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Abstract 
 

 

Atmospheric [CO2] and soil N availability are critical resources for plant growth, 

both of which are increasing due to global climate change. Therefore, it is important to 

understand how additional resources in the form of elevated CO2 and increased N 

availability impact photosynthesis as the main driver of plant productivity. I conducted 

studies on pines, grasses and forbs, all grown under long-term Free-Air CO2 Enrichment 

(FACE) and nitrogen fertilization, to determine how these global change factors affect 

plant photosynthesis and nitrogen use.  

Both forbs and pines showed down-regulation of photosynthetic capacity under 

elevated CO2 as changes in Vcmax of -23% and -17%, respectively. Grasses did not show 

significant photosynthetic down-regulation under elevated CO2 compared to ambient 

CO2. Grasses showed the least reduction of Nmass in elevated CO2 (-7%), followed by 

pines (-12%) and forbs (-18%). When reductions in photosynthetic capacity occurred, as 

was observed in forbs, a smaller photosynthetic stimulation of 9% occurred under 

elevated CO2 than when no down-regulation was observed. Compared to forb species, 

CO2-induced photosynthetic stimulation was 31% to 57% for pines and grasses, 

respectively. A reduction in foliar N concurrent with down-regulation of photosynthetic 

capacity in elevated CO2 could indicate plant N redistribution where N is allocated away 

from photosynthetic components. This N redistribution in response to elevated CO2 may 

be a key response in adjusting plant growth to long-term elevated CO2.  

At the canopy scale, increased leaf area index (LAI) under elevated CO2 due to 

photosynthetic enhancement could compensate for the effects of physiological down-

regulation on canopy photosynthesis. Grasses had higher canopy photosynthesis than 

forbs under elevated CO2 due to large LAI increases in combination with no 

photosynthetic down-regulation. Both LAI and photosynthetic down-regulation are 
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important in determining plant canopy productivity in elevated CO2. Given that few 

models include CO2 -induced photosynthetic adjustments such as decreased foliar N or 

reduced photosynthetic capacity, I conclude that much of previous experimental work on 

CO2 enrichment has greatly overestimated photosynthetic enhancement in native 

ecosystems. Interacting effects of long-term elevated CO2 and N fertilization may 

ultimately determine the magnitude of C uptake from the atmosphere and overall plant 

productivity. 
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Chapter 1 
 

Introduction 
 

1.1. Motivation 
 

Human-induced changes to the atmosphere and climate are primary drivers of 

current global environmental change in the 20th and 21st centuries. Though increasing 

concentrations of carbon dioxide (CO2) in the atmosphere have been related to global 

warming (IPCC, 2007), there are direct effects of rising CO2 concentrations on plant 

processes given that plants capture CO2 via photosynthesis. It is these direct effects of 

atmospheric CO2 on plant that are central to this dissertation. Photosynthesis determines 

ecosystem productivity and the resulting ecosystem services upon which we, humans, 

rely. During the past century, fossil fuel use has increased the atmospheric concentration 

of CO2 from about 280 μmol CO2 mol-1 before the Industrial Revolution to about 385 

μmol CO2 mol-1 in 2007, the highest concentration on Earth during the past 400,000 

years (Petit et al., 1999; Canadell et al., 2007). Therefore, we need to know how the 

process of CO2 uptake will be affected by rising atmospheric [CO2], how these effects 

will cascade through different scales and pools, and what this will mean for ecosystem 

functioning and C storage. As concentrations of CO2 have increased, both land and 

oceans have been absorbing more CO2 from the atmosphere. Though it is unclear exactly 

how much additional CO2 is being taken up annually by each of these sinks, increased 

absorption of CO2 by plants is a key part of the process (further discussed in Section 

1.2.1.). Increased plant uptake may also help to mitigate higher atmospheric CO2 levels 

(Kirschbaum, 2003). 

In contrast to the carbon cycle with a relatively small but very dynamic carbon 

pool of C in the atmosphere, the nitrogen (N) cycle has its largest pool in the atmosphere, 
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mostly in the form of N2, which cannot readily be used by biota due to its triple bond. 

The N-fixation process, mostly conducted by Rhizobium bacteria associated with certain 

plants (i.e., legumes), converts atmospheric N2 into mineral “reactive” N-molecules that 

can be taken up by microbes or plants. Therefore, relatively small amounts of reactive N-

molecules (e.g., NO3
- and NH4

+ in soils) are available to terrestrial ecosystems, and N is a 

major limiting element to plant productivity in most terrestrial ecosystems (Field et al., 

1992, Vitousek, 1994). However, the N-status of terrestrial ecosystems may be affected 

by several major anthropogenic factors: 1) increased rates of fossil fuel combustion that 

increase the amount of reactive N-molecules released via car exhaust and, 2) the 

production of agricultural fertilizer from the Haber-Bosch process (Galloway & Cowling, 

2002). The rates of N-fixation have doubled over the past century, largely due to the 

production of fertilizer, to currently around 150 Tg N per year (Galloway et al., 2002) 

significantly increasing N availability in terrestrial ecosystems. This global increase in 

nitrogen availability has many effects on N cycling in terrestrial ecosystems and could 

potentially remove N-limitation to plant productivity (see section 1.2.2.). 

Increases in atmospheric CO2 and N availability (Field et al., 1992; Peterson et 

al., 1999a) could increase plant growth because both C- and N-availability are currently 

limited to many plants (Reich et al., 1997). Because both [CO2] and N availability are 

critical resources for plant growth, it is important to understand how they affect 

photosynthesis to provide insight into their role in regulating productivity and understand 

there eventual effects on plant growth. Furthermore, if we intend to rely on plants to 

partly mitigate our increasing CO2 emissions, then it is important to understand what 

changes in plant productivity can be expected and what other factors may affect this. The 

focus of this dissertation is on the effects of elevated atmospheric [CO2] and N 

fertilization on potential changes in photosynthetic processes that drive plant canopy 

productivity in different plant species at the leaf and canopy scale. 

In the following sections of this introduction, I review the individual effects of 

elevated CO2 and N fertilization on photosynthesis and plant productivity. Then I discuss 

the role of N in plants grown in elevated CO2, discussing potential CO2 x N interactions, 

leading to my research objectives. I conclude the chapter with a brief overview of site 

descriptions and general methods applied in this dissertation.  
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1.2. Literature Review 
 

1.2.1. Effects of elevated CO2 on photosynthesis and plant growth 

 

 1.2.1.1. Photosynthesis 

 
At a CO2 concentration of 385 μmol CO2 mol-1 today, most plants still operate on 

the steep slope of the photosynthetic CO2 response curve, with photosynthesis rates that 

vary as a function of CO2 concentration in constant saturating light conditions (Fig. 1). 

This occurs due to the direct catalytic effects of CO2 in reactions at the catalytic sites of 

ribulose-1,5,-bisphosphate carboxylase enzyme (often referred to as the ‘Rubisco’ 

enzyme), and the efficiency of Rubisco is also enhanced due to the increase in the ratio of 

[CO2]/[O2] which elicits repression of photorespiration (Drake et al., 1997). Because the 

rate of net CO2 assimilation in C3 plants is not CO2-saturated at the current atmospheric 

CO2 concentration, the short-term rise in CO2 concentration may stimulate 

photosynthesis. Given that photosynthesis operates on the linear portion of the CO2 

response curve (Fig. 1), a 50% increase in photosynthesis can be expected with a 50% 

increase in atmospheric CO2 concentrations. Though much variation exists in species-

specific responses, in time frames varying from one to several years of continuous 

elevated CO2, maximum leaf photosynthesis was stimulated by 44-66% on average in 

woody plants, across experiments with different increases in elevated CO2 (Gunderson & 

Wullschleger, 1994; Saxe et al., 1998; Norby et al., 1999). Across different functional 

groups of plants and experimental sites, photosynthesis was stimulated by an average of 

25% (Nowak et al., 2004). Unfortunately, this is a very large range and hence longer-

term and larger-scale studies are needed. Stimulation of photosynthesis is also influenced 

by the physiological status of plants and by environmental factors such as climate and 

nutrient availability (Oren et al., 2001a; Poorter & Perez-Soba, 2001). Stressful climates 

such as occur in cold northern hardwood plantations or the hot Mojave desert result in  

smaller stimulations of 38% and 22% respectively (Noormets et al., 2001; Naumburg et 

al., 2003). My study was conducted in two long-term experiments on sites with natural 

N-poor conditions, exposing vegetation to elevated [CO2] and N addition treatments for 
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up to ten years, in order to elucidate species responses and potential interactions between 

N availability with elevated CO2. 
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Figure 1: Diagram of a CO2-response curve with photosynthesis as a function of internal 
CO2 concentrations (Ci) (blue solid line), measured in constant saturating light 
conditions. The corresponding external CO2 concentrations are indicated by the internal 
ticks on the X-axis showing ambient and elevated concentrations used in my 
measurements. The difference in photosynthesis rate represents the short-term 
photosynthetic enhancement in elevated CO2 (red solid line along the Y-axis). 

 
 

One of the most general responses observed in plants grown in elevated CO2 is a 

reduction in leaf N concentration. This reduction in leaf N can happen in two major ways, 

either via a dilution response of leaf N through accumulation of carbohydrates and 

increased leaf mass per unit area (Rogers & Ellsworth, 2002; Ainsworth et al., 2003) or, 

via a consistent reduction of N allocated to Rubisco (Saxe et al., 1998; Yin, 2002; 

Ellsworth et al., 2004; Bonanomi et al., 2005). The reduced amount or activity of the 

carboxylation enzyme, ribulose bisphosphate carboxylase (Rubisco) is evoked via the 

expression of specific genes using signals of accumulated sucrose in the mesophyll cells 

(Long et al., 2004). Both paths to foliar N declines have abundant support in the 

literature. Across 104 studies, predominantly conducted in open-top chambers, the CO2-
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induced reduction in mass-based N was 11-16% (Curtis & Wang, 1998; Luo et al., 2006). 

In a meta-analysis of FACE (Free Air CO2 Enrichment) studies, elevated CO2 decreased 

mass-based leaf N by 13% and area-based leaf N by 5 %, whereas the maximum 

carboxylation rate,Vcmax (a measure of Rubisco content or activity) was reduced by 13-

19% (Ainsworth & Long, 2005). This agrees well with the results of Medlyn et al. 

(1999), who found reductions of 15% in mass-based leaf N and 10% in Vcmax. In 

conclusion, reduced leaf N in elevated CO2 occurs both via N dilution and reduced 

allocation to Rubisco. 

When leaf N cannot be maintained under elevated CO2, down-regulation of 

photosynthesis may result from reduced photosynthetic capacity (Curtis & Wang, 1998; 

Ellsworth et al., 2004) usually expressed as a reduction of Vcmax and Jmax. The down-

regulation of photosynthesis is defined as an inability to sustain short-term CO2 induced 

increases in photosynthetic rates with long-term CO2 exposure (Gunderson & 

Wullschleger, 1994). This down-regulation of photosynthesis has been especially 

pronounced in N-limited ecosystems (Stitt & Krapp, 1999), for example a 22% reduction 

in Vcmax and a 12 % reduction in leaf Narea content were observed in FACE experiments in 

nutrient-poor ecosystems (Ainsworth & Long, 2005). Herbaceous species tended to 

exhibit larger reductions in leaf N (-14%) accompanied with smaller CO2 enhancements 

(+12%) compared to woody species (+38%) where no significant differences were found 

in leaf N concentrations between CO2 treatments (Nowak et al., 2004). Though the 

magnitude of down-regulation is highly variable among species (Medlyn et al., 1999; 

Wand et al., 1999; Lee et al., 2001; Sefcik et al., 2007), down-regulation may occur to a 

greater degree in specific environmental conditions, such as where N is severely limited 

or in droughted environments. So far, there has not been strong evidence that down-

regulation has completely offset the photosynthetic stimulation relative to ambient-grown 

plants, even after 6-10 years of CO2 exposure (Ainsworth et al., 2003; Crous & 

Ellsworth, 2004). Thus, it is unclear to what degree photosynthetic downregulation 

occurs in native plants grown in native, low-N soils, and if it does, to what extent this 

down-regulation offsets the instantaneous CO2 enhancement effect on photosynthesis. 

Therefore I hypothesize that lower photosynthetic enhancement in elevated CO2 is related 

to the occurrence of down-regulation and that there is a relationship between the amount 
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of down-regulation and the reduction in leaf N in response to elevated CO2 (Hypotheses 

H.1a-b; Section 1.3.). 

 

1.2.1.2. Plant growth and biomass accumulation 

 
Do stimulated rates of photosynthesis translate into increased biomass 

accumulation in elevated CO2? To assess plant growth and biomass, both photosynthesis 

and respiration rates need to be taken into account. Given that no significant respiratory 

response to elevated CO2 was found (Amthor, 2000; Tjoelker et al., 2001; Wang & 

Curtis, 2002), elevated [CO2] resulted in larger plants (+14% in elevated CO2) with larger 

stem diameters, more branches (+25%) and leaf area for trees (+21 %) in woody species, 

but no such increases in biomass were found in herbaceous species (Ainsworth & Long, 

2005; McCarthy et al., 2007). Biomass production increased by 20% across 29 C3 species 

of different functional groups, in six different FACE experiments (Ainsworth & Long, 

2005), consistent with the 19% biomass enhancement found across 16 FACE sites 

(Nowak et al., 2004). Curtis & Wang (1998) reported a 28% increase in biomass for 

saplings and seedlings grown under elevated CO2 conditions in chamber or glasshouse 

experiments. Thus, for field studies done at larger scales, there appear to be smaller 

biomass enhancements than for single-plant studies which may be the result of plant age 

and maturity, differences between plants grown in stands versus solitary plants (Körner, 

2000), or the increasing emphasis on native, nutrient-limited ecosystems in FACE 

studies.  

A number of these conclusions have emerged from meta-analyses of data from the 

multiple different open-top chamber (Curtis and Wang, 1998; Medlyn et al., 1999) or 

FACE experiments (e.g., Ainsworth & Long, 2005; Ainsworth & Rogers, 2007). 

However, meta-analyses represent a post hoc comparison based on relative effect sizes 

and hence provide limited understanding of fundamental relationships between plants 

grown in ambient and elevated CO2 treatments. Moreover, effect-size estimates may be 

correlated (e.g., not independent) if several effect-sizes are calculated from each study 

(Gurevitch & Hedges, 1999). Therefore, understanding plant responses and potential 

interactions between elevated CO2 and N using consistent data collection approach (see 
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Section 1.6.) may help reconcile these results (see Section 1.2.3. on CO2 x N interactions 

and Hypothesis H.2 in Section 1.3.). 

The biomass response to elevated CO2 is affected by nutrient status of the soil 

(see Section 1.2.2.), but also differs among different plant functional types. Stimulation 

of above-ground production also differs between different functional groups with trees 

showing the largest response (+28%) relative to C3 grasses (+10%). Aboveground 

primary productivity increases the most in response to elevated CO2 in deserts, followed 

by forests and grassland ecosystems (Nowak et al., 2004; Ainsworth & Long, 2005). 

Forests show the greatest enhancement in belowground productivity followed by 

grasslands and then desert ecosystems (Nowak et al., 2004; Ainsworth & Long, 2005). 

For above- and belowground productivity combined, net primary production (NPP) is 

generally stimulated in elevated CO2 by almost 12% across 11 FACE sites. Forests 

increase NPP more than grasslands do in response to elevated CO2 (Nowak et al., 2004; 

Norby et al., 2005). Therefore, it is clear that different species and functional groups 

respond differently to elevated CO2, which could lead to interactions between CO2 and 

species (Hypothesis H.3.; Section 1.3.). These interactions have the potential to alter 

species structure and composition in elevated CO2 (Zavaleta et al., 2003; Joel et al., 

2001). 

 

1.2.1.3. Carbon uptake and storage at larger scales 

 
There is considerable interest in scaling leaf-level carbon assimilation to canopy-

level carbon uptake and ecosystem productivity. Scaling up photosynthesis from the leaf-

level to stand or ecosystem levels requires additional information including 

climatological parameters and biotic parameters such as growth and the leaf area present 

in the canopy (Jarvis, 1995). This is a major challenge because the spatial and temporal 

scales of interest are much greater than the short-term and small-scale studies at which 

physiological measurements are made (Kull & Jarvis, 1995; Terashima & Hikosaka, 

1995).  

The simplest way of scaling up leaf-level photosynthesis is to treat the whole 

canopy as one effective ‘big leaf’. However, canopy scale enhancement of photosynthesis 
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by CO2 is usually not as large as that measured for individual leaves because of self-

shading effects in the tree crown and the non-linear response of photosynthetic capacity 

to irradiance (Hättenschwiler & Körner, 1997; Meir et al., 2002). Therefore ‘big leaf’ 

models result in an overestimation of canopy photosynthesis (Sinclair et al., 1976; 

Leuning et al., 1995; Meir et al., 2002). Hence, ‘multi-layer’ canopy models have been 

developed to improve the accuracy of carbon gain estimates (Reynolds et al., 1992; 

Sellers et al., 1992; Niinemets & Tenhunen, 1997). These models divide the canopy into 

a series of layers, representing different leaf types found in a canopy with different 

physiological characteristics (e.g., sun, shade and intermediate leaf types) (dePury & 

Farquhar, 1997), but also require more parameters to define light distribution, fraction of 

sunlit versus shaded leaves and canopy N for each canopy layer.  

Advantages of these two major scaling approaches can be combined in a 

relatively simple canopy model consisting of just two layers (dePury & Farquhar, 1997). 

The accuracy of a simple two-layer model to predict canopy photosynthesis agrees within 

5% compared to a more complicated multi-layer model (Wang & Leuning, 1998), 

because non-linear responses of photosynthesis to light for different leaf-types have been 

accounted for and therefore greatly improve the estimates compared to a ‘big leaf’ model 

(Friend, 2001). While CO2 exchange can be measured in ambient CO2 conditions by a 

variety of techniques (e.g. open-top chambers, eddy-covariance), there is currently no 

effective technique to predict canopy CO2 assimilation in elevated CO2 conditions in 

large statured plants (Schäfer et al., 2003). Even for smaller plants, few studies have 

attempted whole ecosystem measurements in ambient and elevated CO2 (Aechlimanm et 

al., 2005; Stocker et al., 1997). Therefore, modeling plays an essential role in developing 

an understanding of potential plant, community and ecosystem processes. In my study, I 

used such a two-layer model to estimate gross canopy photosynthesis of different 

grassland monocultures in ambient and elevated CO2. My objective was to estimate how 

much C uptake increased in elevated CO2 at the canopy level versus the leaf-level. In 

addition, I examined how leaf-level down-regulation affected the gross canopy 

photosynthesis response in elevated CO2 (Hypothesis H.4.; Section 1.3.) 
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1.2.2. Effects of N fertilization on photosynthesis and plant growth 

 

Nitrogen is an essential nutrient for plants because it is needed to build proteins 

and nucleic acids. Nitrogen is of particular importance in mediating long-term responses 

to elevated CO2 because most N in leaves is invested in Rubisco (Evans, 1989). 

However, nitrogen limits productivity in the majority of terrestrial ecosystems (Vitousek 

& Howarth, 1991; LeBauer & Treseder, 2008). A nutrient limitation is recognized by an 

increase in growth in response to the addition of the limiting nutrient because site fertility 

to individual plants is controlled by the availability of the nutrient in shortest supply (Von 

Liebig’s Law of the Minimum (Von Liebig, 1840)). Therefore, one of the most consistent 

responses of plants to N addition is increased growth usually combined with an increase 

in foliar N (Bauer et al., 2004; Magill et al., 2004; Xia & Wan, 2008). Increased growth 

and C gain with increased leaf N concentration is predicted via the relationship between 

photosynthetic capacity and foliar N (Field & Mooney, 1986; Evans, 1989; Reich et al., 

1997). Thus, increased N availability via fertilization typically increases leaf N 

concentrations, photosynthetic rates, growth rates and biomass accumulation (Field & 

Mooney, 1986; Aerts & Chapin, 2000; Magill et al., 2000). 

LeBauer and Treseder (2008) did a literature study to assess global patterns of N 

limitation. Using data from 126 studies in different biomes across the globe, they tested 

the hypothesis that N limitation would increase with latitude, consistent with a 

temperature or precipitation limitation of N mineralization. This hypothesis was based on 

higher N:C and N:P ratios in tropical plants (Reich & Oleksyn, 2004) and  increased N 

mineralization rates in wetter and warmer climates (Schlesinger & Andrews, 2000). They 

found that N limitation is widespread among biomes and influenced by geography and 

climate. The response ratio of aboveground plant productivity to N addition was 29% 

with significant differences in response in different biomes. Forests, tropical and 

temperate, responded 20% to N regardless of latitude, whereas grasslands showed an 

increased response with latitude from 26% in tropical grasslands to 53% response to N 

fertilization in temperate grasslands (LeBauer & Treseder, 2008). Synergetic responses 

were also observed when N addition was combined with other resources, exceeding the 

response to N alone (Elser et al., 2007; Harpole & Tilman, 2007). Thus, if plants are 
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jointly limited by soil N and also current concentrations of atmospheric CO2, I expect a 

synergistic effect between rising atmospheric CO2 and N (Hypothesis H.2.; Section 1.3.). 

Whereas the natural source of available N for plants is mineralized N, in the form 

of nitrate (NO3
-) and ammonium (NH4

+), anthropogenic N fertilization (> 160 Tg N per 

year globally) has now overtaken natural N fixation (~110 Tg N per year) as the first N 

source for plants (Galloway et al., 2008). Moreover, N deposition rates are expected to 

double or triple before leveling out (Vitousek et al., 1997; Galloway & Cowling, 2002). 

The effects of this additional N availability on ecosystem processes are not well 

understood (Gruber & Galloway, 2008). Alleviating limitation through N additions may 

have important consequences for N cycling. Whether N has positive or negative effects 

on plant productivity depends on the N status of the system (Aber, 1992) and on how N is 

distributed in the ecosystem. It is possible that increased rates of N deposition are not 

absorbed by plants. Nadelhoffer et al. (2004) found that soils were the dominant N sinks 

with increased deposition, assimilating 3-10 times more N deposition than trees did. 

Labeling studies using 15N recovered on average less than 25% of 15N additions in trees 

when inputs were smaller than 5 g N m-2 yr-1 (Tietema et al., 1998; Zak et al., 2004; 

Perakis & Hedin, 2001; Nadelhoffer et al., 1992). This suggests that only small fractions 

of N inputs (<10%) were likely to be assimilated in woody biomass, though N 

concentrations in plant biomass may be higher with N-addition than in unamended 

conditions for many years. Magill et al. (2004) found higher foliar N and double the 

amount of N in fine roots after 4 years of N-addition in two forest ecosystems of Harvard 

Forest (Magill et al., 2004). However, N deposition may only have a small effect on 

temperate forest C balance suggesting that increased N-addition inputs will likely not 

significantly stimulate C uptake in tree biomass in some systems (Nadelhoffer et al., 

1999). 

Moreover, current rates of N-addition in the two long-term experiments described 

here are higher (40-110 kg N ha-1) than current or predicted N-deposition rates for those 

ecosystems.  As such, plant responses in these experiments may not realistically reflect 

plant responses to increased N deposition rates predicted for these regions. However, 

results from N-addition experiments are not designed to mimic future N deposition rates, 

but rather to analyze plant mechanisms of response when exposed to increased N 
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availability. Labeled 15N-addition treatments can provide information on the partitioning 

of N inputs among forest ecosystem components and the rates of N-fluxes between pools. 

Results from high N-addition treatments can help assess growth responses in agricultural 

crops and can be used as a management tool. More importantly, N-addition experiments 

can increase our understanding of plant responses to this perturbation on its own or 

in combination with other factors such as elevated CO2 or species diversity. My 

study will be able to evaluate the relative strength of species responses of physiological 

variables to elevated CO2 and N addition. Based on evidence discussed here, I expect a 

stronger CO2 effect than an N-addition effect on photosynthesis across species, though 

individual species responses may vary. 

 Individual species adjust to their environment by responding to climatic 

and abiotic perturbations (Field & Mooney, 1983; Field et al., 1992; Lambers & Poorter, 

1992), which affects ecosystem productivity and species diversity. N-addition affects 

species diversity (Gress et al., 2007) and species composition (Wedin & Tilman, 1996; 

Gough et al., 2000; Zavaleta et al., 2003; Suding et al., 2005). Given the positive 

relationship between biodiversity and ecosystem stability (Tilman et al., 2006), 

reductions in species diversity in response to N addition may result in greater variability 

in ecosystem functions under environmental perturbations. Moreover, changes in species 

composition affect ecosystem growth responses and competition for resources, which in 

turn could influence ecosystem productivity (Xia & Wan, 2008). Different species 

responses to N addition are expected and my study examines how different species and 

functional groups differ in response to both elevated CO2 and N addition (Hypothesis 

H.3.; Section 1.3.) indicating potential changes in species composition. 

Ultimately, the balance between production and decomposition determines the 

impact of N on the amount of C uptake by terrestrial ecosystems (Shaver et al., 1992). 

Whereas the response of plant productivity to N is more consistently positive , the 

response of decomposition to N addition is less consistent (Fog, 1988). It depends on 

environmental conditions, substrate quality and microbial physiology (Schlesinger & 

Andrews, 2000; Knorr et al., 2005). A CO2-induced increase in N immobilization may 

reduce N release to soils, decreasing N mineralization over time (Hungate et al., 2004). 

This in turn may eventually lead to a decline in productivity with lower C sequestration. 
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Alternatively, increased litter input in elevated CO2 may increase N-mineralization rates 

(Zak et al., 1993, 2000). These potential CO2 x N interactions in soils are not well 

understood but are important to understand how anthropogenic impacts will affect N and 

C cycling belowground. Overall, ecosystem productivity will mainly depend on the 

degree to which N limits NPP in both temperate and tropical ecosystems. Only an 

integrative approach with multi-factorial experiments can provide insight regarding the 

response of ecosystems to global change (Körner, 2000) and how resource availability 

and species composition affect this response (Field et al., 1992). These interactions 

between CO2 and N are discussed at different scales in the next section. 

