).

The distributor’s firm contract price is f = $80/MWh (PJM futures for 2008 summer electricity

were traded around $80/MWh in 2005; data available from Bloomberg).

Our numerical procedure can be used to find the optimal contract under specific utility functions.

But a much more appealing way to demonstrate improvement in risk allocation is to compare the

profit distributions under various contracts. Thus, in the following analysis, we do not impose any

specific utility function for either firm, and we focus on comparing firms’ profit variabilities while

keeping the firms’ average profits constant.

Aggregate Profit Distributions under Two Key Contracts

We illustrate the simulation results under the following two important contracts:

Contract A: Unit-contingent contract with contract price v0 = $70/MWh and a high penalty to

deter misreporting.

Contract B: Unit-contingent contract with contract price v = $67.93/MWh and a high penalty

to deter misreporting, and a put option with strike price $67.93/MWh, which can be exercised only

when the plant is down and the spot price is between $30 and $67.93 per MWh, i.e., Ll = S̃l = [c, v].

(The parameters are such that the average profits are the same as in Contract A.)

We ran the simulation 10,000 times. For each simulation run and each contract above, we com-

puted the plant’s and distributor’s total profit over 5,000 hours. The profit distributions under the

two contracts are compared in Figure 4. We can see that normal distribution is a good approximation

for the total profit.

Under Contract A, the plant’s total profit averages at 0.8×($70/MWh−$30/MWh)×100MWh×
5000 hours = $16 million. Contract B yields the same average profits for both firms, but it also brings

lower profit variability for both firms: The standard deviations of both firms’ profits are reduced

significantly (around 15% reduction) compared to Contract A.
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Figure 4: Aggregate Profit Distributions

Histograms are generated based on 10,000 simulated paths. Average profits are the same under both

contracts. The plant’s total profit variability (standard deviation) under Contract B is 16% (or $48,000)

lower than that under Contract A. The distributor’s total profit variability under Contract B is 14% (or

$73,000) lower than that under Contract A.
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Impact of Serial Correlation on Total Profit Variability and Contract Choice

We now vary the contract price v in a wider range, adjust the state-contingent options to keep

both firms’ average profit constant, and measure profit variability reduction.

As discussed at the end of §6.1, the state-contingent put option should be used first, and the call

option used only when the put option’s exercise region Ll is equal to the entire feasible region S̃l.

Thus, a kink point is v† = $67.93/MWh, at which Ll = S̃l and Lr = ∅. This contract is exactly

Contract B defined above.

For each contract price v ∈ (v†, v0), we let the put option’s exercise region Ll be in the rightmost

part of S̃l, i.e., Ll = [p1(v), v]. We numerically find the price p1(v) that keeps both firms’ average

profit the same as under Contracts A and B. We also tried moving Ll to the leftmost of S̃l or

anywhere within S̃l, and found similar relations between serial correlation and profit variability.

Figure 5 illustrates the key numerical results. In Figure 5(a), the single-period profit variabilities

(dashed curves) decline for both firms when the contract price v decreases from v0 to v†, but increase

if v drops below v†. Both firms’ single-period profit variabilities are minimized at v† = $67.93/MWh,

i.e., under Contract B.

In the multi-period setting, other contracts may allocate risk between the two firms better than

Contract B, because serial correlation affects the total profit variability. For the distributor, the

total profit variability (curves with triangular markers) has the same trend as the single-period
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profit variability. For the plant, however, serial correlation changes the trend of the total profit

variability (curves with round markers), especially around the kink v†. With low serial correlation

(or high mean-reverting speed, left panel in Figure 5(a)), total profit variability is still minimized

at v†, but that is not the case with medium to high serial correlations. The kink is even reversed

for high serial correlation (right panel Figure 5(a)), because when v decreases, the serial correlation

may change in the opposite direction to the change in single-period variability (Proposition 5(ii)).

Figure 5: Impact of Serial Correlation on Total Profit Variability

The total profit variability Var(Π(v)) is calculated based on 10,000 simulated paths. The single-period

profit variability Var(π(v)) is calculated based on the analytical expressions.

For either firm,
Var(Π(v))

Var(Π(v0))
>

Var(π(v))

Var(π(v0))
if and only if

∑∞
k=1 Cov(π1(v), π1+k(v))∑∞

k=1 Cov(π1(v0), π1+k(v0))
>

Var(π(v))

Var(π(v0))
.
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An intuitive explanation follows. When v = v0 = $70/MWh, the distributor bears all the spot price

risk during the plant outage period. When v decreases from v0 to v†, part of that spot price risk is

shifted to the plant. Although this benefits both firms in a single period, the plant’s profit becomes

more strongly tied to the spot price and, therefore, the serial correlation of the plant’s profit increases

and the total profit variability may not decrease (evident in the right panel in Figure 5(a)). When v

further decreases below v†, the call option needs to be included, and thus even more spot price risk is

shifted to the plant, but the call option’s payoff is negatively correlated with the put option’s payoff,

which reduces the serial correlation, and the plant’s total profit variability may actually decline (seen

in Figure 5(a) middle and right panels).

