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CHAPTER |

Introduction

Imaging systems are often evaluated based on the spatéities properties of recon-
structed images. Systems with highly blurred spatial tggm can obscure features of in-
terest to the viewer. Systems with extremely sharp spa&sallution give the viewer access
to much detail, but may have too much noise. Many imagingesystare approximately
shift-invariant; they exhibit the same spatial resolutproperties in all regions of the re-
sulting image. Images resulting from these systems candwglit of as the convolution
between an impulse response and the true image. Physiedtasy positron emission
tomography (PET) and computed tomography (CT) systems hewmake them shift-
variant. These imaging systems have spatial resolutiopepties that change through
different parts of the resulting image. For example, faarbgeometries for CT concen-
trate more rays at the edges of the image which result in shagatial resolution in that
region. Crystal penetration effects in PET also introduce-meiformities [29]. Spatial
resolution variations can also result from the propertfek@estimator used to reconstruct
images. Estimators that use the shift-variant statisfiesomage often have shift-variant
spatial resolution properties.

Initial work on tomographic image reconstruction modelechdgraphic systems as

Radon transforms. This methodology assumes that data neeasuots consist of line



integrals through the object. Using this system model, do@mstruction problem is re-
duced to inverting the Radon transform and can be solved lyyqreckly by filtered back
projection (FBP). However actual tomographic systems doritdaricacies that are not
captured in the Radon transform. For example, the crystadtpation effects mentioned
previously in PET systems can cause artifacts when regid& i used for reconstruc-
tion. Unfortunately taking these inaccuracies into coasation results in a reconstruction
problem far more complicated than Radon transform inversittosed form solutions
for such problems usually do not exist, or are very difficoltcompute. There have
been several attempts at analytical methods that compefmaspace-variant physical
effects [6, 30, 37,62, 73, 75] but these generally ignoreeaiodels. As a result, most re-
construction algorithms that use accurate system modeiseaative. Iterative algorithms
also have better spatial resolution [74] and noise proge[8] because they can model the
measurement statistics. This can aid in lesion detecti®h [4

The spatial resolution of reconstructed images has a gmngaadt on any tasks per-
formed on those images. Anisotropic spatial resolutiondaiatort the shape of features
in the reconstructed image. This affects all tasks thatluavthe extraction or detection
of specific shapes. Non-uniform resolution can distort tin@l#ude of reconstructed im-
ages in certain regions and complicate quantitation taSkene [47] argue that forcing
isotropic resolution can hurt lesion detection and quatih, though we believe the im-
portance of uniform and isotropic spatial resolution reggiifurther study. Furthermore,
the techniques developed in this thesis can be used for ofegrdefined spatial resolu-
tions. We believe that the spatial resolution of the reqoiettd image should be within
the users control, and not an arbitrary byproduct of therestr.

For iterative algorithms, Maximum likelihood (ML) reconsttion algorithms are often

used for PET systems. In CT, due to the higher number of phaiants, weighted least



squares (WLS) can be used, except perhaps at very low x-ray 8Bosal converged solu-
tions from ML and WLS reconstruction are often extremely naisge to the ill conditioned
nature of tomography. One can stop the iterative algoritbfore convergence and before
images become too noisy; however this solution does noeeehiniform and isotropic
spatial resolution because resolution isotropy and umiityrcan change with successive
iterations [36, 72, 76]. Alternatively, one can run theatare algorithm to completion and
post-filter the resulting noise, however, this often reggiat large number of iterations [61].
In this work we focus on using a roughness penalty in thetiteralgorithm. Penalty
functions lead to faster convergence of iterative algargh One can also choose penalty
functions for different goals, including preserving ed¢e27, 31, 34, 43], incorporating
anatomical information [21, 33], and even lesion detecf#t 50]. Using penalty func-
tions is advantageous because it allows us to predict tldutesn and noise properties of
the estimator and design the penalty accordingly [4,183,5,1,52,68,77]. Unfortunately,
for penalized likelihood (PL) reconstruction, interacisdoetween conventional regulariz-
ers (which are essentially just high-pass filters) and thiss®a log-likelihood function
lead to nonuniform and anisotropic resolution in the rasglimage [22, 23]. For Pe-
nalized WLS (PWLS), selecting weightings that match the ioiplveightings associated
with PL reconstruction result in good noise properties. hiis tase interactions between
the weightings and conventional regularizers also leasgtmniform and anisotropic res-
olution in the resulting image. The goal of this work is toidesegularizers which reduce
noise, lead to faster convergence, and preserve unifornmsatrdpic spatial resolution.
Much previous work on regularization design focuses on imatised approaches to
fit the local impulse response of the estimator to a targetilsgresponse. A shift-variant
regularizer based on the aggregate certainty of measutamenintersecting each pixel

was developed that yielded uniform but anisotropic spaéiablution [23]. Stayman pa-



rameterized the quadratic regularizer to produce unifanohigaotropic spatial resolution
[65] and generalized regularization design to other noisddm noise models [67]. [40]
presents a regularization design method for uniform anadpa spatial resolution which
is not based on an explicit target point spread function JPBi rather focuses on cir-
cular symmetry and uniformity. Fessler proposed an arcalyéipproach to regularization
design for 2D parallel-beam emission reconstruction teaswwontinuous space analogs to
simplify the regularization design problem [18] which igtbasis for much of this work.
Qi and Leahy in [52] also proposed a regularization desigtinatethat provides a uniform
peak amplitude of the local impulse response function foPET, but that approach does
not ensure isotropic resolution properties [52]. We hage @roposed a solution for 3D
PET that attempts to achieve uniformity and isotropy [58].

The main contributions of this work are:

e An analytical solution to regularization design problemmsaD parallel beam geome-
tries is discussed in [18]. This work extends that analysfan-beam geometries by

looking at a change of coordinate space for the weightingswed [59, 60];

e A computationally efficient approach [58] (but not a comelgtanalytical solution)

to 3D regularization design problems based on the work ofd3aB

e A slower but more accurate regularization design approhah avoids the use of

approximations in calculating the local frequency resparfshe regularizer;

e Several practical constraints on regularization desigegffiments that improve the
conditioning of the reconstruction problem and reducdaats in reconstructed im-

ages;

e A combined approach of 2D regularization and z-dimensiast-peconstruction de-

noising to capture the resolution and computational efiicéelvantages of 2D regu-



larization for use in 3D geometries. We also characterieesfatial resolution and
noise properties of this approach and investigate the pedoce of edge preserving

regularization and denoising;

This thesis first describes the statistical model consalareChaptersil. It then an-
alyzes the local impulse response of the imaging systemcfwdépends on our regular-
ization design) irg2.5. We will formulate a frequency domain expression forlthie of
our iterative reconstruction using our regularizer for 2izcase ing3.2 and the 3D case
in §3.3. Our target spatial resolution is also discusse§Bi@ and§3.3. Sectiong4.1 and
§4.2 discuss implementation details for computing regeédion coefficients for the 2D
and 3D case respectively. The results of these methodsesenged in chaptél/. Chap-
ter§VI presents reconstruction with 2D regularization andmelision iterative denoising
which hopes to capture the isotropy and computational effay of 2D regularization and

adapt it to 3D systems. Chap&/1l concludes the thesis and presents future work.



CHAPTER I

Background

2.1 X-ray Computed Tomography

X-ray systems consist of a source that emits 30-160keV »phayons that pass through
an object being imaged. The photons either pass througlbijbet@nd strike the detector,
or interact with a part of the object and are absorbed orescétiey may still strike the
detector elsewhere, but this contributes to system noisghe one dimensional case we
consider an X-ray point source with all photons travelingilne. The mean number of

photons that travel a distanéeawithout interacting with the object is:
E[N (k)] = N(0)e Jo nk)a’,

Here, N(0) are the number of photons at x=0 (the number dfpbtatons transmitted), and
1 i1s the linear attenuation coefficient for the media that thrayphotons travel through

(usually air and the object being imaged). CT systems coobiih X-ray source (often

modeled as a point source), and an array of detectors. Thenpat placed between the
X-ray source and the array of detectors, and then the systestaited over some trajectory
(usually circular or helical but other orbits have been stigated) to capture projection
data. For CT systems, we use the following model for the measeints:

(2.1) ElY) = / 1(§)e” IOt ae 4o,
3



The subscript denotes théth measurement is the photon energy. The inner integral
is no longer a function of depth, but now a line integral corresponding to each measure-
ment. The number of photo§(0) has been replaced with({), which is the intensity
of theith measurement incorporating the initial spectrum and tie gf the detectorr;
denotes background contributions coming from sources asdtatter. The line integral
fL (z,y, z,£)dl" depends on the specific geometry of the imaging system ben afp-
proximates the Radon transform, a fundamental aspect ofgm@phic systems that will
be discussed if2.3.1.

Most CT systems use some sort of fan-beam geometry. An exahiale-beam geom-
etry with a flat detector is pictured in Fig. 2.1. Fan beam getoies can induce resolution
non-uniformities [28]. The spread of rays as they fan outfithe source to the detec-
tor can magnify objects that are close to the detector. Thikwg focused on correcting
non-uniformities and anisotropy caused by the statistiaghtings used in reconstruc-
tion and the effects of the fan-beam geometry. This work @extended to correct other

shift-variant aspects of the system by using methods frofh [6

Array of Detectors

X-ray Source L

Figure 2.1: Diagram of Fan Beam 2D CT system.



2.2 Positron Emission Tomography

PET systems image the distribution of radioactive tracei@ni object. In clinical sit-
uations, this is a human being with radioactive tracersciteg inside of them. Positron
decay creates 511keV photons that are emitted in anti{phdalections. The patient is
surrounded by a ring (2D systems) or a cylinder (3D systerindgictors. Fig. 2.2 shows
a diagram of a PET imaging system.

When a photon strikes a detector, the event is recorded a®etidet Simultaneous
detections (or detections close enough in time to be coreidegmultaneous) are recorded
as a coincidence. The number of coincidences between affitextors is an indication
of the amount of positron decay that occurred somewhereelirit between the 2 detec-
tors. With some randomness, this is a measure of the lingradtéhrough that portion of
the object. All line integrals along a certain angle arenrefé to as a projection. It should
be noted that the raw sinogram data collected by a PET scartheaites the specific loca-
tion of radioactive tracers inside a patient during the shanation. However, the specific
location of radiotracers change over time and what is dgtoéinterest is the distribution
of radioactive tracers inside the patient. Inherent ineWET reconstruction problem is
the estimation of the distribution of radio-tracers frone ginogram recorded during the
time of the scan.

Photons used in PET have much higher photon energy compatbdttof CT. Lower
photon energies lead to better contrast between tissus.typkis is important for CT
because in CT, it is the attenuation of the tissues that is umedsHowever PET systems
measure the distribution of radioactive tracers and thenatition of other tissues is an

obstacle to reconstruction. Mathematically, the ideal ehdor the mean of PET data we



use is:
ElY;] = ci/ f(z,y)dl + ;.
L;

f(z,y) is the object of interest, ang are background events due to scatter and other ef-
fects. The line integral is taken for each line of respong@Rl, which is the line between

a pair of detectors. The specifics of the line integral areeddpnt on the physical geome-
tries of the scanner, but like in CT, is usually based on the Ra@msform;2.3.1 and the
detector response; accounts for the affects of attenuation in the body and sgmis the
probability that the photons of a coincidence will not bedided by the attenuation of the
object. The probability that the coincidence will be detelds the product of probabilities

of each photon surviving the attenuation of the object,

Py= P 1P

o efLi ) u(:v,yVZ)dlefLi , il@y,2)dl

Here,u represents the attenuation of the body, which is a functi@pace, and the photon
energy¢. The two line integrals represent the paths of each photamceS$hotons are

emitted in anti-parallel directions, the two line integrabn be combined,

P' J— efLi :u‘(mvy»z)dl
P =

)

which is just the line integral through the body. The attdimmacan be measured accu-
rately using a CT scan, which is part of the reason for PET-Clesys

3D PET systems can be thought of as a stack of 2D systems tageimultiple slices
through an object. In 3D systems cross-plane coincidetigese that occur between de-
tectors on different slices, can be detected. Some 3D PE&magsanclude septa, which
are physical barriers that block cross-plane coincidenioesrder to reduce scatter. Us-

ing septa decreases the sensitivity of the imaging systentaitine blocked coincidences,



Figure 2.2: View of one slice of a 3D PET system

however septa also simplify the reconstruction process. dverg septa from PET sys-
tems increase their sensitivity substantially, e.g. byaoiaof 7.04 [9]. This is caused
by an increased number of lines of response (including gpis®e coincidences), the
elimination of septa-shadowing effect (in some systemgtasalso block some in-plane
coincidences), and about a factor of 3 increase in scatter.

Various factors contribute to the shift-variant aspect B Bystems. Crystal penetra-
tion effects as well as the angles that photons strike dateaffect the aperture functions
for PET detectors [56], resulting in non-uniform spatiaatition. The existence and ge-
ometry of septa can also cause changes in spatial resoj@8@nThis work is designed to
correct non-uniformities and anisotropy caused by thensitaction process, not the sys-

tem itself. To compensate for shift-invariant systems, careapply the methods of [67].

2.3 Tomography

2.3.1 The Radon Transform

The Radon transform [53] is a set of line integrals throughlgaa f (x, y) set at angle

¢ and radiug- from the center. Mathematically, it is expressed as:

go(r) = / / £ (2, 9)8(x cos(6) +y sin(6) —r)dzdy.
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gs(+) is referred to as a projection at angle Data collected from parallel-beam CT sys-
tems and PET systems are naturally organized into projectid-or parallel-beam CT
systems, each angle where data is collected as the CT systatesraround the object
being imaged creates a projection. For PET systems, LORsecgrooped by angle and
thus form a projection. A set of projections is called a siaongbecause Radon transforms
of point objects look like sinusoids. A sample object andgim®gram of that object are

shown in Fig. 2.3. The nature of the Radon transform leads iimales way to reconstruct

]
888

Figure 2.3: Left: A sample phantom., Right: sinogram of {hzntom.

data from sinograms.
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2.3.2 The Fourier Slice Theorem

The Fourier Slice Theorem states that 1D Fourier transfdrg,@) is the 2D Fourier

transform of the object evaluated at angleMathematically,

Gg(p) = F(p, ®)|ao=¢,

where®, p are frequency domain polar coordinates éhdnd £ are Fourier transforms of
gs(r) and f(z, y) respectively. Consequently, we can also fjpd-) by taking the inverse

Fourier transform of a 1D slice through, evaluated ap.
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2.3.3 Backprojection-Filtering

One method of tomographic reconstruction is Backprojeekiiering (BPF). Back-

projection operators “smear” projection data back acrossmhage. Mathematically,

(2.2) bo(z,y) = /OO gs(r)d(zcos ¢ + ysing — r)dr.

