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ABSTRACT

NONLINEAR OPTICS IN NOVEL PERIODIC MEDIA

by

Ravi Sadananda Hegde

Chair: Herbert G. Winful

The major focus of the work in this thesis is on the solution of the electromagnetic

wave equations in novel structures that exhibit nonlinearity in their response to the

incident field. These structures are further characterized by the presence of a spa-

tial periodicity in their dielectric permittivity. The presence of spatial periodicity

results in a number of coherent scattering phenomena when the light wavelength is

comparable to the period of this spatial perturbation. Here we use a combination of

analytical and numerical methods to gain insight into these phenomena. Two differ-

ent problems each involving a different nonlinear phenomenon have been considered.

First, we take the classical problem of hysteretic switching response exhibited by

a nonlinear periodic structure. This problem is reexamined in the context of the

presence of a negative refractive index (left-handed electromagnetic structure). We

theoretically predict an exotic behavior that involves an omnidirectional response

quite distinct from the well known behavior. We examine the field distribution

in detail and propose the existence of a spatial soliton called the zero-n gap soliton.

Next, we investigate the practical problem of output power scaling in fiber lasers. Self

x



scattering nonlinearities currently set the limit on power scalability. In particular, for

narrow linewidth systems, Stimulated Brillouin scattering (SBS) is known to be the

limiting nonlinearity. This scattering phenomenon is a result of Bragg reflection from

a periodic index modulation induced by an acoustic wave. Several novel schemes are

proposed and analyzed in terms of their ability to suppress SBS and enhance power

scalability.
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CHAPTER 1

Introduction

The presence of a spatial periodicity in electromagnetic structures leads to many

interesting phenomena such as the occurrence of forbidden frequency bands in pho-

tonic bandgap structures and the diffraction of light from the periodic strain accom-

panying a sound wave. A general theory of electromagnetics in periodic media in the

linear regime can be found in reference [1].

In this thesis, we are primarily concerned with nonlinear optical interactions in a

periodic structure. First, nonlinearity can be non-propagating and be a property of

the dielectric function of the structure and transmission can be investigated through

such a structure as a function of the input field intensity. In 1979, Winful et al. [2]

investigated nonlinear transmission near the stop band and predicted a hysteretic

switching behavior. This behavior was attributed to the presence of a stable electro-

magnetic spatial soliton called the gap soliton [3]. We reexamine this problem in a

structure containing an electromagnetic metamaterial. Second, the nonlinearity can

be propagating in nature and can arise from a self scattering process as in the case

of a Stimulated Brillouin scattering in a fiber laser.

1
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1.1 Switching behavior in mixed index (negative-positive)
superlattices

We briefly introduce the concept of electromagnetic metamaterial in this chapter.

1.1.1 Metamaterials and negative refraction

A Metamaterial is a material which gains its properties from its structure rather

than directly from its composition. The term was coined in 1999 by Rodger M.

Walser of the University of Texas at Austin and he defines them as macroscopic

composites having a manmade, three-dimensional, periodic cellular architecture de-

signed to produce an optimized combination, not available in nature, of two or more

responses to specific excitation [4]. In order for its structure to affect electromagnetic

waves, a Metamaterial must have structural features smaller than the wavelength of

the electromagnetic radiation it interacts with. We consider photonic crystals dis-

tinct from metamaterials as their features are of similar size to the wavelength at

which they function, and thus cannot be approximated as a homogeneous material.

1.1.2 Negative refraction

The optical properties of a medium can be characterized by its refractive index

n that is obtained by n = ±√εµ. All naturally occurring media have both ε and µ

positive or at most one of them negative. However, some engineered metamaterials

have ε < 0 and µ < 0. Vesalago’s seminal work proved transparency of these mate-

rials and established that this phenomenon can exist only for a band of frequencies

[5].

Metamaterials with negative N have numerous counterintuitive properties in com-

parison with the naturally occurring electromagnetic media,

• Snell’s law (n1 sin(θ1) = n2 sin(θ2)) still applies, but as n2 is negative, the rays
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will be refracted on the same side of the normal on entering the material.

• The Doppler shift is reversed: that is, a light source moving toward an observer

appears to reduce its frequency.

• Cherenkov radiation points the opposite way.

• The time-averaged Poynting vector is antiparallel to phase velocity. This means

that unlike a normal right-handed material, the wave fronts are moving in the

opposite direction to the flow of energy.

For plane waves propagating in such metamaterials, the electric field, magnetic

field and wave vector follow a left-hand rule, thus giving rise to the name left-handed

metamaterials. Metamaterials are very promising to electromagnetics and optics

researchers as they offer the possibility for new types of beam steerers, modulators,

band-pass filters, lenses, microwave couplers, and antenna radomes. In particular,

the Metamaterial has been claimed to be able to produce the so called super lens, a

lens with resolution below the diffraction limit [6].

Many classical electromagnetic problems have been revisited in the context of

left handedness. This warranted the investigation of the phenomenon of hysteretic

switching in the context of negative refraction. We discuss this in detail in chapter

2.

1.2 Introduction to fiber lasers

The second kind of nonlinearity in periodic structures occurs in the case of self-

scattering. An intense pump can interact with stray acoustic vibrations and with

positive feedback induce self scattering. To understand the practical implications of

this problem we introduce next the concept of a fiber laser.

Rare earth doped fibers are emerging as promising alternatives to currently preva-
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Figure 1.1: Simplified schematic of a fiber laser

lent solid-state laser systems due to their many advantages [7, 8]. A schematic of

the fiber laser is shown in figure 1.1. It simply consists of a fiber whose core is

doped with rare-earth ions. Pump radiation launched into this core is converted into

laser radiation. The cavity of a fiber laser can be formed by butt-coupled mirrors,

as shown in reference [9] or fiber-integrated mirrors such as Bragg-gratings or loop

mirrors.

Fiber lasers provide many advantages such as [9],

• Immunity against thermo-optical problems typical of solid state laser systems.

This is because of their excellent heat dissipation facilitated by large surface to

active-volume ratio.

• Very high gain and low pump threshold values because of better confinement of

laser and pump radiation.

• Compact and longer term stability due to the integrated optical nature.

• Optical-to-optical efficiencies well above 80% and consequent low induced ther-

mal load in ytterbium-doped glass fibers [10].

However, due to the large product of intensity and interaction length inside the

fiber core, nonlinearity can be observed at very low power levels and basically limits

the performance of rare-earth-doped fiber systems before limitations due to thermo-

optical issues or fracture of the fiber are reached. Due to this relatively low nonlinear
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threshold, power scalability of fiber lasers has been significantly limited by optical

nonlinearities to a couple of watts until the emergence of Large-Mode-Area (LMA)

fibers, which have much larger modal areas and thus weaker nonlinear effects than

conventional Single-Mode (SM) fibers. By using LMA fibers to reduce nonlinear

effects [11, 12, 8], the diffraction-limited output power from fiber lasers has been

rapidly increased from -100W to -3 kilo-watts in the past few years, as shown in

figure 1.2.

Figure 1.2: Rising power output levels of fiber lasers.

The trade-off, however, of using LMA fibers is the loss of the robust SM per-

formance due to either multiple modes guided in the core, or the extremely poor

modal guidance. To overcome this trade-off and maintain the beam quality of LMA

fibers, external mode management techniques are needed to guide only one mode or

to filter all higher-order modes in LMA fibers. In other words, with such mode man-

agement LMA fiber lasers can have both high nonlinear threshold and single-mode

diffraction-limited output beam quality.

To further increase power scalability of fiber lasers and allow monolithic LMA



6

technology for 30µm-core fibers, new fibers with both large modal areas and neg-

ligible inter-modal scattering are needed, and apparently none of conventional SM

and MMILMA fibers are suitable. The concept of Effectively Single-Mode (E-SM)

fibers possessing large modal areas (V >> 2.405) and allowing the propagation of

the fundamental mode have been proposed to deal with this problem [11]. This

is achieved by introducing relatively large modal losses of all higher-order modes,

which suppress every mode except for the fundamental LPOl mode even when higher

order modes are excited at the incident end. Unlike those higher-order modes, the

fundamental LPOl mode has negligible loss, and thus becomes the only mode prop-

agating in E-SM fibers. The advantage of E-SM fibers is those fibers could provide

diffraction-limited beam quality with large mode areas, relying on no external mode

management techniques. Moreover, large higher order mode losses prevent power

scattering into those modes, and hence suppress inter-modal scattering when the

fiber is perturbed. Such an advantage of scattering suppression is expected to sig-

nificantly improve the robustness and reliability of LMA E-SM fibers and to enable

monolithic fiber technology with very large modal areas, which is currently limited

to < 25µm core diameters.

Figure 1.3: The CCC fiber
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Practically the concept of E-SM fibers has been realized by a new fiber design

called the Chirally-Coupled-Core fiber [11]. The CCC fiber contains a central main

core and several helical side cores (see figure 1.3), in which the curvature-induced

loss and mode-selective interaction between the cores provide strong loss to all higher

order modes in the main core. As a result, the higher order modes in the main core

leak through helical side cores and become cladding modes within short lengths,

typically a few tens of centimeters. The fundamental LPOl mode in the main core,

on the contrary, has little interaction with helical side cores, and thus propagates in

the main core with negligible leakage through the side cores (see figure 1.4).

Figure 1.4: Modal losses of the CCC fiber

We refer the interested reader to [11] to further their understanding of the CCC

fiber. For the purposes of this thesis it is important to note that the mechanism

that provides for the modal losses can be used to separate two differing polarization

states. This will be crucial when we present the ideas of chapter 5.
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We will conclude our introduction to fiber lasers by discussing the idea of beam

combining. It is desirable to increase the system power levels beyond what is possible

with a single fiber laser. One promising technology that is being studied to achieve

this is to combine a large number of relatively lower power beams into a single high-

power beam. Wavelength beam combining (WBC) is one such technology which uses

an N-element array where each element is operated at a different wavelength. The

near-field and far-field beams are then overlapped with a dispersive element such as

a diffraction grating. In this case, the source aperture and far-field solid angle both

remain constant as the number of elements is increased so the radiance is proportional

to the power, which scales as N. Much progress has been made in wavelength beam

combining primarily because of the less demanding design requirements for building

such systems compared to those that require mutual coherence among the elements

[13]. From these considerations thus far, we can conclude that with narrow linewidth

fiber laser output and WBC, power levels of 100 kW range can be envisaged for fiber

laser systems. In this thesis, we thus focus on techniques that will allow power scaling

with the narrow linewidth requirement.

1.2.1 Introduction to Stimulated Brillouin Scattering

We start initially with the concept of light scattering in optical propagation, a

detailed account of which can be found in reference [14].

Raman and Brillouin scattering are scattering processes involving optical and

acoustical phonons respectively. Rayleigh scattering is scattering from non-propagating

density fluctuations. Rayleigh wing scattering is scattering from fluctuations in the

orientation of anisotropic molecules. The typical parameters for these scattering

processes are listed in [14]. On consideration of the peak gain and the bandwidth

we should chiefly be interested in Brillouin and the Raman processes. Furthermore
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in narrow-linewidth systems, stimulated Brillouin scattering (SBS) has much higher

gain than SRS, has a lower threshold, and is thus the dominant process. Unlike SRS

that has rather wide spectral shift (-13.2THz) and can be removed by spectral filters

[11], SBS has very small frequency offset (-10 to 100 MHz) from the signal and con-

sequently cannot be removed using similar spectral techniques. Thus we will further

limit our consideration chiefly to SBS suppression in this work. We wish to mention

that the work on distributed Stokes suppression (chapter 4) is general enough to be

valid for SRS as well.

As discussed earlier, Stimulated Brillouin scattering (SBS) is a nonlinear pro-

cess that can occur in optical fibers at input power levels much lower than those

needed for stimulated Raman scattering (SRS). It manifests through the generation

of a backward-propagating Stokes wave that carries most of the input energy, once

the Brillouin threshold is reached. SBS can be detrimental for optical communica-

tion systems. At the same time, it can be useful through fiber-Brillouin lasers and

amplifiers and for sensing applications [15].

The process of SBS can be described classically as a parametric interaction among

the pump wave, the Stokes wave and an acoustic wave. The pump wave generates

acoustical waves through the process of electrostriction which in turn causes a peri-

odic modulation of the refractive index. The pump-induced index grating scatters

the pump light through Bragg diffraction. The scattered light is downshifted in fre-

quency because of the Doppler shift associated with a grating moving at the acoustic

velocity vA . The same scattering process can be viewed quantum-mechanically as

if the annihilation of a pump photon creates instantaneously a Stokes photon and

an acoustic phonon. Since both the energy and the momentum must be conserved

during such scattering event, the frequency and the wave-vectors of the three waves
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are related by

ωA = ωP − ωS, kA = kP + kS, (1.1)

where ωP and ωS are the frequencies and kP and kS are the wave vectors of the

pump and Stokes waves respectively. The frequency ωA and the wave vector kA of

the acoustic wave satisfy the dispersion relation

ωA = |kA|vA = 2vAkP sin(θ/2), (1.2)

where θ is the angle between the pump and Stokes waves. Equation (1.2) shows

that the frequency shift of the Stokes wave depends on the scattering angle. In

particular, it is maximum in the backward direction (θ = π) and vanishes in the

forward direction (θ = 0). The frequency shift νB in the backward direction is given

by

νB =
ωA
2π

=
2nvA
λP

, (1.3)

where n is the refractive index and λP is the pump wavelength.

Before proceeding further, we should mention that in an optic fiber the guided

nature of acoustic waves can lead to a relaxation of the wave-vector selection rule

and as a result a small amount of forward propagating stokes can be generated. This

phenomenon is called Guided-Acoustic-Wave Brillouin Scattering (GAWBS). We do

not further consider this because of its extremely weak nature [15]. Similar to the

case of SRS, the growth of the Stokes wave is characterized by the Brillouin-gain

coefficient gB(ν) whose peak value occurs at ν = νB. However, in contrast with the

SRS case, the spectral width νB of the Brillouin-gain spectrum is very small (10 MHz

instead of 5 THz). The spectral width is related to the damping time of acoustic

waves or the phonon lifetime TB. In fact, if the acoustic waves are assumed to decay
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as exp(−t/TB), the Brillouin gain has a Lorentzian spectral profile given by

gB(ν) = gB(νB)
(∆νB/2)2

(ν − νB)2 + (∆νB/2)2
, (1.4)

where ∆νB is the full width at half maximum and is related to the phonon lifetime

by ∆νB = (πTB)−1

The peak value of the Brillouin-gain coefficient occurring at ν = νB is given by

gB(νB) =
2πn7p2

12

cλ2
pρ0νB∆νB

, (1.5)

where p12 is the longitudinal elasto-optic coefficient, ρ0 is the material density. The

Brillouin-gain spectrum for silica fibers can differ significantly from that observed

in bulk silica because of the guided nature of optical modes and the presence of

dopants in the fiber core. An example of the measured gain spectrum that is typically

observed can be found in [15].

In chapter 3, we will describe a method for numerically calculating the Brillouin

gain spectrum in the case when the acoustic guidance properties of the fiber are

altered in the cross sectional plane by doping. In chapter 4, the SBS process in the

case where an elastic grating is inscribed in the propagating medium is discussed.

Both these methods are shown to be useful in the reduction in local value of Brillouin

gain at peak frequency. Similar to the SRS case, the development of SBS in optical

fibers requires the consideration of mutual interaction between the pump and Stokes

waves. Under steady-state conditions, applicable for a cw or quasi-cw pump, such

an interaction is governed by the coupled-intensity equations. For the case of nearly

equal loss for the pump and the Stokes waves we have,

dIP
dz

= −gB(ν)IP IS − αIP (1.6)

dIS
dz

= −gB(ν)IP IS + αIS,
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where the subscripts on the I term identify the pump and the Stokes waves re-

spectively and gB is the Brillouin-gain coefficient. Under the no-pump depletion

approximation, the equations considerably simplify to show a Stokes wave growing

exponentially in the backward direction as given by

IS(z) = IS(0)exp(gBIP0Leff − αL), (1.7)

with Aeff denoting the effective core area and an effective interaction length given

by

Leff =
1

α
[1− exp(−αL)] . (1.8)

By following a method shown in [16], the Brillouin threshold is found to occur at

a critical pump power given by

gBP
cr
0 Leff/Aeff = 21. (1.9)

This formula is only approximate as it makes assumptions about the exact pa-

rameters of the Brillouin gain spectrum [17, 18]. It also depends in general on the

evolution of the polarization states of both the pump and the Stokes. In the case

of complete polarization scrambling the threshold will increase by a factor of 2. In

chapter 5., we revisit this now classical threshold derivation for the general case of

a distributed Stokes loss and revise the above formula. In chapter 5, the distributed

Stokes loss occurring in a circularly dichroic medium is considered and SBS equations

are re-derived for this special case.

1.2.2 Survey on currently available methods for suppressing SBS

In this section we review the methods that have been proposed to suppress SBS

in optical fibers. SBS is a three wave process involving the pump, the Stokes and

the acoustic waves. We can thus classify the available methods as:
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• Modification of pump wave parameters.

• Modification of fiber acoustic environment.

• Modification of the Stokes wave.

Modification of the Pump wave parameters

The simplest method to suppress SBS is to broaden the laser spectrum so that

the signal’s effective linewidth is greater than that of the Brillouin gain spectrum

[19, 20, 21]. Indeed, SBS is caused by nonlinear interaction between acoustic phonons

and photons and is inherently a narrow-linewidth process. For example, the Brillouin

linewidth in bulk silica is 23 MHz [15]. Assuming Lorentzian spectra, the Brillouin

gain coefficient gB scales with signal bandwidth according to

ĝB =
∆νL

∆νL + ∆νB
, (1.10)

where ∆νL is the laser linewidth, ∆νB is the Brillouin linewidth and gB is the Bril-

louin gain for a signal spectrum. When ∆νL > ∆νB, SBS is effectively suppressed

and other nonlinear effects, such as stimulated Raman scattering (SRS) with a signifi-

cantly higher threshold than SBS, set the power limit. However, this SBS suppression

method is not suitable when a very narrow linewidth signal is required from a fiber

laser or amplifier (or a fiber system in general).

Modification of the fiber acoustic environment

Modification of the fiber acoustic environment can again be achieved in two ways.

First, the acoustic parameters of the fiber can be varied in the longitudinal direction.

This by itself does not change the peak gain or the linewidth by much locally, al-

though it does have a strong effect on the Brillouin frequency shift. The effect of this

is that the total gain for any length of the fiber undergoes an effective drop in peak
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gain with the consequent increase in gain bandwidth. We next briefly discuss these

methods. For example, a fiber with a varying core size in an acoustic guiding fiber

chirps the Brillouin gain spectrum and reduces the peak Brillouin gain constant [22].

Varying the index of refraction and inducing stresses in the fiber have a similar effect

of broadening the Brillouin gain spectrum. However, to achieve a large degree of

SBS suppression these techniques require one to induce a very large non-uniformity

along the fiber length. This is both difficult and expensive to implement, and can

negatively influence optical mode properties and introduce large optical losses.

To determine the Brillouin-gain spectrum when the acoustic parameters are varied

slowly along the length of the fiber, we can write for the total gain as in reference

[23]

G(ν) =
∫ L

0
gB(ν, z) dz, (1.11)

which can be further simplified to

G(ν) = g0

∫ L

0

1

1 + ((ν − νB(z/L))/(∆νB/2))2
dz, (1.12)

where νB is the frequency downshift as a function of z and we assume a lorentzian

lineshape locally with a FWHM of ∆νB. This formulation is true for lengths of fiber

less than 100m [22]. The increase in threshold is then given by

Pinc = −10 log
∫ 1

0

1

1 + ((ν − νB(l))/(∆νB/2))2
dl. (1.13)

Thus, under the short fiber length approximation (z < 100m), we see that the

threshold increase is dependent only on the distribution of the Brillouin frequency

shift.

The typical dependence of Brillouin frequency downshift on tensile strain and

temperature are shown in reference [24]. These can be used in conjunction with
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an actual distribution of temperature/strain and equation to obtain the increase in

threshold obtainable as a result of imposing nonuniformity along the length of the

fiber.

Liu [25] has developed a more detailed model for the SBS process and threshold

enhancement effects in a fiber with gain and temperature and core non-uniformities

and has shown a 7dB suppression. Reference [26] specifically considers temperature

gradient induced by pump absorption. Reference [27] discusses the SBS threshold

increase obtainable by application of strain distribution and reports up to 8dB for a

580m DSF.

