
 
 
 
 
 
 
 
 
 

DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION  
OF NON-PEPTIDIC SMALL MOLECULAR SMAC  

MIMETICS AS POTENT IAP INHIBITORS  
 
 
 
 
 

 
by 
 

Yuefeng Peng 
 
 
 
 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Medicinal Chemistry) 

in the University of Michigan 
2008 

 
 
 
 
 
Doctoral Committee: 
 

Professor Shaomeng Wang, Chair 
Professor Masato Koreeda 
Professor Anna K. Mapp 
Professor David H. Sherman 
Assistant Professor Jason E. Gestwicki 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Yuefeng Peng 
———————————— 

All Rights Reserved 
 

2008 
 



ii 
 

 
 
 
 
 
 
 
 
 
 
 

To my family 



iii 
 

Acknowledgements 
 
 

I genuinely appreciate my advisor, Professor Shaomeng Wang for his expert 

guidance and support. It is a really great honor for me to perform my PhD research under 

the guidance of Professor Wang, a leading scientist in the area of Medicinal Chemistry. 

I would like to thank my committee members, Professor Anna K. Mapp, Professor 

David H. Sherman, Professor Masato Koreeda, and Professor Jason E. Gestwicki for their 

time and efforts. 

I would like to thank the Chair of Medical Chemistry Department, Professor 

Ronald W. Woodard for providing me the opportunity to study in one of the top 

Medicinal Chemistry Programs. 

I would like to thank Dr. Haiying Sun for his advice and assistance in the synthesis 

of Smac mimetics, Dr. Jianfeng Lu for his advice and assistance in the biological studies 

of Smac mimetics, and Dr. Qian Cai for providing CQ-406 (SM-406) in the biological 

evaluation experiments. 

I would like to thank Dr. Chao-Yie Yang for computational studies, Dr. Zaneta 

Nikolovska-Coleska for the FP assay and functional assay results. Besides, I would like 

to thank everyone in the lab for their assistance in my research. 

I need to extend a special thank to Dr. George W. A. Milne for his critical reading 

and editorial assistance of and this dissertation 

I appreciate my wife and my parents for their full support. 



iv 
 

Table of Contents 
 

Dedication ................................................................................................................................. ii 
 
Acknowledgements ................................................................................................................. iii 
 
List of Figures ......................................................................................................................... vii 
 
List of Tables .......................................................................................................................... xii 
 
List of Abbreviations ............................................................................................................. xiii 
 
 
Chapter 1 
 

INTRODUCTION ............................................................................................................ 1 
 
1.1 Apoptosis and Cancer ........................................................................................ 1 
 
1.2 IAP ...................................................................................................................... 3 
 
1.3 Smac / DIABLO ................................................................................................. 4 
 
1.4 Structure-Activity Relationships ....................................................................... 7 

 
 
Chapter 2 
 

DESIGN AND SYNTHESIS OF NON-PEPTIDIC SMALL MOLECULAR SMAC 
MIMETICS ..................................................................................................................... 22 

 
2.1 Design Rational ................................................................................................ 22 

 
2.1.1 Design of monovalent Smac mimetics ................................................. 22 
 
2.1.2 Design of bivalent Smac mimetics ....................................................... 24 

 
2.2 Retrosynthetic Analysis ................................................................................... 25 
 
2.3 Results and Discussion .................................................................................... 28 
 



v 
 

2.4 Conclusion ........................................................................................................ 32 
 
2.5 Synthesis of Smac Mimetics ............................................................................ 34 
 
2.6 Methods and Materials ..................................................................................... 42 

 
 
Chapter 3 
 

BIOLOGICAL EVALUATION OF MONOVALENT SMAC MIMETICS .............. 68 
 
3.1 Binding Potency of Monovalent Smac Mimetics ........................................... 68 
 
3.2 Tumor Cell Growth Inhibition Activity of Monovalent Smac Mimetics ....... 70 
 
3.3 Tumor Cell Death Induction Activity of Monovalent Smac Mimetics .......... 72 
 
3.4 Apoptosis Induction Activity of Monovalent Smac Mimetics ....................... 73 
 
3.5 Caspase Activation of Monovalent Smac Mimetics ....................................... 77 
 
3.6 Drug Synergy Effect of Monovalent Smac Mimetics with TRAIL ............... 79 
 
3.7 Cellular Molecular Effects of Monovalent Smac Mimetics ........................... 81 
 
3.8 Conclusion ........................................................................................................ 83 

 
 
Chapter 4 
 

BIOLOGICAL EVALUATION OF BIVALENT SMAC MIMETICS ...................... 85 
 
4.1 Binding Potency of Bivalent Smac Mimetics ................................................. 85 
 
4.2 Tumor Cell Growth Inhibition Activity of Bivalent Smac Mimetics ............. 86 
 
4.3 Tumor Cell Death Induction Activity of Bivalent Smac Mimetics ................ 88 
 
4.4 Apoptosis Induction Activity of Bivalent Smac Mimetics ............................. 90 
 
4.5 Cellular Molecular Effects of Bivalent Smac Mimetics ................................. 92 
 
4.6 Conclusion ........................................................................................................ 94 

 
 
 



vi 
 

Chapter 5 
 

CELLULAR MECHANISM STUDIES BASED ON SM-406 ................................... 96 
 
5.1 SM-406 ............................................................................................................. 96 
 
5.2 Further Biological Studies Based on SM-406 ................................................. 98 

 
5.2.1 Apoptosis induction activity of SM-406 .............................................. 98 
 
5.2.2 Tumor cell death induction activity of SM-406 ................................. 103 
 
5.2.3 Cellular molecular effects of SM-406 ................................................ 105 
 
5.2.4 Co-immunoprecipitation assays confirm c-IAP1 and XIAP as the 
cellular targets of SM-406 ........................................................................... 108 
 
5.2.5 SM-406 can compensate for Smac knockdown in tumor cells ......... 110 
 
5.2.6 Study of caspase dependence in the cellular activity of SM-406 in 
tumor cells .................................................................................................... 112 
 
5.2.7 SM-406 can induce fast degradation of c-IAP1 but not XIAP .......... 116 

 
5.3 Conclusion ...................................................................................................... 118 
 
5.4 Methods and Materials ................................................................................... 119 

 
 
Chapter 6 
 

CONCLUSION ............................................................................................................ 126 
 
 
BIBLIOGRAPHY ................................................................................................................ 131 
 

 

 

 

 

 

 

 



vii 
 

List of Figures 
 

Figure 
 
1.1 Biological pathways of apoptosis ....................................................................................... 2 
 
1.2 Domain structure of XIAP, c-IAP1 and c-IAP2 ................................................................ 4 
 
1.3 IAPs-Binding Motif (IBM) of Smac/DIABLO and caspase-9 ......................................... 5 
 
1.4 X-ray structure of Smac IBM binding with the XIAP BIR3 domain ............................... 6 
 
1.5 Design of the conformationally constrained Smac mimetics .......................................... 10 
 
1.6 Design of the conformationally constrained Smac mimetics with higher  potency ....... 13 
 
1.7 Inhibition of cell growth by Smac mimetics in human breast cancer MDA-MB-231 cell 

lines. Cells were treated for 4 days, and cell growth inhibition was determined using the 
WST-based assay .............................................................................................................. 16 

 
1.8 Chemical structures of the monovalent and dimeric Smac mimetics ............................. 17 
 
1.9 Inhibition of cell growth by Smac mimetics in the HL-60 leukemia cancer cell line. HL-

60 cells were treated with the Smac mimetics for 4 days and cell growth was analyzed 
by WST-based cell growth assay ..................................................................................... 20 

 
1.10 Probing the interaction of Smac mimetics to cellular XIAP in the HL-60 leukemia cell 

line by a competitive, co-immunoprecipitation pull-down assay using biotinylated 
Smac mimetic ................................................................................................................. 21  

 
2.1 Chemical structures of SM-122 and designed new monomeric Smac mimetics ........... 22 
 
2.2 Computational modeling structure of Smac mimetic compound YP-245P3 binding with 

the XIAP BIR3 domain .................................................................................................... 23 
 
2.3 Chemical structure of designed bivalent Smac mimetics ................................................ 24 
 
2.4 Retro-synthetic analysis of designed Smac mimetics ..................................................... 26 
 
2.5 Retro-synthetic analysis of the new route ........................................................................ 27 
 



viii 
 

2.6 Synthetic route to key intermediateYP-248P ................................................................... 34 
 
2.7 New synthetic route to the key intermediate YP-248P ................................................... 36 
 
2.8 Synthesis of key components YP-245 and YP-373 ......................................................... 37 
 
2.9 Synthesis of monovalent Smac mimetics ........................................................................ 39 
 
2.10 Synthesis of monovalent Smac mietics SM-376 and SM-377 ...................................... 40 
 
2.11 Synthesis of bivalent Smac mietics ................................................................................ 41 
 
3.1 Predicted binding models of SM-227 (2), SM-245 (3), SM-246 (4), and SM-330 (5) to 

XIAP BIR3 domain, in superposition with Smac AVPI peptide. ................................... 69 
 
3.2 Principles of WST-based cell proliferation assay ............................................................ 70 
 
3.3 Inhibition of tumor cell growth by monovalent Smac mimetics in human breast cancer 

MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells .................................... 71 
 
3.4 Chemical structure of Trypan blue ................................................................................... 72 
 
3.5 Cell viabilities of human ovarian cancer SK-OV-3 cells and human breast cancer 

MDA-MB-231 cells treated with different concentrations of monovalent Smac 
mimetics for 24 or 48 hours, as determined by Trypan blue cell death assays ............. 73 

 
3.6 Annexin V and P.I. double staining flow cytometry of untreated MDA-MB-231 cells 74 
 
3.7 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-

231 cells treated with different concentrations of monovalent Smac mimetic SM-245, 
SM-337, or SM-376 for 24 hours ..................................................................................... 74 

 
3.8 Annexin V and P.I. double staining flow cytometry of human ovarian cancer SK-OV-3 

cells treated with different concentrations of monovalent Smac mimetic SM-245, SM-
337, or SM-376 for 24 hours ............................................................................................ 75 

 
3.9 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-

231 cells treated with different concentrations of monovalent Smac mimetic SM-245, 
SM-337, or SM-376 for 48 hours ..................................................................................... 76 

 
 
3.10 Inhibition of caspase-3/7 activity by XIAP and antagonism of Smac mimetics to XIAP 

to recover the activity of caspase-3/7 in a cell-free functional assay ............................ 78 
 
 



ix 
 

3.11 Left: Inhibition of caspase-3/7 activity by XIAP and antagonism of Smac mimetic 
SM-246 to XIAP to recover the activity of caspase-3/7 in a cell-free functional assay. 
Right: Dose-dependent recovery of caspase-3/7 activity by SM-122, SM-246, and 
SM-337 to the maximum activation. Caspase-3/7 activity at 30 minute point was used79 

 
3.12 Inhibition of cell growth by Smac mimetics SM-337, SM-376, and SM-377 in 

combination with TRAIL in human breast cancer MDA-MB-231 cell lines. Cells 
were treated with TRAIL only or TRAIL in combination with Smac mimetics for 4 
days and cell growth was analyzed by WST-based cell growth assay ........................ 80 

 
3.13 Inhibition of cell growth by Smac mimetics SM-337, SM-376, and SM-377 in 

combination with TRAIL in human breast cancer 2LMP cell lines ............................ 81 
   
3.14 Western blot assays of human breast cancer MDA-MB-231 cells and human ovarian 

cancer SK-OV-3 cells treated with different concentrations of Smac mimetic SM-122, 
SM-227, SM-245, or SM-337 for 24 hours ................................................................... 82 

 
4.1 WST cell growth assays of human breast cancer MDA-MB-231 cells and human 

ovarian cancer SK-OV-3 cells treated with bivalent Smac mimetics for 96 hours ....... 87 
 
4.2 WST cell growth assay of human melanoma MALME-3M cells treated with bivalent 

Smac mimetics for 96 hours. ........................................................................................... 88 
 
4.3 Trypan blue assays of human breast cancer MDA-MB-231 cells and human ovarian 

cancer SK-OV-3 cells treated with different concentrations of bivalent Smac mimetics 
for designated lengths of time ......................................................................................... 89 

 
4.4 Human breast cancer MDA-MB-231cells were treated with different concentrations of 

bivalent Smac mimetic SM-381 (8C) and SM-383 (10C) or 1 µM of inactive control 
SM-122 for 24 hours ........................................................................................................ 90 

 
4.5 Human ovarian cancer SK-OV-3 cells were treated with different concentrations of 

bivalent Smac mimetic SM-381 (8C) and SM-383 (10C) or 1 µM of inactive control 
SM-122 for 24 hours ....................................................................................................... 91 

 
4.6 Western blotting assays of human breast cancer MDA-MB-231 cells treated with 

different concentrations of bivalent Smac mimetic SM-164, SM-381 and SM-383 for 
24 hours ............................................................................................................................ 92 

 
4.7 Western blotting assays of human ovarian cancer SK-OV-3 cells were treated with 

different concentrations of bivalent Smac mimetic SM-164, SM-381 and SM-383 for 
24 hours ............................................................................................................................ 93 

 
5.1 Chemical structure of SM-406 ......................................................................................... 97 
 



x 
 

5.2 Top: Chemical structure of SM-428, inactive control of Smac mimetics. Bottom: 
Annexin V and P.I. double staining flow cytometry of human ovarian cancer SK-OV-3 
cells treated Smac mimetic SM-406 and inactive control SM-428 for 24 hours .......... 98 

 
5.3 Annexin V and P.I. double staining flow cytometry of human ovarian cancer SK-OV-3 

cells treated with 3 µM of Smac mimetic SM-406 for designated lengths of time ........ 99 
 
5.4 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-

231 cells treated with different doses of Smac mimetic SM-406 or inactive control SM-
428 for 24 hours .............................................................................................................. 100 

 
5.5 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-

231 cells treated with 3 µM of Smac mimetic SM-406 or 3 µM of inactive control SM-
428 for designated lengths of time ................................................................................. 101 

 
5.6 Annexin V and P.I. double staining flow cytometry of human melanoma MALME-3M 

cells treated with different doses of Smac mimetic SM-406 or inactive control SM-428 
for 24 hours ..................................................................................................................... 102 

 
5.7 Annexin V and P.I. double staining flow cytometry of human melanoma MALME-3M 

cells treated with 3 µM of Smac mimetic SM-406 or 3 µM of inactive control SM-428 
for designated lengths of time ........................................................................................ 103 

 
5.8 Cell viabilities of human breast cancer MDA-MB-231 cells and human ovarian cancer 

SK-OV-3 cells treated with different concentrations of Smac mimetic SM-406 or 
inactive control SM-428 for 24 hours, as analyzed by Trypan-blue-based cell death 
assay ................................................................................................................................ 103 

 
5.9 Cell viabilities of human breast cancer MDA-MB-231 cells and human ovarian cancer 

SK-OV-3 cells treated with 3 µM of Smac mimetic SM-406 or 3 µM of inactive control 
SM-428 for designated lengths of time, as analyzed by Trypan-blue-based cell death 
assay ................................................................................................................................ 104 

 
5.10 Western blotting assays of human breast cancer MDA-MB-231 cells and human 

ovarian cancer SK-OV-3 cells treated with different concentrations of Smac mimetic 
SM-406 or 3 µM of inactive control SM-428 for 24 hours ........................................ 105 

 
5.11 Western blotting assays of human breast cancer MDA-MB-231 cells and human 

ovarian cancer SK-OV-3 cells treated with 3 µM of Smac mimetic SM-406 or 3 µM 
of inactive control SM-428 for designated lengths of time ........................................ 107 

 
5.12 Chemical structures of Smac mimetic SM-406 and biotinylated Smac mimetic SM-

222 ................................................................................................................................ 108 
 
 



xi 
 

5.13 Probing the interaction of Smac mimetics to cellular XIAP and c-IAP1 in human 
breast cancer MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells by 
competitive, co-immunoprecipitation pull-down assays using biotinylated Smac 
mimetic SM-222 .......................................................................................................... 109 

 
5.14 Western blotting assay of human ovarian cancer SK-OV-3 cells transfected with 

control siRNA oligonucleotides targeting GFP, or siRNA oligonucleotides targeting 
Smac for 48 hours, then treated with 3 µM of Smac mimetic SM-406 for 24 hours 110 

 
5.15 Western blotting assay of human breast cancer MDA-MB-231 cells transfected with 

control siRNA oligonucleotides targeting GFP, or siRNA oligonucleotides targeting 
Smac for 48 hours, then treated with 3 µM of Smac mimetic SM-406 for 24 hours 111 

 
5.16 Human ovarian cancer SK-OV-3 cells and human breast cancer MDA-MB-231 cells 

were first transfected with control siRNA oligonucleotides targeting GFP, or siRNA 
oligonucleotides targeting Smac for 48 hours, then treated with 3 µM of Smac 
mimetic SM-406 for 24 hours. Cell viabilities were analyzed by using Trypan-blue-
based cell death assay ................................................................................................... 112 

 
5.17 Cell viabilities of human breast cancer MDA-MB-231 cells and human ovarian cancer 

SK-OV-3 cells treated with designated concentrations of Smac mimetic SM-406 alone 
or in combination with 25 µM of caspase-9, -8, and -3 inhibitors for 24 hours, as 
analyzed by Trypan-blue-based cell death assay ......................................................... 113 

 
5.18 Western blotting assays of human breast cancer MDA-MB-231 cells and human 

ovarian cancer SK-OV-3 cells treated with 3 µM of Smac mimetic SM-406 alone or 
in combination with 25 µM of caspase-9, -8, and -3 inhibitors for 24 hours ............ 114 

 
5.19 Top: Western blotting assay of human ovarian cancer SK-OV-3 cells transfected with 

control siRNA oligonucleotides targeting GFP, or siRNA oligonucleotides targeting 
caspase-9, -8 and -3 for 48 hours, then treated with 3 µM of Smac mimetic SM-406 
for 24 hours. Bottom: Cell viability of SK-OV-3 cells, as analyzed by Trypan-blue 
based cell death assay ................................................................................................... 115 

 
5.20 Western blotting assays of human ovarian cancer SK-OV-3 cells and human breast 

cancer MDA-MB-231 cells treated with 3 µM of Smac mimetic SM-406 for 
designated lengths of time ........................................................................................... 117 

 
 



xii 
 

List of Tables 
 

Table 
 
1.1 Chemical structures of Smac peptide-mimetics and their binding affinities to the XIAP 

BIR3 protein determined using a fluorescence-polarization-based binding assay .......... 8 
 
1.2 Chemical structures of 6,5-bicyclic Smac mimetics and their binding affinities to the 

XIAP BIR3 protein determined with a fluorescence-polarization-based binding assay 12 
 
1.3 Chemical structures of 7,5-bicyclic Smac mimetics and their binding affinities to the 

XIAP BIR3 protein as determined using a fluorescence-polarization-based binding 
assay .................................................................................................................................. 14 

 
1.4 Design of cell-permeable Smac mimetics and their binding affinities to the XIAP BIR3 

protein as determined using a fluorescence-polarization-based binding assay .............. 15 
 
1.5 Chemical structures of monovalent and bivalent 8,5-bicyclic Smac mimetic compounds 

and their binding affinities with the XIAP BIR3 domain (residue 240-356) and XIAP 
BIR2-BIR3 domains (residue 120-356) determined in a competitive fluorescence-
polarization-based assay ................................................................................................... 18 

 
2.1 Chemical structures of synthesized monovalent and bivalent Smac mimetics and their 

binding affinities to the XIAP BIR3 or XIAP linker-BIR2-BIR3 as determined using a 
fluorescence-polarization-based binding assay ............................................................... 29 

 
3.1 Binding affinities of Smac mimetics to XIAP, c-IAP1/2, as determined by competitive, 

fluorescence-polarization based assays ........................................................................... 68 
 
4.1 Binding affinities of bivalent Smac mimetics against XIAP BIR3 and XIAP linker-

BIR2-BIR3 domains, as measured by fluorescence-polarization based assays ............. 86 
 
 



xiii 
 

List of Abbreviations 

 
A or Ala   Alanine 
Ac    Acetyl 
Admin.   Administration  
Apaf-1    Apoptotic Protease Activating Factor-1 
ATP    Adenosine Tri-Phosphate 
AUC    Area Under Curve 
Bax    Bcl-2 Associated X protein 
Bid    BH3 Interacting Domain death agonist 
BIR    Baculovirus Inhibitors of Apoptosis Protein Repeat 
Bn               Benzyl 
Boc    tert-Butyloxycarbonyl  
BRUCE                                   Baculoviral IAP Repeat containing Ubquitin Conjugating 

Enzyme  
Bu    Butyl 
C3    Caspase-3 
C7    Caspase-7 
C8    Caspase-8 
C9    Caspase-9 
calcd.    Calculated 
Cbz    Carbobenzyloxy 
Cl.    Clearance 
CL C3    Cleaved Caspase-3 
CL C7    Cleaved Caspase-7  
CARD    Caspase Recruitment Domain 
Caspase   Cysteine-dependent Aspartate Protease 
Comp.    Compound 
Conc.    Concentration 
co-IP    co-Immunoprecipitation 
c-IAP1    cellular Inhibitors of Apoptosis Protein 1 
c-IAP2    cellular Inhibitors of Apoptosis Protein 2 
Cyt-c                Cytochrome c 
DCM     Dichloromethane 
DIABLO    Direct IAP Binding protein with Low pI 
DIEA               N,N-Diisopropylethylamine 
DISC    Death-Inducing Signaling Complex 
DLB               Double Lysis Buffer 
DTT    Dithiothreitol 
E or Glu   Glutamic acid 



xiv 
 

EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide                           
hydrochloride 

EDTA               Ethylenediaminetetraacetic Acid 2 
equiv.    equivalent 
Et               Ethyl 
EtOAc    Ethyl estate 
F               Bioavailability 
F or Ph    Phenylalanine 
FADD               Fas Associated Death Domain 
FasL    Fas Ligand 
FP               Fluorescence Polarization 
G or Gly   Glycine 
GFP               Green Fluorescent Protein 
h.               hour(s) 
H or His   Histidine 
HOBt               Hydroxybenzotriazole 
HPLC    High-performance liquid chromatography 
HRMS               High Resolution Mass Spectrometry 
I or Ile    Isoleucine 
IAC               IAPs Antagonist Compound 
IAP    Inhibitors of Apoptosis Protein 
IBM               Inhibitors of Apoptosis Protein-Binding Motif 
K or Lys   Lysine 
Kd               Constant of Dissociation 
L or Leu   Leucine 
Me               Methyl 
min.    minute(s) 
ML-IAP   Melanoma Linked Inhibitors of Apoptosis Protein 
MRB    Mitochondrial Resuspension Buffer 
MRT               Mean Residence Time 
MS    Mass Spectrometry 
NAIP               Neuronal Apoptosis Inhibitory Protein 
NF-κB    Nuclear Factor-κB 
NMR               Nuclear magnetic resonance 
NIK1    Nim1-like Protein Kinase 
NP-40               Nonidet P 40 
P or Pro   Proline 
PAGE               Polyacrylamide Gel Electrophoresis 
PARP    Poly ADP Ribose Polymerase 
PBS               Phosphate Buffer Saline 
PCD    Programmed Cell Death 
Ph    Phenyl 
pI    Isoelectric Point 
P.I.    Propidium Iodide 
PK    Phamacokinetic 
PMSF    Phenylmethylsulphonyl Fluoride 



xv 
 

Pr    Propyl 
PS    Phosphatidylserine 
PVDF    Polyvinylidene Difluoride 
Q or Gln   Glutamine 
R or Arg   Arginine 
RING    Really Interesting New Gene 
RIP    Receptor-Interacting Protein 
R.T.    Room Temperature 
S or Ser   Serine 
SAR    Structure Activity Relationship 
SD    Standard Deviation 
SDS    Sodium Dodecyl Sulfate 
siRNA    small interfering RNA or silencing RNA or short                       
                                                interfering RNA 
Smac    Second Mitochondria-derived Activator of Caspase 
STR    Succinate-tetrazolium Reductase 
t1/2    Half life 
T or Thr   Theronine 
TBS    tert-butyldimethylsilyl 
TBS    Tris-Buffered Saline 
t-Bu    tert-butyl 
TFA    Trifluoroacetic acid 
THF    Tetrahydrofuran 
TMS    Tetramethylsilane 
TNFα    Tumor Necrosis Factor α 
TRAIL    Tumor Necrosis Factor-Related Apoptosis Inducing                                     
                                                Ligand 
Ts-IAP    Tesis-specific Inhibitors of Apoptosis Protein 
V or Val   Valine 
W or Trp   Tryptophan 
WST 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4- 

isulfophenyl)-2H-tetrazolium, monosodium salt 
XIAP    X-chromosome linked Inhibitor of Apoptosis Protein 
Y or Tyr   Tyrosine 



1 
 

CHAPTER 1 
 

INTRODUCTION 

 

1.1 Apoptosis and Cancer 

Apoptosis, from the Greek, meaning “falling off” petals or leaves from plants or 

trees,1-15 is a term used in cellular biology for programmed cell death (PCD). This process, 

is distinct from necrosis, which is a form of traumatic cell death caused by cellular injury, 

and follows a series of cellularly controlled steps, resulting ultimately in cell death. Most 

of the current cancer therapies, such as radiation, chemotherapeutic agents and 

immunotherapy work by directly or indirectly inducing apoptosis in cancer cells.16-21 

Resistance to apoptosis leaves cancer cells unable to execute apoptosis,22-24 and is a major 

problem in current cancer therapy.25-30 Successful anticancer therapies must include 

strategies specifically targeting the resistance of cancer cells to apoptosis.31,32 Hence, 

targeting the crucial negative regulators which play a role in inhibition of apoptosis of 

cancer cells can be a promising therapeutic strategy for new anticancer drug design.33-43 

Apoptosis can be induced by a variety of stimuli, including death ligands such as 

Tumor Necrosis Factor α (TNFα), TNF-Related Apoptosis Inducing Ligand (TRAIL), or 

Fas Ligand (FasL) as shown in the extrinsic pathway in Figure 1.1; heat, radiation, 

hypoxia, viral infection, and nutrient deprivation, in the intrinsic pathway, are also 
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effective. In the extrinsic pathway, ligation of death ligand with the death receptor leads 

to the formation of FADD (Fas-Associated Death Domain), which in turn recruits 

procaspase-8 or procaspase-10, forming a Death-Inducing Signaling Complex (DISC), 

and inducing auto-activation of the initiator caspase, caspase-8, or caspase-10.44,45 

FADD

TRAIL/TNF Ligand

Death Receptors

Caspase‐8/10

tBid

Radio and chemotherapy

Bcl‐2
Bcl‐xL

cytochrome c

Caspase‐3/7

Apoptosis

XIAP

Smac/

DIABLO

Caspase‐9

Bax
Channel

Apoptosome

Apaf‐1
Procaspase‐9

Mitochondria

PARP

Smac/

DIABLO

Extrinsic pathway

Intrinsic pathway

 
Figure 1.1 Biological pathways of apoptosis. 