 

1.2.3. Interactions between elevated CO2 and N fertilization: the role of N in 

plants grown in elevated CO2 

 

1.2.3.1. C-N interactions at the point of CO2 capture  

 
In recent years, we have gained a fairly solid understanding of the independent 

effects of elevated CO2 and N on plant physiology and ecosystem functioning (Ainsworth 

et al., 2003; Galloway et al., 2004; Magill et al., 2004; Nowak et al., 2004; Ainsworth & 

Rogers, 2007). However, interactions among ecological factors cannot always be 

predicted based upon the responses of organisms to single factor manipulations 

(Mikkelsen et al., 2008). Given that foliar N concentrations respond in opposite 

directions to elevated CO2 (decrease) and N addition (increase), any interactions between 

N availability and atmospheric CO2 concentration may determine in part how ecosystem 

functioning is affected by elevated CO2 and increased N availability together.  Because 

biogeochemical cycling of C and N are linked, interactive effects are likely, and may 

limit the magnitude of photosynthetic enhancement under elevated CO2 (McMurtrie & 

Comins, 1996; Rastetter et al., 1997; Luo et al., 2004).  

Recently, studies in forests as well as in grasslands have shown that the initial 

enhanced growth response of plants in elevated CO2 can only be sustained with sufficient 

N supply (Oren et al., 2001; Grünzweig & Körner, 2003; Schneider et al., 2004; Reich et 

al., 2006). Recent studies have found substantial growth responses in elevated CO2 
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because additional N was foraged from deeper soil layers (Zak et al., 2007; Iversen et al., 

2008). If C sequestration is indeed constrained by N availability (Poorter, 1998; Lüscher 

et al., 2000; Oren et al., 2001; Hungate et al., 2003; Reich et al., 2006), potentially 

weakening the buffer of terrestrial ecosystems against rising atmospheric CO2 

concentrations, it is crucial to understand interactive effects of CO2 and N on plant 

physiological processes.  Unfortunately, our current ability to assess these long-term 

interactions between CO2 and N over meaningful ecosystem time frames is severely 

limited due to the low number of realistic long-term experiments, such as Free-Air CO2 

Enrichment (FACE) experiments (section 2.3). My study aims to determine long-term 

effects of elevated CO2 and N fertilization and their potential interactions on 

photosynthesis of diverse C3 plant species from different FACE sites. Insight into the 

underlying physiological mechanisms at the leaf-level scale may enable us to better 

understand biomass accumulation and species-specific responses to elevated CO2 and N 

fertilization (Hypotheses H.1-3; Section 1.3).  

One tool to evaluate these physiological mechanisms is via the photosynthesis-

nitrogen relationship. Because most leaf N is used to build photosynthetic enzymes 

(Evans, 1989; Takashima et al., 2004), there is generally a strong positive relationship 

between leaf photosynthesis and leaf nitrogen both among (Reich et al., 1997; Reich et 

al., 1998a) and within species (Ellsworth & Reich, 1993; Reich & Walters, 1994; Reich 

et al., 1998b; Crous & Ellsworth, 2004). This photosynthesis-leaf N relationship is a 

central ecophysiological paradigm of the last decade (Field et al., 1983; Field & Mooney, 

1986; Reich et al., 1997) because it reflects the leaf-level manifestation of coupling 

between the carbon and nitrogen cycles (Vitousek, 1994). However, excess N from 

additional N inputs may decouple the photosynthesis-nitrogen relationship via large 

changes in N partitioning away from the photosynthetic machinery, weakening the 

relationship. Lower leaf N in elevated CO2 may eventually translate into reduced 

photosynthetic rates and reduced plant productivity (Norby & Cotrufo, 1998; Peterson et 

al., 1999b) (Hypotheses H.1 and H.4.). If the photosynthesis-nitrogen relationship is 

affected by elevated [CO2] or N-addition, then our predictions of C uptake at higher 

scales may be inaccurate because the connection between foliar N and photosynthetic 

capacity of the leaf is the central basis of a number of models that predict plant and 
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ecosystem carbon balance (Aber & Federer, 1992; McMurtrie & Wang, 1993; Luo et al., 

1994; Katul et al., 2000; Cramer et al., 2001; Baldocchi et al., 2002). The strong 

relationship between photosynthesis and leaf N emphasizes the importance of key 

physiological processes at the leaf level in order to accurately model canopy growth 

dynamics and potential feedbacks with regard to global change. 

 

1.2.3.2. C-N interactions at the whole plant level: biomass accumulation and plant 

productivity  

 
CO2 and N interactions can also occur at the whole plant level and can be 

examined by the theory of multiple-resource limitation (Field et al., 1992; Rastetter & 

Shaver, 1992). When plants experience multiple resource limitations (e.g., such as both 

C-limitation and N-limitation in plants), interactions between CO2 and N supply could 

limit biomass accumulation and plant productivity (Oren et al., 1993; Schneider et al., 

2004; Reich et al., 2006a). According to the multiple-resource limitation concept, 

biomass increase in elevated CO2 concentration is greater at higher N supply (filled 

diamonds in Fig. 2) than lower N supply rates (open diamonds).  
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Figure 2: Conceptual diagram of the multiple limitation theory on plant growth as a 
function of CO2 at two different levels of N availability (after (Reich et al., 2006b).  
Biomass increase in elevated CO2 concentration (ppm or μmol mol-1) is greater at higher 
N supply (filled diamonds) than lower N supply rates (open diamonds). 
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Most studies have indeed found higher biomass accumulation in response to 

elevated CO2 with high N supply than elevated CO2 with low N supply. For example, 

trees grown under nutrient limitations showed 14% less enhanced biomass accumulation 

in elevated CO2 (Ainsworth & Long, 2005)(see Section 1.4). A recent analysis across 

four forest FACE sites found a consistent 23% enhancement in NPP (Norby et al., 2005), 

which was decreased to 19% under low N availability, whereas under intermediate and 

high N availability the percent CO2 stimulation was 27% (Finzi et al., 2002). Poplar 

seedlings and saplings showed higher aboveground biomass enhancement in elevated 

CO2 at higher N supply than at low N supply (Zak et al., 2000; Sigurdsson et al., 2002; 

Liberloo et al., 2005). The same effect was found in 15-year-old loblolly pine trees after 

two years of CO2 and N manipulation (Oren et al., 2001). However, young ponderosa 

pine and spruce-beech forests had similar responses to elevated CO2 at both high and low 

N supply rates after six and four years in open top chambers (Johnson et al., 1997; 

Spinnler et al., 2002).  

In herbaceous grassland systems exposed to both elevated CO2 and N fertilization, 

plant responses to elevated CO2 did not differ with variation in N supply either in wheat 

(Ainsworth & Long, 2005) or natural annual grasslands in California (Dukes et al., 

2005). Studies of other grassland ecosystems have reported various degrees of higher 

biomass enhancement with high N supply compared to low N supply (ryegrass in 

(Schneider et al., 2004), perennial grassland in (Reich et al., 2006a)). Based on these 

experimental studies conducted for at least 2 years in forest and herbaceous communities, 

there seems to be some evidence for a general N-limitation to elevated CO2 effects on 

plants, although responses are not ubiquitous nor is the role of species in this response 

understood. I studied eight different species from three different functional groups to 

examine potential patterns in elevated CO2 responses across species (Hypothesis H.3. 

and Chapter 3). 

 

1.2.3.3. C-N interactions at the ecosystem level: C sequestration and storage 

 
Given that plant biomass production linked to ecosystem carbon uptake, the 

higher CO2-induced biomass enhancement with N addition may potentially stimulate the 
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C uptake response at the ecosystem level (e.g. increased net ecosystem productivity). 

This depends on whether other processes such as heterotrophic respiration and N 

mineralization processes also respond to elevated CO2 and N supply. Because N 

mineralization largely controls N availability to plants, potential feedback effects of 

elevated CO2 on N uptake and plant growth could affect overall ecosystem carbon 

sequestration (van Groenigen et al., 2006). For example, recent meta-analyses suggest 

that soil carbon only increases with additional N but soil C is insensitive to elevated CO2 

in the absence of N supplements (Luo et al., 2006; van Groenigen et al., 2006), though 

the small sample sizes in meta-analyses could result in inaccurate confidence intervals 

(Hedges et al. 1999). 

When N-limited ecosystems are exposed to long-term elevated [CO2], negative 

feedbacks in N cycling (connected open diamonds in Fig. 2) may determine the potential 

for C storage in elevated CO2, as postulated in the Progressive Nitrogen Limitation 

concept (Luo et al., 2004). The progressive nitrogen limitation concept describes the 

reduction of N availability over time in elevated CO2, either via increased N 

immobilization or by increased plant N sequestration. Carbon uptake by plants may be 

limited if there is a negative feedback from elevated CO2 due to sequestration of N in soil 

organic matter (increased N immobilization). Alternatively, if N is sequestered in plant 

biomass, it will reduce the labile N availability to plants (Rastetter et al., 1992; Field & 

Fung, 1999; Gill et al., 2006), eventually constraining plant productivity unless N losses 

are reduced or N inputs increased (Oren et al., 2001; Gill et al., 2002; Luo et al., 2004). 

Evidence reported to test the concept of progressive N limitation has been only partially 

supportive (Finzi et al., 2006; Gill et al., 2006; Hungate et al., 2006). This may be 

because the theory of progressive N limitation predicts that initial stimulation of NPP in 

elevated CO2 will decline through time.  Plants in N-poor ecosystems can exhibit several 

mechanisms to delay N-limitation such as increased C:N ratios via reduced leaf N 

concentration, increased N use efficiency, shifts in N allocation or increased N uptake 

from the soil via increased root exploration (Zak et al., 2000; Luo et al., 2004; Gill et al., 

2006). Hungate et al. (2006) found that reduced N concentrations were able to support 

the increased C accumulation in aboveground biomass for at least seven years in a Scrub 

Oak ecosystem exposed to elevated CO2. Though there is some evidence of N-limitations 
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in elevated CO2, there is a lack of concrete support that reduced N-cycling also occurs or 

is responsible for the increases in N-limitation over time. 

Whether N-cycling is increased, decreased or stays equal in elevated CO2 is still 

unclear. Increased litter inputs in elevated CO2 could stimulate N mineralization (Zak et 

al., 1993), but increased C:N in leaves grown in elevated CO2 may mean increased N 

immobilization (Diaz et al., 1993). Despite reduced N concentration in leaves grown in 

elevated CO2 and its potential consequences for changes in litter quality and 

decomposition rates, recent tests have suggested little influence of elevated CO2 on the 

C:N ratio of litter or on the rate of plant litter decomposition (Norby et al., 2001), nor any 

dependence thereof on soil N supply (Henry et al., 2005; de Graaff et al., 2006b). 

Currently, there is little evidence that elevated CO2 alters gross N mineralization (de 

Graaff et al., 2006a) or net N mineralization (Matamala & Drake, 1999; Finzi & 

Schlesinger, 2003; Johnson et al., 2003). However, studies in some nutrient-poor 

ecosystems have found that elevated CO2 reduces net N mineralization under field 

conditions in a cold perennial grassland (Reich et al., 2001b; Reich et al., 2006a), a warm 

perennial grassland (Gill et al., 2002) and a temperate pine forest (Finzi et al., 2006). 

Together, these findings indicate that under ambient soil conditions, elevated CO2 has 

neutral or negative effects on net N mineralization rates. This trend cannot easily be 

generalized as ecosystems contain different species with different effects on litter fall and 

decomposition rates (de Graaff et al., 2006b; Dijkstra et al., 2006). Elevated CO2 is likely 

to have a larger effect on litter decomposition by altering species composition (Dukes et 

al., 2005; Gill et al., 2006), though this indirect mechanism would be ecosystem specific 

(Henry et al., 2005). 
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1.3. General Research Hypotheses 
 

Based on the background provided, there is a clear research need to further 

elucidate how elevated atmospheric CO2 and N interact in affecting plant eco-

physiological processes. My study examines the potential interactions between long-term 

elevated CO2 and N-addition at the leaf-level scale and canopy scale based on the 

following overarching hypotheses: 

 

H.1a.: The magnitude of photosynthetic enhancement in elevated CO2 is higher 

when no down-regulation occurs. 

With a 50% increase in atmospheric CO2 concentrations, I expect a 

photosynthetic enhancement of ~50%. The amount of enhancement lower than 

50% indicates some degree of down-regulation of photosynthesis (Section 

1.2.1.1.). 

H.1b.: Leaf N reduction in elevated CO2 is reflected in reductions in 

photosynthetic capacity (e.g. carboxylation rates, Vcmax and electron 

transport rates, Jmax) of similar magnitude. 

If reduced leaf N and reduced carboxylation capacity occurs, then this might be 

due to N allocated away from photosynthesis, causing some degree of down-

regulation in elevated CO2. 

 

H.2.: The amount of down-regulation is stronger in low soil N that in soils with N-

addition. 

Based on the multiple limitation theory, I expect that if both C and N are limiting 

plant growth then the response to elevated CO2 will be larger with higher N 

supply than with low N supply. Working at two FACE sites with natural N-poor 

soil conditions and N-addition treatments can help elucidate potential interactions 

between elevated CO2 responses and N-addition responses (Section 1.4.).  
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H.3.: The amount of CO2-induced enhancement in photosynthesis will be stronger 

in trees compared to herbaceous species. 

Though herbaceous species have higher absolute photosynthesis rates, I expect 

that the relative increases in photosynthesis in elevated CO2 will be higher in trees 

compared to herbaceous species and therefore CO2-enhancement will be stronger 

in trees compared to grasses and forb species. 

 

H.4.: Increased photosynthesis at the leaf-level will lead to increased C uptake at 

the canopy scale, though the effects of down-regulation at the leaf-scale will 

also reduce C uptake at the canopy scale. 

I expect to see a consistent pattern at the canopy scale compared to the leaf-level 

though smaller in magnitude due self-shading of leaves deeper in the canopy. 

 

My dissertation work aims to examine the mechanism by which plants adjust to 

environmental perturbations such as elevated CO2 and N fertilization by quantifying 

fundamental eco-physiological relationships, addressed in Section 1.6. It is my goal to 

determine potential changes in this photosynthesis-nitrogen relationship under elevated 

CO2 concentrations using data collected in a consistent manner at two long-running 

FACE sites (Section 1.4. and 1.5.). These changes in the relationship with photosynthetic 

capacity and nitrogen allow me to evaluate mechanisms of down-regulation at the leaf-

level scale and how these leaf-level effects change plant productivity at the whole-plant 

scale. 

Given that individual species responses to elevated CO2 can vary substantially, I 

purposefully included species of different growth forms and functional groups to 

elucidate species-specific responses and evaluate if these responses are consistent within 

their functional group. 
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1.4. Site Description  
 

My work focuses on the effects of N on elevated CO2 responses with field work at 

two research sites. One site is a stand of mature loblolly pine (Pinus taeda) located in 

Duke Forest in North Carolina (http://c-h2oecology.env.duke.edu/Duke- 

FACE/main.cfm) and the other site (BIOCON) is a prairie grassland LTER site located in 

Cedar Creek, Minnesota (http://www.lter.umn.edu/biocon/). At Cedar Creek, there are 16 

plant species grown in different combinations of 1, 4, 9 and 16 species; in my work, I 

restricted measurements to only monoculture plots of several C3 grasses and non-

leguminous forbs characteristic of prairie grasslands. 

Both sites have long-term elevated CO2 treatments using free-air CO2 enrichment 

(FACE) technology (see below). The year 2006 was the 10th growing season of elevated 

CO2 exposure for Duke Forest and the 9th growing season for BioCON. Both sites also 

have N addition treatments. The N addition in Duke Forest began in March 2005, 

whereas N addition at BioCON has been maintained since the beginning of the 

experiment in 1998. Each experiment has a split-plot design, with three replicated plots 

for the elevated CO2 treatment and subplots being the two N treatments within each plot. 

Both N addition and elevated CO2 treatments allow me to examine the 

relationships between photosynthetic components and nitrogen as well as the possible 

interactions of these two treatment factors. More information can be found for Duke 

Forest in Hendrey et al. (1999) and (Ellsworth et al., 1995), and for BioCON in Lee et al. 

(2001). 

 

1.5. Brief overview of the Free-Air CO2 Enrichment (FACE) design 
 

Free-Air CO2 Enrichment (FACE) experiments are state-of-the-art integrated, 

ecological experiments involving interdisciplinary investigators from many universities. 

These experiments expose vegetation to predicted CO2 concentrations for mid-century 

(2050), but it is important to understand that they do not mimic a specific environment. 

Rather, FACE experiments are designed to examine the mechanisms of plant and 
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ecosystem responses to high atmospheric [CO2] in the hope to provide a scientific basis 

understanding rising atmospheric [CO2].  

 

Wind Calm

a)

b)

Wind CalmWind Calm

a)

b)

 

Figure 3: Schematic layout of a FACE plot. (a) Overhead view showing location of 
central and supporting towers at Duke FACE (left, from Hendrey et al., 1999) and the 
result (side view) in the forest itself (right). (b) Different operation of the vent pipes 
depending on wind speed and direction where blue cicles show actived/opened vent pines 
and gray circles are inactive (e.g. not blowing air into the plot). 

 

 

The FACE approach developed by Brookhaven National Laboratory is a unique 

technique to study the effects of CO2 enrichment on vegetation and natural ecosystems in 

an open-air setting without containment. The FACE system aims at a target of 200 μmol 

CO2 mol-1 CO2 above ambient and provides stable control of that target (e.g. 550 μmol 

CO2 mol-1 ± 10% over 90% of operational time in one-minute averages). Because of 

these well-controlled CO2 concentrations (Hendrey et al., 1993), FACE can use open 

field conditions without creating the markedly different micro-environmental conditions 
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characteristic of enclosed or open-top chambers (Olszyk et al., 1980; McLeod et al., 

1985). Therefore this technique is an excellent tool to study responses to elevated CO2 at 

a number of different scales, from the leaf up to the ecosystem including potential 

feedbacks and interactions that may occur.  

The FACE system (Fig. 3a) consists of a circular array of vertical vent pipes 

connected to a toroidal plenum (30 m diameter) through which CO2 enriched air is 

released. Each vent pipe is individually controlled via a pneumatically actuated quarter-

turn ball valve, which is activated depending on the wind direction (only upwind 

directions are opened, Fig. 3b). Liquid CO2, stored in an on-site tank, is vaporized via a 

heat-exchange element and transported to each FACE plot after the gas pressure has been 

decreased. A fan is used to run ambient air through the plenum torus and out the vent 

pipes. Where CO2 treatment is applied, this air is mixed with pure CO2 carefully 

controlled by an algorithm that includes terms for wind speed and current CO2 

concentration in the center of the plot. The CO2 concentration within each plot is 

controlled by drawn air samples from the center of the plot to an infra-red gas analyzer 

feeding back to the CO2 control algorithm. Higher wind speeds decrease the variance 

around the target concentration whereas poorest control occurs at low wind velocities 

(<0.4 m/s) (Hendrey et al., 1993). Basically, within each FACE plot, there is about 380 

m2 of space with optimal [CO2] control where experiments can be conducted (Hendrey et 

al., 1993; Hendrey et al., 1999). 

 

1.6. General research approach 
 

1.6.1. Measurement protocol 

 
Leaf samples were collected from each replicated treatment of CO2 x N level. All 

gas exchange measurements were conducted in the form of CO2 response curves with a 

portable infrared gas analyzer (Li-Cor 6400, Li-Cor Inc., Lincoln, NE) using the 

following conditions: saturating light of 1800 μmol m-2 s-1, constant air flow and 

temperature controlled at 28-30°C. The different CO2 levels used for each curve were 60, 

150, 230, 295, ambient (365), elevated (565), 900 and 1500 μmol CO2 mol-1. These 
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levels were selected to maximize the accuracy of calculations from the Farquhar 

photosynthesis model (Farquhar et al. 1980). Farquhar et al. (1980) proposed that net leaf 

photosynthesis, An, could be modelled as the minimum of two limiting rates: 

 An = min (Ac, Aj) - Rd  

Ac is the rate of photosynthesis when Rubisco activity is limiting and Aj the rate when 

RuBP-regeneration is limiting. Rd is the rate of mitochondrial respiration. Rubisco-

limited photosynthesis is given by 

 Ac = Vcmax (Ci - Γ*) / (Ci + Kc (1 + Oi/Ko)) 

where Vcmax is the maximum rate of Rubisco activity, Ci and Oi are the intercellular 

concentrations of CO2 and O2, respectively, Kc and Ko are the Michaelis-Menten 

coefficients of Rubisco activity for CO2 and O2, respectively, and Γ* is the photosynthetic 

CO2 compensation point without mitochondrial respiration contributions. The rate of 

photosynthesis when RuBP regeneration is limiting is given by 

 Aj = Jmax / 4  (Ci - Γ*) / (Ci + 2Γ*) 

where Jmax is the rate of maximal electron transport. Via this model, several variables 

among which the Vcmax from the linear part of the CO2 response curve (Fig. 1; orange 

line) and Jmax from the saturating part of the CO2 response curve (Fig. 1; green line) are 

calculated independently (Farquhar et al., 1980b). The model was fit to the data using 

specialized software (Crous and Ellsworth (2004). 

Each measured leaf and additional leaves from the same plant were sampled for 

elemental C and N analysis. Segments of a known area were cut from the leaf and put in 

the drying oven (70°C), after which they were weighed. The leaf mass per area (LMA) 

was calculated by taking the ratio of mass to the area of the leaf. Leaves on which gas 

exchange measurements were performed were dried and ground to a fine homogenous 

powder. A subsample of 6-8 mg was combusted in an elemental gas analyzer (EA Flash 

Carlo-Erba, Milan, Italy) for total C and N content in the leaf. These basic measurements 

allow me to assess photosynthetic relationships as a function of total N.  
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1.6.2. Statistical approach  

 
Two main modes of statistical analysis were employed here. A first analysis 

employed regression techniques to determine differences between CO2 treatments in the 

relationships of photosynthetic components (electron transport capacity and 

carboxylation capacity) as a function of total leaf N between treatments. Standard 

assumptions such as normally distributed residuals and equal variance were checked via 

box plots and histograms, and residual plots were consulted. To evaluate treatment effects 

on slopes and intercepts of the relationships, such as elevated CO2 effects and N-

fertilization effects, I included dummy variable(s) as factors in the linear regression 

model (see first data chapter for more details, section 2.3.2.). 

The second major analysis technique was Analysis of Variance (ANOVA) to 

determine the effects of global change factors incorporated in the designed experiments 

described above. Separate ANOVA were conducted for each site because of inherent site 

differences such as length of growing season, climate and soil texture. Ratios such as 

Jmax/Vcmax and the fraction of N in Rubisco or other subprocesses were transformed prior 

to analysis to conform to the assumption of normally distributed data.  

 

1.6.3. Modeling 

 
In order to understand the implications of changes in leaf N partitioning on 

estimated whole-canopy CO2 exchange with the atmosphere, I modeled canopy CO2 

exchange for a simplified system using the grass canopy at BioCON, avoiding the 

complexity of clumping that occurs in a pine canopy (Law et al., 2001). The canopy is 

divided into two layers, which correspond to the sunlit and shaded portions of the canopy. 

The plant height of the herbaceous vegetation facilitates two-layer measurements of light 

and nitrogen in the canopy rather than a full gradient through a tall canopy because there 

are no intermediates between the sun and shade leaves.  

I used a physiological model that relied on these two leaf classes (sunlit and 

shaded) and a light submodel to calculate gross canopy photosynthesis as a function of 

summed leaf canopy N (see Appendix A of Medlyn et al., 2000). The model includes a 

mechanistic regulation of photosynthesis via the Farquhar photosynthesis model 



 

 25

(Farquhar et al., 1980) and parameterizations of N partitioning to photosynthetic capacity 

using Vcmax-N and Jmax-N relationships. While there may be minor disadvantages of this 

approach due to simplification and minimal meteorological information for the site, the 

model should be robust because it will reflect accurately the different foliage classes and 

the radiation incident upon them (Medlyn et al., 2000). 

To assess CO2 effects on canopy photosynthesis, I modeled canopy 

photosynthesis and N partitioning according to two ‘what-if’ scenarios: 1) what happens 

if the N content is reduced but not the Vcmax or Jmax and 2) what happens if Vcmax or Jmax 

are reduced but not N content in the canopy? These two scenarios follow straight from 

the leaf-level measurements and leaf chemistry and allow me to assess whether changes 

in N partitioning among photosynthetic components at the leaf-level can be expected to 

affect CO2 assimilation of the whole canopy and to what magnitude. Therefore, the 

model is directly consistent with most of my measurements and is appropriate for scaling 

those results to understand whole-canopy processes (See section 4.3 for more details). 
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Chapter 2 
 

Elevated CO2 concentration affects leaf photosynthesis-
nitrogen relationships in Pinus taeda over nine years in 

Free-Air CO2 Enrichment (FACE)  
 
 

2.1. Summary 
 
Carbon dioxide-induced enhancements of leaf net photosynthesis may be reduced when 

trees are grown in infertile soils. To understand if long-term elevated CO2 concentration 

causes declines in photosynthetic enhancement and leaf nitrogen, I measured 

photosynthesis, carboxylation capacity and leaf nitrogen concentration on an area basis 

(Narea) in needles in the canopy of Pinus taeda under long-term Free-air CO2 enrichment 

(FACE) at a nitrogen-limited site.  We also determined how the underlying components 

governing net photosynthesis such as rates of carboxylation (Vcmax) and electron transport 

(Jmax) varied with leaf Narea under elevated CO2 in Pinus taeda. The slope of the 

relationship between leaf photosynthetic capacity (Anet-Ca) and leaf Narea in one-year-old 

needles was significantly reduced by 37% after five to nine years of elevated CO2 

exposure, whereas current-year needles were unaffected in this regard. There was 

evidence for decreases in relationships between both Vcmax and Jmax as a function of leaf 

Narea in one-year old needles after up to nine years of growth in long-term elevated CO2. 

These decreases were associated with a 15% reduction in nitrogen allocation to the 

carboxylating enzyme with long-term CO2 exposure. Nitrogen fertilization (110 kg N   

ha-1) in the ninth year of elevated CO2 restored Vcmax-Narea as well as Jmax-Narea 

relationships to levels indistinguishable from control trees. The ratio of Jmax:Vcmax is 

highly conserved with environmental manipulations such as long-term elevated CO2 or 

fertilization. Fundamental relationships between photosynthesis or its component 
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processes with leaf Narea may be altered in aging pine needles after >5 years of exposure 

to elevated atmospheric CO2.  We conclude that photosynthetic down-regulation in one-

year old pine foliage in elevated CO2 was mainly driven by reductions in apparent 

nitrogen allocation toward active Rubisco enzyme. This suggests that changes in the 

apparent allocation of nitrogen to photosynthetic components may be an important 

adjustment in pines on low-fertility sites in elevated CO2.  