From this discussion we can conclude that although variation of acoustic param-

eters in the longitudinal direction is a feasible method, its potential seems limited to

around 10 dB increase in threshold. We therefore investigated the effect of varying

the properties in the cross sectional plane. It should be apparent from eq. 1.14,

that a combination of the two approaches can be used for furthering the threshold

enhancements.

Dragic introduced the idea of an acoustic ring guide as a method of decreasing the

local value of peak Brillouin gain [28]. This idea has since been extended to include

design of arbitrary doping profiles for SBS suppression [29]. In Chapter 3, we develop

a model to carefully consider SBS suppression effects and propose a doping profile

design for SBS suppression.

A natural extension of the idea of acoustic guidance control is the use of specialized

band-gap structures that can inhibit/enhance acoustic phonons [30, 31]. the authors

in [30] suggest designs that could completely suppress SBS. Reference [32] provides

experimental work that characterizes SBS in these structures. These structures have

been primarily modeled through finite-element simulations. To gain insight into the
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nature of SBS in bandgap structures, in chapter 4, we study SBS in a 1D elastic

grating and relate the suppression to the metrics of the bandgap structure.

Modification of the Stokes wave

Most of the methods proposed for suppression of SBS consider variation of the

acoustic environment. While this is certainly a useful approach, most workers have

ignored the possibility of modifying the optical environment for the backscattered

Stokes wave as a possible means for SBS suppression. Lee et al [33] were the first

researchers to propose using a fiber Bragg grating designed particularly to filter

out the Stokes wave for SBS suppression. This method has been criticized for its

problems, chief among them being the requirement of writing a fine grating along

the length of the fiber and secondly, the possibility of affecting pump propagation.

The authors have suggested some schemes for mitigating these difficulties namely

the writing of gratings in periods.

In this work, we propose a radically simpler alternative method for achieving

distributed Stokes suppression. Our method relies on using circular polarized light

and a fiber design that provides for circular dichroism. Our method uses currently

available manufacturing technology and in addition has the advantage of nonlinearity

saturation with length.

In chapter 5, we analyze the SBS process in the presence of distributed stokes

loss and show the saturating nonlinearity effect. In Chapter 6, the SBS process is

analyzed for circularly polarized pump in a circularly dichroic fiber with residual

linear birefringence. We also briefly discuss design concepts for achieving circular

dichroism in an optical fiber.

It is hoped that with the simpler alternative schemes for SBS suppression proposed

and expounded upon in this dissertation, high-power single transverse beam output
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in the 10kW range become feasible. These in combination with coherent WBC

schemes could potentially soon lead to fiber laser sources with output power in the

MW range.



CHAPTER 2

Omnidirectional optical switching in mixed
negative/positive index periodic structures

2.1 Introduction

Most well known optical phenomena undergo interesting twists when studied in

the presence of negative index media (first proposed by the Russian physicist Veselago

[5]). It is our interest in this chapter to study the nonlinear optical effect of hysteretic

transmission in the presence of a periodic negative refractive index.

Periodic dielectric structures have stop bands in frequency within which an elec-

tromagnetic wave undergoes coherent Bragg scattering and is totally reflected by the

structure. In 1979, Winful et al. showed that the inclusion of an intensity-dependent

refractive index makes it possible to tune the stop band and thus switch the structure

from a highly reflecting state to a totally transmitting state [34, 35]. In the totally

transmitting state, the structure exhibits a nonlinear resonance with a field distri-

bution that peaks at the center [2]. This nonlinear resonance structure associated

with the Bragg gap is known as a gap soliton [3] and has been the subject of intense

studies [36].

Recently, a completely new kind of bandgap was discovered in structures where

the average refractive index vanishes at certain frequencies [37, 38, 39, 40]. One way

to achieve such a zero-n gap is to create a periodic structure with alternating layers

18
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of positive index materials and negative-index materials (also termed left-handed

materials by Veselago [5]). For mixed positive-negative-index periodic structures, it

has been shown that inclusion of a single nonlinear defect layer results in tunable

transmission and bistability [41, 42, 43]. That structure however is essentially a

Fabry-Perot resonator with linear distributed-feedback reflectors enclosing a nonlin-

ear lumped element.

This zero-n gap has very unusual properties in that it is robust to scaling and

disorder [44]. This gap exhibits an omnidirectional feature [39], which makes it of

great interest for applications requiring a wide field of view. These properties of the

zero-n gap are quite different from those of the usual Bragg gap of positive index

structures.

It is therefore of interest to investigate whether these novel properties of the zero-

n gap persist in the presence of a periodic nonlinearity in the refractive index. We

thus investigated the nonlinear transmission of a positive-negative periodic structure

with inherent periodic nonlinearity.

We find that the zero-n gap exhibits a hysteretic response which is relatively

insensitive to input angle, in contrast to the behavior of the Bragg gap. We show

that a novel kind of gap soliton associated with the zero-n gap exists in periodic

structures with alternating positive- and negative index layers. We call this the zero-

n gap soliton and show that it is relatively insensitive to input angle, unlike the usual

Bragg gap soliton. This raises the intriguing possibility of an omnidirectional gap

soliton that is also robust in the presence of disorder and loss.
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2.2 Theory

2.2.1 Specification of the structure

Here we consider the case where the periodic structure itself is inherently non-

linear. The positive index layers exhibit Kerr-type nonlinearity while the negative

index medium is taken to be linear, although nonlinearity in its electric and magnetic

susceptibilities can be easily included.

Figure 2.1: Schematic of the nonlinear periodic structure

The periodic structure (shown in figure 2.1) consists of N unit cells occupying

the region 0 < z < D translationally invariant in the x − y plane and bounded

on both sides by free space. Each cell is formed of two films, film 1 and film 2,

with respective thicknesses d1 and d2. Film 1 is a positive-index material with an

intensity-dependent permittivity described by

ε1(ω, z) = ε
′

1(ω, z) + εNL(|E|2). (2.1)

Film 2 is a negative-index or left-handed material. Its relative permittivity and



21

permeability variations are taken to be of the following forms, respectively:

ε2(f) = 1.6 +
40

0.81− f 2 − ιfL
(2.2)

µ2(f) = 1 +
25

0.814− f 2 − ιfL
,

where f is the frequency in GHz and L represents the effect of loss. The implicit

assumption in this formulation is that the negative index layer permits the use of

an effective index for the frequency range of interest. The particular form of these

expressions is so chosen to exhibit negative refraction in the GHz range, a frequency

range where currently negative refraction has been demonstrated.

2.2.2 Solution of the electric field distribution in the structure

We solve for TE-polarized fields in this structure of the form

E(z, t) = E(z)eιk0(βx−ct), (2.3)

where k0 = ω/c, β = sin(θ)andθ is the angle which the incident wave vector makes

with the z axis. The spatial evolution of the electric field is governed by the wave

equation (similar to [45])

d2E

dζ2
+ p2E + µiεiNL(|E|2) = 0, (i = 1, 2), (2.4)

where p2 = µiε
′
i(ω, z)− β2 and ζ = k0z.

The solutions for the most general case have to be obtained by numerical inte-

gration of equation (2.4). To obtain the transmission of the structure, we specify

the E-field and its derivative at the output face and successively integrate equation

(2.4) all the way to the input end. At the interfaces between two films, we apply the



22

Figure 2.2: Material parameters of the negative layer and the transmittance of the structure as a
function of frequency at normal incidence (N = 16, 32)

following boundary conditions:

Ei = Ej (2.5)

µj
dE

dζ i

= µi
dE

dζ j

.

In the linear films, we use the following transmission matrix to propagate the

fields:

 cos(pikdi) −(1/pi) cos(pikdi)

pi sin(pikdi) cos(pikdi).

 , (2.6)

where the subscript refers to the film number in the unit cell. In a left-handed

medium, the Poynting vector and the propagation vector are antiparallel Thus, if

the film is a negative-index type, then a negative value of p is used.
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2.2.3 Transmission spectrum with the nonlinearity turned off

We choose d1 = d2 = 10mm. Film 1 is a positive index material with ε
′
= 2, µ = 1.

The positive layer exhibits a Kerr-type nonlinearity modeled by γL. The dispersion

relations and the linear transmission spectrum (for N = 16, 32) are shown in figure

2.2. The zero-n gap occurs at a frequency at which the following condition is satisfied:

√
ε1(f)µ1(f)d1 =

√
ε1(f)µ1(f)d2. (2.7)

For the parameters used here, the zero-n gap occurs at 3.55 GHz. This gap

for an infinite structure is expected to show omnidirectionality. However, in a finite

structure, the gap center does vary slightly with the incident angle and the number of

layers. This can be attributed to the fact that in a finite structure the end reflections

influence the overall transmission.

2.3 Bistable Transmission

The intensity-dependent refractive index makes it possible to tune the properties

of the periodic structure, resulting in optical switching, hysteresis, and bistability.

Figure 2.3 shows the intensity-dependent transmission for an input signal tuned in-

side the 1st-order Bragg gap. At this frequency, both media in the periodic structure

have a positive refractive index. For an input at normal incidence, the transmission

displays a large bistable region as the incident intensity is varied. The bistable re-

sponse is, however, very sensitive to the incident angle. For the same input frequency,

bistability is strongly degraded at an angle of 5o and disappears completely at an

incident angle of 10o.

This sensitivity to incident angles is in marked contrast to the nonlinear behavior

of the zero-n gap. Figure 2.4 shows the bistable response of the structure for an
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Figure 2.3: Hysteresis behavior of transmittance as a function of a defocusing γIinc for detuning
near the 1st-order Bragg gap (f = 7.15GHz,N = 32) for incident angles 0o, 5o (note
that for 15o, hysteresis is not observed)

input frequency tuned inside the zero-n gap.

In contrast with the Bragg gap case, for detuning near the zero-gap center ( f near

3.55 GHz), the hysteresis curves (Figures 2.5 and 2.4) for a wider range of incidence

angles are seen to follow each other closely. Bistability persists for angles as large as

45o. This is the result of the omnidirectionality feature that is present in the linear

response of the zero-n gap. Because of the asymmetric nature of the dispersion about

the center frequency of this gap, the detailed nature of the nonlinear transmission

curves depend on whether the input is detuned slightly to the left or to the right

of the gap center. Figure 2.5 shows the bistability curves for an input frequency

slightly to the right of the zero-n gap center. The intensity required for bistability

is somewhat higher in this case, but the transmission curves still follow each other

closely as the incident angle is varied.
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Figure 2.4: Bistable response for detuning to the left of the zero-n gap.

Figure 2.5: Bistable response for detuning to the right of the zero-n gap.
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Figure 2.6: Hysteresis behavior of transmittance as a function of a defocusing γIinc for detuning to
the left of the zero-n gap (f = 3.51GHz,N = 32) for incident angles u = 0o, 15o, and30o.

2.4 The Zero-n gap soliton

The transmission is multivalued, leading to hysteresis and bistability. Also notice

that the hysteresis curves for different incident angles almost overlap at the high

transmittance point. At the point marked A in figure 2.6 the transmission is nearly

unity, signifying a transmission resonance. The spatial distribution of the magnitude

of the E field associated with this transmission resonance is shown in figure 2.7.

This is the zero-n gap soliton. In the figure, the soliton is overlaid upon the

periodic structure, with shaded regions representing the negative index material.

For the zero-n gap soliton the local maxima and minima of the field distribution

occur at the interfaces between the layers. Also, it can be seen that the minima of

this soliton distribution do not go all the way to zero. A look at the phase variation

of the E field inside the structure (Figure 2.8) helps us understand this behavior.
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Figure 2.7: Zero-n gap soliton: spatial distribution of the E field magnitude (normalized by
Einc) when a defocusing γIinc = 0.064 results in a near-unity transmittance (f =
3.51GHz,N = 32) at normal incidence

Figure 2.8: Spatial distribution of the phase of the E field for conditions as in figure 2.7
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Figure 2.9: Bragg gap soliton observed when a defocusing γIinc = 0.027 is used (f = 7.15 GHz,
N = 32)

at normal incidence

The phase does not build up to π across a layer. Because there is not a pi phase

shift, complete destructive interference does not occur between layers. It is also seen

that at the interface between a positive-index and a negative-index layer there is a

change in the sign of the slope of the electric field. This is a result of the sign change

in magnetic permeability as one crosses from a positive index to a negative-index

medium.

For comparison the gap soliton associated with the Bragg gap soliton is shown

in figure 2.9. The frequency is chosen to lie in the Bragg gap. It is seen that the

minima of the field pattern are nearly zero for the Bragg gap soliton. This is because

the evolution of the phase across a bilayer is continuous and goes all the way to π.

2.4.1 Properties of the zero-n gap soliton

It is of interest to see whether the zero-n gap soliton exhibits some of the inter-

esting features, such as omnidirectionality and robustness, of the linear zero-n gap
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Figure 2.10: Zero-n gap soliton for an incident angle of 30o (solid curve) as compared to the one at
normal incidence (dotted curve). γIinc = 0.064 for both cases and other conditions as
in figure 2.7

itself. The dependence of the zero-n gap soliton on incidence angle is shown in Figure

2.10.

For the same input intensity it persists for angular detuning as large as 30o from

the normal. Thus the robust nature of the zero-n gap with respect to input angle per-

sists in the presence of nonlinearity. The Bragg gap soliton disappears for detuning

as small as 5o. The reason the Bragg gap soliton exhibits a sensitive dependence on

input angle is simply its sensitivity to lattice scaling. To achieve a Bragg gap soliton

at the new angle, one would have to change the incident frequency and increase the

input intensity. Beyond a certain input angle, no Bragg gap soliton exists.

Finally we consider the effect of loss on the existence of the zero-n gap soliton.

Figure 2.11 shows the variation of the gap soliton as the loss is increased. The soliton

shape is preserved even at relatively high losses.
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Figure 2.11: Zero-n gap soliton for an incident angle of 0o for a lossy structure at two different
values of the loss term (L = 0.01, 0.001) as compared to a lossless structure (solid
curve). The amplitude decreases as the loss term increases.

2.5 Conclusion

Although the zero-n gap soliton can exist in any frequency range where negative

refraction exists, in this work we have considered materials in which the negative

refraction occurs at microwave frequencies. This is because the experimental demon-

strations of left-handed materials have been at those frequencies, although there is

much active research aimed at realizing negative refraction at optical frequencies.

Since the gap soliton requires a Kerr nonlinearity, it is natural to ask what values

of the nonlinear coefficient are achievable at microwave frequencies. Measurements

at 94 GHz have revealed an n2 as large as 2.63x10−4cm2/W in liquid suspensions

of elongated microparticles [46, 47]. Such materials have been used to demonstrate

phase conjugation through degenerate four-wave mixing at those frequencies.

In summary, we have studied the nonlinear transmission of a periodic structure
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containing alternating layers of positive-index and negative-index materials. The gap

associated with a zero-average refractive index exhibits a bistable response that is

relatively insensitive to input angles, in contrast to the behavior of the usual Bragg

gap. We have introduced the concept of the zero-n gap soliton associated with these

structures. Such zero-n gap solitons retain the exotic features associated with the

linear zero-n bandgap.

This would make possible the operation of all-optical switches that have a wide

field of view. The phenomenon of negative refraction is always accompanied by

dispersion [5] and, hence, plays a key role in nonlinear gap tuning. By changing the

dispersion in the negative-index material, the gap tuning and hysteresis behavior can

be controlled.



CHAPTER 3

Acoustic waveguide engineering for suppressing SBS in optic
fibers

3.1 Introduction

SBS involves the interaction of pump, the backward scattered Stokes waves and a

co-propagating acoustic wave. Most of the traditional approaches to SBS threshold

enhancement in an optic fiber have involved methods aimed at broadening the SBS

gain spectrum. For example, a fiber with a varying core size in an acoustic guiding

fiber chirps the Brillouin gain spectrum and reduces the peak Brillouin gain constant

[22]. Varying the index of refraction [48], inducing stresses in the fiber [49] and

applying temperature gradients [24, 25, 23] have a similar effect of broadening the

Brillouin gain spectrum. However, to achieve a large degree of SBS suppression these

techniques require one to induce a very large non-uniformity along the fiber length.

This is both difficult and expensive to implement, and can negatively influence optical

mode properties and introduce large optical losses.

An alternative approach involves the alteration of the acoustic waveguiding prop-

erties of the fiber in the fiber cross plane to reduce the peak gain locally. This

technique can then be used in conjunction with the methods already discussed to

extend the levels of threshold enhancement that can be achieved by altering the

acoustic environment of the fiber (see [7, 29]).

32
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In this chapter, we discuss the modeling aspects for determining the threshold

enhancement possible by altering the acoustic properties in the cross sectional plane

of the fiber. In particular, the acoustic ring method and the acoustic ramp profile

are considered. We also investigate the effect of core size scaling and discuss the

implications for fiber design.

The chapter is organized as follows. We start with an introduction to acoustic

guidance in optic fibers and the approach to quantify SBS parameters in a waveguide.

We then introduce aspects related to modeling the SBS process for the particular

designs of interest namely the ring and the ramp profiles. We classify the possi-

ble acoustic modes in these profiles and describe the procedure for solving for these

modes. The procedure for constructing the spontaneous Brillouin gain spectrum is

then described. The chapter then focuses on application of the theory to example

profiles. These profiles have been chosen to reflect actual experimental fiber param-

eters. We finally discuss the implications of these results and derive a set of design

guidelines that should be helpful in designing fiber lasers with a desired level of SBS

suppression and ease of manufacture.

3.2 Theory

3.2.1 Acoustic guidance in optic fibers

The study of elastic waves in rods and other cylindrical structures has been the

subject of active study since the early 1940’s. The general solution for the acoustic

modes even in the case of a core embedded in an infinite cladding are fairly complex

[50] and do not decouple in the general case into pure longitudinal or shear waves.

However the modes that do contribute to light scattering will have the φ component

of their displacement vector uφ = 0.
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3.2.2 Gain of the SBS process

The mechanism or acousto-optic scattering is the elasto-optic effect in which the

acoustic strain fields interact with the incident electric field via the elasto-optic tensor

pklmn. The scattering of light resulting from the strain fields in an optical fiber has

been treated in [50].

The incident electric field Ei scatters into the scattered field Es and we have

Es = DEi, where D is the tensor amplitude of the scattered field and is given by

D = D0

[∫
core

E∗i · δ · Es dV +
∫
cladding

E∗i · δ · Es dV
]
. (3.1)

The relevant dielectric perturbations δε are functions of the acoustic strain fields

(Sp,q) and are expressed as

δεrr = −ε0n4 (p11Srr + p12Sφφ + p12Szz) ,

δεφφ = −ε0n4 (p11Sφφ + p12Srr + p12Szz) ,

δεφr = −ε0n4 (2p44Sφr) .

The photoelastic constants, p, are provided in [51] for vitreous silica at λ = 632.8nm

as p11 = 0.121, p12 = 0.271andp44 = −0.075. The strain fields are calculated as in

reference [50] as

Srr =
∂ur
∂r

,

Sφφ =
ur
r

+
1

r

∂uφ
∂φ

,

Szz =
∂uz
∂z

,

Sφφ =
1

2

(
1

r

∂ur
∂φ

+
∂uφ
∂r
− uφ

r

)
,

where u is the acoustic displacement vector.
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The scattering amplitude tensor D is further broken into components as

Dp,q =
∫
vol
Ē∗pδε̂p,qĒq dV, (3.2)

where p, q = r, φ, z are the cylindrical coordinates.

Taking Ez to be zero in the fiber, the non-zero contributions to the scattering

amplitude are Drr, Dφφ and Drφ(= Dφr) as shown in reference [50]. Physically this

can be explained by the fact that a grating perpendicular to the traveling optical

waves is most effective. Furthermore, the analysis in [50] showed that Drr is the

dominant scattering amplitude, followed by Dzz with an overall contribution of a

few percent to the total scattering amplitude.

Much like optical fibers are weakly guiding for optical waves, they can also be

weakly guiding for acoustic waves. To satisfy this condition, the acoustic velocities

in the core and cladding should satisfy V core
a < V cladding

a . This is usually the case

for typical fibers with P2O5 and/or GeO2-doped cores and pure silica claddings (see

[52]). When the shear and longitudinal acoustic waves are decoupled, and we as-

sume that the shear velocity and mass density are constant in the radial direction

V s
core ≈ V s

cladding and ρcore ≈ ρcladding). This leads to a set of solutions for u known

as ’Leaky’ modes, designated Lnm. These are the most significant acoustic modes in

the SBS process in a typical optical fiber. Interestingly, these modes have a disper-

sion relationship identical to that of the optical mode in the fiber [28]. Furthermore

reference [51] establishes that the backward Brillouin scattering of the fundamental

optical mode can occur only for the modes L0m. Additionally, the fundamental leaky

mode, L01, has been shown to dominate SBS in a typical single clad fiber.