[e.e]

The laminogram is the integral (or in real discrete systenssim) of all back-projections

2.3) foly) = / " bo(, )d

One can show that the laminogram is actually the image cwadoWwith a% blurring

function: Plugging (2.2) into (2.3)
fiw) = [ bolaio
(2.4) = /O7r /_OO gs(r)6(x cos ¢ + ysin g — r)drde.
Using the Fourier slice theorem,
)= [ [P0 dpiacoss -+ ysing - ryirdo
25) o A e )

This is nearly the inverse Fourier transform in polar cooatis,

f(z,y) = /0% /OOO -pdpd®

except that- should be integrated frorf0, co) and ¢ should be integrated fror0, 27),
and we need a scale factor. In polar coordinates(—p, ®) = F(p, ® + ), which means

the two limits of integration are equivalent. Dividing by

21 [e%¢) F ) )
(26) f(f[', y) _ / / (p? ¢) 6127rp(zcos¢+ysm¢)dpd¢.
0 0 p
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Thus, the laminogram is the original image blurred by/a filter. Filtering the lamino-
gram with ap filter can restore the original image. Real filters howeversine con-
structed with some frequency cutoff which will eliminateghifrequency content in the
image. In practice we often use Filtered Backprojection (FiBBjead of BPF. In FBP
the order is reversed: filtering with a ramp filter first andnthmckprojecting the data.
Though FBP reconstruction is very quick and efficient, FBP mesuthat PET and CT
systems behave like pure Radon transforms. Iterative récmtion techniques allow for
more accurate system models. Iterative techniques ats@ alle to use the noise statistics
of the measurements in the estimation of the true image. 3$@mwe argued that statisti-
cally based post-filters could be used for FBP, however thisablematic because noise
statistics are rooted in the sinogram domain. Convertingetlstatistics to the image do-

main, which would be necessary for a post-filter, is a difficagk.

2.4 lterative Algorithms

2.4.1 Statistical Models

For iterative reconstruction, we discretize the contirsifaunctions in the previous sec-
tions as follows. For CT, ley = (v, ..., yas) denote the vector of noisy sinogram mea-
surements recorded in an emission or transmission tombgiamging system. For sim-
plicity in the transmission tomography case, we considerftlowing mono-energetic
formulation for the mean of our data:

For emission tomography we consider the model
(2.8) Ui = Elyi] = ci[Az]; + ;.

A is the system matrixz = (z1, 9, ..., xy) IS @ discretized version of the object being

imaged, andAx|; = Z?’Zl a;;x;. In PET, The coefficients; denote attenuation coeffi-
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cients. In CTp; denotes the blank scah; is analogous td;(¢) in (2.1) and gives us the
response of the system without any object attenuation presel quantifies the energy of
the spectrum and the detector gaifp.denotes random counts. In practieg,b;, andr;

are determined by various supplementary measurementswolnk treats those quantities
as predefined quantities and their estimation is not in tbpesof this work. Note that all
expressions thus far in this section (2.7), (2.8), are esgm@ as means. The measurements
y; are random variables, and it is this randomness that wetefer noise, not the additive
randoms-;.

The radio-tracers in PET systems, and the X-ray source in Emadeled as emitting
photons randomly at a certain mean rate. Thus a Poisson rfardigle measurements
makes sense. In CT, while the X-ray source may be Poissonjdtrdodtion of the mea-
surements is more complicated and a compound Poisson nsoahelre accurate [12]. In
this thesis we assume a Poisson distribution and a mongetiesource for simplicity.
In PET systems, positron decay is modeled as a Poisson pra&iésadio-tracers along a
specific LOR are summed to a specific measurement. This negasut is a Poisson pro-
cess as the sum of Poisson processes is also a Poisson pfoitessoise models can be
used and justified and are discussed in [67]. These statisticdels are extremely simple
and do not include many physical effects because the foctlssofvork is on correcting

non-uniformities and anisotropy caused by statisticabwengs, not the system itself.
2.4.2 Maximum and Penalized Likelihood Estimation
Once a noise model has been selected, one can use a Maxinkefiinhod (ML) esti-

mator that picks the estimate which would maximize the podlhg of the measurements.

Mathematically, this is expressed as.

Ty = argmax!(x,y).

T
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Assuming a Poisson distribution, the likelihood of PET and@dasurements is

H?J

yle Fi(x

Maximizing the log of the likelihood (or log-likelihood) isquivalent and often easier than

maximizing the likelihood function itself. The correspamgllog-likelihood function is

(2.9) L(z,y) = logl(w,y) = Zyzlogyl — yi().

Unfortunately, reconstructing images based purely on itedilhood function results in
extremely noisy images. As discussed in Chagtethere are several ways to reduce
noise, but this work focuses on using regularization. Addiegularization we switch
from ML reconstruction to Penalized Likelihood (PL) rectrostion where we maximize

the objective function

(2.10) O(x,y) = L(x,y) — (R(x).

( is a user-selected factor that controls how much reguldsizaffects the reconstructed
image.

For CT, The log-likelihood.(x, y) is non-convex and non-quadratic, making the mini-
mization problem difficult and slow. One can use a secon@yordylor-series approxima-
tion to the log-likelihood resulting in a PWLS cost functidiB[ 14]. PWLS is ill-suited for
PET reconstruction because PET involves much lower cobtats €T, leading to a poor
Taylor series approximation. In PWLS for CT, we estimatay minimizing the following

cost function:

(2.11) Oz, y) = [[l(y) — Az|ly + (R(x)

(2.12) z(y) = argmin ¢(x, y),

T
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where/(y) £ —In(%7), R(x) is a regularizer that controls noisg,is a scalar that

determines the resolution-noise tradeoff, 3Wd= diag{w;} is a weighting matrix.

The weighting matrix3 is chosen to take advantage of the statistics of the data. In
general,L(y,x) = > h;(y;,[Ax];) and properties of;(-,-) determineW [67]. For
transmission tomography, with the model in (2.2), = Var '{l;} ~ v;. For emission
tomography, the plug-in weighting #; = Var *{y;} ~ y;. For low count levels alterna-
tive weightings are preferable [35]. The regularizatiosige methods in this paper apply
to other statistical models (such as compound Poisson)(th@phby simply changing the
weighting matrixW. In the next sectior§2.5, we will discuss local impulse responses
(LIR) for PL and QPWLS. Both estimation methods result in simdgpressions for the

LIR whenw; is chosen as described here.

2.5 Local Impulse Response

For linear space-invariant systems, a global impulse mespcan be used to charac-
terize the system. However with non-linear estimators wstranalyze the local impulse
response (LIR) to assess the uniformity and isotropy of tiséesy. We use the following

definition of the LIR, in a slightly different form than [23] pixel or voxel; as:

(2.13) V(z) = lim *

whered’ is an impulse function centered at pixel This is the limit of the difference

between a reconstruction of the true image plus a small isgppérturbation, and a re-
construction of the true image without the perturbationthesmagnitude of the impulse
approaches zero. Because we are trying to characterize tiheats, we use the mean
of the data (a quantity that is not available in practice, darn be used in the analysis).

This equation is equivalent to taking the derivative of tereator which can be broken
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up using the chain rule:

(2.14) V(x) = Va(y(x))d’
(2.15) = Vya(y) Vay(z)| &
y=y(x) T=x
To calculateV ,z(y) for the PL estimator, we can use the implicit function theore
y=y(x)

and the chain rule [23]. We know that at the maximum of the abje function, the

derivative of the objective function is zero,
VIYe(2(y), y) = 0,
whereVIM0 = [9/8;,, ..., 8/9;,) is the row gradient operator with respectitty). If we
differentiate again,
VYD (d(y), y)Vyi(y) + VIIe(2(y) = 0
(2.16) Vyz(y) = [-VEI0(2(y), y) VT B (2(y).

Here, V20 is the Hessian operator whosg k)th element i and V-1 is the

0
Sa,gj Oz, '

operator whoséj, i)th element isaij—am- Plugging (2.10) into (2.16),
(2.17) Vyi(y) = [-VEIL(E(y), y) + RV L(E(y), y),

whereR is the Hessian of the regularizé(z). V"' R(x) is 0 sinceR is not a function

of y. Using a Poisson noise model [54] and (2.8) for emission tmaguhy [15, 23],

—V[Q’O]L(:i:(y), y) = A’diag{ ﬂyi } A

1,1 - - "di 1
~VIHIL(2(y),y) = A d'ag{m}
(2.18) Vey(@)| & =AY

In practical implementation, we approximate the mean otitkita with a single realization,

Ui(x) =~ y;. Using this and combining (2.18), (2.17), and (2.15),

(2.19) U =U(zye, R) = [AWA+ (R "AWA,
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whereR is the Hessian of the regulariz&(x), andW = diag{1/y;}.

Using a Poisson noise model [55] and (2.7) for transmissarography,

—V[Qvo]L(aAc(y), y) = A’diag{(ﬂz‘(w) —ri)(1— ygz(?i))}

—VL(E(y), y) = A'diag{1 - g?w)}

(2.20) Vog(x)| 8 = b;e A% A§ = (5;(x) — ;) A .

Approximating the mean of the data with a single realizatiptir) ~ y;, and combining
(2.20), (2.17), and (2.15) results in (2.19) with = diag{@i;#}. If we ignorer,
W = diag{y;}.

As mentioned earlier, for CT we often use PWLS estimators. Rercbst function
(2.11), the PWLS estimator is linearfiand has the analytical solutiarniy) = [A’'W A+
CR|"'A’W¥. This means that (2.13) can be evaluated for PWLS reconitnutit be
IV =[AWA+ (R]"'A'WWAS. In PWLS, one often chooses the weighting matik
to be the inverse of the variandér—' {1} ~ y; which is the same weighting matrix found
when the LIR of PL reconstruction for CT is analyzed. Thus, PVeh8 PL reconstruction
for CT have similar resolution propertiesW is defined appropriately. This allows us
to use the same approach to regularization design for PL &idSPestimators. Other
statistical models are discussed in [67].

As is evident from (2.19), the local impulse response dependhe regularizer through

its HessianR. We would like to desigd® such that the local impulse respodsenatches

a target respond® at every pixelj. We could phrase this matrix optimization problem as:

2.21 arg min V(2 R) — 1°]].
(2.21) gn Z || (@1re, R) = 1]
This matrix formulation of the design problem seems inthld, so we will turn to the

frequency domain to simplify the problem.
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2.6 Regularization

Most of our work focuses on quadratic regularization beeaysadratic regularizers
are approximately circulant and the resolution and vagaran be analyzed and calculated
easily [20]. Some have argued that quadratic regularizenf®pm as well as several non-
quadratic regularizers for lesion detectability in enossiomography [45, 46].

Quadratic regularizers are of the form

(2.22) R(x) =YY wpt(z; — xp),

j=1 k=1

where; is a columnized pixel index and a function @fm. For quadratic regularizers,

Y(t) = % Quadratic regularizers of this form have a simple matrixtfo

Sy 5wy +wy), k=
_wjk:7 k 7é.]

In this thesis we assume that each vgikbhs a local neighborhood whose differences are

1
R(x) = §a:’R:c =

being penalized indexed by w,;, for pixel pairs outside the local neighborhood are
We use an alternate form for regularizers functionally egjent but which has a better

connection to Fourier analysis,

(2.23) R(x) = ZZT{%|cl(n,m) -
n,m =1
and
(2.24) c(n,m) = ! n,m) —o(n —n;,m —my)),

o

wheren, m are 2d coordinates for images. For the 3d case

L
(2.25) R(x) = n;g;ﬁ%k;@, m,z) * % % x(n,m, 2)|%,
and
1

(2.26) a(n,m,z) = (0(n,m,z) —d6(n—n;,m—my, z—2)),

[l
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wheren,; = (n;, m;, z;). Regularizers of this form can be converted to the form ingp.2

J
T

by usinguw;;, = ik
For CT scanners, quadratic regularization can be undesibsaause it over-smoothes
edges in the reconstructed images. Many forms of non-qtiadegularization have been
proposed [5,7,24,25,27,31,34,38,43]. Non-quadratialegers use a different form of
¥ for (2.22). A common penalty function for edge-preserviagularization is the Huber

penalty, which is quadratic for values bk A where/\ is some user defined threshold.

Mathematically,

2.7 Summary

This chapter briefly reviews PET and CT systems. It discussefadon transform,
Fourier slice theorem, and the traditional way of recortding tomographic images, fil-
tered back-projection. Next it moves on to the statisticadel used in this paper and
iterative reconstruction algorithms to obtain an expas$or the LIR. Finally it discusses
regularizers, both quadratic and non-quadratic edge iegeregularization. Next, we

will discuss the Fourier analysis which is the basis of thigky



CHAPTER IlI

Frequency Domain Analysis of the Local Impulse Response

This section first reviews the use of discrete Fourier trams$ for resolution analysis,
leading to a computationally intensive approach to reggaéion design. We then consider

continuous-space analogs that lead to simplified designs.

3.1 Discrete Fourier Analysis

In (2.19), the matrixA’W A is approximately locally circulant near a pixebf interest
[10], and R can be designed to be locally circulant. iig¢tdenote an orthonormal discrete
Fourier transform matrix centered at pixel Fourier analysis of local impulse responses
can be complicated by complex exponentials caused by noteresl impulse functions.
This re-centering eliminates the complex exponenti@lss sizeJ x J, whereJ represents

the total number of voxels in the image. For 2D systems,

]_ -1 1
(3.1) Qry = —=e Fmiwroni-jltarlozomi))
VI
For 3D systems,
1 201 1 1
(3.2) Qry = e 2mily Wi gnk—jl+ g7 w2, gmi—j 1+ Z [ws,g 21— 5])
val

In these equationsy;, w,, andws are spatial frequency components which are a function

of a columnized frequency index @, m and z are indexes into the image which are

21
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a function of the columnized pixel indek and N, M and Z are the total number of
pixels in each direction, and = N M for 2D systems and = N M Z for 3D systems.
Np—j = N — Ny, Mp—j = My — My, 2k—j = 2 — 2, andj = M Nz; + Nm; + n;, k =
MNz, + Nmy, + ng.

Then we can factoA'W Ad;, ~ Q' A/ Q4 for pixelsk nearj, whereAs = diag{\/ }
andV £ VJQA'W A, and RS, ~ Q'T?Qé, for pixels k nearj, whereIV =

diag{77} and+’ £ VJQRE’ [52], [10]. Then we can approximate the LIR in (2.19)

as.

