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INTRODUCTION

Experimental methods have produced a wealth of high-resolution

protein structures. At the time of writing, the Protein Data Bank

(PDB1) contains more than 40,000 structures solved by X-ray crystal-

lography, nearly half of which are at a resolution better than 2 Å. This

detailed information has provided a solid foundation for understanding

the structure–function relationship, which involves the determination of

biological function from structure. This article presents a new method,

called iterative cluster normal mode analysis (icNMA), which produces

a transition pathway between known conformations by following the

local accessible motion space of the evolving conformation. The result-

ing pathway provides insight into motion-driven biological function.

Numerous experimental methods have been employed in the study

of macromolecular structure and dynamics, including fluorescent reso-

nance energy transfer,2 nuclear magnetic resonance,3,4 hydrogen

exchange,5 and crystallography. These purely experimental methods

are often limited by a tradeoff between spatial and temporal resolu-

tion. In response to this obstacle, computational modeling techniques

have been applied with great success.

Before icNMA is presented, it will be useful to review previous

modeling techniques, especially the cluster normal mode analysis

(cNMA6,7) method upon which icNMA is based. The first set of models

discussed (including cNMA) are primarily concerned with identifying

the accessible motion space local to a given equilibrium conformation.

This first set serves as a foundation for understanding the second set,

which are capable of exploring the extended energy landscape.

In one of the earliest computational models, Levitt8 uses a simplified

structure representation and a potential energy function to study protein

folding. On the basis of similar concepts, molecular dynamics (MD)

methods use complex potential functions and numerical integration to
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ABSTRACT

Computational models provide insight into the

structure–function relationship in proteins.

These approaches, especially those based on

normal mode analysis, can identify the accessi-

ble motion space around a given equilibrium

structure. The large magnitude, collective

motions identified by these methods are often

well aligned with the general direction of the

expected conformational transitions. However,

these motions cannot realistically be extrapo-

lated beyond the local neighborhood of the

starting conformation. In this article, the itera-

tive cluster-NMA (icNMA) method is presented

for traversing the energy landscape from a

starting conformation to a desired goal confor-

mation. This is accomplished by allowing the

evolving geometry of the intermediate struc-

tures to define the local accessible motion

space, and thus produce an appropriate dis-

placement. Following the derivation of the

icNMA method, a set of sample simulations

are performed to probe the robustness of the

model. A detailed analysis of b1,4-galactosyl-
transferase-T1 is also given, to highlight many

of the capabilities of icNMA. Remarkably, dur-

ing the transition, a helix is seen to be

extended by an additional turn, emphasizing a

new unknown role for secondary structures to

absorb slack during transitions. The transition

pathway for adenylate kinase, which has been

frequently studied in the literature, is also dis-

cussed.
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produce conformation trajectories.9,10 These atomic reso-

lution models and all-inclusive potential functions come at

a significant computational cost,11 often restricting simu-

lations to timescales orders of magnitude shorter than rele-

vant biological processes.

Normal mode analysis (NMA), which is well suited for

identifying large-scale, cooperative structure motions,

was introduced.12–16 The success of NMA-based meth-

ods can be attributed to the robustness and simplicity of

motions around the equilibrium conformation.17,18 The

first NMA models were still based on complex potential

functions and thus presented computational limitations.

This was addressed by the elastic network model

(ENM19), which proposed the usage of a single parame-

ter harmonic potential function to model all pairwise

atomic interactions. The Gaussian network model20,21

used a coarse-grained model relying only upon the a-car-

bon trace representation of a protein along with the

ENM to produce a measure of atomic mobility. This sca-

lar model was then extended into the anisotropic net-

work model (ANM22) to capture magnitude and direc-

tion of atomic fluctuations.

The already simplified ANM representation has been

even further reduced through the use of coarse graining,

in which multiple atoms are grouped into single repre-

sentative points. Excellent reviews of coarse-grained mod-

els are given by Tozzini23 and Bahar and Rader.17 A

comparison between varying levels of grain resolution is

given by Sen et al.24 Although these ‘‘bead models’’ do

succeed in reducing the number of degrees of freedom

(DOFs) in the structure representation, they do so at the

expense of altering atomic interaction geometries (i.e.

when multiple atoms are represented by a single point,

all of their distinct contact interactions must be collapsed

onto that representative point).

In response to the shortcomings of coarse-grained

NMA, the authors developed cNMA6,7 in which groups

of atoms are represented as rigid bodies embedded in the

ENM. This approach utilizes a multiscale structure repre-

sentation which includes all atoms and all pairwise

atomic interactions (i.e. no deformed geometries), while

at the same time, reduces the total number of DOFs

needed in the parameterization. The cNMA method is

the foundation for icNMA and is reviewed in Section

‘‘Review of cNMA’’. The complete derivation and com-

parison of cNMA to ENM-based Ca-NMA is given in

Schuyler amd Chirikjian6 and its application at atomic

resolution to large structures is given in Schuyler and

Chirikjian.7 The RTB method25,26 is similar to cNMA,

but several substantial differences in coordinate system

definitions and computational procedures are discussed

in Schuyler and Chirikjian.7 Clustering schemes have

also been incorporated into MD methods27 and into

NMA methods which explicitly define solvent.28

Proteins are known to sample various conformation

states essential for carrying out their functions. These

states range from relatively minor changes in structure to

large scale rearrangements, such as those seen in hemo-

globin and myosin. There have been many attempts at

understanding these transitions.29–32 It has been estab-

lished that relatively few, low-frequency normal modes

can identify the direction of global motions required to

achieve conformational transitions.33 This general cate-

gorization has been further refined by a database study

that relates the degree of collectivity in a transition with

the effectiveness of ENM normal modes to capture the

transition direction.34,35 Motion correlation analysis

across the low frequency modes has provided information

on cooperative structure motion and domain stability.36

The methods discussed thus far are only relevant to

the local motion subspace around an equilibrium confor-

mation. To achieve a full understanding of biologically

relevant structure transitions, we now introduce a second

class of methods, which are capable of exploring the

extended energy landscape.

Cryo-electron microscopy (cryo-EM) has been used to

study conformational changes.37 The identification of

secondary structure elements has been used to fit atomic

resolution subunits onto low-resolution, cryo-EM elec-

tron density maps of large complexes.38 There has also

been success in coupling cryo-EM with NMA-based

methods. The continuous valued density map has been

converted into discrete mass locations, which serve as the

basis for low-resolution NMA. This approach shows

agreement with the lowest modes of atomic resolution

NMA.39 There have also been methods for deforming

known crystal structures onto low-resolution cryo-EM

electron density maps.40–42 These methods use cost

functions to optimally select a subset of normal modes

and assign relative weighting coefficients that best pro-

duce the desired conformational changes. These methods

start to introduce dynamics into the structure analysis,

but it must be noted that the series of conformations

converging to the best fit is not intended as (and can not

be interpreted as) a pathway, but as a byproduct of the

fitting process.

Linear interpolation of Cartesian coordinates between

known conformation pairs causes obvious steric viola-

tions, but modified interpolation methods are able to

avoid this. For example, the elastic network interpolation

(ENI) method interpolates between contact maps of two

conformations.43,44 One particular aspect of this and

many of the other models for generating transition path-

ways is that they lead to a single pathway; this neglects

the widely perceived stochastic nature of protein folding.

