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Abstract 
 

Accessibility and Manipulation of Brain Signals for Neuroprosthetic Applications 
 

by 
 

Timothy C. Marzullo 
 

Chair: Daryl R. Kipke, Ph.D. 
 

 
The field of Neural Engineering spawned in response to the perpetual problem of 

neurology: injured central nervous system neurons do not regenerate or repair, and stem 

cell/molecular genetic solutions, while the ideal intervention, are far away from clinical 

utilization.  

A current solution is to substitute computers and electrodes for neurons, as either 

transducers (cochlear implants, retinal implants, and visual cortex ECoG implants for 

sensory replacement), regulators (deep brain stimulations for Parkinson's disease), and 

output signal readers (motor cortex neuroprosthetics).  

I have focused on improving the technology of motor neuroprosthetics, and in this 

dissertation I investigated three sub-systems of this relatively new technology in a rat 

model. 

In my first experiment, I demonstrated that the cingulate cortex, part of the 

prefrontal cortex, can be used as an additional control signal for a motor neuroprosthetic 

device in the event that upper motor neurons of the motor cortex are degenerated by 

neurodegenerative diseases.  



 vii 

 In my second experiment, I examined whether electrocorticograms (ECoGs) and 

local field potentials (LFPs) are independent from the spiking activity of motor neurons 

and could be thus used as additional control channels. I showed these signals are not 

necessarily independent, specifically, the spikes phase-lock to the field potentials at 

defined frequencies, and careful algorithms will have to be developed to combine spikes, 

LFPs, and ECoGs as different control channels for a neuroprosthetic device. 

 In my third experiment, I investigated the use of feedback in a neuroprosthetic 

model. I combined intracortical microstimulation (ICMS) of the visual cortex with 

simultaneous motor cortex ensemble recordings in real time to demonstrate the feasibility 

of a closed-loop neuroprosthesis. I showed that though sensory cortex ICMS can be 

combined with motor cortex recording in real-time in a viable preparation, increased 

technological development in simultaneous decoding with brain stimulation needs to 

occur before feasible clinical implementation can become a reality. 

 By reading and manipulating brain signals via microelectrodes, a basic level of 

neural control and neural replacement can be achieved. Until the day that physicians have 

access to technology that allows spinal cords to regrow and limbs to regenerate, current 

technology allows us to achieve some measure of success by replacing neurons with 

electrodes. 
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Chapter I 
 

Introduction 
 

It is an unfortunate tenet of neuroscience that severed spinal cords do not repair, 

leaving a patient affected with such trauma with varying degrees of paralysis. The brain 

is still alive, movement intentions can still be willed by a paralyzed patient, but the 

movement intention signals cannot bypass the site of spinal cord injury (Hochberg et al., 

2006). Thus, there is an effort in the neural engineering field to access the movement 

command signals directly from the brain, extract and decode them, and then use the 

signals to control a neuroprosthetic device such as a computer cursor (Hochberg et al., 

2006), an artificial limb (Velliste et al., 2008), or a functional electrical stimulation 

system of musculature (Weber et al., 2007). The work in this dissertation presents 

experiments investigating three systems of neuroprosthetic design for limb control: 1) 

alternative cortical areas beyond motor cortex, 2) the co-variation of field potentials and 

spikes as an information channel, and 3) the use of sensory cortex feedback as an 

additional information source about the state of a neural controller. What follows in this 

chapter is an overview of the technological development of decoding intention signals 

from the brain, followed by an introduction and experimental justification of the 

experiments making up this dissertation. 

In the 1960’s, awake, behaving chronic microelectrode recording technology and 

analog electronics advanced such that experiments utilizing real-time manipulation of 

brain signals became possible. In the first experiments, single neurons of the striatum in 

rats (Olds, 1965) and the motor cortex of monkeys (Fetz, 1969) were isolated with 

extracellular unit recording techniques (using microwires), and the subjects were trained 

to increase the discharge rate of respective units in order to receive a reward. In these 

preparations, the behavior was not clamped; the animals could use any strategy with 

which to increase the discharge rate of the units. In the Olds study (see Figure 1), to 
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investigate the mechanisms of reinforcement learning in the brain, the rats received 

feedback of single units in the striatum, hippocampus, and reticular activating system. 

Isolated units were held continuously for 2-4 days, and during periods when the rats 

were awake, every 10 minutes a light would turn on in the cage, and the rat then had two 

minutes to increase the unit discharge rate to trigger the food magazine. Unfortunately, 

beyond a few examples of operant conditioning in the striatum, the data describing the 

ultimate number of units trained, learning rate, and percentage trainable units with 

regards to brain area were not included in the manuscript. James Olds noted "repeated 

Figure 1.1: Data from Original Olds Work. Top: Experiment and hardware Design. 
Bottom: Sample of three electrode recordings in the rat. Y-axis shows firing rate 
(actual values not available in manuscript). X-axis shows time on the order of 
minutes. Notice rats were able to increase firing rates of the selected units in the 
caudate and internal capsule (Olds 1965). 
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failures with probes in the forebrain and midbrain areas," but concluded it was most 

likely due to difficulty in recording units for long duration in the said brain regions.  

In Fetz's seminal work (Fetz, 1969), he implanted the motor cortex of rhesus 

monkeys with microwires, isolated one or two single units per day, and gave the monkeys 

auditory feedback of the discharge rate (simply the output of the spiking audio monitor) 

of the single units. The monkeys were then rewarded with food pellets for increasing the 

discharge rate of the single units. Quite remarkably, the monkeys were able to learn the 

task within 30 minutes after a single unit was isolated (see Figure 2). Fetz noted the 

monkeys would move their arms during the reinforcement process; most likely this motor 

behavior was the consequence of the increasing neural discharge rate. The monkeys were 

Figure 1.2: Data from Original Fetz work. A single unit was isolated (top) from the 
monkey motor cortex for 80 minutes. Middle section of figure shows interspike 
interval histograms from the epochs shown in bottom graph. SD and S∆ show periods 
of reinforcement and extinction. Notice when increasing firing rates are rewarded, the 
monkey is rapidly able to modulate and maintain high firing rates that are absent in 
extinction conditions (Fetz 1969). 
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able to do the task even in the absence of the auditory feedback, and the monkeys were 

also able to do the task when somatosensory cortex units were used instead of the motor 

cortex. 

