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Abstract: In this article, we study the design and control of manufacturing cells with a mix of manual and automated equipment,
operating under a CONWIP pull protocol, and staffed by a single agile (cross-trained) worker. For a three-station line with one
automated station, we fully characterize the structure of the optimal control policy for the worker and show that it is a static priority
policy. Using analytical models and extensive simulation experiments, we also evaluate the effectiveness of practical heuristic
control policies and provide managerial insights on automation configuration design of the line. This characterization of the worker
control policy enables us to develop managerial insights into the design issues of how best to locate and concentrate automation in
the line. Finally, we show that, in addition to ease of control and greater design flexibility, the CONWIP protocol also offers higher
efficiency and robustness than does the push protocol. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 56: 42-56, 2009
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1. INTRODUCTION

The ability to provide high levels of (i) efficiency, as pur-
sued through lean manufacturing, business process reengi-
neering, and other methods for making more with less, and
(i) responsiveness, via time-based competition, agile manu-
facturing, and other methods for meeting diverse customer
requirements in a prompt and personalized manner, has
become a defining characteristic of competitiveness in the
manufacturing sector. To achieve these objectives, firms have
made extensive use of automated machinery (for efficiency)
and workforce agility (for responsiveness). In cells with auto-
mated machinery, processing a job at a machine may not
require the presence of a worker during the entire operation,
and thus the agile (i.e., cross-trained) worker can operate
another machine while the automated machine is running.
We refer to systems with these features as agile automated
production (AAP) environments.

Regardless of the nature of the manufacturing environ-
ment, there are two major ways to release jobs into production
lines: push protocol and pull protocol. Under a push protocol,
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new jobs are pushed into the production system according to
a predetermined schedule. In contrast, under a pull protocol,
the release of new jobs depends on the status of the produc-
tion system. Under a CONWIP (Constant Work In Process)
pull protocol, a new job is released to the beginning of the
line each time a job departs from the end of the line (Hopp
and Spearman [12]).

Although AAP systems have become common in indus-
try, they have received much less attention in the research
literature than have traditional manual production lines and
fully automated lines in which labor is not explicitly con-
sidered. As a result, we do not yet have a well-defined set of
design and control principles for such systems. In this article,
we attempt to partially fill this void by applying an analytic
modeling approach to analyze AAP cells that are staffed by
a single worker. Specifically, we focus on control and design
issues in one-worker cells that are run under a CONWIP pro-
tocol and examine the following questions faced by operation
managers:

1. Control: How should the agile worker choose what
to work on in an AAP cell? In systems with cross-
trained labor there will be times when the worker has
achoice of which station to staff. We are interested in
how sensitive performance is to the policy the worker
follows and what an optimal policy looks like.
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2. Design: Where in the cell is automation most
effective? In practice, managers’ decisions regard-
ing what operations to automate hinge on a vari-
ety of factors, including technological constraints,
financial constraints, safety concerns, quality issues,
as well as operational efficiency. We are inter-
ested in whether or when the position of an auto-
mated machine (i.e., in the front, middle, or back
of the line) makes a difference in operational
performance.

3. Design: Should automation be concentrated or dis-
tributed? It is often the case that operations are only
partially automated. For example, a CNC (computer
and numerically controlled) machine may automate
processing but leave loading and unloading as man-
ual operations that require an operator. Additional
investment (e.g., purchase of automation to load and
unload parts) could increase the level of automation
at a given station. But is highly automating a sin-
gle station preferable to partially automating multiple
stations? We are interested in how automation should
be allocated across a line.

4. Efficiency and Robustness: Does superior per-
formance (i.e., efficiency and robustness) of tradi-
tional CONWIP lines over push lines still hold in
lines with agile workforce and automated equip-
ment? Many studies have been done to show the
operational benefits of pull relative to push, e.g.,
Spearman and Zazanis [22], Roderick et al. [21].
These studies are all for conventional production
lines (i.e., with neither automated machinery nor
workforce agility). A natural question to ask, there-
fore, is how the relative performance of pull (in
our case, CONWIP) and push is affected by the
introduction of automated equipment and workforce
agility.

Note that answers to the “Design” and “Efficiency and
Robustness” questions clearly depend on the answer to the
“Control” question. That is, we cannot analyze the impacts of
design changes or compare the efficiency and robustness of
AAP CONWIP and AAP push lines without specifying how
the worker will behave. Therefore, in this article, after pre-
senting a brief literature review in Section 2, we first focus on
optimal and suboptimal (but commonly used) control poli-
cies in Section 3. We then investigate the design questions
in Section 4. Finally, in Section 5, we compare and contrast
our control and design principles for AAP CONWIP lines
with those for AAP push lines in order to analyze the effi-
ciency and robustness of AAP CONWIP lines. We conclude
the article in Section 6.

2. LITERATURE REVIEW

A significant amount of literature exists on production sys-
tems with cross-trained workers. Askin and Strada [3] and
Hopp and Van Oyen [13] provided surveys of these studies
in the context of manufacturing cells and workforce agility,
respectively. Ostalaza et al. [18], McClain et al. [15, 16],
Zavadlav et al. [26], and Gel et al. [10] examined workshar-
ing in a variety of situations. Bartholdi and Eisenstein [4]
and Bartholdi et al. [5] studied bucket brigade lines. Farrar
[9], Iravani et al. [14], Sennott et al. [23], Duenyas et al. [7],
Ahn et al. [1], Andradottir et al. [2], and Van Oyen et al.
[25] investigated the optimal assignment of flexible labor in
tandem lines.

Although these articles yield many useful insights into the
subject of workforce agility, all of them have focused on pro-
duction environments without automated machinery, where
processing a job at a workstation requires the presence of
a worker during the entire operation. But, as we noted ear-
lier, a key feature of AAP environments is that automated
machinery permits workers to staff other stations while an
automated station is processing a job. This opportunity can
be significant, as indicated by Nakade et al. [17] who pre-
sented industrial examples where the percent of automated
processing time (which does not require worker presence) to
total processing time was as high as 80%.

There have been some efforts to explicitly model automa-
tion in agile production systems. For example, Nakade et al.
[17] and Ohno and Nakade [19] analyzed serial AAP lines in
which cross-trained workers visit their assigned workstations
according to a cyclic policy. (See Section 3.3 for a detailed
description of a cyclic policy). They obtained performance
measures, such as cycle time and worker waiting time, under
this policy. Desruelle and Steudel [8] investigated a similar
system from a work cell design perspective. By modeling
the work cell as two interacting queuing networks, an open
part/machine network and a closed machine/operator net-
work, they evaluated machine utilization and waiting times
for the operator.

Hopp et al. [11] considered AAP cells operating under
a push protocol and showed that the capacity of production
lines with automated machines can be significantly lower than
the rate of the bottleneck. They also showed that automation
is more effective when placed toward the end of a push line
rather than toward the front, and that the automation level
increases the priority workers should give to a station when
selecting a work location.

