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ABSTRACT

Computational models provide insight into the
structure—function relationship in proteins.
These approaches, especially those based on
normal mode analysis, can identify the accessi-
ble motion space around a given equilibrium
structure. The large magnitude, collective
motions identified by these methods are often
well aligned with the general direction of the
expected conformational transitions. However,
these motions cannot realistically be extrapo-
lated beyond the local neighborhood of the
starting conformation. In this article, the itera-
tive cluster-NMA (icNMA) method is presented
for traversing the energy landscape from a
starting conformation to a desired goal confor-
mation. This is accomplished by allowing the
evolving geometry of the intermediate struc-
tures to define the local accessible motion
space, and thus produce an appropriate dis-
placement. Following the derivation of the
icNMA method, a set of sample simulations
are performed to probe the robustness of the
model. A detailed analysis of f1,4-galactosyl-
transferase-T1 is also given, to highlight many
of the capabilities of icNMA. Remarkably, dur-
ing the transition, a helix is seen to be
extended by an additional turn, emphasizing a
new unknown role for secondary structures to
absorb slack during transitions. The transition
pathway for adenylate kinase, which has been
frequently studied in the literature, is also dis-
cussed.
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INTRODUCTION

Experimental methods have produced a wealth of high-resolution
protein structures. At the time of writing, the Protein Data Bank
(PDB!) contains more than 40,000 structures solved by X-ray crystal-
lography, nearly half of which are at a resolution better than 2 A. This
detailed information has provided a solid foundation for understanding
the structure—function relationship, which involves the determination of
biological function from structure. This article presents a new method,
called iterative cluster normal mode analysis (icNMA), which produces
a transition pathway between known conformations by following the
local accessible motion space of the evolving conformation. The result-
ing pathway provides insight into motion-driven biological function.

Numerous experimental methods have been employed in the study
of macromolecular structure and dynamics, including fluorescent reso-
nance energy transfer,2 nuclear magnetic resonance,>* hydrogen
exchange,® and crystallography. These purely experimental methods
are often limited by a tradeoff between spatial and temporal resolu-
tion. In response to this obstacle, computational modeling techniques
have been applied with great success.

Before icNMA is presented, it will be useful to review previous
modeling techniques, especially the cluster normal mode analysis
(cNMA6’7) method upon which icNMA is based. The first set of models
discussed (including cNMA) are primarily concerned with identifying
the accessible motion space local to a given equilibrium conformation.
This first set serves as a foundation for understanding the second set,
which are capable of exploring the extended energy landscape.

In one of the earliest computational models, Levitt® uses a simplified
structure representation and a potential energy function to study protein
folding. On the basis of similar concepts, molecular dynamics (MD)
methods use complex potential functions and numerical integration to
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icNMA: Protein Confirmation Transitions

produce conformation trajectories. %10 These atomic reso-
lution models and all-inclusive potential functions come at
a significant computational cost,1! often restricting simu-
lations to timescales orders of magnitude shorter than rele-
vant biological processes.

Normal mode analysis (NMA), which is well suited for
identifying large-scale, cooperative structure motions,
was introduced.12=16 The success of NMA-based meth-
ods can be attributed to the robustness and simplicity of
motions around the equilibrium conformation.17-18 The
first NMA models were still based on complex potential
functions and thus presented computational limitations.
This was addressed by the elastic network model
(ENM19), which proposed the usage of a single parame-
ter harmonic potential function to model all pairwise
atomic interactions. The Gaussian network model20,21
used a coarse-grained model relying only upon the a-car-
bon trace representation of a protein along with the
ENM to produce a measure of atomic mobility. This sca-
lar model was then extended into the anisotropic net-
work model (ANM?22) to capture magnitude and direc-
tion of atomic fluctuations.

The already simplified ANM representation has been
even further reduced through the use of coarse graining,
in which multiple atoms are grouped into single repre-
sentative points. Excellent reviews of coarse-grained mod-
els are given by Tozzini23 and Bahar and Rader.l” A
comparison between varying levels of grain resolution is
given by Sen et al.24 Although these “bead models” do
succeed in reducing the number of degrees of freedom
(DOFs) in the structure representation, they do so at the
expense of altering atomic interaction geometries (i.e.
when multiple atoms are represented by a single point,
all of their distinct contact interactions must be collapsed
onto that representative point).