 

Initiator caspases cleave procaspase-3 and procaspase-7 to yield the executioners of 

apoptosis, caspase-3 and caspase-7.46-67 In the intrinsic pathway, cellular stress, for 

example radiation, induces the translocation of a Bcl-2 family protein such as Bax (Bcl-2 

Associated X protein), causing the release of cytochrome c from the mitochondria into 

the cytosol.68 Cytochrome c binds Apaf-1 (Apoptotic Protease Activating Factor-1), 

procaspase-9 and ATP (Adenosine Triphosphate) to form the apoptosome complex, 
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which recruits the auto-activation of caspase-9.69-74 Caspase-9 in turn induces the 

activation of the effectors, caspase-3 and caspase-7 to effect apoptosis.75-77 

In some cases, the extrinsic pathway can induce the intrinsic pathway, in which a 

pro-apoptotic member of Bcl-2 family, Bid (BH3 Interacting Domain death agonist) is 

cleaved by caspase-8, then interacts with Bax, leading to the release of cytochrome c into 

cytosol from mitochondria.78-85 

 

 

1.2 IAP 

IAPs (Inhibitors of Apoptosis Protein) are a class of proteins which can negatively 

regulate the apoptosis process in cancer cells.86-93 Eight distinct IAPs are known:  

• NAIP (Neuronal Apoptosis Inhibitory Protein) 

• XIAP (X-chromosome linked Inhibitor of Apoptosis Protein) 

• c-IAP1 (cellular IAP 1) 

• c-IAP2 (cellular IAP 2) 

• Ts-IAP (Tesis-specific IAP) 

• ML-IAP (Melanoma Linked IAP) or Livivn 

• BRUCE (Baculoviral IAP Repeat containing Ubiquitin Conjugating Enzyme) 

or Apollon 

• Survivin  

The domain structures of XIAP, c-IAP1 and c-IAP2 are shown in Figure 1.2. Most 

of the IAPs, except NAIP, BRUCE/Apollon, and Survivin, have a carboxy-terminal 

RING (Really Interesting New Gene) domain which directs self-ubiquitination and 
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protein degradation.94,95 Of all the IAPs, only c-IAP1 and c-IAP2 have a CARD 

(CAspase Recruitment Domain) domain, which mediates other CARD-containing 

proteins.96,97 The BIR (Baculovirus IAP Repeat) domain, is the functional domain of 

apoptosis inhibition and is the important characteristic of each IAP member.98-103 While 

XIAP, c-IAP1, c-IAP2, ML-IAP, and NAIP can bind caspase-9, caspase-3 and caspase-7 

directly to their BIR domains, thus inhibiting caspase activity, Survivin and BRUCE 

regulate the cytokines and mitotic spindle formation in order to inhibit the apoptosis 

process.104-111 

 

XIAP: BIR1 BIR2 BIR3 RING

c-IAP1: BIR1 BIR2 BIR3 RINGCARD

c-IAP2: BIR1 BIR2 BIR3 RINGCARD  

Figure 1.2 Domain structures of XIAP, c-IAP1 and c-IAP2. 

 

XIAP binds both the initiator caspase, caspase-9, with its BIR3 domain and the 

effector caspase-3 or caspase-7, with BIR2 and the linker before the BIR2 domain.112,113 

By blocking the activity of caspase-3/7, XIAP inhibits apoptosis at the down-stream 

effector phase, where multiple signal pathways converge. Hence, strategies targeting 

XIAP can be an effective method to overcome the resistance of cancer cells to the 

apoptosis.114-118 

 

 

1.3 Smac/DIABLO 
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Smac (Second Mitochondria-derived Activator of Caspase), also known as 

DIABLO (Direct IAP Binding protein with Low pI), was recently identified as a protein 

released from mitochondria in response to apoptotic stimuli.119,120 Smac is a 239 amino-

acid protein. Its amino-terminal 55 residues are removed during translocation to yield 

active Smac.119,120 As shown in Figure 1.3, the amino-terminal tetrapeptide in Smac, Ala-

Val-Pro-Ile (residue 56 to 59) is homologous with the exposed amino-terminal 

tetrapeptide of caspase-9 (Ala-Thr-Pro-Phe). The amino-terminal tetrapeptides of Smac 

and caspase-9, also known as IBM (IAP-Binding Motif), bind to a well-defined surface 

groove in the BIR3 domain of XIAP. By binding with the BIR3 domain of XIAP, Smac 

inhibits the interaction of XIAP BIR3 domain and caspase-9. This interaction releases 

caspase-9 and promotes apoptosis.121 

 

Smac / DIABLO:   A-V-P-I-A-Q-K-S-E-P-H 

Caspase-9:   A-T-P-F-Q-E-G-L-R-T-F 

Figure 1.3 IAPs-Binding Motif (IBM, in red) of Smac/DIABLO and caspase-9. 

 

The structures of the XIAP BIR3 domain complexed with either Smac protein or 

Smac amino-terminal peptide have been determined by X-ray crystallography and NMR 

spectroscopy.122,123 The amino-terminal tetrapeptide Ala-Val-Pro-Ile binds the XIAP 

BIR3 domain and is equipotent (Kd = 0.4 µM) with the mature Smac protein (Kd = 0.4 

µM). Therefore, it is possible to use small molecule non-peptide Smac mimetics to mimic 

the interaction between the mature Smac protein and the XIAP BIR3 domain, releasing 

initiator caspase-9 to promote the apoptosis process. 
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Figure 1.4 X-ray structure of Smac IBM binding with the XIAP BIR3 domain. (Hydrogen bonds are 
shown in light-blue dashed lines.) 
 

Figure 1.4 shows the interaction of the IAP-binding motif (IBM) of Smac with the 

XIAP BIR3 domain.123 The amino group of the amino-terminal alanine (A1 in Figure 1.4) 

of mature Smac is positively charged and its hydrogen atoms form a total of four 

hydrogen bonds with the two oxygen atoms in the carboxyl group of XIAP glutamic acid 

314 side chain, the carbonyl oxygen of the side chain of glutamine 319, and the backbone 

carbonyl oxygen of aspartic acid 309. These hydrogen bonds are crucial because 

mutagenesis experiments show that in the Smac mutant A1M (alanine is replaced with an 

methionine) the interaction of Smac and the XIAP BIR3 domain is completely 

disrupted.124 The methyl side chain of A1 fits tightly in a small hydrophobic pocket 

formed by the side chains of leucine 307, tryptophan 310, and glutamine 319 of XIAP. 

The amino hydrogen in the indole ring of tryptophan 323 forms a hydrogen bond with the 
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backbone carbonyl oxygen of A1 and the indole ring participates in a hydrophobic 

interaction with the five-member ring of proline (P3 in Figure 1.4). The amino hydrogen 

and the carbonyl oxygen of the valine 2 (V2 in Figure 1.4) form two hydrogen bonds 

with the backbone carbonyl oxygen and amino hydrogen of threonine 308 respectively, 

while the methyl side chain of threonine 308 enjoys a hydrophobic interaction with the 

isopropyl side chain of valine 2. A further hydrogen bond interaction is present between 

the amino hydrogen of isoleucine 4 (I4 in Figure 1.4) and the backbone carbonyl oxygen 

of glycine 306. The backbone carbonyl of isoleucine 4 is directed towards the solvent and 

fails to interact with the XIAP BIR3 domain, while the isobutyl side chain of I4 is 

inserted into the large hydrophobic pocket formed by lysine 297 and lysine 299 of the 

XIAP BIR3 domain. V2 and P3 form a reverse turn structure forcing the amino terminal 

tetrapeptide Ala-Val-Pro-Ile of the mature Smac protein to bind in the Smac binding 

groove of the XIAP BIR3 domain.122 

 

 

1.4   Structure-Activity Relationships 

As discussed in Section 1.3, above, the amino-terminal tetrapeptide Ala-Val-Pro-

Ile of Smac binds the XIAP BIR3 domain with potency (Kd = 0.4 µM) similar to that of 

the mature Smac protein (Kd = 0.4 µM), allowing the design of a small molecule non-

peptidic Smac mimetic which can mimic the interaction of the mature Smac protein with 

the XIAP BIR3 domain. Several groups have been investigating small molecular non-

peptidic Smac mimetics as potent inhibitors of XIAP which can overcome apoptosis 
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resistance in cancer therapy. The Structure Activity Relationships (SAR) of small 

molecular Smac mimetics have been extensively explored.125-130 

 

H2N
N
H

N

R1

O

O R4 

 Comp R1 R4 Ki/µM ± SD Comp R1 R4 Ki/µM ± SD 
1 Me -CONHCH2  0.29 ± 0.07 2 Me -CONHCH2  13.40 ± 1.6 
3 Me -CONHCH2  2.45 ± 0.7 4 Me -CONHCH2  4.41 ± 1.5 
5 Me -CONHCH2  1.27 ± 0.2 6 Me -CONHCH2

O

 0.22 ± 0.07 
7 Me -CONHCH2

S

 0.18 ± 0.07 8 Me -CONH  4.9 ± 2.1 
 
9 

 
Me 

-CONHCH2CH2

 
 

 
0.15 ± 0.09 

 
10 

 
Me -CONHCH2

 

 
0.028 ± 0.020

 
11 

 
Et -CONHCH2

 

 
0.024 ± 0.020

 
12 

 
Me

 
-CH2CH2CH2  

 
1.2 ± 0.4 

13 H -CONHCH2CH2

 
68 ± 7 14 Et -CONHCH2  0.081 ± 0.06 

15 i-Pr -CONHCH2

 
4.15 ± 1.2 16 Pr -CONHCH2

 
54 ± 7 

 
Table 1.1 Chemical structures of Smac peptide-mimetics and their binding affinities to the XIAP BIR3 
protein determined using a fluorescence-polarization-based binding assay.125 
 

The SAR of variations in the side chain of alanine 1 and of isoleucine 4 were 

studied and the results are shown in Table 1.1.125 The backbone carbonyl of isoleucine 4 

is directed towards the solvent and does not interact with the XIAP BIR3 domain while 

the isobutyl side chain of I4 is in the large hydrophobic pocket formed by lysine 297 and 

lysine 299 of the XIAP BIR3 domain. Replacement of the backbone carbonyl of 

isoleucine 4 with a benzyl as in the caspase-9 phenylalanine residue yields compound 1 

in Table 1.1. Compound 1, with Ki = 0.29 µM, was as twice as potent as the original 
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amino terminal tetrapeptide of mature Smac protein (Ala-Val-Pro-Ile; Ki = 0.58 µM), 

determined using the fluorescence-polarization-based assay.126 

To further explore the SAR concerning R4, a series of compounds (2-10) with R1 = 

CH3 were synthesized. When the phenyl group in compound 1 was replaced by isopropyl, 

2’-ethylbutyl, cyclopropyl or cyclohexyl, the potency of the compounds as Smac 

mimetics dropped dramatically. When the phenyl group in compound 1 was substituted 

with another aromatic group however, as in compounds 6 and 7, the potency of Smac 

mimetics persisted. Hence, an aromatic group in R4 appears to bind preferentially in the 

hydrophobic pocket formed by lysine 297 and lysine 299 in the XIAP BIR3 domain. In 

order to determine the optimum length of the R4 side chain, compounds 8 and 9, with one 

more and one less carbon in the R4 side chain respectively, were tested. As shown in 

Table 1.1, increase in the chain length was correlated with a slight increase in the potency 

of the compound but a decrease of the chain length decreased the compound’s potency 

dramatically. Although the backbone carbonyl group of isoleucine 4 is oriented towards 

the solvent and has no specific interaction with the XIAP BIR3 domain, it plays a role in 

orientating the isoleucine 4 side chain toward the relative hydrophobic pocket in the 

XIAP BIR3 domain. Hence, in compound 10, another phenyl ring was added to orientate 

the other phenyl ring and reduce the conformational flexibility and, as expected, 

compound 10, a highly potent Smac mimetic, resulted. 

The methyl group of R1 was substituted with an ethyl group to yield compound 11,  

R4 remaining unchanged. This change resulted in a slight increase in the Smac mimetic 

potency as a result of the increased hydrophobic interaction between the R1 side chain 
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and hydrophobic pocket formed by leucine 307, tryptophan 310, and glutamine 319 in the 

XIAP BIR3 domain. 

The amino hydrogen of isoleucine 4 and the backbone carbonyl oxygen of glycine 

306 interact through a hydrogen bond. In order to test its importance in the binding of 

Smac mimetics with the XIAP BIR3 domain, the amide bond between these two residues 

was removed to yield compound 12. The compound potency was dramatically reduced by 

the removal of this hydrogen bond interaction. 

To further explore the SAR of R1, a series of groups in R1 (-H, -C2H5, -CH(CH3)2, -

CH2CH2CH3) were tested as shown in compounds 13-16 in Table 1.1. Evidently, the 

small hydrophobic pocket formed by leucine 307, tryptophan 310, and glutamine 319 in 

the XIAP BIR3 domain can accommodate only a small hydrophobic group such as  

methyl or ethyl, the latter being slightly better than methyl due to enhancement of the 

hydrophobic interaction. A functional group with more than two carbon atoms appears to 

be too large for this hydrophobic pocket, witness the dramatic decrease in potency of 

compound 15 and 16 in Table 1.1. 

 

H2N
N
H

N
O

O
N
H

O

CONH2

AVPI-NH2

H2N
N
H

N
O

O
N
H

O

x
y

H2N
N
H

N
O

O

y

N
H

O
1 17 - 25  

Figure 1.5 Design of conformationally constrained Smac mimetics. 
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Although the Smac mimetic compound 11 is as twenty times as potent as the Smac 

tetrapeptide Ala-Val-Pro-Ile, it may have limited in vivo stability due to its peptide nature. 

Hence, the small molecule non-peptidic Smac mimetics shown in Figure 1.5 were 

explored.127 Compound 1, developed from the original Smac Ala-Val-Pro-Ile tetrapeptide, 

had double its potency. Computational studies showed that the distance between carbon x 

in the valine side chain and carbon y in the five-membered proline ring is close to the 

length of a carbon-carbon single bond. Hence, a strategy to reduce the peptide character 

of our Smac mimetics was to link the two carbon atoms to form a new fused six-

membered ring. The other carbon atom in the isopropyl side chain in valine 2 was 

removed for ease of synthesis. In this way, Smac mimetic compounds 17 to 25 were 

prepared, in which the fused 6,5-bicyclic ring mimics the reverse turn structure formed 

by valine 2 and proline 3 of mature Smac mimetics. 

 

H2N
N
H

N

R1

O

O

y

N
H

R4
O  

 

Compound Stereochemistry of Cy R1 R4 Ki/µM ± SD 

17 R Me CH2  4.47 ± 0.65 

18 S Me CH2  >100 

19 R Et CH2  1.41 ± 0.16 

20 R n-Pr CH2  >100 

21 R i-Pr CH2  43.11 ± 1.51 
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22 R Me  >100 

23 R Me CH2CH2  22.4 ± 1.87 

 
24 

 
R 

 
Me 

CH

 
 

2.33 ± 0.68 

 
25 

 
R 

 
Et 

CH

 
 

0.35 ±0.01 

 
Table 1.2 Chemical structures of 6,5-bicyclic Smac mimetics and their binding affinities to the XIAP 
BIR3 protein determined with a fluorescence-polarization-based binding assay.127 
 

Table 1.2 shows the chemical structures of 6,5-bicyclic Smac mimetics and their 

binding affinities to the XIAP BIR3 domain, determined using a fluorescence- 

polarization-based binding assay.127 When carbon x of the isoleucine was linked to 

carbon y of the proline by a carbon-carbon single bond, a chiral center (carbon y) was 

created (Figure 1.5). Both of the resulting stereoisomers were tested, and the R isomer 

was found to be preferred over the S isomer. This was supported by computational 

modeling study which confirmed that the S isomer of 6,5-bicyclic Smac mimetics was 

unable to mimic the hydrogen bonding and hydrophobic interactions between Smac 

amino-terminal Ala-Val-Pro-Ile tetrapeptide and the XIAP BIR3 domain.127 The R 

isomer of 6,5-bicyclic Smac mimetic (compound 17) was much more potent than the S 

isomer but was 10 fold less potent then original Ala-Val-Pro-Ile tetrapeptide. In an effort 

to increase the potency of these 6,5-bicyclic Smac mimetics, we tested a series of 

different hydrophobic groups for R1 (compounds 19-21). An ethyl group was found to be 

preferred over methyl group for the R1 substituent due to its increase in the hydrophobic 

interaction with the hydrophobic pocket formed by leucine 307, tryptophan 310, and 

glutamine 319 in the XIAP BIR3 domain. However, propyl and isopropyl may seem too 

large for this small hydrophobic binding pocket, as can be seen the decrease in binding 
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potency of compound 20 and 21. While the R1 substituent remained as methyl, a series of 

different aromatic groups were tested for the R4 substituent. Diphenylmethyl was found 

to be preferred for the R4 substituent, as a consequence of the increase of both the 

interaction with the hydrophobic pocket formed by leucine 307, tryptophan 310, and 

glutamine 319 in the XIAP BIR3 domain and the reduction in the conformational 

flexibility of the compound. When R1 substituent was substituted with an ethyl and R4 

substituent was substituted with a diphenylmethyl, as in compound 25, the most potent 

6,5-bicyclic Smac mimetic was produced. This compound was slightly more potent than 

the original Smac amino-terminal Ala-Val-Pro-Ile tetrapeptide. 

 

 

Figure 1.6 Design of conformationally constrained Smac mimetics with higher potency. 
 

Our computational modeling studies showed that the 6,5-bicyclic system was more 

constrained than the reverse turn formed by valine 2 and proline 3 in the amino-terminus 

of mature Smac protein. Relaxation of the 6-membered ring in the 6,5-bicyclic system 

may generate a conformation better able to mimic the conformation of the original N-

terminal Ala-Val-Pro-Ile tetrapeptide of mature Smac. To probe this, one more carbon 

atom was inserted in the 6-membered ring to increase the conformational flexibility of 

the bicyclic Smac mimetics.128 
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H2N
N
H

N

R1

O

O
O N

H
R4

 

Compound R1 R4 Ki ± SD (µM) 

26 Me CH2  0.15 ± 0.02 

27 Me 
CH

 
0.060 ± 0.02 

28 Et 
CH

 
0.025 ± 0.004 

 
Table 1.3 Chemical structures of 7,5-bicyclic Smac mimetics and their binding affinities to the XIAP 
BIR3 protein as determined using a fluorescence-polarization-based binding assay.128 
 

While both R1 and R4 remained the same, increasing the size of the 6-membered 

ring by insertion of a single carbon atom improves the potency of bicyclic Smac mimetics 

binding with the XIAP BIR3 domain by a factor of 30, as can be seen from a comparison 

of the binding potency of compound 26 with that of 17. As expected, when R4 was 

substituted with a diphenylmethyl group or R1 was substituted with an ethyl group, the 

potency of these 7,5-bicyclic Smac mimetics binding with the XIAP BIR3 domain was 

improved. In this way, a 7,5-bicyclic Smac mimetic, compound 28, with an excellent 

potency in binding with the XIAP BIR3 domain (Ki = 25 nM), was obtained. 

 

R1 N
H

N
O

O
O NHCHPh2

R0  
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Compound R0 R1 Ki ± SD (µM) 

28 NH2 C2H5 0.025 ± 0.004 

29 NHCH3 C2H5 0.061 ± 0.006 

30 N(CH3)2 C2H5 14.4 ± 0.6 

31 OH CH3 29.0 ± 1.4 

 
Table 1.4 Design of cell-permeable Smac mimetics and their binding affinities to the XIAP BIR3 
protein as determined using a fluorescence-polarization-based binding assay.129 
     

The Smac mimetic compound 28 has however very weak activity in cell-based 

assays. It was recently reported that methylation of amino-terminal nitrogen atom could 

increase the cellular potency of Smac mimetics130 and so the Smac mimetic compounds 

29 and 30 were developed, with single and double methylations of the amino-terminal 

nitrogen atoms respectively. As expected, Smac mimetic compound 29 was as 150 times 

as potent as the unmethylated Smac mimetic compound 28 in tumor cell growth 

inhibition in human breast cancer MDA-MB-231 cell lines (Figure 1.7). The doubly 

methylated Smac mimetic compound 30 was 60 times less potent in binding with the 

XIAP BIR3 domain compound 28 due to the disruption of the hydrogen bonding 

interaction between the amino terminal of Smac mimetic and aspartic acid 309, glycine 

314, and glutamine 319 in the XIAP BIR3 domain. Compound 30 was however 4 times 

more potent than compound 28 in a cell growth inhibition activity in human breast cancer 

MDA-MB-231 cells, and this was attributed to its superior cell-permeability. Compound 

31, in which the amino-terminal group of is substituted by a hydroxyl group, was weaker 

than compound 28 both in binding with the XIAP BIR3 domain and in a cell growth 

inhibition activity measured in human breast cancer MDA-MB-231 cells and this was 
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assumed to be a result of the complete disruption of its amino-terminal hydrogen bonding 

interaction with the XIAP BIR3 domain. In this way, a potent, cell-permeable, small-

molecular and non-peptidic Smac mimetic, compound 29 (IC50 = 0.1 µM), was 

obtained.129 
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Figure 1.7 Inhibition of cell growth by Smac mimetics in human breast cancer MDA-MB-231 cell 
lines. Cells were treated for 4 days, and cell growth inhibition was determined using the WST-based 
assay129.  
 

Mature wild-type Smac can form an elongated dimer which binds to both the BIR2 

and BIR3 domains of XIAP.131-133 Hence, it is possible to develop a bivalent small-

molecular non-peptidic Smac mimetic to mimic this Smac dimer in binding with XIAP. 

