
Low Duty-Cycled Wireless Sensor Networks:

Connectivity and Opportunistic Routing

by

Dongsook Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2008

Doctoral Committee:

Associate Professor Mingyan Liu, Chair
Professor David Neuhoff
Professor Demosthenis Teneketzis
Assistant Professor Zhuoqing M. Mao





c© Dongsook Kim 2008
All Rights Reserved



To my parents

ii



ACKNOWLEDGEMENTS

I owe enormous gratitude to a lot of people who gave me their endless support

during my doctoral courses. Among all, I would like to specially express my gratitude

to my advisor, Mingyan Liu, who was a role model to me for all these years and has

guided me with her passion and patience to complete this thesis. I also thank my

committee members, David Neuhoff, Demosthenis Teneketzis and Zhuoqing M. Mao,

for their valuable comments.

I owe tremendous thank to my beloved family, specially my parents who have

thrown full support with their love and patience. There have been many friends

who spent the same period in Ann Arbor, shared up and down, and encouraged one

another. I would like to thank my colleagues among those who came to Ann Arbor

in the same year, Taesik Yang, Junho Choi and Sahika for their care and friendship.

I also would like to thank my friends and juniors, Jungkeun Yoon, Iljoo Na, Yoonna

Oh, Junglan Cho, Jinho Kim, Hyoil Kim, Sangwon Yoon, Sanghyun Seo, Junyoung

Park, Jooseok Kim, Gyemin Lee, Christine Kyungmin Kim, Seonghee Son, Heesun

Min, Heejoo Kang, Nayoung Shin, Hyewon Yeom, Jean An, Kyongae Lee, Kyongja

Kim, Hyunhee Lee, Eunsook Jeon, Myungkil An, Minkyong Lee, Jinhee Han and

those whom I didn’t mention here, for their help and support nearby or from a

distance.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the Dissertation and Main Contributions . . . . . . . . . . . . . . 5

1.2.1 Asymptotic Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Stochastic Routing for Low Duty-Cycled Sensor Networks . . . . . 9
1.2.3 Routing Delay Analysis . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Performance Analysis of Broadcasting Algorithms . . . . . . . . . . 11

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Asymptotic Connectivity of Low Duty-Cycled Wireless Sensor Networks 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Network Model and Main Results . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Asymptotic Connectivity with Coverage . . . . . . . . . . . . . . . . . . . . . 36
2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.1 Generalized Connectivity . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7.2 Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3. Optimal Stochastic Routing in Low Duty-cycled Wireless Sensor Networks 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 Description of the Model and Problem Formulation . . . . . . . . . . . . . . 48

3.3.1 A High Level Description . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



3.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.1 Special Cases of Problem 3.1 . . . . . . . . . . . . . . . . . . . . . 58

3.5 Analysis of Problem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Optimal and Sub-Optimal Routing Algorithms . . . . . . . . . . . . . . . . . 62

3.6.1 An Optimal Centralized Algorithm for Problem 3.1 . . . . . . . . . 62
3.6.2 A Sub-Optimal Algorithm . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Distributed Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.7.1 Priority Update Procedure . . . . . . . . . . . . . . . . . . . . . . . 71
3.7.2 Forwarder Selection Procedure . . . . . . . . . . . . . . . . . . . . 74

3.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.8.1 The effect of sleep information on optimality . . . . . . . . . . . . . 77
3.8.2 The effect of node degree . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8.3 The role of idle costs . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.8.4 The performance of the distributed protocol SRP . . . . . . . . . . 83

3.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4. Opportunistic vs. Non-opportunistic Routing: A Delay Analysis . . . . . . 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Network Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Non-Opportunistic Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.1 Transmission success probability density with support [0, 1] . . . . 94
4.3.2 Transmission success probability density with support [ε, 1] . . . . 96

4.4 Opportunistic Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Distance-based Success Probability Model . . . . . . . . . . . . . . . . . . . 103

4.5.1 Non-Opportunistic Routing . . . . . . . . . . . . . . . . . . . . . . 104
4.5.2 Opportunistic Routing . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 The Extension to Multi-Path Routing . . . . . . . . . . . . . . . . . . . . . . 106
4.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5. Performance Evaluation of Broadcast Algorithms: An Analysis-Emulation
Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2 Network Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3 The State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 The General Framework . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.2 Modeling of the Probabilistic Scheme . . . . . . . . . . . . . . . . . 123
5.3.3 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . 127

5.4 The Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.1 General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.4.2 Modeling of Example Broadcast Schemes . . . . . . . . . . . . . . . 131

5.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

v



LIST OF FIGURES

Figure

2.1 Outline of the proof of Theorem 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The square tessellation τnp
S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 The disk tessellation τnp
D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Nodes with radius of transmission R(n) =
√

2K log(np(n))
np(n) on τnp

S . . . . . . . . . . . 31

2.5 Nodes with radius of transmission R(n) =
√

K′ log(np(n))
np(n) on τnp

S′ . . . . . . . . . . . 34

2.6 Boundary conditions for R(n)
r(n) for p-asymptotic connectivity with some levels of

coverage V when k2 = 1 and 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Phase transition in probability of connectivity when p(n)R2(n) = c log n
n and p(n) =

0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Phase transition in probability of connectivity when p(n)R2(n) = c log n
n and p(n) =

1√
n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Phase transition in probability of connectivity when p(n)R2(n) = c log n
n and p(n) = 1

n . 41

3.1 System for an Example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 The diagram of Algorithm 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Computational complexity of a stochastic dynamic programming algorithm. . . . . 66

3.4 Delivery success probability w.r.t. distance. . . . . . . . . . . . . . . . . . . . . . . 75

3.5 Topology 1: an example of a network topology with 6 nodes. . . . . . . . . . . . . 77

3.6 Performance comparison of the centralized algorithms on Topology 1 . . . . . . . . 79

3.7 Topologies with 30 sensor nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 The effect of average degree of nodes on the performance of Sub-optimal and Lott’s
Algorithms (scenario 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.9 The role of wait cost on the performance of Sub-optimal Algorithm on Topology 3. 84

3.10 Performance comparison between the decentralized algorithms and ExORs (sce-
nario 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



4.1 An illustration of choosing next hops by different routing methods. . . . . . . . . . 91

4.2 The 1-hop performance of non-opportunistic routing and opportunistic routing un-
der uniform distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Comparison of the 1-hop performance of non-opportunistic routing and opportunis-
tic routing under uniform success transmission probability model vs. distance-based
success transmission probability model (DSM). . . . . . . . . . . . . . . . . . . . . 111

4.4 The performance of non-opportunistic routing and opportunistic routing under
uniform distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 The performance of multi-path routing under uniform distribution over [0, 1]. . . . 114

5.1 A small network with 5 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 The state diagram of the probabilistic Scheme. . . . . . . . . . . . . . . . . . . . . 126

5.3 Complexity of the state-space based model. . . . . . . . . . . . . . . . . . . . . . . 128

5.4 The performance of the probabilistic scheme estimated by the analysis-emulation
hybrid model under the uniform success probability model when average node de-
gree = 17.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 The performance of the probabilistic scheme estimated by the analysis-emulation
hybrid model under the distance-based success probability model when average
node degree = 17.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.6 The performance of the counter-based scheme estimated by the analysis-emulation
hybrid model under the uniform success probability model when average node de-
gree = 17.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.7 The performance of the counter-based scheme estimated by the analysis-emulation
hybrid model under the distance-based success probability model when average
node degree = 17.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vii



LIST OF APPENDICES

Appendix

A. Detailed Calculation for the Optimal Policy in Example 3.1 . . . . . . . . . . . . . . 143

B. The proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

C. The proof of Lemma 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

D. The proof of Lemma 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

E. The proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

F. The proof of Lemma 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

G. The Proof of Lemma 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

viii



CHAPTER 1

Introduction

1.1 Introduction and Motivation

Wireless sensor networks used for monitoring and surveillance purposes rely heav-

ily on the efficient use of unattended sensors to detect, identify and track targets

in order to enhance situation awareness, agility and survivability. The successful

deployment and operation of these sensor fields require low cost transceivers and

processors, and a reliable, robust, secure and jam-resistant communication infras-

tructure to gather and disseminate sensor data. Among different types of sensors,

the unattended ground sensors (UGS) are typically deployed and left to self-organize

and carry out various sensing, detection and communication tasks. These sensors are

operated on battery power, and energy is not always renewable due to cost, environ-

mental and form-size concerns. Therefore in order to ensure that these sensor fields

can accomplish planned missions (which may need to last for weeks and months or

even more), it is critical to operate these sensors in a highly energy efficient manner.

This places a stringent energy constraint on the design of the communication archi-

tecture, communication protocols, and the deployment and the operation of these

sensors.

It has been observed that low power, low range sensors consume significant amount

1
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of energy while idling compared to that consumed during transmission and reception.

Consequently, it has been widely considered a principle method of energy conserva-

tion to turn off sensors that are actively involved in sensing or communication. By

functioning at a low duty cycle, i.e., the fraction of time that a sensor is active/on,

sensors are able to conserve energy and consequently increase their lifetime. This

is especially applicable in scenarios where sensors are naturally idle for most of the

time (e.g., detection of infrequent events such as fire, fault, etc., and transmission

of very short messages). In some cases we may also be forced to put sensors in

a power-saving (or sleep) mode for a large fraction of the time in order to meet a

certain lifetime requirement.

By putting sensors into sleep, we obtain prolonged lifetime of a sensor network.

The price we pay is that the network communication and sensing capabilities become

intermittent since sensors alternate between sleep and wake modes. The intermittent

sensing capability disrupts the sensing coverage of the network, i.e., certain area of

the network may not be covered by any sensor and events may fail to be detected.

Similarly, turning off radio transceivers results in loss of connectivity between nodes.

In other words, paths between some nodes may be unavailable from time to time.

Therefore, sensors need to establish another path to forward data or wait for the

node in the path to wake up. Either choice may lead to prolonged delay. Clearly,

there is a trade-off between energy saving and performance degradation.

A central theme of this thesis is to understand this trade-off and design good

networking algorithms that will work well with low duty cycles. Within this context,

there are a number of ways to mitigate the adverse effect of low duty-cycling. Below

we discuss some of these methods and highlight the motivation behind our work.

One way to mitigate performance degradation caused by low duty cycles is by
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adding redundancy to the initial deployment, i.e., to deploy more sensors (e.g., [1,

14, 41, 51]). Intuitively, the more sensors we deploy, the more we should be able to

reduce the duty cycle of each individual sensor while meeting certain performance

criteria. One of the main focuses of this study is to investigate the fundamental

relationship between the amount of redundancy required vs. the achievable reduction

in duty cycle for a fixed performance criterion. We examine this relationship within

the context of network asymptotic connectivity, the subject of the first part of this

thesis.

A second way to mitigate such performance degradation caused by duty-cycling

is to design good algorithms and protocols that effectively deal with the temporal

loss of connectivity. One of the most challenging problems is the design of a routing

scheme that finds an energy/delay-efficient path from a source to a destination in the

presence of duty-cycling as well as unreliable wireless channels [3, 6, 7, 19, 40, 58].

Furthermore, to quantify the performance advantage of such routing algorithms over

conventional algorithms is highly nontrivial from an analytical perspective. Typical

studies employ numerical simulation. In the second part of this thesis we first inves-

tigate the design of such a scheme using an optimal stochastic routing framework.

We then investigate how the performance of this class of algorithms scales compared

to conventional routing algorithms in a limiting regime where the network becomes

dense.

A third method to mitigate performance disruption caused by low duty cycles is

to carefully design the sleep schedules of sensors (i.e., determining when and for how

long a sensor should be kept off), and preferably in combination with the design

of networking algorithms, e.g., a joint design of routing and sleep scheduling. This

is conceptually possible because in many sensor network applications sensors are
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not expected to engage in time-consuming activities. For instance, for intrusion

detection, a sensor ideally only needs to be active at the time when an intrusion event

occurs and stay active long enough to report such an event. In a routing example, a

sensor ideally does not need to be active till a packet is ready for it to relay. Therefore

it is possible to coordinate the sleep schedules among sensors and to jointly optimize

the determination of sleep schedules and that of network algorithms like routing.

This idea, while conceptually appealing and for which heuristics abound (see e.g.,

[25, 26, 42, 52]), is very difficult from an analytical point of view, and can only

be done in a highly application specific way. This is because unless the underlying

application is well defined and relatively narrowly scoped, it will be very hard to

obtain the set of assumptions needed to shape the type of coordination schemes.

Furthermore, coordinated sleep scheduling usually requires much more overhead in

coordinating between neighboring nodes [10, 37, 38, 52, 53, 54].

For these reasons, we do not study this type of method in this thesis. Instead,

in all the studies contained in this thesis we will focus on a class of random sleep

schedules, where sensors turn themselves on and off randomly (i.e. each sensor has

its own random sleep/wake cycle which is independent of other sensors). The main

advantage in using random sleeping lies in its simplicity in implementation and that

it makes analysis feasible. Moreover, since coordinated sleeping typically performs

better than random sleeping, studying the latter provides a performance lower bound.

The third and last part of this thesis focuses on broadcast algorithms, which are

an essential component of any communication protocols, especially routing proto-

cols. Most routing algorithms rely on a underlying broadcasting scheme to han-

dle functionalities like topology discovery and topology dissemination in order to

gather information needed to perform routing. Broadcast algorithms have been
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widely studied in the context of wireless ad hoc and sensor networks where fre-

quent topological changes occur due to either nodes’ mobility as well as duty-cycling

[31, 49, 56, 32, 43, 21, 45, 17, 2]. However, to date there exists no comprehensive

yet computationally efficient mathematical framework to evaluate and compare the

performance of competing broadcasting strategies. In the last part of this thesis we

develop an analysis-emulation hybrid model that combines analytical models with

elements of numerical simulation to obtain the desired modeling accuracy and com-

putational efficiency.

With the studies listed above, we address a number of design issues that arise

in a low duty-cycled wireless sensor network, from understanding the performance

impact, to building efficient networking algorithms. In the remainder of this chap-

ter, we will first review related works on wireless sensor networks, and then outline

individual research problems studied in this thesis, the methodologies used and our

main contributions.

1.2 Outline of the Dissertation and Main Contributions

This dissertation consists of three parts: connectivity, routing, and broadcasting.

The first part of this dissertation consists of an analysis of some fundamental as-

pects of duty-cycling in the context of network connectivity. Under the assumption

of random duty-cycling, Chapter 2 derives the relationship between node density,

transmission power, and the percentage of time nodes are in the sleep mode (the

duty cycles). The second part of this dissertation deals with routing and consists

of Chapter 3 and Chapter 4. In Chapter 3 we analyze the structure of optimal

routing policies, shown to be event-dependent, for a low duty-cycled sensor network

and develop a distributed routing algorithm. In Chapter 4 we compare this class
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of event-dependent routing algorithms (also referred to as opportunistic routing) to

the class of traditional non-event dependent routing in terms of routing delay in

an asymptotic setting. The last part of the dissertation includes Chapter 5 which

provides a numerical framework to evaluate the performance of broadcast schemes

considering transmission failures.

Throughout this dissertation, a challenge we repeatedly face is the randomness in-

duced by duty-cycling: the network topology and connectivity, even when the nodes

are static, become time-varying because of duty-cycling. While randomness is a fa-

miliar concept to the wireless communications and network research community, it

typically arises from the uncertainly associated with the communication channel1.

This uncertainty is primarily reflected in the outcome of packet transmission. On

the other hand, the uncertainty induced by duty-cycling is reflected in the dynamic

topology and node availability. There is a difference between these two sources of

randomness. With the former, we can attempt to reduce the randomness in transmis-

sion outcome by measuring the channel quality, but we cannot completely remove it.

We will not know for sure whether a packet transmission is successfully received till

it happens. However, with the latter, we may be able to obtain precise information

on the (local) topology via messaging passing, thereby finding out whether certain

nodes are asleep and completely removing this uncertainty (there is still uncertainty

in future sleep schedules which we may not foresee, but we can find out the current

state). For this reason there are cases where these two sources of randomness can

be abstracted into one (become indistinguishable), and in other cases we may not,

as we will see in subsequent chapters.

Most of the work developed in this dissertation are based on existing analytical

1Randomness is also associated with mobility in a mobile network; this however does not apply to the type of
networks studied in this thesis, which are primarily static.
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frameworks. However, the introduction of randomness caused by duty-cycling, in

addition to the randomness in wireless transmission, often leads to nontrivial ex-

tensions to these existing frameworks. This is seen throughout Chapters 2, 3, and

4.

For instance, in Chapter 2 to show the conditions for asymptotic connectivity of

a network when a fixed number nodes are deployed in a unit square and nodes are

randomly duty-cycled, we adopt the framework developed in [51, 14] for non-duty-

cycled networks. The results themselves, however, cannot be directly applied. In

particular, in [51] the number of neighbors a node has is a fixed number, whereas

it is a random variable in our case due to random duty-cycling. The results for

a Poisson network with a fixed density in [14] is also not applicable because the

number of active neighbors is a binomial random variable in our network, but a

Poisson random variable in [14]. To derive the desired results, we need to show the

relationship between these difference cases.

As another example, in Chapter 3, we look for an optimal routing algorithm

when nodes are duty-cycled and adopt the stochastic routing analysis framework

developed in [24]. The optimal strategies derived in [24], which is for non-duty-

cycled networks, however is shown not to be optimal for our case. In particular we

have an augmented state space due to duty-cycling, which leads to a generalization

of the original framework as we show in Chapter 3.

The above describes a consistent theme throughout this thesis. Below we elaborate

on the problems studied and the main contributions of each chapter.

1.2.1 Asymptotic Connectivity

In Chapter 2, we analyze the asymptotic connectivity of a low duty-cycled wireless

sensor network under random sleep strategies of the radio transceivers, where nodes
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are on/active in each time slot with a fixed probability independent of other nodes.

Since nodes are not always available due to this type of duty-cycling, the network

connectivity is lower than a non-duty-cycled network. While it is intuitively clear that

increasing transmission radius, decreasing sleep probability, and/or increasing the

deployment density can help improve connectivity, our study sets out to understand

how these factors are quantitatively related to connectivity.

This is done via the notion of asymptotic connectivity. Within the context of a

low duty-cycled sensor network, the network is said to be asymptotically connected

if for all realizations of the random duty-cycling (i.e., the combination of on and off

nodes) there exists a path of active nodes from every node to every other node in

the network with high probability as the network density approaches infinity. With

this definition, we derive conditions under which a low duty-cycled sensor network

is asymptotically connected. These conditions essentially specify how the nodes’

communication range and the duty-cycling probability should scale as the network

grows in order to maintain connectivity. We also consider the random sleep of both

the radio transceiver and the sensing device, in order to study the sensing coverage,

defined as the probability that any given point in the network is covered by at least

one sensor.

The main contributions of this chapter are as follows.

• We derive the relationship between the amount of redundancy required vs. the

achievable reduction in duty cycle for a fixed performance criterion within the

context of network asymptotic connectivity.

• We derive the conditions for asymptotic connectivity with coverage of the net-

work.
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1.2.2 Stochastic Routing for Low Duty-Cycled Sensor Networks

In Chapter 3 we consider the problem of designing good routing algorithms for

wireless sensor networks in the presence of very low duty cycles as well as trans-

mission failures due to channel uncertainty. We again consider random duty cycles

where a sensor has a fixed probability of being awake during a time slot independent

over time and of other sensors. Our model focuses on capturing the randomness

in topology caused by duty-cycling and the randomness in transmission outcome

caused by uncertain channel conditions. Traditionally, most routing algorithms are

deterministic in nature and the route selection is done independent of the sleep state

or the success/failture state of the network. They therefore do not fully utilize the

information available to nodes in the network. In this study we adopt a stochas-

tic routing framework developed in [24]. Under this framework an event-dependent

routing scheme was shown to be optimal with respect to a cost measure, and the

routing decisions are functions of the outcome of transmissions (success and failure).

This framework, however, does not directly apply to the case of duty-cycling. This

motivated us to extend this framework so we can develop similar stochastic routing

algorithms for low duty-cycled networks.

The model used in this chapter is thus an extension to [24] in that it captures

the randomness of topology caused by sleep state in addition to the randomness

in channel conditions. The objective is to seek an optimal routing policy in such

networks with respect to performance metrics such as transmission cost and delay,

and to resolve the trade-off between these two performance metrics. Various policies

are explored and characterized for optimality. The main contributions of this chapter

are as follows.
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• As a benchmark we develop and analyze a centralized optimal stochastic algo-

rithm for a randomly duty-cycled wireless sensor network.

• We develop a centralized stochastic routing algorithm with reduced state space

performing near-optimal when local sleep/wake states of neighbors are available.

• We further develop a distributed algorithm utilizing local sleep/wake states of

neighbors which performs better than some existing distributed algorithms such

as ExOR [5], etc.

1.2.3 Routing Delay Analysis

Chapter 4 presents a comparison study on opportunistic routing and non-opportunistic

routing. Opportunistic routing methods, also referred to as event-based routing, are

modeled after the type of routing algorithms we studied in Chapter 3. They have

recently been proposed and studied as an effective way of dealing with uncertain-

ties such as transmission failure in a wireless network, as we will see from Chapter

3. The fundamental idea is to make routing decisions like the next hop/relay after

(rather than before) the actual transmission has taken place so as to take advantage

of the information on realizations of transmission successes, i.e., by selecting as relay

a node that actually has successfully received the packet. While intuitively appeal-

ing, opportunistic routing methods are not easy to analyze due to the randomness in

the actual route a given packet follows. In this chapter we examine the asymptotic

delay performance of this class of routing methods in a network with increasing node

density, and compare it with that under a non-opportunistic routing method.

Specifically, we consider a network of a fixed area with increasing node density.

Each pair of nodes is associated with a transmission success probability, whose value

is drawn from a given distribution. We show that when the transmission success
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probabilities are not bounded away from zero, non-opportunistic routing results in

infinite hop delay while opportunistic routing has a constant hop delay and an overall

routing delay on the same order as straight-line routing with no transmission failures.

In the case where non-opportunistic routing has infinite delay, we show that com-

bining it with multi-path routing is sufficient to turn the delay finite, albeit at the

expense of increased transmission overhead. The main contributions of this chapter

are as follows.

• We show that when the transmission success probabilities are not bounded

away from zero, non-opportunistic routing results in infinite routing delay while

opportunistic routing has the same order as a straight-line error-free routing

when no packet loss is assumed.

• In the case where non-opportunistic routing has infinite delay, we show that

combining it with multi-path routing is sufficient to turn the delay finite, albeit

at the expense of increased transmission overhead.

1.2.4 Performance Analysis of Broadcasting Algorithms

In Chapter 5 we develop a method to evaluate the performance of broadcasting

algorithms introduced in wireless ad hoc and sensor networks. The objectives of

this study is two-fold. One is to capture essential features of each broadcasting

scheme and the other is to estimate its performance reasonably accurately. The

central question we seek to answer is how to estimate the average performance of

a broadcast scheme given a specific network topology (the locations of nodes and

a source, and transmission success probability between any pair of nodes). The

performance metrics of interest include the fraction of nodes reached by a broadcast,

also referred to as reachability, the amount of transmissions incurred in a broadcast,
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the time it takes for the broadcast to complete (or delay), etc.

We consider two approaches: a state-space based model and an analysis-emulation

hybrid model. The former calculates the metrics by averaging over all possible re-

alizations of the system, and is thus accurate but computationally prohibitive. Its

lack of scalability motivates our second approach. In this approach we selectively

evaluate a subset of representative sample paths, the selection of which depends

on certain analytical model, and use such evaluation to estimate the average perfor-

mance of the broadcast algorithm. This method can thus be viewed as a combination

of mathematical analysis and simulation.

The main contribution of this chapter is as follows.

• Given a broadcast scheme and a network topology, we develop a hybrid apporach

that combines analytical models with elements of numerical simulation to obtain

the desired modeling accuracy and computational efficiency.

1.3 Organization of the Dissertation

The organization of this dissertation comprises as follows. In Chapter 2 we derive

the scaling law of a wireless sensor network in the context of connectivity under

random duty-cycling. It is followed by Chapter 3 where we present an optimal

routing algorithm under random duty-cycling and a decentralized routing algorithm

utilizing the limited sleep states information of local neighbors. Chapter 4 analyzes

asymptotic routing delay of routing algorithms under a probability distribution of

transmission success/failures caused by the lossy nature of wireless channels or/and

duty-cycling. In Chapter 5 we present a method to analyze numerically the per-

formance of underlying broadcasting schemes required in most routing algorithms.

Finally Chapter 6 concludes this dissertation.



CHAPTER 2

Asymptotic Connectivity of Low Duty-Cycled Wireless
Sensor Networks

2.1 Introduction

Many emerging sensor network applications rely heavily on the efficient use of

unattended sensors to detect, identify and track targets in order to enhance situation

awareness, agility and survivability. Among different types of sensors, unattended

ground sensors (UGS) are typically deployed and left to self-organize and carry out

various sensing, monitoring, surveillance and communication tasks. These sensors

operates on battery power, and energy is not always renewable due to cost, environ-

mental and form-size concerns. This imposes a stringent energy constraint on the

design of the communication architecture, communication protocols, and the deploy-

ment and operation of these sensors. It is thus critical to operate these sensors in a

highly energy efficient manner.

It has been observed that low power sensors consume significant amount of en-

ergy while idling in addition to that consumed during transmission and reception.

Consequently, it has been widely considered as a key method of energy conservation

to turn off sensors that are not actively involved in sensing or communication. By

functioning at a low duty cycle, i.e., by reducing the fraction of time that a sensor is

active/on, sensors are able to conserve energy, which consequently leads to prolonged

13
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lifetime. This is particularly applicable in scenarios where sensors are naturally idle

for most of the time (e.g., detection of infrequent events such as fire, fault, etc., or

transmission of very short messages). However, as sensors alternate between sleep

and wake modes, its coverage and communication capability are inevitably disrupted.

Duty-cycling sensory devices directly leads to loss of sensing coverage, while duty-

cycling radio transceivers directly leads to loss of network connectivity. It is therefore

crucial to understand the performance degradation as a result of duty-cycling the

sensor nodes, and to design good networking mechanisms that work well with low

duty-cycled sensor networks.

In this chapter we aim to understand the fundamental relationship between duty-

cycling the radio transceivers and the resulting network connectivity. Specifically we

will consider random duty-cycling where sensor nodes are on/awake with a certain

probability (called the wake/active probability). Connectivity refers to the existence

of a route (consisting of active nodes) from each active node to every other active

node in the network. While intuitively increasing nodes’ transmission radius and

decreasing nodes’ active probability have opposite effects on the connectivity, it is

less clear how they are related quantitatively to ensure connectivity. We will focus

on understanding how these quantities scale as the network density increases, by

studying the asymptotic connectivity of the network. Asymptotic connectivity in

this context refers to the existence of a route (consisting of active nodes) from each

active node to every other active node in the network, as the number of nodes

approaches infinity.

More precisely, we consider a network with n nodes uniformly and independently

placed in a unit square in <2. Each node is awake with probability p(n) and is

connected to active neighbors within the range of transmission R(n) when it is active.
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The problem under consideration is how p(n) and R(n) are related to ensure that

the network is connected with high probability as n goes to infinity. An important

prior work is [51]. Our network model is essentially the same as that studied in

[51], with the only difference that in [51] the wake/active probability p(n) is always

1. [51] showed that it is sufficient and necessary for each node to be connected

to Θ(log n) nearest neighbors to achieve asymptotic connectivity as n approaches

infinity. Building on this result, in this study we show that the above randomly

duty-cycled network is asymptotically connected with probability one if and only if

the average number of active neighbors of a node is on the order of log (np(n)). It has

to be mentioned that this result cannot be obtained by a straightforward extension

to [51] as discussed in more detail in subsequent sections.

The rest of the chapter is organized as follows. In Section 2.3, we include the

literature review and discuss the relevance of our study to the related work. We

present the network model and our main result in Section 2.2. In Section 2.4 we

give a number of preliminary results, and Section 2.5 outlines the proof of the main

result. In Section 2.6, the results of connectivity with coverage are presented. We

provide thorough discussion on other related issues in Section 2.7. Finally, Section

2.8 concludes the chapter.