Because cellular manufacturing environments make use
of pull mechanisms to promote efficiency, it is important to
understand AAP cells in pull environments. The literature
on pull is ample (for a review, see Uzsoy and Martin-Vega
[24]). However, these articles are all for conventional produc-
tion lines with neither automated machinery nor workforce
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agility. Hence, in this article, we focus on AAP cells that run
under CONWIP pull protocol. Our main objective is to pro-
vide insights into the design and control principles of AAP
CONWIP lines.

3. CONTROL OF AGILE AUTOMATED
CONWIP LINE

As we mentioned, we cannot address the design issues in
an AAP CONWIP line without specifying how the cell will
be controlled. Specifically, we first need to find the most effi-
cient (i.e., optimal) way to allocate the worker’s effort among
stations. To study the structure of the optimal worker control
policy in CONWIP lines, we consider a simple three-station
line that contains a single machine with automatic processing
times, two machines with manual processing times, and one
cross-trained worker. We call the station with the automated
machine, the automated station, and the other stations, the
manual stations. The line operates under a CONWIP proto-
col, where a new job is released to the beginning of line each
time a job departs from the end of the line. We assume that the
automated station is placed at the front of the line, whereas the
two manual stations are put in the second and third positions
in the line. (Note that this assumption about the position of the
automated station is without loss of generality because of the
closed-loop property of CONWIP lines.) For simplicity, we
assume that the operation performed at the automated station
includes a manual loading time and an automatic process-
ing time. The automated machine requires the worker to be
present only during the manual loading operations, whereas
machines at manual stations require the worker to be present
during the entire operation.

3.1. MDP Formulation

To construct a model, we assume that loading the auto-
mated machine requires an exponential amount of time with
mean 1/1;. Although in practice the actual automatic process-
ing times themselves may be close to deterministic, occasional
interruptions (e.g., failures, adjustments, cleanings, material
outages, etc.) will sometimes inflate the effective processing
time. We approximate this behavior by representing the (effec-
tive) automatic processing times as exponential random vari-
ables with mean 1/u;. We also model the manual process
times at stations i = 2, 3 as exponential with mean 1//;.

The above assumptions allow us to formulate the problem
of finding the operating policy that maximizes the throughput
of the line as a Markov decision process (MDP). We define:

» System State is (n1,n;,s), where n; and n, are the
WIP levels (including jobs in process) at the first and
the second stations, respectively, and s refers to the
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status of the automated machine at Station 1. Specif-
ically, s = 1 implies that the automated machine
is performing automatic processing, whereas s = 0
implies it is not processing a job.

Decision Epochs consist of job loading completion
epochs at Station 1, machine processing completion
epochs at Station 1, job processing completion epochs
at Station 2, and job processing completion epochs at
Station 3.

Action Space includes the followings: (i) idling, (ii)
loading the automated machine at Station 1 (if the
machine is idle and the station is nonempty), (iii) pro-
cessing a job at Station 2 (if there is a job at Station
2), and (iv) processing a job at Station 3 (if there is a
job at Station 3).

Note that state of the system does not need to track the
number of jobs at Station 3 because, under CONWIP, there
is a constant number of jobs in the system, and so the num-
ber of jobs at Station 3 is determined by the number of jobs
at stations 1 and 2. Denoting the WIP level in the CONWIP
line by W and assuming that the worker can preempt a task to
switch between stations, allows us to express the optimality
equation for the MDP with the objective of maximizing the
average throughput rate as:

g+ V(ni.ny,0) = %V(nl,nz,(»

(h +1L+16L)V(n,ny,0); idling
LV (ny,no, 1) + (o +13)V(ny,n2,0)];
1 loading at Station 1
+ - max L[LV(ni,ny — 1,0) + (It + 3)V(n1,n2,0)];
processing at Station 2
L[V (ny + 1,n2,0) + (I + L)V (ny,n2,0)];
processing at Station 3

(1
g+ Ving,nyl)
M V= s+ LT+ LV 1)
A A
(L +13)V(ny,ny,1); idling
L[LV(n,ny —1,1) + LV (n1,n, 1)];
+ — max processing at Station 2
L[V + 1,n2,1) + LV (ny,n2, D]
processing at Station 3
(2)

where A =1 + 1, + 13+ 1, and fori = 1,2,

0; ifni+n, =W

L 0t =0
T 1; otherwise

1; otherwise and Iy = {

Note that assuming exponential distribution for operation
times helps us formulate the worker control problem as an
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MDP model and gain insights into simple lines. However,
later in this article we will also study more general lines in
which operation times are not exponentially distributed.

We would like to emphasize that considering preemption
in our model is not a restrictive assumption. Manual oper-
ations are often simple operations that can be interrupted
and resumed later. On the other hand, because automated
machines (e.g., numerically controlled (NC) machines) are
expensive resources, it is not economical to keep those
machines underutilized. Therefore, in order to keep the auto-
mated machines highly utilized, workers often preempt their
tasks to attend stations with automated machines. In fact, this
is what the optimal solution of our MDP model recommends
(see Theorem 1). Furthermore, this article also considers poli-
cies that do not allow preemption. For example, in Sections
4 and 5, we investigate the design and control issues in lines
under the cyclic policy, which is commonly used in practice
and does not preempt tasks.

3.2. Structure of the Optimal Control Policy

Because the MDP problem has finite action and finite state
spaces, there exists a stationary optimal policy with a con-
stant gain [20]. Theorem 1 characterizes the structure of the
optimal worker control policy in a three-station AAP CON-
WIP line. The proofs are presented in Supporting Information
Appendix II.

THEOREM 1: For the three-station CONWIP line with an
automated Station 1 and one agile worker

(i) The optimal policy is non-idling."

(i) When the automated machine in non-empty Station 1
is not processing a job, the optimal policy is to always
load that machine.

(iii) When the automated machine in Station 1 is either
starved” or processing a job, the optimal policy is to
process a job, if there is any, at Station 3 which directly
feeds the automated machine.

Theorem 1 implies that the optimal dynamic control policy
is in fact a simple static priority policy that does not use the
information about the WIP in each station in the line. This
leads to a very simple principle of optimal worker control
in the AAP CONWIP line: First check Station 1 (the auto-
mated station); load it if there is a job and the machine is
not automatically processing. Then check Station 3 which
directly feeds Station 1 and work there if a job is available;
otherwise, process a job, if there is any, at Station 2. Idle only
when none of the above conditions are satisfied.

! Non-idling means that the worker is never intentionally idle.
2 Being starved means that there is no job available.

3.3. Heuristic Control Policies

In larger lines, in which several stations are automated
and operation times may not be exponentially distributed,
the optimal worker control policy would be too difficult
to obtain and too complex to implement in practice (i.e.,
because actions depend not only on queue length but also on
elapsed processing times). In practice, two simple, commonly
used heuristic policies, namely the cyclic and fixed-priority
policies, are used.

