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ABSTRACT 

COUPLED NONLINEAR AEROELASTICITY AND FLIGHT DYNAMICS OF 
FULLY FLEXIBLE AIRCRAFT 

by 

Weihua Su 

Chair: Carlos E. S. Cesnik 

 

This dissertation introduces an approach to effectively model and analyze the 

coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A 

reduced-order, nonlinear, strain-based finite element framework is used, which is capable 

of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle 

design and control synthesis. The cross-sectional stiffness and inertia properties of the 

wings are calculated along the wing span, and then incorporated into the one-dimensional 

nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to 

compute airloads along lifting surfaces. Flight dynamic equations are then introduced to 

complete the aeroelastic/flight dynamic system equations of motion. 

Instead of merely considering the flexibility of the wings, the current work allows 

all members of the vehicle to be flexible. Due to their characteristics of being slender 

structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as 

beams undergoing three dimensional displacements and rotations. New kinematic 
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relationships are developed to handle the split beam systems, such that fully flexible 

vehicles can be effectively modeled within the existing framework. Different aircraft 

configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-

Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied 

to model the nodal displacement constraints at the joint locations. 

Based on the proposed models, roll response and stability studies are conducted 

on fully flexible and rigidized models. The impacts of the flexibility of different vehicle 

members on flutter with rigid body motion constraints, flutter in free flight condition, and 

roll maneuver performance are presented. Also, the static stability of the compressive 

member of the Joined-Wing configuration is studied. 

A spatially-distributed discrete gust model is incorporated into the time simulation 

of the framework. Gust responses of the Flying-Wing configuration subject to stall 

effects are investigated. A bilinear torsional stiffness model is introduced to study the 

skin wrinkling due to large bending curvature of the Flying-Wing. 

The numerical studies illustrate the improvements of the existing reduced-order 

formulation with new capabilities of both structural modeling and coupled aeroelastic and 

flight dynamic analysis of fully flexible aircraft. 
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CHAPTER I 

Introduction 

 

 

1.1 Motivation 

Flight has been a dream of humankind. Myths and legends about flight can be 

found in many ancient eastern and western cultures. Historically, many people made 

efforts to realize the dream. However, it was not until December 17th, 1903 that the first 

powered heavier-than-air flight took place. The vehicle built by the Wright brothers 

traveled one hundred and twenty feet in twelve seconds. Since then, aviation technologies 

have undergone vast improvements, and airplanes are widely used for civilian and 

military applications. 

The vehicle in the first powered flight was structurally flexible. The pilot did not 

face aeroelastic problems due to the very low flight speed at that time. Since then, aircraft 

designs have developed with much stiffer wings, to meet higher performance 

requirements. Modern commercial transport and military fight aircraft feature high speed 

and even supersonic flight, which makes it necessary for the wings to be stiff to provide 

sufficient structural integrity, aeroelastic stability, and maneuverability. At the same time, 

stiffened wings bring the cost of increased structural weight. 

Early human flight involved flexible aircraft to emulate birds, since birds can fly 

with little effort with their flexible wings. However, the modern stiff wing designs seem 

to have “betrayed” this thinking. An exception is the High-Altitude Long-Endurance 
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(HALE) vehicles, which feature light wings with a high-aspect ratio, in contrast to the 

common aircraft with stiff wings. HALE concepts are being developed for multiple 

applications, including environmental sensing, telecom relay, and military reconnaissance. 

The long and slender wings, by their inherent nature, can maximize lift to drag ratio. On 

the other hand, these wings may undergo large deformations under normal operating 

loads, exhibiting geometrically nonlinear behaviors. 

In the last several years, the U.S. Air Force has been working on a new generation 

of the Intelligence, Surveillance, and Reconnaissance (ISR) platform, which is called 

“SensorCraft”. These are large HALE aircraft with a wing span of approximately sixty 

meters. At this moment, three basic platform shapes are being considered[1]: Single-Wing, 

Joined-Wing, and Blended-Wing-Body configurations, as illustrated in Fig. 1.1. 

 

Figure 1.1: Three basic ISR SensorCraft concepts 

The large overall vehicle size associated with the SensorCraft configurations may 

lead to a very flexible aircraft overall. In fact, long and slender fuselage and tail surfaces 

result in elastic coupling with the lifting surfaces. This directly impacts the trim of the 

vehicle, and the couplings between roll, yaw, and pitch require the use of nonlinear 

aeroelastic and flight dynamics analyses to predict vehicle response, design of control 

laws, and its overall guidance. Flexibility effects may make the response of the vehicle 

very different from rigid or linearized models would predict. 

Furthermore, the long and slender wings of these configurations feature low 

natural frequencies, which can cause their oscillation to be coupled with the periodic 

plunging, pitching, or roll motion of the vehicle. The aeroelastic responses of the wings 

are therefore coupled with the rigid body motions. In addition, the flutter boundary of the 

wing structures in isolation cannot reflect the stability of the whole vehicle. Therefore, 
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flutter boundaries predicted in the free flight condition is more accurate when evaluating 

the stability of these vehicles. 

Among the three SensorCraft concepts, the Joined-Wing configuration is the most 

unconventional one. From the elicitation of previous research, deformation of the 

structure of the Joined-Wing configuration at a certain location may produce large 

changes in angle of attack at other locations due to their complex structural coupling. 

Efforts to minimize structural weight may create aeroelastic instabilities that are not 

encountered in conventional aircraft designs. For Joined-Wing aircraft, the first sign of 

failure may be associated with the loss of elastic stability of the compressively loaded 

members as the structure is softened. Flutter and divergence may also become a problem 

in these members due to the reduction in effective stiffness as they go into compression. 

As the aircraft becomes more flexible, the geometric structural nonlinearities become 

more important and the lift distribution on the aircraft may be adversely affected. 

Flying-Wings, including all-wing and tailless aircraft, belong to the concept of All 

Lifting Vehicles (ALV). The Blended-Wing-Body is this type of vehicle. Another type of 

Flying-Wing has been developed by AeroVironment for atmosphere research, such as 

Pathfinder and Helios vehicles. In contrast to the Blended-Wing-Body, these are highly 

flexible vehicles, which feature significantly different deformations when their payload is 

changed. The aeroelastic response of these vehicles is inherently nonlinear, due to the 

structural nonlinearity and the aerodynamic nonlinearity. An important event that should 

be mentioned is the accident of Helios prototype (HP3) on June 26th, 2003. The vehicle 

crashed due to gust disturbance. The number one recommendation from the investigation 

panel[2] on this accident was an appropriate time-domain analysis method for this type of 

highly flexible vehicles considering multidiscplines. 

In regard to the above reasons, it is necessary to develop a new approach for the 

modeling of the complex nonlinear structural system of fully flexible aircraft. With the 

fully flexible aircraft models, different nonlinear characteristics of the HALE vehicles 

can be studied and assessed. This dissertation will address some of these aspects, 

including the effects of induced flexibility of fuselage and tail on stability and roll 

performance of fully flexible aircraft, the characteristics of flutter boundary of highly 
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flexible aircraft considering coupled 6 rigid body degrees of freedom and fully flexible 

aircraft, and the time-domain dynamic response of the highly flexible vehicle subject to 

different nonlinear effects  

1.2 Literature Review of Previous Work 

This dissertation focuses on nonlinear aeroelastic and flight dynamic analysis of 

HALE aircraft, including some unconventional configurations. There is much ongoing 

research and literature in this area. This section will summarize some important and 

relevant studies. 

A comprehensive overview about aero-servo-elasticity (ASE) was given by 

Friedmann[3]. Therein, Friedmann emphasized the importance of aeroelasticity, especially 

nonlinear aeroelasticity, on understanding the characteristics of different types of aircraft. 

Challenges on HALE vehicles, including unconventional configurations were predicted 

as well. 

Recently, Livne and Weishaar[4] gave a detailed overview of the interactions 

between the unconventional aircraft concepts and the development of the aeroelastic 

technologies. Therein, they point out that the area of unmanned aerial vehicles (UAVs) is 

the most likely to develop unconventional aircraft designs, due to the lack of constraints 

on pilots. One characteristic of the UAVs operating at high altitude and long endurance is 

the local transonic aerodynamic effects, despite overall low operating speed. Another key 

aeroelastic lesson learned from the past is the coupling between the low-frequency rigid 

body motions and the high-aspect-ratio, low-bending-frequency wings. Livne[5] also 

surveyed some emerging technologies and challenges in the area of aeroelasticity of 

fixed-wing aircraft. 

In addition, Dowell, Edwards, and Strganac[6] identified several physical 

mechanisms, including aerodynamic, structural, and store-induced sources, that may lead 

to nonlinear aeroelastic response of an aeroelastic system with different configurations. 

They suggested that studies of nonlinear aeroelasticity must sometimes consider a full 
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aircraft configuration. It was also suggested that the finite amplitude oscillation led by 

nonlinear flutter could be potentially exploited in a well designed system, to improve the 

performance and safety of aircraft. 

1.2.1 Nonlinear Modeling and Analysis of HALE Aircraft 

Nonlinear techniques for analysis of HALE aircraft have been previously studied 

by several aeroelasticians. van Schoor, Zerweckh and von Flotow[7] have studied 

aeroelastic characteristics and control of highly flexible aircraft. They used linearized 

modes, including rigid body modes to predict the stability of the aircraft under different 

flight conditions. Their results indicate that unsteady aerodynamics and flexibility of the 

aircraft should be considered to correctly model the dynamic system. 

Drela[8] has modeled a complete flexible aircraft as an assemblage of joined 

nonlinear beams. In his work, the aerodynamic model was a vortex/source-lattice with 

wind-aligned trailing vorticity and Prandtl-Glauert compressibility correction. The 

nonlinear equation was solved by using a full Newton method. Through simplifications 

of the model, the computational size was reduced for iterative preliminary design. 

Patil, Hodges, and Cesnik[9, 10] have studied the aeroelasticity and flight dynamics 

of HALE aircraft. The results indicate that the large wing deformations due to the high-

aspect-ratio structure may change the aerodynamic load distributions comparing to the 

initial shape. This brings significant changes to the aeroelastic and flight dynamic 

behaviors of the wings and overall aircraft. Therefore, the analysis results obtained 

through linear analysis based on the undeformed shape may not be valid in this case, 

since those effects can only be caught through nonlinear analysis. The vehicle should be 

first solved in its nonlinear steady state. Analysis can be carried out by linearizing the 

system about this state. The importance of geometric nonlinearity has also been studied in 

Refs. [11, 12, 13]. 

Chang, Hodges, and Patil[14] have studied the flight dynamics of highly flexible 

aircraft. A nonlinear methodology was used for analyzing flight dynamics and aeroelastic 

stability of aircraft with slender structures. In this work, studies were carried out to 
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explore the effects of the large deformation due to the payloads and the parameters of 

fuselage and horizontal tails on the flight dynamic characteristics of a highly flexible 

aircraft. In addition, high sensitivity of some aeroelastic characteristics to the 

configuration parameters was also addressed. This high sensitivity was identified to be 

the result of strong coupling between the highly flexible structure and the aerodynamics. 

More recently, Shearer[15] has studied the nonlinear trajectory control of a highly 

flexible vehicle. In this work, flight dynamics were coupled with fully nonlinear 

aeroelastic equations. The coupling between the low frequency rigid body motions and 

wing structural oscillations was considered when developing the controller. 

To summarize, for the highly flexible vehicles, the coupled effects between the 

large deflection due to vehicle flexibility and flight dynamics (e.g., roll controllability) 

and other aeroelastic effects (e.g., gust response, flutter instability) must be properly 

accounted for in a nonlinear aeroelastic formulation. A more complete analysis should be 

developed although previous work has made achievements towards accounting for these 

effects. 

1.2.2 Joined-Wing Configurations 

Among the SensorCraft concepts, the Joined-Wing configuration is of more 

interests to the researchers due to its potential advantages. It was first proposed by 

Wolkovitch[16], who suggested that this new design would lead to possible weight savings 

and some aeroelastic benefits. However, the effects of structural deformation on the 

aerodynamic and aeroelastic responses are difficult to predict. 

Livne[17] presented a comprehensive survey on the design challenges of Joined-

Wing aircraft. Therein, he presented a review of past works in Joined-Wing aeroelasticity 

and gave a qualitative discussion of their behavior in a multidisciplinary context. Much of 

the discussion in the paper dealt with structural and aeroelastic issues relating to the aft 

wing/tail. The in-plane loads due to structural deformation and changes in geometric 

stiffness may lead to non-intuitive aeroelastic behavior. Bending and twisting couplings 

of the entire structure cause natural frequencies and mode shapes to shift. The tendency 
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for buckling and divergence in the aft member is of major concern when trying to reduce 

weight. The finding of rear wing divergence to be more critical than flutter is 

counterintuitive, since the aft wing is supported at the joint. This phenomenon seems 

associated with a reduction in effective structural stiffness due to the in-plane 

compressive loads in the rear members. The geometry of the joint between forward and 

aft wings is also of importance because it plays a major role in how in-plane, bending, 

and torsion loads are transferred. For instance, a pinned joint may allow upward buckling 

of the aft wing, while a fixed rigid joint may allow the aft wing to buckle downward, 

since bending moments are transferred across the joint. Lin, Jhou and Stearman[18] have 

studied the influence of joint fixity on the aeroelastic characteristics of the Joined-Wing. 

Their results show that the fixed joint provides the best characteristics. 

Weight estimation studies of Joined-Wing aircraft have been done previously. 

The structural weight of a Joined-Wing and that of a Boeing 727 were compared by 

Samuels[19]. His conclusion is that the Joined-Wing’s structural weight is 12-22% lighter 

than that of a conventional configuration, while in Ref. [20], Gallman and Kroo conclude 

that the structural weight increases by 13% when including the buckling constraint of the 

aft wing. Therefore, Joined-Wing configurations are not guaranteed to be lighter than 

conventional ones. Research by Miura, Shyu, and Wolkovitch[21] shows that the structural 

weight of a Joined-Wing strongly depends on the geometry and the structural 

arrangement of the wing. Blair and Canfield[22] have described an integrated design 

process for generating high fidelity analytical weight estimates of Joined-Wing 

configurations. They suggest an integrated design process that can combine different 

software package, such as Nastran, PanAir, and integrate them through the Air Vehicles 

Technology Integration Environment (AVTIE), so that structures, aerodynamics and 

aeroelastic analysis are incorporated. 

Structural optimization for Joined-Wing aircraft has been done by Kroo, Gallman 

and Smith[20, 23, 24]. The wings were modeled as boxed-beams to study the effects of 

several parameters on the trimmed performance of Joined-Wing aircraft. In Ref. [23], the 

results show that the wings with similar aspect ratio joining at 60-75% of the front wing 

span are optimal for the given condition. Asymmetric material distribution leads to more 
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drag reduction than symmetric distribution. They also suggest using a fully stressed 

design method since it is computationally cheaper even though it produces a result that is 

slightly heavier and is with more direct operation cost (DOC). Roberts, Canfield and 

Blair[25] have performed the structural optimization for a Joined-Wing SensorCraft. They 

identified some critical points in a flight index and optimized the SensorCraft with 

respect to these critical points. Their results indicate the necessity of nonlinear structural 

analysis. More recently, Rasmussen, Canfield and Blair[26] have performed an optimum 

design for Joined-Wing aircraft that utilizes both structural and aerodynamic analysis. 

The Response Surface Method was employed within their scheme of design optimization. 

Different technologies, in addition to the traditional ailerons, have been included 

in structural design of Joined-Wing SensorCraft to improve their performance. Active 

aeroelastic wing (AAW)[27] technology has been applied in a Joined-Wing SensorCraft 

for the purpose of minimizing deformations of the antenna embedded in the wing skins, 

in addition to generating maneuver loads for the SensorCraft. 

Cesnik and Brown[28] have studied some aeroelastic characteristics of a Joined-

Wing aircraft with active warping actuation for maneuver load generation. The active 

warping concept has its advantage over traditional ailerons in terms of structural 

integration. However, according to the studies of Ref. [28], the wing-warping design, 

which is based on the current anisotropic piezoelectric actuators (APA) technology, 

presents a terminal roll rate that is three times smaller than the aileron concept due to 

limited actuator authority. 

Cesnik and Su[29] have extended the above work by considering the flexibility of 

the fuselage and vertical tails. Stability and roll maneuverability (using traditional aileron 

only) were compared for models with different flexibility levels. The results have shown 

that the structural coupling between the vertical tails and wings may bring significant 

complexity and changes to the aeroelastic performances. 

Meanwhile, Demasi and Livne[30] studied the effects of structural nonlinearity on 

the divergence and linearized flutter predictions of a Joined-Wing configuration. In this 

work, a nonlinear updated Lagrange formulation for the structures was used, which was 
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coupled with a linear aerodynamic model. The researchers continued their work by using 

a structural modal order reduction method to simplify the nonlinear structural problem for 

the Joined-Wing configuration[31]. Challenges in capturing the nonlinear deformation and 

internal stresses have been found when using the modal reduction. However, the 

attractive aspect of this method lies in the widespread use of modally based generalized 

aerodynamic matrices generated by established aerodynamic codes. In Ref. [32], Demasi 

and Livne presented analysis of a Joined-Wing configuration though coupled full-order 

(rather than modal-based) linear unsteady aerodynamics and full-order geometrically 

nonlinear structures. Static divergence, linear and nonlinear flutter speed, and time 

domain simulations were performed through this method. Effects of the rigidity of the 

joint and wings were discussed. 

Weishaar and Lee[33] have also studied a high aspect ratio Joined-Wing vehicle. 

Their research shows the importance of weight and c.g. location on the effect of body 

freedom flutter. In Ref. [34], a comprehensive parametric study has been carried out for 

exploring the characteristic of flutter boundaries of a Joined-Wing configuration with 

constrained and free rigid body motions. A design optimization scheme for the Joined-

Wing configuration was also discussed in this work. 

1.2.3 Flying-Wing Configurations 

As a tailless configuration, the Flying-Wing is also an unconventional aircraft. 

Northrop made important contributions[35] to the development of Flying-Wings in the 

United States. Northrop’s first Flying-Wing model, N-1M, took flight in 1940. After that, 

Northrop made more than 10 innovative designs, and the B-2 is the more recent example 

of a Flying-Wing vehicle. Other Flying-Wing concepts have been developed, such as 

AeroVironment’s Pathfinder and Helios (for atmosphere research, see Fig. 1.2), and 

Boeing/NASA’s Blended-Wing-Body (for transportation). The Blended-Wing-Body con-

figuration has been proposed as a solution for commercial transport planes[36]. The 

advantage results from a double deck cabin that extends spanwise, providing structural 

and aerodynamic overlap with the wing. This reduces the total wetted area of the airplane 
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and allows a long wing span to be achieved, since the deep and stiff center body provides 

efficient structural wingspan. 

 

Figure 1.2: Pathfinder-Plus and Helios as samples of highly flexible Flying-Wings (photo 
courtesy of NASA Dryden Flight Research Center) 

Many researchers have addressed particular issues on the analysis and design of 

Flying-Wings. Weisshaar and Ashley[37] have studied the static aeroelasticity of Flying-

Wings, including instabilities such as divergence and large twist and bending that may 

lead to loss of control effectiveness. 

Fremaux, Vairo and Whipple[38] identified some of the parameters that cause a 

Flying-Wing configuration to be capable of sustaining a tumbling motion through the use 

of dynamically scaled generic models. In their work, effects due to the change of mass 

distribution and wing sweep angle were presented. 

Esteban[39] and his coworkers have performed the static and dynamic analysis of a 

Flying-Wing. They conclude that by selecting the correct winglet parameters, such as 

leading edge sweep, taper ratio, winglet area, effective moment arm, and vertical 

coordinate of the mean aerodynamic center of the winglet, a Flying-Wing vehicle can be 

constructed so that the desired lateral stability characteristics can be achieved. 
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Mialon et al.[40] have performed aerodynamic optimization of subsonic Flying-

Wing configurations. In their work, CFD codes developed at ONERA were used for the 

analysis. Manual modifications and numerical optimization were both used during their 

design process. They also designed a new family of airfoils, which was better suited for 

their specific Flying-Wing vehicle. The importance of geometric parameters, such as the 

sweep angle at the leading edge, the aspect ratio or shape of the generated airfoils was 

investigated as well. 

Sevant, Bloor and Wilson[41] have also performed the design of a subsonic Flying-

Wing, aiming at maximum lift. The Response Surface Method was applied to solve the 

problem caused by the local minima, since the optimization problem was quite complex. 

Love et al.[42] have studied the body freedom flutter of a high aspect ratio Flying-

Wing model. Their results indicate that the body freedom flutter is an issue over lower 

altitude portions of the flight envelop and that active flutter suppression should be 

considered. 

Research about Blended-Wing-Body aircraft has been conducted with various 

focuses. Liebeck[43] discussed some challenging issues in terms of the design of Blended-

Wing-Body concepts, including the size and application commonality, design cruise 

Mach number, and flight mechanics. 

Mukhopadhyay[44] have studied structural design of a Blended-Wing-Body 

fuselage for weight reduction. In his work, he designed and analyzed different efficient 

structural concepts for pressurized fuselage design of Blended-Wing-Body type flight 

vehicles. His results indicate that efficient design of non-cylindrical pressurized structure 

is vital for non-conventional vehicles. Due to penalty of structural weight, advanced 

geometric configurations for stress balancing and composite materials are essential. 

Wakayama[45, 46] used Boeing Company’s Wing Multidisciplinary Optimization 

Design (WingMOD) code to perform Blended-Wing-Body designs. He also identified 

some challenges and promises of Blended-Wing-Body optimization[47]. 
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Ko et at.[48] performed multidiscipline design optimization of a Blended-Wing-

Body transport aircraft with distributed propulsion. In their model, a small number of 

large engines were replaced with a moderate number of small engines and part of the 

engine exhaust was ducted to exit out along the trailing edge of the wing. They also 

integrated the model describing the effects of this distributed propulsion concept into an 

MDO formulation, and exhaust designs that could increase propulsive efficiency were 

studied. 

For the SensorCraft applications, Beran et al.[49] performed static nonlinear 

aeroelastic analysis of a Blended-Wing-Body. They used a high-fidelity computational 

process to assess the contributions of aerodynamic nonlinearities to the transonic air loads 

sustained by a Blended-Wing-Body with different static aeroelastic deflections. The 

structural deflections prescribed in the nonlinear analysis were obtained from linear 

methodology. Recently, Northrop Grumann created a wind tunnel model[50] under the U.S. 

Air Force’s High Lift over Drag Active (HiLDA) Wing program to study the aeroelastic 

characteristics of Blended Wing Body for a potential SensorCraft concept. 

In 1994, NASA and members from industry initiated the Environmental Research 

Aircraft and Sensor Technology (ERAST) program aimed at developing UAV 

capabilities for long duration and very high altitude flights. AeroVironment’s Helios 

aircraft, which was a type of very flexible Flying-Wing aircraft, was one of the several 

UAVs developed under the NASA ERAST program. The accident of the Helios 

prototype[2] indicated that these long, slender Flying-Wing vehicles can be very sensitive 

to disturbance. 

In recent years, flight dynamic and aeroelastic analysis of highly flexible (Helios-

like) Flying-Wings have received special attention from researchers. It is well established 

that the deformation of these vehicles is dependent on both the mission profile and 

operating conditions. Under certain operating conditions, the aircraft’s deformed shape 

can be significantly different from its undeformed one. In this case, the aeroelastic 

analysis must be based on the actual trimmed conditions. The large local angle of attack 

and dihedral angle associated with the large deformations may cause vehicle instability 



13 

under disturbances or gust loads. Therefore, the dynamic response of highly flexible 

Flying-Wing vehicles considering different nonlinear effects is still an open problem. 

Patil and Hodges[51] have studied the flight dynamics of a Flying-Wing. Due to 

the high flexibility of the configuration, the vehicle undergoes large deformation at its 

trimmed condition when fully loaded. According to their study, the flight dynamic 

characteristics of the deformed vehicle under heavy payload conditions presents unstable 

phugoid mode. The classical short-period mode does not exist. In this work, the nonlinear 

time-marching simulation was performed with no stall effects, and no other simulation 

other than the response to aileron perturbation was presented. 

Su and Cesnik[52] have considered stall effects through simplified static behavior 

of lift and pitching moment after some critical angle of attack. An asymmetric distributed 

gust model was applied to the time domain simulations to learn the behaviors of the 

Flying-Wing configuration under such perturbations. Bilinear torsional stiffness changes 

due to wrinkling of the skin were addressed as well. 

From the other point of view, analysis of linear gust responses for a Flying-Wing 

vehicle has been presented by Patil and Taylor[53], where the responses with continuous 

gust were solved in frequency domain. Continuing with this work, Patil[54] has also 

studied the nonlinear gust responses of the Flying-Wing vehicle in the time domain. 

Wang et al.[55] have studied a Flying-Wing using a geometrically exact beam 

model coupled with an unsteady vortex lattice aerodynamic model. Critical instabilities 

were identified under some flow conditions. 

1.2.4 Simulation of Gust Responses 

Gusts are random in nature. They can affect different aspects of the aircraft’s 

operation, such as its dynamic loads, flight stability and safety, and controls[56]. In a high-

fidelity analysis, a random gust is represented by a continuous model. However, discrete 

gust models are also used due to their simplicity (also mandated by FAR). The main 

difference between the continuous and discrete gust analysis is that the former is 
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statistical while the latter is deterministic[57]. The simplest gust model is based on one 

single discrete gust, such as “one-minus-cosine” gust speed profile disturbing the 

airplane’s plunging motion. Statistical discrete gust (SDG) was developed more recently. 

For example, Lee and Lan[58] used experimental nonlinear unsteady aerodynamics to 

determine the maximum aircraft response to random gusts. In their investigation, the gust 

model is characterized by von Karman’s power spectral density (PSD) function. They 

also used linear aerodynamic loads, for the purpose of comparison. The results show that 

the more realistic nonlinear unsteady aerodynamic model produces at least 50-60% 

higher maximum lift response than the linear model. 

1.2.5 Nonlinear Aeroelastic Simulation Environment 

From the previous review, it is evident that a geometrically nonlinear beam 

formulation is required for the structural modeling of HALE vehicles. In practice, 

geometric nonlinearity has become one focus of investigations of slender structures, and 

many kinematic relationships for nonlinear beams have been developed. Moreover, to 

accurately model the nonlinear effects of HALE vehicles, one may need a framework 

with nonlinear beam formulation coupled with aerodynamics. 

In the process of analyzing a three-dimensional beam, a one-dimensional analysis 

is used along with a two-dimensional analysis that determines the cross-sectional 

properties. One can find many theories that address the two-dimensional cross-sectional 

analysis. Successive contributions can be found, including prismatic beams[59], beams 

with initial curvature and twist[60], beams with non-perpendicular cross-sectional 

planes[61], beams with arbitrary deformation modes[62], beams with transverse shear 

effects[63, 64], and more recently, thin-walled beams[65], general beams[66] and active 

materials embedded in beams[67], where Ref. [67] is the implementation of the 

Variational-Asymptotic Beam Sectional (VABS) analysis method discussed in Ref. [68]. 

In one-dimensional beam analysis, MSC.Nastran[69], which is a displacement-

based commercial finite element solver, has been enhanced to model the nonlinearities of 

the structures, including geometric nonlinearities, material nonlinearities, and contact 
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problems. For beams undergoing large rotations, such that nonlinear terms in curvature 

expressions are no longer negligible, the updated Lagrange formulation is employed. 

A nonlinear intrinsic formulation for the dynamics of beams with initial 

curvatures has been presented by Hodges[70], and implemented in Ref. [71]. This beam 

theory is characterized by mixed-form formulations, where displacements and strains are 

both considered as independent variables. Ref. [72] has applied this formulation for the 

time-domain analysis of slender rotors. In Ref. [73], computational schemes for the 

dynamics of a nonlinear elastic system have been presented. This scheme is based on 

time-discontinuous Galerkin approximations. High-frequency numerical dissipation is 

also obtained in this scheme. 

More recently, Patil et al.[9, 10] have developed a formulation for the complete 

modeling of a HALE type vehicle. As discussed before, nonlinear wing deformation has 

been identified as the driving reason that brings significant change in flight dynamic and 

aeroelastic characteristics of the wing and the whole vehicle. 

Palacios and Cesnik[67, 74, 75, 76, 77] have developed an analysis framework based on 

mixed-form beam theory, which can model slender beams with embedded piezoelectric 

materials. The low-order formulation can provide high accuracy for the modeling, design, 

and analysis of active slender structures. 

