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ABSTRACT

Cyclo-Stationary (CS) processes are those nonstationary
processes that appear to be stationary when observed at integral
multiples of a basic interval. Wide Sense Cyclo-Stationary (WSCS)
processes possess autocorrelation functions and autocorrelation
matrices with a cyclic structure for continuous and discrete time
respectively. Discrete time WSCS processes normally arise
from sampling continuous time WSCS processes. Other sampling
schemes such as multiplexing samples from different stationary
random processes or multiplexing samples from the sensors of an
array also generate random processes with a cyclic structure in
the autocorrelation matrix.

The optimum detector for the fixed time forced choice detec-
tion of discrete time WSCS processes in additive noise is designed
according to the likelihood ratio. The detector design is constrained
to preserving the cyclic structure of the signal autocorrelation
matrix followed by a signal enhancement filter followed by energy
detection. The structure of the signal enhancement filter is clearly
identifiable with the cyclic structure of the signal autocorrelation
matrix. A suboptimum detector is also presented and is the low

input signal-to-noise ratio form of the optimum detector.
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The optimum and suboptimum detector performance is
evaluated for a discrete time real zero mean CS Gauss-Markov

process in the region 0.01 < Py <0.99and 0.01< P, < 0.9.

FA =
The optimum and suboptimum Receiver Operating Characteristics
(ROC) are binormal in this region. ihere is little difference

between the optimum and suboptimum performance though the

suboptimum ROC is more binormal than the optimum ROC.
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FOREWORD

Detection of the existence of some sort of periodic structure
in a reception is the motivation for this research. The research
is theoretical and deals with the techniques of defining the problem
and establishing its mathematical solution. Of primary importance
to the theoretician is the realization that the vector form of the
problem is the same as that of a point-sensor antenna array. Thus
the rich field of array processing can be tapped for formal solutions.

The'type of periodicity investigated is a common physical
occurrence, but its formal description is obtuse enough that it has
not been a subject of detection theory previously. The physical
picture involves a periodic mechanism that produces a turbulence
or other random process. The periodicity of the generator is then
hidden in the process as a cyclo-stationary characteristic: if
sampled at the period, the samples are stationary, but if sampled
at a multiple of the period, the sample statistics depend on the local

position within a period.
This research establishes a foundation for applied research

in the detection and analysis of cyclo-stationary processes.
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CHAPTER I

INTRODUCTION

1.1 Basic Problem

The fixed time forced choice detection of Gaussian random
processes in additive Gaussian noise via the likelihood ratio reduces
to interpreting a quadratic form when the signal and noise autocor-
relation functions or matrices are known. The literature is full of
different interpretations for this quadratic form (Refs. 1, 8, 16, 17,
19, 20, 21, 25, 26, 31).

The topic of this dissertation is the detector design for the
fixed time forced choice detection of Gaussian Cyclo-Stationary (CS)
processes in additive Gaussian noise. CS processes are those ran-
dom processes possessing autocorrelation functions or matrices with
a cyclic structure. A technique is presented that permits interpreta-
tion of the detector quadratic form in a manner that preserves the

cyclic structure of the signal autocorrelation function or matrix.

1. 2 Cyclo-Stationary Processes

The feature that distvinguishes Cyclo-Stationary (CS) processes
from other random processes is a cyclic structure in the autocorrela-
tion function for continuous parameter CS processes and in the
autocorrelation matrix for discrete parameter CS processes. This

cyclic structure has a different manifestation for continuous and



discrete parameter CS processes.

1.2.1 Continuous Parameter Cyclo-Stationary Processes.

A complex nonstationary random process {s(t), te TD} is a Strict
Sense Cyclo-Stationary (SSCS) process if and only if there exists a
positive number, TP’ called the period such that the joint probability
distribution of {s(t1+qTP), s{:2+ qTP), cee, s(tn+qTP)} equals the
joint probability distribution of {s(tl), S(t2)> ceey s(tn)} for any
integer q so that the translated parameter values are also parame-
ter values. A SSCS process appears to be a strict sense stationary
process when observed at integral multiples of the period, T'P'
It is also possible to define a CS process with the concept
of Wide-Sense Stationarity. A complex nonstationary random pro-
cess {s(t), te Tp

Sense Cyclo-Stationary (WSCS) process if and only if there exists a

} with autocorrelation function Rs(tl’tz) is a Wide

positive number, Ty, called the period such that E{ls(t)I?} < w
for teTp, E{s(tquP)} = E{s(t)}, and Rs(t1+qT , t2+qTP) =
Rs(tl,tz) for any integer q so that the translated parameter values
are also parameter values. E{ } denotes the expected value of the
quantity in brackets. A WSCS process appears to be a wide sense
stationary process when observed at integral multiples of the period
TP'
The autocorrelation function of a WSCS process has a cyclic

structure due to the wide sense stationary behavior of a WSCS process.

The autocorrelation function of a SSCS process also has a cyclic



structure if E{ls(t)I®} < « for teT It is the cyclic structure

D
of the autocorrelation function of a CS (SSCS or WSCS) process that
distinguishes a CS process from all other random processes. Con-
trast this to the autocorrelation function of a wide sense stationary
periodic process, R(7+ TP) = R(7). The second order statistics are
equal when observed at time differences that are integral multiples
of the period.

An example of a WSCS process is a clocked waveform (Ref.
24). Consider the clocked waveform s(t) consisting of an elemen-
tary waveform g(t) which is clocked at the rate T

p’

0
st) = ), a et-nTy)
n=-o

where a = +1 with a probability of 1/2.

E{st)} = ), Ef{a_}glt- nT) = 0 .
n=- oo
) X
R (t;,ty) = E{s(t))s(ty)} = ) m}iooR(m-n) g(t,-nTp) g(ty-mT)
for R(m-n) = E{anam }.
X
Rs(t1+TP,12+TP) = ) m;j_ooR(m n) t -(n-1 ij t - (m- l)T | .

Let n' = n-1 and m' = m-1. Then



o0
Rs(t +Ty, t,+T,) = ) mZ'J: R(m'-n )g{tl—n TP] g[t2~m'TP]

S

From this one can conclude that z ~locked waveform consisting of
clocked pulses, g(t) = 6(t), is a WSCS process, andany other clocked
waveform can be generated by inputting clocked pulses into a filter
with impulse response g(t).

1.2.2 Discrete Parameter Cyclo-Stationary Processes. A

complex nonstationary random process {s(n); n=1,2,3, ..., KP}
is a Strict Sense Cyclo-Stationary (SSCS) process if and only if there
exists a nonzero integer, P, called the period such that the joint
probability distribution of {s(1+qP), s(2+qP), ..., s(n+qP)}
equals the joint probability distribution of {s(1), s(2), ..., s(n)}
for any integer q so that the translated parameter values are
parameter values.

It is again possible to define a CS process with the concept of
Wide Sense Stationarity. A complex nonstationary random process
{s(n); n=1,2,3, ..., KP} with autocorrelation matrix RS = {rs(n, m) }
for nnm=1,2,3, ..., KP is a Wide Sense Cyclo-Stationary (WSCS)
process if and only if there exists a nonzero integer, P, called the
period such that E{Is(n){?} < « for n=1,2,3, ..., KP,
E{s(n+qP)} = E{s(n)}, and rs(n+qP, m+qP) = rs(n,m) for any

integer q so that the translated parameter values are also parameter



values.

Just as in the continuous parameter case,a CS process appears to
behave as a stationary (strict or wide sense stationarity) process when
observed at integral multiples of the period P. The autocorrelation
matrix of a WSCS process has a cyclic structure as does the auto-
correlation matrix of a SSCS process if E{ls(n)l?2} < «. 1t is
this cyclic structure that is a unique feature of CS processes.

1.2.3 Cyclic Structure of the Autocorrelation Matrix. CS

processes will refer to discrete parameter CS processes for the
remainder of this dissertation unless indicated differently. The
cyclic structure of the autocorrelation matrix of a CS process is
expressible in a manner that permits factoring the autocorrelation
matrix in a meaningful form.

Consider the CS process

S = [s(1), s(2), ..., s(P), ..., S(KP)]T

which is a column vector. S has a period P andthere are KP ele-
ments in the observation, i.e., there are K periods in the observa-

tion. The autocorrelation matrix is

Ry = {rs(u,v)} for w,v=1,2,3, ..., KP .

Subdivide RS into PxP dimensional matrices Anm for

nm-=1,23, ..., K.



| for n,m-=1,2,3, ..., K .
The A have elements
nm

A = [r [(n-1) P+u, (m—l)P+v]] for wu,v=1,2,3, ..., P.
nm s :

Anm is the correlation matrix beiween the P elements in the nth
period and the P elements in the mth period. The cyclic structure

in RS for CS processes is expressible as

ntq, m+q [rs[(mq- 1)P+u, (m+q-1)P+v] ]

il

[rs[(n- 1)P+u, (m-1 )P+V]]

= A
nm

for q any integer such that n+q and m+q=1,2,3, ..., K. It
also follows that Ann = A for n=1,2,3, ..., K. A is called the
modulation autocorrelation matrix and is the autocorrelation matrix

for any period. RS then has the form

poees ——

A Al A3 o Bk
*
Ap A A e ALk
Rg = | Al Al A A
1,K-2
* * *
Ak Ak Ak o A i

where * denotes the complex conjugate of the transpose. This is the



cyclic structure that distinguishes CS processes (SSCS and WSCS)
from all other random processes and permits factorizing RS in a
meaningful manner.