 

2.2. Introduction 
 

 Forests store large amounts of CO2 from the atmosphere, with feedback effects on 

atmospheric CO2 concentrations (Dixon et al., 1994; Barford et al., 2001). Because 

atmospheric CO2 concentrations have been steadily rising by nearly 2 μmol mol-1 year-1 

in the last decade (Keeling & Whorf, 2005), there is a strong need to understand how CO2 

enrichment affects photosynthetic processes driving C storage. Given the abundance of 

pines (i.e. Pinus spp.) worldwide, understanding how pine species will respond to 

atmospheric CO2 enrichment can be important in developing policy and management 

practices such as afforestation aimed at C sequestration (House et al., 2003). There have 

been numerous studies addressing the photosynthetic responses of various coniferous 

species to elevated atmospheric CO2 concentrations over the past decade (Wang et al., 

1996; Jach & Ceulemans, 2000; Ellsworth et al., 2004; Handa et al., 2005) and reviews 

on elevated [CO2] responses of trees (e.g.,(Curtis & Wang, 1998; Nowak et al., 2004; 

Ainsworth & Long, 2005). However, the sustainability of coniferous forest sinks for 

atmospheric CO2 over the next century remains uncertain (White et al., 2000; Oren et al., 

2001). To understand this sustainability, experimental elevated CO2 exposures of trees 

have increased in scale from single branches (Teskey, 1997) to entire trees (Maier et al. 

1998) to stands and ecosystems (Crous & Ellsworth, 2004; Körner et al., 2005; Liberloo 

et al., 2007), and have increased in duration from a single year up to a decade of 

continuous exposure to CO2 enrichment, as in this study.  

 I report on effects of long-term elevated CO2 exposure on photosynthetic capacity in 

the longest running forest Free-Air CO2 Enrichment experiment to date, conducted in a 

pine forest ecosystem (Hendrey et al., 1999; Oren et al., 2001).  It is well-known that 
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early enhancement effects of elevated atmospheric [CO2] on leaf photosynthesis may not 

necessarily be sustained over time (Sage, 1994; Poorter & Pérez-Soba, 2001; Rogers & 

Ellsworth, 2002). The lack of sustained photosynthetic enhancement in ecosystems under 

elevated [CO2] is especially apparent in low-nutrient sites (Oren et al., 2001; Norby et al., 

2005; Reich et al., 2006a), and is strongly related to the availability and root exploitation 

of limiting nutrients such as nitrogen (Zak et al., 2000; Oren et al., 2001; Finzi et al., 

2002; Luo et al., 2004). As such, it would be expected that additions of nitrogen to a 

nitrogen-limited system could be expected to lead to recovery of initial, high CO2 

enhancement of photosynthesis and also growth (Oren et al,. 2001; Finzi et al., 2006). 

 Conifer species such as pines naturally occur on strongly N-limited soils (Aerts & 

Chapin, 2000), resulting in low productivity and growth rates relative to the amount of 

nitrogen invested in photosynthetic components. The evergreen habit of pines is 

considered to increase the efficiency of nutrient-use by maintaining photosynthetic 

activity over longer foliage lifetimes (Reich et al., 1992). Because of the high proportion 

of old foliage in pines and its importance to sustain photosynthetic nitrogen-use 

efficiency over several years, photosynthetic activity in one-year-old needles may also 

serve to maintain photosynthetic and growth enhancement in elevated [CO2] (Finzi et al., 

2002; Norby et al., 2005; Finzi et al., 2006).  

 Elevated [CO2] has the potential to decrease photosynthetic nitrogen-use efficiency 

(PNUE) via reduced photosynthetic capacity in aging foliage. Because photosynthesis 

serves as the first major coupling point between canopy carbon and nitrogen cycles, 

understanding effects of long-term CO2 enrichment on the well-known photosynthesis-

nitrogen relationship are critical (Peterson et al., 1999b). A decrease in PNUE due to 

reduced photosynthetic capacity in elevated [CO2] could result in a weaker relationship 

between photosynthesis and leaf nitrogen. Thus, the interaction between nitrogen 

availability and plant productivity in conditions of elevated atmospheric [CO2] has the 

potential to affect the fundamental relationship between photosynthesis and nitrogen 

within forest canopies (Reich et al., 2006b). The nutrient-poor Piedmont plateau of 

central NC, USA in which the experiment is located is an ideal system for exploring how 

nitrogen availability affects plant responses in elevated [CO2]. 
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 Given questions about the effect of elevated [CO2] on the photosynthesis-nitrogen 

relationship and the ability of trees under low nutrient availability to sustain enhanced 

growth rates in high [CO2] over time periods longer than a few years (Poorter, 1998; 

Oren et al., 2001; Norby & Iversen, 2006), I examined the response of P. taeda foliage to 

elevated CO2 exposure for up to nine growing seasons in the Duke Forest FACE facility. 

In contrast to earlier work (Crous & Ellsworth, 2004), here I report on a long-term dataset 

with nine years of elevated CO2 exposure, and focus on how fundamental photosynthetic 

metabolism as a function of leaf nitrogen is affected in elevated atmospheric [CO2] in 

combination with fertilization. My present objectives were 1) to quantify functional 

relationships of photosynthetic capacity and leaf nitrogen in ambient and elevated [CO2], 

2) to examine if and how these relationships are affected in one-year old mature P. taeda 

needles exposed to long-term elevated [CO2] on a low-nutrient site, and 3) to understand 

how increased nitrogen availability may affect the response to long-term elevated CO2 in 

aging foliage.  

 

2.3. Methods 
 

The measurements were conducted at the Duke Forest FACE facility (35° 58.6’ 

N, 70° 05.6’ W) in the North Carolina piedmont plateau, which has been described in 

detail elsewhere (Ellsworth, 1999; Hendrey et al., 1999; Schäfer, KVR et al., 2003). 

Briefly, the growing season in the vicinity of Duke Forest is from early March to mid-

October with mean annual temperature of 15.5°C and mean annual precipitation of 1154 

mm. Loblolly pine (P. taeda) forests generally occur on acidic, nutrient-poor soils in the 

region which are considered to be N-limited (Oren et al., 2001). Since August 1996, 

planted pine trees have been exposed to elevated [CO2] via the Free-Air CO2 Enrichment 

(FACE) technique (Hendrey et al., 1999). The Duke forest FACE experiment consists of 

six 30-m diameter plots, with 3 replicates at ambient CO2 and 3 replicates at an elevated 

CO2 target [CO2] of ambient +200 μmol CO2 mol-1. Daytime exposure to elevated 

atmospheric [CO2] was nearly continuous throughout the year except when temperatures 

were less than 5oC or windspeeds were greater than 6 m s-1, which together represented < 

5% of the possible running time. In each plot, canopy access was gained by upright 
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personal platform lifts (UL48, Upright, Charlotte, NC) or a walk-up tower in the center of 

each plot.  

To examine potential interactions of plant responses to both enhanced carbon and 

enhanced nitrogen supply, plots were divided in half using a two meter deep root barrier 

and half the plot was fertilized with NH4NO3 (ammonium nitrate) in March 2005. The 

rate of fertilization was 110 kg N ha-1 yr-1 compared to the ambient nitrogen 

mineralization rates at the site of about 30 kg N ha-1 yr-1 (Matamala & Schlesinger, 2000; 

Finzi et al., 2002) and a background nitrogen deposition of about 6.5 kg N ha-1 yr-1 (Oren 

et al. 2001). This fertilization rate is what is currently used in fertilized commercial 

stands of loblolly pines. I continued the same measurement protocol as described below 

when fertilization began, hence one or two of the designated measurement trees per plot 

were located in the sector that received nitrogen fertilizer. The fertilization treatment was 

analyzed only in the first year of nitrogen fertilization. 

 
2.3.1. Photosynthetic measurements 

 

To quantify photosynthetic performance in ambient and elevated CO2 

concentrations, net CO2 assimilation (Anet) of pine needles at different atmospheric CO2 

concentrations was measured in each treatment with a Li-Cor 6400 (Licor Inc., Lincoln, 

NE) portable photosynthesis system. Measurements were made on leaves at the top of the 

canopy crown (upper locations; > 90% of total tree height) and the lowest living branch 

of the canopy (lower locations) as described previously in Crous and Ellsworth (2004). 

Given the importance of the one-year old needles to year-round photosynthesis 

(Ellsworth, 2000; Schäfer et al., 2003), one-year old needles were measured in both early 

and late summer, while current-year needles were only sufficiently developed to measure 

alongside one-year old needles in late summer. Within each plot, two to three candidate 

trees were chosen to be measured. Leaves were carefully positioned into the leaf chamber 

where they were exposed to a saturating quantum flux density of 1800 μmol m-2 s-1, 

similar to full sunlight conditions at the site. Leaf temperatures were controlled at 28°C in 

early summer and 30°C in late summer, reflecting prevailing temperatures at these times 
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of year. Measurements were made between the second growing season (1998) and the 

ninth growing season (2005) of elevated CO2 exposure in the experiment, inclusive. 

At least seven [CO2] levels were used in the stepwise photosynthetic CO2 

response curve, including the ambient and elevated [CO2] that were the control and 

treatment targets in the experiment, respectively. Hence, net CO2 assimilation of all 

needles was measured at a common [CO2] of 365 μmol mol-1, which I refer to as Anet-Ca. 

The net CO2 assimilation rate of trees grown in an ambient or elevated CO2 atmosphere 

was analyzed by comparing Anet measured at the appropriate [CO2] corresponding to the 

treatment target [CO2]. Thus, treatment comparisons of Anet represent the overall response 

to increased atmospheric [CO2], whereas Anet-Ca represents photosynthetic capacity at a 

common [CO2] for trees grown in ambient and elevated CO2 concentrations. The 

photosynthetic relationships in this study are reported on a needle surface area basis (all-

sided). 

After measuring each CO2 response curve, needles were removed and stored at 

0°C and later analyzed for surface area and dry mass as described previously (Crous and 

Ellsworth 2004). Homogenized subsamples of dried and ground needle tissue were 

analyzed for nitrogen concentration with an NA-1500 elemental analyzer (Carlo-Erba, 

Milan, Italy).  

 

2.3.2. Statistical analyses  

 

The dataset comprises over 310 photosynthetic CO2 response curves taken from 

1998-2005, the second through the ninth full season of elevated CO2 exposure in FACE. 

Data for this study were collected by D.S. Ellsworth during the first five years of CO2 

exposure, data in years six to nine were collected by K.Y. Crous. In order to assess the 

response of pines to long-term elevated CO2 exposure, and potentially elucidate the role 

of nitrogen in this response, I focused my analysis on the relationship between leaf 

photosynthesis and leaf Narea. This relationship has been hypothesized to be general (Field 

& Mooney, 1986a; Reich et al., 1997) and any potential changes in this relationship 

identified in separate-slopes analysis in regression could be considered robust and hence 

useful in modeling photosynthesis on the basis of leaf nitrogen (Ollinger et al., 2002). 



 

 43

The Narea of leaves at upper and lower canopy represent the nitrogen range throughout the 

canopy crown, which is used to examine photosynthesis-nitrogen relationships.  

I fit the model of Farquhar et al. (1980) to the photosynthetic CO2 response curve 

data as described by Ellsworth et al. (2004), using the temperature parameters in (Medlyn 

et al., 2002) and (Bernacchi et al., 2001). From this, I could analyze long-term trends in 

Vcmax, the maximum carboxylation capacity of leaves, and Jmax, the maximum electron 

transport rate of leaves, as key biochemical components driving Anet (Farquhar et al., 

1980; Niinemets & Tenhunen, 1997). This was expected to provide insight into the 

specific components of the photosynthetic apparatus that were responsive to long-term 

elevated CO2 exposure (Rogers & Ellsworth, 2002). To minimize artifacts of the fitting 

procedure for Vcmax and Jmax in the data, I removed data with apparent problems such as a 

leaky chamber (Pons & Welschen, 2002), e.g., day respiration > 1.5 mmol m-2 s-1), low 

stomatal conductance (stomatal conductance < 3 mmol m-2 s-1 during measurements), or 

failure to meet nutrient analysis standards using blind pine standards (National Institute 

of Standards and Technology, Boulder, CO USA). Less than 10% of the dataset failed 

these criteria. I predicted the fraction of nitrogen allocated to active-state Rubisco (fNrub) 

as described previously (Niinemets & Tenhunen, 1997). This assumes that all of the 

activated Rubisco participates in carboxylation, and is an estimate of the nitrogen-use 

efficiency for carboxylation in the absence of mesophyll diffusional limitations. 

All statistical analyses were performed with JMP (version 5, SAS Institute, Cary 

NC USA). Least-squares linear regression was used for statistical analyses because there 

is a strong precedent for linear leaf photosynthesis-nitrogen relationships, and because 

differences in regression relationships between leaf Narea and biochemical parameters 

underlying photosynthesis (Vcmax, Jmax) could provide basic insights into photosynthetic 

biochemistry. A series of linear regressions were conducted to determine relationships 

between Vcmax, Jmax, and leaf nitrogen concentration per unit area (Narea) with respect to 

CO2 treatment, needle age, and time in the experiment. Based on previous work by Crous 

and Ellsworth (2004), analyses focused on one-year old needles in the canopy.  

To test the effect of the duration of elevated CO2 treatment on photosynthetic 

parameters in one-year old needles, the dataset was divided into three periods: an early 

period, e.g. the second and third years of complete elevated [CO2]; a middle period, e.g. 
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the fifth to seventh year of elevated [CO2]; and a late period, e.g. near the end of the 

experiment with eight to nine years of cumulative elevated [CO2]. The results were not 

sensitive to varying these year-groupings by inclusion or removal of a year so long as the 

sample size was not unduly restricted. Differences in slope between each CO2 treatment 

or each fertilization treatment were tested via a dummy variable representing the 

interaction term between the independent (Narea) and [CO2] in the regression analyses.  

 

2.4. Results 
 

After almost ten years of elevated CO2 exposure, Anet was still stimulated in 

elevated CO2 compared to ambient CO2 in both current-year (Fig. 4a) and one-year-old 

needles (Fig. 4b) across a two-fold range in leaf Narea. Photosynthetic enhancement in 

elevated CO2 was characterized by an increase in the intercept of the Anet versus Narea 

relationship for both current- and one-year old needles (Fig. 4a-b). In addition to a 

difference in x-intercept, there was a significant increase in slope of Anet versus Narea for 

current-year needles in elevated CO2 (Table 1, Fig. 4a-b). For the ambient [CO2], the Anet 

versus Narea relationship between needle age classes had similar slopes and intercepts (P > 

0.1, Table 1). In contrast, for the elevated [CO2] one-year old needles had lower slopes of 

Anet as a function of Narea than current-year needles (P = 0.003, Fig. 4a-b). To illustrate 

the magnitude of this [CO2] effect, at a standardized mean Narea of 0.9 g m-2, enhancement 

averaged +68 ± 6% (mean ± 95% confidence interval) for  current-year needles and only 

40 ± 3% for one-year-old needles. 

The effect of elevated CO2 on Anet (Fig. 4a-b) is the result of a combination of 

direct CO2 stimulation of photosynthesis and offsetting reductions in photosynthetic 

capacity from enzyme down-regulation. In turn, changes in photosynthetic capacity could 

be due to changes in leaf Narea, changes in capacity per leaf Narea, or both. Changes in 

capacity can be estimated by changes in photosynthetic capacity for leaves developed in 

elevated vs. ambient CO2 but measured at a common ambient [CO2] of 365 μmol mol-1 

(Anet-Ca). Significantly lower intercepts of Anet-Ca as a function of Narea (Table 1) indicate 

that growth in elevated [CO2] diminished photosynthetic capacity for one-year-old 

foliage (Fig. 4c,d). In addition, a nearly-significant difference in slopes (P = 0.058, Table 
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1) for one-year old foliage suggests that elevated CO2-induced reductions in Anet-Ca are 

greater at higher Narea. Leaf Narea did not vary with treatment [CO2] for any of the periods 

examined (Table 2; P > 0.10). In combination, these results indicate that elevated CO2 

decreased photosynthetic capacity due to decreased photosynthesis per unit Narea rather 

than decreased leaf Narea. 

 

Figure 4: Relationships of photosynthesis in current growth conditions (Anet) (top panels) 
and photosynthesis at a common CO2 (Anet-Ca) (bottom panels) with leaf nitrogen 
concentration on an area basis (Narea). The left panels represent the relationship for 
current-year foliage (squares) whereas the right panels represent the relationships for one-
year old foliage (circles; 1-yr) in ambient (open symbols) and elevated (filled symbols) 
[CO2] across the fifth to ninth growing seasons of elevated [CO2] exposure in unfertilized 
conditions. Differences in slope between CO2 treatments are indicated as Pslope * for P ≤ 
0.10 and Pslope ** for P ≤ 0.05. Regression equations and statistics are in Table 1. 
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Table 1: Linear regression statistics for relationships between photosynthetic variables and leaf Narea in P. taeda across different time 
frames of the experiment with different CO2 treatments. The variables used to describe the relationships and equations are the 
photosynthesis measured at the [CO2] target for long-term growth (Anet, μmol m-2 s-1), photosynthesis at a common [CO2] level (Anet-Ca, 
μmol m-2 s-1), maximal carboxylation rate (Vcmax, μmol m-2 s-1), maximal electron transport rate (Jmax, μmol m-2 s-1), and leaf nitrogen 
content expressed on an area basis (Narea, g N m-2). Significance levels for individual regression relationships are ns when not 
significant, ** for P < 0.05, *** for P < 0.001. Differences in intercept and slope between CO2 treatments (Ambient vs. Elevated) within 
years of the experiment (Yrs) and age class are indicated in the appropriate columns. Fig. shows the numbered Figure where the 
relationships are displayed. 



 

 

47

Table 1: Linear regression statistics for relationships between photosynthetic variables and leaf Narea in P. taeda across different time 
frames of the experiment with different CO2 treatments. 

 
Relationship [CO2]  

Treat 
N 
Treat  

Age Class Yrs Equation R2 [CO2] effect 
on intercept 

[CO2] 
effect on 
slope 

Fig. 

Anet-Narea Ambient Amb N Current-year 5-9 Anet = 0.55 + 5.05*Narea 0.60*** 4
 Elevated Amb N Current-year 5-9 Anet = 1.13 + 8.28*Narea 0.57*** <0.0001 0.048 4
 Ambient Amb N One-year old 5-9 Anet = 0.87 + 4.21*Narea 0.58*** 4
 Elevated Amb N One-year old 5-9 Anet = 3.04 + 3.87 *Narea 0.58*** <0.0001 0.68 4
       
Anet-Ca-Narea Ambient Amb N Current-year 5-9 Anet-Ca = 0.55 + 5.05*Narea 0.60*** 4
 Elevated Amb N Current-year 5-9 Anet-Ca = 0.76 + 5.65*Narea 0.51*** 0.022 0.69 4
 Ambient Amb N One-year old 5-9 Anet-Ca = 0.87 + 4.21*Narea 0.58*** 4
 Elevated Amb N One-year old 5-9 Anet-Ca = 1.74 + 2.66*Narea 0.59*** 0.0001 0.058 4
       
Vcmax-Narea Ambient Amb N One-year old 2-3 Vcmax = 21.11 + 13.49*Narea 0.18ns 5
 Elevated Amb N One-year old 2-3 Vcmax = 11.05 + 17.15*Narea 0.30ns -- -- 5
 Ambient Amb N One-year old 5-7 Vcmax =12.76 + 15.99*Narea 0.31**  5
 Elevated Amb N One-year old 5-7 Vcmax =14.24 + 12.25*Narea 0.44*** 0.10 0.57 5
 Ambient Amb N One-year old 8-9 Vcmax = 5.61 + 27.06*Narea 0.52*** 5
 Elevated Amb N One-year old 8-9 Vcmax =16.67 + 9.81*Narea 0.22**  0.0003 0.028 5
       
Jmax-Narea Ambient Amb N One-year old 2-3 Jmax = 40.40 + 26.61*Narea 0.11ns 5
 Elevated Amb N One-year old 2-3 Jmax = 31.71 + 25.05*Narea 0.45ns -- -- 5
 Ambient Amb N One-year old 5-7 Jmax = 17.49 + 39.37*Narea 0.43*** 5
 Elevated Amb N One-year old 5-7 Jmax = 33.75 + 19.60*Narea 0.40*** 0.18 0.11 5
 Ambient Amb N One-year old 8-9 Jmax = 17.57 + 39.77*Narea 0.70*** 5
 Elevated Amb N One-year old 8-9 Jmax = 32.48 + 19.25*Narea 0.30**  0.0055 0.044 5
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Figure 5: Relationships for the physiological parameters Vcmax (upper panels a-c) and 
Jmax (lower panels d-f) as a function of leaf nitrogen (Narea) by CO2 treatment in early 
(2nd and 3rd years of elevated CO2 treatment, left panels), middle (5th to 7th year of 
elevated CO2 treatment, middle panels) and late (8th to 9th year of CO2 treatment, right 
panels) time periods of the experiment in unfertilized, one-year old foliage. Open 
circles represent ambient [CO2], filled circles represent the elevated [CO2]. Significant 
differences in slopes between CO2 treatments are indicated as in Fig. 4. Regression 
equations and statistics are in Table 1. 
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periods (Fig. 7 and data not shown). Growth in elevated [CO2] did affect Vcmax-Narea 

and Jmax-Narea relationships. In general, compared to ambient CO2 needles, elevated 

CO2 needles tended toward lower Vcmax and Jmax at a given Narea.  Such differences 

were greater at greater needle Narea (e.g., slope term; Table 1) and with longer duration 

of CO2 exposure (Table 4, Fig. 5, Fig. 6). In the 8th and 9th years of the experiment 

this difference resulted in a 64% reduction in the Vcmax-Narea slope with elevated 

versus ambient CO2 and a 52% reduction in the Jmax-Narea slope (Fig. 6, Table 1).  

 

Table 2: Analysis of variance of predicted fraction of nitrogen allocated to Rubisco 
(fNrub) and total leaf nitrogen (Narea) for upper canopy pine foliage at the Duke FACE 
site over three different periods of years (Period) in the 9-year experiment. The early, 
middle and late periods of the experiment are defined in the Methods section. MS is 
mean square error, d.f. denotes degrees of freedom and N.S. denotes non-significant 
variables (P > 0.1).  
 

  fNrub Narea 
Source d.f. MS P-value MS P-value 
Ageclass 1 0.0236 <0.0001 0.32077 0.0036
CO2 Treatmentt 1 0.00044 N.S. 0.00280 N.S.
Period 2 0.0041 0.0332 0.06586 N.S.
Ageclass*Period 2 0.00079 N.S. 0.03452 N.S.
Ageclass*CO2 Treatment 1 0.0052 0.0036 0.00733 N.S.
Period *CO2 Treatment 2 0.0007 N.S. 0.06456 N.S.
Ageclass* Period *CO2 Treatment 2 0.0011 0.0866 0.04658 N.S.
Residual error 83 0.00032 - 0.03578 -
 

 

To further examine allocation to carboxylating capacity I calculated the 

fraction of leaf nitrogen apparently allocated to Rubisco (fNrub) from Vcmax and needle 

Narea (Ellsworth et al., 2004).  Apparent fNrub was significantly different between 

different foliage age classes (P < 0.0001, Table 2). However, there was also a 

significant needle age class × CO2 concentration interaction (P = 0.0036). Moreover, 

a weak 3-way interaction of needle age class × CO2 concentration × Period (P < 0.09, 

Table 2) indicated lower fNrub in one-year-old needles under elevated [CO2] in years 

5-9 of the elevated [CO2] treatment, consistent with the reduction in the Vcmax-Narea 

slope observed in the later years of the experiment (Fig. 5c, Fig. 6a). The apparent 

fNrub in one-year old foliage in the upper crown of mature P. taeda trees declined 15% 

in elevated [CO2], from 10.3 ± 0.6 (mean ± s.e.) to 8.7 ± 0.5 with eight to nine years 

of elevated [CO2] in FACE.  
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Figure 6: Slope values with estimated standard errors over duration of CO2 exposure 
defined as early in the experiment (2nd and 3rd year of elevated [CO2]), middle (5th to 
7th years of elevated [CO2]) and late (8th and 9th years of elevated [CO2]). Black bars 
represent elevated atmospheric [CO2] and white bars represent ambient [CO2]. There 
is a clear decline of slope values over time in elevated [CO2] but not in ambient [CO2] 
in both the Vcmax-Narea (a) and Jmax-Narea (b) relationships. The exposure [CO2] 
difference in slopes is significant (P≤ 0.05) in the 8th and 9th years of elevated [CO2], 
indicated via the asterices.  
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Figure 7: Relationship of maximal carboxylation rate (Vcmax, a) and maximal electron 
transport rate (Jmax, b) as a function of Narea across the fifth to ninth year of elevated CO2 
exposure for unfertilized one-year old foliage (amb N) between CO2 treatments (circles) 
and for fertilized one-year old leaves (+N) across CO2 treatments only (triangles). 
Fertilization was done in the ninth year of the CO2 treatment only. Open symbols 
represent ambient CO2 conditions, filled symbols represent elevated CO2 conditions. 
There was no difference in slope between ambient and elevated [CO2] for fertilized leaves 
in the ninth year of elevated CO2 exposure. Relationship equations and statistics are as 
follows: For Ambient CO2, Amb N (solid blue line): Vcmax = 8.45 + 22.29*Narea, R2 = 
0.40, P < 0.0001; Jmax = 17.41 + 39.73*Narea, R2 = 0.53, P < 0.0001. For Elevated CO2, 
Amb N (solid red line): Vcmax = 15.57 + 10.91*Narea, R2 = 0.30, P = 0.0002; Jmax = 33.31 + 
19.23*Narea, R2 = 0.33, P = 0.0001. Relationships in ambient and elevated CO2 were 
similar in fertilized leaves and were pooled together. For both [CO2], +N (dashed green 
line): Vcmax = 7.86 + 24.40*Narea, R2 = 0.52, P = 0.0002; Jmax = 27.43 + 31.73*Narea, R2 = 
0.50, P = 0.0007. The relationships for fertilized trees are not significantly different from 
that of Ambient CO2, Amb N trees (P > 0.10). 
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For all three measures of photosynthetic and biochemical capacity in one-year 

needles (e.g., Anet-Ca, Vcmax, and Jmax) the depression in the slopes of their relationships 

with Narea after long term exposure to elevated CO2 (Table 1) was completely 

ameliorated by nitrogen fertilization (Fig. 7). Measurements from fertilized needles 

from both ambient and elevated [CO2] had similar slopes (P > 0.1, Fig. 7 and data not 

shown). Slopes of both the Vcmax-Narea and Jmax-Narea relationships in one-year old 

needles grown in elevated [CO2] with nitrogen fertilization recovered to values 

similar to those measured in ambient CO2 conditions (green dashed line versus solid 

blue line, Fig. 7).  
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Figure 8: Relationship between Jmax and Vcmax in ambient [CO2] (open symbols) and 
elevated [CO2] (filled symbols) for unfertilized (Amb N) and fertilized (+N) one-year 
old foliage across 2001-2005. Fertilized leaves (+N, triangles) represent only the ninth 
growing season of elevated CO2 exposure. Relationship equations and statistics are as 
follows: For one-year old needles, Ambient CO2, Amb N: Jmax = 1.82* Vcmax, P < 
0.0001; Elevated CO2, Amb N: Jmax = 1.95* Vcmax, P < 0.0001; Ambient CO2, +N: 
Jmax = 1.83* Vcmax, P < 0.0001; Elevated CO2, +N: Jmax = 1.76* Vcmax, P < 0.0001. All 
one-year old needles together: Jmax = 1.86* Vcmax, P < 0.0001. 