Fixed-Priority Policy: Similar to the policy introduced
in Theorem 1, the fixed-priority policy is a static priority
policy. Under a fixed-priority policy, the worker attends sta-
tions in a fixed order. The order specifies stations from the
highest priority to the lowest. When the worker arrives at
a station, she works at that station until she becomes idle,
whereupon she switches to the next lower-priority station. If
a job becomes available at a higher-priority station (e.g., an
automated machine finishes processing and requires unload-
ing), the worker interrupts her work at the current station and
immediately switches to the higher-priority station.

Cyclic Policy: Under a cyclic policy, the worker attends
workstations in a cyclic fashion. When the worker arrives
at an automated station, she waits for the machine to fin-
ish processing the preceding job (if it is not finished), then
unloads the processed job, loads the new job on the machine,
switches the machine on, and then carries the completed job
to the next station. If the worker arrives at a manual station,
she processes the job at that station. If the worker arrives at
a station with no jobs, she immediately moves on to the next
station in her cycle.

One of the characteristics of the cyclic policy is that there is
an upper bound on the total WIP in the line, beyond which any
increase in the WIP has no impact on throughput of the line.
The following theorem presents this property of cyclic poli-
cies. Note that the following theorem is general and does not
depend on the distribution of loading, processing, or unload-
ing times. The proof is presented in Supporting Information
Appendix II.

THEOREM 2: In CONWIP lines with k£ automated sta-
tions, m manual stations, and one agile worker, the maximum
throughput under a cyclic policy in which the worker visits
stations in the direction of the material flow is obtained if and
only if the line operates under a WIP level of k£ + 1.

Now that we have some insights into the characteristics of
the optimal and heuristic control policies, we turn to design
issues of AAP CONWIP lines. Specifically, we address the
automation position and automation concentration under the
optimal and heuristic control policies.

Naval Research Logistics DOI 10.1002/nav
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4. DESIGN OF AGILE AUTOMATED
CONWIP LINES

We consider two design questions that we presented
in the introduction: (i) Where in the line is automation
most effective? (ii) Should automation be concentrated or
distributed?

4.1. Impact of Automation Position

The decision of which station (or stations) to automate
in a line can have a significant impact on the performance
of the line. This decision depends on several technological
as well as financial constraints and is affected by the trade-
off between the cost of automating a station and the benefit
resulting from the improvement in line performance. In this
subsection, we investigate the impact of automation position
on performance (i.e., throughput) of AAP CONWIP lines.
We consider automation concentration in the next subsection.

To address the question of automation position in a AAP
CONWIP line, we begin with the following theorem:

THEOREM 3: In CONWIP production lines with only
one automated station, if job processing times for all sta-
tions follow the same probability distribution, the position of
automation does not matter.

The proof is simple and follows from the fact that
CONWIP lines are closed, cyclic queueing systems, so that
the throughput of the line can be measured at any station in
the line. Moreover, because the line is balanced, there is no
capacity advantage to automating any given station.

However, when the line is unbalanced, the question regard-
ing the position of automation is not simple. Below, we
investigate the impact of automation position under both the
cyclic and fixed-priority policies.

4.1.1. Impact of Automation Position: Cyclic Policy

To study the position of automation in CONWIP lines
operating under a cyclic policy, we consider a manual two-
station line with one worker in which ¢;, the operation time at
Station i, follows probability density function f;(¢),i = 1, 2.
Suppose that we have a certain amount of automation time,
«, to allocate to either of the two manual stations. (For exam-
ple, if we choose to place the automation at Station i, then
the automatic processing time at Station i is o while the total
manual operation time (i.e., loading and unloading time) is
t; —o,wherea < 1;, fori = 1,2).

An intuitive choice for automation is the bottleneck
station, because it has the longest total operation time and
might well seem to be the resource constraint in the line.
However, we show that this is not always true. On the con-
trary, it turns out that automating the bottleneck station may
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be the worst choice. We can show this rigorously for the
two-station case as follows. In a two station line operating
under a cyclic policy, when we choose to place « time units
of automation at Station 7, then we will have the following
theorem:

THEOREM 4: If job processing time at Station 1 (Sta-
tion 2) is stochastically larger than that at Station 2 (Station
1), then automating Station 2 (Station 1) results in a larger
increase in throughput.

Note that the station with the stochastically larger operation
time has a larger average job processing time and is therefore
the bottleneck. Hence, Theorem 4 implies that automating
the bottleneck station is less effective than automating the
non-bottleneck station in a two-station line using a cyclic
policy.

To investigate whether the insight of Theorem 4 for sys-
tems with two stations also holds in larger systems, we
performed an extensive simulation study of 180 different sce-
narios. Our simulation model assumes that the operations
at automated stations include loading, automatic processing,
and unloading. The automatic processing times are deter-
ministic, whereas the manual operation times (i.e., loading
and unloading an automated station, and the entire opera-
tion in a manual station) follow Gamma distributions. The
Gamma distribution is very flexible in shape and therefore
covers a wide range of variability scenarios. We consider
three scenarios for variability of operations: low variability
(i.e., coefficient of variation CV = 0.5), moderate variability
(CV =1), and high variability (CV = 2). Supporting Informa-
tion Appendix I describes how we generated different three-
and five-station AAP CONWIP lines with different scenarios
for variability in manual processing, loading and unloading
operations.

We simulated three-station and five-station unbalanced
CONWIP lines to investigate the magnitude of the impact of
automation position. In each case, we suppose that one station
is a bottleneck and set its total operation time to be 1.2, 1.5,
or 1.8 units, whereas the rest of the stations have operation
times of 1 unit. Without loss of generality, we let Station 1
be the bottleneck. We then compare the effects of automating
each station under scenarios with various automation and uti-
lization levels. For example, in our five-station experiments,
we consider different cases where Station 1, 2, 3, 4, or 5 is
automated. For each case, we varied the automatic process-
ing time in the automated station to be 0.2, 0.5, or 0.8, which
presents, low, medium, and high level of automation. For
example, when we automated 0.8 units of processing time of
a station with a total of 1 unit, the remaining operation time
(i.e., 1 —0.8 = 0.2) was divided equally between loading and
unloading operations, each having a mean of 0.1 units and
following a Gamma distribution.
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We first ran simulations for AAP CONWIP lines under a
cyclic policy. Note that there are 3—1)! =2 ((5—1)! = 24)
possible cyclic polices that can be used in a three-station
(five-station) line. For any given WIP level, when Station
i is automated, we searched exhaustively for the cyclic
policy that results in the highest throughput. We call the
resulting policy the optimal cyclic policy, and the corre-
sponding throughput the optimal throughput. We compared
the optimal throughput for different automation position
scenarios (e.g., automating bottleneck and non-bottleneck
stations).

Our simulation was written in C++. Runs ended after
20,000 jobs exited the line, in addition to a warm-up period
of 20,000 jobs. Each run was replicated 20 times. For vari-
ance reduction purposes, common random number streams
were used. Different random number streams were used for
loading and unloading times at different stations to ensure
independence. The standard error for each throughput result
is no more than 0.0003. The throughput obtained by the sim-
ulation were compared at the 95% confidence level to check
whether there is a statistically significant difference among
them.

