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ABSTRACT

A quantum theoretical treatment of the interaction between the
electromagnetic field in a multimode cavity with loss, and an assembly
of particles, is presented. The theory is developed in the linear
approximation, and the linear susceptibility, which is shown to account
for absorption and stimulated emission, is defined. The field is shown
to be driven by spontaneous emigsion from both the active maser ma-
terial and the loss mechanism, in the absence of any other driving
force.

The steady-state power spectrum of an optical maser oscillator is
studied. The spectrum is expressed in terms of the spectrum of spon-
taneous emission from the upper level of the active maser material,
and in terms of the susceptibility. Homogeneous broadening, such as
natural and collision, and inhomogeneous broadening, such as Doppler
and statistical, are taken into consideration. Their effect on the
spectrum of spontaneous emission and on the susceptibility is studied.
Explicit forms of the susceptibility, valid under various conditions,
are obtained. Congideration is also given to a model of a gas opti-
cal maser operating in a single mode. Spectrum narrowing is discussed,
and a frequency pulling equation, which is found to contain a new term,

is obtained.



Comparison to other treatments of the problem is made. It is
found that our results are more general in several aspects, and that
previous results are obtained as special cases of ours. Posgible

extensions of the work are also discussed.

vi



CHAPTER T

INTRODUCTION

The extensive literature on the subject eloquently attests to the
interest stimulated by the discovery of the maser. As a source of
electromagnetic radiation, the maser possesses an unprecedented spec-
tral purity, directionality and intensity, to mention only some of its
properties. At the same time, a fairly complex theoretical problem
is posed; that is, the description of the electromagnetic field inside
a cavity, and its interaction with material systems therein. TFor cer-
tain applications, the properties of the device are much better than
needed and the accurate mathematical description appears to be rather
unnecessary. 1t 1s in part for this reason that severely simplified
models seem adequate for the description of the phenomenon. There are
certain questions, on the other hand, which make the necessity for a
refined and consistent analysis imperative. TFor example, the coherence
timel’2 of a maser beam is intimately related to the spectral width
which requires a fairly accurate mathematical description. In addi-
tion, the phenomenon as such has an intrinsic interest independent of
the applications.

The present treatment is an attempt to present a deductive deri-
vation of the steady-state spectrum of the power output of a maser

oscillator. It is generally agreed that the maser action is a quantum



mechanical phenomenon. The mere fact that one deals with emission of
radiation by excited atomic systems ought to be fairly convincing in
this respect. It is only natural, therefore, that we employ the quan-
tum theoretical formalism. The basic axiom is the choice of the hamil-
tonian of the system. We take the non-relativistic hamiltonian of an
assembly of particles interacting with the radiation field, and with
each other. ©Spin is ignored.

The radiation field is described by the quantum mechanical Max-

3,k

well's equations, in which the fields and sources are the expecta-
tion values of appropriate operators. This enables one to fully account
for the quantum effects of the material system to any desired approxi-
mation. In Maxwell's theory however, the energy of the field is ex-
pressed in terms of the field vectors which are already averages of
the respective operators. Quantum mechanically, the energy is given
by the expectation values of the squares of those operatorso5 An
approximation inherent in Maxwell's theory therefore, is the replace-
ment of averages of products by products of averages. It is presumed
that this approximation is Justified because of the high photon den-
sities involved in the output of maser oscillators.

The theory has been developed in the linear approximation which
leads to the susceptibility function. Mode coupling has been neglected.

Among our main concerns has been to avoid introducing phenomenological

parameters, especially in studying the interaction of the active maser



material with the radiation field. In this effort, damping theory has
been used. Although most of the discussion has been devoted to the
maser oscillator, the method is applicable to many problems involving
the interaction of a material system with the radiation field. 1In
particular, the method illuminates several aspects in the study of the
electric susceptibility; namely, the effect of broadening mechanisms.

Chapter IT is devoted to the formulation of the problem. The out-
put spectrum is defined Chapter III, in terms of Fourier transforms of
truncated functions. Equations for the field operators are developed,
and their Fourier transforms are expressed in terms of the Fourier
transform of the current operator, thereby reducing the problem to the
calculation of the Fourier transform of the current operator Gx(t).
The time evolution of G%(t) is teken up in Chapter IV section 1. An
integral equation for the current operator is developed and iterated.
In IV-2 the linear approximation is introduced. This linearization
generates the response function, for the calculation of which damping
theory is used. The result is specialized to a two-level system, in
IV-3. The susceptibility, representing the effect of the material
system on the field, is defined. In IV-L4, the spectrum of spontaneous
emisgion from the upper to the lower level of the two-level system is
derived. It is shown that the spontaneous emission drives the field,
in the absence of any other driving force. The output spectrum is

then expressed in terms of the spectrum of spontaneous emission and



the susceptibility. The approximation made in replacing the average
of a function by the function of the averages is discussed in IV-5.
This approximation is used in Chapter V which is devoted to the appli-
cation of the results obtained thus far to a model for the gas optical
maser. As compared to an actual commercial device, the model is rather
idealized. However, devices satisfying several of the conditions im-
posed by the model can be and have been constructed.7 The spectrum
of spontaneous emission and various forms of the susceptibility are
calculated. The effect of various broadening mechanisms is discussed.
Moreover, the output spectrum for operation in a single mode is cal-
culated and a frequency pulling equation is derived. In section 6
of this chapter we elaborate somewhat on a gquantum mechanical de-
scription of the loss along lines similar to those of Ref. 8. Chap-
ter VI is devoted to the comparison of the present theory to other
treatments. Finally, the main conclusions are summarized in Chapter
VII where possible extensions of the work are also discusgsed in brief.
The use of damping theory brings this work to close relationship
with the work of A. Z.Akcas§7lo on the applications of damping theory
to the study of line shape. We have developed the formalism in paral-
lel to that of the above references, especially Ref. 9. Expressions
for shifts and widths, not dwelt upon here, can be obtained with little

or no change therefrom.



The present treatment, being a linearized theory of a non-
linear system, cannot answer questions concerning the behavior of the
oscillator beyond threshold. For example, it would predict that,
when the gain exceeds the losses, the power increases without Limit.
It is known however, that existing non-linearities stabilize the sys-
tem. The general formulation nonetheless contains this non-linear
behavior.

A question of terminology arises in connection with the frequency
pulling equation in section 5 of Chapter V. According to the accepted
electrical engineering terminology, the frequency shift due to the
detuning between cavity resonance and active material resonance should
be called frequency pulling; the shift which depends on the popula-
tion inversion, and hence on external action (pump action), should
be called frequency pushing.

Throughout this study, the term maser will be used in a broad
sense covering all maser oscillators irrespective of frequency.
Whenever we refer to optical frequencies, we shall use the term

"optical maser."



CHAPTER II

FORMUIATION OF THE PROBLEM

The system we propose to study consists of an assembly of material
particles placed inside a cavity with highly reflecting walls. The
cavity may be a more or less closed structure, of the type encountered

11

in microwave applications, or an open structure of the Fabry-Perot

ypeolg’lB’lu In either case, the electromagnetic field inside the
cavity 1s describable in terms of normal modes. A normal mode is a
certain spatial distribution of the field vectors which is determined
by the geometry of the cavity and the nature of the walls, through
the elgenfunctions of a boundary value problem. In the absence of
any dissipative interaction, the modes exhibit a harmonic time depen-
dence with characteristic frequencies determined by the eigenvalues
of the above boundary value problem. Dissipation (or loss) may re-
sult from imperfect reflection at the walls and/or from the geometry
of the cavity. The diffraction loss around the edges of the plates
of a Fabry-Perot resonator, for example, is an inherently geometric
logs. Even in a totally enclosed microwave cavity with perfect walls
an opening is necessary for providing coupling with the external world.
The effect of this opening is to introduce loss. Thus, in any real-

igtic cavity some loss will be present. As a consequence of the loss,

the time dependence of the modes is not purely harmonic but a more



complicated function of time. For sufficiently small loss however the

Fourier spectra of the modes are peaked functions of frequency, cen-

tered at the characteristic frequencies of the cavity.15
If E;XE,t) and_é@%g,t) are the electric and magnetic fields, re-

spectively, inside the cavity, their time evolution is governed by

Maxwell's equations which in Gaussian units read5:

v >59?_ 1 gé; = b J (E)t): (1a)
c Ot c
Vx_£-+.]:_a_£= 0, (1p)
c ot

where J and p are the macroscopic current and charge densities, re-
spectively, which shall be referred to as the source terms, and c is
the speed of light.

If the macroscopic charge density is zero inside the cavity, one
can dispense with the longitudinal part of the electric field and the
current. Since this will be the case in all problems to be considered
here, é;(z,t) and J (r,t) shall indicate the transverse parts of the
electric field and the current, respectively, in the remainder of this

treatment. Then, the fields can be derived from the vector potential

A (r,t) through the equations

&=_Y_X‘_A_ ’ (2&)



£ 1 dA (2b)

72A 1 J°A be J ., (2¢)

— O —— St—— T ewen  owmomemn

The field vectors, A (E,t), and J (E:t) are interpreted as the

expectation values of appropriate quantum mechanical operators that is,

£ (zt) = D™ (v), (3a)
#(zt) = DS (v), (3b)
J(xt) = TrDIT (v), (3¢)
A (r,t) = Tr DA™ (t), (3d)
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where D 1s the density operator of the system, and the superscript
op. indicates that the quantity it qualifies is an operator. The cur-

rent operator is given by

+ 9 (rmro)(go _Co __A:OP° (ro)> g, (&)

where e, and m, are the charge and mass, respectively, of the oth
particle. The summation extends over all particles present inside the
cavity and the walls. EO and _120 are the position and momentum operators,
regpectively, of the oth particle.

The time evolution of the operators is governed by Heisenberg's

equation of motion. For éOp" (t), for example, we have



3:® 4y -

| a2 ) (5)
ot h L

where H is the total hamiltonian of the system. The non-relativigtic

hamiltonian of the sgystem considered here 152

R —_ s - \
H = H +>ﬁ 1 (pg €0 a%P (fﬁ2+ﬂ1, (6)
.,6J 2mo —_—

—

where HR i1g the hamiltonian of the free radiation field, and HI ig a
term containing particle-particle interactions, interaction between
particles and external fields, as well as the hamiltonian of the ex-
ternal world. External fields are to be distinguished from the cavity
field. For example, pumping fields are to be considered as external
fields as long as they do not have frequency components close to the
cavity frequencies of interest, which we assume to be the casge.
(

Let‘yz)\ (r){f, AN=1,2,3, ... be a set of eigenvectors satis-

fying the equations

(7a)

!
O
.

v a0 +8E X% (x)

vox () = 0, (7o)

and boundary conditions appropriate to the cavity under consgideration.
The domain of definition of thesgse eigenvectors is the interior of the
cavity. The kx’s are the eigenvalues. For a certain class of boundary
conditions of interest to us here, the set {XK} is orthogonal, real

and completegl5 It will be assumed normalized to unity. Moreover,
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(L¥xX

the get k% )

(E)} is orthonormal if {g%} is orthonormal. Ex-
panding the vector potential, the current, and the field operators in

terms of {zi} we have

A% (r,t) = }Z it Py (8) X (2), (8a)
r B

I (1) = ZJ%P (£) X4 (), (8b)
A

£ (z) = ) Vo, 4 (1) X (), (8c)
A

where
W, = c Ky (8e)
and P%, Q% are hermitian operators which obey the commutation relations
[Q,Pat] = 14 o, (%)
[Q,an'] = [PA,PpAt] = 0. (9p)

OP-. op:
The operator j) (g,t),results from the modal decomposition of J p(r,t),

and is given by

- Z Pys Yl 7 = 5 () xe (°) . (108)
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The second term in the right side of the above equation gives rise to
mode coupling since it contains a summation over all modes. Since

we wish to confine the present treatment to the case in which mode
coupling can be neglected, we shall neglect all terms for which A' #
A. The remaining term (for A' = A) represents a small correction to
be the frequency w, of the passive cavity, and we shall assume that
wy) 1s so redefined ag to incorporate this correction. Thus, we shall

take

OoP .
= O, (10b)
7

where, in order to compress notation, we have introduced the operator

G = @ So X (r9) py - (10c)
SN T mg -

Combining now Egs. (2), which are also true in operator form,

and Eqs. (8) we obtain

O By (t) +af Py () = of G(t), (11a)
ot2

and
3 Py (¢) rof Q) (¢) = 0. (11pb)
ot

1
We shall adopt the Heisenberg picture  and hence all operators will
be time dependent, their time dependence being determined by the time

evolution operator

il
o
X e

U (t,t5) (12a)
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Then, for example,
T N
Gy (t) = U (t,to) G\ (to) U(t,to) . (12p)

In the calculations we shall choose ty = O and shall omit the time

argument whenever it is zero.



CHAPTER TITT

THE OUTPUT SPECTRUM

In interpreting energy transfer experiments, one would like to
calculate the quantity

2 2
LoD (g7 3. (13a)
8x

This, in general, requires the solution of transport equations whose
C 17 . . .
very formulation is not an easy task. For relatively high field

densities however, (13a) can be approximated by

L (g +%) (13b)
87 ’

and this we assume to be the case in this study. Despite this approxi-
mation, the Maxwell's equations do provide a gquantum mechanical descrip-
tion of the system if the source terms are interpreted correctly, that
is as the expectation values of the asppropriate operators.