Displacement-based or mixed-form beam theories may be used for different 

applications with different emphasis. One aspect that should be considered during the 

structural analysis is the compatibility of the selected formulation. Currently, analysis 

always includes multiple disciplines, including structures, control, and aerodynamics. It 

will be more convenient if the theory selected for structural modeling and analysis may 

facilitate the analysis of controls and aerodynamics. It is natural that a strain-based 

formulation is preferred since strains are the variable that can be measured by the strain 

gauges in control study. In addition to this advantage, a strain-based formulation will 

show great computational efficiency, since the degrees of freedom are reduced compared 

to the displacement-based or mixed-form formulations. In view of the above, a low-order, 
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strained based beam theory is necessary to be developed to model the nonlinear behavior 

of slender structures and facilitate control studies. 

A strain-based beam formulation was originally developed by Cesnik and 

Brown[28, 78, 79] for the modeling of highly flexible aircraft with embedded active 

materials. In those works, the aircraft’s high-aspect-ratio wings were modeled as slender 

beams, whereas the fuselage was treated as a rigid body. The two-dimensional finite state 

inflow theory from Peters et al.[80, 81] was used for unsteady aerodynamic modeling. An 

explicit integration method was implemented for the time marching solutions. 

Following the initial contribution on the strain-based framework, Cesnik and Su[29, 

82] have introduced flexibility of fuselage and vertical tails to the analysis. A split beam 

formulation was developed, to gain the capability of required modeling and analysis. 

Stability and maneuverability characteristics were studied for the fully flexible vehicles. 

Su and Cesnik[52] have also studied the dynamic responses of a highly flexible Flying-

Wing by incorporating a discrete gust model. Shearer and Cesnik[15, 83, 84] completed the 

flight dynamic equations and updated the integration scheme with an implicit modified 

Newmark Method, which can provide long term numerical integration stability, 

compared to the previous explicit method. Nonlinear trajectory control schemes were 

developed for trajectory control of highly flexible aircraft. 

1.3 Outline of this Dissertation 

This dissertation will present the completed theoretical development in the strain-

based aeroelastic analysis framework. Improvement to the modeling and analyzing 

capability of the framework will be demonstrated with numerical studies. Nonlinear 

aeroelastic and flight dynamic characteristics will be explored and discussed for different 

highly flexible aircraft configurations. 

Chapter II introduces the nonlinear differential equations for the coupled 

aeroelastic and flight dynamic systems. The three-dimensional beam deformations are 

represented by strain-based beam elements. Two-dimensional finite state inflow unsteady 
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aerodynamics couples with nonlinear beams. More general kinematic relationships are 

developed to model the split beam system as well as the single beam system. To handle 

the absolute and relative nodal displacement constraints, a formulation is developed 

utilizing the variation of energy functional, where the constraints are introduced into the 

functional through Lagrange Multipliers. The system’s partial differential equations are 

then augmented with a set of algebraic equations. Formulations for modeling some other 

nonlinear aspects are also developed, such as follower loading cases and bilinear stiffness. 

After that, a discrete gust model is introduced for simulation of gust response. 

Chapter III gives the overview of the implemented numerical analysis framework 

– The University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST). 

Contributions from different researchers are summarized. A block diagram is presented to 

exemplify the main functions of the framework. Details on model initialization, static and 

dynamic simulations, and stability analysis are introduced. This chapter will be able to 

provide a break-in point for the user to understand and use the code. 

Chapter IV presents the numerical verification of the newly developed structural 

and aeroelastic formulations. The enhanced structural modeling capabilities are first 

evaluated for accuracy. In doing so, different beam configurations are created and tested 

with static and dynamic loading cases. Comparisons are made between current results 

and those from the commercial finite element software MSC.Nastran. As for the 

aerodynamic formulations, the current linear flutter analysis implementation is first 

compared with the previous published results, to verify the consistency between the 

current and previous UM/NAST implementations. The new implementation of nonlinear 

flutter formulations for both constrained and free flight vehicles are then verified through 

the time domain simulation within UM/NAST. 

Chapter V presents the numerical analysis results. Four baseline aircraft models 

are introduced. The numerical studies are carried out in both time and frequency domains. 

Stability analysis, roll responses, and gust responses of different types of vehicles are 

presented. 
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Finally, Chapter VI presents the concluding remarks from the numerical studies 

and the key contributions of this work. Recommendations for the future work are made in 

terms of structural and aerodynamic modeling capability, analysis capability, and 

computational efficiency and accuracy of the strain-based aeroelastic analysis framework. 
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CHAPTER II 

Theoretical Formulation 

 

 

This chapter begins with a brief review of the aircraft modeling in previous work 

and brings out the new requirements of fully flexible aircraft. The strain-based beam 

formulation used in the previous work is introduced and then enhanced to meet the 

requirements. The elastic equations of motion are derived by applying the energy 

methods (the Principle of Virtual Work and variation of energy functional). A distributed 

beam system, used for representing the fully flexible aircraft, is modeled by introducing 

new kinematic relationships. The Lagrange Multiplier Method is applied for modeling of 

additional nodal displacement constraints. The large three-dimensional deformations of 

slender beams are then governed by a set of differential-algebraic equations. With this 

formulation, arbitrary fully flexible vehicles can be modeled. Quaternions are used to 

represent the spatial orientation of the vehicle. The equations of aerodynamics are 

introduced to complete the aeroelastic equations of motion for the vehicle. The nonlinear 

equations of motion are linearized to facilitate the stability analysis. Lastly, formulations 

for bilinear stiffness, simplified stall models, and discrete gust models are introduced. 

2.1 Overview: Modeling of Fully Highly Flexible Aircraft 

In previous work, complete vehicles have been modeled such that various 

nonlinear aeroelastic analyses, including the effects of large wing deformations, the 

impact of wing flexibility on the vehicle stability, and nonlinear control studies could be 
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performed. In those studies, the long, slender wings and horizontal tails were modeled as 

nonlinear beams, which may have dihedral, sweep, and prescribed deformations. A finite 

state unsteady aerodynamic model is incorporated to complete the aeroelastic system 

equations, which can represent the aerodynamic forces and moments on those lifting 

surfaces undergoing large deformations. Figure 2.1 describes a typical modeling scheme 

of a highly flexible vehicle. 

 

Figure 2.1: Modeling scheme of a highly flexible vehicle 

The above representation neglects the impacts of flexibility of the fuselage and 

vertical tail, which is acceptable for most types of vehicles. However, this is not the case 

for the Joined-Wing configuration, whose front and aft wings are structurally coupled 

with the vertical tail and fuselage, as described in Fig. 2.2. 

 

Figure 2.2: Example of a Joined-Wing aircraft 
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To model a fully flexible aircraft, the fuselage and the vertical tail are both 

modeled as slender beams, similar to the wings. Assume the beam reference line starts 

from one reference point on the fuselage, as shown in Fig. 2.3, it will split at the root of 

the wings and go to the different directions following the wing span. Therefore, it is 

necessary to build such a split beam system that may model the connection at the roots of 

the wings to the fuselage and similar situations. This modeling capability is achieved by 

modifying the kinematic relationships as will be described in details below. 

By

Bz

Bx
O

Split

Split

Joint

Joint

Split Reference 
Point

 

Figure 2.3: Aircraft with beam reference line representations 

For Joined-Wing configurations, the connections between front and aft wings also 

need some special treatment. As will be detailed later, the finite element formulations are 

strain-based, where the beam extension strain and bending/twist curvatures are 

independent degrees of freedom. Therefore, at the joint location, an approach is necessary 

to impose translational and rotational displacement constraints that are compatible with 

the strain formulations. In previous work[79], this problem was solved by using the 

Penalty Method. However, the introducing of a large penalty number makes the system 

matrices ill-conditioned, which may result in numerical instability and difficulty in 

solving eigenvalue problems. In current work, the Lagrange Multiplier Method will be 

applied to model the additional constraints, which gives quite good modeling capability 

and numerical stability. 

Engine thrust is required to balance drag forces. Assume engines are rigidly 

mounted to one point on beam structures (wings or fuselage), the engine loads may keep 
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their relative direction unchanged with respect to the mounting point. Due to their 

flexibility, the wings or fuselage may undergo large deformations at operating conditions. 

Therefore, the engine loads are essentially follower loads, instead of dead loads. This 

type of nonlinear loading is appropriately modeled in the current work. 

 

Figure 2.4: Rigid engine unit attached to elastic wing 

 

Figure 2.5: Closeup of the Helios prototype showing the wing structure (photo courtesy 
of NASA Dryden Flight Research Center) 

One particular aspect that can potentially bring some interesting nonlinear effects 

is associated with the wrinkling of the wing skin for highly flexible Flying-Wings (e.g., 
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the Helios Prototype). As shown in Fig. 2.5, to achieve very light constructions, typical 

wing structure of such vehicles is composed of a main (circular) spar with ribs attached to 

it along specific span stations. A very light and thin film is used to close the airfoil and 

provide the desired airfoil shape. The resulting structure can be represented by a closed 

cell beam section. Significant torsional stiffness comes from the presence of the skin. 

However, during large bending deformations, the skin may be un-stretched and wrinkle. 

The local torsional stiffness will drop as a result of the skin wrinkling. Once the bending 

curvature is reduced, the skin is stretched again and the original configuration may be 

recovered. This additional nonlinear effect can alter the vehicle aeroelastic response 

during flight. A bilinear stiffness model is introduced for this analysis. 

2.2 Elastic System Equations of Motion 

The equations of motion for the highly flexible beams are derived through energy 

methods: the Principle of Virtual Work and variation of energy functional. Rigid body 

equations are coupled with the elastic equations. Due to the nature of the objectives of 

this formulation, the modeling and analysis of a three-dimensional beam structure is 

decomposed as a combination of two-dimensional cross-sectional analysis and one-

dimensional beam analysis. The discussion of cross-sectional analysis is not included in 

this dissertation. It can be accomplished through any cross-sectional analysis code 

package, such as VABS[68]. The results from two-dimensional analysis – cross-sectional 

inertias and rigidities – are fed into the one-dimensional beam analysis. With the 

formulation, the structures are modeled with fully coupled three-dimensional extensional, 

twisting, and bending deformations. 

2.2.1 Fundamental Descriptions 

As shown in Fig. 2.6, a global (inertial) frame G  is defined, which is fixed on the 

ground. A body frame B  is built in the global frame to describe the vehicle position and 

orientation, with xB  pointing to the right wing, yB  pointing forward, and zB  being cross 

product of xB  and yB . The position and orientation of the B  frame can be defined as 
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Figure 2.6: Global and Body reference frames 
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where Bp  and Bθ  are body position and orientation, both resolved in the body frame. The 

corresponding body velocity and acceleration are given as 
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 (2.2) 

Note that the origin of the body frame does not have to be the location of the vehicle’s 

center of gravity. 

As described in Fig. 2.7, a local beam frame ( w ) is built within the body frame, 

which is used to define the position and orientation of each node along the beam 

reference line. xw , yw , and zw  are base vectors of the beam frame, whose directions are 

pointing along the beam reference axis, toward the leading edge, and normal to the beam 

surface, respectively, resolved in the body frame. 
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Figure 2.7: Basic beam reference frames 

To facilitate the modeling process, another auxiliary reference frame (b ) is also 

defined at each node. This frame is aligned with the body frame upon initialization. 

However, it may undergo both translational and rotational displacements due to beam 

deformations and rigid body motions. The b frame is useful for modeling rigid units 

attached to elastic members and relative nodal displacement constraints, which will be 

discussed in following sections. 

To model the elastic deformation of slender beams, a new nonlinear beam 

element is developed. Each of the elements has three nodes and four degrees of freedom, 

which are extension, twist, and two bending strains of the beam reference line. This beam 

formulation described in this current work is named as strain-based formulation. Figure 

2.8 exemplifies the deformations of constant-strain elements. 
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Figure 2.8: Deformations of constant-strain elements 

The strain vector of an element can be denoted as ε , with the component of 

 
T

x x y zε ε κ κ κ⎡ ⎤= ⎣ ⎦  (2.3) 

where xε  is the extensional strain. xκ , yκ , and zκ  are twist of the beam reference line, 

bending about local yw  axis, and bending about local zw  axis, respectively.  

The absolute position of a beam reference node is obtained by the following 

vector summation (refer to Fig. 2.7) 

 ( ) ( )B ws s= +p p p  (2.4) 

where Bp  is the vector representing the position of the body frame as introduced in Eq. 

(2.1), wp  is the vector representing the position of the local beam frame with respect to 

the body frame, which is a function of the beam coordinate s . 

The absolution position and orientation of a beam node can be determined by a 

12-by-1 matrix. 

 ( ) ( ) ( ) ( ) ( )T T T T T
x y zh s p s w s w s w s⎡ ⎤= ⎣ ⎦  (2.5) 

In some cases, the nodal position and orientation information within the body frame is 

also necessary, which is 

 ( ) ( ) ( ) ( ) ( )T T T T T
r w x y zh s p s w s w s w s⎡ ⎤= ⎣ ⎦  (2.6) 

It is easy to see that rh  is the displacement vector due to wing deformations, while h  

differs rh  with the position of the body reference frame. 
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Due to the nature of the strain-based formulation, the governing equations to be 

derived will solve for the curvatures of the beam reference line ( ε ) directly. The 

positions and rotations ( h  and rh ) are dependent variables, which can be recovered from 

curvatures through kinematic relationships (see Section 2.3). 

With the elastic and rigid body degrees of freedom defined, the complete 

independent variables of the strain-based formulation are as follows 

 , ,B B B

B B B

q p q v q v
b

ε ε ε
ε ε ε

β β
θ ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.7) 

The derivative and variation dependent variable h  and rh  are related with those 

of the independent ones. 

 h hb r hh J J b h Jε εδ δε δ δ δε= + =  (2.8) 

 h hb r hdh J d J db dh J dε εε ε= + =  (2.9) 

 h hb h hb r hh J J b J J h Jε ε εε ε β ε= + = + =  (2.10) 

 h h hb hb r h hh J J J J h J Jε ε ε εε ε β β ε ε= + + + = +  (2.11) 

where 

 h hb
h hJ J

bε ε
∂ ∂

= =
∂ ∂

 (2.12) 

which are Jacobians obtained from kinematics[15, 79]. 

2.2.2 Internal Virtual Work 

Internal virtual work includes the contributions of inertia forces, internal strains 

and strain rates. For a complete vehicle, it may consist of both elastic members and rigid 

bodies (rigid fuselage and rigid non-structural inertia units attached to the elastic 
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members). The corresponding inertial virtual work is derived individually. All the above 

virtual work will need to be summated to represent the total internal virtual work of a 

complete vehicle. 

Rigid Fuselage 

As described in Fig. 2.9, the position of the rigid fuselage’s center of mass point is 

given as 

 
cmcm B r= +p p p  (2.13) 

Note that Bp  and 
cmrp  are both resolved within the body frame ( B ). With the above 

definition, the velocity and acceleration of the center of mass are 

 ( )
cm

cm cm

cm B B r

cm B B r B B B r

= + ×

= + × + × + ×

v v ω p

a v ω p ω v ω p
 (2.14) 

The acceleration of origin point of the B  frame is obtained by letting 
cmrp  to be zero. 

 B B B B= + ×a v ω v  (2.15) 
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Figure 2.9: Rigid fuselage reference frames 
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Therefore, the virtual work applied on the rigid fuselage is 

 
( )

( ) ( )
cm

F ext
RB B B cm RB

M ext
RB B B B r B B RB

W m

dW m
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δ δ

δ δ

= ⋅ − +
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p a F

θ I ω p a M
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where ext
RBF  and ext

RBM  are external forces and moments about the origin point of the B  

frame. BI is the moment of inertia tensor about the origin point of the B  frame, which 

can be derived from the moment of inertia about the center of mass. 

 ( )cm cm cm cmB cm B r r r rm ⎡ ⎤= + ⋅ − ⊗⎣ ⎦I I p p I p p  (2.17) 

Substitute Eqs. (2.14) and (2.15) into (2.16), it yields 
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For two vectors defined in three-dimensional space, one can rewrite a cross 

product between those two vectors in terms of pure matrix multiplication as the product 

of a skew-symmetric matrix and a vector: 
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where 
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⎢ ⎥ ⎢ ⎥≡ − ≡⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (2.20) 

With the above notations, Eq. (2.18) can be written into matrix form 
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( )

ext
B BT T RB

RB B B RB RB ext
B B RB

T ext
RB RB RB

v v F
W p M C

M

b M C R

δ δ δθ
ω ω

δ β β

⎧ ⎫⎡ ⎤⎡ ⎤ ⎡ ⎤⎪ ⎪⎡ ⎤= − − +⎨ ⎬⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

= − − +

 (2.21) 

where 

, ,cm cm

cm cm

T T ext
B B r B B B B r ext RB

RB RB RB ext
RBB r B B r B B B

m I m p m m p F
M C R

Mm p I m p I

ω ω

ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.22) 

Elastic Members 

Refer to Fig. 2.7, the location of an arbitrary point ( a ) on the beam cross-section 

can be written as: 

 a B w x y zx y z= + + + +p p p w w w  (2.23) 

where constant [ ]x y z  is the position of  the point in the local beam frame ( w ). Note 

that the wing cross-section is assumed to maintain its shape while undergoing translations 

and rotations. ap  may also be written as offsets from either the B  frame or the w  frame, 

which becomes 

 a B r x y zx y z= + = + + +p p p p w w w  (2.24) 

where 

 ,r w x y z B wx y z= + + + = +p p w w w p p p  (2.25) 

With the above relationships, the velocity and acceleration of the arbitrary point 

can be written as follows 

 ( )
( )

a B r B r

a B r B r B r B B r B r

B r B r B B r B r

= + + ×

= + + × + × + × + + ×

= + × + × + × + + ×

v p p ω p
a p p ω p ω p ω p p ω p

p ω p ω p ω p p ω p

 (2.26) 

Substitute Eqs. (2.23) to (2.25) into Eq. (2.26), the velocity and acceleration become 
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( )
( )

( )
( )2

a x y z B w x y z

a x y z B w x y z

B B B w x y z

B w x y z

x y z x y z

x y z x y z

x y z

x y z

= + + + + × + + +

= + + + + × + + +

⎡ ⎤+ × + × + + +⎣ ⎦

+ × + + +

v p w w w ω p w w w

a p w w w ω p w w w

ω p ω p w w w

ω p w w w

 (2.27) 

Note that the last term in the acceleration equation reflects the Coriolis effect. The 

infinitesimal virtual work applied on a unit volume is 

 ( )a a aW dAdsδ δ ρ= ⋅ −p a  (2.28) 

where 

 a x y zx y zδ δ δ δ δ= + + +p p w w w  (2.29) 

Substitute Eqs. (2.27) and (2.29) into Eq. (2.28), it yields 

 

( )
( ){

( )
( )}2

a x y z

x y z B w x y z

B B B w x y z

B w x y z

W x y z

x y z x y z

x y z

x y z dAds

δ δ δ δ δ

ρ

= − + + + ⋅

+ + + + × + + +

⎡ ⎤+ × + × + + +⎣ ⎦

+ × + + +

p w w w

p w w w ω p w w w

ω p ω p w w w

ω p w w w

 (2.30) 

The virtual work done by the inertia force along the beam coordinate s  can be obtained 

by integrating Eq. (2.30) over each cross-section, which yields 

 

( ) ( )
( ) 0 ( )

( ) ( ) ( ) ( )
( ) 0 ( )
( ) 0 ( )

0 0 0 ( )
0 0 0 0 ( )

( )
0 0 0 0 ( )
0 0 0 0 ( )
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w w

T
xint T x

T
y y

T
z z

T
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T
B x

T
B y
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w s

M s
w s
w s

δ δ β

ω
ω

ω
ω

⎧ ⎡ ⎤⎡ ⎤
⎪ ⎢ ⎥⎢ ⎥
⎪ ⎢ ⎥⎢ ⎥= − +⎨ ⎢ ⎥⎢ ⎥⎪ ⎢ ⎥⎢ ⎥⎪ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩

⎡⎡ ⎤
⎢⎢ ⎥
⎢⎢ ⎥+
⎢⎢ ⎥
⎢⎢ ⎥
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0 ( )

2 ( )
0 ( )
0 ( )

T
w
T
x
T
y
T
z

p s
w s

M s
w s
w s

β β

⎫⎡ ⎤⎤
⎪⎢ ⎥⎥
⎪⎢ ⎥⎥ + ⎬⎢ ⎥⎥ ⎪⎢ ⎥⎥ ⎪⎥ ⎢ ⎥⎦ ⎣ ⎦ ⎭

 (2.31) 

where 
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 ( )

( )

( )

2

2
( )

2

1

( )

2

2

2

A s

x y z

yy zz xx
x xy xz

zz xx yy
y yx yz

xx yy zz
z zx zy

x y z
x x xy xz

M s dA
y yx y yz
z zx zy z

m mr mr mr

I I I
mr I I

I I I
mr I I

I I I
mr I I

ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥

+ −⎢ ⎥
⎢ ⎥
⎢ ⎥

= + −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ −
⎢ ⎥
⎣ ⎦

∫

 (2.32) 

m  is the mass per unit span at each cross-section. x y zr r r⎡ ⎤⎣ ⎦  is the position of the 

center of mass of the cross-section in the w frame. ijI  are cross-sectional inertial 

properties. 

In Eq. (2.31), ( ) ( ) ( ) ( )
T

w x y zp s w s w s w s⎡ ⎤⎣ ⎦  is the second time derivative of 

( )rh s  in Eq (2.6). It can be written in terms of the second time derivative independent 

variables using Eq. (2.11). In addition, the following relations are defined 

0 0 0( ) ( )0 ( )
0 0 00 ( ) 0 ( )0 ( )

, ,
0 0 00 ( ) 0 ( )0 ( )
0 0 00 ( ) 0 ( )0 ( )

T TT
Bw ww

T TT
Bx xx

hb hb hbT TT
By yy

T TT
Bz zz

I p s I p sp s
w s w sw s

J J H
w s w sw s
w s w sw s

ω
ω

ω
ω

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥≡ ≡ ≡
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.33) 

With the above definitions, Eq. (2.31) can be simplified to 

 

( )( ) ( )
( ) ( )

( ) ( )

( ) ( )( ) 0 0 ( )
( ) 0 0 ( )

0 2 ( )
0 2

T T
int T T h h h hb

T T
hb h hb hb

T T
h h h hb
T T
hb h hb hb

T
h hb

hb

sJ M s J J M s J
W s s b

J M s J J M s J

s sJ M s J J M s H
J M s J J M s H

J M s J
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ε ε ε

ε

ε ε ε

ε

ε

ε
δ δε δ

β

ε ε
β β

⎧⎡ ⎤ ⎡ ⎤⎪⎡ ⎤= − ⎨⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪⎣ ⎦⎩
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

+
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( )T
hb

s
M s J

ε
β

⎫⎡ ⎤ ⎡ ⎤⎪
⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦⎪⎣ ⎦ ⎭

 (2.34) 
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Figure 2.10: Reference frame for rigid bodies attached to elastic members 

 

Rigid Units Attached to Elastic Members 

The rigid units discussed here refer to engines or any other nonstructural masses 

attached to elastic members. Those units undergo only rigid body motions due to elastic 

member’s deformation and vehicle’s rigid body motion. For the case of engines, the 

modeling of a rigid unit consists of both inertias and thrust forces. This section only 

discusses the modeling of inertias. The modeling of engine loads is to be introduced in 

Section 2.2.3. 

The derivation of the virtual work on discrete rigid units is quite similar to the 

process described for the elastic members, while the reference frame is b (see Fig. 2.10), 

instead of w. The virtual work done by inertia forces on each discrete rigid unit is derived 

as 
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0 0 0 0 0
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⎪⎥
⎪⎥ ⎪

⎥ ⎬
⎢ ⎥ ⎪
⎢ ⎥ ⎪
⎢ ⎥ ⎪⎦ ⎭

 (2.35) 

where 

 ( )Tb T T T T
x y zh p b b b⎡ ⎤= ⎣ ⎦  (2.36) 

 
2

2

2

cg cg cg

cg cg cg

cg cg cg

rb rb x rb y rb z

rb x xx rb x xy rb x y xz rb x z

rb
rb y yx rb y x yy rb y yz rb y z
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m m cg m cg m cg
m cg I m cg I m cg cg I m cg cg

M m cg I m cg cg I m cg I m cg cg

m cg I m cg cg I m cg cg I m cg

⎡ ⎤
⎢ ⎥+ + +⎢ ⎥

= ⎢ ⎥+ + +
⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 (2.37) 

rbm  is the mass of discrete rigid body units. x y zcg cg cg⎡ ⎤⎣ ⎦  is the position of the 

center of mass of the rigid body unit in the b  frame. 

The displacements resolved in the b  frames can be transformed to the w  frame 

through the transformation matrix 

 b bwh D h=  (2.38) 

and 

0 0
00 0 0

, ,
0 00 0
0 00 0

TT T Tbbb w w w
TT T T
xxx xbw bw bwx x

T TT T
y y y yy y

TT Tz z zz z

pI pp p I p p
bbb w w w

D D D
b w w wb b
b w w wb b

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
T
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.39) 
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where bwD contains direction cosines at each node. Following the same procedure when 

dealing with the inertia virtual work of elastic members, Eq (2.35) can be written as 
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⎡ ⎤
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⎫⎡ ⎤
⎡ ⎤⎪⎢ ⎥+ ⎬⎢ ⎥⎢ ⎥ ⎣ ⎦⎪⎢ ⎥⎣ ⎦ ⎭

 (2.40) 

Eq. (2.40) has a very similar form as Eq. (2.34), except that ( )M s  in Eq. (2.34) is 

replaced with ( )Tbw bw
rbD M D . However, Eq. (2.40) is no longer a continuous function of 

beam reference coordinate s , since it has only discrete values at locations where rigid 

masses are attached. 

Internal Strain and Strain Rate 

The virtual work due to the internal strain is 

 ( )( ) ( ) ( ) ( ) ( )int T 0W s s k s s sδ δε ε ε= − −  (2.41) 

where ( )ini sε  is the initial strain upon beam initialization. 

Internal damping is added to the formulation to accurately model the actual 

behavior of the beams. A stiffness proportional damping is used in current formulation 

 ( ) ( )c s k sα=  (2.42) 

Thus, the virtual work due to strain rate is 

 ( ) ( ) ( ) ( )int TW s s c s sδ δε ε= −  (2.43) 

 



36 

Internal Virtual Work on Elements 

To obtain the total internal virtual on an element, one needs firstly to summarize 

Eqs. (2.34), (2.40), (2.41), and (2.43), and then integrate the summation over the length 

of each element. In practice, the integration is performed numerically. 

As mentioned before, a three-node element is used in the current implementation. 

It is assumed that the strain over an element is constant. Some of the properties, such as 

inertias and displacements, are assumed to vary linearly between the nodes of an element. 

However, the cross-section stiffness and damping ( ( )k s  and ( )c s ) are evaluated at the 

middle of each element, and are assumed to be constant over the length of the elements. 

Using these assumptions, an element internal virtual work can be written as 
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e e T T
hb e h hb e hb
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 (2.44) 

where 
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1 1 1 1 1 1 1 1
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⎢ ⎥= Δ + + + +⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥⎣ ⎦

 (2.45) 

iM  in the above equation are cross-sectional inertia properties at each node of an element, 

which consists of both Eqs. (2.32) and (2.37), in case rigid body masses is modeled. 
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2.2.3 External Virtual Work 

In general, the external virtual work applied on a differential volume can be 

written as 

 ( , , ) ( , , )ext

V

W x y z x y z dVδ δ= ⋅∫ u f  (2.46) 

where ( , , )x y zf  represents generalized forces acting on a differential volume, which may 

include gravity forces, external distributed forces and moments, external point forces and 

moments, etc. ( , , )x y zδu  is the corresponding virtual displacement. When beam cross-

sectional properties are known, the integration of Eq. (2.46) over the volume is simplified 

as integration over the beam coordinate. The detailed derivation of the external work is 

listed in Ref [79]. The equations are listed here for reference purpose. 