Since RS is a positive definite Hermitian matrix, so is A

a positive definite Hermitian matrix. There then exists a lower

triangular matrix, M, called the modulation matrix such that
A= M'M.

M is nonsingular because it is the square root of RS. In order to

show the key effect of M, all the Anm can be written in terms of

it. Let
T = wmla M‘l,
nm nm
T = I, the PxP identity matrix for
nn
n=1,2,3, ..., K
so that
= M*T_ M
nm nm

RS 1s then factorable as



% m
M Ip T, Tq ...Tl,K M
* %
M Q T, L T, Ty MQ
_ * % X
Ry = M T3 Tiy Ip ...TI,K_2 M
O ’* * T T Q
M__i LTLK ,R-1 M1,K-2 Ip M
_ *
= Mp T M.

MK is a KPxKP dimensional matrix with the modulation matrix M

repeated on the diagonal. T is KPxKP dimensional matrix of the
Trlm 's. T 1is called the carrier autocorrelation matrix and indicates
how to combine the information in the modulation autocorrelation ma-

trix to form the Anm's. It also follows that T is a positive definite

Hermitian matrix because R_ is positive definite Hermitian. There

S
then exists a lower triangular matrix, C, called the carrier matrix

such that

RS is then factorable as

R, = M;‘(C*CM

S K~

This is the form of the cyclic structure of the autocorrelation matrix
of a CS process that is preserved in the detector design. An example

of factoring the autocorrelation matrix of a CS process is presented




in Appendix E.

1.3 Generation of Cyclo-Stationary Processes

There are many ways of generating continuous and discrete
parameter CS processes. It is the intent here to list a few of these
ways.

1.3.1 Continuous Parameter Cyclo-Stationary Processes.

Four representative cases that produce CS processes are listed
below:
1. Random processes describing propellor and reciprocating
engine noise.

2. Amplitude-modulated random process, s(t), of the form
s(t) = x(t) p(t) where

x(t) is a stationary random process, and p(t) is a
periodic function.
3. Random processes arising in meteorology.

4. Clocked waveforms described in Section 1.2.1.

1.3.2 Discrete Parameter CS Processes. Sampling continu-

ous time random processes is the basic technique for generating dis-
crete time CS processes in this dissertation. Discrete time CS
process can arise either from sampling continuous time CS processes
or from sampling continuous time stationary réndom processes in cer-

tain ways.
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1.3.2.1 Sampling Continuous Parameter Cyclo-

Stationary Processes. Sampling continuous time CS processes must

be performed in a prescribed manner if the cyclic structure exhibited
by CS process is to be preserved. The CS process must be sampled
so that there are exactly an integ 2l number of samples, P, in each

period of the process. Let TS axd T, be the sampling interval

P
and the period of the sampled continuous time CS process respec-
tively. Then PTS = TP if the cyclic structure is to be preserved.
The time that the sampling started must also be known in order to

calculate the autocorrelation matrix.

1. 3. 2.2 Sampling Continuous Stationary Random Processes.

Multiplexing samples from each of the sensors of a P sensor array
which is observing a stationary random process generates a CS pro-
cess with a period P. The modulation correlation matrix A is the
autocorrelation of the samples taken at the same sampling instant
from each of the P sensors. The form of A arises from the spatial
modulation introduced by ine location of the observed stationary ran-
dom process with respect to the sensors. Anm is the correlation
matrix of the samples taken from the P sensors at the nth and mth
sampling instants. The form of Anm also arises from the spatial
modulation introduced by the array geometry when the stationary
random process is observed at the nth and mth sampling instants.
The array processing problem is well understood and exten-

sively studied (Refs. 3, 6, 21, 28, 29, 30). Studying the array
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processing problem as a problem in detecting CS processes is expec-
ted to only add new insight and not new knowledge.

It is also possible to generate a CS process with period P
by multiplexing samples from P different stationary random pro-
cesses. The A matrix is the autocorrelation matrix of the P
samples taken at a sampling instant, and Anm is the correlation
matrix between the P samples taken at the nth and mth sampling

instants.

1.4 Procedure

The criteria for receiver design and accepting observations
is presented to prevent confusion in future discussions. The optimum
detector presented in this dissertation is designed according to the
likelihood ratio. There are many criteria such as the Bayes, Neyman-
Pearson, and Weighted Combination to name a few that support the
likelihood ratio as the optimum decision rule for a detector. Birdsall
(Ref. 2) showed that the detector which bases its decisions on the like-
lihood ratio yields optimum performance for the class of criteria
which considers correct decisions ""good" and incorrect decisions
"bad. " The three criteria listed above fall into this class of criteria.

The observations used in designing and operating the receiver
are {inite length vectors. There is no interest in this dissertation in
considering any continuous time forms of the detector. The vectors

are transformations, such as sampling, of the continuous time random
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processes actually observed. The transformations must preserve
the Cyclo- Stationary properties of the continuous time random pro-

cesses.

1.5 Historical Background

The literature on detectiny Cyclo-Stationary processes is
sparse. Surprisingly little of that deals with optimum detectors.

Deutch (Ref. 9) studies the demodulation of CS processes
resulting from the amplitude modulation of a stationary random
process by a periodic function. It is shown that a linear filter may
be used to enhance a CS process out of several interfering CS
processes.

Parzen and Shirer (Ref. 22 ) generalize Deutch's work by
covering the frequency band occupied by the CS process in question
with several filters non-overlapping in frequency followed by square
law detectors.

Kincaid (Ref. 18 ) derives the optimum detector for a specific
CS process in additive Gaussian noise. The periods of the CS pro-
cess are statistically related in the first order Markov sense. The
detector is specialized for the small signal-to-noise ratio case and
a suboptimum approximation to this is evaluated. The suboptimum
detector is a circulating delay line preceded by a signal enhancer and
noise processor and is followed by an energy detector.

Hariharan (Ref. 13) states that all detectors are basically
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nonlinear devices. He concentrates on studying the output signal-to-
noise ratio at the output of a vth law device for Gaussian CS pro-
cesses and additive Gaussian noise at the input.

The dissertation by Hurd (Ref. 14) is an excellent study on
the mathematical properties of CS processes. There is also an
extensive analysis of spectral analysis and estimation of CS

processes.

1.6 Organization of This Study

Background material is presented in Chapter II. This includes
a quick review of detection theory and a presentation of some import-
ant evaluation techniques. The optimum detector is designed and
discussed in Chapter III. In Chapter IV, a signal-andmoise model
are presented and used to evaluate the optimum detector performance.
A suboptimum detector is presented and evaluated in Chapter V. Chap-
ter VI contains the summary and conclusions, contributions of this

study, and suggestions for future work.

1.7 Notation

The basic notation for the remainder of the dissertation is
defined. All vectors are column vectors unless otherwise noted and
are written as the transpose of a row vector. All vectors and ma-
trices are denoted by capital letters. The exact meaning will be

clear by the context. Given a matrix U, UT is the transpose; U

is the complex conjugate; U* is the complex conjugate of UT; and
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Ul is the determinant.
All observations are complex valued random vectors with KP
elements. The signal and noise vectors are S and N respectively

with elements

T
S = {sl, Sos ""SKP} , and

N = {nl, Ny, - }T where

Ngp

sq and nq are complex valued single observations. The signal and
noise correlation matrices are RS and RN respectively. Rs and

RN are Hermitian positive definite matrices.

Rg = E [S- EIS)] [S- E{s}]*

and

where E{ ] denotes expectation.
The symbol ~ denotes "is distributed according to." An

example is the normal probability distribution function.
X ~ N(M,R)

indicates that the vector X is distributed according to the multi-
variate normal probability distribution function with mean vector M

and correlation matrix R .



CHAPTER II

BACKGROUND

2.1 Review of Detection Theory

The pertinent facts of signal detection theory are reviewed in
order to present the techniques used in this dissertation. Classical
fixed-time forced-choice signal detection theory was aptly formulated
by Peterson, Birdsall, and Fox (Ref. 23) in 1954. The theory has
since been extensively refined and extended. The basic signal de-

tection situation is presented schematically in Fig. 2.1.

Detector p——® Decisicn

n(t)

Fig. 2.1. Illustration of the basic signal detection problem

The noise process is nf(t), and s(t) is the signal process. The
detector is presented with an observation y(t) during the time inter-

val 3 and B+ TD. The observation either consists of noise alone,

hypothesis H_,, or signal and noise, hypothesis H When the

0’ 1
signal is present, it is present for the entire observation interval.

The hypotheses are mutually exclusive. At the end of the observation

15



16

interval, the detector must decide whether the signal is present or
absent, that is which of the two possible hypotheses is in effect. The
signal detection problem can be expressed as a hypothesis testing

problem which is expressible in shorthand as:

y(t) = B<t<B+Ty -

The random process y(t) is customarily described by a
vector representation in order to use statistical decision theory.

According to the Shannon sampling theorem, y(t) can be represented

as the vector

T
Y = v Yoo Vg o g H

where
N = 2WT
and

1-n
Y, = y<ﬁ+~2—w> for n=1,2,3 ...,N |

if y(t) istimelimited to an interval of length T and Fourier Series

bandlimited to an interval of width W .