In 1971, Fetz published a more comprehensive paper in which he simultaneously 

operantly conditioned specific muscle patterns and motor cortex recordings (Fetz and 

Finocchio, 1971). In one experiment, the investigators would operantly condition the 

forearm muscle's electromyogram (EMG) amplitude while monitoring motor cortex 

firing rates; in another experiment, the investigators would operantly condition the motor 

cortex neurons while monitoring the forearm muscle's EMG. In both experiments, they 

found that muscle contractions and increasing motor cortex discharge rate were 

correlated. However, when they introduced the contingency of simultaneous suppression 

of muscle activity concurrent with increased neural discharge rate, the monkey was able 

to suppress the EMG activity while still increasing the motor discharge. The corollary, 

where increases in muscle EMG activity were rewarded with simultaneous suppression of 

motor unit activity, were much more difficult for the monkeys, though with extensive 

training the monkeys could slightly suppress motor unit discharge. 

 In 1977 E.M. Schmidt and his colleagues at the National Institutes of Health 

performed similar experiments on the operant conditioning of motor cortex neurons 

(Schmidt et al., 1977). In these experiments, single units of the motor cortex were again 

isolated, but the frequency discharge rate of the neurons was divided into 8 frequency 

bands (for example, if a neuron's lowest firing rate was 2 Hz, the highest firing rate was 

40 Hz, then the 2 Hz-40 Hz firing rate range would be divided into 8 equal size 

segments). Each of these 8 frequency bands was then assigned its own light in a bank of 8 

lights. A green target light would appear at one light, and the monkey would have to 

modulate its discharge rate, indicated by a red annulus surrounding the corresponding 

light on the bank, until the red annulus matched up to the green target for a minimum of 

450 ms. After this initial target acquisition, a new green target light would appear at a 

separate location, and the monkey would again have to move the red annulus to the new 

target. Of the 28 neurons in the motor cortex examined over a period of 99 days, 79% (or 

22 neurons) could be trained. Again, the investigators noticed refined muscle movements 

during this task. Indeed, in a later work Schmidt remarked (Schmidt et al., 1978): 
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"Throughout this paper, reference will be made to “conditioning” of individual neurons. 

However, what appears to be conditioned in these experiments is a movement, and the 

neuron under study is correlated with that movement."  

Such operant conditioning techniques can also be done in preparations where 

movement is constricted by paralytic compounds. In 1974, Shinkman and his colleagues 

operantly conditioned neurons in the visual cortex of cats immobilized by gallamine 

triethiodide (Flaxedil, an acetylcholine muscle receptor antagonist) with electrical brain 

stimulation of the lateral hypothalamus as reward (Shinkman et al., 1974). Of 40 cells 

tested, 21 were found to be operantly conditionable (see Figure 3). Given recent papers 

showing visual cortex responses can be modulated by reward and attention effects (Fries 

et al., 2001, Shuler and Bear, 2006), the results are perhaps not surprising. 

Figure 1.3: Operant Conditioning of Visual Cortex responses in immobilized cats with 
medial forebrain bundle stimulation as reward. Arrow indicates time of stimulus 
delivery (light flash), and animal was rewarded for increasing the firing rates of the 
visual cortex evoked responses. Top shows unconditioned responses, and middle and 
bottom rows show conditioned responses. Notice increase in firing rate during the 
criterion period in the second and third rows (Shinkman et. al 1974).  
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Other than Shinkman's visual cortex results, the majority of operant conditioning 

research seems to show that the subjects were not solely modulating their units; the 

animals were modulating their motor behavior. Work in the late 70's, in which the dorsal 

columns were severed in similar monkey motor cortex operant conditioning preparations 

(Wyler and Burchiel, 1978), drastically reduced the animals ability to do the task, and 

when the ventral roots were cut at the C5-7 level (Wyler et al., 1979), the monkeys were 

unable to do the task completely. The investigators in these studies concluded that the 

operant conditioning of motor units in previous work was most likely due to afferent 

feedback from the proprioceptive mechanoreceptors in the muscles feeding back up to the 

pyramidal cells of the motor cortex. The most compelling argument for this is that the 

monkey would sometimes move its flaccid arm with its good arm to drive the task, 

arguing effectively for the use of the proprioceptive feedback driving the motor cortex 

neurons.    

Following this survey of the early literature, it is apparent that animals can be 

trained to modulate the activity of neurons of the neocortex, but the modulation may be 

the effect of afferent feedback of the limbs or attentional effects. However, these 

experiments did lay the groundwork for the hypothesis that perhaps operant conditioning 

techniques could be used to control a neuroprosthetic device (Schmidt, 1980). 

Knowledge of the fundamental neural coding of movement in the motor cortex had to 

advance before further development could occur. 

Neural coding knowledge of the voluntary control of movement considerably 

advanced in the 1980's with Georgopoulos and Schwartz's work investigating population 

coding in the motor cortex (Georgopoulos et al., 1986, Georgopoulos et al., 1989). By 

serially recording motor cortex units over time in a monkey performing an eight-direction 

task, it was possible to reconstruct the trajectory of the monkey's arm using a cosine 

tuning function from the population of the total recorded ensemble (see Figure 4). 