Gravity 

Following the similar approach as obtaining the virtual work of inertial forces, the 

virtual work of gravity force acting on a differential volume is given as 

 2 aW dAdsδ δ ρ= ⋅p g  (2.47) 

where g  is the gravity acceleration vector, resolved in the B  frame. Integrate this 

equation over the cross-section, and it yields the virtual work on a differential beam 

section due to gravity force 

 ( ) ( ) ( )ext TW s h s N s gdsδ δ=  (2.48) 

( )N s  is related with the mass moment of inertia of the cross section, given as 
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∫  (2.49) 
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The total virtual work due to gravity force on an element is obtained by integrating Eq. 

(2.48) over the element length, and given by 
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where 
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 (2.51) 

Distributed Force 
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Distributed Moment 
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Point Force 
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Point Moment 
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In the above equations, eN , F
eB , and M

eB  are influence matrices, coming from 

numerical integrations. hJ ε , pJ ε , Jθε , hbJ , pbJ , and bJθ  are Jacobians relating the 



39 

fundamental displacements and rotations ( h , p , and θ ) to the independent variables (ε  

and b ). 

To model the engine thrust, the loads are defined within the b  frame. Since the b  

frame may undergo three-dimensional displacements and rotations with the wing 

deformations, the loads defined in this frame are follower loads. There is necessity to 

rotate the loads from their local frames to the B  frame, which is written as 

 B Bb bC=F F  (2.56) 

where 

 Bb
x y zC b b b⎡ ⎤= ⎣ ⎦  (2.57) 

which should be updated at each solution iteration according to the current deformation. 

This formulation is not limited to thrust loads, since it is applicable for any follower 

distributed and concentrated loads. However, one may note that no dynamic effects, such 

as gyroscopic effects, are considered in the current formulation. 

2.2.4 Elastic Equations of Motion 

The total virtual work on the system is obtained by summation of all elements’ 

internal and external work, and the contribution from rigid fuselage, if exists. 
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ε ε
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β β

ε ε
β β

= + +

⎧ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎪⎡ ⎤= − −⎨ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎣ ⎦⎣ ⎦⎩
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

− − −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

∑

0 00 0
00 0 0 0

hb

0
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RB RB

T TT T T
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T TT T T
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MJ
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C b R

J JJ J J
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J JJ J J
ε εε θε θε

θ θ

ε
β

ε ε ε ε
β β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

− − − + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + + + +⎢ ⎥ ⎢ ⎥ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎪

⎪⎭

 (2.58) 
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The equations of motion can be obtained by letting the total virtual work to be zero. Since 

the variation [ ]bδε δ  is arbitrary, the elastic system equations of motion are derived as. 

 
0

0 0
FF FB FF FB FFF

BF BB BF BB B

M M C C RK
M M C C Rb

ε ε ε
β β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (2.59) 

where 

( ) ( )

( ) ( )

( , , ) ( , , ) 2

( , , ) ( , , ) 2

T T
FF h h FB h hb

T T
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M J MJ M J MJ M

C C J MJ C J MH J MJ

C J MJ C J MH J MJ C
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R K
R R

ε ε ε

ε

ε ε ε ε

ε

ε ε

ε ε

ε ε β ε ε β

ε ε β ε ε β

ε

= =

= = +

= + = +

= = + +
=

⎡ ⎤
=⎢ ⎥

⎣ ⎦

T TT T T
p pdist dist pt pth

F MT TT T Tt
pb pbhb b b

J JJ J J
Ng B F B M F M

J JJ J J
ε εε θε θε

θ θ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
+ + + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.60) 

2.2.5 Skin Wrinkling: Stiffness Nonlinearity 

As discussed, for a typical highly flexible Flying-Wing construction, significant 

torsional stiffness comes from the presence of the stretched thin skin (Fig. 2.5). During 

large bending deformations the skin may wrinkle. The unstreched skin causes the local 

torsional stiffness to drop. However, when the bending deformation is reduced and the 

wing skin is stretched again, the torsional stiffness is recovered. This effect is represented 

with a bilinear response as shown in Fig. 2.11. To model it, a switch is set up such that 

once the bending curvature increases to a predefined threshold value, the torsional 

stiffness is reduced. However, this reduction is not permanent. When the bending 

curvature falls back to being smaller than that threshold, the original torsional stiffness is 

recovered. 

The most important issue for the modeling of this bilinear stiffness is to search for 

the time when the state (bending curvature) reaches the critical value (threshold value), 

which is denoted in Fig. 2.12 as swt . Hénon[85] proposed a method to determine the exact 

time when the threshold is reached and the corresponding value of all states at that point. 
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It has been used in previous work[86] successfully. However, its implementation within 

the current work was shown to be difficult. Although the threshold strain could be 

determined accurately, threshold strain rates had unreasonable estimates. 

Bending 
Curvature

Torsional 
Stiffness

 

Figure 2.11: Bilinear characteristics of the wing torsional stiffness 

A

B
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i 1t − it i 1t +swt
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ε
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Figure 2.12: Switching of system properties during time integration 

An alternate approach adopted for the current study is based on linear 

interpolation. Suppose the threshold happens between i-1t  and it . The switching time can 

be estimated by using following equations 
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( )1

2

sw i 1
sw

i 1 i

t ε ε

ε ε

−

−

−
=

+
 (2.61) 

 ( )sw i-1
sw i 1 i i 1

i i-1

t tx x x x
t t− −

−
= + −

−
 (2.62) 

Equations (2.61) and (2.62) give good approximation as long as the time step for 

integration is small enough. In practice, swt  can be approximated by looking for the time 

point when the strain falls into a band of tolerance εΔ . However, this would give no 

information on the accuracy of the approximation of swt , since the states obtained at swt  

are all based on linear interpolation. To solve this problem, instead of using Eq. (2.62) 

directly, one more step of integration from i-1t  to swt  can be performed to obtain the real 

states at swt  and to ensure the approximation falls into an acceptable tolerance band. 

2.3 Kinematics 

As discussed before, the system equations solve for the independent variables (ε  

and b ) directly. Displacements and rotations of each node are recovered from those 

variables through kinematic relationships. The kinematic relationships are obtained from 

the following differential equations 

 

[ ]( ) 1 ( ) ( )

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

w
x x

x
z y y z

y
x z z x

z
y x x y

p s s w s
s

w s s w s s w s
s

w s
s w s s w s

s
w s s w s s w s

s

ε

κ κ

κ κ

κ κ

∂
= +

∂
∂

= −
∂

∂
= −

∂
∂

= −
∂

 (2.63) 

with the compact form of 

 ( ) ( ) ( )r
r

h s A s h s
s

∂
=

∂
 (2.64) 
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where 

 

0 1 ( ) 0 0
0 0 ( ) ( )

( )
0 ( ) 0 ( )
0 ( ) ( ) 0

x

z y

z x

y x

s
s s

A s
s s

s s

ε
κ κ

κ κ
κ κ

+⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎢ ⎥⎣ ⎦

 (2.65) 

The solution of Eq. (2.64) is given as 

 ( ) ( )( ) 0A s s G s
r r0 r0h s e h e h−= =  (2.66) 

where r0h  is the position and rotation of the boundary node. 

It can be noticed that the above solution is also true when solving for h , since Eq. 

(2.64) does not contain any body degrees of freedom. In fact, one may use Eq. (2.66) to 

recover h  or rh  from strains, depending on different boundary conditions applied. For 

the cases where h  is being recovered, one needs to provide the position of the body 

frame ( Bp ), which can be derived from the body frame propagation equations (See 

Section 2.5). After all, it is not necessary to distinguish h  and rh  in Eq. (2.66). A general 

variable h  is used to denote both of them. 

For elements with constant strain assumed, Eq. (2.65) is also constant over each 

element length. Therefore, the solution can be performed by using the discrete form. 

 
1 1
2 2n n

n n
A s A sG Gnm

n1 m3 n2 n1 n1 n3 n2 n2h D h h e h e h h e h e h
Δ Δ

= = = = =  (2.67) 

where element n  is the current element with the length of sΔ , and element m  is the one 

that element n  is attached to. nih  is the displacement of the ith node of element n . nmD  

is the rotation matrix that accounts for the discontinuities of the beam reference line 

between elements m  and n . 

Due to different connection relations, single beam and split beam systems (shown 

in Figs. 2.13 and 2.14) have different marching process when solving for the 

displacement. 
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2.3.1 Single Beam System 

For a single beam system shown in Fig. 2.13, kinematics for a member is obtained 

by marching elemental kinematics from boundary node to end node. Following Eq. (2.67), 

the marching procedure can be written as the equations below. 

3

2
1

By

Bz

Bx

h11

h32

1-1
1-2

1-3

2-1 2-2 2-3

3-1 3-2
3-3

O
 

Figure 2.13: Single beam system (one member consisting of three elements) 

 31 2

1 2 3

31 32 2311 0 21 21 13
GG G

12 11 22 21 32 31
G G G

13 12 23 22 33 32

h = D hh = h h = D h

h = e h h = e h h = e h

h = e h h = e h h = e h

 (2.68) 

These can be written into matrix form as 

 

0
0
0
0
0
0
0
0

1

1

2

2

3

3

11 0
G

12
G

13

21 21
G

22
G

23

32 31
G

32
G

33

I h h
e I h

e I h
D I h

e I h
e I h

D I h
e I h

e I h

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ =−
⎢ ⎥ ⎢ ⎥⎢ ⎥

− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥

− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.69) 
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where 0h  is the position and rotation of boundary node. The solution of Eq. (2.69) yields 

the displacements of a single beam system from strains. 

2.3.2 Split Beam System 

Kinematics for members of a split beam system (see Fig. 2.14) is still obtained by 

marching element kinematics from boundary node to each of the end nodes. However, 

the marching procedure is a little bit different, because of the existence of the split point. 

1-1

h32

3

2

1

By

Bz

Bx

h11

1-2 1-3 2-1

2-2

2-3

3-1
3-2

3-3

O
 

Figure 2.14: Split beam system (three members each consisting of one element) 

In the connections shown in Fig. 2.14, the first nodes of elements 2 and 3 ( 21h  and 

31h ) are both connected with the last node of element 1 ( 13h ). Therefore, 21h  and 31h  are 

both related with 13h , with different direction cosines, as seen in the equations below. 

 31 2

1 2 3

31 31 1311 0 21 21 13
GG G

12 11 22 21 32 31
G G G

13 12 23 22 33 32

h = D hh = h h = D h

h = e h h = e h h = e h

h = e h h = e h h = e h

 (2.70) 

which can be written into matrix form as 
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0
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G

32
G
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I h h
e I h

e I h
D I h

e I h
e I h

D I h
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⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−
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⎢ ⎥ ⎢ ⎥⎢ ⎥

− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎢ ⎥⎢ ⎥

− ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.71) 

The solution of Eq. (2.71) yields the displacements of a split beam system from strains. 

2.4 Additional Nodal Displacement Constraints 

Since the present beam formulation is strain-based, only one displacement 

boundary condition can be directly imposed for each beam member. The additional 

displacement constraints are introduced by using the Lagrange Multiplier Method. The 

derivation starts from the energy functional. With the other terms omitted, the energy 

functional of a nonlinear beam in current formulation is written as 

 21 ( )
2 L

k s ds Rε εΠ = −∫  (2.72) 

where ( )k s  is cross-sectional stiffness. L is the beam length. R is generalized load. The 

constraint formulation will be different, depending on different types of constraints. 

l

L

R

 

Figure 2.15: Cantilever beam with absolute nodal displacement constraint 
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2.4.1 Absolute Constraints 

Suppose a cantilever beam with an arbitrary point constrained (see Fig. 2.15), the 

additional constraint can be introduced into the energy functional by applying a Lagrange 

multiplier. 

 21 ( ) ( ) ( )
2

0
ca

L

k s ds R h l h lε ε λ∗ ⎡ ⎤Π = − + −⎣ ⎦∫  (2.73) 

where caλ  is the Lagrange Multiplier, ( )h l  is the displacement (position and/or rotations) 

of the constrained point, and ( )0h l  is the initial displacement of the constrained point. 

The variation of the functional is 

 ( ) ( ) ( ) ( )0
ca ca

L

k s ds R h l h l h lδ εδε δε λ δ δλ∗ ⎡ ⎤Π = − + + −⎣ ⎦∫  (2.74) 

The above equation can be written into matrix form upon discretization, which is 

 ( ) ( ) ( )T T T T T 0
FF h ca caK R J l h l h lεδ δε ε δε δε λ δλ∗ ⎡ ⎤Π = − + + −⎣ ⎦  (2.75) 

where ( )hJ lε  is the Jacobian matrix evaluated at the constrained point. 

The variation of the functional is zero, which yields the equilibrium equation of 

the system with additional absolute displacement constraints. However, it is still 

necessary to handle the variable of ( )h l , which is a function of the independent variable 

ε . The solution is performed with an iterative procedure. Assume the independent 

variable, ε , and the dependent variable, ( )h l , have been solved at step i, which are iε  

and ( )ih l , respectively, the variation of energy functional at step i+1 can be written as 

 [ ] ( ) ( )( ) ( ) ( )T TT T 0 T
i+1 FF i+1 i+1 h ca ca i+1 i+1 ii+1 i+1i

K J l h l h l Rεδε ε δε λ δ λ δε⎡ ⎤+ + − =⎣ ⎦  (2.76) 

The displacement can be written into incremental form. 

 [ ] ( )
( ) ( ) ( )

( ) ( )
i+1 i i+1

i h i+1 ii

h l h l h l
h l J lε

δ
ε ε

= +

= + −
 (2.77) 
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Substitute Eq. (2.77) into Eq. (2.76), which yields 

 
[ ] ( ) ( ) [ ]

( ) [ ] ( )

( ) ( )

( ) ( ) ( )

T TT T
i+1 FF i+1 i+1 h ca ca h i+1i+1 i+1i i

T TT 0
i+1 i ca h i ca ii+1 i+1i

K J l J l

R J l h l h l

ε ε

ε

δε ε δε λ δ λ ε

δε δ λ ε δ λ

+ +

⎡ ⎤= + − −⎣ ⎦
 (2.78) 

which can be simplified as 

 
( ) ( )

( ) ( )

( ) ( )

0

T
T i+1T FF ca i

i+1 ca i+1
ca i+1ca i

T iT
i+1 ca i+1

ca i

K K
K

R
R

ε
δε δ λ

λ

δε δ λ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.79) 

where 

 
( ) [ ]
( ) ( )

( )

( ) ( )
ca hi i

0
ca ca i ii i

K J l

R K h l h l
ε

ε

=

⎡ ⎤= − −⎣ ⎦
 (2.80) 

Therefore, the equilibrium equation of the system is given as a generalized form. 

 ( )
( ) ( ) ( )0

T
i+1 iFF ca i

ca cai+1 ica i

RK K
RK

ε
λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (2.81) 

Note that the Jacobian [ ]( )h i
J lε  and its transpose are both updated at each solution step. 

2.4.2 Relative Constraints 

For some beam configurations with two or more members joining at a common 

point (see Fig. 2.16), these members should be considered together and inter-member 

displacement constraints should be imposed. Let the uth node of member m be coincident 

with the vth node of member n upon initialization. The positions and orientations of the 

two nodes are always constrained to be the same. This relation can be written as, 



49 

By

Bz

Bx

wy(s1,t)

by(s,t)

Undeformed ShapeDeformed Shape

bz(s,t)

bx(s,t)

by(s,0)
bz(s,0)

bx(s,0)Prescribed
Boundary

Prescribed
Boundary

wz(s1,t)

wx(s1,t)

O  

Figure 2.16: Beam configuration and reference frames with relative nodal displacement 
constraint 

 ( ) ( )b b
r rmu nv

h h=  (2.82) 

where b
rh  is the position and orientation vector with respect to the body frame ( B ). The 

rotations are expressed using using b frame unit verctors. Eq. (2.82) can be transformed 

into the local beam frame (w) by applying the individual rotation matrix 

 ( ) ( ) 0bw bw
mu r nv rmu nv

D h D h− =  (2.83) 

Therefore, the corresponding constrained energy functional and its variation are 

 ( )21 ( )
2

bw bw
cr mu mu nv nv

L

k s ds R D h D hε ε λ∗Π = − + −∫  (2.84) 

and 

 ( ) ( )( ) bw bw bw bw
cr mu mu nv nv cr mu mu nv nv

L

k s ds R D h D h D h D hδ εδε δε λ δ δλ∗Π = − + − + −∫  (2.85) 
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Note that the subscript r is omitted in the equations following in this section. The discrete 

form of the above equation can be written as 

 ( ) ( ) ( ) ( )( ) ( )

T T
FF

T TT TT bw T bw
h mu cr h nv cr

T bw T bw
cr mu mu cr nv nv

K R

J mu D J nv D

D h D h
ε ε

δ δε ε δε

δε λ δε λ

δλ δλ

∗Π = −

+ −

+ −

 (2.86) 

where ( )hJ muε  and ( )hJ nvε  are the Jacobian matrices evaluated at the constrained points, 

respectively. 

The variation of the functional is zero, which yields the equations of motion. 

Following the same procedure as described in the previous section, the variation is 

written into iterative form that facilitates the implementation. 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
T TT TT T bw bw

i+1 FF i+1 i+1 h mu h nv cri i i+1

T bw bw
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K J mu D J nv D

D h D h

R
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δ λ
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⎡ ⎤+ −⎢ ⎥⎣ ⎦

⎡ ⎤+ −⎣ ⎦
=

 (2.87) 

where 
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( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )
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h h h

h J nu

h h h
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ε

ε

δ

ε ε

δ

ε ε

= +

= + −

= +

= + −

 (2.88) 

Substitute Eq. (2.88) into Eq. (2.87), which yields, 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

T TT TT T bw bw
i+1 FF i+1 i+1 h mu h nv cri i i+1

T bw bw
cr mu h nv h i+1i+1 i i

TT bw bw
i+1 i cr mu h nv h ii+1 i i

T bw bw
cr mu mu nv nvi+1 i i

K J mu D J nv D

D J mu D J nv

R D J mu D J nv

D h D h

ε ε

ε ε

ε ε

δε ε δε λ

δ λ ε

δε δ λ ε

δ λ

⎡ ⎤+ −⎢ ⎥⎣ ⎦

⎡ ⎤+ −⎣ ⎦

⎡ ⎤= + −⎣ ⎦

⎡ ⎤− −⎣ ⎦

 (2.89) 

which can be written into matrix form as Eq. (2.90), 
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 ( ) ( )
( ) ( ) ( ) ( )0

T
T Ti+1 iT TFF cr i

i+1 cr i+1 cri+1 i+1
cr cri+1 icr i

RK K
RK

ε
δε δ λ δε δ λ

λ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.90) 

where 

 
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )bw bw
cr mu h nv hi i i

bw bw
cr cr i mu mu nv nvi i i i

K D J mu D J nv

R K D h D h
ε ε

ε

= −

⎡ ⎤= − −⎣ ⎦
 (2.91) 

Therefore, the equilibrium equation of the system is given as 

 ( )
( ) ( ) ( )0

T
i+1 iFF cr i

cr cri+1 icr i

RK K
RK

ε
λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (2.92) 

Note that the Jacobian ( )h i
J ε  and its transpose should be updated at each solution step. 

2.4.3 Elastic Equations of Motion with Constraints 

For a general beam configuration that consists of both absolute and relative 

displacement constraints, one may define the total constraint matrices as 

 , ,ca ca ca
c c c

cr cr cr

K R
K R

K R
λ

λ
λ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.93) 

Therefore, the complete system equations of motion with constraints can be given as a set 

of differential-algebraic equations. 
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⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.94) 

2.4.4 Special Treatment Regarding the Constraints 

The figure above is the coordinate system of current beam formulation. As 

discussed before, the displacement vector can be written as: 
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 ( ) ( ) ( ) ( ) ( )
TT T T T

r w x y zh s p s w s w s w s⎡ ⎤= ⎣ ⎦  (2.95) 

where s  is the beam coordinate. The full list of its component is, 

 
T

r wx wy wz xx xy xz yx yy yz zx zy zzh p p p w w w w w w w w w⎡ ⎤= ⎣ ⎦  (2.96) 

The displacement is a 12 by 1 vector. However, not all of its components are 

linearly independent. This property can also be observed from the block of caK  in Eq. 

(2.81) and crK  in Eq. (2.92). The rows in these matrices are not linearly independent, 

which makes the generalized stiffness matrices in Eqs. (2.81) and (2.92) rank defective. 

Therefore, the generalized stiffness matrices are not invertible, which may bring trouble 

in solutions. 

From above analysis, additional treatment should be performed when the 

displacement vector is required to be constrained. Take a fully constraint condition as an 

example. To determine the position of a node, the 3 by 1 position vector 

(
T

wx wy wzp p p⎡ ⎤⎣ ⎦ ) is required. Therefore, the corresponding rows in caK  and crK  are 

linearly independent. The directions of a node should be considered carefully. The local 

beam frame ( w ) is defined such that 

 

2 2 2

2 2 2

2 2 2

1

1

1

, 0

, 0

, 0

xx xy xz

yx yy yz

zx zy zz

w w w

w w w

w w w

+ + =

+ + =
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w w

w w

 (2.97) 

The above six equations should always be satisfied. Therefore, only three components of 

the vector 
T

xx xy xz yx yy yz zx zy zzw w w w w w w w w⎡ ⎤⎣ ⎦  are linearly independent. 

Therefore, only three of the remaining rows of caK  and crK  are linearly independent. To 

obtain a full-ranked generalized stiffness matrices, it is necessary to determine linearly 
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independent rows from caK  and crK . This could be accomplished by either the code’s 

dynamic searching or a predefinition of a linearly independent set. The approach of 

predefinition is preferred, since the linearly independent set could vary due to dynamic 

searching. Note that only the fully constrained condition is discussed here. If the rotations 

are partially constrained, it can be treated through a similar approach. 

2.5 Body Frame Propagation Equations 

The body frame ( B ) propagation equations have been introduced in Refs. [15] 

and [87]. Quaternions ζ  are used for determining the orientation of the B  frame, which 

is given by the following equation. 

 

0

01 1 ( )
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1 2 3

1 3 2

2 3 1
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B B B 00

B B B 11

2B B B2

33 B B B
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⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥= − = − Ω⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ − − ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (2.98) 

where Bω  is body angular velocity. The position of the B  frame resolved in the inertia 

(G ) frame is governed by the following differential equation. 

 0GB GB
B BP C v C β⎡ ⎤= = ⎣ ⎦  (2.99) 

Note that BP  describes the same vector as Bp  in Eq. (2.1). However, Bp  is resolved in 

the body ( B ) frame. GBC  is the rotation matrix that transforms a vector from the B  

frame to the G  frame, which is composed of quaternions. 
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ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ ζ

⎡ ⎤= ⎣ ⎦
⎡ ⎤+ − − − +
⎢ ⎥= + − + − −⎢ ⎥
⎢ ⎥− + − − +⎣ ⎦

 (2.100) 
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2.6 Unsteady Aerodynamics 

The unsteady aerodynamic loads used in current work are based on the 2-D finite 

inflow theory, provided by Ref. [80]. The theory calculates aerodynamic loads on a thin 

airfoil section undergoing large motions in an incompressible flow. Prandtl-Glauert 

correction is then applied to account for the subsonic compressibility effects. The 

different velocity components are shown in Fig. 2.17. The aerodynamic loads calculated 

at middle chord are given as Eq. (2.101). 
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Figure 2.17: Airfoil coordinate systems and velocity components 
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 (2.101) 

where δ  is the trailing-edge flap deflection angle, b  is the semichord, d  is the distance 

of the mid-chord in front of the reference axis. /z y−  is the angle of attack that consists 

of the contribution from both the steady state angle of attack and the unsteady plunging 

motion of the airfoil. The coefficients ic  through ig  are based upon geometry and 

complete details are provided in Refs. [79] and [80]. 0λ  is the inflow parameter, 
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accounting for induced flow due to free vorticity, which is the summation of the inflow 

states λ  as described in Ref. [80] and given by 

 
1 2 3

1 2 3

F q F q F

F F F

λ λ
ε ε

λ
β β

= + +

⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

 (2.102) 

The above equations are based upon thin airfoil theory, where no cambered airfoil 

is considered and aerodynamic moment coefficient m0c  is assumed to be zero. To model 

the aerodynamic loads of a cambered airfoil with aerodynamic coefficients supplied, the 

lift, moment, and drag about the aerodynamic center are given as 
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 (2.103) 

where lc α  is the lift curve slope, lc δ  and mc δ  are the lift and moment slopes due to flap 

deflection, respectively. Furthermore, d0c  and m0c  are the drag and moment coefficients 

for zero angle of attack, respectively. 

To transfer the loads from the middle chord or the aerodynamic center to the wing 

reference axis, one may use 

 1or
2

ra ac
ra mc

ra mc mc ra ac ac

ra mc
ra ac

l l
l l

m m dl m m b d l
d d

d d

=
=

⎛ ⎞= + = + +⎜ ⎟
⎝ ⎠

=
=

 (2.104) 

Furthermore, the loads are rotated to the body coordinate system, which yields 
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 (2.105) 
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2.7 Simplified Stall Models 

There are two different simplified stall models considered in the current work. For 

Stall Model 1, the lift coefficient, lc , is kept constant and equal to lmaxc  once the angle of 

attack goes beyond the stall angle, and the moment coefficient ( m0c ) remains the same as 

before stall. Stall Model 2 is similar to Stall Model 1 with the only difference that now 

the moment coefficient is dropped to changes to m0stallc . 
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Figure 2.18: Variation of lift and moment coefficients for Stall Model 1 
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Figure 2.19: Variation of lift and moment coefficients for Stall Model 2 
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2.8 Discrete Gust Formulation 

In general, gust disturbance is stochastic. In current work, the gust model is 

simplified as an elliptical region with only vertical disturbance. However, this gust model 

is both space- and time-dependent. The gust region is located on the flight path of the 

vehicle. The amplitude of gust speed reaches a maximum at the center and reduces to 

zero at the boundaries. Figure 2.20 shows the amplitude distribution of the gust model. 

For this particular example, the gust region has a maximum outer radius of 40 m, and the 

maximum gust speed center amplitude of 10 m/s. Note that the amplitude distribution 

along the North and East directions maybe different. At each location within the gust 

region, the amplitudes follow the same one-minus-cosine characteristic. Figure 2.21 

shows a sample of the time variation of the amplitude at the gust center. Different time 

variations can be applied for numerical studies. The basic equations governing the gust 

model are 

 ( ) ( )2 21( , , ) 1 cos 2 cos sin
2 c E N

g

tA r t A A A
t

η π η η
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭

 (2.106) 
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⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭ < ≤

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= −⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (2.107) 

where footnotes E  and N  stand for East and North directions, respectively. 0r  is the 

outer radius of the gust region. r  is the distance from one point within the gust region to 

the gust center. η  is the orientation angle of the point with respect to East direction. En  

and Nn  are parameters used for adjusting the gust spatial distribution along East and 

North directions, respectively. By choosing different En  and Nn , the spatial variation of 

gust amplitudes in East and North directions will be different. It also satisfies the 

requirement that the amplitude at the gust center is the maximum and decreased down to 

zero at the boundary. The spatial distribution is then combined with the “one-minus-
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cosine” time distribution, leading to the gust model represented by Eq. (2.106). Finally, 

gt  is the gust duration. 

 

Figure 2.20: Example of gust spatial distribution for nE = 1, nN = 2, Ac = 10 m/s 
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Figure 2.21: Time variation of gust speed 
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2.9 Coupled Aeroelastic and Flight Dynamic Equations of Motion 

The coupled flight dynamic and aeroelastic system equations of motion can be 

obtained by combining the elastic equations, Eq. (2.94), the B  frame propagation 

equations, Eqs. (2.98), (2.99), and the unsteady aerodynamic equations, Eq. (2.102). They 

are given as the following differential-algebraic equations. 
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 (2.108) 

The definition of each variable in the above equations can be found in the previous 

sections. The aerodynamic forces and moments contribute to the generalized loads ( FR  

and BR ) as distributed forces and moments. 

2.10 Stability Analysis: Frequency Domain Solution 

2.10.1 Linearization of Nonlinear System Equations 

For cases of free flight, only aerodynamic and gravity loads are applied to the 

system. Therefore, the system equations of motion (without additional displacement 

constraints) can be written as 
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 (2.109) 

grav
FR  and grav

BR  are flexible and rigid body components of generalized gravity loads, 

respectively. As discussed in Eq. (2.47), the gravitational acceleration vector is resolved 

in the body frame, which is rotated from the constant gravitational acceleration vector 

resolved in the global frame. The rotation matrix between the two frames ( BGC ) is a 

function of quaternions (ζ ), as given in Eq. (2.100). 