Such a bivalent, bidentate Smac mimetic should be a more effective promoter of 

apoptosis in cancer cells because it can release both the initiator caspase-9 and the 

effector caspase-3 and caspase-7, by binding to both the BIR2 and BIR3 domains of 

XIAP. 
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Figure 1.8 Chemical structures of the monovalent and bivalent Smac mimetics.134 
 

Recently, a bivalent Smac mimetic was developed (compound 33 in Figure 1.8) 

from a monovalent Smac mimetic (compound 32).134 As expected, bivalent Smac 

mimetic compound 33 was slightly more potent than its relative monovalent Smac 

mimetic compound 32. However, compound 33 was dramatically more potent than 

compound 32 in inducing apoptosis in combination with TRAIL or TNF-α in human 

glioblastoma T98G cell lines.134 The potency of the bivalent Smac mimetic could be a 

consequence of its ability to bind both the BIR2 and BIR3 domains of XIAP, releasing 

both initiator and effector caspases. 
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Compound Ki ± SD (nM) (BIR3) Ki ± SD (nM) (BIR2-BIR3) 

34 26 ± 5.0 438 ± 137 

35 N/A 1.39 ± 0.17 

36 N/A 71.5 ± 34.9 

37 N/A > 100,000 

Table 1.5 Chemical structures of monovalent and bivalent 8,5-bicyclic Smac mimetic compounds and 
their binding affinities with the XIAP BIR3 domain (residue 240-356) and XIAP BIR2-BIR3 domains 
(residue 120-356) determined in a competitive fluorescence-polarization-based assay.135 

 

A potent, non-peptidic, cell-permeable, bivalent Smac mimetic, compound 35, was 

developed recently.135 Computational modeling studies showed that the 7-membered 

fused ring of the 7,5-bicyclic Smac mimetic compounds 26, 27 and 28 could be further 

relaxed by increasing the ring size. The 8,5-bicyclic Smac mimetic compound 34 was 

developed and found to be slightly more potent (Table 1.5) than the related 7,5-bicyclic 
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Smac mimetic compound 27 (Table 1.3). Modeling studies also showed that the phenyl 

ring of the Smac mimetic compound 34 in the pro-(S) configuration is directed towards 

the solvent and has no interaction with the XIAP protein, making it a suitable anchoring 

site at which to tether another monovalent Smac mimetic unit. The pro-(S) phenyl ring 

was substituted with a [1,2,3]-triazole ring using “click chemistry”,136-142 yielding the 

bivalent Smac mimetic compound 35. Another bivalent Smac mimetic, compound 37, in 

which pro-(R) phenyl ring was used to tether another monovalent Smac mimetic unit, was 

also developed. As expected, both these bivalent Smac mimetic compounds (35 and 36) 

were dramatically more potent than the monovalent Smac mimetic compound 34 in 

binding with the XIAP protein containing both BIR2 and BIR3 domains (residues 120-

356). The bivalent Smac mimetic compound 35 was 50 times more potent than the 

bivalent Smac mimetic compound 36 in binding to the XIAP BIR2-BIR3 protein, and is 

the most potent Smac mimetic reported to date. Compound 37 in which both the 

important hydrogen bonding interaction between the Smac mimetic amino terminal and 

glutamic acid 314, glutamine 319 and aspartic acid 309, and the hydrophobic interaction 

of Smac amino-terminal methyl group with the hydrophobic pocket formed by leucine 

307, tryptophan 310, and glutamine 319 in the XIAP are disrupted, was designed as an 

inactive control for the bivalent Smac mimetics,. As shown in Table 1.5, the bivalent 

Smac mimetic inactive control, compound 37, essentially fails to bind with the XIAP 

BIR2-BIR3 protein.135 
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Figure 1.9 Inhibition of cell growth by Smac mimetics in the HL-60 leukemia cancer cell line. HL-60 
cells were treated with the Smac mimetics for 4 days and cell growth was analyzed by WST-8 
assay.135 
 

As shown in Figure 1.9, bivalent Smac mimetic compound 35 is dramatically more 

potent in inhibition of cell growth in HL-60 leukemia cancer cell lines than the related 

monovalent Smac mimetic compound 34. Further studies showed that bivalent Smac 

mimetic compound 35 can induce the dimerization of the XIAP BIR3-only proteins by 

forming a 1:2 complex with them. In contrast, the bivalent Smac mimetic compound 35 

can bind both the XIAP BIR2 and BIR3 domains simultaneously when the recombinant 

XIAP protein contains both the BIR2 and BIR3 domains. This result confirms the 

hypothesis that bivalent Smac mimetics can release both the initiator and effector 

caspases to promote apoptosis in cancer cells by binding the XIAP BIR3 and BIR2 

domains simultaneously.135 
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CHAPTER 2 
 

DESIGN AND SYNTHESIS OF NON-PEPTIDIC SMALL 
MOLECULE SMAC MIMETICS 

 

2.1 Design Rationale 

2.1.1 Design of monovalent Smac mimetics 

N
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O N

O O NHCHPh2
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O O NHR4

Rx

N
HHN

O N
N

O O NHR4

O

Ry

N
HHN

O N
N

O O NHCHPh2

YP-245P3
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Figure 2.1 Chemical structures of SM-122 and designed new monovalent Smac mimetics.  

 

The 7,5-bicyclic system in Smac mimetic compound 28 (Table 1.4) and the 8,5-

bicylic system in compound 34 (Table 1.5) are the core structures of  previously 

published Smac mimetics.125,135 The bicyclic core structure mimics the original 
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Our modeling studies showed that while the 8-membered ring in compound 34 

(SM-122) has van der Waals contacts with Trp323 of the XIAP BIR3 domain, the middle 

portion (carbon X) is largely exposed to solvent. Based upon this model, we predicted 

that replacement of carbon X by a nitrogen atom will not be detrimental to the binding of 

XIAP. Two types of functional groups can then be tethered to this newly introduced 

nitrogen atom, as shown in compounds 39 and 40 respectively in Figure 2.1. Compounds 

39 and 40 will have two slightly different conformations compared to compound 34, and 

it is hoped that one of them may bind more effectively than compound 34. Meanwhile, 

modification of the Rx or Ry group in the new Smac mimetics (Figure 2.1) having no 

detrimental effect on the binding potency with XIAP, it is hoped that through this 

modification new Smac mimetics can be developed with improved pharmacokinetic (PK) 

properties compared to the previously studied Smac mimetics. 

 

2.1.2 Design of Bivalent Smac mimetics 

 

N
HHN

O N
N

O O NHR4
N
H NH

ON
N

OOR4HN

linker

 

Figure 2.3 Chemical structure of designed bivalent Smac mimetics. 
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As shown in Figure 2.2, the methyl group tethered to the nitrogen atom in the 8-

membered ring is oriented towards the solvent and has no specific interaction with the 

XIAP BIR3 domain. This nitrogen atom is therefore a suitable site at which to chemically 

tether a second monovalent Smac mimetic moiety, forming a bidentate Smac mimetic. 

Similarly, both the carbon-nitrogen single bond and the amide bond were tested as sites at 

which to link the two monovalent Smac mimetic moieties. As can be seen in Figure 2.3, 

the newly developed bivalent Smac mimetics are structurally different from those 

previously published, in which monovalent Smac mimetic moieties were linked via their 

aromatic tails (R4).135 

 

 

2.2 Retrosynthetic Analysis 
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Figure 2.4 Retro-synthetic analysis of designed Smac mimetics. 

A retrosynthetic analysis of designed Smac mimetics is shown in Figure 2.4. Both 

bivalent Smac mimetics and monovalent Smac mimetics can be prepared from the related 

monovalent moieties which bear the common core structure, a nitrogen-containing 8,5-

bicyclic fused ring system. Compound YP-248P which, with the common core structure, 

is the most important intermediate in the synthetic route can be prepared from YP-239P 

by protection of the secondary amine as its carbobenzyloxy derivative followed by 

transesterification. The cyclic amine YP-239P can be obtained from the aldehyde YP-239 

by catalytic hydrogenation and the aldehyde YP-239 can be prepared by the condensation 
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of the commercially available N-α-t-butyloxycarbonyl-N-β-benzyloxycarbonyl-L-2,3-

diaminopropionic acid with the deprotected free secondary amine of compound YP-7. 

Compound YP-7 is a known compound which can be obtained in six steps from (S)-(-)-2-

pyrrolidone-5-carboxylic acid (compound YP-1 in Figure 2.4).143,144 

 

 

Figure 2.5 Retro-synthetic analysis of the new route. 

 

Subsequently, a new concise synthetic route for the core structure YP-248P was 

developed based on the retrosynthetic analysis of compound YP-248P shown in Figure 

2.5. In the newly developed route, the transesterification reaction following the 

cyclization of YP-367 was avoided, increasing the overall yield. The key intermediate 

YP-248P can be directly prepared from its relative cyclic amine YP-369, which can be 

obtained using the same catalytic hydrogenation condition as in synthesis of YP-239P. 

The aldehyde YP-367 can be prepared from the terminal alkene YP-348 by ozonolysis. 
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The amide YP-348 is prepared by condensation of the commercially available N-α-t-

butyloxycarbonyl-N-β-benzyloxycarbonyl-L-2,3-diaminopropionic acid and the 

deprotected secondary amine derived from compound 41. Compound 41 is a known 

compound and can be synthesized by published methods.145-148 

 

 

2.3 Results and Discussion 
 

Comp. Structure BIR3 
Ki±SD (nM) 

YP-245P3 
(SM-245) 

340 ± 65.9 

YP-246P 
(SM-246) 

N
N

O CONHCHPh2N
H

H
N

O

Bn 91.8 ± 30.4 

YP-330 
(SM-330) 

5.4 ± 3.0 

YP-337 
(SM-337) 

8.4 ± 1.6 

YP-350 
(SM-350) 

6.0 ± 1.5 

YP-356 
(SM-356) 

6.8 ± 0.8 
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YP-376 
(SM-376) 

2.0 ± 1.0 

YP-377 
(SM-377) 

1.4 ± 0.7 

Comp. Structure BIR3 
Ki±SD (nM) 

L-BIR2-BIR3 
Ki±SD (nM) 

YP-317 
(SM-317) 

185 ± 5.7 43 ± 0.8 

YP-343 
(SM-343) 

21 ± 7.0 2.7 ± 0.5 

YP-381 
(SM-381) 

27.5 ± 6.2 1.8 ± 0.6 

YP-383 
(SM-383) 

43.1 ± 3.6 1.8 ± 0.5 

YP-385 
(SM-385) 

12.7 ± 3.9 1.0 ± 0.5 

Table 2.1 Chemical structures of synthesized monovalent and bivalent Smac mimetics and their 
binding affinities to the XIAP BIR3 or XIAP linker-BIR2-BIR3 determined using a fluorescence-
polarization-based binding assay.126 XIAP BIR3 binding was tested for both monovalent and bivalent 
Smac mimetics, while additionally, XIAP linker-BIR2-BIR3 binding was tested for bivalent Smac 
mimetics. 
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A series of monovalent and bivalent Smac mimetics was designed and 

synthesized, and their binding affinities were determined using the fluorescence-

polarization(FP)-based binding assay.126  The results are shown in Table 2.1. In the 

monovalent Smac mimetics YP-245P3 (SM-245) and YP-246P (SM-246), a methyl 

group and a benzyl group are directly tethered to the newly introduced nitrogen atom in 

the 8-membered ring respectively; these two Smac mimetics, with binding affinities of 

340 nM and 92 nM respectively, have less potency than the original lead compound SM-

122 (compound 34 in Chapter 1) in binding with the XIAP BIR3 domain. 

Our computational modeling studies showed that both the tethered phenyl group 

in SM-246 and the newly introduced methyl group in SM-245 have no specific 

interactions with the XIAP BIR3 domain. However, SM-246 is 5 times more potent than 

SM-245 in binding with the XIAP BIR3 domain. This increase in potency could be 

caused by the increased rigidity of the fused 8-membered ring, while the decrease in 

potency of both SM-245 and SM-246 compared with lead compound SM-122 could be 

caused by the decreased rigidity of that ring. 

The monovalent Smac mimetic compounds SM-330 and SM-337 have a carbonyl 

group inserted between the alkyl group and the nitrogen atom in the 8-membered ring of 

SM-245 and SM-246, respectively. This carbonyl group forms an amide bond with the 

adjacent nitrogen atom and increases the rigidity of the ring. Both new Smac mimetics 

are much more potent than the related SM-245 and SM-246 in binding with the XIAP 
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BIR3 domain as shown in Table 2.1 and they are 3-4 times more potent than the lead 

compound SM-122 in binding affinity with the XIAP BIR3 domain. 

Consequently, SM-337 was used as a new lead compound in the development of 

nitrogen-containing 8,5-bicyclic Smac mimetics. The para and ortho sites of the benzyl 

group tethered to the nitrogen atom in the 8-membered ring can be metabolized by 

cytochrome P450 in vivo, and with this in mind, we designed SM-350 and SM-356 with a 

view to improving the pharmacokinetic properties. In SM-350, the para site of the phenyl 

ring was blocked with a fluorine atom while in SM-356 the para site and one of the ortho 

sites of the phenyl ring were both blocked with fluorine atoms. Both SM-350 and SM-

356 were found to have similar potency compared with the lead compound SM-337 in 

binding with the XIAP BIR3 domain.  

Previous studies showed that an (R)-tetrahydronaphthyl group can be well 

accommodated in the large hydrophobic pocket formed by lysine 297 and lysine 299 of 

the XIAP BIR3 domain. These compounds might be expected to have superior potency 

than the corresponding diphenylmethyl compounds, for example, 245P3, in binding to the 

XIAP BIR3 domain.130,149 Compound SM-376 in which the terminal diphenylmethyl 

group was replaced by a (R)-tetrahydronaphthyl group was designed and synthesized. 

This compound was found to be the most potent monovalent Smac mimetic to date both 

in binding with the XIAP BIR3 domain and in inhibition of tumor cell growth. The Smac 

mimetic SM-377, in which the para site of the phenyl ring is blocked with a fluorine 
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atom, was also designed and synthesized in the hope that it would demonstrate improved 

pharmacokinetic properties.  

Using Smac mimetic SM-246 as the monovalent moiety and 1,4- 

dimethylenephenyl as the linker, the bivalent Smac mimetic SM-317 was synthesized and 

another bivalent Smac mimetic, SM-343, was also developed using the more potent Smac 

mimetic SM-337 as the monovalent moiety. As expected, SM-343 is much more potent 

than SM-317 in binding with the XIAP BIR3 domain and it is dramatically more potent 

than SM-317 in binding with the XIAP linked-BIR2-BIR3 protein.  

Using the monovalent Smac mimetic compound SM-330 as the template, we 

designed and synthesized SM-381, SM-383 and SM-385, bivalent Smac mimetic 

compounds with dicarboxylic acid linkers of different lengths as shown in Table 2.1. The 

linkers in SM-381, SM-383 and SM-385 have 8, 10, and 6 methylene groups respectively. 

The binding affinities of these bivalent Smac mimetics against XIAP BIR3 domain 

increase as the lengths of the linker decrease, but they have similar potency in binding 

with the XIAP linker-BIR2-BIR3 protein, as shown in Table 2.1. 

The activities in tumor cells of these synthetic monovalent and bivalent Smac 

mimetics were determined and analyzed in detail in Chapters 3-5, below. 

 

 

2.4 Conclusion 
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Various monovalent and bivalent small-molecular non-peptidic Smac mimetics 

were successfully designed and synthesized. SM-337 has a dramatically improved 

potency in binding to XIAP BIR 3 compared with our original lead compound SM-122. 

Using this compound, SM-337, as our new design template, several potent monovalent 

and bivalent Smac mimetics were developed. 

SM-376 and SM-377 are the most potent monovalent Smac mimetics reported to 

date, with a binding affinity (Ki) to XIAP BIR3 domain as 2.0 and 1.4 nM respectively. 

The cell-permeable Smac mimetics, SM-376 and SM-377, are as potent as the bivalent 

Smac mimetic lead compound SM-164 in tumor cell growth inhibition in human breast 

cancer MDA-MB-231 cells. SM-406 (Chapter 5), a derivative of SM-376 and SM-377, 

shows excellent pharmacokinetic properties and is a promising drug candidate.  

The bivalent Smac mimetics SM-381, SM-383 and SM-385 are as potent as the 

bivalent Smac mimetic lead compound SM-164 in both binding the XIAP BIR3 protein 

and the XIAP linker-BIR2-BIR3 protein. These three newly developed bivalent Smac 

mimetics have a linker that differs from the triazole linker in SM-164. This has 

advantages in terms of ease of synthesis and further optimization of the aromatic binding 

in the hydrophobic pocket formed by lysine 297 and lysine 299 of the XIAP BIR3 

domain. Further optimization of this aromatic fragment and the length of the linker may 

yield bivalent Smac mimetics that are even better than the original lead compound SM-

164. 
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2.5 Synthesis of Smac Mimetics 
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Figure 2.6 Synthetic route to key intermediate YP-248P. 

 

Figure 2.6 shows the synthetic route to compound YP-248P, the key intermediate 

for the synthesis of both monovalent and bivalent Smac mimetics. Commercially 

available (S)-(-)-2-pyrrolidone-5-carboxylic acid was used as the starting material and 

known compound YP-7 was obtained after 6 published steps.143,144 The free hydroxyl 

group in compound YP-7 was first protected with a tert-butyldimethylsilyl (TBS) group 
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to yield compound YP-237, whose benzyl protecting group was then removed by 

catalytic hydrogenation. The free secondary amine YP-237P was obtained after these two 

steps of reactions with an overall yield from YP-7 of 88%. 

The pyrrolidine YP-237P was coupled with commercially available N-α-t- 

butyloxycarbonyl-N-β-benzyloxycarbonyl-L-2,3-diaminopropionic acid to yield the 

amide YP-238. The TBS protective group in compound YP-238 was then removed with 

tetra-n-butylammonium fluoride (TBAF) in tetrahydrofuran to give the free alcohol YP-

238 with an 87% overall yield for the two reactions. The alcohol YP-238 was oxidized 

with Dess-Martin reagent to yield the aldehyde YP-239 in a yield of 96%. Upon catalytic 

hydrogenation, the desired nitrogen-containing 8,5-bicyclic structure was formed. Three 

chemical reactions occur in this single step: first, the carbobenzyloxy (Cbz) protective 

group is removed to yield a free terminal amine; then the terminal amine reacts 

intramolecularly with the aldehyde group forming the cyclic imine and finally, this cyclic 

imine is reduced to the desired cyclic amine. This step was performed at low 

concentrations so as to encourage the intramolecular reaction, and gave a yield of 42%. 

The free cyclic amine was then protected with a carbobenzyloxy group to yield 

compound YP-246P2. The tert-butyl ester YP-246P2 was allowed to react with SOCl2, 

added dropwise in methanol at 0°C to yield the methyl ester YP-248. In this step, the tert-

butyloxycarbonyl (t-Boc) group was also removed and so in a final step, the free amino 

group was protected with a t-Boc protective group to yield the key intermediate YP-248P. 

These three reaction steps gave an overall yield of 74%.150 
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Figure 2.7 New synthetic route to the key intermediate YP-248P. 

The synthesis route of key intermediate YP-248P in Figure 2.6 is lengthy and has 

a low overall yield from YP-7 of only 23%. Subsequently, we developed a new and 

concise route to this same intermediate and this synthetic route is shown in Figure 2.7. 

Compound 41, which can be prepared using published methods,145-148 was the starting 

material in this new synthetic route. The t-Boc protecting group was first removed to 

yield the free amine YP-347, which was then coupled with the commercially available N-

α-t-butyloxycarbonyl-N-β-benzyloxycarbonyl-L-2,3-diaminopropionic acid to form the 

amide YP-348. The overall yield for these two steps was 82%.  YP-348 was oxidized to 

the aldehyde YP-367 in a yield of 92% by ozonolysis. Under conditions of catalytic 

hydrogenation, the aldehyde YP-367 was deprotected, cyclized, and finally reduced to the 

desired cyclic amine YP-368. This step showed the yield of 41%, similar to that obtained 
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in the previous route. Finally, the key intermediate YP-248P was obtained by protection 

of the secondary amino group in compound YP-368. The yield for this step was 92%. 
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Figure 2.8 Synthesis of key components YP-245 and YP-373. 
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Figure 2.8 shows the synthetic route to compounds YP-245 and YP-373, which 

are the key intermediates in the syntheses of the monovalent and bivalent Smac mimetic 

compounds. The methyl ester YP-248P was first converted to the free carboxylic acid 

YP-248P2, which was then coupled with the commercially available diphenylmethyl 

amine to form the amide YP-244. The overall yield for these two steps was 82%. 

Removal of the t-Boc protective group from compound YP-244 gave the free 

amine YP-244P, which was coupled with the commercially t-Boc-N-methylalanine to 

form the amide YP-244P with an overall yield of 83% for these two steps. The 

carbobenzyloxy protecting group was removed by catalytic hydrogenation to yield the 

free cyclic amine YP-245 with a yield of 92%. 

Similarly, the methyl ester YP-248P was first converted to the free carboxylic 

acid YP-248P2, which was then coupled with the commercially available (R)-1,2,3,4-

tetrahydro-1-naphthylamine to form the amide YP-370 with an overall yield of 80% for 

these two steps. Then the t-Boc protecting group in compound YP-370 was removed to 

yield the free amine YP-371, which was coupled with the commercially available t-Boc-

N-methylalanine to form the amide YP-372 with an overall yield of 80% for the two 

steps. The carbobenzyloxy protecting group was finally removed by catalytic 

hydrogenation to yield the free cyclic amine YP-373 with a yield of 91%. 
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Figure 2.9 Synthesis of monovalent Smac mimetics. 

The synthesis of monovalent Smac mimetics is shown in Figure 2.9. A methyl 

group was attached to the nitrogen atom in the 8-membered ring via a reductive 

amination reaction forming compound YP-245P2, whose t-Boc protecting group was 

subsequently removed to yield the monovalent Smac mimetic compound YP-245P3 (SM-

245) with an overall yield of 71% for the two steps. A benzyl group was attached to the 
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nitrogen atom in the 8-membered ring via an SN2 reaction, in which the cyclic amine YP-

245 was treated with benzyl bromide to form YP-246, whose t-Boc protecting group was 

removed to yield the monovalent Smac mimetic compound YP-246P (SM-246) with an 

overall yield of 77% for the two steps. Condensation reactions between the cyclic amine 

YP-245 and the appropriate carboxylic acid, followed by the removal of the t-Boc groups, 

were performed to obtain the relative monovalent Smac mimetic compounds YP-330 

(SM-330), YP-337 (SM-337), YP-350 (SM-350), and YP-356 (SM-356). The yield, 

reagents and conditions for these two reactions are shown in Figure 2.9. 
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Figure 2.10 Synthesis of monovalent Smac mimetics SM-376 and SM-377. 

Syntheses of the monovalent Smac mimetic compounds SM-376 and SM-377 are 

shown in Figure 2.10. Condensation of the cyclic amine YP-373 with phenylacetic acid 

or 4-fluorophenylacetic acid, followed by the deprotection of the t-Boc protecting groups, 



41 
 

was performed to yield the monovalent Smac mimetic compounds YP-376 (SM-376) and 

YP-377 (SM-377) with overall yields of 85% and 84% respectively. 

 

 

Figure 2.11 Synthesis of bivalent Smac mimetics. 
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The syntheses of bivalent Smac mimetic compounds are shown in Figure 2.17. 

Cyclic amine YP-245 underwent an SN2 reaction with a half equivalent of p-xylylene 

dibromide to form the bivalent compound YP-316, whose t-Boc protective groups were 

then removed to obtain the bivalent Smac mimetic compound YP-317 (SM-317) with an 

overall yield of 54% for the two steps. Condensation of the cyclic amine YP-245 and the 

appropriate dicarboxylic acid, followed by removal of the t-Boc groups, was performed 

to obtain the bivalent Smac mimetic compounds YP-343 (SM-343), YP-381 (SM-381), 

YP-383 (SM-383), and YP-385 (SM-385) respectively. The yields, reagents and 

conditions for these steps are shown in Figure 2.11. 