2.1.1 Detector Design. Birdsall (Ref. 2) showed that the

detector which basesits decisions on the likelihood ratio yields
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optimum performance for the class of criteria which considers cor-
rect decisions ''good'" and incorrect decisions '"bad.' Three com-
monly used criteria that fall into this category are the Bayes, Neyman-

Pearson, and Weighted Combination criteria. The optimum decision

rule is
1, L{Y] >c
6({Y] = (r, L[Y] =c¢c
0, LiY]<ec

where

flvjs ] o |
1. L[Y] = W is the likelihood ratio.
2. f] Y} H, | isthe observation probability density func-
tion under hypothesis Hi for 1=0 and 1.
3. c is the pre-assigned threshold.
4. ¢| Y] is the probability of deciding that a signal is
present given the observation Y .
5. 0<r< 1.
The case for L| Y| =c¢ describes a randomized decision rule.
The threshold c¢ is selected according to the chosen criteria.
Birdsall (Ref. 2) has also shown that the detector which bases
its decisions on a monotonic function of the likelihood ratio also yields

optimum performance. The monotonic function must map infinity to
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infinity. This property is referred to as the monotone property of
likelihood ratios in this dissertation.

2.1.2. Detector Evaluation. Detector performance is suc-

cinctly summarized by the receiver operating characteristic (ROC).

The ROC is a plot of the probability of false alarm, P versus

FA”’

the probability of detection, PD . PF A is the probability of deciding

hypothesis H1 occurred when hypothesis H, occurred, and P_ is

0 D
the probability of deciding H 1 occurred when indeed it did. Birdsall
(Ref. 2) showed that the ROC of all likelihood ratio detectors is

convex.

For any detector,

d
I

p = El[Y]|H} (2.1)

and

P

pa = E{ol Y] |Hy} (2.2)

where ¢[ Y] is the decision rule. Py and PFA become

o0
p. = | f{Y|H,] dY (2.3)
D Iy e {Hy
and
o0
Ppa = / f Y|H,] d¥ (2.4)
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for a likelihood ratio detector if and only if the probability that
L| Y| = ¢ iszero. Let II(*) bea monotonic function that maps

infinity to infinity and
m[y] = o [L[YJ] . (2. 5)

Equations 2.3 and 2.4 then become

0

P, = Cf' f{mH, | ar (2. 6)
and
o0
Ppp = C]’ f{I')H, | i (2.7)
where c¢' = II(c). These relations can be further simplified by a

theorem proved by Birdsall (Ref. 2) which states that the likelihood
ratio of a monotonic function of the likelihood ratio is the likelihood
ratio. That is
f 3 I [L’L YJ] {ng
LLY| = : (2. 8)

f%II [L[YJ] iHog

Substitute Eqs. 2.5 and 2. 8 into Eqs. 2.6 and 2. 7.

oC

-1 1 i ' ] '
P = C[ 0[] f[IrH] din (2.9)

and
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€
PL, = é[ f{II' | Hy) dIr (2.10)
where H_I(-) is the inverse of the function II(-). It is then seen
that the ROC for the optimum detector is completely specified once
flI'lH,] is known.

2.1.3 Normal ROC. The normal ROC is a standard for com-

paring ROC's because it is parameterized by one parameter, d'. A

ROC is called normal if it can be parameterized by the normal distri-

bution as:
PD = d(A+d")
and
PFA = d(r)
where
A
o) = L [ /24
V21 -

The parameter d' is called the detectability index though sometime
it is referred to as the quality of detection. Normal ROC's are
usually plotted on normal-normal graph paper because normal ROC's
plot as straight lines. A family of normal ROC's with detectability

index d' is plotted in Fig. 2.2.
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Fig. 2.2. Normal ROC's with detectability index d'

Physical significance can be attributed to d', and this ac-

counts for the attractiveness of normal ROC's.

The performance of

the optimum detector for signal known exactly in white Gaussian noise

is described by a normal ROC with
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where E is the signal energy and N is the noise power per hertz.

0

The normal ROC provides a convenient quantitative measure
of performance for the comparison of ROC's. When ROC's are al-
most normal, an equivalent detectability index, dé, as measured on
the negative diagonal, P_ + P A S 1, indicates the performance.

D F
2.1.4 Binormal ROC. Thae binormal ROC appears in many

situations as the result of normal ROC's and the use of normal-normal
graph paper for plotting ROC's. On normal-normal graph paper, nor-
mal ROC curves plot as a straight line with a slope of unity while bi-
normal ROC curves plot as a straight line with a slope less than unity.
Consequently binormal ROC's can be parameterized by a SLOPE and
a detectability index dé . d(’a is that point where the binormal ROC
curve intersects the negative diagonal, PD + PFA =1. Afew
binormal ROC's are presented in Fig. 2.3.

The binormal ROC arises in situations where the decision
variable is normal under H, and H, but with different first and

0 1

second order moments uncer H0 and Hl. Let Z be the decision

variable. A binormal ROC arises when

2
N(mo,oO ), HO

7 ~

2
N(ml,o1 ), H1

d'e and SLOPE are (see Appendix C)
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Fig. 2.3. Binormal ROC's with detectability index d’
and slope SLOPE
2(m, - m_)
4 = —t 2.11)
1 0
and
SLOPE = 00/01 (2.12)
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SLOPE is a measure of the difference in the variance of, and d'e is
a measure of the difference in the mean of Z under H0 and H1 .
The binormal ROC is not convex and consequently cannot be
the ROC of likelihood ratio detector (Ref. 2). However a region of
the optimum ROC may behave as a binormal ROC. It then becomes

convenient to label and to parame:erize the optimum ROC by a d'e

and a2 SLOPE in this region.

2.2 Performance Evaluation and Characteristic Functions

The statistics of the decision variable, Z , under HO and H1

must be known to generate the ROC. Many times Z , under HO and
H1 , 18 the sum of the squares of independent zero mean Gaussian
random variables with different variances. The probability density
function of the sum of the squares of independent zero mean Gaussian
random variables with different variances is a noncentral chi-square
distribution. The noncentral chi-square probability density function

is well known in the form of series expansions (Ref. 15). Use of the
series expansions for the probability density functions require approxi-
mations in the form of truncating the series. A different technique

is presented for approximating this probability density function numeri-
cally. The ROC may then be generated by Egs. 2.9 and 2. 10 or Egs.
2.1and 2.2 depending if Z is or is not respectively the optimum

decision variable.

Let
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where
1. The X are independent.

2
2. X N(O, o )-

Let f| ZN] be the probability density function of ZN; @Z (w) the
N
characteristic function of ZN ; and <I>X (w) the characteristic func-
tion of X The characteristic function of ZN is defined as
0 jWZN
®, (W) = / 1(Z)) e dzZ, (2.13)
N =00
It then follows that
0 -jwZ
1 N
HZy) = 5= @, (w)e dw . (2. 14)
-0 N
Since X are independent,
N
@Z (w) = 11 <I>X (w) . (2. 15)
N n=1 n

The xn2 are chi-square random variables with characteristic func-

tion (Ref. 7)
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o (w) = 1 (2. 16)
i ’\/1 - j2cn2 w
Substitute Eq. 2. 16 into Eq. 2. 15.
N
2, W) = O 1 2. 17)

f ZN] follows by substituting Eq. 2. 17 into Eq. 2. 14.

fl Z is evaluated numerically from Eqs. 2. 17 and 2. 14.

N
Equation 2. 14 is evaluated by using the Fast Fourier Transform
algorithm at a considerable saving in computer time over using the

Discrete Fourier Transform (Refs. 4 and 5).



CHAPTER II

THE OPTIMUM DETECTOR FOR WIDE SENSE

CYCLO-STATIONARY PROCESSES

3.1 Introduction

The optimum detector for Gaussian WSCS processes in
additive Gaussian noise is derived using the likelihood ratio as the
optimum decision rule. The detector is derived in a manner that
isolates the cyclic structure of the signal correlation matrix. The
detector for WSCS processes has the form of noise reduction fol-

lowed by signal enhancement followed by energy detection,

3. 2 Detector Design

The detector problem is a fixed time forced choice detection
problem with completely known statistics. Observations are gathered
until there are KP observations at which time a decision must be
made as to the absence or presence of a signal. The detector de-
sign is based on the optimum decision rule, the likelihood ratio,

The signal is a zero mean complex Gaussian WSCS process, S, with

autocorrelation matrix RS . The noise, N, is also a zero mean

complex Gaussian process with autocorrelation matrix RN and is

independent of the signal. The observation, Y, under the hypotheses

H0 and H1 is

27
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0
Y =
S+N , H1
The observation statistics under HU and H1 are
N[ 0, RN] , Hy
Y ~
N[O, RS+ RN] , H1

The detector is designed in two steps. The first step is de-
riving the sufficient statistic for making optimum decisions and pre-
senting three common interpretations of the sufficient statistic. The
second step is expanding the sufficient statistic in a manner that per-
mits preserving the cyclic structure of R, in the detector.

S

3.2.1 The Sufficient Statistic and Three Common Interpre-

tations. The observation statistics are required to form the likelihood

ratio, L| Y] . The observation statistics are:

-KP/, -3 R
f[ Y|H,| = (2) |Ry exp{-Y Ry Y/2}
and
| -KP/, -2 . -1
fly|H, | = (2n) |Rg + Ry exp{-Y [Rq +Ry] v/2).