 

The ratio of Jmax to Vcmax was remarkably constant over time and between 

elevated CO2 and CO2 × N fertilization treatments. There was no difference in the 

slope of Jmax-Vcmax relationship after nine years of elevated CO2 exposure in one-year 

old needles (Fig. 8) and in current-year needles (data not shown) across fifth to ninth 
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growing season of elevated CO2 exposure. There was also no evidence of an effect of 

nitrogen fertilization on the Jmax:Vcmax ratio (Fig. 8). 

 

2.5. Discussion 
 

I found evidence for photosynthetic down-regulation in aging pine foliage of 

P. taeda with nine years of elevated CO2 (Fig. 4). These findings support previous 

results from the Duke FACE experiment by Rogers and Ellsworth (2002) and Crous 

and Ellsworth (2004), and are consistent with results from other conifers exposed to 

elevated CO2 (Turnbull et al., 1998; Tissue et al., 1999; Jach & Ceulemans, 2000). 

Contrary to what was previously thought, the observed down-regulation in aging 

needles was not due to changes in leaf Narea, because the overall Vcmax-Narea and Jmax- 

Narea relationships were affected via reduced steepness in the slopes (Tables 1, 2), 

suggesting N allocated awas from photosynthetic components in one-year-old foliage. 

Moreover, the relationship between Anet-Ca and leaf Narea, another measure of 

photosynthetic capacity, was similarly affected (Fig. 4d). The decreases in Vcmax-Narea 

slopes in one-year needles with elevated CO2 became more pronounced over time (23 

to 64% reduction in slope) resulting in a statistically significant CO2 effect on one-

year old needles late in the experiment (Fig. 5, Fig. 6, Table 1). As elevated CO2 

exposure continued, changes in slope steepness suggest significant down-regulation of 

Vcmax over time (Fig. 6), which is mirrored by similar down-regulation in Jmax. This 

resulted in a decrease in photosynthetic enhancement of 37% in one-year old needles 

in elevated CO2. Down-regulation in one-year-old needles can reduce tree 

productivity and hence C uptake from the atmosphere because one-year old needles 

contain the majority of the tree crown.  

Given of the magnitude of the positive x-intercepts of the Vcmax-Narea and Jmax- 

Narea relationships in one-year old needles (Table 1), the net effect of the relatively 

large CO2-induced changes in slope resulted in a smaller proportional decrease in 

photosynthetic capacity at a common [CO2] (e.g. about -14%; Fig. 4d). Because 

elevated CO2 effects were noticeable on one-year old needles but not current-year 

needles measured at the same time, it appears that needle age-related declines in 

photosynthetic capacity are enhanced by long-term elevated CO2 (Jach & Ceulemans, 
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2000; Rogers & Ellsworth, 2002; Crous & Ellsworth, 2004) rather than declines in 

leaf Narea. 

The CO2-induced change in form of the Vcmax-Narea relationship likely 

represents a reduction of nitrogen allocated to Rubisco (Table 2), and suggests that the 

nitrogen-use per unit carboxylation capacity is reduced in one-year old foliage. This 

reduction is compensated by the well-documented stimulation of carboxylation rates 

in elevated CO2 with suppression of photorespiration (Long et al., 2004, Rogers & 

Ainsworth 2007). Therefore the overall Anet enhancement by elevated CO2 of 40% in 

one-year old needles after eight to nine years of elevated CO2 exposure still results in 

increased photosynthetic nitrogen use-efficiency in elevated CO2. Given that new 

foliage represents a large nitrogen sink for the canopy, the inferred reductions in 

nitrogen allocated to photosynthetic capacity in one-year old needles may be a 

determinant of how much foliage can be supported in the P. taeda stand in elevated 

CO2 on these infertile soils (Finzi et al. 2002). 

In highly N-limited soils in which where many pine species are important, 

nitrogen reallocation from one-year old to current-year foliage occurs by mobilization 

of leaf soluble protein nitrogen (Fife & Nambiar, 1984; Cherbuy et al., 2001). 

Reallocation of nitrogen from old foliage to current-year foliage can provide a 

mechanism to supply nitrogen to growing foliage at branch apices and thus maximize 

whole plant carbon gain (Field, 1983; Hirose & Werger, 1987). I expected that the 

reduction in photosynthetic capacity in one-year old needles in elevated CO2 would be 

alleviated when nitrogen availability was increased (Farage et al., 1998). In my study, 

there was a large response to the nitrogen fertilization in the first year of application, 

even in needles that developed prior to fertilization. Nitrogen fertilization ameliorated 

the CO2-induced down-regulation effect on photosynthetic capacity in one-year-old 

foliage. This was shown as a recovery of the slope of both Vcmax- and Jmax-Narea 

relationships in fertilized conditions under elevated CO2 (Fig. 7). Given that the 

reduction in photosynthetic capacity in one-year old foliage resulted in a reduction in 

the apparent fraction of nitrogen in Rubisco (Table 2), the fertilization-induced 

increase in nitrogen-use efficiency is achieved by an increased nitrogen allocation to 

the photosynthetic apparatus with increased available nitrogen (Hikosaka & Hirose, 

1998; Poorter & Evans, 1998; Westbeek et al., 1999). A strong response to nitrogen 

fertilization suggests that there may have been N-limitations to growth via changes in 
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photosynthetic functioning in long-term elevated CO2 supporting earlier observations 

of reduced nitrogen mineralization in elevated CO2 (Finzi et al., 2006).  

Taken together, my results suggest changes in nitrogen allocation in response 

to environmental conditions with nitrogen allocated away from carboxylation and 

RUBP regeneration in long-term elevated CO2 (Fig. 6) while, in contrast, nitrogen 

fertilization induced nitrogen investment towards photosynthetic components (Fig. 7). 

Therefore, I speculate that nitrogen invested in the carboxylation enzyme may act as 

an indicator of the physiological nitrogen demand of plants.  

The ratio between Jmax and Vcmax was not affected by treatments of long-term 

elevated CO2 conditions or short-term fertilization treatments, suggesting strong 

coordination between photosynthetic components in elevated CO2. A conservative 

ratio of Jmax:Vcmax across treatments within one species in this study (Fig. 8) is 

consistent with patterns across many plant species (Medlyn, 1996; Leuning, 1997; 

Medlyn et al., 1999; Warren et al., 2003). In contrast, the meta-analysis from 

(Ainsworth & Rogers, 2007) shows that Vcmax was reduced in long-term elevated CO2 

by about twice that of Jmax. A constant Jmax:Vcmax ratio with environmental conditions 

that force adjustments in photosynthetic capacity such as shade (Kull & Niinemets, 

1998; Hikosaka, 2005), low nutrient availability (Ainsworth et al., 2003), and 

elevated CO2 (Medlyn, 1996; Midgley et al., 1999; Onoda et al., 2005) suggests that 

there may be coordination of the activity of different photosynthetic components 

(Reynolds et al., 1992; Chen et al., 1993; Medlyn, 1996). A constant Jmax:Vcmax ratio 

also suggests no nitrogen reallocation between photosynthetic components (Medlyn et 

al. 1999), which is supported in my results by a fairly equal magnitude of down-

regulation in carboxylation and electron transport components manifested by a  

similar reduction in slope in long-term elevated CO2 (Fig. 5c, f, Fig. 6). Coordination 

in different components of the photosynthetic apparatus is maintained via the 

allocation of nitrogen to avoid an imbalance between limitations by the ‘light-

dependent’ and ‘light-independent’ portions of the photosynthesis process (Chen et 

al., 1993). Insight into the reallocation of nitrogen and N-partitioning within the 

photosynthetic apparatus could elucidate the mechanism enabling plants to adjust to 

changing environmental conditions (Field et al., 1992; Onoda et al., 2004). 

 



 

 56

2.6. Conclusions 
 

After almost a decade of exposure to elevated [CO2] in FACE, photosynthesis 

of different needle age classes of P. taeda was still stimulated in elevated [CO2] 

compared to ambient [CO2]. However, reductions in photosynthetic capacity in aging 

needles in elevated [CO2] were evident in P. taeda. Strong reductions in the slope of 

the relationship between leaf photosynthetic capacity (Anet-Ca) and leaf Narea (by 40 ± 

3%) in one-year old needles with five to nine years of elevated CO2 exposure were 

evident, whereas no significant reduction was observed in current-year needles. I also 

found evidence for changes in Vcmax-Narea and Jmax-Narea relationships in one-year old 

needles after eight to nine years of elevated CO2, with slopes declining by about 50-

60%. Decreasing photosynthetic capacity, evident as reductions in the slope of Vcmax- 

and Jmax as a function of Narea, may suggest limited nitrogen pools for foliage growth 

at the Duke Face site after nearly a decade of elevated CO2 exposure. Because 

nitrogen fertilization caused the recovery of the slopes of these relationships in 

elevated [CO2] to those similar to ambient control trees, I attribute the elevated [CO2]-

induced reductions in photosynthetic capacity to reductions in the allocation of 

nitrogen to Rubisco and proteins involved in the electron transport process. Decreases 

in the allocation of nitrogen to photosynthetic processes may serve to increase mobile 

and available nitrogen for new foliage growth. Reallocation of nitrogen pools among 

foliage cohorts (e.g., from one-year-old to current-year foliage) could provide a 

mechanism for plant adjustments to environmental perturbations such as rising 

atmospheric [CO2] or increasing nitrogen availability.  

The relationships between leaf photosynthetic capacity, Vcmax, and Jmax all as a 

function of leaf Narea are widely used in scaling leaf responses to the canopy and for 

gaining insight into ecosystem-scale responses to elevated atmospheric [CO2] 

(McMurtrie & Wang, 1993; Friend et al., 1997; White et al., 2000). Including 

dynamic photosynthetic nitrogen allocation along with canopy nitrogen dynamics in 

pines may improve physiological process models in order to estimate future 

atmospheric CO2 concentrations and plant feedbacks to these CO2 concentrations.  



 

 57

2.7. References 
 
Aerts R, Chapin FS 2000. The mineral nutrition of wild plants revisited: A re-

evaluation of processes and patterns. Advances in Ecological Research, Vol 
30. San Diego: Academic Press Inc, 1-67. 

Ainsworth EA, Davey PA, Hymus GJ, Osborne CE, Rogers A, Blum H, 
Nosberger J, Long SE. 2003. Is stimulation of leaf photosynthesis by 
elevated carbon dioxide concentration maintained in the long term? A test 
with Lolium perenne grown for 10 years at two nitrogen fertilization levels 
under Free Air CO2 Enrichment (FACE). Plant Cell and Environment 26(5): 
705-714. 

Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 
enrichment (FACE)? A meta-analytic review of the responses of 
photosynthesis, canopy. New Phytologist 165(2): 351-371. 

Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal 
conductance to rising [CO2]: mechanisms and environmental interactions. 
Plant Cell and Environment 30(3): 258-270. 

Barford CC, Wofsy SC, Goulden ML, Munger JW, Pyle EH, Urbanski SP, 
Hutyra L, Saleska SR, Fitzjarrald D, Moore K. 2001. Factors controlling 
long- and short-Term sequestration of atmospheric CO2 in a mid-latitude 
forest. Science 294 (Nov). 

Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP. 2001. Improved 
temperature response functions for models of Rubisco-limited photosynthesis. 
Plant Cell and Environment 24(2): 253-259. 

Chen JL, Reynolds JF, Harley PC, Tenhunen JD. 1993. Coordination theory of 
leaf nitrogen distribution in a canopy. Oecologia 93(1): 63-69. 

Cherbuy B, Joffre R, Gillon D, Rambal S. 2001. Internal remobilization of 
carbohydrates, lipids, nitrogen and phosphorus in the Mediterranean evergreen 
oak Quercus ilex. Tree Physiology 21(1): 9-17. 

Crous KY, Ellsworth DS. 2004. Canopy position affects photosynthetic adjustments 
to long-term elevated CO2 concentration (FACE) in aging needles in a mature 
Pinus taeda forest. Tree Physiology 24(9): 961-970. 

Curtis PS, Wang XZ. 1998. A meta-analysis of elevated CO2 effects on woody plant 
mass, form, and physiology. Oecologia 113(3): 299-313. 

Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J. 
1994. Carbon pools and flux of forest ecosystems. Science 263(5144): 185-
190. 

Ellsworth DS. 1999. CO2 enrichment in a maturing pine forest: are CO2 exchange 
and water status in the canopy affected? Plant Cell and Environment 22(5): 
461-472. 

Ellsworth DS. 2000. Seasonal CO2 assimilation and stomatal limitations in a Pinus 
taeda canopy. Tree Physiology 20(7): 435-445. 

Ellsworth DS, Reich PB, Naumburg ES, Koch GW, Kubiske ME, Smith SD. 
2004. Photosynthesis, carboxylation and leaf nitrogen responses of 16 species 
to elevated pCO2 across four free-air CO2 enrichment experiments in forest, 
grassland and desert. Global Change Biology 10(12): 2121-2138. 

Farage PK, McKee IF, Long SP. 1998. Does a low nitrogen supply necessarily lead 
to acclimation of photosynthesis to elevated CO2? Plant Physiology 118(2): 
573-580. 



 

 58

Farquhar GD, Caemmerer SV, Berry JA. 1980. A biochemical model of 
photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1): 78-90. 

Field C. 1983. Allocating leaf nitrogen for the maximization of carbon gain - leaf age 
as a control on the allocation program. Oecologia 56(2-3): 341-347. 

Field CB, Chapin FS, Matson PA, Mooney HA. 1992. Responses of Terrestrial 
Ecosystems to the Changing Atmosphere - a Resource-Based Approach. 
Annual Review of Ecology and Systematics 23: 201-235. 

Field CB, Mooney HA 1986. The photosynthesis-nitrogen relationship in wild plants. 
In: T. J. Givnish ed. On the economy of plant form and function. Cambridge, 
MA.: Cambridge University Press, 25-55. 

Fife DN, Nambiar EKS. 1984. Movement of nutrients in radiata pine needles in 
relation to the growth of shoots. Annals of Botany 54(3): 303-314. 

Finzi AC, DeLucia EH, Hamilton JG, Richter DD, Schlesinger WH. 2002. The 
nitrogen budget of a pine forest under free air CO2 enrichment. Oecologia 
132(4): 567-578. 

Finzi AC, Moore DJP, DeLucia EH, Lichter J, Hofmockel KS, Jackson RB, Kim 
HS, Matamala R, McCarthy HR, Oren R, Pippen JS, Schlesinger WH. 
2006. Progressive nitrogen limitation of ecosystem processes under elevated 
CO2 in a warm-temperate forest. Ecology 87(1): 15-25. 

Friend AD, Stevens AK, Knox RG, Cannell MGR. 1997. A process-based, 
terrestrial biosphere model of ecosystem dynamics (Hybrid v3.0). Ecological 
Modelling 95(2-3): 249-287. 

Handa IT, Körner C, Hattenschwiler S. 2005. A test of the tree-line carbon 
limitation hypothesis by in situ CO2 enrichment and defoliation. Ecology 
86(5): 1288-1300. 

Hendrey GR, Ellsworth DS, Lewin KF, Nagy J. 1999. A free-air enrichment 
system for exposing tall forest vegetation to elevated atmospheric CO2. Global 
Change Biology 5(3): 293-309. 

Hikosaka K. 2005. Nitrogen partitioning in the photosynthetic apparatus of Plantago 
asiatica leaves grown under different temperature and light conditions: 
Similarities and differences between temperature and light acclimation. Plant 
and Cell Physiology 46(8): 1283-1290. 

Hikosaka K, Hirose T. 1998. Leaf and canopy photosynthesis of C3 plants at 
elevated CO2 in relation to optimal partitioning of nitrogen among 
photosynthetic components: theoretical prediction. Ecological Modelling 106: 
247-259. 

Hirose T, Werger MJA. 1987. Maximizing daily canopy photosynthesis with respect 
to the leaf nitrogen allocation pattern in the canopy. Oecologia 72(4): 520-
526. 

House JI, Prentice IC, Ramankutty N, Houghton RA, Heimann M. 2003. 
Reconciling apparent inconsistencies in estimates of terrestrial CO2 sources 
and sinks. Tellus Series B-Chemical and Physical Meteorology 55(2): 345-
363. 

Jach ME, Ceulemans R. 2000. Effects of season, needle age and elevated 
atmospheric CO2 on photosynthesis in Scots pine (Pinus sylvestris). Tree 
Physiology 20(3): 145-157. 

Keeling CD, Whorf TP 2005. Atmospheric CO2 records from sites in the SIO air 
sampling network. . Trends: A Compendium of Data on Global Change. . 
Tennesee: Carbon Dioxide Information Analysis Center, Oak Ridge National 
Laboratory, U.S. Department of Energy, Oak Ridge. 



 

 59

Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, 
Pepin S, Siegwolf RTW, Zotz G. 2005. Carbon flux and growth in mature 
deciduous forest trees exposed to elevated CO2. Science 309(5739): 1360-
1362. 

Kull O, Niinemets U. 1998. Distribution of leaf photosynthetic properties in tree 
canopies: comparison of species with different shade tolerance. Functional 
Ecology 12(3): 472-479. 

Leuning R. 1997. Scaling to a common temperature improves the correlation 
between the photosynthesis parameters Jmax and Vcmax. Journal of 
Experimental Botany 48(307): 345-347. 

Liberloo M, Tulva I, Raim O, Kull O, Ceulemans R. 2007. Photosynthetic 
stimulation under long-term CO2 enrichment and fertilization is sustained 
across a closed Populus canopy profile (EUROFACE). New Phytologist 
173(3): 537-549. 

Luo Y, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, McMurtrie 
RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB. 2004. 
Progressive nitrogen limitation of ecosystem responses to rising atmospheric 
carbon dioxide. Bioscience 54(8): 731-739. 

Matamala R, Schlesinger WH. 2000. Effects of elevated atmospheric CO2 on fine 
root production and activity in an intact temperate forest ecosystem. Global 
Change Biology 6(8): 967-979. 

McMurtrie RE, Wang YP. 1993. Mathematical-models of the photosynthetic 
response of tree stands to rising CO2 concentrations and temperatures. Plant 
Cell and Environment 16(1): 1-13. 

Medlyn BE. 1996. The optimal allocation of nitrogen within the C3 photosynthetic 
system at elevated CO2. Australian Journal of Plant Physiology 23(5): 593-
603. 

Medlyn BE, Badeck FW, De Pury DGG, Barton CVM, Broadmeadow M, 
Ceulemans R, De Angelis P, Forstreuter M, Jach ME, Kellomäki S, Laitat 
E, Marek M, Philippot S, Rey A, Strassemeyer J, Laitinen K, Liozon R, 
Portier B, Roberntz P, Wang K, Jarvis PG. 1999. Effects of elevated CO2 
on photosynthesis in European forest species: a meta-analysis of model 
parameters. Plant Cell and Environment 22(12): 1475-1495. 

Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum 
MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, 
Loustau D. 2002. Temperature response of parameters of a biochemically 
based model of photosynthesis. II. A review of experimental data. Plant Cell 
and Environment 25(9): 1167-1179. 

Midgley GF, Wand SJE, Pammenter NW. 1999. Nutrient and genotypic effects on 
CO2-responsiveness: Photosynthetic regulation in Leucadendron species of a 
nutrient-poor environment. Journal of Experimental Botany 50(333): 533-542. 

Niinemets U, Tenhunen JD. 1997. A model separating leaf structural and 
physiological effects on carbon gain along light gradients for the shade-
tolerant species Acer saccharum. Plant Cell and Environment 20: 845-866. 

Norby RJ, DeLucia EH, Gielen B, Calfapietra C, Giardina CP, King JS, Ledford 
J, McCarthy HR, Moore DJP, Ceulemans R, De Angelis P, Finzi AC, 
Karnosky DF, Kubiske ME, Lukac M, Pregitzer KS, Scarascia-Mugnozza 
GE, Schlesinger WH, Oren R. 2005. Forest response to elevated CO2 is 
conserved across a broad range of productivity. Proceedings of the National 
Academy of Sciences of the United States of America 102(50): 18052-18056. 



 

 60

Norby RJ, Iversen CM. 2006. Nitrogen uptake, distribution, turnover, and efficiency 
of use in a CO2-enriched sweetgum forest. Ecology 87(1): 5-14. 

Nowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to 
elevated atmospheric CO2 - do photosynthetic and productivity data from 
FACE experiments support early predictions? New Phytologist 162(2): 253-
280. 

Ollinger SV, Aber JD, Reich PB, Freuder RJ. 2002. Interactive effects of nitrogen 
deposition, tropospheric ozone, elevated CO2 and land use history on the 
carbon dynamics of northern hardwood forests. Global Change Biology 8(6): 
545-562. 

Onoda Y, Hikosaka K, Hirose T. 2004. Allocation of nitrogen to cell walls 
decreases photosynthetic nitrogen-use efficiency. Functional Ecology 18(3): 
419-425. 

Onoda Y, Hikosaka K, Hirose T. 2005. The balance between RuBP carboxylation 
and RuBP regeneration: a mechanism underlying the interspecific variation in 
acclimation of photosynthesis to seasonal change in temperature. Functional 
Plant Biology 32(10): 903-910. 

Oren R, Ellsworth DS, Johnsen KH, Phillips N, Ewers BE, Maier C, Schäfer 
KVR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil 
fertility limits carbon sequestration by forest ecosystems in a CO2-enriched 
atmosphere. Nature 411(6836): 469-472. 

Peterson AG, Ball JT, Luo YQ, Field CB, Reich PB, Curtis PS, Griffin KL, 
Gunderson CA, Norby RJ, Tissue DT, Forstreuter M, Rey A, Vogel CS. 
1999. The photosynthesis leaf nitrogen relationship at ambient and elevated 
atmospheric carbon dioxide: a meta-analysis. Global Change Biology 5(3): 
331-346. 

Pons TL, Welschen RAM. 2002. Overestimation of respiration rates in commercially 
available clamp-on leaf chambers. Complications with measurement of net 
photosynthesis. Plant Cell and Environment 25(10): 1367-1372. 

Poorter H. 1998. Do slow-growing species and nutrient-stressed plants respond 
relatively strongly to elevated CO2? Global Change Biology 4(6): 693-697. 

Poorter H, Evans JR. 1998. Photosynthetic nitrogen-use efficiency of species that 
differ inherently in specific leaf area. Oecologia 116(1-2): 26-37. 

Poorter H, Pérez-Soba M. 2001. The growth response of plants to elevated CO2 
under non-optimal environmental conditions. Oecologia 129(1): 1-20. 

Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, 
Naeem S, Trost J. 2006a. Nitrogen limitation constrains sustainability of 
ecosystem response to CO2. Nature 440(7086): 922-925. 

Reich PB, Hungate BA, Luo YQ. 2006b. Carbon-nitrogen interactions in terrestrial 
ecosystems in response to rising atmospheric carbon dioxide. Annual Review 
of Ecology Evolution and Systematics 37: 611-636. 

Reich PB, Walters MB, Ellsworth DS. 1992. Leaf life-span in relation to leaf, plant, 
and stand characteristics among diverse ecosystems. . Ecological Monographs 
62: 365-392. 

Reich PB, Walters MB, Ellsworth DS. 1997. From tropics to tundra: Global 
convergence in plant functioning. Proceedings of the National Academy of 
Sciences of the United States of America 94(25): 13730-13734. 

Reynolds JF, Chen JL, Harley PC, Hilbert DW, Dougherty RL, Tenhunen JD. 
1992. Modeling the effects of elevated CO2 on plants - Extrapolating leaf 
response to a canopy. Agricultural and Forest Meteorology 61(1-2): 69-94. 



 

 61

Rogers A, Ellsworth DS. 2002. Photosynthetic acclimation of Pinus taeda (loblolly 
pine) to long-term growth in elevated pCO(2) (FACE). Plant Cell and 
Environment 25(7): 851-858. 

Sage RF. 1994. Acclimation of photosynthesis to increasing atmospheric CO2 - the 
gas exchange perspective. Photosynthesis Research 39(3): 351-368. 

Schäfer KVR, Oren R, Ellsworth DS, Lai CT, Herrick JD, Finzi AC, Richter DD, 
Katul GG. 2003. Exposure to an enriched CO2 atmosphere alters carbon 
assimilation and allocation in a pine forest ecosystem. Global Change Biology 
9(10): 1378-1400. 

Teskey RO. 1997. Combined effects of elevated CO2 and air temperature on carbon 
assimilation of Pinus taeda trees. Plant Cell and Environment 20(3): 373-380. 

Tissue DT, Griffin KL, Ball JT. 1999. Photosynthetic adjustment in field-grown 
ponderosa pine trees after six years of exposure to elevated CO2. Tree 
Physiology 19(4-5): 221-228. 

Turnbull MH, Tissue DT, Griffin KL, Rogers GND, Whitehead D. 1998. 
Photosynthetic acclimation to long-term exposure to elevated CO2 
concentration in Pinus radiata D. Don. is related to age of needles. Plant Cell 
and Environment 21(10): 1019-1028. 

Wang KY, Kellomäki S, Laitinen K. 1996. Acclimation of photosynthetic 
parameters in Scots pine after three years exposure to elevated temperature 
and CO2. Agricultural and Forest Meteorology 82(1-4): 195-217. 

Warren CR, Dreyer E, Adams MA. 2003. Photosynthesis-Rubisco relationships in 
foliage of Pinus sylvestris in response to nitrogen supply and the proposed role 
of Rubisco and amino acids as nitrogen stores. Trees-Structure and Function 
17(4): 359-366. 

Westbeek MHM, Pons TL, Cambridge ML, Atkin OK. 1999. Analysis of 
differences in photosynthetic nitrogen use efficiency of alpine and lowland 
Poa species. Oecologia 120(1): 19-26. 

White A, Cannell MGR, Friend AD. 2000. CO2 stabilization, climate change and 
the terrestrial carbon sink. Global Change Biology 6(7): 817-833. 