2.2 Network Model and Main Results

Consider a unit square in <2, where n nodes are deployed uniformly and inde-

pendently. Time is slotted. In each time slot, a node has a probability p(n) of being

awake or active, referred to as the active probability. An active node is connected

to its active neighbors within a circle of radius R(n), referred to as the transmission

range. Such a network is said to be asymptotically connected if there exists a path
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of active nodes between any pair of two active nodes with high probability as the

density n approaches infinity. In order to study the conditions under which such a

network is asymptotically connected, we will utilize a number of results derived for

a similar, but not duty-cycled network (i.e., where p(n) = 1 for all n). We begin by

introducing the following types of networks/graphs that will be used in this chapter.

• Gp(n,R(n)) denotes the duty-cycled network mentioned above, i.e., a network

formed in a unit square where n nodes are deployed uniformly and indepen-

dently. In this network a node is active with probability p(n) and when active

is connected to its active neighbors within a circle of radius R(n).

• G(n,R(n)) denotes a non-duty-cycled network formed in a unit square with n

nodes deployed uniformly and independently. In this network a node is always

active and is connected to neighbors within a circle of radius R(n).

• Gλ(n,R(n)) denotes a network formed as a Poisson point process with intensity

n. In this network a node is always active and is connected to neighbors within

a circle of radius R(n).

• F(n, φn) denotes a network formed in a unit square with n nodes deployed

uniformly and independently. In this network a node is always active and is

connected to its φn nearest neighbors.

• Fλ(n, φn) denotes a network formed as a Poisson point process with intensity

n. In this network a node is always active and is connected to its φn nearest

neighbors.

The following notations are used throughout this chapter. For two functions f(n)

and g(n) defined on some subset of the real line, (1) f(n) = O(g(n)) implies that
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there exist numbers n0 and M such that |f(n)| ≤ M ·|g(n)| for all n > n0 (asymptotic

upper bound); (2) f(n) = Θ(g(n)) implies that f(n) = O(g(n)) and g(n) = O(f(n))

(asymptotic tight bound); and (3) f(n) = o(g(n)) implies that limn→∞ f(n)/g(n) = 0

(asymptotically negligible).

Our main result is shown in the following theorem.

Theorem 2.1. There exist two constants k1 and k2, 0 < k1 < k2, such that:

1. for np(n)R2(n) = k2 log(np(n)), we have

lim
n→∞

Pr{Gp(n,R(n)) is connected } = 1 ,(2.1)

2. for np(n)R2(n) = k1 log(np(n)), we have

lim
n→∞

Pr{Gp(n,R(n)) is disconnected } = 1 .(2.2)

Eqn. (2.1) is also commonly viewed as a sufficient condition on connectivity and

Eqn. (2.2) commonly viewed as a necessary condition on connectivity. Put together,

np(n)R2(n) = Θ(log (np(n)) can be viewed as the sufficient and necessary conditions

for asymptotic connectivity. In subsequent sections we will also refer to these two

equations as part I and part II of the theorem.

Below we sketch the idea of the proof of the above theorem and discuss this result

within the context of other existing results on asymptotic connectivity.

Figure 2.1 summarizes the main idea of the proof, and illustrates where our tech-

nical contributions lie. The network we are interested in, Gp(n, R(n)), is shown on the

top left. To prove the theorem, we first show that if a Poisson network with intensity

np(n), i.e., Gλ(np(n), R(n)), is asymptotically connected/disconnected given the con-

dition np(n)R(n)2 = k log(np(n)) for some k > 0, then Gp(n,R(n)) is asymptotically

connected/disconnected given the same condition (for possibly different constants).
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Figure 2.1: Outline of the proof of Theorem 2.1.

This process is illustrated by the arrow labeled with “A” in the figure. Concep-

tually, because of the random duty-cycling, there are only on average np(n) nodes

awake in the network at any instance of time. This makes the network Gp(n,R(n))

behave like a Poisson network rather than one with a fixed number of nodes. How-

ever, in order to study asymptotic connectivity np(n) needs to approach infinity,

which renders inapplicable the standard result of approximating a binomial distri-

bution with a Poisson distribution (which assumes a finite intensity). Although this

seems a highly intuitive result, we were not able to find a prior proof. We give one

such proof in Lemma 2.3, where we establish the Poisson approximation of a binomial

distribution when np(n) →∞.

We next show that if the network Fλ(np(n), φnp), i.e., a Poisson network with

intensity np(n) where each node is connected to its φnp nearest neighbors, is asymp-

totically connected/disconnected given the condition φnp = c log(np(n)), for some

c > 0, then the network Gλ(np(n), R(n)) is asymptotically connected/disconnected

given the condition np(n)R(n)2 = k log(np(n)) for some k > 0.

This process is illustrated by the arrow labeled with “B” in the figure. Here

Fλ(np(n), φnp) is a Poisson network with φnp neighbors for each node, and Gλ(np(n), R(n))

is a Poisson network with neighbors within a finite radius R(n) of each node. Note

that for the latter, the condition np(n)R(n)2 = k log(np(n)) for some k > 0 is on

the average number of neighbors a node has, whereas for the former the condition
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φnp = c log(np(n)) for some c > 0 is on the actual number of neighbors a node has.

The last step is to show that network Fλ(np(n), φnp) is asymptotically con-

nected/disconnected given the condition φnp = c log(np(n)), for some c > 0. This

network is essentially the same as Fλ(n, φn) (with a different intensity). This result

is obtained in similar ways as in [14], which showed the same result for F(n, φn).

This step is illustrated by the arrow labeled with “C” in the figure.

2.3 Related Works

Two most relevant results to that studied in this chapter are from [51] and [14],

respectively. In particular, as mentioned above [51] studied a network of the type

F(n, φn), and it was shown that it is sufficient and necessary for each node to be

connected to its Θ(log n) nearest neighbors in order to achieve asymptotic connec-

tivity for this network. An immediate thought was whether one could simply re-

place n with np(n) in this result to obtain the conditions for a network of the type

Gp(n,R(n)), assuming np(n) → ∞. Although intuitively appealing, there is a con-

ceptual difference. Replacing n with np(n) in this result implies that the sufficient

and necessary conditions for asymptotic connectivity are for every active node to

be connected to np(n) nearest active neighbors. However, these conditions are not

directly guaranteed when the neighborhood of each node is defined by a fixed radius

R(n) with randomly deployed nodes, and when the nodes are randomly duty-cycled.

Instead, what Theorem 2.1 shows is that it is sufficient and necessary for each active

node to be connected to an average of Θ(log(np(n))) active neighbors for asymptotic

connectivity of a network of the type Gp(n,R(n)).

In [14] a network of the type G(n,R(n)) was considered, and it was shown that

with πR2(n) = log n+c(n)
n

, the network is asymptotically connected with probability
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one if and only if c(n) →∞. This result is not directly used in our study. However,

throughout this chapter we follow heavily the basic definitions and methods used by

[51] and [14], as well as use a number of (intermediate) results derived in them with

appropriate modifications. These will be pointed out in subsequent sections.

[41] showed that the sufficient and necessary conditions for asymptotic coverage

with connectivity in a grid network are p(n)R2(n) = Θ( log n
n

). Although mathemat-

ically similar, these conditions are not the same as the ones given by Theorem 2.1,

since asymptotic coverage with connectivity is a different measure from asymptotic

connectivity, and a grid network is different from a random network. [41] also showed

that the sufficient condition for asymptotic connectivity in the grid network is in the

form of

np(n)e−
πp(n)R2(n)n

2 → 0 as n →∞.

It can be shown that p(n)R2(n) = Θ( log n
n

) implies np(n)e−
πp(n)R2(n)n

2 → 0 as n and

np(n) both go to infinity. The reverse is not necessarily true. Therefore, we see

that the condition for a randomly deployed network, i.e., p(n)R2(n) = Θ( log n
n

), is

more restrictive than that for a grid network. Other related work includes [35],

which studied the necessary and sufficient conditions of both asymptotic coverage

and connectivity for a network with fixed node density λ but increasing area A. The

necessary condition is R =
√

(1−ε) log A
λπ

. The sufficient condition is R =
√

(1+ε) log A
λπ

.

Therefore, the expected number of neighbors needed for asymptotic connectivity is

Θ(log A). Furthermore, [35] derives a bound for the expected number of neighbors

needed to ensure the existence of an infinite component of connected nodes as network

area A approaches ∞. However, this does not imply that all nodes are connected.

There will be infinitely many isolated nodes. A graph is said to be k-connected if for

each node pair there exist at least k mutually independent paths connecting them.
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[1] studies the probability of k-connectivity. The degree is the number of neighbors

of a node. The minimum node degree of a graph G is denoted as dmin(G). This paper

claims that P (G is k-connected) = P (dmin ≥ k) with high probability. In order to

calculate P (dmin ≥ k), a Poisson-approximation approach is used. Furthermore, the

degrees of nodes are assumed to be mutually independent, which is not true because

two nodes may have overlapped transmission area.

[55] introduces path connectivity. [55] claims that in most cases it is an overkill

to demand “all nodes are able to communicate with each other simultaneously in

95% time” (graph connectivity which is the definition we uses). It would be more

reasonable to demand “any nodes could find a path to any other node at 95% success

rate at any time” (path connectivity). Given the total node number is n, the path

connectivity is Cpath =
∑

i6=j Conn(i,j)

n(n−1)
where Conn(i, j) = 0/1 if no/at least 1 path

between node i and j. Cpath is closely related to the size of the largest component

with connected nodes (ζn), i.e. Cpath
∼= ζ2, where ζ is a constant. Furthermore, [55]

discovers the different behaviors of graph connectivity and path connectivity. It is

well known that there is a critical density where graph connectivity/path connec-

tivity arises abruptly. For a network with node density less than critical density,

path connectivity decreases as total node number increases (the density is fixed).

For a network with node density larger than critical density, path connectivity in-

creases as the total number of nodes increases (the density is fixed). However, graph

connectivity always decreases as total node number increases (the density is fixed).

[46] proposes a scheme which can reduce system overall energy consumption by

turning off some redundant nodes and guarantee that the original sensing coverage

is maintained. A node decides to turn it off when it discovers that its whole sensing

area is fully embraced by the union set of its neighbors’. This is done by some
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Figure 2.2: The square tessellation τnp
S .

geometry calculation. [18] improves the algorithm proposed by [46] and provides

a mathematical analysis on the design about how to put sensors in the sleep state

randomly.

2.4 Preliminaries

For the proof of Theorem 2.1, we need the following definitions which were origi-

nally defined in [51], with slight generalization to account for p(n) < 1.

Definition 2.1. Square tessellation τnp
S . The unit square is split equally into Mnp =

d
√

np(n)
K log(np(n))

e2 small squares as depicted in Figure 2.2, where a constant K > 0 is

a tunable parameter, and dxe is the smallest integer larger than or equal to x. This

tessellation of the unit square will be denoted by τnp
S . The small squares are denoted

by Snp
i , i = 1, 2, · · · ,Mnp, from left to right, and from top to bottom.

Definition 2.2. k-filling event. Consider a structure composed of 21 squares each of

side length d/6 and placed in a larger square of side length d: one at the center and

the others at the periphery of the larger square with distance d/4 between the center

square and the others. A k-filling event occurs if there are at least k nodes in each of

21 small squares and no nodes in the space between the center square and the others.
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Figure 2.3: The disk tessellation τnp
D .

Definition 2.3. Disk tessellation τnp
D (a, b). Consider a unit square with its bottom

left corner being the origin, as shown in Figure 2.3. Let r be such that πr2 =

K log(np(n))
np(n)

, where K > 0 is a tunable parameter. Consider a grid of squares of size

2r, with corners at (a mod 2r, b mod 2r). Inside each square, we inscribe a disk

of area K log(np(n))
np(n)

. The set of all disks intersecting the unit square are called the

Disk Tessellation τnp
D (a, b). The disks intersecting the unit square are denoted by

Dnp
i , i = 1 ≤ Mnp.

Throughout our analysis, the asymptotic regime of interest is where the duty cycle

p(n) → 0, n →∞ and np(n) →∞.

Consider the network Gλ(np(n), R(n)), where 0 < p(n) < 1. Denote the number

of nodes that fall into the unit square by M̃np, and denote the number of nodes that

fall into square Snp
i by Ñnp

i .

Lemma 2.1. limnp(n)→∞ Pr{|M̃np − np(n)| ≤
√

np(n) log(np(n))} = 1.

Proof. Since M̃np is a Poisson random variable with mean = np(n) and variance
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= np(n), by Chebychev’s inequality,

Pr{|M̃np − np(n)| >
√

np(n) log(np(n))} ≤ np(n)

np(n) log(np(n))

=
1

log(np(n))
→ 0, as np(n) →∞.

Consider Gp(n,R(n)). Denote the number of active nodes in the unit square by

Ma
n , which is a random variable. Denote the number of active nodes in square Snp

i

by Na
i .

Lemma 2.2. limnp(n)→∞ Pr{|Ma
n − np(n)| ≤

√
np(n) log(np(n))} = 1.

Proof. Since Ma
n is a Binomial random variable with mean = np(n) and variance

= np(n)(1− p(n)), by Chebychev inequality,

Pr{|Ma
n − np(n)| >

√
np(n) log(np(n))}} ≤ np(n)(1− p(n))

np(n) log(np(n))

=
1− p(n)

log(np(n))
→ 0, as np(n) →∞.

Let n be sufficiently large and p be small. When its product np(n) is of moderate

magnitude, the poisson approximation of binomial distribution has been proven in

the literature, see e.g., [11]. In this chapter, we need it in the case of np(n) →∞ as

n →∞, which is proven in the following lemma.

Lemma 2.3. Suppose that p(n) → 0 and np(n) → ∞ as n → ∞. For any nonneg-

ative j ≤ n and sufficiently large n, Pr{Ma
n = j} is approximated by Pr{M̃np = j},

i.e., in the limit their difference goes to zero.
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Proof. We have that

Pr{Ma
n = j} =

(
n

j

)
p(n)j(1− p(n))n−j ,

P r{M̃np = j} =
(np(n))je−np(n)

j!
.

As Pr{Ma
n = j} is a binomial distribution determined by n and p(n), we will denote

it by b(j; n, p(n)). Thus

(2.3) b(0; n, p(n)) = (1− p(n))n.

By the definition of the derivative of function log x, we have

(2.4) lim
δ→0

log x− log(x− δ)

δ
=

1

x
.

Since p(n) → 0 as n →∞, Eqn. (2.4) can be written as

lim
n→∞

log x− log(x− p(n))

p(n)
=

1

x
.

For x = 1, we have

lim
n→∞

− log(1− p(n))

p(n)
= 1.

In other words, ∀ε1 > 0, there exists N1 > 0 such that n > N1 implies |− log(1−p(n))
p(n)

−

1| < ε1. Let ∆(n) ≡ − log(1−p(n))
p(n)

− 1, such that ∆(n) ∈ [−ε1, ε1]. For all ε1 > 0 and

ε2 > 0, there exists N2 > 0 such that n > max{N1, N2} implies

|(1− p(n))n − e−np(n)| = |(1− p(n))−
1

p(n)
·(−np(n)) − e−np(n)|

= |e −1
p(n)

log(1−p(n))·(−np(n)) − e−np(n)|

= |e(1+∆(n))·(−np(n)) − e−np(n)|

= |e−np(n)(e−np(n)·∆(n) − 1)|.(2.5)

Because |∆(n)| is bounded by ε1, |e−np(n)·∆(n) − 1| is bounded by some N3 > 0.

Therefore, Eqn. (2.5) ≤ |e−np(n)| ·N3 < ε2. Thus for sufficiently large n we have

b(0; n, p(n)) ≈ e−np(n).
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Furthermore, for any fixed j we have

b(j; n, p(n))

b(j − 1; n, p(n))
=

np(n)− (j − 1)p(n)

j(1− p(n))
.

Therefore for sufficiently large n, we have

b(j; n, p(n)) ≈ (np(n))j

j!
e−np(n) = Pr{M̃np = j}.

Lemma 2.4. (Lemma 3.2.5 (iii) in [14]) Suppose Y is a Poisson random variable

with parameter λ, then for any K > 1
log(4/e)

, we have

lim
λ→+∞

1

λ
e

1
K

λ · Pr{|Y − λ| ≥ µλ} = 0,∀µ ∈ (µ∗, 1),

where µ∗ is the root of −µ∗ + (1 + µ∗) log(1 + µ∗) = 1
K

.

Lemmas 2.5 and 2.6 below are based on Lemma 3.1 in [14], with a slight modifi-

cation by using np(n) instead of n.

Lemma 2.5. For any K > 1
log(4/e)

,

limnp(n)→∞ Pr{maxi |Ñnp
i −K log(np(n))| ≤ µK log(np(n))} = 1, ∀µ ∈ (µ∗, 1),

where µ∗ ∈ (0, 1) is the sole root of the equation −µ∗ + (1 + µ∗) log(1 + µ∗) = 1
K

.

Proof. Recall Mnp , np(n)
K log(np(n))

. By invoking the independence property of the Pois-

son process for the random variables Ñnp
1 , Ñnp

2 , · · · , Ñnp
np(n)

K log(np(n))

, we have

Pr{ max
1≤i≤Mnp

|Ñnp
i −K log(np(n))| ≤ µK log(np(n))}

=

Mnp∏
i=1

Pr{|Ñnp
i −K log(np(n))| ≤ µK log(np(n))}

= (Pr{|Ñnp
1 −K log(np(n))| ≤ µK log(np(n))})Mnp

= (1− Pr{|Ñnp
1 −K log(np(n))| > µK log(np(n))})Mnp

= e
np(n)

K log(np(n))
·log(1−Pr{|Ñnp

1 −K log(np(n))|>µK log(np(n))}).
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If we let ρnp , K log(np(n)), which is the mean value of Ñnp
1 , then

Pr{ max
1≤i≤Mnp

|Ñnp
i −K log(np(n))| ≤ µK log(np(n))}

= exp{e
ρnp
K

ρnp

· log(1− Pr{|Ñnp
1 − ρnp| > µρnp})}.

Since by Chebychev’s inequality,

Pr{|Ñnp
1 − ρnp| > µρnp} ≤ var(Ñnp

1 )

(µρnp)2
=

ρnp

(µρnp)2
=

1

µ2ρnp

→ 0, as np(n) →∞,

and log(1− x) is approximated by −x for small x, we have

Pr{ max
1≤i≤Mnp

|Ñnp
i −K log(np(n))| ≤ µK log(np(n))}

= e
− e

ρnp
K

ρnp
·Pr{|Ñnp

1 −ρnp|>µρnp}·(1+o(1))
.

Hence, by Lemma 2.4, we deduce that

Pr{ max
1≤i≤Mnp

|Ñnp
i −K log(np(n))| ≤ µK log(np(n))} → 1, as np(n) →∞.

Consider now the disk tessellation τnp
D (a, b) in a unit square with nodes deployed

as a Poisson point process with intensity np(n). Similarly to the square tessellation,

let the number of nodes that fall into disk Dnp
i be denoted as Ñnp

D,i. The next few

lemmas bound the number of nodes in a disk tessellation. The proofs of these lemmas

are essentially the same as that in [14] and are thus not included.

Lemma 2.6. For any K > 1
log(4/e)

and any point sequence {(an, bn) ∈ R2, n =

1, 2, · · · }, we have that

Pr{Ñnp
D,i ≤ (1 + µ)K log(np(n)), for any disk Dnp

i in tessellation τnp
D (an, bn)} → 1,

as np(n) → ∞,∀µ ∈ (µ∗, 1), where µ∗ ∈ (0, 1) is the sole root of the equation

−µ∗ + (1 + µ∗) log(1 + µ∗) = 1
K

.
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Let us consider graph Gλ(np(n), R(n)). Let P λ;(1)(np(n), R(n)) be the probability

that Gλ(np(n), R(n)) has at least one isolated node (i.e, one with no neighbors)

and P λ
d (np(n), R(n)) be the probability that Gλ(np(n), R(n)) is disconnected. From

continuum percolation [28], we know that P λ
d (np(n), R(n)) is asymptotically the same

as P λ;(1)(np(n), R(n)). Consider G(np(n), R(n)), the network with exactly np(n)

number of nodes. Let Pd(np(n), R(n)) be the probability that G(np(n), R(n)) is

disconnected.

Lemma 2.7. (Lemma 3.1 in [14]) If πR2(n) = log(np(n))+c(n)
np(n)

, then

lim sup
np(n)→∞

P λ;(1)(np(n), R(n)) ≤ e−c,

where c = limn→∞ c(n).

Lemma 2.8. (Theorem 2.1 in [14]) If πR2(n) = log(np(n))+c(n)
np(n)

, then

lim inf
np(n)→∞

Pd(np(n), R(n)) ≥ e−c(1− e−c),

where c = limn→∞ c(n).

The following theorem is proven using intermediate results in [14].

Theorem 2.2. The network Gλ(np(n), R(n)) with πR2(n) = log(np(n))+c(n)
np(n)

is con-

nected with probability one as np(n) →∞ and n →∞ if and only if limn→∞ c(n) =

∞.

Proof. (Sufficiency) From percolation theory, for any ε > 0 and for all sufficiently

large np(n), we have

P λ
d (np(n), R(n)) ≤ (1 + ε)P λ;(1)(np(n), R(n))

≤ (1 + ε)e−c(n) ,
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where the second inequality is from Lemma 2.7. Since ε > 0 is arbitrary, we have

lim sup
np(n)→∞

P λ
d (np(n), R(n)) ≤ e−c.

(Necessity) From Eqn. (1.21) in [14],

P λ
d (np(n), R(n)) ≥ Pd(np(n), R(n))(

1

2
− ε)− e−np(n)πR2(n)

πR2(n)

≥ Pd(np(n), R(n))(
1

2
− ε)− e−c(n)

log(np(n)) + c(n)
.

Based on Lemma 2.8, since ε > 0 is arbitrary,

lim inf
np(n)→∞

P λ
d (np(n), R(n)) ≥ 1

2
e−c(1− e−c).

2.5 Proof of Theorem 2.1

In this section, we prove both parts of Theorem 2.1. For simplicity we will ignore

edge effect in our discussion, but note that edge effect does not alter the main theorem

(see also [51, 14]). The proof of each part consists of three steps.

2.5.1 Part I

In part I, the proof proceeds as follows:

(1) Given np(n)R(n)2 = k2 log(np(n)) for some k2 > 0, we show Gp(n,R(n)) is

asymptotically connected if Gλ(np(n), R(n)) is asymptotically connected.

(2) It is shown that if there exists c2 such that Fλ(np(n), c2 log(np(n))) is asymptoti-

cally connected, then there exists k2 such that Gλ(np(n), R(n)) is asymptotically

connected with np(n)R(n)2 = k2 log(np(n)).

(3) We show that Fλ(np(n), c2 log(np(n))) is asymptotically connected for some c2 >

0.
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For the first step, note that R(n) is bounded and that n →∞ implies np(n) →∞.

Let us denote by M such that ∀j ∈M satisfies |j − np(n)| ≤
√

(np(n) log(np(n))).

For sufficiently large n,

Pr{Gp(n,R(n)) is connected}

=
n∑

j=0

Pr{Gp(n,R(n)) is connected|Ma
n = j} · Pr{Ma

n = j}

= (
∑
j∈M

+
∑

otherwise

)Pr{Gp(n, R(n)) is connected|Ma
n = j} · Pr{Ma

n = j}

=
∑
j∈M

Pr{Gp(n,R(n)) is connected|Ma
n = j} · Pr{Ma

n = j}+ o(1)

=
∑
j∈M

Pr{Gλ(np(n), R(n))is connected|M̃np = j}(2.6)

· Pr{M̃np = j} · (1 + o(1)) + o(1) ,

where the third equality is based on Lemma 2.1. The fourth equality is based

on Lemma 2.3 and the fact that Gp(n,R(n)) given j active nodes is the same as

Gλ(np(n), R(n)) given j nodes are in the network. From Lemma 2.2 we have that

Eqn. (2.6) can be written as

(1 + o(1)) · (Pr{Gλ(np(n), R(n)) is connected}+ o(1)) + o(1).

Therefore if

lim
n→∞

Pr{Gλ(np(n), R(n)) is connected} = 1,

then

lim
n→∞

Pr{Gp(n,R(n)) is connected} = 1 ,

thus completing the first step.

In Step 2 we show that if there exists c2 for Fλ(np(n), c2 log(np(n))) to be asymp-

totically connected, then there exists k2 for Gλ(np(n), R(n)) to be asymptotically con-

nected with np(n)R(n)2 = k2 log(np(n)). To prove this, let us tessellate Gλ(np(n), R(n))
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Figure 2.4: Nodes with radius of transmission R(n) =
√

2K log(np(n))
np(n) on τnp

S .

by τnp
S , with K, µ satisfying Lemma 2.5. Consider some nodes whose radius is R(n) =

√
2K log(np(n))

np(n)
on τnp

S , as shown in Figure 2.4. Every circle contains a small square.

From Lemma 2.5, we know that each circle contains more than or equal to K(1 −

µ) log(np(n)) nodes with high probability, where µ ∈ (µ∗, 1). We construct another

graph by connecting each node with its nearest K(1 − µ) log(np(n)) − 1 neighbors,

which is Fλ(np(n), K(1−µ) log(np(n))−1). If Fλ(np(n), K(1−µ) log(np(n))−1) is

asymptotically connected, then Gλ(np(n), R(n)) with np(n)R(n)2 = 2K log(np(n))

is asymptotically connected. Thus there exists k2 = 2K when c2 = K(1 − µ). This

completes the second step.

Finally, in the third step we want to prove that Fλ(np(n), c2 log(np(n))) is asymp-

totically connected for c2 > 2
log(4/e)

. It suffices to show that for some δ > 0,

lim
n→∞

Pr{Fλ(np(n), (2/ log(4/e) + δ) log(np(n))) is connected} = 1.

This proof is similar to that in [51] and is as follows.

According to Lemma 2.6, µ∗ → 1 as K → (1/ log(4/e))+. So for any δ > 0, there

is a constant δ′ > 0 such that

K =1/ log(4/e) + δ′ ⇒ (1 + µ∗)K < 2/ log(4/e) + δ.(2.7)
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For the rest of this proof, we fix the parameter K in the Disk tessellation to be the

one in Eqn. (2.7), and fix µ such that

1 > µ > µ∗ and (1 + µ)K < 2/ log(4/e) + δ.

Let rnp ,
√

K log(np(n))
πnp(n)

be the radius of the disks in the Disk tessellation. Then

choose two positive constants ε,η ∈ (0, 1) such that

(2.8) π(rnp − εrnp)
2 >

(1 + η) log(np(n))

np(n)
.

Now let us tessellate the unit square by a collection of several disk tessellations:

τnp
ε , {τnp

D (i · εrnp, j · εrnp), i, j = 0, 1, 2, · · · , 2 · [1
ε
] + 1}.

This collection of tessellations has the following property: For any point (a, b) in the

unit square, there is a disk in τnp
ε whose center is within a distance of εrnp from the

point (see Figure 2.3). Since the number of tessellations in τnp
ε is finite, by Lemma

2.6, we know that

Pr{Every disk of τnp
ε contains no more than

(2/ log(4/e) + δ) log(np(n)) nodes} → 1, as n →∞.

By the choice of rnp, ε and τnp
ε , any disk with radius (1 − ε)rnp and centered in the

unit square will be contained in a disk in the collection of tessellations τnp
ε (see Figure

2.4). So if any of the disks of the tessellation collection τnp
ε contains no more than

(2/ log(4/e)+δ) log(np(n)) nodes, then each node of Fλ(np(n), c2 log(np(n))) will be

connected to every node that is within distance of (1− ε)rnp. So if we define Bnp ,

{Every disk of τnp
ε contains no more than ( 2

log(4/e)
+ δ) log(np(n)) nodes}, then

Pr{Fλ(np(n), (2/ log(4/e) + δ) log(np(n))) is connected|Bnp} → 1, as n →∞.
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Therefore

Pr{Fλ(np(n), (2/ log(4/e) + δ) log(np(n))) is connected}

= Pr{Bnp} · Pr{Fλ(np(n), (2/ log(4/e) + δ) log(np(n))) is connected|Bnp}

+ Pr{Bc
np} · Pr{Fλ(np(n), (2/ log(4/e) + δ) log(np(n))) is connected|Bc

np}

= (1 + o(1)) · (1 + o(1)) + o(1) → 1, as n →∞.

Hence we proved that Fλ(np(n), c2 log(np(n))) is asymptotically connected for c2 >

2
log(4/e)

, completing the third step.

If µ∗ < 0.4808 and µ ∈ (µ∗, 0.4808), K(1 − µ) > 2
log(4/e)

. Therefore, the choices

K > 9.9635 and k2 > 19.9217 satisfy the condition c2 > 2
log(4/e)

.