Figure 5(b) presents the information in Figure 5(a) in a different way to help with contract

selection. We could identify a set of frontier contracts, for which there is no other contract that yields

lower profit variabilities for both firms. Depending on the risk appetites of both parties, different

contracts on the frontier can be optimal in terms of risk allocation. For example, in Figure 5(b) right

panel, if the plant is risk-averse and the distributor is risk-neutral, then the contract with v∗ = 68.6

best allocates the risk between the firms. If the distributor is also risk-averse, a different contract on

the frontier would be desirable.

In the above analysis, we held the average profit at the same level as Contracts A and B, but

once both firms’ profit variabilities are reduced, a different average profit might be agreeable. We

can then use the same procedure above to reduce variability under the new average profit level.

8. Conclusions and Extensions

Unit-contingent power supply contracts are widely used in the electricity industry. Because plants

often possess private information about their operational status, the unit-contingent feature may

provide incentives for a plant to misreport its true status. Industry’s default belief is that the plant’s

misreporting reduces the distributor’s profit (for any given contract) and, therefore, the distributor

should either ban misreporting or lower the unit-contingent contract price to compensate for the losses

due to misreporting. Our analysis shows that misreporting can serve as a risk-allocation mechanism

between the plant and the distributor, and although some forms of misreporting are detrimental,

others are beneficial for both the plant and the distributor. One of the managerial takeaways from

this paper is that plant’s reporting up when being down often improves risk allocation, whereas

reporting down when being up typically impairs risk allocation.

To find how much misreporting (of each type) should be tolerated to maximize the distributor’s

benefit, we have identified structural properties of the optimal contract. These structural properties
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simplify the computational search for the optimal contract: The distributor can gradually reduce

the contract price and expand the spot price region where misreporting is penalty-free. The region

should be expanded below the contract price first (i.e., to tolerate misreporting up when down).

In the typical case where the distributor is risk-neutral and the plant is risk-averse, this region is

an interval with right endpoint being the contract price – a particularly convenient property in

practice. Expanding the penalty-free region above the contract price should be considered when

further expansion of the region below the contract price is not possible. Such a structural expansion

of the penalty-free region essentially converts the problem into a one-dimensional search problem.

Richer strategic interactions exist in the two-period game, but they do not improve the risk

allocation between the firms; employing the same penalty structure for both periods appears to be

the best for risk allocation. The implication for a multi-period game is that a more complicated

penalty structure may induce strategic behaviors that are undesirable for risk allocation.

When the penalty-free misreporting is difficult to implement as a contract clause, the distributor

can adopt the following approach: prohibit misreporting (via high penalties) but provide the plant

with state-contingent options. The cash flows from the plant’s reporting up when down (down when

up) are equivalent to the payoffs from a put (call) option. In the optimal portfolio, the distributor

always uses the put option, but may or may not use the call option.

When implementing the above portfolio over multiple periods, the impact of serial correlations

of the profits should be taken into account. A higher serial correlation of profit implies a higher total

profit variability over the entire contract execution period. A practical takeaway from considering

serial correlation is that the exercise region of the put (call) option will typically shrink (expand)

because the put (call) option increases (decreases) the serial correlation of the plant’s profit.

Our analysis can be extended in several directions. In practice, electricity distributors manage

a portfolio of power supply contracts and service contracts. Large distributors may be treated as

risk-neutral entities, and the contracting problem with each plant can be considered separately. For

a risk-averse distributor, the portfolio selection problem should be analyzed using a model that

contains multiple heterogeneous power plants and the distributor’s demand profile (including cus-

tomers’ preferences). The analysis in this paper shows that both the distributor’s and the plant’s

risk can be reduced when the misreporting issue is properly managed. With multiple unit-contingent

contracts with multiple plants, if the contractual terms are similar, cash flows across multiple plants

are positively correlated. Thus, our variance-reduction results will likely to be strengthened in the

context of multiple unit-contingent contracts.
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Power plants with multiple generating units may engage different units in different types of

contracts. Concerns arise when a unit under a firm contract is down while another unit under a

unit-contingent contract is running. In such a situation, the plant may wish to shift the output from

the latter unit to satisfy the firm contract obligation first. Such a behavior can be analyzed using the

approach in our paper, because the incentive for shifting the output is the same: The plant has an

incentive to misreport down and shift output only if the spot price (the price of replacement power)

is higher than the unit-contingent contract price.

This paper focuses on managing the incentive problem inherent in the unit-contingent contracts

and the related risk allocation between a distributor and a plant. In addition to the physical contracts,

firms also can use financial contracts to shape their risk profiles. A range of electricity derivatives can

be used to shape market participants’ risk profiles. Deng and Oren (2006) provide an excellent survey

on electricity derivatives and risk management. The payoffs of the financial instruments depend on

market prices that are realized before the plant reports its status, and thus these payoffs become the

initial wealth of the firms at the beginning of the Bayesian game analyzed in the paper. Because the

payoffs of the financial instruments do not depend on the plant status, the proposed state-contingent

options are still beneficial, since they introduce payoffs dependent on the plant status. Thus, the

risk-allocation mechanism analyzed in this paper is important for risk management.

Appendix

A. Preliminary Investigation of Possible Misreporting

Below we present a preliminary investigation into misreporting behavior based on limited data.

Figure 6 shows the power delivery pattern of a coal-fired power generating unit. The data is hourly.