Zak DR, Pregitzer KS, King JS, Holmes WE. 2000. Elevated atmospheric CO2, 
fine roots and the response of soil microorganisms: a review and hypothesis. 
New Phytologist 147(1): 201-222. 

 
 
 



 

 62

Chapter 3 

 

Maintenance of leaf N controls the CO2 response of 
grassland species exposed to nine years of Free-Air CO2 

Enrichment 
 
 
3.1. Summary 
 

The continued ability of grasslands to serve as sinks for atmospheric CO2 may 

depend on species responses to nitrogen (N) availability.  To study this, N was added 

to a C3 grassland in Minnesota exposed to elevated atmospheric CO2 (e.g., 560 μmol 

CO2 mol-1) in a 9-year experiment. Across seven grassland species, elevated CO2 

reduced leaf photosynthetic capacity measured at a common CO2 concentration 

(Am365) and reduced leaf N concentration (Nmass) in N-addition plots but not in 

unamended plots, demonstrating a significant CO2 x N interaction for Am365 (P < 

0.005) and Nmass (P < 0.05).  

Plant functional groups differed in elevated CO2 and N treatment responses. 

With added N, elevated CO2 reduced in leaf Nmass concentrations (-26% in Nmass) and 

photosynthetic capacity (-28% in carboxylation capacity, Vcmax) in C3 forbs but not in 

C3 grasses. Hence, leaf photosynthetic rates were enhanced by 68% for C3 grasses in 

elevated CO2, whereas forbs did not significantly increase photosynthesis in elevated 

CO2.  

Maintenance of leaf N, possibly through increased root foraging, is necessary 

to sustain stimulation of photosynthesis in this grassland under long-term elevated 

CO2. Different effects of elevated CO2 on leaf N and photosynthesis for forbs versus 

grasses suggests a high potential for shifts in species composition in this grassland 

ecosystem. 

 



 

 63

3.2. Introduction 
 

With increasing CO2 emissions from human activities driving increases in mean 

global atmospheric [CO2], there are concerns over the capacity of natural ecosystems 

to continue to serve as sinks for atmospheric CO2 over decades to come (Canadell et 

al., 2007). During the 20th century, the carbon (C) sink capacity of native grasslands 

has been variously attributed to changes in climate, atmospheric CO2, and nitrogen 

(N) deposition. However, our understanding of the interactions among these factors 

and the mechanisms of these interactions remains incomplete (Schimel et al., 2001). 

Long-term field experiments in which multiple factors are manipulated 

simultaneously provide an important tool for untangling ecological interactions 

(Hunter, 2001; Mikkelsen et al., 2008). Because ecosystem C and N cycles are 

strongly coupled, interactive effects of elevated CO2 and N availability are likely, and 

may limit the magnitude of photosynthetic enhancement under elevated CO2 

(McMurtrie & Comins, 1996; Rastetter et al., 1997; Luo et al., 2004).  

Plant N pools and photosynthesis-leaf N relationships couple ecosystem C and N 

cycles. Long-term elevated CO2 can cause a reduction in leaf N and hence plant 

productivity, particularly when root N uptake is not enhanced to support increased 

growth demands in elevated CO2 (Field et al., 1992; Luo et al., 1994). In contrast to 

the reduction in leaf N under elevated [CO2] (Yin, 2002), addition of N to soils would 

be expected to increase leaf N (Field et al., 1992). However, these opposite responses 

in leaf N to current human activities demand that we understand interactions between 

N availability and atmospheric CO2 concentration to predict how ecosystem 

functioning will change in an increasingly eutrophic biosphere (Vitousek, 1994).  

Grasslands cover a wide range of climatic conditions, soil types, and nutrient 

availabilities across the world, and consist of many interacting species.  Thus, in 

understanding how N availability can affect plant responses to elevated CO2 in 

grasslands, it is critical to understand species responses and how these ultimately 

affect responses of the ecosystem to CO2 and N, including shifts in species 

composition and ecosystem services (Vitousek et al., 1997; Scurlock & Hall, 1998; 

Soussana & Lüscher, 2007). Only a very small number of grassland experiments have 

assessed long-term interactions between elevated CO2 and N (Tilman et al., 2006) and 

most but not all of these have found that increased plant growth under elevated CO2 
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can only be sustained with sufficient N supply (Lüscher et al., 2000; Grünzweig & 

Körner, 2003; Schneider et al., 2004; Reich et al., 2006a). Recent studies have found 

substantial growth responses in elevated CO2 because additional N was taken up from 

deeper soil layers (Iversen et al., 2008). The higher N demands of plants under 

elevated CO2 could constrain plant growth if N is limiting, especially when elevated 

CO2 has stimulated N immobilization (Henry et al., 2005; Knops et al., 2007).  

Plant species can vary in their responses to environmental change, including rising 

atmospheric CO2 and N addition (Zanetti et al., 1997; Joel et al., 2001; Lee et al., 

2001; Poorter & Perez-Soba, 2001; Reich et al., 2004). Currently, it is unclear how 

these differential plant responses will affect long-term composition, structure and 

function of species-rich ecosystems (Potvin et al., 2007). Given the inability to 

conduct appropriate elevated CO2 experiments on high numbers of plant species 

simultaneously, there has instead been a focus on key functional traits shared by 

species in functional groups that can be represented in models, with varying success 

(Poorter & Navas, 2003; Reich et al., 2004). It has been hypothesized that a number 

of intrinsic physiological leaf traits, such as photosynthetic rates, specific leaf area 

(SLA) and foliar nitrogen, central to how species functional groups are depicted in 

such models, determine the response of species to elevated CO2 (Woodward & 

Cramer, 1996; Lavorel et al., 1997). However, species grouping schemes do not 

always sufficiently describe physiological responses to elevated CO2 (Reich et al., 

2003; Ellsworth et al., 2004b). Because grasslands are often relatively species-rich, it 

is important to consider if species groupings provide insight into species 

responsiveness to elevated CO2 in grass-dominated systems, which constitute 30% of 

global land area (Soussana & Lüscher, 2007). 

The objectives of this study were to investigate physiological mechanisms 

underlying species responses to elevated CO2 and N deposition, and potential 

interactions among atmospheric [CO2] and leaf N in species from contrasting 

functional groups.  I studied C3 grass and forb species across the sixth to ninth years 

of elevated CO2 exposure and N addition in a nutrient-poor prairie grassland in 

Minnesota to address the following hypotheses: 

H.1. Long-term reductions in foliar N under elevated CO2 are reflected in 

declining photosynthetic capacity such that the instantaneous CO2 

enhancement effect is offset by photosynthetic down-regulation. This results 
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in little or no change in photosynthetic performance in elevated CO2 in 

nutrient-poor grasslands. 

H.2. Maintenance of leaf N is necessary to sustain photosynthetic enhancement 

responses to elevated [CO2] among C3 grassland species. 

H.3. Nutrient addition can compensate for reduced foliar N under elevated CO2 

such that photosynthetic capacity of C3 grassland species remains unchanged 

or increased. 

I examined these hypotheses in a long-term grassland free-air CO2 enrichment 

(FACE) experiment where atmospheric [CO2] and soil N were manipulated for 

multiple C3 grassland species (Reich et al., 2001a).  

 

3.3. Materials and Methods 

 
3.3.1. Site Description and Experimental Design 

 
The BioCON (Biodiversity, CO2 and N) FACE experiment is part of the 

Long-term Ecological Research network and is located in central Minnesota, USA 

(45° 24’ 13.5” N, 93° 11’ 08” W). The site is located in a humid continental climate 

on glacial outwash comprised of loamy sand soils with very low nutrient availability 

(Grigal et al., 1976). The mean annual precipitation is 660 mm year-1 and the mean 

maximum July temperature is 28.3°C. 

The BioCON FACE experiment consists of six circular plots of 20m diameter, 

three of which control atmospheric [CO2] to 560 μmol mol-1 whereas three plots 

remain at ambient [CO2]. Daytime exposure of plots to elevated [CO2] proceeds 

continuously from the beginning of the frost-free season in late April until the end of 

the growing season in September. The plants were established in 1997, with the first 

season of CO2 fumigation in 1998.  

A subset of the complete FACE experiment (see Reich et al. 2001b) was used 

for the analyses here, specifically 2x2 m subplots within the six FACE rings with 

monocultures of C3 grass or non-leguminous forb species. Monocultures were used to 

assess species responses rather than mixtures since the emphasis was on independent 

species responses to the treatment factors. Among these subplots, soil N addition 

treatments had been randomly assigned in two replicates in a split-plot design since 

the start of the experiment in 1998. N addition consisted of 4 g N m-2 yr-1 in the form 
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of solid ammonium nitrate applied each year across May, June and July. There were 8 

monoculture subplots of each of the seven species equally divided across the four 

combinations of CO2 and N-addition treatments. Above- and belowground biomass of 

these plots, provided by P.B. Reich, were determined each year in June by harvest of 

a subsample area of the main plot (Reich et al., 2001b).  One m2 area of vegetation 

was clipped just above the soil surface for harvest, sorted into live and senesced 

material, dried and weighed. Roots were isolated from three 5-cm diameter soil 

samples taken to 20 cm depth from each plot where aboveground biomass had been 

sampled. The roots were washed and sorted into fine (<1mm diameter), coarse and 

crown roots, then dried and weighed. The species chosen for this study were four C3 

grasses: Poa pratensis L., Koeleria cristata Pers., Bromus inermis Leyss. and 

Agropyron repens L. and three forb species: Solidago rigida L. and Anemone 

cylindrica A. Gray and Achillea millefolium L. . These species are referred to in 

figures by a combination of the first three letters of the genus and the first two letters 

species name. 

 

3.3.2. Gas exchange and leaf nitrogen 

 
Measurements in this study were made during the 6th through 9th growing 

seasons of the experiment (2003-2006) to assess the long-term effects of elevated CO2 

and nitrogen additions and potential interactions between them. Species composition, 

biomass and responses to CO2 and N were relatively stable at this stage of the 

experiment. Gas exchange measurements were conducted with a portable infrared gas 

analyzer system (LiCOR 6400, Li-Cor Inc., Lincoln NE, USA) during the main 

portion of the season when each species was active (May-June of each growing 

season). To assess instantaneous and long-term (up to nine years) effects of elevated 

CO2 on photosynthetic capacity, photosynthetic CO2 response curves (A-Ci) were 

measured on leaves of each plant species with a minimum of seven different CO2 

concentrations, using saturating light conditions (photon flux density of 1800 μmol m-

2 s-1) and controlled temperatures (leaf temperatures of 28-30°C) in the leaf cuvette. 

Per species, plants in monoculture plots were measured with 2 replicates for each CO2 

and N treatment. All grass measurements were from the top-most fully expanded leaf 

adjacent to the flag leaf to ensure similar leaf ages. Leaves were collected and placed 

on ice after each A-Ci response curve to determine projected leaf area in the chamber 
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(Image J v1.37, National Institutes of Health, Bethesda, MD, USA). In the laboratory, 

leaves were dried at 70°C, weighed, and finely ground. A subsample was analyzed for 

total nitrogen and carbon content using an elemental analyzer (Carlo-Erba 

Strumentazione, Milan, Italy) with appropriate reference standards for herbaceous 

leaves in each analysis run (National Institute of Standards and Technology, Boulder, 

CO USA). 

Physiological variables were fitted from the A-Ci response curves using the 

Farquhar photosynthesis model (Farquhar et al., 1980) according to the procedure laid 

out in Ellsworth et al. (2004). To evaluate changes in photosynthetic capacity and 

assess potential down-regulation of photosynthesis, I analyzed the variables maximum 

carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) as well as 

the measured net photosynthesis in current growth conditions (either ambient or 

elevated [CO2]) (Anet) and net photosynthesis at a common CO2 level of 365 μmol 

mol-1. Net photosynthesis at a common CO2 level was analyzed both on a mass basis 

(Am365) and area basis (Aa365), concurrent with leaf N expressed on a mass basis (Nmass) 

and on an area basis (Narea). A slight increase in LMA (Leaf Mass per Area ratio, g 

m—2) was observed in elevated CO2 (P = 0.07). Despite this, results were generally 

similar whether expressed on mass or area bases. I also analyzed net photosynthesis at 

a common CO2 level of 560 μmol mol-1 corresponding to the CO2 concentration of 

the elevated CO2 treatment, however those results strongly paralleled the results for 

Aa365 and hence are not shown. These variables help evaluate the basic physiological 

mechanisms behind changes in plant growth and productivity in long-term elevated 

CO2 and N addition, as well as comparing similar mechanisms in different C3 species. 

 

3.3.3. Statistical analyses 

 

Because I am interested in the long-term effects of elevated CO2 and N 

addition without the influence of climatic annual variation, data from CO2 response 

curves were averaged across four years. Averaging across years resulted in similar 

sample sizes for each species per treatment combination, and represented average 

responses of each species to long-term elevated CO2 and N addition. Moreover, there 

was generally no significant year effect in ANOVAs conducted using this term (P > 
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0.1). All further analyses of variance described below were conducted on variables 

averaged across years by species, plot, CO2 and N treatment. 

The BioCON experiment was designed as a split-plot with N addition nested 

within atmospheric CO2 treatment (Reich et al., 2001b). Treatment effects were tested 

using the appropriate whole-plot random effect of atmospheric CO2 or within-plot 

error variances against the residual error in the F-test. The whole-plot random effect 

was not significant (P > 0.1) in any case. Because my goal was to investigate species-

specific responses to the experimental treatments, as well as responses of species 

within functional groups, I conducted ANOVA using main effects CO2 level, N level, 

and Functional Group and Species identity within functional group to test for effects 

and interactions in the experiment (Table 3). Post-hoc Tukey’s tests were used to 

establish differences among the different species. Because species responded 

differently to elevated CO2 (Table 3), I further analyzed differences between ambient 

and elevated CO2 for each species separately, including the whole-plot random effect.  

To evaluate the strength of species effects versus treatment effects, the contribution of 

each effect (e.g. CO2, N or species effects and their interactions) to the total variation 

was calculated using sums of squares of the effect divided by the total sums of 

squares from the analysis of variance (Hunter et al., 1997). Species and functional 

group responses to elevated CO2 are further explored for the N addition treatment 

because the focus is on plant mechanisms in species and functional groups when both 

elevated CO2 and N addition occur.  All statistical analyses were conducted in JMP 

5.0.1 software, SAS Institute, Cary NC, USA. 
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Table 3: P-values, whole-model error mean squares (MS) and goodness of fit for an ANOVA with CO2 treatment (CO2), N addition treatment 
(N), Functional Group (Funct gr) and species within functional group (Spp(Funct gr)) as main effects, including degrees of freedom (d.f.), for 
the following variables: maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), net photosynthesis in respective growth 
conditions e.g., either ambient or elevated [CO2] (Anet), net photosynthesis at a common CO2 level of 365 μmol mol-1 on an area basis (Aa365) and 
mass basis (Am365) and foliage N on a mass basis (Nmass) and area basis (Narea). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1dash denotes that results were not significant (P>0.1) 
* transformation used to meet normality assumption: Log(Narea-0.2) 

  P-Values 
Source  d.f. Vcmax Jmax Anet Aa365 Am365 Nmass Narea* 
CO2 1 -1 - <0.0001 - - <0.0001 - 
N 1 0.0157 0.0231 0.0673 - - <0.0001 <0.0001 
CO2 x N 1 - - - 0.0433 0.0012 0.0209 - 
Funct gr 1 - - - - - 0.0415 - 
Spp (Funct gr)  5 <0.0001 0.0002 <0.0001 <0.0001 <0.0001 0.0026 <0.0001 
CO2 x Funct gr 1 0.0113 0.0675 0.0012 0.0056 0.0062 0.0096 - 
N x Funct gr 1 - - - - 0.0147 - - 
CO2 x Spp(Funct gr) 5 0.0392 0.0601 - - 0.0213 0.0047 - 
N x Spp(Funct gr) 5 0.0162 0.0082 - - - 0.0078 - 
CO2 x N x Funct gr 1 0.0219 0.0158 0.0806 0.0587 0.0011 - - 
CO2 x N x Spp(Funct gr) 5 - - - - - - - 
Error MS 35-38 128.0 398.7 8.694 7.435 1465.0 3.02 0.034 
Whole model R2  0.76 0.73 0.81 0.69 0.81 0.85 0.84 
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3.4. Results  

 
Because the BioCON FACE experiment was designed with [CO2] and N as the two 

central experimentally-manipulated factors, I first focus my results on the main and 

interactive effects of these factors. I then present species and functional group effects as 

well as higher-order interactions of elevated CO2 and N with these factors.  

 

3.4.1. Effects of elevated CO2 and N treatments on leaf nitrogen and 

photosynthesis across species 

 
A number of photosynthetic and nitrogen-related traits varied significantly with 

CO2 treatment, N addition treatment and their interaction across all seven grassland 

species (Table 3). Long-term elevated CO2 exposure significantly decreased foliar N on a 

mass basis (-11%, P < 0.0001, Table 3) more than on an area basis (N.S. in Table 3). As 

expected, foliar N concentration was increased by 23% by N addition across all species 

(both area- and mass-based N, P < 0.0001, Table 3). However, a significant CO2 x N 

interaction in Nmass (P = 0.0209, Table 3) showed no differences in Nmass between CO2 

treatments at low N levels whereas with N addition, Nmass responded significantly more to 

N addition in ambient CO2 (+ 27%, P = 0.0031, Fig. 9a) compared to elevated CO2 plots. 

There were similar trends for Narea to those for Nmass, but CO2 x N was not statistically 

significant for this parameter (P > 0.10, Fig. 9b). 

With a +200 μmol CO2 mol-1 enrichment in CO2, there was a significant 

enhancement in photosynthesis under growth conditions (Anet = +41%, P < 0.0001, Table 

3) across all species and functional groups. In contrast, Anet responded weakly to N 

addition (+8%, P = 0.0673, Table 3). There was no significant CO2 x N interaction for 

Anet across species. However, insights into the long-term effects of elevated [CO2] and N 

on intrinsic photosynthetic capacity may be better considered by comparing 

photosynthesis per unit area at a common CO2 level across treatments rather than Anet 

(Ellsworth et al., 2004; Ainsworth & Rogers, 2007). Here, among all species, 

photosynthesis at a common CO2 level on both mass and area bases showed no 

significant main effect of CO2 treatment, but showed a significant CO2 x N interaction 
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(Table 3; Fig. 9c,d). Both area-based (Aa365) and mass-based (Am365) photosynthesis at a 

common measurement [CO2] showed CO2 treatment-induced downregulation under 

added N but not under ambient N.  

 

Figure 9: Effects of elevated CO2 and N addition treatments on (a) foliar N on a mass 
basis (Nmass), (b) foliar N on an area basis (Narea), c) photosynthesis at a common CO2 
level on a mass basis, Am365 and (d), photosynthesis at a common CO2 level on an area 
basis, Aa365 across seven grassland species. Species means in ambient CO2 (open bars) 
and elevated CO2 treatment (black bars) are shown. 0N denotes unamended plots and +N 
denotes N-addition plots. Sample size associated with the means in this figure varied 
between 6 and 8 (i.e. number of species in two replicates). ** indicates a significant 
difference between elevated and ambient CO2 treatment within a N treatment (P < 0.01). 

 

Vcmax and Jmax, did not significantly differ between CO2 treatments across the 

different species (Table 3), because species or functional groups differed in their response 

to elevated CO2 or elevated CO2 and N (see below). Both Vcmax and Jmax increased 
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significantly with N addition (+11% and +10% respectively, Table 3) across species. 

More insight into the observed CO2 x N interactions may be drawn from examining 

species and functional group differences in response to elevated CO2 and N addition. 

 

3.4.2. Species effects and higher-order interactions 

 
Species differed significantly in all measures of photosynthetic capacity and leaf 

N (P ≤ 0.003, Table 3). All grass species had higher Nmass values than forb species, 

resulting in a significant functional group difference (P = 0.0415). Across CO2 and N 

treatments, species ranked similarly in Vcmax, Jmax, Aa365 and Anet. Solidago had 

consistently the highest photosynthetic capacity, and Achillea, Bromus and Poa always 

represented the lowest three values (in descending order, Fig. 10 and data not shown).  

For some variables, there were significant CO2 x species interactions (Table 3). 

Only Solidago and Bromus had significantly reduced Vcmax, Jmax or Nmass in elevated CO2 

across N treatments. The same physiological variables also showed significant N x 

species interactions (Table 3). Species consistently responded to N addition with a 

significant increase in Nmass (11-45% increase, P < 0.04), except Anemone. For Vcmax and 

Jmax, only Poa and Anemone showed a significant increase with N-addition. These 

species differences were often consistent with functional group differences in response to 

elevated CO2. Across N treatments, forbs reduced photosynthetic capacity and leaf N in 

elevated CO2 by at least 15%, whereas grasses did not show significant reductions in 

elevated CO2. Moreover, there were significant 3-way interactions of CO2 x N x 

functional group for variables reflecting photosynthetic capacity: Vcmax (P = 0.0219), Jmax 

(P = 0.0158), Am365 (P = 0.0011) and Aa365 (P = 0.0587) (Table 3). These measures of 

photosynthetic capacity were generally reduced by elevated CO2 more for forbs than 

grasses. These reductions were more pronounced in N addition treatments (Table 3), and 

hence were examined in more detail (see below). Conditions of elevated CO2 and 

increased N availability are likely to co-occur due to global change. Also, understanding 

the CO2 responses of different functional groups in the N-added plots provides insight 

into CO2 x functional group interactions that are difficult to visualize as three-way 

interactions with N. 



 

 73

Forbs                   Grasses
AchmiAnecy Solri Agrre Broin KoecrPoapr

V
cm

ax
 (μ

m
ol

 m
-2

 s
-1

)

20

40

60

80

100

120

Ambient 
Elevated

Achmi
Anecy Solri Agrre Broin Koecr

Poapr

J m
ax

 (μ
m

ol
 m

-2
 s

-1
)

0

50

100

150

200

Functional Group
All Forbs

All Grasses

a) b)

c) d) *

+

Forb Species Grass Species

* + *

+ **

 

Figure 10: Species-specific responses (left panels) to elevated CO2 in N-addition plots 
for maximum carboxylation rate, Vcmax (a, b) and maximum electron transport rate, Jmax 
(c,d). The aggregate functional groups responses of Vcmax and Jmax to elevated CO2 are 
shown at right in panels b and d. Open bars represent the ambient CO2 treatment and 
black bars are the elevated CO2 treatment. Significant differences between CO2 
treatments within either each species or each functional group are represented by + for P 
< 0.1, * for P < 0.05, ** for P < 0.01 and *** for P < 0.001. Samples sizes ranged from 1-3 
for species effects (a,c) and 6-8 for functional group effects (b,d). Species abbreviations 
are as follows: Achmi = Achillea millefolium, Anecy = Anemone cylindrica, Solri = 
Solidago rigida, Agrre = Agropyron repens, Broin = Bromus inermis, Koecr = Koeleria 
cristata, Poapr = Poa pratensis. 



 

 74

 

Figure 11: Species-specific responses (left panels) to elevated CO2 in N-addition plots 
for net photosynthesis in respective growth conditions, Anet (a,b) and mass-based foliage 
nitrogen concentration, Nmass (c,d). The aggregate functional groups responses of Anet and 
Nmass to elevated CO2 are shown at right in panels b and d. Open bars represent the 
ambient CO2 treatment and black bars are the elevated CO2 treatment. Significant 
differences between CO2 treatments within either each species or each functional group 
are represented by + for P < 0.1, * for P < 0.05, ** for P < 0.01 and *** for P < 0.001. 
Samples sizes ranged from 1-3 for species effects (a,c) and 6-8 for functional group 
effects (b,d). Species abbreviations as in Figure 10. 
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3.4.3. Elevated CO2 responses of functional groups under N addition 

 
With added N, the response of photosynthetic capacity to elevated CO2 varied in 

each functional group with significant CO2 x functional group interactions. 

Photosynthetic capacity variables (Vcmax, Jmax and Am365) were all reduced in all forb 

species in response to elevated CO2 (by >25%), whereas grasses showed no change in 

these variables in elevated CO2 (Fig. 10). These effects were generally consistent among 

species within each group (Fig. 10) and hence represent functional group differences 

rather than species to species variation. Poa, Koeleria and Agropyron did not show 

down-regulation of photosynthetic capacity in elevated CO2 (Vcmax = +39%, +2% and 

+4% enhancement respectively) in combination with N addition (Fig. 11a, 12a) while 

Bromus showed a -10% change in Vcmax (Fig. 10a).  In contrast, Achillea, Anemone and 

Solidago all had lower Vcmax in elevated CO2 (P < 0.1 across all forb species; -33, -21%, -

30% and respectively) in N addition plots (Fig. 10a). The larger magnitude of down-

regulation in forbs versus grasses resulted in no significant enhancement of net 

photosynthesis in elevated CO2 for forbs treated with N addition (Fig 11b). 

I found similar trends in Nmass to those for photosynthetic capacity. Though leaf N 

was intrinsically lower in forbs compared to grasses (P = 0.0415), the significant CO2 x 

functional group interaction on leaf Nmass (P = 0.0096) showed that elevated CO2 

negatively affected the leaf N concentration in forbs but not in grasses (Fig. 11d). Nmass in 

forb leaves with added N was 26% lower in elevated CO2 (P = 0.0004) compared to 

ambient CO2 (range among species within this group of –18% to –35%; Fig. 11c). In 

contrast, there was no consistent CO2 effect on Nmass among grass species (Fig. 11d), 

though Bromus did in fact show a slight decrease of 19% (P = 0.056; Fig. 11c). Thus, leaf 

N concentrations were reduced strongly in forbs when exposed to elevated CO2, whereas 

grasses on average were able to maintain leaf N concentrations in elevated CO2.  

Do leaf N responses to long-term elevated CO2 drive down-regulation of 

photosynthetic capacity? Because most nitrogen is invested in photosynthetic 

components, a CO2-induced reduction in Nmass resulted in no significant CO2-induced 

enhancement of photosynthesis in forb species receiving N addition, so that reduced 

photosynthetic capacity offset increased CO2 supply. In contrast, C3 grasses were able to 
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maintain leaf N concentrations and hence sustained a strong CO2 enhancement response 

(+68%) at high N supply (P < 0.0001, Fig. 11b). 

