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CHAPTER I

Introduction

Imaging systems are often evaluated based on the spatial resolution properties of recon-

structed images. Systems with highly blurred spatial resolution can obscure features of in-

terest to the viewer. Systems with extremely sharp spatial resolution give the viewer access

to much detail, but may have too much noise. Many imaging systems are approximately

shift-invariant; they exhibit the same spatial resolutionproperties in all regions of the re-

sulting image. Images resulting from these systems can be thought of as the convolution

between an impulse response and the true image. Physical aspects of positron emission

tomography (PET) and computed tomography (CT) systems however, make them shift-

variant. These imaging systems have spatial resolution properties that change through

different parts of the resulting image. For example, fan-beam geometries for CT concen-

trate more rays at the edges of the image which result in sharper spatial resolution in that

region. Crystal penetration effects in PET also introduce non-uniformities [29]. Spatial

resolution variations can also result from the properties of the estimator used to reconstruct

images. Estimators that use the shift-variant statistics of an image often have shift-variant

spatial resolution properties.

Initial work on tomographic image reconstruction modeled tomographic systems as

Radon transforms. This methodology assumes that data measurements consist of line
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integrals through the object. Using this system model, the reconstruction problem is re-

duced to inverting the Radon transform and can be solved by very quickly by filtered back

projection (FBP). However actual tomographic systems contain intricacies that are not

captured in the Radon transform. For example, the crystal penetration effects mentioned

previously in PET systems can cause artifacts when regular FBP is used for reconstruc-

tion. Unfortunately taking these inaccuracies into consideration results in a reconstruction

problem far more complicated than Radon transform inversion. Closed form solutions

for such problems usually do not exist, or are very difficult to compute. There have

been several attempts at analytical methods that compensate for space-variant physical

effects [6,30,37,62,73,75] but these generally ignore noise models. As a result, most re-

construction algorithms that use accurate system models are iterative. Iterative algorithms

also have better spatial resolution [74] and noise properties [8] because they can model the

measurement statistics. This can aid in lesion detection [48].

The spatial resolution of reconstructed images has a great impact on any tasks per-

formed on those images. Anisotropic spatial resolution candistort the shape of features

in the reconstructed image. This affects all tasks that involve the extraction or detection

of specific shapes. Non-uniform resolution can distort the amplitude of reconstructed im-

ages in certain regions and complicate quantitation tasks.Some [47] argue that forcing

isotropic resolution can hurt lesion detection and quantitation, though we believe the im-

portance of uniform and isotropic spatial resolution requires further study. Furthermore,

the techniques developed in this thesis can be used for otheruser defined spatial resolu-

tions. We believe that the spatial resolution of the reconstructed image should be within

the users control, and not an arbitrary byproduct of the estimator.

For iterative algorithms, Maximum likelihood (ML) reconstruction algorithms are often

used for PET systems. In CT, due to the higher number of photon counts, weighted least
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squares (WLS) can be used, except perhaps at very low x-ray dose. Final converged solu-

tions from ML and WLS reconstruction are often extremely noisy due to the ill conditioned

nature of tomography. One can stop the iterative algorithm before convergence and before

images become too noisy; however this solution does not achieve uniform and isotropic

spatial resolution because resolution isotropy and uniformity can change with successive

iterations [36,72,76]. Alternatively, one can run the iterative algorithm to completion and

post-filter the resulting noise, however, this often requires a large number of iterations [61].

In this work we focus on using a roughness penalty in the iterative algorithm. Penalty

functions lead to faster convergence of iterative algorithms. One can also choose penalty

functions for different goals, including preserving edges[5, 27, 31, 34, 43], incorporating

anatomical information [21, 33], and even lesion detection[49, 50]. Using penalty func-

tions is advantageous because it allows us to predict the resolution and noise properties of

the estimator and design the penalty accordingly [4,16,17,23,51,52,68,77]. Unfortunately,

for penalized likelihood (PL) reconstruction, interactions between conventional regulariz-

ers (which are essentially just high-pass filters) and the Poisson log-likelihood function

lead to nonuniform and anisotropic resolution in the resulting image [22, 23]. For Pe-

nalized WLS (PWLS), selecting weightings that match the implicit weightings associated

with PL reconstruction result in good noise properties. In this case interactions between

the weightings and conventional regularizers also lead to nonuniform and anisotropic res-

olution in the resulting image. The goal of this work is to design regularizers which reduce

noise, lead to faster convergence, and preserve uniform andisotropic spatial resolution.

Much previous work on regularization design focuses on matrix-based approaches to

fit the local impulse response of the estimator to a target impulse response. A shift-variant

regularizer based on the aggregate certainty of measurement rays intersecting each pixel

was developed that yielded uniform but anisotropic spatialresolution [23]. Stayman pa-
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rameterized the quadratic regularizer to produce uniform and isotropic spatial resolution

[65] and generalized regularization design to other non-Poisson noise models [67]. [40]

presents a regularization design method for uniform and isotropic spatial resolution which

is not based on an explicit target point spread function (PSF), but rather focuses on cir-

cular symmetry and uniformity. Fessler proposed an analytical approach to regularization

design for 2D parallel-beam emission reconstruction that uses continuous space analogs to

simplify the regularization design problem [18] which is the basis for much of this work.

Qi and Leahy in [52] also proposed a regularization design method that provides a uniform

peak amplitude of the local impulse response function for 3DPET, but that approach does

not ensure isotropic resolution properties [52]. We have also proposed a solution for 3D

PET that attempts to achieve uniformity and isotropy [58].

The main contributions of this work are:

• An analytical solution to regularization design problems for 2D parallel beam geome-

tries is discussed in [18]. This work extends that analysis to fan-beam geometries by

looking at a change of coordinate space for the weightings involved [59,60];

• A computationally efficient approach [58] (but not a completely analytical solution)

to 3D regularization design problems based on the work of [18,65];

• A slower but more accurate regularization design approach that avoids the use of

approximations in calculating the local frequency response of the regularizer;

• Several practical constraints on regularization design coefficients that improve the

conditioning of the reconstruction problem and reduce artifacts in reconstructed im-

ages;

• A combined approach of 2D regularization and z-dimension post-reconstruction de-

noising to capture the resolution and computational efficient advantages of 2D regu-
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larization for use in 3D geometries. We also characterize the spatial resolution and

noise properties of this approach and investigate the performance of edge preserving

regularization and denoising;

This thesis first describes the statistical model considered in Chapter§II. It then an-

alyzes the local impulse response of the imaging system (which depends on our regular-

ization design) in§2.5. We will formulate a frequency domain expression for theLIR of

our iterative reconstruction using our regularizer for the2D case in§3.2 and the 3D case

in §3.3. Our target spatial resolution is also discussed in§3.2 and§3.3. Sections§4.1 and

§4.2 discuss implementation details for computing regularization coefficients for the 2D

and 3D case respectively. The results of these methods are presented in chapter§V. Chap-

ter§VI presents reconstruction with 2D regularization and z-dimension iterative denoising

which hopes to capture the isotropy and computational efficiency of 2D regularization and

adapt it to 3D systems. Chapter§VII concludes the thesis and presents future work.



CHAPTER II

Background

2.1 X-ray Computed Tomography

X-ray systems consist of a source that emits 30-160keV x-rayphotons that pass through

an object being imaged. The photons either pass through the object and strike the detector,

or interact with a part of the object and are absorbed or scatter (they may still strike the

detector elsewhere, but this contributes to system noise).In the one dimensional case we

consider an X-ray point source with all photons traveling ina line. The mean number of

photons that travel a distancek without interacting with the object is:

E[N(k)] = N(0)e−
R k

0
µ(k′)dk′

.

Here, N(0) are the number of photons at x=0 (the number of total photons transmitted), and

µ is the linear attenuation coefficient for the media that the x-ray photons travel through

(usually air and the object being imaged). CT systems consistof an X-ray source (often

modeled as a point source), and an array of detectors. The patient is placed between the

X-ray source and the array of detectors, and then the system is rotated over some trajectory

(usually circular or helical but other orbits have been investigated) to capture projection

data. For CT systems, we use the following model for the measurements:

(2.1) E[Yi] =

∫

ξ

Ii(ξ)e
−

R

Li
µ(x,y,z,ξ)dl′

dξ + ri.

6
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The subscripti denotes theith measurement.ξ is the photon energy. The inner integral

is no longer a function of depthk, but now a line integral corresponding to each measure-

ment. The number of photonsN(0) has been replaced withIi(ξ), which is the intensity

of the ith measurement incorporating the initial spectrum and the gain of the detector.ri

denotes background contributions coming from sources suchas scatter. The line integral
∫

Li
µ(x, y, z, ξ)dl′ depends on the specific geometry of the imaging system but often ap-

proximates the Radon transform, a fundamental aspect of tomographic systems that will

be discussed in§2.3.1.

Most CT systems use some sort of fan-beam geometry. An exampleof fan-beam geom-

etry with a flat detector is pictured in Fig. 2.1. Fan beam geometries can induce resolution

non-uniformities [28]. The spread of rays as they fan out from the source to the detec-

tor can magnify objects that are close to the detector. This work is focused on correcting

non-uniformities and anisotropy caused by the statisticalweightings used in reconstruc-

tion and the effects of the fan-beam geometry. This work can be extended to correct other

shift-variant aspects of the system by using methods from [67].

Array of Detectors

X−ray Source

Figure 2.1: Diagram of Fan Beam 2D CT system.
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2.2 Positron Emission Tomography

PET systems image the distribution of radioactive tracers in an object. In clinical sit-

uations, this is a human being with radioactive tracers injected inside of them. Positron

decay creates 511keV photons that are emitted in anti-parallel directions. The patient is

surrounded by a ring (2D systems) or a cylinder (3D systems) of detectors. Fig. 2.2 shows

a diagram of a PET imaging system.

When a photon strikes a detector, the event is recorded as a detection. Simultaneous

detections (or detections close enough in time to be considered simultaneous) are recorded

as a coincidence. The number of coincidences between a pair of detectors is an indication

of the amount of positron decay that occurred somewhere on the line between the 2 detec-

tors. With some randomness, this is a measure of the line integral through that portion of

the object. All line integrals along a certain angle are referred to as a projection. It should

be noted that the raw sinogram data collected by a PET scannerindicates the specific loca-

tion of radioactive tracers inside a patient during the scanduration. However, the specific

location of radiotracers change over time and what is actually of interest is the distribution

of radioactive tracers inside the patient. Inherent in every PET reconstruction problem is

the estimation of the distribution of radio-tracers from the sinogram recorded during the

time of the scan.

Photons used in PET have much higher photon energy compared to that of CT. Lower

photon energies lead to better contrast between tissue types. This is important for CT

because in CT, it is the attenuation of the tissues that is measured. However PET systems

measure the distribution of radioactive tracers and the attenuation of other tissues is an

obstacle to reconstruction. Mathematically, the ideal model for the mean of PET data we
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use is:

E[Yi] = ci

∫

Li

f(x, y)dl + ri.

f(x, y) is the object of interest, andri are background events due to scatter and other ef-

fects. The line integral is taken for each line of response (LOR), which is the line between

a pair of detectors. The specifics of the line integral are dependent on the physical geome-

tries of the scanner, but like in CT, is usually based on the Radon transform§2.3.1 and the

detector response.ci accounts for the affects of attenuation in the body and represents the

probability that the photons of a coincidence will not be blocked by the attenuation of the

object. The probability that the coincidence will be detected is the product of probabilities

of each photon surviving the attenuation of the object,

Pi = Pi,1Pi,2

= e
R

Li,1
µ(x,y,z)dl

e
R

Li,2
µ(x,y,z)dl

.

Here,µ represents the attenuation of the body, which is a function of space, and the photon

energyξ. The two line integrals represent the paths of each photon. Since photons are

emitted in anti-parallel directions, the two line integrals can be combined,

Pi = e
R

Li
µ(x,y,z)dl

,

which is just the line integral through the body. The attenuation can be measured accu-

rately using a CT scan, which is part of the reason for PET-CT systems.

3D PET systems can be thought of as a stack of 2D systems that image multiple slices

through an object. In 3D systems cross-plane coincidences,those that occur between de-

tectors on different slices, can be detected. Some 3D PET systems include septa, which

are physical barriers that block cross-plane coincidences, in order to reduce scatter. Us-

ing septa decreases the sensitivity of the imaging system due to the blocked coincidences,
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Figure 2.2: View of one slice of a 3D PET system

however septa also simplify the reconstruction process. Removing septa from PET sys-

tems increase their sensitivity substantially, e.g. by a factor of 7.04 [9]. This is caused

by an increased number of lines of response (including cross-plane coincidences), the

elimination of septa-shadowing effect (in some systems, septa also block some in-plane

coincidences), and about a factor of 3 increase in scatter.

Various factors contribute to the shift-variant aspect of PET systems. Crystal penetra-

tion effects as well as the angles that photons strike detectors affect the aperture functions

for PET detectors [56], resulting in non-uniform spatial resolution. The existence and ge-

ometry of septa can also cause changes in spatial resolution[26]. This work is designed to

correct non-uniformities and anisotropy caused by the reconstruction process, not the sys-

tem itself. To compensate for shift-invariant systems, onecan apply the methods of [67].

2.3 Tomography

2.3.1 The Radon Transform

The Radon transform [53] is a set of line integrals through an objectf(x, y) set at angle

φ and radiusr from the center. Mathematically, it is expressed as:

gφ(r) =

∫

x

∫

y

f(x, y)δ(x cos(φ) +y sin(φ)−r)dxdy.
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gφ(·) is referred to as a projection at angleφ. Data collected from parallel-beam CT sys-

tems and PET systems are naturally organized into projections. For parallel-beam CT

systems, each angle where data is collected as the CT system rotates around the object

being imaged creates a projection. For PET systems, LORs can be grouped by angle and

thus form a projection. A set of projections is called a sinogram because Radon transforms

of point objects look like sinusoids. A sample object and thesinogram of that object are

shown in Fig. 2.3. The nature of the Radon transform leads to a simple way to reconstruct

data from sinograms.

Range: [0 2000]

 

 

1 512

1

512    0

2000

Range: [0 4.57148]

1 888

1

984

Figure 2.3: Left: A sample phantom., Right: sinogram of thatphantom.

2.3.2 The Fourier Slice Theorem

The Fourier Slice Theorem states that 1D Fourier transform of gφ(r) is the 2D Fourier

transform of the object evaluated at angleφ. Mathematically,

Gφ(ρ) = F (ρ,Φ)|Φ=φ,

whereΦ, ρ are frequency domain polar coordinates andG andF are Fourier transforms of

gφ(r) andf(x, y) respectively. Consequently, we can also findgφ(r) by taking the inverse

Fourier transform of a 1D slice throughF , evaluated atφ.
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2.3.3 Backprojection-Filtering

One method of tomographic reconstruction is Backprojection-Filtering (BPF). Back-

projection operators “smear” projection data back across the image. Mathematically,

(2.2) bφ(x, y) =

∫ ∞

−∞
gφ(r)δ(x cosφ+ y sinφ− r)dr.

The laminogram is the integral (or in real discrete systems,a sum) of all back-projections

(2.3) fb(x, y) =

∫ π

0

bφ(x, y)dφ.

One can show that the laminogram is actually the image convolved with a 1
r

blurring

function: Plugging (2.2) into (2.3)

fb(x, y) =

∫ π

0

bφ(x, y)dφ

=

∫ π

0

∫ ∞

−∞
gφ(r)δ(x cosφ+ y sinφ− r)drdφ.(2.4)

Using the Fourier slice theorem,

fb(x, y) =

∫ π

0

∫ ∞

−∞

∫ ∞

−∞
F (ρ, φ)ei2πρrdρδ(x cosφ+ y sinφ− r)drdφ

=

∫ π

0

∫ ∞

−∞
F (ρ, φ)ei2πρ(x cos φ+y sin φ)dρdφ.(2.5)

This is nearly the inverse Fourier transform in polar coordinates,

f(x, y) =

∫ 2π

0

∫ ∞

0

·ρdρdΦ

except thatr should be integrated from(0,∞) andφ should be integrated from(0, 2π),

and we need aρ scale factor. In polar coordinates,F (−ρ,Φ) = F (ρ,Φ+π), which means

the two limits of integration are equivalent. Dividing byρ:

(2.6) f(x, y) =

∫ 2π

0

∫ ∞

0

F (ρ, φ)

ρ
ei2πρ(x cos φ+y sin φ)dρdφ.
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Thus, the laminogram is the original image blurred by a1/ρ filter. Filtering the lamino-

gram with aρ filter can restore the original image. Real filters however, must be con-

structed with some frequency cutoff which will eliminate high frequency content in the

image. In practice we often use Filtered Backprojection (FBP)instead of BPF. In FBP

the order is reversed: filtering with a ramp filter first and then backprojecting the data.