Figure 6(a) shows the power delivery pattern before the plant was engaged in a unit-contingent con-

tract: When the spot price was above $150/MWh, the unit was producing power at its full capacity

for about 98% of the time. (We could not access the information about the contract type prior to the

unit-contingent contract, but most likely it sold to the spot market prior to that.) Figure 6(b) reveals

that when the same unit was engaged in unit-contingent transactions, less power was delivered to

the distributor at high spot prices. In fact, when the spot price was above $150/MWh, outages

were reported in almost a third of the time. The highlighted data points in Figure 6(b) represent

32 hours of reported outages. The average spot price of these 32 data points was $180/MWh. Sup-

pose the unit-contingent contract was 100 MW at $75/MWh and the distributor had a firm service

contract of 100 MW at $80/MWh. Without those 32 hours of reported outage, the distributor
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could have earned ($80 − $75)/MWh × 100 MW × 32 hrs = $16, 000, but instead it suffered a loss

of ($180 − $80)/MWh × 100 MW × 32 hrs = $320, 000. Thus, those 32 hours of reported outage

reduced the distributor’s profit by $336,000 over a four-month period.

This example does not provide conclusive evidence of misreporting, but it shows the significant

financial impact of misreporting if it occurs.

Figure 6: Electricity Delivery from a Coal-Fired Power Generating Unit

Disclaimer: We do not claim any conclusive evidence that the plant has misreported; the data presented here
is for research purposes only, and should not be used for any other purpose. The data excludes pre-scheduled
maintenance periods.

 (a) Prior to use of unit-contingent contract (b) Under unit-contingent contract 
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B. Related Market Background

This appendix provides information on market regulations and discusses why misreporting behavior

in bilateral contracts is not monitored and cannot be directly observed by the distributor.

There are ten electricity wholesale markets in North America. Each market is organized by

an independent system operator (ISO), a nonprofit organization providing market mechanisms to

coordinate and control the operation of the electrical power system.

Electricity market rules are quite complex. At a high level, the following is the sequence of events

in a unit-contingent contract:

1) The plant and the distributor schedule with the ISO.

2) The plant supplies electricity to the grid, and the distributor withdraws electricity from the

grid. If the plant’s status changes in real-time, it updates the schedule with the ISO.
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3) The day after the operating day (or within 1 to 6 days after the operating day, depending on

the contracts), the plant reports to the distributor its status on the operating day. This report is

used to calculate the financial settlement between the plant and the distributor.

4) Actual payment is due on a set day (e.g., the 20th day) of the next month.

Note that the plant’s report to the distributor, based on which the plant and the distributor settle

their bilateral contracts (over which ISO has no supervision), comes the day after the operating day,

when electricity prices have already been realized.

It is important to note that misreporting to an ISO is prohibited by Federal Energy Regulatory

Commission (FERC), as stated in §5.1.1 and §8.2 of the Market Monitoring and Mitigation Manual of

Midwest ISO (2009). The Manual also details the calculation of penalty charges for the misconduct.

Due to the explicit market regulations and severe consequences, it is reasonable to assume that the

plant always truthfully reports its status to the ISO. On the other hand, the plant reports to the

distributor, because the distributor does not have the right to access the plant’s true status recorded

by the ISO for confidentiality reasons, as stated in §A.4 of the Market Settlements Calculation Guide

of Midwest ISO (2010):

“Determinants are calculation components shown on Settlement Statements that enable verifica-

tion of Charge Types. There are two types of determinants provided on Settlement Statements: 1)

public, and 2) private. ... Private determinants represent confidential participant data related only

to individual participants. Cleared transactions and cleared virtual schedule data are examples of

private determinants. Participants have access to all public data, and only individual private data.

The Midwest ISO provides as many determinants as possible while maintaining each participant’s

confidentiality. ... Although the participant knows their own load volume, they do not have access

to the volume of all other participants individually.”

Furthermore, the ISO only acts as a transmission coordinator needed for the execution of bilateral

contracts. Actually, monitoring bilateral contracts is beyond the ISO’s responsibility, as described

in §3.5 of the Market Monitoring and Mitigation Manual of Midwest ISO (2009):

“MMM (Market Monitoring and Mitigation) is generally concerned with any MP (market par-

ticipant) behavior that affects the competitiveness of the Energy and Operating Reserve Markets

and increases LMPs (Locational Marginal Prices), MCPs (Market Clearing Prices) or ORSGPs

(Offer Revenue Sufficiency Guarantee Payments). The MMM process, however, is not directly

concerned with Internal or External Bilateral Transaction Schedules, with bilateral Capacity, or
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with private transmission rights that are not under Midwest ISO administration, unless they affect

the Energy and Operating Reserve Markets and services provided by the Midwest ISO.”

A third party does not exist to monitor or regulate bilateral contracts, e.g., unit-contingent

contracts. In short, the distributor does not have free access to the plant’s private status.
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Online Supplement

Proof of Proposition 1a [Bayesian equilibrium for p > v(p)]. If the plant is DOWN, reporting DOWN

(truth-telling) is the dominating strategy for the plant. Therefore, x∗
D
= 1.