Linearization of Eq. (2.109) can be performed about a certain time ( 0t ), with the 

variables being 
0

T

0 0 0 0 0 0 B 0Pε ε ε β β ζ λ⎡ ⎤⎣ ⎦ . The detailed process can be 

found in Appendix B. The linearized equations are given as follows. 
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 (2.110) 
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where ( )/ 0x
i  denotes ( )

0x

d
dx
i

 or ( )
0x

x
∂
∂
i

 for different variables. 

The linearized equations can be put into state-space form, which is 
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and 
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2.10.2 Solution of Stability Boundary 

The nonlinear stability analysis is carried out in an iterative way, which is shown 

in Fig. 2.22. Starting from a predefined flight condition, the system is brought to the 

nonlinear steady state and linearized about the condition. Eigenvalue analysis of the 

resulting system matrix A  in Eq. (2.111) is performed. Eigenvalues with positive real 

parts indicate instability. The process is repeated until the instability is reached. One may 

use the same system matrix for different solution types of stability analysis, such as 

flutter of free flight vehicles, flutter of vehicles with constrained rigid body motions, or 

just the flight dynamic stability. To do so, one needs to choose corresponding subset of 

the system matrix. 
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Figure 2.22: Scheme of searching for the stability boundary 
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CHAPTER III 

Introduction to the Numerical Analysis Framework 

 

 

This chapter presents the overview of the numerical framework – the University 

of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST). A history of the 

framework development is also summarized. A block diagram is introduced to 

demonstrate the framework’s architecture, followed by the explanations of some main 

function modules. The intent is to provide a break-in point, such that the user may gain a 

basic idea of the framework, which may facilitate the code usage and future 

improvements. 

3.1 Development of the Numerical Framework 

The original numerical analysis framework was developed by Brown[79], under 

the guidance of Professor Carlos E. S. Cesnik. A reduced-order, strain-based beam 

formulation is developed for nonlinear aeroelastic analysis of highly flexible vehicles. 

The code package is built using Matlab, which provides comprehensive scientific 

computational capabilities and other valuable toolboxes, facilitating the implementations. 

Within the framework, composite beam structures with embedded active 

piezoelectric materials are modeled. Actuations are used for the roll simulation[78]. Roll 

performance under active wing warping control and traditional aileron concept of a 

Joined-Wing configuration was compared[28]. 
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Subsequenctly, still under the guidance of Professor Carlos E. S. Cesnik, the 

framework was improved and enhanced by two other researchers from the University of 

Michigan: Shearer[15, 83, 84] and this author[29, 52, 82]. The framework is named the 

University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST). The 

time line for its development is provided next. 

Between 2004 and 2005, this author developed new kinematic relationships for 

the modeling of split beam systems[29]. The formulation for searching the nonlinear flutter 

boundary was developed and flutter analysis was conducted[82]. 

In 2005, Shearer corrected and improved the governing differential equations by 

considering the Coriolis effects[83], upon which three types of time simulation were 

performed: rigid body, linearized, and nonlinear. In addition, Shearer also developed 

closed form solutions to the matrix exponential and closed form solutions to some of the 

Jacobian matrices. 

Also in 2005, this author developed the formulation for the modeling of absolute 

and relative nodal displacement constraints, by applying the Lagrange Multiplier Method. 

In 2006, this author integrated a temporal- and spatial-distributed discrete gust 

model into the time simulation scheme, for the purpose of modeling the dynamic 

responses of Flying-Wing vehicles[52]. In addition, a bilinear stiffness model was 

implemented to study the changes in torsional stiffness due to skin wrinkling. 

Modifications to the finite state aerodynamics were made as well. 

Simultaneously, Shearer developed a long term stable integration scheme[84], and 

enhanced the framework to include open and closed loop simulations[15]. 

Recently, this author completed the derivation of aerodynamic Jacobians. A 

formulation for flutter analysis of a free flight vehicle was developed based on the 

nonlinear equations of motions. 
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Figure 3.1: Block diagram showing functions of UM/NAST 
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3.2 Architecture of the Numerical Framework 

Figure 3.1 presents an overview of the main function modules of the current 

implementation of NAST. These modules include: initialization, modal analysis, static 

solver, trim module, time simulation, and stability analysis. Beyond these, there are other 

auxiliary modules not listed in the figure, e.g., for visualization. 

3.3 Introduction to Main Function Modules 

3.3.1 Model Initialization 

Two model setup files (modelnamedriver.m and modelname.m) are used for 

defining the aircraft properties and initializing other important variables. The first file is 

relatively flexible for the user to define some fundamental variables used for parametric 

study. The second one has a relatively fixed structure, where the aircraft geometry, finite 

element discretization (includes the definition of beam members and groups), 

aerodynamic settings, fuel storage, rigid bodies, cross-sectional stiffness and inertia 

properties, nodal displacement constraints, etc. are defined. A cross-sectional solver is 

embedded with the code[65], which allows the properties of two-cell, thin-walled 

composite cross-sections to be computed. However, the beam solver can also accept 

inputs from other cross-sectional solvers, such as VABS[68], or even direct inputs from 

the driver file. 

The slender members of an aircraft are modeled as beams. Therefore, a line 

representation of the aircraft geometry profile is always helpful before making the model 

initialization files. Figure 3.2 gives an example of the reference lines of a Joined-Wing 

aircraft. By taking the advantage of symmetry, the starting point of the beam reference 

lines is always located somewhere on the fuselage. However, it is not necessary for it to 

be the c.g. point of either the vehicle or the fuselage itself. 
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Figure 3.2: Sketch of a Joined-Wing configuration 

The process of defining the beam structures follows the levels of “Key Point – 

Member – Group”, which is exemplified in Fig. 3.3. Two or more key points determine a 

member, while a group is formed by the set of members that originate from one common 

member. Key Points 2, 4, and 6 are split points. Member connection relationships should 

be defined for these points in the model setup file. The kinematics of a member only 

couples with the ones from the same group. 

One clarification should be made here to avoid confusion: the structural coupling 

between the joined members (e.g., Members 6 and 8, and Members 7 and 9) are modeled 

through the nodal displacement constraints, as discussed in Chapter II. To define an inter-

member constraint, the user should specify the constrained nodes for the joining members, 

in the model setup file 
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Figure 3.3: Bottom-up structural relationships for the sample Joined-Wing configuration 

With the model setup files, a series of subroutines are executed (within the main 

function mainF.m), such that a reference aircraft configuration is obtained, which 

includes the undeformed shape, fuselage inertia properties (if modeled as a rigid body), 

finite element mass, damping, and stiffness matrices, aerodynamic inflow matrices, 

rotation matrices between the reference frames, and structural Jacobians relating the 

independent variables and dependent variables. Note that the Jacobians and some of the 

rotation matrices will be updated according to the current deformed shapes. 

3.3.2 Modal Analysis 

The modal analysis may be carried out in two stages. One is right after the 

initialization of the aircraft model, which returns the natural modes and frequencies of the 

structural system. Since the slender structures may significantly deform with operating 

loads, the modes and frequencies could change at the deformed states. Therefore, the 

modal analysis may also be carried out after a static solver, which returns the modes and 

frequencies of small vibrations about the nonlinear steady state. 
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3.3.3 Geometric Nonlinear Static Solver 

This solver returns the static deformation under a given load condition. The rigid 

body motions of the vehicle are constrained, and the time derivatives and unsteady 

aerodynamic terms are eliminated from the equations of motion (Eq. 2.108). The solution 

is performed in an iterative way until a converged nonlinear deformation is reached. 

Details about this solution can be found in Ref. [79]. The input and output parameters are 

listed in Table 3.1. 

Table 3.1: Inputs and outputs of the static solver 

Flight Speed 

Altitude 

Body Angle 

Fuel Mass (if modeled) 

Flight 
Conditions 

Gravity 

Elevator, Rudder, and Aileron Angles 

Actuation Voltage 

Concentrated Mass and/or Moments (e.g., Engine Thrust) 
Control 
Inputs 

Distributed Forces and/or Moments 

Switch for Prandlt-Glauert Correction 

Switch for Follower Structural Loads 
Solution 
Setups 

Convergence Criterion 

Strain Vector 

Nodal Positions and Orientations 

Updated Structural Jacobians and Rotation Matrices 

Nodal Aerodynamics Loads 

Aerodynamic Jacobians 

Vehicle Center of Gravity after Deformation 

Total Lift, Drag, and Moments about Updated c.g. Point 

Outputs 

Ply Stress and Strain Components (if modeled) 
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The control input is defined in another user-defined file: 

get_control_inputs_modelname.m. The distributed forces and moments are not control 

inputs. However, they are input to the solver through the control inputs file, in a similar 

way as the concentrated loads. 

The aerodynamic module is executed within the static solver, which returns the 

distributed nodal aerodynamic force and moment at each solution step, and the 

corresponding derivatives of the aerodynamic loads. After a converged solution is 

reached, nodal positions and orientations are recovered from the strain vector through the 

kinematic relationships. The c.g. point is updated according to the deformed shape. 

3.3.4 Trim Module 

The trim module provides input date for many other modules, as seen from Fig. 

3.1. It returns the vehicle body angle, control surface deflection, and thrust forces at a 

given flight condition. Currently, there are two trim schemes implemented, one of which 

calculates the trimmed conditions by minimizing the body accelerations, while the other 

minimizes the loads about the vehicle’s c.g. point. Both of them provide very similar 

results. The input and output parameters are listed in Table 3.2. 

Table 3.2: Inputs and outputs of the trim module 

Flight Speed 

Flight Altitude Input 

Fuel Mass (if modeled) 

Body Angle 

Elevator Angle Output 

Thrust Force 
 

3.3.5 Time Domain Simulation 

The time simulation returns the transient responses of the vehicles at a given 

flight condition. The simulation always begins with a steady state obtained from the static 
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solver. The user is able to choose the simulation type (nonlinear, linearized, and rigid 

body) and the numerical integration scheme (Modified Generalized-α[15], and 

Trapezoidal). The control information may come from pilot input or from feedback of a 

closed-loop controller. Other input and output parameters are listed in Tables 3.3 and 3.4. 

Note that the direct outputs of the time simulation are no more than the independent 

variables and their time derivatives. The other information, such as the nodal positions, 

Euler Angles of the rigid body, and aerodynamic loads at each time step may be obtained 

after the simulation is finished, through a user defined script. The reason to do this is to 

save unnecessary post-processing during the time simulation. 

Table 3.3: Inputs of the time domain simulation 

Steady State Input 

Flight Speed 

Altitude 

Body Angle 

Fuel Mass (if modeled) 

Gravity 

Flight 
Conditions 

Gust Model 

Elevator, Rudder, and Aileron Angles 

Actuation Voltage 

Concentrated Mass and/or Moments (e.g., Engine Thrust) 
Control 
Inputs 

Distributed Forces and/or Moments 

Time Range 

Size of Time Steps 

Switch for Prandlt-Glauert Correction 

Switch for Follower Structural Loads 

Switch for Constrained or Free Flight Simulation 

Choice of Simulation Type 

Choice of Integration Scheme 

Tuning Parameters for Generalized-α Method 

Simulation 
Setups 

Convergence Criterion 
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Table 3.4: Outputs of the time domain simulation and stability analysis 

Strain Vector 

Strain Rate Vector 

Strain Acceleration Vector 

Body Velocity 

Body Acceleration 

Quaternion 

Quaternion Rate 

Body Position 

Body Position Rate 

Inflow States 

Inflow States Rate 

Lagrange Multipliers for Constraints (if exists) 

Lagrange Multiplier Rates for Constraints (if exists) 

Error States (if exists) 

Error States Rate (if exists) 

Outputs of the 
Time Domain 

Simulation 

Convergence Information 

Eigenvalues (Poles) of the State Space System 

Eigenvectors of the State Space System 

Flutter Speed 

Frequency of the Flutter Mode 

Outputs of the 
Stability Analysis 

Flutter Mode 
 

3.3.6 Stability Analysis 

The block diagram showing the scheme of searching the stability boundary at a 

level flight condition has already been presented in Chapter II. It is briefly described here. 

The user first chooses an arbitrary flight speed at the given flight condition, which should 

be well below the flutter boundary. As the speed is increased, the nonlinear system is 

linearized at each new steady state and put into state space form. Eigenvalues are then 

checked for the real parts. Once an eigenvalue with a positive real part is found, the 
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system instability point is reached. Since the steady state is updated according to each 

increased flight speed, the flutter boundary found through this scheme is a matched-point 

flutter speed. 

Since the stability is evaluated about a steady state, the inputs for this analysis are 

almost the same as the static solver, in addition to some constraint information. The 

outputs are listed in Table 3.4. The user may choose to constrain the rigid body motions 

of the vehicle or not. The solution then returns flutter boundaries of the constrained 

vehicle or the vehicle in free flight condition, correspondingly. Flight stability may also 

be evaluated by only considering the rigid body motions at a given flight condition. 

3.3.7 Visualization 

The visualization consists of two sub-functions. The first is the output of the mode 

shapes from the modal analysis or stability analysis. The solver takes the eigenvector 

from the previous analysis, and adds the corresponding components to the steady state (or 

undeformed) solution as small perturbations. The new position and the deformed shape of 

the vehicle can be determined and output based on the perturbed states. The user may 

need to choose appropriate coefficients to amplify the mode shapes for clearer views. 

Another function of visualization is to animate the time domain simulation. The 

solver recovers deformation, position and orientation of the vehicle from the independent 

variables at each time step. Individual pictures are generated according to the information. 

A movie file is then generated by sequencing those pictures in time series. 
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CHAPTER IV 

Numerical Verification of Formulation 

 

 

Before numerical analysis can be carried out, the newly developed formulation is 

subject to verification for its accuracy. This is completed in this chapter. 

First, various beam configurations are created to test the formulation of the 

kinematic relationships for split beam systems, the absolute and relative (inter-member) 

nodal displacement constraints, and the follower loading conditions. For these beam 

configurations, different types of solutions are performed, including steady-state solution, 

forced dynamics response, natural modes and frequencies. Results from the current 

implementation are compared with those generated by using MSC.Nastran[69]. 

MSC.Nastran is a widely used commercial finite element software package. It can solve 

for geometrical nonlinear deformations, both statically (with Sol. 106) and dynamically 

(with Sol. 129). Therefore, MSC.Nastran is chosen for comparison and verification 

purpose. Next, the accuracy of the new aeroelastic implementation should be verified. 

Linear flutter and natural frequency results of a highly flexible, high-aspect-ratio wing 

are compared with data given in Refs. [79] and [88]. Finally, nonlinear flutter results with 

both cantilever condition and rigid body motions are validated by using time-domain 

simulation within the UM/NAST environment as verification. Note that some other 

formulations, which are used for the numerical studies, such as the gust model, stall 

model and skin wrinkling model, are straight forward. Therefore, the verification 

processes are not presented here. 
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4.1 Cantilever Beam Configuration 

A 1-meter long slender cantilever beam is firstly used for the validation, whose 

geometric and physical properties are listed in Table 4.1. The beam can be modeled as 

one single beam member or a split beam system with two members connecting at the 

middle point, as shown in Fig. 4.1. The latter model will apply the kinematics of split 

beam systems. The whole beam is discretized into 20 elements in both UM/NAST and 

MSC.Nastran models. CBEAM element is selected in MSC.Nastran for modeling. 

Table 4.1: Properties of the reference beam 

Length 1.00 m 

Extensional Stiffness K11 1.00×106 Pa·m2 

Torsional Stiffness K22 8.00×101 N·m2 

Flat Bending Stiffness K33 5.00×101 N·m2 

In-plane Bending Stiffness K44 1.25×103 N·m2 

Mass per Unit Span 0.10 kg/m 

Rotational Inertia Ixx 1.30×10-4 kg·m 

Flat Bending Inertia Iyy 5.00×10-6 kg·m 

In-plane Bending Inertia Izz 1.25×10-4 kg·m 
 

1 m

x

z

One Single Member Two Connecting Members

 

Figure 4.1: Model description of a cantilever beam 
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4.1.1 Cantilever Beam with Static Tip Forces 

The load condition is shown in Fig. 4.2. The point tip force is varied from 0 to 

150 (N). The vertical and axial tip displacements versus tip load are plotted in Figs. 4.3 

and 4.4. The results show very good agreement with those using MSC.Nastran. As can be 

observed from the plots, the single member and split beam implementations give nearly 

identical results. 

1 m

x

z
F

 

Figure 4.2: A cantilever beam with concentrated tip load 
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Figure 4.3: Change of vertical tip displacement with different tip loads (normalized with 
respect to the beam span) 
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Figure 4.4: Change of axial tip displacement with different tip loads (normalized with 
respect to the beam span) 

 

4.1.2 Time Simulation of Cantilever Beam with Tip Force 

The same beam model is used for this case as for the static test. In this case, the 

point load is still applied at the tip in the vertical direction, with a sinusoidal function of 

time: F = 30sin20t (N), such that the beam deformation is brought to the nonlinear range. 

The three-dimensional tip displacements of the cantilever beam are compared with the 

results from MSC.Nastran and are plotted in Fig. 4.5. The time steps used are 0.0025 s in 

UM/NAST and 0.002 s in MSC.Nastran. All results are showing good agreement, 

especially between the single beam and split beam models. 
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Figure 4.5: Tip displacement of the cantilever beam under vertical tip load (normalized 
with respect to the beam span) 

 

4.2 Split Beam Configuration 

As mentioned in the previous chapter, the kinematics formulation of split beam 

systems is an important prerequisite for successful modeling of fully flexible vehicles. 

Therefore, its accuracy should be verified before numerical studies can be performed. 

The previous testing has verified that a cantilever beam can be modeled as a single beam 

or a split beam system, both of which generate nearly identical numerical results. To be 

more complete, it is necessary to test a beam system with two branches splitting from 

each other, such that the deformation or motion of these branches can be studied. Figure 

4.6 exemplifies a split beam system, which has the same cross-sectional properties as the 

cantilever beam used previously. Each of the branches is discretized into 10 elements in 

both UM/NAST and MSC.Nastran models. 
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Figure 4.6: Model description of a split beam system 

4.2.1 Split Beam with Multi-Axial Static Tip Forces 

Accuracy of the current formulation when performing static solutions of the split 

beam system is assessed is this analysis. A vertical point load of 50 (N) is applied at the 

front tip of the beam and another vertical point load of -50 (N) is applied at the rear tip 

(Fig. 4.7). The resulting deformations of the beam are shown in Fig. 4.8. The results 

show very close correlation. 
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Figure 4.7: A split beam system under multi-axial tip loads 
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Figure 4.8: Three-dimensional deformation of the split beam system under multi-axial 
loads (normalized with respect to the beam span) 

4.2.2 Time Simulation of Split Beam with Single Tip Force 

A sinusoidal load of F = 30sin20t (N) is applied at the front tip along z direction 

as shown in Fig. 4.9. The time responses of both tips are plotted Figs. 4.10 and 4.11, and 

compared with the results from MSC.Nastran. The time steps used are 0.0025 s in 

UM/NAST and 0.002 s in MSC.Nastran. Both of the results are very close to each other. 
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Figure 4.9: A split beam system under single tip load 
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Figure 4.10: Displacement of the front tip of the split beam system under single tip load 
(normalized with respect to the beam span) 
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Figure 4.11: Displacement of the rear tip of the split beam system under single tip load 
(normalized with respect to the beam span) 
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4.3 Beam Configuration with Absolute Displacement Constraints 

This section is to test the implementation of the Lagrange Multiplier Method for 

the modeling of absolute displacement constraints. For the models used in this section, 

the beam is clamped at its root, whose middle point is pinned – only displacements of 

that node are constrained while the rotations are free (see Fig. 4.12). The properties and 

discretization of the beam used in this section are the same as the previous cantilever 

beam. 

x

z
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Figure 4.12: A cantilever beam with pinned mid point and concentrated tip force 
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Figure 4.13: Deformation of the constrained beam under vertical tip load (normalized 
with respect to the beam span) 
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4.3.1 Fixed-Pinned Beam with Static Tip Force 

Consider a tip load of 150 (N) is applied along the z direction. The comparison of 

current implementation with MSC.Nastran is plotted in Fig. 4.13. Very close correlation 

between the two sets of results can be observed. 

4.3.2 Time Simulation of Fixed-Pinned Beam with Tip Force 

A sinusoidal tip force of F = 150sin20t (N) is applied at the free end of the fixed-

pinned beam model. The responses are compared with MSC.Nastran and plotted in Fig. 

4.14. The time steps used are 0.002 s in UM/NAST and 0.0025 s with the adaptive option 

in MSC.Nastran. From the comparison, one may find UM/NAST catches the low-

frequency responses well, but loses some accuracy in high-frequency information. 
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Figure 4.14: Tip displacement of the constrained beam under vertical tip load 
(normalized with respect to the beam span) 
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It is also of interests to explore how accurately the constraints are modeled in this 

formulation. Figure 4.15 plots the displacements of the constrained node (middle point). 

It can be observed that the displacement of the node is as low as the order of 10-8 

(comparing to the total beam length). Therefore, the modeling here is correct. 
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Figure 4.15: Displacement of the constrained node in UM/NAST model (normalized with 
respect to the beam span) 
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Figure 4.16: Model description of a joined-beam system 
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4.4 Beam Configuration with Relative Displacement Constraints 

The Lagrange Multiplier formulation for relative nodal displacement constraints 

is also necessary to be verified. For a joined-beam model, the two cantilever beam 

members meet at their tips. The cross-sectional properties of each beam member are still 

the same as defined before, with geometries shown in Fig. 4.16. Each beam member is 

discretized into 20 elements in both UM/NAST and MSC.Nastran. 

4.4.1 Joined-Beam with Multi-Axial Static Force 

In this analysis, a multi-axial force is applied at the common tip of the two 

branches. The magnitude of the load is 10 (N) in the z direction, and 1000 (N) in the y 

direction. Deformed beam shape (Fig. 4.17) and displacements (Fig. 4.18) are compared 

between UM/NAST and MSC.Nastran. The results show very good agreement. 
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Figure 4.17: Three-dimensional deformation of the joined-bema system under multi-axial 
loads (normalized with respect to the beam span) 
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Figure 4.18: Lateral and vertical displacements of the joined-beam system under multi-
axial loads (normalized with respect to the beam span) 

 

4.4.2 Time Simulation of Joined-Beam with Tip Force 

To test the time simulation for the joined-beam model with relative displacement 

constraint, a sinusoidal tip force of F = 60sin20t (N) is applied at the common tip of the 

two members. The responses are compared with MSC.Nastran and plotted in Fig. 4.19. 

The time steps used are 0.002 s in UM/NAST and 0.0016 s in MSC.Nastran. Good 

agreement of the two sets of results can be observed. 

The accuracy of the modeling of the relative nodal displacement constraints may 

also be examined. Figure 4.20 compares the displacements of two tips of the individual 

members. It can be seen that the displacements of the two tips are almost identical, while 

demonstrating numerical differences at a few time steps. 
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Figure 4.19: Tip displacement of the joined-beam system under vertical tip load 
(normalized with respect to the beam span) 
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Figure 4.20: UM/NAST displacement results for the Two Tips of the joined-beam system 
under vertical tip load (normalized with respect to the beam span) 
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4.5 Follower Loading Case 

Follower loads are used for modeling engine thrust forces. In this section, a 

cantilever beam is tested with follower loads. The beam model is the same as the one 

used for the previous cantilever test with dead loads. 

4.5.1 Cantilever Beam with Static Follower Loads 

Nonlinear static solution with follower loads of the cantilever beam is validated in 

this case. A tip force of 50 (N) and a twist moment of 50 (N·m) are both applied to the 

cantilever beam (Fig. 4.21). Note that both of them are follower loads. Deformed beam 

shape (Fig. 4.22) and displacements (Fig. 4.23) are compared between UM/NAST and 

MSC.Nastran. The results show perfect agreement. 

1 m

x

z
F

M
 

Figure 4.21: A cantilever beam subject to concentrated follower loads 

 

4.5.2 Time Simulation of Cantilever Beam with Follower Tip Load 

A sinusoidal tip force of F = 30sin20t (N) is applied at the tip of the beam. Note 

that the direction of the tip load is still following the beam deformation, instead of being 

fixed. The response are compared with MSC.Nastran and plotted in Fig. 4.24. The time 

steps used are 0.0025 s in UM/NAST and 0.002 s in MSC.Nastran. Good agreement of 

the two result sets can be observed. 
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Figure 4.22: Three-dimensional deformation of the cantilever beam under follower tip 
loads (normalized with respect to the beam span) 
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Figure 4.23: Lateral and vertical displacement of the cantilever beam under follower tip 
loads (normalized with respect to the beam span) 
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Figure 4.24: Tip displacement of the cantilever beam under follower tip loads 
(normalized with respect to the beam span) 

4.6 Aeroelastic Formulation: Prediction of Flutter Boundary 

A comprehensive verification of the aerodynamic formulations was performed in 

Ref. [79]. This section only validates the newly developed formulation for the stability 

analysis. To validate this formulation, various cases are tested, including linear flutter of 

a cantilevered slender wing, nonlinear flutter of the same slender wing, and body freedom 

flutter of a complete vehicle model. The results are compared with existing results from 

other solution packages or verified through time-domain simulations within UM/NAST. 

4.6.1 Highly Flexible Wing with Cantilevered Root 

In Ref. [88], a highly flexible, high-aspect-ratio wing was created for aeroelastic 

analysis. The physical and geometrical properties of the wing are given in Table 4.2. 

Natural frequencies and linear flutter speed of this model were calculated in Refs. [88] 

and [79]. 
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Table 4.2: Properties of a highly flexible wing (after Ref. [88]) 

Length 16 m 

Chord 1 m 

Spanwise Ref. Axis Location (From L.E.) 50% of chord 

Center of Gravity (From L.E.) 50% of chord 

Flat Bending Rigidity 2×104 N·m2 

Chord Bending Rigidity 4×106 N·m2 

Torsional Rigidity 1×104 N·m2 

Mass per Unit Length 0.75 kg/m 

Rotational Inertia per Unit Length 0.1 kg·m 
 

Natural modes are calculated for the undeformed beam. The first five natural 

frequencies are listed in Table 4.3. An 8-element discretization was used in Ref. [88], 

whereas 10- and 20-element discretizations are employed in the current work for 

convergence studies. These results are all compared with analytical solutions. As can be 

observed, the current formulation gives accurate numerical predictions on the 

fundamental frequencies of the slender beam, when compared to the analytical solutions. 

 

Table 4.3: Natural frequencies of the highly flexible wing 

 Ref. [88] Current (10 
Elements) 

Current (20 
Elements) Analytical 

1st Flat Bend (rad/s) 2.247 2.2468 2.2438 2.2454 

2nd Flat Bend (rad/s) 14.606 14.2875 14.1129 14.0335 

1st Torsion (rad/s) 31.146 31.0775 31.0536 31.0456 

1st Edge Bend (rad/s) 31.739 31.7741 31.7323 31.7543 

3rd Flat Bend (rad/s) 44.012 41.0561 39.7703 39.3577 
 

The linear flutter results using the present formulation are compared with those 

presented in Refs. [88] and [79] (Table 4.4). The results are all identical. Furthermore, it 

is more accurate and meaningful to evaluate the nonlinear flutter speed of a cantilever 
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wing or a vehicle, since flutter is always a nonlinear problem for these highly flexible 

wings when it is demonstrating large deformation. With the current formulation, the 

nonlinear flutter speed obtained of this model is 23.2 m/s and the corresponding 

frequency is 10.3 rad/s (1.64 Hz), as listed in Table 4.4. The root locus is plotted in Fig. 

4.25, with the flow velocity varying from zero to 30 m/s. 