Consequently these single pathway methods likely pro-

vide a most probable representative pathway, with varia-

tions around these single pathways providing a full en-

semble representation. For example, ENI is able to fit a

pathway generated for a core central domain of the 16S

rRNA onto an MD trajectory using only the lowest 1%

of the normal modes.45 Normal modes are also able to
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guide conformational changes according to a small set of

distance constraints46 or an X-ray diffraction pattern.47

Yang et al.34 investigate the transition pathways of 170

pairs of structures and find that the normal modes suc-

ceed in specifying the directionalities of the transitions

only when the collectivity of the motion is high.

The undesired, but inherent, linearity of the interpola-

tion methods is addressed by a very successful family of

methods that use switching functions to allow for the

transition pathway to shift from the energy basin of one

conformation to that of another.48–54 The plastic net-

work model (PNM50) uses an ENM to define energy

basins around each known state and then solves for the

saddle point located at the global minimum of their inter-

section. The transition pathway connecting the saddle

point to the neighboring equilibrium states is produced

by the TReK steepest descent method in CHARMM.55 Of

particular interest are that the PNM assumes the globally

optimal transition state is accessible from the equilibrium

states and that the connecting pathways from the saddle

point down to each equilibrium state are the preferred

pathways in the reverse direction. Remarkably, the PNM

pathway for adenylate kinase is consistent with intermedi-

ate crystal structures. In a similar way, Yang et al.56 find

good agreement between the normal modes and the

conformational variations observed across 156 X-ray

structures and 28 NMR structures (reported in one set).

Notably, these sets include unbound structures as well as

ones having different ligands.

The cryo-EM methods and the interpolation methods

give insight into the dynamics of large conformational

changes, but they are based on either forced motions or

artificial sampling of mode space. These issues are

addressed by icNMA, which uses the efficient, all atom

cNMA method to guide the transition pathway according

to the motion space described by each intermediate con-

formation. The remainder of the article is structured as

follows. A Hamiltonian mechanics foundation for normal

mode analysis is presented in a preliminary section. This

background simplifies the icNMA derivation in the

method section and relates the icNMA method to several

fundamentals of statistical mechanics allowing for a more

powerful interpretation of the results. An analysis of

b1,4-galactosyltransferase-T1 is given so that further

details of icNMA may be discussed in context. A Q1 ver-

sus Q2 plot is given for the frequently studied adenylate

kinase; it shows nonlinearity of the transition path, which

is in agreement with other methods.50,51,57,58

NORMAL MODE ANALYSIS
DERIVED FROM HAMILTONIAN
MECHANICS

The icNMA method is based on a few fundamental

theories from statistical mechanics. These concepts are

presented and will allow for a more direct formulation of

the icNMA method.

For small motions about an equilibrium, the potential

energy of a biomolecular structure is parameterized by its

generalized coordinates, q, and is written as

V ðqÞ ¼ C þ 1

2
qTKq ð1Þ

where C is a constant (which can be ignored by appro-

priate choice of the datum in the definition of potential

energy) and K is the stiffness (or Hessian) matrix. This

quadratic potential is nothing more than the first few

terms in the Taylor-series expansion of the molecular

potential, where the linear term drops out from the defi-

nition of equilibrium (i.e. @V/@qi 5 0 for all values of i).

The Hamiltonian of the system is defined as

Hðq; pÞ ¼ 1

2
pT ½M�1ðqÞ�p þ V ðqÞ ð2Þ

where p is the vector of all conjugate momenta corre-

sponding to the generalized coordinates and M(q) is the

mass matrix with the ‘‘21’’ exponent denoting its

inverse. Depending on the choice of coordinates, the

mass matrix can be reduced to a constant, M0, for small

deformations around an equilibrium. This is demon-

strated in Schuyler and Chirikjian6 for cluster coordi-

nates, which are used by icNMA.

The foundation for normal mode analysis is more eas-

ily derived from the Hamiltonian by performing the fol-

lowing coordinate transforms

~q ¼ M
1=2
0 q ð3Þ

~p ¼ M
�1=2
0 p ð4Þ

where the exponent of ‘‘1/2’’ indicates a matrix square

root. The Hamiltonian is expressed in these coordinates as

~Hð~q; ~pÞ ¼ 1

2
~pT~p þ 1

2
~qT ~K~q ð5Þ

where we have defined the mass-weighted Hessian as

~K ¼ M
�1=2
0 KM

�1=2
0 ð6Þ

The Boltzmann distribution describes the accessibility of

all states in an equilibrium ensemble and is given as the

probability density function on phase space

f ð~q; ~pÞ ¼ 1

ZðbÞ expf�b ~Hð~q; ~pÞg ð7Þ

where

ZðbÞ ¼
Z
~q

Z
~p

expf�b ~Hð~q; ~pÞgd~pd~q ð8Þ
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is the partition function, and b 5 1/kBT (kB is Boltz-

mann’s constant and T is temperature measured in

degrees Kelvin).

In the context of generating conformational ensembles,

it is more desirable to have a distribution over only the

generalized coordinate (q̃) and not over the conjugate

momenta (p̃). The constant mass matrix has effectively

decoupled the q̃ and p̃ terms in the Hamiltonian and

allows the Boltzmann distribution to be integrated in

closed form over p̃ yielding a Gaussian distribution of

conformations

qð~qÞ ¼
Z
~p

f ð~q; ~pÞd~p ð9Þ

¼ ẐðbÞ exp �b~V ð~qÞ
� �

ð10Þ

where the integration over the kinetic energy portion of

the Hamiltonian is incorporated into the scaling factor

ẐðbÞ ¼ 1

ZðbÞ

Z
~p

exp �b

2
~pT~p

� �
d~p ð11Þ

and the remaining portion of the Hamiltonian is the

potential energy in mass-weighted coordinates

~V ð~qÞ ¼ 1

2
~qT ~K~q ð12Þ

The distribution in Eq. (10), indicates that the most

populated conformation states are those whose displace-

ments from the equilibrium (q̃ 5 0) correspond to the

lowest potential energies as defined by Eq. (12). These

conformation displacements are more easily identified by

projecting the mass-weighted generalized coordinate onto

a new basis defined by the solutions to the eigenproblem

~K~v i ¼ ~ki~v i ð13Þ

The significance of the eigenvectors ({ṽi}, unit length by

convention) and eigenvalues ðf~kgiÞ becomes apparent

when considering the forces and energies associated with

conformation displacements along the eigenvector axes.

The restoring force opposing displacements away from

the equilibrium state is

f Rð~qÞ ¼ � @ ~V ð~qÞ
@~q

¼ �~K~q ð14Þ

Evaluating this force for a unit magnitude displacement

along one of the eigenvectors produces

f Rð~v iÞ ¼ �~K~v i ¼ �~ki~v i ð15Þ

which indicates that the restoring force acts along the

same axis as the displacement, but in the opposite direc-

tion. The eigenvectors define the axes of harmonic oscil-

lations around the equilibrium state and the eigenvalues

are the corresponding squared frequencies.

The potential energy associated with a unit magnitude

displacement along one of the eigenvectors is

~V ð~v iÞ ¼
~ki
2

ð16Þ

This simple relationship complements Eq. (10), and indi-

cates that the most populated conformation states are

reached by displacements along the low index (i.e. low

energy) eigenvectors. K̃ is symmetric so the eigenvectors,

also referred to as normal modes or mode shapes, are

pairwise orthogonal and define a basis for all conforma-

tion motions around the equilibrium state. The eigenvec-

tor basis and its relationship to the system’s potential

energy are the foundation for all NMA methods and will

be referenced in the icNMA method section.