The likelihood ratio is defined as

L[Y] = f’.Y'HlJ/f[Y!Ho] ’
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and

1
2

L[ Y] = [!RN(/ IRS+RN1]
* -1 —1]
eng Y [RN [Rg+Ry 1 | ¥/2 2
The log-likelihood ratio, Z , is defined as
Z[Y] = fn [L[Y]]

By the monotone property of likelihood ratios discussed in Section

2.2.1, Z isa sufficient statistic for making optimum decisions.
z[Y] = 1/2 tn [IRNI / iRS+RN!] +

"l Rr+R ]’I]Y/z

*
Y[R SN

N
(&1 i -

Since all the matrices, RS and RN , are known, 1/2fn [IRNI/ IRS+RN1]
is a known constant. Consequently by the monotone property of likeli-

hood ratios, a sufficient statistic for making optimum decisions is the

modified log-likelihood ratio, Z[ Y| , where

Z[Y] = Y*[RN-l-[RS+RN]_1]Y . (3.1)

The sufficient statistic, Z[ Y] , is a quadratic form. Z[ Y]
must be interpreted in a manner to isolate RS and preservethecyclic
structure of RS . Three frequently mentioned interpretations of

7 | Y] are presented below as a contrast to the interpretations presented
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in this dissertation.

1. Triangularization
1

If R - [RS +RN] 1 s a positive Hermitian matrix, there

N

exists (Ref. 11) a lower triangular matrix, B, such that

The detector becomes an energy detector with filtering,

~Y

Z2v] = [y

and is shown in Fig. 3. 1.

Fig. 3.1. Triangularization

2. Simultaneous Diagonalization

Let RN- 1 be a positive definite Hermitian matrix and
+ R, ] -1 be a Hermitian matrix. There then exists (Appendix
N

A) a matrix D and a real diagonal matrix, ¥ , such that

and
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%
R, + R =D VD

S N]

7Z[ Y] becomes

o e

Z[Y] = |[1v [ DYU2

i[ Y | is still an energy detector with prefiltering. In this interpre-
tation, there is a term identifiable with the input signal-to-noise ratio.

The detector is implemented in Fig. 3. 2.

Z[y|

Y ! KP ‘

— D |}—op [I-\I/]“ a1 SQ —9 \ >
/—J

Fig. 3.2. Simultaneous diagonalization

3. Estimator-Correlator

Given
Y =S + N ,

Kailath (Ref. 16) shows that the linear filter, H , that generates the

minimum mean-square estimate, S, of S from Y has the form

1

H =R|R

-
2 S+RNJ

-1

H

I- R R.+R

NL S NJ
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Multiply both sides of Eq. 3.2 on the left by RN_1 and rearrange,

1

-1 - -1
Ry H =Ry - [Rg+Ry] (3. 3)
Substitute Eq. 3.3 into Eq. 3. 1.

Z[¥] = Y R 'Y 3. 4)

If RN—I is a positive definite Hermitian matrix, it can be triangu-

larized (Ref. 12).

-1

RN = F*F

where F is lower triangular. Consequently Eq. 3.4 becomes

x % ~
Z'[Y] = [Y F ] [FS]
where S = HY . Besides providing a sufficient statistic for making
optimum decisions, this interpretation for ’Z[Y] also generates the
minimum mean-square estimate of S. The block diagram for Z[ Y]

is shown in Fig. 3. 3.

Y KP %[Y]
- { H p——— F N
by

Conjugate F*
—® Transpose >

Fig. 3.3. Estimator-correlator
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3. 2. 2 Expansion of the Sufficient Statistic. To preserve the

cyclic structure of R, i[Y ] must be expanded to isolate R

S S*
The expression for Z[ Y] is repeated below.
Z[Y] :Y*[ ‘1-[R+ j‘l]y (3.1)
By sy ‘ '

. . -1 -1 . .
RS must be isolated in RN - [ RS + RN] in order to isolate

R in Z[ Y] . This can be partially accomplished by use of the

following matrix identity. R, and R,. are both positive definite,

S N
Then
(Roer ]! - rl - plipc! -11‘1 -1
st Byl 7 Ry Ry LRy + 1Ry Ry
(3. 3)

Substitute Eq. 3.3 into Eq. 3. 1. %[Y] becomes

Y] = v RO RS Y RY . 1y 3. 4)

= Y Ry LRg "+ Ry "] Ry '

Now R, must be further isolated in order to preserve the cyclic

S
structure of RS .
RS is a positive definite Hermitian matrix and RN is a posi-

tive definite., There then exists a matrix of eigenvectors, Q, and a

real diagonal matrix of eigenvalues, A , such that (Appendix A)
R 3 *
S - Q Q b

and 3. 5)
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Ry = Q AQ

Since RS is the correlation matrix of a WSCS process, it can also

be expressed as

where MK and C are lower triangular matrices, It is then pos-

sible to find (Appendix A) a unitary matrix, W, such that

Q = WCM

K (3.6)

Substitute Eq. 3.6 into Eqs. 3.5 and then substitute into [RS'1 +

RN-I]_I of Eq. 3.4. Z[Y] then becomes
&~ I I T o171 1
Z[Y] = YR "M CW [I+A™] WCMR/ Y
L 2
-1 -2 -1
= “[I+A ] WCM_,R Y” . (3.7)

KN

The cyclic structure of RS is thus isolated in the terms C MK .

The detector is implemented as shown in Fig. 3. 4.

Y -1

— Ry b—»f Mg —»f C |—» W

1
ol [I+ A°1] : »5Q > %P —p Z[Y]

Fig. 3.4. Optimum detector for WSCS processes
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3.3 Detector Description

The optimum detector for WSCS processes designed in
Section 3. 2 is described. Each of the detector blocks appearing

in Fig. 3.4 is called a filter and is explained separately,

Noise Reduction

RN is a noise reduction filter. The noise reduction has
the character of reducing the input power spectrum to RN~1 by
the square of the noise power spectrum. If the noise power spec-
trum is stable with a few large isolated spikes, the noise reduction
takes on the character of a notch filter. It should be noted that this

filter is unrealizable in the sense that future inputs are required to

form the present output.

Signal Enhancement

The filter combination MKC is a signal enhancement filter,

The signal enhancement hasthe character of enhancing the input power

spectrum to M., C by the signal power spectrum. For WSCS pro-

K
cesses the structure of the signal enhancement is identifiable with
the cyclic structure of RS .
MK is a modulation emphasis filter, It emphasizes each
period ( P elements) of its input by the modulation matrix M.
C 1is a combining filter. It combines periods of its input,

which have each been emphasized by M, according to the carrier

matrix.
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Whitening
W is a whitening filter., It whitens in the sense that under
either HO or H 1 the output vector has independent components

with different variances. Let

-1

V = WCMKRN Y (3. 8)
with autocorrelation matrix RV .
E{vv']
RV = 'A%
-weM R ey Yy R M wt 3.9
- KRN Ry K (3. 9)
MK C A K , HO
*
Elyy} = | (3. 10)
kX%
| M C [I+4] CMye , Hy
Substitute Eqs. 3, 10 into Eq. 3.9. Then
-1
A »  Hy
R, ={ (3.11)

- -1
A 1[I+A] , Hy

and the elements of V are independent for the Gaussian input Y

under HO and H1 .

It should again be noted that W is an unrealizable filter,
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Weighting

1
-2

[T+ A'I] is a weighting filter. A is a real diagonal
matrix with diagonal elements, ?tn , the noise-to-signal ratio be-
havior on the nth eigenvector. The eigenvector noise-to-signal
ratio is inversely proportional to the input signal-to-noise ratio
(Appendix D). If the input signal-to-noise ratio is small, the )\n are

large, and

[I+A 7] =1 (3.12)

where = is read "approximately equal to.” On the other hand if

the input signal-to-noise ratio is large, )tn are small, and

1

- I
1 2

[I+A 7] = A% . (3. 13)

The weighting filter modifies the detector structure for departure from
from the small input signal-to-noise ratio case.

The detector structure in Fig. 3.4 with the weighting filter
bypassed is the small input signal-to-noise ratio approximation of
the detector. This is an attractive feature in the sense that the
small input signal-to-noise ratioform of the detector is directly

identifiable without making approximations to all the filters.

3.4 Summary

The optimum detector for Gaussian WSCS processes in ad-
ditive Gaussian noise is designed so as to preserve the cyclic struc-

ture of the signal autocorrelation matrix. The detector is a noise
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reduction filter followed by a signal enhancement filter followed
by an energy detector. The structure of the signal enhancement
filter is clearly identifiable with the cyclic structure of the signal
autocorrelation matrix. The low input signal-to-noise ratio form

of the detector is directly identifiable by making an approximation

in only one of the detector filters.



CHAPTER IV

PERFORMANCE EVALUATION OF THE OPTIMUM DETECTOR

4.1 Introduction

The performance of the optimum detector is evaluated and ex-
plained. A signal model is described for use in evaluating the
performance,and expressions for characterizing performance are

derived.

4.2 Model Description

The signal and noise models are selected to permit meaning-
ful detector evaluation with a minimum number of parameters.

4.2.1 Noise Model. The noise model is selected to permit

identification of performance characteristics with the signal model

characteristics. The noise model selected is a real ‘zero mean wide
sense stationary white Gaussian noise with power spectral density N0 .
4.2.2 Signal Model. The signal model selected is a real

zero mean WSCS Gauss-Markov process. This model is selected
because the behavior of the correlation function is completely char-
acterized by the correlation coefficient.

The signal, S, is the sampled version of the time continuous

WSCS process

s(t) = x(t) cos 27w .t + B)

0

39
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x(t) is a real zero mean wide-sense stationary Gauss-Markov pro-
cess with autocorrelation function RX(T) = RX(O) e—alﬂ, and B

and fO are known. The autocorrelation function of s(t) is

RX(tm - tn)
Rs(tn, tm) S S— [cos[2nf0(tm+tn) + 28] + cos 217f0(tm—tn):l.
Sample s(t) at the rate TS = —I—)%— so that there are P samples in
0

a period 1/f0. Sample at the time instants t, = Ts(n-l) until
there are KP samples, i.e., n =1,2,3, ..., KP. The autocor-

relation matrix of S is RS with elements rs(9,¢) for 6,6 =1, 2,

3, ..., KP.