Table 4.4: Flutter results of the highly flexible wing 

 Ref. [88] Ref. [79] Current / 
Linear 

Current / 
Nonlinear 

Speed (m/s) 32.2 32.2 32.2 23.2 

Frequency (rad/s) 22.6 22.6 22.6 10.3 
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Figure 4.25: Root locus with changing velocity of the cantilevered highly flexible wing, 
speed from 0 m/s (triangle) to 30 m/s (square) 

To verify the nonlinear flutter speed obtained above, two individual time domain 

simulation are performed. One of the simulations has a flow velocity (23 m/s) under the 

flutter speed, while the other simulates with a slightly higher flow velocity (24.5 m/s) 
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than the flutter speed. The time histories of the tip displacements are plotted in Figs. 4.26 

and 4.27, respectively. From Fig. 4.26, the wing deformation of the pre-flutter case is 

stabilized after some initial oscillations. However, the wing oscillation is self-excited for 

the post-flutter case, as seen from Fig. 4.27. The amplitude of the wing oscillation is 

increased, until it goes into the limit cycle oscillation. It is also of interests to see that the 

steady state of the limit cycle oscillation is different from the initial state.  
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Figure 4.26: Tip displacement of the pre-flutter case for the cantilevered highly flexible 
wing 
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Figure 4.27: Tip displacement of the post-flutter case for the cantilevered highly flexible 
wing 

 

4.6.2 Flutter of Free Flight Aircraft 

A Blended-Wing-Body model is developed for this test. The geometry is shown 

in Fig. 4.28. Both body and wing are modeled as beams coupled with aerodynamics. The 

red dash-dot line shows the location of the beam reference axis. The shear center of the 

beam varies from the body’s root (64.38% of the chord) to the wing root (45.60% of the 

chord), and keeps its relative position unchanged along the wing. Physical parameters of 

the body and wings are listed in Tables 4.5 and 4.6. One balance weight of 80 kg is 

positioned at the center of the model, 0.89 m ahead of the reference line. In addition, nine 

nonstructural masses, each 20 kg, are evenly distributed along the wing from the root to 

the tip. The wing contains three independent elevators, as indicated in Fig. 4.28. These 

elevators occupy 25% of the chord from wing root to 75% span of the wing. 
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Figure 4.28: Model description of a sample Blended-Wing-Body model 

 

Table 4.5: Body properties of the Blended-Wing-Body model 

Ref. Axis Location (Root / Tip) (From L.E.) 64.38% / 45.60% of chord 

Center of Gravity (Root / Tip) (From L.E.) 64.38% / 45.60% of chord 

Extension Rigidity 1.69×108 N 

Flat Bending Rigidity 7.50×105 N·m2 

Chord Bending Rigidity 3.50×107 N·m2 

Torsional Rigidity 2.25×106 N·m2 

Mass per Unit Length 50.00 kg/m 

Flat Bending Inertia per Unit Length 0.70 kg·m 

Edge Bending Inertia per Unit Length 22.0 kg·m 

Rotational Inertia per Unit Length 4.50 kg·m 
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Table 4.6: Wing properties of the Blended-Wing-Body model 

Ref. Axis Location (Root / Tip) (From L.E.) 45.60% / 45.60% of chord 

Center of Gravity (Root / Tip) (From L.E.) 45.60% / 45.60% of chord 

Extension Rigidity 1.55×108 N 

Flat Bending Rigidity 1.17×104 N·m2 

Chord Bending Rigidity 1.30×105 N·m2 

Torsional Rigidity 1.10×104 N·m2 

Mass per Unit Length 6.20 kg/m 

Flat Bending Inertia per Unit Length 5.00×10-4 kg·m 

Edge Bending Inertia per Unit Length 4.63×10-3 kg·m 

Rotational Inertia per Unit Length 5.08×10-3 kg·m 
 

At a given altitude (6096 m, 20000 ft), the flutter speed of the complete vehicle 

with rigid body motions is predicted to be 123.36 m/s, with a frequency of 20.92 rad/s 

(3.33 Hz). The flutter mode shape and root locus with the changing of the flight velocity 

are plotted in Figs. 4.29 and 4.30. Note that the aircraft model is trimmed at each flight 

velocity increment when searching for the flutter boundary. The unstable mode is 

coupled plunging/pitching of the body and the first flat bending of the wing. 

 

Figure 4.29: Mode shape of flutter in free flight condition of the sample Blended-Wing-
Body model 
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Figure 4.30: Root locus with changing velocity of the sample Blended-Wing-Body model, 
speed from 94.83 m/s (triangle) to 140 m/s (square) 

Following the same procedure as in the previous section, two individual time 

domain simulations are carried out for verification purposes, one of which simulates the 

level flight of the model with a flight velocity lower than the flutter speed (120 m/s), 

while the other flies with a slightly higher velocity (125 m/s) than the flutter speed. A 

deflection of elevator angle is applied as a perturbation (Fig. 4.31). The time histories of 

the tip displacements and body pitching angles are plotted in Figs. 4.32 to 4.35. For the 

pre-flutter case (Figs. 4.32 and 4.33), the responses are converged after initial oscillations. 

However, the responses of the post-flutter case are diverged, showing instability, as 

indicated by Figs. 4.34 and 4.35. As one may see from Fig. 4.35, the pitching motion is 

not stable, which is correctly predicted by the frequency domain flutter calculation. One 

more observation from the time domain simulation is that the frequency of the unstable 

oscillation is about 3.33 Hz, which agrees with the frequency domain prediction as well. 

Overall, the flutter prediction formulation is effective and accurate based upon the 

verification. 

Root locus of the 
first unstable mode. 
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Figure 4.31: Deflection of elevator angle as a perturbation for the sample Blended-Wing-
Body model 
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Figure 4.32: Tip displacement of the pre-flutter case for the sample Blended-Wing-Body 
model, speed 120 m/s 
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Figure 4.33: Pitching angle of the pre-flutter case for the sample Blended-Wing-Body 
model, speed 120 m/s 
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Figure 4.34: Tip displacement of the post-flutter case for the sample Blended-Wing-Body 
model, speed 125 m/s 
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Figure 4.35: Pitching angle of the post-flutter case for the sample Blended-Wing-Body 
model, speed 125 m/s 
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CHAPTER V 

Numerical Studies 

 

 

Results from the numerical studies are presented in this chapter. To illustrate the 

capabilities of the new formulation and study the aeroelastic and flight dynamic 

characteristics, four different baseline HALE vehicles are modeled in UM/NAST 

environment. Aeroelastic analysis is then carried out with fully flexible and rigidized 

models. Stability analysis results are first presented, exploring flutter boundaries (with 

constraints of rigid body motions or in free flight) and flight dynamic stability for 

different vehicles. In addition, flight dynamic responses with maneuver inputs or gust 

perturbations are presented, subject to some nonlinear effects. 

5.1 Introduction 

Among the four highly flexible vehicles that will be studied, three of them, i.e., 

Single-Wing, Joined-Wing, and Blended-Wing-Body configurations, are inspired by the 

ISR SensorCraft concepts[1]. The design of a SensorCraft itself includes a complex 

process. The models developed here are far from replicating SensorCraft airplanes. 

Furthermore, the studies regarding SensorCraft may cover a wide range of fields. This 

dissertation is limited to nonlinear aeroelastic aspects. 

Aircraft are designed according to mission requirements. Seven flight index 

points are selected to represent the nominal mission profile of the three SensorCraft 

configurations, as indicated in Fig. 5.1. At each index point, the altitude, fuel mass, and 
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nominal flight speed are specified. The index points represent: (1) takeoff, (2) climb, (3) 

cruise ingress, (4) cruise/loiter/cruise, (5) cruise egress, (6) descent, and (7) landing. The 

fuel burn determines the duration of each flight segment. The nominal flight speed at 

each index point is based on the cruise speed (input parameter), and it is computed such 

that the dynamic pressure is constant (constant indicated airspeed). At each flight index 

point, the vehicle is trimmed for equilibrium in horizontal flight at the corresponding 

flight speed. 
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Figure 5.1: Mission profile for SensorCraft 

Three sets of constraints were defined to help sizing the baseline designs: strength 

(based on first-ply failure) at 1.5-g load, strength based on gust loads, and minimum 

flutter margin. For these vehicles, the 1.5-g load factor was shown to be the critical 

constraint and the wing structural thickness distribution was sized for a fully-strained 

design along span. A description of the design process can be found in Ref. [28]. 

One last class of highly flexible vehicle that will be studied here has a Helios-like 

configuration. The current study only explores its performance at sea level. The nominal 



104 

flight speed is 12.192 m/s (40 ft). However, the payload may be varied, which results in 

different steady state deformations, as will be demonstrated in a following section. 

5.2 Representative Aircraft Models 

5.2.1 Single-Wing Configuration 

Geometry 

Figure 5.2 shows the Single-Wing configuration, whose geometric parameters are 

listed in Table 5.1. The wings are divided into nine regions, and the horizontal and 

vertical tail surfaces are both divided into five regions for definition of cross-sectional 

property distribution. NACA 4415 is chosen as the airfoil and it is kept constant 

throughout the wing members, while NACA 0012 is chosen as the airfoil for the tails. 

Three independent ailerons are defined on the wing, which locations are listed in Table 

5.1. Elevators and rudders are also defined on horizontal and vertical tails, respectively. 

For simplicity, these control surfaces occupy 20% of the chord, and are allowed to deflect 

+/-30o. Engine thrust force is modeled as a point follower load applied at the location of 

15 m back from the nose of the aircraft, as shown in Fig. 5.2. 

T

 

Figure 5.2: Baseline Single-Wing configuration (arrow indicates the direction of thrust 
force in undeformed vehicle configuration) 
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Table 5.1: Geometric parameters of the Single-Wing configuration 

Fuselage Length 26.4 m 

Wing Span 29.3 m 

Wing Chord Length (Root/Tip) 4.5 m/2.2 m 

Wing Incidence Angle 3o 

Wing Swept Angle 0o 

Wing Dihedral Angle 3o 

Horizontal Tail Span 9 m 

Horizontal Tail Chord Length (Root/Tip) 3.5 m/2.45 m 

Horizontal Tail Incidence Angle -4.5o 

Vertical Tail Span 4 m 

Vertical Tail Chord Length (Root/Tip) 2.45 m/2.0 m 

Vertical Tail Swept Angle 14o 

Aileron 1 Span Location (on Wing) 6.51 – 13.02 m 

Aileron 2 Span Location (on Wing) 13.02 – 22.79 m 

Aileron 3 Span Location (on Wing) 22.79 – 29.3 m 

Elevator Span Location (on Horizontal Tail) 1.8 – 9.0 m 

Rudder Span Location (on Vertical Tail) 0.8 – 3.2 m 
 

Vehicle Mass Breakdown 

The vehicle mass breakdown is given in Table 5.2. The fuel is assumed to be 

distributed up to half span of the wings, independent of the total amount of fuel on board. 

The fuselage contains no fuel. 

Table 5.2: Vehicle mass distribution for the Single-Wing configuration 

Fuselage Structure + Payload + Engine Mass 4,000 kg 

Fuel Mass 20,000 kg 

Vertical Tail Structure Mass 419 kg 

Vehicle Total Wing Structure Mass 4,230 kg 

Vehicle Gross Take-off Mass 28,649 kg 
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Cross-sectional Inertia and Stiffness Distributions 

The stiffness and inertia properties of each cross-section of the wing, tail and 

fuselage can be found in Appendix C. Note that a 2400-kg payload is evenly distributed 

at the nose part of the fuselage, while a 455-kg payload is distributed a long the rest of 

the fuselage, which are modeled as nonstructural masses attached at each node for 

simplicity. 

Rigidity Levels 

To assess the effects of the flexibility of different members of the vehicle on their 

roll response and stability that will be analyzed in the coming sections, models with 

different flexibility levels are considered for the Single-Wing configuration. They are 

summarized in Table 5.3. 

Table 5.3: Models with different flexibility levels of the Single-Wing configuration 

 Fuselage Tails Wings 

Model 1 Rigid Rigid Flexible 

Model 2 Rigid Flexible Flexible 

Model 3 Rigid 8 × Flexible Flexible 

Model 4 Flexible Rigid Flexible 

Model 5 Flexible Flexible Flexible 
 

Trim of the vehicle  

The vehicle is trimmed for equal lift and weight, and zero pitching moment about 

its center of gravity at level flight. The interference between the wings and tails is not 

accounted for in the trim process. A concentrated thrust is applied in the fuselage 

longitudinal direction to balance the drag (see Fig. 5.2 for the location and orientation of 

the thrust). The trim results of the fully flexible model (Model 5) are shown in Fig. 5.3. 

Note that these results will vary for the different models listed in Table 5.3. 
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Figure 5.3: Trim results for the Single-Wing configuration (Model 5) 

 

5.2.2 Joined-Wing Configuration 

Geometry 

Figure 5.4 shows the Joined-Wing configuration, with the geometric parameters 

listed in Table 5.4. From top view, the vehicle shape is symmetric (although one may 

want to vary the forward/aft location of the joint). The wings are denoted right front wing 

(with inner and outer wings), left front wing, right aft wing (with inner-wing only), and 

left aft wing. Right and left are determined as in Fig. 5.4 (as viewed from top with nose 

pointing up). The front wings are divided into eight regions while the aft wings are 

divided into four regions for definition of cross-sectional properties distribution. The 

members of all inner wings are identical in construction, and the material distribution 

follows the numbering convention indicated in Fig. 5.4. NACA 4415 is chosen as the 

airfoil and it is kept constant throughout the wing members. The outer wings contain a 



108 

50%-span aileron (regions 6 and 7 as shown in Fig. 5.4) while elevators are defined along 

the span of the inner wings (regions 1 to 4 as shown in Fig. 5.4). 50%-span rudders are 

defined on the vertical tail (from 25% to 75% span of it). For simplicity, these control 

surfaces occupy 20% of the chord, and are allowed to deflect +/-30o. Engine thrust force 

is modeled as a point follower load applied at the location of 26 m back from the nose of 

the aircraft, as shown in Fig. 5.4. 
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Figure 5.4: Baseline Joined-Wing configuration (arrow indicates the direction of thrust 
force in undeformed vehicle configuration) 

Vehicle Mass Breakdown 

The vehicle mass breakdown is given in Table 5.5. The fuel is assumed to be 

distributed evenly throughout the inner and outer wings, independent of the total amount 

of fuel on board. The fuselage contains no fuel. 
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Table 5.4: Geometric parameters of the Joined-Wing configuration 

Fuselage Length L1 30.0 m 

Inner Wing Span W1 20.0 m 

Inner Wing Chord Length (Root/Tip) 3.5 m/2.0 m 

Inner Wing Incidence Angle 4o 

Outer Wing Span W2 10 m 

Outer Wing Chord Length (Root/Tip) 2.0 m/1.5 m 

Outer Wing Incidence Angle 4o 

Outer Wing Swept Angle 0o 

Outer Wing Dihedral Angle 0o 

Vertical Tail Span 8 m 

Vertical Tail Chord Length (Root/Tip) 6.0 m/3.15 m 

Vertical Tail Swept Angle 41o 

Aileron Span Location (on Outer Wing) 2.5 – 7.5 m 

Elevator Span Location (on Front Inner Wing) 0 – 20.0 m 

Rudder Span Location (on Vertical Tail) 2.0 – 6.0 m 
 

Table 5.5: Vehicle mass distribution for the Joined-Wing configuration 

Fuselage Structure + Payload + Engine Mass 4,000 kg 

Fuel Mass 20,000 kg 

Vertical Tail Structure Mass 550 kg 

Vehicle Total Wing Structure Mass 3,440 kg 

Vehicle Gross Take-off Mass 27,990 kg 
 

Cross-sectional Inertia and Stiffness Distributions 

The stiffness and inertia properties of the wing, vertical tail and fuselage can be 

found in Appendix C. Note that a payload of 2769 kg is evenly distributed along the 

fuselage, which are modeled as nonstructural masses attached at each node for simplicity. 
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Rigidity Levels 

To assess the effects of the flexibility of different members of the vehicle on their 

roll response and stability that will be analyzed in the coming sections, models with 

different flexibility levels are considered for the Joined-Wing configuration. They are 

summarized in Table 5.6. 

 

Table 5.6: Models with different flexibility levels of the Joined-Wing configuration 

 Fuselage Vertical Tail Inner Wing Outer Wing 

Model 1 Rigid Rigid Rigid Flexible 

Model 2 Rigid Rigid Flexible Flexible 

Model 3 Rigid Flexible Flexible Flexible 

Model 3m Rigid 10 × Flexible Flexible Flexible 

Model 4 Flexible Rigid Flexible Flexible 

Model 4m 5 × Flexible Rigid Flexible Flexible 

Model 5 Flexible Flexible Flexible Flexible 

Model 5m 5 × Flexible 10 × Flexible Flexible Flexible 
 

Trim of the vehicle  

The same trim scheme used for the Single-Wing configuration is applied to the 

Joined-Wing configuration. The interference between the front and aft wings is not 

accounted for in the trim process. A concentrated thrust is applied in the fuselage 

longitudinal direction to balance the drag (see Fig. 5.4 for the location and orientation of 

the thrust). The trim results of the fully flexible model (Model 5) are shown in Fig. 5.5. 

Note that these results will vary for the different models listed in Table 5.6. 
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Figure 5.5: Trim results for the Joined-Wing configuration (Model 5) 

W2

W1

ch2

ch1

θ
T

 

W1 W2 ch1 ch2 θ 

8.21 m 30.0 m 12.80 m 5.07 m 30o 
 

Figure 5.6: Baseline Blended-Wing-Body configuration (arrow indicates the direction of 
thrust force in undeformed vehicle configuration) 
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5.2.3 Blended-Wing-Body Configuration 

The Blended-Wing-Body configuration is exemplified in Fig. 5.6. The wings are 

back swept 30o. Three independent elevators are defined from 0 to 75% of wing span, 

which occupy 25% of the chord. NACA 0012 is chosen as the airfoil and it is kept 

constant throughout the body and wing members. The physical properties of the body and 

wings are listed in Appendix C. 

Vehicle Mass Breakdown 

The vehicle mass breakdown is given in Table 5.7. The fuel is assumed to be 

distributed only in the wings (outboard of W1, as in Fig. 5.6), independent of the total 

amount of fuel on board. The fuselage contains no fuel. 

Table 5.7: Vehicle mass distribution for the Blended-Wing-Body configuration 

Fuselage Structure + Payload + Engine Mass 11,590 kg 

Fuel Mass 20,000 kg 

Vehicle Total Wing Structure Mass 1,865 kg 

Vehicle Gross Take-off Mass 33,455 kg 
 

Trim of the vehicle  

The vehicle is trimmed for equal lift and weight, and zero pitching moment about 

its center of gravity at level flight. A concentrated thrust is applied in the fuselage 

longitudinal direction to balance the drag force (see Fig. 5.6 for the location and 

orientation of the thrust). The trim results are shown in Fig. 5.7. 



113 

1 2 3 4 5 6 7
2

2.5

3

3.5

B
od

y 
A

ng
le

, d
eg

1 2 3 4 5 6 7
-4

-2

0

2

4

6

E
le

va
to

r A
ng

le
, d

eg

Flight Index
 

Figure 5.7: Trim results for the Blended-Wing-Body configuration 

 

W1

L1

L3

L4

L2

wθ

 

L1 L2 L3 L4 W1 θw 

24.38 m 12.19 m 12.19 m 1.83 m 2.44 m 10o 
 

Figure 5.8: Baseline Flying-Wing configuration (after Ref. [51]) 
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5.2.4 Flying-Wing Configuration 

Figure 5.8 shows the geometry of the Flying-Wing vehicle after Ref. [51]. It has a 

span of 72.8 m and a constant chord length of 2.44 m. The outboard one-third wing semi-

span has a dihedral angle of 10o. Wing cross-sectional properties can be found in Table 

5.8. As indicated in Fig. 5.8, there are five propulsive units and three pods, which are 

located at middle span and 2/3 of semi span at each side, respectively. The side ones have 

a mass of 22.70 kg each, and the center one has a mass of 27.23 kg. The payload is 

applied on the center pod, ranging from 0 kg (light) to 227 kg (heavy). 

Table 5.8: Cross-sectional properties of the Flying-Wing configuration (after Ref. [51]) 

Elastic (Reference) Axis 25% chord 

Center of Gravity 25% chord 

Stiffness Properties: 

Torsional Rigidity 1.65 ×105 N·m2 

Bending Rigidity (Flatwise) 1.03 ×106 N·m2 

Bending Rigidity (Chordwise) 1.24 ×107 N·m2 

Inertia Properties: 

Mass per Unit Length 8.93 kg/m 

Mass Moment of Inertia Ixx (Torsional) 4.15 kg·m 

Mass Moment of Inertia Iyy (Flatwise Bend) 0.69 kg·m 

Mass Moment of Inertia Izz (Flatwise Bend) 3.46 kg·m 

Aerodynamic Coefficients for Wings (about 25% chord): 

clα 2π 

clδ 1 

cd0 0.01 

cm0 0.025 

cmδ -0.25 

Aerodynamic Coefficients for Pods (about 25% chord): 

clα 5 

cd0 0.02 

cm0 0 
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Trim of the vehicle  

With the flight speed of 12.2 m/s at sea level, the Flying-Wing vehicle is trimmed 

for equivalent lift and weight, equivalent thrust and drag, and zero pitching moment 

about the c.g. point of the aircraft. Flap-like control surfaces along the trailing edge and 

the engine thrusts are used as trim inputs. The payload is varied so that the vehicle mass 

is varied from “light” to “heavy,” as defined above. The trim results are shown in Fig. 5.9 

and Table 5.9, and the deformations at trim conditions of light and heavy models are 

graphically represented in Figs. 5.10 and 5.11. The results indicate that the static 

characteristics of the Flying-Wing model used here is very similar to the one in Ref. [51]. 
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Figure 5.9: Trim results for the Flying-Wing configuration 

Table 5.9: Trim results for light and heavy models of the Flying-Wing configuration 

 Body Angle Flap Angle Thrust per Motor 

Light Model 3.11o 5.68o 37.11 N 

Heavy Model 4.92o 0.34o 37.02 N 
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Figure 5.10: Trimmed light model with respect to undeformed shape – nearly identical 
(U=12.2 m/s, at sea level) 

 

 

Figure 5.11: Trimmed heavy model with respect to undeformed shape (U=12.2 m/s, at 
sea level) 
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5.3 Static Stability 

The static instability here refers to the loss of elastic stability. For the particular 

Joined-Wing configuration baseline design considered here, the front and aft wings form 

a tilted plane, which brings the aft wings under compressive loading conditions when the 

wings are generating lift. Due to the compressive loads, their elastic response can be a 

sizing limitation for the vehicle, as shown in Fig. 5.12. Note that the large deformation 

associated with the buckling of aft wings is naturally modeled in UM/NAST through the 

nonlinear structural analysis. 

To study the effects of the flexibility from different members of the aircraft on the 

loss of elastic stability of the wings, Models 2 to 5 are brought to steady state at level 

flight (at sea level). Then, their flight speeds are varied from the nominal flight speed, 

which is 61.21 m/s, until there is a sudden drop in the lift generation capacity. 

 

Figure 5.12: Lift distribution on the vehicle as the critical speed is approached, (a) 
undeformed; (b) U=61.21 m/s; (c) U = 80 m/s; (d) U = 81.1 m/s (sea level, fully fueled, 

no rigid body degrees of freedom) 

(a) (b)

(c) (d)
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The instability happens when the load factor reaches approximately 1.5 to 1.6, 

with the deformation of the aft wing increases dramatically, bringing the whole wing 

system close to collapse. The wing shape and deflections of the modified fully flexible 

model (Model 5) are plotted for varying load factor in Figs. 5.13 and 5.14. The 

corresponding change of tip positions is plotted versus the variation of flight speed (Fig. 

5.15) and load factor (Fig. 5.16). The sudden reduction of the aft wing stiffness results in 

large bending deflection of the overall wing structure, and consequent drop in the overall 

lift (represented by the reduction in load factor as shown in Figs. 5.15 and 5.16). This 

level of wing displacement causes high composite ply strains and stresses, to the point of 

ply failure (Distributions of ply thinkness of wing and vertical tail members are listed in 

Appdix C). Strain components dependence on the load factor is shown in Figs. 5.17 to 

5.19. 
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Figure 5.13: Wing shape for varying load factors (Model 5, level flight at sea level) 

LF = 0.83 
Speed = 80.1 m/s

LF = 1.58 
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LF = 1.00 
Speed = 61.21 m/s 
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Figure 5.14: Wing bending deflections for varying load factors (Model 5, level flight at 
sea level) 
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Figure 5.15: Changes in tip deflection as function of the flight speed of the vehicle 
(Model 5, level flight at sea level) 

LF = 0.83 
Speed = 80.1 m/s

LF = 1.58 
Speed = 80.0 m/s 

LF = 1.00 
Speed = 61.21 m/s 
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Figure 5.16: Changes in tip deflection as function of the lift generation capability (load 
factor) of the vehicle (Model 5, level flight at sea level) 
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Figure 5.17: Nonlinear growth of maximum longitudinal strain due to loss of stiffness on 
the aft wing with increasing load factor (Model 5, level flight at sea level) 
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Figure 5.18: Nonlinear growth of maximum transverse strain due to loss of stiffness on 
the aft wing with increasing load factor (Model 5, level flight at sea level) 
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Figure 5.19: Nonlinear growth of maximum shear strain due to loss of stiffness on the aft 
wing with increasing load factor (Model 5, level flight at sea level) 
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The onset of this “buckling-like” instability can be observed when the wings 

demonstrate large deformations, which is resulted from the loss of the effective bending 

stiffness when the wings are compressively loaded. As shown in Fig. 5.12, the effective 

lift generated on the wings is significantly reduced due to the large wing deformation, 

which corresponds to a reduction in load factors. The critical speed at which the vehicle 

loses its elastic stability may vary due to different levels of flexibility of the vehicle 

(Table 5.6). The plot of load factors as function of flight speed for different models is 

shown in Fig. 5.20. The model with a flexible vertical tail has the highest critical speed, 

whereas the one with a flexible fuselage has the lowest critical speed. If one looks closer 

to the modes of deformation (“unstable mode”), they show a complex interaction 

between the vertical bending of the fuselage (particularly at the front wing connecting 

region) and the in-plane bending of the tail. These induce a change in the overall 

aerodynamic loading of the different wing segments, influencing the compressive load 

applied to the aft wing. 
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Figure 5.20: Load fact with respect to flight speeds for different models of the Joined-
Wing configuration (level flight at sea level) 



123 

5.4 Dynamic Stability 

The dynamic stability (flutter boundary) is an important design constraint and 

performance indicator of an aircraft. For the particular Joined-Wing configuration studied 

here, the static instability described above always happens before the flutter speed can be 

reached. Therefore, only the flutter boundaries of Single-Wing and Blended-Wing-Body 

configurations are studied here. 

As a tailless vehicle, the Flying-Wing configuration features different flight 

dynamic characteristics from the conventional aircraft with tails. This dissertation will 

discuss the variation of phugoid and short-period modes with the change of vehicle 

deformations due to increased payloads. 

5.4.1 Flutter Boundary of Constrained Vehicle: Single-Wing 

The calculated flutter speeds with constrained rigid body motions are plotted in 

Fig. 5.21 for Single-Wing configurations. The induced flexibility of the fuselage slightly 

reduces the flutter speed, especially at the flight indices at high altitudes (see Fig. 5.1). 

However, this effect is very small. The reduction of the flutter speed due to the induced 

flexibility of the tails should be considered carefully. In the studies, overall system 

stability is evaluated, which includes both the wings and the tails. Since the relative 

elastic coupling between the wing and tail is weak (i.e., relatively rigid fuselage), one 

would not expect any significant influence of the tail on the flutter characteristics of the 

wing. This explains why there is nearly no change in the flutter speed when the tail is set 

from rigid to flexible (From Model 1 to 2 and from Model 4 to 5). However, if the 

stiffness of the tail is further reduced (e.g., 12% of the nominal stiffness), there will be a 

significant decrease of the tail flutter speed, which ended up lower than that of the wing, 

as seen in Fig. 5.21 (Model 3). The flutter of the tail can also be observed from the 

unstable modes. Figures 5.22 and 5.23 show the flutter modes of Model 3, which has a 

fluttering tail. But the flutter of Model 5 comes from the wings as indicated in Figs. 5.24 

and 5.25. 
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Figure 5.21: Nonlinear flutter speed at each flight index for different models of the 
Single-Wing configuration (no rigid body motions, no retrim) 

 

 

 

Figure 5.22: Anti-symmetric flutter mode of Single-Wing configuration 
 (Model 3, Index 2) 
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Figure 5.23: Symmetric flutter mode of Single-Wing configuration (Model 3, Index 3) 

 

Figure 5.24: Symmetric flutter mode of Single-Wing configuration (Model 5, Index 3) 

 

Figure 5.25: Symmetric flutter mode of Single-Wing configuration (Model 5, Index 5) 
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5.4.2 Flutter Boundary of Free Flight Vehicle: Single-Wing 

In the previous section, the rigid body degrees of freedom are constrained when 

searching for the flutter boundary, which results in the flutter of elastic members only. As 

the wing oscillations could be coupled with the rigid body motion of the entire vehicle, 

the flutter boundary in free-flight condition may differ from that of a constrained vehicle. 