REVIEW OF cNMA

The reader is referred to the original publications6,7

for the full derivation and application of cNMA. The fol-

lowing section restates the interaction model and the

generalized coordinates, which are both used during the

formulation of icNMA.

A structure of n atoms is represented as N rigid bodies

(clusters of atoms). The harmonic potential defined in

Eq. (1) is produced by defining an ENM, in which the

clusters are interconnected by a network of springs with

an atomic cutoff distance of rc 5 5 Å. No springs are

defined between atoms within a cluster, so this ENM is a

subset of the traditional atomistic ENM.

The clustering can be defined on a per residue basis,

which is the highest resolution application of cNMA, but

most costly at Oðn3Þ; it can be defined according to do-

main, chain or subunit, which break the dependence of

N on n, allowing the cNMA method to achieve OðnÞ
computational complexity; or it can be defined by some

combination of these options as a hybrid multiscale

model. As an alternative to these hierarchically-based

clustering schemes, studies of protein flexibility and ri-

gidity have been conducted59,60 and incorporated into

coarse-grained models.61 The Vishveshwara group devel-

oped a clustering algorithm based on graph spectral anal-

ysis62 and have used other graph theoretic methods to

study structure connectivity.63

Regardless of the clustering algorithm used with

cNMA, a structure’s conformation is defined by the posi-

tion and orientation of the N embedded rigid bodies.

The translational motion of cluster c is measured by the

displacement of its center of mass, xc, with respect to its

location in the initial equilibrium state, xIc , as defined by

vc ¼ xc � xIc ð17Þ

icNMA: Protein Confirmation Transitions
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The rotational displacement of cluster c is parameterized

by the axis-angle vector gc [ R3. This vector can be

expressed as gc 5 yc � âc, where âc is the normalized

direction of gc and yc is the magnitude of gc. The rota-

tion matrix corresponding to gc is expressed with

Rodrigues’ formula as

RðgcÞ , exp fJðgcÞg ð18Þ

¼ I3 þ sinðucÞJðâcÞ þ ð1� cosðucÞÞJðâcÞ2 ð19Þ

where I3 is the 3 3 3 identity matrix and the skew sym-

metric matrix function, J: R3 ? R333, is defined by

J

a

b

c

0
@

1
A ¼

0 �c b

c 0 �a

�b a 0

2
4

3
5 ð20Þ

Each cluster’s generalized coordinates are given by

dc ¼ ½xT
c ;g

T
c �

T 2 R6 ð21Þ

and the whole structure’s generalized coordinates are the

stacked vector

d ¼ ½dT1 ; . . . ; d
T
N �

T 2 R6N ð22Þ

METHOD

Given the initial, CI , and final, CF , conformations, the

transition pathway is a sequence of connecting interme-

diate conformations, fCig. The first conformation in this

sequence is defined to be the initial conformation:

C1 ¼ CI . The remaining pathway progresses towards CF
and is generated by the following iterative procedure:

1. Perform cNMA on Ci.
2. Compute the reference direction, d̂, from Ci to CF .
3. Construct the global motion, g, from cNMA modes

with guidance from reference direction.

4. Generate the next conformation in the pathway by

displacing the current conformation according to the

global motion. This can be conveniently expressed

as Ciþ1 ¼ Ciþ g.

The cNMA computations of the first step are based on

the derivations in Section ‘‘Normal Mode Analysis

Derived from Hamiltonian Mechanics’’, and are com-

puted in the cluster coordinates defined in Section

‘‘Review of cNMA’’. The reference direction in the second

step and the global motion construction in the third

step, are defined in the following sections.

Reference direction

The reference direction points from the current con-

formation, Ci , to the desired goal conformation, CF . The
reference direction is only used to identify whether can-

didate motions move towards or away from the final

conformation.

The translational component of cluster c of the refer-

ence direction is calculated as

x̂c ¼ xFc � xc ð23Þ

where xFc and xc are the center of mass positions of clus-

ter c in the goal and current intermediate conformations,

respectively.

The rotational motion of cluster c of the reference

direction is calculated by solving for the rotation that

optimally aligns cluster c of the current conformation

with cluster c of the final conformation. Each atom’s

Cartesian coordinates are placed in sequence as a column

vector in the matrix A [ R33n for the current conforma-

tion and in matrix B [ R33n for the final conformation.

The rotation matrix

R̂c ¼ ½BATABT �
1
2½ABT ��1 ð24Þ

is applied to the positions in B and the new atomic posi-

tions in the columns of R̂cB are optimally alignment in

RMSD with the corresponding column positions in A.

Inverting the relationship defined in Eq. (18) provides a

closed form solution for extracting the axis-angle vector,

ĝc, from R̂c.

The cluster’s reference direction is defined as

d̂c ¼ x̂T
c ; ĝ

T
c

� �T2 R6 ð25Þ

and the conformation’s reference direction is given by the

stacked vector

d̂ ¼ d̂T1 ; . . . ; d̂
T
N

h iT
2 R6N ð26Þ

Global motion

The Hamiltonian mechanics analysis in Section

‘‘Normal Mode Analysis Derived from Hamiltonian

Mechanics’’ identifies a set of basis motions for the space

of conformation displacements. The lowest energy

motions from the basis lead to the most populated

conformation states in the ensemble representation. This

section develops a method for constructing a single con-

formation displacement from the set of ‘‘building block’’

basis motions. In general, a set of mode shapes are inde-

pendent oscillations with distinct frequencies, thus pre-

cluding their superposition. However, in the case of

icNMA, there are two major factors which support the

A. D. Schuyler et al.
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representation of the mode set by the subspace that it

spans rather than as a set of independent motions.

Consider the extreme case where multiple modes have

the same eigenvalue. The modes degenerate into an arbi-

trary, pairwise orthogonal set. In this situation, the spe-

cific mode shapes are no longer important, they only

serve as basis vectors of a subspace. This degeneration is

not an all or none property. As eigenvalues become

increasingly close, individual mode directions become

increasingly more arbitrary. In the context of coarse-

grained NMA, the first few low modes, at best, may be

sufficiently separated in the frequency domain allowing

for analysis of their specific motions.64 However, the en-

semble of lowest modes is usually quite dense in the fre-

quency domain and is accordingly subject to mode

degeneration.

The second major factor contributing to the use of a

global motion results from the ENM atomic interaction

model. The ENM is a harmonic, ‘‘smooth’’ approxima-

tion of the energy surface. Distinguishing between mode

shapes in this approximate subspace would be artificial

and an over interpretation of the model. Van Wyns-

berghe and Cui65 present an example illustrating the im-

portance of motion ensembles over individual modes.

They use a motion correlation analysis and demonstrate

that a pair of structural components in the voltage gated

ion channel, KvAP, are correlated under the lowest mode,

anticorrelated under the second lowest mode and show

no correlation under the ensemble of the lowest 76

modes.

The conformation space between equilibrium states is

unstable and supportive of an ensemble of trajectories.48

In agreement with this, the subspace of low frequency

modes is multidimensional and identifies a distribution

of conformations. The question that now remains is how

to appropriately construct a global motion within the

low-mode subspace that advances a trajectory across the

energy landscape to the goal conformation.