Furthermore, in subsequent work in which the monkey had to move its arm in an opposite 

direction to that of a target, the population vectors of the motor cortex rotated from the 

direction of the actual target to the direction of the monkey's arm, providing compelling 

evidence that the responses of the motor cortex are adaptive at fast time courses (within 

200-300 ms).  Additional work by Schwartz's group and others has found that the motor 
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cortex encodes acceleration (Georgopoulos et al., 1982), muscle force (Evarts, 1968), 

joint angles (Graziano et al., 2004), and higher-order functions as diverse as motor 

planning (Donoghue et al., 1998) and imagined movements (Hochberg et al., 2006). 

Such increased, though still incomplete, understanding of the neural coding of 

movement made it possible to reconstruct limb trajectory in real-time, given 

improvements in multielectrode design. There has been a concurrent effort by electrical 

systems engineers to design and build advanced high-density multi-electrode arrays 

(Anderson et al., 1989, Guillory and Normann, 1999, Williams et al., 1999, Nicolelis et 

al., 2003). These efforts in improving microelectrode technology enabled the further 

developments in neuroprosthetics that occurred in the late 1990's and early 2000's. 

 
 

The first demonstration of real-time limb trajectory reconstruction occurred in 

1999 with the work by Chapin's group achieving real-time ensemble decoding of paw 

trajectory in rats. Rats were chronically implanted with microwire arrays in the motor 

cortex, and the rats were then trained to step onto a lever in order to drive the movement 

of a water-delivering lever arm that swung towards the rat's mouth. Once the rats learned 

this task, the multi-channel recording was decoded in real-time with a linear filter such 

Figure 1.4: Population encoding of direction. White lines represent serially recorded 
single units' population vector contribution of a movement during a monkey reaching 
in one direction (yellow). Orange line depicts summed population vector of motor 
cortex firing rates, showing that the ensemble of the motor cortex faithfully encodes 
the movement direction (Georgopoulos et. al 1986). 
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that the neural activity alone controlled the lever arm (Chapin et al., 1999). Four of the 

six rats were able to do the task, and often the rats would stop hitting the lever altogether 

and still be able to drive the water arm with their neural activity (see Figure 5). 

The first indication that such technology could also be used in human patients 

occurred in the late 1990's with the work by neurosurgeon Phil Kennedy implanting 

quadriplegics with two-channel electrodes in the motor cortex. These patients were 

"locked-in," that is, unable to interact with their external world due to complete loss of 

limb control. Upon implantation of the electrodes, patients were able to slowly control a 

cursor to spell out responses to questions by modulating the activity of their motor cortex 

(Kennedy and Bakay, 1998, Kennedy et al., 2000).  

Figure 1.5: First control of a lever arm by cortical activity. Top shows behavioral 
apparatus whereby rat was trained to hit a lever to drive a water arm towards its mouth 
as ensemble activity of the paw area of motor cortex are simultaneously recorded and 
decoded. After algorithm calibration, the water arm was driven by the motor cortex 
ensemble activity alone (Chapin et. al 1999). 
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Following these initial reports, neuroscientists and engineers of the past decade 

have improved the technology of limb and cursor control. The first 2D cursor control 

experiments (Serruya et al., 2002) initially decoded limb trajectory using approximately 

30 neurons as a monkey moved a manipulandum across a two-dimensional surface to 

drive a cursor to a target on a computer screen.  Once the coefficients were set for the 

decoding algorithm (set of linear filters regressing neural firing rate to hand trajectory), 

the monkey's neural activity then drove the cursor to the target. Of note is that the animal 

was immediately able to do the task under neural control, though the animal was still 

Figure 1.6: First 3D reconstruction of limb trajectory in real time via a virtual reality 
display. Top: Monkeys were trained to make limb movements to eight directions. 
Bottom: After population vector ensemble algorithm was calibrated, the cursor was 
controlled by the motor cortex activity. A, B: Trajectory of neural cursor to the eight 
targets during individual trials. C, D: Trajectory of neural cursor when novel targets 
were presented (Taylor et. al 2002).  
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making movements.  

The first 3D cursor control (Taylor et al., 2002) was accomplished using a similar 

preparation as the (Serruya et al., 2002) work, but the monkey was moving its hands in 

one of eight directions in a three-dimensional center out task using a virtual reality 

display to move a cursor (see Figure 6). Again, once the monkeys learned the task and the 

algorithm coefficients were set (using an ensemble population vector algorithm), control 

of the 3D cursor was then driven by the motor cortex ensemble. 

In the preceding experiments, cursor control was slow; time to target was often 1-

2 seconds. A concurrent thread in neuroprosthetics research is improving the speed of the 

decoding. Work by (Santhanam et al., 2006) achieved decoding of target acquisition 

approaching 100-300 ms. Specifically, the monkey was implanted in a motor planning 

area of the dorsal premotor zone of the neocortex, and the monkey was trained to hold its 

finger in the center of a computer screen. A target would appear in the periphery of the 

screen, and after a delay period the monkey would then move its finger to the target. 

Since the premotor cortex is involved in movement planning, the neural activity would 

encode the endpoint of the target during the delay period before the monkey would 

actually begin to move its finger. In the neuroprosthetic mode of the task, the monkey's 

motor planning towards target would be decoded in real-time, and the monkey was 

rewarding for "planning" to move towards the target without actually moving its finger 

from the center of the screen. As the dorsal motor cortex was encoding endpoint location, 

and not trajectory, acquisition to target was much faster than traditional trajectory 

encoding neuroprosthetic experiments. The monkeys could rapidly attain targets within 

100-300 ms of presentation.  

Such sequence of developments culminated in 2006 with a report by J.P. 