In some cases where the fiber core is substantially acoustically multimode, several

acoustic modes can be excited in the SBS interaction. This was suggested in [52] and

observed empirically in reference [53]. However, in all cases, the L01 mode dominated
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the Brillouin spectra. This is expected since the L01 acoustic mode is mathematically

identical to the LP01(HE11) optical mode, and thus the spatial overlap integral is

very high.

Implications for our modeling work

The implications of this for modeling work are that a full vectorial solution for the

elastic waves is rarely necessary. In this work, the elastic waves are assumed to satisfy

the scalar wave equation (meaning that their displacement has predominantly a z

component). However, a full vectorial simulation was also carried out and its results

were found not to differ significantly from a scalar simulation. In particular, the

changes in the value of the peak gain were found to be not numerically significant. For

reasons of computational efficiency, we thus chose to stick with the scalar assumption.

The framework is general enough to accommodate full vectorial solutions. Such

solutions can be now easily obtained using commercial FEM software like COMSOL

if further accuracy is needed.

3.3 Acoustic waveguide structures and solving for acoustic
modes

A step index acoustic waveguide can be classified as either acoustic guiding or

acoustic antiguiding depending on the relative values of the longitudinal acoustic

velocity in the core and the cladding (V core
a , V cladding

a respectively). We have V core
a <

V cladding
a for acoustic guiding and V core

a < V cladding
a for acoustic anti-guiding. The

acoustic antiguiding fiber is found to result in a peak Brillouin gain that can be less

than a guiding acoustic fiber of comparable radius. However acoustic anti-guising

fiber needs specialized doping methods.

Before we investigate novel overlap reducing structures, we study the acoustic
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Fiber V 1(m/s) V 2(m/s) V 3(m/s) a(µm) b(µm) NA
548 5890 5756 5933 4.3 13.5 0.15
727 6073 5322 5933 2.2 6.0 0.165

Table 3.1: Basic fiber data for the experimental low-SBS fibers.

modes of these two step index structures. We then modify the simple step index

by adding a guiding acoustic ring layer around the core. Doping diffusion effects

can result in a non step like radial distribution of acoustic velocities. We then finally

investigate the acoustic guidance of the so-called ramp profile. To gain further insight

and to help obtain design guidelines, we choose two fiber configurations that are

drawn from currently available SBS suppression fibers.

Fiber 548 is acoustic guiding and fiber 727 is acoustic anti-guiding. The optical

mode is the standard scalar wave equation solution for a step index fiber. Instead

of the standard Gaussian wave, we express it in terms of Bessel functions. The

pump has the free space wavelength λ0 and the effective mode index neff for the

primary mode is determined by solving for the characteristic equation resulting from

the matching of the wavefunction and its derivative at the step boundary.

We can then define the mode effective area as

Aeff =
〈I〉2

〈I2〉
, (3.3)

where I = I(x, y) is the local optical intensity and 〈−〉 denotes the integration in

the transverse plane. The propagation constants for the optical and acoustical waves

then become

βopt =
2πneff
λ0

, βacc = 2βopt. (3.4)

The acoustical waves are assumed to be solutions of the scalar wave equation
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(∇2 + β2(r))φ = 0, r ≥ 0, (3.5)

where φ denotes the acoustical wave function in the transverse plane. When

we assume longitudinal acoustic waves, it can stand for the displacement in the z

direction or the local density fluctuation. To obtain the eigenvelocity of the mode,

continuity of φ and its derivative∂φ
∂r

is assumed across any transition boundary. Also

the derivative is assumed zero at the outer boundary if traction free surface exists

or φ is assumed to be zero if the surface is clamped.

The acoustic modes are solved and should be compared to the optical mode profile

for understanding the gain contribution of the particular mode. In solving for the

acoustic modes, we are interested in two things: the eigenvelocity of the mode and

its modeshape. The eigenvelocities are determined by solving for the characteristic

determinant of each particular mode. These are essential to calculate the Brillouin

frequency shifts associated with the particular optical mode. The acoustic mode-

shapes are normalized so that each acoustic mode has equal acoustic power. We

defer discussion of the normalization procedures when we discuss procedure for sim-

ulating the gain spectrum. However, it is to be noted that the plots of modeshapes

in the following pages involve such normalizations.

3.3.1 Acoustic guiding fiber

The acoustic guiding fiber has the general velocity profile shown in figure 3.1. The

example calculations will be performed on fiber 548 whose index profile is shown in

figure 3.2. The optical mode for fiber 548 is shown in figure 3.3. The fiber supports

guided acoustic modes and the bulk (or cladding) modes which we discuss below.
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Figure 3.1: Acoustic guiding fiber index profile

Figure 3.2: Index profile of fiber 548 without the guiding ring.
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Figure 3.3: Optical mode profile for fiber 548 and its ringed counterpart.

Modes guided in layer 1

These modes have effective velocity that satisfies Vl1 < Veff < Vl2 and the wave-

function is given by φ(r) =


AJ0(h1r) 0 ≤ r ≤ a,

BK0(h̃2r) a < r ≤ b,

where the constants are

defined as

h1 = βacc

√
V 2 − V 2

l1

Vl1
, h̃2 = βacc

√
V 2
l2 − V 2

Vl2
.

The characteristic determinant for finding the eigenvelocities is then given by∣∣∣∣∣∣∣∣
J0(h1a) −K0(h̃2a)

−h1J1(h1a) h̃2K1(h̃2a)

∣∣∣∣∣∣∣∣ = 0.

As an example, this determinant is plotted as a function of velocities for fiber 548.

We also show how the modes are picked from such a graph and the corresponding

modes have been plotted in figure 3.5
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Figure 3.4: Plotting the characteristic determinant for determination of mode eigenvelocities for
the guided modes.

Modes guided in layer 1 and 2

These modes have effective velocity that satisfies Vl1 < Vl2 < Veff and the wave-

function is given by

φ(r) =


AJ0(h1r) 0 ≤ r ≤ a,

BJ0(h2r) + CY0(h2r) a < r ≤ b,

where the constants are defined by

h1 = βacc

√
V 2 − V 2

l1

Vl1
, h2 = βacc

√
V 2 − V 2

l2

Vl2
.

The characteristic determinant for finding the eigenvelocities is then given by∣∣∣∣∣∣∣∣∣∣∣∣∣

J0(h1a) −J0(h2a) −Y0(h2a)

−h1J1(h1a) −h2J1(h2a) −h2Y1(h2a)

0 −J1(h2b) −Y1(h2b)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Figure 3.5: Modeshapes for the guided modes for fiber 548 w/o ring.
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Figure 3.6: Determining the mode eigenvelocities for the bulk guided (cladding) modes.

The mode picking plots are shown in figure 3.7 for fiber 548 and the modeshapes

for the first five cladding modes are plotted in figure 3.8.

3.3.2 Acoustic guiding fiber with acoustic guiding ring

The acoustic guiding fiber with the addition of a guiding ring layer has the velocity

profile shown in figure 3.9. We choose fiber 548 with a ring for illustration of this case.

(figure 3.10). The fiber supports guided acoustic modes and the bulk (or cladding)

modes as before, but in addition the guiding ring now supports modes of its own.



44

Figure 3.7: We zoom in on the modes that have the maximum contribution.

Modes guided in the ring

These modes have effective velocity that satisfies Vl2 < Veff < Vl1 < V13 and the

wavefunction is given by

φ(r) =



AI0(h̃1r) 0 ≤ r ≤ a,

BJ0(h2r) + CY0(h2r) a < r ≤ a1,

DK0(h̃3r) a1 < r ≤ b,

where the constants are defined as

h̃1 = βacc

√
V 2
l1 − V 2

Vl1
, h2 = βacc

√
V 2 − V 2

l2

Vl2
, h̃3 = βacc

√
V 2
l3 − V 2

l1

Vl3
. (3.6)

The characteristic determinant for finding the eigenvelocities is then given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I0(h̃1a) −J0(h2a) −Y0(h2a) 0

h̃1I1(h̃1a) −h2J1(h2a) −h2Y1(h2a) 0

0 J0(h2a1) Y0(h2a1 −K0(h̃3a1)

0 −h2J1(h2a1 −h2Y1(h2a1 h̃3K1(h̃3a1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Figure 3.8: Modeshapes for the first five cladding modes.
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Figure 3.9: Acoustic guiding fiber with ring

Figure 3.10: Index profile for fiber 548 with ring.
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Figure 3.11: Plot for determining the eigenvelocities of the ring guided modes for fiber 548.

The plot of the characteristic determinant for picking the ring mode eigenvelocities

is shown in figure 3.11 for fiber 548. The corresponding modeshapes for the ring

modes are shown in figure 3.12

Modes guided in the inner layers

These modes have effective velocity that satisfies Vl2 < Vl1 < Veff < V13.

The wavefunction is given by

φ(r) =



AJ0(h1r) 0 ≤ r ≤ a,

BJ0(h2r) + CY0(h2r) a < r ≤ a1,

DK0(h̃3r). a1 < r ≤ b,

where the constants are defined as

h1 = βacc

√
V 2 − V 2

l1

Vl1
, h2 = βacc

√
V 2 − V 2

l2

Vl2
, h̃3 = βacc

√
V 2
l3 − V 2

l1

Vl3
. (3.7)

The characteristic determinant for finding the eigenvelocities is then given by
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Figure 3.12: Modeshapes for the ring guided modes.



49

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J0(h1a) −J0(h2a) −Y0(h2a) 0

−h1J1(h1a) h2J1(h2a) h2Y1(h2a) 0

0 J0(h2a1) Y0(h2a1 −K0(h̃3a1)

0 −h2J1(h2a1 −h2Y1(h2a1 h̃3K1(h̃3a1))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The characteristic determinant for fiber 548 is plotted in figure 3.13 and mode-

shapes for the inner guided modes in figure 3.14.

Figure 3.13: Plot for determining the eigenvelocities of the inner layer guided modes for fiber 548.

Modes guided in the cladding

These modes have effective velocity that satisfies Vl2 < Vl1 < V13 < Veff .

The wavefunction is given by

φ(r) =



AJ0(h1r) 0 ≤ r ≤ a,

BJ0(h2r) + CY0(h2r) a < r ≤ a1,

DJ0(h2r) + EY0(h2r) a1 < r ≤ b,
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Figure 3.14: Modeshapes for the innerlayer guided modes.
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where the constants are defined as

h1 = βacc

√
V 2 − V 2

l1

Vl1
, h2 = βacc

√
V 2 − V 2

l2

Vl2
, h3 = βacc

√
V 2 − V 2

l3

Vl3
. (3.8)

The characteristic determinant for finding the eigenvelocities is then given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

J0(h1a) −J0(h2a) −Y0(h2a) 0 0

−h1J1(h1a) h2J1(h2a) h2Y1(h2a) 0 0

0 J0(h2a1) Y0(h2a1 −J0(h3a1) −Y0(h3a1)

0 −h2J1(h2a1 −h2Y1(h2a1 h3J1(h3a1) h3Y1(h3a1)

0 0 0 J1(h3b) Y1(h3b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

These modes are similar to the corresponding modes in the ringless case. Also, in

the guided case and hence we will not plot them here.

3.3.3 Acoustic anti-guiding fiber

Figure 3.15: Acoustic anti guiding velocity profile

The acoustic anti-guiding fiber has the velocity profile shown in figure 3.15. We

choose fiber 727 for illustration of this case. (figure 3.16 for the index profile and

3.23 for the optical mode-profile).

Radiation modes

These modes have effective velocity that satisfies, Vl2 < Veff < Vl1
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Figure 3.16: Fiber 727 index profile

The wavefunction is given by

φ(r) =


AI0(h̃2r) 0 ≤ r ≤ a,

BJ0(h2r) + CY0(h2r) a < r ≤ b,

where the constants are defined as

h̃1 = βacc

√
V 2
l1 − V 2

Vl1
, h2 = βacc

√
V 2 − V 2

l2

Vl2
.

The characteristic determinant for finding the eigenvelocities is then given by∣∣∣∣∣∣∣∣∣∣∣∣∣

I0(h̃1a) −J0(h2a) −Y0(h2a)

h̃1I1(h̃1a) h2J1(h2a) h2Y1(h2a)

0 −J1(h2b) −Y1(h2b)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The characteristic function for determining the eigenvelocities of the radiation

modes is shown in figure 3.17. We then plot the first few modeshapes for the radiation

modes in figure 3.18.
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Figure 3.17: Determining the eigenvelocities of the radiating modes.

Bulk modes

The equations are similar to the case for guided fibers. We plot the characteristic

determinant in figure 3.19 and typical modeshape of the bulk modes in figure 3.20

3.3.4 Acoustic anti-guiding fiber with acoustic guiding ring

The acoustic anti-guiding fiber with the addition of a guiding ring has the velocity

profile shown in figure 3.21 . We choose fiber 727 for illustration of this case. (figure

3.22 for the index profile and 3.23 for the optical mode-profile).

Ring guided and bulk guided modes

The equations are very similar to the cases previously discussed and will not

be reproduced. However, since the cladding modes are significant because of their

contribution to the Brillouin gain, we plot the characteristic determinant in figure

3.24 and the modeshape in figure 3.25).
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Figure 3.18: Radiation modes of the anti-guiding fiber.
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Figure 3.19: Determining the eigenvelocities of the bulk modes.

Figure 3.20: Typical modeshape of the bulk modes for the antiguiding fiber.
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Figure 3.21: Acoustic anti-guiding with ring

Figure 3.22: Index profile for fiber 727 with ring.
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Figure 3.23: Optical mode profile for fiber 727

Figure 3.24: Determining eigenvelocities of the primary bulk guided modes.
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Figure 3.25: First bulk mode for fiber 727 with ring.

Modes guided in the cladding

These modes have effective velocity that satisfies, Vl3 < Vl2 < Veff < Vl1.

The wavefunction is given by,

φ(r) =



AI0(h̃1r) 0 ≤ r ≤ a,

BJ0(h2r) + CY0(h2r) a < r ≤ a1,

DJ0(h2r) + EY0(h2r) a1 < r ≤ b,

where the constants are defined as

h̃1 = βacc

√
V 2
l1 − V 2

Vl1
, h2 = βacc

√
V 2 − V 2

l2

Vl2
, h3 = βacc

√
V 2 − V 2

l3

Vl3
. (3.9)
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The characteristic determinant for finding the eigenvelocities is then given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I0(h̃1a) −J0(h2a) −Y0(h2a) 0 0

+h̃1J1(h̃1a) h2J1(h2a) h2Y1(h2a) 0 0

0 J0(h2a1) Y0(h2a1 −J0(h3a1) −Y0(h3a1)

0 −h2J1(h2a1 −h2Y1(h2a1 h3J1(h3a1) h3Y1(h3a1)

0 0 0 J1(h3b) Y1(h3b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

The plot of characteristic determinant is given in figure 3.26 and a typical mode-

shape for these modes is given in figure 3.27

Figure 3.26: Determining the radiation mode eigenvelocities.

3.3.5 Acoustic anti-guiding Ramp profile

The step like boundaries we have chosen for the acoustic index profiles are an

idealization. Due to dopant diffusion effects we would expect to have a profile more

like the one shown in figure 3.28. We discuss the solution of acoustic modes in a

generalized profile of this form. The solution proceeds by breaking the generalized
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Figure 3.27: Typical modeshape for a radiation mode of fiber 727 with ring.

profile into strips of constant acoustic velocity. As an example we have written a

program that breaks the generalized profile into five layers. This approach is more

general and thus any profile can be broken down into strips depending on the desired

accuracy of the Brillouin spectrum.

Figure 3.28: Generalized anti-guiding ring profile or the ramp profile and its 5 layer approximation.

We discuss now the procedure for solving the acoustic modes in the five layer

structure. The ordering of velocities is given by Vl1 > Vl2 > Vl3 > Vl5 > Vl4. The
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structure thus supports

• ring guided modes that satisfy Vl1 > Vl2 > Vl3 > Vl5 > Veff > Vl4

• Radiation modes that satisfy Vl1 > Veff > Vl5

• Bulk guided modes that satisfy Veff > Vl1.

The procedure for finding the eigenvelocities is similar to the cases already dis-

cussed. Suffice it to say that we are now looking at larger determinants that involve

matching the wavefunction and its derivative at each of the layer boundaries.

3.4 Procedure for simulating spontaneous Brillouin spec-
trum

The procedure for obtaining the Brillouin gain spectrum is similar to that in

reference [54], where we solve for the acoustic modes, obtain the Brillouin gain for

each mode and then stitch a spectrum by assuming a lorentzian lineshape. As in

reference [29], we can thus express this as

S(ν) =
N∑
i=0

gB
Aeff
Aiao

L(ν) (3.10)

where S(ν) denotes the spectrum computed over all the N acoustic modes, gB is the

Brillouin gain coefficient of the medium and w is the FWHM of the spectrum, L(ν)

denotes the lorentzian lineshape

L(ν) =
(w/2)2

(ν − νB)2 + (w/2)2
, (3.11)

where νB is the eigenfrequency of the particular acoustic mode. It is related to the

mode eigenvelocity through

νB =
V m
A 2neff
λ0

. (3.12)
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We also define the acousto-optic mode area [29] as

Aaom =

[
〈f 2(r)〉

ζm(r)f 2(r)

]2 〈
ζ2
m(r)

〉
, (3.13)

where f stands for the optical field and ζ denotes the acoustical field. The acoustical

field is thus normalized by calculating acoustical power through 〈ζ2
m(r)〉. The triangle

braces denote integration over the cross sectional plane.

3.5 Results and Discussion

The numerical procedure above was validated against the results shown in [54].

3.5.1 Acoustic guiding fiber(fiber 548)

Figure 3.29: Brillouin gain spectrum of fiber 548 without ring.

The Brillouin gain spectrum is seen to consist of only one peak and the con-

tribution is from the guided modes. The reason becomes clear when we plot the

modeshapes of the guided and the cladding modes in figure 3.29. For the guiding



63

Figure 3.30: Comparison of guided and cladding modes of equal power.

fiber, we thus need to sum the contributions of the guided modes for calculating the

threshold. Such a procedure has been performed in [29].

We then simulated the guiding fiber with a ring to see if any significant suppression

can be obtained. Since we know that the contribution comes from the guided mode,

we predict not to obtain much suppression in the peak gain. This can be clearly seen

in the plotted spectrum of figure 3.31. The modeshapes of different kinds of modes

are plotted in figure 3.32 and they further support our reasoning. We thus conclude

that an acoustic ring layer is unsuitable for SBS suppression in an acoustic guiding

fiber.

3.5.2 Case 2: Acoustic anti-guiding fiber 727

The Brillouin gain spectrum (figure 3.33) is seen to consist of two distinct peaks,

one determined by the radiation modes and the other by the cladding modes. How-

ever, it is seen that the cladding modes have a larger contribution (see figure 3.34 for
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Figure 3.31: Brillouin gain spectrum for 548 with added ring.

Figure 3.32: Comparison of modeshapes for different modes for 548 with ring.
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Figure 3.33: Brillouin gain spectrum for 727 without ring.

comparing modeshapes) and the threshold will thus be determined by the cladding

or the bulk modes. Also the contribution to the peak was determined to be primarily

due to the first few cladding modes.

The addition of a ring is seen to significantly alter the Brillouin gain spectrum by

reducing the impact of the bulk modes but in addition imposing several new peaks

contributed by the ring guided modes. The ring modes however do not contribute

as much as the bulk modes and thus their effect on the threshold is not significant.

For the case of a 2.2 micron wide ring suppression in SBS gain of close to 7 dB is

shown.

We investigate the effect of scaling the ring size and find that a ring of 2.2 micron

is the most optimal. In practice, the optimal ring size will depend on several factors

including the effect of dopants on the Brillouin gain coefficient, the phonon decay

lifetime and the diffusion effects.
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Figure 3.34: Comparison of modeshapes for different modes for 727 without ring.

Figure 3.35: Brillouin gain spectrum for 727 with ring.
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Figure 3.36: Comparison of modeshapes for different modes for 727 with ring.