If the plant is UP, it obtains UP (v(p) − c) by reporting UP (truth-telling), and an expected utility of

yDUP (v(p)−c−φ(p))+(1−yD)UP (p−c) by reporting DOWN, where yD is the probability that the distributor

inspects the plant that reports DOWN. Reporting DOWN is preferred by the plant if

yD <
UP (p− c)− UP (v(p)− c)

UP (p− c)− UP (v(p) − c− φ(p))

def
= ŷD ∈ (0, 1],

where ŷD ∈ (0, 1] because p > v(p) and φ(p) ≥ 0. Thus, the plant’s optimal response expressed as the

truth-telling probabilities xU and xD, given the inspection probability yD, is

When UP,





x∗
U
= 0 (report DOWN), if yD < ŷD;

x∗
U
∈ [0, 1], if yD = ŷD;

x∗
U
= 1 (report UP), if yD > ŷD;

(A.1)

When DOWN, x∗
D = 1 (report DOWN).

Next, we analyze the distributor’s best response, given the plant’s truth-telling probability. If the plant

reports UP, the distributor knows that the plant is indeed UP (because pretending to be UP while DOWN is

a dominated strategy for the plant when p > v(p)), so the distributor will not inspect: y∗
U
= 0. If the plant

reports DOWN, the distributor forms a belief about the plant’s actual status according to the Bayes rule:

P
{
plant is UP | plant reports DOWN

}
=

(1 − xU)γ

(1− xU)γ + (1− γ)

def
= α(xU) ∈ [0, γ].

Based on the above belief about misreporting, if the distributor chooses to inspect, its expected utility is

α(xU)UD(f − v(p)− k + φ(p)) +
(
1− α(xU)

)
UD(f − p− k).

Without inspection, the distributor can obtain UD(f − p). Thus, the distributor will not inspect if its belief

about misreporting is below a certain level:

α(xU) <
UD(f − p)− UD(f − p− k)

UD(f − v(p)− k + φ(p))− UD(f − p− k)

def
= α̂ ∈ (0,∞). (A.2)

Because α(xU) ≤ γ, if α̂ > γ, then, regardless of the plant’s strategy xU, inequality (A.2) holds and the

distributor does not inspect. The condition α̂ > γ is equivalent to φ(p) < φ̂(p), where φ̂(p) is given below and

also defined in (1) in the paper:

φ̂(p)
def
= v(p) + k − f + U−1

D

(
1

γ
UD(f − p)− 1− γ

γ
UD(f − p− k)

)
, for p > v(p).

In other words, regardless of the plant’s strategy, a penalty payment that is below φ̂(p) will not provide sufficient

incentive for the distributor to inspect at cost k > 0. If φ(p) ≥ φ̂(p), then the distributor’s inspection decision

will depend on the plant’s truth-telling probability. The distributor will not inspect if (A.2) holds, which is
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equivalent to xU > α−1(α̂), or

xU > 1− (1− γ)α̂

γ(1− α̂)

def
= x̂U,

where x̂U ∈ [0, 1) because α̂ ∈ (0, γ] when φ(p) ≥ φ̂(p).

In summary, the distributor’s best response expressed as inspection probabilities yU and yD, given the

plant’s strategy xU, is

When plant reports UP, y∗
U
= 0 (do not inspect);

When plant reports DOWN,





If φ(p) < φ̂(p), then y∗
D
= 0 (do not inspect);

If φ(p) ≥ φ̂(p), then

y∗
D
= 1 (inspect), if xU < x̂U;

y∗
D
∈ [0, 1], if xU = x̂U;

y∗
D
= 0 (do not inspect), if xU > x̂U.

(A.3)

Combining the best response functions in (A.1) and (A.3), we derive the Bayesian equilibrium as follows.

The plant truthfully reports its status if it is DOWN, and the distributor never inspects when the plant reports

UP:

x∗
D
= 1, y∗

U
= 0.

If φ(p) < φ̂(p), the plant reports DOWN when it is UP, and the distributor does not inspect:

x∗
U
= 0, y∗

D
= 0. (A.4)

If φ(p) = φ̂(p), there are many equilibria: x∗
U
= 0, y∗

D
∈ [0, ŷD]. The distributor is indifferent among all

these equilibria, but the plant would prefer the distributor not to inspect. Thus, we assume the equilibrium

played in this scenario is the same as in (A.4).

If φ(p) > φ̂(p) and φ(p) > 0, we have a mixed strategy equilibrium:

x∗
U
= x̂U, y∗

D
= ŷD.

If φ(p) > φ̂(p) and φ(p) = 0, there are many equilibria: x∗
U
∈ [0, x̂U], y∗

D
= 1. The plant is indifferent

among all these equilibria, but the distributor would prefer the plant to truthfully report with probability x̂U.

Thus, we assume that the equilibrium played in this scenario is:

x∗
U
= x̂U, y∗

D
= 1 = ŷD.

The above Bayesian equilibria can be summarized into two cases φ(p) ≤ φ̂(p) and φ(p) > φ̂(p), which are

exactly what Proposition 1a describes.

Next, we prove the firms’ expected utilities are those in (2) and (3) in the paper for any given spot price

realization p > v(p). If φ(p) ≤ φ̂(p), the plant’s profit is zero when DOWN, and it reports DOWN when UP

to obtain a profit of p − c. Thus, the plant’s expected utility is γUP (p − c) (recall that the plant is UP with

probability γ and UP (0) = 0). Since the plant always reports DOWN in this case, the distributor always
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purchases from the spot and obtains a utility of UD(f − p).