In response to the shortcomings of coarse-grained
NMA, the authors developed cNMA®7 in which groups
of atoms are represented as rigid bodies embedded in the
ENM. This approach utilizes a multiscale structure repre-
sentation which includes all atoms and all pairwise
atomic interactions (i.e. no deformed geometries), while
at the same time, reduces the total number of DOFs
needed in the parameterization. The cNMA method is
the foundation for icNMA and is reviewed in Section
“Review of cNMA”. The complete derivation and com-
parison of ctNMA to ENM-based C,-NMA is given in
Schuyler amd Chirikjian® and its application at atomic
resolution to large structures is given in Schuyler and
Chirikjian.7 The RTB method25:26 is similar to cNMA,
but several substantial differences in coordinate system
definitions and computational procedures are discussed
in Schuyler and Chirikjian.” Clustering schemes have
also been incorporated into MD methods2” and into
NMA methods which explicitly define solvent.28

Proteins are known to sample various conformation
states essential for carrying out their functions. These

states range from relatively minor changes in structure to
large scale rearrangements, such as those seen in hemo-
globin and myosin. There have been many attempts at
understanding these transitions.29-32 It has been estab-
lished that relatively few, low-frequency normal modes
can identify the direction of global motions required to
achieve conformational transitions.33 This general cate-
gorization has been further refined by a database study
that relates the degree of collectivity in a transition with
the effectiveness of ENM normal modes to capture the
transition direction.3435 Motion correlation analysis
across the low frequency modes has provided information
on cooperative structure motion and domain stability. 36

The methods discussed thus far are only relevant to
the local motion subspace around an equilibrium confor-
mation. To achieve a full understanding of biologically
relevant structure transitions, we now introduce a second
class of methods, which are capable of exploring the
extended energy landscape.

Cryo-electron microscopy (cryo-EM) has been used to
study conformational changes.37 The identification of
secondary structure elements has been used to fit atomic
resolution subunits onto low-resolution, cryo-EM elec-
tron density maps of large complexes.38 There has also
been success in coupling cryo-EM with NMA-based
methods. The continuous valued density map has been
converted into discrete mass locations, which serve as the
basis for low-resolution NMA. This approach shows
agreement with the lowest modes of atomic resolution
NMA.39 There have also been methods for deforming
known crystal structures onto low-resolution cryo-EM
electron density maps.40~42 These methods use cost
functions to optimally select a subset of normal modes
and assign relative weighting coefficients that best pro-
duce the desired conformational changes. These methods
start to introduce dynamics into the structure analysis,
but it must be noted that the series of conformations
converging to the best fit is not intended as (and can not
be interpreted as) a pathway, but as a byproduct of the
fitting process.

Linear interpolation of Cartesian coordinates between
known conformation pairs causes obvious steric viola-
tions, but modified interpolation methods are able to
avoid this. For example, the elastic network interpolation
(ENI) method interpolates between contact maps of two
conformations.#344 One particular aspect of this and
many of the other models for generating transition path-
ways is that they lead to a single pathway; this neglects
the widely perceived stochastic nature of protein folding.
Consequently these single pathway methods likely pro-
vide a most probable representative pathway, with varia-
tions around these single pathways providing a full en-
semble representation. For example, ENI is able to fit a
pathway generated for a core central domain of the 16S
rRNA onto an MD trajectory using only the lowest 1%
of the normal modes.4> Normal modes are also able to
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guide conformational changes according to a small set of
distance constraints*® or an X-ray diffraction pattern.4”
Yang et al.3% investigate the transition pathways of 170
pairs of structures and find that the normal modes suc-
ceed in specifying the directionalities of the transitions
only when the collectivity of the motion is high.

The undesired, but inherent, linearity of the interpola-
tion methods is addressed by a very successful family of
methods that use switching functions to allow for the
transition pathway to shift from the energy basin of one
conformation to that of another.48-54 The plastic net-
work model (PNM°0) uses an ENM to define energy
basins around each known state and then solves for the
saddle point located at the global minimum of their inter-
section. The transition pathway connecting the saddle
point to the neighboring equilibrium states is produced
by the TReK steepest descent method in CHARMM.?> Of
particular interest are that the PNM assumes the globally
optimal transition state is accessible from the equilibrium
states and that the connecting pathways from the saddle
point down to each equilibrium state are the preferred
pathways in the reverse direction. Remarkably, the PNM
pathway for adenylate kinase is consistent with intermedi-
ate crystal structures. In a similar way, Yang et al.>® find
good agreement between the normal modes and the
conformational variations observed across 156 X-ray
structures and 28 NMR structures (reported in one set).
Notably, these sets include unbound structures as well as
ones having different ligands.