Since the induced flexibility of the different vehicle members has very limited impact on 

the flutter boundary of the constrained vehicle, only Model 5 – the fully flexible Single-

Wing configuration is studied in this section. The results are plotted in Fig. 5.26, 

including the flutter results with rigid body motions constrained for comparison. 

The first observation that can be made from Fig. 5.26 is that the flutter speed in 

free-flight vehicle may be significantly different from the one with constraints on rigid 

body motions, especially at the flight indices at high altitudes. At index 3, the nominal 

flight condition is already unstable due to the inertia of relatively large amount of fuel, 

which indicates a redesign of this vehicle is required. 
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Figure 5.26: Flutter speed of Single-Wing configuration with constrained rigid body DOF 
and in free flight condition (Model 5, no retrim) 
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Figure 5.27: Frequency of flutter modes of Single-Wing configuration with constrained 
rigid body DOF and in free flight condition (Model 5, no retrim) 

 

 

Figure 5.28: Flutter mode of Single-Wing configuration in free flight condition (Model 5, 
Index 3, no retrim) 
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Figure 5.29: Flutter mode of Single-Wing configuration in free flight condition (Model 5, 
Index 7, no retrim) 

5.4.3 Flutter Boundary of Free Flight Vehicle: Blended-Wing-Body 

This section investigates the difference between flutter instabilities with and 

without rigid body motions for the Blended-Wing-Body configuration. The analysis is 

carried out at flight index 5, which has a nominal flight speed of 170 m/s. According to 

the analysis (see Fig. 5.30), the nominal vehicle would have its flutter boundary at 205 

m/s (constrained) and 156 m/s (unconstrained). Therefore, the vehicle is not stable in 

terms of the unconstrained flutter, although the wing system itself is (when the rigid body 

motions are not considered). Changes to the wing stiffness (out-of-plane bending, in-

plane bending and twist) could be imposed, such that the flutter boundary in free flight 

condition is higher than the nominal speed. 

Figures 5.30 and 5.31 show the change of flutter boundary and frequency with 

increased out-of-plane bending stiffness of the vehicle. Flutter in free flight condition and 

with constrained rigid body DOFs are compared in each plot. As one may find, both of 

the flutter boundaries are increased as the structure is stiffened in terms of the out-of-

plane bending. This is the case since out-of-plane bending participates in the flutter 

modes of both cases, as indicated in Figs. 5.32 and 5.33. When the out-of-plane bending 

stiffness is increased to 1.7 times that of the original design, the vehicle is stable in free 

flight. Another observation that can be made is that the free flight flutter speed is more 

sensitive to the change in the out-of-plane bending stiffness than the constrained one. 
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The in-plane bending stiffness, however, has nearly no impact on the free flight 

flutter, as indicated in Figs. 5.34 and 5.35. This is because in-plane bending does not 

participate in the flutter modes. There is a discontinuity in the flutter with constraints, 

when the stiffness is slightly knocked down from the nominal design. This comes from 

the impact of another mode that has a very similar frequency. The impact does not exist 

when the wing is further softened or stiffened. 

Wing twist also participates in the unstable modes. Therefore, the change of 

torsional stiffness affects the flutter boundaries for both of the cases, as shown in Figs. 

5.36 and 5.37. An increase of torsional stiffness is more effective than out-of-plane 

bending stiffness for increasing the vehicle’s free flight flutter. Moreover, the free flight 

flutter mode is changed when the torsional stiffness is over twice that of the original one. 

The unstable body motion switches from symmetric plunging-pitch to anti-symmetric roll 

motion. 
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Figure 5.30: Change of flutter boundaries of the Blended-Wing-Body configuration with 
respect to out-of-plane bending stiffness 
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Figure 5.31: Change of flutter frequency of the Blended-Wing-Body configuration with 
respect to out-of-plane bending stiffness 

 

 

 

Figure 5.32: Flutter mode shape of the nominal Blended-Wing-Body configuration with 
all rigid body motions constrained 
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Figure 5.33: Flutter mode shape of the nominal Blended-Wing-Body configuration in free 
flight condition 
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Figure 5.34: Change of flutter boundaries of the Blended-Wing-Body configuration with 
respect to in-plane bending stiffness 
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Figure 5.35: Change of flutter frequency of the Blended-Wing-Body configuration with 
respect to in-plane bending stiffness 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
150

175

200

225

250

275

300

Torsional Stiffness Ratio

Fl
ut

te
r B

ou
nd

ar
y,

 m
/s

 

 

Flutter in Free Flight Condition
Flutter with Body DOF Constraints

 

Figure 5.36: Change of flutter boundaries of the Blended-Wing-Body configuration with 
respect to torsional stiffness 



133 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Torsional Stiffness Ratio

Fl
ut

te
r F

re
qu

en
cy

, H
z

 

 

Flutter in Free Flight Condition
Flutter with Body DOF Constraints

 

Figure 5.37: Change of flutter frequency of the Blended-Wing-Body configuration with 
respect to torsional stiffness 

5.4.4 Flight Stability: Flying-Wing 

To assess the flight stability of the Flying-Wing configuration, a linearization of 

the aeroelastic equations of motion at each trimmed condition is performed. Table 5.10 

summarizes the results for the two extreme loading conditions: light and heavy, including 

the results given in Ref. [51]. Significant differences are present for both phugoid and 

short period modes. The latter is never oscillatory in the present model. Figure 5.38 

shows the phugoid mode of the vehicle from light to heavy configuration. With the 

increase of payload, the frequency of the phugoid mode grows, while the damping 

decreases. At 152 kg payload, the damping crosses the imaginary axis, which indicates 

the phugoid mode looses stability. Qualitatively the result is the same as reported in Ref. 

[51]. The quantitative differences are mainly attributed to differences in the inertia 

distribution on the two models, since the steady aerodynamic loads are virtually the same 

between Ref. [51] and the present work. 
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Figure 5.38: Root locus for phugoid mode of the Flying-Wing configuration (left: flexible 
vehicle, right: rigid vehicle) 

Table 5.10: Phugoid and short-period modes for light and heavy models 

 Flexible Rigid 

Modes Phugoid  Short-Period Phugoid  Short-Period

Ref. [51] -0.108±0.142i -2.74±1.76i -0.106±0.146i -2.82±1.82i 
Light 

Current -0.0771±0.0858i -11.7/-8.28 -0.0758±0.0853i -11.7/-8.54 

Ref. [51] +0.147±0.586i - -0.0613±0.535i -3.05±1.63i 
Heavy 

Current +0.107±0.498i -7.53/-0.91 -0.0525±0.551i -9.31/-6.13 

5.5 Roll Response 

The ability to roll large span aircraft is expected to be reduced by the flexibility of 

the wings. According to military standards for a large land based transport type aircraft, 

the vehicle should have the capability to achieve a 30o roll angle within 3.0 seconds. It is 

of interests to explore the impact of all aircraft member’s flexibility on its roll maneuver 

behavior. In this section, the roll response of Single-Wing and Joined-Wing configura- 
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tions is studied. The analysis takes place at flight index 5 (see Fig. 5.1). The flight 

condition is 16.7 km altitude, and 170 m/s. The trimmed body angle of attack is -1.11o for 

the Single-Wing and -2.73o for the Joined-Wing configuration, respectively. These angles, 

however, may vary for the models with different level of member flexibility. To achieve 

the roll motion, anti-symmetric aileron deflection is employed. Figure 5.39 shows the 

control input for the roll maneuver. The ailerons used in the Single-Wing configuration 

are built at the tip of the wings, spanning from 77.8% to 100% of its length, where as the 

ailerons in the Joined-Wing configuration are built at the outer wings, spanning from 

25% to 75% of its length. 
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Figure 5.39: Aileron deflection for the Joined-Wing and Single-Wing configurations 

5.5.1 Linearized and Fully Nonlinear Approaches 

As a comparison, both linearized and nonlinear approaches are applied (Ref. [28]) 

here. In the linearized approach, the aircraft is first brought to its nonlinear steady state. 

The flexible members are permitted to have small dynamic deflections about the 

nonlinear steady state. This approach has the advantage of being computationally 

efficient, a desirable property on preliminary studies. On the other hand in the nonlinear 

approach, the deformed shape of the aircraft is updated at each time step, and all the 

aerodynamic loads are calculated according to the updated deformed shapes. Although 

more time consuming, this presents the most accurate representation of the maneuver. 
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Figure 5.40: Comparison of nonlinear and linearized roll rate of the Single-Wing 
configuration (Model 5) 
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Figure 5.41: Comparison of nonlinear and linearized roll angle of the Single-Wing 
configuration (Model 5) 
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Figures 5.40 and 5.41 show the comparison of the roll simulation results from 

linearized and nonlinear approaches for the fully flexible model (model 5) of the Single-

Wing configuration. From the plots, one can see that there is over 18% difference in the 

steady state roll rate. This reflects at the different roll angle values at a given instant of 

time. However, this may not be an issue for shallow angle roll maneuvers, where the 

difference between the two models is very small. 

5.5.2 Roll Response of Single-Wing Models 

Figures 5.42 to 5.45 show the roll response of different models of the Single-

Wing configuration. As it can be seen from the results, the flexibility of the fuselage and 

the tails does not play an important role in the roll response of this aircraft. 
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Figure 5.42: Linearized roll rate for the Single-Wing configurations 
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Figure 5.43: Linearized roll angle for the Single-Wing configurations 
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Figure 5.44: Nonlinear roll rate for the Single-Wing configurations 
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Figure 5.45: Nonlinear roll angle for the Single-Wing configurations 

5.5.3 Roll Response of Joined-Wing Models 

Figures 5.46 to 5.49 show the roll response of different models of the Joined-

Wing configuration. For this configuration, there is a significant difference between the 

linearized and fully nonlinear approaches for roll analysis, particularly for the terminal 

roll rate. Moreover, as it can be seen from Figs. 5.46 and 5.48, the additional vehicle 

flexibility brings more complexity to the roll response as it starts developing. Oscillations 

in the roll rate response can also be observed with time, due to the induced flexibility of 

the fuselage and vertical tail. Finally, the maximum roll angle that the vehicle can reach 

is noticeably lower than that of the semi-rigid model (see Figs. 5.47 and 5.49). 
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Figure 5.46: Linearized roll rate for the Joined-Wing configurations 
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Figure 5.47: Linearized roll angle for the Joined-Wing configurations 
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Figure 5.48: Nonlinear roll rate for the Joined-Wing configurations 
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Figure 5.49: Nonlinear roll angle for the Joined-Wing configurations 



142 

5.6 Flight Response with Flap Perturbation 

As indicated by the stability analysis, the Flying-Wing configuration has an 

unstable phugoid mode when fully loaded. Therefore, it is necessary to further understand 

its time domain behavior. This model is initially flying at trimmed level condition. 

Perturbation is introduced by a commanded flap angle change: between 1 and 2 seconds, 

the flap angle is linearly ramped up to 5o, and it is linearly ramped back to its trimmed 

angle between 2 and 3 seconds, as shown in Fig. 5.50. A similar simulation has been 

carried out in Ref. [51], and the results are presented for comparison. 
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Figure 5.50: Flap deflection for the Flying-Wing configuration 

As described in Chapter II, there are two different stall models used in the 

simulations. For Stall Model 1, the lift coefficient, lc , is kept constant and equal to lmaxc  

once the angle of attack goes beyond the stall angle, and the moment coefficient ( m0c ) 

remains the same as before stall. Stall Model 2 is similar to Stall Model 1 with the only 

difference that now the moment coefficient is dropped from 0.025 to -0.02. 

Figures 5.51 through 5.55 show the Flying-Wing response for the first 80 seconds 

of flight after the flap was disturbed. Figures 5.51 and 5.52 show the variation of airspeed 

and altitude of the vehicle, including the two stall models, no stall effects, and the results 

presented in Ref. [51] for similar perturbation. As one can see, the damping (and 
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frequency to a lesser extent) is different between the models used in Ref. [51] and in the 

present study, as already discussed. Ref. [51] does not present any stall effects. From 

those two figures, the exchange between kinetic energy and potential energy of the 

vehicle is seen through the out-of-phase variation between air speed and altitude. The 

unstable phugoid mode makes the oscillations grow with time for the heavy vehicle 

configuration. 

As shown in Fig. 5.53, the mid-span location (root) angle of attack reaches stall 

angle within a few cycles. From Fig. 5.53, one may also see the difference of the angle of 

attack with and without stall effects. While this shows stall at the mid-span section of the 

Flying-Wing happening around 60 s, the wing tip starts experiencing stall about 0.5 s 

earlier. Among the things that can be observed for this series of results is that at certain 

points a higher angle of attack is obtained with stall effects on than with stall effects off. 

This is due to the difference between aerodynamic loads before and after stall. Once the 

stall angle is approached, the fixed level of aerodynamic lift load results in insufficient 

force to balance the vehicle weight, in contrast to a continuous linear increase of lift with 

static angle of attack when stall is off. Therefore, the altitude of the vehicle reduces with 

increased vertical velocity (Fig. 5.55), leading to instantaneous higher angles of attack. 

However, the lift reduces the descent rate and the angle of attack falls back to be smaller 

than the stall angle. This cycle repeats and an oscillation in body vertical velocity can be 

observed. For the simulation with Stall Model 2, the sudden reduction in aerodynamic 

moment when stall angle is reached accentuates this behavior. The corresponding change 

in body velocities is larger than the one with Stall Model 1. Since the actual stall 

characteristics of an airfoil will depend on the specific vehicle application (not defined in 

this work) and that qualitatively the two stall models studied here give similar results, 

only Stall Model 2 is applied in the studies to follow. 
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Figure 5.51: Stall effects on the airspeed of flight with initial flap angle perturbation 
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Figure 5.52: Stall effects on the altitude of flight with initial flap angle perturbation 
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Figure 5.53: Stall effects on the angle of attack of flight with initial flap angle 
perturbation 
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Figure 5.54: Bending curvature at the mid span location of flight with initial flap angle 
perturbation 
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Figure 5.55: Variation of body velocities with initial flap angle perturbation 
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Figure 5.56: Initial vehicle position with respect to the gust region and intended flight 
path if in calm air 
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5.7 Gust Response 

As discussed above, the Flying-Wing configuration studied here in its heavy 

configuration shows very large deformations under level flight. This large deformation 

leads to flight dynamic instability and may compromise the vehicle’s structural integrity 

under gust excitation. As an example, the mishap of the Helios prototype vehicle also 

demonstrated the importance of knowing the gust response of this type of vehicle. 

5.7.1 Effects of Different Gust Durations 

To better understand the vehicle response under gust conditions, the discrete gust 

model described in Chapter II is used. The maximum gust amplitude at the center of the 

gust region, Ac, is 10 m/s. The spatial distribution within the gust region is given by Eqs. 

(2.106) and (2.107) with the following coefficients: r0 = 40 m, nN = 2, nE = 1, and the gust 

duration, tg, can be 2, 4, or 8 seconds. Figure 5.56 shows the initial vehicle position (t = 0 

s) with respect the gust profile and its intended flight path if in calm air. The right wing 

of the vehicle begins to touch the gust region after 0.1 s. 

Using the Stall Model 2 when the stall angle is reached, the aerodynamic lift force 

stops increasing with the angle of attack, and the constant component of the aerodynamic 

pitching moment is reversed, which makes the airfoil pitch down. Figures 5.57 to 5.59 

show the body positions of the vehicle with gust perturbations for the three different gust 

durations. The first observation from these plots is that the vehicle is flying away from 

the gust center after it penetrates the gust region (up to 3.5 s). The gust may increase the 

local plunging motion velocity (in Eq. 2.101 or 2.103), which results in increased local 

lift forces. Since the gust distribution on the vehicle is not symmetric, roll and yaw 

moments about vehicle’s c.g. point are generated, which leads to roll and yaw motions. 

For the initial stages when the vehicle penetrates the gust region (before 2.0 s), the lateral 

deviation is not increased with the increase of the gust duration (Fig. 5.58, bottom). This 

is because the longer gust duration introduces a smaller loading gradient on the wing, 

leading to smaller trajectory deviations at the beginning. However, the longer exposure 

will supply more energy to the motion and the deviation from the original (within calm 
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air) trajectory will surpass the ones from shorter gust durations.The flight path, however, 

may change its direction due to different gust durations, as one can observe from Fig. 

5.58. For the cases with 4-s and 8-s gusts, the flight path heads back to the gust side after 

6 to 7 seconds, while the 2-s gust case demonstrates unchanged deviation direction. This 

is due to the oscillation of the wings after the gust perturbation ceases. For the 4-s and 8-s 

cases, the right wings bend down when the gust effects disappear, which leads to a 

downward local plunging motion velocity (in Eq. 2.101 or 2.103). Therefore, the local lift 

forces and moments on the right wing become lower than the left one, resulting in a 

positive yaw moments about the c.g. of the vehicle. On the other hand, the 2-s gust 

applies relatively little energy to the wings, such that the downward motion of the right 

wing does not generate enough yaw moment to overcome the ongoing vehicle motion. 

Moreover, the vehicle motion of the 8-s case is more complicated, since the oscillation of 

the right wing may lead to another change of the yaw direction after 15 seconds. After all, 

it is also noticeable that the amplitude of the plunging motion is increased with time, as 

shown in Fig. 5.59. This is the result of the vehicle’s phugoid mode being unstable. 
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Figure 5.57: Effects of gust duration on body position – North 
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Figure 5.58: Effects of gust duration on body position – West (zoomed for initial times at 
the bottom) 
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Figure 5.59: Effects of gust duration on body position – Altitude 

Figures 5.60 to 5.62 describe the change in the Euler angles of the body as the 

vehicle goes through the gust perturbation. The variation of the yaw angle has a similar 

tendency to the body positions. If one looks at the details of the yaw angle at early stages 

of flight (Fig. 5.60, bottom), it is evident that initially the vehicle yaws away from the 

gust center, but subsequently, it yaws back into the gust. This is believed to be associated 

with adverse yaw due to decrease in lift on the right wing. It can also be seen from Fig. 

5.61 that the pitching angle oscillates with increased amplitude, which indicates again a 

longitudinal unstable configuration. As for the roll angle, the 2-s gust duration is short 

enough that it tends to recover to its undisturbed value within the time window showed in 

Fig. 5.62. This is expected for a damped roll oscillation, since the lift distributions on the 

vehicle should return to its original one after the gust effects disappear. However, this 

symmetry of lift distribution cannot be seen for the 8-s gust. The local angles of attack at 

the two tips are still different and the amplitude of the motion seems to still be growing. 

Longer simulation times would be required for the long duration gust cases. 
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Figure 5.60: Effects of gust duration on Euler angle – Yaw (zoomed for initial times at 
the bottom) 
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Figure 5.61: Effects of gust duration on Euler angle – Pitch 
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Figure 5.62: Effects of gust duration on Euler angle – Roll 



153 

One more observation that can be made is on the wing deformation. Figure 5.63 

compares the wing root bending curvature for the three cases. As seen, the vehicle 

experience large deformation after 25 seconds, especially for the 8-s gust case. Figure 

5.64 exemplifies the deformation of the vehicle at the end of 30 s, with 8-s gust. 

Significant difference can be observed between the deformations at 30 s and the trimmed 

steady state. The vehicle cannot maintain its trimmed state any more. This scenario 

resembles the Helios prototype vehicle mishap after its disturbance encounter. 
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Figure 5.63: Effects of gust duration on bending curvature at the mid span location 
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Figure 5.64: Vehicle deformation at 30 seconds with 8-s gust (golden: 30s with 8-s gust; 
green: trimmed steady state; frame: undefomed) 
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Figure 5.65: Flight path of the Flying-Wing with 2-s gust duration 
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Figure 5.66: Flight path of the Flying-Wing with 4-s gust duration 
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Figure 5.67: Flight path of the Flying-Wing with 8-s gust duration 
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Figures 5.65 to 5.67 show the flight path for the three different gust durations 

from a top view. For all cases, the initial position of the vehicle is represented at the 

bottom center position (t = 0 s). Since the gust cases have different durations, their ending 

point is also indicated in the figures by an appropriate label (“Gust Effects Disappear”). 

For the simulated cases here, the gust ending time spans a range of vehicle positions 

within the gust region. The upper line normal to the trajectory (after gust effects 

disappear is shown with a dashed line) indicates the vehicle position at 20 seconds. From 

here, one can see the different positions and orientations of the vehicle when it flies in the 

calm air after gust effects disappear. 

5.7.2 Effects of Stall 

Another interesting observation can be made when examing the results after 25 

seconds. The response does not follow the same tendency as that before then. This is 

because at approximately 25 seconds the different wing stations exceed the stall angle of 

attack, changing the vehicle response. The effects of stall on the vehicle can be assessed 

by turning off the stall effects and comparing the results with and without stall effects. 

Keeping only the 10-m/s center amplitude and 4-s duration gust case, results are 

presented for vehicle responses considering stall on and off. With stall effects turned on, 

the aerodynamic loads on the airfoil are not continuous before and after the moment of 

stall (see Figs. 5.68 and 5.69). The discontinuity results in reductions in loads and the 

corresponding mid span bending curvature, as shown in Fig. 5.70. Although there is a 

sudden drop in lift at around 28 s, the transient loads excite the vehicle to large 

deformations and eventually large root strains. The configuration has an unstable phugoid 

mode that exacerbates the transient response and reaches higher bending curvatures 

levels. The impact of stall on vehicle response is illustrated in Figs. 5.71 to 5.76. The 

difference after 28 seconds can be clearly seen from those plots, where stall leads to an 

increase in plunging motion (Fig. 5.73) and pitching angle (Fig. 5.75). Therefore, stall 

effects can have a significant impact on the trajectory and attitude predictions. 
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Figure 5.68: Lift distribution on the wings from 25 to 35 seconds with stall effects 

 

Figure 5.69: Lift distribution on the wings from 25 to 35 seconds without stall effects 
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Figure 5.70: Stall effects on bending curvature at the mid span location when vehicle is 
subjected to 10-m/s center amplitude and 4-s duration gust 
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Figure 5.71: Stall effects on body position (west) when vehicle is subjected to 10-m/s 
center amplitude and 4-s duration gust 
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Figure 5.72: Stall effects on body position (north) when vehicle is subjected to 10-m/s 
center amplitude and 4-s duration gust 
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Figure 5.73: Stall effects on body position (altitude) when vehicle is subjected to 10-m/s 
center amplitude and 4-s duration gust 
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Figure 5.74: Stall effects on body Euler angle (yaw) when vehicle is subjected to 10-m/s 
center amplitude and 4-s duration gust 
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Figure 5.75: Stall effects on body Euler angle (pitch) when vehicle is subjected to 10-m/s 
center amplitude and 4-s duration gust 
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Figure 5.76: Stall effects on body Euler angle (roll) when vehicle is subjected to 10-m/s 
center amplitude and 4-s duration gust 
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Figure 5.77: Effects of gust amplitude on bending curvature at the mid span location 
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5.7.3 Effects of Gust Amplitudes 

Different gust amplitudes will have different effects on the vehicle response. In 

the present study, a similar gust perturbation with maximum center amplitude of 5 m/s is 

applied and the results are compared with the 10 m/s as used previously. Note that both 

gust scenarios have the same duration of 4 seconds. Figure 5.77 presents the comparison 

of bending curvature at the vehicle mid span station. It shows that the two cases have 

similar responses before 25 seconds, although with values directly proportional to the 

gust magnitude. However, the bending curvature of the 5-m/s gust response shows a 

more regular pattern up to 35 seconds, while the 10-m/s gust response shows an increase 

in bending curvature after an initial sudden reduction right after 25 seconds. This 

variation is related with stall effects as discussed previously. However, the absence of the 

sudden reduction in the 5-m/s gust case does not mean there will not be any stall 

happening. Since the phugoid mode of the vehicle is unstable, reinforced by the 

responses shown in Figs. 5.80 and 5.82, the angle of attack will eventually grow to reach 

stall and a similar outcome to the 10-m/s gust response is anticipated. 
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Figure 5.78: Effects of gust amplitude on body position (West) 
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Figure 5.79: Effects of gust amplitude on body position (North) 
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Figure 5.80: Effects of gust amplitude on body position (Altitude) 
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Figure 5.81: Effects of gust amplitude on body Euler angle (Yaw) 
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Figure 5.82: Effects of gust amplitude on body Euler angle (Pitch) 
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Figure 5.83: Effects of gust amplitude on body Euler angle (Roll) 

5.7.4 Effects of Skin Wrinkling 

In this section, the effects of skin wrinkling on the gust response are investigated. 

From preliminary simulations, the region most likely to reach higher curvature is located 

at the mid span (wing root). Post-wrinkling torsional stiffness reductions are selected as 

20% (TSR 1) and 40% (TSR 2) of the original one for this study. As discussed before, the 

threshold point between the two torsional stiffness states is determined by the 

corresponding flat bending curvature. The critical flat bending curvature is postulated to 

be 0.02955 m-1 (CFBC 1), which is 10% higher than the bending curvature of the fully-

loaded vehicle at level flight in calm air. Gust disturbance with 5-m/s center amplitude 

and 4-s duration is used. 

The bending and twist curvatures at the wing root are compared in Figs 5.84 and 

5.85, respectively. As one can see from the plots, the torsional stiffness changes 

accordingly when the threshold point of the bending curvature is reached, which results 

in the jump (up and down) of the twist curvature. 
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Figure 5.84: Effects of skin wrinkling on bending curvature at wing root when vehicle is 
subjected to 5-m/s center amplitude and 4-s duration gust 
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Figure 5.85: Effects of skin wrinkling on twist curvature at wing root when vehicle is 
subjected to 5-m/s center amplitude and 4-s duration gust 
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Figures 5.86 to 5.88 show some of the vehicle responses subject to wing skin 

wrinkling. Skin wrinkling mainly affects the lateral motion and the yaw angle of the body. 

If the torsional stiffness reduces to 60% of nominal value when skin wrinkles, the 

difference of lateral displacement at the end of 35 seconds is about 2.38 m, which is 

about 9.71% of the lateral displacement when skin wrinkling is not considered. The 

corresponding difference in yaw angle is about 0.33o, which is approximately 7.71% of 

the yaw angle when skin wrinkling is not considered. For the other responses, the effects 

of skin wrinkling are very small. 
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Figure 5.86: Effects of skin wrinkling on body position (west) when vehicle is subjected 
to 5-m/s center amplitude and 4-s duration gust 
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Figure 5.87: Effects of skin wrinkling on body Euler angle (yaw) when vehicle is 
subjected to 5-m/s center amplitude and 4-s duration gust 
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Figure 5.88: Effects of skin wrinkling on body Euler angle (roll) when vehicle is 
subjected to 5-m/s center amplitude and 4-s duration gust 
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CHAPTER VI 

Conclusions and Recommendations 

 

 

This chapter first summarizes the main accomplishments of this dissertation. 

Conclusions are then presented from results of the numerical analysis. Finally, some 

recommendations for future studies and improvements are made. 

6.1 Summary of the Theoretical Formulation Developments 

The main objective of this work was to model and analyze the coupled nonlinear 

aeroelasticity and flight dynamics of complete flexible aircraft. Four highly flexible 

aircraft configurations were studied in the current work, three of which originated from 

the ISR SensorCraft concepts, while the last one was a Helios-like highly flexible Flying-

Wing. A geometrically nonlinear, strain-based formulation, which can capture the large 

deformations of slender structures, was used for the structural modeling. Previous to this 

study, other researchers modeled the wings and horizontal tails of an aircraft as flexible 

components, while the fuselage and vertical tails were treated as rigid bodies. To explore 

the potential effects of flexibility from different members on aircraft stability and 

performance, modeling of fully flexible vehicles becomes necessary. In the structural 

analysis, split beam systems are required as long as all vehicle members are model as 

slender beams. A split beam system consists of multiple beam members with some of 

them extended from others. The new modeling capability was achieved by introducing 

new kinematic relationships. 
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Among the configurations analyzed in this dissertation, the Joined-Wing 

configuration is the most unconventional one, since the front and aft wings join each 

other at a common point. The modeling of the joint is critical for the Joined-Wing 

configuration, yet it needs some special treatment due to the nature of the strain-based 

formulation that is used for structural modeling. The Lagrange Multiplier Method was 

used to model the relative nodal displacement constraints. With the same approach, 

absolute nodal displacement constraints can also be accurately modeled. The latter is 

generally not important for the modeling of aircraft. However, it completes the beam 

modeling capability. With the Lagrange Multiplier Method implemented, the differential 

equations of motion were augmented with a set of algebraic equations. 