2.5.2 Part II

The proof of the second part of Theorem 2.1 follows a very similar procedure,

consisting of three steps:

(1) Given np(n)R(n)2 = k1 log(np(n)) for some k1 > 0, we show Gp(n,R(n)) is

asymptotically disconnected if Gλ(np(n), R(n)) is asymptotically disconnected.

(2) It is shown that if there exists c1 such that Fλ(np(n), c1 log(np(n))) is asymp-

totically disconnected, then there exists k1 such that Gλ(np(n), R(n)) is asymp-

totically disconnected with np(n)R(n)2 = k1 log(np(n)).

(3) We show that Fλ(np(n), c1 log(np(n))) is asymptotically disconnected for some

c1 > 0.

In the first step, similar to part I we will use the fact that n → ∞ implies

np(n) → ∞. With slight modification from connectivity to disconnectivity on

the argument used in part I of the proof given early, one can easily show that if
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Figure 2.5: Nodes with radius of transmission R(n) =
√

K′ log(np(n))
np(n) on τnp

S′ .

Gλ(np(n), R(n)) is asymptotically disconnected with probability 1, then Gp(n,R(n))

is also asymptotically disconnected with probability one. This completes the first

step of the proof of part II.

In the second step we show that if there exists c1 such that Fλ(np(n), c1 log(np(n)))

is asymptotically disconnected, then there exists k1 such that Gλ(np(n), R(n)) with

np(n)R(n)2 = k1 log(np(n)) is asymptotically disconnected. To prove this, we tes-

sellate Gλ(np(n), R(n)) by τnp
S , with K, µ satisfying Lemma 2.5. Furthermore, we

split each square into d
√

9·21(1+µ)
1−µ

e2 smaller squares. Denote by τnp
S′ the new tes-

sellation with d
√

np(n)
K log(np(n))

e2 · d
√

9·21(1+µ)
1−µ

e2 squares and let Ñ∗
i be the number of

nodes in each smaller square S ′i. Thus Ñ∗
i is a Poisson random variable with mean

K(1−µ)
9·21(1+µ)

log(np(n)). Similarly to Lemma 2.5, for K ′ > 1
log(4/e)

, we have

(2.9) lim
n→∞

Pr{max
i

Ñ∗
i ≤ (1 + µ)K ′ log(np(n))} = 1,∀µ ∈ (µ∗∗, 1),

where K ′ = 1−µ
9·21(1+µ)

K and µ∗∗ is the root of −µ∗∗ + (1 + µ∗∗) log(1 + µ∗∗) = 1
K′ .

Consider some nodes with radius R(n) =
√

K′ log(np(n))
np(n)

, the side length of each

smaller square on τnp
S′ as shown in Figure 2.5. Every circle is included in a group of

at most 9 small squares. From Eqn. (2.9), each circle contains less than or equal to

K(1−µ)
21

log(np(n)) nodes with high probability. We can thus construct another graph
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by connecting each node with its nearest K(1−µ)
21

log(np(n))− 1 neighbors, which re-

sults in Fλ(np(n), K(1−µ)
21

log(np(n))−1). Consequently, if Fλ(np(n), K(1−µ)
21

log(np(n))−

1) is asymptotically disconnected, Gλ(np(n), R(n)) with np(n)R(n)2 = 1−µ
9·21(1+µ)

K log(np(n))

is asymptotically disconnected. Note that for large np(n), K(1−µ)
21

log(np(n)) À 1.

Thus there exists k1 = 1−µ
9·21(1+µ)

K when c2 = K(1−µ)
21

. This completes the second step

of the proof.

Finally, we want to prove that Fλ(np(n), c1 log(np(n))) is asymptotically discon-

nected for c1 < (1−µ)K
21

. It suffices to show that for some ε > 0,

lim
n→∞

Pr{Fλ(np(n), ε log(np(n)))) is connected} = 0.

This proof is similar to that in Part I, and is included below for completeness.

According to Lemma 2.5,

lim
n→∞

Pr{max
i
|Ñnp

i −K log(np(n))| ≤ µK log(np(n))} = 1.

Therefore if we let

Anp
i ,{ No (ε log(np(n)) + 1)-filling event occursin the trap of Snp

i },

Qnp ,{(k1, k2, · · · , kMnp) : k1 + k2 + · · ·+ kMnp = M̃np,

where M̃np ≥ 0 and ki ≥ 0, ∀i},

then we have

Pr{Fλ(np(n), ε log(np(n)))) is connected}

≤ Pr{Anp
i ,∀i}

= Σ(k1,k2,··· ,kMnp)∈QnpPr{Anp
i ,∀i; Ñnp

i = ki,∀i}

= Σ(k1,k2,··· ,kMnp)∈QnpPr{Anp
i ,∀i|Ñnp

i = ki,∀i} · Pr{Ñnp
i = ki,∀i}
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The last step of this proof is the same as the proof of the necessity part in [51],

replacing n with np(n).

Note that K = 1973.9 and µ = 0.032 was one set of feasible choices from [51].

Therefore, k1 < 9.7962 satisfies c1 < 0.074.

2.6 Asymptotic Connectivity with Coverage

Suppose that inactive nodes turn off both the radio transceiver and the sensory

device. And let r(n) be the sensing radius. We are interested in a condition for

asymptotic connectivity while we give a certain level of coverage.

We consider Gp(n,R(n)). Given that the long term average sleep ratio of a node

is q(n) := 1 − p(n), regardless of the distribution of on and off periods (assuming

they are both of finite mean which is desirable for coverage purpose), the probability

that a given point in a unit square is not covered by any active node in a given time

slot is

Pu =
n∑

j=0

q(n)j

(
n

j

)
(πr2(n))j(1− πr2(n))n−j .

where nπr2(n) is the expected number of nodes deployed within a circle of radius

r(n) around the point. The associated joint probability of the point being uncovered

and at least one node being within a circle of radius r(n) is

Pu,c =
n∑

j=1

q(n)j

(
n

j

)
(πr2(n))j(1− πr2(n))n−j .
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lim
n→∞

Eqn. (2.10) = lim
n→∞

n∑
j=1

q(n)j (nπr2(n))je−nπr2(n)

j!

= lim
n→∞

e−nπr2(n)(1−q(n))(1− e−nπr2(n)q(n))

− lim
n→∞

e−nπr2(n)(1−q(n))

∞∑
j=n+1

(nπr2(n)q(n))je−nπr2(n)q(n)

j!

= lim
n→∞

e−nπr2(n)(1−q(n))(1− e−nπr2(n)q(n)).

First equality is from Lemma 2.3. The last equality is because

∞∑
j=n+1

(nπr2(n)q(n))je−nπr2(n)q(n)

j!
→ 0, as n →∞.

Furthermore, we can obtain q(n) = log(V +e−nπr2(n))
nπr2(n)

+1 for fixed Pu,c = V when n goes

to infinity.

To achieve asymptotic connectivity for active nodes, np(n)πR2(n) = k2 log n from

Theorem 2.1. This relationship gives us a boundary condition for asymptotic connec-

tivity. Furthermore, a random sleep schedule is p(n) = − log(V +e−nπr2(n))
nπr2(n)

to achieve

Pu,c = V . Therefore, to achieve both,

n[− log(V + e−nπr2(n))

nπr2(n)
]πR2(n) = k2 log[−n log(V + e−nπr2(n))

nπr2(n)
]

⇒ −R2(n)

r2(n)
log(V + e−nπr2(n)) = k2 log[− 1

πr2(n)
log(V + e−nπr2(n))].(2.10)

First, for fixed n and when V is very small, Eqn. (2.10) becomes

− R2(n)

r2(n)
log e−nπr2(n) = k2 log(− 1

πr2(n)
log e−nπr2(n))

⇒ nπR2(n) = k2 log n.
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Figure 2.6: Boundary conditions for R(n)
r(n) for p-asymptotic connectivity with some levels of coverage

V when k2 = 1 and 3.

Second, for fixed V and when n is very large, Eqn. (2.10) becomes

− R2(n)

r2(n)
log V = k2 log(− 1

πr2(n)
log V )

⇒ R2(n)

r2(n)
log

1

V
+ k2 log r2(n) = k2(log log

1

V
− log π)(2.11)

We evaluate Eqn. (2.11) to give numerical results in Figure 2.6. It shows boundary

conditions for R(n)
r(n)

for asymptotic connectivity with some levels of coverage V . Each

graph gives a ratio of R(n) to r(n) as r(n) increases for k2 = 1 and k2 = 3.

2.7 Discussion

2.7.1 Generalized Connectivity

Connectivity defined in this chapter is strong in a sense that it requires the ex-

istence of a route from each node to every other node in the network. What if we

only require any node to be connected to a set of nodes A?
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As a simple case, suppose A contains only one node nA in the unit square. The

network is connected if any node has a route to nA. Let us construct a spanning tree

T with a root nA. If the network is connected, every node must be a part of T. This

implies that there exists a route from each node to every other node in T. Hence, in

this case the condition for connectivity is still Θ(log n) neighbors.

Next, supposes that A contains more than one node in the unit square. Let A

contains k nodes, nA1, nA2, · · · , nAk. Again, we construct spanning trees Ti with

a root nAi, and i = 1, 2, · · · , k. Denote by ni the number of nodes in Ti, where

n1 +n2 + · · ·+nk ≥ n. If they have any common nodes between trees, those trees can

be integrated. Eventually, we can find trees which is isolated, Tf
i , i = 1, 2, · · · , kf .

Denote by nf
i the number of nodes in Tf

i , where nf
1 + nf

2 + · · · + nf
kf

= n. Area

in the unit square can be divided into small areas. Since we assumed that nodes

are uniformly placed, small areas have same density. Therefore, the sufficient and

necessary conditions for this network to be connected remains Θ(log n) neighbors.

2.7.2 Phase Transition

[14] showed that probability of connectivity has zero-one transitions for large n

in the random network with fixed radius R(n). In this chapter, we showed it for

large n in the random network with fixed radius R(n) and active probability p(n).

First, we experiment zero-one transitions in probability of connectivity in the random

network when p(n)R2(n) = Θ( log n
n

). Figure 2.7 depicts probability of connectivity

when p(n)R2(n) = c log n
n

with respect to c for n = 20, 50, 100 and fixed p(n) = 0.8.

When n gets larger, the transitions become shaper.

Figure 2.8 depicts the probability of connectivity when p(n)R2(n) = c log n
n

with

respect to c for n = 20, 50, 100 and p(n) = 1√
n
. In this case, R(n) decreases to zero

as n goes to infinity. Therefore, np(n) goes to infinity and R(n) is bounded. On
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Figure 2.7: Phase transition in probability of connectivity when p(n)R2(n) = c log n
n and p(n) = 0.8.

the other hand, if p(n) decreases faster than or equal to 1/n, np(n) does not go

to infinity and R(n) becomes unbounded. Therefore, such cases are unable to be

satisfied in this network. This is illustrated in Figure 2.9, which depicts probability

of connectivity when p(n)R2(n) = c log n
n

with respect to c for n = 20, 50, 100 and

p(n) = 1
n
. As c increases, the probability of connectivity never reaches to one.

2.8 Chapter Summary

In this chapter we studied the asymptotic connectivity of a low duty-cycled wire-

less sensor network where sensor nodes are randomly duty-cycled according to a fixed

active probability. We derived the sufficient and necessary conditions for the network

to be connected as the number of node grows to infinity. These conditions are in the

form of the joint scaling behavior of the number of nodes in the network as well as

the active probability. Thus such results reveal how duty-cycling should be scaled as

the network gets denser in order to maintain network connectivity.1

1The views and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the Army Research Laboratory or the U.S.
Government.
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Figure 2.8: Phase transition in probability of connectivity when p(n)R2(n) = c log n
n and p(n) = 1√

n
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CHAPTER 3

Optimal Stochastic Routing in Low Duty-cycled Wireless
Sensor Networks

3.1 Introduction

For the past decade or so, wireless sensor networks have been extensively studied

for a variety of applications: military, environmental, and scientific. In many of these

application scenarios, sensors are deployed in large quantities, sometimes in remote

areas. Each sensor has the ability to measure and wirelessly transmit data. In order

to operate them remotely and autonomously, they are required to be reliable, robust,

scalable, and secure among other things. In particular, since they are operated on

battery power and are not always easily accessible or maintained in general, energy

conservation is critical in keeping such networks long-lasting and useful. As a result,

energy efficient design of such networks at all levels, from material to circuit to

protocol, has long been a key subject of research and engineering. Low duty-cycling

has been widely considered as one of the most effective ways of conserving energy,

by periodically turning off sensors that are not actively in use. There are many

challenges in designing low duty-cycled wireless sensor networks. The temporary

unavailability of sensors can adversely affect both the coverage and connectivity of

the network. In addition, duty-cycling causes all kinds of delays, in sensing, detection,

and packet delivery (routing).

42
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In this study, we are interested in designing good routing algorithms (measured

by low delay) for wireless sensor networks in the presence of very low duty cycles.

In particular, we will consider a class of random sleep schedules where sensors go

to sleep independent of each other and for a random duration given by a certain

probability distribution. In such a scenario, when a node does not have future infor-

mation on other nodes’ sleep schedules but only which of its neighbors are currently

available, its routing decision (the selection of a neighbor to relay a packet) must

properly balance the immediate availability of a node against the future perfor-

mance of the corresponding route. For instance, we may pre-determine a best route

based on average performance (delay) using prior statistics, and at each hop of this

route the upstream node simply waits for the downstream node to become available.

Alternatively, we can make a state-dependent decision depending on which set of

neighboring nodes are available. An extreme example of this latter method is to

forward the packet to the earliest available neighbor.

This duty-cycle-related uncertainty is further compounded by the uncertainty in

packet transmission. That is, a transmission may succeed or fail depending on chan-

nel conditions, which is in general time varying. Again, here a node must weigh the

pros and cons of using a pre-determined route and wait at each hop till a transmission

succeeds, or can make a forwarding decision depending on which down stream nodes

have successfully received the packet (this is possible due to the wireless broadcast

medium).

We see that in both cases, one could either choose to perform routing in a deter-

ministic way by selecting a route independent of the sleep state or the success/failure

state of the network, or one could try to utilize information available to the nodes

in making a closed-loop routing decision. Traditionally, most routing algorithms fall
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under the former category, see for instance [30, 34, 20, 58, 19, 29, 39, 12], and thus do

not react to transmission failure actively. More recently, there have been a number

of stochastic routing (also referred to as opportunistic routing) algorithms proposed

in the literature [24, 5, 57] to address the uncertainty in transmission. The key idea

underlying this latter category is to make routing decisions after having observed

the outcome of an earlier transmission, i.e., after knowing which down stream nodes

have or have not successfully received the transmission. Given different realizations

of these transmission events, the actual route taken by a packet can be different,

thus the term event-based routing or sample-path dependent routing [24]. This type

of routing algorithms has a clear advantage over traditional deterministic routing in

that it takes into account state information available to the nodes.

Compared to the above cited work, our problem also considers the uncertainty

due to sleep scheduling, in addition to that due to transmission failure. In this

chapter we will adopt the opportunistic routing idea and extend it to the case of low

duty-cycle. In particular, we will follow closely the stochastic decision framework

developed in [24]. It was shown in [24] that there exists an optimal Markov policy

for the above cited problem with time-invariant transmission success probabilities,

in the form of a priority policy. For a network of time-varying success probabilities,

[24] found necessary and sufficient conditions for a priority policy to be optimal. As

we will show, optimal policies for the problem considered in [24] are not in general

optimal for low duty-cycled sensor networks because they do not take into account

the current sleep state of nodes. In particular, a sender may be forced to wait when

a subset of its neighbors are asleep.

The model used in this chapter is an extension to [24] in that it captures the ran-

domness of topology caused by duty-cycling in addition to the randomness in channel
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conditions. The objective is to seek an optimal routing policy in such networks with

respect to performance metrics such as transmission cost and delay, and to resolve

the trade-off between these two performance metrics. In subsequent sections we will

formally define this optimization problem. Various policies are then explored and

characterized for optimality. The main contributions of this chapter are as follows.

1. As a benchmark we develop and analyze a centralized optimal stochastic algo-

rithm for randomly duty-cycled wireless sensor network.

2. We develop a centralized stochastic routing algorithm with reduced state space

which performs near-optimal when local sleep/wake states of neighbors are avail-

able.

3. We further develop a distributed algorithm utilizing local sleep/wake states of

neighbors which performs better than some existing distributed algorithms such

as ExOR, etc.

This chapter is organized as follows. In section 3.2, we discuss most relevant

work in literature and motivation of our work. Section 3.3 provides the description

of the network model with assumptions and definitions. Based on the specified

model, we consider the centralized stochastic routing problem with the information

of duty-cycles of nodes in the network in Section 3.5. In Section 3.6, we present

a centralized stochastic routing algorithm without such duty-cycling information of

the entire network to complement weak scalability of the optimal algorithm given

in the previous section. We develop a distributed algorithm to compute a policy

that resembles the near-optimal centralized algorithm shown in Section 3.7. The

performance of algorithms is extensively evaluated in Section 3.8 by self-comparison

and cross-comparison. Finally, we conclude in Section 3.9.
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3.2 Literature Review

The single most relevant work is by Lott and Teneketzis [24]. As we briefly

mentioned in the introduction, this work proposed a general framework for resource

allocation and routing in wireless networks. Their network model captures (1) the

broadcast nature of wireless communication, and (2) the uncertainty of channel con-

dition via a transmission success probability obtained using analysis or measurement.

The problem under consideration is that of anycast, where the goal is for a given

packet to reach anyone of a set of destination nodes. Transmissions are costly and a

certain reward is obtained if the packet reaches a certain node. The objective is to

find a routing algorithm that maximizes the total reward less the total cost.

Two cases were considered in [24]. In the first case the transmission success

probabilities are time-invariant, and the resulting optimal routing policy was found

to be an index policy, and there is a priority-ordering of nodes that can be computed

off-line and their priorities used in routing decisions. Specifically, a node continues to

transmit till a higher-priority neighbor receives the packet successfully and becomes

the next relay. In addition, this algorithm was shown to lend itself to Djikstra-type of

distributed implementation. As we pointed out earlier, the biggest difference between

this model and the problem considered in this chapter is nodes’ sleep schedules. In

the second case considered in [24] the transmission success probabilities are assumed

to be time-varying and known ahead of time. One might think that the problem

studied in this chapter could be viewed as a special case of time-varying success

probability, i.e., in our problem the success probability essentially switches between

a positive quantity and zero over time. However, there are some major differences

between the model considered in [24] and our model. Firstly, in our case if we were
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to model on/off as part of the success probability that switches over time, then we

do not know the value of these probabilities ahead of time due to the random nature

of the duty cycling. Secondly, in our case we actually get to observe the availability

of nodes at the current time. As this part of the uncertainty can be eliminated for

the current time, we cannot really bundle it together with channel uncertainty. In

other words, a single probability quantity, even if time-varying, cannot adequately

capture our scenario.

In addition to the more analytical approach discussed above, there are also practi-

cal routing algorithms aimed at finding the best possible relay for each transmission.

ExOR by Biswas et al [5] is a routing scheme that exploits the broadcast nature

of wireless medium by selecting the next forwarder among those which successfully

received data after data transmission. This was called opportunistic forwarding in

[5], and conceptually a very similar idea that that studied in [24] but with a differ-

ent relay selection criterion. Specifically, while the latter selects a relay based on

the priority index, in the former a sender node selects a relay among its neighbors

based on a metric called estimated transmission count (ETX) which is the smallest

sum of inverse of packet delivery probabilities of links along possible paths to the

destination (i.e, this is the smallest estimated number of transmissions it takes to

reach the destination along any possible path). The candidates are prioritized by

their ETX values. The sender includes the list of candidates with their priorities in

a data message. Once some candidates in the list received the data message, they

decide whether to forward it by themselves. The fact that such decision is not made

by the sender but by receivers is one of the most critical part of the opportunistic

routing. The election of a forwarder is performed as follows. If a node in the list

receives a data message, it waits for its forwarding timer (which is set according to
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its priority) to expire and piggybacks the data message while indicating the highest

priority of acknowledgements (ACK) it has seen. After all ACKs are sent, each node

which received the date message decides to forward it if there is no ACK from the

higher priority nodes.

Zhong et al. improved ExOR in two ways [57]. Instead of ETX, the authors

defined a new metric called expected any-path transmissions (EAX). EAX captures

the expected number of transmissions needed to successfully deliver a data message

to destination under opportunistic routing whereas ETX is the expected number

of transmissions along a best path with largest delivery probability. In addition,

robust acknowledgement mechanism (RACK) increases ACK delivery probability

significantly by sending an ACK a certain number of times. This work may be

considered as an alternative implementation of Lott and Teneketzis’ algorithm.

Our goal is to extend the above works by considering nodes’ duty-cycling. In

particular, we will use the stochastic optimization framework developed in [24] to

derive key properties of an optimal routing algorithm in our problem, and will also

borrow from [57] in developing a practical decentralized algorithm.

3.3 Description of the Model and Problem Formulation

We consider a static wireless ad-hoc or sensor network where nodes are duty-cycled

independently from one another. Our model is defined to capture some substantial

features at the network layer with physical and link layer features included but

simplified. We will limit out attention to the delivery of a single packet/message

from a source node to a destination node.
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3.3.1 A High Level Description

At a high level, the central problem is to find a good (in terms of delay or certain

cost measure) route from a source node to a destination node. In a non-duty cycled

static network, a typical method is to associate a measure/cost with each link in

the network and perform shortest path routing. For instance, if such a cost is unit,

then one ends up with a minimum hop-count route; if such a cost is given by the

expected number of transmissions over a link (by using a predefined transmission

success probability), then the resulting route has the minimum number of expected

transmissions. Similar measures can also be defined to take into account factors such

as energy consumption.

In our scenario, these nodes are not always available due to duty-cycling, and not

available all at the same time. Since a node can potentially obtain the information

on whether each of its neighbors are available when a packet needs to be transmitted,

a routing decision (i.e., the selection of the next hop relay node) must be made as to

whether one should select the node, among all wake nodes, that leads to a minimum

cost path, or to wait for a particular node to wake up, who leads to the minimum

cost path among all nodes (wake and asleep), or some variations/combinations of

these. In this context, it is not immediately clear what principles a good routing

algorithm should employ.

In this chapter, we will start by considering a centralized system, where at each

instance of time (we assume discrete time) some central agent has the full knowledge

of which subset of nodes have already received the message, and which subset of

nodes are currently awake. The central agent cannot foresee future sleep state of

the nodes, but knows the current sleep state. The routing decision (note that we

only consider single-path routing) at each time step then reduces to the question
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of (1) among the set of nodes that have already received the message, which one

should be selected as the relay node to retransmit the message, and (2) whether we

should simply do nothing, wait for one time step, and reconsider the decision at the

next time. This in essence is the routing decision problem we seek to address in this

chapter. For this centralized version of the problem we will derive the structural

properties of the optimal routing policy and construct an algorithm that computes

such a policy. To reduce the computational complexity we will further propose a

sub-optimal routing algorithm and is considerably simpler.

We then consider a distributed implementation of the above sub-optimal algo-

rithm, whereby each node only has access to local information, effectively resulting

in a decentralized routing algorithm. Specifically, in this case a node only knows who

among its neighbors have received the message, and who among its neighbors are

currently awake or asleep. A node then must decide on its own, based on such local

information whether it should serve as a relay for the message it receives. Because

such decisions are made by individual nodes in a decentralized fashion, it is possible

that multiple nodes may decide to relay the same message. This distributed imple-

mentation is accomplished via packet exchange and certain local information update

procedure; details are provided in subsequent sections.

Below we state formally the assumptions and notations used in this chapter.

3.3.2 Assumptions

• We will focus on the routing of a single message originated from somewhere in

the network and has a single destination node. Under the stochastic routing

framework, since the routing is sample-path dependent, each message may follow

a different path. Thus by this assumption we are ignoring possible interaction

or interference introduced by simultaneous message transmissions or subsequent
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messages in the same stream.

• We consider a discrete time system, where in each time step (or time slot) a

node is active/awake with a time-invariant probability, independent of other

time slots and other nodes. For simplicity in our derivation we will assume that

this active probability is the same for all node, though they need not be. The

complement of active probability is also called the sleep probability.

• We further assume in addition to the previous assumption, that any node that

has successfully received the message will remain awake. This assumption is

adopted for simplicity in presentation in our analysis. In practice, we only need

to ensure that the node who is designated as the relay should stay awake till

the next hop/relay receives the message successfully.

• A transmission between a sender i and a receiver j has a time-invariant prob-

ability pij of being successful, independent of other transmission attempts. If

this success probability is nonzero, then j is called a “neighbor” of i. This

probability does not have to be symmetric between two nodes.

• A transmission and its acknowledgment (ACK) from successful receivers occur

within a single time slot.

• Our routing problem is classified as anycast: there is a set of nodes to one of

which the message needs to reach, but it may not matter which node gets it as

long as one of them does. This reflects the situation where a message from a

sensor needs to be delivered to one of several gateway nodes.

3.3.3 Notations

A summary list of notations used in this chapter is as follows.



52

N is the number of nodes in the network.

Ω = {1, · · · , N} is the set of all nodes. So, |Ω| = N .

I is a nonexistent node which represents the idle action.

qij is the transmission success probability from node i to node j, given that both

nodes are awake. As stated earlier, j is called a neighbor of i if qij > 0.

p is the active probability for all nodes.

(W,A) refers to a state of the system, where W ⊆ Ω and A ∈ {0, 1}N . W is

defined as the set of nodes that have received the message. A is defined as the

sequence of sleep(0)/active(1) status of all nodes. In particular, node i is awake if it

has received a message as stated in assumptions: Given A = {a1, a2, · · · , aN}, ai = 1

for all i ∈ W .

F (W ) denotes a feasible set of all possible sleep/active states A induced by W so

that A is consistent with W . More specifically, given W , there are a total of 2N−|W |

sets of A’s in F (W ) where ai = 1 for all i ∈ W and ai ∈ {0, 1} for all i ∈ Ω−W .

F (W |W ′, A′) for W ⊂ W ′, A′ ∈ F (W ′) denotes a subset of sleep/active states

A ∈ F (W ), such that that A is identical to A′ except that ai ∈ {0, 1} for all

i ∈ W ′ −W .

F (W |W ′, A′) for W ⊃ W ′, A′ ∈ F (W ′) denotes a subset of sleep/active states

A ∈ F (W ), such that that A is identical to A′ except that ai = 1 for all i ∈ W −W ′.

We see that there is only one such A in this set.

T : 2Ω → 2N is defined as a mapping from W to a vector T (W ) = {w1, w2, · · · , wN},

W ⊆ Ω where each element wi = 1 if node i has received the message, and 0 other-

wise.

P i(W ′, A′|W,A) indicates the probability of state (W ′, A′) reached from state

(W,A) by choosing i for transmission, i ∈ W . Let T (W ) = {w1, w2, · · · , wN}
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and A = {a1, a2, · · · , aN} ∈ F (W ). Also, T (W ′) = {w′
1, w

′
2, · · · , w′

N} and A′ =

{a′1, a′2, · · · , a′N} ∈ F (W ′). If a node i is chosen for transmission, the transition

probability is given by

P i(W ′, A′|W,A)

=


 ∏

∀j:wj=0,aj=1,w′j=1

qij


 ·


 ∏

∀j:wj=0,aj=1,w′j=0

1− qij


 ·


 ∏

∀j:aj=0,w′j=1

0


 · pIa′−Iw′ (1− p)N−Ia′ ,

for ∀i ∈ W,

(3.1)

where Iw′ is the number of 1’s in T (W ′), and Ia′ is the number of 1’s in A′. If the

idle node I is chosen,

(3.2) P I(W ′, A′|W,A) =





pIa′−Iw′ (1− p)N−Ia′ , if W ′ = W

0, otherwise.

R : 2Ω → R is the reward functions. Specially, we denote Ri = R({i}).

π is a Markov policy such that π depends only on the current state (W,A). We

write π(W,A) = i to indicate that policy π transmits at node i when in state (W,A),

i ∈ W . We write π(W,A) = I to indicate policy π choose the idle/wait action. We

write π(W,A) = r to indicate policy π retires and receives reward R(W ) = r when

in state (W,A).

V π(W,A) is the expected reward when starting in state (W,A) under policy π.

3.3.4 Problem Formulation

Problem 3.1. We consider the transmission of a packet in a low duty-cycled wireless

network of N nodes, where each node is active with probability p, described above.