The cryo-EM methods and the interpolation methods
give insight into the dynamics of large conformational
changes, but they are based on either forced motions or
artificial sampling of mode space. These issues are
addressed by icNMA, which uses the efficient, all atom
cNMA method to guide the transition pathway according
to the motion space described by each intermediate con-
formation. The remainder of the article is structured as
follows. A Hamiltonian mechanics foundation for normal
mode analysis is presented in a preliminary section. This
background simplifies the icNMA derivation in the
method section and relates the icNMA method to several
fundamentals of statistical mechanics allowing for a more
powerful interpretation of the results. An analysis of
B1,4-galactosyltransferase-T1 is given so that further
details of icNMA may be discussed in context. A Q1 ver-
sus Q2 plot is given for the frequently studied adenylate
kinase; it shows nonlinearity of the transition path, which
is in agreement with other methods.>0:51,57,58

NORMAL MODE ANALYSIS
DERIVED FROM HAMILTONIAN
MECHANICS

The ictNMA method is based on a few fundamental
theories from statistical mechanics. These concepts are
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presented and will allow for a more direct formulation of
the icNMA method.

For small motions about an equilibrium, the potential
energy of a biomolecular structure is parameterized by its
generalized coordinates, g, and is written as

V(g)=C+54a'Kq 1)

where C is a constant (which can be ignored by appro-
priate choice of the datum in the definition of potential
energy) and K is the stiffness (or Hessian) matrix. This
quadratic potential is nothing more than the first few
terms in the Taylor-series expansion of the molecular
potential, where the linear term drops out from the defi-
nition of equilibrium (i.e. 9V/9q; = 0 for all values of i).
The Hamiltonian of the system is defined as

Higp) =20 M @lp+ Vi ()

where p is the vector of all conjugate momenta corre-
sponding to the generalized coordinates and M(q) is the
mass matrix with the “—1” exponent denoting its
inverse. Depending on the choice of coordinates, the
mass matrix can be reduced to a constant, M,, for small
deformations around an equilibrium. This is demon-
strated in Schuyler and Chirikjian® for cluster coordi-
nates, which are used by icNMA.

The foundation for normal mode analysis is more eas-
ily derived from the Hamiltonian by performing the fol-
lowing coordinate transforms

a=M’q (3)

p=M,""p (4)

where the exponent of “1/2” indicates a matrix square
root. The Hamiltonian is expressed in these coordinates as

S | R
H(g.p)=5p'p+54'Kq (5)

where we have defined the mass-weighted Hessian as
. C1/2 oy —1/2
K = M, '’ KM, (6)

The Boltzmann distribution describes the accessibility of
all states in an equilibrium ensemble and is given as the
probability density function on phase space

f(@p) = ﬁexp{—sm,ﬁ)} (7)

where

Z(p) = / / ep{-BH(@p)}dpdq  (8)

qJp
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is the partition function, and B = 1/kgT (kg is Boltz-
mann’s constant and T is temperature measured in
degrees Kelvin).

In the context of generating conformational ensembles,
it is more desirable to have a distribution over only the
generalized coordinate (§) and not over the conjugate
momenta (p). The constant mass matrix has effectively
decoupled the § and p terms in the Hamiltonian and
allows the Boltzmann distribution to be integrated in
closed form over p yielding a Gaussian distribution of
conformations

p(@) = /p f(ap)dp (9)

=Z(B)exp{-BV(9)} (10)

where the integration over the kinetic energy portion of
the Hamiltonian is incorporated into the scaling factor

20) = 5757 [[ew{~E0"p o

and the remaining portion of the Hamiltonian is the
potential energy in mass-weighted coordinates

(11)

V(@) ==q'Kq (12)

The distribution in Eq. (10), indicates that the most
populated conformation states are those whose displace-
ments from the equilibrium (§ = 0) correspond to the
lowest potential energies as defined by Eq. (12). These
conformation displacements are more easily identified by
projecting the mass-weighted generalized coordinate onto
a new basis defined by the solutions to the eigenproblem

Kv; = hiv; (13)
The significance of the eigenvectors ({#;}, unit length by
convention) and eigenvalues ({A};,) becomes apparent
when considering the forces and energies associated with
conformation displacements along the eigenvector axes.