Under the assumption that the above approximation is satisfactory,

the energy output per unit time, that is the power output, is given

by

) mE (8, (Lia)
A

where
p) (£) = Tr D Py (t), (1hb)
and 71, 1s a constant having the dimensions of inverse time, and re-

lating the power output of the Ath mode to the energy in that mode

i)
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stored inside the cavity. In general, the power output will be a
function of time. The system shall be said to be in steady state if
Wip defined by

ttT

ooy (6') att, (158)
I

=
=N

is independent of t for T large enough. The lower limit of T is de-
termined by the characteristic times of the physical processes taking
place ingide the cavity. Ultimately we shall approximate the power
output by

W = lim Wp. (15b)

T-+oo
It should be emphasized that WT has a physical content, while W is a
mathematical quantity by which we approximate WTO Confining the pre-
sent treatment to the steady-state we take t = O in Eq. (15a). Thus

W becomes

T+

BIK 2
W = lim 1 M, P, (t') dt'. (15¢)
o &M
A

We now define

T et
PAT (w) = /p p, (t) e at, (16a)
Y0

1
which 1s the Fourier transform of a truncated function equal to
1Y (t) for 0 <t <T and zero otherwise. In terms of Fourier trans-

forms WT reads:

) 2 (16b
Wp = j{j Eﬁ i.\/n[ Dy <w>i da. (160)
X T



5

Since p) (t) is assumed to be a real valued function, we shall have

pyp (-®) = Pir (w). (16¢c)

where * denotes the complex conjugate. Thus, Eg. (16b) becomes

- FW7W w, ()12
Wy = zlr%% JC |p.)\T ()] dw. (16a)
3
Introducing
Rap (0) = L |ppr (@))% (172)
7T
and
By (w) = 1lim Ry (w), (17p)
T>
we obtain
bp =/ “?xfo Ryp (@) do, (17¢)
A
and
W o= Z LN fo Ry () dw. (174)
A

N (w) is identified with the steady-state power spectral density of
the AMh mode. The steady-gstate power speciral density c¢f the output
is

Be) = ) By (@) (18)
A

Taking the Fourier transform of Eq. (1Lb) we obtain

) [\T ‘ "ikbt , )
o (w) = Tr DJO Py (t) e dt = Tr D P.m:‘m), (19)
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where we have interchanged trace with integration, and we have intro-
duced the operator P%T(w) defined as the Fourier transform of Px(t).

Combining Egs. (16c) and (19) we have
!p?\T(a))F = (\Tr D P?\T(w)) (Tr D P)\T(-a))) .

Assuming that we are dealing with field densities high enough to Justify
the replacement of products of averages by averages of products, and
vice versa, we take

[pyp(@)|® = Tr D Pyp(w) Prp(-w) . (20)
Then, from Eqs. (17b) and (18) we obtain

R(w) = Z ny liml Tr D Pyplw) Pyp(-w), (21)
N T>o nT

thereby reducing the problem to the calculation of P%T(w).

The motion of P%<t) is governed by Eq.(1lla). The operator G)(t)
appearing in the right hand side of this equation contains the coupling
between the cavity field and the particle system. Note that G), as
defined by Eq. (lOc), involves a summation over all particles present.

It is convenient at this point to separate G in two parts as follows:

L A
= + @G
G, G?\ N (22)

L

where G% is an operator involving a summation over the particles of

the wall or any other passive material that may exist inside the cavity,
A

while G, involves a summation over the particles of what we shall call

the active material. The latter is the material whose presence gives

rise to the maser action and whose quantum effects on the field we wish



to study.
L A
Both Gy(t) and Gy(t) can be expressed in the form of a perturba-
tion expansion in ascending powers of the field operators. If one
retains the first two terms of the expansion and then take the Fourier
transform of Eq. (lla), after some mathematical manipulations, the

following equation is obtained:

5 5 o IS 5 AS
(- + wx) P%T(w) = o) GAT(w) o) GAT(w) -
2
-iwyy Pyqp(w) + @y Yy (@) Pyqplw). (23)

The first two terms on the right hand side are independent of the
field and account for spontaneous emigsion from the passive and active
material, respectively. The third term, involving the constant 4%
accounts for the dissipative effect of the passive material (usually
referred to as the loss mechanism) on the field. The constant 7\ de-~
pends on parameters such as the conductivity of the passive material.
The fourth term accounts for the effect of the active material on the
field. The function Y%(w) is the linear susceptibility and contains
the effect of induced emission and absorption. Once the functions on
the right side of Eq. (23) are known, one can solve for PKT(w)’ sub=-
stitute into Eq. (21) and obtain an expregsion for the output spectrum.
Thus, the main task in the remainder of this study will be the deter-
mination of the foregoing functions in terms of the dynamical param-

eters of the system.
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Since the main objective of this treatment is the optical maser,
it is presumed that spontaneous emission from a material in thermo-
dynamic equilibrium at room termperature will be rather inconsequen-
tial at optical frequencies. For this reason, and in order to avoid

: . : LS . .
mathematical complexity we shall neglect GA »  The term involving 7N
shall be kept however, since it has an important effect on the output

LS
gspectrum. Both G, and 7\ have been discussed in Ref. 8, although

A
not in Fourier domain and in a somewhat less general context. A brief
discussion is presented in Chapter V, section 6. It should be men-
tioned that two assumptions inherent in describing the loss in terms

of 7, are: the loss is small, that is

Zﬁ <1 (2L4)
Wy

and mode coupling due to the loss mechanism can be neglected. It is
also assumed that there is no interaction between loss mechanism and
active material. At optical frequencies, and with gaseous materials
in Fabry-Perct cavities, the foregoing conditions are satisfied. For
solid state materials, the loss mechanism and the active material
might be correlated. This case is not teken up here. Tor lower fre-
quencies, spontaneous emission from the passive material (usually re-

ferred to as thermal noise) may also be of importance. Then, one will

LS .
have to refain the term Gyp (w) as well (see also Chapter V-6).
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The problem is now effectively reduced to studying the motion

A AS

of G\(t), and determining G

L
7\T(w) and Y. (@), Since Gy has been dis-

A
pensed with, we shall omit the superscript A. Thus, the equation we
now have is

- 5 . T -iwt

(02 + 1t o) Bglo) = of [ 6() e e, (a)
where Gx(t) corresponds to the active material only.

In conventional classical electrodynamics, one usually assumes

that Yx(w) has a real and an imaginary part. The dependence on w is

then taken to be of the form (see for example Ref. 6)

L1
W= -1T

(@
The constant ' is introduced in order to account for losses associated
with the susceptibility, and w, 1s a transition frequency characteristic
of the material in question. Of course, this form is valid for values
of w near w,. The question arises however, as to when the above form
ig valid, and how one can determine I' in terms of the dynamical para-
meters of the system. The question presents itself also in connection

with the spectrum of spontaneous emission. It is precisely these ques-

tions that we attempt to answer herein.



CHAPTER IV

METHOD OF SOLUTION

1. TIME EVOLUTION OF Gy

The time evolution of Gx(t) is governed by the equation

3 G(t) = i [H, &(t)], (26)
ot 4

where H is as given by Eq. (6). In order to proceed further a more
detailed specification of the system, and hence the hamiltonlan is
necessary. Thus, assume that the cavity contains two kinds of materials:
The active material whose atoms and/or molecules are capable of making
radiative transitions, and a second material which shall be termed
"the perturber." Both are assumed to be in the gaseous state. The
perturber does not interact with the cavity field but it does inter-
act with the active material through collisions. ILet HE be the hamil-
tonian of the perturber, and VPA the energy of interaction between the
active material and the perturber. Note that if collisions with the
walls are of importance in perturbing the active material, the hamil-
tonian of the wall should be included in HP,

Using the expansion of the vector potential operator in terms of

o 2 5, 0
{X,}, and neglecting the termj{l €g A%(r ) as representing effects

a2
2mc

of higher order, we can write the hamiltonian in the form

o= B ea e e o+ v e A VEA; (27)

20
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where HE ig that part of the hamiltonian of the external world which
is coupled to the active material, that is the hamiltonian of the
pumping mechanism; HR is the hamiltonian of the free cavity field and

is given by
- 1) @ +ef o) (28e)
AN

HA is the hamiltonian of the active material; VRA is the energy of in-

teraction between R ang HA, and is given by
_ : (28b)
L
A

EA
V  represents the coupling between pumping mechanism and active

material. Recall that GX is expressed as a sum over all particles of
the active material (see Eq. (10c)), that is over electrons as well

as nuclei. Since the materials actually used in cavities consist of
atoms and/or molecules, the sum will have to be regrouped into partial
sums each of which will represent the particles of one atom or mole-
cule. This however, does not have to be done until a later stage

(see also Appendix B).

Combining now Egs. (26)and (27) we obtain

[ﬂ@)+ﬁ%,%@ﬂ+

d G (4 = i
gGﬂ” 2 (29)
kLy ] P .
+3[mm,%&ﬂ+g[ﬁw+H(w,%&H,
X 4



22

where we have introduced
H = °H +V +V . (30)

The first commutator represents the effect of the pumping mechanism.
Since we are interested only in the steady-state, we shall ignore this
commutator ahd account for its effect by assuming that the populations
of the states of the active material are kept at certain constant values
by means of sufficient pumping. The approximation involved is the neg-
lect of the details of the pumping mechanism, and is useful as long as
one is interested in the steady-state spectrum only.

At this point, motivated by Senitzky's work,8 we consider the

equation of motion of H™(t), namely

3 H(t) = i [H, B'(t)] =
ot H
= i (6 (5) + 8 (5) + VE%t), E(t)] +
A
R xt
+1 1 (8), B(¢)] . (31)
#

Neglecting the first commutator and calculating the second using Egs.

(28) and (30), we obtain

a_H“(t) = i [HR(t), VR%t)] . (32)
dt

B |-

Integrating formally we have

t

B(t) = H%o) +i ﬂanm‘?‘m, WDl . (33)

A
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Finally, in Eq. (29), we replace HR(t) and HP(t) in the third

commutator by HR(O) and EP(O). Then, using also Eg. (33), we obtain
d Gx(t) = i [H“(o) + H?o) +HP(O), G (t)] -
ot 4
t ~ R RA
[[Hm), v (1)1, %tﬂ . (3ka)

_Lfoan

A2 -

We now introduce the operator H defined by

HA+HR +HP+VRA +VPA, (3Lb)

For future use we also define

o _ A R P
H = H +H +H |, (Bke)
and
v o= 74 A (34d)
5
Then, H reads
S 0
H® = ®° + V. (3Le)
An integral equation equivalent to the integrodifferential equa-
tion (3ka) is
. S S
o ZHt _iHt
G?\(t) = e 4 (}7\ e 4 3
t L (bots) B f ”]
] R
-;LS dt/ dta e 4 (H(ts5), VR%tp) G (t: )}
2
O s
_i. (t ‘tl) H
e A ) (553)

where operators without time argument are to be understood at t = O.

From Egqs. (25), and the commutation relations for Py and Q) we have
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), Wia)] = z 02, % (t2) Gy (t2) . (35b)

Combining Eqs. (35) we obtain

S i - [F 1 gt
G?\(t) = G?\(t) +g; (D_)\?fdtlf dto U (‘t_tl)'
X o o

« Loy (82) Gy (82), Gy (t2)] T5(5-t1) (56)
where we have introduced
S i HS‘
Ut) = AT (372)
and
S = Pl o) (57b)

Equation (%6) represents a set of, in principle, infinitely many
coupled integral equations. Since this expression is to be substituted
into Eq. (25), it is obvious that we shall have infinitely many, coupled
equations for PXT(w) (% = 1,2,5.,5). In any actual maser oscillator

0 !
20,21 This re-

only a finite number of modes oscillate simultaneously.
duces the set of equationg to a finite set which still are coupled.
Under certain conditions furthermore, the modes may oscillate indepen-
dently cf each other. Limiting this treatment to the case in which

the coupling terms can be neglected, we drop from the sum in Eq. (36)

all except the Ath terms. Then, we have

S . p ti S+ (38)
. | i 2 P s
G (t) = Gy(t) = waf dtlfodte U (t-ts)

o)
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a

lay (t2) B(t2), Gy(t1)] U (t-t1). (38)

Relatively little can be done with this integral equation with-
out further spproximations. Thus we resort to an iteration procedure,
iterating the equation once and retaining terms up to and including

S
the second order in Gx(t). Then, we obtain

(f)

G7\(t) = G +-—u) j:itlfdtgusttl

[0y (52) G (t2), On(t1)] U (b-t1) - (39)

Substituting into Eg. (25)we have

(<2 + 1oy, +af) Bglo) = of Gl

+Zof jdt e fdtlﬁtg U (t-ty)
g 0] (@]

e}
-[Q, (t S ts) S(t )] S(t-t ) (L0a)
\(t2) GX(t2), Gi(t1)l U 1)s
where we have introduced
T .
S S -iwt
GM(w) = /:it G7\(t) e . (L4ob)

0

The crux of the problem is the handling of the right hand side of

Eg. (L40a). As will be shown subsequently, the first term corresponds
to spontaneous transitions from the excited levels of the active ma-
terial. The second term represents the response of the material
system to the field, in the linear approximation. That is after the
operator Q%(tg) is taken out of the commutator, as discussed in the

following section.
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It is perhaps in place to note the difference between the time
dependence of operators bearing the superscript S and those which do
not. The former's time dependence is determined by Us(t) =e K v
while the latter's is by the time evolution operator for the whole

- 1mt
system, namely U(t) = e x .
2. THE RESPONSE FUNCTION

Since we wish to confine this treatment to the linear approxi-

mation, we write the integrand of the right hand side of Eq. (L0Oa) as

follows:

an(v2) WTeota) [63(52), B(62)] W5(eota) . (11)

In doing so we have neglected the commutator of Qk(tg) and US(t_t;)a
This commutator can be neglected in the zeroeth order approximation,
i.e, in the absence of any interaction between field and material
system. In the next order approximation, the commutator yields terms
linear in Gj and consequently the corresponding term in (41) will be
of third order in G). The approximation involved in (41) therefore,
is to neglect terms of order higher than the second in Gy, consist-
ently with our previcus assumptions.

In view of the fact that ultimately we shall take the trace with

the density operator, we introduce the function A(tﬁtlﬁtg) defined by

s/ .8
o ,te) = Tr DU (t-t3) (G

N VT . o
(tz), Ux(t;}} uT(t-to),  (L2)



and we replace (41) by

A (t2) Alt,t1,t2). (13)
Formally, the approximation involved in replacing (L1) vy (hB), is re-
placing the average of a product by the product of the averages. This
ig done in a way such that the field operator is separated from the
particle operators. The resulting function A(t,tl,tg) is a response
function representing the effect of the material system on the field.

2

Again quantum effects of order higher than the second in G% are neg-
lected. The equations for the field operators thus obtained are linear
and as will be seen gubsequently they account for spontaneous emission,
induced emission, and absorption. This is essentially the dielectric
approxim_ation,22 As long as more than one photon processes do not
play an important role, the formalism is expected to be adequate for
the study of the power gpectrum. If photon scattering, for example,
becomes important, which may be the case with some solid state materials,
a major revision will be necessary.