Donoghue’s group on two dimensional cursor control using cortical modulation in human 

quadriplegics (Hochberg et al., 2006). Patients were implanted with a 100 channel "Utah" 

array in the motor cortex, and the patients were asked to imagine various muscle flexions 

and extensions of the shoulder, arm, and hand. The investigators found, similar to 

previous work (Schnitzler et al., 1997), that the human motor cortex encodes imagined 

movements (see Figure 7). The motor cortex firing patterns were then fed into a control 

algorithm (the same linear filter as in the (Serruya et al., 2002) work discussed above), 
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and the subject was able to control a computer cursor and various other devices. 

However, within 6 months the signal quality from the electrode arrays began to 

deteriorate, and the implants were ultimately removed. 

Recently, Andrew Schwartz's group has successfully demonstrated a monkey 

controlling a robot arm to feed itself (Velliste et al., 2008). Monkeys were implanted 

bilaterally in the shoulder/elbow region of the motor cortex, the monkeys' arms were 

lightly restrained, and the monkeys would watch the robotic arm being controlled by 

technicians. The motor cortex would modulate with regards to the observed movement of 

the robotic arm, and these modulations would then be used to calibrate the cortical 

control algorithm, using the population vector described above (Taylor et al., 2002). 

Through slow shaping procedures, two monkeys learned to neurally control the arm with 

four degrees of freedom (x-axis plane, y-axis plane, z-axis plane, and the gripper) to grab 

Figure 1.7: Decoding of Motor Cortex ensemble activity in a paralyzed human. A: 
Two neurons which modulated activity upon certain imagined movements. B:  Rasters 
show increased neural discharge of another neuron that also increased firing during an 
imagined movement. C: Rasters show three neurons which are modulating when the 
patient imagined opening and closing his hand (Hochburg et. al 2006). 
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pieces of food to feed itself. The only feedback the monkey had to control the arm was 

its visual observation of the moving arm (See Figure 8). 

The above research summarizes the iterative developments in the new technology 

of neuroprosthetic devices. However, as with the development of any new technology, 

many scientific questions and engineering issues exist regarding the long-term 

manipulation of cortical signals for neuroprosthetics. Specifically, current unsolved 

Figure 1.8: Use of the motor cortex ensemble activity to control a robotic arm. Top: 
Behavioral schematic. Bottom: a: Rasters of individual neurons during robotic arm 
control task. Colors of bars to left of rasters indicate what degree of freedom the 
respective neurons were controlling b: x-axis, c: y-axis, d: z-axis, e: gripper control 
(Velleste et. al, 2008). 
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problems include: What is the optimal neocortical location for limb control? Can local 

field potentials be used as an additional information source? Would delivering feedback 

to the sensory cortex improve operator performance of a neuroprosthetic device? What is 

the optimal number of channels for controlling a neuroprosthetic device? How can the 

longevity of electrodes be improved? What is the best control algorithm? 

This dissertation, using a rat model, focuses on three of the questions above 

regarding neuroprosthetic design, which are discussed below. 

 

1) Alternative brain areas for control.  

 Many of the studies in the early 2000’s focused on the motor cortex as the source 

of voluntary control signals for neuroprosthetics. If someone is injured by a traumatic 

spinal cord injury, the motor cortex is still alive and capable of generating movement 

command signals, as the work discussed above by (Kennedy et al., 2000) (Hochberg et 

al., 2006) has indeed shown. However, there are cases of paralysis that are not due to 

spinal cord injury. According to the Foundation for Spinal Cord Injury Prevention, Care 

& Cure (FSCIPCC), there are 225,000 to 296,000 paralyzed persons in the United States 

and a subsection of this population is paralyzed by upper motor neuron degenerative 

diseases, specifically: Amyotrophic Lateral Sclerosis (ALS) (which degenerates both 

upper and lower motor neurons) and Primary Lateral Sclerosis (PLS) (which affects only 

upper motor neurons.) According to the ALS Association and the Spastic Paraplegia 

Foundation (SPF), there are currently 30,000 cases of ALS and 2000 cases of PLS in the 

U.S. Thus, though the motor cortex may be the ideal candidate cortical site for a 

neuroprosthetic output signal due to its historically verified role in encoding voluntary 

movement (Fritsch and Hitzig, 1870, Fetz, 1969, Donoghue and Wise, 1982, 

Georgopoulos et al., 1988, Finger, 1994, Murthy and Fetz, 1996b, Donoghue et al., 

1998), the motor cortex may not be ideal in a small target group of patients with upper 

motor neuron degeneration diseases. 

 In this subpopulation, prefrontal areas of the cortex may still be capable of 

generating a motor command signal to control a neuroprosthetic device. We examined 

the feasibility of alternative prefrontal areas for neuroprosthetic signals. The rat prefrontal 

cortex is not as extensive in functional localization as in primates, and only four 



 14 

candidate prefrontal brain areas of the rat were revealed in the literature (Uylings et al., 

2003): the orbitalfrontal corticies, a "frontal association area," the cingulate cortex, and 

the infralimbic/prelimbic areas. These brain regions serve a number of different 

functions. The orbital corticies are used in odor discrimination and also receive spatial 

information from the hippocampus (Gallagher et al., 1999, Lipton et al., 1999). The 

prefrontal corticies (infralimbic and prelimbic) function in learning and memory, 

particularly extinction (Kurzina, 1990, Birrell and Brown, 2000, Dias and Honey, 2002, 

Milad and Quirk, 2002), and the function/existence of the frontal association area in rats 

is debated and not well characterized (Donoghue and Wise, 1982, Passingham et al., 

1988).  