We observed in our 180 scenarios that the difference
in throughput of the same line with different automation
position was either not statistically significant, or if it was
statistically significant, the difference was very small (i.e.,
the maximum percent difference for three-station lines was
1.04%, while that for five-station lines was 0.19%). We also
observed that, similar to our findings for two-station lines,
automating the bottleneck station results in a lower through-
put than that achieved by automating a non-bottleneck
station.

The intuition behind this phenomenon is as follows. When
none of the stations are automated, the maximum throughput
of the line is 1/ )"y, #;, where #; is the total average process-
ing time in Station i. When Station j is automated, then the
maximum possible throughput of the line is 1/[) ; t; — a;],
where a; (a; < t;) is the automatic processing time at Sta-
tion j. This maximum throughput is only achieved if the
worker never idles at the automated station (waiting for the
automated machine to finish its processing). The probability
that the worker arrives at the automated station and sees that
the machine is still working is higher as the time between
the worker’s departure from Station j and its next arrival at
Station j becomes smaller. Note that this time is equal to
> _vi; ti- On the other hand, if the bottleneck station is auto-
mated, then ), ; #; is smaller than when a non-bottleneck
station is automated. This implies that, when the bottleneck
station is automated, the worker idle time at Station j is
longer, and thus throughput is smaller.

These results lead us to the conclusion that, when a cyclic
policy is used in an AAP CONWIP line, the position of
automation does not have a significant impact on throughput.

4.1.2. Impact of Automation Position: Fixed
Priority Policy

To investigate the impact of automation position in AAP
CONWTIP lines operating under a fixed-priority policy, we
conducted simulation experiments for three-station and five-
station lines similar to those conducted for the cyclic policy.
We found that the position of automation has very little effect
on throughput (less than 0.2% for three-station lines and
less than 0.21% for five-station lines). We also observed that
automating the non-bottleneck station is more effective than
automating the bottleneck station, but the difference is not
very large. The intuition is similar to that for the cyclic policy.

Overall, our analysis suggests that in an AAP CONWIP
line using either a fixed-priority or a cyclic policy, managers
can concentrate on issues like financial and technological
constraints without worrying too much about the impact of
automation position on operational performance. This is in
sharp contrast with the results for AAP Push lines, which we
will discuss in Section 5.

4.2. TImpact of Automation Concentration

The question we consider in this section is: Should automa-
tion be concentrated or distributed? In more practical terms,
under a fixed budget, should we install one highly automated
machine or several partially automated machines?

4.2.1.  Automated Concentration: Cyclic Policy

In this section, we investigate the impact of automation
concentration if the line operates under a cyclic policy. We
first compare the throughput of the following two-station
AAP CONWIP balanced lines. In both lines the total average
processing times in each station is + = 1/7. The automated
station consists of loading and automatic processing (we
consider insignificant (zero) unloading time).

CON-CYC Line: Inthis line, automation is concentrated in
Station 1. Specifically, Station 1 is automated, with 1/u
units of automation time. The average loading time in
this station is 1//, time units, and (1/w)+(1/1.) = 1/.

DST-CYC Line: In this line, automation is evenly distrib-
uted. Specifically, both stations have 1/2u units of
automation time, and 1/I; units of loading time, where

A/2w) + (/1) = 1/z.

By Theorem 2 we know that, when two stations are auto-
mated, the maximum throughput can be obtained under a
cyclic policy with a WIP level of 3. Assuming all manual
operation times and automatic processing times are expo-
nentially distributed, we can establish a Markov chain and
obtain the throughput of the line (see Supporting Information

Naval Research Logistics DOI 10.1002/nav
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Table 1.

Naval Research Logistics, Vol. 56 (2009)

Experiments on the effect of automation concentration (three-station, CV = 2).

Cyclic policy Fixed-priority policy

Automation distribution scenarios (1,1,1) 2,1,1) (1,2,1) (1,1,2) (1, 1,1) 2,1,1) (1,2,1) (1,1,2)
(0-0.9-0) 0.415 0.297 0.293 0.297 0.472 0.321 0.321 0.321
(0.1-0.7-0.1) 0.450 0.313 0.310 0.314 0.456 0.313 0.313 0.313
(0.2-0.5-0.2) 0.458 0.316 0.314 0.316 0.440 0.305 0.305 0.306
(0.3-0.3-0.3) 0.462 0.317 0.317 0.317 0.425 0.298 0.298 0.299
(0.4-0.1-0.4) 0.459 0.315 0.316 0.316 0.455 0.313 0.313 0.313
(0.45-0-0.45) 0.447 0.310 0.311 0.311 0.468 0.319 0.321 0.319
max difference (%) 10.2 6.3 7.6 6.3 10.0 7.2 7.2 6.9

The bolded value indicates the maximum throughput in each column.

Appendix II for details of the Markov model). The throughput
of the line DST-CYC line can be obtained as follows:

wla(Blg + 4p)

TH(DST-CYC) = ; =
2[(da)* +3pla + 4p7]

3)

For the CON-CYC line which has only one automated sta-
tion, we know from Theorem 2 that the maximum throughput
can be obtained under a cyclic policy with a WIP level of 2.
Similarly, by developing a continuous time Markov chain for
the CON-CYC line, we can calculate the throughput of the
line as:

(T + )

TH(CON-CYC) = .
2u+rt

By substituting for /,, the difference between the throughput
values can be reduced to:

TH(DST-CYC) — TH(CON-CYC)
_ Qu—1)73
T QuA4 )2 =2ut +8u?)’

which is always positive, because u > 7. This implies
that distributed automation is more effective than concen-
trated automation when a cyclic policy is implemented in our
two-station balanced AAP CONWIP line.

We used simulation to investigate the validity of this obser-
vation in our general models with three-station and five-
station lines, and to evaluate the magnitude of the impact of
automation distribution. We first considered a three-station
balanced line where the mean total operation time on each
station is 1 unit, which we denote by (1,1,1). We also
studied unbalanced lines (2,1,1), (1,2,1), and (1,1,2). We
assume that the total amount of automation (i.e., the sum
of the automatic processing times in all stations) is 0.9
units. For each of the balanced and unbalanced lines, we
started with the case in which Station 2 is highly automated
(having all 0.9 min of automation), whereas the other two
stations are manual, denoted as automation distribution sce-
nario 0-0.9-0. Then we distributed automation gradually and
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evenly to stations 1 and 3. Note that 0-0.9-0 is the most
concentrated case, whereas 0.3—0.3-0.3 is the most distrib-
uted case.’ The resulting throughput values for the various
automation distributions, under the cyclic policy, are given in
Table 1.

Note that Table 1 presents the results for a three-station
line under one of our five variability scenarios in which
CV = 2 for all loading, unloading and manual processing
times. The throughput of each AAP CONWIP line in the
table is the maximum throughput of the line obtained by set-
ting a high WIP level, which we call WIP,..* Thus, the
difference in line performance is not due to a difference in
WIP levels, but instead is due to automation position or the
worker control policy (i.e., cyclic or fixed-priority). Also,
as we mentioned earlier, the throughput in the table corre-
sponds to the optimal throughput under the optimal cyclic
policy.