Though FBP reconstruction is very quick and efficient, FBP assumes that PET and CT

systems behave like pure Radon transforms. Iterative reconstruction techniques allow for

more accurate system models. Iterative techniques also allow one to use the noise statistics

of the measurements in the estimation of the true image. Somehave argued that statisti-

cally based post-filters could be used for FBP, however this isproblematic because noise

statistics are rooted in the sinogram domain. Converting these statistics to the image do-

main, which would be necessary for a post-filter, is a difficult task.

2.4 Iterative Algorithms

2.4.1 Statistical Models

For iterative reconstruction, we discretize the continuous functions in the previous sec-

tions as follows. For CT, lety = (y1, ..., yM ) denote the vector of noisy sinogram mea-

surements recorded in an emission or transmission tomography imaging system. For sim-

plicity in the transmission tomography case, we consider the following mono-energetic

formulation for the mean of our data:

(2.7) ȳi = E[yi] = bie
−[Ax]i + ri.

For emission tomography we consider the model

(2.8) ȳi = E[yi] = ci[Ax]i + ri.

A is the system matrix,x = (x1, x2, ..., xN) is a discretized version of the object being

imaged, and[Ax]i =
∑N

j=1 aijxj. In PET, The coefficientsci denote attenuation coeffi-
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cients. In CT,bi denotes the blank scan.bi is analogous toIi(ξ) in (2.1) and gives us the

response of the system without any object attenuation present and quantifies the energy of

the spectrum and the detector gain.ri denotes random counts. In practice,ci, bi, andri

are determined by various supplementary measurements. This work treats those quantities

as predefined quantities and their estimation is not in the scope of this work. Note that all

expressions thus far in this section (2.7), (2.8), are expressed as means. The measurements

yi are random variables, and it is this randomness that we referto as noise, not the additive

randomsri.

The radio-tracers in PET systems, and the X-ray source in CT are modeled as emitting

photons randomly at a certain mean rate. Thus a Poisson modelfor the measurements

makes sense. In CT, while the X-ray source may be Poisson, the distribution of the mea-

surements is more complicated and a compound Poisson model is more accurate [12]. In

this thesis we assume a Poisson distribution and a mono-energetic source for simplicity.

In PET systems, positron decay is modeled as a Poisson process. All radio-tracers along a

specific LOR are summed to a specific measurement. This measurement is a Poisson pro-

cess as the sum of Poisson processes is also a Poisson process. Other noise models can be

used and justified and are discussed in [67]. These statistical models are extremely simple

and do not include many physical effects because the focus ofthis work is on correcting

non-uniformities and anisotropy caused by statistical weightings, not the system itself.

2.4.2 Maximum and Penalized Likelihood Estimation

Once a noise model has been selected, one can use a Maximum-Likelihood (ML) esti-

mator that picks the estimate which would maximize the probability of the measurements.

Mathematically, this is expressed as.

x̂ML = arg max
x

l(x,y).
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Assuming a Poisson distribution, the likelihood of PET and CTmeasurements is

l(x,y) =
∏

i

ȳi(x)yie−ȳi(x)

yi!

Maximizing the log of the likelihood (or log-likelihood) isequivalent and often easier than

maximizing the likelihood function itself. The corresponding log-likelihood function is

(2.9) L(x,y) = log l(x,y) =
∑

i

yi log ȳi(x)− ȳi(x).

Unfortunately, reconstructing images based purely on the likelihood function results in

extremely noisy images. As discussed in Chapter§I, there are several ways to reduce

noise, but this work focuses on using regularization. Adding regularization we switch

from ML reconstruction to Penalized Likelihood (PL) reconstruction where we maximize

the objective function

(2.10) Φ(x,y) = L(x,y)− ζR(x).

ζ is a user-selected factor that controls how much regularization affects the reconstructed

image.

For CT, The log-likelihoodL(x,y) is non-convex and non-quadratic, making the mini-

mization problem difficult and slow. One can use a second-order Taylor-series approxima-

tion to the log-likelihood resulting in a PWLS cost function [13,14]. PWLS is ill-suited for

PET reconstruction because PET involves much lower counts than CT, leading to a poor

Taylor series approximation. In PWLS for CT, we estimatex by minimizing the following

cost function:

Φ(x,y) , ||ℓ(y)−Ax||2W + ζR(x)(2.11)

x̂(y) = arg min
x

Φ(x,y),(2.12)
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whereℓ(y) , − ln(y−r

b
), R(x) is a regularizer that controls noise,ζ is a scalar that

determines the resolution-noise tradeoff, andW = diag{wi} is a weighting matrix.

The weighting matrixW is chosen to take advantage of the statistics of the data. In

general,L(y,x) =
∑

hi(yi, [Ax]i) and properties ofhi(·, ·) determineW [67]. For

transmission tomography, with the model in (2.7),wi = Var−1{li} ≈ yi. For emission

tomography, the plug-in weighting iswi = Var−1{yi} ≈ yi. For low count levels alterna-

tive weightings are preferable [35]. The regularization design methods in this paper apply

to other statistical models (such as compound Poisson) than(2.7) by simply changing the

weighting matrixW . In the next section§2.5, we will discuss local impulse responses

(LIR) for PL and QPWLS. Both estimation methods result in similar expressions for the

LIR whenwi is chosen as described here.

2.5 Local Impulse Response

For linear space-invariant systems, a global impulse response can be used to charac-

terize the system. However with non-linear estimators we must analyze the local impulse

response (LIR) to assess the uniformity and isotropy of the system. We use the following

definition of the LIR, in a slightly different form than [23] atpixel or voxelj as:

lj(x) = lim
ǫ→0

x̂(ȳ(x + ǫδj))− x̂(ȳ(x))

ǫ
(2.13)

whereδj is an impulse function centered at pixelj. This is the limit of the difference

between a reconstruction of the true image plus a small impulse perturbation, and a re-

construction of the true image without the perturbation, asthe magnitude of the impulse

approaches zero. Because we are trying to characterize the estimator, we use the mean

of the data (a quantity that is not available in practice, butcan be used in the analysis).

This equation is equivalent to taking the derivative of the estimator which can be broken
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up using the chain rule:

lj(x) = ∇x̂(ȳ(x))δj(2.14)

= ∇yx̂(y)
∣

∣

∣

y=ȳ(x)
∇xȳ(x)

∣

∣

∣

x=x
δj.(2.15)

To calculate∇yx̂(y)
∣

∣

∣

y=ȳ(x)
for the PL estimator, we can use the implicit function theorem

and the chain rule [23]. We know that at the maximum of the objective function, the

derivative of the objective function is zero,

∇[1,0]Φ(x̂(y),y) = 0,

where∇[1,0] = [∂/∂x̂1
, ..., ∂/∂x̂p

] is the row gradient operator with respect tox̂(y). If we

differentiate again,

∇[2,0]Φ(x̂(y),y)∇yx̂(y) +∇[1,1]Φ(x̂(y) = 0

∇yx̂(y) = [−∇[2,0]Φ(x̂(y),y)]−1∇[1,1]Φ(x̂(y).(2.16)

Here,∇[2,0] is the Hessian operator whose(j, k)th element is ∂
∂x̂j

∂x̂k

, and∇[1,1] is the

operator whose(j, i)th element is ∂
∂x̂j

∂yi

. Plugging (2.10) into (2.16),

(2.17) ∇yx̂(y) = [−∇[2,0]L(x̂(y),y) + R]−1∇[1,1]L(x̂(y),y),

whereR is the Hessian of the regularizerR(x). ∇[1,1]R(x) is 0 sinceR is not a function

of y. Using a Poisson noise model [54] and (2.8) for emission tomography [15,23],

−∇[2,0]L(x̂(y),y) = A′ diag

{

yi

ȳ2
i (x)

}

A

−∇[1,1]L(x̂(y),y) = A′ diag

{

1

ȳi(x)

}

∇xȳ(x)
∣

∣

∣

x=x
δj = Aδj.(2.18)

In practical implementation, we approximate the mean of thedata with a single realization,

ȳi(x) ≈ yi. Using this and combining (2.18), (2.17), and (2.15),

lj = lj(xtrue,R) = [A′WA + ζR]−1A′WAδj,(2.19)
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whereR is the Hessian of the regularizerR(x), andW = diag{1/yi}.

Using a Poisson noise model [55] and (2.7) for transmission tomography,

−∇[2,0]L(x̂(y),y) = A′ diag

{

(ȳi(x)− ri)(1−
riyi

ȳ2
i (x)

)

}

−∇[1,1]L(x̂(y),y) = A′ diag

{

1− ri

ȳi(x)

}

∇xȳ(x)
∣

∣

∣

x=x
δj = bie

[Ax]iAδj = (ȳi(x)− ri)Aδj.(2.20)

Approximating the mean of the data with a single realization, ȳi(x) ≈ yi, and combining

(2.20), (2.17), and (2.15) results in (2.19) withW = diag
{

(yi−ri)
2

yi

}

. If we ignoreri,

W = diag{yi}.

As mentioned earlier, for CT we often use PWLS estimators. For the cost function

(2.11), the PWLS estimator is linear inl and has the analytical solution̂x(y) = [A′WA+

ζR]−1A′Wℓ. This means that (2.13) can be evaluated for PWLS reconstruction to be

lj = [A′WA + ζR]−1A′WAδj. In PWLS, one often chooses the weighting matrixW

to be the inverse of the variance,Var−1{l} ≈ yi which is the same weighting matrix found

when the LIR of PL reconstruction for CT is analyzed. Thus, PWLSand PL reconstruction

for CT have similar resolution properties ifW is defined appropriately. This allows us

to use the same approach to regularization design for PL and PWLS estimators. Other

statistical models are discussed in [67].

As is evident from (2.19), the local impulse response depends on the regularizer through

its Hessian,R. We would like to designR such that the local impulse responselj matches

a target responsel0 at every pixelj. We could phrase this matrix optimization problem as:

(2.21) arg min
R

∑

j

∣

∣

∣

∣lj(xtrue,R)− l0
∣

∣

∣

∣ .

This matrix formulation of the design problem seems intractable, so we will turn to the

frequency domain to simplify the problem.
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2.6 Regularization

Most of our work focuses on quadratic regularization because quadratic regularizers

are approximately circulant and the resolution and variance can be analyzed and calculated

easily [20]. Some have argued that quadratic regularizers perform as well as several non-

quadratic regularizers for lesion detectability in emission tomography [45,46].

Quadratic regularizers are of the form

(2.22) R(x) =

p
∑

j=1

p
∑

k=1

wjkψ(xj − xk),

wherej is a columnized pixel index and a function ofn,m. For quadratic regularizers,

ψ(t) = t2

2
. Quadratic regularizers of this form have a simple matrix form

R(x) =
1

2
x′Rx =











∑p
l=1

1
2
(wlj + wjl), k = j

−wjk, k 6= j

In this thesis we assume that each voxelj has a local neighborhood whose differences are

being penalized indexed byl. wjk for pixel pairs outside the local neighborhood are0.

We use an alternate form for regularizers functionally equivalent but which has a better

connection to Fourier analysis,

(2.23) R(x) =
∑

n,m

L
∑

l=1

rj
l

1

2
|cl(n,m) ∗ ∗x(n,m)|2,

and

(2.24) cl(n,m) =
1

√

n2
l +m2

l

(δ(n,m)− δ(n− nl,m−ml)),

wheren,m are 2d coordinates for images. For the 3d case

(2.25) R(x) =
∑

n,m,z

L
∑

l=1

rj
l

1

2
|cl(n,m, z) ∗ ∗ ∗ x(n,m, z)|2,

and

(2.26) cl(n,m, z) =
1

√

||nl||
(δ(n,m, z)− δ(n− nl,m−ml, z − zl)),
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wherenl = (nl,ml, zl). Regularizers of this form can be converted to the form in (2.22)

by usingwjk =
rj
l

||nl|| .

For CT scanners, quadratic regularization can be undesirable because it over-smoothes

edges in the reconstructed images. Many forms of non-quadratic regularization have been

proposed [5,7,24,25,27,31,34,38,43]. Non-quadratic regularizers use a different form of

ψ for (2.22). A common penalty function for edge-preserving regularization is the Huber

penalty, which is quadratic for values oft < △ where△ is some user defined threshold.

Mathematically,

ψ(t) =











t2

2
, |t| < △

△(|t| − △) + △2

2
, |t| ≥ △

.

2.7 Summary

This chapter briefly reviews PET and CT systems. It discusses the Radon transform,

Fourier slice theorem, and the traditional way of reconstructing tomographic images, fil-

tered back-projection. Next it moves on to the statistical model used in this paper and

iterative reconstruction algorithms to obtain an expression for the LIR. Finally it discusses

regularizers, both quadratic and non-quadratic edge preserving regularization. Next, we

will discuss the Fourier analysis which is the basis of this work.



CHAPTER III

Frequency Domain Analysis of the Local Impulse Response

This section first reviews the use of discrete Fourier transforms for resolution analysis,

leading to a computationally intensive approach to regularization design. We then consider

continuous-space analogs that lead to simplified designs.

3.1 Discrete Fourier Analysis

In (2.19), the matrixA′WA is approximately locally circulant near a pixelj of interest

[10], andR can be designed to be locally circulant. LetQ denote an orthonormal discrete

Fourier transform matrix centered at pixelj. Fourier analysis of local impulse responses

can be complicated by complex exponentials caused by non-centered impulse functions.

This re-centering eliminates the complex exponentials.Q is sizeJ×J , whereJ represents

the total number of voxels in the image. For 2D systems,

(3.1) Qk,g =
1√
J
e−2πi( 1

N
[ω1,gnk−j ]+

1

M
[ω2,gmk−j ]).

For 3D systems,

(3.2) Qk,g =
1√
J
e−2πi( 1

N
[ω1,gnk−j ]+

1

M
[ω2,gmk−j ]+

1

Z
[ω3,gzk−j ]).

In these equations,w1, w2, andw3 are spatial frequency components which are a function

of a columnized frequency index g,n m and z are indexes into the image which are

21
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a function of the columnized pixel indexj, andN , M andZ are the total number of

pixels in each direction, andJ = NM for 2D systems andJ = NMZ for 3D systems.

nk−j = nk − nj,mk−j = mk −mj, zk−j = zk − zj, andj = MNzj + Nmj + nj, k =

MNzk +Nmk + nk.

Then we can factorA′WAδk ≈ Q′
Λ

jQδk for pixelsk nearj, whereΛj = diag
{

λj
g

}

and λj ,
√
JQA′WAδj, and Rδk ≈ Q′

Γ
jQδk for pixels k near j, whereΓ

j =

diag
{

γj
g

}

andγj ,
√
JQRδj [52], [10]. Then we can approximate the LIR in (2.19)

as:

lj(x) ≈ [Q′
Λ

jQ + ζQ′
Γ

jQ]−1Q′
Λ

jQδj(3.3)

= Q′
[

Λ
j

Λj + ζΓj

]

Qδj,(3.4)

where the matrices in the bracketed term are diagonal and thedivision operation is element-

wise on the diagonal. These approximations are accurate only for row and column indices

that are “sufficiently close” to voxelj. The terms in brackets in (3.4) correspond to the

local frequency response of our estimator. We would like to match these to the frequency

responseL0 of a target PSF (which will be discussed in§3.2.1 and§3.3.1) as closely as

possible, i.e., we want

(3.5) Lj ,
Λ

j

Λj + ζΓj ≈ L0.