 The cingulate cortex is a compelling prospective candidate for an alternative 

command signal as it is involved in a wide diversity of behavior (see Figure 9 for 

comparative anatomy in rats and humans). In rats, the cingulate cortex is involved in 

behavioral inhibition (i.e. when rats have to hold a behavioral action, such as a nosepoke, 

for a certain delay period in order to be rewarded, the rats will make more errors with 

cingulate lesions (Muir et al., 1996)), stimulus-reward associations (Takenouchi et al., 

1999, Cardinal et al., 2003), reward-based motor planning (Walton et al., 2003), trace-

conditioning (Han et al., 2003), and attention in complex discrimination tasks (Bussey et 

al., 1997). In monkey electrophysiology studies, the cingulate cortex is involved in 

reward-based motor planning and reward expectancy (Shima and Tanji, 1998, Shidara 

Figure 1.9: Location of the cingulate cortex (circled in black) in the human (left) and 
rat (right). Images from Paxinos and Watson (1998) and Brainstorm 2.0 neuroanatomy 
program. 
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and Richmond, 2002, Hadland et al., 2003). In humans, the cingulate cortex has been 

correlated with many behavioral states, including loneliness (Eisenberger and Lieberman, 

2004), religious experiences (Beauregard and Paquette, 2006), political persuasion 

(Amodio et al., 2007), error detection (Devinsky et al., 1995), pain perception (Harris et 

al., 2007), the placebo effect (Wager et al., 2004), and optimism (Sharot et al., 2007). 

Thus, though cingulate cortex function is diverse, its role in motor planning may make it 

a compelling alternative site for a control signal for a neuroprosthesis. 

Given the diversity of the functions of the cingulate cortex, we investigated 

whether such a brain area can come under subject control for use in directing a 

neuroprosthetic device. Since clinical neuroprosthetics do not have access to known 

movement parameters corresponding to neural response properties, either due to paralysis 

or neurodegeneration, we adopted the approach of similar work in our group (Gage et al., 

2005) by training the cingulate cortex without a priori knowledge of the neural response 

properties. A series of rats were implanted in the cingulate cortex, and the rats were 

trained to modulate the single unit cingulate cortex neural discharge to response to tone 

stimuli.  

 

2) The Co-Variation of Spikes with the LFP and ECoG 

The fundamental problem of chronically recording extracellular spikes is that the 

electrode needs to be 100-200 µm from the cell body to isolate the unit with sufficient 

signal-to-noise ratio (SNR) (Humphrey and Schmidt, 1990, Buzsaki, 2004). Such close 

proximity of the electrode to the biopotential source yields the problem that the area of 

brain tissue most likely to have a chronic foreign body response, and hence scar and kill 

the tissue surrounding the implant, contains the neurons of interest (Szarowski et al., 

2003). Thus, there has been increasing interest in the community of recording from, and 

attempting to understand and decode, local field potentials and potentially using the 

signals to drive a neuroprosthetic controller (see Figure 10 for a representation of field 

potentials). 

The physiological source of the field potentials (grouping LFPs, ECoGs, and 

EEGs in one broad class) is more difficult to identify than the physiological source of 

spikes. The primary source for many interpretations of the field potential are studies by 
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(Freeman and Nicholson, 1975, Nicholson and Freeman, 1975, Mitzdorf, 1985); these 

reports examined field potentials using current source density analysis, pharmacological 

manipulations, and modeling studies. The conclusion of these studies was that the 

magnitude of the field potentials due to coherent excitatory post-synaptic potentials 

(EPSPs) is 2-3x higher than the contribution of coherent action potentials (APs), which in 

turn is orders of magnitude higher than the inhibitory post synaptic potentials (IPSPs). 

Mitzdorf and his colleagues concluded, however, that field potentials are more related to 

post-synaptic excitatory potentials than action potentials because 1) APs seldom occur 

simultaneously and last less than 2 ms, while synaptic potentials last 10 ms and are 

regionally localized, 2) The high frequency conductance changes of action potentials 

cause membrane dipoles with source/sink pairs too close to observe with field potentials, 

and 3) Action potentials at the soma are tripoles, which decay as 1/r3, rather than dipoles, 

which decay as 1/r2. Thus, it has become a common acceptance in the neurophysiology 

community that local field potentials in the neocortex are due to EPSPs. 

Figure 1.10: Demonstration of Neural Recordings. Top left shows a surgical image of 
a rat implanted with the "Michigan" silicon probe in the motor cortex. Top right shows 
overlay of single shank 16 site probe sampling all layers of motor cortex. Bottom left 
shows single unit (in yellow) isolated from an electrode site. Bottom right shows 16 
LFPs simultaneously during a period of rat spindle oscillations. 
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What, if anything, do field potentials mean in terms of mechanistic use by the 

brain? The physical cause of field potential oscillations is still under debate, but work in 

the visual system of cats and monkeys has found that power in the gamma frequencies 

(30-70 Hz) is modulated by attention (Gray and Singer, 1989, Bekisz and Wrobel, 1999, 

Fries et al., 2001, Womelsdorf et al., 2006, Fries et al., 2008); specifically, the gamma 

power increases in the local field potential when recording from a receptive field of a 

visual stimulus of which an animal is attending to (see figures 11-12). Work has also 

found increased 15-20 Hz coherence between electrodes sites in the inferior temporal 

cortex in monkeys during correct performance of trials performing a delayed-match-to-

sample task (Tallon-Baudry et al., 2004), and other groups have indeed shown increased 

coherence in specific frequencies between brain areas during specific behavioral tasks 

(Bekisz and Wrobel, 1999, Liang et al., 2002). These findings have led to the hypothesis 

that coherence in the local field potentials between brain regions is a method of cortical 

communication (Fries, 2005). Some groups have also reported increased coherence 

between motor cortex and muscle groups at 40-70 Hz in reaction time tasks (Schoffelen 

et al., 2005). 

As local field potentials are recordable for longer duration than traditional 

extracellular unit recording methods (Murthy and Fetz, 1996b, Destexhe et al., 1999), and 

local field potentials do indeed modulate in behavioral tasks, it has been hypothesized 

that local field potentials could also be used to control a neuroprosthetic device (Galvan 

et al., 2001, Schwartz et al., 2006).  There are only two short "prototype" level reports of 

local field potential modulation in humans (Kennedy et al., 2004a, Kennedy et al., 

2004b). Demonstrating multiple degree-of-freedom (dof) control using LFPs is still an 

active and open subject of research for neural engineers. 