There are many other nonlinear aspects that should be considered when modeling 

and analyzing the flexible aircraft. This dissertation addressed some of them that 

influence the aeroelastic characteristics of the configurations analyzed in the current 

study. Formulations for nonlinear follower loads and bilinear torsional stiffness were 

developed and implemented. 

Gust perturbation has been recognized as a crucial loading case for the highly 

flexible Helios-like Flying-Wing aircraft. To study the gust responses, a formulation of 

temporal- and spatial-distributed discrete gust model was seamlessly incorporated into 

the time simulation scheme. The implementation is general to enables the formulation to 

accommodate future gust models in time-domain analysis. 

For the highly flexible vehicles, their slender members may have very low natural 

frequencies, whose deformations may couple with the rigid body motion of the vehicle. 

Therefore, the necessity of flutter analysis with rigid body motions (free flight), in 

addition to the constrained flutter only, was emphasized. Such a flutter analysis was 

developed based upon the coupled nonlinear aeroelastic and flight dynamic equations. To 

determine the flutter boundary, these nonlinear equations were linearized about each 

steady state, and the eigenvalues of the state-space form of those linearized equations 

were evaluated. With the same formulation, analyses of the constrained flutter and 

dynamic flight stability of an aircraft can be performed, by constraining different rigid-

body degrees of freedom. 
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All these theoretical improvements were numerically implemented in the 

University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST). 

6.2 Conclusion from Numerical Studies 

Numerical analyses were conducted on four highly flexible aircraft models: 

Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. 

In regard to the unique problem of loss of bending stiffness in the aft wing of the 

particular Joined-Wing configuration studied here, preliminary results indicated that the 

added flexible fuselage decreased the critical speed, while adding the flexibility of the 

vertical tail increased it. Since the different models were only trimmed for straight level 

flight, the other load factor points may represent a very different solution in terms of 

vehicle c.g. forces and moments. Further studies would be necessary to better understand 

the implications of the flexibility of the fuselage and vertical tail on the static instability 

of the vehicle. 

The induced flexibility of the fuselage and tails of the Single-Wing configuration 

did not significantly modify the wing flutter, unless the tail fluttered first, which occurred 

when the tail was very flexible. Therefore, it is necessary to comprehensively consider 

the component flexibility when analyzing the stability boundary of highly flexible 

vehicles. 

The flutter boundaries in free-flight and with constrained rigid-body motions were 

both studied. Due to the flexibility, the oscillations of long slender wings couple with the 

vehicle rigid-body motions. This results in different flutter boundaries between 

constrained and unconstrained vehicles. According to the current study, the relative 

magnitude of these two boundaries could change at different altitudes. Therefore, wind 

tunnel flutter studies may have limited usefulness if free flight is not reproduced. 

Parametric studies were performed to explore the variation characteristics of the 

both flutter boundaries with respect to the change in wing stiffness. For the particular 

Blended-Wing-Body configuration studied here, the unstable mode shape for free flight 
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flutter was a coupled plunging and pitching of the rigid body and the first out-of-plane 

bending and torsion of the wings. Therefore, changes of wing out-of-plane bending and 

torsional stiffness had a significant impact on the flutter boundary in free flight. On the 

other hand, the in-plane bending stiffness had negligible effects on the flutter in free 

flight, while it impacted significantly the flutter with constrained rigid body motions. 

The Joined-Wing configuration was more susceptible to the induced flexibility of 

the fuselage and tail in terms of roll performance. For this type of vehicles with wing and 

tail members structurally coupled, the flexibility brings significant oscillations to the roll 

responses and reduces roll angles. As expected, the induced flexibility of the fuselage and 

tails of the Single-Wing configuration had very limited impact on its roll performance 

due to the weak structural coupling. 

A detailed study was conducted of the dynamic response of a highly flexible 

Flying-Wing configuration previously presented in the literature. Effects of gust, stall, 

and wing skin wrinkling were evaluated for this particular numerical example. 

The sample vehicle was trimmed at different payload conditions. Linear stability 

analysis was performed by solving the linearized system of equations at trimmed 

conditions. From it, the phugoid mode eventually became unstable with the increased 

payload. The short period mode was purely real for the range of payloads considered. 

Fully nonlinear time-marching simulation was performed with an initial flap perturbation 

from trim condition. The unstable phugoid mode was clearly excited, which compromises 

the performance and integrity of the vehicle. 

Vehicle response to gust was analyzed for different gust amplitudes and duration. 

As expected, flight path, vehicle attitude, and structural motion were impacted by the 

presence of gust. The disturbed flight path could deviate from the gust center. However, 

the after-gust responses may develop differently with different initial gust durations, 

especially the flight path and yaw angles. 

Furthermore, the gust perturbation may excite the phugoid mode of the vehicle. In 

case the phugoid mode is unstable (e.g., the Flying-Wing configuration studied here with 

full payload), this may result in uncontrollable diverged vehicle motions when the gust 
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perturbation is finite. The large plunging and pitching motions of the vehicle with 

corresponding large elastic deformations also resulted in high instantaneous angles of 

attack on some stations along the wing, which resulting in local stall. The effects of stall 

had a significant impact on transient responses of the wing and can alter the vehicle flight 

behavior. Finally, the skin wrinkling associated with the wing torsional stiffness showed 

to mainly affect the motions of the vehicle in the lateral direction. For the other responses, 

the effects of skin wrinkling were small based on the parameters chosen for the numerical 

study. 

6.3 Key Contributions of this Dissertation 

The key contributions of this dissertation can be summarized as follows. 

1.) Complete kinematic relationships of the strain-based beam formulation were 

developed such that split beam systems can be modeled with the formulation in addition 

to single beam systems that were implemented in previous work. With the new kinematic 

relationships, fully flexible aircraft were structurally modeled as an assemblage of slender 

beams. 

2.) The absolute and relative nodal displacement constraints were introduced in 

this strain-based formulation through the Lagrange Multiplier Method. The formulation 

of relative constraints was applied for the modeling of the Joined-Wing configuration 

with front and aft wings meeting each other. The motions of a fully flexible vehicle with 

additional nodal displacement constraints were then governed by a set of differential-

algebraic equations. 

3.) Skin wrinkling effects were modeled through bilinear stiffness representation. 

This issue is dependent on the wing construction technique and was motivated by the 

Helios prototype construction. 

4.) A frequency-domain stability analysis formulation with nonlinear coupled 

rigid body and elastic degrees of freedom was developed and implemented based on the 
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linearized system equations. This provides a very effective computational way of 

determining the (nonlinear) flutter boundary. 

5.) With the fully flexible models, the impact of flexibility of fuselage and vertical 

tail on aircraft stability and roll performance could be assessed. 

In order to achieve these key contributions, other modeling enhancement was 

made to the current formulation, including the implementation of a temporal- and spatial- 

distributed discrete gust model, the modeling of follower forces for engine thrust, and 

different simplified stall models. 

6.4 Recommendations for Future Work 

The current numerical framework may be used for conducting fundamental 

modeling and analysis of HALE aircraft. Efforts can be made to develop a design 

optimization framework, which may facilitate the design process. In case gradient-based 

optimization schemes are used, analytical solutions for the sensitivities of the aeroelastic 

and flight dynamic responses with respect to design variables would be required. 

Another improvement is about propulsion modeling. In the current work, engine 

thrust forces are modeled as static loads. No dynamic effects are considered, such as the 

gyroscopic effects. This would allow modeling the rotating propellers during vehicle 

deformation. 

The aerodynamic formulation should be improved. In the current formulation, 

there is no consideration of the interference between the lifting surfaces, such as the front 

and aft wings and/or tail. However, it can have significant impact on vehicle trim and 

other performance. Also, the currently implemented aerodynamic theory is only valid for 

flight within subsonic range. The Prandtl-Glauert correction is used to account for 

compressibility effects. Modeling at high subsonic range, with the consideration of local 

transonic effects may be useful for certain applications. Furthermore, the current 

aerodynamics only includes simplified stall models. To understand the actual airfoil stall 
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characteristics, a more complete stall model that accounts for different Reynolds numbers 

may be required. 

Since the gust response is a major concern for highly flexible aircraft, the gust 

model should be further developed. The current work only applies discrete gust models 

for time simulations. An improvement can be made by implementing, for example, the 

Dryden gust models. Furthermore, a stochastic gust model for analysis can be used, 

instead of a discrete one. This may be completed by using frequency-domain random 

analysis. Gusts can be introduced into the system by using Power Spectrum Density (PSD) 

functions, instead of time domain amplitudes. 

Finally, further improvements could be made on the numerical analysis environ-

ment – UM/NAST. Although the integration scheme of the nonlinear equations of motion 

was not a focus of this dissertation, limitations there were observed. The numerical 

integration schemes available in UM/NAST were introduced in Refs. [15] and [79] – 

Trapezoid (explicit) method and Modified Generalized-α (implicit) method. The first one 

is computationally inexpensive, but cannot provide any control of residuals during the 

integration, which can lead to unbounded numerical errors for long time simulations. The 

latter one may control the integration error within a user defined tolerance, which 

provides good numerical stability for long-term simulations. However, this method is 

computationally expensive. In regard to the implicit method, one may want to increase 

the size of time steps to reduce the overall simulation time. However, this may increase 

the sub-iterations required for convergence within each time step, resulting in a longer 

computational time. Furthermore, for a specific nonlinear time simulation, the system 

may demonstrate different levels of nonlinearity at different time intervals. Due to the 

above reasons, a constant time step may not be suitable for the whole time range of 

integration. An effective way is to develop an algorithm that may determine the time step 

according to the current nonlinearity. The predefined time step can therefore be modified 

accordingly, such that the computational accuracy and efficiency are both satisfied. 

Moreover, the combination of explicit and implicit methods could be another solution to 

improve computational efficiency while keeping the accuracy. The implicit method can 
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be used to replace the explicit one at the time step when the integration tends to lose its 

stability, such as when large-scale state changes happen. 
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APPENDIX A 

Derivatives of Aerodynamic Loads 

 

 

The derivatives of aerodynamic forces and moments with respect to the variables 

are important prerequisite of linearizing the system equations of motion, and further 

stability analysis. Previous implementation[15, 79] was not complete and showed some 

discrepancies with the derivatives calculated based on the finite difference method, 

especially the derivatives with respect to body velocity and wing strain. The 

discrepancies impacted the prediction of vehicles flutter boundary in free flight condition. 

The complete expressions for these derivatives are shown below. 

A.1 Rotation of Aerodynamic Forces and Moments 

The aerodynamic loads in the local aerodynamic frame ( 1a ) are given in Eq. 

(2.101) and repeated as Eq. (A.1) 
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where the airfoild motion variables are resolved in the frame aligned with the zero lift 

line ( 0a ). 
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Figure A.1: Rotation of aerodynamic loads 

The aerodynamic loads obtained in the local aerodynamic frame are rotated into 

the body frame ( B ), since the equations of motion are resolved in this frame. The 

rotation is completed as follows 
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 (A.2) 

where 

 xM M dL= +  (A.3) 

In the above equations, 0 1a aC  is the rotation matrix from the local aerodynamic frame ( 1a ) 

to zero lift line ( 0a ), which is a function of y  and z . It is given by 

 
1 0 0
0 cos sin
0 sin cos

0 1a aC α α
α α

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.4) 
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where 

 1tan ( )z
y

α −= −  (A.5) 

0waC  is the rotation matrix from the zero lift line to the wing (beam) reference frame ( w ), 

which is constant upon the vehicle initialization. BwC  is the rotation matrix from the wing 

(beam) reference frame to the body frame ( B ), which is a function of strain, ε , 

 
| | |
( ) ( ) ( )
| | |

Bw
x y zC w w wε ε ε

⎡ ⎤
⎢ ⎥≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.6) 

where xw , yw , and zw  are base vectors of the wing (beam) reference frame, resolved in 

the body frame. 

The derivation of aerodynamic derivatives will basically follow the same process 

as described above, i.e., the derivative will be first derived in the local aerodynamic 

frame, which is then rotated into the body frame. 

A.2 Derivatives in the Local Aerodynamic Frame 

The first step is to take derivatives of aerodynamic loads with respect to the airfoil 

motion variables ( , , , ,z y zα α ), which are given in Eqs. (A.7) to (A.9). Note that the 

inflow state 0λ  is an independent variable, and the derivatives with respect to it can be 

found in Ref. [79]. 
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where the definitions of ic  and ig  can be found in Ref. [79]. 

The relationships between airfoil motion variables ( , , , ,z y zα α ) and the 

independent variables ( , , , ,ε ε ε β β ) need to be determined next. The linear and angular 

velocities resolved in the local aerodynamic frame are given as 
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where U∞  is the free stream velocity. gustw  is the gust perturbation. pJ ε , pbJ , Jθε , and 

bJθ  are the structural Jocobians, which have been correctly evaluated in Ref. [79]. 1e  

represents the unit vector along local x  axis. Neglecting the time derivatives of structural 

Jacobians in the above equations, the linear and angular accelerations can be obtained as 

 
( ) ( ) ( )

( ) ( ) ( )

0

0

T Twa Bw
p pb

T TwaT Bw
1 b

x
y C C J J
z

e C C J J

ε

θε θ

ε β

α ε β

⎡ ⎤
⎢ ⎥ = +⎢ ⎥
⎢ ⎥⎣ ⎦

= +

 (A.11) 

The derivative of the rotation matrix BwC  is given as 

 

| | |

| | |

Bw
yx z

dwdw dwdC
d d d dε ε ε ε

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (A.12) 

where xdw
dε

, ydw
dε

, and zdw
dε

 are basic variables that may be obtained at each nonlinear 

steady state, according to the kinematics solver. 

Partial derivatives of motion variables with respect to the strain (ε ) are obtained 

by differentiating Eqs. (A.10) and (A.11). 
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∂
= +

∂

 (A.14) 

Following the same method as the above, one may obtain the derivatives with respect to 

strain rate (ε ), strain acceleration (ε ), body velocity (β ), and body acceleration (β ), 

which are listed as Eqs. (A.15) to (A.22). 

 ( ) ( ) ( ) ( ),0 0
T TT Twa waBw T Bw

p 1

x

y C C J e C C J

z

ε θε

ε
α

ε ε

ε

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥
∂ ∂⎢ ⎥ = =⎢ ⎥∂ ∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

 (A.15) 

 [ ]0 0 0 , 0x y z α
ε ε ε ε
∂ ∂ ∂ ∂⎡ ⎤ = =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 (A.16) 

 

 [ ]0 0 0 , 0x y z α
ε ε ε ε
∂ ∂ ∂ ∂⎡ ⎤ = =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 (A.17) 
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 [ ]0 0 0 , 0x y z α
β β β β

⎡ ⎤∂ ∂ ∂ ∂
= =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
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 [ ]0 0 0 , 0x y z α
β β β β
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With above partial derivatives, the derivatives of aerodynamic loads within the 

local aerodynamic frames, with respect to the independent variables can be completed as 

 x x x x x x

L L z L L y L z L
z y z

M M M M M Mz y z
z y z

D D z D D y D z D
z y z

α α
ε ε α ε ε ε α ε

α α
ε ε α ε ε ε α ε

α α
ε ε α ε ε ε α ε

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (A.23) 
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A.3 Derivatives in the Body Frame 

To obtain the derivatives resolved in the body frame ( B ), one needs to take the 

derivatives of the rotation matrices as described in Eq. (A.2). According to Eqs. (A.4) and 

(A.5), the partial derivatives of 0 1a aC  can be derived as 
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which can be further completed as the derivatives with respect to the independent 

variables ( , , , ,ε ε ε β β ). This process is omitted here, since it is no more than another 

chain derivative. 

Finally, the complete aerodynamic derivatives in the body frame can be written as 

Eqs. (A.29) to (A.33). 
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A.4 Block Diagrams Showing Aerodynamic Derivative Relationships 

The flowing block diagrams are intended to give images of how the aerodynamic 

derivative chain is formed. 
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Figure A.2: Relation between strain and aerodynamic loads 
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Figure A.3: Relation between strain rate and aerodynamic loads 
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Figure A.4: Relation between strain acceleration and aerodynamic loads 
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Figure A.5: Relation between body velocity and aerodynamic loads 
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Figure A.6: Relation between body acceleration and aerodynamic loads 
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APPENDIX B 

Linearization of System Equations of Motion 

 

 

According to the current approach, stability analysis is taken with the linearized 

equations about a nonlinear steady state. Due to its complexity, this appendix is dedicated 

to introduce the process of linearization of the nonlinear system equations. 

B.1 Generic Nonlinear Equation 

Take a generic nonlinear function 

 ( ) ( ) ( )y x f x g x=  (B.1) 

Let 0x x= , the equation can be written as 

 ( ) ( ) ( )0 0 0y x f x g x=  (B.2) 

With a small perturbation xΔ  about 0x , the equation becomes 

 ( ) ( ) ( )0 0 0y x x f x x g x x+ Δ = + Δ + Δ  (B.3) 

The right hand side of the above equation can be written as a Taylor expansion 

 ( ) ( ) ( ) . . . ( ) . . .
0 0

0 0 0
x x

df dgy x y x f x x H O T g x x H O T
dx dx

⎡ ⎤ ⎡ ⎤
+ Δ Δ = + Δ + + Δ +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (B.4) 
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With the high-order terms neglected, Eq. (B.4) becomes 

 ( ) ( ) ( ) ( ) ( ) ( )
0 0

0 0 0 0 0
x x

dg dfy x y x f x g x f x x g x x
dx dx

+ Δ Δ = + Δ + Δ  (B.5) 

Eq. (B.5) minus Eq. (B.2), it yields the linearized equation 

 ( ) ( ) ( )
0 0

0 0
x x

dg dfy x f x x g x x
dx dx

Δ Δ = Δ + Δ  (B.6) 

Finally, the delta sign can be removed from Eq. (B.6), which becomes 

 ( ) ( ) ( )
0 0

0 0
x x

dg dfy x f x x g x x
dx dx

= +  (B.7) 

B.2 Nonlinear Aeroelastic Equations of Motion 

The coupled nonlinear aeroelastic and flight dynamic system equations of motion 

without nodal displacement constraints are given as Eq. (2.109), and are repeated here as 

Eq. (B.8). Note that the terms of control surface deflection angles in the aerodynamic 

load formulations are not included, since the current target is to build a formulation for 

stability analysis, without considering the effects of control surfaces. 
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BF BB BF BB

aero grav
B B

GB
B

M M C C K

R R
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ζ β ζ
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ε
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+ + + +

= +

+ + +

= +

= − Ω
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= 2 3F F
ε

λ
β β
⎡ ⎤ ⎡ ⎤

+ +⎢ ⎥ ⎢ ⎥
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 (B.8) 

where 
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F MT Taero
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B F B M
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ε θε

θ

⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (B.9) 

aero
FR  and aero

BR  are the flexible and rigid body components of generalized aerodynamic 

loads, respectively. aeroF  and aeroM  are nodal aerodynamic loads. grav
FR  and grav

BR  are the 

flexible and rigid body components of generalized gravity force, respectively. The 

gravity force is transferred from the global frame ( G ) to the body frame ( B ). The 

rotation matrix between the two frames ( GBC ) is a function of quaternions (ζ ). 

Before the linearization is performed, some clarifications should be made. The 

state that the equations will be linearized about is , , , , , , ,0 0 0 0 0 0 0 0 B0x Pε ε ε β β λ ζ⎡ ⎤= ⎣ ⎦ . If 

one looks at the equations of the generalized mass matrices and load vectors (Eq. 2.60), 

they contain the contribution from structural Jacobians ( , , , , ,h hb p pb bJ J J J J Jε ε θε θ ). These 

Jacobians are functions of strains (ε ). However, it is assumed that they are constant 

when the system is perturbed. This assumption holds for small perturbations to the 

system. The advantage of this assumption is to simplify the linearization process, since 

the generalized matrices are no longer functions of any state variables. After all, the 

generalized stiffness matrix is independent from the state variables, yet the generalized 

damping matrices are functions of strain rates (ε ) and body velocities (β ), according to 

the equations. In the inflow equation, 1F , 2F , and 3F  are also assumed to be constants. 

Linearization is performed about the state, 0x . Each of the five equations from Eq. 

(B.8) is written with the perturbation as follows. Note that the operator [ ]
0x

i  denotes the 

matrix is evaluated at the state of 0x . 
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Following the approach introduced above, Eqs. (B.10) to (B.14) can be organized 

as 

0 0 0 0

0 0 0

0 0 0 0

FF FB

FF FB FF FB
FF 0 0 FB 0 0

FF

aero aero aero
F F F

aero aero aero grav
F F F F

M M

C C C CC C

K

R R R

R R R R

ε ε β β

ε ε ε

β β λ ζ

ε β

ε β ε ε β β
ε ε β β

ε

ε ε ε
ε ε ε

β β λ ζ
β β λ ζ

+

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟+ + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

+

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂

 (B.15) 

0 0 0 0

0 0 0

0 0 0 0

BF BB

BF BB BF BB
BF 0 0 BB 0 0

aero aero aero
B B B

aero aero aero grav
B B B B

M M

C C C CC C

R R R

R R R R

ε ε β β

ε ε ε

β β λ ζ

ε β

ε β ε ε β β
ε ε β β

ε ε ε
ε ε ε

β β λ ζ
β β λ ζ

+

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟+ + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂
= + +

∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + +

∂ ∂ ∂ ∂

 (B.16) 

1 1
2 20

0

0

d
d

ζ
ζ β

β

ζ ζ β ζ
β

⎛ ⎞Ω
⎜ ⎟= − Ω −
⎜ ⎟
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0 0
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0
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B 0
dCP C
dζ

ζ

β ζ β
ζ

⎡ ⎤⎛ ⎞
⎡ ⎤ ⎢ ⎥⎜ ⎟= +⎢ ⎥⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (B.18) 

 1 2 3F F F
ε ε

λ λ
β β
⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (B.19) 

 

Therefore, the linearized system equations are simplified as Eq. (B.20) 
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 (B.20) 

where ( )/ 0z
i  denotes ( )

0z

d
dz
i

 or ( )
0z

z
∂
∂
i

 for different variables. 

To obtain the state-space form equations, the terms on the right hand side of Eq. 

(B.20) are moved to the left, and the terms with the same variables are grouped together, 

which becomes 

( ) ( ) ( )
( ) ( )
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/ / / / / /

/ //
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0 00
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ε ε

β β β λ ζ
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ζ

β ε

ε β β λ ζ
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−
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=

+ Ω + Ω =

⎡ ⎤⎡ ⎤− − =⎣ ⎦ ⎣ ⎦
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 (B.21) 

According to Eq. (B.9), the derivatives of the generalized aerodynamic loads can be 

expanded, which are given in Eq. (B.22). Again, one should note that all the derivatives 
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and matrices are evaluated at the state of 0x , and the notation is omitted from the 

equations from now on for simplicity. 

,

,

aero aeroaero aero aero aero
T T T TF F
p F M p F M
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∂
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 (B.22) 

Therefore, Eq. (B.21) can be written as: 
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 (B.23) 

where 
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and 
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∂ ∂
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Finally, Eq. (B.23) can be put into state space form 
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APPENDIX C 

Properties of the Numerical Models 

 

 

This appendix provides the detailed definitions of Single-Wing, Joined-Wing, and 

Blended-Wing-Body configurations. The nomenclatures used, as well as the units cor-

responding to the numerical values, are defined as follows. 

K11 (N·m) Extensional stiffness 

K12 (N·m) Extension-twist coupling stiffness 

K13 (N·m) Extension-flatwise bending coupling stiffness 

K14 (N·m) Extension-chordwise bending coupling stiffness 

K22 (N·m2) Torsional stiffness 

K23 (N·m2) Twist-flatwise bending coupling stiffness 

K24 (N·m2) Twist-chordwise bending coupling stiffness 

K33 (N·m2) Flatwise bending stiffness 

K34 (N·m2) Flatwise bending-chordwise bending coupling stiffness 

K44 (N·m2) Chordwise bending stiffness 

mass (kg/m) Mass per unit length 

Ixx (kg·m2/m) x-axis rotational inertia per unit length 

Ixy (kg·m2/m) x-axis to y-axis coupling rotational inertia per unit length 

Ixz (kg·m2/m) x-axis to z-axis coupling rotational inertia per unit length 

Iyy (kg·m2/m) y-axis rotational inertia per unit length 

Iyz (kg·m2/m) y-axis to z-axis coupling rotational inertia per unit length 

Izz (kg·m2/m) z-axis rotational inertia per unit length 
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xle (m) Distance of airfoil tip from reference axis, local x direction 

yle (m) Distance of airfoil tip from reference axis, local y direction 

C.1 Single-Wing Configuration 

For the Single-Wing configuration, the member and group definitions are shown 

in Fig. C.1. Cross-sectional stiffness and inertia distributions of each member are listed as 

follows. 