Based on (3.5), one might consider a DFT formulation of the regularization design

using the following minimization approach:

(3.6) Γ̂
j
= arg min

Γ∈T

∣

∣

∣

∣

∣

∣

∣

∣

L0 − Λ
j

Λj + ζΓj

∣

∣

∣

∣

∣

∣

∣

∣

,

whereL0 is the frequency response ofl0 andT denotes the set of possible frequency

responses for the regularizer limited by its structure thatwill be enumerated in§3.2.1 and
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§3.3.1. Alternatively, as a preview to methods to come, we cancross multiply the terms in

(3.5) yielding the simpler design criterion:

(3.7) Γ̂
j
= arg min

Γ∈T
||L0(Λj + ζΓj)−Λ

j||,

which is similar to the formulation specified in [67]. BecauseΛ
j is the DFT ofA′WAδj,

calculatingΛj requires one forward projection and backward projection per voxel. Thus,

a regularization design based on (3.6) or (3.7) will be very slow.

3.2 2D Contiunous Space Analogs

Prior to [18], regularization design methods were based on discrete matrices. As shown

in Appendix A, the continuous-space analog ofΛ
j is the frequency responsew

j(Φ)
|ρ| , where

wj(Φ) is an expression that incorporates the Jacobian from the change of coordinates from

parallel-beam to fan-beam geometry, and weights fromW that correspond to rays that

intersect pixelj at angleΦ. Substituting this into (3.5) and using continuous space analogs

of Γ
j in frequency domain polar coordinates(ρ,Φ), whereρ represents radial frequency

and Φ represents angular frequency yields the following expression for the continuous

space analog ofLj

Lj(ρ,Φ) ≈
wj(Φ) 1

|ρ|

wj(Φ) 1
|ρ| + ζRj(ρ,Φ)

=
wj(Φ)

wj(Φ) + ζ|ρ|Rj(ρ,Φ)
.(3.8)

Here,Rj(ρ,Φ) is the local frequency response of the regularizer near pixel j. The contin-

uous space analog ofΛj simplifies (3.8) to provide a more efficient approach to regular-

ization design than (3.7), as detailed in§4.1 and§4.2.

3.2.1 Regularization Structure

Regularizers control roughness by penalizing differences between neighboring pixels.

Indexing the imagex as a 2D functionx(n,m), we define a differencing function for a
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regularizer that penalizes thelth direction as

(3.9) cl(n,m) =
1

√

n2
l +m2

l

(δ(n,m)− δ(n− nl,m−ml)),

where typically(nl,ml) ∈ {(0, 1), (1, 0), (1, 1), (−1, 1)}, corresponding to horizontal,

vertical, and diagonal differences. A conventional quadratic regularizer can then be ex-

pressed as

(3.10) R(x) =
∑

n,m

L
∑

l=1

1

2
|cl(n,m) ∗ ∗x(n,m)|2,

where∗∗ denotes 2D convolution. This conventional regularizer assigns the same weight

to the differences between each neighbor. For our proposed method, we make the regular-

izer spatially adaptive with the addition of weighting coefficientsrj
l as follows:

(3.11) R(x) =
∑

n,m

L
∑

l=1

rj
l

1

2
|cl(n,m) ∗ ∗x(n,m)|2,

wherej is the columnized pixel index which is a function of(n,m). The objective of

this paper is to design coefficients{rj
l }. To this end, we must analyze the local frequency

responseRj(ρ,Φ) of the HessianR of the space-variant regularizer (3.11).

Taking the Fourier transform of (3.9) yields:

|Cl(ω1, ω2)|2 =
1

n2
l +m2

l

|1− e−i(ω1nl+ω2ml)|2

=
1

n2
l +m2

l

(2− 2 cos(ω1nl + ω2ml)).(3.12)

One can think about achieving isotropy intuitively in polarcoordinates as eliminating an-

gular dependence. Therefore we convert (3.12) to polar frequency coordinates to simplify

the analysis. We use frequency and sampling relationships [41], ω1 = 2π∆xρ cos(Φ) and

ω2 = 2π∆yρ sin(Φ), where∆x,∆y is pixel size, and(ρ,Φ) are polar frequency coordi-

nates. For simplicity, we assume that∆x = ∆y = 1. Then,

|Cl(ρ,Φ)|2 ≈ 1

n2
l +m2

l

(2− 2 cos(ul(ρ,Φ)))2,(3.13)
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where

(3.14) ul(ρ,Φ) = nl2π∆xρ cos(Φ) +ml2π∆yρ sin(Φ) .

Plugging (3.13) into (3.11) yields

Rj(ρ,Φ) =
L

∑

l=1

rj
l

n2
l +m2

l

(2− 2 cos(ul(ρ,Φ)))

.

This is an accurate expression for the local frequency response ofR which will be used

to develop an accurate but slower regularization design method, the Full Integral Iterative

NNLS, FIIN , method.

Going back to (3.12), we can use the following approximation, which we will refer to

as theAIMA approximation,

(3.15) 2− 2 cos(x) ≈ x2

to develop a simpler expression for the local frequency response ofR which will lead to

the Angular Integral Mostly Analytical,AIMA, method. This approximation is worse for

high frequencies, however regularization design using this approximation is viable because

the approximation errors which are present in our equation for the local frequency response

and target local frequency response cancel each other out. With this approximation, we

have

|Cl(ω1, ω2)|2 =
1

n2
l +m2

l

(2− 2 cos(ω1nl + ω2ml))

≈ 1

n2
l +m2

l

(ω1nl + ω2ml)
2.(3.16)
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Converting (3.16) to polar frequency coordinates as before.

|Cl(ω1, ω2)|2 ≈
1

n2
l +m2

l

(nl2π∆xρ cos(Φ) +ml2π∆yρ sin(Φ))2

=
1

n2
l +m2

l

(2πρ)2(nl cos(Φ) +ml sin(Φ))2

= (2πρ)2 cos2(Φ− Φl),

whereΦl , tan−1 ml

nl
. Combining this with (3.11), our final expression for the local

frequency response of the regularizer near thejth pixel is

(3.17) Rj(ρ,Φ) =
L

∑

l=1

rj
l (2πρ)

2 cos2(Φ− Φl) .

For the usual choice ofL = 4 and for (nl,ml) described below (3.9), we haveΦl ∈

{0, π/2, π/4, 3π/4}.

3.2.2 Target Local Frequency Response

Substituting (3.17) into (3.8) yields a simple expression for the local frequency re-

sponse of a PWLS estimator. We want to design each regularization coefficient vector

rj = (rj
1, ..., r

j
L) such that our frequency response matches that of the target as closely

as possible. We select our target frequency response to be the local frequency response

associated with a penalized unweighted least squares (PULS) estimator at the center of the

field of view because we know the frequency response is isotropic there.

For an unweighted cost function and a parallel beam geometry, the continuous-space

frequency response that is analogous toQA′Aδj is 1
|ρ| . As shown in (A.17) in Appendix

A, for uniform weights(wi = 1) we have the following local frequency response for

fan-beam geometries

(3.18) Hj(ρ,Φ) =
2

J(sj(Φ))|ρ| .

whereJ(sj(Φ)) is the Jacobian for the change of coordinates from parallel-beam to fan-

beam geometries as defined in (A.12), andsj(Φ) is an index into the sinogram based on
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pixel j and angleΦ. We sets = 0 in (A.17), which corresponds to the center pixel leading

to the following target local frequency response:

L0(ρ) ,

2
J(0)|ρ|

2
J(0)|ρ| + ζR0(ρ,Φ)

=
1

1 + ζ|ρ|0.5J(0)R0(ρ,Φ)
,(3.19)

whereL0 is the continuous space analog ofL0 in (3.5). Without theAIMA approximation,

(3.20) R0(ρ,Φ) = 4− 2 cos(2πρ cos Φ)−2 sin(2πρ sin Φ) .

Using theAIMA approximation,

(3.21) R0(ρ,Φ) = (2πρ)2.

3.3 3D Continuous Space Analogs

§3.2 presented an expression for the continuous space analogof Λ
j for 2D systems.

This analog still holds for 3D systems if we model them as a stack of 2D systems (which

we can reasonably do for the purposes of regularization design if we assume small cross-

plane angles in PET, or small cone angles in CT). This work is aimed at such limited 3D

systems which we refer to as 2.5D, though regularizers designed using this method will

work with varying degrees of efficacy for 3D systems depending on how large the cross-

plane angles or cone angles are. More work will be needed to extend this work to fully 3D

PET, helical, and cone-beam CT. Using 3D spherical polar coordinates,(̺,Φ,Θ) where̺

is 3D radial frequency,Φ is in-plane angular frequency, andΘ is axial angular frequency,

the continuous space analog ofΛ
j is

(3.22)
wj(Φ)

|̺xy|
,

where̺xy = ̺ cos(Θ) = ρ. Next we look at the structure of our regularizer to derive a

continuous space analog ofΓ
j.
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3.3.1 Regularization Structure

We consider a 3D roughness penalty with a form similar to the 2D regularizer from

§3.2. In this section we will derive a minimization problem which can be solved for the

desired regularizer. The differencing functions for our regularizer that penalizes thelth

neighbor in 3D space is

cl(n, n, z) =
1

||nl||
(δ(n,m, z)− δ(n− nl,m−ml, z − zl))

wherenl = (nl,ml, zl). Our conventional regularizer can be expressed as

(3.23) R(x) =
1

2
x′Rx =

∑

n,m,z

L
∑

l=1

1

2
(cl ∗ ∗ ∗ x(n,m, z))2).

In this conventional regularizer, the difference between each neighbor receives the same

penalty. We make the regularizer spatially adaptive with the addition of coefficientsrj
l .

yielding:

(3.24) R(x) =
1

2
x′Rx =

∑

n,m,z

L
∑

l=1

rj
l

1

2
(cl ∗ ∗ ∗ x(n,m, z))2),

wherej is a columnized voxel index which is also a function ofn = (n,m, z). Taking the

Fourier transform ofcl,

|Cl(ω1, ω2, ω3)|2 =
1

||nl||2
|1− e−i(ω1nl+ω2ml+ω3zl)|2

=
1

||nl||2
(2− 2 cos(ω1nl + ω2ml + ω3zl) .

Similar to the 2D derivation, we convert the above expression to cylindrical polar fre-

quency coordinates using frequency sampling relationships [41],

ω1 = 2π∆x̺ cos(Φ) cos(Θ)

ω2 = 2π∆y̺ sin(Φ) cos(Θ)

ω3 = 2π∆z̺ sin(Θ) .
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In 2D ∆x = ∆y = 1 for square pixels, which is also reasonable for 3D, however∆z is not

necessarily 1. Then,

|Cl(ρ,Φ,Θ)|2 ≈ 1

||nl||
(2− 2 cos(ul(ρ,Φ,Θ)))2,(3.25)

where

(3.26)

ul(ρ,Φ,Θ) = nl2π∆x̺ cos(Φ) cos(Θ) +ml2π∆y̺ sin(Φ) cos(Θ) +zl2π∆z̺ sin(Θ) .

Plugging (3.25) into (3.24) yields

Rj(ρ,Φ,Θ) =
L

∑

l=1

rj
l

||nl||
(2− 2 cos(ul(ρ,Φ,Θ))).

This expression for the local frequency response ofR will be used to derive theFIIN

method in 3D. Using theAIMA approximation, we can derive a simpler expression for

(3.25).

|Cl(ω1, ω2, ω3)|2 =
1

||nl||2
(2− 2 cos(ω1nl + ω2ml + ω3zl)

≈ 1

||nl||2
(2− 2(1− 1

2
(ω1nl + ω2ml + ω3zl)

2)

≈ 1

||nl||2
(ω1nl + ω2ml + ω3zl)

2.(3.27)

Converting to cylindrical polar frequency coordinates,

|Cl(ω1, ω2, ω3)|2 ≈
1

||nl||2
(nl2π∆x̺ cos(Φ) cos(Θ)

+ml2π∆y̺ sin(Φ) cos(Θ) +zl2π∆z̺ sin(Θ))2

=
1

||nl||2
(2π̺)2(nl∆x cos(Φ) cos(Θ)

+ml∆y sin(Φ) cos(Θ) +zl∆z sin(Θ))2.
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Lete(Φ,Θ) = (cos Θ cos Φ, cos Θ sin Φ, sin Θ) and∆ = (∆x,∆y,∆z), and then|Cl(ρ,Φ,Θ)|2

simplifies to

|Cl(ρ,Φ,Θ)|2 =
1

||nl||2
(2π̺)2(||n||e(Φ,Θ) · [e(Φl,Θl)⊙∆])2

= (2π̺)2(e(Φ,Θ) · [e(Φl,Θl)⊙∆])2,(3.28)

where⊙ is element-wise multiplication. Substituting (3.28) into(3.24) results in the fol-

lowing continuous-space analog ofΓ
j:

(3.29) Rj(̺,Φ,Θ) = (2π̺)2

L
∑

l=1

rj
l (e(Φ,Θ) · [e(Φl,Θl)⊙∆])2.

Using (3.22), (3.29), and (3.5) we can construct the following continuous-space analog

of Lj:

Lj(ρ,Θ,Φ) =

wj(Φ)
|̺xy |

wj(Φ)
|̺xy | + ζR(̺,Φ,Θ)

=
wj(Φ)

wj(Φ) + |̺xy|ζR(̺,Φ,Θ)
.(3.30)

3.3.2 Target Local Frequency Response

We wish to designR(̺,Φ,Θ) such thatLj matches some targetL0 for all voxelsj.

This subsection describes an expression forL0. In §3.2 we considered the local frequency

response associated with QPULS reconstruction that is isotropic at the center of the image

for 2D systems. Unfortunately, this is not true for 3D systems. The purpose of this deriva-

tion is to find an expression that is isotropic, but with a mathematical structure that makes

it an attainable target. The frequency response of QPULS is agood starting point.

The 2D continuous space analog toQA′Aδj for parallel beam geometries is1/|̺xy|.

This is an adequate approximation for the 3D continuous space analog toQA′Aδj once

again assuming small cross plane angles for PET and small cone angles for CT. Thus, the
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frequency response of QPULS for 3D systems is

L0(̺,Φ,Θ) =

1
|̺xy |

1
|̺xy | + ζR0(ρ,Φ,Θ)

=
1

1 + ζ|̺xy|R0(ρ,Φ,Θ)
.(3.31)

The frequency response of a conventional regularizer (3.23) with (nl,ml, zl) ∈ {(1, 0, 0),

(0, 1, 0), (0, 0, 1)}, assuming∆x = ∆y = ∆z = 1 ( which is not a realistic assumption for

actual scanners but is acceptable in the derivation of an isotropic target impulse response )

without theAIMA approximation is

(3.32)

R0(ρ,Φ,Θ) = 6− 2 cos(2πρ cos Φ cos Θ)−2 cos(2πρ sin Φ cos Θ)−2 cos(2πρ sin Θ) .

Using theAIMA approximation, this simplifies to

(3.33) R0(ρ,Φ,Θ) = (2π̺)2

Using the relationship̺xy = ̺ cos Θ, we have:

(3.34) L0(̺,Θ) =
1

1 + ζ|̺| cos(Θ)R0(ρ,Φ,Θ)
,

which is clearly not isotropic because of thecos(θ) in the denominator. In 3D, the local

frequency response associated with uniform weighting and conventional regularization is

not isotropic. We use a similar structure and eliminate the anisotropic terms to create an

isotropic 3D target,

(3.35) L0(̺) =
1

1 + ζ|̺|(2π̺)2
.

Thecos(Θ) term in (3.34) represents the fact that for a 2.5D geometry,A′WAδj is com-

pletely confined in the XY plane. Conventional quadratic regularizers that apply the same

penalty in all directions preserve that anisotropy. In 3D systems, spatially-variant regular-

ization design is even more important to compensate for the naturally ellipsoidal spatial
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resolution that these systems produce. In the next chapter,we will try to match the local

frequency response with the target local frequency response using the following type of

optimization approach:

rj = arg min
r≥0

||Lj − L0||2.



CHAPTER IV

Solving for Regularization Coefficients

4.1 2D Problem

We try to design regularization coefficientsrj = (rj
1, ..., r

j
L) to match our designed

local frequency response (3.8) to the target local frequency response (3.19) as follows:

(4.1)

rj = arg min
r≥0

∫ ∫ (

wj(Φ)

wj(Φ) + ζ|ρ|Rj(ρ,Φ)
− 1

1 + ζ|ρ|0.5J(0)R0(ρ,Φ)

)2

W(ρ,Φ)dρdΦ,

whereW(ρ,Φ) is a weighting function. To derive a simpler minimization problem, we

solve forrj by trying to match the local frequency responses as follows:

(4.2)
wj(Φ)

wj(Φ) + ζ|ρ|Rj(ρ,Φ)
≈ 1

1 + ζ|ρ|0.5J(0)R0(ρ,Φ)
.