We observe from Table 1 that, for both balanced and
unbalanced lines, the best line performance under the cyclic
policy corresponds to the scenarios with the most distrib-
uted automation (i.e., (0.3-0.3-0.3)), shown in bold font in
the table, and the worst line performance corresponds to
the scenarios with the most concentrated automation (i.e.,
(0-0.9-0)). The “max difference” at the bottom of Table
1 thus corresponds to the relative difference between these
two scenarios under the cyclic policy.> Therefore, as Table 1

3 Because of the closed-loop property of a CONWIP line, we can
significantly reduce the case space. For instance, automation distri-
bution scenario 0.9—0-0 for unbalanced line (2,1,1) and automation
distribution scenario 0-0-0.9 for unbalanced line (1,1,2) are both
in effect the same as automation distribution scenario 0-0.9-0 for
unbalanced line (1,2,1).

4 We obtained the maximum throughput of the line by setting the
WIP level high enough (i.e., to WIP,,,y), so that any increase in WIP
level does not have a significant impact on line performance.

3> The “max difference” is the difference between the throughput
of the automation scenario with the maximum throughput and the
throughout of the automation scenario with the minimum through-
put, divided by the throughput of the automation scenario with the
maximum throughput. It represents the percent increase in line
throughput if the automation configuration is changed from the
worst to the best (in each column).
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shows, under a cyclic policy, concentrated automation is not
as effective as distributed automation. For example, in the
balanced line in Table 1, the maximum relative difference
between the (0.3-0.3-0.3) automation scenario and the least
throughput scenario is 10.2%, while this number of about
6.3% to 7.6% for the unbalanced lines. We repeated this
experiment for three-station and five-station lines under dif-
ferent variability and WIP levels, and we observed the same
phenomenon: If the line is operated under a cyclic policy,
concentrated automation is not as effective as distributed
automation.

The intuition behind the fact that distributed automation
is more effective than concentrated automation when line
operates under a cyclic policy is as follows. As Theorem 1
implies, it is optimal to give high priority to automated sta-
tions. When only one station is automated, that station gets
the highest priority under the optimal control policy. How-
ever, when all stations are automated, as it is the case in of
automation distribution, giving the highest priority to only
one of the automated stations is not an effective policy. In
fact, it is more effective to allocate the worker’s time evenly
among stations. The cyclic policy achieves this by visiting
all stations in a cyclic manner, under which all automated
stations get the same level of worker attention. Conversely,
when automation is concentrated, the cyclic policy does not
perform well, because it does not give the highest priority to
the automated station(s).

Although in general, under the cyclic policy, distributed
automation is better than concentrated automation, we also
observed interesting cases in our simulation study in which
automation concentration was slightly better than automa-
tion distribution. This occurred in cases corresponding to the
variability scenario “load/unload CV = 2” and “manual CV
= 0.5.” The reason for this is as follows. When variability
in loading and unloading operations is high and variability
in manual operation is low, under automation concentration,
the line has only one station with a very high variability (i.e.,
the automated station with high variability in loading and
unloading), while the rest of stations (i.e., manual stations)
have low variability (CV =0.5). When automation is distrib-
uted, however, all of the stations have high variability in their
operations (i.e., all stations have loading and unloading oper-
ations with high variability CV = 2). Thus, although the cyclic
policy is more effective in cases with distributed automation,
in this case the benefit is not high enough to outweigh the
negative impact of high variability. Therefore, in lines using a
cyclic policy, automation concentration is more effective than
automation distribution (due to the high level of variability
that results from automation distribution.) This suggests that,
if the automation technology involves highly variable load-
ing and unloading operations, then under the cyclic policy,
having a single highly automated station (i.e., automation
concentration) may be more beneficial than having several

stations with low levels of automation, particularly if the
manual operations in the line have low variability.

We would like to emphasize that, our numerical study
includes 60 cases in which “load/unload CV =2” and “man-
ual CV = 0.5 We observed in only 24 out of 60 cases that
under the cyclic policy, automation concentration was better
than automation distribution. For those cases, the differences
between the two configurations were very small, with an
average difference of 2.1% and a maximum difference of
3.0%.

4.2.2.  Automated Concentration: Fixed-Priority Policy

In this section, we investigate the impact of automation
concentration if the line is run under a fixed-priority policy.
To develop insight into this issue, we compare the through-
put of a pair of two-station lines controlled by fixed priority
policies:

CON-FXD Line: Inthisline the automation is concentrated
in Station 1. Specifically, Station 1 is automated, with
1/ units of automation time. The average loading time
at this station is 1/I. time units, where (1/p) + (1/1,) =
(1/7). The line operates under a fixed-priority policy
that gives high priority to Station 1.

DST-FXD Line: In this line automation is evenly distrib-
uted. Specifically, both stations have (1/2u) units of
automation time, and (1/I;) units of loading time, where
(1/2un) + (1/l;) = (1/7). Similar to the above, we
assume that the line operates under a fixed-priority pol-
icy, and without loss of generality, we assume the worker
gives high priority to Station 1.

Similar to Section 4.2.1, we can calculate the throughput
for both lines by developing a continuous time Markov chain.
Details are presented in Supporting Information Appendix II.

When WIP levels in both lines are set to WIP = 3, the
throughput of the lines are found to be:

TH(DST-FXD)
e (32487 + 3207 + 14l + 313)
64pt 4 80u3ly + 44213 4+ 13ul3 + 214
T(u? + put +12)

2u? 4 ut + 12

(4)
TH(CON-FXD) =

By substituting for [;, the difference between these two
throughput levels can be reduced to:

TH(CON-FXD) — TH(DST-FXD)
T3’ + 16ptt — 420717 + 23p 1 — Sptt 4 10)
T (1284 =963 T +40p2 T2 — 6 T3+ T (T2 4 T +2u2)
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which is positive, because i > t. This implies that concen-
trated automation is more effective than distributed automa-
tion when a fixed-priority policy is used in a balanced
two-station AAP CONWIP line with WIP = 3.

To confirm the analytical results obtained for the two-
station line, we performed a simulation study (similar to that
for cyclic policy) for three- and five-station lines. The right
part of Table 1 shows our results for the three-station line
under the optimal fixed-priority policy that results in the opti-
mal throughput for each automation distribution scenario. As
Table 1 shows, under a fixed-priority policy, concentrated
automation is more effective than distributed automation.
Table 1 also shows that the maximum relative difference
between the throughput of the best automation distribution
scenario, which is the most concentrated case (i.e., (0-0.9—
0)), and that of the worst automation distribution scenario,
which is the most distributed case (i.e., (0.3-0.3-0.3)), is
10.0% for a balanced line and around 7% for the unbalanced
lines.

Our study of three-station lines under other variability
and WIP level scenarios, as well as our analysis of five-
station lines, also confirmed that automation concentration is
more effective that automation distribution if the line operates
under a fixed-priority policy.