 

 

2.6 Methods and Materials 
 

General methods: NMR spectra were measured at a proton frequency of 300 MHz. 1H 

chemical shifts are reported relative to tetramethylsilane (0.00 ppm) or DHO (4.70 ppm) 

as internal standards. 13C chemical shifts are reported relative to CDCl3 (77.00 ppm) or 

CD3OD (49.00 ppm) as internal standards. The final products were purified by C18 

reverse phase semi-preparative HPLC column with solvent A (0.1% of TFA in water) and 

solvent B (0.1% of TFA in CH3CN) as eluents. 
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N COOt-Bu

HO Bn
YP-7

N
H

TBSO COOt-Bu

YP-237P  

Synthesis of compound YP-237P: To a solution of compound YP-7 (1.26 g, 4.1 mmol) 

of in dichloromethane (20 mL) was added tert-butyldimethylsilyl chloride (930 mg, 6.2 

mmol) and N,N-diisopropylethylamine (1.5 mL).143,144,151 The mixture was stirred at 

room temperature overnight and then evaporated to dryness. The residue was purified by 

chromatography to afford 1.61 g of silyl ether to a solution of which (1.50 g, 3.58 mmol) 

in methanol (20 mL) was added 10% Pd/C (0.2 g). The mixture was stirred at room 

temperature under H2 overnight. The catalyst was removed and the filtrate was 

evaporated to dryness. The crude product was purified by chromatography to afford 

compound YP-237 (1.1 g, 88% over two steps). [α]20
D -21.5° (c = 1.0, CHCl3); 1HNMR 

(300 MHz, CDCl3, TMS) δ3.71 (t, J = 6.5 Hz, 3H), 3.60 (dd, J = 9.0, 5.4 Hz, 1H), 3.11 

(m, 1H), 2.05 (m, 1H), 1.95-1.63 (m, 3H), 1.46 (s, 9H), 1.25 (m, 1H), 0.89 (s, 9H), 0.05 

(s, 6H); 13CNMR (75 MHz, CDCl3) δ174.5, 80.8, 61.5, 60.6, 57.5, 38.8, 31.8, 30.4, 28.0, 

25.9, 18.2, -5.4; HRMS: calcd. m/z for [M+H]+ 330.2464; found 330.2466. 

 

 

Synthesis of compound YP-238P: To a solution of compound YP-237P (1.05 g, 3.19 

mmol) in dichloromethane (15 mL) was added t-Boc-Dap(Z)-OH·DCHA (2.32 g, 1.4 
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equiv.),  EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride) (978 mg, 

1.6 equiv.), HOBt (Hydroxybenzotriazole) (690 mg, 1.6 equiv.), and  N,N-

diisopropylethylamine (3 mL). The mixture was stirred at room temperature overnight 

and then concentrated to give a residue which was purified by chromatography to afford 

an amide (1.86 g). To a solution of the above amide (860 mg, 1.32 mmol) in THF (10 mL) 

was added tetrabutylammonium fluoride solution (1M, 1.6 mL, 1.2 equiv.) in THF and 

the solution was stirred at room temperature for 3 h.152-154 After adding  dichloromethane 

(50 mL), the solution was washed with brine, dried over Na2SO4 and then condensed. 

The crude product was purified by chromatography to yield compound YP-238P (690 mg, 

87% over two steps). [α] 20
D -90.0° (c = 1.67, CHCl3); 1H NMR shows this compound is a 

1:1 mixture of two rotamers. 1HNMR (300 MHz, CDCl3, TMS) δ7.28 (m, 5H), 5.59 

(m,1H), 5.35 (m, 1H), 5.20-5.05 (m, 2H), 4.85 (m, ½ H), 4.65 (m, ½ H), 4.46 (m, 1H), 

4.35 (m, 1H), 3.80 (m, ½ H), 3.70-3.50 (m, 2H), 3.40 (m, 1H), 3.25 (m, ½ H), 2.32 (m, 

1H), 2.20-1.50 (m, 4H), 1.46 (s, 4.5H), 1.44 (s, 4.5H), 1.43 (s, 4.5H), 1.41 (s, 4.5H); 

HRMS: calcd m/z 558.2791 for [M+Na]+; found 558.2794. 

 

 

Synthesis of compound YP-239: To a solution of compound YP-238P (667 mg, 1.25 

mmol) in dichloromethane (10 mL) was added Dess-Martin periodinane (636 mg, 1.5 
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mmol, 1.2 equiv.) at room temperature. The mixture was stirred for 3 h, filtered through 

celite and then evaporated. The residue was purified by chromatography to give YP-239 

(639 mg, 96%). [α] 20
D -51.6° (c = 1.67, CHCl3); 1HNMR shows that this compound has 

two rotamers with a ratio of 2:1. 1HNMR (300 MHz, CDCl3, TMS) δ 9.76 (s, 2/3 H), 9.71 

(s, 1/3 H), 7.40-7.28 (m, 5H), 5.72-5.30 (m, 2H), 5.20-4.95 (m, 2H), 4.90-4.25 (m, 3H), 

3.52-3.05 (m, 3H), 2.90-1.60 (m, 4H), 1.50-1.35 (m, 18H); HRMS: calcd m/z 556.2635 

for [M+Na]+; found 556.2629. 

 

 

Synthesis of compound YP-239P: To a solution of compound YP-239 (380 mg, 0.713 

mmol) in methanol (20 mL) was added 10% Pd/C (0.2 g). The mixture was stirred at 

room temperature under H2 overnight, filtered through celite and then condensed. The 

residue was purified by chromatography to give compound YP-239P (114 mg, 42%).150 

[α] 20
D -8.4° (c = 0.65, CHCl3); 1HNMR (300 MHz, CDCl3, TMS) δ 5.49 (brd, J = 8.1 Hz, 

1H), 4.70 (m, 1H), 4.41 (t, J = 9.3 Hz, 1H), 4.30 (m, 1H), 3.25-3.18 (m, 2H), 2.89 (m, 

1H), 2.75 (dd, J = 13.5, 11.1 Hz, 1H), 2.34 (m, 1H), 2.18-1.60 (m, 6H), 1.49 (s, 9H), 1.44 

(s, 9H); 13CNMR(75 MHz, CDCl3) δ171.8, 170.4, 155.2, 81.7, 79.5, 60.6, 58.5, 54.9, 

52.3, 46.9, 37.5, 32.1, 28.3, 28.0, 27.0; HRMS: calcd m/z 406.2318 for [M+Na]+; found 

406.2317. 
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O COOMeBocHN

Cbz

YP-248P  

Synthesis of compound YP-248P: To a solution of compound YP-239P (1.5 g, 3.9 

mmol) in 1,4-dioxane (15 ml) were added CbzCl (0.66 mL, 1.2 equiv.) and NaHCO3
 (820 

mg, 2.5 equiv.).155 The mixture was stirred overnight at room temperature, filtered and 

concentrated under vacuum. The residue was purified by chromatography to give 1.9 g of 

Cbz-protected compound (Rf = 0.5 when EtOAc/Hexane = 1/1). To a well-stirred solution 

of this Cbz-protected compound (0.9 g, 1.7 mmol) in MeOH (5 mL) at 0°C, SOCl2 (1 mL, 

14 mmol) was added dropwise. The mixture was stirred at room temperature for 1 h, then 

was quenched with saturated NaHCO3 solution and the pH adjusted to 8. The aqueous 

layer was extracted with CH2Cl2, and combined organic phases were dried over Na2SO4, 

filtered, and concentrated under vacuum. The crude amine was dissolved in 1,4-dioxane 

(10 mL), then t-Boc2O (0.44 g, 1.2 equiv.) and NaHCO3 (0.35 g, 2.5 equiv.) were added. 

The mixture was stirred overnight at room temperature and then filtered and concentrated 

under vacuum. The residue was purified by chromatography to give 0.6 g of compound 

YP-248P (Rf = 0.4 when EtOAc/Hexane= 2/1) (74% over 3 steps). 1H NMR shows that 

this compound has two rotamers with a ratio of 2:1. 1H NMR (300 MHz, CDCl3, TMS) δ 

7.47-7.25 (m, 5H), 5.63 (brd, J=8Hz, 1H), 5.31-5.16 (m, 2H), 4.64-4.60 (m, 1H), 4.51-
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4.46 (t, J=8Hz, 1H), 4.30-3.98 (m, 2H), 3.74 (brs, 3H), 3.63 (m, 1H), 3.50 (m, 1H), 3.30 

(m, 1H), 2.38 (m, 1H), 2.28-1.76 (m, 5H), 1.44-1.45 (s, 9H). ESI MS: m/z 476.2 [M+H]+. 

 

N COOMe

Boc
41

N COOMe

O
CbzHN NHBoc YP-348 

Synthesis of compound YP-348: To a solution of compound 41 (3.2 g, 12 mmol) in 

MeOH (20 mL) was added a solution of 4N HCl in 1,4-dioxane (6 mL, 2 equiv.).145-148,156 

The mixture was stirred overnight at room temperature, and then concentrated to yield 

2.2 g of crude amine to a solution of which in DCM (20 mL) was added t-Boc-Dap(Z)- 

OH·DCHA (6.6 g, 1.1 equiv.), EDC (2.9 g, 1.2 equiv.), HOBt (2.0 g, 1.2 equiv.), and 

DIEA (5.5 mL, 2.5 equiv.). The mixture was stirred overnight at room temperature, and 

then concentrated and purified by chromatography to give compound YP-348 (Rf = 0.3 

EtOAc/Hexane= 1/1) (5.8 g, 82% over two steps). 1HNMR shows that this compound has 

two rotamers with a ratio of 2:1. 1HNMR (300 MHz, CDCl3, TMS) δ 7.34-7.28 (m, 5H), 

5.80-5.77 (m, 1H), 5.59 (m, 1H), 5.36-5.33 (d, J=10 Hz, 2H), 5.19-5.01 (m, 4H), 4.67-

4.62 (m, 1H), 4.47-4.44 (m, 1H), 3.76-3.74 (s, 1H), 3.74-3.71 (s, 2H), 2.32-2.30 (m, 1H), 

2.16-2.12 (m, 1H), 1.99-1.95 (m, 2H), 1.42 (s, 9H). 13CNMR (75 MHz, CDCl3) δ 172.4, 

170.5, 156.5, 155.2, 136.4, 134.6, 133.8, 128.3, 127.9, 118.5, 117.1, 80.0, 66.6, 59.7, 58.2, 

52.6, 43.4, 29.2, 28.1, 26.6. 
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N COOMe

O
CbzHN NHBoc YP-348

N COOMe

O O
CbzHN NHBoc YP-367 

Synthesis of compound YP-367: A solution of compound YP-348 (0.75 g, 1.5 mmol) in 

DCM (10 mL) was cooled to -78 oC. Ozone was passed through the solution until a blue 

color persisted, then air was passed through until the blue color disappeared. PPh3 (0.8 g, 

2 equiv.) was added and the mixture was stirred for 30 min at room temperature. The 

mixture was condensed and purified by chromatography to give compound YP-367 (Rf = 

0.3 EtOAc/Hexane= 1/1) (0.68 g, 92%). 1HNMR shows that this compound has two 

rotamers with a ratio of 1:1. 1HNMR (300 MHz, CDCl3, TMS) δ 9.78-9.67 (m, 1H), 7.53-

7.32 (m, 5H), 5.44 (s, 1/2 H), 5.32 (s, 1/2 H), 5.15-5.06 (m, 2H), 4.64 (m, 1H), 4.40-4.39 

(m, 1H), 3.78-3.76 (s, 3/2 H), 3.76-3.74 (s, 3/2H), 3.48-3.42 (m, 3H), 2.78-2.52 (m, 1H), 

2.40-2.20 (m, 1H), 2.16 (m, 2H), 2.06-1.89 (m, 1H), 1.44-1.43 (m, 9H). 13CNMR (75 

MHz, CDCl3) δ 200.3, 199.5, 172.6, 172.2, 170.3, 156.5, 136.4, 128.4, 128.0, 66.7, 59.7, 

59.1, 54.3, 52.4, 52.3, 48.4, 43.3, 29.6, 28.2, 21.0. 

 

N COOMe

O O
CbzHN NHBoc YP-367

HN
N

O COOMeBocHN
YP-368  

Synthesis of compound YP-368: To a solution of compound YP-367 (0.6 g, 1.2 mmol) 

in MeOH (40 mL) was added 10% Pd/C (0.4 g). The mixture was stirred at room 

temperature under H2 overnight, filtered through celite and then evaporated. The residue 
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was purified by chromatography to give compound YP-368 (0.25 g, 41%). 1HNMR (300 

MHz, CDCl3, TMS) δ 5.45-5.42 (d, J=8.0 Hz, 1H), 4.72-4.71 (m, 1H), 4.57-4.51 (t, J=9.1 

Hz, 1H), 4.38-4.28 (m, 1H), 3.77 (s, 3H), 3.25-3.18 (m, 1H), 2.80-2.70 (m, 1H), 2.35 (m, 

1H), 2.18-1.60 (m, 6H), 1.46 (s, 9H). 13CNMR (75 MHz, CDCl3) δ 173.4, 170.6, 155.1, 

131.9, 79.6, 59.4, 58.3, 54.9, 52.4, 46.7, 37.4, 32.1, 29.6, 28.4, 26.9, 22.6. 

 

HN
N

O COOMeBocHN

YP-368

N
N

O COOMeBocHN
YP-248P

Cbz

 

Synthesis of compound YP-248P: To a solution of compound YP-368 (1.6 g, 4.5 mmol) 

in 1,4-dioxane (20 ml) were added CbzCl (0.8 mL, 1.2 equiv.) and NaHCO3
 (0.9 g, 2.5 

equiv.). The mixture was stirred overnight at room temperature and then filtered and 

concentrated under vacuum.157,158 The residue was purified by chromatography to give 

compound YP-248P (Rf = 0.5 when EtOAc/Hexane= 1/1) (2.0 g, 92%).  1H NMR shows 

that this compound has two rotamers with a ratio of 2:1. 1H NMR (300 MHz, CDCl3, 

TMS) δ 7.47-7.25 (m, 5H), 5.63 (brd, J=8Hz, 1H), 5.31-5.16 (m, 2H), 4.64-4.60 (m, 1H), 

4.51-4.46 (t, J=8Hz, 1H), 4.30-3.98 (m, 2H), 3.74 (brs, 3H), 3.63 (m, 1H), 3.50 (m, 1H), 

3.30 (m, 1H), 2.38 (m, 1H), 2.28-1.76 (m, 5H), 1.44-1.45 (s, 9H). ESI MS: m/z 476.2 

[M+H]+. 
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YP-248P  

Synthesis of compound YP-244: To a solution of compound YP-248P (0.3 g, 0.6 mmol) 

in 1,4-dioxane (5 mL) was added 2N LiOH/H2O (0.8 mL, 2.5 equiv.). The mixture was 

stirred 1h at room temperature, then 1N HCl was added to adjust the pH to 3. The 

aqueous layer was extracted with CH2Cl2, and combined organic phases were dried 

(Na2SO4), filtered, and concentrated under vacuum. The crude acid was dissolved in 

CH2Cl2 (15 mL), and then NH2CHPh2 (0.1 mL, 1.1 equiv.), EDC (0.14 g, 1.2 equiv.), 

HOBt (0.1 g, 1.2 equiv.) and DIEA (diisopropylethylamine, 0.26 mL, 2.5 equiv.) were 

added. The mixture was stirred at overnight room temperature and then concentrated. The 

residue was purified by chromatography to give compound YP-244 (Rf = 0.3 when 

EtOAc/Hexane= 1/1) (0.3 g, 82% over 2 steps). 1HNMR (300 MHz, CDCl3, TMS) δ 

7.92-7.75 (m, 1H), 7.48-7.24 (m, 15H), 6.20 (m, 1H), 5.72 (m, 1H), 5.15 (brs, 2H), 4.68 

(m, 1H), 4.56 (m, 1H), 4.35-4.05 (m, 2H), 3.55 (m, 1H), 2.73-2.58 (m, 2H), 2.34 (m, 1H), 

2.20-1.65 (m, 5H), 1.48 (brs, 9H). ESI MS: m/z 627.3 [M+H]+. 

 

N
N

O CONHCHPh2BocHN

YP-244

Cbz N
N

O CONHCHPh2N
H

Cbz

YP-244P2

N
OBoc

 

Synthesis of compound YP-244P2: To a solution of compound YP-244 (0.3 g, 0.5 

mmol) in MeOH (5 mL), was added 0.5 mL of a solution of 4N HCl in 1,4-dioxane.159,160 
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The mixture was stirred overnight at room temperature and then condensed and quenched 

with saturated NaHCO3 solution and adjusted to pH = 8. The aqueous layer was extracted 

with CH2Cl2, and combined organic phases were dried over Na2SO4, filtered, and 

concentrated under vacuum. The crude amine was dissolved in CH2Cl2 (15 mL), and then 

Boc-N-methyl-alanine (0.1 g, 1.1 equiv.), EDC (0.11 g, 1.2 equiv.), HOBt (0.08 g, 1.2 

equiv.) and DIEA (0.2 mL, 2.5 equiv.) were added. The mixture was stirred overnight at 

room temperature and then condensed and purified by chromatography to give compound 

YP-244P2 (Rf = 0.3 when EtOAc/Hexane= 3/1) (0.28 g, 83% over two steps). 1H NMR 

shows that this compound has two rotamers with a ratio of 1:1. 1H NMR (300 MHz, 

CDCl3, TMS) δ 7.83-4.69 (m, 1H), 7.47-7.45 (m, 1H), 7.36-7.26 (m, 15H), 6.24-6.18 (t, 

J= 8.2 Hz, 1H), 5.15 (s, 2H), 4.89-4.79 (m, 1H), 4.70-4.62 (q, J=6.9 Hz, 1H), 4.23-4.07 

(m, 2H), 3.60-3.47 (1H), 2.82 (s, 3/2 H), 2.79 (s, 3/2 H), 2.62-2.59 (m, 2H), 2.48-2.30 (m, 

1H), 2.13-2.03 (m, 2H), 1.86-1.79 (m, 2H), 1.51 (s, 9/2 H), 1.49 (s, 9/2 H), 1.38-1.35 (d, 

J= 7.0 Hz, 3H). 

 

N
N

O CONHCHPh2N
H

Cbz

YP-244P2

N
OBoc
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N
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N
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Synthesis of compound YP-245: To a solution of compound YP-244P2 (0.28 g, 0.4 

mmol) in MeOH (20 mL) was added 10% Pd/C (0.1 g). The mixture was stirred at room 

temperature under H2 overnight.161 The catalyst was removed and the filtrate was 

evaporated. The crude product was purified by chromatography to afford compound YP-
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245 (Rf = 0.3 when MeOH/EtOAc = 1/9) (0.2 g, 92%). 1HNMR (300 MHz, CDCl3, TMS) 

δ 7.32-7.18 (m, 11H), 6.90 (brs, 1H), 6.22 (d, J = 7.3 Hz, 1H), 5.05 (m, 1H), 4.70 (t, J = 

8.5 Hz, 1H), 4.50 (brm, 1H), 4.25 (m, 1H), 2.99 (m, 1H), 2.83 (m, 1H), 2.81 (s, 3H), 2.65 

(m, 1H), 2.45 (m, 1H), 2.28 (t, J = 11 Hz, 1H), 2.18-2.05 (m, 2H), 1.80-1.65 (m, 2H), 

1.53 (s, 9H), 1.45 (m, 1H), 1.30 (d, J = 7.1 Hz, 3H). ESI MS: m/z 600.4 [M+Na]+ 

 

N
N

O COOMeBocHN

Cbz

YP-248P

N
N

O CONHBocHN

Cbz

YP-370
 

Synthesis of compound YP-370: To a solution of compound YP-248P (0.3 g, 0.6 mmol) 

in 1,4-dioxane (5 mL) was added 2N LiOH/H2O (0.8 mL, 2.5 equiv.). The mixture was 

stirred 1h at room temperature, then 1N HCl was added to adjust pH to 3. The aqueous 

layer was extracted with CH2Cl2, and combined organic phases were dried (Na2SO4), 

filtered, and concentrated under vacuum. The crude acid was dissolved in CH2Cl2 (15 

mL), and then (R)-1,2,3,4-tetrahydro1-naphthylamine (0.1 g, 1.1 equiv.), EDC (0.14 g, 

1.2 equiv.), HOBt (0.1 g, 1.2 equiv.) and DIEA (diisopropylethyl amine, 0.26 mL, 2.5 

equiv.) were added. The mixture was stirred at overnight room temperature and then 

condensed. The residue was purified by chromatography to give compound YP-370 (Rf = 

0.3 when CH3COOEt/Hexane= 1/1) (0.28 g, 80% over 2 steps). 1H NMR (300 MHz, 

CDCl3, TMS) δ 7.60-7.05 (m, 9H), 5.78-5.50 (m, 1H), 5.20-5.11 (m, 2H), 4.65-4.30 (m, 
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2H), 4.28-4.22 (m, 1H), 3.60-3.48 (m, 1H), 3.42-3.38 (m, 1H), 2.93-2.68 (m, 2H), 2.58-

2.40 (m, 1H), 2.28-1.98 (m, 4H), 1.98-1.70 (m, 6H), 1.44 (s, 9H). 

 

N
N

O CONHBocHN

Cbz

YP-370

N
OBoc

N
N

O CONHN
H

Cbz

YP-372  

Synthesis of compound YP-372: To a solution of compound YP-370 (0.28 g, 0.48 mmol) 

in MeOH (5 mL), was added a solution of 4N HCl in 1,4-dioxane (0.5 mL). The mixture 

was stirred overnight at room temperature and then condensed and quenched with 

saturated NaHCO3 solution and adjusted to pH = 8. The aqueous layer was extracted with 

CH2Cl2, and combined organic phases were dried over Na2SO4, filtered, and concentrated 

under vacuum. The crude amine was dissolved in CH2Cl2 (15 mL), and then t-Boc-N-

methylalanine (0.1 g, 1.1 equiv.), EDC (0.11 g, 1.2 equiv.), HOBt (0.08 g, 1.2 equiv.) and 

DIEA (0.2 mL, 2.5 equiv.) were added. The mixture was stirred overnight at room 

temperature and then condensed and purified by chromatography to give compound YP-

372 (Rf = 0.3 when EtOAc/Hexane= 3/1) (0.25 g, 80% over two steps). 1H NMR shows 

that this compound has two rotamers with a ratio of 1:1. 1H NMR (300 MHz, CDCl3, 

TMS) δ 7.45 (m, 1H), 7.36-7.10 (m, 9H), 6.72-6.58 (m, 1H), 5.21-5.14 (t, J= 9.9 Hz, 2H), 

4.82 (m, 1H), 4.48-4.41 (m, 1H), 4.14-4.09 (m, 2H), 3.82-3.60 (m, 1H), 3.20-2.90 (m, 

2H), 2.79 (s, 3/2 H), 2.77 (s, 3/2 H), 2.50-2.36 (m, 1H), 2.18-2.01 (m, 4H), 1.89-1.82 (m, 
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6H), 1.49 (s, 9/2 H), 1.46 (s, 9/2 H), 1.37-1.33 (m, 3H). HRMS: calcd m/z 698.3530 for 

[M+Na]+; found 698.3541. 
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Synthesis of compound YP-373: To a solution of compound YP-372 (0.25 g, 0.37 mmol) 

in MeOH (20 mL) was added 10% Pd/C (0.1 g).162,163 The mixture was stirred at room 

temperature under H2 overnight, then the catalyst was removed and the filtrate was 

evaporated to dryness. The crude product was purified by chromatography to afford 

compound YP-373 (Rf = 0.3 when MeOH/EtOAc = 1/4) (0.18 g, 91%). 1H NMR (300 

MHz, CDCl3, TMS) δ 8.77-8.75 (d, J= 7.1 Hz, 1H), 7.21-7.05 (m, 4H), 6.90-6.73 (br, 1H), 

5.06-4.98 (m, 2H), 4.65-4.59 (t, J= 8.1 Hz, 1H), 4.23-4.17 (m, 1H), 3.02-3.01 (m, 1H), 

2.76 (s, 3H), 2.70-2.68 (m, 2H), 2.60-2.48 (m, 2H), 2.38 (m, 1H), 2.12-2.03 (m, 4H), 

1.82-1.72 (m, 6H), 1.47 (s, 9H), 1.32-1.29 (d, J= 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl3) 

δ 170.6, 168.4, 137.6, 136.4, 129.3, 128.9, 127.2, 125.8, 60.3, 58.2 54.4, 49.3, 47.4, 46.8, 

34.9, 31.8, 29.0, 28.2, 27.6, 18.7, 14.1; HRMS: calcd m/z 564.3162 for [M+Na]+; found 

564.3163. 
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Synthesis of compound YP-245P3: To a solution of compound YP-245 (40 mg, 0.07 

mmol) in MeOH (5 mL) was added a solution of HCHO 37% w.t. in H2O (0.025 mL, 5 

equiv.). The mixture was stirred for 30 min at room temperature, and then NaCNBH3 (26 

mg, 6 equiv.) and a catalytic amount of acetic acid were added. The mixture was stirred 

for 1 h at room temperature, and then quenched with 10 mL of water. The aqueous layer 

was extracted with CH2Cl2, and combined organic phases were dried over Na2SO4, 

filtered, and concentrated under vacuum. The crude amine was dissolved in MeOH (5 

mL), and then a solution of 4N HCl in 1,4-dioxane (0.2 mL) was added. The mixture was 

stirred overnight at room temperature, concentrated and purified by chromatography on a 

C18 reverse phase semi-preparative HPLC column and then lyophilized to give 

compound YP-245P3 (24 mg, 71% over 2 steps). The gradient ran from 90% of solvent 

A and 10% solvent B to 60% solvent A and 40% solvent B in 30 min. The purity of YP-

245P3 was confirmed by analytical HPLC to be over 98%. 1HNMR (300 MHz, D2O) δ 

7.42-7.25 (m, 10H), 6.07 (d, J = 6.8 Hz, 1H), 5.35 (m, 1H), 4.70 (m, 1H), 4.61 (m, 1H), 

3.99 (dd, J = 14.0, 7.0 Hz, 1H), 3.86 (m, 1H), 3.65 (m, 1H), 3.56 (m, 1H), 3.30 (m, 1H), 

3.00 (s, 3H), 2.68 (s, 3H), 2.49 (m, 1H), 2.32-1.82 (m, 5H), 1.51 (d, J = 7.1 Hz, 3H). 