A simultaneous thread in the neuroprosthetic field is electroencephalogram and 

electrocorticogram-based research in humans, led by Jonathan Wolpaw at the Wadsworth 

Center in Albany, NY, and Niels Birbaumer at the University of Tübingen in Germany. 

In this continuously ongoing work, human patients (both mobile and paralyzed) are 

trained to modulate their scalp recorded field potential activity (electroencephalogram, or 

EEG) to control a cursor on a computer screen (Birbaumer et al., 1999, Wolpaw and 

McFarland, 2004). However, such self-control of one's EEG takes months of training due 
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to fact that the EEG has a low signal-to-noise ratio (the skull serves as both a low pass 

filter and a resistor to the brain-related related potentials, causing brain signals picked up 

by scalp electrodes to be severely attenuated (Nunez and Srinivasan, 2006)). Multiple 

groups are now examining the feasibility of brain surface field potential recordings 

(electrocorticograms, or ECoG), both epidural and subdural, as a source of a 

neuroprosthetic control signal. In recent experiments using epileptic patients implanted 

with ECoG mapping arrays and largely immobilized in their hospital room, ECoG-based 

cursor control can occur within a half an hour of training (Leuthardt et al., 2004, Schalk 

et al., 2007, Schalk et al., 2008).  

 

Figure 1.11: Increased Spiking with Gamma Synchrony in Visual Cortex of Cats. A 
moving bar was presented to the receptive field of a visual cortex unit in the awake 
cat. Notice increased high frequency components in the field potential (top) 
concurrent with increased spiking discharge in the neuron and the spikes fire in 
specific phases of the oscillations. Right: power spectral density of local field 
potential when visual cortex cells were presented the appropriate stimulus for the 
receptive fields. Notice decreased power in the <10 Hz frequencies and increased 
power in the 30-50 Hz frequencies (Gray and Singer 1989). 
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ECoGs and LFPs may be more stable input signals than the spiking activity of 

single neurons, though spiking activity, when available, offers a finer resolution signal of 

the brain state activity (Schwartz 2008, unpublished observations). Therefore, combining 

the ECoGs, LFPs, and spiking activity may be the optimally stable, information-rich 

source for neuroprosthetic control signals.  First the co-relationships between the field 

potentials and spikes need to be investigated. As the neocortex and hippocampus 

literature has indeed shown that spikes tend to fire in phase with certain frequency ranges 

of the field potential during specific behavioral epochs (Murthy and Fetz, 1996a, Fries et 

al., 2001, Womelsdorf et al., 2006, Kjelstrup et al., 2008) (see Figure 11), we 

Figure 1.12: Increased spike and local field potential gamma band coherence as a 
function of attention. In this experiment, two neurons were isolated in monkey visual 
cortex, and the receptive fields were mapped. The monkey was required to attend to 
one of the stimuli during a delay period without moving its eyes. When a monkey was 
attending to a stimulus, there was increased coherence (represented by increased power 
in the spike triggered average (STA)) in the 40-70 Hz frequencies. B: Spiking response 
to stimulus when the monkey was attending versus not. C: Spike-triggered average of 
spike with LFP during delay period when the attention was outside the receptive field, 
and D: when the attended stimulus was inside the receptive field. E: the power 
spectrum of the respective spike-triggered averages (Fries et. al 2001). 
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hypothesized that spikes of motor cortex neurons would also phase lock to specific 

frequencies of the field potential during different behavioral epochs. 

The majority of neuroprosthetics target the motor cortex (for review, see 

(Schwartz, 2004); thus, we focused our attention on oscillations of the motor cortex 

during motor learning tasks. In monkeys, a “preparatory potential” of the 25-35 Hz beta 

rhythm occurs when monkeys are actively exploring or planning to move (Murthy and 

Fetz, 1996a, Murthy and Fetz, 1996b), and the single units isolated during these 

experiments indicated the spikes were phase-locking to the 25-35 Hz rhythm (See Figure 

13). Other groups have found additional ~20 Hz potential modulation during the 

preparatory phase of movements in monkeys (Donoghue et al., 1998, Baker et al., 1999) 

and a quadriplegic human (Hochberg et al., 2006). In spite of this, it was recently found 

that <13 Hz frequency bands and 60-200 Hz frequency bands code for movement 

direction more accurately than 20-50 Hz in a center-out reaching task (Mehring et al., 

2003, Mehring et al., 2004, Rickert et al., 2005). Moran and his colleagues additionally 

found high frequencies (50 – 200 Hz) in both ECoGs and LFPs encode movement 

direction in eight and four directions, respectively (Leuthardt et al., 2004, Heldman et al., 

2006).  

In order to investigate the dependence of spikes on field potentials, we sampled 

spikes, LFPs, and ECoGs simultaneously in a chronic preparation during multiple 

behavioral states: ketamine-induced anesthesia, a motor learning task, and a 

neuroprosthetic task. In the motor learning task, rats were trained to simultaneously place 

Figure 1.13: Correlations of spiking and local field potential activity in monkey 
motor cortex. A: Two spike/LFP pairs during periods when a monkey was 
exploring a puzzle box with its hands. Periods of spiking modulation and field 
potential oscillation are evident. B: Spike-triggered average of spikes with LFPs 
during periods of local field potential oscillation. Notice spikes are firing in phase 
with the 20 Hz oscillations of the motor cortex LFP (Murthy and Fetz 1996). 
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both forepaws on levers on the cage floor while performing a simple nosepoke task and 

holding the position for 1-5 seconds. After the rats learned this task, the rats were then 

trained in “neuroprosthetic” mode whereby they had to modulate the spiking activity of 

cells in the motor cortex during the delay period in order to receive a food reward.  

