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CHAPTER I

INTRODUCTION

1.1 Problem Statement

The goal of this work is to provide methods that automate the gener-

ation of feasible interplanetary trajectories for use in electric propulsion

trades studies. Automation enables engineers to focus on the design of the sys-

tem and allows non trajectory specialists to create solutions. The output of the

automated methods are feasible trajectories which solves the problem of interest.

While they are not necessarily the best solution, they place an upper bound on the

cost and are good initial guesses for optimizers. Evaluating different technological

options to identify the best option or trend is called a trade study. Trade studies

benefit the designers because they quantify the cost of using a set of systems. Elec-

tric propulsion is used because it increases the capability of spacecraft. With the

launch of the Dawn mission electric propulsion will demonstrate its potential. The

multi asteroid tour will require an approximate ∆V of 11 km
s which was previously

unobtainable with chemical propulsion. In comparison, the Cassini spacecraft, a

chemical mission, was only able to provide a ∆V of 2.4 km
s . The Dawn spacecraft

is able to provide a mission capability four times greater than one of the largest

chemically propelled interplanetary missions for the same mass ratio.

1
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1.2 Challenges

Automating the generation of feasible interplanetary trajectories that utilize

electric propulsion is challenging due to the coupling between the propulsion, power

system, and trajectory. For electric propulsion the increased performance is traded

for longer burn times and low thrust to weight ratios. The larger burn times and

low thrust to weight ratios require designing trajectories that are fundamentally

different from those previously used for chemical based missions. Because chemical

propulsion systems have high thrust to weight ratios and low burn times the thrust-

ing periods can be modeled as instantaneous changes in the velocity vector. This

results in trajectories that follow conic sections in the two body problem (Keplarian

orbits). Conic sections shown in Fig. 1.1, are relatively simple shapes that gov-

ern the motion of chemically propelled spacecraft. Determining the velocity change

that connects the departure orbit and destination orbit with a Keplarian orbit is

known as Lambert’s problem. These trajectories can be generated using a Lambert

Solver, which is documented in many astrodynamical texts. Furthermore, because

the thruster performance is not required in Lambert’s problem the thruster used for

the mission can be determined after the trajectory is designed.

Due to the low thrust to weight ratio when using electric propulsion, each thrust

segment only affects an electric propulsion orbit slightly, causing the orbit to morph

over time, requiring that the entire trajectory be modeled. This requires that the

electric propulsion trajectories have a large number of control segments and long

burn times in order to offset the low thrust to weight ratio. Fig. 1.2 provides

two views of an electric propulsion trajectory. Furthermore, because the thrust

constraints are dependent on the specific thruster and power system, the thruster
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Figure 1.1: The four types of conic sections, circles, ellipses, parabolas, and hyper-
bolas. All shapes are generated using a single equation that governs the
properties of the conic section.
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Figure 1.2: An Earth to Jupiter electric propulsion trajectory. The zoomed in por-
tion on the left shows that the thrust magnitude and direction can
change substantially. The zoomed out view, on the right, shows that
these trajectories can go through periods where the trajectory changes
very little followed by times where the trajectory changes substantially.
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and power system have to be selected a priori. The coupling between the trajectory,

thruster, and power system requires the evaluation of various different thruster and

power systems to identify the best technological option given the mass, cost, and

risk.

1.3 Research Overview

Conventionally, trade studies have been conducted by supplying user generated

initial guesses to optimizers. The conventional process to finding trajectories is

shown in Fig. 1.3. The major drawback of the conventional approach is that it

Figure 1.3: The conventional trade study process utilizes a user supplied initial
guess to generate optimal trajectories. The speed of convergence is
highly dependent on the initial guess that is supplied by the user. This
limits the trade space that can be searched.

relies on a user supplied initial guess, the quality of which will vary from problem

to problem and user to user. Several attempts have been made to automate the

initial guess generation. Russell [54] used a super computer to randomly generate

initial guesses for the optimizer. The work was successful but only ≤ 0.1% of the

initial guesses lead to successful solutions and required the use of super computer.

Petropoulos used the shape based approach to generate solutions to low thrust

gravity assist problems[50, 47]. The work was successful in identifying some very

complicated trajectories, but because of the exponential sinusoid’s limitations it

cannot handle rendezvous problems or non-planar trajectories.
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The work presented here is designed to provide a front end for optimizers. The

methods used here automatically generate trajectories, which can then be used to

conduct trade studies. Fig. 1.4 shows the proposed approach for the automating the

generation of feasible direct trajectories. The trajectories generated by the process

in Fig. 1.4 are feasible solutions so they should be good initial guesses for the

optimizer.

Figure 1.4: A two stage process is utilized to generate feasible solutions for optimiza-
tion. The process works by reducing the feasible trajectory problem into
a simpler computationally tractable problem which is then converted
into the fully feasible problem. This bootstrap process allows for the
use of simple numerical methods.

1.3.1 High Level Trades

High level trade studies use reduced order models to quickly identify optimal mis-

sion parameters. Both Kluever[26] and Lorenzo[9, 32, 8] evaluated electric propul-

sion trajectories using standard efficiency[1] and thrust models. The trajectory,

power level, and efficiency are all optimized for a given mission, and the power sys-

tem mass is assumed to scale linearly with the power generated. In addition, the

power system specific power is varied in order to see how the power system impacts

the optimal engine and trajectory characteristics. This information can then be

used to evaluate the feasibility of a potential mission. High level trades can also

be used to evaluate the benefits of proposed thrusters. Lorenzo[8] shows that dual

specific impulse thrusters can have similar performance to variable specific impulse

thrusters. Reduced order models are useful in evaluating the feasibility of missions
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and in evaluating the potential impact of new technologies. By returning the opti-

mal power level, specific impulse, and trajectory high level trade studies provide an

initial design point.

1.3.2 Low Level Trades

Low level trade studies quantify the relative merits of different components for

a particular mission and have become more important with the development of

new Hall[19] and Ion thrusters[46] for interplanetary missions. With the ability to

choose between different thrusters, it is critical to quantify the benefit of a thruster

for a mission. Work by David Oh[42, 41] evaluated different Hall and Ion thrusters

for various missions. In particular, Oh evaluated 7 different propulsion configura-

tions and the dual hall thruster configuration had the largest net payload mass.

Hofer[19] evaluated the use of a BPT-4000 thruster and NSTAR Ion thruster for

an asteroid and comet sample return mission. The use of a the BPT-4000 over the

NSTAR in Hofer’s study showed a reduction in the mission ∆V by about 2 km/s.

These two examples demonstrate the need to evaluate different propulsion system

configurations to identify the best option.

Starting with an initial design, low level trades then iterate on the design point

until it satisfies the various system and mission constraints. These constraints can

include power usage, launch vehicle mass, launch dates, downlink time, pointing

requirements, and thermal restrictions. The goal of the process is to produce a

solution that satisfies system and mission constraints. Engineering experience, high

level trades, previous mission studies, or parametric studies can all be used to

generate an initial design point.
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1.4 Overview of Thesis

1.4.1 Chapter II

The chapter describes the progression of previous research and provides an

overview of key concepts. The chapter begins by discussing the difference between

chemical and electric propulsion. Then an overview of Ion and Hall thrusters is

provided along with the performance curves for the NSTAR, NEXT, and BPT-4000

thrusters. Also, previous research into high level trades is described and analyzed.

Next trajectory optimization and the generation of initial guesses is reviewed. The

chapter provides a chronological review of trajectory optimization programs and dis-

cusses the shortcomings of the previous work and provides an outline for addressing

them.

1.4.2 Chapter III

Chapter III describes the algorithm for automating high level trades. First, re-

duced order models for the engine, power system, and launch vehicle are directly

coupled to the trajectory dynamics through the thrust acceleration term in the equa-

tions of motion giving a general model for the acceleration profile. Then variable

and constant specific impulse assumptions are applied to the general model accel-

eration model allowing for some simplification of the equations. For the constant

specific impulse model the reduction couples the power system and the propellant

mass, indicating that the power and propulsion system should be considered a sin-

gle system. This analysis extends the work of Jahn[23] by incorporating propellant

ionization costs and generalizing the power system. Key parameters relating to

the engine, power system, and launch vehicle are then optimized along with the

trajectory to maximize the payload mass fraction. An optimization procedure is
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formulated and coded up in a trade study tool. The tool allows for high level trades

to be conducted quickly and autonomously. The algorithm is then applied to an

Interstellar Probe vision mission study. A technology trade study is conducted over

the power system specific power and the feasible technology envelope is identified.

1.4.3 Chapter IV

Chapter IV focuses on generating feasible trajectories, specifically the chapter

describes the formulation and implementation of the first stage. In the first stage

the algorithm models the trajectory with a low order polynomial, which is then op-

timized. The underlying formulation is discussed along with the differences between

this formulation and the shape based methods. Next, an overview of the trajectory

search and optimization algorithm is described. A proof of concept tool that im-

plements the algorithms and showcases some of the advantages of the method is

described. Finally, several example trajectories are shown.

1.4.4 Chapter V

Chapter V focuses on second stage of the feasible trajectory algorithm. First,

a description is provided that converts the polynomial trajectories into a thrust

sequence based on the user selected engine and launch vehicle. This results in a

solution that no longer solves the rendezvous problem. A correction algorithm is

defined that uses linear approximations to solve the rendezvous problem. Then the

power system is incorporated into the problem. The power system is treated as a

constraint on the trajectory and the problem is resolved. Finally, several different

trajectories are computed using different thruster and launch vehicle combinations

to showcase the utility of the method.
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1.4.5 Chapter VI

Chapter VI describes a method for solving optimal control problems. The

method uses a second order control update which is constructed to minimize the

cost function and satisfy the constraints to the second order. The theory and

construction of the algorithm is described and several examples that showcase the

performance and benefit of the algorithm are shown along with examples that point

out specific problems with the algorithm. A discussion of several critical issues with

the algorithm is provided.

1.4.6 Chapter VII

Chapter VII describes the results of the research and avenues for potential fu-

ture research. The advantages of an automated high level trade study algorithm

is described along with the advantages of feasible trajectory generators. Several

shortcomings with the current methods are discussed along with potentials solu-

tions that need to be investigated. The benefits of the optimization algorithm is

provided along with remaining numerical issues.



CHAPTER II

BACKGROUND

Previously, Chapter I provided an overview of the thesis and discussed three ma-

jor topics: high level trades, feasible trajectory generators, and optimization. Fea-

sible trajectory generators and optimization are two important steps in automating

low level trade studies. This chapter provides background information on the re-

search topic and provides an overview of Hall and Ion thrusters, the primary forms

of propulsion considered. Ion and Hall thruster performance curve fits are utilized

in the generation of feasible trajectories; specifically, the thrust and mass flow rate

profiles are provided for several thrusters. Also, a research overview of high level

trade studies is provided as this work focused on optimizing the propulsion system

and trajectory. Finally, previous research into trajectory generation and optimiza-

tion is reviewed.

2.1 Chemical Propulsion

Two different propulsion systems are used for interplanetary exploration, electric

propulsion and chemical propulsion. Chemical propulsion missions typically have

large thrust to weigh ratios and short burn times. For example, Cassini’s thrust

11
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to weight ratio at 1 AU is about 27,1 and the Saturn orbital insertion burn was

projected to last about 90 minutes; typical interplanetary missions last on the order

of months to years. The large thrust to weight ratio and relatively small burn

time of chemical propulsion allows the thrusting periods to be modeled as discrete

changes in the velocity. When the engine is off, the trajectory is a conic section

(two body problem), also called ballistic trajectories or coast arcs.

Modeling the chemical propulsion system as a series of instantaneous velocity

changes reduces the rendezvous problem to finding the velocity vectors that allow

the spacecraft to transition from the initial orbit to the final orbit, given a launch

date, transit time, departure body, and destination body. The resulting two point

boundary value problem is called Lambert’s Problem[12, 57]. The velocity vectors

that allow a transfer between the desired orbits are the solution to Lambert’s prob-

lem. Many different Lambert solvers[12, 57] exist to solve Lambert’s problem. Once

the orbit is computed the mass cost of the transfer can be estimated.

The velocity change provided by an engine in gravity free space is the ∆V , which

is an important metric because it is related to the amount of propellant required

for a mission. For chemical propulsion, the ∆V is the sum of the L1 norm of

the instantaneous velocity changes. The L1 norm of a vector V with elements Vi

is |V |1 =
√
∑N

i=1 Vi. The ideal rocket equation, Eq. (2.1), provides a relationship

between the initial mass, m0, final mass, mf , ∆V , and the effective exhaust velocity,

ue.

mf

m0
= e−∆V/ue (2.1)

1Thrust to weight ratio computed from NASA Cassini fact sheets.
http://saturn.jpl.nasa.gov/news/fact-sheets.cfm
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The effective exhaust velocity is given by

ue = g0Isp = g0

∫ tf
t0

Tdτ
∫ tf

t0
ṁdτ

(2.2)

where g0 is a constant equal to 9.8 m/s2. Isp is an abbreviation for the specific

impulse and is proportional to the effective exhaust velocity. The rocket equation

demonstrates that higher specific impulses allow for larger ∆V for a fixed mass

ratio.

2.2 Electric Propulsion

Electric propulsion as defined by Jahn[23] is

The acceleration of gases for propulsion by electrical heating and/or by
electric and magnetic forces.

Jahn[23] goes further and breaks electric propulsion into three categories, elec-

trothermal, electrostatic, and electromagnetic. The three categories are defined

by Jahn[23] as

1. Electrothermal propulsion, wherein the propellant gas is heated
electrically, then expanded in a suitable nozzle.

2. Electrostatic propulsion, wherein the propellant is accelerated by
direct application of electric body forces to ionized particles

3. Electromagnetic propulsion, wherein an ionized propellant stream
is accelerated by interactions of external and internal magnetic
fields with electric currents driven through the stream

Electric propulsion has allowed previously unfeasible missions to become reality,

due to the higher specific impulse (> 2000 s). DAWN[6] recently began its mission

and is using the NSTAR Ion engine; the thrusters are expected to provide about

11 km/s of ∆V , while Cassini generated a total ∆V of about 2.4 km/s[18]. The

DAWN spacecraft has a thrust to weight ratio at 1 AU of 0.013 which is much less
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than Cassini’s thrust to weight ratio. The DAWN mission clearly demonstrates the

benefit of electric propulsion.

The rocket equation (Eq. (2.1)) determines the propellant mass but does not ac-

count for the power system mass. Electric propulsion has large power requirements

(>1 kW) so the power system can represent a significant fraction of the spacecraft

mass budget. For this reason the power system must be taken into account when

conducting trade studies.

2.2.1 Hall and Ion Thrusters

Hall and Ion thrusters are the two primary propulsion devices considered in

this thesis. Hall and Ion thrusters are electrostatic devices[23, 17]. They have

been used on several space exploration missions including Deep Space 1[33, 4, 52],

DAWN[6], SMART-1[27, 15], and Hayabusa[29, 30, 28]. DAWN and Hayabusa used

ion thrusters while SMART-1 used a Hall thruster.

From Goebel and Katz[17] Ion thrusters are described.

Ion thrusters employ a variety of plasma generation techniques to ion-
ize a large fraction of the propellant. These thrusters then utilize bi-
ased grids to electrostatically extract ions from the plasma and accel-
erate them to high velocity at voltages up to and exceeding 10 kV. Ion
thrusters feature the highest efficiency (from 60% to > 80%) and very
high specific impulse (from 2000 to over 10,000 s) compared to other
thruster types.

Also, Hall thrusters are described.

This type of electrostatic thruster utilizes a cross-field discharge de-
scribed by the Hall effect to generate the plasma. An electric field
established perpendicular to an applied magnetic field electrostatically
accelerates ions to high exhaust velocities, while the transverse magnetic
field inhibits electron motion that would tend to short out the electric
field. Hall thruster efficiency and specific impulse is somewhat less than
that achievable in ion thrusters, but the thrust at a given power is higher
and the device is much simpler and requires fewer power supplies to op-
erate.
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The three primary thrusters used in this research are the NSTAR and NEXT Ion

thrusters, and the BPT-4000 Hall thruster.

The NSTAR Ion thruster was used in the Deep Space 1 mission[33, 4, 52] and

is currently being used on the DAWN mission[33, 4, 52]. The engine has a specific

impulse of about 2000-3000 seconds, provides a thrust of 20-92 mN, and uses 0.525-

2.6 kW of power[19, 42, 41]. The thrust and mass flow rate are parameterized from

the models in references [19], [42], and [41].