 

3.4.4. Root biomass allocation patterns in forb and grass species  

Table 4: P-values, whole-model error mean squares (MS) and goodness of fit for an 
ANOVA with CO2 treatment (CO2), N addition treatment (N), Funtional Group (Funct 
gr) and species within functional group (Spp(Funct gr)) as main effects, including 
degrees of freedom (d.f.) for total root biomass and root-to-shoot ratio. Total sample size 
across all species was n=56. All variables were transformed to meet normality 
assumptions for ANOVA; Root:Shoot ratio was log transformed, a square root 
transformation was used for all other biomass variables. 

 
 

Though there were no significant CO2 treatment differences in total root biomass 

and root:shoot ratio (Table 4), total root biomass was larger in N-added plots than in 

unamended plots across species (P = 0.0009). In addition, C3 grasses showed higher root 

biomass compared to the forb species (P = 0.0277, Table 4, Fig.12a). However, root 

biomass also showed a significant interaction between N-addition and functional group 

(P = 0.0324, Table 4). Whereas root biomass was no different in forbs between N-

amended and unamended plots, grasses increased root biomass significantly more (+ 

71%) in response to N-addition compared to forb species. This resulted in a significantly 

  P - Values 
Source  d.f. Root:Shoot 

ratio 
Total root 
biomass 

Total leaf 
biomass 

Total 
biomass

CO2 1 -1 - - - 
N 1 - 0.0009 0.0003 0.0001 
CO2 x N 1 - - - - 
Funct gr 1 - 0.0277 - 0.0549 
Spp (Funct gr)  5 <0.0001 <0.0001 <0.0001 <0.0001 
CO2 x Funct gr 1 - - - - 
N x Funct gr 1 0.0177 0.0324 - 0.0756 
CO2 x Spp(Funct gr) 5 - - - - 
N x Spp(Funct gr) 5 - - 0.0097 - 
CO2 x N x Funct gr 1 - - - - 
CO2 x N x Spp(Funct gr) 5 - - - - 
Error MS 23 0.233 12.707 2.2706 11.876 
Whole Model R2  0.83 0.93 0.95 0.94 
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higher root:shoot ratio in C3 grasses compared to non-leguminous forbs in N-added plots 

(P = 0.0177, Fig. 12b). 
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Figure 12: Means with standard error of total root biomass (a) and root:shoot ratio (b) for 
each functional group (e.g. all C3 grasses and all non-leguminous forbs) in N-added plots 
in ambient [CO2] (open bars) and elevated [CO2] (black bars). Stars indicate significant 
differences between functional groups: * P < 0.05 and *** for P < 0.001. Sample size for 
forbs equaled n=6, for grasses n=8. 

 

3.5. Discussion 
 

I sought to investigate mechanisms of long-term responses to elevated 

atmospheric CO2 and N addition for C3 species from two functional groups to understand 

how physiological responses might influence physiology in a way that could alter species 

dynamics. C3 forb responses to elevated CO2 have been previously compared with those 

of grasses in a number of experiments (Knapp et al., 1996; Anderson et al., 2001; 

Morgan et al., 2001). However, few of these experiments have examined such responses 
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under combinations of elevated CO2 and enhanced N supply, or for long time periods. 

After six to nine years of elevated CO2 exposure, significant CO2 x N interactions were 

observed across species for photosynthetic capacity (Am365, Fig. 9c) and leaf nitrogen 

(Nmass, Fig. 9a). These interactions indicated that elevated CO2 had a stronger effect on 

physiological variables in the N addition treatment than in ambient N (Fig. 9). Moreover, 

these effects were marked for forbs, showing strong and consistent photosynthetic 

downregulation, in contrast to C3 grasses. Based on these results, I conclude that my first 

two hypotheses were supported. In species or functional groups in which reductions in N 

were observed under elevated CO2, photosynthetic down-regulation followed. However, 

in contrast with the third hypothesis, down-regulation responses were stronger with N 

addition than with ambient N,. 

As a result of the interactive effects of elevated CO2 and N interactions on 

photosynthetic capacity (Am365 and Aa365 in Table 3), I observed less photosynthetic 

enhancement from elevated CO2 under N enrichment. Despite this, recent findings across 

a larger set of grassland species and species mixtures have shown sustained plant growth 

responses under elevated CO2 in soils with enriched N (Reich et al., 2006a). Hence, 

biomass enhancement is greater under the combination of elevated CO2 and N-addition 

across a wide set of sixteen grassland species, despite the occurrence of photosynthetic 

down-regulation at the leaf level in at least three of these species (all forbs I studied here, 

Fig. 10). My findings can be reconciled with those in Reich et al. (2006) because two of 

these three forb species (Achillea and Anemone) showed greater biomass enhancement 

due to elevated CO2 under ambient N than under N-addition plots.  

Although stimulation of photosynthesis in elevated CO2 is still possible with 

reduced leaf N concentrations because of increasing plant nitrogen-use efficiency, N-

redistributing mechanisms likely do not provide all plant growth demands for N in 

elevated CO2 (BassiriRad et al., 2001; Hungate et al., 2006). If plant N demand exceeds 

N supply, then the stimulated growth response in elevated CO2 is likely not sustainable 

though plants may initiate several mechanisms to cope with possible reduced N 

availability (Gill et al., 2006; Millard et al., 2007). One major mechanism for doing so is 

via higher root biomass fractions (Luo et al., 1994), which is consistent with the 

observation for the four C3 grass species in my study (Fig. 12).  
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Increased fine root growth is a potential mechanism to cope with increasing 

nutrient demands in elevated CO2 (BassiriRad et al., 2001). There is a clear link between 

N availability and leaf N (Reich et al., 2003) and it is expected that extending fine root 

systems for N capture could be central to sustaining long-term growth enhancement in 

elevated CO2 (Norby et al., 2002; Luo et al., 2004). Though there were no significant 

CO2 treatment differences in total root biomass and root-to-shoot ratio (Table 4), C3 

grasses showed higher root biomass and root-to-shoot ratio compared to the forb species 

(P = 0.0113, Table 4, Fig. 12a). I suggest that these differences could play a key role in N 

acquisition and hence result in the maintenance of leaf N in C3 grasses in elevated CO2 

combined with added N (Luo et al., 1994; BassiriRad et al., 2001). 

My study showed a strong effect of species identity on physiology, explaining 

>30% of the total variation in each variable. Experimental factors such as elevated CO2 

and N-addition also had a substantial influence on the physiological traits that they affect 

directly (e.g. >20% of variation in photosynthetic rates and leaf N concentration). 

However, I also observed strong differences in photosynthetic responses to elevated CO2 

between functional groups. Forbs were negatively affected in elevated CO2, which was 

exacerbated in high N conditions. Grasses maintained a substantial photosynthetic 

stimulation even after 9 years of elevated CO2 exposure.  

In my study, the ability to maintain leaf N appears to correspond to increased 

biomass allocation to roots (Fig. 12a), enabling C3 grasses to forage for additional soil N 

and hence prevent reduction of Nmass in elevated CO2. Forbs showed significantly lower 

total root biomass (P = 0.0131, Fig. 12a) than C3 grasses and also showed strong 

reductions in leaf N in elevated CO2 with down-regulation of photosynthetic capacity 

(Fig. 11). The negative response of forbs to elevated CO2 (Morgan et al., 2001; 

Grünzweig & Körner, 2003) and to N addition (Reich et al., 2003) may indicate that 

shifts in competitive balance among species are possible (Joel et al., 2001; Zavaleta et al., 

2003). If shifts in the competitive balance of grasses and forbs occur over time, it may 

lead to less diverse grasslands dominated by graminoids in elevated CO2. Hence, 

increased biomass allocation to roots and maintenance of leaf N can be a major mode for 

sustaining photosynthetic stimulation in elevated CO2. 
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Chapter 4 
 
 

A comparison of leaf- versus canopy-level responses to 
elevated CO2 in grassland species using a simulation 

analysis 
 
4.1. Summary 
 

I used a simple sun-shade canopy model to investigate how leaf-level 

photosynthesis and canopy leaf area index (LAI) interact in affecting the gross canopy 

photosynthesis (GPPday) responses to elevated CO2 in seven different grassland species at 

the BioCON FACE site. Consistent with leaf-level results, grasses increased GPPday by 

47% in elevated CO2 whereas forb species only showed a 9% GPPday CO2-enhancement 

across N treatments. The direct effect of elevated CO2 contributed 27% on average to the 

total GPP increase in elevated CO2, while LAI and photosynthetic acclimation 

contributed respectively +15% and -5% on average to the total change in gross canopy 

photosynthesis (GPPday) in elevated CO2, though species-specific responses varied. In 

elevated CO2, grasses showed large increases in LAI and no differences in 

photosynthesis, while forbs showed little enhancement in LAI and down-regulated 

photosynthesis. The small LAI enhancement in forbs in elevated CO2 was offset by 

down-regulation of photosynthesis. As a result, canopy photosynthetic enhancements in 

forbs were only due to the direct effect of elevated CO2 itself whereas grasses showed 

larger enhancements of daily GPP in canopies exposed to elevated CO2. N addition had a 

positive effect on LAI resulting in higher GPPday when N was added. Daily modeled GPP 

correlated well with total biomass though only when different biomass allocation patterns 

via root-to-shoot ratios were taken into account. 
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4.2. Introduction   
 

Gross primary production (GPP), the balance between photosynthetic CO2 

assimilation and respiratory CO2 release represents the total amount of autotrophic 

carbon available for growth, storage and energy demands at the ecosystem level (Wittig 

et al., 2005). Given that photosynthesis and respiration are highly sensitive to variations 

in atmospheric CO2 concentration, temperature, light, and other climate factors, GPP 

exhibits daily, seasonal, annual and inter-annual variations in response to climatic 

conditions (Williams et al., 1997). Therefore, the annual carbon (C) fixation rate is 

sensitive to long-term climate change. Predicting responses to climate change and how 

physiological processes and canopy structure (e.g., LAI) affect GPP in ambient and 

elevated CO2 is key to estimate how C balance of terrestrial ecosystems may change due 

to elevated atmospheric CO2. 

The physiological controls on carbon fixation at the leaf-level in response to 

elevated CO2 have been relatively well understood for more than two decades (Farquhar 

et al., 1982; Long & Drake, 1991; Sellers et al., 1997). Thus the direct stimulatory effect 

of elevated CO2 on photosynthesis and its modification by temperature and light can be 

represented well in current canopy photosynthesis models (McMurtrie & Comins, 1996; 

Friend et al., 1997). However, experiments using elevated CO2 have also documented 

other, more indirect effects associated with physiological acclimation to long-term CO2 

enrichment, such as photosynthetic down-regulation (Crous & Ellsworth, 2004; Long et 

al., 2004; Nowak et al., 2004; Ainsworth & Long, 2005). Such photosynthetic 

adjustments can be expected to feed-forward to plant growth (Hikosaka, 2005). However, 

understanding the implications of these responses for canopy function has lagged, largely 

because direct measurements of canopy-scale photosynthesis are rare (Stocker et al., 

1997; Aeschlimann et al., 2005).  

An understanding of canopy leaf area responses to long-term CO2 enrichment is 

central to scaling physiological results to the entire canopy (Norby et al., 2005), yet such 

data are often lacking (Norby et al., 1999). One tool for linking CO2-induced changes in 

photosynthetic capacity and changes in canopy structure to understand whole-canopy 
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level photosynthesis under enriched CO2 concentration is mathematical modeling (Luo et 

al., 2000). When parameterized with both leaf-level and whole-canopy data, such as in 

this study, photosynthesis models can help to distinguish important species differences 

driving ecosystem-scale processes such as C cycling.  

Given the presence of many different species and plant functional types in 

grasslands, the BioCON FACE experiment provided a unique opportunity to understand 

how the physiology and canopy structure of different species affect GPP response under 

long-term elevated CO2 and N addition. My goal was to 1) quantify the response of 

modeled daily GPP (GPPday) to elevated CO2 with inputs for different grassland species 

monocultures exposed to elevated CO2 and/or N availability using a canopy 

photosynthesis model, 2) analyze possible sensitivities of modeled GPPday to elevated 

[CO2] and 3) evaluate the proportion of the modeled GPPday response that can be ascribed 

to direct effects of CO2 and indirect effects of physiological acclimation, and changes in 

canopy structure (e.g., total leaf area) for each species. In this way, I determined the 

relative contributions of physiology and canopy structure as major components regulating 

overall modeled GPPday to help refine future models and determine underpinnings of the 

biomass response to elevated CO2. 

 

4.3. Material and Methods 
 
4.3.1. Site description and species 

 

The BioCON (Biodiversity, CO2 and N) FACE experiment is located in a humid 

continental climate on glacial outwash comprised of loamy sand soils with very low 

nutrient availability in central Minnesota, USA (45° 25’ 59 N, 93° 12’02 W). The mean 

annual precipitation is 660 mm year-1 and the mean July temperature is 22°C, with an 

average growing season of approximately 145 days. Exposure to elevated CO2 starts at 

the beginning of the frost-free season in late April and continues until the end of the 

growing season in September. The elevated CO2 treatment represents ambient [CO2] + 

200 μmol mol-1. The N addition treatment consisted of 4 g N m-2 yr-1 applied each year in 

May, June and July. The experimental design is a split-plot where six circular plots of 20 
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m diameter from the elevated CO2 treatment and within which 2m x 2m subplots 

represent the N addition treatments for combinations of species plots. Here, two 

replicates for each combination of elevated CO2 and N treatment in monoculture plots are 

used, each of which has been grown in either ambient or elevated CO2 for six year prior 

to the start of this study. The species chosen for this study were four C3 grasses: Poa 

pratensis L., Koeleria cristata Pers., Bromus inermis Leyss. and Agropyron repens L. and 

three non-leguminous forbs: Solidago rigida L., Anemone cylindrica A. Gray and 

Achillea millefolium L. Plant species are hereafter and in the figures referred to with the 

first three letters of the genus name and the two first letters of the species name. More 

details about the site are found in Lee et al. (2001) and Reich et al. (2001).  

 

4.3.2. Model description and inputs 

I used the two-layered sun-shade canopy model BEWDY, which was described 

by Medlyn et al. (2000) with parameters estimated from site measurements. The model 

estimates plant canopy CO2 assimilation from the Farquhar model, given the biophysical 

and biochemical mechanisms of photosynthesis and their responses to atmospheric CO2 

concentration and temperature and light (Farquhar et al., 1980; Long & Drake, 1991; 

Medlyn et al., 2000). The Farquhar model (Farquhar et al., 1980) determines that leaf 

photosynthesis is given by the minimum of the rate of carboxylation when rubsico 

activity is limiting (Ac) and the rate of carboxylation when RuBP regeneration is limiting 

(Aj) : 

 An = min (Ac, Aj)   

Ac is the rate of photosynthesis when Rubisco activity is limiting and Aj the rate when 

RuBP-regeneration is limiting. Rubisco-limited photosynthesis is given by 

 ⎟⎟
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where Vcmax is the maximum rate of Rubisco activity, Ci is the intercellular concentrations 

of CO2 and, Γ* is the photosynthetic CO2 compensation point without mitochondrial 

respiration contributions, and Km is the Michaelis-Menten coefficient of Rubisco activity 

for CO2 (Medlyn et al., 2000). In BEWDY, *58.905.39 086.0 Γ+= T
m eK  (see equation 

B8b in Medlyn et al., 2000). The rate of photosynthesis when RuBP regeneration is 

limiting is given by 
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i
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where J is the rate of electron transport which is a saturating function of absorbed light 

with a maximum value of Jmax. Both Vcmax and Jmax were assumed to be linear with leaf N 

(Nf) content according to: 

 Vcmax = VN (Nf - Nmin) and Jmax = JN (Nf - Nmin) 

where Nmin represents the minimum amount of N required for photosynthesis (e.g. the 

intercept of the Vcmax – Na relationship). VN and JN are temperature dependent coefficients 

according to Medlyn et al. (2000) (equations B8c and B8d). 

 

The response of instantaneous gross photosynthesis (Ag) to light (i.e. absorbed 

radiation) is calculated by the model based on a rectangular hyperbola function given by: 
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where a is the leaf absorptance, αA is the quantum yield of absorbed radiation, I is the 

quantum flux density on the leaf (i.e., incident light). Amax is the light-saturated rate of 

photosynthesis, assumed to be linearly related to leaf N (see Medlyn et al., 2000, 

equation A3). The sun-shade model computes the average light levels for the sunlit and 

shaded fractions of the canopy using absorbed radiation derived from the total leaf area 

and the Beer-Lambert law. Direct radiation of beam radiation (Ib) does not decrease 

throughout the canopy whereas diffuse radiation (Id) is assumed to extinguish through the 
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canopy according to the Beer-Lambert law with k being the light-extinction coefficient 

and L representing the canopy depth (i.e., LAI). Therefore, 

 Isun(L) = k (Ib + Id e-kL) and Ishade(L) = k Id e-kL 

Gross daily canopy photosynthesis (GPPday) then is predicted by addition of the 

calculated gross photosynthesis from sunlit and shaded foliage at hourly time steps over 

the course of one day and integrated across the canopy depth (see equation A6 in 

(Medlyn et al., 2000). 

More detailed models of canopy photosynthesis exist (Baldocchi & Meyers, 1998; 

Wang & Leuning, 1998; Schäfer et al., 2003) but BEWDY incorporates the major 

elements regulating canopy photosynthesis by considering sunlit and shaded leaf area 

separately (dePury & Farquhar, 1997; Medlyn et al., 2000; Friend, 2001). The hourly 

time-step integrated over the day allows for accurate scaling of the many non-linear 

processes associated with photosynthesis such as the diurnal variation in light-attenuation 

through the canopy, while requiring minimal data input (Williams et al., 1997; Medlyn et 

al., 2003). Key assumptions of the model are: 1) that both light and foliar nitrogen 

concentrations decrease proportionally with canopy depth, 2) that Rubisco capacity is 

linearly related to leaf N concentration, 3) the light extinction coefficient is assumed to be 

the same for both direct and diffuse radiation, 4) stomatal closure is assumed to be 

homogeneous, and 5) the grassland and forb canopies are considered to be spatially 

homogenous (i.e. no clumped leaves). 

My goal was to estimate daily gross canopy photosynthesis (GPPday) in different 

grassland species using data across 2003 to 2006, the 6th to 9th year of CO2 exposure in 

the BIOCON experiment. These years were simulated in order to assess long-term effects 

of elevated CO2 and N addition on daily GPP. Inputs for the canopy photosynthesis 

model were meteorological data, physiological data, functional relationships, and canopy 

structure. Meteorological data, comprising hourly means for radiation (PAR), 

precipitation, and temperature, were taken from a nearby weather station (40 km south of 

the site in St. Paul, MN USA). Physiological data such as leaf N content, parameters for 

stomatal responses to the environment (Collatz et al., 1991), and slopes and intercepts of 
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the Vcmax- Na and Jmax- Na relationships were derived for each species separately based on 

data from the site in each treatment. Temperature dependence of physiological 

parameters reflecting the carboxylation (Vcmax) and electron transport (Jmax) capacity of 

leaves were taken from (Medlyn et al., 2002). I used a single averaged value of leaf Na 

per species and treatment representing Na at the top of the canopy (N0). The model then 

calculates the N gradient throughout the canopy according to the attenuation of light 

following (Hirose & Werger, 1987) (see Equation A3 in Appendix A of Medlyn et al., 

2000). Assuming that the N-gradient follows the light gradient is a robust assumption in 

canopies with low LAI because the difference in canopy photosynthesis with a uniform N 

distribution versus a calculated gradient (e.g., optimal N distribution) is very small (<1%) 

(Field, 1983; Hirose & Werger, 1987).    

Canopy structure was estimated using light penetration measurements from each 

replicate plot of each species monoculture (Pierce et al., 1994) and assuming an 

ellipsoidal distribution for the vertical profile of leaf area (Wang et al. 2007). Leaf Area 

Index (LAI) of each monoculture canopy was determined using an inversion of 

photosynthetically-active radiation (PAR) transmitted to the base of the canopy (Decagon 

Instruments, WA USA) following the Beer-Lambert law (Campbell & Norman, 1998). 

LAI data of each plot were collected monthly by summer interns at BIOCON and 

provided to me by P.B. Reich for modeling purposes. LAI was averaged across the four 

years for each monoculture plot. The fraction of sunlit and shaded leaf area in the model 

is calculated based on the total LAI and sun zenith angle according to equations from 

Campbell & Norman (1998), where the light extinction coefficient is assumed to be the 

same for both direct and diffuse radiation. 

Gas exchange measurements that were used as input, such as Vcmax and Jmax, are 

described in detail in Crous et al. (submitted, chapter 3).  Total leaf N concentration was 

determined using an elemental analyzer (Carlo-Erba Instrumentations, Milan, Italy), and 

converted to area-based N (Na) using specific leaf area determined for each species plot. 

Slopes and intercepts of relationships between Vcmax - Na and Jmax - Na were determined by 

fitting a linear regression for each species x CO2 treatment combination. These served as 

inputs to the model to drive photosynthesis, and are summarized in Table 5.  
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Table 5: Summary of significant Vcmax-Na  and Jmax-Na relationships at 25°C across three 
forbs species and four C3 grass species grouped in relationships per functional group at 
BioCON in ambient and elevated CO2 treatments across N treatments. The relationships 
were used along with leaf Na from Crous et al. (Chapter 3) to calculate Vcmax in the daily 
GPP model. The number of observations per relationship is represented by Nobs. 

 

 

 

The model simulated GPP over the month of June, calculating an averaged daily 

GPP (GPPday). I chose to examine the relationships between canopy-level and leaf-level 

variables during that month because that time has the most favorable climatic conditions 

for C3 species photosynthesis and growth for this region. Also, intensive leaf-level 

measurements were conducted in June when the monocultures were at peak LAI, and 

harvests were conducted at the end of the month. Given that Vcmax decreases towards the 

end of the growing season and when leaves age (Wilson et al., 2000), I chose to shorten 

the model period rather than assuming the same carboxylation rate throughout the 

growing season. Averaged across years, the model should reflect GPPday values affected 

by the experimental treatments but minimally affected by inter-annual climatic 

variability. 

Sensitivity analysis was used to assess the contribution of physiological and 

structural canopy properties to C uptake in the model. GPPday was simulated when the 

slope of the Vcmax-Na relationship, Na or LAI were independently increased or decreased 

by 10, 20 or 30%. This range corresponded with observed changes in physiological 

Functional group CO2 
Treatment 

Equation R2 P-value Nobs

Forb species Ambient Vcmax = 29.29 + 43.21 Na 
 

0.29 0.018 19

 Elevated Vcmax = 24.80 + 34.69 Na 
 

0.35 0.015 16

 Ambient Jmax =  86.52 + 74.54 Na 
 

0.39 0.0058 18

 Elevated Jmax =  82.18 + 56.35 Na 
 

0.21 0.086 15

C3 grasses Across CO2 
treatment 

Vcmax =  48.65 + 14.80 Na 
 

0.12 0.0003 110

 Across CO2 
treatment 

Jmax = 84.43 + 55.20 Na 
 

0.19 <0.0001 104
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variables across species in the BioCON experiment (Crous et al., submitted). The 

importance of each class of inputs driving the model ouput for GPPday was assessed over 

the month prior to biomass harvest. 

 

 

4.3.3. Total Biomass 

 

I analyzed biomass accumulation as a measure of productivity of the grassland 

species at BioCON (Reich et al., 2001b). Biomass data from P.B. Reich were available 

aboveground biomass, total root biomass and total biomass for monocultures of C3 

grasses and C3 forbs averaged across the sixth to ninth growing season of the experiment. 

Monocultures of each species had two replicates of each combination of CO2 and N 

treatments. Above- and belowground biomass was assessed in June of each growing 

season as described in Reich et al. (2001). In brief, a 1m2 area of vegetation was clipped 

just above the soil surface for harvest, sorted into live and senesced material, dried and 

weighed. Roots were isolated from three soil samples taken to 20 cm depth from each 

plot where aboveground biomass had been sampled. The roots were washed and sorted 

into fine (<1mm diameter), coarse and crown roots, then dried and weighed. Biomass 

data were used to correlate model results and gain more insight into species-specific 

outcomes of GPP in elevated CO2 and N addition. 
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4.4. Results and Discussion 
 
First, I examined the sensitivity of different inputs in the model on daily GPP 

(GPPday). The sensitivity analyses were designed to evaluate three effects of elevated CO2 

on GPPday: the direct response of increased concentrations of CO2 ([CO2]), the indirect 

effect of leaf physiology and the indirect effect of leaf area index (LAI). Evaluating these 

effects help to explain species-specific responses of modeled GPPday in elevated CO2 and 

N addition. I then used the model to examine actual outcomes at BIOCON and compared 

these with results of total biomass.  

 

4.4.1. Sensitivity of GPPday to changes in Vcmax 

 
To examine the sensitivity of modeled GPPday to leaf-level physiology (i.e. 

changes in Vcmax and Na in elevated CO2), I tested how GPPday changed in response to 

leaf-level changes in Vcmax and leaf nitrogen at ambient and elevated CO2 (Figures 13 and 

14).  

Increasing foliar N by 10-30% increased Vcmax whereas decreasing foliar N 

decreased Vcmax in all species (Fig.13). The different slopes of the Vcmax - Na sensitivity 

isolines in figure 13 indicated that some species were more sensitive to changes in leaf Na 

than others. Stoloniferous grasses, e.g. Bromus and Agropyron, were most sensitive to a 

change in Na, where a 20% increase in Na increased Vcmax values by 18%. The Vcmax in 

bunchgrass Poa pratensis was least sensitive to leaf N because a 20% increase in Na in 

Poa had little effect on Vcmax (e.g., +2% change in Vcmax). However, the different slopes in 

Fig. 13 are correlated with the magnitude of the intercepts and the strength of the Vcmax-

Na relationship. When intercepts were high, slopes were low (Table 5) and Vcmax was less 

sensitive to changes in Na. Fast-growing, productive species (e.g. Solidago, Bromus and 

Agropyron) had higher carboxylation rates associated with high leaf N. Because Vcmax 

accounts for both leaf N content and the N allocated to Rubisco via the Vcmax - Na 

relationship slope, Vcmax is a key variable to compare in terms of species’ modeled GPPday 

sensitivity to physiology (Fig. 14). 