(3.3) V) ~ [QAQ+(QTQQNQY
/ A j

(3.4) _Q [m] Q.

where the matrices in the bracketed term are diagonal ardiviseon operation is element-
wise on the diagonal. These approximations are accuragga@miow and column indices
that are “sufficiently close” to voxel. The terms in brackets in (3.4) correspond to the
local frequency response of our estimator. We would like &tain these to the frequency
responsel’ of a target PSF (which will be discussed§8.2.1 ands3.3.1) as closely as

possible, i.e., we want

, AJ
(3.5) L2 __— _~[L°
AJ + (T

Based on (3.5), one might consider a DFT formulation of theileeigation design

using the following minimization approach:

AJ
A4 (T

(3.6) I’ = arg min
Ler

LO

Y

where LY is the frequency response Bf and7 denotes the set of possible frequency

responses for the regularizer limited by its structure thilitoe enumerated i3.2.1 and
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63.3.1. Alternatively, as a preview to methods to come, wectass multiply the terms in

(3.5) yielding the simpler design criterion:

(3.7) I’ = argmin ||L(A7 + CTY) — AJ|,
Ter

which is similar to the formulation specified in [67]. Becauskis the DFT ofA’'W A/,
calculatingA’ requires one forward projection and backward projectiarvpgel. Thus,

a regularization design based on (3.6) or (3.7) will be véows

3.2 2D Contiunous Space Analogs

Prior to [18], regularization design methods were basedssrete matrices. As shown
in Appendix A, the continuous-space analog\dfis the frequency responé“él@, where
w’ (®) is an expression that incorporates the Jacobian from thegehaf coordinates from
parallel-beam to fan-beam geometry, and weights fiddmthat correspond to rays that
intersect pixelj at angled. Substituting this into (3.5) and using continuous spactams
of IV in frequency domain polar coordinatgs ®), wherep represents radial frequency
and ® represents angular frequency vyields the following expoestr the continuous
space analog of’

w!(®)

Iol

wi (@) + CRI(p, @)
w’ (D)

wi (@) + C|p| R (p, )

Here, R’ (p, @) is the local frequency response of the regularizer neat pixghe contin-

L (p, ®)

Q

(3.8) -

uous space analog &’ simplifies (3.8) to provide a more efficient approach to ragul

ization design than (3.7), as detailecgth1 andg4.2.

3.2.1 Regularization Structure

Regularizers control roughness by penalizing differeneta/d&en neighboring pixels.

Indexing the imager as a 2D functionz(n, m), we define a differencing function for a
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regularizer that penalizes tlig direction as

1
— (0
\/nl?—l—ml?( (

where typically (n;, m;) € {(0,1),(1,0),(1,1),(—1,1)}, corresponding to horizontal,

(3.9) c(n,m) = n,m) —o(n —n;,m —my)),

vertical, and diagonal differences. A conventional quadnagularizer can then be ex-

pressed as

(3.10) R(x) = Z Z %|cl(n,m) s xx(n,m)|%,

n,m =1

wherexx denotes 2D convolution. This conventional regularizeigassthe same weight
to the differences between each neighbor. For our proposéicloth, we make the regular-

izer spatially adaptive with the addition of weighting ddleiéntSr{ as follows:

L

(3.12) R(x) = Z Zrlj%]cl(n, m) * *x(n,m)|?,

n,m (=1

where is the columnized pixel index which is a function @f,m). The objective of
this paper is to design coefficien{ts{}. To this end, we must analyze the local frequency
response?’(p, @) of the HessiarR of the space-variant regularizer (3.11).

Taking the Fourier transform of (3.9) yields:

1 .
C I 1 — —i(win+wamy) |2
|Ciwr, wo) 2 +ml2\ e |
1
3.12 _ . |

One can think about achieving isotropy intuitively in potaordinates as eliminating an-
gular dependence. Therefore we convert (3.12) to polauéeay coordinates to simplify
the analysis. We use frequency and sampling relationsidsd; = 2w A, p cos(P) and

wy = 2rA,psin(®), whereA,, A, is pixel size, andp, ®) are polar frequency coordi-

nates. For simplicity, we assume that = A, = 1. Then,

(3.13) Cilp, @)” ~ 5(2 = 2cos(u(p, 9)))?,

n? + m:



25

where
(3.14) w(p, @) = n2r Ay p cos(P) +my2r A, psin(P) .

Plugging (3.13) into (3.11) yields

L

A rd
R](p7 (I)> = Z nlz _|_l ml2 (2 - QCOS(Ul(p, (I))))
=1

This is an accurate expression for the local frequency respof R which will be used
to develop an accurate but slower regularization desighadethe Full Integral Iterative
NNLS, FIIN, method.

Going back to (3.12), we can use the following approximatiwhich we will refer to

as theAIMA approximation,
(3.15) 2 — 2cos(r) ~ z?

to develop a simpler expression for the local frequencyarse of R which will lead to

the Angular Integral Mostly AnalyticalhIMA, method. This approximation is worse for
high frequencies, however regularization design usirsggdhproximation is viable because
the approximation errors which are present in our equatiotht local frequency response

and target local frequency response cancel each other oitit. tNis approximation, we

have
1
Crlwr,wo)[? = ———(2—2
|Cy(wr,wo) 7 m?( cos(win; + womy))
1
(3.16) R (Wi + wamy)?.

n? 4+ m;
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Converting (3.16) to polar frequency coordinates as before.

|Cy(wr,ws)|* =~ S (2w Ay p cos(®) +my2m Ay psin(P))?

1

ni 4+ m;
1

= ————(27p)?(n; cos(®) +my sin(P))?

n? +m?

= (27mp)? cos*(® — @),

where®;, £ tan~! ’g—; Combining this with (3.11), our final expression for the loca

frequency response of the regularizer nearjthepixel is

L
(3.17) Ri(p,®) = Z 7 (27mp)? cos* (& — @) .

=1

For the usual choice of. = 4 and for (n;, m;) described below (3.9), we hav <
{0,7/2,7/4,37/4}.

3.2.2 Target Local Frequency Response

Substituting (3.17) into (3.8) yields a simple expressionthe local frequency re-
sponse of a PWLS estimator. We want to design each regulanzepefficient vector
rJ = (r],...,r]) such that our frequency response matches that of the tesgeosely
as possible. We select our target frequency response toededal frequency response
associated with a penalized unweighted least squares (Pedtihator at the center of the
field of view because we know the frequency response is igiatthere.

For an unweighted cost function and a parallel beam geonté&ycontinuous-space
frequency response that is analogoug}td’ Aé’ is ﬁ As shown in (A.17) in Appendix
A, for uniform weights(w; = 1) we have the following local frequency response for
fan-beam geometries

2
J(s(®))lpl

where J(s?(®)) is the Jacobian for the change of coordinates from para#lam to fan-

(3.18) HY(p, ) =

beam geometries as defined in (A.12), andp) is an index into the sinogram based on
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pixel j and angleb. We sets = 0 in (A.17), which corresponds to the center pixel leading

to the following target local frequency response:

2

EO(p) A J(0)]pl
m + CRo(p, ®)

1
~ 1+¢|p[0.57(0)Ro(p, @)’

(3.19)
where£? is the continuous space analogldfin (3.5). Without theAIMA approximation,
(3.20) Ry(p, @) =4 — 2cos(2mpcos P) —2sin(2mpsin @) .

Using theAIMA approximation,

(3.21) Ro(p, ®) = (27p)*.

3.3 3D Continuous Space Analogs

§3.2 presented an expression for the continuous space aoflegfor 2D systems.
This analog still holds for 3D systems if we model them as akstd 2D systems (which
we can reasonably do for the purposes of regularizatiogdeswe assume small cross-
plane angles in PET, or small cone angles in CT). This workngediat such limited 3D
systems which we refer to as 2.5D, though regularizers dedigising this method will
work with varying degrees of efficacy for 3D systems depegdin how large the cross-
plane angles or cone angles are. More work will be neededémeéxhis work to fully 3D
PET, helical, and cone-beam CT. Using 3D spherical polardinates o, ®, ©) wherep
is 3D radial frequencyd is in-plane angular frequency, afdis axial angular frequency,
the continuous space analogf is

w! (P)
|er| ’

(3.22)

whereg,, = pcos(©) = p. Next we look at the structure of our regularizer to derive a

continuous space analog Bf.
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3.3.1 Regularization Structure

We consider a 3D roughness penalty with a form similar to ther@yularizer from
§3.2. In this section we will derive a minimization problemialin can be solved for the
desired regularizer. The differencing functions for ougularizer that penalizes théh
neighbor in 3D space is

1
[l

aln,n,z) = (6(n,m, z) —d(n —ni,m —my, z — z;))

wheren; = (n;, my, z;). Our conventional regularizer can be expressed as

L
(3.23) R(x) = %J:’Rm = Z Z %(Cl * %% x(n,m,2))?).

n,m,z =1

In this conventional regularizer, the difference betweacheneighbor receives the same
penalty. We make the regularizer spatially adaptive with alddition of coefﬁcient${ .
yielding:

L
(3.24) R(x ):—wa—ZZrlj% e * x xx(n,m, 2))?),

n,m,z l=1

wherej is a columnized voxel index which is also a functionot= (n, m, z). Taking the

Fourier transform o€,

|Ci(wr, wa, w3)]? = 11— e‘i(“1”l+w2mz+wszz)|2

IS
1
IS

(2 — 2 cos(win; + womy + wsz) .

Similar to the 2D derivation, we convert the above expresswocylindrical polar fre-

guency coordinates using frequency sampling relatiosdHip],
wy = 2mA 0 cos(P) cos(O)
wy = 2mA,psin(P) cos(O)

w3 = 21A,psin(O).
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In2D A, = A, = 1 for square pixels, which is also reasonable for 3D, howe\veis not

necessarily 1. Then,

1
(3.25) |Ci(p, ®,0)° ~ Tl (2 — 2cos(u(p, @,0)))?,
l
where
(3.26)

w(p, ®,0) =n2rA 0 cos(P) cos(O) +m2mr A, psin(P) cos(©) +227A ,psin(O) .
Plugging (3.25) into (3.24) yields
L

This expression for the local frequency responsdRowill be used to derive thé&lIN

NM.

p,@@

2 — 2cos(w(p, ©,0))).

method in 3D. Using théIMA approximation, we can derive a simpler expression for

(3.25).
1
|Cy (w1, wa, ws)]? = T ||2(2 — 2 cos(wing + wemy + wsz;)
!
1 1 )
~ Tl (2-2(1- E(wlnl + womy + w32)”)
1
(3.27) ~~ TERE (winy + womy + wsz)?.
!

Converting to cylindrical polar frequency coordinates,

—_

|Cy (w1, wa, ws)|? ~ (n2m A0 cos(P) cos(O)

Il

+m2m A, osin(®) cos(©) +227 A psin(0))?

—_

||nl||2 ——(2m0)? (1A, cos(®) cos(O)

+ myA, sin(®) cos(0) +zA, sin(0))%.
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Lete(®,0) = (cos O cos P, cos O sin @, sin ©) andA = (A, A, A,), and therCy(p, ®, ©)|?

simplifies to
Cilp, @,0)* = W(ZWQ)Q(H"HG(@, 0) - [e(®;,0;) © A])?
(3.28) = (2m0)%(e(®,0) - [e(P;,0)) ® A])?,

where® is element-wise multiplication. Substituting (3.28) ir{824) results in the fol-

lowing continuous-space analogbf:
. L .
(3.29) Ri(0,®,0) = (2m0)* Y 1] (e(®,0) - [e(D1,0;) © AJ)*.

=1

Using (3.22), (3.29), and (3.5) we can construct the foltapcontinuous-space analog

of L7:
o s
pOe) = 2@ 1 CR(e, ®,0)
(3.30) - w(2)

3.3.2 Target Local Frequency Response

We wish to design(o, @, ©) such thatZ’ matches some targeX’ for all voxels ;.
This subsection describes an expressioncforin §3.2 we considered the local frequency
response associated with QPULS reconstruction that ijsictat the center of the image
for 2D systems. Unfortunately, this is not true for 3D systeifhe purpose of this deriva-
tion is to find an expression that is isotropic, but with a rneathtical structure that makes
it an attainable target. The frequency response of QPUL$@0d starting point.

The 2D continuous space analog@A’Aé’ for parallel beam geometries 130, |.
This is an adequate approximation for the 3D continuousespaalog taQ A’ A§’ once

again assuming small cross plane angles for PET and smallarogles for CT. Thus, the
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frequency response of QPULS for 3D systems is

1

£(0,,0) = loxy]

1
1+ C|me’R0(Pa D, @).

(3.31)

The frequency response of a conventional regularizer Y3v&8 (n;, m;, z;) € {(1,0,0),
(0,1,0),(0,0,1)}, assuming\, = A, = A, = 1 (which is not a realistic assumption for
actual scanners but is acceptable in the derivation of drojsic target impulse response )
without theAIMA approximation is

(3.32)

Ro(p, ®,0) =6 — 2 cos(2mp cos P cos O) —2 cos(2mpsin P cos O) —2 cos(2mpsin O) .
Using theAIMA approximation, this simplifies to
(3.33) Ro(p, ®,0) = (2m0)?

Using the relationship,, = ¢ cos ©, we have:

1

(3.34) £, 0) = 1 + ¢lo| cos(©) Ro(p, ®,0)’

which is clearly not isotropic because of thes(6) in the denominator. In 3D, the local
frequency response associated with uniform weighting amfentional regularization is
not isotropic. We use a similar structure and eliminate thearopic terms to create an
isotropic 3D target,

1
1+ (Jol(2m0)*

Thecos(©) term in (3.34) represents the fact that for a 2.5D geometf{¥” A’ is com-

(3.35) L%(o)

pletely confined in the XY plane. Conventional quadratic tagreers that apply the same
penalty in all directions preserve that anisotropy. In 3Bteyns, spatially-variant regular-

ization design is even more important to compensate for #terally ellipsoidal spatial
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resolution that these systems produce. In the next chapgewill try to match the local
frequency response with the target local frequency regpasmg the following type of
optimization approach:

r! = argmin ||£7 — LO|]*.
r>0



CHAPTER IV

Solving for Regularization Coefficients

4.1 2D Problem

We try to design regularization coefficienté = (r/, ..., ) to match our designed
local frequency response (3.8) to the target local frequessponse (3.19) as follows:

(4.2)

ri = argmln//( () ! )ZW(/) ®)dpd®
>0 wi (P +C!p!RJ(p, ®)  1+¢[pl0.57(0)Ro(p, @) ’ ’

whereW(p, @) is a weighting function. To derive a simpler minimizatioroptem, we

solve forr? by trying to match the local frequency responses as follows:

w’ (@) N 1

(4:2) (@) 1+ P Rp @)~ 14 CIpl057(0) Ralp, @)

Next we will go over the derivation of thElIN andAIMA method.

4.1.1 FIIN Method

This section derives the Full Integral Iterative NNLS regidation design method
which integrates over all variables in the frequency doneaid must be solved using

an iterative NNLS algorithm. Cross multiplying (4.2) yields

w! (@) + w? (2)¢]p|0.5J (0) Ro(p, ®) =~ w (®) + ¢|p| R (p, @)

w’ (®)0.5J(0)Ro(p, ®) ~ R’ (p, ®).