At each time instant the central controller chooses among three actions: (1) select

a node among nodes that have the packet for the next transmission; (2) wait for
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the next time step; and (3) terminate the routing process. It acts at the beginning

of each time slot with the knowledge of the set of nodes which have received the

message and the set of current active nodes in the network. The transmission from a

node i costs ci > 0 and is the local broadcast to its active neighbors. The idle action,

denoted by i = I, costs ci = α ≥ 0, a penalty on idle waiting. This transmission

is successfully received by a neighbor j with a time-invariant probability pij given

node j is active during that time slot. Each transmission event is assumed to be

independent of another. The objective is to choose the right action at each time step

and the right time to terminate the process so as to maximize the total expected

reward less cost:

(3.3) E{R(Sf )−
τ−1∑
t=1

ci(t)},

where τ is the stopping time when the transmission process is terminated, Sf is the

state at τ , and i(t) is the node (including idle action) chosen by the policy at time t.

3.4 Preliminaries

Below we present a number of definitions that will be helpful in exploring impor-

tant properties of an optimal Markov policy for the problem outlined above. When

nodes are always awake (i.e., p = 1), which is a special case of Problem 3.1, the

authors of [24] have shown that an optimal Markov policy is both a priority policy

and an index policy. The first few definitions below are reproduced from [24] for this

thesis to be self-contained. These explain what a priority or an index policy is. We

then present an example to illustrate they are not able to capture the extra dynam-

ics introduced by node sleeping. This motivates us to define generalized versions of

priority policies and index policies, respectively.
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Figure 3.1: System for an Example 1.

Definition 3.1. [24] A Markov policy π is a priority policy if there is a strict priority

ordering of the nodes s.t. ∀i ∈ Ω we have π(S ∪ {i}) = π({i}) = i or ri, ∀S ⊆ Ωi,

where Ωi is the set of nodes of priority lower than i.

Definition 3.2. [24] A function f : 2Ω → R is an index function on Ω if f satisfies

(3.4) f(S) = max
i∈S

f({i}), ∀S ⊆ Ω.

Definition 3.3. [24] A priority policy π is called an index policy if V π(·) is an index

function on Ω.

Below we use a simple example to show that the above definitions cannot be

directly applied to Problem 1; in other words, an optimal policy may not be found

in the class of priority policies for Problem 1.

Example 3.1. A Case where an Optimal Markov Policy cannot be a Priority Policy

We consider a system depicted in Figure 3.1, where Ω = {1, 2, 3, 4, 5} and nonzero

transmission success probabilities between nodes. Assume that Ri = 0 except node

5 which has a reward R5 > 0. For simplicity we also assume that ci = 1 for i ∈ Ω.

Let us consider first the case where nodes are not duty cycling. An optimal policy

can be found by applying Lott’s algorithm. For instance, when W = Ω, it is trivial

to see that the optimal action is to retire and receive R5. Any W that includes node

5 results in the same decision as above; node 5 will thus be considered to have the
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highest priority among all nodes. When W = {1, 2, 3, 4}, the optimal decision is for

node 3 to transmit. Similarly, the optimal decision given any W that includes node

3 is always to select node 3 for transmission. Node 3 thus has the highest priority

among all nodes except for 5. If we take nodes 5 and 3 away from the set W , then

node 4 becomes the optimal decision, with the next highest priority, regardless of

the membership of the rest of the set. Eventually, by repeating this process until W

becomes empty, we end up with an ordered list of nodes, in descending order of their

priorities. For this particular example, the priorities are such that the ordered list

is nodes 5, 3, 4, 1, 2 from the highest to the lowest. The result is called a priority

policy because there exists such a priority list that is independent of the actual state

of the system, and that the optimal decision is based on this priority list: choose the

highest priority node among W for the next transmission.

Now, we consider the case where nodes are duty-cycling with active probability

p = 0.1. In addition, we assume that the idling cost is 1, i.e., cI = 1. In this example,

an active node i is denoted by ia and a sleeping node i by is. As mentioned in the

previous subsection, nodes in W are assumed to be awake. Therefore, only nodes to

be concerned for on/off states are the nodes in Ω −W , i.e., A ∈ F (W ). Let W =

{1, 2, 4} as shown in the Figure 3.1. Let π∗ to be an optimal Markov policy. We have

π∗(W, {3a, 5a}) = 4, π∗(W, {3a, 5s}) = 1, π∗(W, {3s, 5a}) = 4, and π∗(W, {3s, 5s}) =

I based on the calculation given in Appendix A. Let us focus on A = {3a, 5s}. In

this case, node 1 seems to be the highest priority node among nodes 1, 2, and 4. Now,

suppose W = {1, 2}. For the sleep/wake states in F (W |{1, 2, 4}, {3a, 5s}), we obtain

π∗(W, {3a, 4a, 5s}) = 2 and π∗(W, {3a, 4s, 5s}) = 1 by the calculation similarly done

in Appendix A. When node 4 is in sleep, node 1 is the highest priority node as

expected. On the other hand, when node 4 is active, node 2 is the highest priority
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node among node 1 and node 2. In other words, node 1 is not always the highest

priority node among nodes 1, 2, and 4 but nodes’ priorities may change with sleep

states of nodes.

Remark 3.1. As can be seen from the above example, removing a node like 4 from

the set W = {1, 2, 4} has a significant impact on the resulting optimal policy, even

though it is not the highest priority node given A = {3a, 5s}. This is because node 4

is the highest priority node in W given other sleep/wake states such as {3a, 5a} and

{3s, 5a}. To summarize, given W , if a node i is the highest priority node in W for

some feasible sleep/wake state, then the priority ordering in W −{i} are not always

preserved under other sleep/wake states. Thus if we remove node i, then we need to

recalculate the priority ordering of nodes in W − {i}. By contrast, in the case when

p = 1, this priority ordering is preserved no matter which node we remove from the

set W . This is the primary difference between Problem 1 and that considered in [24]

both from a conceptual and a computational point of view.

Motivated by the above example, it is necessary to generalize the preceding defi-

nitions in the context of our problem.

Definition 3.4. Consider a Markov policy π such that π(W,Ai) = ni ∈ W ∪

{I}, ∀i ∈ {1, · · · ,m} for W ⊆ Ω and ∀Ai ∈ F (W ) where m = 2N−|W |. This policy

is called a Generalized(G)-priority policy if the following condition holds: Define

NW =
⋃m

i=1 ni − {I} and for ∀S ⊆ W −NW , we have

π(W,Ai) = π(S ∪NW , A) = ni, ∀A ∈ F (S ∪NW |W,Ai), ∀i ∈ {1, · · · ,m},

where the condition on A is simply to ensure that the sleep state A is consistent with

state Ai (it is identical to Ai except for nodes in W −S−NW what are unspecified).

What this definition says is that a policy is a G-priority policy if there exists a set
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NW of priority nodes within W whose priorities are strictly higher than the rest

regardless of the sleep state, but whose priority ordering among themselves can only

be determined for a specific sleep state. This set consists of nodes that would have

been selected in at least one sleep state.

Definition 3.5. A function f : 2Ω × 2N → R is an Generalized(G)-index function

on 2Ω if f satisfies

(3.5) f(W,A) = max
W̃⊆W,Ã∈F (W̃ |W,A)

f(W̃ , Ã), ∀W ⊆ Ω,∀A ∈ F (W ) .

Definition 3.6. A priority policy π is called an Generalized(G)-index policy if V π(·)

is an G-index function on Ω.

3.4.1 Special Cases of Problem 3.1

There are two special case interpretations of Problem 1 depending on what we

use as costs.

The case of cI = 0

If the idle cost is zero, there is no penalty on waiting. In this case, there is no loss

of optimality to always wait till all nodes are awake (a positive probability event)

and then make a decision on who is to transmit. If we only consider the problem in

this particular sleep state (all awake), i.e., we wait in other states, then the problem

becomes identical to the one studied and solved in [24].

The case of ci = cI = c

If all costs are the same, the problem can be regarded as finding a policy which

minimizes delay. Assuming the transmission of a packet consumes a certain amount

of time and so does waiting, each cost can be translated into a time unit. Therefore,

the problem is to find a policy that minimizes the sum of the time slots taken.
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3.5 Analysis of Problem 3.1

In this section, we analyze Problem 3.1 and derive structural properties of an

optimal policy π∗. As mentioned earlier, we will take a centralized point of view

and assume that at each time instant, a decision-maker has complete information on

the time-invariant transition probabilities and the current sleep/wake state. We will

then use these properties to construct optimal and sub-optimal routing policies. In

a later section we will discuss distributed implementations of these.

Our system of Problem 3.1 can be modeled by a two-dimensional finite state

Markov chain. That is, each decision is made based on current state (W,A) where

state space is finite. Hence, we limit our attention to Markov policies. One may

use stochastic dynamic programming to find an optimal Markov policy. However, its

computational complexity is high. For instance, suppose that the number of nodes

in the network is N and |W | = n. Given W , there are 2N−n A’s in F (W ) and n + 1

actions, one for each node in W plus I. For each pair (W,Ai), Ai ∈ F (W ), its opti-

mal value function requires the optimal value functions for other sleep/wake states

(W,Aj),∀Aj ∈ F (W ). All these optimal value functions are solved simultaneously

by setting the action for each (W,Aj). Thus, the number of such combinations is

(n + 1)2(N−n)
for given W . And there are N !

n!(N−n)!
W ’s for |W | = n. Therefore, the

total number of calculations is

(3.6)
N∑

n=1

N !

n!(N − n)!
(n + 1)2(N−n)

.

As N grows, the complexity grows rapidly. For this reason, instead of applying

stochastic dynamic programming directly, we will investigate the structural proper-

ties of an optimal Markov policy, which are then used to construct algorithms with

lower complexity.



60

We next show that there exists an optimal G-index policy for Problem 3.1 in

Theorem 3.1. To summarize, the proof of Theorem 3.1 is to show that an opti-

mal Markov policy with certain properties is a G-priority policy, which is in turn

a G-index policy by proving that the expected reward function is a G-index func-

tion. We then propose an algorithm to find an optimal G-index policy and discuss

its computational complexity. It should be noted that this method follows closely

the framework developed in [24] although there are technical differences due to the

introduction of sleep states.

Unless otherwise noted, all missing proofs may be found in the appendix.

The proof of Theorem 3.1 utilizes some useful lemmas presented in the following.

Lemma 3.1 below is essentially the same as given in [24], but adapted to our notation.

It shows that an optimal Markov policy has the property that if all supersets that

can be reached from a state have optimal expected reward values and the actions at

the state for all sleep states are optimal, then the expected reward value at the state

is optimal.

Lemma 3.1. Let π∗ be an optimal Markov policy for Problem 3.1. Suppose we are

given W1 and A1 ∈ F (W1), and let π be a Markov policy with the following properties:

V π(W,A) = V π∗(W,A), ∀W ⊃ W1,∀A ∈ F (W ),(3.7)

π(W1, A1) = π∗(W1, A1), ∀A1 ∈ F (W1).(3.8)

Then

(3.9) V π(W1, A1) = V π∗(W1, A1).

The following lemma shows the monotonicity of an optimal Markov policy.
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Lemma 3.2. In Problem 3.1, let π∗ be an optimal Markov policy. Let W1,W2 ⊆ Ω

and W2 ⊆ W1. Then, for A1 ∈ F (W1), V π∗(W2, A2) ≤ V π∗(W1, A1) where A2 ∈

F (W2|W1, A1).

In the next lemma, we show the properties of an optimal Markov policy, specifi-

cally the G-priority structure.

Lemma 3.3. Let π∗ be an optimal Markov policy for Problem 3.1. Then, there exists

a Markov policy π which has the following properties.

1. For all W ⊆ Ω where |W | ≥ 2 and all possible Ai ∈ F (W ) = {A1, · · · , Am},

m = 2N−|W |,

π(W,Ai) = ni ∈ W ∪ {I} ⇒ π(W − {j}, A) = ni,

∀j ∈ W − ∪m
i=1ni,∀A ∈ F (W − {j}|W,Ai),(3.10)

π(W,Ai) = rni
, ni 6= I ⇒ π(W − {j}, A) = rni

,

∀j ∈ W − ∪m
i=1ni,∀A ∈ F (W − {j}|W,Ai).(3.11)

2. For all W ⊆ Ω where |W | ≥ 2 and all possible Ai ∈ F (W ), and π(W,Ai) =

ni ∈ W ∪ {I} or rni
, ni 6= I for i ∈ {1, · · · ,m},

V π(W−{j}, A) = V π(W,Ai) = V π∗(W,Ai) = V π∗(W − {j}, A),

∀j ∈ W − ∪m
i=1ni,∀A ∈ F (W − {j}|W,Ai).(3.12)

3. π is an optimal Markov policy.

In the following lemma, we show that an optimal markov policy has the expected

reward that is a G-index function.

Lemma 3.4. For any optimal Markov policy π∗, V π∗(·) is a G-index function on

Ω ∪ {I}.
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Theorem 3.1. There is an optimal Markov policy π∗ for Problem 3.1 which is a

G-index policy.

Proof. By Lemma 3.3, there exists a Markov policy π∗ which is an optimal Markov

policy. V π∗(·) is a G-index function by Lemma 3.4. This says that the optimal

decision on the resulting set after removing some nodes that are not in
⋃

i ni from W

remains the same. Thus the conditions in Definition 3.4 are satisfied. Thus π∗ is a

G-priority policy. Since π∗ is a G-priority policy and its V π∗(·) is a G-index function,

π∗ is a G-index policy according to Definition 3.6.

3.6 Optimal and Sub-Optimal Routing Algorithms

3.6.1 An Optimal Centralized Algorithm for Problem 3.1

We present an algorithm to compute the optimal G-index policy for Problem

3.1. Compared to the brute-forth dynamic programming, our algorithm utilizes the

properties of G-index policy stated in Lemma 3.3 to reduce the number of compu-

tations. Let node d be the destination. The procedure starts with W = Ω and

A = {1, · · · , 1}. Its optimal action and reward value are straight-forward, which are

V (Ω, A) = Rd and π(Ω, A) = rd.

From the properties 1 and 2 in Lemma 3.3, we know

V (Ω− {j}, A) = Rd and π(Ω− {j}, A) = d,

for ∀A ∈ F (Ω − {j}) if j 6= d. Thus, we only need to calculate V (Ω − {d}, A) for

∀A ∈ F (Ω− {d}).

By solving the associated set of linear equations, we obtain π(Ω − {d}, A) for

∀A ∈ F (Ω−{d}). Suppose π(Ω−{d}, Ai) = ni for each i s.t. Ai ∈ F (Ω−{d}). Let

us denote by D(Ω−{d}) = ∪i{ni} the set of highest priority nodes in W . Again, by
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Figure 3.2: The diagram of Algorithm 3.1.

the properties Lemma 3.3, we have

π(S ∪D(Ω− {d}), A) = ni,∀S ⊂ Ω− {d}, A ∈ F (S ∪D(Ω− {d})|Ω− {d}, Ai).

Therefore, the reward functions that need to be calculated are V (Ω−{d}−{ni}, A),

for ∀A ∈ F (Ω− {d} − {ni}). The subsequent steps are done similarly as above.

We now formally describe the above procedure in Algorithm 3.1. Figure 3.2

illustrates how Algorithm 3.1 works. Note that this algorithm is presented for a

single destination, but can be easily extended to the case of multiple destinations.

Algorithm 3.1. Define sets W , F (W ), NW and a queue M , as follows.

Each entry in queue M contains the set of nodes S ∈ Ω which have not received

the packet. Specially, denote by Mb the head of line of M . W is the complement of

Mb with respect to Ω, which is W = Ω −Mb meaning the set of nodes which have

received packet. F (W ) is the set of all feasible active(1)/sleep(0) states of the nodes

in Mb and all ones for the nodes in W . That is, F (W ) = {A1, A2, ..., Ak} where

k = 2|Mb|. NW is the set of highest priority nodes in W for every Ai ∈ F (W ).

Since the case where W = Ω is trivial, we start with W = Ω− {d}. Initially, the
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queue M = {Mb} = {{d}} contains a destination d; the action taken by an optimal

G-index policy π on the destination d is to retire and receive Rd regardless of sleep

states. F (W ) contains two sets which include ones for all nodes except for d which

is zero in one set and one in the other. NW is initially empty.

The algorithm proceeds as follows.

1. For each i ∈ W and each Aj ∈ F (W ), let πj
i be an G-index policy with the

same priority list as π for the nodes in Mb, with i as the next highest priority

node after Mb, and with the priority of the nodes, W - {i} arbitrary, but lower

than i. Compute V
πj

i
i (W,Aj) for all j, 1 ≤ j ≤ k from

(3.13)

V
πj

i
i (W,Aj) = max{−ci +

∑

W ′⊇W

∑

A′∈F (W ′)

P i(W ′, A′|W,Aj)V
πj

i

πj
i (W ′,A′)

(W ′, A′), Ri}.

2. For an idle node I to choose, let πI be an index policy which is similarly defined

as in step 1 except no actual transmission to take place. Thus,

(3.14) V
πj

I
i (W,Aj) = max{−α +

∑

A′∈F (W ′)

P I(W,A′|W,Aj)V
πj

I

πj
I(W,A′)

(W,A′), Ri}.

3. For each set of choices of a node ij ∈ W
⋃{I} for Aj, 1 ≤ j ≤ k, denoted by

i = {i1, i2, ..., ik}, V
πj

ij

ij
(W,Aj) are solved by k linear equations. Choose i with

the highest values of V
πj

ij

ij
(W,Aj)’s. Ties are broken with more Is in i, otherwise

arbitrarily.

4. NW includes all distinct y ∈ i, which is not equal to I. For each node in NW ,

append it to the set Mb and place the resulting set on top of the queue M .

5. Finally, remove Mb from the bottom of the queue M . If M is empty, stop.

Otherwise, go to step 1).
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We now prove the optimality of Algorithm 3.1 for Problem 3.1 in the following

theorem.

Theorem 3.2. For Problem 3.1, Algorithm 3.1 produces an optimal G-index policy.

Proof. We prove this theorem by induction. Let π be an optimal G-index policy. The

base case holds because Algorithm 3.1 initially assigns nodes with highest reward

into M which is optimal. Suppose Algorithm 3.1 is running at the point where

|Mb| = L. Then, F (W ) = {A1, A2, ..., Ak} where k = 2L. Let i ∈ W ∪ {I} be

actual (L + 1)th highest priority node for Aj according to π whether retiring or not.

Consider l ∈ W, l 6= i. Let πl denote the priority policy that has the same priority

as π in the first L nodes and have node l be the (L + 1)th highest priority node for

Aj. Then, we want to show

(3.15) V
πj

i
i (W,Aj) = V π

i (W,Aj) ≥ V π
l (W,Aj) ≥ V

πj
l

l (W,Aj).

The first equality comes from the assumption that node i has (L + 1)th highest

priority for Aj according to π and the definition that πj
i has the same priorities for

the first L nodes as π. The first inequality comes from the assumption that the

priority of node i is higher than the one of node l. The second inequality is because

π is optimal. Eqn. (3.15) shows that for each Aj, node i ∈ W maximizing V
πj

i
i (W,Aj)

is assigned as the (L+1)th highest priority node. This completes the induction step

and the proof.

It is worth noting that utilizing the structure of an optimal Markov policy reduces

the computational complexity required in finding an optimal policy for Problem 3.1.

Whereas the computational complexity of directly using stochastic dynamic pro-

gramming is given by Eqn. (3.6), the complexity of Algorithm 3.1 is upper bounded



66

3 4 5 6 7 8 9 10
10

0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

10
160

10
180

N

C
om

pu
ta

tio
na

l C
om

pl
ex

ity

Stochastic Dynamic Programming
Algorithm 1

Figure 3.3: Computational complexity of a stochastic dynamic programming algorithm.

by
N∑

n=1

(n + 1)2N−n
N∏

m=n

min(2N−m,m).

In above equation,
∏N

m=n min(2N−m,m) ≤ N !/n!(N − n)!. Figure 3.3 shows the

computational complexity of Algorithm 3.1. As you can see, its complexity is still

too high.

3.6.2 A Sub-Optimal Algorithm

Algorithm 3.1 is not very scalable. In this section we modify Model (M) to main-

tain a simpler state of the system (i.e., W only) rather than (W,A). Accordingly,

a change to the assumptions in Subsection 3.3.2 is made with respect to the in-

formation available to the decision-maker. In this section, it is thus assumed that

the decision-maker has the knowledge of the nodes which received a message and

time-invariant transition probabilities but no information on the sleep/wake status

of all nodes. In the following, we redefine some notations for Model (M) while others

remain the same as given in 3.3.2.

The state of the system is determined by W only.

P i(W ′|W,A) indicates the probability of state W ′ reached from state W by choos-
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ing i ∈ W for transmission, when nodes’ sleep/wake status is A at the moment.

If a node i is chosen for transmission, the transition probability is defined as

P i(W ′|W,A)

=


 ∏

∀j:wj=0,aj=1,w′j=1

qij


 ·


 ∏

∀j:wj=0,aj=1,w′j=0

1− qij


 ·


 ∏

∀j:aj=0,w′j=1

0


 , for ∀i ∈ W,

(3.16)

where qij is the probability that j receives the message from i if both awake and Iw′

is the number of 1’s in T (W ′). Note that the idle node I is never be chosen.

π is a Markov policy such that π depends only on the current state W . We write

π(W ) = i to indicate policy π transmits at node i when in state W , i ∈ W . We write

π(W ) = r to indicate policy π retires and receives reward R(W ) when in state W .

π(W ) = ri is written as shorthand that policy π retires and receives reward Ri(W ),

i ∈ W .

V π(W ) is the expected reward when starting in state W under policy π.

Given the modified model described above (i.e., without nodes’ active/sleep in-

formation), the problem is reduced to the one studied in [24] with a modification

to the state transition probability. This is because under the above assumptions

the decision-maker cannot differentiate transmission failures caused by channel er-

rors from the ones by duty-cycling. Hence, sleep/wake activity of nodes is reflected in

transition probability measured on average, i.e., P i(W ′|W ) =
∑

A∈F (W ) P i(W ′|W,A)P (A).

Given such transition probabilities, [24] presented an algorithm which produces an

optimal index policy under this model. In other words, the algorithm, referred to in

this chapter as Lott’s Algorithm, is optimal in the case where the sleep/wake states

of nodes are unobservable. However, it is not hard to see that Lott’s algorithm
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may not be optimal for Problem 3.1 because it uses less information. This was also

demonstrated in Example 3.1 which highlights the possibility that a priority policy

cannot be optimal for our problem (Note that Lott’s algorithm produces an index

policy which is a priority policy as well). Under Lott’s Algorithms, the expected

reward given W when i is transmitting is calculated by

(3.17) V πi
i (W ) = max{−ci +

∑

W ′⊇W


 ∑

A∈F (W )

P i(W ′|W,A)P (A)


 V πi

πi(W ′)(W
′)}, Ri}.

In the following, we present an algorithm that outperforms Lott’s Algorithm for

our problem while maintaining the simple state W (compared to (W,A)) as in Lott’s

Algorithm. Specifically, the decision maker has access to the sleep/wake states A at

the time of transmission, but its calculation of the expected reward is based only on

W . This significantly simplifies the computation.

Algorithm 3.2. The sets W , F (W ) = {A1, A2, ..., Ak}, NW , Mb and the queue M

are defined the same way as in Algorithm 3.1.

The algorithm consists of two parts: an off-line part and an on-line part. The

off-line part obtains the expected reward values Ṽ (W ) for all W ⊆ Ω by Lott’s

Algorithm. The on-line part of the algorithm proceeds as follows.

1. For each i ∈ W , let π be a policy with the same priority list as the policy

generated by Lott’s Algorithm for the nodes of Mb with i as the next highest

priority node after Mb, W - {i} arbitrary, but lower than i. Compute V π
i (W,Aj)

for all j, 1 ≤ j ≤ k from

(3.18) V π
i (W,Aj) = max{−ci +

∑

W ′⊇W

P i(W ′|W,Aj)Ṽ (W ′), Ri}.

2. When selecting the idle action its value is computed as:

(3.19) V π
I (W,Aj) = max{−α + P I(W |W,Aj)Ṽ (W ′), RI}.
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3. For Aj, choose a node ij ∈ W
⋃{I} with highest values of V π

i (W,Aj), 1 ≤ j ≤ k,

denoted by i = {i1, i2, ..., ik}. Ties are broken arbitrarily.

4. For each distinct y ∈ i, which is not equal to I, append {y}⋃
Mb at the top of

M . Remove Mb from the bottom of M .

5. If M is empty, stop. If not, go to step 1.

Unlike Lott’s Algorithm, Algorithm 3.2 takes an action dependent on A. It re-

computes the priorities of nodes in W with consideration of sleep/wake status at the

time of transmission and chooses a node with highest modified priority for the next

transmission. This algorithm cannot perform better than Algorithm 3.1 by defini-

tion. However, below we show it does at least as good as Lott’s Algorithm in the

following corollary.

Corollary 3.1. Algorithm 3.2 performs at least as good as Lott’s Algorithm for

Problem 3.1.

Proof. For notational simplicity, Ri is not included in the following expected reward

equations. In addition, we simply denote by Ṽ (W ) the expected reward calculated

by Lott’s Algorithm. In particular, F (W ) = {A1, A2, · · · , A|F (W )|}. Suppose node i∗

achieves the maximum of the expected reward given in Eqn. (3.17). In order words,

node i∗ ∈ W is chosen by Lott’s Algorithm. Then,

i∗ = arg max
i
{−ci +

∑

W ′⊇W



|F (W )|∑

j=1

P i(W ′|W,Aj)P (Aj)


 Ṽ (W ′)}}

= arg max
i
{
|F (W )|∑

j=1

(
−ci +

∑

W ′⊇W

P i(W ′|W,Aj)Ṽ (W ′)

)
P (Aj)}.(3.20)

From Algorithm 3.2, we obtain ij ∈ W ∪ {I} which achieves the maximum of the
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expected reward equation given in Eqn. (3.18) for each Aj. For each j,

(3.21) ij = arg max
i
{−ci +

∑

W ′⊇W

P i(W ′|W,Aj)Ṽ (W ′)}.

For those Aj such that ij = i∗,

−ci∗ +
∑

W ′⊇W

P i∗(W ′|W,Aj)Ṽ (W ′) = −cij +
∑

W ′⊇W

P ij(W ′|W,Aj)Ṽ (W ′).

And for those Aj such that ij 6= i∗,

−ci∗ +
∑

W ′⊇W

P i∗(W ′|W,Aj)Ṽ (W ′) ≤ −cij +
∑

W ′⊇W

P ij(W ′|W,Aj)Ṽ (W ′).

Therefore, we have

Ṽ (W ) =

|F (W )|∑
j=1

(
−ci∗ +

∑

W ′⊇W

P i∗(W ′|W,Aj)Ṽ (W ′)

)
P (Aj)

≤
|F (W )|∑

j=1

(
−cij +

∑

W ′⊇W

P ij(W ′|W,Aj)Ṽ (W ′)

)
P (Aj) =

|F (W )|∑
j=1

V (W,Aj)P (Aj).

Hence, Algorithm 3.2 performs better than Lott’s Algorithm on average.

3.7 Distributed Implementation

In this section, we develop a practical routing protocol that implements Algorithm

3.2 in a distributed way. We will adopt opportunistic-like forwarding used in [5] in

our algorithm where nodes are not assumed to have perfect information on W and

A. Specifically, nodes periodically exchange a HELLO (also referred to as a beacon

packet in the sequel) packet when they are awake. From these exchanges nodes infer

about their neighbors’ sleep status when making a decision on whether they should

forward a received packet.

Our stochastic routing protocol, referred to as SRP below, consists of two ele-

ments: priority update and forwarder selection. In priority update a node has the

option of recalculating the priorities of its neighbors. Recall that in Algorithm 3.2
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we first compute the nodes’ priorities off-line, ignoring the current sleep state, using

Lott’s algorithm. These will be referred to as the off-line priorities. In SRP, nodes

can choose to update these off-line priorities and recalculate as they obtain their

neighbors’ sleep state via the HELLO packets. In the forwarder selection step a

node decides for itself whether it should become a forward and retransmit the packet

it received based on current priorities. Below we present these two elements in more

detail.

3.7.1 Priority Update Procedure

In this subsection, we describe how the offline priorities are set and updated in

SRP.