The restoring force opposing displacements away from
the equilibrium state is

ol = - "5~ kq (19

Evaluating this force for a unit magnitude displacement
along one of the eigenvectors produces
fr(¥i) = —K¥; = 0¥, (15)

which indicates that the restoring force acts along the
same axis as the displacement, but in the opposite direc-

tion. The eigenvectors define the axes of harmonic oscil-
lations around the equilibrium state and the eigenvalues
are the corresponding squared frequencies.

The potential energy associated with a unit magnitude
displacement along one of the eigenvectors is

V(vi) =

Sk

(16)

This simple relationship complements Eq. (10), and indi-
cates that the most populated conformation states are
reached by displacements along the low index (i.e. low
energy) eigenvectors. K is symmetric so the eigenvectors,
also referred to as normal modes or mode shapes, are
pairwise orthogonal and define a basis for all conforma-
tion motions around the equilibrium state. The eigenvec-
tor basis and its relationship to the system’s potential
energy are the foundation for all NMA methods and will
be referenced in the icNMA method section.

REVIEW OF cNMA

The reader is referred to the original publications®’
for the full derivation and application of cNMA. The fol-
lowing section restates the interaction model and the
generalized coordinates, which are both used during the
formulation of icNMA.

A structure of n atoms is represented as N rigid bodies
(clusters of atoms). The harmonic potential defined in
Eq. (1) is produced by defining an ENM, in which the
clusters are interconnected by a network of springs with
an atomic cutoff distance of r. = 5 A. No springs are
defined between atoms within a cluster, so this ENM is a
subset of the traditional atomistic ENM.

The clustering can be defined on a per residue basis,
which is the highest resolution application of cNMA, but
most costly at O(n?); it can be defined according to do-
main, chain or subunit, which break the dependence of
N on n, allowing the ctNMA method to achieve O(n)
computational complexity; or it can be defined by some
combination of these options as a hybrid multiscale
model. As an alternative to these hierarchically-based
clustering schemes, studies of protein flexibility and ri-
gidity have been conducted®®00 and incorporated into
coarse-grained models.%1 The Vishveshwara group devel-
oped a clustering algorithm based on graph spectral anal-
ysis62 and have used other graph theoretic methods to
study structure connectivity.63

Regardless of the clustering algorithm wused with
cNMA, a structure’s conformation is defined by the posi-
tion and orientation of the N embedded rigid bodies.
The translational motion of cluster ¢ is measured by the
displacement of its center of mass, x., with respect to its
location in the initial equilibrium state, xcZ , as defined by

Ae = Xc —Xg (17)
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The rotational displacement of cluster ¢ is parameterized
by the axis-angle vector y. € R’. This vector can be
expressed as y. = 0. - d., where a. is the normalized
direction of . and 0. is the magnitude of vy .. The rota-
tion matrix corresponding to <. is expressed with
Rodrigues’ formula as

R(ve) = exp {J(vo)} (18)

=I5 +sin(0)] (@) + (1 — cos(0))](a.)*  (19)

where [5 is the 3 X 3 identity matrix and the skew sym-
metric matrix function, J: R® — R>*3, is defined by

a 0 —c b
Jlbl=|¢ 0 -—a (20)
c -b a 0

Each cluster’s generalized coordinates are given by

o =[x\ v e R (21)

and the whole structure’s generalized coordinates are the
stacked vector

8=[5!,...,8L]" e R¥ (22)

METHOD

Given the initial, C;, and final, Cr, conformations, the
transition pathway is a sequence of connecting interme-
diate conformations, {C;}. The first conformation in this
sequence is defined to be the initial conformation:
Cy = C;. The remaining pathway progresses towards Cr
and is generated by the following iterative procedure:

1. Perform ¢cNMA on C;. .

2. Compute the reference direction, 8, from C; to Cr.

3. Construct the global motion, g from ¢cNMA modes
with guidance from reference direction.

4. Generate the next conformation in the pathway by
displacing the current conformation according to the
global motion. This can be conveniently expressed
as Ci1 =Ci+ g

The cNMA computations of the first step are based on
the derivations in Section “Normal Mode Analysis
Derived from Hamiltonian Mechanics”, and are com-
puted in the cluster coordinates defined in Section
“Review of ctNMA”. The reference direction in the second
step and the global motion construction in the third
step, are defined in the following sections.
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Reference direction

The reference direction points from the current con-
formation, C;, to the desired goal conformation, Cg. The
reference direction is only used to identify whether can-
didate motions move towards or away from the final
conformation.