33
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Using the inner produdtf, ) = = [ f( ®)dd, we projectiw’ () Ry(p, ®)) onto the
space spanned |yt —cos(u;(p, ®))} which can be orthonormalized infobasis functions,

{m} using Gram-Schmidt. Then our regularization design protdenplifies to
(4.3) r! = argmin ||Tr — b’||?,
r>0

wherebd’ is a vector of inner products betweer (®)Ry(p, ®)) and theL orthonormal
basis functions(p;}, v, = [ [ pr(p, @)’ (®)Ro(p, ®)dpd®, andT is a L x L matrix
whose elements are the inner products betwzen2 cos(u;(p, ®)) and{p1, p2,...pr},

= [ [(2 = 2cos(um(p, ®)))pn(p, )dpd® . We defineP to be an operator whose
columns ar€{py, ps, ...pr} then, R/ (p, ®) = PTr’. This design problem is then solved
with an NNLS algorithm. This more accurate version is slothan theAIMA method that
will be presented next because there is no apparent aralgttution similar to the one

presented ir4.1.4.

4.1.2 AIMA Method

This section derives the Angular Integral Mostly AnalyticAIMA, method. This
method uses th&lMA approximation to eliminate dependencegand requires integrals
over the angular variable of the frequency domain. This Bfrogtion leads to a mostly
analytical solution which is computationally efficient.aBitng from (4.2) and using the
AIMA approximation (3.15),

w! (@)¢|p[0.57(0)(2mp)* = (|p|R(p, D)
L
w? (9)0.5J(0)(2mp)? Zrl 21p)? cos?(® — ;)
=1

(4.4) W’ (®) £ w’ (©)0.5J(0 Zrl cos?*(® — ;).



35

We designr’/ by minimizing the difference between both sides of (4.4):

1" -
(4.5) r! = arg min — / (0 (®) — Z 7y cos? (@ — @;))%dd.
0

r>0 s =1
Minimizing (4.5) does not guarantee that we minimize (4.49ler an unweighted norm.

However (4.1) and (4.5) are equivalent if we use a very spawaighted norm:
(4.6) Wi(p, ®) = ([0’ (@) + ¢|p| R(p, ®)][1 + C|p]0.5J(0)(27p)*])?.

Because of the high-pass nature of regularizers representbe,? terms in the equation,
this is a weighting that emphasizes high frequencies. Thisasisense for this minimiza-
tion problem first, because impulse responses are highdrexyuin nature, and second
because at DC, when = 0, the two sides of (4.2) match exactly. It should also be
noted that (4.5) is independent pf because terms based prare identical in both lo-
cal frequency responses and are eliminated in the simpidicaThis is consistent with
an intuitive understanding of regularization design. Wetaying to design LIRs that are
isotropic, or independent of direction, so our efforts dddne concentrated on eliminating
angular dependence.

We solve forL coefficients using the above minimization (4.5) for eachepijx We
constrain thel. coefficients to be non-negative, which is an easy way to enthat the
penalty function is convex, though other approaches haea lsensidered [66]. This
expression also applies to parallel-beam geometries,enh@) = 1 and we remove
the 0.5 scale factor because we integrdteover [0, 7) instead of[0, 27) as in fan-beam
geometries.

We can think of the minimization in (4.5) as a projection@f(®) onto the space
spanned by{cos?(- — ®;)}, which allows us to greatly simplify the problem and derive
a computationally efficient analytical solution to the riagization design problem. Ex-

panding these cosines to a three term basis that is orth@haevith respect to the inner
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product(f, g) = 1 [ f(®)g(®)d® yields

cos(2P))
2v2

where the three orthonormal basis functions are

p2(P) +

(4.7) cos?(® — @) = %pl(q)) +

pi(®) =1
p2(®) = V2cos(20)

p3(®) = V2sin(29).

Using (4.5), we writ& -, 7/ cos?(® — ®;) = PT'r/, whereP is a matrix whose columns
arepi, p2, andps, andT is a3 x L matrix of linear combination coefficients who#&é

1 % %]T. T is computed by taking the dot productscof?(® — ®;)
andpi, pa, andps, [T, = [ cos*(® — D) p,(P)d.

columniis|

Using (4.7), the minimization problem (4.5) simplifies te ttollowing expression:

(4.8) r/ = argmin ||Tr — b||?,
r>0

where P* denotes the adjoint aP andb £ P*w’(-), i.e.,by = [ pp(®)w’(®)d®, k =

1,2,3.

4.1.3 Zeroes in the Hessian

If there are too many zeros i, there will be zeros in the Hessian, possibly degrading
. This can cause elongated impulse responses that mayhedatto streak artifacts in
the reconstructed image. This phenomenon occurred in [W8¢ter we did not notice the
artifacts due to the coarser spatial resolution in PET. présent when usingIMA with
the ring phantom i§5.1. The problem improves when usiBiN method, thus we believe
this phenomenon is a caused by &I A approximation as well as the non-negativity con-

straint. FOrAIMA, and to be safe usinglIN we modify (4.8) to ensure that an adequate
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number Ofrlj values are greater than somje> 0. Requiring the penalty coefficients for
the vertical and horizontal directions be non-zero is skffitcto eliminate zeros in the Hes-
sian (a similar constraint could be created using the 2 dialganstead of the vertical and
horizontal neighbors, however tA¢MA approximation is worse for diagonal neighbors).

We turn to previous work to seleel’t. In [23], we derived a certainty based weighting us-

5 -
D2 aqWi
a3

terms of the continuous space analogs used in this paper,, /% fo w7 (P)dd. This reg-

ularization design method can be implemented using thdaagation structure presented

ing a spatially variant’ = that seeks to provide uniform spatial resolution. In

in this paper by setting/ = (x7)? for (m;,n;) = (0,1),(1,0). This approach provides
a convenient nominal value for the regularization streragteach pixel. We define the
lower constraint vectoe’ such thate) = «a(x7)? for vertical and horizontal neighbors,
(mg,n;) = (0,1),(1,0), ande] = 0 for all other neighbors. Using a nonzero coefficient
« can be thought of as controlling the tradeoff between aatdiased regularization and
the proposed®IMA andFIIN methods. For the results presented in this paper, we used
a=0.1.

Now we formulate our problem so that non-negative leastrsgu@NLS) algorithms
will accommodate this new constraint. Lt £ 7/ + €/. Solving with the constraint of
rJ > 0 ensures that’ > €’. Substituting™’ into (4.8) yieldsT'7/ —b’ = T'(r/ +¢€’) -t =

Tr’ — (b’ — T€’). So our final cost function for regularization design is

# = argmin||Tr — (b —Té)||

r>0

(4.9) = argmin||Tr — ¥||,
r>0

whereb’ £ b/ — Te/. We use coefficients’ = 7/ + €’ in the regularizer (3.11). We
next solve (4.9) analytically. It is this analytical sotutithat makes the fast regularization

design technique more efficient than fAiéN method.
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4.1.4 Analytical Solution

Using a second-order neighborhadd= 4) we selectn;, m;) to be(1,0), (0,1), (1,1), (1, —1)

leading to the followingb;: ®; = 0, &3 = 7/2, &3 = 7/4, &, = —7 /4. So the terms in

(4.9) are
| 1 1 1 1 _
T=35|1/V/2 -1/vV2 0 0
(4.10) 0 0 1/V2 —1/V2 ]

" L1 a) f] wi(@)de

o
I

V2dy, | s d=| L [Twi(®)cos(20)dd

V2ds L[ w (®)sin(29) dP

Observe thal'e’ = [a(x7)? 0 0]7, so the effect o’ is entirely contained td;. Ignoring
«, d, is the continuous space analog(ef )?, d, is related to the horizontal and vertical
directions, andi; is related to the diagonal directions.

This is an under-determined system, which is somewhattiveusince one can ob-
tain approximately isotropic smoothing using only the hontal and vertical neighbors,
or only the diagonal neighbors. For the purposes of reqdaadn design, an under-
determined situation is desirable since it allows us to bhee‘é¢xtra” degrees of freedom
to ensure non-negativity even when anisotropic regulaozas needed.

We could solve the minimization (4.9) using an iteratN&LS algorithn{32, p. 158].
However, using the properties @ andd, we can avoid iterations almost entirely by
solving (4.9)analytically using the KKT conditions. When = 0, \/d3 + d3 < d,. as
outlined in appendi¥B. This inequality is usually true for the values@ised (typically

around 0.1), however for pixels where it is not, the probleould have to be solved using



39

ds/d;

E\f

N|—=
.

NI
.

dy/dy

Figure 4.1: First octant of quadratic penalty design spamsving the four regions where different con-
straints are active.

a NNLS algorithm rather than this analytical solution. Fog phantoms, data, and values

of a used in this thesis, this inequality was always true and wedcose the analytical

solution. For more details on using NNLS to solve the regeddion problem, seg4.2.3.
The structure of" leads to eight-fold symmetry that simplifies analysisdJlf< 0 we

can solve forr using|d,| and then swap; with . If d; < 0 we can solve for using

|d3;| and then swap; with r4. If d3 > d» we can solve for with d; andd; interchanged,

and then swap; with r3 andr, with r,. Therefore, hereafter we focus on cases where

0 < ds < dy < d;. Fig. 4.1 shows these first octant cases, numbered accomlitigp t

number of nonzero elements of

If dy > 1d, anddy < 2d, — 1dy, then

leg(dl‘l—dg), 7“2:7‘3:’/’4:0.

If d3 > 2d, — 1d, andd; + dy > 1d;, then
T1=§[%d1+%d2—d3}7 ro =14 =0,
o= [ds = (5o = )]

If d3 + do < 1d, andd, > 1d,, then
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m:%[%dlﬂL%dQ—dﬂ, re =14 =0,
o= 12 [y — (2~ ).

If ds + dy < 3d, andd, > 1d, then there are multiple non-negativehat exactly
solveV ¥(r) = 0. The minimum-norm solution i8;, = 4ds, 7y =0,

T3:d1—2d2+2d3, T4:2[%d1—(d2+d3)}

If dy < %dl, then there are multiple non-negativethat are exact solutions. The
natural choice is the minimum-norm given by the pseudo-inverse solutien=
TTd, Whererl =2 (Alldl -+ dg) , To=2 (%dl — dg) ,

7’3:2(%d1+d3), 7’4:2(%1611—613).

The analytical solution presented above is for the usuaddnder differences. For higher-
order differences or neighborhoods, it would appear to lecmcreasingly cumbersome
to solve (4.5) analytically, so an iterative NNLS approaciyrbe more appealing. This
can still be practical sinc& is quite small. The analytical solution above is a contirgiou
function ofd, which in turn is a continuous function @’ (®). This continuity property
would seem to be desirable for avoiding artifacts in the mstmicted images. Without it,
our r/ might not be smooth, thus violating our circulant approxiom

For practical implementation, we simply discretize theegmals in (4.10) [19]. This
presents interpolation issues in extractid®[n,|), a discretized version af’ (®), from
W for n, = 1,...,N,. For the parallel beam casey(®[n,]) can be computed back-

projections. The system matri& is composed of blocks,

A,

Ay
(4.11) A= ,
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wherelN, is the number of angles used by the system Ande computes one projection
at angle¢[n,]. The back-projectiomd’, which is the adjoint ofA is also composed of

blocks
(4.12) A =[AL A, Ay,

The following expression generates weightings for amglever all voxels,

0...A,,...0ly

(4.13) W(olnal) = oA o

where the division is element-wise division and the denatainis a normalization term

to control for scale factors id. For the fan beam case, there is an analytical formula for
w! (®[n,]) from W presented in Appendi§A. Those equations are presented as continu-
ous space coordinateshich spans the length of the detector gnthe angle of rotation

of the system. In discrete implementation, we round thek®dhe nearest neighbor to
get indices intoWW. The analytical solution presented in this section is vdifigient and

the bulk of the computation time is spent computitig®) which has the compute time of
approximately one back-projection. For further speedoigtitions, down-sampled back-
projections can be explored. In practie&,(®) is fairly smooth and the basis functions
that we use to approximaté’(®) are even smoother. One can achieve good results by
calculatingw’ (®[n,]) for fewer angles and interpolating the rest. The perforraaard

efficacy of such a scheme still needs to be explored.

4.2 3D Problem

4.2.1 FIIN

As in the 2D problem, we match the expression for the LIR of3Besystem to the

target LIR yielding
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w’ (P) N 1
w(®) + (|ofcos(©) Ri(p,®,0) "~ 1+ ((27)?|ol®
Clof cos(©) R (p,®,0) =~ (uw!(®)(2m)*|of®

cos(0) R (p, ®,0)) ~ w(®)(27|o])?

(4.14)

Here,cos(©) R (p, @, ©) can be decomposed infobasis functions that can be orthonor-
malized using Gramm-Schmidt. The design problem can besddlv a way similar to

§4.1.1.

4.2.2 AIMA

Starting from (4.14),

cos(0) R (p, ®,0)) ~ w(®)(27|o|)?

(2m0)? > 1] cos O(e(®, 0) - [e(®1,0)) 0 A])* &~ w!(P)(2ro])?

=1

(4.15) > 1l cosO(e(®,0) - [e(P, 0)) 0 A])* & w! (D)

=1
whereo represents element wise multiplication. To solve for thegtty coefficientSr{,

we solve the following minimization problem

™ w/2 ) )
(4.16) r = arg min/ / |w3(<I>)—Zrl] cos O(e(®,0)-[e(P;, 0;) 0 A])?[2dO, d.
0 —7/2

r20 =1
This minimization problem involves projecting onto the spapanned byos O (e(®, ©)-
[e(®;, ©;) o A])%. We can decompose this tem,_, 7/ cos O(e(®, 0) - e(P, [e(P;, ©;) o
A])? asPTr’ where risL x 1 vector of penalty coefficients. The terms O (e(®, O) -
[e(Py, ©;) o A])? can be expanded into 6 orthonormal basis functions whichmke up

the columns ofP. T is a matrix of linear combinations coefficients such fhat , 7/ cos ©(e(®, ©)-
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[e(®;,0;)0 A])2 = PTr?. We first expande(®;, ©;) o A])? into 6 orthogonal basis func-
tions. After multiplying(e(®,©) - [e(®;, 0;) o A])? by cos ©, all the functions are still

orthogonal except for 2 which can be orthogonalized by G&uhmidt using the inner

product(f, g) = — fﬁfiz I« g(®,0)d®dO. Then we normalize to make them

orthonormal. Hereafter we assume = A, = 1 (square but not cube voxels) which is

realistic for scanners. Starting with(®, ©) - [e(®;, ©;) o A])*:

(e(®,0) - [e(®;,0)) 0 A])* = cos*(6;) cos®(®;) cos*(0) cos?(P)
+ cos?(0)) sin?(®;) cos?(O) sin? (D)
+ sin*(©;) AZsin*(O)
+ 2cos*(0;) cos(®;) sin(P;) cos?(O) cos(®P) sin(P)
+ 2cos(®;) cos(0)) sin(6;) A, cos(®) cos(©) sin(O)

+ 2sin(P;) cos(0;) sin(O;) A, sin(P) cos(O) sin(O) .