The derivations in Section ‘‘Normal Mode Analysis

Derived from Hamiltonian Mechanics’’ deal with the

properties of individual modes. The global motion aims

to combine multiple modes into a single representative

motion and requires additional consideration. The prob-

ability density function in Eq. (10) identifies the most

populated conformation states by relating them to their

associated potential energies in Eq. (12). This result sup-

ports the construction of a global motion from the nor-

mal modes derived in Eq. (13). The first six eigenvalues

are zero valued and correspond to rigid translation and

rotation of the structure; these motions are not included

in the global motion. The remaining mode shapes,

indexed {7,. . .,d}, are nonrigid deformations and are

included in the global motion. The normal modes are

derived in a mass-weighted coordinate system, but it is

more appropriate to express the global motion in the

non-mass-weighted cluster coordinates. This is accom-

plished by reversing the coordinate change in Eq. (3)

with the transform

v i ¼ M
�1=2
0 ~v i ð27Þ

The equipartition theorem states that the potential

energy of a system is distributed equally, on average,

across each of the system’s degrees of freedom. The nor-

mal mode solutions to Eq. (13) define a basis for which

each mode shape represents one degree of freedom. Con-

formation displacements in the direction of each mode

shape must produce a constant valued energy, when aver-

aged over the pathway. This is achieved by defining the

global motion as

g ¼
Xd
i¼7

wiffiffiffiffi
~ki

p v i ð28Þ

where each mode is scaled by two terms.

The 1=
ffiffiffiffi
~ki

p
scaling is a foundation that produces

exactly equal energies for all modes [Eq. (16)]. The

inverse frequency scaling corresponds to the physical

interpretation of ‘‘soft’’ lower frequency modes moving

along shallower slopes of the energy basin than the

‘‘stiff ’’ higher frequency modes. The lower frequency

modes achieve a greater magnitude of displacement than

the higher frequency modes under the same fixed energy.

The wi terms are undetermined weighting factors

which allow for variability of each mode’s relative contri-

bution, subject to the following: (i) The equipartition

theorem requires the average energy contribution from

each mode to be uniform (i.e. h|wi|i 5 const), and (ii)

Each of the steps in the transition pathway must be equal

in energy so that no part of the pathway is biased by

unequal sampling (i.e. V(g) 5 const). Both of these con-

straints are addressed by evaluating the potential energy

of an arbitrary global motion.

V ðgÞ ¼ 1

2

Xd
i¼7

wiffiffiffiffi
~ki

p v i

 !T

K
Xd
j¼7

wjffiffiffiffi
~kj

q v j

0
B@

1
CA ð29Þ

¼ 1

2

Xd
i¼7

wiffiffiffiffi
~ki

p ~vTi

 !
~K
Xd
j¼7

wjffiffiffiffi
~kj

q ~v j

0
B@

1
CA ð30Þ

¼ 1

2

Xd
i¼7

wiffiffiffiffi
~ki

p ~v i

 !
�
Xd
j¼7

wjffiffiffiffi
~kj

q ~K~v j

0
B@

1
CA ð31Þ
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¼ 1

2

Xd
i¼7

wiffiffiffiffi
~ki

p ~v i

 !
�
Xd
j¼7

wj

ffiffiffiffi
~kj

q
~v j

 !
ð32Þ

¼ 1

2

Xd
i¼7

Xd
j¼7

wiwj

ffiffiffiffi
~kj

q
ffiffiffiffi
~ki

p ð~v i � ~v jÞ ð33Þ

¼ 1

2

Xd
i¼7

w2
i ð34Þ

The orthogonality of the eigenvectors reduces the dot

product in the last parentheses to a delta function, which

eliminates the summation over j.

Global motions of equal energy (and a weighting fac-

tor normalization constraint) are produced by setting the

result of Eq. (34), to a constant

1

2

Xd
i¼7

w2
i ¼ s2 ð35Þ

This is an equation for a hypersphere whose radius, s
ffiffiffi
2

p
,

sets a constant value for the overall energy of the mode

ensemble. An optimization over the wi values on the

hypersphere can be used to construct the global motion

that most directly moves to the goal conformation. How-

ever, this optimization is too costly for iterative applica-

tion and does not necessarily satisfy the constraint: h|wi|i
5 const.

It is difficult to allow the modes to vary in energy

along the pathway and still guarantee the final distribu-

tion is equal. This is resolved by setting all wi values to

the same constant magnitude. This computational con-

venience, which also reduces the dimension of the opti-

mization space, is expressed as

wi ¼ si � c
si ¼ �1

c ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
2

d � 6

r
8><
>: ð36Þ

where si is the sign of the weighting factor and c is the

constant magnitude, which is determined directly from

the constant energy constraint [Eq. (35)]. The set of all

possible wi combinations define the 2d26 vertices of a

hypercube inscribed within the original hypersphere. This

is a tremendous reduction in search space dimensionality,

but is still too computationally costly. The alternative

employed here is to independently set each si value rather

than simultaneously optimize over the hypercube verti-

ces. This simplification reduces the computational com-

plexity to a series of d 2 6 comparisons.

The constant magnitude, c, defined in Eq. (36), is fac-

tored out of the global motion summation producing the

expression

g ¼ c
Xd
i¼7

siffiffiffiffi
~ki

p v i ð37Þ

The remainder of this section is a discussion of the

weighting factor magnitude (c), the summation upper

bound (d), the mode shape sign choice (si), and the

implications of mode shape ‘‘addition’’.

The weighting factor magnitude, c, is defined in terms

of a constant energy level, s, which is distributed equally

over the d 2 6 nonrigid modes [Eq. (36)]. Selecting an

appropriate energy level is not trivial or even necessarily

uniform across structures. A qualitatively equivalent result

is achieved by scaling the global motion to produce a pre-

determined root-mean-square displacement (RMSD), l.
The reason for this approach is that the interaction

model for cNMA is an ENM defined by an atomic sepa-

ration distance (rc 5 5Å). The ENM remains valid as

long as the conformation displacement is small, ensuring

that the local geometries do not change significantly.

Restricting the global motion to a ‘‘local neighborhood’’

is more naturally stated with an RMSD constraint than

an energy constraint.

The summation upper bound, d, can be reduced from

its maximum value (i.e. the total number of modes: d 5

6N) to isolate the contribution from the lower modes.

Before the global motion is scaled with the coefficient c,

it has a total magnitude given by: mðdÞ ¼
Pd

i¼7
~k�1=2
i .

Therefore, to achieve a particular percentage, p, of this

total magnitude, a new upper bound, d̂, on the summa-

tion is defined such that

mðd̂Þ ¼ p �mðdÞ ð38Þ

The distribution of the frequency spectrum results in

d̂ < pd and often times d̂ � pd.