An active node i transmits a short HELLO packet periodically1. This HELLO

packet contains explicit information on measured channel quality and implicitly con-

veys the fact that the sender of the HELLO packet is active. In addition, it contains

an updated value of node i’s priority V n(i), calculated as follows.

Initially, V 0(i) for all i is obtained based on Lott’s Algorithm off-line. Recall that

the optimal policy obtained by Lott’s Algorithm is an index policy (i.e., Ṽ π(W ) =

Ṽ π({i}) if i is the highest priority node under π in W ). As part of initialization,

we assign V 0(i) = Ṽ π({i}) to node i at the start of the algorithm; Ṽ π({i}) is also

written as Ṽ π
i below for simplicity.

This quantity is then updated before node i sends out each beacon within a single

wake period, and is reset to V 0(i) = Ṽ π({i}) upon waking up from a sleep period.

Specifically, right before the n-th beacon transmission at time tin, node i updates

V n(i) and includes its value in the beacon packet. Note that the transmission times

1HELLO packets are commonly used for neighborhood discovery, a mechanism employed by virtually all routing
protocols to maintain fresh information on which nodes are one’s neighbors. In this sense our protocol simply utilizes
an existing mechanism and the exchanged state information gets a free ride.
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of the beacon packets are unsynchronized among nodes in the network; a node’s

beacon transmission times are only relevant to its latest wake-up time. Thus, tin for

node i might be different from tjn for node j. Node i recalculates V n(i) based on

updates received from active neighbors during the time interval [tin−1, t
i
n]. In addition,

node i maintains a candidate set denoted as Ci, which is a subset of neighbors of node

i that contains all possible forwarders, e.g., nodes whose current priorities are higher

than i’s. Initially, Ci contains the nodes with higher initial priorities (determined by

V 0(·)) than i’s. This set may change over time depending on the priority updates.

The more precise details are given in the following description of the priority

update procedure, followed by a particular node i. We will assume that the off-

line computation of {Ṽ π
i } by Lott’s Algorithm is completed, such that each nodes

has its own Ṽ π
i as well as Ṽ π

j for all nodes j in its neighbor set Ni. This can be

accomplished using the Dijkstra-like distributed algorithm proposed in [24], in which

case this computation is off-line only in the sense that this computation is done prior

to the execution of SRP.

1. When node i goes to sleep, it turns off the radio and does nothing.

2. Upon waking up, node i sets the beacon counter n to zero, the beacon trans-

mission time ti0 to current time, and immediately transmits a beacon packet

containing value V 0(i) which is set to Ṽ π
i . V 0

i (j) is initialized to Ṽ π
j for all

j ∈ Ni; the set Ai that contains all active neighbors is initialized to be an

empty set. The set Ci of forwarder candidates contains the set of neighbors j’s

who have Ṽ π
j > Ṽ π

i .

3. Node i then increments n by one, and set the next beacon transmission time tin

to tin−1 + T , where T is the (constant) beacon interval.
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4. Between tin−1 and tin, if node i receives a beacon packet from some neighbor j,

it updates V n−1
i (j) with the new value contained in the packet and records its

update time. Also, node j is added to Ai if it is not already in the set.

5. Right before the n-th beacon transmission, at time tin, node i recalculates the

priorities as follows. If a beacon packet from node j was last received at a time

earlier than tin − βT , where β a constant multiplier and βT sets a threshold on

how long a neighbor has not been heard from before assuming it’s asleep, then

node j is assumed to be in sleep mode and is removed from Ai. For those nodes

in Ai, set V n
i (j) = V n−1

i (j). Otherwise, set V n
i (j) = Ṽ π

j for a sleep node j.

Include in Ci all neighbors that qualify as a possible forwarder and their current

priorities. Denote by q∗ij|Ci,Ai
the probability that node j receives successfully

while nodes with higher priorities in Ai

⋂
Ci fail. Denote nodes with higher

priorities than node j by {Ai

⋂
Ci}+

j ⊂ Ai

⋂
Ci. Then,

q∗ij|Ci,Ai
= qij

∏

k∈{Ai
⋂

Ci}+j

(1− qik).

Using this probability, node i updates V n(i) as follows.

V n(i) =
−ci +

∑
j∈Ai

⋂
Ci

q∗ij|Ci,Ai
V n

i (j)

1−∑
j∈Ai

⋂
Ci

(1− qij)
.

Node i then transmits a beacon packet with V n(i) to its neighbors.

6. While node i continues to be awake, repeat steps 3-5.

Remark 3.2. Relationship between T and an “on” duration: We assume that an on

duration is larger than a beacon interval T . The length of an on duration obviously

affects the accuracy of recalculation of V n(i).
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3.7.2 Forwarder Selection Procedure

When an upstream forwarder or relay, say node k, sends out the message, it

contains a list of potential forwarders Ck. When node i receives the message within

its n-th beacon interval, [tin−1, t
i
n], it first checks to see if it is included in the set Ck.

If it is, it waits for a certain time period to see if it hears any ACKs from higher

priority nodes. This time period is randomly chosen but inversely related to its own

priority position in Ci. If it does, then node i will not transmit the message. If

it fails to get any ACK from higher priority nodes during the period, it transmits

the message containing the list of candidates as the next forwarders in the message.

The details of this forwarder selection procedure are provided in the following. This

algorithm is performed whenever node i generates a message or receives it from one

of its neighbors.

1. Recall that V (i) and {Vi(j)}j∈Ni
are set to current priority values calculated by

the priority update procedure. The current active neighbors of node i, Ai, is

also given in priority update.

2. When node i receives a message, it obtains the list of candidate forwarders. If

it is on the list, go to step 3. Otherwise, it does not forward the message and

returns to the receiving mode.

3. If node i is listed as a potential forwarder, it calculates a time period D based

on its priority on the list. If it is the k-th highest priority node on the list

with a total of M nodes on the list, it randomly selects D as proportional to

k − 1. Or an ACK is repeated like the multiple duplicated ACKs as robust

acknowledgement introduced by [57].

4. If node i receives ACKs from higher priority nodes, it transmits an ACK with the
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Figure 3.4: Delivery success probability w.r.t. distance.

identity (ID) of the highest priority node, and it does not forward the message.

During the period D, if node i does not receive an ACK from any of the higher

priority nodes, node i decides to forward and transmits an ACK with its own

ID. The message contains the priority list of the next forwarders according to

V (i), {Vi(j)}j∈Ni
, Ai.

5. If node i decides not to forward under the policy π and receives no ACK during

M · Ts period, it goes to step 3, unless it was already repeated for R times. If

so, the message is removed.

6. If node i has transmitted the message, it waits ACKs from neighbors for at most

R · Ts. If it receives no ACK, it retransmits the message.

3.8 Performance Evaluation

We have performed extensive MATLAB simulation to evaluate the performance of

the proposed algorithms. The simulated system closely follows the set of assumptions

listed earlier in this chapter. Here we reiterate some of the more relevant ones. The

lossy channel model we adopted in the simulation is based on pair-wise distance.

Specifically, we assume that the success probability that a node receives a message
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from any node is given by a linear function of the distance between the nodes as

shown in Figure 3.4. This distribution is based on the measurements on Rene Motes

using medium transmission power reported by Ganesan et al in [13]. In general, a

node with non zero reception probability is regarded as a neighbor. However, we

also eliminate nodes with poor reception probability (those lower than a threshold

pm) from a neighboring set. Each sensor node is duty-cycled with a sleep probability

ps, and the discrete time unit is chosen large enough for a transmission and ACKs

to occur. A source and a destination are randomly selected among nodes in the

network. A node that has received a message does not go back to sleep again till

the simulation ends. We assume that the network is connected when all nodes are

awake, thus in time any destination may be reached from any source.

Throughout this section, we consider three different scenarios depending on how

the transmission cost and idle penalty are determined.

1. Unit cost for both transmission and idle action: Under this scenario the prob-

lem reduces to finding a delay-optimal path from a source to a destination.

Note that the term delay used in this chapter accounts for the number of time

units taken to reach the destination considering hop counts and retransmissions

caused by channel errors. With this cost scenario we may also find a path that

minimizes energy consumption, given that the normalized energy consumption

in transmission is roughly the same as that in idle waiting.

2. Random cost for transmission and nonzero cost for idle action: With this cost

scenario the problem finds a path that minimizes the total cost. Because both

transmissions and waiting are costly, there may be a tradeoff between minimiz-

ing the number of transmissions and minimizing delay. For instance, a path

may incur the smallest number of transmissions (e.g., a shortest path when all
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Figure 3.5: Topology 1: an example of a network topology with 6 nodes.

transmission success probabilities are equal) but may involve a large amount of

waiting. The combined cost may render this path not as desirable. The tradeoff

between transmission energy consumption and delay can be adjusted through

setting the respective costs. The intention of using a random transmission cost

is so that this cost may represent the fact that some transmissions are more

costly if the transmitting node has relatively low residual energy, or if all its

neighbors are located far away thereby physically requiring more energy.

3. Random cost for transmission and zero cost for idle action: In this case the

problem looks for a cost-efficient path without having to worry about penalty

on waiting. Since there is no penalty on waiting, there is no loss of optimality

for a policy to simply wait till all nodes are awake and then make the decision on

who is to relay. In this sense Lott’s Algorithm would be an optimal algorithm,

i.e., it is optimal to wait till all nodes are awake and then apply Lott’s Algorithm.

3.8.1 The effect of sleep information on optimality

In the previous sections, it was shown that Algorithm 3.1, referred to as the

Optimal Algorithm in the remainder of this section, generates an optimal G-index

policy for Problem 3.1. Unfortunately, its computational complexity is extremely
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high and thus is not really usable even for a small network. We did manage for

sizes up to N = 6. The network topology under consideration is a small network

of 6 sensor nodes with average node degree 4.6 and pm = 0.3 as shown in Figure

3.5, referred as Topology 1. Based on this topology, we first examine how much

performance degradation will result if we ignore sleep information. In Figure 3.6 we

compare Algorithm 3.1, Lott’s Algorithm which requires no sleep information, and

Algorithm 3.2 (also referred to as the sub-optimal algorithm in the remainder of this

section) that utilizes the current sleep state in making forwarding decisions.

Figure 3.6 depicts the average costs of paths taken by these algorithms when

different cost distributions are applied. When all costs are the same and normalized

to unit as in the first cost scenario, average path cost is identical to average delay.

When p is relatively small up to 0.8, average delays of all three algorithms are

virtually indistinguishable as illustrated in Figure 3.6(a). As p becomes very high

(0.9), the Optimal Algorithm shows a slight advantage. In the second cost scenario,

nodes’ costs are uniformly generated over [1, 7] while idle cost is fixed at 4. As shown

in Figure 3.6(b), it is remarkable that the Sub-optimal Algorithm performs as good

as the optimal one. This indicates that the Sub-optimal Algorithm which is much

simpler and requires only local sleep/wake information than the optimal algorithm

works sufficiently well in such a small network. In the third cost scenario, nodes’

transmission costs are generated by the same distribution as above but no costs are

imposed on the idle action. The third scenario is meant for the applications that

are extremely delay-tolerant. Figure 3.6(c) shows that the average costs of Optimal

Algorithm and Sub-optimal Algorithm are almost unaffected by the increase in sleep

probability by taking a large number of idle actions and waiting for the right moment

to transmit. The average cost of Optimal Algorithm is exactly the same while waiting
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Figure 3.6: Performance comparison of the centralized algorithms on Topology 1
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delay increases exponentially as p increases. Note that the average cost of Lott’s

Algorithm is invariant to the change in idle cost since it never selects the idle action.

3.8.2 The effect of node degree

If a node has more neighbors, given a sleep probability it is more likely to have

more wake neighbors. However, even in a highly connected network, a best neighbor

is not always on. Thus, whether to transmit now or wait for better neighbors to

be on is not straight-forward depending on which neighbors are awake at the time

of transmission. We focus on the performance comparison of Lott’s Algorithm and

Sub-optimal Algorithm when increasing the average node degree in the next set of

results. We consider a network where N = 30 sensor nodes are deployed with different

pm = {0, 0.3, 0.5} as shown in Figure 3.7. pm determines the set of neighbors and so

does node degree.

Using the third cost scenario, as the degree of nodes increases, Figure 3.8(a)

shows Sub-optimal Algorithm improves significantly compared to Lott’s Algorithm,

and the improvement is more pronounced as p increases. That is, the Sub-optimal

Algorithm is more effective when duty-cycling is heavy and less so otherwise. This

is because there are sufficient number of wake neighbors around, which makes idle

action unnecessary. Figure 3.8(b) depicts that delay performance of Sub-optimal

Algorithm is slightly better than that of Lott’s Algorithm, which is desirable in

many applications. As depicted in Figure 3.8(c), Lott’s Algorithm takes no idle

action while Sub-optimal Algorithm takes more idle actions as p increases or node

degree reduces. That is, Lott’s Algorithm took more hops to reach the destination

whereas Sub-optimal Algorithm waited for better neighborhood to wake up but not

too long while taking less hops instead.
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(a) Topology 2 with average node degree = 12.33 when pm = 0.
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(b) Topology 3 with average node degree = 7.13 when pm = 0.3.
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(c) Topology 4 with average node degree = 4.13 when pm = 0.5.

Figure 3.7: Topologies with 30 sensor nodes.
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Figure 3.8: The effect of average degree of nodes on the performance of Sub-optimal and Lott’s
Algorithms (scenario 3).
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3.8.3 The role of idle costs

As described above, Lott’s Algorithm is invariant to changes in idle cost. In this

subsection, we examine more clostly Sub-optimal Algorithm on Topology 3 while

varying the idle cost by selecting it from the set cI = {0, 1, 2, 4, 8}.

Figure 3.9 depicts the average cost of Algorithm 4 with various cI . As cI grows,

the average cost tends to increase but the average delay decreases. Thus, there is

a trade off between cost and delay. cI is a design parameter to be adjusted for the

intended applications. In Figure 3.9(c), note that when cI = 8 no idle action is

taken. This means that there will be no difference in performance if cI increases

beyond 8. One may try to find c∗I to satisfy its cost efficiency and delay constraint

(e.g., over the range of [0, 8] in this particular example). In this example, the worst

delay performance where cI = 8 was not very bad due to the high average node

degree. However, in a less connected network, it could be an important parameter

that may need to be chosen with care.

3.8.4 The performance of the distributed protocol SRP

We evaluate the performance of SRP on Topology 3 with 30 nodes and pm = 0.3 as

illustrated in Figure 3.7(b). As described in Section 3.7, the distributed algorithm’s

access to sleep state is limited to a node’s 1-hop neighbors, which is obtained from

the beacons broadcasted by neighbors every T time unit. In our simulation, T is

set to 2. Each node’s sleep schedule is generated by a geometric distribution with

mean length of on periods of 4. Given the scenarios of cost distributions introduced

earlier, we examine the performance of SRP described in Section 3.7 comparing with

one of the most promising algorithms in the literature. Specifically, we consider a

few variations of ExOR with different forwarder selection metrics: 1) the number
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Figure 3.9: The role of wait cost on the performance of Sub-optimal Algorithm on Topology 3.
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of hops to best-path and loss rate [4], 2) ETX [5], and 3) EAX [57]. We provide

cross-comparison between our algorithm and three different versions of ExOR. For

the simulation, 300 packets are randomly generated in the network during 3000 time

units. Each node has a finite queue so that the total delay takes into account queueing

delay in addition to hop counts and the number of waiting decisions.

Figure 3.10(a) depicts the average cost of these algorithms when nodes’ costs are

distributed uniformly with a mean 4 and idle cost is 4. ExOR, which is known to

outperform traditional routing where packets are sent to the pre-computed path with

the smallest costs, performs the worst among them in the figure. Other versions of

ExOR using ETX and EAX metrics performs better than the original ExOR. On

the other hand, under scenario 3 with the same distribution for nodes’ costs and no

wait cost, Figure 3.10(b) shows that the average cost of SRP is the minimum with

the largest delay. In Figure 3.10(c) SRP exhibits the same performance of delay as

ExORs with ETX and EAX. Overall, our algorithms outperform ExORs in terms of

average cost with reasonable delay performance.

3.9 Chapter Summary

We studied a routing problem in wireless sensor networks where sensors are ran-

domly duty-cycled. We developed an optimal stochastic routing framework in the

presence of duty-cycling as well as unreliable wireless channels. Using this frame-

work, we presented and analyzed an optimal centralized stochastic routing algorithm,

and then simplified the algorithm when only local sleep/wake states of neighbors are

available. We further developed a distributed algorithm utilizing local sleep/wake

states of neighbors which performs better than some existing distributed algorithms

such as ExOR.
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Figure 3.10: Performance comparison between the decentralized algorithms and ExORs (scenario
3).



CHAPTER 4

Opportunistic vs. Non-opportunistic Routing: A Delay
Analysis

4.1 Introduction

Routing has long been a subject of extensive research for wireless ad hoc and

sensor networks. Traditionally, routing algorithms may be classified as proactive

[30, 34], reactive or on-demand [20, 58, 19], and hybrid [16, 22], by differentiating

whether a route is established before or after communication needs arise. They may

be classified as single-path and multi-path, judged by how many routes are simul-

taneously maintained. Routing algorithms can also be classified by the underlying

selection metric for a route: greedy geographical routing [29, 39, 12] selects for each

hop the relay that is the closest to the destination; shortest path routing selects

the one with the smallest number of hops; lifetime-maximizing routing [7, 6, 40, 54]

selects an energy efficient one, etc.

Due to interference and random fading, a certain amount of uncertainty in wireless

data communication is a reality that cannot be ignored. In this context, all the above

routing algorithms share a common feature: in making routing decisions they either

do not take into account link quality (e.g., in the form of a transmission success

probability), or do so through the expectation, e.g., by calculating the expected

number of transmissions needed on a given link [8]. These methods are inherently

87
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deterministic in the sense that the routing decisions are typically made regardless of

the actual outcome of data transmissions (i.e., success or failure), or more precisely,

they are made before data transmissions are performed and observed.

By contrast, during the last few years we have seen a number of studies proposing

an opportunistic routing approach [24, 5, 57], that exploits two features of wireless

communication: the uncertainty in packet transmission, and the broadcast nature

of transmissions. Conceptually, the fundamental idea of opportunistic routing is

to make routing decisions (selecting the next hop relay node) based on the actual

realization of the preceding packet transmission that has to be observed posteriori,

rather than on average statistics that can be computed a priori. Specifically, since the

transmission is broadcast, multiple next hop nodes may have received it successfully.

With such information, we can opportunistically select a relay from this set, instead

of attempting retransmission to a pre-fixed next hop relay, who happened to have

failed to receive the previous transmission. While the advantage (or lack thereof) of

such an approach cannot be precisely determined without specifying the criteria used

for relay selection, it is not hard to see intuitively why it should have an advantage

in general. Consider the following simplistic, albeit revealing, analogy: if we toss

multiple coins then the fastest way of getting a heads is to pick a coin that actually

came up heads (or continue tossing till this happens), rather than sticking to a pre-

selected coin and wait for it to come up heads.

In [24], a cost-optimal opportunistic stochastic routing algorithm in the form

of an index policy was presented. It was shown that there exists a strict priority

ordering among nodes, and that the optimal routing and transmission strategy is

such that the packet transmission follows a path of increasing priorities. In [5] and

[57] opportunistic routing algorithms were proposed and the relay selection metrics
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include its closeness to destination, EAX [57], etc.

In essence, the advantage of opportunistic routing is one of multi-receiver diver-

sity gain. It is stochastic in nature since the routing decisions are event-based or

equivalently, sample-path dependent. They depend on the actual realization of the

system, and are made after observing the outcome of transmission. For this reason,

we will also call this class of routing algorithms stochastic routing or event-based

routing, a term first used in [24] in the context of ad hoc routing to the best of our

knowledge, and refer to the more traditional routing algorithms discussed earlier as

non-event based routing or non-opportunistic routing.

While opportunistic routing is intuitively appealing, its performance is not easy

to quantify. For instance, even when the structure of the cost-optimal routing algo-

rithm is precisely known [24] and may be implemented efficiently, its performance

is nonetheless hard to model and quantify. One often has to resort to simulation

for quantitative performance comparison. The objective of this chapter is to per-

form a quantitative comparison study on the routing delay of opportunistic and

non-opportunistic routing algorithms. To make our analysis tractable and to obtain

insight, we examine the scaling behavior of routing delays in the limiting regime as

the network becomes large. This is a method widely used to study wireless networks

due to their complexity, for example in the context of network throughput capacity

[15], path length [41], etc. We follow the same approach in the present chapter.

Specifically, we consider a network of a fixed area with increasing node density.

Each pair of nodes is associated with a transmission success probability, whose value

is drawn from a given distribution. In subsequent sections we examine the routing

delay induced by these two types of routing algorithms, and identify conditions under

which it is finite (or infinite) as the number of nodes goes to infinity. Our main
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contributions are summarized as follows.

1. We show that when the transmission success probabilities are not bounded

away from zero, non-opportunistic routing results in infinite routing delay while

opportunistic routing has the same order as a straight-line error-free routing

when no packet loss is assumed.

2. In the case where non-opportunistic routing has infinite delay, we show that

combining it with multi-path routing is sufficient to turn the delay finite, albeit

at the expense of increased transmission overhead.

The remainder of the chapter is organized as follows. Section 4.2 describes our

network model and assumptions. Sections 4.3 and 4.4 analyze the routing delay for

non-opportunistic and opportunistic routing methods, respectively. More practical

scenarios are discussed in Section 4.5. Numeric simulation results are shown in

Section 4.7 and Section 4.8 summarizes the chapter.

4.2 Network Model and Assumptions

Consider a wireless network where n nodes are randomly and uniformly deployed

in a unit square. Each node is assumed to have a maximum transmission range

R(n), and any node within a circle of radius R(n) of the transmitting node will

receive the packet with a probability subsequently referred to as the (transmission)

success probability. These nodes are called neighbors of the transmitting node. It

is assumed that R(n) is sufficiently large to ensure asymptotic network connectivity

and straight-line routing [51]. In what follows we will assume R(n) = K
√

log n
n

for

some K > 1.

The success probability p, which is a pair-wise quantity, is used as a means to cap-

ture the fundamental uncertainty nature of wireless communication. This includes
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o
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(a) Non-opportunistic routing
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x∼(L,α)

o

φ2
(b) Opportunistic routing

Figure 4.1: An illustration of choosing next hops by different routing methods.

failures due to fading, interference, as well as temporary unavailability caused by

duty-cycling or self-recovery. Due to the dynamic nature of wireless channels, and

due to the variety of causes for transmission failure, we will assume that the success

probability is not a fixed quantity but rather given by a probability distribution f .

More precisely, the transmission success probability p between any pair of two neigh-

boring nodes is randomly drawn from a distribution f which may be pair-dependent.

These probabilities are assumed to be independent across node pairs.

In subsequent sections we will first consider two classes of success probability

distributions, those that have support over [0, 1] and in particular support containing

point 0, and those over (ε, 1] for some small ε > 0, i.e., bounded away from zero.

We will then consider a distance-based success distribution where f depends on the

distance between a node pair.

For analysis and comparison purposes, we adopt the following representative mod-

els for the routing protocols under consideration. For the non-opportunistic routing

scheme, we employ a random routing algorithm based on a geographic routing sce-

nario considered in [44] 1, assuming imprecise node location information but precise

destination information. Specifically, a node (denoted by ‘o’ in Figure 4.1(a)) selects

1Note that the term random here refers to the random selection of a relay node a-priori, thus this is still a
non-opportunistic approach in the present context.
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a forwarding node arbitrarily among neighbors in the sector within angles [φ1, φ2]

shown in Figure 4.1(a) and transmits to that node. Once a relay is selected, a trans-

mission success probability p is randomly drawn from the distribution f associated

with the node pair. We will assume that if the transmission fails, the source node

will continue to retransmit to the same relay node with the same success probability

p, till it succeeds 2.

For the opportunistic routing, we consider the following decision rule. As depicted

in Figure 4.1(b), a relay node (denoted by ‘o’) transmits and some nodes in the sector

(denoted by white dots) successfully receive it and the others (denoted by dark dots)

do not. The next relay is selected among all successful receivers, that makes the

largest hop progress toward the destination, approximated by the projection to a

straight-line between the current transmitter and the destination (also called hop

projection) [44]. For simplicity, we will ignore the possibility of multiple relay nodes

that can occur in practice due to decentralized decision making. In our analysis we

will assume that there is only one relay node. It is also naturally assumed that if

none of the neighbors receives the message, retransmissions occur until at least one

of them receives successfully.

Since we are interested in understanding how the routing delay scales as the total

number of nodes (or the density) becomes large, we will assume that for any given

node deployment a node has at least two neighbors to choose from. If this is not

true then opportunistic routing reduces to the same as non-opportunistic routing for

lack of a relay choice.

Within the context of lossy packet reception, the routing delay refers to the total

amount of time it takes for a packet to travel from the source to the destination.

2The algorithm in [44] does not consider transmission failure; what’s presented here is a lossy-transmission adap-
tation of that algorithm.
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The corresponding terminologies and notations are as follows.

Definition 4.1. Hop count is the number of hops (relays) from the source to the

destination.

Definition 4.2. Hop delay (1-hop delay) is the number of transmissions occurred

until the next relay is different from the previous transmitter.

Definition 4.3. Conditional hop progress is the progress toward the destination

given that hop progress is nonzero.

Definition 4.4. Routing delay is the sum of hop delays from the source to the

destination.

We denote by H
(n)
k the conditional hop progress taken at the kth hop. The hop

count h(n) is calculated by

(4.1) h(n) = sup{j :

j∑

k=1

H
(n)
k < d− γ(n)},

where d is the distance between the source and the destination and γ(n) is the size of

the ball around the destination. Within this γ(n) ball, we assume that straight-line

routing is employed with enough routing information. So, its size is assumed to be

very small and order-wise negligible. Hop delay taken at the kth hop is denoted by

N
(n)
k . Then, routing delay τ(n) is

(4.2) τ(n) =

h(n)∑

k=1

N
(n)
k .

Throughout this paper, we use the following notations to express the order of

asymptotic routing delay. For two functions x(n) and y(n) defined on some subset

of the real line, x(n) = O(y(n)) implies that there exist numbers n0 and M such

that |x(n)| ≤ M · |y(n)|. Then, x(n) = Θ(y(n)) implies that x(n) = O(y(n)) and

y(n) = O(x(n)).
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As we derive asymptotic routing delay of opportunistic routing, we make use

of some result from [44]. To summarize, one of their results is to show the order

of hop count under geographic routing with imprecise node location information

but precise destination location information. In this case, geographic routing acts as

random routing, which is non-opportunistic routing in our classification, that chooses

a random node in a sector within angles [φ1, φ2] such that for a uniformly chosen

point (L, α) in the sector, E[L cos α] > 0, where L ∈ (0, R(n)], α ∈ [φ1, φ2]. In other

words, the angles of the sector ensures the positive expected progress toward the

destination. Then, it is shown that the routing delays are on the order of Θ( 1
R(n)

)

with the scaling constant inversely proportional to the expected progress toward the

destination. From this result, we can infer that if hop delay is finite and fixed, hop

count will be on the order of Θ( 1
R(n)

). In turn, routing delay is going to be on the

same order. However, if it is infinite, routing delay is also unbounded.

4.3 Non-Opportunistic Routing

In this section, the delay performance of non-opportunistic routing is analyzed.

Let a node in the sector contained between the angles [φ1, φ2] be expressed by

the polar coordinate (L, α). For notational simplicity, we use the nodes’ normal-

ized coordinates (L̃, α) when R(n) is assumed to be unity. We will also assume

E[L̃ cos α] = β ∈ (0, 1]. This assumption (which guarantees the expectation of hop

progress to be positive) is necessary to show the hop count to be Θ( 1
R(n)

) as in [44].

4.3.1 Transmission success probability density with support [0, 1]

We begin by considering the success probability p to be randomly distributed on

[0, 1]. In addition, we require that f(p) > 0 for p = 0, i.e., there is non-zero density

of generating a zero probability of success. This may loosely model a deep fading



95

scenario where a node has extremely poor reception for possibly a long time relative

to data transmission and the associated protocol timeout values.

The following lemma establishes that the hop delay of non-opportunistic routing

under this type of success probability is unbounded. Consider a transmission at the

kth hop. The number of neighbors in the sector of the kth hop is denoted by Mk(n),

also simplified as Mk. E[N
(n)
k |Mk = m] represents the expected hop delay given m

neighbors in the sector. E[H
(n)
k |Mk = m] is the expected conditional hop progress

given there are m neighbors in the sector.