There are 6 terms in this equation, corresponding to 6 basribns, however they are

not orthonormal. After making these equivalences usimggpiometric identities:

sin?(0) = % - 5005(2@)
cos?(0) cos*(®) = ;1[1 + c08(20) + cos(2P) + cos(20) cos(29)]
cos?(0) sin?(®) = }l[l + c0s(20) — cos(2P) — cos(20) cos(29)],
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we can extract 6 orthogonal basis functions

n =1
py = sin(P)sin(O) cos(O)
Py = cos(®)sin()cos(©)
Py = cos(26)
ps = cos(2®) 4+ cos(2®) cos(20)
s = cos’(O)cos(®)sin(P).
After multiplying by cos ©, we get
py = cos(O)
py, = sin(®)sin(O)cos?(O)
py = cos(®)sin(0)cos?(O)
P, = cos(20)cos(O)
ps = [cos(2®) + cos(2P) cos(20)] cos(O)

ps = cos’(O)cos(®)sin(P).
Unfortunatelyp| andp/, are not orthogonal anymore, so we use Gram-Schmidt, yeldin

Py = cos(O)

\/
=
.

—_

P = c0s(20) cos(O) —(cos(20) cos(®),

Finally we normalize all basis functions, leaving us With, pa, ..., ps }
We can now solve foll” such thaty",_, 7 cos ©(e(®, O) - [e(P, ;) o A])? = PTrI.

Starting with the terms from the expansions in (4.17),
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) = cos*(0;) cos®(P;)

ty = cos*(©))sin?(P))

ty = sin?(©;) A?

t, = 2cos*(0;)cos(®;)sin(P))

te = 2cos(®P;)cos(0;)sin(0;) A,

tg = 2sin(®;)cos(0;)sin(0;) A,.

Lettingk = thelth column ofT is

1
[|1/2 cos © cos 20|’

(0.25¢1 (1 + k) + 0.25t5(1 + k) + 0.5't3(1 — k))1/||p}]|
(t6)1/1Ipa|
(#5)1/11p5]
(0.25¢] + 0.25t, — 0.5t5)1/||p4]|
(0.25(t) — 5))1/||ps]|
() 1/11p] -

Using (4.17) and (4.17), the minimization problem (4.1@éhgifies to the following

expression:
(4.17) r! = argmin ||T'r — b||?,
r>0
where P* denotes the adjoint aP andb £ Prwi(.),i.e.,b, = fpk ®)dd, k =
1,2,3,4,5,6.

4.2.3 Implementation Details

The minimization problems in (4.5) and (4.16) are undeedrined and have the po-

tential to yield many different{ that are local minima. For our assumption of locally
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circulant matrices to be accurate in (3.4), the mapping fegi®) to »/ must be a contin-
uous function. The analytical solution presente@4rl satisfies this constraint, however
those methods have not been extended to the 3D case becausKThconditions are
more complicated in the 3D so we solve them by some NNLS dlgari We can use
Tikhonov regularization [71] to coerce NNLS to choose a Bokuthat also minimizes the
norm ofr7.

We modify (4.16) by appending a scaled identity matrix to blottom of " and zero

paddingb
- T b
T = :
71 0

o
I

so that our new minimization problem is
(4.18) arg min |b—Tr7||.

r1>0
7 is a very small number (in our implementation we useif 1) that is sufficient to apply
a slight penalty to the norm af’. As in the 2D case, we should use the modifications
in §4.1.3 to avoid having too many zeroes in the Hessian. In the&{® we define the
lower constraint vectoe’ such thak) = a(x?)? for 3 adjacent neighborgn;, n;, z;) =
(0,1,0), (1,0,0), (0,0, 1), ande = 0 for all other neighbors. Here; = |, /% The

results of these methods are presented in the next chapter.



CHAPTER V

Results

In this chapter, we provide and discuss the results of varsimulations using 2D and

3D regularization.

5.1 2D results

We first investigated imaging a phantom consisting of twdarm rings that highlight

the effects of non-uniformities and anisotropy [40]. Aftards, we studied real CT data.

5.1.1 Ring Phantom

We simulated a 2D 3rd-generation fan-beam CT system usitgndis-driven forward
and backprojections [11]. The rotation center is 40.8cmmftioe detector, and the source is
94.9cm from the detector. The axis of rotation is at the gesftthe object. The simulated
imaging system has 888 rays per view spaced 1mm apart, ane\v@ddy spaced view
angles over a fuldr rotation. The reconstructed images consisted ©f2ax 512 grid of
1 mm pixels. We chose @in (3.19) such that the target PSF has a full width half max
(FWHM) of 3.18 mm.

We simulated a noiseless fan-beam sinogram without sasieg a phantom consist-
ing of a background disk and two rings each of thickness 1mowshn Fig. 5.1. We

generated the sinogram by taking the appropriate line iategising the same system ge-

47
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ometry through the analytical phantom. Fig. 5.2 shows pgcakfficients{r’} designed
using theAIMA method that yielded the following results. The top imagesashoeffi-
cients in the horizontal and vertical neighbors, and theédnoimages show coefficients
for diagonal neighbors. There is substantial spatial tianan these coefficients.

We reconstructed images using a conjugate-gradient algorithm with 40 iterations.
using several regularizers. We selected a target PSF t@badbociated with PULS at the
center of the field of view. We first created an image uniforbilyrred by the target PSF
to serve as our target for this study. We then reconstruatages using, (i) conventional
regularized weighted least squares reconstruction witk= 1, (m;,n;) = (0,1),(1,0),
(ii) regularization using the certainty based weightingnfir[23], (iii) the AIMA method
with o = 0.1, (iv) the AIMA method witha: = 0, and (vi) theFIIN method witha = 0.
Fig. 5.3 is a closeup of the right-most ring reconstructethwhe various methods listed
above and Fig. 5.4 is a closeup of the left-most ring.

Fig. 5.5 and Fig. 5.6 show profiles around the two rings of #eonstructed images
using the various regularization methods relative to thanmatensity of the rings from
our target, PULS reconstruction with conventional rega&tion. This verifies thaAIMA
and FIIN improve resolution uniformity. Here, O radians correspoial the rightmost

point of that ring and the angles are measured clockwise.

Range: [0 2000]

2000

512
1 512

Figure 5.1: Ring phantom used for reconstruction.
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Range: [0 1.46253]

1.46

Figure 5.2: Regularization penalty coefficients used imnstruction of ring phantom. The four images are
J —
rjforl=1,..,4.

5.1.2 Real CT Data

The second study used a similar imaging geometry using aedireal CT data from
a GE scanner described in [70] with weightingé computed in the same way as [69].
was selected such that the target PSF had a FWHM of 1.51 mm.

Fig. 5.7 displays an image created with PWLS using convealiggularization with
the impulse response locations denoted with crosses angian remarked that we will
zoom in on. Fig. 5.8 - 5.12 show windowed reconstructionsgisonventional regulariza-
tion, certainty based regularizatiohlMA with o = 0.1 anda = 0, andFIIN with o = 0
that have been zoomed in to the region marked in Fig. 5.7.

Fig. 5.13-5.16 show local impulse responses for the fivelaegation methods at sev-
eral locations calculated analytically using (2.19). Tehégures show from left to right,
the target impulse response, and local impulses responisesriventional regularization,
certainty based regularization [2&IMA with o = 0.1, AIMA with « = 0, andFIIN with
a = 0. Contour plots of the LIR are displayed below at 0.9, 0.75, 0.85, and 0.1 of
the maximum value of the target PSF. The LIR becomes moretaosc near the edge of

the FOV. Our Fourier-based regularization scheme compesi$ar this anisotropy better
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Figure 5.3: Images of right-most ring, Upper-Left: unifdynblurred by target PSF. Upper-Right: recon-
structed using conventional regularization. Mid-Leftcaastructed using certainty-based reg-
ularization. Mid-Right: reconstructed usi®@dMA regularization, withe = 0.1. Lower-Left:
reconstructed usingIMA regularization, witho = 0. Lower-Right: reconstructed usirigIN
regularization, withnw = 0.
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Figure 5.4: Images of left-most ring, Upper-Left: unifogniblurred by target PSF. Upper-Right: recon-
structed using conventional regularization. Mid-Leftcaastructed using certainty-based reg-
ularization. Mid-Right: reconstructed usi®@dMA regularization, withe = 0.1. Lower-Left:
reconstructed usingIMA regularization, witho = 0. Lower-Right: reconstructed usirigIN
regularization, withw = 0.
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Figure 5.5: Profiles around the right-most ring from eaclonstructed image.
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Figure 5.6: Profiles around the left-most ring from each nstcted image.
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xcgwpsf range: [-212.339 2304.5]

512
1 512

Figure 5.7: Reconstruction with conventional regulai@atvithout windowing with impulse responses lo-
cations marked.

1 211

Figure 5.8: Reconstruction with conventional regulai@atvindowed between 800 and 1200 HUs.
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1 211

Figure 5.9: Reconstruction with certainty based reguddidn windowed between 800 and 1200 HUs.

1 211

Figure 5.10: Reconstruction withiIMA regularization withe = 0.1 windowed between 800 and 1200 HUs.
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1 211

Figure 5.11: Reconstruction withiIMA regularization withne = 0 windowed between 800 and 1200 HUs.

1 211

Figure 5.12: Reconstruction witflIN with o = 0 windowed between 800 and 1200 HUs.
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than the certainty-based approach of [23].

To quantify the performance of these regularizers on real &@&,dve computed the
PSF of the regularizers at every 10 pixels within the bodyenTe calculated the FWHM
of the PSFs at 181 evenly spaced angles, and computed the RiM&erfror between the
actual FWHM and the FWHM of the target. Histograms of the RMSrsrame displayed
in Fig. 5.17. The mean of the RMS errors for conventional regegtion, certainty based
regularization, théAIMA method witha = 0.1, the AIMA method witha = 0, and the

FIIN method witha = 0 are 2.7, 2.7, 2.3, 2.5, and 2.0 respectively.

Range: [-0.0116558 0.377019]

1

@ & ® © ® @

_57 -

_10 - -

Figure 5.13: Impulse Responses at (-100,-100). From lefgtd, target, conventional regularization, cer-
tainty based regularizatiotAIMA regularization withae = 0.1, AIMA regularization with
a = 0, FIIN regularization withe = 0.

5.1.3 Spatial Resolution Properties

Fig. 5.3 and Fig. 5.4 provide a qualitative understandirthetpatial resolution proper-
ties of various regularization methods for the ring phant@he phantom used consists of

rings of uniform intensity and uniform width, thus imagegstwiiniform spatial resolution
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Figure 5.14: Impulse Responses at (150,-120). From lefigtdt,rtarget, conventional regularization, cer-
tainty based regularizatiotAIMA regularization witha = 0.1, AIMA regularization with
a = 0, FIIN regularization withn = 0.
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Figure 5.15: Impulse Responses at (170,0). From left td,righget, conventional regularization, certainty
based regularizatio®IMA regularization withe = 0.1, AIMA regularization withh = 0, FIIN
regularization withn = 0.
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Range: [-0.0165086 0.313158]
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Figure 5.16: Impulse Responses at (-130,100). From lefigtd,rtarget, conventional regularization, cer-
tainty based regularizatiotAIMA regularization withae = 0.1, AIMA regularization with
a = 0, FIIN regularization withn = 0.
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Figure 5.17: Plots of the FWHM error histogram for differemiulse responses.
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should have rings with uniform width and uniform intensi@onventional regularization
creates rings with sharper spatial resolution near the etitfee field of view. Certainty
based regularization improves ring uniformity. The lasethreconstructions usifgMA
with a = 0.1, AIMA with « = 0 andFIIN with o = 0 provide rings that look almost
identical, and that have a more uniform ring width than coremal, and certainty based
regularization.

Fig. 5.5 and Fig. 5.6 show the amplitude of the rings tracedlkslise. This confirms
our initial assessment, that certainty based regulaozaiutperforms conventional regu-
larization, and that th&IMA andFIIN methods have similar spatial resolution properties
and outperform the previous approaches.

Fig. 5.8 - Fig. 5.12 display a quadrant of windowed recomstons using real CT
data to illustrate the images produced using these regatayn design methodologies.
However, since we do not know the “truth” for this data, thé@sages provide only a
qualitative understanding of the effect of regularizatitasign on spatial resolution. The
impulse responses in Fig. 5.13-Fig. 5.16 illustrate theatfdf regularization design on
spatial resolution at various locations. These figures gorthatAIMA andFIIN methods
improved isotropy over conventional and certainty-bassgilarization. The histogram
plot of Fig. 5.17 and the mean of the PSF errors mentionedqusly confirm this AIMA
outperforms both certainty based regularization and aarweal regularizationFlIN out-
performs all other regularization designs in terms of the RWVef the local PSFs but is
much slower tha\IMA.

The resulting impulse responses from ti&A andFIIN methods are not completely
isotropic. This may seem to contradict the dramatic impnoset these regularization
design methods achieved with the ring phantom. Howeveallrétat we are trying to

approximatex’ (®) using 3 basis functions (sé€é.1.2) for theAIMA, and 4 basis func-
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tions (see§4.1.1) for FIIN. With real dataw’(®) is a complicated function that cannot
be parameterized using 3 or 4 basis functions. That asgeng aith the non-negativity
constraint limits the performance of any regularizatioside technique with a finite num-
ber of parametersi’ (®) is much simpler for simple phantoms like the ring phantom, so
AIMA yields better results there. Extensions of this reguléioradesign to higher order
penalties have the potential for more basis functions, atigbperformance.

The analysis of this paper focuses on the resolution nootmifies cased by statis-
tical weightings, not the resolution variation due to daiecesponse and magnification.
A more general regularization design with similar paramed¢ion is discussed in [67].

Using the techniques in this paper to account for thesetsffe@an open problem.

5.1.4 Computation Time

AIMA is quite efficient. Computing certainty based regularizatiakes the time of
about 1 backprojection. IAIMA, we must first computes’(®) which takes the time
of about 1 backprojection, and then solve the analyticaltsmi which is very fastFIIN
also requires 1 backprojection to comptité®), however it then has to run a non-negative
least squares problem for every pixel. Though this is ayfanhall NNLS problem" is
4 x 4, it adds much compute time since it must be calculated fan @al. In general,
due to the faster compute times, we recommAdA with o = 0.1. If accuracy is more

important than compute tim€&JIN can be used instead.