HRMS: calcd. m/z for [M+H]+ 492.2975; found 492.2971. Anal. (C28H37N5O3⋅3.1CF3COOH): 

C, H, N. 



56 
 

 

HN
N

O CONHCHPh2N
H

YP-245

N
OBoc

N
N

O CONHCHPh2N
H

YP-246P

H
N

O

Bn

 

Synthesis of compound YP-246P: To a solution of compound YP-245 (40 mg, 0.069 

mmol) in 1,4-dioxane (10 mL) were added BnBr (0.01 mL, 1.2 equiv.) and NaHCO3 (15 

mg, 2.5 equiv.).164,165 The mixture was stirred overnight at room temperature, and then 

filtered, concentrated, and purified by chromatography to afford the desired amine (Rf = 

0.3 when EtOAc/Hexane = 3/1). This amine was dissolved in MeOH (5 mL) and then a 

solution of 4N HCl in 1,4-dioxane (0.2 mL) was added. The mixture was stirred 

overnight at room temperature, evaporated and purified by chromatography on a C18 

reverse phase semi-preparative HPLC column then lyophilized to give compound YP-

246P (30 mg, 77% over 2 steps). The gradient ran from 90% of solvent A and 10% 

solvent B to 60% solvent A and 40% solvent B in 30 min. The purity was confirmed by 

analytical HPLC to be over 98%. 1HNMR (300 MHz, D2O) δ 7.34 (m, 2H), 7.28-7.02 (m, 

13H), 6.05 (d, J = 6.9 Hz, 1H), 5.38 (m, 1H), 4.72 (m, 1H), 4.52 (m, 1H), 4.25 (ABq, J = 

8.4 Hz, 2H), 3.97 (dd, J = 13.5, 6.8 Hz, 1H), 3.82-3.56 (m, 2H), 3.49 (m, 1H), 3.18 (m, 

1H), 2.67 (s, 3H), 2.35 (m, 1H), 2.08 (m, 1H), 1.75-1.52 (m, 4H), 1.47 (d, J = 7.0 Hz, 3H). 

HRMS: calcd. m/z for [M+H]+ 568.3288; found 568.3284. Anal. (C34H41N5O3⋅ 

2.5CF3COOH): C, H, N. 
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Synthesis of compound YP-330: To a solution of compound YP-245 (20 mg, 0.035 

mmol) in CH2Cl2 (10 mL) were added Ac2O (0.004 mL, 1.2 equiv.) and DIEA (0.015 mL, 

2.5 equiv.). The mixture was stirred 4h at room temperature, and then concentrated and 

purified by chromatography to give the desired amide (Rf = 0.3 in EtOAc). The desired 

amide was dissolved in MeOH (5 mL), and then a solution of 4N HCl in 1,4-dioxane (0.2 

mL) was added. The mixture was stirred overnight at room temperature, condensed and 

purified by chromatography on a C18 reverse phase semi-preparative HPLC column and 

then lyophilized to give compound YP-330 (15 mg, 85% over 2 steps). The gradient ran 

from 80% of solvent A and 20% solvent B to 50% solvent A and 50% solvent B in 30 

min. The purity was confirmed by analytical HPLC to be over 98%.  1HNMR (300 MHz, 

D2O) δ 7.38-7.19 (m, 10H), 5.95 (brs, 1H), 4.96 (m, 1H), 4.40 (m, 1H), 4.25 (m, 1H), 

3.94 (m, 1H), 3.66 (m, 1H), 3.60-3.35 (m, 3H), 2.63 (s, 3H), 2.25 (m, 1H), 2.15-1.65 (m, 

8H), 1.47 (d, J = 7.1Hz, 3H). 13C NMR (75 MHz, D2O) δ 175.3, 173.3, 172.9, 170.2, 

141.2, 129.2, 128.1, 127.7, 62.3, 62.1 58.5, 57.8, 57.3, 52.6, 51.8, 32.2, 31.3, 27.5 21.5, 

20.7, 15.5. HRMS: calcd. m/z for [M+H]+ 520.2924; found 520.2924. Anal. (C29H37N5O4⋅ 

1.0HCl⋅1.5CF3COOH): C, H, N. 
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Synthesis of compound YP-337: To a solution of compound YP-245 (20 mg, 0.035 

mmol) in CH2Cl2 (10 mL) was added BnCOOH (6 mg, 1.2 equiv.), EDC (9 mg, 1.4 

equiv.), HOBt (6.5 mg, 1.4 equiv.) and DIEA (0.015 mL, 2.5 equiv.). The mixture was 

stirred overnight at room temperature, and then condensed and purified by 

chromatography to give the desired amide (Rf = 0.3 when EtOAc/Hexane= 4/1). The 

desired amide was dissolved in MeOH (5 mL), and a solution of 4N HCl in 1,4-dioxane 

(0.2 mL) was added. The mixture was stirred overnight at room temperature, condensed 

and purified by chromatography on a C18 reverse phase semi-preparative HPLC column 

and then lyophilized to give compound YP-337 (18 mg, 87% over 2 steps). The gradient 

ran from 80% of solvent A and 20% solvent B to 50% solvent A and 50% solvent B in 30 

min. The purity was confirmed by analytical HPLC to be over 98%. 1HNMR (300 MHz, 

D2O) δ 7.27-6.90 (m, 15H), 5.95 (brs, 1H), 4.65 (m, 1H), 4.38 (m, 1H), 4.06 (m, 1H), 

3.85 (m, 1H), 3.78-3.30 (m, 6H), 2.55 (brs, 3H), 2.08 (m, 1H), 1.98-1.30 (m, 8H). 13C 

NMR (75 MHz, CD3OD) δ 174.6, 174.0, 169.6, 169.4, 143.1, 136.4, 130.3, 129.5, 128.6, 

128.2, 127.8, 62.7, 58.3, 54.2, 41.6, 33.3, 31.9, 28.2, 16.3. HRMS: calcd. m/z for [M+H]+ 

596.3237, found 596.3250. Anal. (C35H41N5O4⋅1.0HCl⋅1.2CF3COOH): C, H, N. 
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Synthesis of compound YP-350: To a solution of compound YP-245 (20 mg, 0.035 

mmol) in CH2Cl2 (10 mL) were added 4-fluorophenylacetic acid (6.5 mg, 1.2 equiv.), 

EDC (9 mg, 1.4 equiv.), HOBt (6.5 mg, 1.4 equiv.) and DIEA (0.015 mL, 2.5 equiv.). 

The mixture was stirred overnight at room temperature, and then condensed and purified 

by chromatography to give the desired amide (Rf = 0.3 when EtOAc/Hexane= 3/1). This 

product was dissolved in MeOH (5 mL), and then a solution of 4N HCl in 1,4-dioxane  

(0.2 mL) was added. The mixture was stirred at overnight room temperature, condensed 

and purified by chromatography on a C18 reverse phase semi-preparative HPLC column 

and then lyophilized to give compound YP-350 (18 mg, 84% over 2 steps). The gradient 

ran from 80% of solvent A and 20% solvent B to 50% solvent A and 50% solvent B in 30 

min. The purity was confirmed by analytical HPLC to be over 98%. 1H NMR (300 MHz, 

CD3OD, TMS) δ 8.94-8.92 (d, J = 7.9 Hz, 1H), 7.34-7.26 (m, 12H), 7.04-6.98 (m, 2H), 

6.18-6.15 (d, J = 7.9 Hz, 1H), 4.60-4.57 (m, 1H), 4.31 (br, 1H), 4.02-3.76 (m, 4H), 3.50 

(m, 1H), 2.68 (s, 3H), 2.34 (m, 1H), 2.11-1.82 (m, 5H), 1.55-1.53 (d, J = 7.0 Hz, 3H). 

13CNMR (75 MHz, CD3OD) δ 173.2, 170.2, 169.7, 164.8, 161.5, 143.1, 132.5, 131.9, 

129.6, 128.6, 128.1, 116.2, 62.7, 58.4, 53.9, 40.5, 33.3, 32.3, 31.8, 28.3, 16.3. HRMS: 

calcd. m/z for [M+Na]+ 636.2962; found 636.2974. 
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Synthesis of compound YP-356: To a solution of compound YP-245 (20 mg, 0.035 

mmol) in CH2Cl2 (10 mL) was added 2,4-difluorophenylacetic acid (7.2 mg, 1.2 equiv.), 

EDC (9 mg, 1.4 equiv.), HOBt (6.5 mg, 1.4 equiv.) and DIEA (0.015 mL, 2.5 equiv.). 

The mixture was stirred overnight at room temperature, and then evaporated and purified 

by chromatography to give the desired amide (Rf = 0.3 when EtOAc/Hexane= 2/1). The 

desired amide was dissolved in MeOH (5 mL), and a solution of 4N HCl in 1,4-dioxane 

(0.2 mL) was added. The mixture was stirred overnight at room temperature, condensed 

and purified by chromatography on a C18 reverse phase semi-preparative HPLC column 

and then lyophilized to give compound YP-356 (18.4 mg, 83% over 2 steps). The 

gradient ran from 80% of solvent A and 20% solvent B to 50% solvent A and 50% 

solvent B in 30 min. The purity was confirmed by analytical HPLC to be over 98%. 1H 

NMR (300 MHz, CD3OD, TMS) δ 8.93-8.91 (d, J = 8.0 Hz, 1H), 7.38-7.26 (m, 11H), 

6.90-6.86 (m, 2H), 6.18-6.16 (d, J = 7.9 Hz, 1H), 5.10-5.00 (m, 1H), 4.61-4.58 (m, 1H), 

4.40-4.28 (m, 1H), 4.15-3.91 (m, 4H), 3.36 (m, 2H), 2.69 (s, 2H), 2.67 (s, 1H), 2.42-2.28 

(m, 1H), 2.02-1.95 (m, 5H), 1.55-1.53 (d, J = 7.0 Hz, 3H). 13CNMR (75 MHz, CD3OD) δ 

173.2, 172.4, 170.2, 169.7, 169.4, 143.2, 134.1, 129.6, 128.4, 128.1, 120.1, 112.0, 104.1, 

62.7, 58.4, 53.9, 34.2, 33.3, 32.3, 31.7, 28.3, 16.2. HRMS: calcd. m/z for [M+Na]+ 

654.2868; found 654.2866. 
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Synthesis of compound YP-376: To a solution of compound YP-373 (80 mg, 0.15 

mmol) in CH2Cl2 (20 mL) were added phenylacetic acid (24 mg, 1.2 equiv.), EDC (40 

mg, 1.4 equiv.), HOBt (28 mg, 1.4 equiv.) and DIEA (0.06 mL, 2.5 equiv.). The mixture 

was stirred overnight at room temperature, and then condensed and purified by 

chromatography to give the desired amide (Rf = 0.3 in EtOAc). The desired amide was 

dissolved in MeOH (10 mL), and then a solution of 4N HCl in 1,4-dioxane (0.3 mL) was 

added. The mixture was stirred overnight at room temperature, concentrated and purified 

by chromatography on a C18 reverse phase semi-preparative HPLC column and then 

lyophilized to give compound YP-376 (70 mg, 85% over 2 steps). The gradient ran from 

80% of solvent A and 20% solvent B to 50% solvent A and 50% solvent B in 30 min. 

The purity was confirmed by analytical HPLC to be over 98%. 1H NMR (300 MHz, 

CD3OD, TMS) δ 8.50-8.43 (m, 1H), 7.46-7.44 (m, 1H), 7.32-7.31 (m, 4H), 7.26-7.24 (m, 

1H), 7.15-7.11 (m, 3H), 5.09 (m, 2H), 4.43 (m, 1H), 4.20(m, 1H), 4.01-3.92 (m, 4H), 

3.58-3.42 (m, 1H), 2.83-2.81 (m, 2H), 2.70 (s, 1H), 2.68 (s, 2H), 2.38-2.25 (m, 1H), 2.09-

1.82 (m, 8H), 1.27-1.53 (d, J = 7.0 Hz, 3H). 13C NMR (75 MHz, CD3OD) δ 174.1, 173.6, 

169.6, 169.3, 138.5, 137.9, 136.5, 130.2, 129.8, 128.0, 127.0, 62.9, 58.3, 54.4, 41.6, 32.1, 
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31.9, 31.4, 30.2, 28.4, 21.7, 16.4. HRMS: calcd. m/z for [M+Na]+ 582.3056; found 

582.3080. 
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Synthesis of compound YP-377: To a solution of compound YP-373 (80 mg, 0.15 

mmol) in CH2Cl2 (20 mL) were added 4-fluorophenylacetic acid (28 mg, 1.2 equiv.), 

EDC (40 mg, 1.4 equiv.), HOBt (28 mg, 1.4 equiv.) and DIEA (0.06 mL, 2.5 equiv.). The 

mixture was stirred overnight at room temperature, and then concentrated and purified by 

chromatography to give the desired amide (Rf = 0.3 in EtOAc). The desired amide was 

dissolved in MeOH (10 mL), and a solution of 4N HCl in 1,4-dioxane (0.3 mL) was 

added. The mixture was stirred overnight at room temperature, concentrated and purified 

by chromatography on a C18 reverse phase semi-preparative HPLC column and then 

lyophilized to give compound YP-377 (73 mg, 84% over 2 steps). Gradient ran from 80% 

of solvent A and 20% solvent B to 50% solvent A and 50% solvent B in 30 min. The 

purity was confirmed by analytical HPLC to be over 98%. 1H NMR (300 MHz, CD3OD, 

TMS) δ 8.50-8.40 (m, 1H), 7.47-7.44 (m, 1H), 7.36-7.31 (m, 2H), 7.15-7.01 (m, 5H), 

5.09 (m, 2H), 4.43 (m, 1H), 4.38-4.28 (m, 1H), 4.12 (m, 1H), 4.02-3.93 (m, 4H), 2.83-

2.81 (m, 2H), 2.70 (s, 3H), 2.38-2.28 (m, 1H), 2.12-1.82 (m, 8H), 1.56-1.53 (d, J = 7.0 

Hz, 3H). 13CNMR (75 MHz, CD3OD) δ 173.8, 173.5, 169.7, 169.3, 138.5, 132.5, 131.8, 
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129.9, 126.9, 116.3, 62.9, 58.3, 57.8, 54.1, 40.6, 33.4, 32.2, 31.7, 30.2, 28.4, 21.7, 16.3. 

HRMS: calcd. m/z for [M+H]+ 578.3143; found 578.3147. 

 

 

Synthesis of compound YP-317: To a solution of compound YP-245P (20 mg, 0.035 

mmol) in 1,4-dioxane (10 mL) were added p-xylylene dibromide (10 mg, 1.1 equiv.) and 

NaHCO3 (7 mg, 1.2 equiv.). The mixture was stirred overnight at room temperature, and 

then . YP-245P (20 mg, 0.035 mmol, 1 equiv.) and NaHCO3 (7 mg, 1.2 equiv.) were 

added. The mixture was stirred overnight at room temperature, and then filtered, 

condensed, and purified by chromatography to afford the desired amine (Rf = 0.3 when 

EtOAc/MeOH= 9/1). This amine was dissolved in MeOH (5 mL) and a solution of 4N 

HCl in 1,4-dioxane (0.2 mL) was added. The mixture was stirred overnight at room 

temperature, concentrated and purified by chromatography on a C18 reverse phase semi-

preparative HPLC column and then lyophilized to give compound YP-317 (24 mg, 54% 

over 2 steps). The gradient ran from 90% of solvent A and 10% solvent B to 60% solvent 

A and 40% solvent B in 30 min. The purity was confirmed by analytical HPLC to be over 

98%. 1H NMR (300 MHz, D2O, TMS) δ 9.26-9.23 (d, J = 7.6 Hz, 1H), 7.22-6.09 (m, 

12H), 6.05-6.02 (d, J = 7.2 Hz, 1H), 5.36-5.30 (m, 1H), 4.52 (m, 1H), 3.86-3.78 (m, 2H), 

3.58-3.53 (m, 2H), 2.99 (t, J = 12 Hz, 1H), 2.56 (s, 3H), 2.32 (m, 1H), 2.11-2.00 (m, 1H), 
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1.75-1.67 (m, 4H), 1.37-1.35 (d, J = 7.1 Hz, 3H). 13CNMR (75 MHz, D2O) δ 173.9, 170.1, 

167.9, 140.7, 132.3, 130.5, 128.4, 114.7, 62.9, 61.0, 59.0, 58.2, 57.1, 56.4, 55.2, 54.1, 

47.9, 31.6, 31.2, 27.0, 15.4. HRMS: calcd. m/z for [M+H]+ 1057.6028; found 1057.6057. 
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Synthesis of compound YP-381: To a solution of compound YP-245 (20 mg, 0.035 

mmol) in CH2Cl2 (10 mL) was added 1,8-octanedicarboxylic acid (4 mg, 0.55 equiv.), 

EDC (9 mg, 1.4 equiv.), HOBt (6.5 mg, 1.4 equiv.) and DIEA (0.015 mL, 2.5 equiv.). 

The mixture was stirred overnight at room temperature, and then condensed and purified 

by chromatography to give the desired amide (Rf = 0.3 with EtOAc). The desired amide 

was dissolved in MeOH (5 mL), and then a solution of 4N HCl in 1,4-dioxane (0.2 mL) 

was added. The mixture was stirred overnight at room temperature, concentrated and 

purified by chromatography on a C18 reverse phase semi-preparative HPLC column and 

then lyophilized to give compound YP-381 (14 mg, 72% over 2 steps). The gradient ran 

from 80% of solvent A and 20% solvent B to 50% solvent A and 50% solvent B in 30 

min. The purity was confirmed by analytical HPLC to be over 98%. 1H NMR (300 MHz, 

CD3OD, TMS) δ 8.94-8.91 (d, J = 7.9 Hz, 1H), 7.37- 7.24 (m, 10H), 6.17-6.14 (d, J = 8.2 

Hz, 1H), 4.58-4.55 (m, 1H), 4.24 (br, 1H), 3.99-3.90 (m, 2H), 3.50-3.38 (m, 1H), 2.70 (s, 

3H), 2.65-2.40 (m, 2H), 2.31 (m, 1H), 2.09-1.78 (m, 6H), 1.61 (m, 2H), 1.56-1.53 (d, J = 
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7.0 Hz, 3H), 1.32 (s, 4H). 13CNMR (75 MHz, CD3OD) δ 176.5, 175.9, 173.2, 169.6, 

143.0, 129.6, 128.8, 128.2, 62.7, 58.2, 53.7, 34.4, 33.4, 32.3, 31.8, 30.3, 28.3, 26.1, 16.2. 

HRMS: calcd. m/z for [M+Na]+ 1143.6371; found 1143.6387. Anal. (C64H84N10O8⋅2HCl⋅ 

2CF3COOH⋅3.5H2O): C, H, N. 
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Synthesis of compound YP-383: To a solution of compound YP-245 (20 mg, 0.035 

mmol) in CH2Cl2 (10 mL) were added 1,12-dodecanedioic acid (4.4 mg, 0.55 equiv.), 

EDC (9 mg, 1.4 equiv.), HOBt (6.5 mg, 1.4 equiv.) and DIEA (0.015 mL, 2.5 equiv.). 

The mixture was stirred overnight at room temperature, then condensed and purified by 

chromatography to give the desired amide (Rf  = 0.3 with EtOAc). The desired amide was 

dissolved in MeOH (5 mL), and then a solution of 4N HCl in 1,4-dioxane (0.2 mL) was 

added. The mixture was stirred overnight at room temperature, concentrated and purified 

by chromatography on a C18 reverse phase semi-preparative HPLC column and then 

lyophilized to give compound YP-383 (14 mg, 70% over 2 steps). The gradient ran from 

80% of solvent A and 20% solvent B to 50% solvent A and 50% solvent B in 30 min. 

The purity was confirmed by analytical HPLC to be over 98%. 1H NMR (300 MHz, 

CD3OD, TMS) δ 7.35-7.27 (m, 10H), 6.16 (s, 1H), 4.59-4.52 (m, 1H), 4.24 (br, 1H), 

4.02-3.99 (m, 1H), 3.97-3.92 (m, 1H), 3.90-3.87 (m, 1H), 3.58-3.48 (m, 2H), 2.70 (s, 3H), 
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2.56-2.34 (m, 2H), 2.34-2.32 (m, 1H), 2.06-1.19 (m, 6H), 1.56-1.53 (d, J = 7.0 Hz, 3H), 

1.30 (s, 6H). 13CNMR (75 MHz, CD3OD) δ 176.5, 175.9, 173.2, 169.6, 143.0, 129.6, 

128.8, 128.2, 62.7, 58.2, 53.7, 34.4, 33.4, 31.7, 30.6, 30.4, 28.3, 26.3, 16.1. HRMS: calcd. 

m/z for [M+Na]+ 1171.6684; found 1171.6680. 
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Synthesis of compound YP-385: To a solution of compound YP-245 (20 mg, 0.035 

mmol) in CH2Cl2 (10 mL) was added 1,6-hexanedicarboxylic acid (3.4 mg, 0.55 equiv.), 

EDC (9 mg, 1.4 equiv.), HOBt (6.5 mg, 1.4 equiv.) and DIEA (0.015 mL, 2.5 equiv.). 

The mixture was stirred overnight at room temperature, and then condensed and purified 

by chromatography to give the desired amide (Rf  = 0.3 EtOAc/MeOH= 99/1). The 

desired amide was dissolved in MeOH (5 mL), and a solution of 4N HCl in 1,4-dioxane 

(0.2 mL) was added. The mixture was stirred overnight at room temperature, 

concentrated and purified by chromatography on a C18 reverse phase semi-preparative 

HPLC column and then lyophilized to give compound YP-385 (14 mg, 76% over 2 steps). 

The gradient ran from 80% of solvent A and 20% solvent B to 50% solvent A and 50% 

solvent B in 30 min. The purity was confirmed by analytical HPLC to be over 98%. 1H 

NMR (300 MHz, CD3OD, TMS) δ 8.95-8.93 (d, J = 8.1 Hz, 1H), 7.37-7.24 (m, 10H), 

6.17-6.14 (d, J = 8.0 Hz, 1H), 4.58-4.56 (m, 1H), 4.24 (br, 1H), 3.99-3.92 (m, 2H), 3.82-
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3.70 (m, 1H), 2.70 (s, 3H), 2.62-2.40 (m, 2H), 2.33 (m, 1H), 2.04-1.75 (m, 6H), 1.60-1.56 

(m, 2H), 1.55-1.52 (d, J = 7.0 Hz, 3H), 1.34-1.30 (m, 2H). 13CNMR (75 MHz, CD3OD) δ 

176.5, 175.8, 173.3, 169.7, 143.0, 129.6, 128.8, 128.2, 62.7, 58.2, 53.7, 34.5, 33.4, 31.7, 

30.2, 28.3, 26.2, 16.1. HRMS: calcd. m/z for [M+H]+ 1093.6239; found 1093.6252. Anal. 

(C62H80N10O8⋅2HCl⋅2CF3COOH⋅2H2O): C, H, N. 
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CHAPTER 3 
 

BIOLOGICAL EVALUATION OF MONOVALENT SMAC 
MIMETICS 

 

3.1 Binding Potency of Monovalent Smac Mimetics 

 

Compound X R2 XIAP (nM) c-IAP1 (nM) c-IAP2 (nM) 

SM-122 CH2 N/A 26 ± 4  1.0 ± 0.3 1.8 ± 0.6  

SM-227 N H- 20.0 ±14.5 1.2 ± 0.1 4.6 ± 1.5  

SM-245 N CH3- 341 ± 65.9 3.3 ± 1.3 17.5 ± 4.3  

SM-246 N PhCH2- 91.8 ±30.4 3.7 ± 1.4 9.8 ± 4.1  

SM-330 N CH3CO- 5.4 ± 3.0 1.3 ± 0.3 1.9 ± 0.8  

SM-337 N PhCH2CO- 8.4 ± 1.6  1.5 ± 0.5 4.2 ± 0.6  

 
Table 3.1 Binding affinities of Smac mimetics to XIAP, c-IAP1/2, as determined by competitive, 
fluorescence-polarization based assays. Data are shown in the form of Ki ± SD (nM). 
 