Next we will go over the derivation of theFIIN andAIMA method.

4.1.1 FIIN Method

This section derives the Full Integral Iterative NNLS regularization design method

which integrates over all variables in the frequency domainand must be solved using

an iterative NNLS algorithm. Cross multiplying (4.2) yields

wj(Φ) + wj(Φ)ζ|ρ|0.5J(0)R0(ρ,Φ) ≈ wj(Φ) + ζ|ρ|Rj(ρ,Φ)

wj(Φ)0.5J(0)R0(ρ,Φ) ≈ Rj(ρ,Φ).

33
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Using the inner product〈f, g〉 = 1
π

∫ π

0
f(Φ)g(Φ)dΦ, we projectw̃j(Φ)R0(ρ,Φ)) onto the

space spanned by{1−cos(ul(ρ,Φ))}which can be orthonormalized intoL basis functions,

{pl} using Gram-Schmidt. Then our regularization design problem simplifies to

(4.3) rj = arg min
r≥0

||Tr − bj||2,

wherebj is a vector of inner products betweeñwj(Φ)R0(ρ,Φ)) and theL orthonormal

basis functions{pl}, bjk =
∫ ∫

pk(ρ,Φ)w̃j(Φ)R0(ρ,Φ)dρdΦ, andT is aL × L matrix

whose elements are the inner products between2 − 2 cos(ul(ρ,Φ)) and {p1, p2, ...pL},

Tmn =
∫ ∫

(2 − 2 cos(um(ρ,Φ)))pn(ρ,Φ)dρdΦ . We defineP to be an operator whose

columns are{p1, p2, ...pL} then,Rj(ρ,Φ) = PTrj. This design problem is then solved

with an NNLS algorithm. This more accurate version is slowerthan theAIMA method that

will be presented next because there is no apparent analytical solution similar to the one

presented in§4.1.4.

4.1.2 AIMA Method

This section derives the Angular Integral Mostly Analytical, AIMA, method. This

method uses theAIMA approximation to eliminate dependence onρ and requires integrals

over the angular variable of the frequency domain. This simplification leads to a mostly

analytical solution which is computationally efficient. Starting from (4.2) and using the

AIMA approximation (3.15),

wj(Φ)ζ|ρ|0.5J(0)(2πρ)2 ≈ ζ|ρ|R(ρ,Φ)

wj(Φ)0.5J(0)(2πρ)2 ≈
L

∑

l=1

rj
l (2πρ)

2 cos2(Φ− Φl)

w̃j(Φ) , wj(Φ)0.5J(0) ≈
L

∑

l=1

rj
l cos2(Φ− Φl) .(4.4)
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We designrj by minimizing the difference between both sides of (4.4):

(4.5) rj = arg min
r≥0

1

π

∫ π

0

(w̃j(Φ)−
L

∑

l=1

rl cos2(Φ− Φl))
2dΦ.

Minimizing (4.5) does not guarantee that we minimize (4.1) under an unweighted norm.

However (4.1) and (4.5) are equivalent if we use a very specific weighted norm:

(4.6) W(ρ,Φ) = ([wj(Φ) + ζ|ρ|R(ρ,Φ)][1 + ζ|ρ|0.5J(0)(2πρ)2])
1

2 .

Because of the high-pass nature of regularizers representedby theρ2 terms in the equation,

this is a weighting that emphasizes high frequencies. This makes sense for this minimiza-

tion problem first, because impulse responses are high frequency in nature, and second

because at DC, whenρ = 0, the two sides of (4.2) match exactly. It should also be

noted that (4.5) is independent ofρ, because terms based onρ are identical in both lo-

cal frequency responses and are eliminated in the simplification. This is consistent with

an intuitive understanding of regularization design. We are trying to design LIRs that are

isotropic, or independent of direction, so our efforts should be concentrated on eliminating

angular dependence.

We solve forL coefficients using the above minimization (4.5) for each pixel j. We

constrain theL coefficients to be non-negative, which is an easy way to ensure that the

penalty function is convex, though other approaches have been considered [66]. This

expression also applies to parallel-beam geometries, where J(0) = 1 and we remove

the 0.5 scale factor because we integrateΦ over [0, π) instead of[0, 2π) as in fan-beam

geometries.

We can think of the minimization in (4.5) as a projection ofw̃j(Φ) onto the space

spanned by{cos2(· − Φl)}, which allows us to greatly simplify the problem and derive

a computationally efficient analytical solution to the regularization design problem. Ex-

panding these cosines to a three term basis that is orthonormal with respect to the inner
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product〈f, g〉 = 1
π

∫ π

0
f(Φ)g(Φ)dΦ yields

cos2(Φ− Φl) =
1

2
p1(Φ) +

cos(2Φl)

2
√

2
p2(Φ) +

sin(2Φl)

2
√

2
p3(Φ),(4.7)

where the three orthonormal basis functions are

p1(Φ) = 1

p2(Φ) =
√

2 cos(2Φ)

p3(Φ) =
√

2 sin(2Φ) .

Using (4.5), we write
∑L

l=1 r
j
l cos2(Φ− Φl) = PTrj, whereP is a matrix whose columns

arep1, p2, andp3, andT is a3 × L matrix of linear combination coefficients whoselth

column is[ 1

2

cos(2Φl)

2
√

2

sin(2Φl)

2
√

2
]T . T is computed by taking the dot products ofcos2(Φ− Φl)

andp1, p2, andp3, [T ]mn =
∫

cos2(Φ− Φm) pn(Φ)dΦ.

Using (4.7), the minimization problem (4.5) simplifies to the following expression:

(4.8) rj = arg min
r≥0

||Tr − b||2,

whereP ∗ denotes the adjoint ofP andb , P ∗w̃j(·), i.e., bk =
∫

pk(Φ)w̃j(Φ)dΦ, k =

1, 2, 3.

4.1.3 Zeroes in the Hessian

If there are too many zeros inrj, there will be zeros in the Hessian, possibly degrading

x̂. This can cause elongated impulse responses that may contribute to streak artifacts in

the reconstructed image. This phenomenon occurred in [18] however we did not notice the

artifacts due to the coarser spatial resolution in PET. It ispresent when usingAIMA with

the ring phantom in§5.1. The problem improves when usingFIIN method, thus we believe

this phenomenon is a caused by theAIMA approximation as well as the non-negativity con-

straint. ForAIMA, and to be safe usingFIIN we modify (4.8) to ensure that an adequate
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number ofrj
l values are greater than someǫjl > 0. Requiring the penalty coefficients for

the vertical and horizontal directions be non-zero is sufficient to eliminate zeros in the Hes-

sian (a similar constraint could be created using the 2 diagonals instead of the vertical and

horizontal neighbors, however theAIMA approximation is worse for diagonal neighbors).

We turn to previous work to selectǫjl . In [23], we derived a certainty based weighting us-

ing a spatially variantκj =

√

P

i a2
ijw̃i

P

i a2
ij

that seeks to provide uniform spatial resolution. In

terms of the continuous space analogs used in this paper,κj =
√

1
π

∫ π

0
w̃j(Φ)dΦ. This reg-

ularization design method can be implemented using the regularization structure presented

in this paper by settingrj
l = (κj)2 for (ml, nl) = (0, 1), (1, 0). This approach provides

a convenient nominal value for the regularization strengthat each pixel. We define the

lower constraint vectorǫj such thatǫjl = α(κj)2 for vertical and horizontal neighbors,

(ml, nl) = (0, 1), (1, 0), andǫjl = 0 for all other neighbors. Using a nonzero coefficient

α can be thought of as controlling the tradeoff between certainty based regularization and

the proposedAIMA andFIIN methods. For the results presented in this paper, we used

α = 0.1.

Now we formulate our problem so that non-negative least squares (NNLS) algorithms

will accommodate this new constraint. Letr̄j , rj + ǫj. Solving with the constraint of

rj ≥ 0 ensures that̄rj ≥ ǫj. Substitutinḡrj into (4.8) yieldsT r̄j−bj = T (rj+ǫj)−bj =

Trj − (bj − Tǫj). So our final cost function for regularization design is

r̂j = arg min
r≥0

||Tr − (bj − Tǫj)||

= arg min
r≥0

||Tr − b̄j||,(4.9)

whereb̄j , bj − Tǫj. We use coefficients̄rj = r̂j + ǫj in the regularizer (3.11). We

next solve (4.9) analytically. It is this analytical solution that makes the fast regularization

design technique more efficient than theFIIN method.
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4.1.4 Analytical Solution

Using a second-order neighborhood(L = 4) we select(nl,ml) to be(1, 0), (0, 1), (1, 1), (1,−1)

leading to the followingΦl: Φ1 = 0, Φ2 = π/2, Φ3 = π/4, Φ4 = −π/4. So the terms in

(4.9) are

(4.10)

T = 1
2

















1 1 1 1

1/
√

2 −1/
√

2 0 0

0 0 1/
√

2 −1/
√

2

















b̄ =















d1

√
2d2

√
2d3















, d =

















1
π
(1− α)

∫ π

0
wj(Φ)dΦ

1
π

∫ π

0
wj(Φ) cos(2Φ) dΦ

1
π

∫ π

0
wj(Φ) sin(2Φ) dΦ

















.

Observe thatTǫj = [α(κj)2 0 0]T , so the effect ofǫj is entirely contained tod1. Ignoring

α, d1 is the continuous space analog of(κj)2, d2 is related to the horizontal and vertical

directions, andd3 is related to the diagonal directions.

This is an under-determined system, which is somewhat intuitive since one can ob-

tain approximately isotropic smoothing using only the horizontal and vertical neighbors,

or only the diagonal neighbors. For the purposes of regularization design, an under-

determined situation is desirable since it allows us to use the “extra” degrees of freedom

to ensure non-negativity even when anisotropic regularization is needed.

We could solve the minimization (4.9) using an iterativeNNLS algorithm[32, p. 158].

However, using the properties ofT and d, we can avoid iterations almost entirely by

solving (4.9)analyticallyusing the KKT conditions. Whenα = 0,
√

d2
2 + d2

3 ≤ d1. as

outlined in appendix§B. This inequality is usually true for the values ofα used (typically

around 0.1), however for pixels where it is not, the problem would have to be solved using



39

-
d2/d1
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√
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2
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← d3

d1

=
2

3

d2

d1

− 1

3

Figure 4.1: First octant of quadratic penalty design space showing the four regions where different con-
straints are active.

a NNLS algorithm rather than this analytical solution. For the phantoms, data, and values

of α used in this thesis, this inequality was always true and we could use the analytical

solution. For more details on using NNLS to solve the regularization problem, see§4.2.3.

The structure ofT leads to eight-fold symmetry that simplifies analysis. Ifd2 < 0 we

can solve forr using|d2| and then swapr1 with r2. If d3 < 0 we can solve forr using

|d3| and then swapr3 with r4. If d3 > d2 we can solve forr with d2 andd3 interchanged,

and then swapr1 with r3 andr2 with r4. Therefore, hereafter we focus on cases where

0 ≤ d3 ≤ d2 ≤ d1. Fig. 4.1 shows these first octant cases, numbered according to the

number of nonzero elements ofr.

1 If d2 ≥ 1
2
d1 andd3 ≤ 2

3
d2 − 1

3
d1, then

r1 = 4
3
(d1 + d2) , r2 = r3 = r4 = 0.

2 If d3 ≥ 2
3
d2 − 1

3
d1 andd3 + d2 ≥ 1

2
d1, then

r1 = 8
5

[

1
2
d1 + 3

2
d2 − d3

]

, r2 = r4 = 0,

r3 = 12
5

[

d3 −
(

2
3
d2 − 1

3
d1

)]

.

3 If d3 + d2 ≤ 1
2
d1 andd2 ≥ 1

4
d1, then
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r1 = 8
5

[

1
2
d1 + 3

2
d2 − d3

]

, r2 = r4 = 0,

r3 = 12
5

[

d3 −
(

2
3
d2 − 1

3
d1

)]

.

3 If d3 + d2 ≤ 1
2
d1 andd2 ≥ 1

4
d1, then there are multiple non-negativer that exactly

solve∇Ψ(r) = 0. The minimum-norm solution isr1 = 4d2, r2 = 0,

r3 = d1 − 2d2 + 2d3, r4 = 2
[

1
2
d1 − (d2 + d3)

]

.

4 If d2 ≤ 1
4
d1, then there are multiple non-negativer that are exact solutions. The

natural choice is the minimum-normr given by the pseudo-inverse solutionr =

T †d, wherer1 = 2
(

1
4
d1 + d2

)

, r2 = 2
(

1
4
d1 − d2

)

,

r3 = 2
(

1
4
d1 + d3

)

, r4 = 2
(

1
4
d1 − d3

)

.

The analytical solution presented above is for the usual first-order differences. For higher-

order differences or neighborhoods, it would appear to become increasingly cumbersome

to solve (4.5) analytically, so an iterative NNLS approach may be more appealing. This

can still be practical sinceT is quite small. The analytical solution above is a continuous

function ofd, which in turn is a continuous function of̃wj(Φ). This continuity property

would seem to be desirable for avoiding artifacts in the reconstructed images. Without it,

ourrj might not be smooth, thus violating our circulant approximation.

For practical implementation, we simply discretize the integrals in (4.10) [19]. This

presents interpolation issues in extractingw̃j(Φ[na]), a discretized version of̃wj(Φ), from

W for na = 1, ..., Na. For the parallel beam case,̃wj(Φ[na]) can be computed back-

projections. The system matrixA is composed of blocks,

(4.11) A =





















A1

A2

...

ANa





















,
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whereNa is the number of angles used by the system andAna
x computes one projection

at angleφ[na]. The back-projectionA′, which is the adjoint ofA is also composed of

blocks

(4.12) A′ = [A′
1A

′
2...ANA

].

The following expression generates weightings for anglena over all voxels,

(4.13) w̃(φ[na]) =
[0...Ana

...0]y

[0...Ana
...0]1

,

where the division is element-wise division and the denominator is a normalization term

to control for scale factors inA. For the fan beam case, there is an analytical formula for

w̃j(Φ[na]) from W presented in Appendix§A. Those equations are presented as continu-

ous space coordinatess which spans the length of the detector andζ, the angle of rotation

of the system. In discrete implementation, we round these off to the nearest neighbor to

get indices intoW . The analytical solution presented in this section is very efficient and

the bulk of the computation time is spent computingw̃j(Φ) which has the compute time of

approximately one back-projection. For further speed optimizations, down-sampled back-

projections can be explored. In practice,w̃j(Φ) is fairly smooth and the basis functions

that we use to approximatẽwj(Φ) are even smoother. One can achieve good results by

calculatingw̃j(Φ[na]) for fewer angles and interpolating the rest. The performance and

efficacy of such a scheme still needs to be explored.

4.2 3D Problem

4.2.1 FIIN

As in the 2D problem, we match the expression for the LIR of the3D system to the

target LIR yielding
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wj(Φ)

wj(Φ) + ζ|̺| cos(Θ)Rj(ρ,Φ,Θ)
≈ 1

1 + ζ(2π)2|̺|3

ζ|̺| cos(Θ)Rj(ρ,Φ,Θ) ≈ ζwj(Φ)(2π)2|̺|3

cos(Θ)Rj(ρ,Φ,Θ)) ≈ wj(Φ)(2π|̺|)2

(4.14)

Here,cos(Θ)Rj(ρ,Φ,Θ) can be decomposed intoL basis functions that can be orthonor-

malized using Gramm-Schmidt. The design problem can be solved in a way similar to

§4.1.1.

4.2.2 AIMA

Starting from (4.14),

cos(Θ)Rj(ρ,Φ,Θ)) ≈ wj(Φ)(2π|̺|)2

(2π̺)2
∑

l=1

rj
l cos Θ(e(Φ,Θ) · [e(Φl,Θl) ◦∆])2 ≈ wj(Φ)(2π|̺|)2

∑

l=1

rj
l cos Θ(e(Φ,Θ) · [e(Φl,Θl) ◦∆])2 ≈ wj(Φ)(4.15)

where◦ represents element wise multiplication. To solve for the penalty coefficientsrj
l ,

we solve the following minimization problem

(4.16) r = arg min
r≥0

∫ π

0

∫ π/2

−π/2

|wj(Φ)−
∑

l=1

rj
l cos Θ(e(Φ,Θ) · [e(Φl,Θl)◦∆])2|2dΘ, dΦ.