The translational component of cluster ¢ of the refer-
ence direction is calculated as

Xe = X — %X (23 )
where x7 and x. are the center of mass positions of clus-
ter ¢ in the goal and current intermediate conformations,
respectively.

The rotational motion of cluster ¢ of the reference
direction is calculated by solving for the rotation that
optimally aligns cluster ¢ of the current conformation
with cluster ¢ of the final conformation. Each atom’s
Cartesian coordinates are placed in sequence as a column
vector in the matrix A € R**" for the current conforma-
tion and in matrix B € R*™" for the final conformation.
The rotation matrix

R. = [BATABT]}[AB"]"! (24)
is applied to the positions in B and the new atomic posi-
tions in the columns of R.B are optimally alignment in
RMSD with the corresponding column positions in A.
Inverting the relationship defined in Eq. (18) provides a
closed form solution for extracting the axis-angle vector,
Yo from }AZC

The cluster’s reference direction is defined as

8= x4 e R (25)

and the conformation’s reference direction is given by the
stacked vector

. . 1T
5 — [a{,...,a};} e RN (26)
Global motion
The Hamiltonian mechanics analysis in Section

“Normal Mode Analysis Derived from Hamiltonian
Mechanics” identifies a set of basis motions for the space
of conformation displacements. The lowest energy
motions from the basis lead to the most populated
conformation states in the ensemble representation. This
section develops a method for constructing a single con-
formation displacement from the set of “building block”
basis motions. In general, a set of mode shapes are inde-
pendent oscillations with distinct frequencies, thus pre-
cluding their superposition. However, in the case of
icNMA, there are two major factors which support the
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representation of the mode set by the subspace that it
spans rather than as a set of independent motions.

Consider the extreme case where multiple modes have
the same eigenvalue. The modes degenerate into an arbi-
trary, pairwise orthogonal set. In this situation, the spe-
cific mode shapes are no longer important, they only
serve as basis vectors of a subspace. This degeneration is
not an all or none property. As eigenvalues become
increasingly close, individual mode directions become
increasingly more arbitrary. In the context of coarse-
grained NMA, the first few low modes, at best, may be
sufficiently separated in the frequency domain allowing
for analysis of their specific motions.64 However, the en-
semble of lowest modes is usually quite dense in the fre-
quency domain and is accordingly subject to mode
degeneration.

The second major factor contributing to the use of a
global motion results from the ENM atomic interaction
model. The ENM is a harmonic, “smooth” approxima-
tion of the energy surface. Distinguishing between mode
shapes in this approximate subspace would be artificial
and an over interpretation of the model. Van Wyns-
berghe and Cui® present an example illustrating the im-
portance of motion ensembles over individual modes.
They use a motion correlation analysis and demonstrate
that a pair of structural components in the voltage gated
ion channel, KvAP, are correlated under the lowest mode,
anticorrelated under the second lowest mode and show
no correlation under the ensemble of the lowest 76
modes.

The conformation space between equilibrium states is
unstable and supportive of an ensemble of trajectories. 43
In agreement with this, the subspace of low frequency
modes is multidimensional and identifies a distribution
of conformations. The question that now remains is how
to appropriately construct a global motion within the
low-mode subspace that advances a trajectory across the
energy landscape to the goal conformation.

The derivations in Section “Normal Mode Analysis
Derived from Hamiltonian Mechanics” deal with the
properties of individual modes. The global motion aims
to combine multiple modes into a single representative
motion and requires additional consideration. The prob-
ability density function in Eq. (10) identifies the most
populated conformation states by relating them to their
associated potential energies in Eq. (12). This result sup-
ports the construction of a global motion from the nor-
mal modes derived in Eq. (13). The first six eigenvalues
are zero valued and correspond to rigid translation and
rotation of the structure; these motions are not included
in the global motion. The remaining mode shapes,
indexed {7,...,d}, are nonrigid deformations and are
included in the global motion. The normal modes are
derived in a mass-weighted coordinate system, but it is
more appropriate to express the global motion in the
non-mass-weighted cluster coordinates. This is accom-

plished by reversing the coordinate change in Eq. (3)
with the transform

1/2 -

vi=M, v (27)

The equipartition theorem states that the potential
energy of a system is distributed equally, on average,
across each of the system’s degrees of freedom. The nor-
mal mode solutions to Eq. (13) define a basis for which
each mode shape represents one degree of freedom. Con-
formation displacements in the direction of each mode
shape must produce a constant valued energy, when aver-
aged over the pathway. This is achieved by defining the
global motion as

(28)

where each mode is scaled by two terms.