To further explore the SAR of monovalent Smac mimetics, SM-227 was recently 

developed in our laboratory. In SM-227, no additional functional group is tethered to the 
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nitrogen atom in the 8-membered ring of the 8,5-bicyclic system. The binding affinities 

of monovalent Smac mimetics with XIAP and c-IAP1/2 are shown in Table 3.1.166 

Binding affinities of SM-245, SM-246, SM-330, and SM-337 for XIAP and c-IAP1/2 

have the same trend as the binding with the XIAP BIR3 domain, as discussed in the 

previous chapter. As expected, in the absence of major differences from the original lead 

compound SM-122, SM-227 has the same binding potency against XIAP, c-IAP1/2 with 

SM-122. 

 
Figure 3.1 Predicted binding models of SM-227 (2), SM-245 (3), SM-246 (4), and SM-330 (5) to 
XIAP BIR3 domain, in superposition with Smac AVPI peptide. Smac mimetics are colored in green 
and the AVPI peptide in yellow. Binding pockets are shown in transparent surface. Oxygen, nitrogen, 
sulfur atoms are colored in red, blue, and yellow respectively, while hydrogen bonds are depicted in 
light blue dash lines. 
 

Predicted models of binding to the XIAP BIR3 domain of the monovalent Smac 

mimetics SM-227, SM-245, SM-246 and SM-330 in superposition with the Smac AVPI 



70 
 

peptide are shown in Figure 3.1. As expected, SM-227, SM-245, SM-246 and SM-330 

can mimic the reverse turn conformation of Smac AVPI tetrapeptide, while the functional 

groups tethered to the nitrogen atom in the 8,5-bicyclic system in SM-245, SM-246, and 

SM-330 are directed towards the solvent, and have no specific interaction with the XIAP 

BIR3 domain. 

 

 

3.2 Tumor Cell Growth Inhibition Activity of Monovalent Smac 
Mimetics 
 

 

Figure 3.2 Principles of WST-based cell proliferation assay. 
 

WST (Water Soluble Tetrazolium)-based cell proliferation assays were preformed 

to test the capability of Smac mimetics in tumor cell growth inhibition.167 The principles 

of WST assays are shown in Figure 3.2. STR (Succinate Tetrazolium Reductase) is active 

in the mitochondrial respiratory chain, transforming slightly red WST-1 to dark red 

formazan only in viable cells. Therefore, the formation of formazan is in proportion to the 

number of viable cells.168,169 By measuring the relative light absorbance at 450 nm, the 
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ratio of viable cells in the measured group to the untreated group (cell viability 

percentage) can be obtained, as shown in Figure 3.3. 
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Figure 3.3 Inhibition of tumor cell growth by monovalent Smac mimetics in human breast cancer 
MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells. Tumor cells were treated with Smac 
mimetics for 96 hours and cell growth was determined using a WST-based cell growth assay. 
 

After human breast cancer MDA-MB-231 cells and human ovarian cancer 

SK-OV-3 cells were treated with Smac mimetics for 96 hours, tumor cell viabilities were 

analyzed by using WST-based cell growth assay. As shown in Figure 3.3, the potency of 

monovalent Smac mimetics in inhibiting tumor cell growth is consistent with the binding 

potency with XIAP, c-IAP1/2. In both tumor cell lines, Smac mimetics SM-227, SM-245, 

and SM-246 have less potency than the lead compound SM-122 in tumor cell growth 

inhibition. The Smac mimetics SM-330 and SM-337, with improved binding potency 

with XIAP, are 4 to 10 times more potent than SM-122 in both tumor cell lines. SM-376, 
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with an (R)-tetrahydronaphthyl group which serves to increase the hydrophobic 

interaction with the large hydrophobic pocket formed by lysine 297 and lysine 299 of the 

XIAP BIR3 domain, has the best potency in inhibition of cell growth in both tumor cell 

lines, consistent with its significant binding potency with the XIAP BIR 3 domain. 

 

 

3.3 Tumor Cell Death Induction Activity of Monovalent Smac Mimetics 
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Figure 3.4 Chemical structure of Trypan blue. 

 

Trypan blue cell death assays were performed to evaluate the activity of 

monovalent Smac mimetics in tumor cell death induction. Trypan blue (Figure 3.4) can 

pass through the cell membrane of dead cells to color the cells in dark blue, while live 

cells remain unaffected. Therefore, cell viabilities can be obtained after counting both 

live and non-live cells distinguished by Trypan blue. 

After human breast cancer MDA-MB-231 cells and human ovarian cancer 

SK-OV-3 cells were treated with 0.1, 1, and 3 µM of the monovalent Smac mimetics 

SM-122, SM-245, SM-246, SM-337, SM-350, or SM-376 for 24 and 48 hours, tumor cell 

viabilities were analyzed by using Trypan-blue-based cell death assay. As shown in 

Figure 3.5, every tested monovalent Smac mimetic can dose- and time-dependently 

induce tumor cell death in both SK-OV-3 and MDA-MB-231 cells. Smac mimetics 
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SM-245 and SM-246 have same potency compared with lead compound SM-122 in both 

tumor cell lines, while SM-337 and SM-350 are more potent than SM-122, consistent 

with their better binding potency against XIAP BIR 3 domain. As expected, SM-376, 

with the best binding potency among all the monovalent Smac mimetics, shows the best 

potency in tumor cell death induction in both MDA-MB-231 and SK-OV-3 cells. 
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Figure 3.5 Cell viabilities of human ovarian cancer SK-OV-3 cells and human breast cancer 
MDA-MB-231 cells treated with different concentrations of monovalent Smac mimetics for 24 or 48 
hours, as determined by Trypan blue cell death assays. 
 

 

3.4 Apoptosis Induction Activity of Monovalent Smac Mimetics 

Our hypothesis is that Smac mimetics induce tumor cell death and inhibit tumor 

cell growth by inhibiting IAPs and activating apoptosis in tumor cells. To further test this 
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hypothesis, the abilities of monovalent Smac mimetics in tumor apoptosis induction were 

analyzed by using Annexin V and Propidium Iodide (P.I.) double staining flow 

cytometry. 

 

Figure 3.6 Annexin V and P.I. double staining flow cytometry of untreated MDA-MB-231 cells. 
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Figure 3.7 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-231 
cells treated with different concentrations of monovalent Smac mimetic SM-245, SM-337, or SM-376 
for 24 hours. 
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Figure 3.8 Annexin V and P.I. double staining flow cytometry of human ovarian cancer SK-OV-3 
cells treated with different concentrations of monovalent Smac mimetic SM-245, SM-337, or SM-376 
for 24 hours. 
 

Figure 3.6 shows the results of Annexin V and P.I. double staining flow cytometry 

of untreated MDA-MB-231 cells. Annexin V competes for the binding site of 

phosphatidylserine, which is normally confined to the inner leaflet of the cell membrane 

and is externalized in the early stages of apoptosis, while P.I. can intercalate DNA which 

is released after damage of the cell nucleus in the late stage of apoptosis.170-179 Hence, 

cells in the lower right quadrant are in the early phase of apoptosis, binding Annexin V 

but not taking up P.I. Cells in the upper right quadrant are in the late phase of apoptosis, 

both binding Annexin V and taking up P.I.. Cells in the lower left quadrant are live cells, 

neither binding Annexin V nor taking up P.I., while cells in the upper left quadrant are 

dead cells, only taking up P.I.. Therefore, flow cytometry with Annexin V and P.I. double 
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staining can be used to evaluate the ability of Smac mimetics in inducing apoptosis, since 

it can successfully distinguish the different apoptosis phases in which cells are 

present.180-191 
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Figure 3.9 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-231 
cells treated with different concentrations of monovalent Smac mimetic SM-245, SM-337, or SM-376 
for 48 hours. 

 

After human breast cancer MDA-MB-231 cells and human ovarian cancer 

SK-OV-3 cells were treated with 10, 100, and 1000 nM of the Smac mimetic SM-245, 

SM-337, or SM-376 for 24 hours, apoptosis in tumor cells was analyzed using Annexin V 

and P.I. double staining flow cytometry. As shown in Figure 3.7 and 3.8, every Smac 

mimetic can induce apoptosis in both tumor cell lines in a dose-dependent manner. 

SM-337 and SM-376 show similar potency in inducing apoptosis in both MDA-MB-231 
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and SK-OV-3 cells, while both Smac mimetics are more potent than SM-245, consistent 

with their superior potency in binding against XIAP BIR 3 domain. 

After human breast cancer MDA-MB-231 cells were treated with 10, 100, and 

1000 nM of Smac mimetic SM-245, SM-337, or SM-376 for 48 hours, apoptosis in tumor 

cells was analyzed by Annexin V and P.I. double staining flow cytometry, as shown in 

Figure 3.9. As expected, each Smac mimetic can dose-dependently induce apoptosis in 

MDA-MB-231 cells. Meanwhile, each Smac mimetic time-dependently induces 

apoptosis in MDA-MB-231 cells, when compared with the results in Figure 3.7. 

Similarly, SM-337 and SM-376 have better potency than SM-245, which bears a 

relatively lower binding affinity against XIAP BIR 3 domain. 

 

 

3.5 Caspase Activation of Monovalent Smac Mimetics 

A cell-free functional assay was performed to test further whether Smac mimetics 

can function as antagonists of XIAP. While the XIAP protein effectively inhibits the 

activity of caspase-3/7, the Smac mimetics SM-122, SM-227, SM-330, and SM-337 can 

all dose-dependently antagonize XIAP and restore the activity of casapase-3/7. As shown 

in Figure 3.10, newly developed Smac mimetic SM-227, SM-330, and SM-337 all have 

better potency than original lead compound SM-122 in caspase activity recovery. 
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Figure 3.10 Inhibition of caspase-3/7 activity by XIAP and antagonism of Smac mimetics to XIAP to 
recover the activity of caspase-3/7 in a cell-free functional assay. 
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Figure 3.11 Left: Inhibition of caspase-3/7 activity by XIAP and antagonism of Smac mimetic 
SM-246 to XIAP to recover the activity of caspase-3/7 in a cell-free functional assay. Right: 
Dose-dependent recovery of caspase-3/7 activity by SM-122, SM-246, and SM-337 to the maximum 
activation. Caspase-3/7 activity at 30 minute point was used. 

 

The ability of Smac mimetic SM-246 in caspase-3/7 activity recovery was also 

analyzed in a cell-free functional assay. The result shows that SM-246 can 

dose-dependently recover the activity of caspase-3/7 by antagonizing XIAP. However, as 

shown in Figure 3.11, SM-246 has less potency in caspase activity recovery than SM-122 

and SM-330, consistent with its lower binding potency with the XIAP BIR 3 domain. 

 

 

3.6 Drug Synergy Effect of Monovalent Smac Mimetics with TRAIL 
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Figure 3.12 Inhibition of cell growth by Smac mimetics SM-337, SM-376, and SM-377 in 
combination with TRAIL in human breast cancer MDA-MB-231 cell lines. Cells were treated with 
TRAIL only or TRAIL in combination with Smac mimetics for 4 days and cell growth was analyzed 
by WST-based cell growth assay. 
 

We hypothesize that our Smac mimetics can inhibit tumor cell growth by inhibiting 

XIAP thus promoting apoptosis in tumor cells. Hence, our Smac mimetics may synergize 

with Tumor necrosis factor-Related Apoptosis Inducing Ligand (TRAIL) which can 

induce the extrinsic apoptotic pathway. To verify this, WST-based cell growth assays of 

human breast cancer MDA-MB-435 cells treated with TRAIL alone or in combination 

with different concentrations of Smac mimetic SM-337, SM-376, or SM-377, were 

performed. As shown in Figure 3.12, each monovalent Smac mimetic is 

dose-dependently synergistic with TRAIL in inhibiting MDA-MB-435 cell growth. 

SM-376 and SM-377 have similar potency in tumor cell growth inhibition, while both are 

more potent than SM-337, consistent with their better binding potency to XIAP protein. 
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Figure 3.13 Inhibition of cell growth by Smac mimetics SM-337, SM-376, and SM-377 in 
combination with TRAIL in human breast cancer 2LMP cell lines. Cells were treated with TRAIL 
only or TRAIL in combination with Smac mimetics for 4 days and cell growth was analyzed by 
WST-based cell growth assay. 
 

The synergistic effect of Smac mimetics with TRAIL in human breast cancer 

2LMP cells was also analyzed by using WST-based cell growth assay. As shown in 

Figure 3.13, SM-337, SM-376, and SM-377 can all dose-dependently synergize with 

TRAIL in inhibiting 2LMP cell growth. Similarly, in MDA-MB-435 cells, SM-376 and 

SM-377 are slightly more potent than SM-337 in inhibiting 2LMP cell growth, consistent 

with their better binding potency to XIAP protein. 

 

 

3. 7 Cellular Molecular Effects of Monovalent Smac Mimetics 
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Figure 3.14 Western blot assays of human breast cancer MDA-MB-231 cells and human ovarian 
cancer SK-OV-3 cells treated with different concentrations of Smac mimetic SM-122, SM-227, 
SM-245, or SM-337 for 24 hours. 
 

To further explore the cellular molecular effects induced by our monovalent Smac 

mimetics, human breast cancer MDA-MB-231 cells and human ovarian cancer SK-OV-3 

cells were treated with 10, 100, and 1000 nM of Smac mimetic SM-122, SM-227, 

SM-245, or SM-337 for 24 hours, and then Poly ADP Ribose Polymerase (PARP) 

cleavage. Degradation of c-IAP1, and caspase activation were analyzed with Western 

blotting assays. As shown in Figure 3.14, each Smac mimetic can dose-dependently 

induce the cleavage of PARP, a substrate of active caspase-3, and also a marker of cells 

undergoing apoptosis in both tumor cell lines. Our designed Smac mimetics bind to 

cIAP-1 with very high affinities (Table 3.1) and recent studies have shown that Smac 
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mimetics induce cIAP-1 degradation in cancer cells, mediating apoptosis induction.192-195 

Hence, the ability of Smac mimetic in inducing cIAP-1 degradation was also analyzed. 

As expected, each Smac mimetic can effectively induce c-IAP1 degradations in both 

tumor cell lines. Consistent with the ability of Smac mimetics in inducing PARP cleavage, 

each Smac mimetic dose-dependently induces the activation of caspase-3 in both tumor 

cell lines. 

 

 

3.8 Conclusion 

A series of potent non-peptidic small molecular Smac mimetics has been 

successfully developed. SM-330, SM-337, SM-376, and SM-377 with improved binding 

potency with XIAP and c-IAP1/2, compared with our original lead compound SM-122, 

are cell-permeable and have excellent activity in inhibiting tumor cell growth, inducing 

tumor cell death, and inducing apoptosis in tumor cells, as tested in both human breast 

cancer MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells. As expected, our 

Smac mimetics can synergize with TRAIL in inhibiting tumor cell growth, as tested in 

both human breast cancer MDA-MB-435 cells and 2LMP cells. Cell-free functional 

assays verify that our Smac mimetics can recover the activity of caspase-3,7 previously 

inhibited by XIAP protein. The cellular molecular events induced by our Smac mimetics 

were also analyzed with Western blotting assays, which show that each Smac mimetic 

can dose-dependently induce PARP cleavage, c-IAP1 degradation and caspase activation 

in tumor cells. Overall, these potent Smac mimetics with excellent cellular activity are 
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currently being used as our new lead template to develop future drug candidates with 

excellent PK (pharmacokinetic) properties. 
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CHAPTER 4 
 

BIOLOGICAL EVALUATION OF BIVALENT SMAC 
MIMETICS 

 

4.1 Binding Potency of Bivalent Smac Mimetics 

 

To further explore the optimal length of the linker for the bivalent Smac mimetics, 

bivalent Smac mimetics SM-1252 and SM-1253 were recently developed. A series of 

bivalent Smac mimetics with linkers of different lengths were tested for their binding 

potency against both XIAP BIR3 protein and XIAP linker-BIR2-BIR3 protein, using our 

fluorescence-polarization based assays. As shown in Table 4.1, as the length of the 

bivalent linker increases, the binding potency against XIAP BIR3 domain decreases. 

However, all the five bivalent Smac mimetics show similar excellent potency in binding 

against XIAP linker-BIR2-BIR3 domains. All the bivalent Smac mimetics show excellent 

binding potency in binding with linker-BIR2-BIR3 protein compared with BIR3 protein 

only. Their cellular activities were explored in detail in the subsequent parts of this 

chapter. 
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Comp. 
(linker) 

Structure BIR3 
Ki±SD (nM) 

L-BIR2-BIR3
Ki±SD (nM) 

SM-1252 
(2C) 

9.7 ± 3.8 1.0 ± 0.7 

SM-1253 
(4C) 

7.6 ± 2.3 0.3 ± 0.2 

SM-385 
(6C) 

N
N

O CONHCHPh2HN

N
N

OPh2HCHNOC NH

NH

O

HN

O

O O

HClHCl

12.7 ± 3.9 1.0 ± 0.5 

SM-381 
(8C) 

N
N

O CONHCHPh2HN

N
N

OPh2HCHNOC NH

NH

O

HN

O

O O

HClHCl

27.5 ± 6.2 1.8 ± 0.6 

SM-383 
(10C) 

N
N

O CONHCHPh2HN

N
N

OPh2HCHNOC NH

NH

O

HN

O

O O

HClHCl

43.1 ± 3.6 1.8 ± 0.5 

 
Table 4.1 Binding affinities of bivalent Smac mimetics against XIAP BIR3 and XIAP 
linker-BIR2-BIR3 domains, as measured by fluorescence-polarization based assays 
 

 

4.2 Tumor Cell Growth Inhibition Activity of Bivalent Smac Mimetics 

SM-1252, SM-1253, SM-385, SM-381, and SM-383 have 2, 4, 6, 8, and 10 

methylene groups respectively in the bivalent linker. To explore the ability of these 
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bivalent Smac mimetics in inhibition of tumor cell growth, WST-based cell growth 

assays were performed. Human breast cancer MDA-MB-231 cells and human ovarian 

cancer SK-OV-3 cells were treated with bivalent Smac mimetics for 96 hours, and then 

cell viabilities were analyzed by using WST-based cell growth assay. 
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Figure 4.1 WST cell growth assays of human breast cancer MDA-MB-231 cells and human ovarian 
cancer SK-OV-3 cells treated with bivalent Smac mimetics for 96 hours. Experiments were performed 
three times. Data are reported in the form of IC50 ± SD. 2C (SM-1252), 4C (SM-1253), 6C (SM-385), 
8C (SM-381), 10C (SM-383). 
 

As shown in Figure 4.1, all the bivalent Smac mimetics show excellent potency in 

tumor cell growth induction with IC50 values (the concentration in which Smac mimetic 

inhibits 50% tumor cell growth compared with untreated group) in the neighborhood of 

30 nM in both MDA-MB-231 and SK-OV-3 cells. In comparison, the inactive control 

SM-123 is over 600 times less potent than the weakest bivalent Smac mimetic SM-1252. 

In both tumor models, SM-1252, with the shortest linker, has the weakest potency among 
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all the bivalent Smac mimetics. As the linker increases in length, the cellular potency 

increases. However, SM-381 and SM-383, with 8 and 10 methylenes in the bivalent 

linker respectively, have equivalent cellular potency in tumor cell growth inhibition. 
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Figure 4.2 WST cell growth assay of human melanoma MALME-3M cells treated with bivalent Smac 
mimetics for 96 hours. Experiments were performed three times. Data are reported in the form of IC50 
± SD. 2C (SM-1252), 4C (SM-1253), 6C (SM-385), 8C (SM-381), 10C (SM-383). 
 

Human melanoma MALME-3M cells were also treated with bivalent Smac 

mimetics for 96 hours, and then cell viabilities were analyzed using WST cell growth 

assays. As shown in Figure 4.2, all the bivalent Smac mimetics show excellent cellular 

potency in tumor cell growth inhibition, with an IC50 of approximately 5 nM. As expected, 

the cellular potency of bivalent Smac mimetics increases as the linker increases in its 

length. Just as in MDA-MB-231 and SK-OV-3 cells, SM-381 and SM-383, with the 

longest linkers, have the best cellular potency in MALME-3M cells. 

 

 

4.3 Tumor Cell Death Induction Activity of Bivalent Smac Mimetics 

To further explore the ability of bivalent Smac mimetics in inducing tumor cell 

death, Trypan blue cell death assays were performed. Human breast cancer 
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MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells were treated with 0.1, 1, 

10, and 100 nM of bivalent Smac mimetic SM-1252 (2C), SM-381 (8C), and SM-383 

(10C) for 2, 6, 12, and 24 hours respectively, and cell viabilities were analyzed by using 

Trypan blue assays. 
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Figure 4.3 Trypan blue assays of human breast cancer MDA-MB-231 cells and human ovarian cancer 
SK-OV-3 cells treated with different concentrations of bivalent Smac mimetics for designated lengths 
of time. In each group of three, left is SM-1252 (2C), middle is SM-381 (8C), and right is SM-383 
(10C). 
 

As shown in Figure 4.3, each bivalent Smac mimetic can dose- and 

time-dependently induce tumor cell death in both MDA-MB-231 and SK-OV-3 cells. All 

the three bivalent Smac mimetics show similar potency within 12 hours of treatment in 

both tumor cell lines. However, at higher concentrations (10 nM and 100 nM) of bivalent 

Smac mimetics for 24 hours, SM-381 and SM-383 are dramatically more potent than 
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SM-1252 in inducing tumor cell death in both tumor cell lines, consistent with the 

potency trend shown in the results in WST-based cell growth assays. 

 

 

4.4 Tumor Apoptosis Induction Activity of Bivalent Smac Mimetics 
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Figure 4.4 Human breast cancer MDA-MB-231cells were treated with different concentrations of 
bivalent Smac mimetic SM-381 (8C) and SM-383 (10C) or 1 µM of inactive control SM-122 for 24 
hours. Apoptosis in tumor cells was analyzed by Annexin V and P.I. double staining flow cytometry. 
 

To further explore the ability of bivalent Smac mimetics in inducing apoptosis in 

tumor cells, Annexin V and P.I. double staining flow cytometry was performed. Human 

breast cancer MDA-MB-231 cells were treated with 0.1, 1, 10, and 100 nM of the 

bivalent Smac mimetics SM-381 (8C) and SM-383 (10C) or 1000 nM of inactive control 
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SM-123 for 24 hours, and apoptosis was analyzed by flow cytometry. As shown in Figure 

4.4, both bivalent these Smac mimetics can dose-dependently induce apoptosis in 

MDA-MB-231 cells. In contrast, the inactive control SM-123 can only induce a small 

percentage of apoptosis compared with the untreated group, although a high 

concentration of 1 µM was used. 
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Figure 4.5 Human ovarian cancer SK-OV-3 cells were treated with different concentrations of 
bivalent Smac mimetic SM-381 (8C) and SM-383 (10C) or 1 µM of inactive control SM-122 for 24 
hours. Apoptosis in tumor cells was analyzed by Annexin V and P.I. double staining flow cytometry. 
 

The ability of bivalent Smac mimetics to induce apoptosis in human ovarian cancer 

SK-OV-3 cells was also analyzed. SK-OV-3 cells were treated with 0.1, 1, 10, and 100 

nM of bivalent Smac mimetics SM-381 (8C) and SM-383 (10C) or 1000 nM of inactive 

control SM-123 for 24 hours, and apoptosis was analyzed by flow cytometry. As in 
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MDA-MB-231 cells, both bivalent Smac mimetics were found to dose-dependently 

induce apoptosis in SK-OV-3 cells, while the inactive control SM-123 fails to induce 

more apoptosis than the untreated group, as shown in Figure 4.5. 

 

 

4.5 Cellular Molecular Effects of Bivalent Smac Mimetics 
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Figure 4.6 Western blotting assays of human breast cancer MDA-MB-231 cells treated with different 
concentrations of bivalent Smac mimetic SM-164, SM-381 and SM-383 for 24 hours. 
 

To further probe the cellular molecular events induced by bivalent Smac mimetics, 

Western blotting assays were performed. Human breast cancer MDA-MB-231 cells were 

treated with 1, 10, and 100 nM of bivalent Smac mimetic SM-164, SM-381, and SM-383 

for 24 hours, and then PARP cleavage, IAP degradations, and caspase activations were 
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analyzed using Western blotting assays. As shown in Figure 4.6, each bivalent Smac 

mimetic can dose-dependently induce PARP cleavage, c-IAP1 degradation and 

caspase-3/7 activations. SM-381 is as potent as the previously developed bivalent Smac 

mimetic SM-164,135 while SM-383 is slightly less potent than SM-164. However, both 

SM-381 and SM-383 are dramatically more potent than the related monovalent Smac 

mimetics SM-330 and SM-337. 
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Figure 4.7 Western blotting assays of human ovarian cancer SK-OV-3 cells were treated with different 
concentrations of bivalent Smac mimetic SM-164, SM-381 and SM-383 for 24 hours. 
 