The approximation is somewhat similar to the irreversibility
approximation16 frequently used in the description of systems in con-
tact with a thermostat, where the interaction is assumed to be small
enough {or the thermostat large enough) for the effect of the system
of interest on the thermostat to be negligible. Here, the situation
is different in several aspects. The active material, which corre-

sponds to the thermostat, is neither in thermal equilibrium nor is
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it a large system. In fact, for maser action to take place, it is
necessary that the level populations be inverted. However, if we con-
gider as thermostat the active material plus the pumping mechanism,
then we do have a large system. Moreover, we may assume that the level
populations of the active material are kept at a desired value through
sufficient pumping. Thus, the approximation underlying (L43) and the
subsequent calculations essentially involves the deletion of informa-
tion concerning the pumping mechanism and the build up of the oscilla-
tions, thereby restricting the present treatment to the steady-state.
Incidentally, it is important to note that an additional difference
from the thermodynamic problem is that here we have a steady but not
an equilibrium state.

Substituting (43) into Eq. (40a) we obtain

(w2 + 107, +0f) Bygle) = of Ghale) +

-1t
i ‘iﬁt e ﬁt ﬁtg Qlt2) & (s,t1,t2),  (bb)
-Jo

from which one recognizes that A(t,ti,ts) is a functional relating the
effect of the material system on the field at all times previous to t,
to the field at time t.

Turning now to the calculation of A(t,ti1,tz2), and using Egs. (37)

and the identity

Us(t) US*’

U(t-t") (t"),
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we obtain

A(t,t1,t2) = A(t,t1-t2) =

4 +
Tr Us(t) D Us(t) Us(tl—tg) Gy Us(tl-tg) Gy —

~ +
— e P(8) D(t) W(t) G Plor-ta) 6 Pler-ts),  (b5)
where we have used the identity
Tr AB = Tr BA,

which is valid for any two operators A, B. Noting that the second
term in the right hand side of Eq. (L45) is the complex conJjugate of
the first, because the corresponding operators are the hermitian ad-

Joints of each other, and setting

U-S<t>DUS?Lt> - °(t), (46a)

we obtain

S S Sj— :
A(t,t1-ts) = 21 Im Tr D°(t) U (t1-ts) Gy U (t1-ts) Gy (L46b)
where Im indicates the imaginary part. As indicated above, A depends
on the difference ti-to and not on the specific values of t; and to.
Let now la > be a representation diagonalizing HA, [p > a repre-
sentation diagonalizing HP, and Ey, Ep the corresponding energy eigen-

values. Then

o> = Egla >, (k7a)
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and

Hlp > = E,lp > (47p)

The spectrum of HE is assumed to be continuous. In addition, let
]n> be the representation diagonalizing HR, and let |o> be the vacuum

photon field state.5 We introduce the representation

M > la >[p>]0>, (48a)

and we proceed to calculate the trace in Eq. (46b) using this repre-

sentation. Thus, we have

Alt,t1-ts) = 2i Imz Diﬂ'slt)US (t1-to)

MMy
MM MZMa
st
G\ MM UMEMS(tl_tg) G7\,M3M’ (48b)

where we have neglected the off-diagonal matrix elements of D, and
have introduced the simpler notation G%,MMl instead of < MlGAlMl >,
Tt is assumed that the eigenvalue problems (L47a) and (47b) can
be solved and that the corresponding eigenfunctions are known to us.
Then, the matrix elements of G, can be calculated. We shall have
the occasion to elaborate on this point in considerable detail at =
later stage (see also Appendix B). The remaining problem is the cal-
culation of the matrix elements of Us(t). By definition US(t) =

. 8
1
_%Ht,whereHS=HO+V, i =}fA‘+HP+HRandV=VRA+vPA.

Ag i3 readily verified, H is diagonal in the representation IM >,
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The calculation of the matrix elements of Us(t) in this representation
is precisely the problem solved by damping theory. As shown in Appen-

S
dix A, the matrix elements of U (t), for t > 0, are given by

i (Ey + -ivy) t
Uﬁm(t) = e 3 MM T ) (L9a)
and
S
UMM,(t) = Vo (U (t-7) Uyrype (7) dr,y (49b)
0]
where
EM = By + Ep: (h9c)
sy (X) = VMM+PPZ ——VM-m— (49a)
M'AM
nx) = % IVM'M|26(><-E ) (L%e)
MM
Sy " A s ( M)’ (kor)
7 = B 7By (49%)

In Eq. (L9d), PP indicates that the Cauchy principal part is to be taken
whenever an integration over X is performed. It is important to note
that ™™ is non-negative. The quantities sy and yy represent the shift
and width of the energy of the state \M > caused by the interaction with
the perturber and the vacuum field. A comprehensive discussion of these

guantities has been presented by Akcasu°9’lo
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As is seen from Eg. (L49b), the off-diagonal matrix elements of
S . . : X
U (t) are linear in V. If these matrix elements were substituted into
. . VPA

Eq. (48b), they would yield terms of at least second order in . How-
ever, Eq. (48b) is already of second order in Gy. Assuming that both
of these coupling constants are small quantities, we shall neglect the

. . S
off-diagonal matrix elements of U (t). Then, Eq. (48b) becomes

/

—

\' _8S S
At,t1-tn) = 21 Im> D(t) U (ti-ts)
MM,

st
Gy, My UMlMl(tl‘t2> G\,MaM =

_ S S st 2
= glzmjginMM(t> Uppe(ta-t2) UM &tl-tg) |G v | (50)
MM4 M3
Introducing the symbols
E _ /I\ . ')M
Wy = t%v vy = t#: SM = I (51)
and using Eq. (49a) we obtain
2
A(t,t1-tp) = 2i Imj{jb o (52)
. A
MMy

-i(ay + 8y -ily) (t1-t2) JHlawy + Sy + 10y, (t1-t2)
. )

Note that for Eq. (49a) to apply we must have t > O. The difference
(t1-t5) appearing in the above equation must, therefore, be non-nega-
tive. That this is indeed the cage can be readily verified if it 1is
recalled that in Eq. (44) A(t,t1-to) appears in the integrand of a

double integral whose limits of integration are such that ti > to.
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It is perhaps desirable at this point to iterate some of the physi-
cal ideas underlying the calculations presented in this chapter. In cal-
culating the trace, we have neglected the excited states In > of the
photon field and have retained only the vacuum state. The necessity for
considering the vacuum field stems from the fact that its coupling to
a particle system does give rise to a shift and width of the energy
levels of the system. The excited states, on the other hand, have been
neglected from Eq. (48b) since we wish to confine this treatment to
the linear approximation. Indeed, the excited states would yield terms
proportional to < apnlD[apn > that is, proportional to the number of
photons present. These terms give rise to terms non-linear in QA when
substituted into Eq. (L44). Thus, what we essentially do is to consider
the vacuum and excited fields as two separate dynamical systems, up to
a certain point. The excited field is described in terms of pk(t) =
Tr D P%(t) and qx(t) =Tr D Qk(t) which are expectation values of operators
The vacuum field cannot be described in terms of expectation values of
the field operators. It is taken into consideration in so far as it
affects the material system. As will be seen subsequently, its effect
appears as a shift and width in the spectrum of spontaneous emission and
in the susceptibility. Analogous effects are caused by the perturber.
In subsequent chapters, we study these effects in considerable detail
for a material system with two internal energy states, usually referred

to as a two-level system.



34

3. THE SUSCEPTIBILITY FUNCTION OF A TWO-LEVEL SYSTEM

The results of the preceding section are now applied to the case
of a two-level system which in fact is the central objective of this study.
Physically, a two-level system corresponds to an atomic or molecular sys-
tem, whose transition frequency between two particular levels is close to
the frequency of interest, the other transition frequencies being much
different. By frequency of interest, we mean the frequency of that mode
of the relevant cavity which has the lowest loss. Then, we may disre-
gard the other states of the system and treat it as a two-level system.
It is important to note however, that both levels are excited levels,
in general, and have finite lifetimes. Ideally, we would desire a four-
level system with energies E < E; < Ep < Es. E, would be the ground
state energy. The pumping would take place from the ground state to
|3>, The transition 3 = 2 should be very fast compared to 2 = 1 (typi-
cally by one order of magnitude), and presumably non-radiative. This
scheme would reduce the possibility of saturation of the pumping mecha-
nism, as well as of interference between pumping and cavity fields. The
maser action would take place between |2> and Il>g

Here, we consider the simpler case of a two-level system, these
two levels referring to internal degrees of freedom of the atom. The
atom as a whole 1s subject to thermal motion. To account for the effect

A
of this motion we separate the hamiltonian H into two parts as follows:

gt = gAT 4 ghe | (53)
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I Ae
HA refers to the internal and H = to the external (center of mass)

degrees of freedom. Let Im > and |K > be defined by

AT
H |m> = B, |m>, (5ka)
and
A
Foolk> = B K> (5kb)
The eigenvector |& > is now written
a> = [m> [k >, (552)
where
Ey = E +B . (55b)

We now assume that HAI possesses only two eigenstates represented by
1 > and |2 >. Their energies will be denoted by E; and Ey, where
Es > Ey. The eigenvector IK > is left unspecified for the moment. For
the sake of mathematical simplicity we shall assume that the energy
eigenstates Il > and 12 > are non-degenerate. The presence of degener-
acy does not affect the qualitative conclusions and can be handled with-
out difficulty as discussed in Ref. 9, for example. The vector ]M > is
now written
M> = |m> K> |p> o>, (56)
where m = 1,2.
Invoking the steady-state assumption we replace Ds(t) by D and

assume that the latter can be written as follows:

D = EZ (0> |m> [k > |p > Dyy D Dpp < |

mkp (57a)
<K| <m| <o .



36

That is, we assume that the populations of the particle states are kept
constant through external means. The effect of the pumping mechanism
is accounted for by assuming certain values for Dmm in steady-state. The
above agsumption about D will be used in the calculation of AKt,tl—tg)
and the calculation of the spectrum of spontaneous emission, because in
both cases only the vacuum field is considered. When we write Tr D Qx(t),
we shall mean the complete density operator of the system. However, its
knowledge 1s not necessary for our purposes since we have equations for
the quantities Tr D Q)(t) and Tr D Pp(t) themselves.

To gimplify notation, we denote Do, and Dij by Do and Dy respec-
tively. These quantities represent the expected values of the popula-
tions of the respective levels in steady-state. Using now Egs. (56) and

(57a) we obtain

Dt = Dpm Dkx Dpp- (57p)

Noting that G) 1s diagonal in Ip > gince it does not contain any per-

turber operators, and that Ey = E, + Ex + Ep, Eq. (52) becomes
. 2
Alt,t1-ts) = 2i Im Z D Drxc Dpp'G_%,‘melKl |
mmy
KXip

~i(wy + wg +wp + Sy -ily) (t1-t2)
e

i(wml tug, top t Gy * ily,) (ti-tz2), (58)

e
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where M and M; are abbreviations for mKpO and m;KipO respectively. Note

that p is the same in both. The symbols W, @x and Wy are defined by

E E
wmz_.r_n.’%=%_K_,a)p=/§P.) (59)

consistently with Eq. (51).

As shown in Appendix B, G% can be written as follows:
G?\ = — = X')S\(BJ)’ (60)

where d is the dynamic electric dipole moment operator and operates
only on the internal degrees of freedom; Rj is the position operator of
the éenter of mass of the jth atom, and the summation extends over all
atoms of the active material. In deriving Eq. (60) it has been assumed
that ZX(E) does not vary appreciably over the dimensions of the atom,
which is essentially the dipole approximation. If we denote the polar-

ization vector of the Ath mode by &\ then

% (R) = & X (Bi), (61)
and Eq. (60) becomes

- hr (q. -
G = -ﬁf(g E)\)ZX(BJ)- (610)
J

A

Assuming that the atoms of the active material are uncorrelated, one can

show (see Appendix B) that

2 )
(O B SL I %% |<m!9~gxlml>lii«lxh(ﬁj)IK1>|2. (62)

A ;

d
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To compress writing we introduce

2
d7\;mmlz ]Qn].(ioi)\]ml>|2) (65&1)
and
2 = bn . 2
XNj KK o |<€|x(R) [K2>|=. (63D)

Using Egs. (62) and (63), and noting that @, cancels in Eg. (58), the

latter becomes
2
A(t,t1-tp) = 2i ImZDmm d?\ s

mml=l
- +
i > -i(w + + S -1l ) 1
; D,KK Dpp X?\jKKl e mmy <l>KKl MM 1 MMy +
A
JKK1p

. - -
el(wmml + WKK 1 + SMM]_ "lFMMl) ta , (6)4_)

where we have defined

Wppy = Op-Ony , (65a)
gy = OKO, s (650)
Sy, = Su-Sy s (65¢)
Moe, = Iy + Py, - (65a)

Substituting Eq. (64) into the second term in the right hand side of

Eq. (44), and after a lengthy calculation we obtain

4
_i_ﬂ.fdt e f dtlf dtz @ (t2) A(t,b1-t2) =

4

_ id)y\ 2
 Tm QM(MZ P demlz Prx Pop X\ 3, KKy
mml=l JKK:LP
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{[(whml * CkK1 * s&Ml -iF&Ml) (@ + wmml * wKKl * %ﬁwl '1F§Ml)]—l_
(66)

~[ (O, * ox, * Sipgy * 1Thgr,) (<0 + Oy + g, * S, +1F§Ml)]'l}.

From Eq. (llb), taking Fourier transforms, we have

Qp (@ = - 3% Por (o). (67)

Using this equation, and defining

2
oW 2 2
Y%(w) = %;i{l Do dk,mmljgi Dyx Dpp X%j,KKl
mmy=1 JKK1p

_ -1
{[(a)mml + W, + SI‘—/JM]_ -il"Ile) (w + wmml + Wy, + SMM;L 'iFI“ZIVIl)] —

+ N (68a)
—[(wmml + gy, *+ S, +iFMMl) (-w + O, + KK, * SMM ;. +iFMMl)]'l},

Eq. (66) becomes
T b Ate

, 4 -iwt
ifﬁjfdt e Jﬁdtl an(ta) Mt,t1,t2) =
" “o 0 o
(68b)
2
= Yy (w)Pyp(w).