5.2 3D Results

5.2.1 Spherical Shells

We simulated a 3D PET system that images a 400mm x 400mm x 16dstume.
The simulated imaging system has 143 rays per view spacedaparn 80 evenly spaced

view angles rotated along, and 5 cross plane angles fér The reconstructed images
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consist of 100x100x41 4mm pixels. We simulated a noiselggsgysam using our true
image which consists of 2 spherical shells inside a cylindlige choose a target spatial
resolution with a 2 pixel FWHM, or equivalently 4 mm.

Fig. 5.18 and Fig. 5.19 show cross sections of 3D PSFs ateliffédocations, showing
thezy slice,zz slice, andyz slice from top to bottom. From left to right, are the PSFs at
(25,25,0), (15,15,0), (15,15,15), and (25,0,0). PSFs ftonventional regularization are
shown in Fig. 5.18. PSFs fromIMA regularization are shown in Fig. 5.19. Looking at
these images, one may observe a great deal of anisotropg RSFks created from con-
ventional regularization. They slices are stretched out in different directions depending
on where the pixel lies with respect to the center of the imadee zz andyz slices all
seem flatter and smaller when comparedgalices. Looking at the PSFs generated using
AIMA regularization, each slice looks more isotropic, and e&ct ®oks to be about the
same size. The flatness ©f andy:z slices has been removed, and theslices are no
longer stretched. The PSF at (25,25,0) displays some ampsotThexy slice appears to
be boxy with tails, instead of being round, and tireandyz slices are not completely
isotropic. This shows the limitations of this method in appmatingw’(®).

In the next few figures, we takey, xz, andyz slices of 2 PSFs, and then measure
the FWHM cutting through the center of the PSF at differentlesxgo get a sense of
isotropy. The uniformity of these plots are a rough meastitesasotropy of these impulse
functions. Figure 5.20 and 5.21 shows plots of the FWHM for $£8F(25,25,0) and
(15,15,15).

Tables 5.1 displays maximum and minimum FWHMSs for PSFs a2&6) and (15,15,15)
allowing for a more quantitative assessment of isotropgrder (25,25,0), which exhibits
less improvement than (15,15,15), there is less variatié'WHM for PSFs generated us-

ing AIMA regularization than PSFs generated using conventionalaezation.
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Figure 5.18: xy, xz, and yz (top to bottom) slices of PSFs teitaising conventional regularization at
(25,25,0), (15,15,0), (15,15,15), and (25,0,0) (left ght).
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Figure 5.19: xy, xz, and yz (top to bottom) slices of PSFsteeasingAIMA regularization at (25,25,0),
(15,15,0), (15,15,15), and (25,0,0) (left to right).
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Figure 5.20: FWHM plots for PSF at (25,25,0pIMA regularization marked with circles, conventional
marked with pluses. xy, xz, yz slices from top to bottom.
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Figure 5.21: FWHM plots for PSF at (15,15,150\MA regularization marked with circles, conventional
marked with pluses. xy, xz, yz slices from top to bottom.
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Table 5.1: Maximum and Minimum FWHM values for 2 PSFs.

(25,25,0) || AIMA Conventional
min ‘ max ‘ min ‘ max
Xy 1.9387| 2.9770|| 2.0035| 3.1553
XZ 2.0061| 2.3060 || 1.4048| 2.2946
yz 1.9387| 2.3060|| 1.4048| 2.0932
(15,15,15)| AIMA Conventional
min ‘ max ‘ min ‘ max
Xy 2.1954| 2.5281 || 2.3689| 3.1347
Xz 2.0137| 2.5069 || 1.6706 | 2.8698
yz 2.0141| 2.5281 || 1.6706 | 2.8676

Next we look at reconstructions using various regularizerslices of this object are
shown in figure 5.22;z slices of this object are shown in figure 5.23, slices of this
object are shown in figure 5.24. We reconstructed volumewgyusi incremental optimiza-
tion transfer version of the EM algorithm [1] with two typesregularization. We have 2
sets of volumes resulting from conventional regularizatendAIMA regularization. We
showzy slices 11, 13, 17, 21, and 27 of the volume, followedhyslices 36, 41, 46,
51, 56, 61, followed by slices 21, 31, 41, 61, 71, 81. Volumes reconstructed using
conventional regularization are shown in Fig. 5.25, Fig65and Fig. 5.27. Volumes re-
constructed using\IMA regularization are shown in Fig. 5.28, Fig. 5.29, and Fig05.
Volumes reconstructed usir§IMA regularization design show greater uniformity than
those reconstructed using conventional regularization.

Finally, we simulated a noisy sinogram. Volumes reconsédiaising conventional
regularization are shown in figures 5.31, 5.32, and 5.33.undels reconstructed using
AIMA regularization design are shown in figures 5.34, 5.35, aB@. SAlthough it is less
apparent due to the noise in the images, Volumes reconstrusingAIMA regularization

still show greater uniformity than those reconstructedigsionventional regularization.
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Figure 5.22:zy slices of the original object.
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Figure 5.23:xz slices of the original object.
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Figure 5.24:y slices of the original object.
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Figure 5.26:xz slices of PL reconstructed images with conventional regrdtion design from noiseless
data.
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Figure 5.27:yz slices of PL reconstructed images with conventional ragadtion design from noiseless
data.
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Figure 5.28:xy slices of PL reconstructed images WANMA regularization from noiseless data.
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Figure 5.29:zz slices of PL reconstructed images WAHMA regularization from noiseless data.
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Figure 5.30yz slices of PL reconstructed images wiAlMA regularization from noiseless data.
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Figure 5.31:zy slices of PL reconstructed images with conventional regadtion design from noisy data.
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Figure 5.32:zz slices of PL reconstructed images with conventional regaadtion design from noise data.
5.2.2 Zubal Phantom

We next use the same system model to compute PSFs using takphaimtom [44,78],
to get an idea of how 3D regularization performs under moa#istec conditions. Unlike
the ring phantom, which makes anisotropy and non-unifgrmiore obvious, the effects
on the Zubal phantom are more subtle. We focus our analyd%Séis to gain insight into
the resolution properties of 3D regularization. Fig. 5540 Show XY, XZ, and YZ slices
of PSFs at various locations. PSFs were computed usingrdgrtzased regularization
[23], AIMA with o = 0, andFIIN with o = 0. PSFs constructed from 2D regularization
have also been shown as a point for comparison. In these diguweas tuned so that the

FWHM was around 2 pixels, or 8 mm
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Figure 5.33:yz slices of PL reconstructed images with conventional ragadtion design from noisy data.
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Figure 5.34:zxy slices of PL reconstructed images WiANMA regularization from noisy data.
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Figure 5.35:xz slices of PL reconstructed images wWABMA regularization from noisy data.
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Figure 5.36:yz slices of PL reconstructed images whlMVA regularization from noisy data.
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Figure 5.37: PSF at (30,0,0), using, top-left, certaintydmhregularization, top-righ§IMA « = 0, bottom
left, FIIN, bottom right, 2D regularization. Each plot shows from teftight, xy, xz, and yz
slices through the PSF.
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Figure 5.38: PSF at (-15,-15,0), using, top-left, certalvdsed regularization, top-righAlIMA o = 0, bot-
tom left, FIIN, bottom right, 2D regularization. Each plot shows from teftight, xy, xz, and
yz slices through the PSF.
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Figure 5.39: PSF at (15,15,-10), using, top-left, cerjaivdsed regularization, top-righfIMA o = 0,
bottom left, FIIN, bottom right, 2D regularization. Each plot shows from tefright, xy, xz,
and yz slices through the PSF.
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Figure 5.40: PSF at (-30,0,10), using, top-left, certab@iged regularization, top-riglt|MA o = 0, bottom
left, FIIN, bottom right, 2D regularization. Each plot shows from teftight, xy, xz, and yz
slices through the PSF.
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5.2.3 3D results discussion

This section discusses the results of 3D regularizationr r@sults show that using
the AIMA method of regularization design can correct for some arpgt however the
PSFs associated with 3D regularization appear less isotmoghe XY plane than 2D

regularization.

5.2.4 Spatial Resolution

3D regularization performs well for the phantom with spberishells. The images of
the PSFs as well as the reconstructed volume provide a afisditunderstanding of how
3D regularization using th&lMA method can improve spatial resolution. Plots of the
FWHM in Fig. 5.20 and Fig. 5.21 for PSFs at two locations prewgantitative evidence
thatAIMA can improve resolution isotropy for the spherical shellmiben. Reconstructed
images show that 3D regularization is also successful iptasence of noise.

3D regularization improves resolution isotropy for the Zlphantom. However, like in
2D, when we move from rings or spherical shells to more realiata, the improvement
of 3D regularization is less dramatic. TWéMA method and théIIN method appear
to perform equally well, and both outperform certainty lwhsegularization. However,
2D regularization provides for the greatest improvemenX¥plane isotropy. This is

discussed at length KVI.

5.2.5 Computational Performance

AIMA is much slower in 3D than in 2D because there does not appéardo analyt-
ical solution to the minimization problem in (4.18). This ams that an iterative NNLS
algorithm must be run for every voxel. Coupled with the faetttBD volumes have many
more voxels than 2D pixels, 3D regularization may be impeatt Furthermore, 3D reg-

ularization requires storing coefficients per voxel. With smaller image dimensions in
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PET, this may be feasible, but in CT, with up to 13 neighbors,rttemory requirements
become unmanageable. Since the regularization coefficarange slowly over space,
one could use coarser sampling in storing and computing\n alternative approach will

be discussed ifVI.



CHAPTER VI

Z-directional Post Filtering

As mentioned in the previous chapter, 2D regularizatiomss® outperform 3D regu-
larization in terms of XY isotropy. Recall th@s © term in (3.34). This is a mathematical
representation of a fundamental anisotropy in 2.5D PET andyGiems, that the inherent
blur of these systems occurs mostly in theplane. No regularizers can completely com-
pensate for this because it require®a0 term in the denominator in the local frequency
response, resulting in an infinite respons®at= 7/2. We have noticed that in design-
ing 3D regularizers, sometimes we sacrifigeplane isotropy to try to achieve additional
isotropy in thez direction. Fig. 6.1 and Fig. 6.2 show impulse responsedtiegtdirom 2D
and 3DAIMA regularization respectively. These results were gengraeng all 8 slices
of the GE scanner and data mentioned¢®nl. From these images we can see that 3D

Range: [-0.00224822 0.0504133]

11+ r

1 33

Figure 6.1: Impulse response resulting fradMA 2D regularization, from left to right, xy slice, xz slice, yz
slice.
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Range: [-0.000216838 0.0106555]
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Figure 6.2: Impulse response resulting framMA 3D regularization, from left to right, xy slice, xz slice, yz
slice.

regularization is more isotropic in all 3 directions, howeD regularization performs
better in the XY plane. In addition, 3D regularization ragsilarge amounts of memory,
up to 13 regularization coefficients for each pixel. Sincanser size in terms of num-
ber of pixels tends to outpace computer memory, these merssugs are very relevant.
This chapter discusses the use of 2D regularization, wtsahare isotropic in the XY
plane, and more memory efficient, followed by applying z-elivsion post-reconstruction
denoising that leads to an memory and computationally efftcgolution for 3D isotropy.
We analyze three methods in this chapter, case 1: 3D repgatam, case 2: 2D reg-
ularization with z-dimension post-reconstruction deimgjsand case 3: no regularization
with 3D post-reconstruction denoising. We analyze theiapegsolution properties of
these three methods, and then the noise properties. Fimallgok at reconstructed vol-
umes. In CT typically we wish to use edge-preserving regzddion to preserve detail in
the reconstructed volume. Some have argued that the anfdysiertainty based regular-
ization can be extended to the non-quadratic case [2]. Sniew/ork is related to certainty
based weighting, regularization coefficients designedg&IMA andFIIN may also help
achieve uniform and isotropic spatial resolution even witim-quadratic regularization.
Unfortunately non-quadratic edge-preserving reguléionas difficult to analyze, so we

will provide analysis using quadratic regularizers to gasight in to the spatial resolu-
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tion and noise properties of these methods, but show retmitisins using edge-preserving

regularization.

6.1 Spatial Resolution

In this section we want to analyze and isolate the effect efttiree regularization
schemes independent of the weightings used, so we assutm@tha I and focus on
parallel-beam geometry instead of fan-beam geometry. Weasf@ur analysis on the
guadratic case in this section. The edge-preserving pesale consider in this chapter
use the Huber penalty and operate in either the quadraticrred the potential function
or the edge-preserving region. This analysis is directlyliapble when in the quadratic
region of the Huber penalty. However to analyze the edgsegowng region, a more so-
phisticated method such as the local perturbation resg@3gmust be considered. We
attempt to make each of these regularization methods miagcisatropic target 3D PSF

(3.35) discussed if3.3 that has the frequency response

1

6.1.1 3D Regularization

We consider a conventional 3D regularizer with 3 adjacerghi®rs. Since 2.5D to-
mographic systems are inherently anisotropic regardiegeaveightings used, we sepa-
rate the conventional regularizérinto 2 componentsR,, (o, ®,0) = (2mpcos ©)? and
R.(0,®,0) = (2mpsin ©)%. These correspond to the local frequency response of regu-
larization with the structure i§3.3.1 with (n;, m;, ;) € {(1,0,0), (0,1,0)} for R,, and
(n,mu, z1) € {(0,0,1)} for R,. This allows us to apply different amounts of smoothing
in the z direction to compensate for the inherent isotropy of 2.5mdgraphic systems.

The frequency response using this regularizer is
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1

£3D — ocos ©
m + C:chny(p, (I)v ®> + Csz(M @7 6)

1
1+ 0cos Oy Ray(p, @,0) + C.R.(p, ©, O)
1
1+ 0cos O((yy(2mocos ©)% + (,(2mpsin O)?)
1
1+ (2m)20% cos O((yy cos?2 O + (, sin? O)

(6.2) -

We would like to make this isotropic and match the target)(6l@ward that goal, we can

pick ¢, and¢, to minimize|| cos ©((,, cos? © + ¢, sin* ©) — ¢||. To solve for¢,, and(,,

08 O((yy c0s® O + (. 5in* ) ~

Cay cos®> O + (. sin? O cos O ~ (
Gz

cos® O + 22 sin?Ocos O ~ .
xy ry

We solve this numerically and the optimal solutioisz 3¢,,.

6.1.2 Post-Reconstruction Denoising

No choice of¢,, and(, will lead to a perfect match with (6.1), so an alternative ap-
proach is to first reconstruct an underlying imagg,,, and then denoise it. Because
in CT typically non-quadratic edge-preserving regulaniatis used, we will consider the

spatial resolution of an iterative post-reconstructiomdesing of the form
(6.3) & = argmin || — ZTrougnl |2 + (Rpost (),

wherex,.qn IS the image before the post-reconstruction denoisingchviiould be the
reconstructed image using WLS for case 3, or the reconstruciage using PWLS with
2D regularization for case 22, is the edge preserving post-reconstruction regularizer.