The NEXT Ion thruster is able to throttle over 0.620-7.3 kW and has a specific

impulse range of 1000-4000 seconds. The thrust range is 102-341 mN. The NEXT

thrust and mass flow rate is parameterized from[41].

The BPT-4000 is a Hall thruster which is able to throttle over 1-4.5 kW of

power and has a thrust range of 82-250 mN with a specific impulse range of 2000-

3000 seconds. The BPT-4000 thrust and mass flow rate is parameterized from[19].

2.3 High Level System Trades

High level system trades of electric propulsion based missions are designed to

identifying the important parameters that couple the propulsion (thruster and

launch vehicle), power, and trajectory. Some of the earliest work was conducted

by Jahn[23] and Marec[34]. Jahn derived the optimal exhaust velocity assuming

a known thrusting time and constant efficiency. Jahn also pointed out that for

electric propulsion, the power system can have a significant mass cost. Marec

analyzed ideal variable specific impulse electric propulsion system with constant

efficiency. Auweter-Kurtz[1] took thruster analysis further by analyzing different

electric propulsion thrusters, Hall, Ion, MPD, and others, and relating them to the

∆V . The ∆V is a function of the trajectory and Auweter-Kurtz[1] did not optimize
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the trajectory with the propulsion system.

Another approach is to simply optimize the trajectory and propulsion system

model[26, 25, 32, 8]. Work by Kluever[26, 25] and Lorenzo[32, 8] took into account

the change in efficiency with different exhaust velocities and optimized the power

level, launch vehicle, exhaust velocity, and trajectory.

Kluever[26, 25] directly optimized the propulsion system and trajectory for a

lunar and heliospheric exploration missions. The work numerically, mapped out the

relationship between the trip time and specific impulse, payload mass fraction, and

power level. However, no analytic formulas or reductions were found.

Lorenzo[32, 8] also optimized the trajectory, power, and propulsion system for

several missions using variable and constant specific impulse thruster models. For

the constant specific impulse thruster model with a constant power source the spe-

cific impulse is removed from the equations and is a function of the power level, burn

time, and propellant mass. While the relationship between the specific impulse and

the power level, burn time, and propellant mass does eliminate one variable, the

other three variables have to be found through the optimization process and cannot

be easily estimated.

2.4 Low Level System Trades and the Trajectory

Low level trades quantify the relative merits of different components for a par-

ticular mission. These types of trade studies have become even more important

with the development of new Hall[19] and Ion thrusters[46] for interplanetary mis-

sions. The system trades are primarily focused on how different systems affect the

projected mass, cost, and risk to a mission[3, 5, 11, 14, 13, 19, 42, 41, 63, 6, 46].

Mission studies focus on evaluating technologies for a particular mission. Some
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mission studies include a Titan explorer[11], a comet sample return[3, 63], and an

Interstellar probe[14]. These studies were focused on evaluating the feasibility of a

particular mission.

Other studies focus directly on the technology and on how new technologies can

benefit future missions. Work by David Oh[42, 41] evaluated various different Hall

and Ion thrusters for different missions. Hofer[19] evaluated the use of a BPT-4000

thruster and NSTAR Ion thruster for and asteroid and comet sample return mission.

Brophy[5] evaluated solar electric propulsion for solar system exploration.

The results from Brophy, Oh, and Hofer, show that each mission needs to be

evaluated independently and over a wide range of thrusters in order to determine

the best system. Also, the studies highlight that mission designers are not just

concerned about mass but must take into account the cost, reliability, and mass

to decide which system is best. Hofer showed that the BPT-4000 Hall thruster

can decrease the cost of a mission and increase the net payload mass. Oh’s work

showed that varying the thruster type and number of thrusters the payload mass

can vary by about 50% and the N th mission costs can vary by 6.5 million dollars.

Because the lowest cost mission does not necessarily, have the largest payload mass,

it is critical to evaluate the different possible options then weigh the cost and mass

trade. Similarly, Brophy[3] analyzed several thruster configurations for a comet

sample return mission. The results showed that the thruster configuration with the

largest net payload mass was not the best configuration because it is technically

risky. Instead, Brophy recommended using a less risky option that delivers slightly

less payload mass.
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2.4.1 Trajectory Optimization Programs

The trajectory is critical to evaluating thruster performance for mission and

technology studies. In order to ascertain how well a thruster will perform the

trajectory has to be optimized for the thruster. Once the trajectory has been

optimized, the cost can be estimated. Numerous optimization programs have been

developed to optimize electric propulsion trajectories.

Low thrust trajectory optimization problems have been posed and solved since

the 1960s[37]. CHEBYTOP[24] was developed by Boeing and JPL for NASA. Sauer

is one of the earliest researchers that attempted to tackle the problem and developed

the JPL version of CHEBYTOP. CHEBYTOP attempted to solve electric propul-

sion trajectories using collocation and approximating the constant Isp trajectories as

“equivalent” variable Isp trajectories. CHEBYTOP was designed as a performance

analysis tool and so does not model engine or dynamics particularly accurately, this

can cause CHEBYTOP to return erroneous results for trajectories with thrust to

weight ratios > 0.001 or for trajectories with significant inclination changes. The

benefit of CHEBYTOP is that it can generate solutions quickly.

VARITOP and SEPTOP[51] are trajectory optimization programs that use Pon-

tryagin’s minimum principle[7]. Using the minimum principal results in coupled

nonlinear two point boundary value problem. SEPTOP was successfully used to

plan and execute the trajectory for Deep Space 1[53]. SEPTOP and VARITOP

have been successfully used, but their application is limited because they use cal-

culus of variations. The costates in calculus of variations approach are unstable

and generally have small radius of convergence. This can lead to problems when

a solution cannot be found because the initial guess is not sufficiently close to the

optimal solution.
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GALLOP[36, 64, 35] and MALTO[47, 55] are two similar trajectory optimization

methods. They are generally used in preliminary mission designs. GALLOP was

developed at Purdue, while MALTO was produced at JPL. MALTO approximates

the low thrust arcs as small ballistic impulses. The ∆V magnitude is dependent

on the thruster and the power system. GALLOP and MALTO use SNOPT[16] to

conduct the optimization, which uses a modified sequential quadratic programming

method (SQP)[39, 16, 2]. Sequential quadratic programming is a popular and stan-

dard method for solving nonlinear optimization problems. MALTO and GALLOP

require initial guesses that are close to the solution but because they use a direct

method the radius of convergence is larger.

Two high fidelity optimizers are Mystic[59, 60, 61, 62] and Copernicus[51, 40].

Mystic uses static dynamic control (SDC)[59, 60, 61, 62], which is derived from

differential dynamic programming (DDP)[22, 21, 38, 31]. Mystic is designed to

handle multi body forces as well as solar radiation pressure. Copernicus is designed

to be a general optimization program that does not depend on any one specific

method but instead uses currently available numerical techniques. Mystic has a

very large radius of convergence because it uses a penalty method to optimize the

trajectory. The penalty method allows optimizers to converge when the initial guess

is far from the optimal solution.

Most optimization methods are based around an iterative method for optimizing,

where the current solution is used to generate the next solution. Critical to this

process is providing an initial guess that starts the iterative process. The initial

guess is the trajectory/control sequence that the optimizer begins the optimization

process around, usually supplied by the user. A feasible trajectory is defined as

a trajectory that satisfies the constraints for a given problem. The constraints
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are typically thrust limitations, power limitations, launch vehicle constraints, and

arrival constraints. Furthermore, feasible trajectories place an upper bound on the

propellant cost and serve as a back up solution if for some reason the optimizer

wanders away from the optimal solution. If the initial guess is feasible and near the

optimal solution, the optimizer should converge quickly.

2.4.2 Trajectory Approximations

Finding optimal or feasible EP trajectories can be difficult due to the numerous

control choices and the nonlinear nature of the dynamics. Over past few decades

many approximations have been used to model EP trajectories[49]. The most widely

used approximation is the shape based approach. The shape based approach models

the trajectory as a function of a free parameter, which is not time. The trajectory

model or shape is a holonomic constraint on the system, reducing the problem to a

single degree of freedom.

Shape based methods are attractive because of their low computation cost, due

to the single degree of freedom. In the shape based approach, the shape parame-

terizes the trajectory in space but not in time. The shape provides the location of

the spacecraft but does not provide any information about when it will be there, so

the timing over the trajectory has to be found.

The most successful application of the shape based[20, 45, 48, 50] approach is

the use of the exponential sinusoid[50, 48, 47]. The exponential sinusoid is given by

r (θ) = k0e
k1sin(k2θ+φ) (2.3)

where r is the heliocentric radius and θ is the polar angle. The exponential sinusoid

is primarily used to identify low thrust gravity assist trajectories. This approach

was successfully applied to the ACT 1 competition[47]. In general, the shape based
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approach can handle any set of state boundary constraints, assuming the shape

selected has the appropriate degrees of freedom. The limitation with the shape based

approach is that for an arbitrary shape the acceleration profile may be undesirable.

This arises because the shape is a holonomic constraint (fixed in space but not

time). In order to constrain the acceleration profile, the shape profile would also

have to be freely varied. A further limitation of the exponential sinusoid is that it

was not designed to handle non-planer trajectories or to explicitly take into account

engine and power system limitations.

2.5 Conclusions

Work by Kluever and Lorenzo shows that optimization of trajectory, power, and

propulsion system for high level studies is beneficial. Their work was limited be-

cause no general method for solving the optimization problem was provided, and

the equations were not reduced to allow for scaling of the systems. Chapter III

combines the trajectory optimization with the propulsion system and the payload

mass is nondimensionalized allowing the system to scale. For the constant spe-

cific impulse thruster, the optimal exhaust velocity is found to be a function of the

several technological parameters and the throttle time history. Previously, the ex-

haust velocity was a function of the power level, the propellant mass, and the burn

time[32]. Also, Automating the optimization process allows for high level trades to

be rapidly computed over a wide range of technology parameters.

The exponential sinusoid has been successfully applied to numerous problems,

however the trajectories it generates are not feasible solutions. Furthermore, due

to the limited degrees of freedom in the shape, the path will not necessarily solve

the rendezvous problem. This points to the need for a new method that can main-
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tain the advantage of the shape method (low computational cost), but can handle

the rendezvous problem and generate feasible solutions. Automating the process

allows for quick computation of the trajectory while satisfying the thrust and power

system limitations. Chapter IV presents a new method that can handle general

boundary conditions and allows the trajectory to be optimized while incurring a

low computational cost. Chapter V uses the trajectory generated from Chapter IV

and introduces the launch vehicle, thruster, and power system to generate a feasible

trajectory.

Numerous trajectory optimization algorithms have been developed and tested.

Direct methods that have been previously developed use linear control updates

and only satisfy the constraints to the first order. A new algorithm is derived in

Chapter VI that uses a second order control update that satisfies the constraints

to the second order. The method is designed to keep the trajectory feasible while

optimizing.



CHAPTER III

HIGH LEVEL SYSTEM TRADE STUDY
ALGORITHM FOR INTERPLANETARY
ELECTRIC PROPULSION MISSIONS

3.1 Introduction

Chapter II provided an overview of the several electric propulsion thruster and

trajectory optimization programs and discussed the nature and importance of high

and low level trade studies. Previous research into high level trades has analyzed

some of the coupling between the propulsion system and the power system, how-

ever the relationships between the propulsion, launch vehicle, and power system

were neither fully exploited nor explored. Analyzing the system coupling is impor-

tant because it can provide scaling laws and insight without the need for solving

difficult problems. Furthermore, treating the entire coupled problem allows for mass

savings that would not otherwise be apparent. In order to handle a wide class of

electric propulsion thrusters, several assumptions have to be made that reduce the

accuracy but increase the utility of the analysis. The reduced order models capture

the general scaling and trends of thrusters, but do not replicate the performance

of a particular thruster. General models that incorporate physical and design pa-

rameters are used to model the efficiency and exhaust velocity relationship. Next,

23
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the models are used to derive specific relationships between the variables of inter-

est, also the cost function and scaling parameters are nondimensionalized, which

allows the systems to scale. The relationships are then applied to two hypothetical

missions.

The chapter begins by outlining the models that characterize the launch vehicle,

dynamics, power, propellant, and propulsion system. These models are critical to

the analysis and optimization because they determine the level of detail captured

and the difficulty of the optimization process. For high level trades, low order mod-

els are used to capture the major trends and identify the optimal solution quickly.

The reduced order models extend the work by Jahn[23] and provide correction terms

which take into account that efficiency of the thruster varies depending on the spe-

cific impulse and propellant utilized. The models are then used in an optimization

program which conducts trade studies over a range of power system mass to power

ratios.

3.2 System Models

Electric propulsion allows for propellant mass savings over chemical propulsion

systems due to the increased exhaust velocity. However, electric propulsion requires

a larger power system, detracting from the potential mass savings. The proper

balance between the power level and the propellant mass must be found in order

to ensure the feasibility of the mission. Along with the power system the other

important systems should also be taken into account. For instance, the launch

vehicle determines the initial orbit of the spacecraft and the initial mass of the

spacecraft, both of which significantly impact the trajectory and final mass of the

spacecraft. It is critical to find the correct balance between the propulsion system,
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power system, and launch vehicle in order to maximize the payload mass available

for science. The payload mass is defined as the mass not devoted to the launch

vehicle, structure, power system, or propulsion system.

3.2.1 Dynamics

The electric propulsion thrusters affect the motion of the spacecraft through the

thrust term, T , in the equations of motion (Eq. (3.1) and Eq. (3.2)).

'̈r = −
µsun

|r|3
r +

T

m
(3.1)

and

ṁ =
|T |
ue

(3.2)

where r is the positional coordinates, and m is the mass of the spacecraft. Simple

dynamics are utilized for high level trades because they reduce computation time

and simplify the problem.

3.2.2 Launch Vehicle

The launch vehicle constrains the mass that can be delivered to a specified

orbit and determines the initial orbit that the spacecraft is launched into. For

interplanetary missions, the mass is a parameterized as a function of twice the

specific orbital energy, commonly called C3, which can be computed using

C3 =
(

V s/c − V earth

)T (
V s/c − V earth

)

(3.3)

Here V s/c is the escape velocity of the spacecraft at launch, and V earth is the velocity

of Earth. The initial mass of the spacecraft is a function of the launch vehicle and

the C3. The relationship is functionally modeled as

mLaunch = F (C3) (3.4)
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where mLaunch is the launch mass, and F is a predefined parameterization of the

launch vehicle. A normalized version of F is defined as

m∗ = f (C3) =
F (C3)

m0
(3.5)

where

m0 = F (0) (3.6)

The normalized function f allows the launch vehicle to scale up or down in mass.

The normalized launch vehicle model is assumed to be a known function that places

an upper bound on the normalized mass, m∗, that can be delivered to the desti-

nation. The mass fraction of several launch vehicles is given in Fig. 3.1. The

spacecraft structural mass scales with the initial mass and is

mstruct = ksmLaunch (3.7)

Here ks is the structural coefficient, which is a dimensionless number that determines

how quickly the mass of the structure scales with the mass of the spacecraft. The

structural coefficient is bounded between 0 and 1.

3.2.3 Propulsion System Model

A simple reduced order thruster model[26, 32, 8] is utilized to model the propul-

sion system. The reduced order models links the power generated by the power

system to the thrust delivered by the engine. The total efficiency of the power

processing unit and thruster, η, is modeled as

η =
Pjet

Pelec
=

ηcap

1 + 2kiξ
u2

e

(3.8)

where ηcap represents the maximum possible efficiency, ξ is the first specific ioniza-

tion energy of the propellant. The parameter ki is a dimensionless factor that is
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Figure 3.1: Several launch vehicle’s delivered mass fraction, f (C3), as a function of
C3. As C3 increases the orbital energy increases, but the delivered mass
fraction delivered to space decreases.
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introduced so the ionization cost, ξ, can be increased due to other loss mechanisms.

The electrical power provided by the power system is Pelec, and the jet power, Pjet,

is the power that results in thrust and is given by

Pjet =
1

2
Tue (3.9)

Eq. (3.8) can be rewritten to obtain the jet power

Pjet = ηPelec =
ηcapPelec

1 + 2kiξ
u2

e

(3.10)

Eq. (3.8) is commonly written as[26]

η =
bu2

e

u2
e + d2

(3.11)

The two equations are equivalent if b = ηcap and d =
√

2kiξ. Eq. (3.8) is used in

this analysis because it utilizes physical parameters that can be easily estimated.