The 1/ Vi scaling is a foundation that produces
exactly equal energies for all modes [Eq. (16)]. The
inverse frequency scaling corresponds to the physical
interpretation of “soft” lower frequency modes moving
along shallower slopes of the energy basin than the
“stiff” higher frequency modes. The lower frequency
modes achieve a greater magnitude of displacement than
the higher frequency modes under the same fixed energy.

The w; terms are undetermined weighting factors
which allow for variability of each mode’s relative contri-
bution, subject to the following: (i) The equipartition
theorem requires the average energy contribution from
each mode to be uniform (i.e. {Iw}l) = const), and (ii)
Each of the steps in the transition pathway must be equal
in energy so that no part of the pathway is biased by
unequal sampling (i.e. V(g) = const). Both of these con-
straints are addressed by evaluating the potential energy
of an arbitrary global motion.

1 d ! d w;
Vig) = — § E —L 29
© 2(@) = )
" (30)

:;<Z 2 7) Zﬁ

L Kv;
Aj

d
Z (31)
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(34)

The orthogonality of the eigenvectors reduces the dot
product in the last parentheses to a delta function, which
eliminates the summation over j.

Global motions of equal energy (and a weighting fac-
tor normalization constraint) are produced by setting the
result of Eq. (34), to a constant

(35)

This is an equation for a hypersphere whose radius, sv/2,
sets a constant value for the overall energy of the mode
ensemble. An optimization over the w; values on the
hypersphere can be used to construct the global motion
that most directly moves to the goal conformation. How-
ever, this optimization is too costly for iterative applica-
tion and does not necessarily satisfy the constraint: (lw;l)
= const.

It is difficult to allow the modes to vary in energy
along the pathway and still guarantee the final distribu-
tion is equal. This is resolved by setting all w; values to
the same constant magnitude. This computational con-
venience, which also reduces the dimension of the opti-
mization space, is expressed as

Si =+1

wW;=S5i-¢C 2
c =S

(36)

d—=6

where s; is the sign of the weighting factor and c¢ is the
constant magnitude, which is determined directly from
the constant energy constraint [Eq. (35)]. The set of all
possible w; combinations define the 2% ¢ vertices of a
hypercube inscribed within the original hypersphere. This
is a tremendous reduction in search space dimensionality,
but is still too computationally costly. The alternative
employed here is to independently set each s; value rather
than simultaneously optimize over the hypercube verti-
ces. This simplification reduces the computational com-
plexity to a series of d — 6 comparisons.

The constant magnitude, ¢, defined in Eq. (36), is fac-
tored out of the global motion summation producing the
expression
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(37)

The remainder of this section is a discussion of the
weighting factor magnitude (¢), the summation upper
bound (d), the mode shape sign choice (s;), and the
implications of mode shape “addition”.

The weighting factor magnitude, ¢, is defined in terms
of a constant energy level, s, which is distributed equally
over the d — 6 nonrigid modes [Eq. (36)]. Selecting an
appropriate energy level is not trivial or even necessarily
uniform across structures. A qualitatively equivalent result
is achieved by scaling the global motion to produce a pre-
determined root-mean-square displacement (RMSD), L.
The reason for this approach is that the interaction
model for cNMA is an ENM defined by an atomic sepa-
ration distance (r. = SA). The ENM remains valid as
long as the conformation displacement is small, ensuring
that the local geometries do not change significantly.
Restricting the global motion to a “local neighborhood”
is more naturally stated with an RMSD constraint than
an energy constraint.