Y}(w) is the susceptibility function corresponding to the Ath mode. Its

value at w represents the effect of the material system on the wth

Fourier component of the field. The basic steps of the calculation of

the triple integral, leading to Eq. (66), are presented in Appendix C.

Two approximations have been made: Terms containing the damping factor
Iy, T

e M have been neglected, in view of the fact that ultimately we shall

take the limit for T + ». Moreover, we have neglected terms of the order
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-1 -
of Wpy, as compared to terms of the order of (w-wmml) l. This is Justi-
fied by the fact that we are dealing with frequencies of the order of
lOlO-lOl5 cps, and narrow spectra ( and S, are small shifts)

| ’ p QKK.]_ SNH\/[]_ :

Although the summation over m,m; in Eq. (68a) extends from 1 to 2,
the equation can be applied to the case of more that two internal states
as well. The spacing of the levels however, would have to be small com-
pared to Wyy,, because otherwise the second of the above assumptions
would not be Jjustified.

Recall that d is the dynamic electric dipole moment operator.
Assuming that the atoms of the active material do not exhibit a permanent

electric dipole moment, in either of the two states, the diagonal matrix

elements of d) will vanish. Introducing the simpler notation

2 - 42 Y-
N = AN, = IR, m o (6%)
and
Wy = Wy = -0, ’ (69p)

recalling that M stands for mKpO, and M; for m;K;pO, and performing the

summation over m, m; in Eq. (68a), we obtain
v (w) = 242 D X2, o .
A A N/ Dy pp “AJ,KK1
JKK1p

- -

- . +
(wo*axK, + SZKpo,1K;po T 1 T2po, 1K po)

Do

(-0 0%, = ST 1Kypo -1 T2 Kypo)
0™ KKy ZKpo, 1K po ZKpo ,1K3po
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1
- N T
(‘Do’uKKl" Sikpo,&ipo * 1 IﬂlK.po,ZKlpo)

Dy ] (70)
_ J—
(w-wo‘fwm{l*' Sleo,EKlpo -1 I11Kpo,2Klpo)

Again, we have neglected terms of the order of (w-lwo)'l as compared to

terms of the order of (w-wo)"l. The above equation can be simplified
somewhat if one notes that the shift S, as well as uxg ., are small

guantities as compared to - Thus we may replace ‘Do+“KKl + S;Kpo,]l'{lpo

" R - .t
+ r by w + i 7T and ® - -3 : + r

' Yapo,apo Y %o T Tapo, iapo” *7 %™Ky M Ikpo, aapo T T IKpo, K apo
by ooo+ i P‘i}{pogailpo in the denominators of Eq. (70). Note that the same

approximation cannot be made in the remaining factors because there, the
quantities S and akKl are compared to (a)-a)o) which is of the same order.

Upon making the above approximations, and noting that

S]Kpo,gilpo o SEKlpo,leo’ (71a)
and
yarbe . vt —
' IKpo, K 1po IEKlpo,leo’ (71b)
Eq. (70) simplifies to
W .2 2
T (w) = b af z D Dpp XNj st
JKK1p
o D2 .
e ‘ - —
<wo JrlF2Kpo , 1K 1p0) (w"wo"wKK 1'SEKPO ,1K1PO-1F2KPO ,lKlPO)
(72)

Dy

ok i 4
(wo*lFEK 1PO, leo) (-0t 179 1po, 1Kpo'lF2K 110 ,1Kpo)
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The remaining task is to average over the states of the center of mass

and the perturber.

L. POWER SPECTRAL DENSITY OF SPONTANEOUS TRANSITIONS

We have found that Pyp(w) obeys Eg. (L) which in terms of the

susceptibility function reads

(-w5Hiayy tof-onty (0)) Pap(e) = of Giple). (73)
The power output spectrum is

R(w) = My By (0)
A

where

Rx(w) = lim ;lf Tr D PM(w) Pm(-w). (7hb)

T >

From Egs. (73) and (7L4b) we obtain « 5
wi lim L Tr D G;T(w) Gpp(-w)
T+ T
Rylw) = —— - - . (713)
1t | -0y +wy -wa%(w)l

The numerator represents the power spectral density of spontaneous tran-
sitions, as will be shown in this section. It provides the force that
drives the field, since no other driving force has been assumed, which
ig the case in actual maser oscillators. If an additional driving
force, such as an external field, is present, its power spectral den-

sity should be added to the numerator.
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Using Eq. (LOb), we obtain,

o(t-t') S

T T ,
TrDGAT G7\T -w) = Terfdtdt' e 1 G%(t)G)S\(t‘). (76)

To insure that the right hand side remains real after the transforma-

tion to follow we write it as follows:

S

TrDGiT(UJ)Gi( = = TrD[fdtdt mlt- t,)Gi(t)Gx(t') +

io(t-t') .S S

Gy (t1)an(t) 1.
Introducing a new variable 7, defined by t = t'+r1, and after some

manipulations, we obtain
T

TrDG%T(w)GiT(-w) = Re\z:dT(T—T) e-imT TrDG%( >GA +

S
+ TrDGyG, (-7) ],

where we have interchanged trace with integration and Re indicates

the real part. Introducing

I (@) = lim L TrDGiT(w)GiT(-w), (77a)

T>o
in order to compress writing, and making use of the steady-state

assumption, we obtain

T =17 S
I%(w) = 2lim Reb/j dre TrDG%(T)GX. (77b)
T-> o0 e}
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[
From the definition of GA(T) we have,

<

Tr D Gy (T) G =

S S
= ZDMM UMZ_(T) G>\;M1M2 U (1) G?\,MsM’ (784
MM
MMiM2Ms

where we have neglected the off-diagonal matrix elements of the density
operator, and |M> is as defined by Eq. (56). The subsequent calcula-
tions and approximations are parallel to those of the preceding chapter;
namely, we retain only the diagonal matrix elements of US(T) and use
the results of damping theory; we assume that GX is off-diagonal in the
representation |m>, and that D can be written as in Eq. (57a). Then,
for a two-level gsystem, we obtain

2
S _ 2 2
Tr D Gy (7) Gy = ZDmm d?\’mmlz D¢k Dpp ¥nj KKy
mmy=1 JKK1p

. - ot T
el(wmml Ot Spro,lelpo * lFpro,lelpo) (78b)

Substituting into Eq. (77b) and neglecting the term which is propor-

tional to (&Hﬂ%)"l we obtain

2 2
I (@) =Dz dxz Dxx Dop Xnj,KK:

JKKap

F+
Mty . (79)

(@~ ~Spiary ) 5+ (1{14;\41 )2
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where

=
A
4}

| 2> k> p>[0>, (79p)

and

|M1> | 1>

K 1> |p>|0>. (79¢)

I%(w) is the spectrum of spontaneous fransitions [2> +II> into the
Ath mode. As can be seen from Egs. (73) and {75), the spontaneous
emission is the force driving the field. At low values of population
inversion, that is of the quantity (Dchl), the spontaneous emission
spectrum has a dominant effect on the spectrum of the output. As the
degree of inversion increases, the induced emission takes over. For a
quantitative discussion see section 5 of Chapter V.

The spontaneous emission spectrum is represented by Eq. (79a) as
a formal average over the gtates of the center of mass of the active
material, and the states of the perturber. A similar average appears
in Eq. (72) which represents the susceptibility function of a two-
level gystem. In most practical problems, one has to resort to numeri-
cal calculation in order to perform the averages. For a gaseousg active
material and a ¥abry-Perot cavity however, the calculation 1z simpli-
fied considerably. As a consequence, cne is able to obtain useful re-
sults in a more or less closed form, as shown subsequently.

From Eqs. (75) and (77a) we have

R (o) = 2 i) ” (80)

i ]mm2+imyx+a§ - &f Yx(w)lg
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Thus the output spectrum is expressed, through Eqs. (Tha) and (80), in
terms of the spectrum of spontaneous emission and the susceptibility
function. We shall now use these results to study the spectrum of a

gas optical maser, in steady-state.

5. STATISTICAL APPROXIMATION

Before embarking on the calculation of the averages in Egs. (72)
and (79&) we discuss briefly the approximation involved in replacing
the average of a function by the function of the averages. This
approximation shall be referred to as the statistical approximation.
Following Akcasu9 we consider a function Z = f(A,B) where A and B are
functions of some set T of stochastic variables. It is assumed that
we have a probability distribution P(7) defined on 7. The mean value

of Z i1s then defined by

7 = ff(A,B) P (1) dr. (81)
The mean values of A and B, which are denoted by A and ﬁ, are defined
in a similar fashion. If & and P are the deviations of A and B from
their mean values we shall have
A =K +aq, (82a)
and
B =3 +B. (82pb)

Expanding Z in a Taylor series we obtain

Z = f(K’E) + =

i
vl
oo
g
N+
~——
.
‘o
Wl
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t2op | | (=) (82a)
\ 3438 i,B \ BBZ,/-A-,-B- to...

Terms linear in @ and B don not appear since the mean values of O and
B vanish by definition. Here, we shall assume that the mean value of
o B also vanishes. This is the case for example, when Q and B depend

on different sets of stochastic variables. Thus we take

. (8%b)

We apply now this result to two functions which will be of in-
terest to us in connection with the spontaneous emission spectrum and

the susceptibility function. First we consider the function Z; defined

by
A
Z = . 81|-
R (84)
Using Eq. (83b) we obtain
- { -2 =2 )
- —5. A-%B
A . (852)
B2+A2 (A2+B2)2 |

Assuming that the second term inside the square brackets is small com-
-1
pared to 1, and using the approximation (l-x)= (1+x) ~, the above

equation becomes
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Zy = = > = - 85b
B E_ 5(62-562)]+ 22 (1, B2 o)
CoEERe I U REER

If it can be assumed that the correction terms are small we have

Z, = A (86a)
A2+B2

which is replacing the average of the function Z; by the function of

the averages. If however, we replace the average of Z; by the ratio

of the average, that is if we take Zy~ A , we obtain

) (86b)

K
B2 + A2 + B2
where we have assumed that 55 << Xg. As discussed in Ref. 9, Eq. (86b)
is a better approximation than Eq. (86a), and it is the former that we
shall use in this treatment. In any event, one can go back and use

Eq. (85b) if greater precision is desired.

We now consider the function

Zp = % (87)
B-iA
Using Eq. (8%b) we find
Zo = to |1+ B2 __o2 |. (88)
B-iA (B-iE)2 (B-iR)=

If the correction terms inside the square brackets can be assumed to
be small compared to unity then what we obtain is the function of the

averages. If this approximation is not satisfactory, which will be
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the case in the calculation of the susceptibility where we shall have

a function of the form Zs, but we can nevertheless assume that a2<<52,

— - l | g_z-
b2 B-ik E * (l?-iK)Ej ' (89)

In this study we shall use Egs. (86b) and (89). For further discussion

then we obtain

of the statistical approximation in connection with the function Z,

Ref. 9 should be consulted.



CHAPTER V

APPLICATION TO A GAS OPTICAL MASER

1. THE SPECTRUM OF SPONTANEOUS EMISSION

The model for the gas optical maser we shall consider consgists of
a tube of length L (typically 100 cm), containing a gaseous active ma-
terial.gl The side walls of the tube are transparent to light, while
the end plates are highly reflecting, with reflectivity of the order
of 99% or better. This structure forms a Fabry-Perot cavity with a
high quality factor. It has been shown12 that, the modes of this
cavity which have the lowest loss are the even symmetric modes whose

frequencies are

) R ) (90)

where ¢ is the velocity of light, and A a large integer of the order

of 10 . For a typical He-Ne optical maser, the separation of these
frequencies is of the order of 160 Mc/sec. There are also modes of

next lowest loss which posses odd radial symmetry, and their freguencies
differ from the frequencies of the previous modes by, typically, 1 Mc/
sec. Here, we shall neglect these modes. Moreover, it has been shown
that, the transverse field of the even symmetric modes does not vary
appreciably over the diameter of the tube, usually of the order of 2-3

cm. These modes correspond to propagation of light along the axis of

50
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the tube, and inside the tube one has a standing wave pattern. In
order to simplify the analysis, we shall ignore the variation of the

mode vectors over the diameter, and shall take
—KA(E) = Exx'% Sink, z, (91a)

where %o, i1s a constant normalization factor, and k; is the wave number

related to the frequency as follows:

Wy = cky (91b)

The z-axis is taken along the axis of the tube and the x,y-axes on a

plane perpendicular to the axis. If we introduce a vector k, defined

by
kx = (o,o,kx), (91c)

where the numbers inside the parenthesis are the cartesian components

of ky, we shall have

(6115,7\"'2 -e-]l_i_-)\‘*_l_‘

() = g 2 (914)

i

For each mode, only one polarization is present the other being

1,21
eliminated by using windows of the Brewster's ?

angle type at the
ends of the tube.

The active material inside the cavity is assumed to consist of an

aggembly of uncorrelated atoms (or molecules) whose center of mass is
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subject to thermal motion. Thus, the states of the center of mass

shall be teken to be free particle states given by5
-3 -iK-R
> = (ar) 2 TRE (92)

where, R 1s the position operator of the center of mass, and K the wave

vector. The energy of the state |K> is

EK = /ﬁz{ne b (95)

where m is the mass of the atom. Recalling the definition of X%jﬂﬁKl

as given by Eq. (63b), and using Eqs. (92) and (91d) we obtain

- iz [
X5, KK, = ._A_“ﬂ k (K-Ka+ky) —
Qlw?\ —

-3 (Ii_,gl_g\)j . (9ka)

Note that the subscrip J in the left hand side, which refers to the
Jth atom, now becomes redundant and will be deleted. Whenever a sum-
mation over j occurs, as in Egs. (72) and (79), it will be replaced by
multiplication by N, the number of atoms of the active material. From

Eq. (9Lka) we now have

o —
2 _ J'[X‘)\
X)\,KK]_ - -—E [‘6 (K"El-l-li?\) ——

— 3 (Ig-gl_b\ﬂ . (9%b)
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Moreover, we shall assume that D, is a Maxwellian distribution

KX

with temperature T, or mean energy € , where

2
s =kT, (953)

and is the Boltzmann's constant. The summation over X is then re-

placed by integration, according to
3 -3/2 -b% 2
2 D » 0 % fdslﬁe ’ (95p)
K

where

2
p2 = A7 . (95¢)

2m

Recalling now the definiton of wyy (see Eq. (6%3b)), and using

Eq. (93) we obtain
o, = L (%), (96a)

Because of the presence of the delta functions (or Kronecker deltas,
if a discrete spectrum of K's is assumed) in Eq. (9L4b), the only terms
that will survive in a summation over K and K: are those for which K =

K1 . Using this relationship Eq. (96a) yields

Tk
- A

2
o, = oy A (EA'KJ)°

&

)
\V}

B

Neglecting nwf/2mc2 as small compared to Wy 5 and introducing

= 4 k.
Sg = T (Ex), (96b)
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we have

x , I Sq - (96c)

In Eq. (96b) we have changed K; to K. The same will be done in the

summation j{: from which K has now disappeared.