R_(0) )
r (6,¢) = —%———psm a [cos [—%1-)7—7 (¢+9—2)+26]+cos—2§(¢—9)]

where p, = Rx(l/PfO)/RX(O) is the sample-to-sample correlation

coefficient. p;l = RX(n/PfO)/RX(O). Subdivide RS into PxP sub-

matrices A for nnm=1,2,3, ..., K.
nm

Anm = [rsl(n-l) P+u, (m-l)P+V]] 3 u,V:1,2: 33 t vty P.
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Now
rs[(n—l)P+u, (m-1)P+v] =
R_(0)
}; [ | (m-n)P+v-ul {cos[gg [(m+n-2) P+u+v] + 28]]+ 005*215’7_
| (m-n) P+V—uj}
R_(0)

= X p [mon) Pev-ul fcos[zg« (wv)+ ZB} + cos 2—117 (v—u)}

s l

Consider the following three cases for rs[(n—l) P+u, (m-1)P+v] .

| P+v-ul {cos —21—)75[(u+v) + 2BJ]+ cosz—g (v—u)}
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R_(0) ; ;
rs[(n-l)P+u, (m-1)Psv] = x2 5 | (m-n) P+v-u! {cos[%g (u+v)+26]

S

+ cosgﬂ (v-u)
P

R _(0)

o | P+v-u|
2 S

pim—n—ll

{cos [«2—3 (u+v) + 26] + COS 2?37 (v—u)}
where

p = psP is the period-to-period correlation coefficient.

It is possible to conclude from these three cases that for a WSCS

Gauss-Markov process

|m-n-11
A12 m> n
A = A n= m
nm
Im-n-11 , %
A12 n> m

Rs is then completely specified once A, A12’ and p are known.
A and A12 are also completely specified once P, K, Py and

RX(O) are known.

4.3 Evaluation Procedures

The procedures used in evaluating the performance are

presented and expressions for performance characterization are
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derived. The block diagram of the optimum detector is repeated
below. The techniques used in performance evaluation and charac-

terization only require knowledge of the eigenvalues, An

1]‘2 KP Z[Y]

i

Fig. 3.4. Optimum detector for WSCS processes

4.3.1 ROC Generation. Given the statistics of %[Y] under

Hy and H, f[’Z[Y)lHO] and f[%[leHl], the probability of de-

tection, PD’ and the probability of false alarm, PFA’ are (see
Section 2.1.2)
oC
P - { f[Z[_Y]lHl] dz (4.1)
and
x
Poy - J f[Z[Y]IHO] a7 (4.2)
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The ROC's will only be generated for the ROC evaluation region.

The ROC evaluation region is either that region of the ROC where
0.0 .
1 < PD < 0.99

and

0.01 < P, < 0.9,

or is that region of f[%[Y] HO] and f[’Z[Y] Hl] such that when

~

f[%[y] HO] and f[Z[Y] Hl] are substituted in Eqs. 4.1 and 4.2
0.0 .
1< Py < 0.99

P < 0.9

and 0,01 FA S

AN

The exact meaning will be clear by the context.

It was shown in Section 3.3 that the KP dimensional vector Vv,

_ -1
V—WCMRNY )

is a zero mean Gaussian vector with independent components, Eq.

3.11. It then follows, that the correlation matrix of V' , R where

VY’
Vi = [I+A 7] "V

is



Consequently under HO and H1 , %[Y] is the sum of the squares
of independent Gaussian random variables with different variances
where the variances are the diagonal elements of Ry - f[ﬁ{Y} IHO}
and f['Z[Y] 1 Hl] are obtained by taking the inverse Fourier Trans-
form of the characteristic function under HO and H1 and inte-
grating as in Eqs. 4.1 and 4.2. See Section 2.2 for more details on

the procedure.

4.3.2 Input Signal-to-Noise Ratio. The input signal-to-noise

ratio, SNRI, is a meaningful measure of the amount of signal relative

to the amount of noise. Let the diagonal elements of the signal and

noise correlation matrices be respectively rs(n) and rN(n) for n=
1,2,3, ..., KP. SNRI is defined as
1 RP
P nz_-’l rg(n)
= _ . 4.4
SNR/ <D (4.4)
R Z r..(n)
KP N
n=1

Therefore
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— Zr(n):N . (4.5)

where TR]| | is the trace of the matrix in brackets. It is shown in

Appendix A that

1
SNRI " Xp

4.3.3 Detectability Index. A meaningful measure of the de-

tector performance is the point where the ROC curves cross the nega-
tive diagonal, PF ATt PD = 1. The detectability index, d', is the
measure of that crossing point and is easily calculated for a normal
ROC.

Assume that the ROC for the optimum detector is normal or

can be closely approximated by a normal ROC. d' is then defined
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as (Ref. 2)

. \/E[%[YJ!HI] - & [Zv), | | e

2

It is seen that, Section 4.3.1,

RP 1 11
L A (LA ) H, (4.7)
n=1
E[Z[YH] =
KP
-1
RN , H (4.8)
n=1

Substitute Eqs. 4.7 and 4.8 into Eq. 4.6. Then

Kp o1 -1
da = % X 2@l (4.9)
~ “'n
n=1
The eigenvalues are initially calculated for a SNR_ of unity

I

because any other SNR_ can be obtained by multiplying the eigen-

I

values by a constant. The performance is obtained for the detectabil-
ity indices of 0.25, 0.5, 1.0, and1.5. 3 1is set at 0.0625 so as not

to sample at the zeroes of cos 27rf0t . The eigenvalue multiplicative

modifying constant is found by the Newton-Raphson method used to

search for the stated d', and the SNR, follows from the new eigen-

I

values.
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4.4 Performance

The ROC's and performance data are presented and discussed
followed by specific conclusions.

It is observed, in the ROC evaluation region, that the ROC's
are binormal. This only indicates :hat the optimum ROC's behave as
binormal ROC's in the ROC evaluation region. See Section 2. 1. 4 for
more details on binormal ROC's.

Six representative ROC's are presented in Figs. 4.1 to 4. 6.
Since a binormal ROC curve can be parameterized by two parameters,
the slope and detectability index, the optimum ROC's are summarized

in Table 4.1. The parameters listed in Table 4.1 are defined below.

K: number of periods in an observation

P: number of samples in a period

p: period-to-period correlation coefficient, p = psP
Py sample-to-sample correlation coefficient

a': desired detectability index

de': actual detectability index

SNRI: input signal-to-noise ratio

SLOPE: slope of the ROC curve

For a binormal ROC (see Appendix C),
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0.99

0.90

0.50

.10

0.01 | 1 L 1 l ! | 1
0.01 0.10 0.50 0.90

Fig. 4.1. ROC curves for optimum detector for
K=4, P =4, Py = 0.25
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0.90

0.50

0.10

001 l 1 ! . ] ! i |
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Fig. 4.2. ROC curves for optimum detector for
K =16, P =4, Py = 0.25
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2(m, - m,)
4 = o (2. 1)
1 0

and

SLOPE = 00/01 (2.12)

where

~

1. m, isthe meanof Z[ Y| under H

0 0’
2. m, isthe mean of Z[ Y] under Hy »
3. 002' is the variance of Z[Y] under Hy,
4. 012 is the variance of Z[Y] under Hy -

It is seen that the slope is a measure of the differences in the vari-
ance of and de' is a measure of the difference in the mean of
%[Y] under H0 and Hl . The relationships between the various
parameters in Table 4.1 are plotted in Figs. 4.7-4.9 for a represen-
tative example as an aid in interpreting Table 4. 1.

It is seen from Table 4.1 and Fig. 4.7 that for a given K, P,
p the ROC is normal for low d' and de' equals d'. However as
d' increases, the ROC deviates from the normal and de' becomes
smaller than d' for small K and is approximately d' for large K.
This is due to the degree of similarity between f [i[ Y]} HO] and

f [i[ Y || Hl] in the ROC evaluation region.

The variance of %[Y] under HO and H1 are approximately
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Fig. 4.9. P as a function of SNRI for Py = 0. 707

equal, and the ROC is approximately normal for low SNRI (Figs.
4.8a and 4. 8b). However as SNRI increases, the variance of

Z[ Y] under H, and H,; begin to differ more, and the ROC becomes
less normal. The fact that the ROC is binormal indicates that
f [ri[ Y] HO] and f [ri[ Y| Hl] behave approximately as Gaus-
sian probability density functions in the ROC evaluation region.

The degree of similarity between f [i[ Y]l HO] and
f [%[ Y| Hl] decreases as p or Py increases for a given P and
any K (Figs. 4.8b and 4.8d). This is due to an increasing difference
between the detector input statistics under HO and H1 . Some of

this effect can be reduced by increasing K but the value of p or
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P is the controlling factor.

The SNRI required for any d' decreases as the observation

time (KP) increases for constant p or Py and constant period
(P) . This is expected and is a result of the integrating filter (Fig.

4. 8c).