If φ(p) > φ̂(p), the plant’s profit is zero when DOWN. When the plant is UP, it plays a mixed strategy, so

its expected utility is equal to the utility it obtains by playing any pure strategy, e.g., reporting UP gives the

plant a utility of UP (v(p) − c). Thus, the plant’s expected utility is γUP (v(p)− c).

When the plant reports UP (which happens with probability γx∗
U
), the distributor does not inspect and

gets a profit of f−v(p). When the plant reports DOWN, the distributor plays a mixed strategy, so its expected

utility is equal to the utility it obtains by playing any pure strategy, e.g., not conducting inspection, which

gives the distributor a utility of UD(f − p). Thus, the distributor’s expected utility is γx∗
U
UD(f − v(p)) + (1−

γx∗
U
)UD(f − p), as shown in (3) in the paper.

Proof of Proposition 1b. The proof parallels that for Proposition 1a.

Proof of Lemma 1. We set φ(p) = ∞ and look for the optimal contract price function v(p). Consider

max
v(p)

E[UD], s.t. E[UP ] ≥ UP , where E[UP ] and E[UD] are defined in (8) in the paper. The Lagrangian is

γEUD(f − v(p)) + (1− γ)EUD(f − p) + λ
(
γEUP (v(p) − c)− UP

)
,

where λ ≥ 0 is the Lagrangian multiplier. The Euler-Lagrange equation for this problem is:

U ′
D(f − v(p)) = λU ′

P (v(p) − c), ∀p.

The above Euler-Lagrange equation requires the contract price to be constant: v(p) ≡ v. To determine the

optimal contract price, note that when v increases, E[UP ] increases while E[UD] decreases. Therefore, the

distributor should set the contract price at v0, determined by

γUP (v0 − c) = UP .

The distributor’s expected utility under the optimal unit-contingent truth-telling contract is

E[UD] = γUD(f − v0) + (1− γ)EUD(f − p). (A.5)

Proof of Proposition 2a. We consider a contract of the form (9) in the paper: v(p) ≡ v < v0, φ(p) = 0 if

p ∈ [v − δ, v], otherwise φ(p) = ∞. Using the equilibrium utilities given in (3), (5), and (6) in the paper, the

expected utilities of the plant and the distributor under the above contract can be expressed as:

E[UP ] = γUP (v − c) + (1− γ)

∫ v

v−δ

UP (v − p)g(p)dp, (A.6)

E[UD] = γUD(f − v) + (1− γ)

∫

p6∈[v−δ,v]

UD(f − p)g(p)dp+ (1− γ)

∫ v

v−δ

UD(f − v)g(p)dp

= γUD(f − v) + (1− γ)EUD(f − p)− (1− γ)

∫ v

v−δ

[
UD(f − p)− UD(f − v)

]
g(p)dp. (A.7)

We choose the parameters v and δ such that δ ∈ (0, k) and δ < v − c, and that the plant’s expected utility in

(A.6) is maintained at the reservation level UP = γUP (v0 − c). That is, v and δ also satisfy:

γ
[
UP (v0 − c)− UP (v − c)

]
− (1− γ)

∫ v

v−δ

UP (v − p)g(p)dp = 0. (A.8)
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To see the existence of such v and δ, note that (A.8) defines an implicit function δ(v) with δ(v0) = 0. The

function δ(v) is continuous because the left side of (A.8) is continuously differentiable in (δ, v) and its partial

derivative with respect to δ is non-zero. Therefore, there exists v such that δ(v) ∈ (0, k) and δ(v) < v − c.

By the concavity of the utility functions, for v < v0 and p ∈ [v − δ, v], we have

UD(f − v)− UD(f − v0) ≥ U ′
D(f − v)(v0 − v) = U ′

P (v − c)(v0 − v)
U ′
D(f − v)

U ′
P (v − c)

≥
[
UP (v0 − c)− UP (v − c)

]U ′
D(f − v)

U ′
P (v − c)

, (A.9)

UD(f − p)− UD(f − v) ≤ U ′
D(f − v)(v − p) = U ′

P (v − c)(v − p)
U ′
D(f − v)

U ′
P (v − c)

≤ UP (v − p)
U ′
D(f − v)

U ′
P (v − c)

, (A.10)

where the last inequality follows from UP (0) = 0 and p ≥ v − δ > c.

We now compare the distributor’s expected utility under the truth-telling contract in (A.5) with its

expected utility under the contract (9) expressed in (A.7). Taking the difference and employing the relations

in (A.9) and (A.10), we have

(A.7)− (A.5) = γ
[
UD(f − v)− UD(f − v0)

]
− (1− γ)

∫ v

v−δ

[
UD(f − p)− UD(f − v)

]
g(p)dp

≥
[
γ
[
UP (v0 − c)− UP (v − c)

]
− (1 − γ)

∫ v

v−δ

UP (v − p)g(p)dp

]
U ′
D(f − v)

U ′
P (v − c)

= 0, (A.11)

where the last equality is due to (A.8). Notice that the inequality (A.11) will be strict as long as one of the

inequalities in (A.9) and (A.10) is strict. This means that as long as one of the distributor and the plant is

risk-averse, there exists a contract in which the distributor can obtain a strictly higher utility than it would

get under a truth-telling contract, while the plant’s utility is kept constant.