Figure 3.37: Effect of ring size scaling
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Because the ring primarily alters the modeshapes outside the core, we expect the

effectiveness of the ring method to drop down with scaling in the core size. We

observe this effect in figure 3.37.

Figure 3.38: Gain spectrum for 33 micron core size.

To this effect we next investigate the Ramp profile. The ramp profile (see figure

3.39 aims to alter the overlap mainly in the core area.

The ramp profile is compared with a guiding type fiber. We plot the spectrum in

figure 3.40 and see about 7 dB suppression.

We also investigated the effect of core size scaling on this particular design and

find the corresponding drop in effectiveness when we scale to a 50 micron core size.

(see figure 3.41 )

3.6 Conclusions

A chief advantage of our waveguide is that SBS suppression can be achieved

independently of the optical mode. An additional advantage is that SBS suppression
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Figure 3.39: Ramp profile design for 33 micron core

Figure 3.40: Gain spectrum for 33 micron core size.
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Figure 3.41: Gain spectrum for 50 micron core size.

is length-independent, and thus the technology can be applied to LMA laser fibers.

However, we find that there is an inherent scaling issue with respect to core size.

Further work in this area should be focused on other structures that particularly

target the bulk modes.



CHAPTER 4

Analysis of Stimulated Brillouin scattering in a
one-dimensional phononic bandgap structure

4.1 Introduction

Recently photonic/phononic crystal fiber structures have been proposed that can

achieve simultaneous photonic-gap guidance of optical waves and phononic-bandgap

inhibition of acoustic wave propagation, in which SBS effects can be mitigated (see

[31]) without detrimentally affecting optical pump wave. The elastic bandgap in

these hybrid bandgap fibers arises through a carefully engineered core nanostruc-

ture. These structures can be employed for both electro-optic modulation and SBS

inhibition. Experimental work has been conducted on these structures to character-

ize their response (see [55]). They show a suppression of 6 dB (see [30]). However,

it is unclear as to how sensitive the threshold suppression will be to manufacturing

defects and their scalability with core size.

Another recently discussed method is the incorporation of a fiber optical grating

that presents a stop band for the Stokes wave (see [33]). The grating enhances

threshold by inhibiting the buildup of the Stokes wave. The authors are careful to

mention the manufacturing defects of the grating and present suitable arguments

to circumvent this issue. However, in silica fibers, the SBS induced Stokes wave is

downshifted from the pump by only 13 GHz. This makes it very difficult to design
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a grating that can suppress the Stokes wave and leave the pump unaffected. We

believe that this is a major limitation of the above scheme.

We propose instead the incorporation of an elastic grating. Since the wavelength

of the elastic waves is about twice that of the pump and the stokes, any residual

optical grating created by the elastic grating will be far detuned from the pump

and hence has negligible effect on pump propagation. This method preserves the

simplicity and the easy core-size scalability of the approach in reference [33] relative

to the hybrid nanostructure approach [31], while getting around problem of designing

a grating with stringent cutoff requirements.

In this chapter, we show that the enhancement in Brillouin threshold obtainable

in such a structure can be expressed in terms of the Brillouin gain spectrum charac-

teristics and the modulation depth of the designed grating. The chapter is organized

as follows, in section II, we discuss the theory and derive the threshold enhance-

ment in the case of no-pump depletion approximation. In section III, we numerically

integrate the equations relaxing the pump depletion approximation.

4.2 Theory of SBS in a 1D elastic grating

During SBS, the incident pump wave (wavelength λp ) scatters from a forward

traveling acoustic wave and excites a Stokes wave propagating in the backward di-

rection. The Stokes and the pump can then amplify the forward traveling acoustic

wave through electrostriction. A rigorous treatment of SBS would involve employing

equations of linear elasticity to model the material displacement vector waves (see

ref[15] in [29]). But in an optic fiber, the acoustic wave is predominantly longitudinal

and hence we can neglect its transverse components (see refs. [14,16] in [29]).

This simplification leads us to adopt a scalar approximation to the equation de-
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scribing the acousto-optic interaction in fiber structure with a longitudinal variation

in elastic properties. We note that the scalar approximation is not valid for analy-

sis of SBS in the more complicated photonic/Phononic crystal fiber where the full

generality has to be taken into account.

Figure 4.1: Schematic of the elastic grating structure being analyzed.

Figure 4.1 shows the schematic for our analysis. The elastic grating is shown

to induce a square wave like variation of the longitudinal acoustic velocity, with a

period ∆, along the direction of wave propagation z. By conservation of energy and

momentum we have

ωA = ωP − ωS, kA = kP + kS, (4.1)

where the subscript A denotes the acoustic wave. Using kp ≈ ks = 2π/λp, we get

kA = 2kp. To ensure that the grating creates a stop band of interest, we choose

∆ ≈ λA/2 = λp/4.

The equation for acousto-optic interaction [29] is given by

∂2ρ

∂t2
− Γ

∂2

∂z2

∂ρ

∂t
− V 2

l (z)
∂2ρ

∂z2
= −γ

2
∇2E2, (4.2)

where ρ is the amplitude of the pressure field variations around the mean value ρ0,

E is the amplitude of the electric field. Γ and γ are the damping factor for acoustic

phonons and the electrostrictive constant in the material respectively. V 2
l (z) is the

squared longitudinal acoustic velocity along the fiber (as shown in figure 4.1) and
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can be expressed in terms of a Fourier series. We drop the higher order terms for

simplicity and finally get

V 2
l (z) = V 2

l0 ±
ι∆V 2

l

π
exp(∓ι2π

∆
z)V 2

l0 =
V 2
l1 + V 2

l2

2
∆V 2

l = V 2
l1 − V 2

l2, (4.3)

Assuming a polarization preserving fiber, the electric field can be expressed as a sum

of forward traveling pump and backward traveling Stokes waves

E(z, t) =
1

2
Epexp(ι(ωpt− βpz)) +

1

2
Esexp(ι(ωst+ βsz)) + c.c., (4.4)

where, (Ep, Es), (ωp, ωs) and (βp, βs) denote the amplitude, frequency and the wavevec-

tors of pump and Stokes fields respectively and c.c. stands for the complex conjugate.

We can model the effect of the elastic grating by introducing a backward traveling

acoustic wave in addition to the forward traveling electrostriction driven acoustic

wave. The pressure field in equation 4.2 can be thus expressed as a sum of forward

and backward traveling components as

ρ(z, t) =
1

2
ρfexp(ι(Ωt− qz)) +

1

2
ρbexp(ι(Ωt+ qz)) + c.c.. (4.5)

ρf , ρb are the amplitudes of the forward and the backward traveling acoustic

waves. (Ω, q) denote the frequency and the wavevector of the acoustic waves respec-

tively. We have Ω = ωp − ωs, q = βp + βs

The electric field satisfies the wave equation

∇2E − ε

c2

∂2E

∂t2
− µ0

∂2PNL
∂t2

, (4.6)

where εl is the linear part of the dielectric constant and PNL is the nonlinear polar-

ization induced by the forward traveling acoustic wave and is given by

PNL =
γ

ρ0

ρE, (4.7)
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where γ is the electrostrictive constant, ρ is the pressure variation around the mean

value ρ0 that couples with the electric field through electrostriction.

In solving for the evolution of the electric field amplitudes, we make the assump-

tion, that the nonlinear polarization PNL can be treated as a small perturbation, the

optical field is quasi monochromatic and that the fiber is polarization maintaining.

We neglect dispersion in the optical properties of the material as far as the pump

and the Stokes fields are concerned. We substitute equations (4.4),(4.5) and (4.7) in

(4.6), separate out terms with similar exponentials and impose the phase matching

condition and obtain under the slowly varying envelope approximation

∂Ep
∂z

+
α

2
Ep +

n

c

∂Ep
∂t

=
−ιωγµ0c

4ρ0n
ρfEs (4.8)

−∂Es
∂z

+
α

2
Ep +

n

c

∂Es
∂t

=
−ιωγµ0c

4ρ0n
ρ∗fEp,

where αp ≈ αs = α and n are the loss coefficients and the refractive index for the

pump and stokes waves, ωp ≈ ωs = ω and p12 is the component of the electrostrictive

tensor and is related to the electrostrictive coefficient γ by γ =
2n5ωεp12

cq

In the steady state limit, we thus express equation (4.8) as

∂Ep
∂z

+
α

2
Ep =

−ι2n4π2p12

λ2ρ0q
ρfEs (4.9)

−∂Es
∂z

+
α

2
Ep =

−ι2n4π2p12

λ2ρ0q
ρ∗fEp.

To obtain the evolution equations for the pressure waves, we write for the RHS

of equation (4.2)

∇2E2 ≈ −1

2
EpE

∗
sq

2exp(ι(Ωt− qz)) + c.c. (4.10)
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Substituting equations (4.10) and (4.5) in equation (4.2) and applying the slowly

varying approximation and grouping terms with similar exponentials we get

−Ω2ρfe
−ιqz + ιΩΓq2ρfe

−ιqz − V 2
lo(−q2ρf )e

−ιqz (4.11)

−V 2
lo(−2ιq)

∂ρf
∂z

e−ιqz − q2 ∆V 2
l

ιπ
exp(ι(2q − 2π

∆
)z)ρb = −γ

2
q2EpE

∗
s .

−Ω2ρbe
−ιqz + ιΩΓq2ρbe

−ιqz − V 2
lo(−q2ρb)e

−ιqz

−V 2
lo(+2ιq)

∂ρb
∂z

e−ιqz − q2 ∆V 2
l

ιπ
exp(−ι(2q − 2π

∆
)z)ρb = 0.

We can set the term exp(i(2q − 2π
∆

)z) to 1 by the phase matching condition and

thus simplify to

ρf +
2ιqV 2

lo

q2V 2
lo − Ω2 + ιΩΓq2

∂ρf
∂z
− q2v2

lo(∆V
2
l /V

2
lo)

q2V 2
lo − Ω2 + ιΩΓq2

ρb =
−γq2/2

q2V 2
lo − Ω2 + ιΩΓq2

EpE
∗
s

ρb −
2ιqV 2

lo

q2V 2
lo − Ω2 + ιΩΓq2

∂ρb
∂z

+
q2v2

lo(∆V
2
l /V

2
lo)

q2V 2
lo − Ω2 + ιΩΓq2

ρf = 0.

Let us define the Brillouin shift frequency (or the peak Brillouin frequency) ΩB =

2πνB and the FWHM of the gain spectrum around the peak frequency as WB =

Γq2/2π. We note that ΩB = q2V 2
lo and so at the peak gain frequency, equation (4.12)

reduces to

ρf +
Vlo
πWB

∂ρf
∂z

+
νB
πWB

∆V 2
l

V 2
lo

ρb =
−ιγq2

8π2νBWB

EpE
∗
s (4.12)

ρb −
Vlo
πWB

∂ρf
∂z
− νB
πWB

∆V 2
l

V 2
lo

ρf = 0.

The evolution equations derived so far will now be expressed in a normalized form,

The electric field amplitudes are normalized with respect to the pump amplitude at

the input as Ap = Ep/Ep(0) and As = Es/Ep(0). The length is normalized to unity
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so z = z/L. Let I0 =
1

2
cεn2EpE

∗
p denote the input intensity and the Brillouin gain

coefficient

gB =
4π8p2

12

λ2
pρ0νBWB

.

We also define the parameters R and Lz as

Lz =
νB
πWB

R =
1

π

νB
WB

∆V 2
l

V 2
lo

,

where R denotes the degree of coupling achieved by the elastic grating at the peak

acoustic frequency. It is related to the Brillouin gain spectrum characteristics and

the modulation depth of the elastic grating. Lz signifies the length scale over which

hypersonic phonons damp out in the material.

The pressure amplitudes are normalized so that the term ApA
∗
s appears on the

RHS of the evolution equation for equation (4.12). Thus the set of evolution equa-

tions for the wave amplitudes in the normalized form (similar to [56])

∂Ap
∂z

= −αL
2
Ap −

gBI0L

2
ρfAs (4.13)

∂As
∂z

= +
αL

2
As −

gBI0L

2
ρ∗fAp

ρf +
Lz
L

∂ρf
∂z

+Rρb = ApAs ∗

ρf +
Lz
L

∂ρf
∂z

+Rρb = 0.

In these equations Hypersonic phonons are damped out quickly over distances

much smaller than those over which the source term on the right hand side of the

pressure evolution equation varies significantly, hence we can drop the term contain-

ing ∂ρ
∂z

in equation 4.13 similar to reference [14].
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4.3 Results and discussion

For typical values in an optic fiber, νB = 11GHz, WB = 12MHz and assuming

an elastic grating created by doping with GeO2 (.5% by weight, see [54]), R = 2.1.

If Lz/L << R, ρf is approximately equal to ApA∗s
(1+R2)

. The equations (4.13) in that

case are of a form very similar to the case without the presence of the grating.

In the no - pump depletion approximation, the threshold power is then seen to

scale by a factor of 1/(1 + R2). We thus conclude that the threshold enhancement

obtainable by the elastic grating can be related in a simple way to the parameter R

by the factor (1/1 + R2). Using a fourth order Runge-Kutta method and boundary

conditions similar to [56], the equations (13) are solved without the pump depletion

approximation. In figure 4.2, we plot the variation of pump and Stokes intensity for

a case (above threshold) with and without the presence of elastic grating. In figure

4.3, we plot the conversion efficiency (with and without grating). The effect of the

grating in suppression can be seen to obey the (1/1 +R2) relation.
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Figure 4.2: Pump and Stokes intensity against fiber length

Figure 4.3: Conversion efficiency against pump intensity



CHAPTER 5

Distributed Stokes suppression in a circularly dichroic
medium for suppression of Stimulated Brillouin scattering in

an optic fiber

5.1 Introduction

We have thus far examined SBS suppression methods based on control of the

acoustic environment. It was clear from the previous chapters that difficulties exist

in obtaining a high threshold acoustic environment. In this chapter, we investigate

the approach of SBS threshold enhancement by employing structures that affect the

buildup and propagation of the Stokes wave. Lee et al. proposed recently a method

of SBS suppression that aims to suppress SBS through control of the Stokes guidance

properties [33]. They propose the use of fiber Bragg gratings tuned at the Stokes

wavelength. This method has been criticized for the difficulty in writing a grating

that can filter the Stokes but negligibly affect the pump (we remind the reader

that the separation of the Stokes wavelength from the pump wavelength is quite

small). We propose for the first time a novel method for achieving distributed Stokes

suppression based on using circularly polarized light. A circularly polarized light of

one handedness results in a scattered light of the other handedness. By designing

a circularly dichroic medium we can thus increase the threshold. We estimate the

suppression obtainable by such a scheme. We further discuss complications that can
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arise due to residual birefringence effects.

In this chapter, we treat the general case of a distributed Stokes loss mechanism

introduced in the fiber. In particular, we are interested in cases where the Stokes

optical loss is considerably higher than the pump loss.

Figure 5.1: Schematic for the derivation

5.2 Polarization properties of SBS

In the case of linearly polarized pump and an isotropic medium, the acoustic wave

is longitudinal and the density fluctuation is a scalar quantity. As a consequence,

no coupling can occur between fields of orthogonal polarization states. Consider a

pump field and the Stokes field with their polarization states included (as in [57])

EP(r) = EP (r)eP ,ES(r) = ES(r)eS, (5.1)

where EP (r) is the spatial form of the field and eP is its polarization state. The

acoustic field Q(r) is scalar and has no polarization component. The interaction

equations for the stokes field and the acoustic amplitude are [57],

δ

δz
Es −

ι

2k
∇2

TES = ELQ ∗ (5.2)(
δ

δt
+

1

2τB

)
Q = γEL · E∗S.

We note that the laser and the Stokes field occur as a vector dot product EP ·ES∗ =

EPES(eS · eP∗). If the laser and Stokes fields are parallel, they produce the acoustic
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field with the maximum strength. For the case of plane wave interaction, we can

conclude that the Stokes field will develop the same polarization state as the laser

field. Extending this reasoning to circularly polarized basis states then, right-hand

circularly polarized laser induces left-hand circularly polarized Stokes that is parallel

to the laser field polarization. The change of handedness results because handedness

is related to the rotation direction as perceived along the direction of propagation.

This can be easily verified by expressing the circular polarized basis states in terms

of linear basis states as:

eP =
(ex + ιey)√

2
, eS =

(ex − ιey)√
2

,

and subsequently performing a vector dot product.

With regard to polarization, SBS is identical to the reflection properties of a

conventional mirror. We can clarify this concept even further by using the concept

of angular momentum of a photon. This is described in figure 5.2.

Figure 5.2: Visualizing SBS for circularly polarized pump light

Conservation of angular momentum results in the Pump and the Stokes photons

rotating in the same sense when seeing the pump propagating away. But the Stokes
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wave travels in the reverse direction. When seen from the other direction the Stokes

wave now possesses the other circular handedness.

5.2.1 Theory

In this derivation, we revise the traditional Smith formula (see [16] for Brillouin

threshold for the case of distributed Stokes loss and anti-guiding acoustic geometry.

The starting point for our derivation is the equation for the evolution of the backward

Brillouin Stokes wave power Ps [15] along the length of the fiber shown here in figure

5.1 .

dPS(z)

dz
− αsPS(z) +

gB(ω)

Aeff
PP (z)PS(z) = 0,

where PS(z),PP (z) are the Stokes and Pump intensities at z, gB(ω) is the Brillouin

gain as a function of the frequency shift ω, L(ω) is the lorentzian lineshape and Aeff

denotes the optical effective area and αs denotes the loss for the Stokes wave. Upon

making the pump no-depletion approximation, we can write

PP (z) = PP (0)exp(−αpz), (5.3)

where αp is the loss for the pump wave.

To determine the effect of amplified spontaneous Brillouin scattering, we consider

the one photon approximation introduced by Smith [16]. This approximation as-

sumes that the effect of amplified spontaneous Brillouin scattering is equivalent to

the injection of one fictitious photon per longitudinal mode. The injected power

must be scaled by the factor kT/hνB for the case of thermally generated acoustic

phonons. Under the short fiber approximation (L < 50km, similar to ref [27] in [29]),

this allows us to write for the Stokes power at the input end in terms of that at the
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output end z = L as

PS(z = 0) = PS(z = L)exp(−αsL)exp(
gB(ω)

Aeff
PP (0)Leff ), (5.4)

where the effective length is defined as

Leff =
(1− exp(−αpL))

αP
. (5.5)

Taking the power at the end (z = L) as a summation of one fictitious photon per

longitudinal mode we get

PS(z = 0) =
kT

νB
exp(−αSL)

∫ −∞
∞

ω exp(gB(ω)
PP (0)

Aeff
Leff ) dω. (5.6)

For thresholds let us define

PS(0) = ηPP (0). (5.7)

This particular definition of threshold is motivated by the fact that the definition for

SBS threshold by various authors can be arbitrary. The threshold is conventionally

defined as the input pump power for which the Stokes power at the input becomes

equal to the input pump power (We define η = 1 as in chapter 9. of [15]). However

we note that reference [29] defines η = 0.01.

In order to solve equation 5.6, an exact functional form for gB(ω) needs to be

known. The integral in 5.6, can be evaluated approximately by using the method of

steepest descent as the main contribution to the integral comes from a narrow region

of ω near the peak gain ω = ωsB [15]. The result can be written as

Ps(0) = P eff
sL exp

(
gB(ωsB)

PP (0)

Aeff
Leff − αsL

)
, (5.8)

where the effective Stokes seed power at z = L is given by

P eff
sL = kT

ωsB
νB

Beff , (5.9)
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with

Beff =

[
2πAeff

|g′′B(ωsB)PP (0)PP (0)Leff |

]1/2

g
′′

B(ωsB) =

[
∂2gB
∂ω2

]
ω=ωsB

.

We will choose a lorentzian as the functional form of gB as

gB(ν) = gB(ωsB)
(w/2)2

(ν − νB)2 + (w/2)2
, (5.10)

where w is the FWHM.