The cellular activity of bivalent Smac mimetics in human ovarian cancer SK-OV-3 

cells was also analyzed. SK-OV-3 cells were treated with 1, 10, and 100 nM of the 

bivalent Smac mimetics SM-164, SM-381, and SM-383 for 24 hours, and then PARP 
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cleavage, IAP degradations, and caspase activations were analyzed using Western 

blotting assays. Consistent with the results in MDA-MB-231 cells, SM-383 is as potent 

as SM-164 in PARP cleavage induction, c-IAP1 degradation, and caspase-3/7 activations, 

while SM-383 is slightly less potent than SM-164. However, both bivalent Smac 

mimetics SM-381 and SM-383 are 10 to 100 times more potent than monovalent Smac 

mimetics SM-227 and SM-337, whose performance is presented in a previous chapter. 

 

 

4.6 Conclusion 

Compared with monovalent Smac mimetics, all the bivalent Smac mimetics show 

excellent cellular activity as inhibitors of tumor cell growth of human breast cancer 

MDA-MB-231 cells, human ovarian cancer SK-OV-3 cells and human melanoma 

MALME-3M. As the length of bivalent linker increases, the cellular activity potency of 

bivalent Smac mimetics decreases. However, SM-381 and SM-383, with 8 and 10 

methylene groups in the bivalent linker, have similar potency in all the tested tumor cell 

lines. 

Bivalent Smac mimetics can dose- and time- dependently induce tumor cell death 

in both MDA-MB-231 and SK-OV-3 cells. In treatment of 12 hours, SM-1252, SM-381, 

and SM-383 show similar potency in tumor cell death induction. However, SM-381 and 

SM-383 are dramatically more potent than SM-1252 after 24 hours’ treatment at higher 

concentrations, consistent with the potency trend shown in the WST-based cell growth 

assays. 
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The capability of bivalent Smac mimetic SM-381 and SM-383 in induction of 

apoptosis in MDA-MB-231 cells and SK-OV-3 cells was further analyzed. As expected, 

SM-381 and SM-383 were found to dose-dependently induce apoptosis in both tumor cell 

lines. 

The cellular molecular effects of bivalent Smac mimetics were analyzed in 

MDA-MB-231 and SK-OV-3 cells. SM-381 shows excellent activity in PARP cleavage 

induction, c-IAP1 degradation induction, and caspase activations, and is as potent as our 

previously developed bivalent Smac mimetic SM-164.135 Although SM-383 is slightly 

less potent than SM-381, both SM-381 and SM-383 are 10 to 100 times more potent than 

monomeric Smac mimetics SM-227 and SM-337 in cellular activities in tumor cells. 

Further modification of these bivalent Smac mimetics is in process, and we hope that our 

potent bivalent Smac mimetics can lead to excellent drug candidates in the future. 
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CHAPTER 5 
 

CELLULAR MECHANISM STUDIES BASED ON SM-406 
 

5.1  SM-406 

 
The Smac mimetics SM-337, SM-350, SM-376 and SM-377 can potently inhibit 

tumor cell growth of human breast cancer MDA-MB-231 cells, MDA-MB-453 cells, 

2LMP cells and human ovarian cancer SK-OV-3 cells, both alone and in combination 

with TRAIL, as shown in the results of our WST-based cell growth assays in Chapter 3. 

Pharmacokinetic studies, completed by Medicilon Company (Shanghai), showed that all 

of these potent Smac mimetics, in rats, have relatively low oral bioavailability (F%). 

With the lead compound SM-337 as template, a series of derived Smac mimetics were 

further designed and synthesized, with the aim of developing novel Smac mimetics with 

improved PK properties. The only difference between the newly developed Smac 

mimetics and SM-337 is the carboxylic acid tethering the cyclic amine of the 

8-membered fused ring in the bicyclic structure. This modification has no detrimental 

effect on the potency of Smac mimetics, because the side chain tethered to the nitrogen 

atom in the bicyclic system is directed towards the solvent, and as predicted by our 

modeling studies (Figure 2.2), has no specific interaction with the XIAP protein. 
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Figure 5.1 Chemical structure of SM-406. 

 

Among these newly developed Smac mimetics, compound CQ-406 (or SM-406), 

in which a 3-methylbutanoic acid is attached to the cyclic amine in the left fused ring, 

made by Dr. Cai Qian in our lab, has an excellent oral bioavailability (45%) in rats 

compared with the previously synthesized Smac mimetics SM-337 (24%), SM-350 

(22%), SM-376 (26%), and SM-377 (23%), although it has a slightly weaker potency in 

binding with the XIAP BIR3 domain (Ki = 13.80 ± 2.93 nM). Further pharmacokinetic 

studies of the Smac mimetic SM-406 in dogs and monkeys are under investigation, and 

the molecular cellular mechanism studies of our Smac mimetics detailed here are based 

on this promising drug candidate SM-406. 

 

 

5.2 Further Biological Studies Based on SM-406 

5.2.1 Apoptosis induction activity of SM-406 

To test the ability of SM-406 in inducing apoptosis in tumor cells, Annexin V and 

P.I. (Propidium Iodide) double staining flow cytometry was performed to monitor the 

apoptosis process in tumor cells treated with SM-406. 
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Figure 5.2 Top: Chemical structure of SM-428, inactive control of Smac mimetics. Bottom: Annexin 
V and P.I. double staining flow cytometry of human ovarian cancer SK-OV-3 cells treated Smac 
mimetic SM-406 and inactive control SM-428 for 24 hours. 
 

SM-428, used as an inactive control of Smac mimetics, is a derivative of the Smac 

mimetic SM-406, in which the methyl side chain of the amino terminal alanine moiety is 

substituted with an indole ring, yielding compound SM-428. The methyl side chain in the 

amino terminal alanine residue of mature Smac protein penetrates the small hydrophobic 

pocket formed by the side chains of leucine 307, tryptophan 310, and glutamine 319 in 

XIAP.122 Further study showed that this small hydrophobic pocket can also accommodate 

an ethyl group, however, larger hydrophobic groups can eliminate this hydrophobic 

interaction.127 Predictably, the newly introduced large indole ring completely abolishes 
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this interaction and dramatically reduces the binding affinity of SM-428 with the XIAP 

BIR3 domain, as verified by our fluorescence-polarization-based binding assay (Ki = 45.0 

± 8.7 µM). Consequently, compound SM-428 was used as an inactive control in our 

molecular biological studies of Smac mimetics. 

 

 
Figure 5.3 Annexin V and P.I. double staining flow cytometry of human ovarian cancer SK-OV-3 
cells treated with 3 µM of Smac mimetic SM-406 for designated lengths of time. 
 

Human ovarian cancer SK-OV-3 cells were first treated with different doses of 

Smac  mimetic SM-406 and 3 µM of inactive control SM-428 for 24 hours, and then the 

apoptosis of SK-OV-3 cells was analyzed by Annexin V and P.I. double staining flow 

cytometry, as shown in Figure 5.2. As expected, SM-406 can induce apoptosis of 

SK-OV-3 cells in a dose-dependent manner. 

The apoptosis induction behavior of SM-406 in SK-OV-3 cells was also studied 

in a time course. SK-OV-3 cells were treated with 3 µM of Smac mimetic SM-406 for 
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different lengths of time, and the apoptosis of SK-OV-3 cells was analyzed by using flow 

cytometry, as shown in Figure 5.3. The Smac mimetic SM-406 was shown to induce 

apoptosis of human ovarian cancer SK-OV-3 cells in a time-dependent manner. 

Untreated               SM-428 (3 µM)
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mimetic SM-406 or inactive 
control SM-428 for 24 h.

 
Figure 5.4 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-231 
cells treated with different doses of Smac mimetic SM-406 or inactive control SM-428 for 24 hours. 
 

Human breast cancer MDA-MB-231 cells were also treated with different doses 

of Smac mimetic SM-406 or 3 µM of inactive control SM-428 for 24 hours. Apoptosis 

was analyzed by using flow cytometry as shown in Figure 5.4. The result shows that 

SM-406 can also induce apoptosis of MDA-MB-231 cells in a dose-dependent manner, 

while the inactive control SM-428 fails to induce apoptosis of tumor cells, compared with 

an untreated group. The time dependency of apoptosis induction of SM-406 in 

MDA-MB-231 cells was also studied. After MDA-MB-231 cells were treated with 3 µM 
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of Smac mimetic SM-406 or 3 µM of inactive control SM-428 for different lengths of 

time, the apoptosis of MDA-MB-231 cells was analyzed by Annexin V and P.I. double 

staining flow cytometry, as shown in Figure 5.5. Consistent with the results in human 

ovarian cancer SK-OV-3 cells, our Smac mimetic SM-406 was found to induce apoptosis 

in human breast cancer MDA-MB-231 cells in a time-dependent manner. 

 

 

Figure 5.5 Annexin V and P.I. double staining flow cytometry of human breast cancer MDA-MB-231 
cells treated with 3 µM of Smac mimetic SM-406 or 3 µM of inactive control SM-428 for designated 
lengths of time. 
 

The apoptosis induction behavior of the Smac mimetic SM-406 in human 

melanoma MALME-3M cells were also analyzed by using Annexin V and P.I. double 

staining flow cytometry. As shown in Figure 5.6, the Smac mimetic SM-406 can 

dose-dependently induce apoptosis in MALME-3M cells, while the inactive control 

SM-428 cannot induce apoptosis of tumor cells compared with the untreated group. 
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Similarly, Smac mimetic SM-406 can also time-dependently induce apoptosis in 

MALME-3M cells, while the group treated with the same concentration of the inactive 

control SM-428 has almost no further induced apoptosis compared with the untreated 

group of MALME-3M cells, as shown in Figure 5.7. 
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Figure 5.6 Annexin V and P.I. double staining flow cytometry of human melanoma MALME-3M cells 
treated with different doses of Smac mimetic SM-406 or inactive control SM-428 for 24 hours. 
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Figure 5.7 Annexin V and P.I. double staining flow cytometry of human melanoma MALME-3M cells 
treated with 3 µM of Smac mimetic SM-406 or 3 µM of inactive control SM-428 for designated 
lengths of time. 
 

5.2.2 Tumor cell death induction activity of SM-406. 
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Figure 5.8 Cell viabilities of human breast cancer MDA-MB-231 cells and human ovarian cancer 
SK-OV-3 cells treated with different concentrations of Smac mimetic SM-406 or inactive control 
SM-428 for 24 hours, as analyzed by Trypan-blue-based cell death assay. 
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MDA-MB-231 cells treated by Smac mimetic SM-406 or
inactive control SM-428 for designated lengths of time.
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Figure 5.9 Cell viabilities of human breast cancer MDA-MB-231 cells and human ovarian cancer 
SK-OV-3 cells treated with 3 µM of Smac mimetic SM-406 or 3 µM of inactive control SM-428 for 
designated lengths of time, as analyzed by Trypan-blue-based cell death assay. 
 

The cell death induction activity of Smac mimetic SM-406 in human breast 

cancer MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells was investigated. 

Tumor cell lines were treated with different doses of Smac mimetic SM-406 or 3 µM of 

inactive control SM-428 for 24 hours. Then cell viabilities in these tumor cell lines were 

analyzed by using Trypan-blue based assay, in which Trypan blue can color dead cells 

blue but fails to color live cells with intact cell membranes. As shown in Figure 5.8, 

SM-406 can induce cell death in both human breast cancer MDA-MB-231 cells and 
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human ovarian cancer SK-OV-3 cells in a dose-dependent manner, while the inactive 

control SM-428 exhibits no tumor cell death induction activity. 

The tumor cell death induction activity of SM-406 was also studied in a time 

course. MDA-MB-231 cells and SK-OV-3 cells were treated with 3 µM of Smac mimetic 

SM-406 or 3 µM of inactive control SM-428 for different lengths of time as shown in 

Figure 5.9, and tumor cell viabilities were analyzed by using Trypan-blue-based cell 

death assay. As expected, it was found that the Smac mimetic SM-406 can induce tumor 

cell death in these two different types of tumor cell lines in a time-dependent manner. 

 

5.2.3 Cellular molecular effects of SM-406. 
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MDA-MB-231 and SK-OV-3 cells in a dose-dependent manner.

 
Figure 5.10 Western blotting assays of human breast cancer MDA-MB-231 cells and human ovarian 
cancer SK-OV-3 cells treated with different concentrations of Smac mimetic SM-406 or 3 µM of 
inactive control SM-428 for 24 hours. 
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To further explore the cellular activity of Smac mimetic SM-406 in tumor cells, 

PARP cleavage, IAP degradations, and caspase activations were monitored with Western 

blotting assays. Human breast cancer MDA-MB-231 cells and human ovarian cancer 

SK-OV-3 cells were treated with different doses of Smac mimetic SM-406 or 3 µM of 

inactive control SM-428. Then the cells were harvested, lysed and analyzed by Western 

blotting assays. As shown in Figure 5.10, Smac mimetic SM-406 can induce c-IAP1 and 

XIAP degradation, caspase-8, -3 and -7 activations in a dose-dependent manner in both 

MDA-MB-231 cells and SK-OV-3 cells. As expected, SM-406 can dose-dependently 

induce the cleavage of PARP (Poly ADP Ribose Polymerase), a substrate of active 

caspase-3 and also a marker of cells undergoing apoptosis in both tumor cell lines, 

consistent with the results of apoptosis analysis by using Annexin V and P.I. double 

staining flow cytometry. In contrast, inactive control SM-428 fails to induce PARP 

cleavage, IAP degradation, or caspase activation in either MDA-MB-231 cells or 

SK-OV-3 cells. 
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Figure 5.11 Western blotting assays of human breast cancer MDA-MB-231 cells and human ovarian 
cancer SK-OV-3 cells treated with 3 µM of Smac mimetic SM-406 or 3 µM of inactive control 
SM-428 for designated lengths of time. 
 

To explore the cellular molecular events induced by the Smac mimetic SM-406, 

MDA-MB-231 cells and SK-OV-3 cells treated with 3 µM of Smac mimetic SM-406 or 3 

µM of the inactive control SM-428 for different lengths of time, and then PARP cleavage, 

IAP degradation and caspase activation were analyzed using Western blotting assays. As 

shown in Figure 5.11, SM-406 can induce PARP cleavage, c-IAP1 and XIAP degradation, 

and caspase-8, -9, -3 and -7 activations in a time-dependent manner in both 

MDA-MB-231 cells and SK-OV-3 cells. Smac proteins in cell cytosol were also probed, 

and the results show that SM-406 can also induce the release of Smac proteins in a 

time-dependent manner in both MDA-MB-231 cells and SK-OV-3 cells. In contrast, the 
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inactive control SM-428 cannot induce PARP cleavage, IAP degradation, caspase 

activation, or Smac release in either MDA-MB-231 cells or SK-OV-3 cells. 

 

5.2.4 Co-immunoprecipitation assays confirm c-IAP1 and XIAP as the cellular 
targets of SM-406. 
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Figure 5.12 Chemical structures of Smac mimetic SM-406 and biotinylated Smac mimetic SM-222. 
 

To provide direct evidence that SM-406 targets XIAP and c-IAP1 in cells, a 

biotinylated Smac mimetic SM-222 (Figure 5.12) was developed in our lab, and 

co-immunoprecipitation (co-IP) pull-down assays were performed using this biotinylated 

Smac mimetic SM-222 in both human breast cancer MDA-MB-231 cell lysates and 

human ovarian cancer SK-OV-3 cell lysates. 

Our computational modeling studies show that the pro-(S) phenyl group in the tail 

region of SM-406 is oriented toward the solvent and has no specific interaction with the 

XIAP BIR3 domain. Hence, a linker tethering a biotin moiety can be linked to this pro-(S) 

phenyl ring to yield the biotinylated Smac mimetic SM-222. For ease of synthesis, this 

phenyl ring was replaced with a triazole ring, which can be easily linked by “click 

chemistry”.136-142 As shown in Figure 5.12, biotinylated Smac mimetic SM-222 shares the 
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same core structure with Smac mimetic SM-406. Our Fluorescence Polarization-based 

assay showed that biotinylated Smac mimetic SM-222 (Ki = 6.19 ± 3.0 nM) can bind with 

the XIAP BIR 3 domain as effectively as SM-406. 

 

 
 
Figure 5.13 Probing the interaction of Smac mimetics to cellular XIAP and c-IAP1 in human breast 
cancer MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells by competitive, 
co-immunoprecipitation pull-down assays using biotinylated Smac mimetic SM-222. MDA-MB-231 
and SK-OV-3 cell lysates were incubated with SM-222 alone, or followed by co- incubation with 
Smac mimetic SM-406. Complexes formed between SM-222 and its targeted proteins were recovered 
by incubation with Streptavidin-argarose beads. XIAP and c-IAP1 proteins associated with beads were 
eluted by heating and detected by western blotting using monoclonal XIAP and c-IAP1 antibodies. 
 

In Figure 5.13, the results of co-immunoprecipitation pull-down assays showed 

that biotinylated Smac mimetic SM-222 can dose-dependently pull down XIAP and 

c-IAP1 proteins in both human breast cancer MDA-MB-231 cell lysates and human 

ovarian cancer SK-OV-3 cell lysates. Meanwhile, Smac mimetic SM-406 can effectively 

compete off the binding between the biotinylated Smac mimetic SM-222 and c-IAP1 or 

XIAP in a dose-dependent manner in lysates of both MDA-MB-231 cells and SK-OV-3 

cells. In contrast, the inactive control SM-428 cannot compete off the binding between 

SM-222 and c-IAP1 or XIAP in either MDA-MB-231 cell lysates or SK-OV-3 cell 

lysates. Thus, the results of co-immunoprecipitation assays verify XIAP and c-IAP1 as 

the intracellular targets of our Smac mimetics. 
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5.2.5 SM-406 can compensate for Smac knockdown in tumor cells. 
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Figure 5.14 Western blotting assay of human ovarian cancer SK-OV-3 cells transfected with control 
siRNA oligonucleotides targeting GFP, or siRNA oligonucleotides targeting Smac for 48 hours, then 
treated with 3 µM of Smac mimetic SM-406 for 24 hours. 
 

Cellular activities of SM-406 in Smac knockdown cells were tested to further 

verify the hypothesis that our small molecular Smac mimetics acquire cellular activity in 

tumor cells by mimicking Smac proteins,. Human ovarian cancer SK-OV-3 cells were 

first transfected with control Small Interfering RNA or Silencing RNA (siRNA) 

oligonucleotides targeting Green Fluorescent Protein (GFP) or Smac proteins for 48 

hours, then treated with 3 µM of the Smac mimetic SM-406 for 24 hours. PARP cleavage, 

c-IAP1 and XIAP degradations, and caspase activations were analyzed by a Western 

blotting assay. As shown in Figure 5.14, SM-406 shows the same cellular activities in 

inducing PARP cleavage, IAP degradation and caspase activation in Smac protein 

knockdown SK-OV-3 cells, compared with untreated group and GFP knockdown group, 

verifying that Smac mimetic SM-406 can fully compensate for the reduction of Smac 
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proteins in SK-OV-3 cells. 

Similarly, human breast cancer MDA-MB-231 cells were also transfected with 

siRNA oligonucleotides targeting GFP or Smac proteins for 48 hours, and then treated 

with 3 µM of Smac mimetic SM-406 for 24 hours. As shown in Figure 5.15, Smac 

mimetic SM-406 can fully compensate the reduction of Smac proteins in MDA-MB-231 

cells in the activity of inducing PARP cleavage, IAP degradation and caspase activation 

in tumor cells. 
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Figure 5.15 Western blotting assay of human breast cancer MDA-MB-231 cells transfected with 
control siRNA oligonucleotides targeting GFP, or siRNA oligonucleotides targeting Smac for 48 
hours, then treated with 3 µM of Smac mimetic SM-406 for 24 hours. 
 

The ability of Smac mimetic SM-406 to induce tumor cell death in MDA-MB-231 

cells and SK-OV-3 cells which were transfected with siRNA against Smac protein, was 

analyzed by using Trypan blue cell death assay. As shown in Figure 5.16, Smac 

knockdown has no influence on the ability of the Smac mimetic SM-406 in inducing 
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tumor cell death in both MDA-MB-231 and SK-OV-3 cells, further verifying that Smac 

mimetic SM-406 can fully compensate the reduction of Smac proteins in tumor cells, 

consistent with the results of Western blotting assays. 
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Figure 5.16 Human ovarian cancer SK-OV-3 cells and human breast cancer MDA-MB-231 cells were 
first transfected with control siRNA oligonucleotides targeting GFP, or siRNA oligonucleotides 
targeting Smac for 48 hours, then treated with 3 µM of Smac mimetic SM-406 for 24 hours. Cell 
viabilities were analyzed by using Trypan-blue-based cell death assay. 
 

5.2.6 Study of caspase dependence in the cellular activity of SM-406 in tumor cells 

To further investigate caspase dependence in the cellular activity of the Smac 

mimetic SM-406, caspase inhibitors were used to inhibit caspase activity in tumor cells. 

After human breast cancer MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells 

were treated with Smac mimetic SM-406 alone or in combination of 25 µM of caspase-9, 

-8, -3 inhibitors respectively, cell viabilities were analyzed by using Trypan blue cell 

death assays. As shown in Figure 5.17, the Smac mimetic SM-406 can induce cell death 

in both tumor cell lines in a dose-dependent manner, consistent with the previous study. 

Inhibition of active caspase-3 can rescue cells from death in both tumor cell lines, 

suggesting that the ability of SM-406 in dose-dependently inducing cell death in these 

two tumor cell lines is dependent on the activation of caspase-3. However, inhibition of 
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active caspase-9 cannot rescue tumor cells from death in either MDA-MB-231 cells or 

SK-OV-3 cells; in contrast, inhibition of active caspase-8 can rescue cells from death in 

both tumor cell lines. 
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Figure 5.17 Cell viabilities of human breast cancer MDA-MB-231 cells and human ovarian cancer 
SK-OV-3 cells treated with designated concentrations of Smac mimetic SM-406 alone or in 
combination with 25 µM of caspase-9, -8, and -3 inhibitors for 24 hours, as analyzed by 
Trypan-blue-based cell death assay. 
 

Therefore, Trypan-blue assay results show that the ability of Smac mimetic 

SM-406 in dose-dependently inducing cell death in MDA-MB-231 cells and SK-OV-3 

cells is dependent on the activities of caspase-8 and caspase-3, but only partially on the 

activity of caspase-9. This interesting result contradicts our hypothesis that the Smac 

mimetic SM-406 induces tumor cell death by binding with XIAP and antagonizing its 

inhibition of caspase-9 to promote apoptosis in tumor cells. In order to further investigate 

the importance of caspase-9, -8 and -3, Western blotting assays were performed to 
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monitor caspase activation and cleavage of PARP by using caspase inhibitors and 

siRNAs against caspase-9, -8, and -3 (Figure 5.18 and 5.19). 

CL PARP 85kd

CL C3 21kd
CL C3 19kd
CL C3 17kd

Pro-C8 57kd

β-actin 42kd

Pro-C9 46kd

Pro-C8 55kd

Pro-C7 35kd

CL PARP 85kd

CL C7 30kd

CL C3 21kd
CL C3 19kd
CL C3 17kd

Pro-C8 57kd

β-actin 42kd

CL C7 20kd

XIAP 57kd

Pro-C9 46kd

Pro-C8 55kd

Pro-C7 35kd

Pro-C3 36kd

cIAP-1 72kd
cIAP-1 72kd

SM-406          - +        - +       - +        - +       

Control
Caspase-3
inhibitor

Caspase-8
inhibitor

Caspase-9
inhibitor Control

Caspase-9
inhibitor

Caspase-3
inhibitor

Caspase-8
inhibitor

MDA-MB-231 cells treated with caspase
inhibitors and  3 uM of SM-406 for 24 hours.

SK-OV-3 cells treated with caspase
inhibitors and  3 uM of SM-406 for 24 hours.

SM-406          - +        - +       - +        - +      

 
Figure 5.18 Western blotting assays of human breast cancer MDA-MB-231 cells and human ovarian 
cancer SK-OV-3 cells treated with 3 µM of Smac mimetic SM-406 alone or in combination with 25 
µM of caspase-9, -8, and -3 inhibitors for 24 hours. 
 