The thrust provided by the propulsion system is

T (t, r) =





















k1 (t) k2 (t, r) T0

k1 (t) k2 (t, r) 2Pjet

ue

k1 (t) k2 (t, r) 2ηcapPelec

ue

„

1+
2kiξ

u2
e

«

(3.12)

where T0 = 2Pjet

ue
, and k1 (t) is the control that varies between

0 ≤ k1 (t) ≤ 1 (3.13)

Here k2 (t, r) regulates the amount of power available over time and space. The

requirement on k2 is

k2 (t0, r0) = 1 (3.14)

With this model the mass flow rate is

ṁ = −k1 (t) k2 (t, r)
T0

ue
(3.15)
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The mass of the propulsion system is a function of the propellant mass, tank mass,

and thruster and power processing unit mass. The propellant mass is a function of

the total propellant consumed.

mpropellant =




















∫ tf
t0

k1 (t) k2 (t, r) T0

ue
dτ

∫ tf
t0

k1 (t) k2 (t, r) 2Pjet

u2
e

dτ

∫ tf
t0

k1 (t) k2 (t, r) 2ηcapPelec

u2
e+2kiξ

dτ

(3.16)

For convenience the following states are defined

Z (t) =

∫ t

t0

k1 (t) k2 (t, r) dτ (3.17)

and

Ż = k1 (t) k2 (t, r) (3.18)

For convenience Zf is equal to Z (tf). The tank mass is assumed to scale with the

propellant mass and is

mtank = kTmpropellant (3.19)

where kT is the tank fraction, a dimensionless number that determines how the tank

mass will scale with the propellant mass. The thruster mass and power processing

unit mass scales linearly with the electrical power generated by the power system.

The mass of the thruster and power processing unit is

mthruster+ppu = αthruster+ppuPelec (3.20)

where αthruster+ppu is the specific power of the thruster and power processing unit

and Pelec is the electrical power generated by the power system.
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3.2.4 Power System

The total electrical power produced by the power system at launch is Pelec. The

mass of the power system scales linearly with the electrical power and is

mpower = αpowerPelec (3.21)

The electrical power produced by the power system is assumed to be only a function

of the time and position of the spacecraft and is

P (t, r) = k2 (t, r)Pelec (3.22)

where k2 is a function that defines how the available power varies with time and

position. For example, the power produced by solar arrays vary proportionally to

1
r2 because the solar flux decreases as 1

r2 . Radioisotope thermal generators on the

other hand use radioactive materials to generate power and the power output is

dependent on the amount of radioactive material remaining so the current power

level is a time dependent processes that can be modeled by k2.

With the models for the thrusters, launch vehicle, and power system defined,

different classes of thrusters can be analyzed. Specifically, two thruster types are

considered, variable specific impulse and constant specific impulse thrusters. Vari-

able specific impulse thrusters can change the specific impulse arbitrarily while

constant specific impulse thrusters operate at a fixed specific impulse over the en-

tire mission. Hall and Ion thrusters can vary the exhaust velocity over a limited

range, and for the purposes of this analysis they are considered constant specific

impulse thrusters because the throttle range is small.
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3.3 Bounded Power Variable Specific Impulse

An ideal variable-specific impulse thruster can vary the specific impulse over the

range 0 ≤ ue ≤ ∞, causing the thrust and mass flow rate to change. This analysis

begins by attempting to reduce the cost function. The cost function used to evaluate

different missions and technologies is the payload mass fraction, J1, which is the

mass not devoted to the power system, propellant, structure, propellant tanks, and

launch vehicle, normalized by maximum launch vehicle payload capacity, m0.

J1 =
mf

m0
︸︷︷︸

final mass ratio

− ksf (C3)
︸ ︷︷ ︸

structure mass fraction

− kT

(

f (C3) −
mf

m0

)

︸ ︷︷ ︸

tank mass fraction

−
αPelec

m0
︸ ︷︷ ︸

power/propulson system mass fraction

(3.23)

where

α = αthruster+ppu + αpower (3.24)

Rearranging J1

J1 =
mf + kT mf − αPelec

m0
− f (C3) (ks + kT ) (3.25)

J1 = f (C3)

(
mf (1 + kT )

m0f (C3)
−

αPelec

m0f (C3)
− (ks + kT )

)

(3.26)

J1 = f (C3)
(

ψm∗
f − Γ − φ

)

(3.27)

where

m∗
f =

mf

m0f (C3)
=

spacecraft final mass

spacecraft initial mass
(3.28)

Γ =
αPelec

m0f (C3)
=

mass of power system , thrusters , and PPU

spacecraft initial mass
(3.29)

φ = kT + kS (3.30)

ψ = 1 + kT (3.31)
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The payload mass fraction is now reduced to a function of two dimensionless vari-

ables, the final spacecraft mass fraction and the spacecraft power. Because the

specific impulse is variable and unbounded, the throttle function, k1, is not required

and is eliminated from the equations. In Ref. [43] the constant efficiency model al-

lows for an unbounded thrust, however including the variable efficiency model (Eq.

(3.8)) results in a maximum thrust of

Tmax = k2 (t, r)
ηcapPelec√

2kiξ
(3.32)

Unfortunately, coupling the specific impulse and efficiency destroys the simplifica-

tions present when using a constant efficiency model[43]. With a variable efficiency

model, the maximum thrust is now finite, and for a valid thrust level there are two

possible specific impulses. The highest specific impulse is always utilized since it

minimizes the mass flow rate.

3.4 Bounded Power Constant Specific Impulse

Constant specific impulse refers to the fact that ue does not change over the

mission. Thus the constant specific impulse case is special case of the variable

specific impulse impulse case, implying that the variable specific impulse case will

always perform equal to or better than the constant specific impulse case.

For the constant specific impulse case the payload mass fraction is written as

J1 = f (C3)
︸ ︷︷ ︸

Launch mass fraction

− ksf (C3)
︸ ︷︷ ︸

structural mass fraction

−
mprop

m0
︸ ︷︷ ︸

propellant mass fraction

− kT
mprop

m0
︸ ︷︷ ︸

propellant tank mass fraction

− α
Pelec

m0
︸ ︷︷ ︸

power/propulsion system mass fraction

(3.33)
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Collecting terms results in

J1 = f (C3) (1 − ks) − (1 + kT )
mpropellant

m0
− α

Pelec

m0
(3.34)

Defining

ψ = 1 + kT (3.35)

and

ζ = 1 − ks (3.36)

gives

J1 = f (C3) ζ − ψ
mpropellant

m0
− α

Pelec

m0
(3.37)

Substituting in Eq. (3.12) and Eq. (3.16) gives

J1 = f (C3) ζ − ψZf
T0

uem0
− α

1

2

T0

ηcapm0

(

1 +
2kiξ

u2
e

)

ue (3.38)

Differentiating J1 with respect to ue to find the optimal exhaust velocity results in

∂J1

∂ue
= 0 = ψZf

T0

m0u2
e

− α
1

2

T0

ηcapm0

(

1 −
2kiξ

u2
e

)

(3.39)

Solving for the optimal exhaust velocity yields

ue optimal =

√

2

(
ψZfηcap

α
+ kiξ

)

(3.40)

Previously, the optimal exhaust velocity was given as[32]

ue =

√

2Pelecτ

mpropellant
(3.41)

From Ref. [32] Pelec is the electrical power used by the propulsion system, and

mpropellant is the propellant mass, and τ is the burn time of the engine. The critical

difference between Eq. (3.41) and Eq. (3.40) is that Eq. (3.40) does not state the

result in terms of the mass or power level, which have to optimized. Instead, Eq.
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(3.40) shows that the optimal exhaust velocity does not depend on the power level

or propellant mass, but does depend on the propellant, power system, and time

history of the throttle profile through Zf . This result is significant because all the

parameters in Eq. (3.40) except for Zf are known before the optimization problem

is solved.

The payload mass fraction, J1, can be restated in terms of the jet power as

J1 = f (C3) ζ − ψZf
2Pjet

m0u2
e optimal

− α
Pjet

m0ηcap

(

1 +
2kiξ

u2
e optimal

)

(3.42)

Combining terms

J1 = f (C3) ζ − 2
Pjet

m0

(

α

2ηcap
+
ψZf + αkiξ

ηcap

u2
e optimal

)

(3.43)

Using Eq. (3.40) to eliminate the optimal exhaust velocity gives

J1 = f (C3) ζ − 2
Pjetα

m0ηcap
(3.44)

Defining

Ω =
Pjetα

m0f (C3) ηcap
(3.45)

J1 then becomes

J1 = f (C3) (ζ − 2Ω) (3.46)

Ω represents the ideal mass fraction of the power and propulsion system if the

efficiency was constant[43] and equal to ηcap. The propulsion and power system

mass fraction is

αPelec

m0f (C3)
= Γ = Ω

(

1 +
2kiξ

u2
e optimal

)

(3.47)

and the propellant and tank mass fraction is

ψmpropellant

m0f (C3)
= Ω

(

1 −
2kiξ

u2
e optimal

)

(3.48)
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The power and propulsion system to propellant and tank mass fraction ratio is

mass of power system and thrusters

mass of propellant and tanks
=

αPelec

ψmpropellant
= 1 +

2αkiξ

ψηcapZf
(3.49)

The equations are now dimensionless and allow for scaling; they also provide some

insight into the optimal system characteristics. While 2Ω cannot be found without

solving the optimal control problem, Eq. (3.49) shows that the optimal solution fa-

vors a larger portion of the spacecraft mass being allocated to the power/propulsion

system versus the propellant. Furthermore, from the definition of Ω and Eq. (3.44),

the power/propulsion system and propellant mass should be treated as one system

as the payload mass fraction is a direct function of only two variables, C3 and Ω.

Also, unlike previous analysis[26, 32, 8], the exhaust velocity is not a function of

the power or final mass, instead it is a function of the throttle history, Zf , which

indicates that the optimal exhaust velocity is independent of spacecraft mass and

is a function of the throttle history, power system scaling, and propellant ionization

cost.

3.4.1 Extended Analysis

Some of the earliest system level analysis into optimal thruster characteristics

was conducted by Jahn[23]. Jahn’s analysis did not account for the propellant

ionization cost or the power system’s power fluctuations over the trajectory. Work

by Patel[43] extended Jahn’s analysis by taking into account the different power

systems and including various other system level costs. Here, the work is extended

further by taking into account the propellant ionization costs.

The optimal specific impulse from Ref. [43] is

ue optimal =

√

2
ψZfηcap

α
(3.50)
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while the optimal specific impulse with the propellant ionization cost is

ue optimal =

√

2

(
ψZfηcap

α
+ kiξ

)

(3.51)

The major difference between the two models is that the latter model requires a

higher specific impulse in order to compensate for the propellant ionization costs.

This indicates that the optimal exhaust velocity obtained by previous models will

under report the actual optimal specific impulse.

The power and propulsion system to propellant and tank mass fraction ratio

from previous work is

mass of power system and thrusters

mass of propellant and tanks
=

αPelec

ψmpropellant
= 1 (3.52)

while the new result is

mass of power system and thrusters

mass of propellant and tanks
=

αPelec

ψmpropellant
= 1 +

2αkiξ

ψηcapZf
(3.53)

This result is significant because it shows that an optimal distribution of mass does

NOT appropriate an equal amount of mass to the power system and propellant.

Instead, the optimal distribution favors a larger power system mass. Depending

on the length of the mission, the difference between the power system mass and

propellant mass can be significant.

Incorporating the propellant ionization cost in the efficiency models has provided

significant insight into the optimal thruster characteristics and updated the classical

results of Jahn[23].

3.5 Proof of Concept Tests

While analysis of the payload mass fraction for the variable and constant specific

impulse thrusters allows for some reductions, in order to determine if a mission is
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feasible, the trajectory, power level, and specific impulse has to be found. Several

optimization techniques are implemented in a software program[44, 43] to conduct

trade studies over a range of α values. The algorithm is designed to autonomously

solve the optimization problem and determine the payload that is available for a

mission.

For the high level trade study algorithm an indirect optimization problem[7, 2]

is constructed and solved using a homotopy and shooting method[39]. An indirect

approach is chosen because it results in a small set of unknown variables. The

homotopy and shooting method are used because they robustly solve the indirect

problem and they are easy to implement. The program varies α and returns the

mass fractions of the payload, propellant, power system, and launch vehicle. The

algorithm used here is the same method that is used in Ref. [43, 44].

3.5.1 Homotopy Parameters

The homotopy method works by varying a scalar parameter, called the homotopy

parameter. Changing the homotopy parameter transforms a simple solvable problem

into a more difficult problem. By slowly varying the homotopy parameter the solver

has to solve many simpler problems, instead of one difficult problem.

The homotopy method is used in two parts of the optimization algorithm. First,

k2 is set to 1 and the gravitational parameter, µ, is set equal to 0, which reduces the

dynamics to a no gravity problem that is solved relatively easily. The gravitational

parameter is

µ = 4π2 i

100

AU3

Y r2
(3.54)

where i is increased from 0 to 100, and for every value of i the indirect optimization

problem is solved. As i increases, the problem is transformed from a gravity free
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problem to a fully gravitating problem. Because i is increased over many iterations

the solver does not have much difficulty converging.

Once the fully gravitating problem is solved, the power system is considered.

For an active nuclear power source k2 = 1 and no modification is needed. If solar

electric propulsion is utilized, then k2 is

k2 (t, r) =

(
|r0|
|r|

)2i/100

(3.55)

and once again i is increased from 0 to 100.

3.5.2 Earth to Mars

The Earth to Mars mission tests the algorithms ability to solve constant specific

impulse solar electric propulsion missions. The search range for α is 5 kg
kW to 30 kg

kW ,

however the program terminates if J1 ≤ 0.01. The tank coefficient and structural

coefficent are 0.15 and 0.05, and ηcap = 0.7125. Also, ki = 30, the propellant is

Xenon, and the launch vehicle is an Atlas V 401. The program produces several

data products such as Fig. 3.2 and Fig. 3.3. Fig. 3.2 shows the mass fractions used

by the power, propellant, and the payload. Fig. 3.3 is the optimal C3 and specific

impulse.

3.5.3 Interstellar Probe

The interstellar probe mission[32, 14, 66, 65] is designed to collect science as it

escapes from the solar system. For this example, a 20 years to 150 AU constraint is

used with the launch vehicle selected as an Atlas V 551. The structural coefficient

and tank fraction is set to 5% and 10% respectively, and the propulsion system is

selected as a constant specific impulse thruster utilizing Xenon propellant with an

ionization cost, ki = 10. The study is conducted assuming only the sun is gravitating
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Figure 3.2: The launch vehicle cap is f (C3). As α increases the payload mass
fraction and the launch vehicle cap decrease. The propellant and power
system mass fraction does not follow a monotonic trend and has to be
found through the optimization process.
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except for a single flyby of Jupiter, which is modeled as an instantaneous change in

the velocity vector. The Jupiter flyby distance is 5 Jupiter radii. The power system

is a radioisotope thermal generator, which is modeled to decay as

k2 (t) =

(
1

2

) t
t1/2

(3.56)

where t1/2 = 88 years, the approximate half life of P lutonium − 238.

The trade study is undertaken to identify the necessary level of technology to

make the mission feasible. The program run time is less than 1 minute. Fig. 3.5

shows that a feasible mission requires α ≤ 70kg/kW .

3.6 Conclusions

This chapter analyzed the payload mass fraction for variable and constant spe-

cific impulse thrusters. No new reductions for the variable specific impulse case were

found, however for the constant specific impulse case, the payload mass fraction,

J1, was reduced to a function of the launch vehicle and the power and propellant

mass fraction, 2Ω. Also, for the constant specific impulse case, a new result is

found and the exhaust velocity is independent of the mass of the spacecraft but

is instead dependent on the throttle profile, ionization cost, and α. Two proof of

concept optimization programs are created to conduct trade studies over α. The

two example cases are, an Earth to Mars mission utilizing solar electric propulsion

with a constant specific impulse thruster and an Interstellar Probe mission using

radioisotope thermal generators with constant specific impulse thrusters. From the

proof of concept test, the homotopy method solves the optimization problem with

relative ease over a range of α values.

This high level trade study method is useful because it quickly bounds the

problem and returns the maximum payload mass that can be delivered to the desti-
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nation, while optimizing the power level, thruster performance, and launch vehicle

utilization.
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Figure 3.3: The optimal C3 and specific impulse for a 6 month Earth to Mars mission
using solar electric propulsion. As α increases the C3 increases and the
specific impulse decreases which is expected.
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Figure 3.4: Payload mass delivered to 150 AU in 20 years over various α values with
a gravity assist at Jupiter. The launch vehicle mass fraction identifies
the mass fraction available after launch. Around α = 35 kg/kW there
is a change in slope and the launch vehicle dominates and the power
and propellant mass fraction decreases.
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Figure 3.5: Trajectory of Interstellar probe for α = 60 kg
kW . The sold red line indi-

cates the thrust phase and the dotted line indicates a coast phase. The
circular orbits are the Earth and Jupiter. For high α values a coast
arc appears before escape occurs. This shows that the trajectory can
significantly vary depending on α.