This minimization problem involves projecting onto the space spanned bycos Θ(e(Φ,Θ)·

[e(Φl,Θl) ◦∆])2. We can decompose this term
∑

l=1 r
j
l cos Θ(e(Φ,Θ) · e(Φ, [e(Φl,Θl) ◦

∆])2 asPTrj where r isL × 1 vector of penalty coefficients. The termcos Θ(e(Φ,Θ) ·

[e(Φl,Θl) ◦∆])2 can be expanded into 6 orthonormal basis functions which will make up

the columns ofP . T is a matrix of linear combinations coefficients such that
∑

l=1 r
j
l cos Θ(e(Φ,Θ)·
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[e(Φl,Θl)◦∆])2 = PTrj. We first expand[e(Φl,Θl)◦∆])2 into 6 orthogonal basis func-

tions. After multiplying(e(Φ,Θ) · [e(Φl,Θl) ◦∆])2 by cos Θ, all the functions are still

orthogonal except for 2 which can be orthogonalized by Gram-Schmidt using the inner

product〈f, g〉 = 1
π2

∫ π/2

−π/2

∫ π

0
f(Φ,Θ)g(Φ,Θ)dΦdΘ. Then we normalize to make them

orthonormal. Hereafter we assume∆x = ∆y = 1 (square but not cube voxels) which is

realistic for scanners. Starting with(e(Φ,Θ) · [e(Φl,Θl) ◦∆])2:

(e(Φ,Θ) · [e(Φl,Θl) ◦∆])2 = cos2(Θl) cos2(Φl) cos2(Θ) cos2(Φ)

+ cos2(Θl) sin2(Φl) cos2(Θ) sin2(Φ)

+ sin2(Θl) ∆2
z sin2(Θ)

+ 2 cos2(Θl) cos(Φl) sin(Φl) cos2(Θ) cos(Φ) sin(Φ)

+ 2 cos(Φl) cos(Θl) sin(Θl) ∆z cos(Φ) cos(Θ) sin(Θ)

+ 2 sin(Φl) cos(Θl) sin(Θl) ∆z sin(Φ) cos(Θ) sin(Θ) .

There are 6 terms in this equation, corresponding to 6 basis functions, however they are

not orthonormal. After making these equivalences using trigonometric identities:

sin2(Θ) =
1

2
− 1

2
cos(2Θ)

cos2(Θ) cos2(Φ) =
1

4
[1 + cos(2Θ) + cos(2Φ) + cos(2Θ) cos(2Φ)]

cos2(Θ) sin2(Φ) =
1

4
[1 + cos(2Θ)− cos(2Φ)− cos(2Θ) cos(2Φ)],
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we can extract 6 orthogonal basis functions

p′1 = 1

p′2 = sin(Φ) sin(Θ) cos(Θ)

p′3 = cos(Φ) sin(Θ) cos(Θ)

p′4 = cos(2Θ)

p′5 = cos(2Φ) + cos(2Φ) cos(2Θ)

p′6 = cos2(Θ) cos(Φ) sin(Φ) .

After multiplying by cos Θ, we get

p′1 = cos(Θ)

p′2 = sin(Φ) sin(Θ) cos2(Θ)

p′3 = cos(Φ) sin(Θ) cos2(Θ)

p′4 = cos(2Θ) cos(Θ)

p′5 = [cos(2Φ) + cos(2Φ) cos(2Θ)] cos(Θ)

p′6 = cos3(Θ) cos(Φ) sin(Φ) .

Unfortunately,p′1 andp′4 are not orthogonal anymore, so we use Gram-Schmidt, yielding

p′1 = cos(Θ)

p′4 = cos(2Θ) cos(Θ)−〈cos(2Θ) cos(Θ),
p′1
||p′q||

〉 p
′
1

||p′1||
.

Finally we normalize all basis functions, leaving us with{p1, p2, ..., p6}

We can now solve forT such that
∑

l=1 rl cos Θ(e(Φ,Θ) · [e(Φl,Θl) ◦∆])2 = PTrj.

Starting with the terms from the expansions in (4.17),
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t′1 = cos2(Θl) cos2(Φl)

t′2 = cos2(Θl) sin2(Φl)

t′3 = sin2(Θl) ∆2
z

t′4 = 2 cos2(Θl) cos(Φl) sin(Φl)

t′5 = 2 cos(Φl) cos(Θl) sin(Θl) ∆z

t′6 = 2 sin(Φl) cos(Θl) sin(Θl) ∆z.

Lettingk = 1
||1/2 cos Θ cos 2Θ|| , thelth column ofT is





































(0.25t′1(1 + k) + 0.25t′2(1 + k) + 0.5′t3(1− k))1/||p′1||

(t′6)1/||p′2||

(t′5)1/||p′3||

(0.25t′1 + 0.25t′2 − 0.5t′3)1/||p′4||

(0.25(t′1 − t′2))1/||p′5||

(t′4)1/||p′6||.





































Using (4.17) and (4.17), the minimization problem (4.16) simplifies to the following

expression:

(4.17) rj = arg min
r≥0

||Tr − b||2,

whereP ∗ denotes the adjoint ofP andb , P ∗wj(·), i.e., bk =
∫

pk(Φ)wj(Φ)dΦ, k =

1, 2, 3, 4, 5, 6.

4.2.3 Implementation Details

The minimization problems in (4.5) and (4.16) are under-determined and have the po-

tential to yield many differentrj
l that are local minima. For our assumption of locally
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circulant matrices to be accurate in (3.4), the mapping fromwj(Φ) to rj must be a contin-

uous function. The analytical solution presented in§4.1 satisfies this constraint, however

those methods have not been extended to the 3D case because the KKT conditions are

more complicated in the 3D so we solve them by some NNLS algorithm. We can use

Tikhonov regularization [71] to coerce NNLS to choose a solution that also minimizes the

norm ofrj.

We modify (4.16) by appending a scaled identity matrix to thebottom ofT and zero

paddingb

T̃ =







T

τI






, b̃ =







b

0






,

so that our new minimization problem is

(4.18) arg min
rj≥0

||b̃− T̃ rj||.

τ is a very small number (in our implementation we used0.001) that is sufficient to apply

a slight penalty to the norm ofrj. As in the 2D case, we should use the modifications

in §4.1.3 to avoid having too many zeroes in the Hessian. In the 3Dcase we define the

lower constraint vectorǫj such thatǫjl = α(κj)2 for 3 adjacent neighbors,(ml, nl, zl) =

(0, 1, 0), (1, 0, 0), (0, 0, 1), andǫjl = 0 for all other neighbors. Here,κj =

√

P

i a2
ijw̃i

P

i a2
ij

. The

results of these methods are presented in the next chapter.



CHAPTER V

Results

In this chapter, we provide and discuss the results of various simulations using 2D and

3D regularization.

5.1 2D results

We first investigated imaging a phantom consisting of two uniform rings that highlight

the effects of non-uniformities and anisotropy [40]. Afterwards, we studied real CT data.

5.1.1 Ring Phantom

We simulated a 2D 3rd-generation fan-beam CT system using distance-driven forward

and backprojections [11]. The rotation center is 40.8cm from the detector, and the source is

94.9cm from the detector. The axis of rotation is at the center of the object. The simulated

imaging system has 888 rays per view spaced 1mm apart, and 984evenly spaced view

angles over a full2π rotation. The reconstructed images consisted of a512 × 512 grid of

1 mm pixels. We chose aζ in (3.19) such that the target PSF has a full width half max

(FWHM) of 3.18 mm.

We simulated a noiseless fan-beam sinogram without scatterusing a phantom consist-

ing of a background disk and two rings each of thickness 1mm shown in Fig. 5.1. We

generated the sinogram by taking the appropriate line integrals using the same system ge-

47
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ometry through the analytical phantom. Fig. 5.2 shows penalty coefficients{rj} designed

using theAIMA method that yielded the following results. The top images show coeffi-

cients in the horizontal and vertical neighbors, and the bottom images show coefficients

for diagonal neighbors. There is substantial spatial variation in these coefficients.

We reconstructed imageŝx using a conjugate-gradient algorithm with 40 iterations.

using several regularizers. We selected a target PSF to be that associated with PULS at the

center of the field of view. We first created an image uniformlyblurred by the target PSF

to serve as our target for this study. We then reconstructed images using, (i) conventional

regularized weighted least squares reconstruction withrj = 1, (ml, nl) = (0, 1), (1, 0),

(ii) regularization using the certainty based weighting from [23], (iii) the AIMA method

with α = 0.1, (iv) the AIMA method withα = 0, and (vi) theFIIN method withα = 0.

Fig. 5.3 is a closeup of the right-most ring reconstructed with the various methods listed

above and Fig. 5.4 is a closeup of the left-most ring.

Fig. 5.5 and Fig. 5.6 show profiles around the two rings of the reconstructed images

using the various regularization methods relative to the mean intensity of the rings from

our target, PULS reconstruction with conventional regularization. This verifies thatAIMA

and FIIN improve resolution uniformity. Here, 0 radians corresponds to the rightmost

point of that ring and the angles are measured clockwise.
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Figure 5.1: Ring phantom used for reconstruction.
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Range: [0 1.46253]
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Figure 5.2: Regularization penalty coefficients used in reconstruction of ring phantom. The four images are
rj
l for l = 1, ..., 4.

5.1.2 Real CT Data

The second study used a similar imaging geometry using one slice of real CT data from

a GE scanner described in [70] with weightingsW computed in the same way as [69].ζ

was selected such that the target PSF had a FWHM of 1.51 mm.

Fig. 5.7 displays an image created with PWLS using conventional regularization with

the impulse response locations denoted with crosses and a region marked that we will

zoom in on. Fig. 5.8 - 5.12 show windowed reconstructions using conventional regulariza-

tion, certainty based regularization,AIMA with α = 0.1 andα = 0, andFIIN with α = 0

that have been zoomed in to the region marked in Fig. 5.7.

Fig. 5.13-5.16 show local impulse responses for the five regularization methods at sev-

eral locations calculated analytically using (2.19). These figures show from left to right,

the target impulse response, and local impulses responses for conventional regularization,

certainty based regularization [23],AIMA with α = 0.1, AIMA with α = 0, andFIIN with

α = 0. Contour plots of the LIR are displayed below at 0.9, 0.75, 0.5, 0.25, and 0.1 of

the maximum value of the target PSF. The LIR becomes more anisotropic near the edge of

the FOV. Our Fourier-based regularization scheme compensates for this anisotropy better
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Figure 5.3: Images of right-most ring, Upper-Left: uniformly blurred by target PSF. Upper-Right: recon-
structed using conventional regularization. Mid-Left: reconstructed using certainty-based reg-
ularization. Mid-Right: reconstructed usingAIMA regularization, withα = 0.1. Lower-Left:
reconstructed usingAIMA regularization, withα = 0. Lower-Right: reconstructed usingFIIN
regularization, withα = 0.
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Figure 5.4: Images of left-most ring, Upper-Left: uniformly blurred by target PSF. Upper-Right: recon-
structed using conventional regularization. Mid-Left: reconstructed using certainty-based reg-
ularization. Mid-Right: reconstructed usingAIMA regularization, withα = 0.1. Lower-Left:
reconstructed usingAIMA regularization, withα = 0. Lower-Right: reconstructed usingFIIN
regularization, withα = 0.
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Figure 5.5: Profiles around the right-most ring from each reconstructed image.
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Figure 5.6: Profiles around the left-most ring from each reconstructed image.
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xcgwpsf range: [−212.339 2304.5]
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Figure 5.7: Reconstruction with conventional regularization without windowing with impulse responses lo-
cations marked.
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Figure 5.8: Reconstruction with conventional regularization windowed between 800 and 1200 HUs.
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Figure 5.9: Reconstruction with certainty based regularization windowed between 800 and 1200 HUs.

1 211

1

141

Figure 5.10: Reconstruction withAIMA regularization withα = 0.1 windowed between 800 and 1200 HUs.
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Figure 5.11: Reconstruction withAIMA regularization withα = 0 windowed between 800 and 1200 HUs.
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Figure 5.12: Reconstruction withFIIN with α = 0 windowed between 800 and 1200 HUs.
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than the certainty-based approach of [23].

To quantify the performance of these regularizers on real CT data, we computed the

PSF of the regularizers at every 10 pixels within the body. Then we calculated the FWHM

of the PSFs at 181 evenly spaced angles, and computed the RMS ofthe error between the

actual FWHM and the FWHM of the target. Histograms of the RMS errors are displayed

in Fig. 5.17. The mean of the RMS errors for conventional regularization, certainty based

regularization, theAIMA method withα = 0.1, theAIMA method withα = 0, and the

FIIN method withα = 0 are 2.7, 2.7, 2.3, 2.5, and 2.0 respectively.
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Figure 5.13: Impulse Responses at (-100,-100). From left toright, target, conventional regularization, cer-
tainty based regularization,AIMA regularization withα = 0.1, AIMA regularization with
α = 0, FIIN regularization withα = 0.

5.1.3 Spatial Resolution Properties

Fig. 5.3 and Fig. 5.4 provide a qualitative understanding ofthe spatial resolution proper-

ties of various regularization methods for the ring phantom. The phantom used consists of

rings of uniform intensity and uniform width, thus images with uniform spatial resolution
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Figure 5.14: Impulse Responses at (150,-120). From left to right, target, conventional regularization, cer-
tainty based regularization,AIMA regularization withα = 0.1, AIMA regularization with
α = 0, FIIN regularization withα = 0.
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Figure 5.15: Impulse Responses at (170,0). From left to right, target, conventional regularization, certainty
based regularization,AIMA regularization withα = 0.1, AIMA regularization withα = 0, FIIN
regularization withα = 0.
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Figure 5.16: Impulse Responses at (-130,100). From left to right, target, conventional regularization, cer-
tainty based regularization,AIMA regularization withα = 0.1, AIMA regularization with
α = 0, FIIN regularization withα = 0.
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Figure 5.17: Plots of the FWHM error histogram for different impulse responses.
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should have rings with uniform width and uniform intensity.Conventional regularization

creates rings with sharper spatial resolution near the edgeof the field of view. Certainty

based regularization improves ring uniformity. The last three reconstructions usingAIMA

with α = 0.1, AIMA with α = 0 andFIIN with α = 0 provide rings that look almost

identical, and that have a more uniform ring width than conventional, and certainty based

regularization.

Fig. 5.5 and Fig. 5.6 show the amplitude of the rings traced clockwise. This confirms

our initial assessment, that certainty based regularization outperforms conventional regu-

larization, and that theAIMA andFIIN methods have similar spatial resolution properties

and outperform the previous approaches.

Fig. 5.8 - Fig. 5.12 display a quadrant of windowed reconstructions using real CT

data to illustrate the images produced using these regularization design methodologies.

However, since we do not know the “truth” for this data, theseimages provide only a

qualitative understanding of the effect of regularizationdesign on spatial resolution. The

impulse responses in Fig. 5.13-Fig. 5.16 illustrate the effect of regularization design on

spatial resolution at various locations. These figures confirm thatAIMA andFIIN methods

improved isotropy over conventional and certainty-based regularization. The histogram

plot of Fig. 5.17 and the mean of the PSF errors mentioned previously confirm this.AIMA

outperforms both certainty based regularization and conventional regularization.FIIN out-

performs all other regularization designs in terms of the FWHM of the local PSFs but is

much slower thanAIMA.

The resulting impulse responses from theAIMA andFIIN methods are not completely

isotropic. This may seem to contradict the dramatic improvement these regularization

design methods achieved with the ring phantom. However, recall that we are trying to

approximatew̃j(Φ) using 3 basis functions (see§4.1.2) for theAIMA, and 4 basis func-
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tions (see§4.1.1) forFIIN . With real data,w̃j(Φ) is a complicated function that cannot

be parameterized using 3 or 4 basis functions. That aspect, along with the non-negativity

constraint limits the performance of any regularization design technique with a finite num-

ber of parameters.̃wj(Φ) is much simpler for simple phantoms like the ring phantom, so

AIMA yields better results there. Extensions of this regularization design to higher order

penalties have the potential for more basis functions, and better performance.