The mode shapes of cNMA (and all NMA-based tech-

niques) are indications of principal axes of motion, not

directions. The general equation for an eigenproblem Av

5 kv indicates that the sign of the mode shape is arbi-

trary: if {v, k} is a solution, then so is {2v, k}. In the

context of analyzing a single conformation with an

NMA-based method, the sign ambiguity is irrelevant

because each mode shape can be visualized in the ‘‘plus’’

and ‘‘minus’’ direction to observe the entire oscillation

around the equilibrium state. However, in the context of

transition pathway generation, a sign choice must be

made. The desired result is a pathway which continues to

minimize RMSD from the goal conformation, CF .
A direct implementation of the RMSD minimization

involves displacing the current intermediate conforma-

tion in the ‘‘plus’’ and ‘‘minus’’ directions along each

mode shape, projecting the conformations from cluster

coordinates into full Cartesian coordinates, computing

RMSD values to CF and choosing the minimum. A sig-

nificantly more efficient (and equivalent) method is to
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compute the reference direction according to Eq. (26),

and then a simple dot product: si 5 sign(vi � d̂) indicates
which direction to follow.

All that remains of the global mode construction in

Eq. (37) is the addition operation. In Cartesian coordi-

nate-based NMA, mode shapes can be unambiguously

combined to produce the global motion (i.e. addition of

translational displacements is commutative). The cNMA

method is based on cluster coordinates which include

translational and rotational components. The transla-

tional displacements are Cartesian and can be summed.

The rotational components are given by axis–angle vec-

tors which represent rotation matrices. After each mode’s

rotational displacements have been put into rotation ma-

trix form, the cumulative rotational displacement on

each cluster is computed by matrix multiplication, which

is not a commutative operation. Because of the computa-

tional expense of converting each axis–angle vector and

the arbitrary order of multiplication, this process is not

desirable.

The small motion assumption which the cNMA

method is predicated on, allows the rotational displace-

ment of each mode to be represented by the first-order

approximation of Rodrigues’ expression for the rotation

matrix [Eq. (18)]: R(g)� I3 1 J(g). The composition of

two rotation matrices can be simplified as

Rðg1ÞRðg2Þ � I3 þ Jðg1 þ g2Þ ð39Þ

by making use of the facts that (1) the addition of skew

symmetric matrices is equivalent to summing the corre-

sponding axis–angle vectors; and (2) the second-order

term J(g1)J(g2) can be discarded in this first-order calcula-

tion. The matrix multiplication is reduced to the addition

of axis–angle vectors, which is a commutative process and

computationally cheap. It is therefore a straightforward

process to create a global motion from a set of cNMA

mode shapes and frequencies, as defined by Eq. (37).

Transition pathway discussion

The ENM is redefined for each intermediate structure

enabling the cNMA mode set to reflect the current acces-

sible motion space. The ENM implicitly assumes that

each intermediate conformation is at equilibrium. This

condition cannot be strictly observed over the course of

the transition. However, the core transition motion that

we aim to capture involves large coordinated structure

motions, which are primarily dependent on the overall

shape and density of the ENM and are substantially less

sensitive to local rearrangements.18,66 It is for this rea-

son that we can continue to apply the ENM as a travel-

ing energy basin across the transition pathway. As an al-

ternative, there are switching methods for including

multiple energy basins in various network based mod-

els,48,49 as well as MD methods.67

The cumulative effect of cNMA recalculation provides

icNMA with the flexibility to produce a nonlinear path-

way and to allow temporary localized unfolding. These

two characteristics are critical in generating a functionally

relevant transition pathway,48 and are also both inher-

ently excluded by linear interpolation methods.

As discussed in the Introduction, there are interpola-

tion-based methods that use interatomic distances to

drive one conformation to another. These approaches

guarantee a transition pathway that reaches the goal con-

formation and maintains atomic contact distances within

the range defined by the starting and goal conformations.

However, these forced motions do not take into account

the local energy landscape. In contrast, the icNMA

method is not artificially constrained and is able to pro-

duce conformations with undesirable local geometries

(i.e. bonded atomic pairs that stretch too far apart or

nonbonded atoms that approach too closely).

The icNMA method is designed to capture the core

motion of the transition pathway, but if tighter geometric

control over the intermediate conformations is preferred,

any of the following modifications can be applied if a

global motion causes an undesirable conformation: (i)

Perform an energy minimization to relax the intermedi-

ate conformation; or (ii) Revert the pathway back to the

previous conformation and stiffen the harmonic potential

between each pair of atoms that cause an undesirable

contact distance; or (iii) Revert the pathway back to the

previous conformation and merge the clusters containing

each pair of atoms that cause an undesirable contact dis-

tance. In Section ‘‘Results and Discussion’’, a comparison

is made between an unconstrained icNMA pathway and

one using the merged cluster modification.

Conformation comparison by RMSD
and bRMSD

Consider a pair of conformations that are based on

the same crystal structure. By the definition of clustering,

the relative atomic positions within each cluster remain

fixed, so the RMSD between conformations is entirely

due to differences in cluster locations. In this situation it

is possible to achieve an RMSD value of zero. Now con-

sider a pair of conformations for the same protein, but

derived from different crystal structures (e.g. the open

and closed conformation states). The RMSD between

conformations has a contribution from differences in

cluster positions and a contribution from differences in

relative atomic positions within each cluster. The former

varies as the clusters move and can be used to evaluate

the global progress of a conformational transition,

whereas the latter remains constant and is an indication

of local structure geometries that have been locked into

place as a result of clustering. To make use of these

global and local quantities, it is necessary to decouple

the pair of contributions. This is accomplished by
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introducing a new, cluster-based, metric for conformation

comparison.

Given a pair of conformations and a clustering

scheme, the RMSD is calculated independently for each

cluster: isolate cluster c from each conformation, center

and optimally align the pair, compute the RMSD

between the clusters, and define the quantity as RMSDc.

Once this procedure is performed for each cluster, the

RMSDc quantities are used to define the new metric,

referred to as background RMSD (bRMSD)

bRMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

XN
c¼1

AðcÞ � RMSD2
c

� �vuut ð40Þ

where A(c) is the number of atoms in cluster c. This

quantity represents the lowest possible RMSD that can be

achieved by optimal cluster positioning.

Crystal structure resolution is not equivalent to resolu-

tion of atomic position. The PDB states as a guideline

that resolution of atomic position is one-tenth to one-

fifth of the crystal resolution for structures with an R-

value (a quantification of the model’s agreement with the

crystallographic data) less than 0.2. Accordingly, ‘‘good’’

crystal structures with resolutions of �2.0 Å, give atomic

positions with accuracies of �0.2–0.4 Å. The observed

bRMSD quantity for clustering by residue is �0.3 Å,

which is well within this range. The DOFs locked into

place when clustering by residue impose a restriction on

the atoms in the structure, which corresponds to an

RMSD value less than the atomic resolution of the

model. Therefore, any (more aggressive) candidate clus-

tering may be validated by performing a bRMSD calcula-

tion prior to the icNMA computations.

The progress of an icNMA transition pathway is moni-

tored by a combination of the RMSD and bRMSD

metrics. The quantities discussed below are depicted in

Figure 1. Consider an icNMA intermediate conformation,

Ci, at an RMSD d 5 RMSDðCi; CFÞ from the goal confor-

mation. The space of all possible global motion steps

around Ci defines a hyper-sphere, Si, of radius l. A sec-

ond hyper-sphere, SF, is defined around CF with a radius

d. The surface of Si that falls within SF represents global

motions that lead to potential Ciþ1 conformations which

reduce the RMSD to CF ; the surface of Si outside of SF
represents motions that increase RMSD. The intersection

of Si and SF is defined by an angle relative to the refer-

ence direction, d̂, as

u ¼ acos
l
2d

� 	
ð41Þ

This solution is obtained with the law of cosines and is

based on the geometry of the configuration shown in

Figure 1.