CHAPTER IV

APPROXIMATING INTERPLANETARY
TRAJECTORIES WITH CHEBYSHEV

POLYNOMIALS

4.1 Introduction

The previous chapter focused on the major subsystems: thruster, power, and

launch vehicle, and nondimensionalized the cost function. Two generic thruster

types were considered, variable specific impulse and constant specific impulse thrusters.

The formulation was programed into an automated solver[43] that generated solu-

tions to both an Earth to Mars mission utilizing solar electric propulsion and an

Interstellar Probe mission using radioisotope thermal generators with a constant

specific impulse thruster.

High level trades are useful for characterizing the technology level that makes

a mission feasible. However, high level trades are not useful for quantifying the

performance of a specific thruster because they utilize reduced order models, which

approximate the performance of an entire class of thrusters. For example, the

reduced order efficiency and thrust relationships used in Chapter III approximates

the performance of all Hall and Ion thrusters; in reality, different thrusters will

perform differently depending on their design. To quantify the performance benefit

45
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of a particular thruster, the thruster model, launch vehicle, and trajectory have

to be found. Automating the trajectory optimization process is useful because it

allows trades to be conduced quickly, but before optimization can begin, an initial

guess has to be provided to the optimizer. If the initial guess is “good” then the

optimal trajectory is found quickly, however if it is “bad” then the optimizer can

fail. Thus finding a good initial guess is critical to the optimization process.

This chapter focuses on approximating interplanetary trajectories independent

of the propulsion and power system. These approximate trajectories are used to

conduct a search over launch dates, flight times, and heliocentric revolutions. The

∆V cost is estimated from the trajectory, which is then used to evaluate the merits

of the trajectory. Once a good trajectory is found, the propulsion and power system

are then considered this process is described in Chapter V. Together Chapter IV

and Chapter V encompass Fig. 4.1. Chapter IV outlines the methods used to

conduct the broad search for trajectories while Chapter V then uses the data to

generate feasible trajectories. This chapter sets up and solves the ‘simple’ problem

Figure 4.1: The approach used to generate feasible trajectories that can be used
by optimization routines. The trajectories generated take into account
power and thruster limitations.

in Fig. 1.4.

Currently, the exponential sinusoid[48, 36, 47, 49, 50] is used to approximate

interplanetary trajectories. This chapter outlines a new method for approximating

interplanetary trajectories. The method outlined in this chapter is designed to be



47

fast, handle rendezvous constraints, and allow for optimization of the trajectory.

This method differs from shape based approaches[48, 20, 45, 50, 49] because the

trajectory is parameterized in time, and because the trajectory is optimized during

the search process.

4.2 Trajectory Parameterization

The trajectory is parameterized by a set of coefficients and Chebyshev polyno-

mials. The coefficients are the free parameters that are varied to generate different

trajectories. The Chebyshev polynomials are the underlying functions that rep-

resent the trajectories. Each position coordinate is modeled separately, and in

cartesian coordinates the position coordinates would be x, y, z, while in spherical

coordinates the position coordinates are r, θ, φ. For a generic position coordinate,

w, the time evolution of the coordinate is

w (t) =
N−1∑

j=0

cw,jTj (t) (4.1)

and the time rate of change of the coordinate is

ẇ (t) =
N−1
∑

j=0

cw,jṪj (t) (4.2)

where cw,j is a coefficient that parameterizes the coordinate w and Tj is the jth order

Chebyshev polynomial[58]. The order of the polynomial, N , is also the number of

degrees of freedom for that coordinate. In this formulation, only the positions are

parameterized, and the velocities and accelerations can be found by differentiating

the parameterization. Chebyshev polynomials can be computed recursively with
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Eq. (4.3).

Tj (τ) =



















1, if j = 0

τ, if j = 1

2τTj−1 (τ) − Tj−2 (τ) , if j ≥ 2

(4.3)

and

Ṫj (τ) =



















0, if j = 0

τ̇ , if j = 1

2τ̇Tj−1 (τ) + 2τ Ṫj−1 (τ) − Ṫj−2 (τ) , if j ≥ 2

(4.4)

where τ is computed by

τ = 2
t − t0
tf − t0

− 1 (4.5)

τ̇ =
2

tf − t0
(4.6)

and t is bounded by

t0 ≤ t ≤ tf (4.7)

Here t0 is the time when the spacecraft begins it’s interplanetary journey, and tf is

the time when the spacecraft reaches its destination. If there are enough degrees

of freedom in the trajectory model, the parameterization can satisfy the boundary

constraints. For a rendezvous problem, the parameterization requires a minimum

of four degrees of freedom. Two degrees of freedom are needed to ensure that the

spacecraft leaves the departure body and arrives at the destination body. Another

two degrees of freedom are needed so the spacecraft’s departure and arrival velocity

matches the departure and destination body.

For the rendezvous problem, the trajectory leaves the departure body at a par-

ticular time, tlaunch and rendezvous with the destination body at a specified time,

tarrival. The position and velocity of the departure and destination body can be
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obtained from an ephemeris and are assumed to be known for this analysis. With

the states of the departure and arrival body known, a constraint problem can be

set up that restricts the coefficients such that the trajectory will satisfy boundary

conditions.

The states of the departure body at t0 in polar coordinates are r0, θ0, φ0, ṙ0, θ̇0, φ̇0

and the states of the arrival body are tf in polar coordinates are rf , θf , φf , ṙf , θ̇f , φ̇f .

The constraint for the departure body is given by Eq. (4.9) and the constraint for

the arrival body is given inEq. (4.10).

B (τ) =






T0 (τ) . . . TN−1 (τ)

Ṫ0 (τ) . . . ṪN−1 (τ)




 (4.8)
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ṙf

θf

θ̇f

φf

φ̇f





















=










B (1) 0 0

0 B (1) 0

0 0 B (1)








































cr,0

...

cr,N−1

cθ,0

...

cθ,N−1

cφ,0

...

cφ,N−1































(4.10)

Any solution that satisfies Eq. (4.9) and Eq. (4.10) will meet the boundary con-

straints. In order for a solution to Eq. (4.9) and Eq. (4.10) to exist, the order

of the polynmials,N , must be greater than or equal to 4. Because Eq. (4.9) and

Eq. (4.10) are linear, they can be solved with a variety of numerical methods. Any

set of coefficients that satisfyEq. (4.9) and Eq. (4.10) also satisfy the rendezvous

problem and so parameterize a valid trajectory. This formulation allows linear state

boundary conditions to be satisfied easily, which is a goal of this method.

4.3 Multi Revolution Problem

While any coefficient set that satisfies Eq. (4.9) and Eq. (4.10) is a valid

solution to the rendezvous, there exists some freedom in the rendezvous conditions.

The freedom exists in Eq. (4.10) because θf can be written as

θf = tan−1

(

xf

yf

)

+ 2πm (4.11)

where m is an integer that is greater than or equal to zero. Unlike the exponential

sinusoid[20], there is no upper bound on m based on the parameterization, which
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means that m must be bounded based on a different set of criteria. In order to

bound the number of heliocentric revolutions, m, a practical method is used that is

based on the periods of the departure and destination bodies.

The maximum number of revolutions that the spacecraft will make is equivalent

to the maximum number of revolutions that the departure or destination body

makes. Equivalently, the lower bound on m is the minimum number of revolutions

that the departure or destination body will make. Defining the set Pd as

Pd = (Orbital period of departure body, Orbital period of destination body)

(4.12)

then

m ≥
⌊

tf − t0
max (Pd)

⌋

(4.13)

and

m ≤
⌊

0.7 ∗
tf − t0

min (Pd)

⌋

+ 1 (4.14)

Here the 0.7 is found empirically, and the +1 is a safety factor. Eq. (4.13) and

Eq. (4.14) work because as the spacecraft travels from the departure body to the

destination body its orbital period will vary between the periods of the target bodies.

Equivalently, is is expected that the number of revolutions should also vary between

number of revolutions made by the two target bodies.

4.4 Trajectory Cost Function

When the order of the polynomials are greater then four, there exists an infinite

number of trajectories that satisfy the rendezvous problem. In order to select a

good trajectory, a cost function is needed that can measure the value of a particular
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trajectory. The cost function is

J =

∫ tf

t0

|A|2 dt (4.15)

Eq. (4.15) is used because it is smooth and quadratic, which usually implies that

the optimization problem is numerically simple to solve. Although the cost function

used here does not minimize the propellant cost, this is not a major concern at this

stage because the trajectories are only being approximated.

The dynamics for a point mass in a central gravity field (spacecraft orbiting the

sun) are given as

r̈ = −
µsun

|r|3
r + A (4.16)

where A is the acceleration required to maintain the path, and r is the position of

the spacecraft. Solving for the acceleration, A, is

A = r̈ +
µsun

|r|3
r (4.17)

Eq. (4.17) shows that the acceleration is now a function of the position of the

spacecraft, r, and its time derivatives. This is useful because the position of the

spacecraft is parameterized by Eq. (4.2), which means that the derivates can be

computed simply by differentiating T , the basis function. Substituting in the tra-

jectory function, the acceleration is

A =










∑N−1
i=0 cx,iT̈i + µsun

|r|3
∑N−1

i=0 cx,iTi

∑N−1
i=0 cy,iT̈i + µsun

|r|3
∑N−1

i=0 cy,iTi

∑N−1
i=0 cz,iT̈i + µsun

|r|3
∑N−1

i=0 cz,iTi










(4.18)

|r| =

√
√
√
√

(
N−1
∑

i=0

cx,iTi

)2

+

(
N−1
∑

i=0

cy,iTi

)2

+

(
N−1
∑

i=0

cz,iTi

)2

(4.19)

The acceleration is now a function of the path coefficients, cx,i, cy,i, and cz,i. Since

the cost function is a function of the trajectory coefficients, this implies that the
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cost function can be minimized. With the cost function and constraints defined, the

path coefficients can be found such that the constraints are satisfied and the cost is

minimized.

4.5 Broad Search Algorithm

The two disadvantages of the shape based methods have been addressed. These

disadvantages are the inability to optimize the trajectory and the inability to handle

rendezvous problems. However, for the Chebyshev trajectory approximation to be

useful, it must be used in a similar fashion to the shape based approach, as a tool

that estimates the ∆V cost and generates trajectory estimates over a large range

of launch dates and arrival dates.

Because of the differences between the shape based approach and the Chebyshev

trajectory approximation, the algorithm for conducting the broad search is differ-

ent. Unlike the shape based method in the Chebyshev trajectory approximation,

the timing and boundary conditions are explicitly met. However there are extra

degrees of freedom, so the trajectory does have room to be optimized. Also, for

the Chebyshev trajectory approximation method, the number of heliocentric rev-

olution space has to be searched through because of the freedom in the boundary

constraints, Eq. (4.11).

The Chebyshev trajectory approximation broad search algorithm begins by hav-

ing the user specify the departure body, the destination body, the launch dates, and

arrival dates. Then, for each possible launch date and arrival date combination,

the method computes the number of heliocentric revolutions and generates a tra-

jectory for each heliocentric revolution. The pseudocode for finding trajectories is

Alg. (4.1). The algorithm is missing a single piece of information, how to minimize
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Algorithm 4.1 Algorithm for generating Chebyshev approximated trajectories be-
tween two bodies over a wide range of launch dates and arrival dates.

for all t0 ∈ Launch Dates do
for all tf ∈ Arrival Dates do

for all m ∈ Possible heliocentric revolutions do
min J s.t. boundary conditions are satisfied

end for
end for

end for

J .

4.5.1 Broad Search Initial Guess Generation

With the number of heliocentric revolutions known, an initial guess and opti-

mization algorithm is needed to optimize the trajectory, which will minimize Eq.

(4.15). The optimization algorithm used is a Sequential Quadratic Programming[2,

39, 16] algorithm. The Sequential Quadratic Programming method approximates

the constraints to the first order and the cost function to the second order. Be-

cause the constraints are linear, the Sequential Quadratic Programming method

will explicitly satisfy the constraints during every iteration.

While there exist many ways to generate an initial guess, the method used here

is to simply set the Chebyshev polynomial order to N = 4. Because the number of

coefficients is equal to the number of free parameters, there exists only one solution

to Eq. (4.9) and Eq. (4.10), which define the rendezvous problems.

Next, N is increased by 1 to 5, and the new coefficients, cr,N , cθ,N , cφ,N are set

equal to 0. Now the N = 5 trajectory is equivalent to the N = 4 trajectory, but

the N = 5 trajectory has extra degrees of freedom that can be optimized. This

trajectory is then used as an initial guess to the sequential quadratic programming

method, which takes the initial guess and returns the optimal solution. This pro-

cess can be generalized to generate higher order trajectory approximations. It was
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found that N = 10 is usually sufficient to model interplanetary trajectories. The

generalized algorithm is Alg. (4.2).

Algorithm 4.2 Algorithm for optimizing the Chebyshev trajectory approximation.
The algorithm increases the order of the Chebyshev polynomial from N = 4 to
N = 10 and optimizes the trajectory.

N = 4
find coefficients that solve rendezvous problem
for N = 5 to 10 do

Set coefficients for polynomial order N to N − 1 coefficients
Set higher order coefficients to 0
minimize J using Sequential Quadratic Programming method

end for

Alg. (4.2) represents a self contained method that can generate an initial guess

and minimize the cost function. Graphically, Alg. (4.2) is shown in Fig. 4.2. Alg.

Figure 4.2: Graphically shows the algorithm for generating a trajectory using
Chebyshev polynomials.

(4.2) is self contained because it begins with a unique solution to the rendezvous

problem. This unique trajectory is then used as an initial guess to find subsequent
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optimal trajectories represented by higher order polynomials.

4.5.2 Multi Segment Trajectories

The method outlined previously is designed for point to point rendezvous tra-

jectories however, it can be easily modified to handle multiple segment trajectories.

Multiple segment trajectories arise when gravity assists or a multiple tour mission

is used. Two modifications to Alg. (4.2) are needed to handle multiple segment

trajectories. The first modification is to replace the rendezvous conditions with the

appropriate boundary conditions for the mission. For a multiple tour mission no

change is required while for a gravity assist problem the gravity assist continuity

equations would need to be used to account for the change in the spacecraft ve-

locity. Next, the variable N in Eq. (4.2) would need to be set to the number of

free parameters on each segment. With these modifications the algorithm can be

generalized.

4.5.3 Chebyshev Trajectory Approximation Examples

A tool to generate feasible trajectories is coded up in C++ and Objective C

on an Apple computer using OS 10.5. The program uses the CSPICE libraries.

The broad search algorithm runs in multiple threads. The problem scope for this

demonstration program is limited to single rendezvous problems.

The broad search program is shown in Fig. 4.3. The program requires the de-

parture body, arrival body, launch dates, and times of flight. The program then

searches over the entire space and stores all potentially valid solutions. The limited

input requirement makes broad searches easy to conduct. The program interface,

shown in Fig. 4.3, allows for the use of multiple processors. Because each sub-

problem generates its own initial guess, the subproblems can be solved independent
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of the each other, allowing the methods to be used in a parallel or distributed

environment, which reduces the computational time.

Figure 4.3: Implementation of broad search routine. Basis functions are given by
Chebyshev Polynomials. Program only requires mission parameters to
begin searching for trajectories. For an Earth to Mars mission about
4,000 trajectories are found that have ∆V ≤ 30 km

s

To show the flexibility of the Chebyshev polynomials in representing the trajec-

tories, two different Earth to Jupiter missions are considered. The first example is

given in Fig. 4.4. The figure shows the trajectory and the estimated thrust vec-

tor. The trajectories are continuously thrusting, due to the use of the polynomial

basis functions, however the trajectories look like low thrust trajectories. The first
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Figure 4.4: Chebyshev polynomial representation of a Earth to Jupiter trajectory.
A 10th order polynomial represents the trajectory. The arrows indicate
direction and magnitude of the thrust vector.
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example demonstrates that a 10th order polynomial can model electric propulsion

trajectories well over a low number of revolutions with a large change in radius. The

10th order polynomial is modeling a 5.4 year trajectory that makes 1 full heliocentric

revolution.

The second example is given in Fig. 4.5. The figure shows the trajectory and the

estimated thrust vector for a 10 year multiple revolution trajectory to Jupiter. This

example demonstrates that low order Chebyshev polynomials can represent electric

propulsion trajectories over long periods of time and a large number of revolutions.