The analysis of this paper focuses on the resolution nonuniformities cased by statis-

tical weightings, not the resolution variation due to detector response and magnification.

A more general regularization design with similar parameterization is discussed in [67].

Using the techniques in this paper to account for these effects is an open problem.

5.1.4 Computation Time

AIMA is quite efficient. Computing certainty based regularization takes the time of

about 1 backprojection. InAIMA, we must first computẽwj(Φ) which takes the time

of about 1 backprojection, and then solve the analytical solution which is very fast.FIIN

also requires 1 backprojection to computew̃j(Φ), however it then has to run a non-negative

least squares problem for every pixel. Though this is a fairly small NNLS problem,T is

4 × 4, it adds much compute time since it must be calculated for each pixel. In general,

due to the faster compute times, we recommendAIMA with α = 0.1. If accuracy is more

important than compute time,FIIN can be used instead.

5.2 3D Results

5.2.1 Spherical Shells

We simulated a 3D PET system that images a 400mm x 400mm x 164mmvolume.

The simulated imaging system has 143 rays per view spaced 4mmapart, 80 evenly spaced

view angles rotated alongΦ, and 5 cross plane angles forΘ. The reconstructed images
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consist of 100x100x41 4mm pixels. We simulated a noiseless sinogram using our true

image which consists of 2 spherical shells inside a cylinder. We choose a target spatial

resolution with a 2 pixel FWHM, or equivalently 4 mm.

Fig. 5.18 and Fig. 5.19 show cross sections of 3D PSFs at different locations, showing

thexy slice,xz slice, andyz slice from top to bottom. From left to right, are the PSFs at

(25,25,0), (15,15,0), (15,15,15), and (25,0,0). PSFs fromconventional regularization are

shown in Fig. 5.18. PSFs fromAIMA regularization are shown in Fig. 5.19. Looking at

these images, one may observe a great deal of anisotropy in the PSFs created from con-

ventional regularization. Thexy slices are stretched out in different directions depending

on where the pixel lies with respect to the center of the image. Thexz andyz slices all

seem flatter and smaller when compared toxy slices. Looking at the PSFs generated using

AIMA regularization, each slice looks more isotropic, and each slice looks to be about the

same size. The flatness ofxz andyz slices has been removed, and thexy slices are no

longer stretched. The PSF at (25,25,0) displays some anisotropy. Thexy slice appears to

be boxy with tails, instead of being round, and thexz andyz slices are not completely

isotropic. This shows the limitations of this method in approximatingwj(Φ).

In the next few figures, we takexy, xz, andyz slices of 2 PSFs, and then measure

the FWHM cutting through the center of the PSF at different angles to get a sense of

isotropy. The uniformity of these plots are a rough measure of the isotropy of these impulse

functions. Figure 5.20 and 5.21 shows plots of the FWHM for PSFs at (25,25,0) and

(15,15,15).

Tables 5.1 displays maximum and minimum FWHMs for PSFs at (25,25,0) and (15,15,15)

allowing for a more quantitative assessment of isotropy. Even for (25,25,0), which exhibits

less improvement than (15,15,15), there is less variation in FWHM for PSFs generated us-

ing AIMA regularization than PSFs generated using conventional regularization.
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Figure 5.18: xy, xz, and yz (top to bottom) slices of PSFs created using conventional regularization at
(25,25,0), (15,15,0), (15,15,15), and (25,0,0) (left to right).

Figure 5.19: xy, xz, and yz (top to bottom) slices of PSFs created usingAIMA regularization at (25,25,0),
(15,15,0), (15,15,15), and (25,0,0) (left to right).
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Figure 5.20: FWHM plots for PSF at (25,25,0).AIMA regularization marked with circles, conventional
marked with pluses. xy, xz, yz slices from top to bottom.
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Figure 5.21: FWHM plots for PSF at (15,15,15).AIMA regularization marked with circles, conventional
marked with pluses. xy, xz, yz slices from top to bottom.
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Table 5.1: Maximum and Minimum FWHM values for 2 PSFs.

(25,25,0) AIMA Conventional

min max min max

xy 1.9387 2.9770 2.0035 3.1553

xz 2.0061 2.3060 1.4048 2.2946

yz 1.9387 2.3060 1.4048 2.0932

(15,15,15) AIMA Conventional

min max min max

xy 2.1954 2.5281 2.3689 3.1347

xz 2.0137 2.5069 1.6706 2.8698

yz 2.0141 2.5281 1.6706 2.8676

Next we look at reconstructions using various regularizersxy slices of this object are

shown in figure 5.22,xz slices of this object are shown in figure 5.23,yz slices of this

object are shown in figure 5.24. We reconstructed volumes using an incremental optimiza-

tion transfer version of the EM algorithm [1] with two types of regularization. We have 2

sets of volumes resulting from conventional regularization, andAIMA regularization. We

showxy slices 11, 13, 17, 21, and 27 of the volume, followed byxz slices 36, 41, 46,

51, 56, 61, followed byyz slices 21, 31, 41, 61, 71, 81. Volumes reconstructed using

conventional regularization are shown in Fig. 5.25, Fig. 5.26, and Fig. 5.27. Volumes re-

constructed usingAIMA regularization are shown in Fig. 5.28, Fig. 5.29, and Fig. 5.30.

Volumes reconstructed usingAIMA regularization design show greater uniformity than

those reconstructed using conventional regularization.

Finally, we simulated a noisy sinogram. Volumes reconstructed using conventional

regularization are shown in figures 5.31, 5.32, and 5.33. Volumes reconstructed using

AIMA regularization design are shown in figures 5.34, 5.35, and 5.36. Although it is less

apparent due to the noise in the images, Volumes reconstructed usingAIMA regularization

still show greater uniformity than those reconstructed using conventional regularization.
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Figure 5.22:xy slices of the original object.
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Figure 5.23:xz slices of the original object.
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Figure 5.24:yz slices of the original object.
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Figure 5.25:xy slices of PL reconstructed images with conventional regularization design from noiseless
data.
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Figure 5.26:xz slices of PL reconstructed images with conventional regularization design from noiseless
data.
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Figure 5.27:yz slices of PL reconstructed images with conventional regularization design from noiseless
data.
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Figure 5.28:xy slices of PL reconstructed images withAIMA regularization from noiseless data.
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Figure 5.29:xz slices of PL reconstructed images withAIMA regularization from noiseless data.
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Figure 5.30:yz slices of PL reconstructed images withAIMA regularization from noiseless data.
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Figure 5.31:xy slices of PL reconstructed images with conventional regularization design from noisy data.



70

Range: [0 3.71477]

yslice 41/100
1 100

1

41

Range: [0 4.23366]

yslice 46/100
1 100

1

41

Range: [0 4.46507]

yslice 51/100
1 100

1

41

Range: [0 4.29608]

yslice 56/100
1 100

1

41

Range: [0 3.84497]

1 100

1

41

Range: [0 3.84745]

yslice 36/100
1 100

1

41

Figure 5.32:xz slices of PL reconstructed images with conventional regularization design from noise data.

5.2.2 Zubal Phantom

We next use the same system model to compute PSFs using the Zubal phantom [44,78],

to get an idea of how 3D regularization performs under more realistic conditions. Unlike

the ring phantom, which makes anisotropy and non-uniformity more obvious, the effects

on the Zubal phantom are more subtle. We focus our analysis onPSFs to gain insight into

the resolution properties of 3D regularization. Fig. 5.37-5.40 Show XY, XZ, and YZ slices

of PSFs at various locations. PSFs were computed using certainty based regularization

[23], AIMA with α = 0, andFIIN with α = 0. PSFs constructed from 2D regularization

have also been shown as a point for comparison. In these figures, ζ was tuned so that the

FWHM was around 2 pixels, or 8 mm
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Figure 5.33:yz slices of PL reconstructed images with conventional regularization design from noisy data.
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Figure 5.34:xy slices of PL reconstructed images withAIMA regularization from noisy data.
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Figure 5.35:xz slices of PL reconstructed images withAIMA regularization from noisy data.



74

Range: [0 3.50235]

xslice 31/100
1 100

1

41

Range: [0 3.46361]

xslice 41/100
1 100

1

41

Range: [0 1.66083]

xslice 61/100
1 100

1

41

Range: [0 3.45459]

xslice 71/100
1 100

1

41

Range: [0 3.53207]

xslice 81/100
1 100

1

41

Range: [4.30409e−41 2.18817]

xslice 21/100
1 100

1

41

Figure 5.36:yz slices of PL reconstructed images withAIMA regularization from noisy data.
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Figure 5.37: PSF at (30,0,0), using, top-left, certainty based regularization, top-right,AIMA α = 0, bottom
left, FIIN , bottom right, 2D regularization. Each plot shows from leftto right, xy, xz, and yz
slices through the PSF.
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Figure 5.38: PSF at (-15,-15,0), using, top-left, certainty based regularization, top-right,AIMA α = 0, bot-
tom left,FIIN , bottom right, 2D regularization. Each plot shows from leftto right, xy, xz, and
yz slices through the PSF.
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Figure 5.39: PSF at (15,15,-10), using, top-left, certainty based regularization, top-right,AIMA α = 0,
bottom left,FIIN , bottom right, 2D regularization. Each plot shows from leftto right, xy, xz,
and yz slices through the PSF.
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Figure 5.40: PSF at (-30,0,10), using, top-left, certaintybased regularization, top-right,AIMAα = 0, bottom
left, FIIN , bottom right, 2D regularization. Each plot shows from leftto right, xy, xz, and yz
slices through the PSF.
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5.2.3 3D results discussion

This section discusses the results of 3D regularization. Our results show that using

the AIMA method of regularization design can correct for some anisotropy, however the

PSFs associated with 3D regularization appear less isotropic in the XY plane than 2D

regularization.

5.2.4 Spatial Resolution

3D regularization performs well for the phantom with spherical shells. The images of

the PSFs as well as the reconstructed volume provide a qualitative understanding of how

3D regularization using theAIMA method can improve spatial resolution. Plots of the

FWHM in Fig. 5.20 and Fig. 5.21 for PSFs at two locations provide quantitative evidence

thatAIMA can improve resolution isotropy for the spherical shell phantom. Reconstructed

images show that 3D regularization is also successful in thepresence of noise.

3D regularization improves resolution isotropy for the Zubal phantom. However, like in

2D, when we move from rings or spherical shells to more realistic data, the improvement

of 3D regularization is less dramatic. TheAIMA method and theFIIN method appear

to perform equally well, and both outperform certainty based regularization. However,

2D regularization provides for the greatest improvement inXY-plane isotropy. This is

discussed at length in§VI.

5.2.5 Computational Performance

AIMA is much slower in 3D than in 2D because there does not appear tobe an analyt-

ical solution to the minimization problem in (4.18). This means that an iterative NNLS

algorithm must be run for every voxel. Coupled with the fact that 3D volumes have many

more voxels than 2D pixels, 3D regularization may be impractical. Furthermore, 3D reg-

ularization requires storingL coefficients per voxel. With smaller image dimensions in
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PET, this may be feasible, but in CT, with up to 13 neighbors, the memory requirements

become unmanageable. Since the regularization coefficients change slowly over space,

one could use coarser sampling in storing and computingrj. An alternative approach will

be discussed in§VI.



CHAPTER VI

Z-directional Post Filtering

As mentioned in the previous chapter, 2D regularization seems to outperform 3D regu-

larization in terms of XY isotropy. Recall thecos Θ term in (3.34). This is a mathematical

representation of a fundamental anisotropy in 2.5D PET and CTsystems, that the inherent

blur of these systems occurs mostly in thexy plane. No regularizers can completely com-

pensate for this because it requires acos Θ term in the denominator in the local frequency

response, resulting in an infinite response atΘ = π/2. We have noticed that in design-

ing 3D regularizers, sometimes we sacrificexy plane isotropy to try to achieve additional

isotropy in thez direction. Fig. 6.1 and Fig. 6.2 show impulse responses resulting from 2D

and 3DAIMA regularization respectively. These results were generated using all 8 slices

of the GE scanner and data mentioned in§5.1. From these images we can see that 3D

Range: [−0.00224822 0.0504133]

1 33

1

11

Figure 6.1: Impulse response resulting fromAIMA 2D regularization, from left to right, xy slice, xz slice, yz
slice.
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Figure 6.2: Impulse response resulting fromAIMA 3D regularization, from left to right, xy slice, xz slice, yz
slice.

regularization is more isotropic in all 3 directions, however 2D regularization performs

better in the XY plane. In addition, 3D regularization requires large amounts of memory,

up to 13 regularization coefficients for each pixel. Since scanner size in terms of num-

ber of pixels tends to outpace computer memory, these memoryissues are very relevant.

This chapter discusses the use of 2D regularization, which is more isotropic in the XY

plane, and more memory efficient, followed by applying z-dimension post-reconstruction

denoising that leads to an memory and computationally efficient solution for 3D isotropy.

We analyze three methods in this chapter, case 1: 3D regularization, case 2: 2D reg-

ularization with z-dimension post-reconstruction denoising, and case 3: no regularization

with 3D post-reconstruction denoising. We analyze the spatial resolution properties of

these three methods, and then the noise properties. Finallywe look at reconstructed vol-

umes. In CT typically we wish to use edge-preserving regularization to preserve detail in

the reconstructed volume. Some have argued that the analysis for certainty based regular-

ization can be extended to the non-quadratic case [2]. Sincethis work is related to certainty

based weighting, regularization coefficients designed usingAIMA andFIIN may also help

achieve uniform and isotropic spatial resolution even withnon-quadratic regularization.

Unfortunately non-quadratic edge-preserving regularization is difficult to analyze, so we

will provide analysis using quadratic regularizers to gaininsight in to the spatial resolu-
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tion and noise properties of these methods, but show reconstructions using edge-preserving

regularization.

6.1 Spatial Resolution

In this section we want to analyze and isolate the effect of the three regularization

schemes independent of the weightings used, so we assume that W = I and focus on

parallel-beam geometry instead of fan-beam geometry. We focus our analysis on the

quadratic case in this section. The edge-preserving penalties we consider in this chapter

use the Huber penalty and operate in either the quadratic region of the potential function

or the edge-preserving region. This analysis is directly applicable when in the quadratic

region of the Huber penalty. However to analyze the edge-preserving region, a more so-

phisticated method such as the local perturbation response[2, 3] must be considered. We

attempt to make each of these regularization methods match the isotropic target 3D PSF

(3.35) discussed in§3.3 that has the frequency response

(6.1) L0(̺) =
1

1 + ζ(2π)2|̺|3 .

6.1.1 3D Regularization

We consider a conventional 3D regularizer with 3 adjacent neighbors. Since 2.5D to-

mographic systems are inherently anisotropic regardless of the weightings used, we sepa-

rate the conventional regularizerR into 2 components,Rxy(̺,Φ,Θ) = (2π̺ cos Θ)2 and

Rz(̺,Φ,Θ) = (2π̺ sin Θ)2. These correspond to the local frequency response of regu-

larization with the structure in§3.3.1 with(nl,ml, zl) ∈ {(1, 0, 0), (0, 1, 0)} for Rxy and

(nl,ml, zl) ∈ {(0, 0, 1)} for Rx. This allows us to apply different amounts of smoothing

in the z direction to compensate for the inherent isotropy of 2.5D tomographic systems.

The frequency response using this regularizer is
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L3D =

1
̺ cos Θ

1
̺ cos Θ

+ ζxyRxy(ρ,Φ,Θ) + ζzRz(ρ,Φ,Θ)

=
1

1 + ̺ cos ΘζxyRxy(ρ,Φ,Θ) + ζzRz(ρ,Φ,Θ)

=
1

1 + ̺ cos Θ(ζxy(2π̺ cos Θ)2 + ζz(2π̺ sin Θ)2)

=
1

1 + (2π)2̺3 cos Θ(ζxy cos2 Θ + ζz sin2 Θ)
.(6.2)

We would like to make this isotropic and match the target (6.2). Toward that goal, we can

pick ζxy andζz to minimize|| cos Θ(ζxy cos2 Θ+ ζz sin2 Θ)− ζ||2. To solve forζxy andζz,

cos Θ(ζxy cos2 Θ + ζz sin2 Θ) ≈ ζ

ζxy cos3 Θ + ζz sin2 Θ cos Θ ≈ ζ

cos3 Θ +
ζz
ζxy

sin2 Θ cos Θ ≈ ζ

ζxy

.