Proof of Proposition 2b. The proof is included in the Technical Note.

Proof of Proposition 3 [Structural properties of the optimal contract].

a. Properties of v∗(p). Consider the problem (14) in the paper. The Lagrangian is E[UD]+λ(E[UP ]−UP ),

where E[UP ] and E[UD] are defined in (12) and (13) in the paper, and λ ≥ 0 is the Lagrangian multiplier. The

Euler-Lagrange equations for this problem are:

U ′
D(f − v∗(p)) = λ

[
γU ′

P (v
∗(p)− c) + (1 − γ)U ′

P (v
∗(p)− p)

]
, p ∈ L∗

l , (A.12)

U ′
D(f − v∗(p)) = λU ′

P (v
∗(p)− c), p 6∈ L∗

l ∪ L∗
r . (A.13)

There is no equation for v(p) when p ∈ L∗
r , because the plant always reports DOWN when p ∈ L∗

r and v(p)

does not affect the expected utilities.

(i) In the price region where misreporting is prohibited (i.e., p 6∈ L∗
l ∪L∗

r), eq. (A.13) implies that the contract

price is a constant, denoted as v∗(p) ≡ v1, p 6∈ L∗
l ∪ L∗

r , where v1 satisfies U ′
D(f − v1) = λU ′

P (v1 − c).

(ii) In the price region p ∈ L∗
l where misreporting is not penalized, (A.12) implicitly determines v∗(p).
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Assuming that UP (·) and UD(·) are twice differentiable, we have

dv∗(p)

dp
=

λ(1 − γ)U ′′
P (v

∗(p)− p)

λ
[
γU ′′

P (v
∗(p)− c) + (1− γ)U ′′

P (v
∗(p)− p)

]
+ U ′′

D(f − v∗(p))
∈ [0, 1].

If c ∈ L∗
l , (A.12) becomes U ′

D(f − v∗(c)) = λU ′
P (v

∗(c)− c), which implies v∗(c) = v1. Because v∗′(p) ≥ 0, we

have v∗(p) ≥ v1 for p ≥ c. If the plant is risk-neutral, then v∗′(p) = 0 and v∗(p) = v1 for p ∈ L∗
l .

b. Properties of L∗
l and L∗

r.

(i) L∗
r is to the right of L∗

l . The proof is included in the Technical Note.

(ii) Position of L∗
l . When UD(x) = x, E[UD] in (13) in the paper is the distributor’s expected profit:

f − γEv(p)− (1 − γ)Ep− (1− γ)

∫

Ll

(v(p)− p)g(p)dp− γ

∫

Lr

(p− v(p))g(p)dp. (A.14)

Consider a contract (v(p), Ll, Lr) that has the properties in parts (i) and (ii), and p ≥ c, ∀p ∈ Ll. Suppose

there exist La ⊆ Sl\Ll and Lb ⊆ Ll such that pa > pb for any pa ∈ La, pb ∈ Lb, and
∫

La

UP (v(p)− p)g(p)dp =

∫

Lb

UP (v(p)− p)g(p)dp.

The above equality implies that if we adjust Ll to include La but exclude Lb, the plant’s expected utility in

(12) in the paper remains unchanged. We now show that this adjustment improves (A.14). Since La and Lb

are disjoint, there exists po such that pb ≤ po ≤ pa, ∀pa ∈ La, pb ∈ Lb.

If po ∈ Ll, from part (i) we have v(po) ≥ v1 and po − pb ≥ v(po) − v(pb) because v(p) increases in p at a

rate no faster than one. If po 6∈ Ll, then v(po) = v1 ≤ v(pb). In either case, we have:

v(pa)− pa = v1 − pa ≤ v(po)− po ≤ v(pb)− pb.

Since UP (·) is strictly concave and UP (0) = 0, we have

UP (v(pb)− pb)

v(pb)− pb
≤ UP (v(po)− po)

v(po)− po

def
= C3 ≤ UP (v(pa)− pa)

v(pa)− pa
,

where the equalities hold only when pa or pb coincides with po. Hence,
∫

La

(v(p)− p)g(p)dp =

∫

La

v(p)− p

UP (v(p) − p)
UP (v(p)− p)g(p)dp

< C−1
3

∫

La

UP (v(p)− p)g(p)dp = C−1
3

∫

Lb

UP (v(p)− p)g(p)dp

<

∫

Lb

v(p)− p

UP (v(p)− p)
UP (v(p)− p)g(p)dp =

∫

Lb

(v(p)− p)g(p)dp.

Therefore, we can improve (A.14) by replacing Lb with La, which in effect shifts Ll toward the right.

If p < c for some p ∈ Ll, we can still prove the above structure for Ll using similar arguments. The

difference is that the adjustment not only involves replacing Lb with La, but also updating v(p) for p ∈ La∪Lb.

The proof is omitted due to the length of this document.

Using similar method as above, we can show that when UP (x) = x, the distributor can improve its own

expected utility by shifting Lr toward the left.