The second example makes 6 heliocentric revolutions, 5 of which are are near 1

AU. This demonstrates that Chebyshev polynomials can remain relatively constant

over most of the trajectory then change over a short period of time. The two

examples demonstrate that Chebyshev polynomials can represent electric propulsion

trajectories.

4.6 Conclusions

In this chapter an automated method for representing electric propulsion tra-

jectories has been described. Unlike the shape based approach, this method uses

Chebyshev basis functions to represent the trajectory and the trajectory is directly

parameterized in time. Using linear basis functions in time fixes the timing and

converts the rendezvous problem into a linear problem which can be solved simply.

The ability to solve rendezvous problems addresses one of the shortcomings of the

exponential sinusoid. Also, because this method allows for arbitrary order polyno-

mials, the coefficients can be optimized. This allows low cost solutions to be found,

which cannot be done with the exponential sinusoid.

The broad search algorithm in conjunction with the optimization method can
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Figure 4.5: Chebyshev polynomial representation of a Earth to Jupiter trajectory
with multiple heliocentric revolutions. A 10th order polynomial repre-
sents the trajectory. The arrows indicate direction and magnitude of
the thrust vector.
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rapidly find rendezvous trajectories between two bodies. Furthermore, because the

program searches over the number of heliocentric revolutions, it finds the most

favorable structure without requiring any a priori knowledge of the user. Also,

because each trajectory in the search space can be solved independent of any other

trajectory, the search process can use parallel or distributed processing to reduce

the computational time. This method is the first step in automating trajectory

generation process. While, the algorithms presented here allows for a large number

of trajectories to be generated, they do not take into account the thruster, launch

vehicle, or power constraints.



CHAPTER V

GENERATING ELECTRIC PROPULSION
TRAJECTORIES THAT SATISFY THRUSTER

AND POWER CONSTRAINTS

5.1 Introduction

In the previous chapter a method for approximating the electric propulsion tra-

jectories that addressed two of the shortcomings of the exponential sinusoid and

shape base methods was presented. The Chebyshev approximation is designed to

satisfy rendezvous problems, and it has enough degrees of freedom to permit trajec-

tory optimization. Combining the Chebyshev approximation with the broad search

algorithm allows for the rapid generation of trajectories. The ability to rapidly

search for trajectories represents the first step in the larger goal of automating the

trajectory generation process.

Unfortunately, the Chebyshev approximation does not generate feasible trajec-

tories. Feasible trajectories are trajectories that satisfy the propulsion system’s

thrust and power system’s power limitations. The next step to generating feasi-

ble trajectories is to convert the Chebyshev approximations into trajectories that

satisfy the thrust, mass, and power constraints of the mission.

This chapter outlines a method for generating feasible trajectories using the

62
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Chebyshev approximation as a starting point. The acceleration profile from the

Chebyshev trajectory is converted into a thrust profile, and the trajectory is fully

integrated using the equations of motion. Errors between the thrust profile, thruster

model, and destination constraints are corrected. Once a trajectory that satisfies the

thruster constraints is found, the power system’s constraints are included in the set

of active constraints, and the errors are corrected for. Once the trajectory satisfies

all the constraints, it is a feasible trajectory. A feasible trajectory is a trajectory

that satisfies the dynamics, thrust, and power constraints. Feasible trajectories are

beneficial because they place an upper bound on the propellant utilized and can be

good initial guesses for trajectory optimizers.

5.2 Fully Integrated Model

Once the Chebyshev approximation model generates a trajectory, the trajectory

must to be converted into a solution that will satisfy the thruster and power system

constraints. While the Chebyshev model minimizes the integral of the acceleration

squared, the acceleration profile is not constrained. Hall and Ion thrusters can only

provide thrust over a limited finite range. First, the number of control segments,

M , must be selected. The user then specifies the launch vehicle, the engine, the

duty cycle, and the power system.

The initial thrust profile is generated by converting the acceleration profile from

the Chebyshev trajectory approximation into a thrust profile. First the launch vehi-

cle, thruster, and the number of control segments, M , must be determined. From the

thruster, the maximum exhaust velocity, ue, is found, and from the launch vehicle,

the initial mass is set. Using the exhaust velocity, initial mass, and the acceleration

profile from the Chebyshev approximation a thrust profile can be generated using
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Alg. (5.1). The initial thrust profile, Ti, will not satisfy the thruster limitations or

Algorithm 5.1 Algorithm for converting the acceleration profile of the Chebyshev
trajectory into a thrust profile based on thruster and launch vehicle specifications.
ue is the maximum exhaust velocity of the specified thruster and dc is the duty cycle
of the thruster.

m0 = F (0)
for i = 0 to M − 1 do

ti = i
M (tf − t0) + t0

∆Vi =
∫ ti+1

ti
|A| dt

mi+1 = mie−∆Vi/ue

T i = (mi−mi+1)ue

dc(ti+1−ti)
A(ti)
|A(ti)|

end for

the rendezvous problem. A solver is needed that can take the initial control law and

convert it into a control sequence that satisfies the constraints. Ideally, the solver

should use simple numerical techniques so that it can be easily implemented.

The equations of motion are

r̈ = −
µsun

|r|3
r + sTn (5.1)

ṅ = −n2ṁ (φ) s (5.2)

where φ is the throttle, s is the engine state (on or off), and T is the thrust. n is

the inverse of the mass and is equal to 1/m. The control constraints are defined as

qi = 0 = 0.5 [TT (φi)]
2 − 0.5 |T i|2 (5.3)

and

Si = 0 = 0.5si (si − 1) (5.4)

In Eq. (5.3) TT (φi) is the thrust that the propulsions system provides as a function

of the throttle. The parameterization of TT (φi) for the NSTAR, BPT-4000, and

the NEXT thrusters is given in Appendix D. The control inequality constraint is

−1 ≤ φi ≤ 1 (5.5)
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The launch vehicle constraint is

0 ≥ n0 F (C3) − 1.0 (5.6)

The equality constraints are converted into equality constraints using a slack vari-

able method[39]. In the slack variable method, an inequality method is converted

into an equality constraint by adding a slack variable, which is added to the con-

trol constraint. For example, the launch vehicle inequality constraint, Eq. (5.6),

becomes

0 = n0 F (C3) − 1.0 +
1

2
s2 (5.7)

where s is a slack variable, which has to be found during the optimization process.
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The constraints, C, and controls, U are
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ẋf − ẋM
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(5.8)

and

U =





















T 0

...

T M−1

φ0

...

φM−1





















(5.9)
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5.2.1 Linear Subproblem

For a trajectory to be feasible it must satisfy

C (U) = 0 (5.10)

Generally, the controls, U , will not satisfy Eq. (5.10), so a method is needed that

can modify U such that Eq. (5.10) will be true. The standard approach to a

problem of this type is to take a first order Taylor series expansion of the constraint

equations, C, with respect to the controls, U , and set that equation equal to zero.

Taking the first order expansion gives

0 = C (U) +
∂C (U)

∂U
δU (5.11)

The control update is

Uupdate = U + δU (5.12)

If δU satisfies Eq. (5.11), then it linearly satisfies the constraint equations, and if

the initial control vector, U is close to a feasible solution, then the linear method

will converge to a feasible solution. With the constraints and control vector defined,

Alg. (5.2) is used to satisfy the constraints. The trajectory that is generated will

Algorithm 5.2 Algorithm for satisfying the constraints. ε is a small positive num-
ber

while |C|2 > ε do
solve C + ∂C

∂UδU
update U = U + δU

end while

depend on how Eq. (5.11) is solved.

5.2.2 Pseudoinverse Solution to the Linear Subproblem

The easiest and perhaps simplest method for solving Eq. (5.11) is to use the

pseudoinverse[56] to construct δU . The psuedoinverse minimizes the δUT δU while
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satisfying the constraint equation, Eq. (5.11). Defining CU = ∂C(U)
∂U , the pseudoin-

verse, CU
+, of CU is

CU
+ = CU

T
(

CUCU
T
)−1

(5.13)

Using the pseudoinverse, the control update is

δU = −CU
+C (U) (5.14)

The pseudoinverse selects the “smallest” change in control such the constraint equa-

tion is satisfied. Because of the way the pseudoinverse generates the control update,

it tends to converge quickly when used in Alg. (5.2).

5.2.3 Alternative Solutions to the Linear Subproblem

While the pseudoinverse approach does converge quickly and is simple to use,

it is not the only approach to finding feasible trajectories. An alternative approach

to the psuedoinverse method demonstrates that the solution to Eq. (5.11) can

be customized to different needs. In the following examples, Eq. (5.11) is solved

such that an alternative cost function is minimized for several iterations. The cost

function used is
M−1
∑

i=0

|T i| + 2πδrT
i δri (5.15)

Here δri is the deviation in the position of the spacecraft. δri is included in the

cost function to stabilize the algorithm and prevent the control update from causing

large changes to the control. Because of the difficulty with minimizing Eq. (5.15),

a multiple shooting method[2, 39] is also employed.

The multiple shooting method breaks the trajectory into M − 1 segments. The

states are now treated as control variables, and the continuity conditions are added

to the constraint set. The continuity conditions require that the solution does not
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have any discontinuities in the mass, position, and velocity of the spacecraft. The

control for the multiple shooting problem, Ums is

Ums =


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
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(5.16)

Here the subscript g, i denotes the presumed position and velocity of the spacecraft

at the ith segment. The constraint vector, Cms is

Cms =































C

xi − xg,0

ẋi − ẋg,0

...

yi − yg,i

ẏi − ẏg,i

...

zi − zg,M−1

żi − żg,M































(5.17)

The additional constraints represent the continuity conditions between the presumed

position and velocity and the actual position and velocity of the spacecraft. The
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first order expansion of the new constraint equation is

0 = Cms (Ums) +
∂Cms (Ums)

∂Ums
δUms (5.18)

The control update δUms is selected such that it satisfies Eq. (5.18) and minimizes

Eq. (5.15).

The initial Chebyshev trajectory is provided by Fig. 4.4 and Fig. 4.5. In these

two figures, the initial thrust varies over the entire trajectory, and the thruster is

always on. For this example, the specific impulse is set to 6400 seconds, and the

maximum thrust is 514.7 mN. The launch mass is 3885 kg, and the initial C3 is

constrained to be 0. The power system is assumed to provide a constant power over

all time; the mass of the power system is not considered in this example. The goal

of these examples is to demonstrate that custom approaches to solving Eq. (5.11)

can be developed depending on the need.

Fig. 5.1 and Fig. 5.2 are the trajectories after Fig. 4.4 and Fig. 4.5 have

been made feasible. The major difference between the initial guess and the final

feasible trajectory is the appearance of coast-arcs, which would not occur if the

psuedoinverse had been used. These examples demonstrate that different methods

can be used to solve Eq. (5.11).

5.2.4 Examples

An Earth to Mars mission is considered to demonstrate the utility of the pseu-

doinverse method, with a flight time of 500 days. The initial trajectories are pro-

vided by the Chebyshev approximation method. For the 500 day example, the

launch date is July 23, 2009, and the launch vehicle is the Atlas V 501 (Table 5.1).

For solar electric power sources the power output scales as

P (t)

P (t0)
=

(
r0

r (t)

)2

(5.19)
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Figure 5.1: Fully integrated 5.5 year Earth to Jupiter trajectory. Initial guess is
provided from Fig. 4.4. The jet power is 32.28 kW. The power system
is assumed to provide a constant source of power.
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Figure 5.2: Fully integrated 10 year multi revolution Earth to Jupiter trajectory.
Chebyshev approximation is provided Fig. 4.5. The jet power is 32.28
kW. The power system is assumed to provide a constant source of power.
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The results are shown in Fig. 5.3, Fig. 5.4, Fig. 5.5, and Fig. 5.6. The results in

the figures are not optimized, and solar arrays provide power that vary with |r|−2.

Although the trajectories are not optimized, the figures provide some interesting

results. The BPT-4000 thruster performs the best when it is fully powered over

the entire trajectory. Because of the NEXT thruster’s high power requirements

and higher specific impulse the final mass increases as power increases, but for low

powers the BPT-4000 delivers a larger mass to Mars. The final mass delivered

to Mars by the NSTAR thruster rapidly decreases as power decreases because the

thruster is fully utilized; resulting in a trajectory that is marginally feasible.

Table 5.1: Table of launch vehicle properties. The table shows the launch vehicle
name, C3 = 0 launch mass and maximum C3

Launch Vehicle C3 = 0 mass (kg) Maximum C3 (km/s)

Atlas V 401 3445 90
Atlas V 501 2680 70
Atlas V 511 3765 90
Atlas V 521 4545 90
Atlas V 531 5210 110
Atlas V 541 5820 120
Atlas V 551 6330 120

Delta IV 4040-12 2735 30
Delta IV 4050-19 9305 60

Delta IV D4450-14 4580 25

The examples demonstrate the solver can reuse a single Chebyshev trajectory

to generate feasible trajectories with different thrusters and power constraints.

5.2.5 A Method for Handling Over Constrained Problems

Eq. (5.11) is a linear equation and will always have a solution, however C may

be over constrained such that no solution exists. For the over constrained case it

is beneficial to know how much thrust is required to make the solution feasible.

When the problem is over constrained, no solution exits and a metric to quantify
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Figure 5.3: The final mass for a series of feasible trajectories for a 500 Earth to
Mars mission. The x axis is the initial power at 1 AU. Solar arrays are
used as the power source. Two thrusters are used.
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Figure 5.4: Initial mass for a 500 day Earth to Mars trajectories. The x axis is the
initial power at 1 AU. Solar arrays are the power source. The example
utilizes 2 thrusters.
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Figure 5.5: The C3 as a function of the initial power for an Earth to Mars 500 day
mission. The example utilizes 2 thrusters.
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Figure 5.6: Propellant mass throughput margin remaining per thruster. Negative
mass values would indicate that the throughput limit on the thruster
has been violated.
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the infeasibility is needed. Normally, the infeasibility is quantified as CT C[16, 35].

Because C is a mixture of constraints, this does not provide any real insight as to

how far the infeasible solution is from being feasible.

Instead of returning the norm of the constraint violations, C, when the solver

fails, it attempts to answer the question, “how much thrust is required for a suc-

cessful mission?” The solver uses a homotopy method to decrease the maximum

thrust level until an infeasible solution found. When an infeasible solution is found

the last feasible solution is the minimum thrust required for the mission.

In this example, a solar power source is utilized, and the maximum thrust is 92

mN ,and the specific impulse is 3100 seconds. The initial jet power is 2.7 kW and

scales with Eq. (5.19). The time of flight for the Earth to Mars trip is 600 days,

the C3 is zero, and the launch mass is 500 kg. The C3 and launch mass are fixed

to prevent the solver from reducing the launch mass or increasing the C3 to satisfy

the constraints. The requested thrust level is 75 mN. The solver returns Fig. 5.7.

Fig. 5.7 shows that the thrust level for a feasible trajectory is about 90 mN, so the

thruster needs to provide 15 mN of extra thrust to make the mission feasible. In

this case, the solver starts with a maximum thrust level of 119 mN then decreases

the thrust in 1 mN increments. The solver fails at 84 mN so the 85 mN trajectory

is the minimum thrust solution.

5.3 Conclusions

In this chapter, automated methods for finding feasible trajectories have been

described. The algorithms use simple numerical methods, but generate feasible

trajectories that can either be used for analysis or fed to optimization routines. The

algorithm uses the Chebyshev approximation to generate a thrust profile, which is
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Figure 5.7: The thrust profile for a 600 day Earth to Mars mission. The thrust
and C3 are fixed at 500 kg and zero respectively. The power is supplied
by solar arrays. Using the psuedoinverse approach the solver attempts
to converge on the closest thrust profile that satisfies the constraints.
Because the constraint cannot be satisfied the solver returns the last
feasible solution.
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then converted into a feasible trajectory. An infeasible to feasible solver is also

described that detects infeasible problems and returns the minimum thrust level.

While the trajectories generated in this section are feasible, they are not optimal.

For low level trade studies optimal trajectories are needed to quantify the benefits

of different thrusters.



CHAPTER VI

SECOND ORDER OPTIMIZATION
ALGORITHM

6.1 Introduction

The previous chapter described how feasible trajectories could be generated and

an algorithm for measuring the distance, in thrust, between feasible and infeasible

trajectories. While generating feasible trajectories is useful, ultimately, the final goal

is optimization. Once a feasible trajectory is found, the next stage is optimizing

the trajectory. The feasible trajectory acts as a good initial guess to the optimizer

since the boundary constraints are satisfied.