We solve this numerically and the optimal solution isζz ≈ 3ζxy.

6.1.2 Post-Reconstruction Denoising

No choice ofζxy andζz will lead to a perfect match with (6.1), so an alternative ap-

proach is to first reconstruct an underlying imagexrough and then denoise it. Because

in CT typically non-quadratic edge-preserving regulariation is used, we will consider the

spatial resolution of an iterative post-reconstruction de-noising of the form

(6.3) x̂ = arg min
x

||x− xrough||2 + ζRpost(x),

wherexrough is the image before the post-reconstruction denoising, which would be the

reconstructed image using WLS for case 3, or the reconstructed image using PWLS with

2D regularization for case 2.Rpost is the edge preserving post-reconstruction regularizer.

For quadratic regularization, the frequency response associated with (6.3) is

(6.4) Lpost =
1

1 + ζRpost(̺,Φ,Θ)
.
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Though the analysis of this section focuses on quadratic regularization, we focus on the

form (6.3) rather than generic post-filter so that this work is relevant to edge-preserving

regularization.

In image denoising, first-order differencing leads to PSFs with heavy tails. First order

differencing does not cause such heavy tails in tomographicreconstruction because of the

1
ρ

term associated with tomographic systems. We use second-order differencing in our

post-reconstruction denoising to help us match the PSFs used in tomographic reconstruc-

tion. Stayman and Nuyts have argued [39, 40, 67] that spatially varying post-filters can

achieve similar spatial resolution and noise properties asthat of regularized reconstruc-

tion. The post-filters used in this section are more restrictive since we require them to have

the form of (6.4).

6.1.3 Spatial Resolution of z-dimension Post-Filtering

We useRz to denote the z-dimension post-reconstruction regularizer, which has the

frequency response

(6.5) Rz(̺,Φ,Θ) = (2π̺ sin Θ)2

if first-order differencing is used, and

(6.6) Rz(̺,Φ,Θ) = (2π̺ sin Θ)4

for second-order differencing. Combining (6.4) with the thelocal frequency reponse asso-

ciated with 2D xy plane regularization, The local frequencyresponse associated with 2D

regularization followed by z-dimension post-reconstruction denoising is

L2Dzpf =
1

1 + ζ(2π)2(̺ cos Θ)3

1

1 + ζzRz(̺,Φ,Θ)
.

Unfortunately, this expression is quite different from thetarget (3.35) and the corre-

sponding PSFs may have a much different shape than the target. In fact it appears im-
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possible to provide completely isotropic resolution using2D regularization followed by

z-dimension post-reconstruction denoising. Therefore wesimply tune the parametersζ

andζz so the FWHM of the PSF matches the target FWHM.

6.1.4 3D Post-Filter

We useR3Dpf to denote the 3D post-reconstruction regularizer. The frequency response

of 3D post-reconstruction denoising follows (6.4), where

(6.7) R3Dpf = (2π̺)2

for first-order differencing and

(6.8) R3Dpf = (2π̺)4

for second-order differencing. The frequency response of 3D post-reconstruction denois-

ing is

(6.9) L3Dpf =
1

1 + ζR3Dpf

.

This expression is much more similar to the target, but is still different because the expo-

nent of̺ is either two or four depending on the differencing. To attempt a fair comparison

in terms of resolution matching, we tuneζ again so that the FWHM of the PSF matches

the target.

6.1.5 Plots of Point Spread Functions

Fig. 6.3 shows normalized profiles cut along the X, Y, and Z axis of PSFs associ-

ated with these three methods with the regularization parameters tuned such that the

FWHM≈ 1.43 pixels. The PSFs associated with these three methods are very similar.

This is consistent with Stayman’s results [67] that post-filtering can achieve similar spa-

tial resolution properties as that of quadratically regularized reconstruction, even with the

structural restriction made in (6.4).
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Figure 6.3: Profiles cut through PSFs in different directions concatenated into one array. From left to right,
along the X-axis, Y-axis, and Z-axis.

Next we plot several PSFs using these three methods using statistical weightingW

from a simulated sinogram from the NCAT [57] phantom. Fig. 6.4displays slices of the

PSF associated with 3D post-reconstruction denoising and contour plots of those slices.

We only plot this at one location since it is spatially invariant. Fig. 6.5-6.8 display slices

of PSFs for 3D regularization and 2D regularization with z-dimension post-reconstruction

denoising at several locations through the volume.

As is quite apparent, 2D regularization with z-dimension post-reconstruction denoising

provides for more isotropy than 3D regularization under realistic weightings. One may

notice extremely streak like PSFs at several locations. In designing these regularizers, we

used theAIMA method withα = 0. The streaks are caused by too manyrj
l values being

0, which can be fixed by raisingα, as discussed in§4.1.3. We choose to useα = 0 in this

section becauseα controls the tradeoff betweenAIMA regularization and certainty based
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Figure 6.4: from left to right, xy, xz, yz slices of the PSF from 3D post-reconstruction denoising.
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Figure 6.5: PSF at (100,-80,0), using 3D regularization on the left, using 2D regularization with a z-
dimension post-reconstruction denoising on the right. Each plot displays, from left to right,
xy, xz, yz slices of the PSF.
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Figure 6.6: PSF at (-100,-100,0), using 3D regularization on the left, using 2D regularization, with z-
dimension post-reconstruction denoising on the right. Each plot displays, from left to right,
xy, xz, yz slices of the PSF.
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Figure 6.7: PSF at (100,0,-40), using 3D regularization on the left, using 2D regularization with a z-
dimension post-reconstruction denoising on the right. Each plot displays, from left to right,
xy, xz, yz slices of the PSF.
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Figure 6.8: PSF at (-100,0,20), using 3D regularization on the left, using 2D regularization with a z-
dimension post-reconstruction denoising on the right. Each plot displays, from left to right,
xy, xz, yz slices of the PSF.

regularization and we wish to give the reader a sense of pureAIMA regularization. Next,

we will look at the variance of these three methods to gain some insight into the noise

properties.

6.2 Noise Properties

Analyzing the covariance for non-quadratic edge preserving regularization is extremely

difficult, though there have been various attempts and approximations for doing so [3,42],

However in the quadratic case using a PWLS estimator we can develop exact expressions

for the variance [16]. The covariance for a PWLS estimator minimizing the following cost

function

(6.10) x̂PWLS = arg min
x≥0

1

2
||A′x− ℓ(y)||2W − ζR(x),

is

(6.11) Cov{x̂PWLS} = [A′WA + ζR]−1A′W Cov{ℓ(y)}WA[A′WA + ζR]−1,

whereR is the Hessian of the regularizer,R(x) = 1
2
x′Rx. W is the user defined weight-

ing matrix, which we have chosen in this thesis to bewi = Cov−1{ℓi} ≈ diag{yi} for
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CT. This expression is exact if a PWLS estimator is used; a PL estimator would yield

approximately the same covariance [16], Substituting in the weighting yields

(6.12) Cov{x̂PWLS} = [A′WA + ζR]−1A′WA[A′WA + ζR]−1.

Adding in some form of post-reconstruction denoising,x̂post = Lpostx̂PWLS, whereLpost

is a circulant matrix that performs a convolution with the impulse response associated with

the post-reconstruction denoising, (6.12) becomes

(6.13) Cov{x̂post} = Lpost[A
′WA + ζR]−1A′WA[A′WA + ζR]−1L′

post.

The inverses would take a long time to compute because these matrices are large, however,

we can compute the variance of the estimator efficiently by adding δj to compute the

variance at once pixel and using the circulant approximation from §III,

(6.14) Var
{

x̂j
}

= δj′Lpost[A
′WA + ζR]−1A′WA[A′WA + ζR]−1L′

postδ
j.

Factoring out a Fourier MatrixQ which is centered at voxelj,

Var
{

x̂j
}

= δj′Q′
[

Λ
j(Υj)2

(Λj + ζΓj)2

]

Qδj

=
∑

k

Λ
j
k|Υ

j
k|2

(Λj
k + ζΓj

k)
2
,(6.15)

where as in§III, Λ
j is the DFT ofA′WAδj, Γ

j is the DFT ofRδj, andΥ
j is the DFT

of Lpostδ
j.

We used (6.15) to compute the standard deviation of 2D regularization with z-dimension

post-reconstruction denoising, 3D regularization, and 3Dpost-reconstruction denoising

for different values ofζ. Then, we plotted the variances as a function of the spatial res-

olution associated withζ in Fig. 6.9. SinceW is object dependent and it is impractical

for us to calculate standard deviation plots for all possible values ofW we have assumed
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W = I in these plots, which is equivalent to assuming the noise is additive white Gaus-

sian noise. While this is an unrealistic Assumption to make for tomographic systems, these

calculations should still give us an indication of the performance of these three methods

even whenW 6= I. In the derivation of certainty based regularization in [23], Fessler

made the following approximations,

A′WA ≈DA′AD

which motivated a regularization design of the form

R = DR0D,

whereD = diag{κ}. Using these equations, (6.14) becomes

Var
{

x̂
j
post

}

≈ δj′D−1L′
post[A

′A + ζR0]
−1A′A[A′A + ζR0]

−1LpostD
−1δj.

WhenW 6= I, the variances calculated in Fig. 6.9 are subject to some scale factorD−1

but the overall relationships remain the same. The standarddeviations are similar for all

three estimators. The noise properties appear similar in the quadratic case. There are

differences however because matching the FWHM of profiles through the PSF still leaves

room for differences in spatial resolution.

6.3 Reconstructed Images

Stayman argued that for quadratic regularization, the samespatial resolution and noise

properties could be achieved with the appropriate post-filter. However the non-quadratic

case is much more difficult to analyze. Anecdotal results suggest that applying edge

preserving post-reconstruction denoising to unregularized reconstructions may accentu-

ate streak artifacts that are common to unregularized tomographic images. Below is a 2D

example, Fig. 6.10 has been reconstructed using certainty based regularization with a Hu-

ber penalty, and Fig. 6.11 was reconstructed with unregularized WLS and then we applied
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Figure 6.9: standard deviations of the 3 methods.

an edge preserving post-reconstruction denoising of the form (6.3) using the same Huber

penalty with matched FWHM. More streak artifacts are presentin the post-filtered image

than in the regularized image.

While these results suggest that post-reconstruction edge-preserving denoising applied

to unregularized reconstructions is suboptimal, we believe that since the noise of 2.5D

systems is statistically independent in the z-direction, edge-preserving z-dimension post-

reconstruction denoising will not have the same problems asedge-preserving post-reconstruction

denoising applied to the XY plane. These streaks exist because the denoising of (6.3)

uses an unweighted norm which assumes that the noise is white. One could choose

W = Cov−1{x̂PWLS}, however computing that quantity is extremely slow and subop-

timal because of the size of the matrices involved.

We next simulate a 2.5D system using a stack of 2D systems to form a 51 slice system

with a similar geometry to [70] withNx = Ny = 256 andNz = 51, and∆x = ∆y =
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Figure 6.10: Reconstruction using regularization.
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Figure 6.11: Reconstructed using post-reconstruction denoising.
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∆z = 1.95mm. To simulate model-mismatch, we used a1024× 1024× 51 NCAT phan-

tom and generated a sinogram using the same distance-drivenbackprojector except with

Nx = Ny = 1024 andNz = 51, ∆x = ∆y = 0.49mm and∆z = 1.95mm. We compared

4 reconstructions using different methods: (i) 3D regularization designed using theAIMA

method withα = 0.1 and 5 neighbors, the four associated with 2D regularizationand

an additional neighbor in thez direction. (ii) 2D regularization designed using theAIMA

method withα = 0.1 and 4 neighbors, followed by z-dimension post-reconstruction edge-

preserving denoising. (iii) extremely small certainty based regularization (just to help the

algorithm converge) and then 3D post-reconstruction edge-preserving denoising. (iv) 3D

regularization using certainty based weightings [23]. Fig. 6.12-6.17 display axial images

for slices 26 and 48, and coronal images for slices 129 and 100for the above 4 methods

as well as the phantom, and the minimally regularized (almost no-denoising) reconstruc-

tion. The images were reconstructed using an ordered subsets algorithm with separable

paraboloidal surrogates [63, 64] with 10 iterations using 246 subsets, 20 iterations using

82 subsets, 40 iterations using 41 subsets, 100 iterations with 2 subsets, and 200 iterations

with 1 subset. To ensure convergence of the minimally regularized reconstruction which

converges slower than other regularized reconstructions,we performed an additional 800

iterations with 1 subset.

As mentioned previously, Fig. 6.13 was reconstructed usingslight regularization to

help the algorithm converge. This gives us a sense of the noise that is present in un-

regularized reconstructions. The coronal images are all quite similar, which confirms

our previous assumption that since under 2.5D geometries, noise in different slices are

statistically independent and thus all of our regularization techniques should have simi-

lar performance in thez dimension. The axial images are quite different. We can see

from Fig. 6.13 that there is a substantial amount of streak-like noise. The reconstructions
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Figure 6.12: Axial and Coronal images of the phantom.
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Figure 6.13: Axial and Coronal images reconstructed using minimal regularization.
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Figure 6.14: Axial and Coronal images reconstructed using 3D edge-preserving regularization.
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Figure 6.15: Axial and Coronal images reconstructed using 2D edge-preserving regularization and z-
dimension edge-preserving denoising.
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Figure 6.16: Axial and Coronal images reconstructed using minimal regularization and then 3D iterative
edge-preserving denoising.
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Figure 6.17: Axial and Coronal images with certainty based edge-preserving regularization.
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from 3D post-reconstruction edge-preserving regularization seems to preserve many of

these streaks. The reconstructions using 3D and 2DAIMA regularization in Fig. 6.15 and

Fig. 6.14 appear to have even more streaks than Fig. 6.13. Reconstructions using certainty

based regularization in Fig. 6.17 have the fewest streaks and suggest that edge preserv-

ing regularization does have the potential to reduce streaks. The obvious question is to

ask why edge-preservingAIMA regularization has more streaks than edge-preserving cer-

tainty based regularization. There are several possibilities. First, Ahn suggested in [3]

that certainty based weights designed for quadratic regularization could be extended to

edge-preserving regularization. There may be issues generalizing that work to the param-

eterization of the regularization we are using in this thesis. Second, we have experimented

with the parameterα that controls the tradeoff betweenAIMA regularization and certainty

based regularization in an attempt to eliminate zeros in theHessian. However, this is a

crude method of quality control. Regularization designed using AIMA gives us the best

fit to a desired target frequency response, however there is no guarantee on the shape of

the associated PSF. Developing more sophisticated ways of controlling the quality of the

AIMA approach is an open problem.

6.4 Summary

In this chapter, we have considered 3 approaches to denoising and image reconstruc-

tion: (i) 3D edge-preserving regularization, (ii) 2D edge-preserving regularization with z-

dimension post-reconstruction edge-preserving denoising, and (iii) 3D post-reconstruction

edge-preserving denoising. In the quadratic case, using anNCAT phantom, method (i)

provides for completely isotropic and uniform spatial resolution. Method (ii) provides for

improved isotropy and uniformity over (iii). We hypothesized that method (i) would be

undesirable because unregularized reconstructions converge very slowly. We also hypoth-
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esized that post-reconstruction edge-preserving denoising would preserve streak artifacts

present in unregularized reconstructions. We believed that method (ii) would be able to

achieve good isotropic spatial resolution, and eliminate streaks that occur mostly in the

xy plane. Simulation results demonstrate that while in the quadratic case, the 3 methods

have similar spatial resolution and noise properties, in the non-quadratic edge-preserving

case, they are quite different. Methods (ii) and (iii) appear to preserve even more streaks

than method (i). We tried using edge-preserving certainty based 3D regularization which

seemed to eliminate the most streaks. While theAIMA approach to regularization design

used in methods (ii) and (iii) pick the best regularization coefficients given our constraints,

there is no quality control over the properties of those regularizers. We believe that using

the parameterα which controls the tradeoff betweenAIMA regularizers and certainty-

based regularizers will allow the user to construct regularizers that have desirable spatial

resolution and noise properties, even in the non-quadraticcase. Selecting the parameterα,

and other methods of quality control forAIMA regularization is an open problem.