As the icNMA pathway gets closer to the goal confor-

mation, y becomes smaller, indicating a restriction on

the available space of RMSD reducing global motions. In

the limit of y(d?1)5 p/2 the entire hemisphere of Si is

RMSD minimizing. The y function falls off very quickly

as d decreases: y(d 5 l) 5 p/3 and y(d 5 l/2) 5 0. It

is not productive to continue an icNMA simulation that

diverges, so a value of d 5 l is used as the termination

criteria. The progress of the simulation as it approaches

the termination criteria is quantified by the function

pðiÞ ¼ RMSDðCI ; CFÞ � RMSDðCi; CFÞ
RMSDðCI ; CFÞ � ðbRMSDðCI ; CFÞ þ lÞ ð42Þ

where the input parameters for the functions RMSD and

bRMSD indicate the conformation pair to which they are

applied. The numerator quantifies how much RMSD has

been traversed. The denominator quantifies the total

RMSD the pathway is expected to traverse; excluding the

RMSD which cannot be reduced due to clustering (i.e.

bRMSD) and excluding the RMSD associated with the

step size (i.e. l). It is possible for p(i) to reach a value

slightly greater than 1, if the trajectory gets within l
RMSD of the goal conformation, but in practice, the

function will approach a value of 1.

RESULTS AND DISCUSSION

Example structure

The b1,4-galactosyltransferase-T1 structure (open: PDB

5 1FR868 and closed: PDB5 1NKH,69 commonly written

Figure 1
An arbitrary icNMA pathway is depicted as a series of conformations

(filled circles) connected by global motions (solid lines). The current

intermediate conformation (Ci) is surrounded by the hypersphere Si. The sign

choice for the direction of the global motion construction restricts the space of all

possible global motions to the Si hemisphere to the right of the vertical line

labeled ‘‘sign’’. The reference direction (d̂) is the labeled arrow connecting Ci to
the goal conformation (CF ). The hypersphere SF surrounds CF and contains all

conformations that are closer to CF than the current intermediate. The portion of

Si within SF is shown as a solid arc and the portion outside of SF is grayed. The h
angle [Eq. (41)] quantifies the portion of the global motion space that reduces

the RMSD of the pathway.
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with the abbreviation b4Gal-T1, is composed of 2209 atoms

in 271 residues and is the catalytic component of the lactose

synthase enzyme (Fig. 2). During biological function,

b4Gal-T1 binds uridine diphosphogalactose (UDP-Gal),

thus causing a large conformational change in the loop

region comprising residues 345-365. The mean RMSD

value between conformations for the alpha-carbons on the

loop is 9.8 Å, and Lys352 achieves a displacement of 20 Å. In

comparison, the rest of the structure experiences a mere

0.6 Å displacement.69 Trp314 is opposite the large loop

and swings down over the pocket assisting in the ligand

binding.71

b4Gal-T1 belongs to a superfamily of enzymes called

glycosyltransferases that are involved in the synthesis of

sugar moieties of glycoproteins and glycolipids. Crystal

structures of many of these enzymes are available and,

similar to b4Gal-T1, they exhibit conformational changes

involving at least one flexible loop.72 Analyses of the

other glycosyltransferases is possible and is expected to

provide insight into the conformational dynamics of

these enzymes.

Simulations

The icNMA simulations are performed on the open

conformation without the ligand; clustering is by residue

and the global motion step size is l 5 0.1 Å, producing

an expected RMSD of: (bRMSD 1 l) 5 0.60 Å. The

control simulation is run with p 5 100% [Eq. (38)] and

no contact distance constraints. A second simulation is

run with p 5 50% and no contact constraints, to probe

the relevance of the higher frequency modes on the path-

way construction. A third simulation is run with p 5

100% and a minimum allowable contact distance of 1.1 Å

and a maximum allowable peptide bond length of 2.5 Å,

to test the effects of constrained geometries. The three

simulations, now referred to as S100;S50; and Ŝ100,

respectively, are listed in Table I, along with their DOF

usage and p values. The following sections discuss path-

way RMSD, mode decompositions, local geometry, path-

way features, and energy.

Pathway RMSD

The RMSD evolutions (Fig. 3) show that all simula-

tions experience an initial steep descent in RMSD, fol-

lowed by asymptotic approaches to their final values. The

early success of S50 is explained by the fact that the low-

est modes are contributing the majority of the desired

transition and the extra modes utilized by S100, which

come from the higher frequency range, are extraneous.

The early success of Ŝ100 indicates that, initially, the

pathway naturally stays within the range of the con-

straints, thus performing like the control simulation.

Mode decompositions

The mode space dimension of S50 is nearly three times

smaller than that of Ŝ100, but yet it achieves a signifi-

cantly better transition result (p 5 86.5% vs. p 5

59.1%). This comparison indicates that the dimensional-

ity of the motion subspace is less important than which

region of the full motion space it represents. This concept

is quantified by computing mode space decompositions.

Figure 2
Cartoon representation of the open conformation of b4Gal-T1. The

loop residues are shown in yellow, the UDP-Gal ligand is space filled

shown in red, and Trp314 is shown in green sticks. (All structure

representations are created with PyMOL.70)

Table I
b4Gal-T1 icNMA Simulations

p (%) Modes (#) DOF (%) min (�) max (�) p (%)

S100 100 1620 24.5 — — 96.4
S50 50 �440 6.6 — — 86.5
Ŝ100 100 �1275 19.3 1.1 2.5 59.1

Simulation parameters and p values for three icNMA computations of 80 steps

each. The number of modes at each step varies during the simulations of the sec-

ond and third rows and their listed values are approximations to their averages

over the course of the simulations. The DOF % is the number of icNMA modes

as a percent of the number of nonrigid DOFs in an all atom Cartesian representa-

tion (i.e. 3 3 2209 2 6 5 6621). The p values [Eq. (42)] indicate how much of

the RMSD between the starting and goal conformations has been traversed.
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A pair of icNMA simulations for the same initial struc-

ture, but based on different parameters, will produce path-

ways that explore different regions of conformation space.

At any given intermediate step, the accessible motion space

of one simulation is compared to that of the other by

using a decomposition. Let the normalized modes of one

simulation be given by A ¼ fa1; . . . ; apg and the normal-

ized modes of a second simulation be given by

B ¼ fb1; . . . ; bqg, then the decomposition of the first sim-

ulation’s motion subspace over that of the second is given

by the p 3 q matrix whose elements are defined by

Di;j ¼ jai � bj j ð43Þ

The decomposition matrix is populated with values on the

interval [0,1] where 0 indicates linear independence and 1

indicates exact alignment of the corresponding mode pair.

The decomposition data is evaluated in two ways.

First, a concentration of high values along the diagonal

indicates that modes from one set are highly aligned

with modes with the same index of the other set (a solid

line is superimposed on the decomposition plots for ref-

erence). This feature gives a general indication of how

the motion subspace of A compares to that of B. Sec-
ond, the vector norm of column j, is a measure of how

well mode bj is represented by all of A. Computing this

norm for all columns in D gives a precise measure of

how well particular dimensions of B are being captured

by the entire space of A.

The discrepancy in p values is now addressed by mode

decompositions with respect to the control simulation.