We hypothesized that as the spiking activity becomes more modulating and 

variant (from anesthetized → motor learning → neuroprosthetic mode), the 

synchronization of the spiking activity with the LFP and ECoG will progressively 

decrease in the low frequency range and increase in the high frequency range. Thus, 

perhaps the <15 Hz LFP activity will become independent of local spiking activity during 

the motor learning and neuroprosthetic tasks, where the spiking activity will become 

phase-locked to high frequency gamma LFP modulations. 

 

3) Closing the Loop: Sensory Feedback with Simultaneous Motor Decoding.  

Electrical stimulation of central nervous system tissue has been used extensively 

as a tool in neuroscience, most notably beginning in 1870 (Fritsch and Hitzig, 1870) with 

the discovery of the canine motor cortex. During the 1960's and onwards, electrical 

stimulation has been used in human patients as a tool for exploring perception (Penfield 

and Perot, 1963), for sensory replacement in the form of cochlear implants (for review, 

see (Moller, 2006)), and most recently as a treatment for Parkinson's disease by 

stimulating the subthalamic nucleus (Johnson et al., 2008).  

Electrical stimulation is also being explored as a treatment for paralysis by 

stimulating musculature directly (for reviews, see (Morita et al., 2007, Popovic and 

Sinkjaer, 2007). Signals recorded from the sensory nerves of limbs are used as a feedback 

signal for the control of electrical stimulation of musculature (Popovic et al., 1993, 

Strange and Hoffer, 1999, Weber et al., 2007). 

Microstimulation of neocortical tissue has also been used as an experimental tool 

to examine the neurophysiology of perception. Specifically, work in the somatosensory 

cortex of monkeys has shown that intracortical microstimulation (ICMS) patterns 

mimicking the natural neural patterns of vibration sensation of the fingertips results in 

identical performance in detection tasks (Romo et al., 2000). Work in rats has shown a 

distinct psychometric curve in response to current level of cortical microstimulation 
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(Rousche et al., 2003) (see Figure 14). Recent work has also shown that monkeys can be 

trained to detect and discriminate a variety of microstimulation codes in the 

somatosensory cortex: a rate based code (whereby the number of pulses between two 

different electrode channels is different), a detection code (whereby the monkeys 

responded to whether microstimulation was delivered or not), and a spatial code 

(whereby the monkey detected different sequences of electrodes being stimulated) 

Figure 1.14: Detection of Microstimulation of Auditory Cortex. A: Psychometric 
function of 1 rat trained over multiple sessions to detect intracortical microstimulation 
(ICMS) of auditory cortex as a function of current amplitude. B: Pyschometric Curve 
of 1 rat over 8 sessions. Control shows when stimulator was turned off. C: 
Psychometric curves of 6 rats trained to detect cortical microstimulation of auditory 
cortex. All results compellingly show that rats can detect and respond to sensory 
cortex ICMS (Rousche et. al 2003). 
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(Fitzsimmons et al., 2007). Typically, intracortical microstimulation is understood such 

that pulse rate affects the firing rate of neurons in the excited tissue and pulse amplitude 

affects the volume of stimulated excited tissue (i.e. higher amplitudes will excite a greater 

amount of tissue) (Merrill et al., 2005).  

As the technology of neuroprosthetic devices improves, many groups foresee a 

need to implement the simultaneous use of haptic feedback via sensory cortex 

intracortical microstimulation (ICMS) to give a user more information on the "state" of a 

device controlled by his/her motor cortex ensemble recordings (Abbott, 2006, Fagg et al., 

2007, Fitzsimmons et al., 2007, London et al., 2008). The majority of neuroprosthetic 

systems currently only offer feedback via a cursor on a screen, giving the user a visual 

correlate of the motor cortex ensemble activity (Serruya et al., 2002, Taylor et al., 2002, 

Carmena et al., 2003, Musallam et al., 2004, Lebedev et al., 2005, Hochberg et al., 2006, 

Santhanam et al., 2006). In the recent work by (Velliste et al., 2008), in which a monkey 

controlled a robotic arm to feed itself, the monkey had to watch the arm at all times in 

order to operate it. Though the monkey could still do the task, such visual feedback alone 

is crude. Many motor skills require more than visual feedback of the state of the limbs. 

Playing musical instruments, typing on a keyboard, and running all require force and 

haptic feedback. 

Thus, in an ideal artificial neuroprosthetic limb, a user would be able to receive all 

of the feedback a natural human limb receives via the peripheral sensory nervous system 

of muscle force, joint dynamics, etc. Indeed, some groups are beginning to study ICMS 

of somatosensory cortex with the ultimate goal of combining it with motor cortex 

ensemble decoding (Fitzsimmons et al., 2007, London et al., 2008). To date, however, no 

groups have combined ICMS of sensory cortex simultaneously with motor cortex 

ensemble decoding.  

In the final work of this dissertation, ICMS of sensory neocortex was used as a 

feedback signal in a subject simultaneously trained to modulate its motor cortex 

ensemble. Electrode arrays were implanted in both the motor and visual corticies of rats. 

Through a series of iterative development steps as algorithms and hardware were 

continually improved, rats were trained in motor ensemble modulation tasks where the 

"go" stimulus to initiate a trial consisted of direct current injection into the visual cortex. 
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The ensemble dynamics of the motor cortex firing rates were then linearly transformed 

into visual cortex ICMS signals delivered as real-time feedback to the rats. 

 

***** 

This dissertation covers three components of contemporary neuroprosthetic 

systems design: alternative cortical areas (chapter 2), alternative cortical signals (chapter 

3), and sensory cortex feedback (chapter 4). The following three chapters describe these 

three experiments in detail. At the time of this dissertation completion, chapter 2 has been 

published, chapter 3 is in preparation for manuscript submission, and chapter 4 has been 

submitted. 
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Chapter II 
 
 

Suitability of the Cingulate Cortex for Neural Control 
 

Abstract: 

Recent neuroprosthetic work has focused on the motor cortex as a source of voluntary 

control signals. However, the motor cortex can be damaged in upper motor neuron 

degenerative diseases such as primary lateral sclerosis and amyotrophic lateral sclerosis.  