 The sensitivity of modeled GPPday to changes in Vcmax was similar in each species 

resulting in one single relationship for all grass and forb species in ambient CO2 
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conditions (Fig. 14). Among all species, a change of 10% in Vcmax resulted in a 7% 

change in daily GPP in ambient CO2 conditions, though species differed in the magnitude 

of change in Na that brought about a 10% change in Vcmax (Fig. 13). This response of 

photosynthetic capacity was similar for all species because of the same basic mechanism 

represented in the model. Sensitive species (Bromus, Agropyron and Solidago) with 

larger slopes in Fig. 13, also had larger changes in modeled GPPday with physiological 

adjustments in Vcmax because those species were positioned at the outer ends of the 

GPPday-Vcmax relationship in Fig. 14. As a result, modeled GPPday can be considered 

sensitive to down-regulatory changes in Vcmax as a driver of canopy-scale CO2 

assimilation. This would include down-regulation of Vcmax due to low N as well as other 

environmental conditions. 
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Figure 13: Relative changes in Vcmax (%) for different grassland species as a function of 
the change in foliar N (%) in a sensitivity analysis. The lines indicate species-specific 
Vcmax sensitivity to leaf N. The red points indicate the observed mean elevated CO2 effect 
on foliar N values for each species, and the CO2 effect on Vcmax based on averaged data 
from years 6-9 in BIOCON. 
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Figure 14: Relative changes in daily GPP (GPPday) (%) for different grassland species as 
a function of changes in Vcmax (%) in ambient (blue points) and elevated CO2 (red points). 
Points represent values for all 7 species at 6 sensitivity levels in a sensitivity analysis. 
The observed elevated CO2 effect based on field measurement for each species on Vcmax 
is represented in red with the corresponding change in GPPday. Linear regressions showed 
the following relationships: Y = 0.717x in ambient CO2 (blue points) and Y = 0.976x + 
27.6 in elevated CO2 (red points). 

 

The overall sensitivity of modeled GPPday to elevated CO2 must incorporate both 

short- and long-term effects of elevated CO2. Short-term effects in the model reflect the 

direct effect of elevated CO2, whereas long-term effects include other adjustments such 

as changes in Vcmax. For modeled GPPday at an elevated [CO2] of 560 μmol CO2 mol-1, 

variation in Vcmax responses among species represented a relationship with higher slope 

than in ambient CO2 conditions and an intercept of 27.6%. Therefore, GPPday at elevated 

CO2 is more sensitive to Vcmax than GPPday in ambient CO2 conditions (Fig. 14). 

According to the slopes of the linear regressions in each respective CO2 treatment (Fig. 

14), every 10% change in Vcmax results in a 9.8% change in GPP in elevated CO2 

conditions compared with a 7.2% change in GPPday in ambient CO2. The Y-intercept of 

the relationship was 27% higher in elevated CO2 than ambient CO2 representing the 

modeled magnitude of the direct effect of elevated CO2 (53% increase in [CO2]) on 
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GPPday. Without any changes in Vcmax, the GPPday is still 27% increased in elevated CO2. 

This increase in canopy C uptake is lower than the expected short-term leaf-level 

photosynthetic CO2 enhancement at BioCON (~50%, see chapter 3, (Lee et al., 2001) 

because diurnal effects and effects of sunlit and shaded leaves diminish the potential for 

photosynthetic enhancement from that expected for single leaves in full sun.  

 

4.4.2. Sensitivity of GPPday to changes in LAI 

 
Total leaf area is a core ecosystem attribute that controls CO2 fluxes between 

ecosystems and the atmosphere (Baldocchi et al., 2000). LAI ranged from 0.2 to 2.0 in 

the herbaceous monoculture plots at all CO2 and N levels in this study. All species 

showed a very high sensitivity of modeled GPPday to LAI (Fig. 15a), with a 

correspondence close to 1:1 between the relative variation in LAI and relative change in 

modeled GPPday (slope = 0.95). Due to self-shading, species monocultures with higher 

LAI such as Solidago showed a lower instantaneous enhancement response of modeled 

GPPday to elevated CO2 than other species (e.g., 21% versus a mean of 26% for the 

remainder of the species). However, the observed increase in LAI in elevated CO2 can be 

a driver of increased GPPday, as has been shown for some forests (Baldocchi et al., 2000). 

However, the long-term cumulative effects of increased GPPday can also drive leaf area 

growth, especially in plant species that prefer to allocate photosynthetic resources to 

aboveground biomass. The model also predicted that LAI would need to be reduced by 

22% in order to completely compensate the direct effect of elevated CO2 (crossing point 

of 0% change in GPPday and change in LAI, Fig. 15a). 

I found a steeper relative slope in modeled GPPday with variation in LAI than for 

variation in Vcmax in the sensitivity analysis at elevated CO2 (Fig. 15b). Whereas a 10% 

increase in Vcmax resulted in a 9.8% increase in modeled GPPday (Fig. 14), here a 10% 

increase in LAI resulted in an 11.9% increase in GPPday in elevated CO2. As a result, 

across all species and N levels there was generally a greater sensitivity of modeled GPP 

to LAI than Vcmax (Table 6).  
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Figure 15: (a) Relationship between the change in LAI and the change in GPPday across 
N treatments in ambient CO2 (Y = 0.95x, blue symbols) and in elevated CO2 (Y = 1.19x 
+ 26.14, red symbols) from a sensitivity analysis for each species. (b) Comparison of 
relationships resulting from relative changes in GPPday as a function of changes in Vcmax 
(thick black dashed line, from Fig. 14) and as a function of LAI (red dashed line, from 
Fig. 15a) in elevated CO2 (+CO2) to assess the sensitivity of each variable on modeled 
GPPday. 

a) 
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4.4.3. Contributions of Vcmax and LAI to the total change in modeled daily GPP 

 
The sensitivity analyses indicated that both LAI and physiological adjustments are 

critical to estimates of GPPday. Therefore I examined the relative contributions of these 

variables to the overall CO2 enhancement for each species, in addition to the direct effect 

of CO2 itself (Table 6). The relative contribution of each component to a change in 

modeled GPPday was calculated as a ratio of elevated/ambient CO2 conditions. 

Decomposing the total CO2-induced change in modeled GPPday into component 

contributions of direct [CO2] plus carboxylation (Vcmax) and LAI gave insight into the 

relative proportions of these components as well as species-specific variation of these 

responses. 

Modeled GPPday was most sensitive to the direct effects of an increase in atmospheric 

CO2 from 360 μmol CO2 mol-1 to 560 μmol CO2 mol-1, via a consistent contribution of 

+21 to +28% to the overall GPPday response (Table 6). While there was considerable 

variation in modeled GPPday responses to elevated CO2 (Table 6) the greatest 

enhancements were observed for species and N availability conditions that showed the 

largest LAI increases. The change in LAI contributed between -47 to +186% to the total 

change of GPP in elevated CO2, depending on species and N treatment. LAI increased 

more in the N-added treatments than in ambient N. Despite some degree of 

photosynthetic down-regulation in most species with added N (+Vcmax in Table 6), 

increased LAI in the N-addition treatment ultimately resulted in a strong enhancement of 

canopy photosynthesis in elevated CO2 (Table 6). Therefore, the total change in GPPday in 

elevated CO2 was larger in N-added treatment than in unamended N for all species except 

Agropyron, Poa and Anemone. A higher modeled GPPday at high N conditions can be 

attributed to increased N availability, enabling plants to sustain higher growth rates in 

elevated CO2 and accumulate more biomass (Schneider et al., 2004b; Aeschlimann et al., 

2005; Reich et al., 2006a). Both Poa and Agropyron had smaller CO2 enhancement in 

GPP in high N compared to low N was due to reductions in LAI in high N (Table 6). 

These species may allocate more resources to roots in order to forage for nutrients 

because both species had high root:shoot ratios (Chapter 3). Strong reductions in LAI in 
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combination with down-regulation reduced the positive CO2 fertilization effect in 

Bromus, Achillea and Anemone (Table 6) in ambient N.  

Species with more down-regulation in elevated CO2, such as forbs, had less overall 

GPP enhancement especially when this effect was not compensated with increased LAI 

(Table 6). Even in the N-addition treatment, LAI responses to elevated CO2 were offset 

by photosynthetic down-regulation in forbs such that the net effect of these two 

components was close to zero. Instead, any modeled GPPday enhancements in forbs were 

due to direct effects of elevated CO2 on photosynthesis, generally resulting in smaller 

GPPday enhancements in elevated CO2 than those exhibited by C3 grasses. While C3 

grasses responded to elevated CO2 with increased LAI, forbs showed little or no LAI 

enhancement in elevated CO2 and hence small positive to large negative effects of 

changes in LAI on modeled GPPday (Table 6).  

 
Table 6: Relative contribution of increased atmospheric CO2 (+CO2), canopy structure 
(+LAI), and leaf photosynthetic acclimation (+Vcmax) to the total response of GPPday to 
elevated CO2 for each species in high and low nitrogen. Leaf photosynthetic acclimation 
is considered to be adjustments in Vcmax, as the major driver for photosynthesis. The total 
shown is the sum of all the components. 
 

 Ambient N Added N 
Species + CO2 +LAI +Vcmax Total % 

change
+ CO2 +LAI +Vcmax Total % 

change
Agrre +26 +7 +1 +34 +26 -6 +2 +22
Broin +28 -17 -2 +9 +27 +32 0 +59
Koecr +26 +1 +7 +36 +26 +186 -3 +209
Poapr +27 +32 +2 +61 +26 -9 +3 +20
    
Achmi +25 - 47 -24 -46 +25 +16 -24 +17
Anecy +27 -12 +6 +21 +26 -1 -7 +18
Solri +23 +8 -19 +12 +21 +20 -17 +24

 

Forb species had higher down-regulation of photosynthetic capacity in elevated CO2 

in both high and ambient N treatments than grasses. All forbs down-regulated in elevated 

CO2 with ambient N, whereas only Bromus showed down-regulation in grasses in 

elevated CO2. In high N availability, the down-regulation of forbs in elevated CO2 

remained of similar magnitude whereas grasses did not show as much down-regulation as 
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in ambient N conditions. This supports my previous observation of photosynthetic down-

regulation in forbs vs. grasses in elevated CO2 (Crous et al., submitted) and places these 

results in context of the overall ecosystem GPPday response. Overall, grasses increased 

GPPday in elevated CO2 by 47% on average whereas forbs only increased GPPday by 9%. 

A negative effect of N addition or elevated CO2 has also been found in forbs species at 

other sites, suggesting that forbs species may be more prone to global change effects than 

graminoids (Zavaleta et al., 2003; Stevens et al., 2006). This was attributed to increased 

competition with nitrophilic grasses (Stevens et al., 2006) potentially reducing species 

diversity of grasslands (Suding et al., 2005; Clark & Tilman, 2008) 

 

4.4.4. Comparison of modeled GPPday with measured total biomass 

 
The canopy photosynthesis estimated by the BEWDY model for each species and 

treatment correlated well with total biomass data for each species across treatments (Fig. 

16). There were three distinct species relationships, however, which were significantly 

different from one another (P ≤ 0.01). Two of these groups were represented by a single 

species: Poa pratensis (up triangles, Fig. 16) and Solidago rigida (down triangles, Fig. 

16). The third group included the other five species, because the slopes of each individual 

species fit were not significantly different from each other (P > 0.1). All models 

accounted for 60-98% of the variation in measured biomass (Fig. 16), indicating that this 

model based on few physiological inputs and LAI, does reasonably well estimating daily 

gross canopy photosynthesis (GPPday) especially because biomass accrual reflects 

additional processes such as turnover and allocation that are not captured by the model. 

Therefore, predicted changes in modeled GPPday between treatments do not necessarily 

correlate well with observed changes in biomass.  

 Daily GPP and total biomass are different, because carbon losses to respiration, 

turnover and allocation to foliage are represented in biomass data whereas modeled 

GPPday only reflects the gross canopy photosynthesis. These different entities prevent a 

true validation of the model, though we can evaluate how well modeled GPPday correlated 

with total biomass (Fig. 16 and Appendix). Poa pratensis differed from other species due 
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to its large total biomass with low GPPday, whereas Solidago rigida had the highest 

modeled GPPday of all species for a relatively small amount of total biomass (Fig. 16).  

The reason for these different slopes in Solidago and Poa compared to other species 

can be explained by differences in biomass allocation patterns, more specifically by 

examining the root:shoot ratios (Fig. 17). Poa had the largest amount of root biomass 

(792 g C m-2 across CO2 treatments), resulting in the highest root:shoot ratio of all 

species (Fig. 17). In contrast, Solidago had the lowest root:shoot ratio of all species, with 

proportionally more aboveground biomass compared to other species. This resulted in 

higher LAI and higher GPPday in Solidago than any other species examined (Fig. 16). 

Along with high LAI, Solidago had the highest maximum carboxylation rate whereas 

Poa had the lowest rates. This suggests that productive, fast-growing species may 

preferentially invest resources in photosynthetic capacity whereas slower growing species 

such as Poa first allocated resources to the root system.  
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Figure 16: Relationship between total biomass (g m-2) and modeled daily GPP (g C m-2 
day-1) for seven grassland species, each indicated with different symbols. Each point 
represents one of four possible treatment combinations of elevated CO2 and N addition 
for a given species. Relationships for Solidago (Solri, down triangles): Y = 7.24x + 1.7, 
R2 = 0.64; Poa (Poapr, up triangles) Y = 3.32x – 0.18, R2 = 0.98; all remaining species:  
Y = 4.32x + 0.19, R2 = 0.91. 
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In theory, patterns of allocation and turnover represented in biomass can be correlated 

to modeled GPPday. The foliage biomass (Bf) or root biomass (Br) over time is represented 

by the total biomass increment (net growth or NPP) multiplied by the fraction allocated to 

foliage (af) or root (ar) and divided by the amount of foliage or root turnover (tf or tr 

respectively). Hence, 

 Bf = af/tf * NPP  and  Br = ar/tr * NPP 

where at BIOCON the foliage part completely turns over due to winter die off (tf = 1) and 

the root turnover is assumed to be constant over the course of one month, for which the 

model ran. This assumption would need to be adjusted if the model was extended over 

one growing season or several years due to temporal patterns of root mortality. Given that 

af + ar = 1 then ar = 1- af. So the total biomass (BTOT) is the sum of biomass components 

of roots (Br) and shoots (Bf):  

BTOT = Bf + Br = af*NPP + (1- af)*NPP*1/tr 

Given that carbon use-efficiency (CUE) is defined as the ratio of net primary production 

to gross primary production (Cannell & Thornley, 2000), GPP can be related to NPP by 

NPP = GPP * CUE. 

Therefore,  

BTOT = Bf + Br = GPPday*CUE *[af+(1-af) 1/tr] 

 

Hence, root:shoot ratios, defined as the ratio of total root biomass to total foliage biomass 

(Br/Bf) can be calculated as 

fr
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dayf

rdayf
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tGPPCUEa
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=
−
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Assuming a constant root turnover (tr) and ignoring other C losses such as herbivory and 

root exudation, the equation above indicates that different root:shoot ratios (Br/Bf) are 

related to different allocation patterns (af) among the different prairie grassland species, 

resulting in different slopes when correlating GPPday with total biomass (Fig. 16). 
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Figure 17: Means and standard error of measured root:shoot ratio of 7 grassland species 
at BioCON in ambient (open bars) and elevated CO2 (black bars) across both N 
treatments. 
 
 

Estimates of LAI and biomass, although obtained through independent 

measurements, are likely to be correlated among plots.  This means that a statistical 

relationship (i.e. P-value) between total biomass and daily GPP might be inflated because 

LAI is related to above ground biomass.  However, my interest here is not in the 

statistical strength of the relationship, but rather to gain the best possible predication of 

daily GPP for each species under climate change. 

Improvements to the model can be made by including inputs for LAI, allocation 

and turnover to estimate total biomass in a growth model across the growing season. The 

model would calculate biomass increments each day based on inputs of LAI, allocation 

and turnover and integrate these daily increments across a growing season to estimate 

total biomass. Obtaining a model estimate of total biomass would allow validating the 

model results against the harvested total biomass. However, different root:shoot ratios 

between forbs and grasses (Fig. 17) may indicate different N-uptake mechanisms, which 

also may need to be incorporated in the growth model. Though I clearly showed good 
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correlations between daily GPP and total biomass and how GPPday is related to root:shoot 

ratios, a growth model would decrease the direct influence of LAI in addition to 

improving insights into biomass responses of different grassland species to elevated CO2 

and N addition and how these responses may affect biomass proportions and species 

composition in diverse species plots. 
 
 

4.5. Conclusions 
 

This study assessed differences in GPPday between different CO2 and N treatments 

for different grassland species to understand how this response is influenced by 

physiology and canopy LAI in a simple sun-shade model. Evaluating the relative 

contributions of each component in the model, the increase in elevated CO2 itself 

contributed ~27% of the total GPP increase in elevated CO2.  In addition to this direct 

effect were the contributions of change in LAI and photosynthetic acclimation to 

differences in GPPday between elevated and ambient CO2. Though few analyses have 

discussed the importance of LAI responses to elevated CO2 (Norby et al., 2003), the 

model showed that both responses of LAI and physiological acclimation varied among 

species and functional groups. Grasses showed large increases in LAI in addition to the 

direct effect of CO2, while forbs showed little LAI enhancement to elevated CO2. 

Therefore, the small LAI response in forbs was offset by the amount of photosynthetic 

down-regulation resulting in a net effect in GPPday due only to the direct effect of 

elevated CO2. Different allocation patterns in different species were important with 

respect to their responses to elevated CO2. These processes were not considered in this 

model simulating canopy photosynthesis but could be incorporated into a growth model. 
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4.6. Appendix  
 

Model simulation results of modeled daily GPP for C3 grass and forb species at BioCON, 

Minnesota, USA and measured total biomass (g C m-2). All data were averaged over 

years 6-9 of the experiment. Ambient CO2 data are indicated by open bars. Elevated CO2 

data in FACE are indicated by dark bars. 
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Chapter 5 

 

Photosynthetic adjustments to elevated CO2 within and 
across functional groups of plants: a synthesis. 

 

 

5.1. Introduction 
 

The overarching goal of this dissertation was to determine potential changes in the 

fundamental photosynthesis-nitrogen relationship under elevated CO2 concentrations and 

to quantify plant responses to elevated CO2 and N-addition including potential 

interactions. If the strong positive relationship between photosynthesis and foliar nitrogen 

were to change under elevated CO2, then this could affect C uptake estimates at higher 

scales because many models employ this relationship at the leaf-level to scale up to larger 

scales. Because most leaf N is invested in photosynthetic proteins (Evans, 1989), Vcmax is 

also strongly correlated with leaf N (Walcroft et al., 1997; Medlyn et al., 1999).  

The relationship between photosynthetic capacity (e.g. maximum leaf CO2 

assimilation) and leaf N is a tool to evaluate variation in carbon processing among 

diverse plant species. Changes in this relationship in response to elevated CO2, such as a 

declining slope in the relationship between carboxylation rate (Vcmax) and leaf Narea, could 

indicate a decoupling between photosynthesis and leaf nitrogen and may reveal a 

mechanism by which plants adjust physiologically to long-term elevated CO2. This last 

chapter will aim at summarizing my results while determining general patterns in my 

data.  

Only a few experimental studies have exposed vegetation to long-term elevated 

CO2, currently limiting our knowledge about multi-factor interactions and insight into 

ecosystem functions with respect to global change. My dissertation work aimed at finding 
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a general mechanism by which plants adjust to changing environmental conditions such 

as elevated CO2 and N fertilization. In the first chapter I reported down-regulation of 

photosynthesis in one-year old loblolly pine leaves but not in current-year leaves. This 

down-regulation was caused by a reduced allocation of N to Rubisco in leaves grown in 

elevated CO2. The reduced allocation of N to Rubisco resulted in declining slopes of the 

Vcmax-N relationship after eight to nine years of elevated CO2 exposure. The slope of this 

relationship was restored by N fertilization, implying that N availabiliy modulated the 

CO2 response in pines. 

A modulated CO2 response with N addition was also found in herbaceous species 

at BioCON, resulting in significant CO2 x N interactions. Both mass-based foliar N and 

photosynthesis at a common CO2 level increased more when N was added in ambient 

CO2 than in elevated CO2. In addition, significant CO2 x N x functional group 

interactions indicated that forb species were negatively affected long-term by elevated 

CO2 which was further exacerbated with N addition. Non-leguminous forb species did 

not show any CO2 enhancement in long-term elevated CO2 in N addition plots. This was 

attributed to significant reductions (- 28%) in leaf Nmass concentration in forbs. In 

contrast, grasses were able to maintain leaf N concentrations along with a photosynthetic 

CO2 enhancement of 68%. Differences in leaf N reductions in response to elevated CO2 

were linked to differences in allocation. Grasses grew significantly more root biomass 

than did forbs in elevated CO2 than forbs, presumably allowing them to forage for more 

nutrients and meet enhanced growth demands in elevated CO2. 

These leaf-level differences between plant functional groups persisted at the 

canopy level because increased photosynthesis rates in elevated CO2 resulted in higher 

LAI and higher daily GPP. In ambient CO2 conditions, GPPday values were similar in 

grasses and forbs but grasses had larger GPPday enhancements (+43%) in elevated CO2 

compared to forb species (+12%). Both LAI and physiological traits contributed to the 

overall GPPday enhancement in elevated CO2, though these contributions were variable 

for each species. The relationship between total biomass and modeled GPPday confirmed 

the importance of different allocation patterns between the species, which seems to be 

important in their responses to elevated CO2 and N addition. In this chapter I will tie my 
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data together with the literature focusing on general mechanisms at the leaf scale in 

different functional groups.  

 

5.2. Climatic differences and site location 
 

Because elevated CO2 experiments are sufficiently intensive that they are not 

replicated across many sites or landscapes, some ecological information from them is 

likely to be site-specific. I asked, were the differences in results between the Duke Forest 

and BioCON experiments due to differences between the sites, or more generally due to 

biological differences? Both of these experiments were established in artificial vegetation 

that represents the major dominant natural vegetation type in their respective regions. The 

Pinus taeda L. stand in Duke Forest can be considered representative of 23 million ha of 

southern pines in the U.S., while C3 grass-dominated prairies once covered tens of 

millions of ha across the northern plains region of the U.S. and Canada. Both sites are 

nutrient-poor and limited by N availability as indicated by low rates of N mineralization, 

but they represent different soil Orders and different textural classes (sand vs. loam; 

Table 7).  

The FACE sites that were intensively studied differed in a number of important 

regards (see Table 7). There were strong climate differences as expected from the 

latitudinal differences between the sites, including a shorter growing season, colder 

average temperatures, and lower annual precipitation at BioCON than Duke Forest (Table 

7). While growing season duration has important effects on plant phenology and may 

constrain leaf longevity, apart from this there is strong convergence in leaf traits across 

large climatic gradients worldwide (Wright et al., 2005; Enquist et al., 2007a). Despite 

climate differences between the sites, summertime temperatures are comparable between 

them though slightly cooler on average for the more northern BioCON site than Duke 

Forest. Recent evidence suggests that long-term climate and temperature in particular has 

a small to negligible role in explaining latitudinal differences in photosynthesis and plant 

metabolism across many sites (Enquist et al., 2007b; Helliker & Richter, 2008). 

Moreover, the physiological variables presented for Duke Forest and BioCON in 

previous chapters and in here Fig. 18 and Fig. 21 such as Vcmax and Jmax were measured at 
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temperatures similar to the mean July maxima in Table 7 and hence these differences are 

relatively small and cannot account for the responses that were observed. Given the 

decadal time scale of these experiments and in the absence of strong evidence that 

climate or site factors co-vary with the leaf traits or elevated CO2 responses observed 

previously in Chapters 2 and 3, I consider these differences to be driven by intrinsic 

biological differences between species. One major aspect of these biological differences 

can be ascribed to plant functional group, and hereafter I analyze my data by functional 

group.  

 

Table 7: Site characteristics of two major Free-Air CO2 Enrichment experiments where 
data for this dissertation were collected. 
 

Site Characteristic Duke Forest, N. Carolina BioCON, Minnesota 
Latitude, Longitude 35.9°N, 79.1°W 45.4°N, 93.2°W 
Mean annual temperature1  16.5° C 7.2° C 
Mean daily maximum July 
temperature1  

31.5° C 28.4° C 

Growing season1 March – October Late April – early 
September 

Growing season duration (frost-
free days)1 

~ 200 days ~ 145 days 

Mean annual precipitation1 1150 mm 700 mm 
Soil type  Hapludalf Psamment 
Dominating soil texture Clay Sand 
N Mineralization rate2 3 g N m-2 yr-1 2-3 g N m-2 yr-1 
N fertilization treatment 11 g N m-2 yr-1 4 g N m-2 yr-1 
CO2 treatment in FACE +200μmol CO2 mol-1, for 

570 μmol CO2 mol-1 
560 μmol CO2 mol-1 

FACE ring diameter 30 m 26 m 
Subplots Two ring halves (265 m2) 61 4m2 plots per ring 
1 Data from: http://cdo.ncdc.noaa.gov/cgi-bin/climatenormals/climatenormals.pl from 
http://www.ncdc.noaa.gov/oa/climateresearch.html, and 
http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCEP/.CPC/.GSOD/.MONTHLY/  
2 Data from: (Oren et al., 2001b), (Finzi et al., 2006) and (Reich et al., 2006a). 
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5.3. Effects of long-term elevated CO2 on photosynthetic capacity 
 

5.3.1. Changes in photosynthetic capacity in long-term elevated CO2 at both 

BioCON and Duke FACE sites 

 
Because the strong positive relationship between photosynthesis and nitrogen 

arises from the major investment of N in photosynthetic proteins (Evans, 1989), Vcmax is 

strongly correlated with N (Medlyn et al., 1999). In contrast to photosynthesis, 

carboxylation rates reflect the biochemical function of the plant, independent of climatic 

variables or stomatal responses. There were distinct relationships between Vcmax and N for 

each functional group examined (e.g. grasses, forbs and pine, Fig. 18) and two out of 

three functional groups had significantly different relationships in elevated CO2 

compared to ambient CO2.  