CHAPTER VII

Conclusions and Future Work

7.1 Summary

In this dissertation, we have proposed quadratic regularization design techniques for

parallel and fan-beam geometries for 2D and 3D systems. These methods have varying

degrees of performance in terms of spatial resolution, noise properties, and computational

performance.

For 2D, we have extended a parallel-beam regularization design technique based on

continuous space analogs, theAIMA method, to fan-beam geometries. This method ex-

tracts a continuous weighting function from a user-defined weighting matrix using the

fan-beam geometry and the corresponding Jacobian. This technique is computationally

efficient and can be solved mostly analytically, and we have shown that it performs well

in terms of resolution isotropy.

For 3D, we have extended 2D regularization design approaches to 3D systems. This

method is slower, as 3D volumes are larger and there does not appear to be a corresponding

analytical solution for the 3D case. 3D regularization performs well for simple phantoms,

but breaks down with more realistic data because it is tryingto counteract a fundamental

anisotropy in 3D systems with small cone or cross-plane angles. This regularization design

method also requires larger amounts of memory than the 2D case, because it needs to store

104
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more coefficients for more voxels.

As an alternative to theAIMA method, we have developed a slower, but more accurate

FIIN method. This method avoids using theAIMA approximation which makes theAIMA

method faster. While this method performs better in terms of resolution isotropy, the

benefits are not significant. This method is a suitable alternative to theAIMA method

when resolution isotropy is a priority over computational efficiency.

These regularization design methods have the potential to yield too few non-zero co-

efficients due to the non-negativity constraint. In this dissertation, we have developed a

method for guarding against this by controlling a tradeoff between theAIMA andFIIN

methods and the certainty based regularization design approach.

As an alternative to 2D and 3D regularization, we have investigated 2D regularization

followed by z-dimension post-reconstruction denoising. This combined approach benefits

from the improved spatial resolution and computational performance of theAIMA method

for 2D systems, and achieves excellent overall isotropy over 3D regularization. We have

analyzed the spatial resolution and noise properties of this method in the quadratic case,

and found it to be comparable to 3D regularization. We have also performed simula-

tions using this method with non-quadratic edge-preserving regularization, and found that

greater work needs to be done to control the quality of reconstructed images.

7.2 Future Work

• This work focused on using a 2D derivation for the Grammian operator which we

have found to be suitable for 3D systems with small cross-plane or cone angles.

However, it would be desirable to extend the derivation of the Grammian operator to

3D geometries, and explore 3D regularization design with the 3D Grammian.

• This work focused on 2.5D geometries. Extending this work tofully 3D PET and
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cone-beam CT can be done using the 3D Grammian, or by other methods.

• Extensions to second order differencing would give us more basis functions and more

degrees of freedom which will improve the accuracy of our regularization design.

• This work focused on equations for spatial resolution, and noise for quadratic reg-

ularization. However, in CT, non-quadratic edge-preserving regularization is the

preferred method for de-noising. It would be desirable to extend our analysis to

edge-preserving regularization, and analyze the local-perturbation response [3]. This

would help us understand more deeply the trade-off between regularization and post-

filtering.

• We found no apparent analytical solution to 3D regularization design. It is possible

that one does not exist, however further exploration may lead to an efficient algorithm

for 3D regularization design.

• The regularization design methods used in this dissertation are overly rigorous, we

calculate coefficients for every pixel of voxel using every projection angle in the

sinogram. A coarser scheme for regularization design, and angular sub-sampling

would help make regularization design methods, especiallythe 3D methods, more

efficient. A coarser system for regularization design may also use less memory, and

make 3D regularizers more practical. The performance tradeoffs for such a scheme

must be explored.

• The 2.5D systems considered in this thesis are unrealistic.More work needs to be

done to develop regularization for fully 3D systems, or to determine the efficacy of

this regularization design with fully 3D systems.

• The proposed regularization design can lead to strangely shaped PSFs that can cause

artifacts in the resulting image. We had proposed a user defined parameterα which
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could control a tradeoff betweenAIMA regularization and certainty based regular-

ization which does not have this issue. More work needs to be done to determine

how best to choose this parameter. Other ways to ensure that the spatial resolution

properties of designed regularizers are desirable need to be investigated.

• In trying to understand the causes of streaks in edge-preserved regularization, we

analyzed the quadratic case. With the NCAT phantom we saw streaks surrounding

bones that we had not seen before. Further study is required to understand the causes

of these streaks and why they are worse in quadratically regularized images than the

edge-preserving case.
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APPENDIX A

Fourier Analysis of Fan Beam Geometries

This appendix considers fan-beam geometries and uses continuous-space analysis to ana-

lyze the Fourier transform of the Grammian operatorA′WA to simplify the regularization

design problem in (3.8). One can use polar coordinatesΦ, ρ, and continuous-space anal-

ysis to separate the angular and radial components ofA′WA. Using this framework,

isotropy can be thought of as eliminating dependence on the angular componentΦ.

A.1 Fan-Beam Geometry

X−ray Source

Focal Point
ϕ

α

β

γ

s

s = 0

P

Dfs

Ds0

D0d

Figure A.1: Illustration of Fan beam geometry.

Fig. A.1 illustrates the fan-beam geometry that we consider. Let P be the rotation

isocenter.D0d denotes the distance from the pointP to the detector,Ds0 denotes the

distance from the X-ray source toP , andDfs denotes the distance from the X-ray source



110

to the focal point of the detector arc. DefineDsd , D0d + Ds0 to be the total distance

from the X-ray source to the center of the detector, andDfd , Dsd + Dfs to be the total

distance from the focal point to the center of the detector. This formulation encompasses a

variety of system configurations by allowing the detector focal point to differ from the X-

ray source location. For flat detectors,Dfs = ∞. For third-generation X-ray CT systems,

Dfs = 0. For fourth generation X-ray CT systems,Dfs = −Ds0.

Let s ∈ [−smax, smax] denote the (signed)arc lengthalong the detector, wheres = 0

corresponds to the detector center. Assuming detector elements are equally spaced along

the detector, arc length is the natural parameterization. The various angles have the fol-

lowing relationships:

α(s) =
s

Dfd

γ(s) = tan−1

(

(Dfd) sinα(s)

(Dfd) cosα(s)−Dfs

)

where the two most important cases are

(A.1) γ(s) =











α(s), Dfs = 0

tan−1 s/Dsd, Dfs =∞.

The relationship betweens andγ is:

(A.2) s =



























(Dfd)
[

γ− arcsin
(

Dfs

Dfd

sin γ
)]

,

0 ≤ Dfs <∞

Dsd tan γ, Dfs =∞.

The ray corresponding to detector elements and angleβ is

L(s, β) = {(x, y) : x cosϕ(s, β) + y sinϕ(s, β) = r(s)} ,

where

ϕ(s, β) , β + γ(s)

r(s) , Ds0 sin γ(s) .(A.3)
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The range ofr depends on the position of the X-ray source and the size of thedetector:

(A.4) |r(s)| ≤ rmax , Ds0 sin γmax,

whereγmax , γ(smax) and smax is half the total detector arc length. The radiusrmax

defines the circularfield of viewof the imaging system. Thefan angleis 2 γmax.

The line-integral projectionp(s, β) of f alongL(s, β) is1:

p(s, β) =

∫

L(s,β)

f(x, y) dℓ

=

∫∫

f(x, y)

δ(x cos(ϕ(s, β)) +y sinϕ(s, β)−r(s)) dx dy,(A.5)

for |s| ≤ smax and0 ≤ β < βmax. We requireβmax ≥ π + 2 γmax to ensure complete

sampling of the FOV (otherwise the impulse response would behighly anisotropic) .

The usual inner product for fan-beam projection space is

〈p1, p2〉 =

∫ smax

−smax

∫ βmax

0

p1(s, β) p2(s, β) ds dβ .

Using this inner product in projection space, and the usualL2 inner product in image

space, the adjoint ofP is given by

(P∗p)(x, y) =

∫ smax

−smax

∫ βmax

0

p(s, β)

δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s)) p(s, β) ds dβ,

(A.6)

wherer(s) andϕ(s, β) were defined in (A.3). We will next extend a common derivationof

backproject then filter (BPF) tomographic reconstruction toaccommodate a user defined

weighting, and then change the coordinates from parallel-beam to fan-beam space.
1Practically speaking, the integral should be restricted tothe field of view:

p

x2 + y2 ≤ rmax, but this restriction wouldcompli-
cate analysis by introducing a shift variance into the problem, so we ignore it.
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A.2 Parallel-Beam Grammian Analysis

When we analyze the local impulse response, we typically consider recentered local

impulse functions. In this derivation we will start with an uncentered local impulse re-

sponse, and center it at the end by removing a phase term in thefrequency domain. The

un-centered local impulse response of the Grammian operator is ,

P
∗
WPδj(x, y) =

∫ π

0

∫ ∞

−∞
δ(xj cos(φ) +yj sin(φ)−r)

w(r, φ)δ(x cos(φ) +y sin(φ)−r)drdφ.

Using the sampling property with the firstδ, define

(A.7) wj(φ) , w(r, φ) = w(xj cos(φ) +yj sin(φ), φ).

We denote the Fourier transform ofδj(x, y) asF j(ρ,Φ). Then, using the Fourier slice

theorem,

P
∗
WPδj(x, y) =

∫ π

0

∫ ∞

−∞

∫ ∞

−∞
F j(ρ, φ)ei2πρrdρ

wj(φ)δ(x cosφ+ y sinφ− r)drdφ(A.8)

=

∫ π

0

∫ ∞

−∞
F j(ρ,Φ)

wj(φ)ei2πρ(x cos φ+y sin φ)dρdφ.

This is nearly the inverse Fourier transform in signed polarcoordinates except for aρ scale

factor. Dividing byρ,

P
∗
WPδj(x, y) =

∫ π

0

∫ ∞

−∞

wj(φ)F (δj(x, y))

ρ

ei2πρ(x cos φ+y sin φ)dρdφ.
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The local impulse response is recentered,hj(x, y) = P
∗
WPδj(x + xj, y + yj) which

eliminates the complex phase termF j(ρ, φ). Then, the local frequency response is

(A.9) Hj(ρ,Φ) =
wj(Φ)

ρ
.

A.3 Fan Beam Grammian Analysis

The natural indexing for fan-beam data is arc-lengths and angleβ. The analogs tor, φ

for parallel-beam systems arer(s), ϕ(s, β) as defined in (A.3). The weighting expression

w(r, φ) is indexed asw(s, β) in fan-beam coordinates. We start by looking at the fan-beam

projection in terms of the analogs to parallel-beam coordinates,

(P∗
WPδj)(x, y) =

∫ βmax

−βmax

∫ smax

−smax

w(s, β)

δ(xj cos(ϕ(s, β)) +yj sin(ϕ(s, β))−r(s))

δ(x cos(ϕ(s, β)) +y sin(ϕ(s, β))−r(s))dsdβ.

We use the change of variables

r′ = r(s) = Ds0 sin γ(s)(A.10)

ϕ′ = ϕ(s, β) = β + γ(s)(A.11)

as defined in (A.3) which has the corresponding Jacobian determinant

(A.12) J(s) = |Ds0 cos γ(s)||γ̇(s)|.

Then,

(P∗
WPδj)(x, y) =

∫ 2π

0

∫ rmax

−rmax

w(r′, ϕ′)

δ(xj cosϕ′ + yj sinϕ′ − r′)

δ(x cosϕ′ + y sinϕ′ − r′) 1

J(s(r′))
drdϕ.
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In this expression,

w(r, ϕ) , w(s(r), β(r, ϕ))

s(r) = γ−1(arcsin(r/Ds0))

β(r, ϕ) = ϕ− arcsin(r/Ds0) .

Using the sampling property of the firstδ as in the parallel beam case,

wj(ϕ′) , w(xj cosϕ′ + yj sinϕ′, ϕ′)(A.13)

sj(ϕ′) , s(r′)
∣

∣

∣

r′=xj cos ϕ′+yj sin ϕ′

.(A.14)

Again, letF j(ρ,Φ) denote the Fourier transform ofδj(x, y). Then, using the Fourier slice

theorem,

(P∗
WPδj)(x, y)

=

∫ rmax

−rmax

∫ 2π

0

∫ ∞

−∞

F j(ρ,Φ)wj(ϕ′)

J(sj(ϕ′))
ei2πρr′

δ(x cosϕ′ + y sinϕ′ − r′)dρdϕ′dr′

=

∫ 2π

0

∫ ∞

−∞

F j(ρ,Φ)wj(ϕ)

J(sj(ϕ′))
ei2πρ(x cos ϕ′+y sin ϕ′)dρdϕ′

=

∫ π

0

∫ ∞

−∞

F j(ρ,Φ)wj(ϕ′)

J(sj(ϕ′))
ei2πρ(x cos ϕ′+y sin ϕ′)dρdϕ′

+

∫ π

0

∫ ∞

−∞

F j(ρ,Φ)wj(ϕ′′)

J(sj(ϕ′′))
ei2πρ(x cos ϕ′′+y sin ϕ′′)dρdϕ′′,

whereϕ′′ = ϕ′+π. This is similar to the parallel-beam derivation except that we have two

integrals. We can convert each integral into the inverse Fourier transform as we did in the

parallel-beam case and strip out the phase termF j(ρ,Φ) by recentering the local impulse

response. The local frequency responses of the Grammian operator is

(A.15) Hj(ρ,Φ) =
w̃j(Φ)

|ρ| ,
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where,

(A.16) w̃j(Φ) =
1

J(sj(Φ))

[

wj(ϕ)
∣

∣

∣

ϕ=Φ
+ wj(ϕ)

∣

∣

∣

ϕ=Φ+π

]

.

Because of the absolute value function in (A.12),J(s) is invariant to theπ phase shift.

For the case where we have uniform weighting,w(s, β) = 1 and thereforeW = I, and

(A.15) simplifies to

(A.17) Hj(ρ,Φ) =
2

J(sj(Φ))|ρ| .

We use this equation in the calculation of a target local impulse response (3.19).
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APPENDIX B

KKT proofs

In this appendix, we show that
√

d2
2 + d2

3 ≤ d1, as claimed below (4.10) in§4.1.4. Squar-

ing the integrals in (4.10), we have:

d2
1 =

1

π

∫ π

0

∫ π

0

wj(X)wj(Y )dXdY

d2
2 =

1

π

∫ π

0

∫ π

0

cos(2X)wj(X) cos(2Y )wj(Y )dXdY

d2
3 =

1

π

∫ π

0

∫ π

0

sin(2X)wj(X) sin(2Y )wj(Y )dXdY.

In particular,

d2
2 + d2

3 =
1

π

∫ π

0

∫ π

0

wj(X)wj(Y )

[cos(2X) cos(2Y ) + sin(2X) sin(2Y )]dXdY

=
1

π

∫ π

0

∫ π

0

wj(X)wj(Y ) cos(2X − 2Y ) dXdY.

Thus,d2
2 + d2

3 ≤ d2
1 sincewj(Φ) ≥ 0 for all Φ andcos(2X − 2Y ) ≤ 1 for all X andY .
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APPENDIX C

Streaks in Reconstructed Images

We attempted to gain more insight into why there were so many streaks in images recon-

structed with edge preserving regularization so we decidedto look at the quadratic case

with the same phantom for some insight. We were disappointedto find that there were even

more streaks surrounding bone in these images. An image reconstructed using certainty

based regularization is displayed in Fig. C.1. These streaksare different than the ones we

saw in the edge preserving case, Fig. 6.14-6.15. At this point we do not completely un-

derstand why these streaks are worse in the quadratic case than the edge preserving case.

The streaks are present in regularized reconstruction using AIMA regularization, certainty

based regularization, and even conventional regularization so we do not believe this to be

the result of regularization design. The streaks disappearduring unweighted reconstruc-

tions, Fig. C.2. We believe that our reconstruction algorithms have converged because

further iterations do not seem to improve the cost function.Determining the cause of these

streaks require further study, as well as why they are less apparent with edge-preserving

regularization.
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Figure C.1: Reconstruction of NCAT phantom using certaintybased regularization.
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Figure C.2: Unweighted reconstruction of NCAT phantom using conventional regularization.
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