After evaluating the derivative in 5.10, the threshold power P th can finally be

evaluated by the equation

P eff
s0 exp(gBP

thLeff ) = ηP th. (5.11)

Furthermore

Beff = C
1√

1− e−αpL

1√
P th

, (5.12)

where

C =

(
π2w4Aeffαp

2gB(ωsB)

)1/2

. (5.13)

Thus

P eff
s0 = kTC

2π

λpνB

1√
1− e−αpL

1√
P th

. (5.14)

The transcendental equation for the threshold power P th now becomes

P th3/2
= B

e−αsL

√
1− e−αpL

exp

(
gB(ωsB)

P th

Aeff
Leff

)
, (5.15)

where

B =
πwkT

ηλpνB

(
2Aeffαp
gB(ωsB)

)1/2

, (5.16)

and λp is the wavelength of the pump light.
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5.2.2 Results and discussion

We first examine threshold increase factor as a function of the distributed Stokes

loss αS. We take the following parameters for this simulation.

• Aeff = 50µm2

• L = 20m

• gB = 5x10−11m/W

• νB = 11GHz

• w = 12MHz

• η = 1

• λ = 1.55µm

• T = 300K

• αp = 0.2dB/m.

The threshold increase in dB defined by

10 log10

(
P th
new

P th
old

)
(5.17)

is plotted as a function of αS in dB/m in figure 5.3. The gain for the Stokes wave

is given by exp(gBI0L − αSL) under the no-pump depletion approximation. Thus,

as αS approaches gBI0, a larger increase in αS is needed to achieve a proportional

increase in the threshold. This behavior is seen in figure 5.3. A further confirmation

of this behavior is observed when we next plot the threshold increase as a function

of fiber length for a given αS.

In figure 5.4 calculations are performed for the threshold values as a function of

fiber length for two values of pump gain (10 dB/m and 20 dB/m) and values of 100

dB/m are assumed for the distributed stokes suppression scheme.
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Figure 5.3: Threshold increase as a function of αS

Several interesting features are observed from this figure

• Distributed stokes suppression mechanism is seen to be effective only for lengths

greater than 10m or so.

• We observe a saturation-like behavior of the threshold values for lengths after

the L = 25m or so.

The occurrence of the saturation like effect is not observed in the classical deriva-

tion of Smith and is a feature primarily linked to the Distributed Stokes suppression

approach. The saturation of SBS threshold is important primarily from considera-

tions of thermal design of a fiber laser system. The output power of a fiber laser is

clamped at the value of the SBS threshold. For a given output power a longer length

of the fiber can be used. This has advantages in that the heat generated from pump

absorption is dissipated over a larger volume.
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Figure 5.4: Plot of SBS threshold clearly showing saturation effects
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5.3 Conclusions

In this chapter we quantified backward scattering thresholds in the presence of

a distributed loss component that is markedly higher in comparison with the loss

for the pump. A marked saturation like effect is seen to occur in the case of such

a distributed Stokes loss component. This saturation effect is useful in designing

thermal management systems. In particular, it decouples thermal management issues

from design concerns regarding the fiber length.

We briefly remark on aspects related to the practical realization of this concept for

SBS threshold increase. Chiral core fibers have been proposed which have circular

birefringence and circular dichroism of the order of 30dB/m (see [58]). The fibers in

[58] were short (< 100cm).

Incorporation of distributed Stokes loss in the CCC fiber

Distributed Stokes suppression using circular dichroism can be incorporated in

the CCC architecture by using the concept of a helical stress rod. The idea of

a helical stress rod for inducing circular birefringence was introduced by Huang

[59]. The helical stress rod is composed of a material that has a different thermal

expansion coefficient compared to the surrounding glass. The fiber drawn from such

a composition will have residual stress effects due to the differing thermal expansion

coefficients. Huang claims that this structure leads to a circularly birefringent fiber

that has minimal residual linear birefringence. The stress rod can be integrated into

the CCC architecture as shown in figure 5.5. The stress rod creates birefringence

and the CCC side core can then be used to generate a differential absorption of the

order of 100 dB/m between the two polarizations. Using the stress rod in a CCC

setting thus results in a circularly dichroic medium with higher relative distributed
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Figure 5.5: CCC distributed Stokes suppression scheme

loss for one polarization compared to the other. Using a right circular pump in this

geometry will then result in a left circular Stokes with a higher relative loss. This

results in increase in the SBS threshold for the configuration.



CHAPTER 6

Conclusions and future work

This dissertation addressed two interesting problems in the area of applied nonlin-

ear optics. Specifically, we considered the problem of scattering in and by a nonlinear

periodic medium.

First we considered the problem of extending the work on optical switching in

nonlinear superlattices to the general case of a metamaterial superlattices. We estab-

lished that a superlattice containing a combination of right handed and left handed

slabs exhibit omnidirectional switching properties. We explained these anomalous

properties by the presence of a gap soliton called the zero-n gap soliton.

Second, the problem of integrating nonlinearity suppression structures into high

power large mode area fiber lasers was considered. Here we examined the approach

of transverse acoustic velocity profile design in detail. We examined the core scaling

issues that would be particularly relevant to large mode area fiber lasers. We find

that a generalized ramp profile might be the most suitable design approach giving

about 7dB in SBS threshold enhancement. Further work in designing has to carefully

take into account the exact doping profile and the associated diffusing effects, the

exact value of Brillouin gain for the particular acoustic environment. The approach

established in this thesis can be generalized to serve as a design tool in the laboratory.
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We considered extending the concept of acoustic control by considering the con-

cept of phononic bandgap structure. A theory of SBS in a 1D elastic grating has been

worked out in this thesis. The results relate the suppression metrics to the design of

the bandgap structure. It is felt that this could be extended easily to the general case

of SBS in a full phononic bandgap structure. This method has practical limitations

due to the difficulty associated in fabricating a complicated microstructure fiber.

The search for further enhancements in SBS thresholds led finally to the sim-

ple and ingenious solution to SBS suppression that we present in this thesis. This

method involved using a distributed loss component primarily selective of the Stokes

component. We established the nonlinearity saturation effects that result purely as

a byproduct of this technique.

6.1 Possible complications due to residual birefringence ef-
fects

We discuss next the possible complications that might occur due to the fact that

a practical circular dichroic fiber system might have residual circular and/or linear

birefringence effects. To this end, we lay the framework for describing the evolution

of the fields in the presence of these residual effects.

Without loss of generality, consider a RCP pump which will generate LCP Stokes.

As an additional concern, the residual linear birefringence in the implementation

structure can result in the generation and copropagtion of a LCP pump wave resulting

from the coupling of the RCP pump by the residual linear birefringence. Similarly,

the LCP Stokes can result in the generation and copropagtion of an RCP Stokes

wave. In the next section, we attempt a semi-qualitative description of this issue.
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6.1.1 Analysis of SBS threshold increase in a circular dichroic medium
with residual linear birefringence.

Let us initially consider two linearly polarized pump waves propagating in an SBS

medium. These will generate Stokes waves of their corresponding polarizations. The

acoustic wave is propagating forward.

Figure 6.1: Schematic for the SBS equations.

The equation for the acousto-optic interaction in this structure is given (as in

[29]) by

d2ρ

dt2
− Γ∇2dρ

dt
− v2

l (r)∇2ρ = −γ
2
∇2E2, (6.1)

where ρ is the material density fluctuation around the mean value ρ0, Γ is the damp-

ing factor, vl is the longitudinal acoustic velocity and γ is the electrostrictive constant.

The electric field E is expressed as a superposition

Ē(r, z, t) =
1

2
f(r)[Epx(z, t)e

j(ωpt−βpz)ux + Epy(z, t)e
j(ωpt−βpz)uy + (6.2)

Esx(z, t)e
j(ωpt−βpz)ux + Esy(z, t)e

j(ωpt−βpz)uy] + c.c.,

where f(r) is the dimensionless fundamental optical modeprofile, Epx, Epy, Esx, Esy

are the slowly varying envelopes of the four waves (pump and the Stokes with the x
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and y polarization respectively),ux and uy are the unit polarization vectors, the radial

frequency and the wavevectors of the waves are given by ωp, ωs, βp, βs respectively.

We seek for the solution of acoustic waves in equation (6.1) to be of the form

ρ(z, t, r, θ) =
1

2

M∑
m=1

ρ̄m(z, t)ζm(r, θ)ej(Ωt−qz) + c.c.,

where M is the number of acoustic modes ζm(r, θ) , while their frequencies Ω and

wavevectors q satisfy the phase matching condition.

From Maxwell’s equations we obtain the wave equation for the electric fields as

∇2Ê =
εtot
c2

δ2Ê

δt2
, (6.3)

where εtot is the dielectric function given by

εtot = εL + εNL + ∆ε,

where εL is the permittivity of the unperturbed medium, εNL is the nonlinear pertur-

bation resulting from SBS and ∆ε is the perturbation that is induced to create the

circular dichroism. The assumptions made in this equation are very similar to the

ones made in the standard approach for deriving nonlinear pulse propagation prob-

lems in fiber optics. Most importantly we see that the perturbations are considered

as small. The material parameters at the pump and stokes frequencies are assumed

equal. To solve for the variation of the field amplitudes we evaluate the derivatives

of the fields given in equation (6.2) and substitute in equation (6.3), we then make

the slowly varying envelope approximation and finally use the fact that the optical

modal profile has negligible dependence on the nonlinear effects. The optical modal

equation is

∇2
⊥f(r) +

[
ω2n2(r)

c2
− β2

j

]
f(r) = 0.
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The terms are separated out according to the common exponential and the unit

polarization vectors. The phase matching condition ensures that counter-propagating

SBS waves are coupled while only the co-propagating fields are coupled via the linear

perturbation term. The coupling matrix

κ =

 κ11 κ12

κ21 κ22


is obtained when we use the normalization relation for the modes

∫
um · un dxdy = Nnδmn. (6.4)

Its elements are given by

κmn =
k0

2n0N0

∫
u∗n ·∆ε · um dxdy. (6.5)

We then write for the evolution of the linearly polarized fields thus

dEpx
dz

= −1

2
αxEpx − ισEpx |Esx|2 + ικ11Epx + ικ12Epy (6.6)

dEpy
dz

= −1

2
αyEpy − ισEpy |Esy|2 + ικ21Epy + ικ22Epx

dEsx
dz

= +
1

2
αxEsx − ισ∗Esx |Epx|2 − ικ11Esx − ικ12Esy

dEsy
dz

= +
1

2
αyEsy − ισ∗Esy |Epy|2 − ικ21Esy − ικ22Esx,

(6.7)

where

σ =
n9ε0p

2
12ω

3

2ρ0c3(Ω2
m − Ω2 + ιΩΓq2)

〈ζmf 2〉2

〈ζ2
m〉 〈f 2〉

,

and is similar to reference [29]. We next seek to convert these fields into a circular

basis representation. First, note that the direction of propagation of the Stokes wave
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is opposite and the handedness has to be properly considered. We write down next

the equations after the fields have been converted to a circular basis

dEPR
dz

= −1

2
αREPR −

1

2
gB(ν)ISLEPR +

ι

2
δEPR +

ι

2
∆βEPL. (6.8)

dESL
dz

= +
1

2
αLESL −

1

2
gB(ν)IPRESL −

ι

2
δESL +

ι

2
∆βESR.

dEPL
dz

= −1

2
αLEPL −

1

2
gB(ν)ISREPL −

ι

2
δEPL +

ι

2
∆βEPR.

dESR
dz

= +
1

2
αRESR −

1

2
gB(ν)IPLESR +

ι

2
δESR +

ι

2
∆βESL,

(6.9)

where αR, αL denote the optical losses for the right and cleft circular handedness and

the I terms the corresponding intensities of the fields. This dichroism is assumed

to be included in the medium by specific design and for now we assume that it is

independent of optical frequency. The four wave model in circular basis can be shown

by the following schematic. The coupling constants matrix expressed in the circular

Figure 6.2: The four wave model for SBS in a circularly dichroic medium.
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basis for a circular dichroic medium is

κ =
1

2

 δ ∆βeι2α0z

∆βe−ι2α0z −δ

 ,
where δ is the circular birefringence expressed in rad/m and ∆β is the residual linear

birefringence. It is easy to see that any medium possessing circular birefringence

must have a helical symmetry of some kind. One way to achieve this is through

spinning the fiber and this effect can be included in the coupling matrix by the alpha

term. However for simplicity we will ignore this additional complication and treat

the coupling matrix in the following simplified form.

κ =
1

2

 δ ∆β

∆β −δ

 .
The first simplification we introduce to solve the above system is to ignore pump

depletion and thus write for the pump fields

dEPR
dz

= −1

2
αREPR +

ι

2
δEPR +

ι

2
∆βEPL.

dEPL
dz

= −1

2
αLEPL −

ι

2
δEPL +

ι

2
∆βEPR.

This lead to the following equation for EPR

d2EPR
dz2

= C1
dEPR
dz

+ C2EPR,

where the constants are

C1 =
−(αL + αR)

2

C2 =
∆β2 − αRαL + ιδ(αR + αL)− δ2

4
.

Without loss of generality, let us consider that the structure is designed to primarily

attenuate LCP light. An RCP pump will then bleed into an LCP pump. In order to
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qualitatively understand the impact of residual linear birefringence, we next make

some assumptions

• The relative loss for the Stokes is significantly higher than that for the pump.

αR >> αL.

• The residual linear birefringence is weak. The SBS interaction resulting from

the LCP pump give a RCP Stokes. However because of the weak nature of the

residual linear birefringence and the high loss for LCP light, this SBS interaction

has threshold much higher than that of the RCP pump related SBS interaction.

We will thus drop these SBS terms.

• The LCP Stokes has high loss and thus the effect of the residual linear birefrin-

gence in generating an RCP Stokes wave is negligible.

The assumptions above help to reduce the systems of equations further to a three

wave model described in 6.3 The corresponding equations are thus,

Figure 6.3: Simplified three wave model

dEPR
dz

= −1

2
αREPR −

1

2
gB(ν)ISLEPR +

ι

2
δEPR +

ι

2
∆βEPL. (6.10)

dESL
dz

= +
1

2
αLESL −

1

2
gB(ν)IPRESL −

ι

2
δESL.
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dEPL
dz

= −1

2
αLEPL −

ι

2
δEPL +

ι

2
∆βEPR.

6.2 Distributed Stokes suppression for mitigation of forward
scattering

The concept of distributed Stokes suppression for mitigation of self-induced scat-

tering also holds in the case when the Stokes wave is scattered in the forward direc-

tion. This method has implications for suppression of stimulated Raman scattering.

We discuss next the theory of distributed Stokes suppression for forward scattering.

The starting point for our derivation is again the equation for the evolution of the

forward scattered Stokes wave power Ps(z) along the length of the fiber

dPS(z)

dz
= −αsPS(z) + γPP (z)PS(z),

where, PS(z),PP (z) are the Stokes and Pump powers at z. Upon making the pump

no-depletion approximation, we can write

PP (z) = PP (0)exp(−αP z). (6.11)

To determine the effect of amplified spontaneous forward scattering, we again revert

to the photon approximation introduced by Smith. This approximation assumes that

the effect of amplified spontaneous forward scattering is equivalent to the injection

of one fictitious photon per mode. Under the short fiber approximation (similar to

[29]), this allows us to write for the Stokes power at the output end in terms of that

at the input end as

PS(z = L) = PS(z = 0)exp(−αSL)exp(γPP (0)Leff ), (6.12)

where the effective length defined as

Leff =
(1− exp(−αPL))

αP
. (6.13)
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After the one-photon approximation mentioned earlier we get

PS(z = L) = exp(−αSL)
∫ −∞
∞

ν exp(γPP (0)Leff ) dν. (6.14)

For thresholds let us define

PS(L) = ηPP (0). (6.15)

If we assume a lorentzian function for the dependence of γ on frequency a transcen-

dental equation of the following form results

x3/2B =
e−αSL

√
1− e−αPL

× exp(x(1− e−αpL)), (6.16)

where

B =
ηαPνRλpump√
πγ(νR)cw

,

where νR and w are the frequency downshift and the FWHM of the lorentzian forward

scattering process. And the threshold power will be obtained by using the equation

P th =
xαP
γ(νR)

. (6.17)

We strongly suspect that the saturation like behavior will also hold for this case.
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.1 Chapter 2

.1.1 calculate the transmission in a linear mixed superlattice

%Calculates reflectivity and transmitance of a mixed type NIM-PIM

%superlattice.

%general constants

er1 = 4;%2.673; % PIM dielectric constant

ur1 = 1; % permeability constant

d1 = 12e-3;%100e-9;

alp1 = 0; % kerr nonlinearity

er2 = -4.0;%2.465; % nIM dielectric constant

ur2 = 1.0; % permeability constant

alp1 = 0; % kerr nonlinearity

c1 = 100; %

c2 = 100; % dieprsion relation constants

d2 = 6e-3;%85e-9;

%run constants

N = 16; % number of unit cells

angsweep = 100;

global beta2;

global erur;
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%frequency loop

for a = 1:100

w(a) = 2*pi*(a*9e-2)*1e9

for ac = 1%:100

theta(1) = 0; %1.0996;

%theta(ac) = 0.890*ac *pi/180;

%w(1) = 2*pi*3*1e9;

%er2(a) = 1 + 25/(0.81 - (2.3)^2) + 100/(11.5^2 - (2.3)^2);

%ur2(a) = 1 + 9/(0.902^2 - (2.3)^2);

%er2(a) = 1 + 25/(0.81 - (1 + a*9e-3)^2) + 100/(11.5^2

- (1 + a*9e-3)^2);

%ur2(a) = 1 + 9/(0.902^2 - (1 + a*9e-3)^2);

er2(a) = -50 + a ;%1.2 - 100/(2 +a*9e-3)^2;% + 25/(0.81

- (1 + 9e-2*a)^2) + 50/(11.5^2 - (1+ 9e-2*a)^2);

ur2(a) = -1;%1 - 100/(2+ a*9e-3)^2;% + 9/(0.902^2

- (1 + 9e-2*a)^2);

ko = w(a)*(1.2566e-6*8.8542e-12)^0.5;
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%ko = 2*pi/488e-9;%w(a)*(1.2566e-6*8.8542e-12)^0.5;

b2n = sqrt(er2(a)*ur2(a) - (sin(theta(ac)))^2)/ur2(a);

b2p = sqrt(er1*ur1 - (sin(theta(ac)))^2)/ur1;

kn = ko*b2n;

if er2(a) < 0 & ur2(a) < 0

kn = -ko*b2n;

end

kp = ko*b2p;

Tp = [ cos(-kp*d1), -sin(-kp*d1)/b2p;

b2p*sin(-kp*d1), cos(-kp*d1) ];

% %

Tn = [ cos(-kn*d2), -sin(-kn*d2)/b2n;

b2n*sin(-kn*d2), cos(-kn*d2) ];

T = (Tn*Tp)^16

%

%

% %defining the permitivity variations

%

Inten = 1;

E = Inten*[1 ; 1/(120*pi)*cos(theta(ac))]
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%for hf = 1:16

%end

%

% %

% Er = 0.5* (E(1) + i*E(2)*sec(theta(ac)));

% Ei = 0.5* (E(1) - i*E(2)*sec(theta(ac)));

%

Tr(a) = 2*cos(theta(ac))/( (T(1,1)+T(2,2))*

cos(theta(ac)) + i* (T(1,2)*cos(theta(ac))^2 - T(2,1)));

% Re(a) = abs(Er/Ei)^2;

Tr(a) = abs(Tr(a))^2;
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end

end

%semilogy(w/(2*pi),Tr);

% plot(theta*180/pi, Tr);

%semilogy(a,Tr);

subplot(1,2,1);

plot(er2,w/(2*pi));

hold on;

plot(ur2,w/(2*pi));

subplot(1,2,2);

semilogx(Tr, w/(2*pi))
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.1.2 calculates the transmission in a mixed type superlattice with added
nonlinearity

%trial 2

%general constants

er1 = 1.0; % PIM dielectric constant

ur1 = 1.0; % permeability constant

d1 = 1e-6;

alp1 = 0; % kerr nonlinearity

er2 = -1.0;%2.465; % nIM dielectric constant

ur2 = -1; % permeability constant

alp2 = 0; % kerr nonlinearity

d2 = 1e-6;

N = 16; % number of unit cells

%substrate and cladding RI

ns = 1.5;

nc = 1.5;

global beta2;

global erur;

%output intensity loop
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for m = 1: 100

Inten = m*.2;

%frequency loop

for a = 1%:1000

%w(a) = 2*pi*(2.4 + 1e-3*a)*1e9;

for ac = 1

theta(ac) = 50*pi/180; %1.0996;

%theta(ac) = (40 + 0.3*ac) *pi/180;

pc = nc*cos(theta(ac));

ps = sqrt(ns^2 - (nc*sin(theta(ac)))^2);