In this chapter a new optimization algorithm is described that approximates

the cost function and constraints to the second order. The algorithm differs from

previous methods because it generates a second order control update that satisfies

the constraints to the second order, which maintains feasibility. Current methods

use a linear control update, which satisfies the constraints to the first order[38, 22,

21, 62, 59, 60, 31, 16, 2, 39].

The two different formulations[7] for trajectory optimization problems are a

multi-stage formulation and a continuos formulation. The algorithm derived in this

chapter optimizes multi-stage problems. Fig. 6.1 graphically shows the multistage

81
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process. In the multistage process, the states carry information from one stage to

the next, while the controls act on a single stage. Variables that are constant for a

given trajectory but affect multiple stages are called parameters. In the multi-stage

Figure 6.1: Shows how the states and controls are applied in a multistage process.
x(i) and u(i) represent the state and control for a given stage. F(i) takes
in x(i) and u(i) and outputs x(i+1).

process, the dynamics are governed by

x (i + 1) = F (x, u, p, i) (6.1)

where x is the vector of the states, u is a vector of the controls, p is a vector of the

parameters, and i is the stage. The cost function to be minimized is

J =
N−1
∑

i=0

L (x, u, p, i) + φ
(

xN , p
)

(6.2)

The constraints are given by

0 = q (x, u, p, i, j) (6.3)

where j is an index enumerating the active constraints on the ith segment.

In this chapter i is exclusively used to indicate the segment number,

and j and k are used to index variables and functions on a single segment.

For example, qij and qj are read as the jth constraint for the ith segment. The i is

dropped when it is understood that a particular equation or variable is acting on

single stage.
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The algorithm is designed to satisfy the Karush-Kuhn-Tucker (KKT) conditions[39]

and uses the first and second order partials of the cost function, dynamics, and con-

straints. This allows it to construct a second order control update that satisfies the

KKT conditions to the second order. This algorithm is an extension of sequential

quadratic programming[39] method, however it differs from sequential quadratic

programming because is requires second order dynamical and constraint informa-

tion. The algorithm uses techniques that are similar to those used in differential

dynamic programming[21, 22, 31, 38]. The algorithm approximates the constraints

and cost function to the second order and generates a control update which satisfies

the local KKT conditions and the constraints the second order. The control update

on a particular segment has the form

δuj = δuj
p +

[

U j
x U j

p

]






δx

δp




+

1

2

[

δxT δpT

]






U j
xx U j

xp

U j
px U j

pp











δx

δp




 (6.4)

The control update in Eq. (6.4) differs from other algorithms because it includes a

second order term.

This chapter begins by outlining the algorithm and then discussing the control

update. Next, several example problems are shown that demonstrate the benefits

of the algorithm. Finally, current issues with the algorithm are highlighted.

6.2 Optimization Algorithm

This algorithm is a direct method that uses the principle of optimality[7]. The

principal of optimality requires that every subarc on an optimal trajectory is also

optimal. First, the initial guess is integrated, and the partials of the dynamics,
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constraints, and cost function are stored. The partials supplied by the user are

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(6.6)

F i
xixi F i

xiui F i
xip F i

uixi F i
uiui F i

uip F i
pxi F i

pui F i
pp (6.7)

The algorithm is designed to minimize the cost function, Eq. (6.3), but instead

of using the cost function, the algorithm uses the cost-to-go given in Eq. (6.8). The

cost-to-go function measures the cost associated with traveling from the current

segment, i, to the final node N .

V i =
N−1
∑

n=i

L (x, u, p, n) + φ
(

xN , p
)

(6.8)

The partials of the cost-to-go function are represented in Eq. (6.9), and they are

generated by the algorithm.

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


(6.9)

An overview of the algorithm is outlined in Alg. (6.1). Before Alg. (6.1) can be

implemented, several issues need to be explained. The issues are

1. How are the partials of V i computed?

2. How is the control update generated?
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Algorithm 6.1 High level overview of optimization algorithm
Use initial control
Set control update=0
while Trajectory not optimized do

Apply control update and compute trajectory
Store partials of L, f , and qj

for i = N − 1 to 1 do
Compute partials of V i

Compute control update
end for

end while

3. What is the optimality condition?

4. How is the update applied?

The following sections will address these four issues.

6.3 Cost-To-Go Function

The cost-to-go function, Eq. (6.3), is an important concept in optimization[21,

22, 31, 38, 10]. The cost-to-go defines the cost incurred in travel from the current

point to the final destination. This section addresses how to compute the partials

of V , which will be used construct the second order control update. For multi-stage

problems that use the cost-to-go function, the problem is worked backwards so that

the final stage is handled first and the first stage is dealt with last.

Before a recursive method for constructing the partials of V can be provided, an

auxiliary function, W , has to be introduced. It represents the cost-to-go function

once the control update has been applied. In this sense, W is only a function of

the states and parameters. Primarily, W is used to discriminate between partials

that have been constructed using the control update and those that have not. At

this point, it is assumed that the second order control update can be computed,

however the next section describes a method for constructing the control update.
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Alg. (6.2) is the recursive method for constructing the partials of V and W ,

which are required to construct the control update. The procedure begins by ini-

Algorithm 6.2 Expansion of cost-to-go

Initialize W N (x, p)
for i=N-1 to 1 do

Expand W i+1 (x, p) to V i (x, p, u)
Apply control control and reduce V i (x, p, u) to W i (x, p)

end for

tializing the partials of W N and its partials.






W N
xN

W N
p




 =






φN
xN

φN
p




 ,






W N
xN xN W N

xN p

W N
pxN W N

pp




 =






φN
xNxN φN

xNp

φN
pxN φN

pp




 (6.10)

Next, the partials of W i+1 need to be converted into the partials of V i. In the

following equations W = W i+1, V = V i, F = F i. Derivatives are also taken with

respect to the appropriate index, so F x = F i
xi . Eq. (6.11) and Eq. (6.12) map the

partials of W i+1 to V i.










Vx

Vp

Vu










=










F T
x 0

F T
p I

F T
u 0















Wx

Wp




+










Lx

Lp

Lu










(6.11)



87







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

Vxx Vxp Vxu

Vpx Vpp Vpu

Vux Vup Vuu
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




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x 0
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p I
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u 0
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
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








Wxx Wxp

Wpx Wpp











F T
x F T

p F T
u

0 I 0




+










Lxx Lxp Lxu

Lpx Lpp Lpu

Lux Lup Luu










+

∑

j

Wxj ·










F j
xx F j

xp F j
xu

F j
px F j

pp F j
pu

F j
ux F j

up F j
uu










(6.12)

Eq. (6.11) and Eq. (6.12) use W i+1 to construct the expansion of the cost-to-

go function. The next step in Alg. (6.2) is to use the control update and V i to

construct the partials of W i.

Applying the control update from Eq. (6.4) to the partials of the cost-to-go

function reduces it to a function of the states and parameters. In the following set

of equations W = W i, V = V i, δup =
[

δu1
p δu

2
p . . . δum

p

]

,

Ux =













U1
x

U2
x

...

Um
x













(6.13)

Up =













U1
p

U2
p

...

Um
p













(6.14)
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Applying the control updates to the partials of V gives

Wx = Vx + Ux
T Vu + Vxuδup + Ux

T Vuuδup (6.15)

Wp = Vp + Up
T Vu + Vpuδup + Up

T Vuuδup (6.16)

Wxx = Vxx + VxuUx + Ux
T VuuUx +

∑

j

U j
xx (Vu + Vuuδup)

j (6.17)

Wpp = Vpp + VpuUp + Up
T VuuUp +

∑

j

U j
pp (Vu + Vuuδup)

j (6.18)

Wxp = Vxp + VxuUp +
1

2
Ux

T VuuUp +
∑

j

U j
xp (Vu + Vuuδup)

j (6.19)

Wpx = Vpx + VpuUx +
1

2
Up

T VuuUx +
∑

j

U j
px (Vu + Vuuδup)

j (6.20)

This section has outlined a recursive procedure for expanding and reducing the

partials of the cost-to-go function. This expansion is used in the next section to

construct the control update.

6.4 Second Order Control Update

This section constructs the control update for the ith segment. The formulation

begins by appending the constraints to the cost-to-go function, Eq. (6.8), giving

V i∗ = V i +
∑

j

λjqj (6.21)

First, a second order Taylor series expansion of Eq. (6.21) is constructed with

respect to x, u, and p. Then, the Taylor series expansion is differentiated with

respect to δu and λj , which gives the necessary conditions, Eq. (6.23) and Eq.

(6.24).

0 = Vu + 0.5
(

Vux + V T
xu

)

δx + 0.5
(

Vup + V T
pu

)

δp + Vuuδu + (6.22)

∑

j

λj
(

qj
u + 0.5

(

qj
ux + qjT

xu

)

δx + 0.5
(

qj
up + qjT

pu

)

δp + qj
uuδu

)
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and

0 = qj + qjT
u δu + 0.5δuT qj

uuδu + 0.5δxT qj
xuδu + 0.5δuT qj

uxδx + (6.23)

0.5δxT qj
xxδx + qjT

p δp + 0.5δpT qj
puδu + 0.5δxT qj

xpδp + 0.5δpT qj
ppδp +

qjT
x δx + 0.5δxT qj

xpδp + 0.5δpT qj
pxδx

The solution to Eq. (6.23) and Eq. (6.24) is control update that will satisfy the

necessary conditions to the second order. Since δx and δp are unknown for a

particular stage, the control update needs to be a function of δx and δp. For this

reason, the control update takes the form in Eq. (6.4), which is a truncated series

expansion for the true solution.

The control update is constructed term by term. First the affine term, δup, is

constructed by replacing δu and λ with δup and λp. The resulting equations are

0 =













Vu

q1

...

qm













+ (M + 0.5H)






δup

λp




 (6.24)

where

M =













Vuu q1
u . . . qm

u

q1T
u 0 . . . 0

...
...

. . .

qmT
u 0 . . . 0













(6.25)

and

H =













∑

λj
pq

j
uu q1

uuδup . . . qm
uuδup

δup
T q1

uu 0 . . . 0
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...

. . .
...

δup
T qm

uu 0 . . . 0













(6.26)
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Here m represents the number of constraints on a particular segment.

Next, the linear terms are collected. Λ is defined as the set of λ values on the

optimal trajectory. So, like U , the appropriate partials to Λ must be constructed.

Collecting the linear terms gives

0 =












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 (6.27)
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 (6.28)

With the linear terms found the second order terms can be constructed. In order

to construct the second order partials the following definitions are needed

Λk
xj =

∂λk

∂xj
(6.29)

and

Uxjx =
∂2U

∂xj∂x
(6.30)

Using this notation, Λk
xj is the partial derivative of kth element of the vector λ with

respect to the jth element of the vector x. Similarly, Uxjx is the second partial

derivative of the control vector U with respect to the vector x and the jth element
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of the vector x. Applying this notation, the second order control update is

0 =
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0 =

















∑

k Λk
xj

(

qk
up + qkT

up + 2qk
uuUp

)

UT
xjq1

up + q1
xju

Up + q1
xj p

+ Uxj
T q1

uuUp

UT
xjq2

up + q2
xju

Up + q2
xj p

+ Uxj
T q2

uuUp

...

UT
xjqm

up + qm
xju

Up + qm
xj p

+ Uxj
T qm

uuUp

















+ (M + H)






Uxjp

Λxj p




 (6.34)

The solution to equations Eq. (6.24)-Eq. (6.34) is the control update. Solving Eq.

(6.24) requires an iterative numerical method because it is a set of nonlinear coupled
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equations. However, the linear and second order terms are linear and can be solved

using a linear algebra package.

6.4.1 Optimality Condition

The optimality condition for a segment, Oi
c, is given

Oi
c =
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λp (6.35)

The trajectory is considered optimal when for all i,

∣
∣Oi

c

∣
∣ ≤ ε (6.36)

where ε is some small positive number. The constraint violation is simply

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q1
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...

qm













(6.37)

6.5 Application of the Control Update

Once the control updates have been computed, there are two possible methods

of applying them. The first method is to simply compute the state and parameter

deviations and then compute the control update from Eq. (6.4). This is the simplest

and easiest method to use because it requires little computational effort and has no

possibility of failure.

Another approach is to compute the state and parameter deviations then gen-

erate the control update by iteratively solving Eq. (6.23) and Eq. (6.24). Solving
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these two equations results in a more accurate control update since Eq. (6.4) is a

truncated series solution to Eq. (6.23) and Eq. (6.24). However, because Eq. (6.23)

and Eq. (6.24) must be solved iteratively, there is a possibility that the solver may

not converge.

6.6 Single Stage Variant

The algorithm above outlines a recursive process for the multi-stage process,

however the multi-stage optimization problem can be converted into an equivalent

single stage process. In the single stage variant the entire process is treated as one

stage; this is similar to the sequential quadratic programming method[2, 39]. A

multi-stage process can be converted into a single stage process. The cost-to-go

function is expanded with the following equations.

V i
x = F iT

x V i+1
x + Li

x (6.38)

V i
xx = F iT

x V i+1
xx F i

x + Li
xx +

∑

j

V i+1
xj F ij

xx (6.39)

V i
u =






F iT
u V i+1

x + Li
u

V i+1
u




 (6.40)

V i
uu =




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Fu
iT V i+1

xx Fu
i + Li

uu +
∑

j V i+1
xj F ij

uu Fu
iT V i+1

xu

V i+1
ux Fu

i V i+1
uu




 (6.41)

V i
ux =






Fu
iT V i+1

xx Fx
i + Li

ux +
∑

j V i+1
xj F ij

ux

V i+1
ux Fx

i




 (6.42)

V i
xu =

[

Fx
iT V i+1

xx Fu
i + Li

xu +
∑

j V i+1
xj F ij

xu Fx
iT V i+1

xu

]

(6.43)

Similarly, each constraint is expanded as

qi
x = F iT

x qi+1
x (6.44)
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qi
xx = F iT

x qi+1
xx F i

x +
∑

j

qi+1
xj F ij

xx (6.45)

qi
u =
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

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x
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u




 (6.46)

qi
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uu Fu
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ux Fu

i qi+1
uu
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
 (6.47)

qi
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


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xx Fx
i +
∑
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xj F ij
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ux Fx
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
 (6.48)

qi
xu =

[

Fx
iT qi+1

xx Fu
i +
∑

j qi+1
xj F ij

xu Fx
iT qi+1

xu

]

(6.49)

Using these equations, the constraint and cost-to-go function can be collapsed into

a single stage.

6.7 Proof of Concept Example

The previous sections outlined the mathematical equations that govern the al-

gorithm. The current section applies the algorithm to several test examples, which

demonstrates the potential benefits of the algorithm. The algorithm is coded in

Matlab. For the proof of concept test uses Matlab’s fmincon optimization rou-

tine as a reference. fmincon is a routine that solves optimization problems subject

to linear and nonlinear constraints. For the proof of concept test fmincon uses a

‘medium-scale: SQP, Quasi-Newton, line-search’ algorithm. The Matlab version

used is 7.4.0.287 (R2007a) on an Apple computer running OS 10.5.3.

The examples utilize a linear dynamical problem with a quadratic cost function

and linear and nonlinear constraints. The dynamics for the problem are governed
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by

xi+1 =






ri+1

vi+1




 =






ri

vi




+






∫ ti+1

ti

∫ ti+1

ti Aidτdψ

∫ ti+1

ti Aidτ




 (6.50)

Here r is the position of the body, v is the velocity, and A is the acceleration.

In these problems A is the control variable. The cost function is

J =
∑

i

0.5
∣
∣Ai
∣
∣
2 (

ti+1 − ti
)

(6.51)

The problem is set up with 10 segments each spanning a time period equal to

(ti+1 − ti) = ∆t = 1. The initial guess is

x0 =

[

0 0 0 0 0 0

]T

(6.52)

and

Ai =













[

1 0 0

]T

, if i = 0

[

0 0 0

]T

, if i ≥ 1

(6.53)

To ensure that the various subroutines have been written correctly, the first test

attempts to solve a problem with linear constraints. The constraints for the linear

test are

0 = x0 −
[

1 1 1 1 1 1

]T

(6.54)

and

0 = x10 −
[

25 0 0 0 0 0

]T

(6.55)

Both fmincon and the second order update converged to the optimal solution in a

single step.