For quadratic regularization, the frequency responsecessa with (6.3) is

1
]- + CRpost(Q7 q)7 6) ‘

(6.4) Loost =
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Though the analysis of this section focuses on quadratiglaggation, we focus on the
form (6.3) rather than generic post-filter so that this warkelevant to edge-preserving
regularization.

In image denoising, first-order differencing leads to PSkk fheavy tails. First order
differencing does not cause such heavy tails in tomograglienstruction because of the
% term associated with tomographic systems. We use secalsi-differencing in our
post-reconstruction denoising to help us match the PSKsingemographic reconstruc-
tion. Stayman and Nuyts have argued [39, 40, 67] that spatiatying post-filters can
achieve similar spatial resolution and noise propertiethasof regularized reconstruc-
tion. The post-filters used in this section are more resteince we require them to have

the form of (6.4).

6.1.3 Spatial Resolution of z-dimension Post-Filtering

We useR, to denote the z-dimension post-reconstruction regulgarigbich has the

frequency response

(6.5) R.(0,®,0) = (2mpsin ©)?
if first-order differencing is used, and

(6.6) R.(0,®,0) = (2mpsin0©)*

for second-order differencing. Combining (6.4) with the libal frequency reponse asso-
ciated with 2D xy plane regularization, The local frequenegponse associated with 2D
regularization followed by z-dimension post-reconstiuttenoising is

1 1
1+ ¢(2m)2%(pcos©)3 1+ R.(0,9,0)

£2szf -

Unfortunately, this expression is quite different from theget (3.35) and the corre-

sponding PSFs may have a much different shape than the.tdrgé&ict it appears im-
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possible to provide completely isotropic resolution usig regularization followed by
z-dimension post-reconstruction denoising. Thereforesingly tune the parametec(s

and(, so the FWHM of the PSF matches the target FWHM.

6.1.4 3D Post-Filter

We useRsp, s to denote the 3D post-reconstruction regularizer. Theuieegy response

of 3D post-reconstruction denoising follows (6.4), where
(6.7) Rspyt = (2m0)*

for first-order differencing and

(6.8) Rappt = (2mo)*

for second-order differencing. The frequency responseDop@st-reconstruction denois-
ing is

6.9) Loppt = ————.

1 + CRsppt

This expression is much more similar to the target, but isditierent because the expo-
nent ofp is either two or four depending on the differencing. To afiemfair comparison

in terms of resolution matching, we tugeagain so that the FWHM of the PSF matches

the target.

6.1.5 Plots of Point Spread Functions

Fig. 6.3 shows normalized profiles cut along the X, Y, and & afi PSFs associ-
ated with these three methods with the regularization patars tuned such that the
FWHM= 1.43 pixels. The PSFs associated with these three methods aresivaifar.
This is consistent with Stayman’s results [67] that posedfihg can achieve similar spa-
tial resolution properties as that of quadratically regatd reconstruction, even with the

structural restriction made in (6.4).



87

1.2 T T T T T T
2D regularization, z—dim postfilter
— — — 3d regularization

— - — - no regularization, 3d postfilter

0.8

0.6

041

0.2 I I I I I I
0 5 10 15 20 25 30 35

Figure 6.3: Profiles cut through PSFs in different directiconcatenated into one array. From left to right,
along the X-axis, Y-axis, and Z-axis.

Next we plot several PSFs using these three methods usitigtistd weightingW
from a simulated sinogram from the NCAT [57] phantom. Fig. @splays slices of the
PSF associated with 3D post-reconstruction denoising antbar plots of those slices.
We only plot this at one location since it is spatially ineani. Fig. 6.5-6.8 display slices
of PSFs for 3D regularization and 2D regularization withimension post-reconstruction
denoising at several locations through the volume.

As is quite apparent, 2D regularization with z-dimensiostgeconstruction denoising
provides for more isotropy than 3D regularization undetiséa weightings. One may
notice extremely streak like PSFs at several locationsefighing these regularizers, we
used theAIMA method witha = 0. The streaks are caused by too maﬁwalues being
0, which can be fixed by raising, as discussed i§¢.1.3. We choose to uge= 0 in this

section because controls the tradeoff betweekiMA regularization and certainty based
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Figure 6.4: from left to right, xy, xz, yz slices of the PSFfr@D post-reconstruction denoising.
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Figure 6.5: PSF at (100,-80,0), using 3D regularization loa left, using 2D regularization with a z-
dimension post-reconstruction denoising on the right. hiFalot displays, from left to right,
Xy, Xz, yz slices of the PSF.
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Figure 6.6: PSF at (-100,-100,0), using 3D regularizationtiee left, using 2D regularization, with z-
dimension post-reconstruction denoising on the right. hBalot displays, from left to right,
Xy, Xz, yz slices of the PSF.
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Figure 6.7: PSF at (100,0,-40), using 3D regularization lom left, using 2D regularization with a z-
dimension post-reconstruction denoising on the right. hEalot displays, from left to right,
Xy, Xz, yz slices of the PSF.
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Figure 6.8: PSF at (-100,0,20), using 3D regularization lom left, using 2D regularization with a z-
dimension post-reconstruction denoising on the right. hEalot displays, from left to right,
Xy, Xz, yz slices of the PSF.

regularization and we wish to give the reader a sense of AIMA regularization. Next,
we will look at the variance of these three methods to gainesarsight into the noise

properties.
6.2 Noise Properties

Analyzing the covariance for non-quadratic edge presgmagularization is extremely
difficult, though there have been various attempts and apations for doing so [3,42],
However in the quadratic case using a PWLS estimator we caglajeexact expressions

for the variance [16]. The covariance for a PWLS estimatoimizing the following cost

function

(6.10) Srwis = argmin 5| A’ — ()l fiy — CR(@)

IS

(6.11) Cov{Zpwis} = [AWA+ (R 'A'W Cov{{(y)} WA[AWA + (R,

whereR is the Hessian of the regularizét(x) = ;o' Rx. W is the user defined weight-

ing matrix, which we have chosen in this thesis toge= Cov '{/;} ~ diag{y;} for
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CT. This expression is exact if a PWLS estimator is used; a Fimagir would yield

approximately the same covariance [16], Substituting @mieighting yields
(6.12) Cov{zpwis} = [AWA +(R| '"AWA[AWA +(R]™*

Adding in some form of post-reconstruction denoisitgys; = Lpost Zpwirs, WhereL
is a circulant matrix that performs a convolution with thepuise response associated with

the post-reconstruction denoising, (6.12) becomes

(6.13) Cov{@post } = Lpost| AW A+ (R| "AWA[AWA +(R|'L

post”

The inverses would take a long time to compute because thasees are large, however,
we can compute the variance of the estimator efficiently hgirafd’ to compute the

variance at once pixel and using the circulant approximetiom §lII,

(6.14) Var{aéj} = 7 Lyo|[AWA + CR|"AWA[A'WA + (R]"'L

post

&

Factoring out a Fourier Matrig) which is centered at voxel
~ . A (Y7)? ;
=6Q | —— 7 J
V"’"{w]} Q {(AJ’ +grﬂ)2] @0

LAY
(6.15) = Z AL+ ()

where as ir§lll, A7 is the DFT of AW A/, IV is the DFT of R/, and Y7 is the DFT
Of Lot 0.

We used (6.15) to compute the standard deviation of 2D regateon with z-dimension
post-reconstruction denoising, 3D regularization, andpgist-reconstruction denoising
for different values of,. Then, we plotted the variances as a function of the spagl r
olution associated witly in Fig. 6.9. SinceW is object dependent and it is impractical

for us to calculate standard deviation plots for all possi@lues oV we have assumed
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W = I in these plots, which is equivalent to assuming the noisddktige white Gaus-
sian noise. While this is an unrealistic Assumption to makédmographic systems, these
calculations should still give us an indication of the perance of these three methods
even whenW =+ I. In the derivation of certainty based regularization in][Z3essler

made the following approximations,
AWA=~ DA AD
which motivated a regularization design of the form
R=DRyD,
whereD = diag{x}. Using these equations, (6.14) becomes

Var{#/ .} ~ 6 DL

st A’A + (R A’A[A'A + (Ry| ' Lo D167
WhenW +# I, the variances calculated in Fig. 6.9 are subject to somle faetor D!
but the overall relationships remain the same. The starfaritions are similar for all
three estimators. The noise properties appear similaramgtiadratic case. There are

differences however because matching the FWHM of profilesudjin the PSF still leaves

room for differences in spatial resolution.

6.3 Reconstructed Images

Stayman argued that for quadratic regularization, the spaal resolution and noise
properties could be achieved with the appropriate posifillowever the non-quadratic
case is much more difficult to analyze. Anecdotal resultggesgthat applying edge
preserving post-reconstruction denoising to unregudrieconstructions may accentu-
ate streak artifacts that are common to unregularized toapbgc images. Below is a 2D
example, Fig. 6.10 has been reconstructed using certaasgydoregularization with a Hu-

ber penalty, and Fig. 6.11 was reconstructed with unregeld\WLS and then we applied
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Figure 6.9: standard deviations of the 3 methods.

an edge preserving post-reconstruction denoising of thme {6.3) using the same Huber
penalty with matched FWHM. More streak artifacts are presetite post-filtered image
than in the regularized image.

While these results suggest that post-reconstruction poggerving denoising applied
to unregularized reconstructions is suboptimal, we belighat since the noise of 2.5D
systems is statistically independent in the z-directi@lgespreserving z-dimension post-
reconstruction denoising will not have the same problenesigs-preserving post-reconstruction
denoising applied to the XY plane. These streaks exist lsecthe denoising of (6.3)
uses an unweighted norm which assumes that the noise is.whitee could choose
W = Cov '"{&pwrs}, however computing that quantity is extremely slow and gubo
timal because of the size of the matrices involved.

We next simulate a 2.5D system using a stack of 2D systemsnod®1 slice system

with a similar geometry to [70] withV, = N, = 256 and N, = 51, andA, = A, =



94

Range: [-63.2715 2185.05]

1200

800
1 244

Figure 6.10: Reconstruction using regularization.
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Figure 6.11: Reconstructed using post-reconstructioniday.
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A, = 1.95mm. To simulate model-mismatch, we used(24 x 1024 x 51 NCAT phan-
tom and generated a sinogram using the same distance-taakprojector except with
N, = N, = 1024 andN, = 51, A, = A, = 0.49mm andA, = 1.95mm. We compared
4 reconstructions using different methods: (i) 3D reguaktion designed using tHdMA
method witha = 0.1 and 5 neighbors, the four associated with 2D regularizadioah
an additional neighbor in thedirection. (ii) 2D regularization designed using hEMA
method witha = 0.1 and 4 neighbors, followed by z-dimension post-reconswoatdge-
preserving denoising. (iii) extremely small certainty é&hsegularization (just to help the
algorithm converge) and then 3D post-reconstruction gatgeerving denoising. (iv) 3D
regularization using certainty based weightings [23].. Bid.2-6.17 display axial images
for slices 26 and 48, and coronal images for slices 129 anddi®e above 4 methods
as well as the phantom, and the minimally regularized (almosdenoising) reconstruc-
tion. The images were reconstructed using an ordered sulkggtrithm with separable
paraboloidal surrogates [63, 64] with 10 iterations usidg 8ubsets, 20 iterations using
82 subsets, 40 iterations using 41 subsets, 100 iteratithwubsets, and 200 iterations
with 1 subset. To ensure convergence of the minimally regudd reconstruction which
converges slower than other regularized reconstructivagerformed an additional 800
iterations with 1 subset.

As mentioned previously, Fig. 6.13 was reconstructed usligint regularization to
help the algorithm converge. This gives us a sense of theeribet is present in un-
regularized reconstructions. The coronal images are e qumilar, which confirms
our previous assumption that since under 2.5D geometrase nn different slices are
statistically independent and thus all of our regular@atiechniques should have simi-
lar performance in the dimension. The axial images are quite different. We can see

from Fig. 6.13 that there is a substantial amount of strédakroise. The reconstructions
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Figure 6.12: Axial and Coronal images of the phantom.
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Figure 6.13: Axial and Coronal images reconstructed usimgmal regularization.



98

1 256

1 256

Figure 6.14: Axial and Coronal images reconstructed usihg@@&ge-preserving regularization.
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Figure 6.15: Axial and Coronal images reconstructed usiBge2lge-preserving regularization and z-

dimension edge-preserving denoising.
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Figure 6.16: Axial and Coronal images reconstructed usingmal regularization and then 3D iterative
edge-preserving denoising.
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Figure 6.17: Axial and Coronal images with certainty basggkepreserving regularization.
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from 3D post-reconstruction edge-preserving regulaonaseems to preserve many of
these streaks. The reconstructions using 3D an@RDA regularization in Fig. 6.15 and
Fig. 6.14 appear to have even more streaks than Fig. 6.13nBegctions using certainty
based regularization in Fig. 6.17 have the fewest strealissaggest that edge preserv-
ing regularization does have the potential to reduce sttedke obvious question is to
ask why edge-preservil§lMA regularization has more streaks than edge-preserving cer-
tainty based regularization. There are several possdsilitFirst, Ahn suggested in [3]
that certainty based weights designed for quadratic regatson could be extended to
edge-preserving regularization. There may be issues glerieg that work to the param-
eterization of the regularization we are using in this theSiecond, we have experimented
with the parameter that controls the tradeoff betwe&tMA regularization and certainty
based regularization in an attempt to eliminate zeros inrHéssian. However, this is a
crude method of quality control. Regularization designedg#\IMA gives us the best
fit to a desired target frequency response, however there ggiarantee on the shape of
the associated PSF. Developing more sophisticated waysntfatling the quality of the

AIMA approach is an open problem.

6.4 Summary

In this chapter, we have considered 3 approaches to degasithimage reconstruc-
tion: (i) 3D edge-preserving regularization, (ii) 2D edgeserving regularization with z-
dimension post-reconstruction edge-preserving dergisimd (iii) 3D post-reconstruction
edge-preserving denoising. In the quadratic case, usifg@Nl phantom, method (i)
provides for completely isotropic and uniform spatial leton. Method (ii) provides for
improved isotropy and uniformity over (iii). We hypothestzthat method (i) would be

undesirable because unregularized reconstructions mvery slowly. We also hypoth-



103

esized that post-reconstruction edge-preserving dempigould preserve streak artifacts
present in unregularized reconstructions. We believetrtehod (ii) would be able to
achieve good isotropic spatial resolution, and eliminateags that occur mostly in the
Xy plane. Simulation results demonstrate that while in thadyatic case, the 3 methods
have similar spatial resolution and noise properties, érnbn-quadratic edge-preserving
case, they are quite different. Methods (ii) and (iii) appegoreserve even more streaks
than method (i). We tried using edge-preserving certaiaged 3D regularization which
seemed to eliminate the most streaks. WhileANdA approach to regularization design
used in methods (ii) and (iii) pick the best regularizatioefficients given our constraints,
there is no quality control over the properties of those laigers. We believe that using
the parametery which controls the tradeoff betweekiIMA regularizers and certainty-
based regularizers will allow the user to construct regzdas that have desirable spatial
resolution and noise properties, even in the non-quadratie. Selecting the parameter

and other methods of quality control fBIMA regularization is an open problem.