KK,

Introducing the foregoing simplifications into Eq. (79), we ob-

tain
) 2 o\
17\(&)) = D2 d-)\ > Z D.KK D.pp.
N Kp
T M) . (97)
(-5 -83-851203)° + (i)
+
Ty
+ ~ - S 1,
(0-00+8a-Simay )~ + (Tygaay)
where

1| 2> p>| 0> (970)

il

|M>

> = [>|1>]p>]o> (97¢)

An additional approximation has been made in Eq. (97a). It has been
assumed that the significant effect of the center of mass motion is
o . . + -~
contained in Sy, and K1 has been replaced by K in FMng and SMng'

Since Dyy depends only on the magnitude of the vector K, and

since we integrate over all K-space, both terms inside the square
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brackets in Eg. (97a) yield the same gquantity, when averaged. It
suffices therefore to retain one of the two multiplied by two, thus

obtaining

() = gfﬁgéiiﬁ :;l Pxx Dpp
O\ X

(974)
+s H
Pmamy

) =S, - T 2+ F+ 2
(@ Ly SMeMl) (MéMJ’_)

Y

where Ny = NDy is the expected number of atoms of the active material,
in the upper state |2>, in steady-state. The above equation gives the
spectrum of spontaneous emission as a superposition of Lorentzlans.
Subsequently, we shall use the statistical approximation to replace

the right hend side of (Eq. 97d) by a single Lorentzian.

2. THE SPECTRUM OF SPONTANEQUS EMISSION IN THE STATISTICAL APPROXIMA-
TION

The spectrum I,(w) as represented by Eq. (97d4) has the form of z

as defined by Eq. (84). Setting

+
A‘ - I.‘Mél\di ]

and

B o= wetg-Sg-3M! (98b)

we have

I (@) = MZ DicPpp B;A? . (99)
of Kp
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and
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Fa = ZDKK opi ML = ZDKKDppPKE’pO’ (100=)
Kp Kp
r, = ZD D r ' o= ZDKKDPPFKIPO , (100Dp)
Kp
P = rp+r; = K.

'y and I's are the widths of the lower and upper states of the active

material, in vacuum, and averaged over the states of the center of

mass and the perturber. Similarly, we introduce

and

The subscript o

state appearing

So = ZDKKDPPSM; = ZDKKDPPSKEPO; (101a)
K S

= t =
Sy = szDpple = mebppsmpo, (101p)
Kp

Kp

S

. S$5-S1 . (101c)

in P; and SO should not be confused with the wvacuum

in the right hand sides of the above equations. Again,

Sy and Sp are the shifts of the lower and upper states of the active

material, in vacuum, and averaged over the states of the center of

mass and the perturber. Akcasu9 discusses the averaged widths and
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shifts of the states in considerable detail. Here, we simply note that
both shift and width can be separated in two parts: One due to the
vacuum field, and another due to the perturber. For further informa-
tion see Ref. 9.

Obgerving that §d’ being the average over all K-space of an odd

function of K, vanishes, and using Egs. (101), we obtain

B = w-t,-5,- (102)

Moreover, we have

B2 = ZDKKDpp (B-B)% (10%a)
Kp

Combining Eqs. (98b) and (102) we obtain

2

pe = Z Dy S§ ; Dk Dpp (Stagay ) -85 ) (103b)
1%

where again use of the facts that §a = 0, and that S; does not depend
on p has been made.

We now define

Olka
I‘§E Z DKK Sg = Z DKKEf (I—{-*li?\)z} (l )

rz = ZDKKDPP(SM?éMi) -5, (104b)

and
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ré = P;2 + 2412, (10ke)

With the foregoing definitions, and combining equations (103b), (102),

(100c), (99) and (86b), we obtain

2.2 -+
I,(w) = 2Z2XAd) o : (105)
wf (w-005-85) " + TE

In obtaining this result we have assumed that the statistical fluctua-
tions of the widths can be neglected. This agsumption is inherent in
the condition a2<<A2 under which Eq. (86b) has been derived.

Thus, the spectrum of spontaneous emission into the Ath mode is
gshown to be a Lorentzian centered at ¢b+SO and having an effective width
It Thig effective width consists of three terms. The first term
ng is the sum of the widths arising from the interaction with the
vacuum field (natural width), and the interaction with the perturber
(collision broadening). Also the third term Fj is dvue to the same
interaction but it is different in nature. It appears as a width,
while actually is due to the statistical fluctuations of the shifts.
It is usually referred to as statistical broadening. The second term
Fg ig due to the recoil of the center of mass of the atom when it
emits a photon. This is essentially the Doppler broadening. For a
Maxwellian distribution of center of mass velocities, P§ can be re-
adily calculated. The calculation is carried out in Appendix D

with the result



(106)

In the limit of zero temperature or infinite mass it vanishes as it
should.

Up to this point, w, has denoted the frequency of the transition
2 > 1. Then, S, is the shift due to the interaction with the vacuum
field and the perturber, averaged over the states of the perturber and
the motion of the center of mass. In interpreting experiments however,
it may be preferable to include the vacuum shift in Wy Then, SO should

be reinterpreted as due to the interaction with the perturber only and

averaged as before.

3., THE SUSCEPTIBILITY FUNCTION IN THE STATISTICAL APPROXIMATION

We now proceed to calculate the susceptibility function for a
gas optical maser, in the statistical approximation. The starting
point is Eq. (72). Since Dyx depends on the magnitude of K only,
and since URKK, = * 83, we may choose one of the signs and then multi-
ply by two beceuse we average over the whole K-space. Moreover,

assuming that the recoil effect is adequately accounted for by Sz, we

and ST d

- +
replace SzKpo,lKlpo 2K 1p0, 1Kpo by Sngo,leo’ and Fngolelpo an

+ + .
. Egs. Eq.
X 1p0, 1Kpo by F2Kpo,leo Then, using also Egs. (97b) and (97c), Eq

(72) becomes

°

G - EmEE Y (et
’ o . et
WS, Kp (wo+i PMéMi)
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%m]%P . (107a)
w‘wb'sd“SMéMi’i:M;Mi

where we have used Eq. (9hb) and have renamed K; to K. Since we have
already assumed (see V-2) that the statistical fluctuations of the widths
can be neglected, we replace the two factors in the right hand side of
Eq. (107a) by their averages. After some mathematical manipulations,

and using Eqs. (100) we obtain

(@) = 2AXNEY [ (Do-D1) (wy-i IJ)]
h@f(@? :

Z Dkx Dpp

- ’ (107p)
W-Wo-Sq-SMiMy -1 FﬁéMi T

Kp

2 2 . . .
where we have replaced wy* (FO) by m§ in the denominator, since

P; <,. We shall also introduce Z, defined by

- e
z = (DZ'Dl) (wo'lro> > (lO'_{C>
because it will appear in several of the following equations.

The problem is now reduced to the calculation oi?ﬁb), defined by

() =Z DK Dop (108)
} (D-(DO-Sd-SMg\'I:'L-l FM'ZMi
+
The statistical fluctuations of FMéMi will be neglected, as was done
in previous instances. On the contrary, we shall retain the statisti-
cal fluctuations of the shift and as will be shown subsequently, two

different methods of averaging suggest themselves, depending on whether
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F§ is negligible as compared to Fg or not. Consider first the more

general case in which both Pg and I'2 are to be retained. Identifying

d

w‘wo‘sd‘sﬁéMi with B, and F+, , with A, the right hand side of Eg. (108)
Mz2M1

assumes the form of the function z, difined by Ee. (84). As shown in

IV-5, the average value of zo can be approximated as in Eq. (89), pro-

vided one assumes that @°<<A2, Thus, combining Egs. (89), (100), (101),

(102), (10%3) and (10k4), we obtain

/((D) ) (‘D“Do';o>‘i ry Ll+

2, n2
n lﬂd " Ps i] .
[ (w~wo-Sp)-1IF]2

If the correction term inside the square brackets can be neg-

(109)

lected as compared to unity, one has

= o w) = L
2((») ) 2'() w-wg=Sg-1 I'S ’ (110)

which defines Z;(w). In phenomenological treatments of the problem,

one obtains an expression for the susceptibility function resembling
o
2? (w). Actually, Sy 1s entirely ignored, and Fg is replaced by the
effective width Iy, appearing in the spectrum of spontaneous emission
(see Eq. (105)) which is again assumed on phenomenological grounds.
However, Eq. (109) shows that the form 3?(&) involves at least two
¢
assumptions; namely that both Doppler and statistical broadening are

zero (or very small). In addition, even if this is so and even if
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So is zero (or negligible), the imaginary part of the denominator is
not the effective width Tg.

In the limit of zero temperature or infinite mass of the emitting
atom, Ps vanishes as Eq. (106) shows. Then, one still has a correction
due to statistical broadening. It appears therefore, that Eq. (109)
is useful when Fs is either comparable to Fg or much larger. In the
second case in fact, one may neglect Ps entirely. In order to obtain
higher order corrections, if necessary, one can consider the Taylor
series given in Eq. (83a) and supplement it with additional terms. In
conventional line shape experiments and interpretations, the second
order corrections seem to be adequate. The spectra of optical masers
however, are extremely narrow and one should be prepared to go to
higher order corrections when relevant experiments with well stabilized
masers become feasible.

There is a third case, not discussed thus far, namely the case in
which F; >>P:. Then, F§ can be neglected from Eq. (109), and the re-
sulting expression gives the susceptibility function with a correction,
due to the motion of the center of mass, of the first order in the
temperature. For this case, in which Fs is negligible, we shall now
proceed to obtain higher order corrections.

4, THE SUSCEPTIBILITY FUNCTION FOR THE CASE OF NEGLIGIBLE STATISTICAL
BROADENING

In this section we calculateé%(w) for the case in which the statis-

tical fluctuations of both S&éMi and P&éMi can be neglected. Then, we
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replace the above quantities by their average values in Eq. (108), which

now becomes

w) = Dk .
A}%( : Ezcb4bo-sd-§3-i P; (lll)

X

The only unaveraged quantity in this expression is Sq which does not
depend on p. Note that Sd cannot be replaced by its average since‘gé =0

and one would lose all information about its effect. Using Eqs. (95b)

and (9%b) we obtain

5 -bXZ
2ﬁ1w> = bsﬁ—s/eu/‘ 1te . (112)
s .
W=-Wgo=Sp-1 PO- — (E.E%)

The direction of 5% is fixed and has been chosen as the z-axis. ILet

fﬁ be the angle between K and E%’ ¢ the azimuthal angle, and p = cosi? .

Thenéaiw) becomes

22
s +1 ® -b K
e
}QD) = &b m&/q dpk/ﬁdK > (113)
Alx L, o n (0~w5-8) —Kkpp-i m
A “h

where we have performed the integration over ¢. Obgerving now that the

denominator has the integral representation

1

+
m (0-w5-5y) Ky p-1 Tom

Eg i
(11L)

o]

-1 (w-wo-So)-Kk p-iF+§]x
= iL/AX e A ( ) K ?ﬁ

0]

and substituting into Eq. (113) we obtain
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3 ~ -l Fg + (w-0p-S5) ] 2 x
Zéﬁb) m‘L/ndx e .l
(0]
, -bX= i1 1Kk px
e dKf e dp , (115)
-1

where we have interchanged the order of integrations. The calculation
of the integral is relatively straightforward, albeit somewhat lengthy,

and is presented in Appendix E. The result is

(o) =1 b E{iﬂl Q; +(w-wy-5,) | (1162)
;% 6.k% P9\

where the function Zz(z), for any complex number z, is defined by

p 2
& (z) = e” Erfc(z), (116Db)
and the complementary error function is definedg5 as follows:
[oe] -t2
Erfe(z) = f e at . (116¢)

Combining now Egs. (116a), (107) and (108), we obtain the following ex-

pression for the susceptibility:

EKS/Zwafdf . (on
Ty(w) = 26 NN g (bm
% 2 2 Ak

o\ %
E%E%f— <§; + i (w-w.-S
A

Recalling the definition of b (see Egs. (95)) we have

KT > ' (1170)

)] : (117a)
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The argument of the function E:in Eq. (ll?a) is therefore, inversely
proportional to the square root of the temperature, and directly pro-
portional to the square root of the mass, provided the width Pg and
shift Sy are slowly varying functions of the temperature and the mass.

In order to investigate the behavior of Yx(w) for

bm

+
. <ro+ 1(cb-a>o-So)> | > 1, (118)

2
we note that the function<£(z) has the asymptotic expansion >

00

E(z) ~ L (1 +Z (-1)" L3e..(amtl) 5 (119)

2 (222)"

m=1

which is valid for lzl > oo , and Iargzl < %5 . In Eq. (117a) we have
Rez>0 and consequently the condition for the argz is satisfied under
all circumstances.

Retaining the first two terms in Eq. (119), and after substituting

into Eg. (117a) we find

3/2 22 .
ple) = a7 2 — '[“
*ﬁ%V“AO (w-twy-8,-1I7)
2 (120a)
. 3 I'g
H 2
(w-wO-So-in)E
where we have used the fact that
-2 2
b—m—) = or,; , (120b)
ik
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as can be seen by comparing Egs. (117b) and (106). For the sake of
comparison, we give the expression for Yx(w) resulting from the con-
siderations in V-3. It is obtained by combining Eqs. (107), (108)

and (109), and has the form

2.2
NwXAAA Z

7 1 +
Aofws  (0-tg-Sg-1T5)

Y%(w) = 2

(120c)

2 2
. rg + rz

(w-wO-So-iF;)g

If Pg can be neglected as compared to Fg, the two expressions assume
the same form except for two differences. The coefficient in Eq.
(120a) is slightly smaller than that of Eq. (120c), their ratio being
approximately 0.9. The correction term in Eq. (120a) on the other
hand, is three times larger than the corresponding term in Eq. (120c).
In view of the drastic approximations made in calculating Yx(w), the
above differences are not too surprising. It is presumed that in the
extreme case in which P: is entirely ignorable, Eg. (1172) (from which
the asymptotic expansion has been derived) gives a better approximation.
In addition, it has the advantage of expressing Y%(w) in effectively
closed form. In the case in which Fi cannot be ignored, it is Eq.
(120c) that must be used.