(iii) Position of L∗
r. The following proof does not rely on the risk-neutrality of any firm. Consider a

contract (v(p), Ll, Lr) that has the properties in parts (i) and (ii). Suppose there exist La ⊆ Sr\Lr and
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Lb ⊆ Lr such that pa < pb for any pa ∈ La, pb ∈ Lb, and
∫

La

[
UP (p− c)− UP (v(p)− c)

]
g(p)dp =

∫

Lb

[
UP (p− c)− UP (v(p)− c)

]
g(p)dp.

Thus, if we adjust Lr to include La but exclude Lb, the plant’s expected utility in (12) in the paper remains

unchanged. We now show that this adjustment improves (13) in the paper.

Without loss of generality, we assume v(p) is non-decreasing in p for p > v(p). This can be achieved by

setting v(p) = v1 for p > v1 and setting v(p) = p− ǫ when p ≤ v1, where ǫ > 0 is small. This

Since La and Lb are disjoint, there exists po such that pa ≤ po ≤ pb, ∀pa ∈ La, pb ∈ Lb. By the concavity

of the utility functions, we have

UP (pb − c)− UP (v(pb)− c)

pb − v(pb)
≤ UP (po − c)− UP (v(po)− c)

po − v(po)

def
= CP ≤ UP (pa − c)− UP (v(pa)− c)

pa − v(pa)
,

UD(f − v(pa))− UD(f − pa)

pa − v(pa)
≤ UD(f − v(po))− UD(f − po)

po − v(po)

def
= CD ≤ UD(f − v(pb))− UD(f − pb)

pb − v(pb)
,

where the equalities hold only when pa or pb coincides with po. Hence,
∫

La

[
UD(f − v(p)) − UD(f − p)

]
g(p)dp

≤
∫

La

(p− v(p))CD g(p)dp =

∫

La

(p− v(p))CP g(p)dp
CD

CP

≤
∫

La

[
UP (p− c)− UP (v(p) − c)

]
g(p)dp

CD

CP

=

∫

Lb

[
UP (p− c)− UP (v(p)− c)

]
g(p)dp

CD

CP

≤
∫

Lb

(p− v(p))CP g(p)dp
CD

CP

=

∫

Lb

(p− v(p))CD g(p)dp

≤
∫

Lb

[
UD(f − v(p)) − UD(f − p)

]
g(p)dp.

Notice that if at least one of the two parties is risk-averse, then at least one of the above inequalities will hold

strictly. Therefore, we can improve (13) by replacing Lb with La, which in effect shifts Lr toward the left.

Thus, the optimal Lr should be contained in the leftmost part of Sr.

(iv) Constant contract price case. When v(p) ≡ v, by definition, Sl must be to the left of Sr, and

part (i) holds. Parts (ii) and (iii) can be proven using the same approach detailed above. With a constant

contract price, the definition of Sl in (11) in the paper and the definition of φ̂(p) in (4) in the paper imply

that Sl is an interval.

Proof of Proposition 4. Throughout this proof, v(p) ≡ v. Suppose both S̃l\Ll and Lr have positive

measures. We consider shrinking Lr and expanding Ll to improve the objective. Let La ⊆ S̃l\Ll and Lb ⊆ Lr,

such that La and Lb have positive measures and

(1− γ)

∫

La

UP (v − p)g(p)dp = γ

∫

Lb

[
UP (p− c)− UP (v − c)

]
g(p)dp.

That is, E[UP ] ≥ UP remains satisfied if we add La to Ll and subtract Lb from Lr. We now show that this

adjustment improves (13). For any pa ∈ La\{v}, pb ∈ Lb\{v}, we have pa < v < pb. Because UD(·) is concave,
UD(f − pa)− UD(f − v)

v − pa
≤ U ′

D(f − v) ≤ UD(f − v)− UD(f − pb)

pb − v
.
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Because UP (·) is concave, UP (0) = 0, and pa > c (since pa ∈ S̃l), we have

UP (v − pa)

v − pa
≥ U ′

P (v − c) ≥ UP (pb − c)− UP (v − c)

pb − v
.

Hence,

(1− γ)

∫

La

[
UD(f − p)− UD(f − v)

]
g(p)dp

= (1− γ)

∫

La

UD(f − p)− UD(f − v)

v − p
· v − p

UP (v − p)
UP (v − p) g(p)dp

≤ (1− γ)
U ′
D(f − v)

U ′
P (v − c)

∫

La

UP (v − p)g(p)dp = γ
U ′
D(f − v)

U ′
P (v − c)

∫

Lb

[
UP (p− c)− UP (v − c)

]
g(p)dp

≤ γ

∫

Lb

UD(f − v)− UD(f − p)

p− v
· p− v

UP (p− c)− UP (v − c)

[
UP (p− c)− UP (v − c)

]
g(p)dp

= γ

∫

Lb

[
UD(f − v)− UD(f − p)

]
g(p)dp.

Therefore, we can improve the objective by expanding Ll and shrinking Lr until that is not possible any more.

Hence, if Lr has a positive measure, then Ll = S̃l.

Proof of Proposition 5. For any contract (v, Ll,∅), Ll ⊂ S̃l, consider the following two contacts: (ve,∅,∅)

and (v†, L†
l ,∅) with L†

l = S̃l = [p, v†], that yield the same average profit:

γ(v − c) + (1− γ)

∫

Ll

(v − p)g(p)dp = γ(ve − c), (A.15)

γ(v† − c) + (1− γ)

∫

L
†

l

(v† − p)g(p)dp = γ(ve − c). (A.16)

Note that ve is uniquely determined from (A.15), and v† is uniquely determined from (A.16). The latter is

because γ(v − c) + (1 − γ)
∫ v

p
(v − p)g(p)dp is strictly increasing in v. Furthermore, v† < v < ve.