The SNRI required for ary d' decreases as p or Py in-

crease for a constant period (P) and a constant observation time
(KP) . This is a result of the increasing statistical difference be-

tween HO and H1

The SNRI required for any d' decreases as the period (P)

is increased for a constant observation time (KP) and a constant p

as p or p_ increase (Fig. 4. 8d).

or p_ (Fig. 4.9). This decrease in required SNR_ is slight but

I
does indicate a trend.
The performance results indicate that the only ways to reduce

the required SNR, for a given d' is to increase p or Pg s P, K,

I
or any combination thereof. One usually has no control over the para-
meters p, Py and P . Consequently the only way to improve per-
formance is to increase KP by increasing K.

It should be observed that for the signal model selected in-
dicates that increasing the sampling rate to increase p or Py and
P improves performance. The signal model further allows for a

never ending increase in sampling rate. This is a result of the

infinite bandwidth of the signal s(t) . In actuality signals have finite
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bandwidth. Consequently increasing the sampling rate over the
Nyquist rate may improve the performance slightly. However in-
creasing K will improve the performance much more than increas-
ing the sampling rate. This is a consequence of the fact that once a

CS process is specified, P and p are usually fixed.

4.5 Summary

Performance results are derived for a real zero mean
WSCS Gauss-Markov process with period P . The autocorrelation
matrix for this process is completely specitied once the autocorre-
lation matrix for any period (A), the correlation matrix between
adjacent period (Alz), and the period-to-period correlation coef-
ficient (p) are known.

It is found that the required SNRI for a d' can be reduced
by increasing the sample-to-sample correlation coefficient (ps) or
the period-to-period correlation coefficient (p), the size of the
period (P), and the number of period observed. It is noted that in
actuality the Nyquist sampling rate imposes a severe limitation on
the control one has over p or P and P by varying the sampling
rate. Once a WSCS process is specified, P and p or pg are

specified and improving performance is limited to increasing the

observation time (KP) .



CHAPTER V

A SUBOPTIMUM DETECTOR

5.1 Introduction

An optimum detector was erived in Chapter III, and its per-
formance evaluated in Chapter IV. A suboptimum detector that per-
forms almost as well as and is easier to implement than the optimum
detector is highly desirable. It is usually a suboptimum detector that
is implemented in practice.

The suboptimum detector is derived. Its approximate per-
formance for the signal model presented in Chapter IV is evaluated

and compared to the optimum performance.

5. 2 Suboptimum Detector

The block diagram of the optimum detector is repeated below

in Fig. 3.4. It was shown in Section 3. 4.1 that the weighting filter,

Y -1
—s Ry }—» My —w» C W
1
-1."2 KP ~
L [I+A1] ° —lsQ —» D Z[Y]

Fig. 3.4. Optimum detector for WSCS processes
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1

[T+ A—l] : , approaches the identity filter, I, for small SNRI'S.
The weighting filter modifies the optimum structure for departures

from the small SNR. case.

I
The small SNRI form of the optimum detector is the subopti-
mum detector studied and is shown in Fig. 5. 1. %S[Y] is the sub-
optimum decision variable. The suboptimum detector is expected to
perform as well as the optimum detector for small SNRI. It 1s also

expected that the suboptimum performance is close to the optimum

performance for large SNRI. For large SNR., the signal is easily

I )
detected, and the exact detector structure should not be critical.

It was shown in Section 3. 3 that V is a Gaussian vector with

independent components under HO and Hl’ Eq. 3. 11, where

-1
V = WCMRN Y .

KP

Fig. 5.1. A suboptimum detector for WSCS processes
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Consequently %S[Y] is the sum of squares of independent Gaussian
random variables under HO and H1 . It follows that the mean and

variance of iS[YJ under Hj) and H, are

-1
nfl )\n ’ HO
mean = , (5.1)
KP
TS SO |
nél oflea),  H)
and
KP
-2 1,2
zn; YU, Hy
variance = . (5. 2)
KP
2 ngl . , H

5.3 Evaluation Procedures

The ability to parameterize the suboptimum ROC in the ROC
evaluation region by one or two parameters is highly desirable. This
would facilitate the comparison between the optimum and suboptimum
performance.

According to the Central Limit Theorem, f[’ZS[Y] lHo] and
f[%S[Y] lHl] may be approximated by the normal density function
with means and variances as in Eqgs. 5.1 and 5. 2. Consequently the

approximation to the suboptimum ROC in the ROC evaluation region
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will be a binormal ROC. This approximation is {further supported
by the fact that the optimum ROC is binormal in the ROC evaluation
region. The approximate suboptimum ROC can then be parameterized
bya d ' anda SLOPE .

es S

The des' , and SLOPE for a binormal ROC were derived in

Appendix C, explained in Chapter II, and are repeated below.

R 21
1 G
and
SLOPES = 00/(71 (2.12)
where
1. m, is the mean of %S[Y] under H .

4

2. m, is the mean of ZS[Y] under H, .

3. 002 is variance of %S[Y] under Hj .

4, 012 is the variance of ﬁS[Y] under H, .

The approximate suboptimum performance is then easily calculated
given my, My, 0, and 0y for the SNRI'S and detectability indices

used 1n optimum performance calculations.

5.4 Performance

The suboptimum performance will be compared with the opti-

mum performance in two ways. The first comparison will be the



66

statistics of the optimum and suboptimum decision variables under
H0 and H 1 This comparison will indicate the stability of the opti-
mum and suboptimum statistics and has a strong bearing on the
second comparison. The second comparison will be the optimum and

suboptimum ROC's.

5.4.1 Decision Variable Statistics. The means and variances

of %S[Y] are listed in Eqs. 5.1 and 5.2. The means and variances

of Z[Y] are easily calculated, Eq. 4.3, and are listed below.

KP -1

ZA"1[1+A‘1] , H
n n

n=1

0
mean = ) (5'3)
KP _,
Lo , H
n=1
and
KP -2
2 Y a2+, m
0
n=1
variance = . (5. 4)
¥
2 An ’ Hl
n=1

It is seen that the terms in the expressions for the statis-

tics of Z[Y] and ﬁS[Y] vary differently with the eigenvector
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signal-to-noise ratio. The different manners in which the terms

vary with the eigenvector signal-to-noise ratio are listed below.

x(1+x) L, H,
optimum mean o (5.5)
X , H1
Xx7(1 + x)_2 , HO
optimum variance o (5.6)
2
X , H1
X , H0
suboptimum mean « (5.7)
x(1 + x) , H1
and
2
i
X , HO
suboptimum variance « (5.8)
Xz(l + x)2 , H1
where

1. « is read "proportional to'.

. . . . . . -1
2. x is the eigenvector signal-to-noise ratio, A,

The expressions in Eqs. 5.5to 5.8 are plotted in Fig. 5.2.

It is seen that the optimum statistics are unbounded under H1 and

bounded under HO' This is a desirable feature because the statistics

under HO do not increase unboundiy as the signal power is increased.
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Fig. 5.2. Behavior of the terms in the expressions for the mean
and variance of the optimum and suboptimum

decision variables under H0 and H1
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For low to moderate SNR,, the optimum statisties under H

L’ 0

and H1 increase linearly with SNRI. This accounts for the fact that
f[%[YJ iHO] and f['Z[Y] ml] are similar; and consequently the
SLOPE is unity, and de' =d' for low to moderate SNRI. However

as SNR; increases, f[AZJ[Y] IHO:} doesn't change but f{%[YJ 2}{1}3
continuously changes. This explains the decreasing SLOPE and de’
for increasingly large SNRI.

The suboptimum statistics are unbounded under HO and H1 .
This is undesirable because the statistics under HO increase un-
boundly as signal power increases. It is scen that under H1 the
suboptimum statistics vary nonlinearly with SNRI while the subop-
timum statistics vary linearly with SNRI under HO' This indicates
that for low SNR[, f[ﬁs[Y] ;HOE and f{iS{Y] iHl] are similar.
However for moderate and large SNRI, the difference between
f[is[Y] IHO] and f[%S[Y] lHl] increases nonlinearly with SNR,.

On the basis of statistic stability, the optimum detector is
more desirable than the suboptimum detector. This is unexpected.
The usual case is for the suboptimum detector to have more stable
statistics than the optimum detector which is tuned to the exact sta-

tistics of the input.

5.4.2 ROC Comparison. The suboptimum ROC data is sum-

marized in Table 5. 1 for the binormal approximation in the ROC
evaluation region. The suboptimum ROC data is calculated with the

eigenvalues obtained for evaluating the optimum performance. The
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parameters listed in Table 5.1 are defined below.

K: number of periods in an observation

P: number of samples in a period

p: period-to-period correlation coefficient, p = pSP
[ sample-to-sample correlation coefficient

d': desired detect.bility index

des': actual suboptimum detectability index

SNRI: input signal-to-noise ratio

SLOPES: slope of the suboptimum ROC curve.
The relationships between the various parameters in Table 5.1 are
plotted in Figs. 5.3-5.5 for the representative example used in Figs.
4.7-4.9 as an aid in interpreting Table 5. 1.

It is seen, by comparing Tables 4.1 and 5.1, that the relation-

ships between SLOPE, K, P, d', de', and SNRI are the same for

the optimum and suboptimum detectors (compare Figs. 4.7 and 5.3
and Figs. 4.8 and 5. 4).

For small SNRI , des' =d' which is expected because the

suboptimum detector is the small SNR, form of the optimum detec-

I

tor (compare Figs. 4. 8a and 5.4b). However the divergence of des'

from d' for moderate to large SNR, is larger than the divergence

I
of de' from d'. Simultaneously SLOPES is always less than
SLOPE and SLOPEs respectively for increasing SNRI is due to

the instability of the suboptimum statistics.
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It is finally seen that for the d' considered, the suboptimum

performance, des is sufficiently close to the optimum performance,
de‘ , in the ROC evaluation region to say that the suboptimum detector
performs almost as well as the optimum detector (Fig. 5.5). Conse-

quently the optimum detector can be replaced by the suboptimum detec-

tor without any appreciable degracation in performance.