CHAPTER VII

Conclusions and Future Work

7.1 Summary

In this dissertation, we have proposed quadratic regaoz design techniques for
parallel and fan-beam geometries for 2D and 3D systems. eTimethods have varying
degrees of performance in terms of spatial resolutionenmieperties, and computational
performance.

For 2D, we have extended a parallel-beam regularizatiorgdeschnique based on
continuous space analogs, tABMA method, to fan-beam geometries. This method ex-
tracts a continuous weighting function from a user-defineiigiing matrix using the
fan-beam geometry and the corresponding Jacobian. THigsitgee is computationally
efficient and can be solved mostly analytically, and we hd@ve that it performs well
in terms of resolution isotropy.

For 3D, we have extended 2D regularization design appreaich8D systems. This
method is slower, as 3D volumes are larger and there doeppeéato be a corresponding
analytical solution for the 3D case. 3D regularization perfs well for simple phantoms,
but breaks down with more realistic data because it is tryangounteract a fundamental
anisotropy in 3D systems with small cone or cross-planeeangihis regularization design

method also requires larger amounts of memory than the 28 basause it needs to store

104
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more coefficients for more voxels.

As an alternative to th&IMA method, we have developed a slower, but more accurate
FIIN method. This method avoids using tAREBMA approximation which makes tiRdMA
method faster. While this method performs better in termsesblution isotropy, the
benefits are not significant. This method is a suitable atem to theAIMA method
when resolution isotropy is a priority over computationficeency.

These regularization design methods have the potentiaktd oo few non-zero co-
efficients due to the non-negativity constraint. In thissdigation, we have developed a
method for guarding against this by controlling a trade@fween theAIMA and FIIN
methods and the certainty based regularization desigroaphpr

As an alternative to 2D and 3D regularization, we have ingastd 2D regularization
followed by z-dimension post-reconstruction denoisinggisicombined approach benefits
from the improved spatial resolution and computationalgrerance of theAIMA method
for 2D systems, and achieves excellent overall isotropy 8ieregularization. We have
analyzed the spatial resolution and noise properties efrttathod in the quadratic case,
and found it to be comparable to 3D regularization. We hage akrformed simula-
tions using this method with non-quadratic edge-presgriagularization, and found that

greater work needs to be done to control the quality of retcocied images.
7.2 Future Work
e This work focused on using a 2D derivation for the Grammiaarafor which we
have found to be suitable for 3D systems with small croseglar cone angles.

However, it would be desirable to extend the derivation ef@rammian operator to

3D geometries, and explore 3D regularization design wigh3id Grammian.

e This work focused on 2.5D geometries. Extending this workutty 3D PET and
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cone-beam CT can be done using the 3D Grammian, or by othepdgeth

Extensions to second order differencing would give us mastsfunctions and more

degrees of freedom which will improve the accuracy of ouutagzation design.

This work focused on equations for spatial resolution, aosidenfor quadratic reg-
ularization. However, in CT, non-quadratic edge-presegrwiegularization is the
preferred method for de-noising. It would be desirable tteest our analysis to
edge-preserving regularization, and analyze the locdlsgEation response [3]. This
would help us understand more deeply the trade-off betwaguarization and post-

filtering.

We found no apparent analytical solution to 3D regularaatiesign. It is possible
that one does not exist, however further exploration mayiean efficient algorithm

for 3D regularization design.

The regularization design methods used in this dissentaie overly rigorous, we
calculate coefficients for every pixel of voxel using evergjpction angle in the
sinogram. A coarser scheme for regularization design, agglar sub-sampling
would help make regularization design methods, espediady3D methods, more
efficient. A coarser system for regularization design mag aise less memory, and
make 3D regularizers more practical. The performance afésléor such a scheme

must be explored.

The 2.5D systems considered in this thesis are unrealistare work needs to be
done to develop regularization for fully 3D systems, or tted@ine the efficacy of

this regularization design with fully 3D systems.

The proposed regularization design can lead to strangalyexhPSFs that can cause

artifacts in the resulting image. We had proposed a userateparametetr which
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could control a tradeoff betweehlMA regularization and certainty based regular-
ization which does not have this issue. More work needs todme do determine
how best to choose this parameter. Other ways to ensurehihagpttial resolution

properties of designed regularizers are desirable neeel ito/bstigated.

In trying to understand the causes of streaks in edge-pe$eegularization, we
analyzed the quadratic case. With the NCAT phantom we sawakstrgeurrounding
bones that we had not seen before. Further study is requingtbierstand the causes
of these streaks and why they are worse in quadraticalljlaegad images than the

edge-preserving case.
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APPENDIX A

Fourier Analysis of Fan Beam Geometries

This appendix considers fan-beam geometries and usesgons-space analysis to ana-
lyze the Fourier transform of the Grammian operaddW A to simplify the regularization
design problem in (3.8). One can use polar coordingtgs and continuous-space anal-
ysis to separate the angular and radial componentd’®% A. Using this framework,

isotropy can be thought of as eliminating dependence onrtgelar componend.

A.1 Fan-Beam Geometry

Focal Point (0% }
fs

X-ray Sourc Yy

Figure A.1: lllustration of Fan beam geometry.

Fig. A.1 illustrates the fan-beam geometry that we considaat P be the rotation
isocenter. Doy denotes the distance from the poiRtto the detector,Dy, denotes the

distance from the X-ray source 18, and D¢, denotes the distance from the X-ray source
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to the focal point of the detector arc. Defifig; £ Dyq + Dy to be the total distance
from the X-ray source to the center of the detector, Bad= D,y + Dy, to be the total

distance from the focal point to the center of the detectbis Tormulation encompasses a

variety of system configurations by allowing the detectaalgoint to differ from the X-
ray source location. For flat detectof3, = co. For third-generation X-ray CT systems,
Dy, = 0. For fourth generation X-ray CT system3y, = — Dy.
Let s € [—smax, Smax] denote the (signedrc lengthalong the detector, where= 0

corresponds to the detector center. Assuming detectoreelisnare equally spaced along

the detector, arc length is the natural parameterizatidre vérious angles have the fol-

lowing relationships:
S
a(s) = —
(s) Do
(Dgq) sin a(s) )

= tan™
o <(Dfd)00304(3)—Dfs

where the two most important cases are
a(s), Di =0

(A1) V(s) =
tan™ s/Dy, Di = 0o
The relationship betweenand~ is:

( (Dsa) [7 — arcsin<

Drs siny)] ,

Deq
0< Dy <0

S

(A.2)
Dgqtany, Dy = 00

\
The ray corresponding to detector elemeand angles is

L(s,0) = {(z,y) - wcosp(s, B) +ysinp(s, §) =r(s)},

where
£ B+(s)

Dgysin~y(s) .

(A.3)
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The range of depends on the position of the X-ray source and the size afdtector:
(A4) |T(8)| S T'max é DSO SiIl ’yma)u

where~, ... £ 7(smax) @Nd spax IS half the total detector arc length. The radiyg,
defines the circuldiield of viewof the imaging system. ThHan angleis2+, ...

The line-integral projectiop(s, 3) of f alongL(s, 3) is:

s, 0) = xr,y)dl
wsd) = | Y
(A.5) d(x cos(ip(s, B)) +ysinp(s, 5) —r(s)) dz dy,

for |s| < Smax @Nd0 < § < Bnax. We requirefBp.x > m + 27,,.. 10 ensure complete
sampling of the FOV (otherwise the impulse response wouldidpely anisotropic) .

The usual inner product for fan-beam projection space is

Smax Bmax
(b1, pa) = / /0 pi(s, ) pa(s, ) ds B

Smax

Using this inner product in projection space, and the uglfainner product in image

space, the adjoint dP is given by

Smax Bmax
(Pp)(z,y) = p(s,5)
no [

oz cosp(s, B) +ysinp(s, B) —r(s)) p(s, ) dsdg,
wherer(s) andp(s, 3) were defined in (A.3). We will next extend a common derivattbn
backproject then filter (BPF) tomographic reconstructioadoommodate a user defined

weighting, and then change the coordinates from paraialibto fan-beam space.

practically speaking, the integral should be restricteithédfield of view: \/z2 + 2 < rmax, but this restriction wouldompli-
cate analysis by introducing a shift variance into the pohlso we ignore it.
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A.2 Parallel-Beam Grammian Analysis

When we analyze the local impulse response, we typicallyidensecentered local
impulse functions. In this derivation we will start with anaentered local impulse re-
sponse, and center it at the end by removing a phase term fretpigency domain. The

un-centered local impulse response of the Grammian opesato
PWPS(wg) = [ [ bl cos(o) ' sin(s) -1
w(r, §)0(x cos(¢) +y sin(¢) —r)drde.
Using the sampling property with the firstdefine
(A.7) w!(¢) £ w(r, ¢) = w(z’ cos(¢) +y’ sin(¢), ¢).

We denote the Fourier transform &f(z,y) as F7(p, ®). Then, using the Fourier slice

theorem,

P WP (z,y) = / / / F(p, ¢)e*™dp
0 —00 J —00

(A.8) w? () (x cos ¢ + ysin g — r)drde

[ [

w (¢) 127 p(x cos ¢p+y sin @) dpd¢

This is nearly the inverse Fourier transform in signed poterrdinates except forascale

factor. Dividing byp,

i i
P WP (2,y) = // v 5$y))

ez27rp Z cos ¢+y sin ¢) dpdqb
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The local impulse response is recentergdy, y) = P*WPS (x + 27,y + y7) which

eliminates the complex phase tefii(p, ¢). Then, the local frequency response is

w’(P)
P

(A.9) HY(p, ®) =

A.3 Fan Beam Grammian Analysis

The natural indexing for fan-beam data is arc-lengéimd angles. The analogs te, ¢
for parallel-beam systems arés), ¢(s, 5) as defined in (A.3). The weighting expression
w(r, ¢) is indexed asu(s, 3) in fan-beam coordinates. We start by looking at the fan-beam

projection in terms of the analogs to parallel-beam coaidis,

PWPS (o) = [ ;x / " (s, )
(a7 cos(o(s, 3)) o sin((s, B)) —r(s))

8(z cos(ip(s, B)) +ysin(p(s, B)) —r(s))dsdp.
We use the change of variables
(A.10) r" =r(s) = Dgsin~y(s)
(A.11) ¢ =p(s,8) =B+7(s)
as defined in (A.3) which has the corresponding Jacobiamrdatant
(A.12) J(s) = [ Dso cosy(s)[[7(s)].
Then,
, 2T [Tmax
PWPH) )= [ [ i)
§(z cos ¢’ + 1 sing’ — 1)

d(xcosy¢' +ysing —1') drdep.

b
J(s(r))
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In this expression,

w(r, ) 2 w(s(r), B(r,¢))
s(r) = v !(arcsin(r/Dy))

B(r,p) = ¢ —arcsin(r/Dy) .
Using the sampling property of the firsts in the parallel beam case,

(A.13) w’ (') & w(a? cos ' + 3y sin g, )

(A.14) s (¢) £ s(r')

r'=xJ cos @’ +yJ sin ¢’

Again, let 7 (p, ®) denote the Fourier transform &f(x, y). Then, using the Fourier slice

theorem,

(PWPY)(z,y)
e o /OO Fj (p7 ¢>w](¢/> i2mpr!
T(si (&

s(¢'))

Tmax

5(x cos @' +ysing' — r')dpdy'dr!

S0/

-/
-
“I L. Wi

Sj
/ / Fj ;07 )wj(gpll) 127rp x cos @'’ +y sin ¢’ dpdcp”,
J(s7(¢"))

wherep” = ¢’ + 7. This is similar to the parallel-beam derivation except the have two

/ F( 'O ’ S0)ei?”p(aﬂcossz>’+ysin¢>’>dpd80/

FJ pa )’LU 90/) z27rpaccosg0+ysm<p)dpd(p

integrals. We can convert each integral into the inversei€otransform as we did in the
parallel-beam case and strip out the phase tEffp, ®) by recentering the local impulse

response. The local frequency responses of the Grammiaatopés

(A.15) Hi(p,®) = ——=
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where,

+ w!(p)
p=>

(A.16) W (P) = W {wj(go)

¢=¢+ﬁ}'
Because of the absolute value function in (A.12)s) is invariant to ther phase shift.
For the case where we have uniform weightings, 5) = 1 and therefora¥ = I, and

(A.15) simplifies to

2

(A.17) Hi(p,®) = NEIONEE

We use this equation in the calculation of a target local ilsguesponse (3.19).
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APPENDIX B

KKT proofs

In this appendix, we show that'd3 + d% < d;, as claimed below (4.10) ig4.1.4. Squar-

ing the integrals in (4.10), we have:
— / / W (X )wd (YV)AX dY
T Jo Jo
d%z%/ / cos(2X) w? (X) cos(2Y ) w? (Y)dXdY
0 0

1 T T ' 4
d3 = ;/o /o sin(2X) w’ (X) sin(2Y) w’ (Y)d X dY.
In particular,

24— %/OW/OWW(XW(Y)
[cos(2X) cos(2Y) +sin(2X) sin(2Y)]|dXdY

_ % /0 ’ /0 " (X (V) cos(2X — 2Y) dX Y.

Thus,d3 + d3 < d? sincew’ (®) > 0 for all ® andcos(2X — 2Y) < 1 for all X andY".
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APPENDIX C

Streaks in Reconstructed Images

We attempted to gain more insight into why there were so maewlss in images recon-
structed with edge preserving regularization so we decidddok at the quadratic case
with the same phantom for some insight. We were disappototédd that there were even
more streaks surrounding bone in these images. An imagestaoted using certainty
based regularization is displayed in Fig. C.1. These straskdifferent than the ones we
saw in the edge preserving case, Fig. 6.14-6.15. At thistpegndo not completely un-
derstand why these streaks are worse in the quadratic Gas¢hih edge preserving case.
The streaks are present in regularized reconstructiory W8MA regularization, certainty
based regularization, and even conventional regulaoizato we do not believe this to be
the result of regularization design. The streaks disapgeang unweighted reconstruc-
tions, Fig. C.2. We believe that our reconstruction algonghhave converged because
further iterations do not seem to improve the cost functidetermining the cause of these
streaks require further study, as well as why they are legarapt with edge-preserving

regularization.
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Figure C.1: Reconstruction of NCAT phantom using certabged regularization.
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Figure C.2: Unweighted reconstruction of NCAT phantom gsianventional regularization.
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