Summing up (A.15) and (A.16), we have

γ(v + v† − 2c) + (1− γ)

[∫

Ll∩L
†

l

(v + v† − 2p)g(p)dp+

∫

Ll\L
†

l

(v − p)g(p)dp+

∫

L
†

l
\Ll

(v† − p)g(p)dp

]
= 2γ(ve − c).

(A.17)

Taking the difference between (A.15) and (A.16) gives

γ(v − v†) + (1 − γ)

[
(v − v†)

∫

Ll∩L
†

l

g(p)dp+

∫

Ll\L
†

l

(v − p)g(p)dp−
∫

L
†

l
\Ll

(v† − p)g(p)dp

]
= 0. (A.18)

We now show that the contract (v†, L†
l ,∅) yields a lower profit variability for the plant than does the contract

(v, Ll,∅). Consider the difference of the profit variance:

E[π2
P ]− E[π†2

P ] =

[
γ(v − c)2 + (1− γ)

∫

Ll

(v − p)2g(p)dp

]
−
[
γ(v† − c)2 + (1 − γ)

∫

L
†

l

(v† − p)2g(p)dp

]

= γ(v + v† − 2c)(v − v†) + (1− γ)

∫

Ll∩L
†

l

(v + v† − 2p)(v − v†)g(p)dp

+ (1− γ)

∫

Ll\L
†

l

(v − p)2g(p)dp− (1 − γ)

∫

L
†

l
\Ll

(v† − p)2g(p)dp.
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Substituting the first two terms on the right-side above using (A.17) and then combining integrals, we have:

E[π2
P ]− E[π†2

P ] = 2γ(ve − c)(v − v†)− (1− γ)

∫

Ll\L
†

l

(p− v†)(v − p)g(p)dp− (1− γ)

∫

L
†

l
\Ll

(v − p)(v† − p)g(p)dp

> 2γ(ve − c)(v − v†)− (1− γ)

∫

Ll\L
†

l

(p− v†)(v − p)g(p)dp− (1− γ)(v − p)

∫

L
†

l
\Ll

(v† − p)g(p)dp.

Substituting the last term on the right-side above using (A.18), we have:

E[π2
P ]− E[π†2

P ] > 2γ(ve − c)(v − v†)− γ(v − v†)(v − p)− (1− γ)(v − p)(v − v†)

∫

Ll∩L
†

l

g(p)dp

− (1− γ)

∫

Ll\L
†

l

[
(p− v†)(v − p) + (v − p)(v − p)

]
g(p)dp.

(A.19)

Since p > v† > p for p ∈ Ll\L†
l , we can enlarge the last integrand in (A.19) as follows:

(p− v†)(v − p) + (v − p)(v − p) = (p− v†)(p− p) + (v − p)(v − v†) < (v − p)(v − v†).

Then, we can combine the two integrals in (A.19) using (Ll ∩ L†
l ) ∪ (Ll\L†

l ) = Ll, and factor out (v − v†):

E[π2
P ]− E[π†2

P ] > (v − v†)

[
γ(2ve − 2c− v + p)− (1 − γ)(v − p)

∫

Ll

g(p)dp

]

> (v − v†)

[
1

2
(2ve − 2c− v + p)− 1

2
(v − p)

∫

Ll

g(p)dp

]
(A.20)

> (v − v†)

[
1

2
(2ve − 2c− v + p)− 1

2
(v − p)

]

= (v − v†)(ve − c− v + p) > 0.

where the inequality (A.20) is due to γ > 1/2 and 2ve − 2c− v+ p = (ve − v) + (ve − c) + (p− c) > 0. Hence,

the plant’s profit has a lower variance under contract (v†, L†
l ,∅). For the distributor, we have

E[π2
D]− E[π†2

D ] = γ(2f − v − v†)(v† − v) + (1− γ)

[∫

Ll∩L
†

l

(2f − v − v†)(v† − v)g(p)dp

+

∫

L
†

l
\Ll

(2f − p− v†)(v† − p)g(p)dp−
∫

Ll\L
†

l

(2f − p− v)(v − p)g(p)dp

]

> γ(2f − v − v†)(v† − v) + (1− γ)

[∫

Ll∩L
†

l

(2f − v − v†)(v† − v)g(p)dp

+

∫

L
†

l
\Ll

(2f − v − v†)(v† − p)g(p)dp−
∫

Ll\L
†

l

(2f − v† − v)(v − p)g(p)dp

]

= (2f − v − v†)
(
E[πD]− E[π†

D]
)

= 0,

where the inequality follows from p < v† < v for any p ∈ L†
l \Ll, and p > v† for any p ∈ Ll\L†

l . In the final

step, we used E[πD] = γ(f − v)+ (1− γ)(f −Ep)− (1− γ)

∫

Ll

(v− p)g(p)dp and a similar expression for E[π†
D].

E[πD]− E[π†
D] = 0 is because the two contracts yield the same average profit.
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