As mentioned above, Eg. (117a) is in effectively closed form. This
enables one to obtain correction terms up to any desired order in the

b ,
quantity —— Fg+i(w~wonsoi> , for large values of this quantity,
Ak,
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through the asymptotic expansion of éi(z). A further advantage of Eg.

(117a) is that one can obtain approximate expressions for Yy (@) in the

case in which we have

l bm G +1 (w-wg=So ) | << 1. (121a)

This we now proceed to discuss.

The function éz(z) has the following series representation
-1
ENz) = Z i—(—g——z— : (121b)

where I'(x) is the gamma function. Retaining the first three terms of

the series and substituting into Eq. (117a), we obtain

s/ 22 .
Y)\(CD) = ér_zl_\_l_ogl(?\_dl 7 i [/_l = - Fo+1(w_(;)o_so) +
)lﬁw%a)o 2 Pd \/_; Pd

[T+ (om0 -50) ]2:} (122)
22 13 ’

+

where we have used Eq. (120b). It should be emphasized again that
this equation contains the inherent assumption that the statistical
broadening is ignorable. Presumably, in the range of validity of this
expansion, the above assumption is likely to be satisfied, since ine-
quality (12la) also implies relatively large Doppler broadening.

Ag an attempt to decide about the form of Y7$w) that should be
used in the analysis of an actual system, we consider briefly the first

He-Ne gas optical maser developed at the Bell Telephone Laboratories.



68

20
According to Bennet's paper, the maser consists of a discharge tube
100 em long and with an inside diameter of 1.5 cm, filled with He at
1mm Hg pressure and Ne at O.lmm Hg. The transition used in the maser
o 2k s
action is the 2s -+ 2pa (Paschen notation) transition of Ne. The
. . . oy D ‘
associated frequency is approximately 1.64x10 ~ cps. The Doppler width
is estimated to be of the order of 800 Mc/sec, while the natural width
of the order of 50 Mc/sec. The lowest loss cavity modes have a width
of the order of 0.5 Mc/sec and the modes are separated by 160 Mc/sec.

At room temperature and for m = 20amu, Eq. (117b) yields

HE

bm

k)

3.56 % 107 gee, (123)

Under these circumstances, the whole power output will be practically

15

9
within at most 10” cps about wy = 1.6k x 1077 cps. Interpreting FZ

as the natural width and noting that in the present case it is much
smaller than 109 cps, we conclude that, for those values of w for which
we have a substantial amount of power, we shall have

[1( Sq) + T'F| 10°

1 \W=Wn =1 ol< CpS.

Combining this with Eq. (123) we find
bm .
| — rg+l(w-wo_so)> | < 0.356. (12L)
Ak

In any event therefore, the argument of & in Eq. (117a) is smaller

than unity and it is the series expansion rather than the asymptotic
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expansion that one should use. Moreover, since the right hand side of
Eq. (124) is not much smaller than unity, for a different system the
inequality might be reversed.

Attempting to analyse the foregoing optical maser in terms of
Y%(w) would have several weak points. The most serious difficulty
arises from the fact that the maser exhibited strong mode coupling.

Also the frequency stability of the system was not particularly satis-
factory becuase of fluctuations of the mechanical construction. Our
analysis i1s aimed particularly, albeit not inevitably, at the single
mode operation of a well stabilized maser. According to a recent re-
port,7 such systems have been constructed, and the hope that one will

be able to perform measurements on such systems, in the immediate future,
can be hardly considered as optimistic. A third difficulty comes from
the fact that most existing treatments, dealing with the interpretation
of actual experiments, are phenomenological. And it is not always clear
what the parameters quoted really represent.

In the foregoing discussion on the dependence of Y%(w) on the mass
and temperature, we have ignored the dependence of Sp and Fg on these
guantities, by assuming that their variation 1s slow. The dependence
nevertheless exists and it may be imperative to take it into considera-
tion in actual situations. A fairly extensive study of this problem
is presented in Ref. 9 whose formulation we have followed closely. Here,

we simply note that one is ultimately faced with the necessity of nu-
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merical calculations, if comparison with experimental results is con-

templated.

5. THE STEADY-STATE OUTPUT SPECTRUM
The steady-state power spectrum of the Ath mode (Ry\(®)) is given
by Eq. (80). Combining this equation with Egs. (22) and (105), we ob-

tain the following expression for the output spectrum R{w):

(125)

Re) = ) A T

3 [ (a)-wo-So)2+I‘2e]|-w2+iw77\+wf-wf§{7\ ()]
The expression for the spontaneous emission spectrum, appearing above,
has been derived under the assumption that the mode involved repre-
sents photons travelling along the axis of the tube. Photons travel-
ling at any angle with respect to the axis are lost after a small num-
ber of reflections, and consequently no appreciable amount of energy
in those modes caﬁ build up inside the cavity. Moreover, from the
modes with longitudinal propagation, only the ones lying within one
or two widths of the spontaneous emission line will oscillate. Thus,
although the summation in Eq. (125) was initially understood over all
modes which in principle are infinite, for the gas maser this summa-
tion is effectively reduced to a small number of terms. A further re-
duction comes from the assumption, made at an earlier stage, that only
the lowest loss modes oscillate. Under these circumstances, the num-

ber of modeg that need be considered in a typical He-Ne gag optical
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maser may be as low as three. Incidentally, this is another aspect
that greatly simplifies the analysis of a gas maser as apposed to a
golid-state maser25 where more modes must be considered. Eq. (125)
gives the steady-spectrum in a general form, in terms of the suscep~
tibility Yx(w) and the shifts and widths of the relevant states. To
proceed further one will have to decide about the form of Yy (w) that
is appropriate to the system under consideration, and the wvalues of
the parameters involved. Here we shall discuss two gpecial cases.
Agsume that we have a well stabilized maser operating in a single
mode. That is, most of the energy is concentrated in one mode, the
other modes having practically no energy at all. Then, the summation
in Eq. (125) reduces to one term and although the index A is now un-
necessary, we shall retain it for notational convenience. The transi-
tion frequency w, and the cavity mode frequency w) are assumed to be

of the same order, typically ].Ol-5 cps. Due to the anticipated narrow

spectra, we introduce the following approximations:

=~ L =~ P = 1, (126a)
N
and
N TS - O = I (126b)
In addition, we assume that Fg and Pi can be neglected. We then have

it

Fj FZ2, and Eq. (120c) yields
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(@) = 2 g " (127a)
m-wo-SO-lFo
where we have introduced
2 ﬁNdef
nf
Observing that
+
(w‘wb‘so)2+(Fo)2 = [w-@b—so~ifglz s
we have
2, 2
| -0 iy oy onty (@) | Z [(w-wg-5,) % (1)) =
=)+ 2‘( (D)((DQ"F+)+'77\ ( . F
wy (- -05-1Tg i 5 w-Qy -1y ) -
(128a)
2 2 2
- &, (D2-D1) w,+igy(D2-D1) TH|",
where we have introduced
0, = wytS, , (128b)

and have used the expression for Z given by Eq. (107d). Note that
the approximation wp =~ wy = O, is valid since Sg 1s much smaller than
Wy » Substituting into Eg. (125) and dividing numerator and denomina-

tor by (Fg) we obtain

R7\ ((l)) =



T3

NoXRAR
- org ,(1.29)

[(a)-(JJ)\)+ —72-%-(-)_]: ((D"Qo)'*'g?g\(Dz-Dl) ]2+[-(—(D7\—-(%_(:D—_§—20—)+ Zgl - i—E(Dg-Dl)wo]g
(0] (0]

The width y) of a good Fabry-Perot cavity is of the order of 0.5

. . 20 .
Mcps, while, according to Bennet,  the natural width of the upper
level of the maser transition is of the order of 50 Mcps. Here, Fg
is the sum of the widths of both levels and contains both natural and
collision widths. We may assume therefore, that 7, << Fg. Moreover,
we assume that the maser is stabilized well enough to have lQo‘le <
7A/2’ Although usual gas optical masers are not so stable, stabilities

10 .

of the order of 10 over periods of several hours have been reported

T . fys
-recently. Under the foregoing conditions, most of the power output

14

is expected to be concentrated within a few y,s about wy and Qo. That
is, the power is essentially contained in a frequency range such that

|w-wy | << £¥. This implies that [(-%)(@0)] << (4.0,). gince

+
I's
w=-0 ) is of the order of we may neglect (w-QO)(aR-w) from the
(w-9,) A
+
o
denominator of Eg. (129) which now simplifies to
N SXRAR
+
R(w) = 2 Io . (130)
[ A 2 NN
(w-ao )+ ot (w-05)+gn(D2-D1) ] +[2;'-'- (D2=D1 )]
o] o)

If oy is the value of w at which R(w) attains its maximum value, we

shall have
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4 2
-y (-0 ) -l;+ g\(D2-D1) = o .
QFO

Solving this equation for ., and retaining only terms linear in 7%/2P;

we obtain
A o
ay = o - (o-%) o7~ en(D2-Da) . (131)
o
Also, if we neglect terms of order higher than the first in g%; B
0
R(w) becomes
2.2
UNEVS
AW
2l
Rlw) = S : (132)
2 N _ &\ 2
(wdwm) + (75._.53 (Do-D1) wg)

To the extent that the conditions under which the above equation has
been derived are satisfied, the power output spectrum of a well sta-
bilized optical gas maser operating in a single mode has a Lorentzian

shape. The line is centered at w, and has a full-width at half-maximum
(50 A
Ji/2 = 75 — =D (D2-D1) @y . (133)

This width is larger or smaller than the cavity mode width 7%, depending
on whether (Do-D;) is negative or positive respectively. (Note that
(Do-D1) varies from +1 to -1). The width decreases as the degree of
inversion, that is (Dg—Dl), increases. Results similar to Eq. (132)
have been derived (through different arguments) and discussed else-

where.25’26 Thus, we shall not dwell on it any further. However,
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Eq. (151) deserves further attention since it contains a term which
does not appear in previous treatments.

This equation is usually referred to as the "linear frequency
pulling” equation. If the term gf(Dg-Dl) is neglected, the equation
agrees with the well-known result obtained for the first time in Ref.
26. Here, we obtain an additional correction term. This term is
presumably a consequence of the more refined model we have used.

In Ref. 26, as well as in other treatments, one introduces a pheno-
menological width which masks the fact that this width is due to many
effects which give rise to separate widths and shifts for each level,
as shown in earlier chapters. One cannot expect therefore, such models
to predict effects associated with this fine structure, so to speak,

of the effective width. Since (D2-D1), for most masers, will vary be-
tween 0.5 and 1, the order of magnitude of g;(Dg-Dl) will be deter-
mined by gi. It is not aprioriobvious therefore, that this term is
ignorable under all circumstances. It is perhaps illuminating to com-

pare this term to the term 2g§(D2-Dl) w /F; which accounts for the

o]
26
spectrum narrowing. For an ammonia maser for example, we have W,
-T‘N
20 8 I's
10°. For an optical gas maser, we have wy "~ 10, Thus, the fre-
g
Ts

quency shift term is, typically, seven orders of magnitude smaller
than the narrowing term. In usual devices, one would not expect this
shift term to be of importance. In a well stabilized maser operating

in a single mode however, it might represent a significant effect.
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As a second special case, let us consider an optical maser operat-
ing in a single mode and assume that the spontaneous emission spectrum
is very broad compared to 7). The previous example suggeststhat, for
population inversion high enough, the output spectrum will be narrower
than 7\ One may assume therefore, that the spectrum of spontaneous
emission is constant over the frequency range of interest, and replace

it by its value at the center of the line, that is Qy. Thus in Eq.

a 2

e

(125) we replace (w-wo-so) + I'T by Fg. Again, this assumption
is valid if the maser is stabilized well enough for Qo and wy to differ
by an amount of the order of 7, at most. Let furthermore, ylk(w) and
ygk(w) be the real and imaginary parts, respectively, of Yj(w). That
is

Hw) = yup) +1yg) . (134)
Then, using also Egs. (126), we obtain

HN2XpNTS
o Tg
Rw) = 62 - . (135)
(w-u>7\ + O y:L)\(CD)) + (’_7; — OA .Y27\(03)>
2 > 2

This, in general, is not a Lorentzian since yi; and yz), depend on .
If these quantities are slowly varying functions of ®, or perhaps con-

stant, then the spectrum does become a Lorentzlan centered at

Wy _“;_% yip s (136a)

and having a full-width at half-maximum
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TN - DT\ - (136b)

It is seen therefore, that the real part of the susceptibility appears
as a shift of the frequency of oscillation with respect to the cavity
mode frequency, while the imaginary part appears as a width. The de-
tailed structure of the spectrum is contained in Eq. (135). This
equation is likely to correspond more closely to the spectrum of an
actual gas optical maser than Eq. (129) does, with the additional com-
plication of considering two or three more modes. For example, accord-
ing to Bennet'szo estimates, the Bell Telephone lLaboratories He-Ne

gas maser would have Fe> 800 Mcps and 75\ ~ 0.5 Mcps. The distance be-
tween modes was 160 Mcps. For single mode operation therefore, all
conditions under which Eq. (135) was derived are satisfied. Moreover,
it is conjectured that even for two-mode operation, in which Qo lies
between two cavity modes, Eq. (155) will approximate the actual spec~
trum adequately, when summed over the modes in question. It must be
emphasized that the comparison of the present theory, as well as of
other theories, to experimental results is hindered mainly by the in-

adequate frequency stability of usual devices.

6. ON THE LOSS MECHANISM

As pointed out in Chapter III, the coupling of the cavity field
to the loss mechanism gives rise to the damping constant 7, and a
driving term representing the fluctuations of the loss mechanism.