9.9 Summary

The suboptimum detector selected is the small SNRI form
of the optimum detector. The suboptimum performance is approxi-
mated in the ROC evaluation region by a binormal ROC on the basis
of the Central Limit Theorem and the optimum ROC.

The suboptimum detector performs as well as the optimum
detector. The slope of the suboptimum ROC is more binormal than
the suboptimum ROC. The relationships between the detector
parameters (K, P, Py p) is the same for the optimum and subopti-
mum detectors. However the suboptimum statistics are unbounded
with increasing SNR, under HO and H1 while the optimum statis-

I

tics are bounded under HO and unbounded under H1 .



CHAPTER VI

CONCLUSIONS

6.1 Summary and Conclusions

The problem studied in this dissertation is the fixed time
forced choice detection of Cyclo-Stationary (CS)processes in additive
noise. CS processes are defined in Chapter I as those nonstationary
random processes possessing autocorrelation matrices with a cyclic
structure., CS processes normally arise from sampling continuous
time CS processes. However other sampling schemes such as
multiplexing samples from different stationary random processes or
multiplexing samples from the sensors of an array observing a
stationary random process also generate CS processes.

It is highly desirable to preserve the cyclic structure of the
CS autocorrelation matrix in optimum detector expansions. Pre-
serving the cyclic structure permits identification of the detector
performance with specific properties of the autocorrelation matrix,
as well as introducing a new interpretation for detector expansions.

The optimum detector becomes, when the cyclic structure of
the CS autocorrelation matrix is preserved, a noise reduction filter
followed by a signal enhancement filter followed by energy detection.
The structure of the signal enhancement filter is clearly identifiable

with the cyclic structure of the CS autocorrelation matrix,

()
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The performance for the optimum detector is evaluated in
Chapter IV for a WSCS Gauss-Markov random process. The per-
formance evaluation is limited to a region called the ROC evaluation
region where 0,01 < PDS 0.99 and 0,01 < PFA~< 0.9. The op-
timum ROC behaves as a binormal ROC in the ROC evaluation region,
This does not imply that the compete optimum ROC is binormal, The
optimum ROC is normal for low SNRI and deviates from that as
SNRI increases. 'Simul‘taneously the optimum performance is the
same as the desired performance for low SNRI and is less than the
desired performance for large SNRI where the desired performance
is based on a normal ROC.

The optimum performance can be improved, less SNRI for
a given d', by increasing the period-to-period correlation coefficient
(p) , the sample-to-sample correlation coefficient (ps) , the number
of samples in a period (P), and the number of periods (K) observed,
or any combination thereof.

The CS signal is usually specified in detection problems.
Consequently p, Py and P are fixed, andthe only way to improve
the performance is to increase the observation time (K) .

A suboptimum detector is derived in Chapter V. The subop-

timum detector is presented in the belief that suboptimum detectors
are generally easier to implement than optimum detectors. The

suboptimum detector studied is the small SNR, form of the optimum

1

detector,
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The statistics, mean and variance, of the optimum and sub-
optimum decision variables, fi[ Y] and ‘Zst Y ] respectively,

under H, and H, are studied, The statistics of Z[ Y] under

H, are bounded with increasing SNR, but the statistics of ﬁs[ Y]

0 I

become unbounded under Hy. The statistics of Z[Y] and Z [ Y~

SL el

N

under H1 are unbounded with increasing SNRi . Consequently the
statistics of Z_[Y] are unbounded under Hy and H, .

The performance of the suboptimum detector is approximated
in the ROC evaluation region by a binormal ROC on the basis of the
Central Limit Theorem and the optimum performance. The subop-
timum performance, like the optimum performance, can only be
improved by increasing p, Py P, K, or any combination thereof,
The suboptimum performance is the same as the optimum performance
for small SNRI but is less for larger SNRI . Simultaneously the

slope of the suboptimum ROC is always less than the slope of the

optimum ROC though for small SNR. the suboptimum ROC is almost

I
normal. The divergence in performance and slope between the opti-
mum and suboptimum detectors is a result of the instability of the
statistics of is[ Y| with increasing SNR, .

The suboptimum detector studied is an attractive alternative
to the optimum detector. The suboptimum detector performs almost
as well as the optimum detector and is easier to implement. How-

ever the instability of the statistics of ZS[ Y | tempers the

attractiveness of the suboptimum detector,
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6.2 Contributions

The sullicient statistic for making optimum detections via
the likelihood ratio for Gaussian signal in additive Gaussian noise
is a quadratic form when the signal and noise autocorrelation ma-
trices, RS and RN respectively, are known. A new interpre-
tation for the quadratic form is presented which permits preserving
the cyclic structure of the CS signal autocorrelation matrix, The

quadratic form is
* -1 -1
ZAY] = Y [RN - [ RgtRy ] ]Y (3.1)

The interpretation involves isolating R_ in two steps. The first

S
step is applying the matrix identity

1 -1

R '] -1

LR T e

-1
. . : -1
to partially isolate Ry in Ry = - [ Ry+ Ry] . The second step

is to complete the isolation of R, by simultaneously diagonalizing

S

RS and RN . This is a new approach to simultaneous diagonali-
zation because the usual approach is to simultaneously diagonalize

the observation autocorrelation matrices under HO and H1 ,

RN and RS + RN respectively.
Detecting a stationary random process with an array of
sensors is equivalent to detecting a CS process. The carrier ma-

trix comes from the correlations between the time samples at any
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sensor.  However the cyclic structure and the modulation matrix
come from the spatial sampling introduced by the sensors. The
array provides spatial information through the modulation matrix
which is entirely different than classical beamforming, The modula-
tion provides spatial information through the correlation properties
between sensors while classical beamforming provides spatial infor-
mation by introducing time delays in the sensor outputs to form

beams.

6.3 Suggestions for Future Work

The whitening filter, W, is a nonrealizable filter in that
future inputs are required for present outputs, The detector ex-
pansion would be more attractive if the whitening filter were reali-
zable, If W is diagonal, the whitening filter is realizable; and
if W 1is almost digonal, the whitening filter is almost realizable,
Under what conditions does the whitening filter become realizable
or almost realizable ?

The suboptimum detector studied is the small SNRI form of
the optimum detector. The suboptimum decision variable consists of
the sum of the squares of independent Gaussian random variables.
Since the whitening filter, W, does not add any energy to the output,
the suboptimum detector would be more attractive if the whitening
filter were absent because the simultaneous diagonalization problem

need not be solved. However if the whitening filter is removed, the

suboptimum decision variable becomes the sum of the squares of
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dependent Gaussian random variables, The performance then be-
comes harder to evaluate, Studying the suboptimum detector without
the whitening filter is.an interesting problem for future work,

More work is needed to truly understand the relationship
between the modulation matrix and spatial information for an array,
How is the space around an arrsy observed through the modulation
matrix ? Is the concept of steering an array meaningless when

applied to a modulation matrix ?



APPENDIX A

SIMULTANEOQUS DIAGONALIZATION

A theorem on simultaneous diagonalization will be stated, and

the proof (Refs. 11 and 27) paraphrased, and some properties resul-
ting from the theorem will be derived. Before stating the theorem,

some basic notation will be defined.

a. A matrix, A, is Hermitian if

A = A* (A.1)

where * denotes the complex conjugate (-) of the
transpose (T).

b. TR[A] is the trace of the matrix A.

c¢. The inner product of two column vectors, X and Y, is

denoted as (X,Y) and is defined as

X,Y) = X*Y (A.2)

d. A Hermitian matrix, A, is positive definite if

X,AY) > 0 (A.3)

for all nonzero complex X and Y. Since A is Hermitian, it

should be noted that

(X, AY) = (AX,Y) . (A.4)

81
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Theorem: If A and B are Hermitian matrices, and if A is posi-
tive definite, there exists a complex matrix, U, of eigenvectors and

a real diagonal matrix, A , of eigenvalues such that

U*AU

i
]
%)
=
o
N

=

U*BU - 11 . (A' 6)

Proof:
Solve the following eigenvalue problem where A and B are

N x N dimensional matrices. Find the eigenvalues, X, , for which

k
the equation

[B—AkA]Xk =0 (A.T)

has a nontrivial solution. It follows that A K is an eigenvalue if and

only if the following determinant is zero:

iB-AkAl =0. (A.8)

Eq. A.8 is in general of the Nth degree, and there will be N values

for K For every distinct value of A K ? there exists an eigenvector,

Xk an N dimensional column vector, satisfying Eq. A.7. It is assumed

that there are N distinct eigenvalues, A K ? and corresponding eigen-

vectors, Xk .

Now from Eq. A.7
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(Xk,BXk) = ?\k(Xk,AXk) , and (A.9)
(BX,,X,) = X, (AX X)) (A. 10)
Since A and B are Hermitian, Eq. A.4
(Xk’BXk) = (BXk’Xk) , and (A.11)
(Xk’AXk) = (AXk,Xk) . (A.12)
Therefore by Eqs. A.9 - A.12,
Ay = ik, (A.13)

and the eigenvalues are real.
Since A and B are Hermitian, and the eigenvalues are real,

Eqs. A.4, A.7, and A. 13,

(aw]
1l

(Xk, BXm) - (BXk,Xm)

N KGAX ) - A (AKX )

k

= 00 (X ,AX ) (A. 14)

It then follows that for A £ i » the corresponding eigenvectors,

Xm and Xk , are orthogonal with respectto A .