The intuition behind this observation is as follows. As The-
orem 1 implies, when only one station is automated (i.e.,
automation concentration), static priority policies, including
fixed-priority policies, which give the highest priority to the
automated station are optimal. Thus, fixed-priority policies
are superior when automation is concentrated. When automa-
tion is distributed, as we explained in Section 4.2.1, policies
that do not give the highest priority to one station and do
not prioritize one automated machine over another (e.g., the
cyclic policy) are more effective.

4.2.3.  Automation Concentration: Cyclic Policy Versus
Fixed-Priority Policy

In Section 4.2.1, we showed that the maximum throughput
of the line under a cyclic policy is obtained when automa-
tion is evenly distributed. For example, for the balanced line
case in Table 1, the maximum throughput under the cyclic
policy is 0.462 (shown in bold font) and occurs under the
automation distribution scenario (0.3—0.3-0.3). In contrast,
in Section 4.2.2 we showed that the maximum throughput
of the line under a fixed-priority policy is obtained when
automation is concentrated. For example, Table 1 shows
that the maximum throughput under the fixed-priority policy

®One can develop a similar Markov chain for the cases with
WIP = 4, or 5, which result in more complex expressions for the
TH, but eventually lead to the same conclusion that TH(CON-FXD)
> TH(DST-FXD).
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for the balanced line is 0.472 and occurs under automation
distribution scenario (0-0.9-0). As this example depicts, con-
centrated automation combined with a fixed-priority policy
results in 2.2% (= (0.472 — 0.462)/0.462) more through-
put than distributed automation with the cyclic policy. This
raises the questions: (i) Is concentrated automation with a
fixed-priority policy is always more effective than distributed
automation with a cyclic policy? (ii) What is the magnitude
of the difference?

To show that concentrated automation with a fixed-priority
policy is more effective than distributed automation with a
cyclic policy, we compare the throughput of our CON-FXD
line with that of DST-CYC line. Using (3) and (4), after some
algebra, we get:

TH(CON-FXD) — TH(DST-CYC)
_ BRu? —2ut +1%)
CQuUE At 1) (1 = 2ut +8u?)’

which is positive because u > t. Note that both TH(CON-
FXD) and TH(DST-CYC) are for WIP level of three jobs.
On the other hand, TH(DST-CYC) does not change for
WIP levels above WIP = 3 (see Theorem 2), whereas
TH(CON-FXD) is nondecreasing in WIP level. Thus, we
still have TH(CON-FXD) > TH(DST-CYC) for WIP > 3,
which implies that in the balanced two-station line, a fixed-
priority policy with concentrated automation results in higher
throughput than a cyclic policy with distributed automation
for all WIP > 3.7

We further investigate the above insight in our general
three- and five-station lines. Specifically, we compare the
throughput of each AAP CONWIP line under the fixed-
priority policy and under the cyclic policy, in order to answer
the following questions:

1. If automation is concentrated, how much does the
throughput increase if one switches from a cyclic
policy to a fixed-priority policy?

2. If automation is distributed, how much does the
throughput increase if one switches from a fixed-
priority policy to a cyclic policy?

3. Is concentrated automation with a fixed-priority pol-
icy always more effective than distributed automa-
tion with a cyclic policy? What is the magnitude of
the difference?

To study the first question, we compared the throughput of
the lines with automation concentrated in one station operat-
ing under the fixed-priority policy and under the cyclic policy
for all 300 cases. We observed that the fixed-priority policy

71t is easy to show that this result also holds for WIP = 2.
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can result in up to a 13.8% increase in throughput (with an
average increase of 4.5%) in three-station lines. In five-station
lines, this difference was more subtle, with a maximum dif-
ference of 2.3% and an average difference of 0.7%. The
larger differences were observed in cases where the line was
balanced and the CV of the manual process times was high.
Note that the smaller differences observed in five-station lines
is due to the fact that operation time in one out of five stations
in a five-station line constitutes a smaller portion of the total
operation time in the line than does the time of one station
out of three stations. Thus, if one station is automated in a
five-station line, failure to use the best control policy has less
impact on line performance than in a three-station line.

To investigate the second question, we compared the
throughput of the lines with evenly distributed automation
under the cyclic policy and under the fixed-priority policy
for all 300 cases. We observed that the cyclic policy per-
forms better than the fixed-priority policy, with a maximum
difference of 9.6% and an average difference of 6.5% in three-
station lines. In five-station lines, similar to the above, this
difference was smaller, with a maximum difference of 3.3%
and an average difference of 2.3%.

To find the answer to the third question, we compared the
throughput of the lines with automation concentration and
a fixed-priority policy with that of lines with evenly dis-
tributed automation and a cyclic policy for all 300 cases.
We observed that, in general, the concentrated automation
line with a fixed-priority policy achieves a higher through-
put than does the distributed automation line with a cyclic
policy. This is consistent with our analytical results for the
two-station balanced line, which we presented in the begin-
ning of this section. In three-station lines, the difference is
most significant when the load/unload process times exhibit
high CV. In such cases, a fixed-priority policy in a concen-
trated automation line achieves a throughput thatis as much as
3.2% higher than that of the cyclic policy in an analogous line
with distributed automation. In other CV scenarios for three-
station lines, the difference between the two types of line is
not significant. In the case of five-station lines, the difference
is occasionally statistically significant, but the fixed-priority
line exhibits a maximum of only 0.2% higher throughput, so
it is not economically significant.

We observed an interesting behavior in the cases in which
the manual operations have high variability (CV = 2) and
loading and unloading operations have low variability (CV =
0.5). As opposed to what we observed in all other cases of our
simulation study, some of the lines with distributed automa-
tion and a cyclic policy performed better than corresponding
lines with concentrated automation and a fixed-priority pol-
icy. The explanation for this behavior is as follows. Because
in these cases manual stations have very high variability, lines
with concentrated automation have more variability in their
operations than lines in which the same amount of automation

is distributed across all stations (i.e., a line with no manual
stations). The negative impact of high variability in the con-
centrated distribution lines is so high that it outweighs the
effectiveness of the fixed-priority policy. However, we note
that for those cases, the average and maximum difference
between lines with distributed automation and a cyclic policy
and lines with concentrated automation and a fixed-priority
policy are very small, namely, 0.4% and 0.8%, respectively.
So we view this result as interesting, but not of great practical
importance.

The managerial implication of the above results is that
in designing a CONWIP line with one cross-trained worker,
one should consider either a concentrated automation config-
uration with a fixed priority policy, or a distributed automa-
tion configuration with a cyclic policy. However, the per-
formance difference between the two is typically small if
the load/unload CV is not high. Because automation con-
centration has a larger impact on performance in push lines
(Hopp et al. [11]), this observation further substantiates our
conclusion that design flexibility is a benefit of CONWIP.