The summation upper bound, d, can be reduced from
its maximum value (i.e. the total number of modes: d =
6N) to isolate the contribution from the lower modes.
Before the global motion is scaled with the coefficient ¢,
it has a total magnitude given by: m(d) = Zfﬂf»fl/ 2,
Therefore, to achieve a particular percentage, p, of this
total magnitude, a new upper bound, d, on the summa-
tion is defined such that

m(d) = p - m(d) (38)
The distribution of the frequency spectrum results in
d < pd and often times d < pd.

The mode shapes of cNMA (and all NMA-based tech-
niques) are indications of principal axes of motion, not
directions. The general equation for an eigenproblem Av
= v indicates that the sign of the mode shape is arbi-
trary: if {v, A} is a solution, then so is {—v A}. In the
context of analyzing a single conformation with an
NMA-based method, the sign ambiguity is irrelevant
because each mode shape can be visualized in the “plus”
and “minus” direction to observe the entire oscillation
around the equilibrium state. However, in the context of
transition pathway generation, a sign choice must be
made. The desired result is a pathway which continues to
minimize RMSD from the goal conformation, Cgr.

A direct implementation of the RMSD minimization
involves displacing the current intermediate conforma-
tion in the “plus” and “minus” directions along each
mode shape, projecting the conformations from cluster
coordinates into full Cartesian coordinates, computing
RMSD values to Cz and choosing the minimum. A sig-
nificantly more efficient (and equivalent) method is to
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compute the reference direction according to Eq. (26),
and then a simple dot product: s; = sign(v; - 9) indicates
which direction to follow.

All that remains of the global mode construction in
Eq. (37) is the addition operation. In Cartesian coordi-
nate-based NMA, mode shapes can be unambiguously
combined to produce the global motion (i.e. addition of
translational displacements is commutative). The ctNMA
method is based on cluster coordinates which include
translational and rotational components. The transla-
tional displacements are Cartesian and can be summed.
The rotational components are given by axis—angle vec-
tors which represent rotation matrices. After each mode’s
rotational displacements have been put into rotation ma-
trix form, the cumulative rotational displacement on
each cluster is computed by matrix multiplication, which
is not a commutative operation. Because of the computa-
tional expense of converting each axis—angle vector and
the arbitrary order of multiplication, this process is not
desirable.

The small motion assumption which the cNMA
method is predicated on, allows the rotational displace-
ment of each mode to be represented by the first-order
approximation of Rodrigues’ expression for the rotation
matrix [Eq. (18)]: R(y)~ l5 + J(7y). The composition of
two rotation matrices can be simplified as

R(y)R(v2) = I +J(v; +7v2) (39)
by making use of the facts that (1) the addition of skew
symmetric matrices is equivalent to summing the corre-
sponding axis—angle vectors; and (2) the second-order
term J(y1)J(y») can be discarded in this first-order calcula-
tion. The matrix multiplication is reduced to the addition
of axis—angle vectors, which is a commutative process and
computationally cheap. It is therefore a straightforward
process to create a global motion from a set of c(NMA
mode shapes and frequencies, as defined by Eq. (37).

Transition pathway discussion

The ENM is redefined for each intermediate structure
enabling the cNMA mode set to reflect the current acces-
sible motion space. The ENM implicitly assumes that
each intermediate conformation is at equilibrium. This
condition cannot be strictly observed over the course of
the transition. However, the core transition motion that
we aim to capture involves large coordinated structure
motions, which are primarily dependent on the overall
shape and density of the ENM and are substantially less
sensitive to local rearrangements.!8:66 It is for this rea-
son that we can continue to apply the ENM as a travel-
ing energy basin across the transition pathway. As an al-
ternative, there are switching methods for including
multiple energy basins in various network based mod-
els,48’49 as well as MD methods.67

The cumulative effect of cNMA recalculation provides
icNMA with the flexibility to produce a nonlinear path-
way and to allow temporary localized unfolding. These
two characteristics are critical in generating a functionally
relevant transition pathway,48 and are also both inher-
ently excluded by linear interpolation methods.

As discussed in the Introduction, there are interpola-
tion-based methods that use interatomic distances to
drive one conformation to another. These approaches
guarantee a transition pathway that reaches the goal con-
formation and maintains atomic contact distances within
the range defined by the starting and goal conformations.
However, these forced motions do not take into account
the local energy landscape. In contrast, the icNMA
method is not artificially constrained and is able to pro-
duce conformations with undesirable local geometries
(i.e. bonded atomic pairs that stretch too far apart or
nonbonded atoms that approach too closely).

The icNMA method is 