(Xk,AXm) =0 for k # m. (A.15)
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Since A is positive definite, Eq. A.4,
(Xk,AXk) > 0. (A. 16)

It then follows that the Xk can be normalized so that

(Xk,AXm) = okm , and (A.17)
(Xk,BXm) = (Xk,k mAXm) = }Lmékm (A.18)
where ék is the Kronecker deita
m
1, k=m
o km - (A.19)
0, k#m

Now let U be the matrix whose columns are the normalized eigen-
vectors Xk , and A be the real diagonal matrix whose diagonal ele-

ments are the eigenvalues Ak . It follows that the theorem is proved,

Egs. A.17 and A. 18.

Corollary 1 (C1):

If B is positive definite

TR[A'l] = TR[AB'l] : (A. 20)

Proof:

Since A is nonsingular, U has an inverse. Let



Ut = Q. (A.21)
Then
B = Q*AQ; (A.22)
gl g lyigret
- ualu*, and (A.23)
A = Q*Q. (A.24)
Then
Al - gt @ lalgrt
- x Al (A.25)
AB™! has the elements
-1 N _ -1 -
AB © = ) qkp Ap 4m for k,km=1,2, ..., N (A.26)

where qkp and upm are the elements of Q and U respectively.

-1 w — -
= A % kp upk . (A°27)

Now for any p =1,2, ..., N, Eq. A.21 implies
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N

LT, =1 A.28
kz,l Up Yok (A.28)

Therefore Eq. A.20 holds.

Corollary 2 (C2): There exists a unitary matrix W and a lower

triangular matrix L such that
A = L*L, and (A.29)
WL = Q . (A.30)

The existence of the lower triangular matrix L is proved by the
Guilleman (Ref. 12) . The unitary matrix W has the following prop-

erty:
WX*W = WW* =1 . - (A.31)
Since A has an inverse so does L. From (A.30)
-1

W =QL " . (A.32)

Multiply the right sides of Eq. A.32 by W*.

i

x -1 -1*% 4
WW QL "L " Q

QAalq*

= 1 (A.33)

by Eq. A.29. Multiply the left sides of Eq. A.32 by W*



= 1
(A.34)

by Eq. A.29.

Q.E.D.



APPENDIX B

REALIZABILITY

Realizability is a nebulous concept when applied to digital
computers. Digital computers con easily delay inputs by using stor-
age. However in many cases the storage is limited, and the concept
of providing increasingly large delay breaks down. The concept of
realizability really implies that future events do not affect the present
response.

Let the matrix H be a filter with input X and output Y.

Let H, Y, and X have the elements hlk’ Y X respectively.

Then
N
R (B.1)
H is said to be realizable if
)
y, = h x . (B.2)
1 k=1 1k k

Therefore from Eq. B.2, H is a realizable matrix if H is a lower

triangular matrix.
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APPENDIX C

PARAMETERS OF THE BINORMAL ROC

The detectability index, de‘ , and SLOPE for a binormal ROC

will be derived in terms of the first two moments of the decision var-

iable, Z, under H, and H,. Let

0 1
2
N(mo, T ), H0
Z ~ |
N(ml, 012), H1
It then follows that
_ (Z— ml)Z
oo 20, %
PD = f 1 e 1 dz
o Vom oy
and
_ 2
(@-my)
x 20 2
1 0
P = f e dz
FA o Vam 00
Equivalently
PD = CID(XI)

and

89

(C.1)

(C.3)



PFA = @(XO) (C.4)
where
1 & _tz/9
1. ®@) = — [ dt
Vor -x
a-m
2. X, = - — 1
1
a-m
_ 0
3. Xg 7 - 9,

Since the binormal ROC is a straight line when plotted on normal-
normal graph paper, it is of interest to solve for SLOPE and $ in

the equation

X1 = SLOPE X0+B (C.5)

The two ROC points used to solve for 3 and SLOPE in Eq. C.5 are

the P, = 0.5 and P

D FA = 0.5 points. When P_ = 0.5,

D

and (C.6)

When PFA = 0.5,



and

X =—X + — (C.8)

The detectability index d.' at a given P_ and PFA for a

0 D

normal ROC is the intersection of that straight line of unity slope

passing through the point (PD, PF A) and the negative diagonal. It
is a measure of the distance between PD and PFA' That is

Py = @X +dy]
and

dO = Xl—XO . (C.9)
Substitute Eq. C.8 into Eq. C.9

0g,- 0 m, - m

gr=29 1x , 1 0 (C.10)
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de' is the detectability index at the intersection of the binormal ROC

and the negative diagonal.

(o))

——g‘— =X, = -X_ . (C.11)
Substitute Eq. C.11 into Eq. C.1J. It follows that

d' = . (C.12)

It also follows from Eqs. C.5 and C. 8 that

SLOPE = 00/01 . (C.13)



APPENDIX D

EIGENVALUES AND INPUT SIGNAL-TO-NOISE RATIOS

Let RS and R__ be the signal and noise correlation matrices

N
respectively. Simultaneously diagonalize RS and RN as (Appen-
dix A)

*
RS = Q Q (D.1)

and

Ry = Q" A Q (D.?2)
where

1. Q=f{a, ), nm=1,2 ..., N

2. The diagonal elements of A are the eigenvalues

The input signal-to-noise ratio, SNRI, is

%p TRIR(]

SNR_ =

where TR[ | is the trace of the matrix in the brackets.
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It then follows from Eqgs. D.1 and D.2 that

N _
TR[RsJ = Qm qmn (D. 4)
n, m=1
and
TR[Ry] = ) QA 9, (D.5)
n, m=1

where  denotes complex conjugate. Substitute Eqs. D.4and D.5

into D. 3.

The size of the eigenvector noise-to-signal ratio, )‘n’ is inversely
proportional to the size of SNRI. Consequently the size of the eigen-
vector signal-to-noise ratio, A;ll , is directly proportional to the

size of SNRI ]



APPENDIX E

EXAMPLE OF FACTORIZING THE AUTOCORRELATION

MATRIX OF A WSCS PROCESS

Consider sampling the WSCS process

s(t) = x(t) cos wot

where x(t) is a real zero-mean Wide Sense Stationary Gauss
Markov Process with correlation function
R

-

The frequency, We 1 is assumed known. There are exactly

P samples in a period. Let the sampling interval, TS , be

1
T =
S Pfo
Then
_[@-1)] [e-1)
S [(n- 1)Ts]- x[——ﬁ—%—-dcos 2zrf0 Pfo ]

= X[—(P'E-];):COSZTT (n-1) forn=1,2,3 ...
0-° P
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Consider the correlation between s[ (n-1) TS] and s (m—l)TS] .
rs(n, m) = E {s[ (n-l)TS] s[ (m—l)TS ]}

= R [—%—;L} [coser(mm-Z) + €0S 27 {m-n)
L P P

p is the normalized correlation coefficient between adjacent

samples.
_ 1
Py = RX(‘PIO_)

R

pe
Then

R_(0) Im-nl

F(am) - X P COSM+COSM]
s'? 2 P P

Assume that P=2 and K= 3, i.e., there are three periods in
the observation and there are two samples in a period. Also

assume RX(O) = 1. The autocorrelation matrix is

Ry = {rs(n,m)} for n,m=1,2,3,4,56

For this case, RS has the structure of the autocorrelation matrix

of a Wide Sense Stationary random process.



1 |
1 _pS I pSZ _ps3 I
-p A |
N B A
Rg p32 Ps | ! Ps :
|
_ps3 Py o 1
I I
bt pS | bl py |
| |
_pss ps4 | _psa p32 |
From this we get the submatrices

1 Pq Pg
A = , A12 =
Pg 1 Pg
<
‘psé P’ ps2
A3~ s 0 Bt g
Pg Ps ] Ps
a3
Pg Ps
Agq = ; s
Py ps”

A13 - Pg

and

Agy = Py

23

32



A A 2A
12 Ps 19
Rg = [ Aqq A Ay
2
| PsBhor Ay A

The modulation matrix, M, becouies

1—pS 0
M = and
_ps 1
1 0
-1 1

*

where RS =M M.

The T are defined as
nm

T = M A M
nm nm

Then




_ 2 _ 2
Tig = M p A M = p S Ty,
0 0
__ps3 l_psz ps4
Similarly
_ _ 2
0 -p y1-pg
Top =
2
0 P
and
_n 3 PN
0 P 1 P
_ 2 _
T31 = Ps Ty
4
0 Py
Consequently
‘M 0 0]
M3 = 0 M 0
0 0 M.
_ 2
1 Py 0 0 0 0
-———pS 1 | 0 0 0
0 OI 1-p 2 0 0
_O 0 P 1 0
N
0 0 0 0 1 P
B 0 0 | 0 0 | -pg
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and
(T T Ty
T=10Tor Tip Tpo
Ts1 T Ty
(1 0 | 0 0
o 1 PN P
T- o pafip 1 0
0 p 0 1
0 —ps3 1_‘Os.2 | 0 -ps\/lgpsz
R I

1 o i 0 0 0
_o 1-p82 0 0 0
C=10 -pg .l—psa 10 0
0 plyl-plo0 1-p ? 0
0 —p83 l—pS2 0 -py 1-,982l 1
_o ps4 |0 psz | 0
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