Consistent with the results of Trypan-blue-based cell death assays, Western 

blotting assays of MDA-MB-231 cells and SK-OV-3 cells treated with 3 µM of Smac 

mimetic SM-406 alone or in combination with 25 µM of caspase-9, -8, and -3 inhibitors 

respectively, show that SM-406 with the caspase-9 activity blocked can still induce 

PARP cleavage and caspase-3 and -7 activations, but has less potency compared with the 

treatment of SM-406 alone in both tumor cell lines. In contrast, SM-406 loses its ability 

in inducing PARP cleavage and caspase-3 and -7 activations, when the activity of 

caspase-8 is blocked by caspase-8 inhibitor. Interestingly, our Smac mimetic SM-406 can 
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induce the degradation of c-IAP1 in both tumor cell lines, whether caspase-9, -8, or -3 is 

blocked or not. However, there was no dramatic degradation of XIAP compared with 

c-IAP1, when cells were with SM-406. 
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Figure 5.19 Top: Western blotting assay of human ovarian cancer SK-OV-3 cells transfected with 
control siRNA oligonucleotides targeting GFP, or siRNA oligonucleotides targeting caspase-9, -8 and 
-3 for 48 hours, then treated with 3 µM of Smac mimetic SM-406 for 24 hours. Bottom: Cell viability 
of SK-OV-3 cells, as analyzed by Trypan-blue based cell death assay. 
 

SiRNAs against caspase-9, -8, and -3 were used to further investigate caspase 

dependence in the activity of SM-406 in tumor cells,. Human ovarian cancer SK-OV-3 

cells were first transfected for 48 hours with control siRNA oligonucleotides targeting 

either GFP or caspase-9, -8, and -3, then treated with 3 µM of the Smac mimetic SM-406 

for 24 hours. SK-OV-3 cell viability was analyzed by Trypan-blue based cell death assay, 

giving results consistent with the previous studies. SM-406 induced tumor cell death even 
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though caspase-9 was reduced; however, tumor cells were almost completely rescued 

from the treatment with SM-406 when caspase-8 or caspase-3 was reduced. Western 

blotting assays show the same result: SM-406 still induces PARP cleavage and caspase-3 

and -7 activations when caspase-9 is reduced; however, SM-406 loses its activity when 

either caspase-8 or caspase-3 was reduced by siRNAs. 

Hence, from the above investigations by using both caspase inhibitors and 

siRNAs, it appears that the activity of SM-406 in inducing cell death, PARP cleavage, 

and caspase-3 and -7 activations in MDA-MB-231 cells and SK-OV-3 cells is mainly 

dependent on caspase-8 and caspase-3 rather than caspase-9. 

 

5.2.7 SM-406 can induce fast degradation of c-IAP1 but not XIAP. 
 

Recently, it was found that Smac mimetics can induce fast degradation of c-IAP1 

but not XIAP,192-194 and this may assist in elucidation of the molecular mechanism of 

Smac mimetics in inducing tumor cell apoptosis.195 The ability of our Smac mimetic 

SM-406 in inducing c-IAP1 and XIAP degradations was further probed. As shown in 

Figure 5.20, SM-406 can induce fast degradation of c-IAP1 but not XIAP in both human 

breast cancer MDA-MB-231 cells and human ovarian cancer SK-OV-3 cells. Complete 

degradation of c-IAP1 was complete within five minutes of treatment; however, the 

degradation of XIAP was not observed until 12 hours of treatment in SK-OV-3 cells or 6 

hours in MDA-MB-231 cells, when tumor cells were treated with 3 µM of SM-406. 
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Figure 5.20 Western blotting assays of human ovarian cancer SK-OV-3 cells and human breast cancer 
MDA-MB-231 cells treated with 3 µM of Smac mimetic SM-406 for designated lengths of time. 
 

The results that Smac mimetic SM-406 can induce fast c-IAP1 degradation but 

not XIAP are consistent with the recently published work,192-195 in which a plausible 

cellular mechanism of IAC (IAPs Antagonist Compound)-induced tumor cell death in 

IAC sensitive cells was advanced. Fast degradation of c-IAP1 caused by the Smac 

mimetic SM-406 recruits Receptor-Interacting Protein (RIP) and activates canonical 

NF-κB (Nuclear Factor-κB) pathway. The non-canonical pathway is also activated by the 

inhibition of c-AIP1 with an increase in levels of Nim1-like Protein Kinase (NIK1) and 

processing of p100. In IAC-sensitive cells such as MDA-MB-231 and SK-OV-3 cells, the 

activation of NF-κB causes an increase in levels of TNFα, killing these tumor cells 

through enhanced apoptotic TNF-R1 signaling.192-194 A recent study also shows that the 
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degradation of c-IAP1/2 caused by Smac mimetics leads to the release of receptor 

interacting protein kinase (RIPK1) from the activated TNF receptor complex to form a 

caspase-8-activating complex consisting of RIPK1, FADD, and caspase-8. The activated 

initiator caspase-8 then activates effector caspases to promote apoptosis in tumor cells.195 

 

 

5.3 Conclusion 

The investigations of cellular molecular activity based on the potent Smac 

mimetic SM-406 show that SM-406 can induce apoptosis and cell death in 

MDA-MB-231 cells and SK-OV-3 cells in a dose- and time-dependent manner, as 

analyzed by Annexin V, P.I. double staining flow cytometry and Trypan-blue based cell 

death assays respectively. SM-406 can also dose- and time-dependently induce PARP 

cleavage, c-IAP1 and XIAP degradation, and caspase activation in MDA-MB-231 cells 

and SK-OV-3 cells, as tested by Western blotting assays. Co-immunoprecipitation assays 

using both the biotinylated Smac mimetic SM-222 and potent Smac mimetic SM-406 

verify c-IAP1 and XIAP as the cellular targets of our Smac mimetics. 

Caspase dependence in the cellular activity of SM-406 was studied by blocking 

caspase-9, -8, and -3 activities with either caspase inhibitors or siRNAs against each 

caspase. Both Trypan-blue based cell death assays and Western blotting assays show that 

the ability of SM-406 in inducing tumor cell death, PARP cleavage, and caspase 

activations is mainly dependent on caspase-8 and caspase-3, but only partially dependent 

on caspase-9. 
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The Smac mimetic SM-406 can induce a complete and fast degradation of c-IAP1 

but not XIAP. The complete degradation of c-IAP1 was finished within 5 minutes, while 

the degradation of XIAP did not show up until 6 hours of treatment in either 

MDA-MB-231 or SK-OV-3 cells. As the half life of SM-406 determined 

bypharmacokinetic studies (Table 5.1) is 1.78 hours, the main cellular target of SM-406 

can be c-IAP1 instead of XIAP. Recently, a possible cellular mechanism of SM-406 in 

inducing tumor cell apoptosis was proposed: fast degradation of c-IAP1 caused by the 

Smac mimetic SM-406 recruits RIP (Receptor-Interacting Protein) and activates the 

canonical NF-κB pathway. The non-canonical pathway is also activated by the inhibition 

of c-IAP1 with an increase in levels of NIK1 and processing of p100. In IAC-sensitive 

cells such as MDA-MB-231 and SK-OV-3 cells, the activation of NF-κB causes an 

increase in levels of TNFα, killing these tumor cells through enhanced apoptotic TNF-R1 

signaling.192-194 Recent study also showed that the degradations of c-IAP1/2 caused by 

Smac mimetics lead to the release of RIPK1 from the activated TNF receptor complex to 

form a caspase-8-activating complex consisting of RIPK1, FADD, and caspase-8. The 

activated initiator caspase-8 then activates effector caspases to promote apoptosis in 

tumor cells.195 Further studies aimed at elucidating the cellular mechanism of Smac 

mimetics are continuing.196 

 

 

5.4 Methods and Materials 
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Cell Culture: Human breast cancer cells (ATCC®) were maintained at 37ºC, 95% air, 5% 

carbon dioxide in modified IMEM (with L-glutamine, without gentamicin sulfate, 

GIBCO™, Invitrogen Corp.) supplemented with 10% Fetal Bovine Serum (FBS, 

Hyclone®, QB Perbio) and passaged twice weekly. Human ovarian cancer cells (ATCC®) 

were maintained at 37ºC, 95% air, 5% carbon dioxide in HyQ® RPMI-1640 medium 

(with 2.05 mM L-glutamine, 0.1 µM sterile filtered, Hyclone®, QB Perbio) supplemented 

with 10% FBS and passaged twice weekly. Human melanoma MALME-3M cells were 

maintained at 37ºC, 95% air, 7% carbon dioxide in HyQ® RPMI-1640 medium  

supplemented with 15% FBS and passaged twice weekly. 

 

Cell Transient Transfection by siRNA: To 1 mL of reduced serum medium (Opti- 

MEM®, GIBCO®, Invitrogen™ Inc.) in a 50 mm Petri Dish were added 100 pmol of 

siRNA and 10 µL of Lipofectamine RNAiMAX reagent (Lipofectamine™, Invitrogen™ 

Inc.) The mixture was incubated at room temperature for 15 minutes, followed by adding 

5 mL of diluted cells in medium without antibiotics, and mixed gently and were allowed 

to grow for 48 hours in the incubator. Western Blotting assay was performed to 

determine the efficiency when downregulation of targeting genes and transfected cells 

were subjected to further experiments. For studying the effect of siRNA knockdown on 

cell growth inhibition, after mixing with reduced serum medium containing siRNA and 

Lipofectamine RNAiMAX, cells were transferred into 96-well plates, and subjected to 

WST-based cell growth assay. Small interfering RNA oligonucleotides (siRNAs): against 

Smac (targets 156-176 aaccctgtgtgcggttcctat, QIAGEN Inc.); against caspase-3 (Singal 

Silence™ pool caspase-3 siRNA, Cell Signaling Technology®); against caspase-8 
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(caspase-8 siRNA pool, Eurogentec Corp.); against caspase-9 (Smart Pool™ caspase-9 

siRNA, Dharmacon Inc.); against negative control nonsilencing GFP (Green 

Fluorescence Protein) (targets 322-342 aagacccgcgccgaggtgaag, QIAGEN Inc.). 

 

Antibodies and Caspase Inhibitors: Primary antibodies against cleaved PARP (85 kDa, 

source: rabbit, Eptiomics® Inc.),197-200 caspase-9 (46 kDa, source: mouse, Stressgen 

Biotechnologies),201-207 caspase-8 (57 kDa, 55 kDa, source: mouse, Stressgen 

Biotechnologies),208-210 caspase-3 (35 kDa, 19 kDa, 17 kDa, source: rabbit, Stressgen 

Biotechnologies),211-219 caspase-7 (35 kDa, 30 kDa, 20 kDa, source: mouse, Cell 

Signaling Technology®),220-226 c-IAP1 (72 kDa, source: rabbit, R&D Systems Inc.),227-230 

XIAP (57 kDa, source: mouse, BD Biosciences Pharmingen™),231-233 Smac (25 kDa, 

source: rabbit, Calbiochem®),234 Cyt C (14 kDa, source: rabbit, Cell Signaling 

Technology®),235-237 β-actin (42 kDa, source: mouse, Sigma®).238,239 New primary 

antibody against c-IAP1 was kindly provided by Dr. John Silke.193 Second antibodies 

against mouse IgG (H+L) (host: goat, Immuno Pure®, Thermo Scientific), rabbit IgG 

(H+L) (host: goat, Immuno Pure®, Thermo Scientific). Caspase-9 inhibitor I 

(C32H43FN6O10, 668.7 g/mol, Calbiochem®), Caspase-8 inhibitor I (C21H34FN4O10, 502.5 

g/mol, Calbiochem®), Capase-3 inhibitor II (C30H41FN4O12, 690.7 g/mol, Calbiochem®). 

 

Apoptosis Flow Cytometry: Apoptosis flow cytometry was performed with an 

Annexin-V and Propidium Iodide (PI) apoptosis detection kit (Annexin-V- FLUOS 

staining kit, Roche® Diagnostics) according to the manufacturer’s instructions. After 

treated with Smac mimetics for the designated time, cells were harvested, washed with 
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ice-cold PBS (Phosphate Buffer Saline pH 7.4, 1X, GIBCO®, Invitrogen Corp.), and then 

stained with Annexin-V-FITC and PI for 15 minutes at room temperature in the dark. 

Stained cells were analyzed in a FACS caliber flow cytometer. Annexin-V positive cells 

were measured as apoptotic cells while Annexin-V negative and PI positive cells were 

analyzed as death cells.240-246 

 

Trypan-blue-based Cell Death Assay: Cell viability was quantitated by a microscopic 

examination (model: CKX41, 10X, Olympus®) in a Trypan blue exclusion assay. After 

treated with Smac mimetics for a designated time, cells were harvested, and stained with 

an equal volume of 0.4% Trypan Blue (membrane filtered prepared in 0.85% saline, 

GIBCO®, Invitrogen Corp.). For the combination treatment of Smac mimetic and caspase 

inhibitor, cells were treated with Smac mimetic after 1 hour treatment with the designated 

caspase inhibitor. Both blue cells and morphological shrunk cells were scored as 

nonviable cells. At least 100 cells from each treatment, performed in triplicate, were 

counted. 

 

WST-based Cell Growth Assay: Cells were seeded in 96-well flat bottom cell culture 

plates at a density of 3-4×103 cells/well with compounds and incubated for 4 days. The 

rate of cell growth inhibition after treatment with different concentrations of the 

inhibitors was determined by WST (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5- 

(2,4-disulfophenyl)-2H-tetrazolium monosodium salt (Dojindo Molecular Technologies 

Inc., Gaithersburg, Maryland). WST was added at a final concentration of 10% to each 

well, and then the plates were incubated at 37°C for 2-3 hrs. The absorbance of the 
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samples was measured at 450 nm using a TECAN ULTRA Reader. The concentration of 

the compounds that inhibited cell growth by 50% (IC50) was calculated by comparing 

absorbance in the untreated and treated cells. 

 

Western Blotting Assay: After treatment with Smac mimetics for a designated time, 

cells were harvested and washed with ice-cold PBS. Cell pellets were lysed in DLB 

(Double Lysis Buffer: 50 mmol/L Tris, 150 mmol/L Sodium Chloride, 1 mmol/EDTA 

[Ethylenediaminetetraacetic Acid], 0.1% SDS [Sodium Dodecyl Sulfate] and 1% NP-40 

[Nonidet P 40, Igepal CA 630, BioChemika™, Fluka®, Sigma-Aldrich]) in the presence 

of 1 mmol/L PMSF (Phenylmethylsulphonyl Fluoride) and 2 mmol/L protease inhibitor 

cocktail (Complete™, Roche® Diagnostics) for 10 minutes on ice and then centrifuged at 

13,000 rpm at 4ºC for 10 minutes. Protein concentrations were determined with a 

Bio-Rad Protein assay kit (Bio-Rad protein assay, dye reagent concentrate, Bio-Rad 

Laboratories® Inc.) according to manufacturer’s instructions. Proteins were 

electrophoresed onto 4% SDS-PAGE (Polyacrylamide Gel Electrophoresis, Invitrogen™ 

Corp.) and then transferred to PVDF (Polyvinylidene Difluoride, Immun-Blot® PVDF 

membrane for protein blotting, Bio-Rad® Laboratories) membranes. Following blocking 

with 5% milk (blotting grade blocker non-fat dry milk, Bio-Rad® Laboratories), 0.1% 

Tween 20 (Fisher BioReagents®, Fisher Scientific) in 10X TBS (10X Tris-Buffered 

Saline, Bio-Rad® Laboratories); membranes were incubated with specific primary 

antibodies, washed with 10X TBS in triplicate, and incubated with linked second 

antibodies. The signals were visualized with the Lumi-Light Western Blotting substrate 
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detection kit (Lumi-Light Luminol/Enhancer solution and Sable Peroxide solution, 

Roche® Diagnostics). 

 

Cell Fractionation: After treated with Smac mimetics for a designated time, cells were 

harvested and washed with ice-cold PBS. Cells were suspended at 3 × 107 cells/ml in 

MRB (Mitochondrial Resuspension Buffer: 250 mmol/L Sucrose, 10 mmol/L Potassium 

Chloride, 1.5 mmol/L Magnesium Dichloride, 1 mmol/L EDTA, 1 mol/L DTT 

[Dithiothreitol], 1 mmol/L PMSF, and 700 µg/mL of Digitonin), and 2 mmol/L protease 

inhibitor cocktail (Complete™, Roche® Diagnostics) for 10 minutes on ice and then 

centrifuged at 13,000 rpm at 4ºC for 10 minutes. The supernatants (cytosol fraction) were 

collected and the membrane pellets were lysed in DLB as described above, and the 

supernatants (mitochondrial fraction) were collected. The two fractions were subjected to 

Western Blotting assay. 

 

Co-immunoprecipitation Assay: Cellular interactions of Smac mimetic SM-406, 

biotinylated Smac mimetic SM-222, inactive control SM-428 and c-IAP1 and XIAP were 

investigated by using a Biotin-Streptavidin pull-down assay. Cells were lysed in lysis 

buffer (20 mmol/L Tris, 150 mmol/L Sodium Chloride, and 1% NP-40) for 20 minutes. 

Cell lysates were precleared with Streptadvidin-Agarose beads (Upstate®, Milipore 

Corp.), incubated with biotinylated Smac mimetic SM-222, alone for pull down assay, or 

preincubated with SM-406 or SM-428 followed by co-incubation with SM-222 for 

competitive experiments. Complexes formed by Smac mimetics and the associated 

proteins were recovered by incubation with 100 µL of Streptadvidin-Agarose beads on a 
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shaker at 4ºC for 2 hours and then centrifuged at 10,000 rpm for 1 minute. The 

complexes were then washed three times with lysis buffer at 4ºC and eluted from the 

beads by boiling in 100 µL of SDS loading buffer. The eluted proteins were detected by 

Western Blotting assay by using the procedure described above. 
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CHAPTER 6 
 

CONCLUSION 

 

A series of monovalent and bivalent small-molecular, non-peptidic and 

cell-permeable Smac mimetics have been successfully developed. 

For monovalent Smac mimetics, SM-245 and SM-246, in which an alkyl group is 

attached to the nitrogen atom in the 8-membered ring in the bicyclic system, have less 

potency in binding with XIAP BIR3 domain than the original lead compound SM-122. 

However, with the insertion of a carbonyl between the alkyl group and the nitrogen atom, 

SM-330 and SM-337 have improved binding potency compared with SM-245 and 

SM-246 against the XIAP BIR3 domain. Both SM-330 and SM-337 are 5 and 7 folds 

more potent than the original lead compound SM-122 in binding to the XIAP BIR3 

domain respectively. These potent Smac mimetics can also bind c-IAP1/2 with high 

affinities as was shown in Chapter 3, with high potency in antagonizing c-IAP1/2. 

Cellular studies of these monovalent Smac mimetics show that each Smac 

mimetic can dose- and time-dependently induce apoptosis and cell death in human breast 

cancer MDA-MB-231 and SK-OV-3 cells. Monovalent Smac mimetics can also 

efficiently inhibit tumor cell growth of MDA-MB-231, SK-OV-3 and human melanoma 

MALME-3M cells, as tested by using WST-based cell growth assays. The cellular 
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potency of these monovalent Smac mimetics is consistent with their binding potency 

against the XIAP BIR3 domain. 

Our cell-free functional assays show that these monovalent Smac mimetics can 

compete off the inhibition of XIAP to recover the activity of caspase-3/7 in a 

dose-dependent manner, further showing their excellent potency in antagonizing XIAP. 

Monovalent Smac mimetics show a drug synergy effect with TRAIL in inhibiting tumor 

cell growth of human breast cancer MDA-MB-231 and 2LMP cells in a dose-dependent 

manner, as tested by using WST-based cell growth assays. 

The cellular molecular events caused by our monovalent Smac mimetics were 

further probed by using Western blotting assays. The results show that monovalent Smac 

mimetics can dose-dependently induce PARP cleavage, c-IAP1 degradation, and caspase 

activations in MDA-MB-231 and SK-OV-3 cells. 

For bivalent Smac mimetics, SAR for the bivalent linker was explored. In the five 

tested bivalent Smac mimetics, the linker has 2 to 10 methylene groups. The results show 

that the binding potency against XIAP BIR3 domain decreases as the length of the 

bivalent linker increases. However, all the bivalent Smac mimetics have similar binding 

potency against linker-BIR2-BIR3 protein as measured by our fluorescence-polarization 

based assay. Each bivalent Smac mimetic is 10 to 20 times more potent in binding with 

linker-BIR2-BIR3 protein than BIR3 only. Meanwhile, the cellular potency of bivalent 

Smac mimetics increases as the length of the bivalent linker increases, suggesting that 

bivalent Smac mimetics do not interact with XIAP BIR3 domain only. 

Each bivalent Smac mimetic can efficiently inhibit tumor cell growth of 

MDA-MB-231, SK-OV-3 and MALME-3M cells, as tested in WST-based cell growth 
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assays. This tumor cell growth inhibition activity increases as the bivalent linker 

increases in length. However, SM-381 and SM-383, with 8 and 10 methylene groups in 

the bivalent linker, show the same cellular potency, suggesting that SM-381 may have 

already reached the optimal length for the bivalent linker. 

As tested by Trypan blue cell death assays, each bivalent Smac mimetic can dose- 

and time-dependently induce tumor cell death in MDA-MB-231 and SK-OV-3 cells. 

Bivalent Smac mimetics can also induce apoptosis in MDA-MB-231 and SK-OV-3 cells 

in a dose-dependent manner, as tested by using Annexin V and P.I. double staining flow 

cytometry. Consistent with the potency trend in tumor cell growth inhibition activity as 

tested by WST-based cell growth assays, SM-381 and SM-383 have same potency in 

inducing tumor cell death and apoptosis in MDA-MB-231 cells and SK-OV3 cells, with a 

potency superior to that of SM-1252. 

The cellular molecular events caused by our bivalent Smac mimetics were further 

probed by using Western blotting assays. The results show that new bivalent Smac 

mimetics SM-381 and SM-383 can dose-dependently induce PARP cleavage, c-IAP1 

degradation, and caspase activations in MDA-MB-231 and SK-OV-3 cells, as potently as 

previously developed bivalent Smac mimetic SM-164. However, SM-381 and SM-383 

are more synthetically accessible than SM-164. 

Using potent monovalent Smac mimetic SM-337 as the template, a series of 

different carboxylic acids attached to the nitrogen atom of the 8-membered ring in the 

bicyclic system were tested. Among these new monovalent Smac mimetics, SM-406, 

with 3-methylbutanoic acid attached to the amine in the bicyclic system, shows much 
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improved pharmacokinetic properties compared with SM-337. Further cellular 

mechanism studies were performed by using this excellent drug candidate. 

Same as the previously developed monovalent Smac mimetics, SM-406 can dose- 

and time-dependently induce apoptosis in MDA-MB-231, SK-OV-3 and MALME-3M 

cells. SM-406 can also dose- and time-dependently induce tumor cell death, PARP 

cleavage, c-IAP1 degradation and caspase activations in tumor cells. 

Co-immunoprecipitation assays further confirm that c-IAP1 and XIAP are the 

cellular targets of SM-406. The biotinylated Smac mimetic SM-222 can pull down 

c-IAP1 and XIAP in a dose-dependent manner in both MDA-MB-231 and SK-OV-3 cell 

lysates, while SM-406 can dose-dependently compete off their interactions. In contrast, 

inactive control SM-428 cannot compete off the interaction between biotinylated Smac 

mimetic and IAPs. 

The dependence on each caspase in the cellular activity of SM-406 was further 

studied by using either caspase inhibitor or siRNA. The results are interesting, because 

the cellular activity of SM-406 is mainly dependent on caspase-8 and caspase-3, but only 

partially on caspase-9. Recent studies proposed a plausible cellular molecular mechanism 

of Smac mimetics: the degradations of c-IAP1/2 caused by Smac mimetics lead to the 

release of receptor interacting protein kinase (RIPK1) from the activated TNF receptor 

complex to form a caspase-8-activating complex consisting of RIPK1, FADD 

(Fas-Associated protein with Death Domain), and caspase-8. The activated initiator 

caspase-8 then activates effector caspases to promote apoptosis in tumor cells.195 Further 

studies of the cellular mechanism of Smac mimetics are still under investigation, and are 

expected to assist in elucidating the mechanism.196 
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In conclusion, a series of monovalent and bivalent small-molecular, non-peptidic 

and cell-permeable Smac mimetics were successfully developed. SM-406, with improved 

pharmacokinetic properties, is a promising drug candidate for further clinical 

development. We hope that our further efforts may lead to a new treatment for cancer 

diseases. 
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