%ko = w(a)*(1.2566e-6*8.8542e-12)^0.5;

ko = 2*pi/(488e-9);

%er2(a) = 1 + 25/(0.81 - (1.8+ 1e-3*a)^2) +

100/(11.5^2 - (1.8+ 1e-3*a)^2);
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%ur2(a) = 1 + 9/(0.902^2 - (1.8 + 1e-3*a)^2);

E = Inten*[1 ; i*ps];

du = d1+d2;

options = odeset(’Refine’, 4 );

for hf = 1:N

%negative layer

beta2 = (nc*sin(theta(ac)))^2;

erur = er2(a)*ur2(a);

%

E(2) = ur2(a)*E(2)/ur1;

[xg,FE] = ode45(’nlon’,[((N-hf)*du + du)*ko,

((N-hf)*du + d1)*ko], E,options);

%plot(xg/ko, abs(FE(:,1).^2));

E = conj(FE(max(size(FE)),:)’);

E(2) = ur1*E(2)/ur2(a);
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%hold on;

%positive layer

beta2 = (nc*sin(theta(ac)))^2;

erur = er1*ur1;

[xg,FE] = ode45(’nlop’,[((N-hf)*du + d1)*ko,

((N-hf)*du)*ko], E, options);

%plot(xg/ko, abs(FE(:,1).^2));

E = conj(FE(max(size(FE)),:)’);

%hold on;

end

Er = 0.5* (E(1) + (1/pc)*i*E(2));

Ei(m,ac) = 0.5* (E(1) - (1/pc)*i*E(2));

Tr(m,ac) = (ps/pc)*abs(Inten/Ei(m,ac))^2;

Re(a) = abs(Er/Ei(m,ac))^2;

end

end

end

incint = abs(Ei.^2);
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figure(2);

plot(incint, Tr);

%plot(theta*180/pi, Tr(1,:));

%

% subplot(1,2,1);

% plot(er2,w/(2*pi));

% hold on;

% plot(ur2,w/(2*pi));

%

% subplot(1,2,2);

% semilogx(Tr, w/(2*pi))

.1.3 Draws the bistability curves

%trial 2

%general constants

er1 = 1.0; % PIM dielectric constant

ur1 = 1.0; % permeability constant

d1 = 1e-6;

alp1 = 0; % kerr nonlinearity

er2 = -1.0;%2.465; % nIM dielectric constant

ur2 = -1; % permeability constant

alp2 = 0; % kerr nonlinearity
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d2 = 1e-6;

N = 16; % number of unit cells

%substrate and cladding RI

ns = 1.5;

nc = 1.5;

global beta2;

global erur;

%output intensity loop

for m = 1: 100

Inten = m*.2;

%frequency loop

for a = 1%:1000

%w(a) = 2*pi*(2.4 + 1e-3*a)*1e9;

for ac = 1

theta(ac) = 50*pi/180; %1.0996;
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%theta(ac) = (40 + 0.3*ac) *pi/180;

pc = nc*cos(theta(ac));

ps = sqrt(ns^2 - (nc*sin(theta(ac)))^2);

%ko = w(a)*(1.2566e-6*8.8542e-12)^0.5;

ko = 2*pi/(488e-9);

%er2(a) = 1 + 25/(0.81 - (1.8+ 1e-3*a)^2) +

100/(11.5^2 - (1.8+ 1e-3*a)^2);

%ur2(a) = 1 + 9/(0.902^2 - (1.8 + 1e-3*a)^2);

E = Inten*[1 ; i*ps];

du = d1+d2;

options = odeset(’Refine’, 4 );
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for hf = 1:N

%negative layer

beta2 = (nc*sin(theta(ac)))^2;

erur = er2(a)*ur2(a);

%

E(2) = ur2(a)*E(2)/ur1;

[xg,FE] = ode45(’nlon’,[((N-hf)*du + du)*ko,

((N-hf)*du + d1)*ko], E,options);

%plot(xg/ko, abs(FE(:,1).^2));

E = conj(FE(max(size(FE)),:)’);

E(2) = ur1*E(2)/ur2(a);

%hold on;

%positive layer

beta2 = (nc*sin(theta(ac)))^2;

erur = er1*ur1;

[xg,FE] = ode45(’nlop’,[((N-hf)*du + d1)*ko,

((N-hf)*du)*ko], E, options);

%plot(xg/ko, abs(FE(:,1).^2));

E = conj(FE(max(size(FE)),:)’);

%hold on;

end
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Er = 0.5* (E(1) + (1/pc)*i*E(2));

Ei(m,ac) = 0.5* (E(1) - (1/pc)*i*E(2));

Tr(m,ac) = (ps/pc)*abs(Inten/Ei(m,ac))^2;

Re(a) = abs(Er/Ei(m,ac))^2;

end

end

end

incint = abs(Ei.^2);

figure(2);

plot(incint, Tr);

%plot(theta*180/pi, Tr(1,:));

%

% subplot(1,2,1);

% plot(er2,w/(2*pi));

% hold on;

% plot(ur2,w/(2*pi));

%

% subplot(1,2,2);

% semilogx(Tr, w/(2*pi))
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.1.4 propagates the electric field through a nonlinear slab through direct
integration of the nonlinear wave equation

function efield = propagate(E,a)

options = odeset (’Refine’, 10);

global er1;

global ur1;

global d1;

global d2;

global N;

global er2;

global ur2;

global theta;

global w;

global Ei;

%

% hf = 1;du = d1+d2;

% %beta2 = sin(theta)^2;

% erur = er2(a)*ur2(a);

% efield = nlon(1,2);

%[xg,FE] = ode45(’nlon’,[((N-hf)*du + du)*ko,
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((N-hf)*du + d1)*ko], E,options);

ko = w(a)*(1.2566e-6*8.8542e-12)^0.5;

for hf = 1:N

% d1 = d1 + 3e-3*rand;

% d2 = d2 + 3e-3*rand;

du = d1+d2;

%negative layer

beta2 = sin(theta)^2;

erur = er2(a)*ur2(a);

E(2) = ur2(a)*E(2)/ur1;

[xg,FE] = ode45(’nlon’,[((N-hf)*du + du)*ko,

((N-hf)*du + d1)*ko], E,options, erur, beta2);

E = conj(FE(max(size(FE)),:)’);

E(2) = ur1*E(2)/ur2(a);

% %positive layer

beta2 = sin(theta)^2;
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erur = er1*ur1;

[xg,FE] = ode45(’nlop’,[((N-hf)*du + d1)*ko,

((N-hf)*du)*ko], E);

E = conj(FE(max(size(FE)),:)’);

end

efield = 0.5* (E(1) - i*E(2)*sec(theta));

.2 Chapter 3

% % five layer guiding

%

% % 5 layered structure ...

% % get the Brillouin spectrum of a 5 layered structure.

% % for the case of an anti-guiding fiber

% %

%

% % IN DOING ANY NUMERICAL THING ..... PLEASE MAKE SURE THAT

% % YOU HAVE NORMALIZED EVERY DAMN THING MAN !

% % IT IS VERY ESSENTIAL

% %ELSE THINGS ARE RELATIVELY OUT OF PROPORTION AND IT

% %WILL START KILLING YOU

% %

%
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% %global constants

global n1;

global n2;

global a1;

global b;

global ao;

global Vl1;

global Vl2;

global betaac;

global lambda;

global intfsq;

global Ao;

global Bo;

global ko1;

global ko2;

% Enter profile information -- in terms of thickness of the

% 5 layers and the respective index and velocity values
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doping_5L_G(1);

% Solve for the optical mode

lambda = 1.064; %lambda in microns

ko = (2*pi)/lambda;

for sc = 1: 1000

x(sc) = n2+ sc*(n1 - n2)/1000;%1.0 + (.449/120)*i;

y(sc) = optcharec(x(sc));

end;

% % %

figure(2);

plot(x,log(y));

neff = x(755);

optmodep(755);

% neff = x(633);%633,1.4578for50um

33um,248 1.4578, 456for40um1.4578

% % % 315for33um,,,,633for50um

% optmodep(neff);

% %

% % % % Calculate integral of f^2

betaopt = 2*pi*neff/lambda;

betaac = 2*betaopt;
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p1 = quadl(@intIsq,0,ao);

p2 = quadl(@intIsq,ao,b);

Isq =2*pi* (p1+p2); % integral of filed ^4

p3 = quadl(@intfsqua,0,ao);

p4 = quadl(@intfsqua,ao,b);

fsq = 2*pi*(p3+p4); % integral of filed ^2

Aeff = fsq^2/Isq;

% %

% % % MODES Guided in layer 1

% %characteristic equation and

%identification of eigenmodes

% for sc = 1: 1000

% x(sc) = Vl1 + sc*(5900 - Vl1)/1000;

% y(sc) = fiveL_G_modes_1_charec(x(sc));

% end;

%

%

% figure(2);

% plot(x,log(y));

% hold on;
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%

% %pick and count modes

%

% modind = 0;

% for sc = 2: 999

% if (log(y(sc)) < log(y(sc-1)) )

& (log(y(sc)) < log(y(sc+1)))

% modind = modind +1;

% modeV(modind) = x(sc);

% freq(modind) = (2*neff/lambda)*modeV(modind);

% end

% end

%

% mod2a = modind;

% clear x;

% clear y;

%

% % % % determine modeprofile and overlap integral for eigenmodes

% % % figure(3)

% for t = 1:mod2a

% gain(t) = fiveL_G_eigenmodes_1(modeV(t));

% amao(t) = fsq^2/gain(t)^2;

% end

%

% % %
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% % %

% %

% % % % MODES Guided layer 1,2

% % % % characteristic equation and identification of eigenmodes

%

% for sc = 1: 1000

% x(sc) = Vl2 + sc*(6000 - Vl2)/1000;%1.0 + (.449/120)*i;

% y(sc) = fiveL_G_modes_12_charec(x(sc));

% end;

% for sc = 1001: 3000

% x(sc) = 6000 + (sc-1001)*(6400- 6000)/2999;%1.0

+ (.449/120)*i;

% y(sc) = fiveL_G_modes_12_charec(x(sc));

% end;

%

%

% % figure(2);

% % plot(x,log(y));

% % hold on;

% % % %

% % % %pick and count modes

% % %

% modind = mod2a;

% for sc = 2: 999

% if (log(y(sc)) < log(y(sc-1)) )
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& (log(y(sc)) < log(y(sc+1)))

% modind = modind +1;

% modeV(modind) = x(sc);

% freq(modind) = (2*neff/lambda)*modeV(modind);

% end

% end

%

% mod2b = modind;

% clear x;

% clear y;

% % %

% % % % % determine modeprofile and overlap integral

for eigenmodes

% for t = mod2a+1:mod2b

% % subplot(mod2b-mod2a,1,t-mod2a);

% gain(t) = fiveL_G_eigenmodes_12(modeV(t));

% amao(t) = fsq^2/gain(t)^2;

% end

% % %

% % % %

% % %

% % % %

% % %

% % %

% % normalizing the gain so that ..



125

% % free space gain = 1; as the mode shapes are identical

%

% %gain = gain./sqrt(Isq);

%

% %

% % %

% % % % %

% % % %Construct the spectrum and threshold calculations

% % %

%

% n = neff; %refractive index

% p12 = 0.286; %lasto-optic coeff

% lamp = 1.06e-6; %1.55e-6; %1.08e-6; %1.06e-6;

%1.55e-6; %wavelength

% rho0 = 2204; %density

% c = 3e8; %light speed

% vb = 16.25e9;%11.25e9; %16e9; %16.5e9;%11e9;

%average shift of modes

% vel_a = 2250;

% delvb = 17.5e6;%12e6; % broadening of each mode, inv lifetim

% alph = 2.78*0.2301e-3;% loss per m

% gb = (4*pi*n^8*p12^2)/ (c*lamp^3*rho0*vb*delvb);

%

% Tau = (17.5);

%
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% for gfd = 1: 1000

%

% f(gfd) = 14e3 + (5)*(gfd-1);

% Spec(gfd) = 0;

%

% for t = 1:mod2b

% Spec(gfd) = Spec(gfd) +

gb*Aeff./amao(t)*(Tau)^2 /( (f(gfd) - freq(t))^2 + Tau^2);

% end

%

% end

%

% figure(9);

% hold on;

%

% semilogy(f/1000,Spec);

%

% specG=[f;Spec];

%

% fid = fopen(’50um_Gspec’,’w’);

% fprintf(fid,’%f %1.15f\n’,specG);

% fclose(fid);

%

%

%
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%

% %save 30um_xaxis_spec f -ascii

% %save 30um_G_spec Spec -ascii

% % %

% %

% % %

% % %

% % %

% % %

% % %

% % %

% % % % %

% % % % % %

% % % % % %

% % % % % %

%expression to evaluate the mode power

%uz*uz

function optsq = Intfsqua(x)

global Ao;

global Bo;

global ko1;
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global ko2;

global ao;

global b;

if (x <= b)

optmo = (Bo*besselk(0,ko2*x)).^2;

optsq = x.*(optmo);

end

if (x <= ao)

optmo = (Ao*besselj(0,ko1*x)).^2;

optsq = x.*(optmo);

end

function doping_5L_G(t)

global n1;

global n2;

global a;

global b;

global ao;

global Vl1;
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global Vl2;

% distance

a = 4.3;%17.5; % acoustic core

ao =4.3;% 17.5;

b = 65.12; %cladding

%velocities

Vl1 = 5890; %6040;%5890;

Vl2 = 5933;

n1 = 1.458 ;

NA = 0.15;%0.06;

n2 = sqrt(n1^2 - NA^2);

%plotting out these profiles and properties

for m = 1:300

h(m) = -a - 10 + ((2*a + 20)/299)*(m-1);

%acoustic mode and velocity profile.

if (abs(h(m)) <= a)
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n(m) = n1;

vl(m) = Vl1;

end

if (abs(h(m)) > a)

n(m) = n2;

vl(m) = Vl2;

end

end

figure(1);

subplot(2,1,1);

plot(h,n);

xlabel(’distance (\mum)’);

ylabel(’refractive index’);

subplot(2,1,2);

plot(h,vl);

ylabel(’longitudinal acoustic velocity m/s’);

xlabel(’distance (\mum)’);

%

% refind=[h;n];

% accvelG=[h;vl];
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%

% fid = fopen(’50um_ref_ind’,’w’);

% fprintf(fid,’%f %f\n’,refind);

% fclose(fid);

%

% fid = fopen(’50um_acc_vel_G’,’w’);

% fprintf(fid,’%f %f\n’,accvelG);

% fclose(fid);

%

%

%save 30um_ref_index n -ascii

%save 30um_acc_vel_G vl -ascii

%

%charecteristic equation

%CLADDING MODES

% CHARECTERISTIC EQUATION

function f = fiveL_AG_modes_4_charec(V)

%define all the fiber constants, later we can pass
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%these as parameters

global n1;

global n2;

global a1;

global a2;

global a3;

global a4;

global b;

global ao;

global Vl1;

global Vl2;

global Vl3;

global Vl4;

global Vl5;

global lambda;

global betaac;

%Define the propagation constants

h1t = betaac*( sqrt(Vl1^2-V^2)/ Vl1);

h2t = betaac*( sqrt(Vl2^2-V^2)/ Vl2);

h3t = betaac*( sqrt(Vl3^2-V^2)/ Vl3);

h4 = betaac*( sqrt(V^2-Vl4^2)/ Vl4);
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h5t = betaac*( sqrt(Vl5^2--V^2)/ Vl5);

%Define the ABCD terms

A1 = besseli(0,h1t*a1);

A2 = -besseli(1,h1t*a1);

A3 = besseli(0,h2t*a1);

A4 = -besseli(1,h2t*a1);

A5 = besselk(0,h2t*a1);

A6 = besselk(1,h2t*a1);

B1 = besseli(0,h2t*a2);

B2 = -besseli(1,h2t*a2);

B3 = besselk(0,h2t*a2);

B4 = besselk(1,h2t*a2);

B5 = besseli(0,h3t*a2);

B6 = -besseli(1,h3t*a2);

B7 = besselk(0,h3t*a2);

B8 = besselk(1,h3t*a2);

C1 = besseli(0,h3t*a3);

C2 = -besseli(1,h3t*a3);

C3 = besselk(0,h3t*a3);

C4 = besselk(1,h3t*a3);

C5 = besselj(0,h4*a3);

C6 = besselj(1,h4*a3);
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C7 = bessely(0,h4*a3);

C8 = bessely(1,h4*a3);

D1 = besselj(0,h4*a4);

D2 = besselj(1,h4*a4);

D3 = bessely(0,h4*a4);

D4 = bessely(1,h4*a4);

D7 = besselk(0,h5t*a4);

D8 = besselk(1,h5t*a4);

%form the characteristic determinannt

%

C = [ 0 B1/(h2t*B2)

-B5/(h2t*B2) 0 0 0 ;

0 -h2t*B2/ (h2t*B2)

h3t*B6/(h2t*B2) 0 0 0 ;

0 0 C1/ (h3t*C2)

-C5/ (h3t*C2) -C7/ (h3t*C2) 0 ;

0 0 -h3t*C2/ (h3t*C2)



135

h4*C6/ (h3t*C2) h4*C8/ (h3t*C2) 0 ;

0 0 0 D1 D3 -D7;

0 0 0 -h4*D2 -h4*D4 h5t*D8]

f = abs(det(C));

%

%

%

%

%

% this will solve the SBS equations

function gbatv = gb_at_v(v)

alph = 0.2*0.2301e-3; %loss per m

L = 20e3;

rho_0 = 2204 ;%kg/m3

p12 = 0.286;

n = 1.45;

wb = 12e6;

vb = 11e9;

lambda = 1.55e-6;

c = 3e8;
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ama01 = 91.5 e-12;

amao2 = 3928e-12;

amao3 = 4921e-12;

gb = (4*pi*n^8*p12^2)/(lambda^3*rho_0*c*wb*vb);

Latv = ((wb/2)^2)/((wb/2)^2 + (vb - v)^2);

gbatv = gb*Latv;

% 5 layered structure ...

% get the Brillouin spectrum of a 5 layered structure.

% for the case of an anti-guiding fiber

%

% IN DOING ANY NUMERICAL THING ..... PLEASE MAKE SURE THAT

% YOU HAVE NORMALIZED EVERY DAMN THING MAN !