The problem has been discussed by Senitzky8 and in this section we
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shall elaborate somewhat on his method.
Recall that (see Eq. (27)) the total hamiltonian of the system

was

R_A P RA

E EA
H = H+H +H +H +V +vRA+V .

The loss is the result of the interaction of the radiation field inside
the cavity with some other system (e.g. the walls of the cavity, or
the host crystal in a solid-state maser). Let HL be the hamiltonian
of this system which we refer to as the loss mechanism. Also, let VRL
be the energy of interaction between the radiation field and the loss
mechanism. Considering the interaction of each particle of the latter
with the radiation field, as we did with the active material, we can
write VRL as follows:

RL L
P nek e
A

L
where G% is the current operator of the loss mechanism whose defini-
tion is analogous to the definition of Gy (see Eq. (10c)). The total

hamiltonian now becomes

g = mleRant et sy RA P A AR (137b)

L
It is assumed that H is coupled only to HR and not to HA or HP° Fol-
lowing Chapters III and IV-1, and treating the loss mechanism as in

Ref. 8, we obtain



4 T sot Pt t1 = (t-t1)H
+ z wy fd't, e fdtl dts e .
/h/ o} (0] (0]
-1 (poty)m”
c [ (t2) 6(t2), 6(t1)] e BT (158a)
where L
. . L
L ~H L _Liugy
G(t) = B G e 4 . (138b)

We now treat the last term in the right hand side of Eq. (138a) accord-
ing to Chapter IV. That is, we pull Qk(tg) out of the commutator and
we replace the operator multiplying Q%(tg) by its expectation value.
Moreover, we assume that HL has an energy spectrum densly spaced, and
that 1ts dénsity matrix is diagonal in the energy representation, its

diagonal matrix elements being

-En/kTL
D, = - (139
nn Ze—En/k'I‘L b
n
where
L
H > = En|n> .

In calculating the trace with the density matrix we have a summation
over the states |n>. Assuming that the spectrum is dense enough for
this summation to be replaced by integration, and after a rather

lengthy calculation which is presented in Ref. 8, one obtains
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(1L0)

The gquantity 7\ ig a constant which arose from the expectation value
of the operator that multiplied Qx(tg). It is the susceptibility of
the loss mechanism, and it turns out to be a constant, that is inde-
pendent of ®, because of the assumptions made about the properties of
L s . . : .
H . Additional assumptions introduced during the calculation are:
7% is small compared to a and no mode coupling exists. In fact the
gquestion of mode coupling does not arise at all in Ref. 8 because a
single harmonic oscillator is considered there. Thus, one has a model
for the quantum mechanical description of loss. Eg. (140) shows there-
fore that the equations we used in the present treatment are in agree-
ment with the above model, except for one difference. In our equa-
o L

tions we did not have the term w%GXT(w) appearing in Eg. (1L0). It

should be clear from the considerations in IV-4 that this term, when

one calculates the output spectrum, will give rise to the quantity

i

L L L L
I (@) lim % Tr D Gyplo) Gp(-0), (141a)
T

L L .
where D is the density operator of the loss mechanism, and GXT(w) is

defined by L
L T iwt i L 1 %
- 7 7 ,
= at (141b)
Gy (o) L/;_ e e Gy e
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L
Ix(w) represents the spectrum of spontaneous emission from the loss
mechanism, and in calculating the output spectrum it will be added to
the spectrum of spontaneous emission from the upper level of the active
material. When we consider a gas optical maser therefore, Ii(w) re-
presents spontaneous emission from the walls of the tube at room tem-
15
perature, and at frequencies of the order of 10~ cps. In principle,
this contribution is present. But it is extremely unlikely that its
neglect could be of any importance, as far as the output spectrum is
concerned. BEven if one considers an optical maser amplifier, in which
L : . .
case Ix(w) would constitute noise, its effect can presumably be neg-
lected since it will be masked by the much more important term of
spontaneous emission from the upper maser level. For masers in the
range of microwaves however, spontaneous emission from the cavity
L
walls may not be ignorable in which case I%(w) would have to be taken

into consideration.



CHAPTER VI

COMPARISON WITH OTHER THEORIES

The present study was motivated by the work of Wagner and Birn-

5

baum. Although their work is particularly aimed at the solid-state
maser, their formulation is rather general. They describe the electro-
magnetic field classically, in terms of the cavity modes, that is P
and qy. The active material is treated as an assembly of fluctuating
dipoles, with no permanent dipole moment. By "fluctuating” is meant
that dipoles which are in the upper state can decay to the lower state
spontaneously. If a field is present, dipoles in the upper state can
decay and dipoles in the lower state can make transitions to the upper
state at a rate which is proportional to: the number of photons pre-
sent (that is the square of the field), the number of dipoles in the
respective levels, and the square of the coupling constant which is
the matrix element of the dipole moment. The fluctuation represents
spontaneous emission. Taking the spontaneous emission as the driving
force, and calculating the induced dipole moment by using second order
perturbation theory, they are able to obtain an equation for the spec-
trum similar to Eq. (125). They assume that the spontaneous emission

gspectrum has the form

(w~w )= + T (1k42a)

82
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where T' is a phenomenological width including all broadening effects.
This width 1s also used in their calculation of the susceptibility

function which has the form

g5(D2-D1) (1keb)
W= 1 T .
In both (142a) and (142b), we have omitted non-germane multiplicative
factors.

Structurally, (1koa) resembles our expression for the spectrum of
spontaneous emission, except for two differences. First, no shift
appears in (1L42a). Secondly, we have seen that the width Iy consists
of several parts and we have exhibited explicit formulas for them, in-
dicating their dependence on the dynamical parameters of the system.
The issue however, becomes even more important when one considers the
susceptibility function. As we saw in Chapter V, Y%(w) tekes the form
(lhEb) only if the Doppler and statistical broadening can be neglected.
Then, if in addition we neglect the shift S, or reinterpret w,, our
results reduce to those of Wagner and Birnbaum. If the Doppler and
the statistical broadening cannot be neglected, then (1Lob) does not
coincide with our expression for the susceptibility. Nevertheless,
under certain conditions we were able to express Yx(w) in the form of
a series whose first term was similar to (142b). However, one dif-
ference still remains. That is, the quantity I', appearing in the

first term of the series for Yx(w), i1s not the effective width I,
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appearing in the spontaneous emission spectrum. While, according to
(1koa) and (142b) the same I' appears under all circumstances. More-
over, we have shown that, under certain conditions, Yx(w) may have a
form entirely different than (142b) (see Eq. (122)).

In addition to the above differences in the results obtained, the
present treatment also differs in the derivation of the equations. In
fact, Wagner and Birnbaum do not derive their equations. They rather
congstruct them. Here, we construct the hamiltonian, and then derive
the equations through Heisenberg's equations, making suitable approxi-
mations. This approach has the advantage of exhibiting the approxima-
tions involved, and lends itself to generalizations in order to account
for phenomena such as mode coupling, non-linear effects etc. Also, it
has the intellectually pleasing feature that one does not have to as-
sume that the spontaneous emission is the driving force, since it in-
evitably follows from the formulation. Actually, it was shown that
the field is, in principle, driven by spontaneous emission from both
the active material and the loss mechanism.

The foregoing differences stem mainly from the difference in the
degree of refinement of the two models. Lumping all effects into a
constant I', as in (142a), has the advantage of leading to simpler
expressions. At the same time however, one loses considerable infor-
mation about the relative importance of several aspects that may alter

the results even qualitatively.
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Part of this treatment is also related to Senitzky'88 work. In
order to study the electromagnetic field inside a cavity, Senitzky has
congsidered the problem of a single harmonic oscillator coupled to ma-
terial systems. Indeed, each mode of the cavity corresponds to a har-
monic-oscillator, and it seems reasonable to consider a single harmonic
oscillator, if one wishes to study the single mode operation. This
would undoubtedly be correct in an entirely enclosed, perfect cavity
with only one mode excited. Of course, perfect cavity implies no
coupling with the external world, and one would have to redefine the
connection between theory and measurement. In any event, the problem
treated here is not of this nature. The cavity is quite open and
clearly, when an atom placed inside the cavity emits spontaneously a
photon of wavelength ],O-5 cm, it does not know that it is ingide the
cavity. It emits ag if it were in free space. When the emission is
induced, the presence of the cavity is felt strongly because the in-
duced emission is proporticnal to the number of photons present in the
final state, and it is the cavity that selects the photons which stay
in it for a relatively long time. If one considers a single harmonic
oscillator and attempts to calculate the spectrum of spontaneous emis-
sion, as we did in IV-4, no natural broadening is found. In fact, if
the collision and the Doppler broadening are neglected, the spectrum
becomes a delta function. This is to be expected since, the natural

broadening is intimately connected with the fact that the atom can de-
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cay into a continuous spectrum. We have avoided this difficulty by
considering not a single oscillator but the whole field as repre-
sented by the vector potential A. In order to obtain equations for
158 and qx we expand é(E,t) in terms of the cavity modes. However,
when we develop and study the time evolution of G%(t), we retain the
coupling of the particle system to the whole radiation field. The
coupling term VR is contained in Us(t). Thus, when we calculate the
matrix elements of Us(t) we expand the vector potential not in terms
of the cavity modes but of plane waves, thereby being able to account
for natural broadening (see also Appendix A). Natural broadening is
of quantitative importance in some cases while it 1s not in other
cases. Obtaining it or introducing it phenomenologically however, is
a matter of consistency of the formulation. This, we regard as an
esgential difference between the present approach and Ref. 8. In addi
tion, here we have considered not a single mode but a multimode cavity,
we have formulated the problem as a many-body problem in terms of the
density operator, and we have employed Heitler's damping theory which,
to our knowledge, has not been applied to the maser problem thus far.
The method used in the calculation of the spectrum of spontaneous
emission is the generalization of a technique developed by Ekstein
and Rostoker27. These authors have not consgidered broadening effects
and their results are expressed in terms of delta functions. The in-

troduction of broadening requires a different treatment of the auto-
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correlation function. Their result is recaptured by taking T; = 0,

Papers dealing with problems directly or indirectly connected
with our work abound in the research journals. Refs. 28-31 and the
references already cited constitute only a small sample. The first
paper dealing with the maser is the paper by Gordon, Zeiger and

26 _ .
Townes . This paper was later extended to the optical maser by
28
Shallow and Townes . Some of the results of the first paper are
special cases of ours. The second contains all the fundamental
ideas that led to the construction of the first optical maser but
the analysis is rather qualitative. More closely related to our work
0 22 I :

are the papers by Kemeny5 and McCumber . In addition to the dif-
ferent techniques that they use, their emphasis is more on the mathe-
matical than the physical aspects of the problem. Lastly, one cannot
fail to mention Lamb's52 work differing from ours in intention and

contentconsiderably.



CHAPTER VIT

CONCLUSIONS

The present theory is a basically linear theory of a multimode
cavity in which mode coupling can be neglected. In so far ag the
theory is valid, it has been shown that: The electromagnetic field
inside the cavity, in the absence of any other driving force, is, in
principle, driven by spontaneous emission from material systems exist-
ing inside the cavity as well as the loss mechanism. For a gas optical
maser, the field is effectively driven by spontaneous emission from
the active material only. The effect of the material system on the
field is represented by the susceptibility. A model for a gas optical
maser has been studied, and explicit expressions for the spectrum of
spontaneous emission and the susceptibility have been derived. For
operation in a single mode and adequate frequency stability, one finds
that the output has a Lorentzian shape whose width decreases as the
population inversion increases. Moreover, a new term is found in the
equation determining the center frequency of the lorentzian. Since
line shape measurements on lines of the narrowness of the optical
maser output are not available, the only test of the theory has been
the comparison with other theories. This comparison suggests that we
have a more refined model capable of accounting for several phenomena

that other models do not account for.
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Further work along the same lines could be directed toward cal-
culating the spectrum of the output for more than one mode oscillating
simultaneously. However, such a calculation would be more meaningful
if comparison to experiment were feasible. Also, one might attempt to
extend the theory to include mode coupling. It is quickly recognized
though, that the mathematics will become very complex. Perhaps the
only thorough treatment of mode coupling existing today is Iamb'852
work., His equations are extremely cumbersome and the whole work
leans heavily on numerical calculations. Thus, it appears that mode

coupling inescapably leads to mathematical complexity independently of

the underlying model.



APPENDIX A

DAMPING THEORY

In this appendix we present a brief derivation of Egs. (L49) by
using damping theory. The discussion follows that of Ref. 9.
Let H be the hamiltonian of a system. It is assumed that H can
be written
H = H +7V, (A1)
and that the eigenvalue problem

H |n> = E |n>, (A2)

can be solved. Then, the problem we wish to solve is to calculate

the matrix elements of U(t), where

in the representation {|n>).

18
We introduce the resolvent operator R(z) , defined by

R(z) = = (ak)

where z is a complex number. The operator U(t) is the inverse Laplace

transform of R(z), that is

+ooti g
-itz/ﬁ
u(t) = L dz R(z) e (85)
ol
~oot+i €
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where € > o. The problem is now reduced to finding the matrix elements
of R(z).
Let N and Q be two new operators defined by
R = N+NQN, (A6)
and the condition that N be diagonal and Q non-diagonal in the repre-
sentation []n>}. Then, NQN will be non-diagonal, and consequently N
and NQN will be the diagonal and non-diagonal parts of R respectively

in the representation {|n>]. Introducing the operator R.O defined by

R, = ) (A7)
o 0
R(z) can be expanded as follows:
R(Z) = lo = 1 RO = RO __l_.__ =
2-H0-V  1-RV 1-VR,

]
s
O':U
=
1
O'JU
i
>~
OEU
=
5
=
>

To obtain integral equations for N one writes Eq. (Ah) in the
form
(z-E°-V) R = 1, (29)
which by virture of Eq. (A6) becomes
(z-E°-V) (N+NQW) = 1. (A10)
Equating the diagonal and non-diagonal operators on both sides we

obtain
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Q = Vg + [VgWelg - [(WR)y Ml ,, (A11)

and

N = [z-Ho—gI‘(z)], (A12)

where we hgve defined

Ar(z) = (v+IR) . (A13)
2 d

The subscripts d and nd denote the diagonal and non-diagonal parts,
respectively, of an operator.