For the second proof of concept test the constraints are

0 = x0 −
[

1 1 1 1 1 1

]T

(6.56)
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r10 −
[

25 0 0

]T

(6.57)

and

0 = 0.5v10 · v10 − 0.5 (6.58)

The quadratic constraint in Eq. (6.58) makes the problem more difficult and tests

the effectiveness of the various algorithms. The results of the optimization are shown

in Fig. 6.2. The figure shows that the single stage method converges in one step.

This is expected because in the single stage case the problem is exactly quadratic,

which is the type of problem the algorithm is designed to solve. The multi-stage ver-

sion of the algorithm takes several steps because the multi-stage version truncates

the control law at every stage, which results in the loss of information at every stage.

fmincon takes almost 20 iterations to converge, which is about five times as many

iterations as the multi-stage method required. In this example, with linear dynam-

ics and quadratic constraints, the single and multi-stage algorithm outperformed

fmincon.

For the final proof of concept test, a higher order a nonlinear terminal constraints

is used. The initial and terminal constraints are

0 = x0 −
[

1 1 1 1 1 1

]T

(6.59)

r10 =

[

25 0 0

]T

(6.60)

and

0 = 0.5v10 · v10 +
(

v10 · v10
)2 − 2 (6.61)

This test cases stresses the algorithm because the constraints are highly nonlinear

and the initial guess is poor since it does not satisfy any of the constraints. Fig.

6.3 shows the that the single and multi-stage versions of the algorithm converged to
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Figure 6.2: Rate of convergence for single and multi stage versions of the algorithm
vs. fmincon. For the quadratic constraint case, the single stage method
converges in one step and while the multi-stage method took several
steps to converge. fmincon had the slowest rate of convergence and
took almost 20 iterations to converge.
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the optimal solution within about five iterations while fmincon does not converge

within 500 iterations. This shows that this algorithm can be more robust than linear

methods.

Figure 6.3: Rate of convergence for single and multi stage versions of the algorithm
vs. fmincon. For the nonlinear constraint case, the single and multi-
stage method converge in several steps and fmincon fails to converge
within 500 iterations.

6.7.1 Inequality Constraint Example

In the previous examples only the equality constraints are handled. In this

example, control constraints are considered and are handled by the slack variable

method[39]. The dynamics and cost function remain the same. The flight time is 8

and the total number of segments is 20. The constraints are

1

2

∣
∣Ai
∣
∣
2 ≤ 0.5 (6.62)

and the initial and final constraints are

x0 −
[

0 0 0 0 0 0

]T

(6.63)



99

r20 −
[

25 0 0

]T

(6.64)

The initial guess is

x0 =

[

0 0 0 0 0 0

]T

(6.65)

and

Ai =

[

1 0 0

]T

(6.66)

Using the multi-stage method, the algorithm converges to the optimal solution in

three iterations. The thrust profile is shown in Fig. 6.4. As the algorithm iterates,

it stays within the constraint boundaries and is able to converge to the correct

solution. This is a valuable property because the solution at every iteration may

not be optimal, but it is a valid solution to the original constraint problem.

6.8 Outstanding Issues

While the algorithm takes fewer iterations to converge and can handle inequality

and equality constraints well, there are several outstanding issues that prevent its

use in more difficult problems.

6.8.1 Particular Solution

Unlike most optimization algorithms that generate a linear control update, this

algorithm requires solving a nonlinear coupled equation given by Eq. (6.24). Unlike

linear problems, which can be solved relatively easily, Eq. (6.24) must be solved

using iterative numerical methods, and it can have multiple solutions. In order

to reliably minimize the solutions, a method is needed that can find the solve Eq.

(6.24) while minimizing the cost-to-go.
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Figure 6.4: Acceleration profile over 3 iterations. The second order algorithm has
the ability to automatically turn on and off inequality constraints. The
intermediate thrust profile is locked onto non optimal constraints, which
are then automatically turned off in the next iteration.
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6.8.2 Nonquadratic Cost Functions

The algorithm uses second order information to model the constraints and cost

function. However, if the cost function or constraints are not modeled well by a

second order model then Eq. (6.24) will be difficult to solve. In testing, it was

found that algorithm had trouble with L1, specifically after several iterations the

algorithm would either diverge or fail to solve Eq. (6.24).

6.9 Conclusion

In this chapter, a new second order optimization algorithm that uses a nonlinear

(second order) control update is derived. The algorithm is implement and tested

on several examples with non linear constraints. The algorithm converges quickly,

and for quadratic constraints, the algorithm maintains feasibility while optimizing.

This ensures that at each iteration the solution still solves the original constraint

problem. For inequality constraints, the algorithm is able to maintain the solution

within the feasible set, and it automatically finds the appropriate active control set.



CHAPTER VII

CONCLUSIONS

The central aim of this work has been to create methods for automating the

generation of feasible trajectories for use in trade studies. Two different methods

are designed for high and low level trade studies. Both methods utilize algorithms

that generate their own initial guesses for the optimization process, giving the algo-

rithms a self starting capability, which removes the burden of generating an initial

guess from the user. These methods act as front ends to other software rou-

tines to auto generate feasible trajectories making optimization routines

simpler and easier to use.

7.1 High Level Trades

High level trades use reduced order models to quickly identify the feasible space

of a mission. They are designed to provide an upper bound on the performance

as well as to quantify the key parameters of interest. The work in Chapter III

expanded on the work by Kluever[26, 25], Lorenzo[32, 8], Marec[34], and Jahn[23].

The analysis of the optimal net payload mass for the constant specific impulse case

generalized Jahn’s analysis. This analysis removed the specific impulse’s dependance

on the power level and mass. Instead it was found that the specific impulse is a

102
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function of the ionization cost, trip time, power system’s power to mass ratio, and

the time averaged power used to initial power ratio. This result shows that the

optimal specific impulse is not dependent on the mass of the spacecraft but is

dependent on the scaling of the power system and mission duration.

Nondimensionalizing the equations and mass fractions showed that the power

system and propellant mass should be treated as one system and that the mass

optimal mass distributed to power system and propellant system is dependent on

the trip time, propellant ionization cost, and power system scaling. From the results

in Chapter III, it is clear that the optimal distribution favors more massive power

systems for short missions, but for long mission durations, the optimal solution

distributes the mass equally between the power system and propellant.

Using these reductions, an optimization program is developed that automates

the high level trades over the power system specific power. The algorithm employs

a two stage homotopy process to autonomously generate the initial guess and solve

the full optimization process. Once a single solution is found, the power system’s

α is varied to see how it effects the net payload mass, specific impulse, and C3.

In order to ensure that the solution is optimal, the program checks the current

switching structure with the optimal switching structure, which allows the program

to add and remove coast arcs without user intervention.

Using these reductions, the optimal specific impulse can be estimated because it

is coupled to the flight time, but independent of the spacecraft mass. Furthermore,

the automated methods used allow for a whole continuum of solutions to be found,

which differs from the results of Kluever and Lorenzo, where only several solutions

are provided.
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7.2 Feasible Trajectory Generation for Low Level Trades

Low level trades are critical to evaluating the benefits of new technologies. For

electric propulsion, the trajectory has to be found such that it satisfies the propul-

sion and power system constraints. In order to automate the generation of feasible

trajectories, a two stage process is used. The Chebyshev approximation method

outlined in Chapter IV expands on the shape based method[48, 20, 45, 50]. Specifi-

cally, the Chebyshev method address two of the major limitation in the exponential

sinusoid[48, 49, 47, 50], its inability to handle rendezvous problems, and the lack of

freedom in optimizing the trajectory.

The Chebyshev approximation method uses a different parameterization that

allows the method to scale to an arbitrary order. This ensures that enough degrees of

freedom exist so that the trajectory can be optimized. In order to simplify the search

for trajectories, an automated algorithm is developed that can generate trajectories

between two bodies of interest using an ephemeris. The algorithm is designed to be

self contained so that it can be implemented in a parallel or distributed environment,

which reduces the computational time. A proof of concept tool is then constructed

which showcases the automated algorithm and utilizes the parallel capability of the

method. The Chebyshev method has the ability to autonomously find and optimize

trajectories.

Chapter V uses the trajectories generated by the Chebyshev method to generate

initial thrust laws. Thruster, launch vehicle parameterizations, and constraints

are then used as constraints on the trajectory. An algorithm is developed that

iteratively updates the thrust control law until a trajectory is found that satisfies

the constraints. Because the process is tied to the Chebyshev method, a new initial
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guess does not have to be generated for each thruster models, which simplifies

the process and allows the same Chebyshev trajectory to be used to find feasible

trajectories that utilize different thrusters.

The Chebyshev and the feasible trajectory generation method provide a frame-

work that can be used as a front end to other optimization routines such as MALTO

or Mystic. The framework provided here is illustrated in Fig. 7.1. The power of

these methods is that they are autonomous and that they can be used with other

programs to generate initial guesses for trajectory optimization programs.

Figure 7.1: The framework in which the Chebyshev method and feasible trajectory
generation routine fits in with previously conducted research. The blue
box represents the work contained in this thesis.



106

7.3 Nonlinear Optimization Algorithm

Most optimization methods use first and sometimes second order information

to generate a linear control update[38, 22, 21, 60, 62, 59, 31, 2, 39, 16, 35]. In-

Chapter VI an optimization algorithm is derived that uses a second order update

and satisfies the constraints and optimality conditions to the second order. The

method is designed to begin with a feasible trajectory and maintain feasibility as it

optimizes, which differs from current methods. The algorithm is implemented and

tested against a commonly available optimization routine. Because of the nonlinear

nature of the algorithm, the algorithm has to ability to automatically turn inequality

constraints on and off and it can converge faster than current linear methods.

7.4 Future Work

The research presented has shown that the trajectory generation process for high

and low level trades can be automated and implemented using simple numerical

techniques. The second order optimization algorithm demonstrates that higher

order methods can converge more quickly and can have the ability to identify the

active set of constraint. While the methods have been successfully tested, several

issues remain, which should be investigated further.

7.4.1 Multi-Dimensional High Level Trades

In the current implementation of the high level trade algorithm, the method

only iterates over the power system’s mass to power ratio. In practice, it would be

useful to be able to conduct multidimensional trades involving different variables,

like the power system, propellant, and flight times. Generalizing the method and

using parallel processing would allow rapid trade studies to be conducted over a
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wide range of conditions.

7.4.2 Multiple Leg Missions

The Chebyshev method is designed to solve the rendezvous problem between

two different bodies. Current missions are looking to take advantage of electric

propulsion by visiting multiple bodies. Extending the Chebyshev method to handle

multiple leg missions would allow entire missions to be prototyped.

7.4.3 L1 Cost Functions

The optimization algorithm is designed to approximate the cost function and

constraints to the second order. For problems with that structure the algorithm

performs well, however for L1 cost functions, the algorithm has some difficulty

and can get stuck around an infeasible solution. In order to solve this problem, a

method is required that can properly bias the solution so the solver converges onto

the feasible solution. Biasing the initial guess appropriately is critical to ensuring

the algorithm can handle a wide variety of problems.
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APPENDIX A

Chebyshev Trajectory Approximation Program

A.1 Setup

The first step in installing the program is to ensure that the operating system

is OS 10.5.x, where x is any number. In the“Chebyshev program” folder on the

CD there are two items, The “Chebyshev Approximation” program and the data

files, stored in the “TrajOptimization” folder. The “TrajOptimization/Data” folder

contains the necessary SPICE files. The ephemeris can be updated as required by

simply adding the appropriate SPICE ephemeris files.

The “TrajOptimization” folder needs to be located in the ”/Library/Application

Support/” folder. Once placed there, double click on “Chebyshev Approximation”

to launch the program. Once launched the program interface should look like Fig.

A.1.

A.2 Earth to Mars Walk Through

In this section a quick tutorial is provided on how to setup an Earth to Mars

search. First launch the program and an interface similar to Fig. A.1 should pop

up. The first step is to set the departure and destination bodies. Change the
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departure field to Earth and the destination field to Mars. Next the min launch

date and max launch date need to be set. These are a lower and upper bound,

respectively, on the departure date of the spacecraft. The min launch date should

be changed to 1/1/2008 and the max launch date should be set to 1/1/2011. A

three year search period is set because the synodic period between Earth and Mars

is approximately 3 years. The min time of flight and max time of flight are the lower

and upper bound, respectively, on the flight time of the spacecraft. The min time

of flight should be changed to 250 and the max time of flight should be set to 500.

This means that the program will search for flight times between 250 and 500 days.

With the upper and lower bounds set, the search grid needs to be set. The two

values that determine the number of grid points in the search space are “Number of

launch date search points” and “Number of time of flight search points”. “Number

of launch date search points” determines how many search grid points exist between

the minimum and maximum launch date. “Number of time of flight search points”

determines how many search grid points exist between the minimum and maximum

flight times. “Number of launch date search points” needs to be set to 157 which

means that the program will vary the launch date by one week increments. “Number

of time of flight search points” should be set to 26 which means that the program

will search over the flight times in 10 day increments. Finally, the “Delta V Limit”

is the maximum ∆V allowed. If a particular solution has a ∆V greater than “Delta

V Limit” then the solution will NOT be recorded. For this example the “Delta V

Limit” should be set to 50.

Now that the interface is set up go ahead and click on the “Run” button. At

this point several things will happen. A few text messages should appear in the

message window, Fig. A.2. Fig. A.2 simply passes messages from the program to
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the user.

Once several trajectories are found the trajectory listing, Fig. A.3 should begin

to populate with information. The trajectory listing represents all the trajectories

that have been computed. The trajectory listing is sortable by clicking on the

appropriate heading name.

Finally, a progress bar should also appear. The progress bar has three colors,

red, Fig. A.4, yellow, Fig. A.5, and green Fig. A.6. Red indicates that the less

then half the grid points have been searched. Yellow indicates that less than three

quarters of the grid points have been searched and green indicates that over three

quarters of the grid points have been searched. When the progress bar disappears

the program has completed searching the grid points. At this point the data can be

saved by going to “File− >Save”.
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Figure A.1: The interface of the Chebyshev approximation program. The program
takes several limited inputs then searches over the launch dates and
arrival dates to find trajectories with low ∆V costs.

Figure A.2: Message window that displays messages to the user. The message win-
dow should indicate the number of processors/cores being utilized by
the program.
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Figure A.3: Trajectory listing that displays pertinent information on the computed
trajectories. The trajectory listing shows the launch date, arrival date,
flight time, and ∆V cost. The trajectory listing is sortable by clicking
on the appropriate heading.

Figure A.4: Red progress bar indicates that less than half of the grid points have
been searched.
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Figure A.5: Yellow indicates that less than three quarters of the grid points have
been searched.

Figure A.6: Green indicates that over three quarters of the grid points have been
searched.
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APPENDIX B

Chebyshev to Matlab Conversion

To convert the data generated by the ‘Chebyshev Approximation’ into a usable

Matlab data file requires the ‘ChebyshevToMat’ program located in the same folder

as ‘Chebyshev Approximation’ program.

The first step is to launch the ‘ChebyshevToMat’ program. The program inter-

face will look like Fig. B.1. In Appendix A a save file was created that stored the

relevant trajectories generated by the ‘Chebyshev Approximation’ program. Now

go to File− >Open and load the save file from Appendix A. Once the file is loaded

the interface will look like Fig. B.2. Now select the ‘Cost’ field to sort the trajecto-

ries by the ∆V . With the save file loaded and sorted the data can be exported into

a Matlab file. To do this simply highlight the trajectories that need to be exported.

This is done by selected a trajectory then holding shift and the up or down arrows.

Another method is to select a trajectory hold the mouse down while dragging the

mouse over the trajectories of interest, see Fig. B.3.

Once the trajectories that need to be exported are selected press the ‘Visualize’

button. A file called ‘Report.m’ will have been created on the hard drive. This

file contains the estimated acceleration profile for the trajectories. This file will be
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Figure B.1: Initial interface to ChebyshevToMat program. Interface displays and
allows sorting of generated trajectories.

Figure B.2: Interface with Chebyshev approximated trajectories loaded. Each in-
stance represents a unique trajectory.
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needed to make the trajectories feasible. Now go to File− >Quit to terminate the

program.

Figure B.3: Chebyshev Trajectories that have been sorted and selected. They are
now ready for exporting which will allow them to be made into feasible
trajectories.
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APPENDIX C

Matlab Program to Generate Feasible
Trajectories

Previously, a C++ program was used to create the ‘Report.m’ file which contains

the acceleration profile for the selected trajectories. The ‘Report.m’ needs to be

copied to the ‘FeasibleTraj’ directory. The directory already contains a ‘Report.m’

file.

Now open up ‘MainFile.m’ in Matlab. ‘MainFile.m’ is a Matlab program that

generates a set of feasible trajectories for three thrusters, the NEXT, NSTAR, and

BPT-4000. The program generates the feasible trajectories by using the Chebyshev

trajectories as an initial guess then incorporating the power system model and

constraints into the problem.