% IT IS VERY ESSENTIAL

%ELSE THINGS ARE RELATIVELY OUT OF PROPORTION AND IT

%WILL START KILLING YOU

%

%global constants

global n1;
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global n2;

global a1;

global a2;

global a3;

global a4;

global b;

global ao;

global Vl1;

global Vl2;

global Vl3;

global Vl4;

global Vl5;

global betaac;

global lambda;

global intfsq;

% Enter profile information -- in terms of thickness of the

% 5 layers and the respective index and velocity values

doping_5L_AG(1);

% Solve for the optical mode

lambda = 1.064; %lambda in microns

ko = (2*pi)/lambda;

for sc = 1: 1000
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x(sc) = 1.4578 + sc*(n1 - 1.4578)/1000;%1.0

+ (.449/120)*i;

y(sc) = optcharec(x(sc));

end;

% % %

%plot(x,log(y));

neff = x(633);

% % % clear x; clear y;

optmodep(neff);

%

% % % Calculate integral of f^2

betaopt = 2*pi*neff/lambda;

betaac = 2*betaopt;

p1 = quad8(@intIsq,0,ao);

p2 = quad8(@intIsq,ao,b);

Isq =2*pi* (p1+p2); % integral of filed ^4

p3 = quad8(@intfsq,0,ao);

p4 = quad8(@intfsq,ao,b);

fsq = 2*pi*(p3+p4); % integral of filed ^2

Aeff = fsq^2/Isq;
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%MODES Guided everywhere except in layer 1,2,3 (guides in 4 5)

%characteristic equation and identification of eigenmodes

for sc = 1: 1000

x(sc) = Vl5 + sc*(Vl3 - Vl5)/1000;

y(sc) = fiveL_AG_modes_45_charec(x(sc));

end;

% figure(2);

% plot(x,log(y));

% hold on;%

%pick and count modes

modind = 0;

for sc = 2: 999

if (log(y(sc)) < log(y(sc-1)) ) & (log(y(sc))

< log(y(sc+1)))

modind = modind +1;

modeV(modind) = x(sc);

freq(modind) = (2*neff/lambda)*modeV(modind);

end

end

mod2a = modind;

clear x;
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clear y;

% determine modeprofile and overlap integral for eigenmodes

figure(3)

for t = 1:mod2a

%subplot(mod2a,1,t);

gain(t) = fiveL_AG_eigenmodes_45(modeV(t));

amao(t) = fsq^2/gain(t)^2;

end

%

%

% %

%

% % % MODES Guided everywhere except in layer

1,2 (guides in 3 4 5)

% % % characteristic equation and identification

of eigenmodes

for sc = 1: 1000

x(sc) = Vl3 + sc*(Vl2 - Vl3)/1000;

y(sc) = fiveL_AG_modes_345_charec(x(sc));

end;

% % %

% figure(4);

% plot(x,log(y));

% hold on;
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% %

% % %pick and count modes

% %

modind = mod2a;

for sc = 2: 999

if (log(y(sc)) < log(y(sc-1)) )

& (log(y(sc)) < log(y(sc+1)))

modind = modind +1;

modeV(modind) = x(sc);

freq(modind) = (2*neff/lambda)*modeV(modind);

end

end

mod2b = modind;

clear x;

clear y;

%

% % % determine modeprofile and overlap integral for eigenmodes

for t = mod2a+1:mod2b

% subplot(mod2b-mod2a,1,t-mod2a);

gain(t) = fiveL_AG_eigenmodes_345(modeV(t));

amao(t) = fsq^2/gain(t)^2;

end

% %

% %
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%

% %

%

% MODES Guided everywhere except in layer 1 (guides in 2 3 4 5)

% characteristic equation and identification of eigenmodes

for sc = 1: 1000

x(sc) = Vl2 + sc*(Vl1 - Vl2)/1000;

y(sc) = fiveL_AG_modes_2345_charec(x(sc));

end;

% % % %

% figure(2);

% plot(x,log(y));

% hold on;

%pick and count modes

modind = mod2b;

for sc = 2: 999

if (log(y(sc)) < log(y(sc-1)) ) & (log(y(sc)) < log(y(sc+1)))

modind = modind +1;

modeV(modind) = x(sc);

freq(modind) = (2*neff/lambda)*modeV(modind);

end

end
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mod2c = modind;

clear x;

clear y;

%

% % determine modeprofile and overlap integral for eigenmodes

%

% % figure(5);

for t = mod2b+1:mod2c

% subplot(10,1,t-mod2b)

gain(t) = fiveL_AG_eigenmodes_2345(modeV(t));

amao(t) = fsq^2/gain(t)^2;

end

% % %

%

% % %CLADDING MODES

% %characteristic equation and identification of eigenmodes

for sc = 1: 1000

x(sc) = Vl1 + sc*(6310 - Vl1)/1000;

y(sc) = fiveL_AG_clad_modes_charec(x(sc));

end;

for sc = 1001:1500

x(sc) = 6310 + (sc-1000)*(6400- 6375 )/500;

y(sc) = fiveL_AG_clad_modes_charec(x(sc));

end;
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%

figure(3);

plot(x,log(y));

% % hold on;

% %pick and count modes

%

modind = mod2c;

for sc = 2: 999

if (log(y(sc)) < log(y(sc-1)) ) & (log(y(sc)) < log(y(sc+1)))

modind = modind +1;

modeV(modind) = x(sc);

freq(modind) = (2*neff/lambda)*modeV(modind);

end

end

mod2d = modind;

clear x;

clear y;

% %

% % % determine modeprofile and overlap integral for eigenmodes

for t = mod2c+1:mod2d

% subplot(4,1,t-mod2c);

gain(t) = fiveL_AG_eigenmodes_cladding(modeV(t));

amao(t) = fsq^2/gain(t)^2;
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end

n = neff; % refractive index

p12 = 0.286; %lasto-optic coeff

lamp = 1.06e-6; 1.55e-6; %1.08e-6;

%1.06e-6; %1.55e-6; %wavelength

rho0 = 2204; %density

c = 3e8; %light speed

vb = 16.85e9;%11.25e9; 16e9;

%16.5e9;%11e9; %average shift of modes

vel_a = 2250;

delvb = 17.5e6;%12e6; broadening of each mode, inv lifetim

alph = 2.78*0.2301e-3;%loss per m

gb = (4*pi*n^8*p12^2)/ (c*lamp^3*rho0*vb*delvb);

%Construct the spectrum and threshold calculations

Tau = (17.5);

for gfd = 1: 1000

f(gfd) = 14e3 + (5)*(gfd-1);

Spec(gfd) = 0;
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for t = 1:mod2d

Spec(gfd) =

Spec(gfd)+ gb*(Aeff/amao(t))*(Tau)^2

/( (f(gfd) - freq(t))^2 + Tau^2);

end

end

figure(9);

hold on;

%Spec=Spec./2;

plot(f/1000,Spec,’k’);

xlabel(’frequency shift(GHz)’);

ylabel(’g_B m/W’);

title(’50um’);

specG=[f;Spec];

fid = fopen(’30um_AGspec’,’w’);

fprintf(fid,’%f %1.15f\n’,specG);

fclose(fid);
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%

%

function doping_5L_AG(t)

global n1;

global n2;

global a1;

global a2;

global a3;

global a4;

global b;

global ao;

global Vl1;

global Vl2;

global Vl3;

global Vl4;
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global Vl5;

% distance

a1 = (50/33)*(17.5/25)*6;%(15.4/2);

% 15.4; % acoustic core

a2 = (50/33)*(17.5/25)*15.4;%(25.5/2);

% 25.5;

a3 = (50/33)*(1/2)*32.8;

a4 = (50/33)*(1/2)*33;

ao = a4;

b = 65.12; %cladding

%velocities

Vl1 = 6300; %6040;%5890;

Vl2 = 6180;

Vl3 = 6010;

Vl4 = 5900;

Vl5 = 5933;%5954;

n1 = 1.458 ;

NA = 0.06;

n2 = sqrt(n1^2 - NA^2);

%plotting out these profiles and properties
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for m = 1:300

h(m) = -a4 - 10 + ((2*a4 + 20)/299)*(m-1);

%acoustic mode and velocity profile.

if (abs(h(m)) < b)

n(m) = n2;

vl(m) = Vl5;

end

if (abs(h(m)) <a4 )

n(m) = n1;

vl(m) = Vl4;

end

if (abs(h(m)) <a3 )

vl(m) = Vl3;

n(m) = n1;

end

if (abs(h(m)) <a2)

n(m) = n1;

vl(m) = Vl2;

end
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if (abs(h(m)) <a1)

n(m) = n1;

vl(m) = Vl1;

end

end

figure(1);

subplot(2,1,1);

plot(h,n);

title(’refractive index’);

subplot(2,1,2);

plot(h,vl);

title(’longitudinal acoustic velocity’);

refind=[h;n];

accvelAG=[h;vl];

fid = fopen(’50um_acc_vel_AG’,’w’);

fprintf(fid,’%f %f\n’,accvelAG);

fclose(fid);
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%save 30um_xaxis_nvl h -ascii

%save 30um_ref_index n -ascii

%save 30um_acc_vel_AG vl -ascii

%

%calculates the eigenmodes given the eigenfrequency

function overlap = fiveL_AG_eigenmodes_cladding(V)

% define global constants

global n1;

global n2;

global a1;

global a2;

global a3;

global a4;

global b;

global ao;

global Vl1;
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global Vl2;

global Vl3;

global Vl4;

global Vl5;

global betaac;

global lambda;

global acnorm;

global Ao;

global Bo;

global ko1;

global ko2;

global h1;

global h2;

global h3;

global h4;

global h5;

global A_1;

global A_2;

global B_2;

global A_3;

global B_3;
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global A_4;

global B_4;

global A_5;

global B_5;

%define all the bessel quantities to form

the charecteristic matrix

%Define the propagation constants

h1 = betaac*( sqrt(V^2 - Vl1^2)/ Vl1);

h2 = betaac*( sqrt(V^2 - Vl2^2)/ Vl2);

h3 = betaac*( sqrt(V^2 - Vl3^2)/ Vl3);

h4 = betaac*( sqrt(V^2 - Vl4^2)/ Vl4);

h5 = betaac*( sqrt(V^2 - Vl5^2)/ Vl5);

%Define the ABCD terms

A1 = besselj(0,h1*a1);

A2 = besselj(1,h1*a1);

A3 = besselj(0,h2*a1);

A4 = besselj(1,h2*a1);

A5 = bessely(0,h2*a1);

A6 = bessely(1,h2*a1);

B1 = besselj(0,h2*a2);

B2 = besselj(1,h2*a2);

B3 = bessely(0,h2*a2);
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B4 = bessely(1,h2*a2);

B5 = besselj(0,h3*a2);

B6 = besselj(1,h3*a2);

B7 = bessely(0,h3*a2);

B8 = bessely(1,h3*a2);

C1 = besselj(0,h3*a3);

C2 = besselj(1,h3*a3);

C3 = bessely(0,h3*a3);

C4 = bessely(1,h3*a3);

C5 = besselj(0,h4*a3);

C6 = besselj(1,h4*a3);

C7 = bessely(0,h4*a3);

C8 = bessely(1,h4*a3);

D1 = besselj(0,h4*a4);

D2 = besselj(1,h4*a4);

D3 = bessely(0,h4*a4);

D4 = bessely(1,h4*a4);

D5 = besselj(0,h5*a4);

D6 = besselj(1,h5*a4);

D7 = bessely(0,h5*a4);

D8 = bessely(1,h5*a4);

E2 = besselj(1,h5*b);
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E4 = bessely(1,h5*b);

%form the matrix that will be inverted

C = [ -A3/A1 -A5/A1

0 0 0 0 0 0 ;

h2*A4/(-h1*A2) h2*A6/(-h1*A2)

0 0 0 0 0 0 ;

B1/(-h2*B2) B3/(-h2*B2) -B5/(-h2*B2) -B7/(-h2*B2)

0 0 0 0 ;

-h2*B2/(-h2*B2) -h2*B4/(-h2*B2) h3*B6/(-h2*B2)

h3*B8/(-h2*B2) 0 0 0 0;

0 0 C1/(-h3*C2)

C3/(-h3*C2) -C5/(-h3*C2) -C7/(-h3*C2) 0 0;

0 0 -h3*C2/(-h3*C2) -h3*C4/(-h3*C2)

h4*C6/(-h3*C2) h4*C8/(-h3*C2) 0 0;

0 0 0 0 D1 D3 -D5 -D7;

0 0 0 0 -h4*D2 -h4*D4 h5*D6 h5*D8];

% solve for the coefficients

sol = inv(C)*[-1;-1;0;0;0;0;0;0];

A_1 = 1;

A_2 = sol(1);

B_2 = sol(2);
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A_3 = sol(3);

B_3 = sol(4);

A_4 = sol(5);

B_4 = sol(6);

A_5 = sol(7);

B_5 = sol(8);

%integrate the eigenmodes to get the normalizing constant

pow1 = quad8(@accpow_5L_AG_clad,0,a1);

pow2 = quad8(@accpow_5L_AG_clad,a1,a2);

pow3 = quad8(@accpow_5L_AG_clad,a2,a3);

pow4 = quad8(@accpow_5L_AG_clad,a3,a4);

pow5 = quad8(@accpow_5L_AG_clad,a4,b);

accpower = 2*pi*(pow1+pow2+pow3 +pow4+pow5) ;

A_1 = A_1/sqrt(accpower);

A_2 = A_2/sqrt(accpower);

B_2 = B_2/sqrt(accpower);

A_3 = A_3/sqrt(accpower);

B_3 = B_3/sqrt(accpower);

A_4 = A_4/sqrt(accpower);

B_4 = B_4/sqrt(accpower);

A_5 = A_5/sqrt(accpower);

B_5 = B_5/sqrt(accpower);
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% display the modes with the optical ones as well

for m = 1:3000

h(m) = -a4 - 4 + ((2*a4 + 8 )/2999)*(m-1);

%optmode(m) = exp( -(h(m)/wopt)^2);

if (abs(h(m)) <= b)

optm(m) = (Bo*besselk(0,ko2*abs(h(m)))).^2;

phi(m) = (A_5*besselj(0,h5*abs(h(m)))+

B_5*bessely(0,h5*abs(h(m))));

end

if (abs(h(m)) <= a4)

optm(m) = (Ao*besselj(0,ko1*abs(h(m)))).^2;

phi(m) = (A_4*besselj(0,h4*abs(h(m)))+

B_4*bessely(0,h4*abs(h(m))));

end

if (abs(h(m)) <= a3)

optm(m) = (Ao*besselj(0,ko1*abs(h(m)))).^2;

phi(m) = (A_3*besselj(0,h3*abs(h(m)))+

B_3*bessely(0,h3*abs(h(m))));

end

if (abs(h(m)) <= a2)

optm(m) = (Ao*besselj(0,ko1*abs(h(m)))).^2;

phi(m) = (A_2*besselj(0,h2*abs(h(m)))+

B_2*bessely(0,h2*abs(h(m))));

end
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if (abs(h(m)) <= a1)

optm(m) = (Ao*besselj(0,ko1*abs(h(m)))).^2;

phi(m) = (A_1*besselj(0,h1*abs(h(m))));

end

end

p3 = quad8(@intfsq,0,ao);

p4 = quad8(@intfsq,ao,b);

fsq = 2*pi*(p3+p4); % integral of filed ^2

%figure(3);

plot(h,phi,’b’);

hold on;

plot(h,optm/fsq, ’k’);

% calculate the overlap with the optical mode

olap1 = quad8(@olaparg_5L_AG_clad,0,a1);

olap2 = quad8(@olaparg_5L_AG_clad,a1,a2);

olap3 = quad8(@olaparg_5L_AG_clad,a2,a3);

olap4 = quad8(@olaparg_5L_AG_clad,a3,a4);
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olap5 = quad8(@olaparg_5L_AG_clad,a4,b);

%

overlap = 2*pi*(olap1+olap2+olap3+olap4+olap5);

%

%calculates the eigenmodes given the eigenfrequency

function overlap = fiveL_G_eigenmodes_1(V)

% define global constants

global n1;

global n2;

global a;

global b;

global Vl1;

global Vl2;

global lambda;

global betaac;

global A_1;

global A_2;



160

%implemented for a dual layer fiber for the acoustic mode.

global acnorm;

global Ao;

global Bo;

global ko1;

global ko2;

global h1;

global h2t;

%Define the propagation constants

h1 = betaac*( sqrt(V^2 - Vl1^2)/ Vl1);

h2t = betaac*( sqrt(Vl2^2 - V^2)/ Vl2);

%Define the ABCD terms

A1 = besselj(0,h1*a);

A2 = besselj(1,h1*a);

B1 = besselk(0,h2t*a);

B2 = besselk(1,h2t*a);

A_2 = 1;
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A_1 = B1/A1;

%integrate the eigenmodes to get the normalizing constant

pow1 = quad8(@accpow_5L_G_1,0,a);

pow2 = quad8(@accpow_5L_G_1,a,b);

accpower = 2*pi*(pow1+pow2) ;

A_1 = A_1/sqrt(accpower);

A_2 = A_2/sqrt(accpower);

for m = 1:3000

h(m) = -a-4 + ((2*a+8 )/2999)*(m-1);

%optmode(m) = exp( -(h(m)/wopt)^2);

if (abs(h(m)) <= b)

optm(m) = (Bo*besselk(0,ko2*abs(h(m)))).^2;

phi(m) = (A_2*besselk(0,h2t*abs(h(m))));

end

if (abs(h(m)) < a)

optm(m) = (Ao*besselj(0,ko1*abs(h(m)))).^2;

phi(m) = (A_1*besselj(0,h1*abs(h(m))));

end
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end

% display the modes with the optical ones as well

figure(3);

hold on;

plot(h,phi,’k’);

% hold on;

% plot(h,optm/max(optm), ’k’);

% calculate the overlap with the optical mode

olap1 = quad8(@olaparg_5L_G_1,0,a);

olap2 = quad8(@olaparg_5L_G_1,a,b);

%

overlap =2*pi*( olap1+olap2);

%

% PLOTS MODE PROFILE
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function overlap = modeprofile_B_woacl(V)

global modind;

global ao;

global a;

global b;

global Vl1;

global Vl2;

global lambda;

global betaac;

global A_1;

global A_2;

global B_2;

global lam1;

global mu1;

global lam2;

global mu2;

%implemented for a dual layer fiber for the acoustic mode.
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global acnorm;

global Ao;

global Bo;

global ko1;

global ko2;

global h1;

global h2;

%Define the propagation constants

h1 = betaac*( sqrt(V^2 - Vl1^2)/ Vl1);

h2 = betaac*( sqrt(V^2 - Vl2^2)/ Vl2);

%Define the propagation constants

A1 = besselj(0,h1*a);

A2 = besselj(1,h1*a);

B1 = besselj(0,h2*a);

B2 = besselj(1,h2*a);
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B3 = bessely(0,h2*a);

B4 = bessely(1,h2*a);

C2 = besselj(1,h2*b);

C4 = bessely(1,h2*b);

%form the determinannt to solve for ABC, D =1;

A_2 = -C4/C2;

B_2 = 1;

A_1 = A_2*B1/A1+ B3/A1;

%acoustic power calculations

pow1 = quad8(@accpow_B_woacl,0,a);

pow2 = quad8(@accpow_B_woacl,a,b);

accpower = 2*pi*(pow1+pow2);

A_1 = A_1/sqrt(accpower);

A_2 = A_2/sqrt(accpower);

B_2 = B_2/sqrt(accpower);

% %construct the mode profile

for m = 1:3000
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h(m) = -a - 4 + ((2*a + 8 )/2999)*(m-1);

%optmode(m) = exp( -(h(m)/wopt)^2);

if (abs(h(m)) <= b)

optm(m) = (Bo*besselk(0,ko2*abs(h(m)))).^2;

phi(m) = (A_2*besselj(0,h2*abs(h(m)))+

B_2*bessely(0,h2*abs(h(m))));

end

% if (abs(h(m)) <= ao)

% optm(m) = (Ao*besselj(0,ko1*abs(h(m)))).^2;

% phi(m) = (A_2*besselj(0,h2*abs(h(m)))+

B_2*bessely(0,h2*abs(h(m))));

% end

if (abs(h(m)) <= a)

optm(m) = (Ao*besselj(0,ko1*abs(h(m)))).^2;

phi(m) = (A_1*besselj(0,h1*abs(h(m))));

end

end

%determine mode acoustic power and then normalize

%better to determine lambda and mu

% acnorm = max(abs(phi));

%

% A = A/acnorm;

% B = B/acnorm;
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% plot(h,phi/max(abs(phi)),’b’);

% hold on;

% plot(h,optm/max(optm), ’k’);

olap1 = quad8(@olaparg_B_woacl,0,a);

olap2 = quad8(@olaparg_B_woacl,a,b);

%

overlap = 2*pi*(olap1+olap2);

%

%

% olap1 = quadl(@olaparg1A,0,a);

% olap2 = quad8(@olaparg1A,a,b);

% % olap3 = quadl(@olaparg,25.12,65);

% %

% overlap = (olap1+olap2);

% %

%square of the acoustic wave function

function uzstuz = accpow_5L_AG_345(x)

global h1t;

global h2t;
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global h3;

global h4;

global h5;

global A_1;

global A_2;

global B_2;

global A_3;

global B_3;

global A_4;

global B_4;

global A_5;

global B_5;

global a1;

global a2;

global a3;

global a4;

global b;

global ao;

if (x <= b)

mod = (A_5*besselj(0,h5*x)+ B_5*bessely(0,h5*x));

uzstuz = x.*mod.^2;

end
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if (x <= a4)

mod = (A_4*besselj(0,h4*x)+ B_4*bessely(0,h4*x));

uzstuz = x.*mod.^2;

end

if (x <= a3)

mod = (A_3*besselj(0,h3*x)+ B_3*bessely(0,h3*x));

uzstuz = x.*mod.^2;

end

if (x <= a2)

mod = (A_2*besseli(0,h2t*x)+ B_2*besselk(0,h2t*x));

uzstuz = x.*mod.^2;

end

if (x <= a1)

mod = (A_1*besseli(0,h1t*x));

uzstuz = x.*mod.^2;

end

function val = corning(x)

%threshold computation

global Aao1;

global alph;

global gb;

global amao;
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global mod2b;

n = 1.458; %refractive index

p12 = 0.286; %lasto-optic coeff

lamp = 1.06e-6; %1.55e-6; %1.08e-6;