Lemma 4.1. When f is not bounded away from zero, the expected hop delay of

non-opportunistic routing is infinite. That is,

E[N
(n)
k ] = ∞.

Proof. Given m > 1, E[N
(n)
k |Mk = m] is calculated as follows.

(4.3) E[N
(n)
k |Mk = m] =

∞∑
j=1

j · Pr(N
(n)
k = j|Mk = m).

The probability that the number of transmissions at the kth hop is exactly j is

Pr(N
(n)
k = j|Mk = m) =

∫ 1

0

(1− p)j−1pf(p)dp

=

∫ 1

0

p̃j−1f(1− p̃)dp̃−
∫ 1

0

p̃jf(1− p̃)dp̃,(4.4)

where the second equality is obtained by a change of variables p̃ = 1− p. The event

{N (n)
k = j} is independent of the event {Mk = m} provided at least one node in

the sector. Thus E[N
(n)
k |Mk = m] = E[N

(n)
k ]. By applying Eqn. (4.4), Eqn. (4.3)
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becomes

E[N
(n)
k ] = E[N

(n)
k |Mk = m]

=
∞∑

j=1

j ·
(∫ 1

0

p̃j−1f(1− p̃)dp̃−
∫ 1

0

p̃jf(1− p̃)dp̃

)

=
∞∑

j=1

∫ 1

0

p̃j−1f(1− p̃)dp̃,(4.5)

where the second equality is obtained by a change of variables. Now consider the

vicinity of p̃ = 1 in Eqn. (4.5). Suppose p̃ = p̃∗ achieves the minimum of probability

density f(1− p̃) over [1−δ, 1] for some small δ > 0. Eqn. (4.5) is thus lower-bounded

by

∞∑
j=1

∫ 1

1−δ

p̃j−1f(1− p̃)dp̃ ≥ f(1− p̃∗)
∞∑

j=1

∫ 1

1−δ

p̃j−1dp̃

= f(1− p̃∗)
∞∑

j=1

(
1

j
− (1− δ)j

j

)

≥ f(1− p̃∗)

( ∞∑
j=1

1

j
−

∞∑
j=1

(1− δ)j

)
= ∞,

where the latter summation gives 1−δ
δ

whereas the former summation yields infinity.

The expected hop delay E[N
(n)
k ] is thus infinite.

We see that when the transmission success probability is not bounded away from

zero, the expected hop delay diverges regardless of n.

4.3.2 Transmission success probability density with support [ε, 1]

We now consider the second case where p is a bounded random variable in [ε, 1]

for some small ε > 0.

Lemma 4.2. When f is bounded away from 0 and defined over [ε, 1] forr ε > 0, the

expected hop delay of non-opportunistic routing is finite and independent of n, i.e.,

E[N
(n)
k ] < ∞.
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Proof. The expected hop delay at the kth hop is calculated using Eqn. (4.5). For a

general distribution f(p) over [ε, 1] where ε > 0, hop delay is

E[N
(n)
k |Mk = m] =

∞∑
j=1

∫ 1−ε

0

p̃j−1f(1− p̃)dp̃

= lim
J→∞

J∑
j=1

∫ 1−ε

0

p̃j−1f(1− p̃)dp̃

= lim
J→∞

∫ 1−ε

0

1− p̃J

1− p̃
f(1− p̃)dp̃

= lim
J→∞

∫ 1

ε

1− (1− p)J

p
f(p)dp

= lim
J→∞

E

[
1− (1− p)J

p

]

= E

[
lim

J→∞
1− (1− p)J

p

]
= E

[
1

p

]
,

where the second to last equality holds by the monotone convergence theorem because

the function 1−(1−p)J

p
monotonically increases and converges to 1/p as J increases.

Note that E[N
(n)
k |Mk = m] is the same for all m ≥ 1. Therefore, we have E[N

(n)
k ] =

E[N
(n)
k |Mk = m] < ∞.

Theorem 4.1. Let f be defined over [ε, 1] for ε > 0. Then the routing delay τ(n) of

non-opportunistic routing is on the order of Θ( 1
R(n)

) as n increases.

Proof. To derive τ(n) as defined by Eqn. (4.2), we first consider hop delay N
(n)
k . By

Lemma 4.2, we have E[N
(n)
k ] < ∞. On the other hand, the expected hop progress

is obtained as follows. Similarly to hop delay, hop progress of non-opportunistic

routing is also independent from the number of neighbors in the sector as long as

there is at least one neighbor. E[H
(n)
k |Mk = m] is equal to E[H

(n)
k ]. From the results

in [44], we have the following: given E[L̃ cos α] = β for some β ∈ (0, 1), hop count

h(n) is on the order of Θ( 1
R(n)

). Thus, we have c1
R(n)

≤ h(n) ≤ c2
R(n)

for positive c1, c2
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such that c1 < 1
β

< c2. Assume Mk ≥ 1. Then,

c1
R(n)∑

k=1

N
(n)
k ≤ τ(n) ≤

c2
R(n)∑

k=1

N
(n)
k ,

where N
(n)
k ’s are i.i.d. positive random variables with a finite mean E[N

(n)
k ]. By

the strong law of large numbers, the left and right sums converge to
c1E[N

(n)
k ]

R(n)
and

c2E[N
(n)
k ]

R(n)
almost surely as n → ∞, respectively. Thus, for some positive constants

c∗1 ≤ c1E[N
(n)
k ] and c∗2 ≥ c2E[N

(n)
k ],

c∗1
R(n)

≤ τ(n) ≤ c∗2
R(n)

.

To conclude, we see that when success probability is not bounded away from zero,

non-opportunistic routing has an infinite expect delay per hop, and a constant hop

delay when the success probability is bounded away from zero. In the latter case its

routing delay is on the order of Θ( 1
R(n)

); one naturally expects the routing delay in

the former case to grow faster.

4.4 Opportunistic Routing

In this section, the delay performance of opportunistic routing is analyzed for any

success probability distribution f over [0, 1]. Note that the two classes defined in the

previous section are both special cases of this. We make the same assumption as in

the previous section: E[L̃ cos α] = β ∈ (0, 1].

Lemma 4.3. For any distribution f , the expected hop delay of opportunistic routing

is finite: E[N
(n)
k ] < ∞.

Proof. Denote by m the number of neighbors in the section. Denote by pi the success

probability of node i. Given m ≥ 1, E[N
(n)
k |Mk = m] is calculated by Eqn. (4.3).
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For opportunistic routing, we have:

Pr(N
(n)
k = j|Mk = m) =

∫ 1

0

· · ·
∫ 1

0

(
1−

m∏

l=1

(1− pl)

)(
m∏

l=1

(1− pl)
j−1f(dpl)

)
.

By a change of variables p̃i = 1 − pi, ∀i, and noting that p̃i’s are independent,

Eqn. (4.3) can be written as

E[N
(n)
k |Mk = m] =

∞∑
j=1

j

(∫ 1

0

p̃j−1f(1− p̃) dp̃

)m

−
∞∑

j=1

j

(∫ 1

0

p̃jf(1− p̃) dp̃

)m

=
∞∑

j=1

(∫ 1

0

p̃j−1f(1− p̃) dp̃

)m

.(4.6)

We next show that Eqn. (4.6) is finite given m ≥ 2.

Consider the vicinity of p̃ = 1. Suppose p̃ = p̃∗ achieves the maximum of f(1− p̃)

over [0, δ] for some δ > 0. Then, Eqn. (4.6) is upper-bounded by

∞∑
j=1

(
1

δ

∫ 1

1−δ

p̃j−1f(1− p̃∗)dp̃)m =
∞∑

j=1

f(1− p̃∗)m

δm

(∫ 1

1−δ

p̃j−1dp̃

)m

=
f(1− p̃∗)m

δm

∞∑
j=1

(
1

j
− (1− δ)j

j

)m

,

which is finite because the geometric sum is finite for any m ≥ 2. Then, Eqn. (4.6) is

finite for any m ≥ 2. Therefore, the unconditional expectation E[N
(n)
k ] is also finite

for any distribution of Mk.

Lemma 4.4. For any distribution f , given E[L̃ cos α] = β, the expected conditional

hop progress given m neighbors in the sector, E[H̃
(n)
k |Mk = m], is nondecreasing and

bounded in [β, 1], for m > 1.

Proof. Consider that there are m > 1 neighbors in the sector. The conditional hop

progress at the kth hop, H
(n)
k , given m > 1 is well-approximated by the maximum of

hop projections among successful neighbors. Suppose that the number of successful



100

receivers is exactly ms after transmission. Let Ãi = L̃i cos α. Then, H̃
(n)
k given ms

successful neighbors in the sector is obtained by max{Ã1, Ã2, · · · , Ãms}. Note that

Ãi’s are i.i.d. random variables with mean β by assumption. We denote by FÃ(·)

the probability distribution function of Ãi, ∀i. Then, the probability distribution

function of H̃
(n)
k given ms successful neighbors is

Fms

H̃k
(h) = (FÃ(h))ms .

We will obtain E[H̃
(n)
k |Mk = m] first. We have

Pr(ms = i|ms ≥ 1,Mk = m)

=

∫ 1

0
· · · ∫ 1

0
Pr(ms = i|p1 · · · pm)Pr(p1 · · · pm)dp1 · · · dpm∫ 1

0
· · · ∫ 1

0
Pr(ms ≥ 1|p1 · · · pm)Pr(p1 · · · pm)dp1 · · · dpm

=

∫ 1

0
· · · ∫ 1

0

(
m
i

) ∏i
l=1 pl

∏m
l=i+1(1− pl)f(dp1) · · · f(dpm)∫ 1

0
· · · ∫ 1

0
(1−∏m

l=1(1− pl))f(dp1) · · · f(dpm)
.

Using this probability, we obtain:

Pr(H̃
(n)
k ≤ h|Mk = m) =

m∑
i=1

Fms

H̃k
(h)Pr(ms = i|ms ≥ 1,Mk = m)

=
m∑

i=1

(FÃ(h))i

(
m
i

)
E[p]i(1− E[p])m−i

1− (1− E[p])m

=
(FÃ(h)E[p] + 1− E[p])m − (1− E[p])m

1− (1− E[p])m
.

Denote E[p] by p∗. The expected value of H̃
(n)
k given m neighbors in the sector is

(4.7) E[H̃
(n)
k |Mk = m] =

∫ 1

0

1− (FÃ(h)p∗ + 1− p∗)m

1− (1− p∗)m
dh.

When m = 1, Eqn. (4.7) is β because
∫ 1

0
(1 − FÃ)(h)dh = β. As m goes to infinity,

it approaches 1.

We next prove that E[H̃
(n)
k |Mk = m] is nondecreasing in m. By applying Eqn. (4.7),
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we have

E[H̃
(n)
k |Mk = m]− E[H̃

(n)
k |Mk = m− 1]

=

∫ 1

0
p∗(FÃ(h)p∗ + 1− p∗)m−1(1− FÃ(h)(1− (1− p∗)m−1))dh

(1− (1− p∗)m)(1− (1− p∗)m−1)

− p∗(1− p∗)m−1

(1− (1− p∗)m)(1− (1− p∗)m−1)

=
1− p̃

(1− (1− p̃)m)(1− (1− p̃)m−1)
·

(∫ 1

0

(p̃ + FÃ(h)(1− p̃))m−1(1 + FÃ(h)(1− p̃m−1))− p̃m−1dh

)
,(4.8)

where the second equality is obtained by a change of variables p̃ = 1 − p∗. In

Eqn. (4.8), the term within the integral is nonnegative because (p̃ + FÃ(h)(1 −

p̃))m−1(1+FÃ(h)(1− p̃m−1)) is always greater than or equal to p̃m−1 for any value of

FÃ(h) and p. Therefore, Eqn. (4.8) is nonnegative. Hence, Eqn. (4.7) is nondecreas-

ing and bounded in [β, 1].

The proofs for the next three lemmas can be found in the appendix.

Lemma 4.5. Consider bounded i.i.d. random variables X
(n)
i , 1 ≤ i ≤ n and E[X

(n)
i |M(n) =

m] is nondecreasing in m, where M(n) is a random variable such that M(n) =

Θ(log n). Suppose limm→∞ E[X
(n)
i |M(n) = m] = β∗. Then, we have

lim
n→∞

E[X
(n)
i ] = β∗.

The next lemma is necessary to prove Theorem 4.7. It is comparable to the limit

theorem for triangular arrays presented in [44]; the difference is that in our case the

expectation of conditional hop progress is not a fixed value for all n as in theirs but

a nondecreasing sequence of n.

Lemma 4.6. For any fixed K > 1, let R(n) = K
√

(log n/n). Consider bounded

i.i.d. random variables X
(n)
i , 1 ≤ i ≤ n where E[X

(n)
i ] = β(n) and limn→∞ β(n) = β∗.
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Then,

lim
n→∞

R(n)

1
R(n)∑
i=1

X
(n)
i = β∗ (almost surely).

The next lemma shows that the hop count of opportunistic routing is on the

same order as straight-line routing. The proof of this lemma is mostly identical to

the proof of Theorem 3.1 in [44] where E[L̃(n) cos(α(n))] = β which is a fixed value

between 0 and 1. In our case, β is not a fixed value but a convergent sequence. By

using Lemma 4.6, one can easily derive the results.

Lemma 4.7. For any fixed K > 1, let R(n) = K
√

(log n/n). Let (L(n), α(n)) be

the polar coordinates of a randomly chosen point from a sector and radius R(n).

And, let (L̃(n), α(n)) be corresponding coordinates when R(n) is scaled to 1. Let

E[L̃(n) cos(α(n))] = β(n) and β∗ = limn→∞ β(n). Then, ∀ positive k1 and k2 such

that k1 < 1
β∗ < k2, h(n) satisfies

k1

K

√
n

log n
≤ h(n) ≤ k2

K

√
n

log n
(asymptotically a.s.).

Theorem 4.2. For any success distribution f , the routing delay τ(n) of opportunistic

routing is on the order of Θ( 1
R(n)

) as n increases.

Proof. From Lemma 4.4, we know E[H̃
(n)
k |Mk = m] is bounded in [β, 1] for all m > 1

and nondecreasing. Let us denote by β(n) the unconditional expectation E[H̃
(n)
k ],

which is also within [β, 1]. Then, limn→∞ β(n) = 1 by Lemma 4.5. Finally, according

to Lemma 4.7, we obtain hop count h(n) is on the order of Θ( 1
R(n)

). In other words,

there are positive k1 and k2 such that for k1 < 1 < k2, we have k1

R(n)
≤ h(n) ≤ k2

R(n)
. Of

course, its scaling constants k1 and k2 are smaller than c1 and c2 for non-opportunistic

routing.
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From Eqn. (4.2), Routing delay τ(n) is expressed by

k1
R(n)∑

k=1

N
(n)
k ≤ τ(n) ≤

k2
R(n)∑

k=1

N
(n)
k ,

where N
(n)
k ’s are i.i.d. positive random variables with a finite mean E[N

(n)
k ]. By

the strong law of large numbers, the left and right sums converge to
k1E[N

(n)
k ]

R(n)
and

k2E[N
(n)
k ]

R(n)
almost surely as n → ∞, respectively. Thus, for some positive constants

k∗1 ≤ k1E[N
(n)
k ] and k∗2 ≥ k2E[N

(n)
k ],

k∗1
R(n)

≤ τ(n) ≤ k∗2
R(n)

.

We conclude that the delay of opportunistic routing scales on the order of Θ( 1
R(n)

)

under any success probability distribution f over [0, 1].

4.5 Distance-based Success Probability Model

The results from the previous two sections indicate that in terms of the qual-

itative scaling property of routing delay, the difference between these two routing

methods only exists when the event that certain transmission can fail determinis-

tically (p = 0) can occur with non-zero probability. Intuitively, what this suggests

is that the fundamental difference between the two is that opportunistic routing

is more robust since it will not be stuck with a fixed, potentially very bad route,

while non-opportunistic routing can. In reality, a link is not going to be extremely

poor (p = 0) for infinitely long, which is the model used in the analysis. So even a

non-opportunistic routing algorithm eventually will recover either because the link

quality becomes better, or through other built-in recovery mechanisms in the routing

protocol, e.g., via timeouts. What this result indicates is thus that non-opportunistic
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routing can experience very long delays in the presence of events like deep fading,

long sleep periods, etc.

On the other hand, the quantitative advantage of opportunistic routing when both

routing algorithms have finite hop delay is not shown through the scaling result; they

have the same order. They only differ through the constant factor. While numerical

results comparing the two are provided in a later section, below we use a case study,

where the success probabilities are functions of the pair-wise distance, to illustrate

the difference in routing delay under these two different routing methods.

Suppose f(p|L̃) = δ(p − 1 + L̃) for 0 ≤ L̃ ≤ L̃max < 1 and 0 otherwise. That is,

transmission success probability is equal to 1− L̃ for nodes located at a distance less

than or equal to L̃max while nodes that are located farther than L̃max have no success

probability (these will not be considered as relays). By doing so, p is lower-bounded

by a nonzero value which results in finite hop delays for both routing schemes.

4.5.1 Non-Opportunistic Routing

Consider the kth hop. A neighbor is randomly chosen among m neighbors in the

sector. The expected hop delay of non-opportunistic routing given Mk = m is

E[N
(n)
k |Mk = m] =

∞∑
j=1

j ·
∫ L̃max

0

2l

L̃max

∫ 1

0

(1− p)j−1p δ(p− 1 + l)dp dl

=
∞∑

j=1

2(L̃max)
j

j + 1
.(4.9)

where
∑∞

j=1
(L̃max)j

j
converges since L̃max < 1 by the Ratio test.

4.5.2 Opportunistic Routing

Consider there are m neighbors at the kth hop. Denote by (L̃i, αi) the location of

node i. The expected hop delay of opportunistic routing given m nodes in the sector
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is

E[N
(n)
k |Mk = m]

=
∞∑

j=1

j

∫ 1

0

· · ·
∫ 1

0

Pr(N
(n)
k = j|L̃1 = l1, · · · , L̃m = lm)

· Pr(L̃1 = l1, · · · , L̃m = lm)dl1, · · · , dlm

=
∞∑

j=1

j

(
2

L̃max

)m ∫ L̃max

0

· · ·
∫ L̃max

0

l1 · · · lm

· Pr(Nk = j|L̃1 = l1, · · · , L̃m = lm) dl1 · · · dlm,

In the above equation, the probability that N
(n)
k = j given nodes’ locations is

Pr(N
(n)
k = j|L̃1 = l1, · · · , L̃m = lm)

=

∫ 1

0

· · ·
∫ 1

0

(
m∏

i=1

(1− pi)
j−1

)(
1−

m∏
i=1

(1− pi)

)
f(p1|l1) · · · f(pm|lm)dp1 · · · dpm

= lj−1
1 · · · lj−1

m (1− l1 · · · lm).

By applying this, we have

E[N
(n)
k |Mk = m]

=
∞∑

j=1

j

(
2

L̃max

)m ∫ L̃max

0

· · ·
∫ L̃max

0

lj1 · · · ljm · (1− l1 · · · lm)dl1 · · · dlm

=
∞∑

j=1

j

(
2

L̃max

)m
(

(

∫ L̃max

0

lj1dl1)
m − (

∫ L̃max

0

lj+1
1 dl1)

m

)

=
∞∑

j=1

(
2(L̃max)

j

j + 1

)m

.(4.10)

Eqn. (4.10) shows that the larger the number of neighbors in the sector, the smaller

the hop delay of opportunistic routing. Thus, as the density n increases, it converges

to 1. Compared to hop delay of non-opportunistic routing given in Eqn. (4.9), which

is a constant, hop delay of opportunistic routing becomes significantly smaller as
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more neighbors are available. This of course is not at all surprising since the gain of

opportunistic routing originates from multi-receiver diversity as we noted earlier.

If the success probability declines at the higher rate as distance increases, e.g.,

pi = 1 − L̃d, d ≥ 2, the expected progress per hop gets smaller for both non-

opportunistic routing and opportunistic routing while the number of retransmissions

per hop gets larger. But, it still results in the same performance order-wise.

4.6 The Extension to Multi-Path Routing

In this section we show that the lack of robustness in non-opportunistic routing

can be sufficiently compensated (i.e., can turn the unbounded delay to bounded)

by using multiple paths (each is non-opportunistic), at the expense of increased

overhead.

We consider a routing scheme that creates multiple paths simultaneously. The

routing delay is taken to be the minimum of the delays along different paths. This

scheme works as follows. At each hop, B ≥ 1 copies are generated and forwarded

to B randomly chosen neighbors. If at least one of B transmissions are successful,

the transmission stops. This can be viewed as the case where B nodes are in the

sector and if there is at least one successful receiver, all successful receivers will act

as relays in the next hop. Thus, this scheme works better than opportunistic routing

with exactly B neighbors in the sector at each hop. Therefore, it has finite hop delay

and Θ( 1
R(n)

) routing delay. Denote by P the set of paths and by Pi the ith path.

Then, routing delay is defined by

(4.11) τ(n) = min
1≤i≤|P|

|Pi|.

where |Pi| is defined as path delay along the path Pi. The case of B = 1 is trivial

because it is exactly the same as the non-opportunistic routing we have considered.
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Below we assume that B ≥ 2. When B becomes large, delay is the same order-wise

but the scaling constant gets smaller with higher overhead (i.e., the total number of

transmissions in the network). Thus, the case of B = 2 gives us an upper bound on

hop delay and a lower bound on overhead of this scheme.

Consider that node i receives a packet successfully with probability pi given by a

random distribution f(pi). For simplicity of analysis, we assume that pi is uniformly

distributed between 0 and 1 for all i. Consider a sender at the kth hop. Multi-

path routing randomly picks two nodes among the neighbors in the sector. Then,

transmission is repeated until at least one of those two is successful. Denote by Pf

the probability of unsuccessful receptions at both neighbors. Then, the expected

number of retransmissions at the kth hop is calculated as follows.

E[N
(n)
k ] =

∞∑
j=1

j · P j−1
f (1− Pf )

=
∞∑

j=1

j · (
∫ 1

0

(1− p1)f(p1)dp1)
2(j−1) · (1− (

∫ 1

0

(1− p1)f(p1)dp1)
2)

=
∞∑

j=1

j · (1
4
)j−1 3

4

=
4

3
.

Next, the expected number of branches at the kth hop, denoted by E[B̂
(n)
k ], repre-

sents the number of copies B̂
(n)
k generated at the kth hop on average. Retransmissions

at each hop ends with at least one successful reception. Thus, at the last trial of

retransmissions at each hop, B̂
(n)
k takes a value of one or two. Denote by Ps,1 the

probability of exactly one successful reception at one of two neighbors and by Ps,2
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the probability of two successful receptions at both neighbors. Then,

E[B̂
(n)
k ] =

2∑
j=1

j · Pr(B̂
(n)
k = j)

=
2∑

j=1

j · Ps,j

1− Pf

=

(
2
1

) ∫ 1

0
pf(p)dp

∫ 1

0
(1− p)f(p)dp + 2(

∫ 1

0
pf(p)dp)2

1− (
∫ 1

0
(1− p)f(p)dp)2

=
4

3
.

The total number of transmissions is on the order of Θ(E[N
(n)
k ] · (E[B̂

(n)
k ])

1
R(n) ) '

Θ(4
3

1
R(n) ).

As we described earlier in this section, multi-path routing with B copies performs

better than opportunistic routing where exactly B neighbors are in the sector at

each hop. For comparison purpose, we evaluate hop delay of the latter case given in

Eqn. (4.6) where f is a uniform distribution over [0, 1] and m = 2. By calculation,

we obtain E[N
(n)
k ] =

∑∞
j=1

1
j
, which is Riemann zeta-function ζ(2) ≈ 1.645, whereas

hop delay of multi-path routing is 4
3
. As we expected, multi-path routing with B = 2

achieves smaller hop delay than opportunistic routing with B = 2 neighbors at each

hop.

4.7 Numerical Results

In previous section we analytically studied the order of routing delay of two ex-

amples of opportunistic and non-opportunistic routing methods. In this section, we

perform MATLAB simulation to compare the performance of these routing schemes

under a few transmission success/failure models. Emphasis here is on verifying the

scaling property of routing delay as well as the scaling constants under different

transmission success models.
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Figure 4.2: The 1-hop performance of non-opportunistic routing and opportunistic routing under
uniform distributions.
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First, we simulate hop progress and hop delay (the number of retransmissions).

A relay node transmits a packet to neighbors in a sector with angles [−π/4, π/4] and

unit radius as shown in Figure 4.1. Mk nodes are generated within the sector and

deployed uniformly. The next forwarding node is chosen according to both routing

schemes (i.e., non-opportunistic routing and opportunistic routing), respectively. We

consider two uniform distributions for the success probability: uniform over [0, 1]

and uniform over [0.1, 1]. Figure 4.2(a) shows that non-opportunistic routing has

the same conditional hop progress regardless of Mk while conditional hop progress of

opportunistic routing increases from the same value as the one of non-opportunistic

routing when Mk = 1 close to 1 as Mk increases. However, there is no difference in

hop delay between the distributions bounded by 0 and bounded by 0.1. In Figure

4.2(b), it is interesting to see that hop delay of non-opportunistic routing is extremely

large and fluctuates when transmission success probability is not bounded away from

0, which gets much lower and consistent when it is bounded by 0.1. Like hop progress,

hop delay is not affected by Mk. On the other hand, opportunistic routing maintains

relatively very small hop delay for both distributions. Specially, hop delay reduces

rapidly as Mk increases under the distribution with bounded by 0 whereas it is close

to one with the distribution with bounded by 0.1.

Now, we examine hop progress and hop delay of both routing strategies under the

distance-based success probability model (DSM) as well. As described in Section 4.5,

we use p = 1 − L̃, where L̃ = L/R(n), equivalently speaking, transmission success

probability linearly decreases with respect to to distance. Since the distance-based

model generates more nodes with poor success probability than uniform distributed

success probability model, hop delays of both routing schemes under the former case

are greater than the ones under the latter as shown in Figure 4.3(b). Hop progress of
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Figure 4.3: Comparison of the 1-hop performance of non-opportunistic routing and opportunis-
tic routing under uniform success transmission probability model vs. distance-based
success transmission probability model (DSM).
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Figure 4.4: The performance of non-opportunistic routing and opportunistic routing under uniform
distributions.

opportunistic routing under the distance-based success probability model converges

to 1 at slower rate than the one under the uniform case. Overall, routing algorithms

under the distance-based success probability model perform poorer than the uniform

success probability model.

Next, we evaluate routing delay in the network where n nodes are randomly

deployed in the unit square. At each run, Nodes are randomly relocated, and a

source and a destination are randomly selected. Routing delay is averaged over 200
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runs. Again, we compare opportunistic vs. non-opportunistic routing under the

same distributions as above. Figure 4.4(a) shows hop counts which seem similar for

all cases but those of opportunistic routing get slightly smaller as node density n gets

higher. This is to be expected from the results in Figure 4.2(a) because hop progress

of opportunistic routing increases as Mk increases. On the other hand, for small

number of nodes n, opportunistic routing takes more number of hops to reach the

destination because conditional hop progress is similar to that of non-opportunistic

routing.

Overall, routing delays as shown in Figure 4.4(b) tend to increase as n increases.

However, the ones under the distributions not bounded away from zero have much

larger variation than the others. As clearly shown from the analysis, opportunistic

routing is beneficial over non-opportunistic routing for both distributions.

The final set of simulation shows the performance of multi-path routing together

with non-opportunistic routing. In particular, we use uniform distribution not

bounded away from zero to generate a transmission success probability. The compar-

ison is made between multi-path routing, non-opportunistic routing, and opportunis-

tic routing on the same network setting described right above. As shown in Figure

4.5(a), multi-path routing performs superior than non-opportunistic routing in terms

of routing delay whereas the former requires increased overhead (i.e., the number of

transmissions) as depicted in Figure 4.5(b). The expected number of paths created

by multi-path routing linearly increase as n increases as shown in Figure 4.5(c). It is

remarkable to see that opportunistic routing performs as good as multi-path routing

with less overhead, which emphasize the merits of using such event-based routing in

wireless networks.
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Figure 4.5: The performance of multi-path routing under uniform distribution over [0, 1].
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4.8 Chapter Summary

In this chapter we have studied the asymptotic routing delay of opportunistic

routing as well as non-opportunistic routing for wireless ad hoc and sensor net-

works where there are uncertainties involved in packet transmission due to fading,

node failures, power saving, etc. These characteristics were captured by a transmis-

sion success probability randomly drawn from a given distribution. We have shown

that when the transmission success probabilities are not bounded away from zero,

non-opportunistic routing results in extremely large delay. It is because there is a

possibility that a node with a very low success probability is chosen as a relay. By

contrast, opportunistic routing is much more robust can easily get out of such a sit-

uation because nodes are always chosen among successful receivers. In addition, we

have shown that maintaining multi-paths of non-opportunistic routing can overcome

the infinite routing delay problem at the expense of significant overhead.