Near the top of the file under the %Modify These comment are 7 parameters

that determine the trajectory.

dutycycle is the faction of time that the thruster is on per each thrust period.

LV is the identification number of the launch vehicle. An integer value corre-

sponds to a particular launch vehicle, see ‘LaunchVehicle.m’ for the list of available

launch vehicles and the ID to name correspondence.

NumEngines is the number of thrusters that can be used by the spacecraft.
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Trajnum is the identification number of the Chebyshev trajectory that is used

as an initial guess. The ID value is used to select the appropriate trajectory from

‘Report.m’. The first trajectory exported by the program in Appendix B corre-

sponds to the first ID in ‘Report.m’.

PMIN is the lower bound on the power trade in kilowatts.

PMAX is the upper bound on the power trade in kilowatts.

PowerSystem is the type of power system being used by the spacecraft. 0

corresponds to a thrust limited power system. 1 is a constant power source. 2 is a

solar array based power source.

Once the appropriate values have been selected simply press run. The current

default values and ‘Report.m’ file will produce a set of feasible trajectories and

plots.
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APPENDIX D

NSTAR, NEXT, and BPT-4000 Parameterization

D.1 Thruster Model

The thruster model used here is similar to the model used in references [19, 41,

42]. A fourth order polynomial is used to model the thrust and mass flow rate as

a function of the throttle, φ. The throttle range is −1 ≤ φ ≤ 1. The mass flow

rate parameterization is

ṁ [mg/s] =
4
∑

i=0

Ciφ
i (D.1)

The thrust is not modeled directly, instead one half the thrust squared is parame-

terized.

0.5T 2 [N ∗ N ] =
4
∑

i=0

Ciφ
i (D.2)

Unlike the thrust and mass flow rate parameterization the power is a linear function

of the throttle. The power used is given by

P [kW ] =
Pmax − Pmin

2
(φ+ 1) + Pmin (D.3)

The coefficients used to parameterize the NSTAR, NEXT, and BPT-4000 thruster

are given in Table D.1 and Table D.3. The coefficients are derived from references

[19, 41, 42].
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Figure D.1: The thrust for the NSTAR, NEXT, and BPT-4000 thrusters.
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Figure D.2: The mass flow rate as function of the throttle parameter.
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Figure D.3: The power utilized as a function of the throttle.



124

Table D.1: Mass flow rate parameterization coefficients
Thruster Note C0 C1 C2 C3 C4

NSTAR Q-mod -1.93 -1.29 0.23 0.25 -0.42
NEXT High specific impulse -2.92 -2.57 -1.68 0.70 0.74

BPT-4000 -7.50 -3.37 -2.01 1.26 -0.02

Table D.2: Thrust constraint parameterization coefficients

Thruster Note C0 C1 C2 C3 C4

NSTAR Q-mod 0.00162 0.00234 0.00050 -0.00028 0.00013
NEXT High specific impulse 0.00749 0.01372 0.00994 0.00036 -0.00325

BPT-4000 0.00952 0.01143 0.00660 0.00051 -0.00115

Table D.3: Minimum and maximum power for various thrusters
Thruster Note Pmin (kW ) Pmax (kW )

NSTAR Q-mod 0.525 2.6
NEXT High specific impulse 0.620 7.3

BPT-4000 1.0 4.5



BIBLIOGRAPHY

125



126

BIBLIOGRAPHY

[1] Monika Auweter-Kurtz. Optimization of electric thrusters for primary propul-
sion. In 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Ex-
hibit, number 2001-3347. AIAA, July 2001.

[2] John T. Betts. Survey of numerical methods for trajectory optimization. Jour-
nal of Guidance, Control, and Dynamics, 21(2):193–207, 1998.

[3] John R. Brophy. Ion propulsion system design for the comet nucleus sample re-
turn mission. In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
and Exhibit, number AIAA 200-3414, 2000.

[4] John R. Brophy. Nasa’s deep space 1 ion engine. Review of Scientific Instru-
ments, 73(2):1071–1078, February 2002.

[5] John R. Brophy and Muriel Noca. Electric propulsion for solar system explo-
ration. Journal of Propulsion and Power, 14(5):700–707, September-October
1998.

[6] John R. Brophy, Marc D. Rayman, and Betina Pavri. Dawn: An ion-propelled
journey to the beginning of the solar system. In 2008 IEEE Aerospace Confer-
ence Digest. IEEE, 2008.

[7] Arthur E. Bryson and Yu-Chi Ho. Applied Optimal Control. Hemisphere Pub-
lishing Corp., 1975.

[8] Lorenzo Casalino and Guido Colasurdo. Optimization of variable-specific-
impulse interplanetary trajectories. Journal of Guidance, Control, and Dy-
namics, 27(4):678–684, 2004.

[9] Lorenzo Casalino and Guido Colasurdo. Trade-off between payload and trip-
time for ep interplanetary trajectories. Number AIAA Paper 2004-3805, July
2004.

[10] John L. Crassidis and John L. Junkins. Optimal Estimation of Dynamic Sys-
tems. Applied Mathematic and nonlinear science. Chapman and Hall, 2004.



127

[11] Michael L. Cupples and Shaun E. Green. Solar electric and chemical propul-
sion for a titan mission. Journal of Spacecraft and Rockets, 43(5):1077–1083,
September-October 2006.

[12] J. M. A. Danby. Fundamentals of Celestial Mechanics. Willmann-Bell, 1988.

[13] Douglas I. Fiehler, Ryan Dougherty, and David Manzell. Electric propul-
sion system modeling for the proposed prometheus 1 mission. In 41st
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2005.

[14] Douglas I. Fiehler and Ralph L. McNutt Jr. Mission design for the innova-
tive interstellar explorer vision mission. Journal of Spacecraft and Rockets,
43(6):1239–1247, November-December 2006.

[15] D. Milligan D. Gestal and O Camino. Smart-1 electric propulsion: An oper-
ational perspective. In SpaceOps 2006 Conference, number 2006-5767. AIAA,
2006.

[16] Philip E. Gill, Walter Murray, and Michael A. Saunders. Snopt: An sqp al-
gorithm for large-scale constrained optimization. SIAM Review, 47(1):99–131,
2005.

[17] Dan M. Goebel and Ira Katz. Fundamental of Electric Propulsion: Ion and
Hall Thrusters. JPL SPACE SCIENCE AND TECHNOLOGY SERIES. John
Wiley and Sons, 2008.

[18] Curt A. Henry. An introduction to the design of the cassini spacecraft. Space
Science Reviews, 104(1-4):129–153, July 2002.

[19] Richard R. Hofer, Thomas M. Randolph, David Y. Oh, and John Steven Sny-
der. Evaluation of a 4.5 kw commercial hall thruster system for nasa science
missions. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, number AIAA 2006-4469, 2006.

[20] Dario Izzo. Lambert’s problem for exponential sinusoids. Journal of Guidance,
Control, and Dynamics, 29(5):1242–1245, 2006.

[21] David H. Jacobson. Differential dynamic programming methods for solving
bang-bang control problems. IEEE Transactions on Automatic Control, AC-
13(6):661–675, December 1968.

[22] David H. Jacobson. New second-order and first-order algorithms for determin-
ing optimal control: A differential dynamic programming approach. Journal
of Optimization Theory and Applications, 2(6):411–440, 1968.

[23] Robert G. Jahn. Physics of Electric Propulsion. Dover Publications, Inc.,
2006.



128

[24] Carl G Sauer Jr. Optimization of multiple target electric propulsion trajecto-
ries. Number AIAA-1973-205. AIAA, January 1973.

[25] Craig A Kluever. Heliospheric boundary exploration using ion propulsion
spacecraft. Journal of Spacecraft and Rockets, 34(3):365–371, May-June 1997.

[26] Craig A Kluever and Kun-Rong Chang. Electric-propulsion spacecraft opti-
mization for lunar missions. Journal of Spacecraft and Rockets, 33(2):235–239,
1996.

[27] Christophe R. Koppel. The smart-1 hall effect thruster around the moon: In
flight experience. In Presented at the 29th International Electric Propulsion
Conference, 2005.

[28] Hitoshi Kuninaka, Kazutaka Nishiyama, Ikko Funaki, Tetsuya Yamada, Yukio
Shimizu, and Jun’ichiro Kawaguchi. Asteroid rendezvous of hayabusa explorer
using microwave discharge ion engines. In 29th International Electric Propul-
sion Conference, number IEPC-2005-10, 2005.

[29] Hitoshi Kuninaka, Kazutaka Nishiyama, Ikko Funaki, Tetsuya Yamada, Yukio
Shimizu, and Jun’ichiro Kawaguchi. Powered flight of electron cyclotron res-
onance ion engines on hayabusa explorer. Journal of Propulsion and Power,
23(3):544–551, May-June 2007.

[30] Hitoshi Kuninaka, Kazutaka Nishiyama, Yukio Shimizu, Tetsuya Yamada, Ikko
Funaki, and Satoshi Hosoda. Re-ignition of microwave discharge ion engines
on hayabusa for homeward journey. In 30th International Electric Propulsion
Conference, number IEPC-2007-9, 2007.

[31] Li Liao and Christine A. Shoemaker. Advantages of differential dynamic pro-
gramming over newton”s method for discrete-time optimal control problems.
Technical report, Ithaca, NY, USA, 1992.

[32] Guido Colasurdo Lorenzo Casalino and Dario Pastrone. Optimal low-thrust
escape trajectories using gravity assist. Journal of Guidance, Control, and
Dynamics, 22(5):637–642, 1999.

[33] M. G. Marcucci and J. E. Polk. Nstar xenon ion thruster on deep space 1:
Ground and flight tests. Review of Scientific Instruments, 71(3):1389–1400,
March 2000.

[34] Jean Pierre Marec. Optimal Space Trajectories, pages 15–17. Elsevier Scientific
Pub. Co. New York, 1979.

[35] T. Troy McConaghy. GALLOP Version 4.5 User’s Guide. Purdue University,
West Lafayette, Indiana, September 2005.



129

[36] T. Troy McConaghy, Theresa J. Debban, Anastassios E. Petropoulos, and
James M. Longuski. Design and optimization of low-thrust trajectories with
gravity assists. Journal of Spacecraft and Rockets, 40(3):380–387, 2003.

[37] W G Melbourne and Carl G Sauer Jr. Optimum interplanetary rendezvous
with power-limited vehicles. AIAA Journal, 1(1):54–60, 1963.

[38] D. M. Murray and S. J. Yakowitz. Differential dynamic programming and new-
ton’s method for discrete optimal control problems. Journal of Optimization
Theory and Applications, 43(3):395–414, July 1984.

[39] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Sci-
ence+Business Media, Inc. New York, 1999.

[40] Cesar Ocampo. Finite burn maneuver modeling for a generalized spacecraft
trajectory designa and optimization system. Annuls New York Academy of
Sciences, pages 210–233, 2004.

[41] David Y. Oh. Evaluation of solar electric propulsion technologies for discovery-
class missions. Journal of Spacecraft and Rockets, 44(2):399–411, March-April
2007.

[42] David Y. Oh and Dan M. Goebel. Performance evaluation of an ex-
panded range xips ion thruster system for nasa science missions. In 42nd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, number
AIAA 2006-4466. AIAA, 2006.

[43] Prashant Patel, Daniel Scheeres, and Alec Gallimore. Maximizing payload
mass fractions of spacecraft for interplanetary electric propulsion missions.
Journal of Spacecraft and Rockets, 43(4):822–827, 2006.

[44] Prashant Patel, Daniel Scheeres, Alec Gallimore, and Thomas Zurbuchen. Au-
tomating trade studies for electric propulsion mission studies. Number AAS
06-152, January 2006.

[45] Prashant Patel, Daniel Scheeres, and Thomas Zurbuchen. Spacecraft trajecto-
ries a shape based approach: Analysis and optimization. Number AAS 05-130,
January 2005.

[46] Michael J. Patterson and Scott W. Benson. Next ion propulsion system de-
velopment status and performance. In 43rd AIAA/ASME/SAE/ASEE Joint
Propulsion Conference and Exhibit, 2007.

[47] Anastassios Petropoulos, Theresa Kowalkowski, Daniel Parcher, Paul Fin-
layson, Ed Rinderle, Matthew Vavrina, Jon Sims, Ryan Russell, Try Lam,
Powtawche Williams, Gregory Whiffen, Nathan Strange, Jennie Johannsen,
Chen-Wan Yen, Carl Sauer, Seungwon Lee, and Steven Williams. Response to
the first act competition on global trajectory optimisation. Pasadena, CA : Jet



130

Propulsion Laboratory, National Aeronautics and Space Administration, 2006,
February 2006.

[48] Anastassios Petropoulos and James Longuski. Shape-based algorithm for the
automated design of low-thrust, gravity assist trajectories. Journal of Space-
craft and Rockets, 41(5):787–796, 2004.

[49] Anastassios E. Petropoulos and Jon A. Sims. A reveiw of some exact solutions
to the planer equations of motion of a thrusting spacecraft. 2002.

[50] Anastassios Evangelos Petropoulos. A Shape-Based Approach to Automated,
Low-Thrust Gravity-Assist Trajectory Design. PhD thesis, Purdue University,
2001.

[51] Tara Polsgrove, Larry Kos, and Randall Hopkins. Comparison of performace
predictions for new low-thrust trajectory tools. Number AIAA 2006-6742, Au-
gust 2006.

[52] Marc D. Rayman. The deep space 1 extended mission: Challanges in prepar-
ing for an encounter with comet borrelly. Acta Astronautica, 51(1-9):507–516,
2002.

[53] Marc D. Rayman and Steven N. Williams. Design of the first interplanetary
solar electric propulsion mission. Journal of Spacecraft and Rockets, 39(4):589–
595, 2002.

[54] Ryan Russell. Primer vector theory applied to global low-thrust trade stud-
ies. Journal of Guidance, Control, and Dynamics, 30(2):460–472, March-April
2007.

[55] Jon A. Sims, Paul A. Finlayson, Edward A. Rinderle, Matthew A. Vavrina,
and Theresa D. Kowalkowski. Implementation of a low-thrust trajectory opti-
mization algorithm for preliminary design. Number AIAA 2006-6746, August
2006.

[56] Gilbert Strang. Linear Algebra and its Applications. Harcourt College Pub-
lishing, Orlando FL, 1998.

[57] David A Vallado. Fundamentals of Astrodynamics and Applications. Micro-
cosm, Inc, 2 edition, May 2001.

[58] Eric W. Weisstein. Chebyshev polynomial of the first kind, May 2008.

[59] Greg Whiffen and Jon Sims. Application of a novel optimal control algorithm
to low-thrust trajectory optimization. Number AAS 01-209, February 2001.

[60] Greg Whiffen and Jon Sims. Application of the sdc optimal control algorithm
to low-thrust escape and capture trajectory optimization. Number AAS 02-
208, January 2002.



131

[61] Greg J. Whiffen. Static/dynamic control for optimizing a useful objective.
Number Patent 6496741, December 2002.

[62] Greg J. Whiffen. Mystic: Implementation of the static dynamic optimal con-
trol algorithm for high-fidelity, low-thrust trajectory design. In AIAA/AAS
Astrodynamics Specialist Conference and Exhibit, number 2006-6741. AIAA,
August 2006.

[63] Byoungsam Woo and Victoria L. Coverstone. Application of solar electric
propulsion to a comet surface sample return mission. Journal of Spacecraft
and Rockets, 43(6):1225–1230, November-December 2006.

[64] C Yam, T McConaghy, K Chen, and J Longuski. Preliminary design of nuclear
electric propulsion missions to the outer planets. Number AIAA Paper 2004-
5393, August 2004.

[65] Thomas Zurbuchen, Prashant Patel, Len Fisk, G. Zank, R. Malhotra, Herb
Funsten, R. A. Mewaldt, and NASA Interstellar Probe Vision Mission Team.
NASA Space Science Vision Missions, volume 224 of Progress in Astronautics
and Aeronautics, chapter 5, pages 155–190. AIAA, 2008.

[66] Thomas Zurbuchen, Prashant Patel, Alec Gallimore, Daniel Scheeres, N. Mur-
phey, G. Zank, R. Malhotra, Herb Funsten, and NASA Interstellar Probe Vi-
sion Mission Team. Interstellar probe: Breakthrough science enabled by nu-
clear propulsion. Space Technology: Space Engineering, Telecommunication,
Systems Engineering and Control, 25(3-4), 2005.