Mem 2
By

Bz

Bx

Mem 1

Mem 3

Mem 4

Mem 5

Mem 7

Mem 8
Mem 6

Mem 9

Group 1: Member 2
Group 2: Members 1, 3, 4, 5, 6, 7, 8, 9, and 10

Mem 10

 

Figure C.1: Member and group definitions for the Single-Wing configuration (arrows 
indicate the kinematics marching direction and element progression as presented below) 

 

Member 1 

K11 
 
  1.1541e+009 
 
K12 
 
     0 
 
K13 
 

  3.7253e-009 
 
K14 
 
-4.0679e-014 
 
K22 
 
  4.4005e+008 
 
K23 
 
     0 
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K24 
 
     0 
 
K33 
 
  5.7287e+008 
 
K34 
 
 -1.2107e-008 
 
K44 
 
  5.7328e+008 
 
mass 
 
   44.1556   44.1556 
 
Ixx 
 
   43.8515   43.8515 
 
Ixy 
 
     0     0 
 
Ixz 
 
     0     0 
 
Iyy 
 
   21.9180   21.9180 
 
Iyz * 1.0e-015 
 
   -0.4025   -0.4025 
 
Izz 
 
   21.9335   21.9335 
 
xle 

 
    0.5000    0.5000 
 
yle 
 
     0     0 
 
Member 2 

K11 * 1.0e+009 
 
    1.1541 
    1.1541 
    0.9233 
 
K12 
 
     0 
     0 
     0 
 
K13 * 1.0e-008 
 
    0.3725 
    0.3725 
   -0.3725 
 
K14 * 1.0e-007 
 
   -0.0000 
   -0.0000 
    0.5960 
 
K22 * 1.0e+008 
 
    4.4005 
    4.4005 
    2.2531 
 
K23 
 
     0 
     0 
     0 
 
K24 
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     0 
     0 
     0 
 
K33 * 1.0e+008 
 
    5.7287 
    5.7287 
    2.9331 
 
K34 * 1.0e-007 
 
   -0.1211 
   -0.1211 
   -0.0838 
 
K44 * 1.0e+008 
 
    5.7328 
    5.7328 
    2.9352 
 
mass 
 
   44.1556   44.1556 
   44.1556   44.1556 
   44.1556   35.3245 
 
Ixx 
 
   43.8515   43.8515 
   43.8515   43.8515 
   43.8515   22.4519 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 

 
Iyy 
 
   21.9180   21.9180 
   21.9180   21.9180 
   21.9180   11.2220 
 
Iyz * 1.0e-015 
 
   -0.4025   -0.4025 
   -0.4025   -0.4025 
   -0.4025   -0.1180 
 
Izz 
 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   11.2299 
 
xle 
 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
 
yle 
 
     0     0 
     0     0 
     0     0 
 
Member 3 

K11 * 1.0e+009 
 
    1.1541 
    1.1541 
    1.1541 
    1.1541 
    1.0639 
 
K12 
 
     0 
     0 
     0 
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     0 
     0 
 
K13 * 1.0e-007 
 
    0.0373 
    0.0373 
    0.0373 
    0.0373 
    0.1676 
 
K14 * 1.0e-007 
 
   -0.0000 
   -0.0000 
   -0.0000 
   -0.0000 
    0.5960 
 
K22 * 1.0e+008 
 
    4.4005 
    4.4005 
    4.4005 
    4.4005 
    3.4476 
 
K23 
 
     0 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
     0 
 
K33 * 1.0e+008 
 
    5.7287 

    5.7287 
    5.7287 
    5.7287 
    4.4882 
 
K34 * 1.0e-007 
 
   -0.1211 
   -0.1211 
   -0.1211 
   -0.1211 
   -0.1490 
 
K44 * 1.0e+008 
 
    5.7328 
    5.7328 
    5.7328 
    5.7328 
    4.4914 
 
mass 
 
   44.1556   44.1556 
   44.1556   44.1556 
   44.1556   44.1556 
   44.1556   44.1556 
   44.1556   40.7060 
 
Ixx 
 
   43.8515   43.8515 
   43.8515   43.8515 
   43.8515   43.8515 
   43.8515   43.8515 
   43.8515   34.3558 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
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     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
   21.9180   21.9180 
   21.9180   21.9180 
   21.9180   21.9180 
   21.9180   21.9180 
   21.9180   17.1718 
 
Iyz * 1.0e-014 
 
   -0.0402   -0.0402 
   -0.0402   -0.0402 
   -0.0402   -0.0402 
   -0.0402   -0.0402 
   -0.0402   -0.1006 
 
Izz 
 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   17.1840 
 
xle 
 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
 
yle 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 

 
Member 4 

K11 
 
  9.1967e+008 
 
K12 
 
     0 
 
K13 
 
  1.1176e-008 
 
K14 
 
  2.9802e-008 
 
K22 
 
  2.2268e+008 
 
K23 
 
     0 
 
K24 
 
     0 
 
K33 
 
  2.8989e+008 
 
K34 
 
 -7.9162e-009 
 
K44 
 
  2.9009e+008 
 
mass 
 
   37.2563   35.1865 
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Ixx 
 
   26.3406   22.1899 
 
Ixy 
 
     0     0 
 
Ixz 
 
     0     0 
 
Iyy 
 
   13.1657   11.0910 
 
Iyz * 1.0e-015 
 
   -0.2637   -0.2533 
 
Izz 
 
   13.1749   11.0988 
 
xle 
 
    0.5000    0.5000 
 
yle 
 
     0     0 
 
Members 5 and 6 

K11 * 1.0e+009 
 
    1.5957 
    1.0738 
    0.8772 
    0.7433 
    0.6201 
    0.5143 
    0.4419 
    0.3750 
    0.3134 

 
K12 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K13 * 1.0e+006 
 
   -1.6465 
   -1.2569 
   -0.9630 
   -0.7620 
   -0.5907 
   -0.4525 
   -0.3567 
   -0.2754 
   -0.2074 
 
K14 * 1.0e+006 
 
    5.1014 
    3.8944 
    2.9838 
    2.3610 
    1.8302 
    1.4019 
    1.1052 
    0.8534 
    0.6427 
 
K22 * 1.0e+008 
 
    1.1325 
    0.7082 
    0.5089 
    0.3760 
    0.2708 
    0.1916 
    0.1386 
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    0.0974 
    0.0661 
 
K23 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K33 * 1.0e+007 
 
    9.4176 
    6.4306 
    4.6212 
    3.4146 
    2.4593 
    1.7401 
    1.2586 
    0.8843 
    0.6001 
 
K34 * 1.0e+007 
 
   -2.0425 
   -1.4681 
   -1.0550 
   -0.7795 
   -0.5614 

   -0.3972 
   -0.2873 
   -0.2019 
   -0.1370 
 
K44 * 1.0e+009 
 
    2.4921 
    1.2539 
    0.9011 
    0.6658 
    0.4795 
    0.3393 
    0.2454 
    0.1724 
    0.1170 
 
mass 
 
  138.2394  134.3141 
  112.2792  108.8991 
   91.9036   88.9596 
   78.0512   75.3798 
   65.2892   62.8904 
   54.3050   52.1515 
   46.8336   44.8164 
   39.9074   38.0265 
   33.5264   31.7818 
 
Ixx 
 
  237.3384  217.6894 
  171.4953  156.4685 
  123.9789  112.4420 
   92.2326   83.0827 
   66.9509   59.8391 
   47.8037   42.3393 
   34.9467   30.6228 
   24.8690   21.5158 
   17.1395   14.6007 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
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     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
    8.6424    7.9269 
    6.2448    5.6976 
    4.5146    4.0945 
    3.3586    3.0254 
    2.4379    2.1790 
    1.7407    1.5417 
    1.2725    1.1151 
    0.9056    0.7835 
    0.6241    0.5317 
 
Iyz 
 
   -1.8744   -1.7192 
   -1.3544   -1.2357 
   -0.9791   -0.8880 
   -0.7284   -0.6561 
   -0.5287   -0.4726 
   -0.3775   -0.3344 
   -0.2760   -0.2418 
   -0.1964   -0.1699 
   -0.1354   -0.1153 
 
Izz 
 
  228.6960  209.7624 

  165.2505  150.7708 
  119.4643  108.3476 
   88.8740   80.0573 
   64.5129   57.6601 
   46.0630   40.7975 
   33.6741   29.5077 
   23.9635   20.7324 
   16.5153   14.0690 
 
xle 
 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
 
yle 
 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
 
Members 7 and 8 

K11 * 1.0e+008 
 
    6.7153 
    5.9849 
    5.2961 
    4.6488 
    4.0430 
 
K12 
 
     0 
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     0 
     0 
     0 
     0 
 
K13 
 
   -0.0201 
   -0.0168 
   -0.0139 
   -0.0113 
   -0.0091 
 
K14 * 1.0e+008 
 
    4.3530 
    3.6396 
    3.0083 
    2.4542 
    1.9723 
 
K22 * 1.0e+007 
 
    1.9024 
    1.4922 
    1.1521 
    0.8735 
    0.6487 
 
K23 
 
     0 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
     0 
 
K33 * 1.0e+007 

 
    1.4750 
    1.1570 
    0.8933 
    0.6773 
    0.5030 
 
K34 
 
   -0.0101 
   -0.0079 
   -0.0061 
   -0.0046 
   -0.0034 
 
K44 * 1.0e+008 
 
    9.1263 
    7.1586 
    5.5269 
    4.1906 
    3.1120 
 
mass 
 
   22.1434   21.4791 
   19.7740   19.1430 
   17.5376   16.9397 
   15.4339   14.8693 
   13.4632   12.9317 
 
Ixx 
 
   32.5006   29.6624 
   25.6447   23.2669 
   19.9334   17.9635 
   15.2318   13.6205 
   11.4136   10.1146 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
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Ixz 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
    0.5169    0.4718 
    0.4079    0.3701 
    0.3170    0.2857 
    0.2423    0.2166 
    0.1815    0.1609 
 
Iyz * 1.0e-009 
 
   -0.3530   -0.3222 
   -0.2786   -0.2527 
   -0.2165   -0.1951 
   -0.1655   -0.1479 
   -0.1240   -0.1099 
 
Izz 
 
   31.9837   29.1906 
   25.2369   22.8969 
   19.6164   17.6778 
   14.9896   13.4038 
   11.2321    9.9538 
 
xle 
 
    0.3000    0.3000 
    0.3000    0.3000 
    0.3000    0.3000 
    0.3000    0.3000 
    0.3000    0.3000 
 
yle 
 
     0     0 
     0     0 
     0     0 

     0     0 
     0     0 
 
Members 9 and 10 

K11 * 1.0e+008 
 
    4.7571 
    4.3501 
    3.9609 
    3.5896 
    3.2360 
 
K12 
 
     0 
     0 
     0 
     0 
     0 
 
K13 
 
   -0.0101 
   -0.0089 
   -0.0078 
   -0.0068 
   -0.0058 
 
K14 * 1.0e+008 
 
    2.1844 
    1.9228 
    1.6827 
    1.4633 
    1.2635 
 
K22 * 1.0e+006 
 
    6.7628 
    5.7300 
    4.8196 
    4.0216 
    3.3262 
 
K23 
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     0 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
     0 
 
K33 * 1.0e+006 
 
    5.2435 
    4.4427 
    3.7369 
    3.1181 
    2.5790 
 
K34 
 
   -0.0036 
   -0.0030 
   -0.0026 
   -0.0021 
   -0.0018 
 
K44 * 1.0e+008 
 
    3.2443 
    2.7488 
    2.3121 
    1.9292 
    1.5957 
 
mass 
 
   15.5004   15.2157 
   14.1844   13.9140 
   12.9254   12.6692 
   11.7233   11.4813 
   10.5782   10.3505 

 
Ixx 
 
   11.1477   10.5447 
    9.4656    8.9344 
    7.9801    7.5148 
    6.6754    6.2705 
    5.5363    5.1863 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
    0.1773    0.1677 
    0.1506    0.1421 
    0.1269    0.1195 
    0.1062    0.0997 
    0.0881    0.0825 
 
Iyz * 1.0e-009 
 
   -0.1211   -0.1145 
   -0.1028   -0.0970 
   -0.0867   -0.0816 
   -0.0725   -0.0681 
   -0.0601   -0.0563 
 
Izz 
 
   10.9704   10.3769 
    9.3150    8.7923 
    7.8532    7.3953 
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    6.5692    6.1707 
    5.4482    5.1038 
 
xle 
 
    0.3000    0.3000 
    0.3000    0.3000 
    0.3000    0.3000 
    0.3000    0.3000 
    0.3000    0.3000 

 
yle 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
 

 

C.2 Joined-Wing Configuration 

For the Joined-Wing configuration, the member and group definitions are shown 

in Fig. C.2. Cross-sectional stiffness and inertia distributions of each member are listed as 

follows. 

Mem 2

By

Bz

Bx Mem 1

Mem 3

Mem 4

Mem 6

Mem 8

Mem 7

Mem 9

Group 1: Members 1, 2, 6, and 7
Group 2: Members 3, 4, 5, 8, and 9

Mem 5

 

Figure C.2: Member and group definitions for the Joined-Wing configuration (arrows 
indicate the kinematics marching direction and element progression as presented below) 

 

Member 1 

K11 * 1.0e+009 

 
    1.1542 
    1.1542 
    1.1542 
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    1.1542 
    1.1542 
 
K12 
 
     0 
     0 
     0 
     0 
     0 
 
K13 * 1.0e-008 
 
    0.3725 
    0.3725 
    0.3725 
    0.3725 
   -0.3725 
 
K14 * 1.0e-010 
 
   -0.1602 
   -0.1602 
   -0.1602 
   -0.1602 
   -0.1602 
 
K22 * 1.0e+008 
 
    4.4005 
    4.4005 
    4.4005 
    4.4005 
    4.4005 
 
K23 
 
     0 
     0 
     0 
     0 
     0 
 
K24 
 
     0 

     0 
     0 
     0 
     0 
 
K33 * 1.0e+008 
 
    5.7292 
    5.7292 
    5.7292 
    5.7292 
    5.7292 
 
K34 * 1.0e-007 
 
   -0.1490 
   -0.1211 
   -0.1211 
   -0.1211 
   -0.1211 
 
K44 * 1.0e+008 
 
    5.7328 
    5.7328 
    5.7328 
    5.7328 
    5.7328 
 
mass 
 
   44.1611   44.1611 
   44.1611   44.1611 
   44.1611   44.1611 
   44.1611   44.1611 
   44.1611   44.1611 
 
Ixx 
 
   43.8533   43.8533 
   43.8533   43.8533 
   43.8533   43.8533 
   43.8533   43.8533 
   43.8533   43.8533 
 
Ixy 
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     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
   21.9198   21.9198 
   21.9198   21.9198 
   21.9198   21.9198 
   21.9198   21.9198 
   21.9198   21.9198 
 
Iyz * 1.0e-015 
 
   -0.4025    0.4857 
   -0.0694   -0.0625 
   -0.0625   -0.4025 
   -0.0625   -0.0625 
   -0.4302    0.0416 
 
Izz 
 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   21.9335 
 
xle 
 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 

 
yle 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Member 2 

K11 * 1.0e+009 
 
    1.0213 
    0.7555 
    0.4896 
 
K12 
 
     0 
     0 
     0 
 
K13 * 1.0e-008 
 
         0 
    0.4657 
   -0.0466 
 
K14 * 1.0e-006 
 
    0.1192 
   -0.0298 
    0.0074 
 
K22 * 1.0e+008 
 
    3.0485 
    1.2338 
    0.3358 
 
K23 
 
     0 
     0 
     0 
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K24 
 
     0 
     0 
     0 
 
K33 * 1.0e+008 
 
    3.9690 
    1.6063 
    0.4372 
 
K34 * 1.0e-008 
 
   -0.8382 
   -0.4424 
   -0.1455 
 
K44 * 1.0e+008 
 
    3.9714 
    1.6073 
    0.4375 
 
mass 
 
   44.1611   39.0752 
   33.9893   28.9035 
   23.8176   18.7317 
 
Ixx 
 
   43.8533   30.3799 
   19.9945   12.2951 
    6.8798    3.3467 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 

     0     0 
     0     0 
 
Iyy 
 
   21.9198   15.1852 
    9.9941    6.1456 
    3.4388    1.6728 
 
Iyz * 1.0e-015 
 
   -0.4025   -0.5274 
   -0.0035    0.0694 
   -0.1041   -0.0763 
 
Izz 
 
   21.9335   15.1947 
   10.0003    6.1494 
    3.4410    1.6739 
 
xle 
 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
 
yle 
 
     0     0 
     0     0 
     0     0 
 
Member 3 

K11 * 1.0e+009 
 
    1.1542 
    1.1542 
    1.0581 
 
K12 
 
     0 
     0 
     0 
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K13 * 1.0e-008 
 
    0.3725 
    0.3725 
   -0.1863 
 
K14 * 1.0e-010 
 
   -0.1602 
   -0.1602 
   -0.1346 
 
K22 * 1.0e+008 
 
    4.4005 
    4.4005 
    3.3895 
 
K23 
 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
 
K33 * 1.0e+008 
 
    5.7292 
    5.7292 
    4.4129 
 
K34 * 1.0e-007 
 
   -0.1211 
   -0.1211 
   -0.1211 
 
K44 * 1.0e+008 
 
    5.7328 

    5.7328 
    4.4157 
 
mass 
 
   44.1611   44.1611 
   44.1611   44.1611 
   44.1611   40.4810 
 
Ixx 
 
   43.8533   43.8533 
   43.8533   43.8533 
   43.8533   33.7782 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
   21.9198   21.9198 
   21.9198   21.9198 
   21.9198   16.8838 
 
Iyz * 1.0e-015 
 
   -0.4025   -0.4025 
   -0.4025   -0.4025 
   -0.4025    0.0625 
 
Izz 
 
   21.9335   21.9335 
   21.9335   21.9335 
   21.9335   16.8943 
 
xle 
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    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
 
yle 
 
     0     0 
     0     0 
     0     0 
 
Member 4 

K11 * 1.0e+008 
 
    8.6568 
    6.7331 
 
K12 
 
     0 
     0 
 
K13 * 1.0e-008 
 
    0.8382 
         0 
 
K14 * 1.0e-007 
 
   -0.2981 
   -0.0001 
 
K22 * 1.0e+008 
 
    1.8565 
    0.8735 
 
K23 
 
     0 
     0 
 
K24 
 
     0 

     0 
 
K33 * 1.0e+008 
 
    2.4170 
    1.1372 
 
K34 * 1.0e-008 
 
   -0.7451 
   -0.2328 
 
K44 * 1.0e+008 
 
    2.4185 
    1.1379 
 
mass 
 
   36.8009   33.1208 
   29.4408   25.7607 
 
Ixx 
 
   25.3780   18.5006 
   12.9936    8.7047 
 
Ixy 
 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
 
Iyy 
 
   12.6851    9.2474 
    6.4948    4.3510 
 
Iyz * 1.0e-015 
 
   -0.1353   -0.3504 
   -0.2186   -0.2377 
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Izz 
 
   12.6930    9.2532 
    6.4988    4.3537 
 
xle 
 
    0.5000    0.5000 
    0.5000    0.5000 
 
yle 
 
     0     0 
     0     0 
 
Member 5 

K11 * 1.0e+009 
 
    1.3043 
    0.9996 
    0.7353 
    0.5115 
 
K12 
 
     0 
     0 
     0 
     0 
 
K13 * 1.0e-003 
 
   -0.9295 
   -0.8941 
   -0.7892 
   -0.6380 
 
K14 * 1.0e+007 
 
   -7.6634 
   -5.1273 
   -3.2233 
   -1.8608 
 

K22 * 1.0e+007 
 
    6.1299 
    3.6193 
    1.9721 
    0.9633 
 
K23 
 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
 
K33 * 1.0e+007 
 
    7.7978 
    4.5627 
    2.4569 
    1.1808 
 
K34 
 
    0.0011 
    0.0007 
    0.0004 
    0.0002 
 
K44 * 1.0e+009 
 
    3.2797 
    1.9192 
    1.0336 
    0.4969 
 
mass 
 
   77.1956   72.6121 
   59.9062   55.8699 
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   44.8057   41.3168 
   31.8943   28.9526 
 
Ixx 
 
  230.2534  191.6265 
  138.8188  112.6078 
   77.7695   60.9800 
   39.4859   29.5369 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
    5.2780    4.3926 
    3.1815    2.5808 
    1.7819    1.3972 
    0.9044    0.6765 
 
Iyz * 1.0e-008 
 
    0.1015    0.0844 
    0.0620    0.0503 
    0.0354    0.0277 
    0.0184    0.0138 
 
Izz 
 
  224.9753  187.2339 
  135.6374  110.0270 
   75.9876   59.5828 
   38.5815   28.8604 
 
xle 

 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
    0.5000    0.5000 
 
yle 
 
     0     0 
     0     0 
     0     0 
     0     0 
 
Members 6 and 7 

K11 * 1.0e+008 
 
    9.1669 
    6.0901 
    4.5106 
    3.0346 
    4.4895 
    2.1177 
    1.3144 
    0.4888 
 
K12 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K13 * 1.0e+005 
 
    8.0030 
    4.3333 
    2.9405 
    2.1794 
    1.6480 
    0.8064 
    0.4660 
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    0.1332 
 
K14 * 1.0e+006 
 
   -2.6163 
   -1.4197 
   -0.9621 
   -0.7090 
   -0.5440 
   -0.2669 
   -0.1543 
   -0.0441 
 
K22 * 1.0e+007 
 
    2.0160 
    1.1300 
    0.6122 
    0.2277 
    0.4239 
    0.1911 
    0.1028 
    0.0313 
 
K23 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 

K33 * 1.0e+007 
 
    3.0482 
    1.5938 
    0.8979 
    0.4390 
    0.5122 
    0.2421 
    0.1303 
    0.0363 
 
K34 * 1.0e+006 
 
   -6.6316 
   -3.4670 
   -1.9533 
   -0.9554 
   -1.1137 
   -0.5541 
   -0.2981 
   -0.0789 
 
K44 * 1.0e+008 
 
    7.8754 
    4.1221 
    2.3209 
    1.1305 
    1.3280 
    0.4629 
    0.2491 
    0.0942 
 
mass 
 
   51.4542   48.6978 
   35.4362   33.3101 
   26.0408   24.2653 
   15.9677   14.7071 
   27.1772   26.3279 
   15.7799   15.2539 
    9.8186    9.4679 
    3.0391    2.9222 
 
Ixx 
 



219 

   52.7151   44.6888 
   29.0450   24.1243 
   16.4957   13.3464 
    7.4420    5.8149 
    9.1974    8.3618 
    4.7035    4.2486 
    2.5494    2.2859 
    0.6804    0.6049 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
    1.9341    1.6396 
    1.0635    0.8834 
    0.6047    0.4892 
    0.2749    0.2148 
    0.3353    0.3048 
    0.1713    0.1547 
    0.0928    0.0832 
    0.0248    0.0220 
 
Iyz 
 
   -0.4199   -0.3560 
   -0.2308   -0.1917 

   -0.1313   -0.1062 
   -0.0597   -0.0467 
   -0.0727   -0.0661 
   -0.0371   -0.0336 
   -0.0201   -0.0181 
   -0.0054   -0.0048 
 
Izz 
 
   50.7811   43.0492 
   27.9814   23.2409 
   15.8910   12.8572 
    7.1672    5.6002 
    8.8621    8.0570 
    4.5322    4.0939 
    2.4566    2.2026 
    0.6556    0.5828 
 
xle 
 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
 
yle 
 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
 
Members 8 and 9 

K11 * 1.0e+008 
 
    9.1669 
    6.0901 
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    4.5106 
    3.0346 
 
K12 
 
     0 
     0 
     0 
     0 
 
K13 * 1.0e+005 
 
    8.0030 
    4.3333 
    2.9405 
    2.1794 
 
K14 * 1.0e+006 
 
   -2.6163 
   -1.4197 
   -0.9621 
   -0.7090 
 
K22 * 1.0e+007 
 
    2.0160 
    1.1300 
    0.6122 
    0.2277 
 
K23 
 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
 
K33 * 1.0e+007 

 
    3.0482 
    1.5938 
    0.8979 
    0.4390 
 
K34 * 1.0e+006 
 
   -6.6316 
   -3.4670 
   -1.9533 
   -0.9554 
 
K44 * 1.0e+008 
 
    7.8754 
    4.1221 
    2.3209 
    1.1305 
 
mass 
 
   51.4542   48.6978 
   35.4362   33.3101 
   26.0408   24.2653 
   15.9677   14.7071 
 
Ixx 
 
   52.7151   44.6888 
   29.0450   24.1243 
   16.4957   13.3464 
    7.4420    5.8149 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 



221 

     0     0 
 
Iyy 
 
    1.9341    1.6396 
    1.0635    0.8834 
    0.6047    0.4892 
    0.2749    0.2148 
 
Iyz 
 
   -0.4199   -0.3560 
   -0.2308   -0.1917 
   -0.1313   -0.1062 
   -0.0597   -0.0467 
 
Izz 
 
   50.7811   43.0492 

   27.9814   23.2409 
   15.8910   12.8572 
    7.1672    5.6002 
 
xle 
 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
    0.4869    0.4869 
 
yle 
 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
    0.0282    0.0282 
 
 

 

The wing and vertical tail structures of the Joined-Wing configuration are built 

with composite materials. For the layups of their cross-sections, the top and bottom skins 

have ply groups composed of [0/+45/-45/0] and the web with ply group of [04]. Every ply 

is made of S-glass, whose material properties are listed in Table C.1. 

Table C.1: Material properties of S-glass 

Density (kg/m3) 1855 

Q11 (GPa) 48.0 

Q12 (GPa) 3.5 

Q22 (GPa) 12.2 

Q66 (GPa) 3.6 
Note: 1 – fiber direction; 2 – transverse to fiber; 6 – shear 

The distributions of skin ply thickness for each element within vertical tail and 

wing members are listed as follows. The web thickness is four times the thickness of a 0-

degree ply group at a given element. 
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Member 5 

0o ply (mm) 
 
    0.9144 
    0.8001 
    0.6858 
    0.5715 
 
+45o ply (mm) 
 
    0.6858 
    0.6096 
    0.5334 
    0.4572 
 
-45o ply (mm) 
 
    0.6858 
    0.6096 
    0.5334 
    0.4572 
 
0o ply (mm) 
 
    0.9144 
    0.8001 
    0.6858 
    0.5715 
 
Members 6 and 7 

0o ply (mm) 
 
    1.0859 
    0.8001 
    0.6858 
    0.5715 
    0.8573 
    0.5143 
    0.3429 
    0.1143 
 
+45o ply (mm) 
 
    0.6858 

    0.5715 
    0.4572 
    0.2286 
    0.8001 
    0.5143 
    0.3429 
    0.1143 
 
-45o ply (mm) 
 
    0.6858 
    0.5715 
    0.4572 
    0.2286 
    0.8001 
    0.5143 
    0.3429 
    0.1143 
 
0o ply (mm) 
 
    1.0859 
    0.8001 
    0.6858 
    0.5715 
    0.8573 
    0.5143 
    0.3429 
    0.1143 
 
Members 8 and 9 

0o ply (mm) 
 
    1.0859 
    0.8001 
    0.6858 
    0.5715 
 
+45o ply (mm) 
 
    0.6858 
    0.5715 
    0.4572 
    0.2286 
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-45o ply (mm) 
 
    0.6858 
    0.5715 
    0.4572 
    0.2286 
 

0o ply (mm) 
 
    1.0859 
    0.8001 
    0.6858 
    0.5715 
 

 

C.3 Blended-Wing-Body Configuration 

For the Blended-Wing-Body configuration, the member and group definitions are 

shown in Fig. C.3. Cross-sectional stiffness and inertia distributions of each member are 

listed as follows. 

Mem 2 By

Bz

Bx

Mem 1 Mem 3

Mem 4

Group 1: Members 1 and 2
Group 2: Members 3 and 4  

Figure C.3: Member and group definitions for the Blended-Wing-Body configuration 
(arrows indicate the kinematics marching direction and element progression as presented 

below) 

 

Members 1 and 3 

K11 * 1.0e+009 
 
    3.6052 
    3.6052 

    3.6052 
 
K12 
 
     0 
     0 
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     0 
 
K13 
 
     0 
     0 
     0 
 
K14 
 
     0 
     0 
     0 
 
K22 * 1.0e+010 
 
    1.2045 
    0.2946 
    0.1692 
 
K23 
 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
 
K33 * 1.0e+009 
 
    1.1912 
    1.5814 
    1.2682 
 
K34 
 
     0 
     0 
     0 
 
K44 * 1.0e+011 
 

    4.7339 
    0.7608 
    0.2002 
 
Mass * 1.0e+003 
 
    2.1291    0.1284 
    0.1284    0.1100 
    0.1100    0.2833 
 
Ixx * 1.0e+004 
 
    1.7143    0.1836 
    0.1836    0.0615 
    0.0615    0.0368 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
 
Iyy * 1.0e+003 
 
    3.2704    0.3163 
    0.3163    0.1102 
    0.1102    0.0621 
 
Iyz 
 
     0     0 
     0     0 
     0     0 
 
Izz * 1.0e+004 
 
    9.6466    0.7405 
    0.7405    0.3043 
    0.3043    0.1839 
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xle 
 
    0.6438    0.5812 
    0.5812    0.5186 
    0.5186    0.4560 
 
yle 
 
     0     0 
     0     0 
     0     0 
 
Members 2 and 4 

K11 * 1.0e+009 
 
    4.2337 
    3.5060 
    4.2642 
    4.6061 
    4.0449 
    3.1126 
    2.5944 
    1.2258 
 
K12 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K13 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 

 
K14 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K22 * 1.0e+007 
 
    2.7121 
    1.8673 
    2.1494 
    2.4857 
    3.0821 
    2.2660 
    1.4219 
    0.4598 
 
K23 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K24 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K33 * 1.0e+007 
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    2.1368 
    1.8020 
    1.6673 
    1.9142 
    2.5942 
    3.0938 
    3.1902 
    1.1530 
 
K34 
 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
     0 
 
K44 * 1.0e+009 
 
    0.4726 
    0.4092 
    0.9685 
    1.1418 
    0.7080 
    0.3870 
    0.3260 
    0.2989 
 
mass 
 
   49.4267   37.4048 
   37.4048   45.1907 
   45.1907   48.0717 
   48.0717   50.9219 
   50.9219   38.1495 
   38.1495   32.2195 
   32.2195   19.8132 
   19.8132    0.0000 
 
Ixx 
 
    2.5825    2.1323 

    2.1323    2.5825 
    2.5825    5.0712 
    5.0712    5.7635 
    5.3848    2.5099 
    2.5099    1.9261 
    1.9261    1.6731 
    1.6731    0.0000 
 
Ixy 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Ixz 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Iyy 
 
    0.2349    0.2245 
    0.2245    0.1855 
    0.1855    0.1894 
    0.1894    0.2439 
    0.2439    0.3161 
    0.3161    0.3578 
    0.3578    0.2510 
    0.2510    0.0000 
 
Iyz 
 
     0     0 
     0     0 
     0     0 
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     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
 
Izz 
 
    2.3475    1.9078 
    1.9078    2.3970 
    2.3970    4.8818 
    4.8818    5.5196 
    5.1409    2.1938 
    2.1938    1.5683 
    1.5683    1.4221 
    1.4221    0.0000 
 
xle 
 
    0.4560    0.4560 

    0.4560    0.4560 
    0.4560    0.4560 
    0.4560    0.4560 
    0.4560    0.4560 
    0.4560    0.4560 
    0.4560    0.4560 
    0.4560    0.4560 
 
yle 
 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
     0     0 
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