Whereas there was no elevated CO2 effect on the photosynthetic capacity (e.g., 

Vcmax)  in grasses (P > 0.1), both non-leguminous forbs and pine species showed 

significant differences in slopes between ambient and elevated CO2 treatments of their 

respective Vcmax-Narea relationships (Fig. 18). Slopes were less steep in elevated CO2 (42% 

less steep in forbs and 51% less steep in pines) compared to ambient CO2. Both 

functional groups showed lower photosynthetic capacity in elevated CO2, accompanied 

by a reduction in leaf Nm (Fig. 19). Forbs had a higher photosynthetic capacity in ambient 

CO2 than C3 grasses but reduced to the same level as the C3 grasses when exposed to 

elevated CO2. Both forbs and pine reduced mean photosynthetic capacity significantly in 

elevated CO2 (P = 0.03 for forbs and P = 0.06 for pines across N treatments, Fig. 19), 

whereas grasses did not (P > 0.1). This trend corresponded to no reduction in leaf Nmass in 

grasses, but significant reductions in pines (-12%, P = 0.017) and forb species (-18%, P = 

0.04) in elevated CO2 (Fig.19). 
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Figure 18: Relationship between maximum carboxylation rate, Vcmax and leaf Narea in 
ambient (0C, open symbols) and elevated CO2 (+C, filled symbols) treatments for eight 
species from two FACE sites categorized in three functional groups: Pinus taeda (pinta, 
triangles), non-leguminous forbs (circles) and C3 grasses (squares). Relationships were 
significant (P<0.0001) and are as follows: Pinta: Vcmax = 10.91 Narea + 36.91 in elevated 
CO2, R2 = 0.40 and Vcmax = 22.29 Narea + 19.98 in ambient CO2, R2 = 0.40. Non-
leguminous forbs: Vcmax = 35.65 Narea + 25.49 in elevated CO2, R2 = 0.35 and Vcmax = 
61.49 Narea + 11.74 in ambient CO2, R2 = 0.47. C3 Grasses across both CO2 treatments: 
Vcmax = 22.04 Narea + 43.12, R2 = 0.26. All species are represented on a surface area basis. 

 

Despite these patterns of down-regulation in the photosynthetic capacity of pines 

and non-leguminous forbs in elevated CO2, there was still significant enhancement of net 

photosynthesis in elevated CO2. The photosynthetic enhancement is largest in grasses (+ 

57%, P < 0.0001), where no down-regulation occurred versus a smaller enhancement in 

pines (+ 31%, P = 0.0011) and no significant enhancement in forbs (+9%, P = 0.58) 

across nitrogen treatments (Fig. 19). This suggests that the concentrations of elevated 

CO2 contribute directly to the overall response via direct effects such as the repression of 

photorespiration at the leaf-level and a more efficient carboxylation enzyme (Nowak et 

al., 2004; Ainsworth & Rogers, 2007) and that the direct positive effect of elevated CO2 

on photosynthesis is larger than the indirect down-regulation effect. 
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Figure 19: Means and standard errors of maximum carboxylation rate (Vcmax, top), foliar 
N (middle) and net photosynthesis (bottom) on an area basis (left panels) and mass basis 
(right panels) in ambient (open bars) and elevated CO2 (filled bars) for each functional 
group (e.g. Forbs, C3 grass or Pine tree) representing eight species studied in this 
dissertation at two FACE sites with 6-9 years of elevated CO2 exposure. 
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Table 8: Overview of species and sites used for Figure 20 including their geographical location, functional group, type of experiment 
(OTC = Open-Top Chamber, FACE = Free-air CO2 Enrichment) and duration of CO2 exposure in years. 
 

Species Functional 
Group 

Site Latitude Type of 
Experiment 

Duration 
of CO2 
exposure 

Reference 

Betula alleghaniensis Deciduous Harvard University Concord Field Station, MA 42°30'N, 72°10'W OTC 3  Bauer et al., 2001 
Quercus rubra Deciduous Harvard University Concord Field Station, MA 42°30'N, 72°10'W OTC 3  Bauer et al., 2001 
Acer rubrum Deciduous Harvard University Concord Field Station, MA 42°30'N, 72°10'W OTC 3  Bauer et al., 2001 
Pinus strobus Evergreen Harvard University Concord Field Station, MA 42°30'N, 72°10'W OTC 3  Bauer et al., 2001 
Picea rubens Evergreen Harvard University Concord Field Station, MA 42°30'N, 72°10'W OTC 3  Bauer et al., 2001 
Acer rubrum Deciduous Duke Forest, Orange County, NC 35°58'N, 79°05'W FACE 7  Springer & Thomas, 2007 
Carya glabra Deciduous Duke Forest, Orange County, NC 35°58'N, 79°05'W FACE 7  Springer & Thomas, 2007 
Cercis canadensis Deciduous Duke Forest, Orange County, NC 35°58'N, 79°05'W FACE 7  Springer & Thomas, 2007 
Liquidambar 
styraciflua 

Deciduous Duke Forest, Orange County, NC 35°58'N, 79°05'W FACE 7  Springer & Thomas, 2007 

Pinus taeda Evergreen Duke Forest, Orange County, NC 35°58'N, 79°05'W FACE 9  Crous et al., 2008 
Pinus radiata Evergreen Christchurch, New Zealand 43°32′S, 172°42′E OTC 4  Griffin et al., 2000 
Populus x 
euramericana 

Deciduous Viterbo, Tuscania, Italy (PopFACE) 42°22' N, 11°48'E FACE 4  Calfapietra et al., 2005 

Popoulus nigra Deciduous Viterbo, Italy (PopFACE) 42°22' N, 11°48'E FACE 5  Liberloo et al., 2007 
Fagus sylvatica Deciduous Bordeaux, France  OTC 2  Liozon et al., 2000  
Polygonum 
sachalinense 

Forb Yuno-kawa, Japan 40°41'N 140°55'E Natural CO2 
vent 

 Onoda et al., 2007 

Plantago asiatica Forb Nyuu, Japan 38°32'N 139°59' E Natural CO2 
vent 

 Onoda et al., 2007  

Agrostis capillaris C3 grass Institute of Grassland and Environmental 
research, North Wyke, UK 

- Growth 
chamber 

2  Davey et al,. 1999 

Lolium perenne C3 grass Institute of Grassland and Environmental 
research, North Wyke, UK 

- Growth 
chamber 

2  Davey et al., 1999 

Quercus myrtifolia Evergreen NASA Kennedy Space Center, FL (Meritt 
Island) 

28°38'N 80°42'W  OTC 5  Hymus et al., 2002 
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Quercus geminata Evergreen NASA Kennedy Space Center, FL (Meritt 
Island) 
 

28°38'N 80°42'W  OTC 5  Hymus et al., 2002 

Pinus sylvestris Evergreen University of Antwerp, Belgium 51°10'N, 4°24' E OTC >1  Jach & Ceulemans, 2000 
Betula pendula Deciduous Glencorse, Edinburgh, UK 55°31'N, 3°12'W OTC 3  Rey & Jarvis, 1998 
Lolium perenne C3 grass Eschikon  Experimental Station, Switzerland 47°27'N, 8°41' E FACE 2 Rogers et al., 1998 
Acer saccharum Deciduous Rhinelander, Wisconsin 45°30'N, 89°38'W FACE 5 Ellsworth et al., 2004 
Betula papyrifera Deciduous Rhinelander, Wisconsin 45°30'N, 89°38'W FACE 5 Ellsworth et al., 2004 
Liquidambar 
styraciflua 

Deciduous Duke Forest, Orange County, NC, USA 35°58'N, 79°05'W FACE 6 Ellsworth et al., 2004 

Populus tremuloides Deciduous Rhinelander, Wisconsin 45°30'N, 89°38'W FACE 5 Ellsworth et al., 2004 
Quercus rubra Deciduous Headley III, UK 52°08'N, 00°50'W OTC >1 Medlyn et al., 1999 
Quercus petraea Deciduous Headley III, UK 52°08'N, 00°50'W OTC >1 Medlyn et al., 1999 
Quercus robur Deciduous Headley III, UK 52°08'N, 00°50'W OTC >1 Medlyn et al., 1999 
Fagus sylvatica Deciduous TUB Fagus II, Berlin 52°28'N, 13°18'E Mini-FACE 4 Medlyn et al., 1999 
Pistacia lentiscus Evergreen Macchia, Italy 42°22'N, 11°32'E OTC 3 Medlyn et al., 1999 
Philyrea angustifolia Evergreen Macchia, Italy 42°22'N, 11°32'E OTC 3 Medlyn et al., 1999 
Solidago rigida Forb BIOCON, Minnesota, USA 45°27'N, 93°11'W FACE 9 Crous et al., submitted 
Anemone cylindrica Forb BIOCON, Minnesota, USA 45°27'N, 93°11'W FACE 9 Crous et al., submitted 
Achillea millefolium Forb BIOCON, Minnesota, USA 45°27'N, 93°11'W FACE 9 Crous et al., submitted 
Bromus inermis C3 grass BIOCON, Minnesota, USA 45°27'N, 93°11'W FACE 9 Crous et al., submitted 
Agropyron repens C3 grass BIOCON, Minnesota, USA 45°27'N, 93°11'W FACE 9 Crous et al., submitted 
Poa pratensis C3 grass BIOCON, Minnesota, USA 45°27'N, 93°11'W FACE 9 Crous et al., submitted 
Koeleria cristata C3 grass BIOCON, Minnesota, USA 45°27'N, 93°11'W FACE 9 Crous et al., submitted 
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Figure 20: Relationships of Vcmax (upper panel) and Anet (lower panel) as a function of 
Narea across species in table 8. Each point represents a species at a given site in ambient 
(0C, open symbols) or elevated CO2 (+C, filled symbols). Species were categorized in 
four different functional groups: deciduous trees (circles), evergreen trees (triangles), 
non-leguminous forbs (diamonds) and C3 grasses (squares). Plus signs indicate my own 
data from 6-9 years of elevated CO2 exposure at two nutrient-poor FACE sites. Equations 
of the linear regressions were: Vcmax = 22.99 Narea + 20.19 in elevated CO2, R2 = 0.66 and 
Vcmax = 30.01 Narea + 17.90 in ambient CO2, R2 = 0.66; Anet = 4.94 Narea + 9.42 in elevated 
CO2, R2 = 0.34 and Anet = 4.27 Narea + 9.42 in ambient CO2, R2 = 0.36.  
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5.3.2. Could declining slopes between Vcmax and Narea in elevated CO2 be a more 

general phenomenon across sites? 

 
To assess how general the observed changes in the Vcmax-Narea relationship in 

elevated CO2 were across sites, I collected data from the literature including 35 C3 

species across 17 different sites (Table 8). Means of photosynthesis, leaf nitrogen 

concentration and maximum carboxylation rates were collected in ambient and elevated 

CO2 for four different functional groups to plot Vcmax-Na relationships in each CO2 

treatment. These functional groups included non-leguminous forbs, C3 grasses, evergreen 

and deciduous trees. To be consistent with previously collected data and former meta-

analyses, I included data from upper canopy sunlit leaves in nutrient-poor conditions. 

When seasonal data were reported, I included data measured during a similar time of the 

year as my own data (e.g. May or June) and the duration of CO2 exposure had to be at 

least one year. When more than one year was reported, the latest measurements were 

included. Each point in Fig. 20 represents a different species in ambient or elevated CO2 

at a given site. Though many elevated CO2 studies are available, only a handful of studies 

with CO2 exposure of more than one year reported both the photosynthetic capacity 

(Vcmax, Jmax) and leaf N (on area basis) in addition to photosynthesis rates.  

Across four functional groups and 17 species per CO2 treatment, there was a trend 

towards a declining slope in the Vcmax-Na relationship in elevated CO2 conditions (Fig. 

20). Though only weakly significant (P = 0.0749), the slope value of the Vcmax-Na 

relationship in elevated CO2 was 24% lower than that in ambient CO2 conditions, 

potentially suggesting less N-investment towards photosynthetic components. However, 

despite reduced N invested into Rubsico, net photosynthesis was enhanced in elevated 

CO2 by 34% across functional groups (P = 0.0077, Fig. 20 lower panel).   

Both the intercept (P < 0.0001) and the effect of CO2 treatment (P = 0.0315) were 

highly significant (Fig. 20 upper panel). This signifies a strong direct effect of elevated 

CO2 on Rubisco, where Rubisco is reduced in long-term elevated CO2 exposure. The 

change in intercept is important because it reflects the structural investment in the leaf in 

order to photosynthesize. As slopes decline in elevated CO2, intercepts tend to increase, 

potentially indicating a higher investment of N in structural components in elevated CO2 
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(Hikosaka et al., 1998). It has been hypothesized that there is a trade-off between N 

allocation to photosynthetic components and investment into structural components such 

LMA (Leaf mass per area) (Onoda et al., 2004; Hikosaka et al., 2005). LMA is often 

used as a structural biomass index (Reich et al., 1991; Wright & Cannon, 2001) and is 

negatively correlated with the use of photosynthesis per unit nitrogen (Poorter & Evans, 

1998). There was a negative correlation in my data (not shown), supporting the trade-off 

between structural components and N allocation to photosynthesis. This potential trade-

off could be further investigated as it may point to changed N distribution patterns in the 

leaf.  

 

5.3.3. The ratio of electron transport rate (Jmax) to the carboxylation rate (Vcmax) 

 
Theory predicts that as CO2 concentrations rise, the metabolic control of light-

saturated photosynthesis by Rubsico (Vcmax) declines in elevated CO2 whereas the control 

by the RubP regeneration rate (Jmax) increases (Long & Drake, 1991). As Rubsico is more 

efficient in elevated CO2, a change in Jmax:Vcmax ratio would indicate a change in N 

allocation between photosynthetic components because less N would need to be invested 

into Rubisco (Drake et al., 1997; Long et al., 2004). In an optimization model, Medlyn 

(1996) found that a change in Jmax:Vcmax ratio was a good indicator of re-allocation of leaf 

nitrogen. The optimal Jmax:Vcmax ratio was predicted to increase by 40% when 

atmospheric CO2 concentrations doubled (Medlyn, 1996). This theory is based on the 

assumption that plants optimize allocation of nitrogen within the plant given that N is the 

most limiting element in terrestrial ecosystems (Sage, 1994). Therefore, down-regulation 

of photosynthetic capacity in elevated CO2 is related to the re-allocation of nitrogen from 

non-limiting processes to more limiting processes in order to optimize nitrogen-use in 

elevated CO2 (Sage, 1994; Stitt & Krapp, 1999). 

 Despite these theoretical predictions, many studies have not observed changes in 

the Jmax:Vcmax ratio at different light regimes (Wullschleger, 1993) nor at elevated CO2 

concentrations (Gunderson & Wullschleger, 1994; Curtis et al., 1995; Medlyn et al., 

1999; Crous & Ellsworth, 2004). The only exception is a recent meta-analysis conducted 

by Ainsworth et al. (2005, 2007) suggesting a diversion of Jmax in elevated CO2 from 
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Vcmax, potentially resulting in different Jmax:Vcmax ratios. This diversion was attributed to a 

shift in carboxylation limitation in ambient CO2 conditions to a limitation in RubP 

regeneration in elevated CO2, in which plants would reduce their carboxylation capacity 

(Vcmax) before reducing RubP regeneration capacity (Jmax) (Ainsworth & Long, 2005; 

Ainsworth & Rogers, 2007). This result could be an artifact in the meta-analysis due to 

higher availability of Vcmax measurements compared to Jmax values reported in the 

literature. 
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Figure 21: Relationship between Jmax and Vcmax for eight species in ambient (0C) and 
elevated CO2 (+C) treatments after 6-9 years of elevated CO2 exposure in FACE. Species 
names were abbreviated and represent the following:  Achmi = Achillea millefolium, 
Anecy = Anemone cylindrica, Solri = Solidago rigida, Agrre = Agropyron repens, Broin 
= Bromus inermis, Koecr = Koeleria cristata, Poapr = Poa pratensis and Pinta = Pinus 
taeda. All species are represented on a surface area basis. The inset shows the pine 
species on a projected-area basis. 
 

 My study showed strong evidence for a tight coordination between Vcmax and Jmax 

because no significant difference was detected between ambient and elevated CO2 

treatments at high and low N-addition treatments (Fig. 21). Moreover, all species pooled 

together showed a tight line with pines at the bottom to herbaceous species at the top of 
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the relationship. The slope of all species pooled together remained exactly the same as 

the slope for pine species at Duke only, or the slope of all herbaceous species at BIOCON 

pooled together (Jmax = 1.86 Vcmax). As suggested in previous studies (Medlyn et al., 

1999), there may be a universal slope for all C3 species, indicating that Vcmax and Jmax are 

responding to changing environmental conditions in a proportional manner. Hence, plants 

could adjust to long-term elevated CO2 by reducing nitrogen invested in carboxylation 

enzymes and light-harvesting pigment-protein complexes and allocating the nitrogen 

towards other limiting components (Sage, 1994; Drake et al., 1997; Long et al., 2004). 

It has been suggested that N allocated away from photosynthetic components 

would be invested in structural components, such as the cell wall in plants grown in 

elevated CO2 potentially resulting in increased leaf thickness in elevated CO2 (Onoda et 

al., 2004; Hikosaka et al., 2005) but without affecting the Jmax:Vcmax ratio. Alternatively, 

there are other non-photosynthetic pools that could serve as N sinks in elevated CO2 such 

as root biomass (Higgins et al., 2002; Handa et al., 2008) and the reproductive organs 

(Jablonski et al., 2002; Thürig et al., 2003) but, results have been inconsistent.  However, 

nitrogen distribution may not change in the most optimal way in elevated CO2 due to 

other constraints such as a significant decrease in mesophyll conductance that may occur 

in elevated CO2 (Medlyn, 1996). Changes in mesophyll conductance in elevated CO2 are 

only documented in a handful of species (Warren, 2006; Warren & Dreyer, 2006; Flexas 

et al., 2007) but may account for the discrepancy between the observed and theoretically 

predicted Jmax:Vcmax ratios at elevated CO2 (Medlyn, 1996). Given that the relationship 

between Jmax:Vcmax did not change in long-term elevated CO2 or N-addition, I conclude 

that a reduction in N investment in photosynthetic components occurred proportionally 

but the potential role of mesophyll conductance in elevated CO2 may warrant further 

investigation. 
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5.4. Overall conclusions  
 

This dissertation is framed relative to a large body of previous literature on plant 

responses to elevated CO2 over the past 20 years. In the last two decades, over 2700 

studies and experiments have been conducted using elevated atmospheric CO2 exposures 

of native plants in various growing conditions such as growth chambers, glasshouses and 

open-top chambers as well as FACE using a wide variety of species (Curtis & Wang, 

1998; Saxe et al., 1998; Ainsworth & Long, 2005). Based on published literature reviews, 

I found a broad range of photosynthetic responses at a common CO2 level, from -160% to 

+200% comparing to the ambient conditions. Saxe et al. (1998) reported a range between 

-50 and +200% of CO2 enhancement at a common CO2 level across 33 conifer and 

deciduous trees, whereas Curtis & Wang (1998) showed a minimum of  -160 % in Pinus 

mariana up to a +64% CO2 enhancement in Pinus nigra. Medlyn et al. (1999) reported 

on a range of photosynthetic enhancement in elevated CO2 between 0-120% in tree 

species.  

Most of these studies exposed plants to elevated CO2 for periods up to one year, 

though sometimes longer periods of time were used. Different species, growing 

conditions and measurement methods caused large variation in the range of 

photosynthetic enhancement. In fact, the variation of responses within one species grown 

and measured under different conditions in different studies (e.g., Picea abies, whose 

response ranged from -50 to +6%; see Medlyn et al., 1999 and (Marek et al., 2002) is 

also large. While a number of studies have attempted to assign causes for such variation 

(Medlyn et al., 1999; Poorter & Perez-Soba, 2001), much of the variation among studies 

is unexplained. FACE studies provide a common experimental framework and a common 

set of measurements to better facilitate cross-comparisons among elevated CO2 

experiments than were previously possible. Free-Air CO2 enrichment allows for natural 

growing conditions of plants, minimizing artifacts that have been documented for 

previous elevated CO2 studies (Arp, 1991). There are no changes in light environment or 

effects of higher temperatures because there are no chamber enclosures, and there are no 

root restrictions because the plants grow in the naturally developed soil. In my work, I 

examined decade-long responses of eight species in different functional groups at two 
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major FACE experiments, conducting measurement in a consistent manner facilitating 

species comparisons.  

This dissertation gave insight into plant responses of different functional groups 

to elevated CO2 and N-addition and potential interactions between those two factors. The 

range of photosynthetic enhancement I found among species ranged from +9% to +57% 

after long-term exposure to elevated CO2 across N addition. This range of enhancement 

was linked to photosynthetic capacity and leaf N to achieve insight into how and why this 

range of photosynthetic stimulation in elevated CO2 occurred, focusing on changes in N 

allocation to photosynthetic components. 

Changes in allocation of N to photosynthetic components were apparent in one-

year old leaves in pine and in leaves of non-leguminous forbs as evidenced by 

significantly different slopes of the Vcmax-Na relationship in elevated CO2 compared to 

ambient CO2 (Fig. 18). These changes in N investment to photosynthetic components 

may be an important adjustment to long-term elevated CO2 exposure in low fertility sites. 

Moreover, N was allocated away from photosynthetic components in elevated CO2 via a 

reduction in both Vcmax and Jmax but without changing the Jmax:Vcmax ratio (Fig. 21). My 

study clearly showed that after nearly a decade of exposure to elevated CO2, both 

carboxylation and electron transport processes adjusted to elevated CO2 proportionally 

reducing N invested in photosynthetic components, regardless of N-addition treatments 

or species. The maximum carboxylation and electron transport rates were mediated by 

separate enzyme systems and their coordinated response suggests large-scale 

coordination of enzyme systems in response to elevated CO2. 

Changes in N allocation to photosynthetic components could be linked to reduced 

concentrations of foliar N in elevated CO2. A reduction of leaf N in elevated CO2 is a 

commonly observed response (Curtis & Wang, 1998; Nowak et al., 2004; Ainsworth & 

Long, 2005). When plants had reduced leaf N in elevated CO2, this usually co-occurred 

with reduced photosynthetic capacity. Hence, smaller increases of net photosynthesis 

were observed in plants with reduced leaf N and reduced photosynthetic capacity. 

Maintenance of foliar N was key for sustaining stimulation of photosynthesis in long-

term elevated CO2. C3 grasses did this after nearly a decade of growth in elevated CO2, 

whereas forbs and pines did not. Hence, photosynthetic stimulation corresponded 
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negatively with the amount of down-regulation that occurred. Photosynthetic 

enhancement was smaller when stronger down-regulation occurred in elevated CO2 so it 

was largest in grasses (+57%), then pines (+31%) and smallest in forbs (+9%). Therefore, 

I conclude that much of previous experimental work on CO2 enrichment has greatly 

overestimated photosynthetic enhancement in native ecosystems on natural soils. 

In addition to changes in N partitioning within the leaf in response to elevated 

CO2, I found clear differences in CO2 responses of forbs and C3 grasses associated with 

different patterns of above and belowground allocation, resulting in a higher root:shoot 

ratio in grasses compared to forbs. Low root:shoot ratios in forbs may constrain 

additional N uptake from the soil to meet increased growth demands in elevated CO2 

showing strong down-regulation of photosynthetic capacity and an inability to maintain 

leaf N in forbs in elevated CO2. Consistent with other studies forb species were more 

negatively affected by elevated CO2 and N addition than other C3 species (Zavaleta et al., 

2003; Suding et al., 2005; Stevens et al., 2006). It is possible that the inability to maintain 

N is preferential to a reduced N fraction allocated to photosynthetic components in order 

to reduce the possibility of feedback inhibition of photosynthesis in elevated CO2 or to 

allow N allocation to other limiting non-photosynthetic components, 

These leaf-level results were incorporated into a sun-shade model to evaluate the 

importance of physiological controls on daily C uptake (GPPday). Different magnitudes of 

photosynthetic stimulation at the leaf-level were reflected in the modeled GPPday where 

both LAI responses and adjustments in physiological capacity contributed about equal to 

the total daily GPP, in addition to the direct effect of elevated CO2. The increase in LAI 

can partly compensate for indirect acclimation effects in long-term elevated CO2, 

resulting in increased GPP in elevated CO2 in most species. It is possible that elevated 

CO2 may induce increases in canopy LAI due to photosynthetic stimulation in 

productive, upper canopy leaves, increased photosynthetic efficiency in the shaded 

portion of the canopy, or reallocation of N within the canopy to allow for more foliage. 

However, including indirect acclimation effects in response to elevated CO2 was 

important when scaling up to the canopy in order to obtain accurate C uptake estimates 

because both LAI and acclimation affect the C uptake at the canopy scale in elevated 

CO2. 
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These conclusions reveal other gaps in our knowledge and raise further questions 

needing to be addressed in order to gain a better understanding. Elevated concentrations 

of atmospheric CO2 affect many different facets of ecosystem functioning and 

interactions with other factors such as increased temperature or changed water 

availability are likely. Though multi-factorial experiments are more difficult to maintain, 

the importance of interactions is evident from this dissertation and other studies (Shaw et 

al., 2002; Reich et al., 2006b; Mikkelsen et al., 2008; Zavala et al., 2008). Direct and 

indirect effects of increased atmospheric [CO2] such as global warming could have a 

synergistic or antagonistic effects when they co-occur in ecosystems. Increased 

temperatures, decreased water availability and increased N availability are other 

important governing factors with the potential to modulate the elevated CO2 response in 

plants. Moreover, ecosystems usually consist of co-occurring plant species of different 

functional groups. Species interactions with elevated CO2 and N deposition have been 

observed in this dissertation and other studies (Reich et al., 2006b) but it remains unclear 

how these factors or any combination of factors will affect species diversity and species 

composition. Shifts in competitive balance among species communities are likely to 

occur over time affecting species responses at a range of different scales. These results 

clearly point to the need for more multi-factorial experiments where the importance of 

resource availability, allocation patterns and species composition can be developed and 

clarified in an integrated approach (Field et al., 1992; Körner, 2000).  

The physiological mechanisms occurring in elevated CO2 at the leaf-level are far 

from completely understood with regard to photosynthetic components. What controls 

the coordinated response of photosynthetic enzymes in elevated CO2? Is reduced leaf N 

in elevated CO2 the cause or consequence of changes in allocation patterns? Which 

feedback mechanisms link the reductions in leaf N with reduced photosynthetic 

components? Because sugars play a regulatory role in the expression of plant genes 

(Koch, 1996), a sugar-mediated feedback mechanism, reducing gene expression of 

photosynthetic components when excess carbohydrates are present, has been 

hypothesized (Long et al., 2004). It is clear that the molecular background of ecological 

mechanisms in response to elevated CO2 still need to be clarified.  
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Potential changes in N allocation patterns may be a key plant response in elevated 

CO2, and allocation patterns to non-photosynthetic components are particulary poorly 

understood. Therefore, there is a need to quantify N invested in non-photosynthetic 

components, especially because this quantity may represent the intercept of the 

photosynthesis-nitrogen relationship. As such, it could help to understand N mobilization 

and retranslocation responses in elevated CO2 as well as the minimum required N needed 

to maintain the photosynthetic apparatus. Quantifying how elevated CO2 affects 

structural components in the leaf can provide further insights into a potential trade-off 

between physiology and leaf structure. A redistribution of N in the plant in response to 

elevated CO2 may be a key response adjusting plant growth in long-term elevated CO2, a 

mechanism which will cascade through to larger scales and our estimates of C uptake 

from the atmosphere. 
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