From Eqs. (A6) and (A12) follows that the diagonal matrix elements
of R are given by

Ry (z) = —E2—r . (ALL)

z-En-an(z)

To find the off-diagonal matrix elements of R, we iterate Eq. (All)

treating N as independent of Q. Thus, we have

Q = Vg + VpglWpg * -~ . (A15)

Keeping the first term only and using Eq. (A6) we obtain

Rmn(z) = Npyw Von Nan =
- Vimn . (A16)
[2-E -Br ] [zE-A ]
m 5 mm n 5 nn

The matrix elements of U(t) therefore are:
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oot
e ~itz/H
1 V,

Um(t) = =— dz mn © , (A17)
2l —ootie . £Z-Em- )g_ me] [z-En_ ﬁ an]
: 2

for m # n. For m = n, we have

tootie -itz/H
1 e
U (t) = =— f dp ————— . A18
nn ori 72-Ep- B (828)
ot 5 nn

From these equations follows that the Laplace transform of Umn(t)
is the product of the transforms of Umnxt) and Unn(t). The inversion
integral in Eq. (Al7) therefore, can be expressed as the convolution

of Uy, (t) and Upyn(t) as follows:

t
Upn(t) = th\/numm(t-T) Upp(7) a7 =
o}
mnfU (1) Uy, (t-7) aT . (A19)

Thus, the problem reduces to calculating the inversion integral for
Uy (t) only.

One first investigates the analyticity of the integrand in Eq.
(A18), and in particular the analyticity of L(z). By substituting

Eq. (A15) into Eq. (Al3) and replacing N by (Z-HO)-l we obtain

Ar(z) = v, +[VvLi_v + ... . (A20)
2

z-HO nd]d

Retaining the first two terms only we have
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. ' p=}
4 Foalz) = v +}ﬁ ¥an| (A21)
2 Ly z-Ej

n#n
This equation shows that the singularities of an(z) lie on the portion
x>E, of the real axis, where Ej 1s the lowest eigenvalue of HO. The
singularities are simple poles when the spectrum of HO ig discrete.
When part of the spectrum of H° is continuous an(z) has a branch cut
along that part of the real axis which corresponds to the continuous
gpectrum. It can also be shown that ImPnn(z) and Rez have always
opposite signs. Hence, the denominator in Eq. (A18) can vanish only
on the real axis. Noting that,

lim 1 _PP 1 ;i:rf)(x)
€+o x*tie X

2

where PP denotes the Cauchy principal part, Eg. (A21) yields

lim £ T (xt+ie) =4 (x) - 14 7,(x), (A22)
€*o 2 2
where
7o(x) = iﬂ |vi |2 8(x-E}) (a23)
ﬁ%n
and
. [gn|® !
dx) = Vpg *PP) SR (A2k)

h#n
It follows then that the integrand in Eg. (A18) is analytic in the

complex plane cut by Imz = o and Rez>E,. Expressing the complex in-
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tegral as a real integral by shifting the path of integration properly,

we obtain
® -ixt/H
X dxe ')'n(

x)
en g [X-En-LHCX)]e +K’g~ 7n(x))2

o]

Unn(t) (A25)
For a continuous spectrum and since the quantities éﬁ(x) and 7n(x) are
small gquantities the integrand attains its maximum value near x = En'
The main contribution to the integral thus comes from the vicinity of
En‘ Assuming that,%(x) and 7n(x) are slowly varying functions of x,
we replace them by their values at En' Moreover, for E >>E, we can

extend the integration to -w. Then, Unn(t) is approximated by

- L (Bptd-iypn)t

Upn(t) = e A 5 (A26a)
for t>o, where
7, = Ar(E) (A26b)
and
’/n = A 4 (E). (Ac6e)

This complets the derivation of Egs. (49) which we have used in
the present treatment. The presentation has been rather sketchy with
gseveral subtle gquestiong passed over. More elaborate discussions of

the theory can be found in Refs. 9, 10, 18, and 19.



APPENDIX B

ON THE MATRIX ELEMENTS OF Gy

The operator G, is defined by
G = “;_:iJ 5?’3%(Eb)'£b (31)

where the summation is over all particles that is, electrons as well
as nuclei. Assuming that the particles are grouped into atoms, we

separate the summation in two parts as follows:
%hnii}j eoj
= r— X r . B2
Joy

where j 1s an index referring to the atoms and Oj refers to the oth
particle of the jth atom. Assuming now that the mode vector X(r)
does not vary eppreciably over the dimensions of the atom, we replace
zi(zoj) by Z%(Bj), where Rj is the position operator of the center of

mass of the Jjth atom. This is essentially the dipole approximation.

Then, introducing the operator d defined by

€0 =
) ) (B3)
g on

Oj J

|
I

Eq. (B2) becomes

) x(®) . (34)
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Note that d operates only on the internal degrees of freedom of the

atom.

b18
The hamiltonian H (see Egs. (30)) can be written

xt -
H =ZHJ. (B5)
J
Assuming that the atoms of the active material are uncorrelated and

that they do not interact between each other, we shall have

(5", #%') = o . (B6)
Th - S R P x
en, we introduce the operators Hj =H +H +H. and
J
S - L5
S
which defines Uj(t). Introducing furthermore, GNj defined by
Gny = AT g Ly (R)), (B8)
J wy — AT
we have
G = Z Gy - (B9)
J

Combining now Eqs. (B5)-(B9) we obtain

st S S
- ) U @ Us(s) = ) engle), (310)
J
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S
which defines ij(t). From this eguation it is also seen that

6R3(t), Gyt )] = o, (p11)

for all j,J'.

From Eq. (L42) we have

(B13a)
op
A (t:tl)t2) = Tr DA (t)tl:tZ))
where
op. SZ‘ 5 s s (B12b
2% (bya,02) = U(se51) [Gh(t2), G(8a)] U(6ota). >
Tn the linear approximation and for uncorrelated atoms we have
O L] O °
P (t,81,t2) = E Af].’ (t,t1,82) =
J
S S S S
= Z Us(t-t1) [Gyy(ta), Gyy(ta)] Us(t-ta) (B13)
J

op
which defines A j. This equation justifies Egs. (62) and (6k4).

Also, in calculating the spectrum of spontaneous emissiqn we have

to calculate the quantity Tr D G%(T)GA. By virtue of Eq. (BlO) we

have
Tr D Gi(T) G% = Tr DZE:G§3<T) G%j+
J
+ Tr D:g: G%j(T) Cpgt (B1L)

33

(3#3")
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For uncorrelated atoms, and if the off-diagonal matrix elements of D
can be neglected, the second term vanishes. The first term gives rise
to the right hand side of Eg. (78b).

To summarize: the results of this Appendix show that, in cal-
culating the spectrum of spontaneous emission, as well as the suscep-

tibility, we may take

2 Ly
|G7\)mK,~m1K1l —Iré |<mlg'_§7\lml>|2 .

5

)l ) (315)
J

where

§>\(3) =& KA(E) ) (B16)

provided the atoms of the active material interact with the electro-

magnetic field independently of each other.



APPENDIX C

ON THE CAICULATION OF THE SUSCEPTIBILITY

For the purposes of this Appendix, we introduce QAT(w) defined by

~iwt
o) = fdte fdtlfdtg 2) A(t,t1-t2), (C1)
where
2
( ) Dy 62 .
A(t,t1-t = 21 I D d D D X
yt1-t2) 1o / mm A ,mmj KK pp AJKK1
mmy=1 JKK 1p

; - _rt . - L
-1 (@ , o, +Sipa, =Ty V1 1y, 0k, +Sh, - 10, Vb2
e e . (co)

We also introduce the symbols

QMM;L wnunl"“m{l+sb7[bfll: (CBa)

and

o]
i

2 2
n = Dpm O\,mmy Dkx Ppp X\j,KKy - (C3b)
where all subscripts are lumped into n and Bn is real. Then, we have

-i(%@dl-ipﬁl\dl )tl
A(t,t1-ts) = 2i Im y B, e
]

n

1 (yp, -0, b2

€ )

(Cha)
which, if written as the difference of the right side and its complex

conjugate, beccmes

100
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Qr(w) . r(w) (c8)
(QMMl-irﬁMl) (w+QMMl'iFﬁM1) w(QMMl-inMl) ’

The first term in the right hand side of the above equation shall be

+
-y T
neglected as containing the damping factor e MMy , in view of the fact

that ultimately we shall let T -+ «». Moreover, recall that QMMl = Oy,
g, *+ Sum, where @y, shall be a frequency of the order of 1079 .
lO15 cps, and S\ I small quantities as compared to

’ K42 17 MM, 1p g
For the purpose of investigating orders of magnitude therefore, we may
neglect these small quantities. If we denote by w, the maser transi-
tion frequency, the term (w+QMMl) will give rise to resonance terms of
the form(w-wb). In view of the narrow spectral lines involved, we

shall be interested in w's of approximately the same order as @, which

means that w-wy << w,. Thus, we shall have

0 a) " <« <a>o(a>-wo 9 -

and consequently the third term in the right side of Eq. (C8) will be
much smaller than the second. Retaining therefore only the second

term we have

Qymlw
¢le(w) = XT( ) . (C9e)

(g, -0, ) (@ gy -1T50, )

Note that this term contains also antiresonance terms of the order of

-1
(@O(w+w09 which should be neglected if the approximation is to be
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consistent. This is done at a later stage in Chapter VI.
The calculation of éAT(w) proceeds along the same lines and the
2

same approximations are made. The result is

Qumlw
bap (@) = ) : (cop)
(le+ir§Ml) (,wmwlﬂrgle)

Combining now Egs. (C3),(C5) and (C9) we obtain

2
2 2
o) = @) Dy Fom ) P P Fonces
mma=1 JKK 1p

(c10)

- [(wmml'm’KKl*'Sb'd.l‘/Il“'iFI\.{/lD/Il) (@%liﬂml+%l+irﬁl\/{1)]-l }

from which Eq. (66) follows.



APPENDIX D

CAILCUIATION OF THE DOPPLER WIDTH

We have, by definition,

o= ) B k)’ (p1)

K

Assuming a Maxwellian distribution of velocities for the center of mass

motion,j{iDKK becomes

K
2
-3/2 3 'b%K
Dy > b " Ke ) (D2)
K
where
’ha
b2 = gmg ) (DB)

and 9 is the mean energy. Since for the integration over K the vector

ko is fixed, we transform to spherical coordinates taking k, as the z-

cosS, we

axis. Callingf) the angle between k

K and K and setting v

obtain

2n  +1 oo
ry = “3 2m2 k}\fdgy‘v dvf . (Dk)

35

2 2
04 -
fxzne X" e = 1,2:..(21'1 1) [« ;
211.. 2n 062

15
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carrying out the integrations, and using (D3) we obtain
rz = x2 9
d AN

Noting that £ = kT where k is the Boltzmann's constant and T the tem-

perature, and that kf = wf /c2, we have

b
H

(D)

2. 2
d = O

=]
0
V]



APPENDIX E

CAICULATION OFé%@D)

From Eq. (115) we have

23R - R bXK=
b -(0ot+in)x =
2%&) - 2 m'\/qu e (o+in) L/“ K% aK.
=5 U, A
+1
-iKk%ux
. e du ,
-1
where we have introduced
- m .+
o] = %-FO )
and
n = /il (w-wy-S5) -

Integrating with respect to p we obtain

+1
~1Kk ux
U/\e A du =

-1

Then, Eq. (El) becomes

o) = 2ib’m [ e

@ -(oHn)x @ 2
A dﬁ/\e ° sin(k,a/t)dt,

J; h u/o k%X 0
where we have made the transformation
K2 = +.

107

(E2)

(EL)
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From Ref. 33, Vol. II, p. 57, we have

_}\2/ Ls
e

fe"St Sin AWt dt = A

28

mniA

)
e}

which i1s valid for s > o. Using this formula we obtain

bt
fe Sin (kpxVt) dt = XV o 12
o .

Substituting into Eq. (E5) it becomes

F (oHin)x - B 2
Z(w>=i§[dxeomx e

This can also be written

-oczxg-ox
}(w) = 18 fdxe Cos(nx) dx +
A o
n O? -Oégxz-ox
+ = dx e Sin (nx) dx,
A o
where we have introduced
2= k2

Lp2

(ET)

(E8)

(E10)

(E11)

The above integrals are Fourier Cosine and Sine transforms and from

Ref. 34 pages 15 and T4 we have

2 2
-0 X =0X

fe Sin(nx) dx =

)2

1 .
— — (o~
= i X (e Loz (o-in Erfel
o-

= -1
L

8-

(0-in)] —
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Erfe [ (o+in)) , (E12)
o

and

Erfe(z) = fe-t at . (E1k)

2

Egs. (El2) and (E13) are valid for Red > o and n > o. The first con-
dition is always satisfied since a2 is real and positive. But 1 assumes
positive as well as negative values. Consider first the case of posi-

tive n. Then n =|n| and therefore,

Cos (nx) = Cos (|n]x) and Sin (nx) = Sin (|n]x).
Using these relations in Eq. (E10) and then Egs. (E12) and (E13),
which are now applicable since |nl>og after some straightforward

manipulations we obtain

(@) =1 m e%é (ortlnl) gop, (M) , (E15)
S S04 20

which is valid for n > o. ILet now 1 <o. Then n = -]nl and
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Cos (nx) = Cos (|n]x) and Sin (nx) = -Sin (In]x).

Again, using these relations in Eq. (E10) and proceeding as before we

obtain
Vx 1 (0-iln))® _ e-ifn]
2(@) = 12" el Erfe _ E16
e - (— ), (E9)
which is valid for n < o. But for n > o we have In] =7, and for

n <o we have -|n| = 1. Consequently Eqs. (E15) and (E16) can be com-

bined to the single equation

(22 .
}(w) =1 Zoafr_e o Erfe (%ﬂ-) (E17)

which is valid for all values of 7, including zero. That the case

N = o 1s included in Eg. (El’?) can be readily verified by calculating
the integral in Eq. (E9) for n = o0 and comparing the result to what
Eq. (17) gives for n = o.

Introducing now the function ¢(z) defined by

Ef(z) . Erfe(z), (E18)

and using Eqs. (E2), (E3), (ELl) and (E17) we obtain

2,(0)) - 4 b V1t 6[ bm (1“;+i(w_mo-so)> 1. (E19)

Ak - Ak)
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