The decompositions are based on the intermediate con-

formations at step 40, which is halfway through each

simulation and also approximately where the RMSD

plots start to diverge the fastest.

The decomposition of the S50 modes (Fig. 4) covers

the reference line (i.e. the decomposition spans the same

number of modes on each axis). This indicates that each

of the 450 modes of S50 is highly aligned with the S100

mode of the same index. Therefore, the low-frequency

motion space has been completely captured by S50. This

is evident by the fact that S50 achieves almost the same p
value as the control. In contrast, the Ŝ100 decomposition

(Fig. 5) deviates from the reference diagonal. As a result,

the 1266 modes from Ŝ100 do not correspond to an equal

number of modes in S100, but rather are evenly distrib-

uted across all 1626 S100 modes. For the lower dimension

Figure 4
The decomposition of the mode shapes from S50 when compared with the

mode shapes of S100, at intermediate conformation 40. The data occupies the di-

agonal, thus indicating that S50 has, as expected, accurately and completely repro-

duced the low frequency motion space of S100.

Figure 3
Comparison of RMSD changes for the icNMA pathway simulations

defined in Table I. The following symbols are used: *¼ S100, 4 ¼ S50,

& ¼ Ŝ100.

Figure 5
The decomposition of the mode shapes from Ŝ100 when compared with the

mode shapes of S100, at intermediate conformation 40. The data is shifted to the

right of the reference line, thus indicating that modes of Ŝ100 are uniformly

shifted into the higher frequency spectrum. Consequently, parts of the lower fre-

quency mode space are not as densely populated and are not as well captured.
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subspace of Ŝ100 to be evenly distributed across the

higher dimension subspace of S100, there must necessarily

be motions of S100 which are not well represented by

Ŝ100.

The plot of column vector norms (Fig. 6) confirms

this by clearly showing that even though the Ŝ100 modes

capture the entire frequency spectrum fairly well, the S50

modes do a noticeably better job of capturing the low

frequency modes, which are necessary for constructing

the transition pathway. Further, because these modes are

more highly weighted in their relative contribution to the

global motion than the higher frequency modes, the dif-

ferential seen in Figure 6 is much more significant.

The preceding decomposition analysis explains why

the lower DOF S50 actually produces a better p value

than the higher DOF Ŝ100. Intermediate conformation

geometries and pathway energies are analyzed in the fol-

lowing sections to ascertain the necessity and effects of

constrained simulations.

Local geometry

Figure 7 shows the evolution of the distances between

the five pairs of atoms that reach the shortest contact

distances during S100. Figure 8 shows the evolution of

the lengths of the five peptide bonds that stretch the

most during S100. A pair of atoms reach a contact dis-

tance of 0.25 Å and a peptide bond is stretched to a

length of 6.5 Å – both of these situations are not possi-

ble. However, these are the extremes of the simulation

and are only temporary. In fact, the bulk of the structure

is acceptable. In the open conformation of b4Gal-T1,

there are 26,340 atom pairs within a cutoff distance of 5

Å, and of these, 18,840 are between atoms of different

residues and are free to move relative to each other. Dur-

ing S100, 52 of these atomic pairs (0.3%) come within

1.1 Å of each other and 17 of the peptide bonds (6.3%)

stretch beyond 2.5 Å. The S50 results are similar (0.1%

and 5.2%, respectively) and are not plotted.

Figure 6
The column norms of the S50 and Ŝ100 mode decompositions.

Figure 7
Evolution of the separation distance between atomic pairs that reach

one of the five shortest separation distances during the S100 simulation.

The atom pairs in each plot, from the top down, are: (Ala221:O–Gly222:N),

(Asp350:N–Lys351:CE), (Asn353:C–Glu354:N), (Arg359:C–Phe360:CE2), (Asn353:O–

Glu354:N). Only 0.3% of all contacts between clusters ever get within 1.1Å (the

minimum distance constraint enforced by Ŝ100).

Figure 8
Evolution of the peptide bond lengths for those bonds that become one

of the five longest bonds during the S100 simulation. The atom pairs in each

plot, from the top down, are: (GLY313:C–TRP314:N), (PHE360:C–ASP361:N),

(ARG359:C–PHE360:N), (GLN358:C–ARG359:N), (ASP350:C–LYS351:N). Only 6.3%

of all peptide bonds ever stretch beyond 2.5Å (the maximum distance

constraint enforced by Ŝ100).
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Comparing the three icNMA simulations has shown

the effects of reducing the dimension of the global

motion subspace and of imposing geometric constraints.

In particular, the unconstrained simulation, S100, pro-

duces a near complete (p 5 96.4%) transition pathway

while allowing minimal local geometry violations. The

constrained simulation, Ŝ100, removes the undesirable

contacts, but at the expense of causing a mode set fre-

quency shift, which limits the progression of the transi-

tion pathway (p 5 59.1%).

Pathway features

There are several features of the b4Gal-T1 transition

pathway that make it an excellent example structure.

There are many possibilities for icNMA modification, but

as demonstrated in the previous sections, S100 success-

fully produces the core motions of a transition pathway

from the open to the closed conformation. The discus-

sion which follows is based on the motions of this simu-

lation and highlight the capabilities of the icNMA

method. Several AVI movie clips showing features of the

pathway discussed later are available as Supplemental

Material on the journal’s website.

The main loop and Trp314 are involved in a coopera-

tive motion in which they move towards each other and

overlap as they come down onto the ligand, holding it in

the binding pocket (Fig. 9). A direct interpolation of this

motion would cause severe steric clash, but icNMA pro-

duces a pathway in which Trp314 undergoes a rotation

about the backbone so that it can pass underneath the

main loop and reach the closed conformation. The very

fact that the cNMA parameterization is designed to rep-

resent rotational motions allows icNMA to describe this

complex transitional motion. Purely Cartesian-based

models are not able to characterize this motion without

a full atomic model, but the computational expense is

prohibitive.

The biological function of b4Gal-T1 is accomplished

by the large motions of relatively few residues (27 main

loop residues and 6 residues around Trp314), whereas the

bulk of the structure remains stationary. This type of

motion is common to globular proteins and the analysis

greatly benefits from modeling techniques that allow for

multiscale representations. The scope of this article does

not allow for the detailed inclusion of such a simulation,

but the authors performed an icNMA simulation in

which the mobile residues mentioned earlier are individ-

ually clustered and the remaining structure is defined as

a single cluster. This model uses 198 nonrigid DOFs,

which is 3% of the all-atom, nonrigid DOFs, and has

bRMSD 5 0.75 Å. The computation time is cut by an

order of magnitude with respect to S100, but yet the con-

formational transition pathway still achieves p 5 93.5%

and never gets more than 0.9 Å RMSD away from S100

(which is closer than either S50 or Ŝ100).

The final interesting characteristic of the b4Gal-T1

transition pathway included in this discussion is the

extension of an alpha-helix. As the main loop undergoes

its large motion, it creates slack (perhaps this is what

allows the clearance for Trp314 to pass underneath it).

This slack is converted into an additional turn (residues

358–363) on a neighboring alpha-helix as the path

approaches the goal conformation (Fig. 9).