CHAPTER 5

Performance Evaluation of Broadcast Algorithms: An
Analysis-Emulation Hybrid Model

5.1 Introduction

Broadcast algorithms have been widely studied in the context of wireless ad hoc

and sensor networks where frequent topological changes occur due to either mobility

or duty-cycling. Broadcast is one of the most fundamental operations required by

most communication protocols for a variety of reasons. In the context of ad hoc and

sensor networks, one of the most important functionality of broadcast is discovery,

acquisition, and dissemination of topology information.

Broadcast in its simplest form is a non-discriminatory flooding, where each node

transmits (also referred to as rebroadcasts) once for every unique received packet.

The main drawback of this approach lies in its transmission redundancy and therefore

high energy consumption, especially when node density is high. This redundancy

also causes unnecessary transmission contention and packet collisions that lead to

performance degradation, a phenomenon referred to as the broadcast storm problem

in [31]. It is a particularly severe problem in energy-constrained sensor networks.

To mitigate this problem there have been many broadcast algorithms proposed

that aim at reducing the amount of redundant transmissions by preventing some of

the nodes from rebroadcasting. Depending on how these nodes are selected, these

116
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algorithms may be classified into to two categories. In the first category, these

rebroadcasting nodes are determined dynamically based on the outcome of each

transmission, see for example [31, 47, 17, 43]. One particular example of this class

of algorithms is called probabilistic broadcast where each receiving node determines

whether to rebroadcast with a fixed probability [31]. In other examples the rebroad-

casting nodes are determined based on the number of received neighbors explicitly

(e.g. [33, 23, 50, 9]) or implicitly (e.g. by counting the number of received packets,

or by estimating the uncovered area, etc. [31]). In the second category, the approach

is to pre-determine the set of rebroadcasting nodes in advance of actual transmis-

sion using the topological information [36, 48]. The main research challenge there is

to choose such a set so as to minimize redundant transmissions while guaranteeing

certain coverage requirement.

A good broadcast algorithm should have low redundancy (the amount of trans-

missions incurred) and high coverage (or reachability, the percentage of nodes that

receive the broadcast at the end of the process), among other things. There have

been many comparison studies on broadcast algorithms using such performance met-

rics [49, 56]. Due to the complexity of applying such algorithms to a network, these

studies are primarily simulation based. While potentially highly accurate if done

correctly, simulation can be very time consuming. A potentially bigger issue arises

when we want to evaluate the performance of a larger system with many complex

protocols and applications running, of which the broadcast algorithm is only one

component. In this case, it is highly desirable to have a performance model that is

not only computationally more efficient, but also has well-defined model input and

output so that it can potentially be linked and integrated with other performance

models that evaluate other components of the same system.
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All these desired features point to an analytical performance model. Unfortu-

nately analytical models are very difficult to obtain in this case due to the dynamic

and random nature of the system. A common way to get around this problem is to

consider large network asymptotics as we have done in Chapter 4, as well as others

(see references cited in Chapter 4). Results of this type, while instructive and insight-

ful in the right context, do not always apply to a finite network. To the best of our

knowledge to date there has not been a comprehensive yet computationally efficient

mathematical framework to evaluate the performance of broadcast algorithms.

The goal of this chapter is to make some progress in this direction. We will start

by considering a full state-space model that tries to capture all possible states that

a network can encounter during the course of a broadcast process. With this the

model also captures all possible sample paths the network can follow, along with the

estimated performance along each sample path. Finally, the average performance

of the broadcast algorithm can be estimated by averaging over all possible sample

paths.

This method is unfortunately not very scalable due to the large state space. We

thus next consider methods that do not require the full characterization of the state

space. In particular, we observe that there are sample paths that are more represen-

tative than others; these are sample paths such that the performance along which

follow more closely the average performance of the algorithm. Therefore if we could

identify these representative sample paths (as little as a single one), then we only

need performance computation over a potentially very small set of sample paths,

thereby significantly reducing the amount of computation. Motivated by this, in this

chapter we present a hybrid model whereby (1) we only focus on a selected subset

of sample paths and estimate what happens along these sample paths, and (2) the
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selection of this subset is based on simple analytical models as well as heuristics.

This method can thus be viewed as a combination of analysis and emulation in the

hope of obtaining the desired modeling accuracy and computational efficiency. The

essential idea is to emulate the representative behavior of the broadcast scheme.

The remainder of this chapter is organized as follows. Section 5.3 and Section 5.4

present the state-space based model and the analysis-emulation model, respectively.

In each of both sections, we apply each model to some of exemplary broadcasting

strategies as a case study. Their numerical results are shown in Section 5.5. Finally,

we conclude in Section 5.6.

5.2 Network Model and Assumptions

We consider a network where n nodes are deployed arbitrarily over a field. Let V

be the set of nodes. The set of neighbors of node i, denoted by Ni, is defined as the

collection of nodes that are able to receive a packet transmitted from node i with a

nonzero probability. Transmission success probability is denoted by a n-by-n matrix

Q where each element qij represents transmission success probability between nodes

i and j. For simplicity of presentation, we will ignore duty-cycling, but noting that

including it in this modeling framework is quite straightforward.

We will ignore the coupling of more than one broadcast packets and focus instead

on just one packet. The broadcast is assumed to occur in discrete time, or in rounds,

where in each round a set of nodes that have already received the packet decide

whether to retransmit, and if so they retransmit, and by the end of the same round

some other nodes will receive the packet. Then in the next round another set of

nodes will decide whether to retransmit, and so on, and the same process repeats,

till no more nodes transmit, which marks the end of the broadcast process.



120

Given a particular broadcast scheme π and a topology described above, the per-

formance metrics of interest are as follows: the expected delay to accomplish the

broadcast, denoted by Dπ(n,K,Q), the expected number of total transmissions, de-

noted by T π(n,K,Q), and the expected number of nodes which successfully receive

the broadcast, denoted by Rπ(n,K,Q).

To illustrate our performance model and make the discussion concrete, we will

focus on two example broadcast algorithms in this chapter. However, we emphasize

that the proposed modeling framework can be more broadly applied. These two

broadcast algorithms were both proposed in [31] as possible ways to mitigate the

broadcast storm problem: the probabilistic scheme and the counter-based scheme.

The probabilistic scheme is a simple method that suppresses nodes from rebroadcast

with a prefixed retransmission probability p. Each node after receiving a packet

decides to rebroadcast with this given probability. The exception is the source node,

who broadcasts with probability 1. If a node receives the same packet from more

than two nodes with the same transmission round, we will assume that the message

will be lost due to collision. We assume there is no retransmission in case of collision

since in general there is no built-in ACK mechanisms for a broadcast transmission.

The counter-based scheme is slightly more sophisticated where each node counts

the number of times that it has received the packet for a randomly chosen length of

period (an integer multiple of rounds). The number Ci is initially set to 1 when node

i receives the packet for the first time. And node i starts a random timer Ti. During

the period Ti, every time it receives a duplicate of the same packet, it increases Ci

by one. When the timer expires, its counter Ci is compared to a threshold Cth which

is greater than equal to 2. If Ci is less than the threshold Cth, it rebroadcasts at the

start of the next round. Otherwise, it does not. Similar to the probabilistic scheme,
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if a node receives messages from two more neighbors within the same round, the

node cannot receive any of those messages due to collision.

5.3 The State-Space Model

In this section, we describe the state-space model. The general framework is

described first, followed by its application to the probabilistic broadcast scheme.

5.3.1 The General Framework

Let us define the state of system S as follows. The state S comprises two parts: the

first part is common to all broadcast strategies whereas the second part is algorithm-

specific. The common part of S, denoted by Sc, contains a vector r that represents

the nodes which have received the packet, and a vector f that represents the nodes

which are waiting to (possibly) retransmit the packet in the next time step/round.

The algorithm-specific part of S is denoted by Sf , which will be described in detail

in the next subsection where we specify the broadcast scheme. In this subsection,

we mainly discuss the common part Sc.

The state S is updated whenever any transmission occurs in the network. The

sequence of states is indexed by times t = 0, 1, 2, · · · , denoting the rounds. Thus, the

state at time t (or at the beginning of the t-th round) is expressed given by

(5.1) St = {Sc,t, Sf,t}, Sc,t , [rt ft],

where rt ∈ {0, 1}|V |, ft ∈ {0, 1}|V | and |V | is the number of nodes in the network. rt

is a column vector of |V | elements which take the value of 0 or 1 where 1 indicates

that the corresponding node has received the message before the t-th round starts,

and 0 otherwise. On the other hand, ft is a column vector of |V | elements which

take the value of 0 or 1 where 1 indicates that the corresponding node is a possible

forwarder at time t. Integrating these two vectors, we have a |V |-by-2 matrix Sc,t.
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The next state St+1 depends on the current state St only. Let π be the broadcast

scheme. The receiving nodes rt+1 and the possible forwarding nodes ft+1 in Sc,t+1 are

calculated by algorithm-specific functions fπ
r and fπ

f , respectively. Then, rt+1 and

ft+1 are expressed as

rt+1 ∈ fπ
r (St), ft+1 ∈ fπ

f (St, rt+1).

Note that there can be many such states St+1 = [rt+1 ft+1] visited from the previous

state St, each with an associated probability. In the above equation, fπ
r (·) and fπ

f (·)

generate such possible states. The detail of these functions are specified according to

the broadcast strategy. Similarly, Sf,t+1 is defined more precisely once the broadcast

scheme is given.

We can calculate state transition probabilities P π(St+1 = S ′|St = S) for all pos-

sible S and S ′ and for all t. This calculation mostly depends on the matrix Q. Let

S∗ be the set of final states where no further transition is possible, i.e., ft = 0 for

some t. For instance, S∗ includes the state where all nodes in the network received

the packet (rt = 1 for some t), the state where all nodes except the source S fails to

receive the packet (rt = 0 for some t), etc. Given all states St,∀t and the transition

probabilities P π(St+1|St), we can then calculate the average performance measures as

follows. The expected number of nodes which received a broadcast packet is obtained

by

(5.2) Rπ(n,K,Q) =
∑
S∈S∗

(∑
t

‖ rt ‖ ·Prπ(St = S)

)
,

where we have abused the notation ‖ · ‖ to denote the number of nonzero elements

in a vector. Basically, it is the average of the size of r in all final states. To calculate

Prπ(St = S), consider all sample paths to reach the state S at time t. We further

denote by Si
t the state St reached by path i. Then its associated probability to reach
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Si
n is P π(Si

t = S) =
∏t

k=1 P π(Sk|Sk−1). Thus, Prπ(St = S) =
∑

i P
π(Si

t = S). The

expected number of total transmissions is calculated similarly by

(5.3) T π(n, K,Q) =
∑
S∈S∗

∑
t

(∑
i

(
t∑

k=1

‖ fik ‖
)
· Prπ(Si

t = S)

)
,

where fik denotes the forwarding nodes at time k along the path i. Thus, ‖ fik ‖

represents the number of such forwarding nodes. Finally, the expected delay is

obtained as follows.

(5.4) Dπ(n,K,Q) =
∑
S∈S∗

(∑
t

t · Prπ(St = S)

)
.

In the next subsection, we show how this state-space method is applied to the

probabilistic broadcast scheme as an example. We will often use a column vector xi

to represent Ni such that each element is 1 if its corresponding index is a member of

Ni, and 0 otherwise. The neighborhood matrix X = [x1 x2 · · · x|V |] is a |V |-by-|V |

matrix to represent the 1-hop neighbors of all nodes.

5.3.2 Modeling of the Probabilistic Scheme

Consider the probabilistic scheme π where the forwarding probability of each node

which received the message is p. For this simple scheme, the algorithm-specific state

Sf is not needed, i.e., Sf = ∅. Therefore, the state at time t is

St = Sc,t = [rt ft],

where rt ∈ {0, 1}|V |, ft ∈ {0, 1}|V |. The initial state S0 is an all zero matrix except

a row for the source S which contains ones. The transmission from S occurs with

probability 1 and the rest transmissions occur with a forwarding probability p. Thus,

we show fπ
r (·) and fπ

f (·) for the cases of t = 0 and t ≥ 1 separately as follows.

For t = 0, the next state S1 is determined by NS the neighbors of S, success

probabilities qSj,∀j ∈ NS , and a forwarding probability p. The functions fπ
r (·) and
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fπ
f (·) are

fπ
r (S0) = fS(NS),

fπ
f (S0, r1) = fS(fI(r1)), ∀r1 ∈ fπ

r (S0),

where fS(·) is a function which generates the power set of an input set where each

element is represented in a vector form, and fI(·) is a function which returns the set of

indices where an input vector has nonzero values. Conceptually, the function fπ
r (S0)

generates all possible cases of successfully receiving nodes while fπ
f (S0, r1) generates

all possible choices of forwarding nodes among the present receiving nodes. The

transition probability is calculated by

(5.5) P π(S1|S0) = P π([r1 f1]|[r0 f0]) =


 ∏

j∈fI(r1)

qSj


 · p‖f1‖ · (1− p)‖r1−f1‖,

where we can also add an active probability if we wish to model duty-cycling. For

t ≥ 1, fπ
r (·) and fπ

f (·) are calculated as follows.

fπ
r (St) = fS(fI(X · ft)) ∨ rt,

fπ
f (St, rt+1) = fS(fI(rt+1 − rt)), ∀rt+1 ∈ fπ

r (St).

The transition probability from the state St to the state St+1 is obtained by

P π(St+1|St) =


 ∏

i∈fI(ft)

∏

j∈fI(rt+1−rt)

qij


 · p‖ft‖ · (1− p)‖rt+1−rt−ft‖.

In the above equation, transition probabilities can be expressed with a collision

probability as well as an active probability. For instance, if a neighbor is receiving

from two or more transmitters at the same time, the neighbor receives the packet

with a certain probability associated with the number of transmitters. We have now

completed the state diagram with all states and state transition probabilities. We can

next calculate the performance metrics using Eqn. (5.2), Eqn. (5.3) and Eqn. (5.4).
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Figure 5.1: A small network with 5 nodes.

5.3.3 An Illustrative Example

As an example, we consider a small network topology depicted in Figure 5.1,

where there are 5 nodes and the node 1 is a source. In this particular example, we

intend to illustrate how these whole states are generated and how to calculate the

metrics given the diagram. The initial state S0 and the neighbor matrix X are

(5.6) S0 = [r0 f0] =




1 1

0 0

0 0

0 0

0 0




, X =




0 1 1 0 0

1 0 1 1 1

1 1 0 1 0

0 1 1 0 1

0 1 0 1 0




.

At the time period t = 1, the nodes which received the message from node 1 are

its 1-hop neighbors with probability 1, which are nodes 2 and 3. According to the

forwarding decision of nodes 2 and 3, it leads to four states with different f1. Each of

those states is associated with a transition probability as provided in Eqn. (5.5). For

simplicity, we only considered the forwarding probability p while assuming transmis-

sion success with probability 1. In addition, if a node receives packets transmitted

by more than two neighbors at the same time, we assume that those packets are lost.

Figure 5.2 shows the state diagram of the probabilistic scheme on the example of

the above network. Each state can be reached along the sample path from the initial

state with an associated probability which is the product of probabilities along the
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Figure 5.2: The state diagram of the probabilistic Scheme.

path. There are four ending states where three of them are partially successful states

(meaning some of nodes are never reached), and one 100%-successful state.

The performance metrics are calculated as follows. The probability of failure to

broadcast the entire network is the sum of probabilities to reach three top states as

shown in Figure 5.2. It is calculated by 1 − Pr(Partial success) = p. The average

number of nodes reached at the end of the broadcast process, the reachability of this

network, is the weighted sum of rt of the last state of each path leading to the partial

success states or the complete success state, which is 60(1−p)2+80p(1−p)2+100p(1−

p)3 +80p2(1−p)+300p2(1−p)2 +300p3(1−p)+100p4. The number of forwarders is

calculated by averaging
∑t∗

t=0 ft along each path leading to the complete success state
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where t∗ is the time period when the success state is reached. Note that f̂0 is equal to

f0. Thus, the average number of forwarders is Nf = (5p4 +11p3(1−p)+9p2(1−p)2 +

2p(1−p)3)/p for this example. At last, we calculate average delay to reach the success

states, the average of t∗, which is (4p4 + 10p3(1− p) + 9p2(1− p)2 + 2p(1− p)3)/p.

5.3.4 Computational Complexity

In this subsection, we show the computational complexity of this model applied

to the probabilistic broadcast algorithm. We will assume that the diameter of the

network is given by D, which is the maximum number of hops in the network. It has

been shown that D is on the order of Θ(log |V |) in a random power law graph [27].

Using this result, the number of states is approximated as follows. In the beginning,

only the sender has the message. The number of starting state is 1. The size of the

set of states that may be entered during the next step is the size of the powerset of the

sender’s neighbors. Let us assume that the number of neighbors are approximately

d, the average degree of nodes in the network. Then the number of such states are

2d. In turn, the set of next possible states depends on the number of nodes that

received the packet successfully. The size of this next set is the size of powerset of

the set of such nodes. This process is repeated until all nodes are reached. Denote

the number of states at time period n by NSi
. Then,

NS0 = 1,

NS1 = 2d,

NS2 = NS1 · 2d −NS1 = 2d(2d − 1),

· · ·

NSD = NSD−1
· 2d −NSD−1

= 2d(2d − 1)D−1.
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Figure 5.3: Complexity of the state-space based model.

The total number of states is thus

(5.7)
D∑

i=0

NSi
=

2d(2d − 1)D+1 − 2d

(2d − 1)(2d − 2)
.

The above quantity is approximated to be Θ(2d log |V |), and is evaluated numerically

in Figure 5.3. Five marks shown in the figure are obtained from simulation, which

match well with analytically obtained graphs.

5.4 The Hybrid Model

In this section, we describe the proposed hybrid model. We first introduce the

general framework, and then apply the approach to both the probabilistic and the

counter-based broadcast schemes.
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5.4.1 General Framework

Consider a source node S in the network. Denote by Xk the set of forwarding

nodes at the k-th step. Transmissions by nodes in Xk are assumed to be synchronized

without collision. Yk represents the nodes that successfully received the broadcast

packet transmitted from nodes in Xk. Initially, X1 = {S} and Y0 = {S}. A neighbor

of S, i ∈ NS , may receive the packet successfully with a probability qSi. Thus,

Y1 =
⋃

i∈NS

{i} · I{rSi=1},

where I{·} is an indicator function and rSi is a Bernoulli random variable that takes

the value 1 with probability qSi and 0 with probability 1− qSi. The realization of Y1

is a subset of NS generated based on Q. Our goal is to select the most representative

neighbors among NS to be successful. While it’s not clear how this may be done

precisely – if we did know we wouldn’t need the current model – there are a number

of plausible heuristics to do so. Below we follow one such idea.

We will choose an average number of successful receivers. Specifically, the ex-

pected number of successful receivers is calculated as follows.

E[|Y1|] =
∑
i∈NS

qSi.

If random duty-cycling is considered, the above equation is simply multiplied by

an active probability. With this expected number of transmissions we can choose

bE[|Y1|]c number of neighbors among NS . The selection of this set again can be

based on a number of heuristics. Below we list a few studied in this chapter:

• Best-q: choose neighbors with the largest values of qSi;

• Random-q: choose neighbors randomly;

• Worst-q: choose neighbors with the smallest values of qSi.
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Denote by Ŷ1 the set of bE[|Y1|]c number of neighbors chosen by one of above

heuristics. Once the successful receivers are determined, the broadcast scheme π

decides which nodes among Ŷ1 shall forward next. X2 represents the forwarding

nodes at the second step. Thus,

X2 =
⋃

i∈Ŷ1

{i} · I{fπ
i =1},

where fπ
i denotes a random variable which is specific to the broadcast scheme π to

determine whether node i forwards next. This value can also be determined by some

additional variables specific to the broadcast scheme π. (For instance, counter-based

broadcast scheme requires counter values for each node.) The selection of forwarding

nodes could be probabilistic or deterministic according to π. If it is probabilistic, we

make a choice of X̂2 based on one of the heuristics listed above.

At the k-th step, given the current set of transmitting nodes X̂k and previously

received nodes Y0, Ŷ1, · · · , Ŷk−1, we obtain Yk as follows.

Yk =
⋃

i∈X̂k

⋃

j∈Ni/{X1∪X̂2∪···X̂k}
{j} · I{rij=1},

where rij is a Bernoulli random variable that takes value 1 with probability qij and

0 with probability 1 − qij. If we consider a collision between packets transmitted

in the same round, there is an extra collision probability to be added in the above

equation. It follows that the expected number of receivers at the k-th step is

E[|Yk|] =
∑

j∈∪l∈X̂k
Nl/{X1∪X̂2∪···X̂k}

1−
∏

i∈X̂k

(1− qij).

Based on heuristics listed above, Ŷk includes bE[|Yk|]c number of neighbors among

(
⋃

i∈X̂k
Ni)/{X1∪ X̂2∪· · · X̂k}. Then, the next forwarding nodes Xk+1 is determined

by

(5.8) Xk+1 =
⋃

i∈{Ŷ1∪···Ŷk}/{X1∪···Xk}
{i} · I{fπ

i =1},
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where fπ
i denotes a random variable which is specific to the broadcast scheme π to

determine whether node i should forward next, given the sequence X1, X̂2, · · · , X̂k,

and Y0, Ŷ1, · · · , Ŷk−1. In addition to these, fπ
i can also depend on variables defined

specifically under π. This will be illustrated with example broadcast schemes in the

following section. If π is not deterministic, X̂k+1 is chosen among {Ŷ1∪· · · Ŷk}/{X1∪

· · ·Xk} by the heuristic rules listed above.

This procedure is repeated until Yk is empty. Let k∗ = inf{k : Yk = ∅}, we attain

Dπ(n,K,Q) = k∗, T π(n,K,Q) = X1 +
∑k∗

i=2 |X̂i|, and Rπ(n,K,Q) = |Y0 ∪
⋃k∗

i=1 Ŷi|.

5.4.2 Modeling of Example Broadcast Schemes

In this subsection, we model two broadcast schemes described in Section 5.2 using

the analysis-emulation hybrid model.

The Probabilistic Scheme

Consider the probabilistic scheme π where each node randomly decides whether to

forward with a probability p. Consider the k-th step of the hybrid model described

above. Given the current transmitting nodes X̂k, the set of successful receiving

nodes Ŷk is determined in the way given in the previous section. Then, the set of

next forwarding nodes X̂k+1 is determined based on π as follows. In Eqn. (5.8), we

set fπ
i = si for i ∈ Ŷk/{X1 ∪ · · ·Xk} and fπ

i = 0 otherwise, where si is a Bernoulli

random variable with probability p of taking the value 1. The expected number of

forwarders is given by

E[|Xk+1|] = |Ŷk/{X1 ∪ · · ·Xk}| · p.

We can then select bE[|Xk+1|]c number of nodes among Ŷk/{X1 ∪ · · ·Xk} using the

same heuristics that we used when choosing successful receivers.
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The Counter-based Scheme

We next consider the counter-based scheme π where each node rebroadcasts the

message if it has received the message less than Cth times. The counter-based scheme

π determines the next forwarders X̂k+1 among nodes which received the message Ŷk at

the k-th step. In Eqn. (5.8), whether the value of fπ
i for node i is 1 or 0 is determined

subject to π as follows. We define two more additional variables to denote the counter

value and the timer value for node i by Ci and Ti, respectively. For the nodes that

newly received the message Ŷk, we set their counters by 1. Also, the timers are set

using the same heuristic that used when choosing successful receivers. Since Ti is

randomly distributed, we attempt to divide nodes in Ŷk for each time value and assign

their timer values accordingly. For instance, nodes with higher success probabilities

are assigned by smaller timer values according to the Best-q method. For the nodes

that already have the message but received again with the unexpired timer, their

counter values increase by 1. When the timer Ti is expired, if Ci is smaller than Cth,

node i transmits. Thus,

fπ
i = (Ci < Cth) & (Ti == 0), ∀i ∈ {Ŷ1 ∪ · · · Ŷk}/{X1 ∪ · · ·Xk}.

5.5 Numerical Analysis

In this section, we validate the hybrid model by comparing its results with simula-

tion results. We generate 200 topologies randomly where each topology contains 100

nodes in the unit square. In this network, any two nodes i and j within the distance

less than R(n) = K
√

log n
n

for some K > 1 has transmission success probability qij

which is generated by two different ways. In this simulation, we use K = 1.1 so that

we have average node degree equal to 17.5. One is that qij is uniformly and ran-

domly chosen between 0 and 1 without depending on the distance between nodes i
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and j. The other is that qij is linearly decreasing from 1 to 0 as the distance increases

from 0 to R(n). Note that these two models were studied in the previous chapter.

Given each topology and transmission success probability, we randomly pick a source

and broadcast a message based on the probabilistic scheme and the counter-based

scheme.

The probabilistic scheme

Consider that transmission success probabilities are drawn from a uniform distri-

bution. We first consider the probabilistic scheme. As described in Section 5.4.2, a

heuristic is needed to determine the nodes that successfully receive the packet and

the nodes that rebroadcast it. The best heuristic is to capture the average behavior

of broadcasting. We introduced three approaches: Best-q, Random-q, and Worst-q

in the previous section. Figure 5.4 shows the performance of the probabilistic scheme

using the analysis-emulation hybrid model compared to simulation results. The per-

formance obtained by all three approaches are pretty accurate. Note that there is

discrepancy when forwarding probability is low. It is because the expected number

of forwarding nodes is below 1. In such case, the number is floored in our model and

thus no transmission happens.

When we use the distance-based success probability model, the heuristic ap-

proaches performs differently. As you can see from Figure 5.5, Best-q method is

lower and the other two are higher than the average. It is very intuitive in distance-

based case. Consider Best-q method which picks nodes with good success probability.

In the distance-based model, nodes with higher success probability tends to be closer

to the transmitter. Thus, it is more likely that forwarding nodes’ transmission range

overlaps in large. This implies that many of such transmissions would be redundant.

The Worst-q cases is the opposite. The chosen nodes are located far from the trans-
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Figure 5.4: The performance of the probabilistic scheme estimated by the analysis-emulation hybrid
model under the uniform success probability model when average node degree = 17.5.
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Figure 5.5: The performance of the probabilistic scheme estimated by the analysis-emulation hybrid
model under the distance-based success probability model when average node degree
= 17.5.
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mitter with high probability. Thus, broadcasting proceeds faster. From this results,

we can see that our model estimates the performance of the probabilistic scheme

reasonably close to the average obtained by simulations for both success probability

models.

The counter-based scheme

We assume nodes’ initial timer values are drawn from a uniform distribution

between 1 and RAD. As described in Section 5.4.2, a heuristic is needed to determine

the nodes that successfully receive the packet, and also to set their timer values. For

this scheme, we use three heuristics: Best-q, Random-q, and Worst-q.

Figure 5.6 and 5.7 show the performance of the counter-based scheme using the

analysis-emulation hybrid model compared to simulation results. Under the ran-

dom success probability model, the proposed analysis-emulation hybrid model with

each heuristic works pretty close to the simulation results. However, when success

probabilities are generated strictly depending on distance, the selection process of

successfully received nodes or their initial timer values assignment based on the

suggested heuristics are more critical in the performance than the random success

probability case. In the random success probability model, nodes’ success probabili-

ties are assigned arbitrarily and thus the selection of nodes or timer values based on

the success probabilities are not related to their locations (i.e., the overlaps of the

covered area by simultaneous transmissions). Especially, the performance of Best-q

exhibits too loose lower-bounds. It is because allowing the nodes with high success

probabilities implies that there is very little newly covered area because they are too

close to the transmitter under the distance based success probability model. Thus,

developing heuristics which works well with a certain success probability model is

important to estimate the accurate performance of the broadcast scheme, which is
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out of scope of this chapter.