S. AAP CONWIP LINES VERSUS AAP PUSH LINES

A key part of the pull literature has focused on the oper-
ational benefits of pull relative to push. For example, Spear-
man and Zazanis [22] provided theoretical evidence for the
superior performance of pull. They showed that pull sys-
tems have less congestion (i.e., are more efficient), while
pull systems are inherently easier to control (i.e., are more
robust). By comparing CONWIP with kanban, they argued
that the effectiveness of pull does not result from pulling
per se, but rather from limiting WIP and WIP variability.
Roderick et al. [21] compared CONWIP to other production
systems using simulation and found that CONWIP has supe-
rior performance with respect to due date and cycle times.
Buzacott and Shanthikumar [6] showed that if the value added
ateach station in the line is negligible, then CONWIP exhibits
superior performance with respect to maximizing customer
service subject to a WIP constraint. These articles are all for
conventional production lines (i.e., with neither automated
machinery nor workforce agility). A natural question to ask,
therefore, is how the relative performance of CONWIP and
Push is affected by the introduction of automated equipment
and workforce agility.

To address this question, we compare agile automated
CONWIP serial lines with agile automated push lines with
respect to (i) control, (ii) design, and (iii) efficiency and
robustness.

5.1. Control

For one-worker serial production lines with one automated
machine operating under a push protocol, Hopp et al. [11]

Naval Research Logistics DOI 10.1002/nav



52 Naval Research Logistics, Vol. 56 (2009)

showed that the optimal worker allocation policy that mini-
mizes the average WIP in a two-station push line has a thresh-
old structure. For example, when the automated machine in
nonempty Station 1 is not processing a job (i.e., Case (ii)
in Theorem 1), the agile worker must take into account the
number of jobs at each station in order to decide whether to
load the automated machine or process a job at Station 2.
Using MDP models we can show that under a push protocol
the optimal policy for three-station lines is even more compli-
cated. In contrast, in the CONWIP environment the optimal
action is simple; for example, as Case (ii) of Theorem 1
shows, when the automated machine in nonempty Station 1
is not processing a job, the worker should load the automated
station regardless of the number of jobs at different stations.
This confirms that, from the perspective of optimal control,
single-worker AAP CONWIP lines are inherently easier to
control than their AAP Push counterparts.

5.2. Design

In this section, we compare the design issues of automa-
tion position and automated concentration in AAP CONWIP
and AAP push lines.

Automation Position: Hopp et al. [11] showed that if an
AAP line is run as a push line, automating down-
stream stations is generally more effective than automat-
ing upstream stations. However, as we have shown in
Section 4.1, in an AAP CONWIP line, the position of
automation does not have a significant impact on line
performance. This allows managers to concentrate on
issues such as financial and technological constraints
without worrying too much about the impact of automa-
tion position when they design an AAP CONWIP line.
Consequently, design flexibility with respect to automa-
tion position is one of the benefits of CONWIP over push
in AAP environments.

Automation Concentration: As we have shown, in design-
ing AAP CONWIP lines with one cross-trained worker,
one should consider either a concentrated automation
configuration with a fixed priority policy, or a distributed
automation configuration with a cyclic policy. However,
the performance difference between the two is typically
small. For AAP push lines, however, Hopp et al. [11]
showed that automation concentration has a large impact
on performance in push lines. Hence, we conclude that
design flexibility with respect to automation concentra-
tion is a benefit of AAP CONWIP lines over AAP Push
lines.
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5.3. Efficiency and Robustness

Our analysis of efficiency and robustness of AAP CON-
WIP and AAP push lines parallels that of Spearman and
Zazanis [22] for conventional CONWIP and push lines (i.e.,
lines with no automated machinery or workforce agility). In
particular, we consider a simple static optimization model that
balances the cost of lost production with the cost of added
WIP, via a simple profit function of the form:

Profit = pTH — hWIP,

where p is the marginal profit per job, TH is the throughput
of the line, and % is the cost for each unit of WIP (including
costs for increased cycle time, decreased quality, etc.). We
consider several cases in which 4/p = 0.01, 0.05, 0.1, and
0.25.

For a CONWIP line, throughput is a function of WIP; so,
we seek a value of WIP that maximizes profit. In contrast,
for a push line the average WIP is a function of the release
rate; so, we find the value of TH (i.e., the job release rate)
that maximizes profit. The question of efficiency is concerned
with the relative performance (i.e., profit) of the two release
protocols when their controls are optimized, whereas robust-
ness is concerned with how fast profit degrades when WIP or
TH are set at suboptimal levels.

We first compare the efficiency and robustness of CONWIP
and push lines when they are run under their corresponding
optimal worker control policies. Then, we extend our study
to our general lines under cyclic and fixed priority policies.

5.3.1.  Efficiency and Robustness Under the Optimal
Control Policy

Because the MDP for three-station push lines becomes
impractically large (Hopp et al. [11]), we focus on two-
station lines to compare the efficiency and robustness of the
CONWIP and push systems under the optimal worker con-
trol policies. Figure 1 (left) compares the profit curves of a
two-station CONWIP line and a push line in which the sec-
ond station is automated with an automation level of 8§0%
(i.e., the mean automatic processing time accounts for 80%
of the mean total operation time in the second station). The
mean manual operation time at the first station, and the mean
total operation time at the second station (i.e., loading and
automatic processing time) are set to one unit to represent a
balanced line. Fig. 1 (left) is for a case where 4/ p = 0.01, the
same &/ p ratio considered in Spearman and Zazanis [22]. We
use our MDP models to obtain the throughput in CONWIP
line and the MDP model from Hopp et al. [11] to compute the
average WIP in the push line. Because WIP and throughput
are measured in different units, we measure suboptimality in
terms of percent error. For example, 70% on the horizontal
axis indicates that the current control parameter (i.e., WIP in
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Figure1l. Comparisons for a balanced line operating under optimal Push and Pull settings: (left) efficiency and robustness and (right) impact

of automation on robustness.

the CONWIP system or 7' H in the push system) is set at 70%
of the optimal level.

Figure 1 (left) shows that CONWIP is more efficient than
push, because it generates higher profit at the optimum. Fur-
thermore, the profit function of the CONWIP line is very
flat near the optimal WIP level, while in contrast, the profit
function of the push line declines sharply when the release
rate is set above or below the optimum level. Hence, Fig. 1
(left) also indicates that CONWIP is more robust than push
with respect to the error in setting the optimal control para-
meter. We observed the same phenomenon in cases where
h/p =0.05,0.1, 0.25.

To characterize the relative efficiency of push and pull
in greater detail, we define the efficiency ratio between the
CONWIP and the push lines for a given throughput rate as:

average WIP of the push line
WIP of the equivalent CONWIP line

efficiency ratio =

By “WIP of the equivalent CONWIP line” we mean the
WIP in the line under CONWIP protocol that results in
the same throughput as that achieved by the line when it
is run under a push protocol. Therefore, an efficiency ratio
greater than 1 indicates that the line under CONWIP car-
ries less WIP than the same line under push, given the same
throughput.