Pathway energies

An effective way to monitor pathway energy is by uti-

lizing the ENM framework upon which icNMA is already

based. The distances between all pairs of atoms in each

end state are computed and serve as reference values (i.e.

equilibrium states). During a transition, displacements

from these reference values result in deformation of the

corresponding springs in the ENM. The energy function

for atom a in intermediate conformation Ci is defined as

VaðiÞ ¼
1

2

Xn
b¼1

minðdda;bði; IÞ; dda;bði;FÞÞ2 ð44Þ

where dda;bði; IÞ is the magnitude of the change in

distance between atoms a and b as compared between

Figure 9
The superimposed intermediate conformations show the icNMA

transition (blue ? red) of b4Gal-T1. The viewpoint in (A) is from the

binding pocket looking outward and shows Trp314 pass inside of the

main loop as they approach each other. The isolated view in (B) shows

Trp314 rotating about its backbone connection (the side chain starts

directly above the Ca and finishes horizontal form it), thus allowing it

to fit under the main loop and close onto the binding pocket, which is

below and to the right. The isolated view in (C) shows slack in the

main loop of the open conformation (blue) get incorporated into a

neighboring helix. The final icNMA conformation (red) overlays the

crystal structure of the closed conformation (gray).
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conformations Ci and CI . The ‘‘min’’ function acts as a

switch allowing each atomic pair to be evaluated relative

to the end state to which it is closest. The potential func-

tion is shown in Figure 10 for the S100 simulation.

The potential function varies with atom index (i.e.

spatial location) and conformation index (i.e. ‘‘temporal’’

location). Fixing one of these variables and summing

over the other produces an energy distribution over ei-

ther space or ‘‘time’’. These plots are shown alongside the

potential function in Figure 10.

Summing over conformation indices produces an

energy distribution over atomic indices (vertical plot in

Fig. 10). This plot clearly identifies the structural compo-

nents involved in the transition. The main loop and

Trp314 are the largest contributors to system energy, and

the next two locations are where the main loop anchors

to the structure prior to the transition (labeled ‘‘release’’)

and after the transition (labeled ‘‘landing’’).

Summing over atomic indices produces an energy dis-

tribution over conformation indices (horizontal plot in

Fig. 10). This distribution reveals the energy barrier in

the transition. Rather than summing over all atomic

indices, summations can be taken independently on each

of the four locations identified earlier. The peaks in each

of these energy distributions (not shown, but readable

from the potential function) indicates when in the transi-

tion the corresponding structure element is active.

Combining all of these findings results in the following

pathway sequence: (1) Trp314 completes the first phase of

its motion, (2) the main loop reaches an intermediate

position and the landing site rearranges, both coinciding

with the transition barrier, (3) immediately after the bar-

rier is crossed, the release site rearranges, and (4) Trp314

completes its second phase of motion. The two stage

motion of Trp314 is evident in Figure 9, by the sliding

motion of the side chain, followed by its rotation around

the backbone.

Adenylate kinase comparison

b4Gal-T1 was chosen as the primary example structure

for this article because its crystal structures suggest a

Figure 10
The potential energy contained in the springs radiating from each Ca as a function of pathway intermediate index (colormap in center). Summing

across the rows (i.e. over the pathway) produces the vertical plot at the left, which shows the total normalized energies produced by each atom’s

motions. Summing down the columns (i.e. over the set of atoms) produces the horizontal plot at the bottom, which shows the evolution of the

structure’s total normalized energy over the transition.
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wide range of motions that must be spatially and tempo-

rally coordinated in such a way that interpolation (i.e.

linear methods) cannot capture. Adenylate kinase (open:

PDB54AKE73 and closed: PDB51AKE74) is a common

structure used to test computational methods due to the

wealth of experimental data available. The icNMA path-

way for the adenylate kinase transition is briefly studied

and comparisons are made with existing methods. The

following material is not intended as a complete analysis

or as validation of icNMA, but rather as an indication

that the most fundamental properties of such a transition

are captured by icNMA.

Franklin et al.51 create a transition pathway by stitch-

ing together one linear system for the initial conforma-

tion with a second linear system for the final conforma-

tion. The nonlinear pathway is well represented by a Q1

versus Q2 plot, in which the authors track the percentage

of initial (Q1) and final (Q2) conformation contacts that

exist in each intermediate conformation. This plot shows

that Q1 contacts are broken and then Q2 contacts are

formed in the very last stages of the transition. This non-

linear pathway enters the lower left region of the plot

where both Q1 and Q2 are minimized. The barrier con-

formations that populate this region are metastable as

they are equally distant from the stable open and closed

conformations. In contrast, methods which produce lin-

ear pathways, like the interpolation-based UMMS75,76

method, force the simultaneous breaking of Q1 contacts

and formation of Q2 contacts.

To place the icNMA method in context with other

techniques, transition pathways of adenylate kinase are

mapped onto a Q1 versus Q2 plot (Fig. 11). The transi-

tion pathway from the open to the closed conformation

is complete in RMSD (p 5 95.3%), but it only forms

30.8% of the missing atomic contacts required in the

final conformation (the Q2 value increases from 0.81 to

0.87). The application of icNMA in the reverse direction

(i.e. from the closed conformation to the open confor-

mation) produces a transition pathway that once again

achieves RMSD convergence (p 5 94.9%) while only

forming 26.4% of the missing atomic contacts required

in the open conformation (the Q1 value increases from

0.82 to 0.86).

Both of the transition pathways enter the barrier

region and then proceed towards their respective goal

conformations. This demonstrates that the icNMA

method is able to produce a nonlinear pathway and

access the population of metastable states in the barrier

region. The si parameters of the icNMA global motion

are computed with respect to minimizing RMSD from

the goal conformation, whereas the Q1-Q2 coordinate

space is directly tied to contact geometries. If desired, an

alternative contact-based function for setting the si values

could guide the icNMA pathway in a way more consist-

ent with Q1-Q2-space representation.

CONCLUSION

The icNMA method is founded on a traveling har-

monic potential which defines the evolving global motion

and guides the transition pathway. Unlike interpolation

and extrapolation based methods, the iterative updating

of the local accessible motion space reflects the changing

geometry of the structure. The global motion allows the

structure to evolve towards its destination conformation

along a nonlinear path while traveling only through the

reduced dimensional subspace defined by the low-fre-

quency modes of cNMA.

The analysis of b4Gal-T1 illustrates the features of

icNMA and the resulting pathway captures a variety of

different structure motions which all give insight into

how the biological function is achieved. The energy anal-

ysis of the pathway reveals spatially and temporally co-

ordinated motions. The main structural elements identi-

fied in this analysis are ideal candidates for mutagenesis

studies.

The Introduction discusses NMA-based structure de-

formation methods which utilize distance constraints and

X-ray diffraction pattern matching. These methods are

powerful ways to convert partial structural data from

experiments into high-resolution conformations, espe-

cially in the metastable transition region where complete

Figure 11
Q1 versus Q2 plots for icNMA pathways generated for adenylate kinase.

The transition from open to closed (l) and closed to open (1) are

both nonlinear and reach the barrier region in the lower left portion of

the plot. Both simulations use the S100 parameters.
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structural information is difficult to produce. The icNMA

method can perform this task by replacing its mode

shape sign choice with any scoring function that pro-

motes a given set of structural features. In addition to

producing transition states, the icNMA method also pro-

duces corresponding transition pathways.

The power and flexibility of icNMA is due to its effec-

tive combination of independent local (i.e. cNMA mode

space) and global (i.e. RMSD minimization) constraints.
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