%1.06e-6; %1.55e-6; %wavelength

rho0 = 2204; %density

c = 3e8; %light speed

vb = 16.5e9;%11.25e9; %16e9;

%16.5e9;%11e9; %average shift of modes

vel_a = 2250;

delvb = 17.5e6;%12e6;

% broadening of each mode, inv lifetim

alph = 2.78*0.2301e-3;% loss per m

eta = 0.01; %threshold defn fraction

k = 1.3866e-23; %boltzmans

T = 300; %temp

L = 80; %meters

gb = (4*pi*n^8*p12^2)/ (c*lamp^3*rho0*vb*delvb);

Aao1= min(amao)*1e-12;%24.0402e-12;

%276.7764e-12; %8.1805e-12; % 120.5481e-12;

%12.8347e-12;%45.2563e-12; %80.2815e-12;%21.7247e-12;

%80.2815e-12; %43.4269e-12; %51.5968e-12;
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%91.5e-12; %91.5e-12;

%amao = 1e-12*[9,41,2.5485e4,1.2925e4,3.3244e4, 630,1967,3319,

4461,5360,6114,6904,8151,1.08e4,1.87e4,6.5151e4];

%amao = 1e-12*[ 10,490, 2.745e5,1.4e5,2.7e5,12.2e5];

% Aao1_1 = 91.5e-12;

% Aao2_1 = 3928e-12;

% Aao3_1 = 4921e-12;

% gb = gb/3.26;

B = (Aao1*eta*alph*vb*lamp)/(sqrt(pi)*k*T*gb*c*delvb);

%r = [ Aao1/Aao1_1 , Aao1/Aao2_1, Aao1/Aao3_1];

r = Aao1./(1e-12*amao);

cons = exp(-alph*L)/sqrt(1 - exp(-alph*L));

series = 0;

for k =85:90

series = series +

exp( r(k)*x*(1-exp(-alph*L))) /sqrt(r(k));

end

% for k = 79:89

% series = series +

exp( r(k)*x*(1-exp(-alph*L))) /sqrt(r(k));

% end
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val = cons*series- B*x.^1.5;

%val = B*x.^1.5;

%charecteristic equation

%CLADDING MODES

% CHARECTERISTIC EQUATION

function f = fiveL_AG_clad_modes_charec(V)

%define all the fiber constants, later we can pass

%these as parameters

global n1;

global n2;

global a1;

global a2;

global a3;

global a4;

global b;

global ao;

global Vl1;

global Vl2;
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global Vl3;

global Vl4;

global Vl5;

global lambda;

global betaac;

%Define the propagation constants

h1 = betaac*( sqrt(V^2 - Vl1^2)/ Vl1);

h2 = betaac*( sqrt(V^2 - Vl2^2)/ Vl2);

h3 = betaac*( sqrt(V^2 - Vl3^2)/ Vl3);

h4 = betaac*( sqrt(V^2 - Vl4^2)/ Vl4);

h5 = betaac*( sqrt(V^2 - Vl5^2)/ Vl5);

%Define the ABCD terms

A1 = besselj(0,h1*a1);

A2 = besselj(1,h1*a1);

A3 = besselj(0,h2*a1);

A4 = besselj(1,h2*a1);

A5 = bessely(0,h2*a1);

A6 = bessely(1,h2*a1);

B1 = besselj(0,h2*a2);

B2 = besselj(1,h2*a2);

B3 = bessely(0,h2*a2);
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B4 = bessely(1,h2*a2);

B5 = besselj(0,h3*a2);

B6 = besselj(1,h3*a2);

B7 = bessely(0,h3*a2);

B8 = bessely(1,h3*a2);

C1 = besselj(0,h3*a3);

C2 = besselj(1,h3*a3);

C3 = bessely(0,h3*a3);

C4 = bessely(1,h3*a3);

C5 = besselj(0,h4*a3);

C6 = besselj(1,h4*a3);

C7 = bessely(0,h4*a3);

C8 = bessely(1,h4*a3);

D1 = besselj(0,h4*a4);

D2 = besselj(1,h4*a4);

D3 = bessely(0,h4*a4);

D4 = bessely(1,h4*a4);

D5 = besselj(0,h5*a4);

D6 = besselj(1,h5*a4);

D7 = bessely(0,h5*a4);

D8 = bessely(1,h5*a4);

E2 = besselj(1,h5*b);
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E4 = bessely(1,h5*b);

%form the characteristic determinannt

%

C = [ A1 -A3 -A5 0

0 0 0 0 0 ;

-h1*A2 h2*A4 h2*A6 0 0

0 0 0 0 ;

0 B1 B3 -B5

-B7 0 0 0 0 ;

0 -h2*B2 -h2*B4

h3*B6 h3*B8 0 0 0 0;

0 0 0 C1

C3 -C5 -C7 0 0;

0 0 0 -h3*C2

-h3*C4 h4*C6 h4*C8 0 0;

0 0 0 0 0

D1 D3 -D5 -D7;

0 0 0 0 0

-h3*D2 -h3*D4 h4*D6 h4*D8;

0 0 0 0 0

0 0 -E2 -E4];

f = abs(det(C));
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%expression to evaluate the mode power

function optsquz = olaparg_5L_AG_clad(x)

global Ao;

global Bo;

global ko1;

global ko2;

global h1;

global h2;

global h3;

global h4;

global h5;

global A_1;

global A_2;

global B_2;

global A_3;

global B_3;

global A_4;

global B_4;

global A_5;
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global B_5;

global a1;

global a2;

global a3;

global a4;

global b;

global ao;

if (x <= b)

optmo = (Bo*besselk(0,ko2*x)).^2;

mod = (A_5*besselj(0,h5*x)+ B_5*bessely(0,h5*x));

optsquz = x.*(optmo).*mod;

end

if (x <= a4)

optmo = (Ao*besselj(0,ko1*x)).^2;

mod = (A_4*besselj(0,h4*x)+ B_4*bessely(0,h4*x));

optsquz = x.*(optmo).*mod;

end

if (x <= a3)

optmo = (Ao*besselj(0,ko1*x)).^2;

mod = (A_3*besselj(0,h3*x)+ B_3*bessely(0,h3*x));
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optsquz = x.*(optmo).*mod;

end

if (x <= a2)

optmo = (Ao*besselj(0,ko1*x)).^2;

mod = (A_2*besselj(0,h2*x)+ B_2*bessely(0,h2*x));

optsquz = x.*(optmo).*mod;

end

if (x <= a1)

optmo = (Ao*besselj(0,ko1*x)).^2;

mod = (A_1*besselj(0,h1*x));

optsquz = x.*(optmo).*mod;

end

.3 Chapter 4

% %

global gbiol;

global alphL;

global R;

global lzl;

global kapL;

global deloL;
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rho_0 = 2204 ;%kg/m3

p12 = 0.286;

n = 1.45;

wb = 12e6;

vb = 11e9;

lambda = 1.55e-6;

c = 3e8;

gb = (4*pi*n^8*p12^2)/(lambda^3*rho_0*c*wb*vb);

alpha = 0.2/(4.343e3);

L = 20000;

alphL = alpha*L

% velocity grating things

v1 = 5944;

v2 = 5944*(1- .5*7.2e-3); %1.5 wt% geo2

vlo = sqrt (( v1^2 + v2^2 )/2)

vlosq = vlo^2;

delvlosq = v2^2 - v1^2;

grate = abs(delvlosq/vlosq)

lz = vlo / (pi*wb)

lzl = lz/L
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R = (grate /pi )*vb/wb

(1+R^2)

R = 2.1;

kapL = 2.0;

deloL = 0;

%

%

% %

%

% %

% %

%

% for swp = 1

% %

% gb(swp) = 10^(3*swp/25);

% gbiol = 10^(3*swp/25);

gbiol = 120;

alphL = .1;

il = fsolve(@integ, 1e-6, optimset(’fsolve’));
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%[z,I] = ode45(@deriv, [1,0], [il,1e-9]);

%[z,A] = ode45(@deriv, [1,0], [sqrt(0.1470),3.162e-5]);

[z,A] = ode45(@deriv, [1,0], [il,3.162e-5]);

%[z,A] = ode45(@deriv, [1,0], [il,1,0]);

[rz,cz] = size(z);

I = A.*conj(A);

% so(swp) = I(rz,2);

% end;

%

% subplot(1,2,1);

% hold on;

plot(z,I(:,1));

grid on;

%

% subplot(1,2,2);

% hold on;

% plot(z, I(:,2));

% grid on;

% semilogx(gb,so);

% hold on;

%scatter(gb,so);

%
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%

%decide_on_a_suitable_gridresolution

RES = 51;

%obtain all the relevant fields

%data_input;

filedgen;

%optical_parameters

lambda = 1.06e-6;

k0 = 2*pi/lambda;

neff = 1.459065;

k1 = k0*neff;

k2 = k1;

%get_the_deltaeps_matrix

p11 = 0.121;

p12 = 0.270;

p44 = 0.5*(p11 - p12);
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for ind = 1:RES*RES

ep11(ind) = (p11*ex(ind) + p12*ey(ind)

+ p12*ez(ind));

ep22(ind) = (p12*ex(ind) + p11*ey(ind)

+ p12*ez(ind));

ep33(ind) = (p12*ex(ind) + p12*ey(ind)

+ p11*ez(ind));

ep23(ind) = p44*(eyz(ind));

ep32(ind) = ep23(ind);

ep13(ind) = p44*(exz(ind));

ep31(ind) = ep13(ind);

ep12(ind) = p44*(exy(ind));

ep21(ind) = ep12(ind);

end

%obtain the epE2

epE2 = zeros(RES*RES, 3);

E1t = zeros(RES*RES, 3);

H1t = zeros(RES*RES, 3);

epE2t = zeros(RES*RES, 3);

for ind = 1:RES*RES

epE2(ind,1) = ep11(ind)*Ex2(ind)
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+ ep12(ind)*Ey2(ind) + ep13(ind)*Ez2(ind);

epE2(ind,2) = ep21(ind)*Ex2(ind)

+ ep22(ind)*Ey2(ind) + ep23(ind)*Ez2(ind);

epE2(ind,3) = ep31(ind)*Ex2(ind)

+ ep32(ind)*Ey2(ind) + ep33(ind)*Ez2(ind);

E1t(ind,:) = [Ex1(ind), Ey1(ind), 0];

E2t(ind,:) = [Ex2(ind), Ey2(ind), 0];

H1t(ind,:) = [Hx1(ind), Hy1(ind), 0];

epE2t(ind,:) = [epE2(ind,1), epE2(ind,2), 0];

end

%

%implement Q1, Q2

Q1 = 0;

Q2 = 0;

I12_1 = 0;

I12_2 = 0;

I12_3 = 0;

Inew = 0;

for ind = 1: RES*RES

cr1 = cross (E1t(ind,:), conj(H1t(ind,:)));

cr2 = cross (epE2t(ind,:), conj(H1t(ind,:)));

Q1 = Q1 + 2*k1*cr1(3)*dx*dy;

I12_1 = I12_1 + (k0^2)*cr2(3)*dx*dy;



185

I12_2 = I12_2 +

(k0*k1)*conj(Ez1(ind))*epE2(ind,3)*dx*dy;

Evec = [Ex1(ind), Ey1(ind), Ez1(ind)];

dot1 = dot(conj(Evec), epE2(ind,:)) ;

Inew = Inew + (k0*k1)*dot1;

end

%the coupling constants

ref_kap = -i*2*neff^2*p44/2

kap_new = -neff^4*Inew/Q1

kap = -neff^4*(I12_1 + I12_2)/Q1

% delepEm = zeros(RES,RES);

% for ind = 1: RE

% for jnd = 1:RES

% t1 = 0;%(epEmx(ind+2, jnd+1)

- epEmx(ind,jnd+1))/(2*dx);

% t2 = 0;%(epEmy(ind+1, jnd+2)

- epEmy(ind+1,jnd))/(2*dy);

% t3 = 0;

% delepEm(ind,jnd)=t1+t2+t3; end

% end

%convert delepsEm back to a vector
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DepE2 = zeros(RES*RES,1);

%

% for ind = 1: RES

% for jnd = 1:RES

% DepE2((ind-1)*RES+jnd) = delepEm(ind,jnd);

% end

% end

% I12_1 = I12_1 + (k0^2)*cr3(3)*dx*dy;

% I12_2 = I12_2 +

(k0*k1)*conj(Ez1(ind))*epE2(ind,3)*dx*dy;

% I12_3 = I12_3 -

i*k0*conj(Ez1(ind))*DepE2(ind)*dx*dy;

%convert epsE to matrix form

% tmpx = zeros(RES, RES);

% tmpy = zeros(RES, RES);

% tmpz = zeros(RES, RES);

%

% for ind = 1: RES

% for jnd = 1:RES

% tmpx(ind,jnd) = epE2((ind-1)*RES+jnd, 1);

% tmpy(ind,jnd) = epE2((ind-1)*RES+jnd, 2);

% tmpz(ind,jnd) = epE2((ind-1)*RES+jnd, 3);

% end
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% end

%

% epEmx = zeros(RES+2, RES+2);

% epEmx(2:RES+1, 2:RES+1) = tmpx;

% epEmy = zeros(RES+2, RES+2);

% epEmy(2:RES+1, 2:RES+1) = tmpy;

% epEmz = zeros(RES+2, RES+2);

% epEmz(2:RES+1, 2:RES+1) = tmpz;

%

% clear tmpx;

% clear tmpy;

% clear tmpz;

%

% this will generate the LP01 modes in a 2d grid of choosing

%decide_on_a_suitable_gridresolution

RES = 11;

LIM = 20;

dx = 2*LIM*1e-6/(RES-1);

dy = 2*LIM*1e-6/(RES-1);

a = 17.5e-6; %core radius

%optical_parameters

lambda = 1.06e-6;



188

k0 = 2*pi/lambda;

n1 = 1.4592;

n2 = 1.458;

neff = 1.459065;

k1 = k0*neff;

k2 = k1;

u = k0*sqrt(n1^2 - neff^2);

w = k0*sqrt(neff^2 - n2^2);

for gh = 1: 1000

n(gh) = 1.459 + (gh-1)*(n1-1.459)/999;

u = k0*sqrt(n1^2 - n(gh).^2);

w = k0*sqrt(n(gh).^2 - n2^2);

C = [besselj(0,u*a), besselk(0,w*a);

-u*besselj(0,u*a), -w*besselk(0,w*a)];

detn(gh) = det(C);

end

%plot(n,log10(detn));

neff = n(76);

%generate the grid

x = linspace(-LIM, LIM, RES)*1e-6;

Ex1 = zeros(RES*RES,1);

Ey1 = zeros(RES*RES,1);
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Ez1 = zeros(RES*RES,1);

Ex2 = zeros(RES*RES,1);

Ey2 = zeros(RES*RES,1);

Ez2 = zeros(RES*RES,1);

Hx1 = zeros(RES*RES,1);

Hy1 = zeros(RES*RES,1);

Hz1 = zeros(RES*RES,1);

%generate the electric fields

for ind = 1: RES

for jnd = 1 : RES

X = x(ind);

Y = x(jnd);

R = sqrt(X^2 + Y^2);

phi = atan(Y/X);

xpl (((ind-1)*RES + jnd)) = x(ind);

ypl (((ind-1)*RES + jnd)) = x(jnd);

if (R <= a)

Ex1 (((ind-1)*RES + jnd))

= besselj(0,u*R);

Ez1 (((ind-1)*RES + jnd))

= (i/k1)*cos(phi)*(-u*besselj(1,u*R));

Ey2 (((ind-1)*RES + jnd))
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= besselj(0,u*R);

Ez2 (((ind-1)*RES + jnd))

= (i/k1)*sin(phi)*(-u*besselj(1,u*R));

Hy1 (((ind-1)*RES + jnd))

= neff*besselj(0,u*R);

Hz1 (((ind-1)*RES + jnd))

= neff*(i/k1)*sin(phi)*(-u*besselj(1,u*R));

end

if (R > a)

Ex1 (((ind-1)*RES + jnd))

= besselk(0,w*R);

Ez1 (((ind-1)*RES + jnd))

= (i/k1)*cos(phi)*(-w*besselk(1,w*R));

Ey2 (((ind-1)*RES + jnd))

= besselk(0,w*R);

Ez2 (((ind-1)*RES + jnd))

= (i/k1)*sin(phi)*(-w*besselk(1,w*R));

Hy1 (((ind-1)*RES + jnd))

= neff*besselk(0,w*R);

Hz1 (((ind-1)*RES + jnd))

= neff*(i/k1)*sin(phi)*(-w*besselj(1,w*R));

end

if(Y == 0 && X == 0)
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Ez1 (((ind-1)*RES + jnd)) = 0;

Ez2 (((ind-1)*RES + jnd)) = 0;

Hz1 (((ind-1)*RES + jnd)) = 0;

end

end

end

%generate the elastic fields

ex = zeros(RES*RES,1);

ey = zeros(RES*RES,1);

ez = zeros(RES*RES,1);

exy = zeros(RES*RES,1);

exz = zeros(RES*RES,1);

eyz = zeros(RES*RES,1);

for ind = 1: RES

for jnd = 1 : RES

eyz (((ind-1)*RES + jnd)) = x(ind);

exz (((ind-1)*RES + jnd)) = -x(jnd);

end

end
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%data input

% %load all the filed values

% load mode1_ex.txt mode1_ex -ascii;

% load mode1_ey.txt mode1_ey -ascii;

% load mode1_ez.txt mode1_ez -ascii;

% load mode1_hx.txt mode1_hx -ascii;

% load mode1_hy.txt mode1_hy -ascii;

% load mode1_hz.txt mode1_hz -ascii;

%

% load mode2_ex.txt mode2_ex -ascii;

% load mode2_ey.txt mode2_ey -ascii;

% load mode2_ez.txt mode2_ez -ascii;

% %load mode2_hx.txt mode2_hx -ascii;

% %load mode2_hy.txt mode2_hy -ascii;

% %load mode2_hz.txt mode2_hz -ascii;

%

% clear tmp;

% tmp = mode1_ex;

% clear mode1_ex;

% Ex1 = tmp(:,3);

%

% tmp = mode1_ey;

% clear mode1_ey;
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% Ey1 = tmp(:,3);

%

% tmp = mode1_ez;

% clear mode1_ez;

% Ez1 = i*tmp(:,3);

%

% tmp = mode1_hx;

% clear mode1_hx;

% Hx1 = tmp(:,3);

%

% tmp = mode1_hy;

% clear mode1_hy;

% Hy1 = tmp(:,3);

%

% tmp = mode1_hz;

% clear mode1_hz;

% Hz1 = i*tmp(:,3);

%

% tmp = mode2_ex;

% clear mode2_ex;

% Ex2 = tmp(:,3);

%

% tmp = mode2_ey;

% clear mode2_ey;

% Ey2 = tmp(:,3);



194

%

% tmp = mode2_ez;

% clear mode2_ez;

% Ez2 = i*tmp(:,3);

%

% % tmp = mode2_hx;

% % clear mode2_hx;

% % Hx2 = tmp(:,3);

% %

% % tmp = mode2_hy;

% % clear mode2_hy;

% % Hy2 = tmp(:,3);

% %

% % tmp = mode2_hz;

% % clear mode2_hz;

% % Hz2 = i*tmp(:,3);

%load the stresses

load ex.txt ex -ascii;

load ey.txt ey -ascii;

load ez.txt ez -ascii;

load exy.txt exy -ascii;

load exz.txt exz -ascii;
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load eyz.txt eyz -ascii;

tmp = ex;

clear ex;

ex = tmp(:,4);

tmp = ey;

clear ey;

ey = tmp(:,4);

tmp = ez;

clear ez;

ez = tmp(:,4);

tmp = exy;

clear exy;

exy = tmp(:,4);

tmp = exz;

clear exz;

exz = tmp(:,4);

tmp = eyz;

clear eyz;

eyz = tmp(:,4);
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%we will now create the twist strain fields.

%

%

% RES = 51;

% x = linspace(-50, 50, RES)*1e-6;

% ex = zeros(RES*RES);

% ey = zeros(RES*RES);

% ez = zeros(RES*RES);

% exy = zeros(RES*RES);

% exz = zeros(RES*RES);

% eyz = zeros(RES*RES);

% y_el = zeros(RES*RES,2);

%

% for ind = 1: RES

% for jnd = 1 : RES

% eyz (((ind-1)*RES + jnd)) = x(ind);

% exz (((ind-1)*RES + jnd)) = -x(jnd);

% end

% end

%
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