To investigate how the magnitude of automation in the line
affects the relative performance of CONWIP and push strate-
gies (i.e., the efficiency ratio), we considered three scenarios:
(1) high automation, where the automated machine requires
0.2 units of mean manual loading time and 0.8 units of mean
automatic processing time, which represents an 80% automa-
tion level; (ii) medium automation, where the automation

level is 50%; and (iii) low automation, where the automation
level is 20%. In our experiments, we successively increased
the WIP level in the CONWIP line and recorded each aver-
age throughput rate, until the line saturated and throughput
reached its maximum. Then we computed the average WIP
level in the equivalent push line for each throughput rate
achieved in the CONWIP line.

The results are shown in Fig. 1 (right). Note that lines with
different automation levels have different capacities. This
would make the comparison between scenarios unfair if we
were to directly compare the efficiency ratios with regard to
throughput rates. To avoid this, we plot the efficiency ratio vs.
throughput as percent of capacity (which can be considered as
line utilization). Note that there are fewer data points for the
lower automation-level scenarios, because the line saturates
at lower WIP levels. For example, in the 20% automation
level scenario, throughput is essentially constant for all WIP
levels of two or higher; as a result, the CONWIP line pro-
duces only two values of throughput to feed into the push
line.

As Fig. 1 (right) shows, the efficiency ratios are always
greater than one. This confirms that CONWIP is more effi-
cient than push. Moreover, this efficiency advantage increases
in the line utilization. However, it decreases in the level
of automation. The reason for this behavior can be under-
stood by looking at the two extreme cases of 100% and
0% automation. When the automation level is 100%, then
the one-worker, two-station AAP CONWIP and push lines
are both equivalent to a one-worker, one-station manual pro-
duction line (because jobs flow through the automated sta-
tion automatically without any help from the worker), and
so the efficiency ratio is one. However, when the automa-
tion level of the automated machine is 0% (i.e., both the
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Figure 2. Robustness comparison in the three-station balanced line for “all CV = 1” scenario, &/p = 0.01, and fixed-priority policy: (left)

one automated station and (right) three automated stations.

CONWIP and push lines are manual), then it is easy to
see that a WIP level of 1 is sufficient for the CONWIP
line to reach its capacity, while it takes infinite WIP for the
push line to reach its capacity; hence, the efficiency ratio is
infinite.

When the first station is automated, we observed that the
above results still hold. We also conducted experiments for
various line unbalance scenarios, by fixing the operation time
in one station to be 1 unit and adjusting that in the other
station to be 0.1, 0.2,..., 1. For each of these scenarios, we
placed high (80%), medium (50%), and low (20%) automa-
tion at one station and used our MDP model to compare the
performance of CONWIP and push, in a manner similar to our
approach for balanced lines. We observed behavior similar to
that shown in Fig. 1.
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5.3.2.  Efficiency and Robustness Under Heuristic Controls

We also examined the efficiency and robustness of AAP
CONWIP line in our three-station and five-station lines
with different levels of variability and under cyclic and
fixed-priority policies.

We started with three-station balanced lines and assumed
that the mean total operation time in each station is 1 unit,
denoted as (1,1,1). We first considered cases in which only
one station is automated. We set the automation level in the
automated station to be 90% (i.e., 0.9 units of automation
time in the balanced line), ran simulations for CONWIP and
push lines, and computed the efficiency ratios at various WIP
and variability levels. We then considered cases where all
three stations are automated. We set the automation level on

05
0.45 4
04 MHM‘“"O-—«
0.35 4
0.3 4
% i == CONWIP
& —{Push
02 4
0.5 1
01 4
0.05 -
] ' 1] ' ' r
0% 50% 100% 180%  200% 250% 300%
Percent of Optimal

Figure 3. Robustness comparison in the three-station balanced line for “all CV = 1” scenario, 2/p = 0.01, and cyclic policy: (left) one

automated station and (right) three automated stations.
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these stations to be 30% (i.e., 0.3 units of automation in each
station of the balanced line), computed the efficiency ratios at
various variability and WIP levels. We also conducted sim-
ilar experiments for unbalanced lines where one station is
the bottleneck with total operation time of 2 units, denoted
as (2,1,1), (1,2,1), and (1,1,2). See Supporting Information
Appendix I for the details of our design of experiments for
unbalanced lines.

For each case, we studied the performance of CONWIP
and push lines under the optimal fixed-priority policy and
the optimal cyclic policy.® We observe behavior similar to
that shown in Fig. 1 (left), that is, AAP CONWIP lines are
more robust to control errors than AAP push lines. Fig. 2
demonstrates the robust performance of CONWIP relative to
push in one of our three-station balanced lines where the best
fixed-priority policy is implemented. Figure 2 (left) shows
the case where only one station (i.e., Station 2) is automated
with an automation level of 90%; Fig. 2 (right) shows the
case where all three stations are automated and each has an
automation level of 30%. Figure 3 shows the robustness of
CONWIP relative to push in a similar setting except that the
best cyclic policy is implemented.

Similar to what we observed previously under the opti-
mal worker control policies, we find that the efficiency ratio
between CONWIP vs. push is always greater than 1. Hence,
AAP CONWIP lines always carry less WIP than their push
counterparts to achieve the same throughput.

We repeated this experiment for our five-station balanced
and unbalanced lines with different variability and WIP levels
under both fixed-priority and cyclic policies and observed the
same phenomenon. Therefore, based on our results for lines
operating under both optimal and heuristic control policies,
we conclude that CONWIP outperforms push with regard to
efficiency and robustness in agile automated environments.

6. CONCLUSIONS

This article investigates the control, design, efficiency and
robustness issues of manufacturing cells with automated
equipment staffed with a single cross-trained (agile) worker.
We show that the optimal worker control policy in a three-
station line with one station automated is a static priority
type policy, which gives the highest priority to the automated
station and the second highest priority to the station that
feeds the automated station. Through an extensive simulation
study of lines with three and five stations under both fixed-
priority and cyclic control policies, we show that for the same
units of automation time, automating the non-bottleneck sta-
tions is more effective than automating the bottleneck station,

8 As we mentioned before, the optimal fixed-priority policy (cyclic
policy) is the policy among all possible fixed-priority policies (cyclic
policies) that results in the maximum profit.

although the difference is not very large. Furthermore, in gen-
eral, under the fixed priority policy, automation concentration
is better than distributed automation, whereas under the cyclic
policy, automation distribution is more effective. Thus, in
designing CONWIP AAP lines with one worker, one should
consider either a concentrated automation configuration with
fixed-priority or a distributed automation configuration with a
cyclic policy. We also show that the primary benefits of pull
(CONWIP in particular), namely, observability, efficiency,
and control, extend to systems with automated equipment
and cross-trained (agile) workforce. Finally, we identify line
design flexibility as a fourth advantage of CONWIP proto-
col in the agile automated production environments. That is,
although push systems are sensitive to the placement and con-
centration of automation, CONWIP systems are not, which
means that automation decisions can be based on other issues,
such as cost and quality.

To see whether our insights are indeed robust in more gen-
eral systems, further research is needed into systems with
multiple-product types, multiple workers, and other features,
such as machine failures, rework, and partial cross-training.
Given the growing importance of AAP systems in industry,
such research would be of great practical significance.
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