5.6 Chapter Summary

In this chapter we considered broadcasting in a wireless sensor network. We

studied the performance of broadcasting schemes under the uncertainties caused by

unreliable communications, duty-cycling, etc. Given transmission success probability

as well as the network topology, the performance of a broadcast scheme is obtained

by a state-space model and a analysis-emulation hybrid model. Numerical results

are provided to evaluate the accuracy of the hybrid model.
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Figure 5.6: The performance of the counter-based scheme estimated by the analysis-emulation hy-
brid model under the uniform success probability model when average node degree
= 17.5.
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Figure 5.7: The performance of the counter-based scheme estimated by the analysis-emulation hy-
brid model under the distance-based success probability model when average node de-
gree = 17.5.



CHAPTER 6

Conclusion

This dissertation studied the energy-efficient design of low duty-cycled sensor

networks. In Chapter 2, we first derived the fundamental relationship between the

amount of redundancy required vs. the achievable reduction in duty cycle for a fixed

performance criterion. When sensor nodes are randomly duty-cycled according to

a fixed active probability, we derived the sufficient and necessary conditions for the

network to be connected as the number of node grows to infinity. These conditions

are in the form of the joint scaling behavior of the number of nodes in the network as

well as the active probability. From these results, we showed how duty-cycling should

be scaled as the network gets denser in order to maintain network connectivity.

In Chapter 3, we studied a routing problem in wireless sensor networks where

sensors are duty-cycled. The problem is formulated as an optimal stochastic routing

problem (also referred to as opportunistic) in the presence of duty-cycling as well as

unreliable wireless channels. We first developed and analyzed an optimal centralized

stochastic routing algorithm for a randomly duty-cycled wireless sensor network,

and then simplified the algorithm when local sleep/wake states of neighbors are

available. We further developed a distributed algorithm utilizing local sleep/wake

states of neighbors which performs better than some existing distributed algorithms
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such as ExOR.

In Chapter 4, we investigated how the routing delay of this type of algorithms

scales compared to conventional (non-opportunistic) routing algorithms in a limit-

ing regime where the network becomes dense. In wireless sensor networks, there

are uncertainties involved in packet transmission due to fading, node failures, power

saving, etc. These characteristics were captured by transmission success probability

randomly drawn from a given distribution. We have shown that when the trans-

mission success probabilities are not bounded away from zero, non-opportunistic

routing results in extremely large delay whereas opportunistic routing can easily get

out of such situation because nodes are always chosen among successful receivers af-

ter observing outcome of transmission. In addition, we have shown that maintaining

multi-paths of non-opportunistic routing overcomes infinite routing delay problem

under the transmission success probability not bounded away from zero. However,

since such multi-path routing achieves similar delay performance as opportunistic

routing with much higher overhead, we concluded that it is in general advantageous

to employ opportunistic routing in wireless networks with respect to delay.

In Chapter 5 we developed an analysis-emulation hybrid model that combines

analytical models with elements of numerical simulation to obtain the desired mod-

eling accuracy and computational efficiency. This model has been motivated by the

state-space based model which calculates the metrics by averaging over all possible

outcomes, which is thus accurate but highly complicated. The analysis-emulation hy-

brid model emulates the representative behavior of the broadcast scheme. Basically

it follows the carefully chosen one of the sample path among all possible outcomes.

By using this model, we achieved reasonably accurate performance estimation of

broadcasting schemes with much less complexity.
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APPENDIX A

Detailed Calculation for the Optimal Policy in Example 3.1

In Example 3.1, we show the optimal policy π∗(W,A) for the network illus-

trated in Figure 3.1, given W = {1, 2, 4} and A ∈ F (W ). Note that F (W ) =

{{3a, 5a}, {3a, 5s}, {3s, 5a}, {3s, 5s}}. When all nodes are awake, i.e., A = {3a, 5a},

V π∗({1, 2, 4}, {3a, 5a})

= max
i∈{1,4,I}

{−ci +
∑

W ′⊇{1,2,4}

∑

A′∈F (W ′)

P i(W ′, A′|{1, 2, 4}, {3a, 5a})V π∗(W ′, A′)}

= −1 + max
i∈{1,4,I}

{
∑

W ′⊇{1,2,4}

∑

A′∈F (W ′)

P i(W ′, A′|{1, 2, 4}, {3a, 5a})V π∗(W ′, A′)},

where the second equality is based on the assumption of unit cost.

When node 1 is transmitting, possible W ′ is {1, 2, 4} with probability 0.2 or

{1, 2, 3, 4} with probability 0.8. Then, the term in max function with i = 1 is

calculated as follows.

∑

A′∈F ({1,2,4})
0.2P (A′)V π∗({1, 2, 4}, A′) +

∑

A′∈F ({1,2,3,4})
0.8P (A′)V π∗({1, 2, 3, 4}, A′)

=
∑

A′∈F ({1,2,4})
0.2P (A′)V π∗({1, 2, 4}, A′) + 0.08V π∗({1, 2, 3, 4}, {5a})

+ 0.72V π∗({1, 2, 3, 4}, {5s}),

(A.1)
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where V π∗({1, 2, 3, 4}, {5a}) and V π∗({1, 2, 3, 4}, {5s}) are calculated similarly. Since

π∗({1, 2, 3, 4}, {5a}) = 3 and π∗({1, 2, 3, 4}, {5s}) = I,

V π∗({1, 2, 3, 4}, {5a}) = −1 + 0.028V π∗({1, 2, 3, 4}, {5a})

+ 0.252V π∗({1, 2, 3, 4}, {5s}) + 0.72R5

V π∗({1, 2, 3, 4}, {5s}) = −1 + 0.1V π∗({1, 2, 3, 4}, {5a}) + 0.9V π∗({1, 2, 3, 4}, {5s}).

From the above simultaneous equations, we obtain V π∗({1, 2, 3, 4}, {5a}) = −4.8889+

R5 and V π∗({1, 2, 3, 4}, {5s}) = −14.8889 + R5. Thus, Eqn. (A.1) becomes

∑

A′∈F ({1,2,4})
0.2P (A′)V π∗({1, 2, 4}, A′)− 11.1111 + 0.8R5.

If node 4 is transmitting, i.e., i = 4, possible W ′ is {1, 2, 4} with probability 0.4

or {1, 2, 4, 5} with probability 0.6 and the term in max function is

∑

A′∈F ({1,2,4})
0.4P (A′)V π∗({1, 2, 4}, A′) +

∑

A′∈F ({1,2,4,5})
0.6P (A′)V π∗({1, 2, 4, 5}, A′)

=
∑

A′∈F ({1,2,4})
0.4P (A′)V π∗({1, 2, 4}, A′) + 0.06V π∗({1, 2, 4, 5}, {3a})

+ 0.54V π∗({1, 2, 4, 5}, {3s})

=
∑

A′∈F ({1,2,4})
0.4P (A′)V π∗({1, 2, 4}, A′) + 0.6R5.

If I is chosen, it is just
∑

A′∈F ({1,2,4}) P (A′)V π∗({1, 2, 4}, A′).

Let S ,
∑

A′∈F ({1,2,4}) P (A′)V π∗({1, 2, 4}, A′). Then, combining these together,

we have

(A.2) V π∗({1, 2, 4}, {3a, 5a}) = max{0.2S+0.8R5−12.1111, 0.4S+0.6R5−1, S−1}

Similarly, V π∗({1, 2, 4}, A) is calculated for the remaining A ∈ F ({1, 2, 4}). Then, we

have V π∗({1, 2, 4}, {3a, 5s}) = max{0.2S+0.8R5−12.1111, S−1}, V π∗({1, 2, 4}, {3s, 5a}) =
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max{0.4S + 0.6R5 − 1, S − 1} and V π∗({1, 2, 4}, {3s, 5s}) = S − 1. Intuitively, the

optimal choices are straight-forward for some A so that π∗({1, 2, 4}, {3a, 5s}) = 1,

π∗({1, 2, 4}, {3s, 5a}) = 4 and π∗({1, 2, 4}, {3s, 5s}) = I. Thus,

S = 0.01V π∗({1, 2, 4}, {3a, 5a}) + 0.09(0.2S + 0.8R5 − 12.1111)

+ 0.09(0.4S + 0.6R5 − 1) + 0.81(S − 1).

For A = {3a, 5a}, S = R5−15.7546 when node 1 is chosen whereas S = R5−98.6447

when node 4 is chosen. Thus, the maximum of V π∗({1, 2, 4}, {3a, 5a}) is achieved

when node 4 is transmitting. Hence, π∗({1, 2, 4}, {3a, 5a}) = 4.
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APPENDIX B

The proof of Lemma 3.1

If π(W1, A1) = π∗(W1, A1) = ri for some i ∈ W1 and some A1, Eqn. (3.9) holds.

Next, we consider the case where both policies π and π∗ do not retire but transmit

or wait. Suppose π(W1, A1) = π∗(W1, A1) = I for some A1. Let (W2, A2) and

(W ∗
2 , A∗

2) be the state after the idle action when in (W1, A1) for π and π∗. Obviously,

W2 and W ∗
2 are the same as W1 while A2 is the same as A∗

2 for any given sample

path, but not necessarily the same as A1. Both π and π∗ pay the idle costs until

they reach the state for transmission.

Suppose π(W1, A1) = π∗(W1, A1) = i ∈ W1 for some A1. Let (W2, A2) and

(W ∗
2 , A∗

2) be the state after i’s transmission when in (W1, A1) for π and π∗. Since

node i is transmitting for both policies, W2 = W ∗
2 ⊇ W1. Again A2 is the same as

A∗
2 for any given sample path. By Eqn. (3.7), we have V π(W2, A2) = V π∗(W ∗

2 , A∗
2)

for W2 = W ∗
2 ⊃ W1 if at least one node receives the packet successfully. Otherwise,

we have W2 = W ∗
2 = W1 and A2 = A∗

2, which may or may not be different from A1.

Similar to the case of choosing the idle action, by Eqn. (3.8), π chooses the same

action (the idle action or transmission but fail) as π∗ until it reaches the state where

W2 ⊃ W1 and any A2. Hence, Eqn. (3.9) holds.
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APPENDIX C

The proof of Lemma 3.2

We define a new policy π on state (W1, A1) as follows. Suppose (W4, A4) is the

state after transmission or idle action by π∗ when in (W2, A2), where W4 ⊇ W2. Let

π make the same decision as π∗ did, which is possible because the node in W2 ∪ {I}

chosen by π∗ is also available in the set W1 ∪ {I} ⊆ W2 ∪ {I}. Let (W3, A3) be

the state after transmission or idle action by π when in (W1, A1). The nodes which

are not in W1 and receive the packet are included in W3 as well as W4. However,

the nodes which are not in W2 but in W1 and receive the packet are included in W4

whereas W3 contains all nodes in W1. Hence, W3 ⊇ W4. Accordingly, the sleep/wake

states of the nodes in Ω−W3 are the same as A3 while the nodes in W3 −W4 may

be in different sleep/wake states. Therefore, A4 ∈ F (W4|W3, A3).

At the next step, π acts on (W3, A3) by choosing the same node as π∗ acts on

(W4, A4). The process repeats in the same way until π retires when π∗ does. Let

(Wf1, Af1) and (Wf2, Af2) be the states at retirement for π and π∗, respectively. We

have Wf2 ⊆ Wf1 and Af2 ∈ F (Wf2|Wf1, Af1). Total cost incurred by π is the same

as π∗ because both policies chose the same nodes at every step before retirement.

At retirement, π and π∗ receive rewards R(Wf1) and R(Wf2), respectively. R(·)

is a G-index function because it satisfies Eqn. (3.5). Thus, Wf1 ⊇ Wf2 results in

R(Wf1) ≥ R(Wf2) which proves V π(W1, A1) ≥ V π∗(W2, A2). Finally, because π∗ is
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optimal, V π∗(W1, A1) ≥ V π(W1, A1) holds. This completes the proof.
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APPENDIX D

The proof of Lemma 3.3

The proof is constructive. Let us define π recursively using the following rules:

π(Ω, A) = π∗(Ω, A), A = {1, 1, · · · , 1},(D.1)

π(W − {j}, A) = π(W,Ai), ∀W ⊆ Ω,∀Ai ∈ F (W ),∀A ∈ F (W − {j}|W,Ai),

∀j ∈ W : π(W,Ai) 6= j, rj for ∀Ai,(D.2)

π(W − {j}, A) = π∗(W − {j}, A), ∀W ⊆ Ω,∀A ∈ F (W − {j}|W,Ai),

∀j ∈ W : π(W,Ai) = j, rj for some Ai.(D.3)

If N = 1, the lemma is true directly by Eqn. (D.1). Hence, we assume that N ≥ 2.

Eqn. (D.2) shows that π satisfies Eqn. (3.10) and Eqn. (3.11) in the first prop-

erty of this lemma. We now focus on its second property. We prove Eqn. (3.12)

by backward induction on the cardinality of W . As the induction basis, we show

Eqn. (3.12) is true for W = Ω and A = {1, 1, · · · , 1}. We know that π∗(Ω, A) = ri for

some i such that i = arg maxk∈Ω Rk because π∗ is optimal. Thus, V π∗(Ω, A) = Ri.

According to Eqn. (D.1), π(Ω, A) = ri and V π(Ω, A) = Ri which proves the second

equality in Eqn. (3.12). In order to show the first and third equalities, let A1 be

all ones but zero for node j ∈ Ω − {i}. By Eqn. (D.2), we have π(Ω − {j}, A) =

π(Ω − {j}, A1) = π(Ω, A) = ri which means that π retires and receives Ri. Thus,

V π(Ω−{j}, A) = V π(Ω−{j}, A1) = Ri. This proves its first equality of Eqn. (3.12).
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For ∀j ∈ Ω − {i}, we have π∗(Ω − {j}, A) = ri and V π∗(Ω − {j}, A) = Ri because

the optimal policy π∗ chose node i in Ω which is still in the set Ω − {j} and has

the highest reward among nodes in Ω − {j}. Similarly, π∗(Ω − {j}, A1) = ri and

V π∗(Ω− {j}, A1) = Ri. This proves the last equality of Eqn. (3.12) for W = Ω.

As the induction hypothesis, assume that Eqn. (3.12) holds for any state (W,A)

where |W | = L + 1 and any possible A ∈ F (W ). If N = 2, the basis completes

the proof of Eqn. (3.12). Thus, we assume N > 2 and 2 ≤ L < N . Consider a

state (W1, Ai) where |W1| = L and Ai ∈ F (W1). If there is j ∈ Ω −W1 such that

π(W1∪{j}, F (W1∪{j}|W1, Ai)) 6= j, rj, then we have π(W1, Ai) = π(W1∪{j}, F (W1∪

{j}|W1, Ai)) by Eqn. (D.2). By the induction hypothesis, Eqn. (3.12) is true for

W = W1 ∪ {j}. Thus, we have V π(W1 ∪ {j} − {j}, Ai) = V π∗(W1 ∪ {j} − {j}, Ai)

which proves the second equality of Eqn. (3.12). That is,

(D.4) V π(W1, Ai) = V π∗(W1, Ai).

On the other hand, if there is j ∈ Ω−W1 such that π(W1∪{j}, F (W1∪{j}|W1, Ai)) =

j or rj, then by Eqn. (D.3) π(W1, Ai) = π∗(W1, Ai). By the induction hypothesis,

we have V π(W,Ai) = V π∗(W,Ai) for ∀W ⊃ W1. By Lemma 3.1 we proved that

Eqn. (D.4) holds for this case. We have shown that the second equality of Eqn. (3.12)

holds for any W1 where |W1| = L and any Ai ∈ F (W1).

In order to show the first and third equalities of Eqn. (3.12) below, we note that

there are two cases: either π(W1, Ai) = ni ∈ W1 ∪ {I} or π(W1, Ai) = rni
for all

Ai ∈ F (W1). Let j ∈ W1, j /∈ NW1 where NW1 =
⋃m1

i=1 ni − {I} and m1 = 2N−|W1|.

Consider the case where π(W1, Ai) = rni
. By Eqn. (D.2) π(W1−{j}, A′) = rni

, ∀A′ ∈

F (W1−{j}|W1, Ai). This implies that V π(W1, Ai) = V π(W1−{j}, A′) = Rni
, ∀A′ ∈

F (W1−{j}|W1, Ai). For an optimal policy π∗, since W1−{j} ⊂ W1 and j /∈ NW1 , by

Lemma 3.2 we get V π∗(W1−{j}, A′) ≤ V π∗(W1, Ai), ∀A′ ∈ F (W1−{j}|W1, Ai). By
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Eqn. (D.4) we have V π∗(W1−{j}, A′) ≤ Rni
, ∀A′ ∈ F (W1−{j}|W1, Ai). On the other

hand, because i ∈ W1 − {j} and π∗ is an optimal policy, V π∗(W1 − {j}, A′) ≥ Rni
,

∀A′ ∈ F (W1 − {j}|W1, Ai). Hence,

V π∗(W1 − {j}, A′) = Rni
, ∀A′ ∈ F (W1 − {j}|W1, Ai).

This completes the proof of the Eqn. (3.12) for π(W1, Ai) = rni
.

We now prove the first and the third equalities of Eqn. (3.12) in the case of

π(W1, Ai) = ni ∈ W1 ∪ {I}. Let us prove the first equality as follow. Let W ⊇

W1 − {j}, j /∈ NW . We first show the following.

(D.5) π(W,A) 6= j, rj, ∀A.

We prove this in two cases: j ∈ W and j 6∈ W . If j /∈ W , π(W,A) 6= j, rj for any

A. If j ∈ W , W1 ⊆ W and |W | ≥ L. If |W | = L, W = W1 and π(W,A) 6= j, rj for

any A because of j /∈ NW as given. Assume |W | > L. If π(W,A) = j for some A,

removing all nodes from W −W1 one by one results in π(W1, Ai) = j by Eqn. (D.2),

for some Ai which has the same values for nodes in Ω−W and arbitrary values for

nodes in W − W1. This contradicts the hypothesis which is π(W1, Ai) = ni 6= j.

Similarly if π(W,A) = rj, we have π(W1, Ai) = rj for some Ai. We have shown that

Eqn. (D.5) is true in all cases when π(W1, Ai) = ni. Then, the following is true for

any W ′ ⊇ W1, any A′ ∈ F (W ′), and any Ã ∈ F (W1 − {j}|W1, Ai):

(D.6)

P ni(W ′, A′|W1, Ai) = P ni(W ′, A′|W1−{j}, Ã)+
∑

A′′∈F (W ′−{j}|W ′,A′)

P ni(W ′−{j}, A′′|W1−{j}, Ã).

By Eqn. (D.5) and Eqn.(D.6), we have V π(W1 − {j}, Ã) = V π(W1, Ai) for ∀Ã ∈

F (W1 − {j}|W1, Ai). Next, we prove the third equality of Eqn. (3.12) in case of

π(W1, Ai) = ni. By Lemma 3.2 we have V π∗(W1, Ai) ≥ V π∗(W1 − {j}, Ã) for ∀Ã ∈
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F (W1−{j}|W1, Ai). In addition, π∗ is optimal so that V π∗(W1−{j}, Ã) ≥ V π(W1−

{j}, Ã). Since V π(W1, Ai) = V π∗(W1, Ai) by Eqn. (D.4),

(D.7)

V π(W1−{j}, Ã) = V π(W1, Ai) = V π∗(W1, Ai) ≥ V π∗(W1−{j}, Ã) ≥ V π(W1−{j}, Ã).

This proves Eqn. (3.12) for π(W1, Ai) = ni. We have shown that Eqn. (3.12) is true

for all W ⊆ Ω where |W | ≥ 2 and all possible Ai ∈ F (W ).

We prove now that π is an optimal Markov policy. As we showed in the second

property, V π(W,A) = V π∗(W,A) for any W where |W | ≥ 2 and any A. From this

relationship Eqn. (3.12), we also have V π({i}, A) = V π∗({i}, A) for ∀i ∈ Ω such that

π({i} ∪ {j}, A) = i or I for all A where j ∈ Ω. If there is no such i left, we still have

V π({j}, A) = V π∗({j}, A) for ∀j ∈ Ω by Eqn. (D.3) when π({i} ∪ {j}, A) = i ∈ Ω

for all A.

Appendix E
The proof of Lemma 3.4

By Eqn. (D.7), we know V π∗(·) satisfies

(E-1) V π∗(W ∪ {i}, F (W ∪ {i}|W,A)) ≥ V π∗(W,A), ∀W ⊆ Ω,∀A ∈ F (W ), i ∈ W.

Consider a Markov policy π which satisfies Eqn. (3.10) and Eqn. (3.11). Suppose

V π(W,A) = V π(W1, A1) for some W1 ⊂ W and A1 ∈ F (W1) s.t. i /∈ W1. This

implies π(W,A) 6= i for all A ∈ F (W ). Then, by Eqn. (3.12) we have V π∗(W,A) =

V π∗(W − {i}, Ã), ∀Ã ∈ F (W − {i}|W,A). From the above properties of V π∗(·), we

conclude that V π∗(W,A) ≥ V π∗(W1, A1), ∀W1 ⊆ W and ∀A1 ∈ F (W1). There exists

W1 ⊆ W such that V π∗(W,A) = V π∗(W1, A1) for each A ∈ F (W ). This satisfies

Eqn. (3.5).
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APPENDIX E

The proof of Lemma 4.5

We have

lim
n→∞

E[X
(n)
i ]

= lim
n→∞

∞∑
m=1

E[X
(n)
i |M(n) = m]Pr(M(n) = m)

= lim
n→∞

c2 log n∑

m=c1 log n

E[X
(n)
i |M(n) = m]Pr(M(n) = m),(E-1)

where the second equality holds because by definition there are positive constants

c1 and c2 such that limn→∞ Pr(c1 log n ≤ M(n) ≤ c2 log n) = 1. Given that

E[X
(n)
i |M(n) = m] is nondecreasing, Eqn. (E-1) is upper-bound by

lim
n→∞

E[X
(n)
i ]

≤ lim
n→∞

E[X
(n)
i |M(n) = c2 log n] ·

c2 log n∑

m=c1 log n

Pr(M(n) = m)

= lim
n→∞

E[X
(n)
i |M(n) = c2 log n] · lim

n→∞
Pr(c1 log n ≤ M(n) ≤ c2 log n)

= β∗.
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Similarly, it is lower-bound by

lim
n→∞

E[X
(n)
i ]

≥ lim
n→∞

E[X
(n)
i |M(n) = c1 log n] ·

c2 log n∑

m=c1 log n

Pr(M(n) = m)

= β∗.

Hence, E[X
(n)
i ] is a convergent sequence and the limit is β∗ as n → ∞ by the

Sandwich Theorem.
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APPENDIX F

The proof of Lemma 4.6

For any ε > 0, we have

Pr(|R(n)

1/R(n)∑
i=1

X
(n)
i − E[X

(n)
i ]| > ε)

= Pr(R(n)

1/R(n)∑
i=1

X
(n)
i − β(n) > ε) + Pr(R(n)

1/R(n)∑
i=1

X
(n)
i − β(n) < −ε).(E-1)

By Hoeffding’s Inequality, both terms of Eqn. (E-1) are upper-bounded as follows.

Since X
(n)
i , 1 ≤ i ≤ n are bounded and i.i.d., suppose X

(n)
i ∈ [a, b] for all i. Then for

any ε > 0, we have

Pr(R(n)

1/R(n)∑
i=1

X
(n)
i − β(n) > ε) = Pr(

1/R(n)∑
i=1

X
(n)
i − β(n)

R(n)
>

ε

R(n)
)

≤ exp(− 2ε2

R(n)(b− a)2
).(E-2)

And,

(E-3) Pr(R(n)

1/R(n)∑
i=1

X
(n)
i − β(n) < −ε) ≤ exp(− 2ε2

R(n)(b− a)2
).

Next, we show
∑

n Pr(|R(n)
∑1/R(n)

i=1 X
(n)
i − β(n)| > ε) < ∞ as follows. From

Eqn. (E-2) and Eqn. (E-3), we have

∑
n

Pr(|R(n)

1/R(n)∑
i=1

X
(n)
i − β(n)| > ε) ≤

∑
n

2 exp(− 2ε2

R(n)(b− a)2
)

=
∑

n

2 exp(− 2ε2

K(b− a)2

√
n

log n
).(E-4)



156

We show the convergence of
∑

n Pr(|R(n)
∑ 1

R(n)

i=1 X
(n)
i − β(n)| > ε) by showing the

convergence of the infinite series in Eqn. (E-4). There is positive N such that for

n ≥ N we have
√

n
log n

> α log n for some α > 1. Then,

∑
n

2 exp(− 2ε2

K(b− a)2

√
n

log n
)

<

N∑
n=1

2 exp(− 2ε2

K(b− a)2

√
n

log n
) +

∞∑
n=N

2e
− 2ε2

K(b−a)2
α log n

=
N∑

n=1

2 exp(− 2ε2

K(b− a)2

√
n

log n
) +

∞∑
n=N

2elog n
− 2ε2

K(b−a)2
α

=
N∑

n=1

2 exp(− 2ε2

K(b− a)2

√
n

log n
) +

∞∑
n=N

2n
− 2ε2

K(b−a)2
α

(E-5)

In Eqn. (E-5), the first term is finite because it is a finite sum and the second

term is also finite for some α such that α > min{K(b−a)2

2ε2
, 1}. Thus, we have

∑
n Pr(|R(n)

∑ 1
R(n)

i=1 X
(n)
i − β(n)| > ε) < ∞. By Borel-Cantelli lemmas, we have

lim
n→∞

R(n)

1
R(n)∑
i=1

X
(n)
i = lim

n→∞
β(n) = β∗ (almost surely).
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APPENDIX G

The Proof of Lemma 4.7

Proof. Let Y
(n)
k be the hop progress toward the destination at the kth hop. It is

well-approximated by L
(n)
k cos α

(n)
k as shown in [44]. More precisely, for all j < h(n)

and γ(n) > 0,

R(n)

j∑

k=1

L̃
(n)
k cos α

(n)
k − (R(n))2

j∑

k=1

(L̃
(n)
k )2

γ(n)

<

j∑

k=1

Y
(n)
k < R(n)

j∑

k=1

L̃
(n)
k cos α

(n)
k .(E-1)

We will show that upper and lower bounds of h(n). First, its upper bound is proven

by contradiction. Suppose h(n) ≤ k2

R(n)
,∀k2 > 1

β∗ is not true. Then, there exists a

subsequence ni, i = 1, 2, · · · such that h(ni) > k2

R(ni)
. Eqn. (4.1) implies that for all i

k2
R(ni)∑

k=1

Y
(ni)
k < R(ni) < 1.

However, Eqn. (E-1), which holds for j < h(n), holds when j = k2

R(ni)
. Then, by

Lemma 4.6, we have

(E-2) R(n)

j∑

k=1

L̃
(ni)
k cos α

(ni)
k → k2β

∗ > 1.

Since L̃
(ni)
k ≤ 1 and M(n)

γ(n)
→ 0, we obtain

(E-3) (R(ni))
2

j∑

k=1

(L̃
(ni)
k )2

γ(ni)
→ 0.
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Therefore, by Eqn. (E-2) and Eqn. (E-3), we have the lower bound of Eqn. (E-1)

converges to k2β
∗ which is greater than 1. So, we have limn→∞

∑ k2
R(ni)

i=1 Y
(ni)
k > 1,

which contradicts Eqn. (E-2). Therefore, we prove the upper-bound of h(n).

The lower bound of h(n) is proved by contradiction as well. Suppose h(n) < k1

R(n)

for some k1 < 1
β∗ . Since h(n) > 1

R(n)
, there is a subsequence ni, i = 1, 2, · · · such

that for some h1 ∈ (1, k1),

(E-4) R(ni)h(ni) → h1.

Then,

|
h(ni)∑

k=1

L̃
(ni)
k cos α

(ni)
k −

h1/R(ni)∑

k=1

L̃
(ni)
k cos α

(ni)
k | ≤ |h1/R(ni)− h(ni)|R(ni).(E-5)

Thus, the upper bound in Eqn. (E-1) is again upper-bounded by

1 =

h(ni)∑

k=1

Y
(ni)
k ≤

h(ni)∑

k=1

L̃
(ni)
k cos α

(ni)
k ≤

h1/R(ni)∑

k=1

L̃
(ni)
k cos α

(ni)
k + |h1/R(ni)− h(ni)|R(ni),

where the first term approaches to h1 by Eqn. (4.5) and the second term approaches

to 0. Thus, it contradicts
∑h(ni)

k=1 Y
(ni)
k = 1. Therefore, we have shown the upper

bound of h(n).
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