The possibility exists that prefrontal areas may also be used in neuroprosthetic devices. 

Here we report the use of the cingulate cortex in a neuroprosthetic model. Seven rats 

were able to significantly modulate spiking activity in the cingulate cortex in order to 

receive reward. Furthermore, experiments with single neurons provide evidence that the 

cingulate cortex neuronal modulation is highly flexible and thus useful for a 

neuroprosthetic device. 

 

I. Introduction: 

We are currently witnessing a renaissance in the technology of neuroprosthetic 

devices. Using invasive microelectrodes in humans, monkeys, and rats, many research 

groups have demonstrated two or three-dimensional control of cursors via manipulation 

of brain signals (for review, see (Schwartz, 2004)). As the motor cortex is involved in 

voluntary movement control, it has been the chief candidate for invasive neuroprosthetic 

devices (Fetz, 1969, Kennedy et al., 2000, Wessberg et al., 2000, Serruya et al., 2002, 

Taylor et al., 2002, Taylor et al., 2003, Vetter et al., 2003, Gage et al., 2005, Hochberg et 

al., 2006). 

However, neurodegenerative diseases, particularly amyotrophic lateral sclerosis 

(ALS) and primary lateral sclerosis (PLS), can damage upper motor neurons (Morrison et 

al., 1998, Eisen and Weber, 2001), thus reducing the electrophysiological viability of the 
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primary motor cortex for clinical neuroprosthetic devices. Recent studies have examined 

the parietal cortex (Musallam et al., 2004) and premotor areas (Musallam et al., 2004, 

Lebedev et al., 2005, Santhanam et al., 2006) as candidate brain areas for neuroprosthetic 

devices. We examined whether the cingulate cortex, part of the prefrontal neocortex, 

could be an alternative useful site for a neuroprosthetic control signal. 

The cingulate cortex is a compelling brain area for a neuroprosthetic device as it 

is involved in a wide diversity of behavior. In monkey electrophysiology studies, the 

cingulate cortex is involved in reward-based motor planning and reward expectancy 

(Shima and Tanji, 1998, Shidara and Richmond, 2002, Hadland et al., 2003). In rodents, 

the cingulate cortex is involved in behavioral inhibition (Muir et al., 1996), stimulus-

reward associations (Takenouchi et al., 1999, Cardinal et al., 2003), reward-based motor 

planning (Walton et al., 2003), trace-conditioning (Han et al., 2003), and attention in 

complex discrimination tasks (Bussey et al., 1997). In humans, the cingulate cortex has 

been correlated with many behavioral states, including error detection, reward-based 

motor planning, and pain perception (Devinsky et al., 1995, Gehring and Willoughby, 

2002, Williams et al., 2004).  

Given the diversity of the functions of the cingulate cortex, we aimed to 

investigate whether such a brain area can come under subject control for use in directing 

a neuroprosthetic device. Since clinical neuroprosthetics do not have access to known 

movement parameters corresponding to neural response properties, either due to paralysis 

or neurodegeneration, we adopted the approach of similar work in our group (Gage et al., 

2005) by training the cingulate cortex without a priori knowledge of the neural response 

properties.  

Here we report self-modulation of neuronal responses of the cingulate cortex in 

awake, behaving subjects. Seven of seven rats were able to modulate cingulate cortex 

single and multi-neuron responses. By individually training single neurons and multi-

neuron responses, we have determined, by assuming a binomial probability model with 

95% confidence intervals, that 52-84% of cingulate cortex neurons can be trained for use 

in controlling a neuroprosthetic device. We also demonstrated the flexibility of the 

cingulate cortex neural responses by requiring different responses from single neurons. 

Finally, we analyzed the ensemble dynamics of cingulate cortex neurons simultaneously 
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recorded when only individual neurons or multi-neuron clusters were trained. We found 

that the cingulate cortex ensemble response does not necessarily follow the activity of 

trained neurons, suggesting multiple independent channels may be available for control 

of a neuroprosthetic device. 

II. Methods: 

A. Animal Surgeries 

All animal procedures were approved by the University of Michigan University 

Committee on Use and Care of Animals and were in accordance with the National 

Institutes of Health guidelines.  

Eight 300 gram, three months old Sprague Dawley rats were chronically 

implanted with silicon substrate multi-site microelectrode arrays in the cingulate cortex. 

Surgery was done as previously described (Vetter et al., 2004). Anesthesia was 

maintained through intraperitoneal injections of a mixture of 50 mg/ml ketamine, five 

mg/ml xylazine, and one mg/ml acepromazine at an injection volume of 0.125 ml/100 g 

body weight. Every subsequent hour of surgery, 0.1 ml ketamine (50 mg/ml) was 

delivered to the animal to maintain anesthesia.  Each animal was secured to a standard 

stereotaxic frame, and three stainless steel bone screws were inserted into the skull.  A 

stainless steel ground wire attached to the electrode connector was connected to one bone 

screw over the parietal cortex to provide a ground point and temporary mechanical 

support until the connector was permanently cemented to the skull using dental acrylic. A 

craniotomy (approximately three mm by two mm) was made over the target cortical area, 

and the dura mater was cut away to reveal the cortical surface. The electrode array was 

inserted by hand using #5 fine Teflon-coated forceps into the target cortical area. The 

surface of the brain was sealed with the biocompatible hydrogel ALGEL (Neural 

Intervention Technologies, Ann Arbor, MI), the electrode assembly was wrapped with 

GelFoam (Pfizer, Inc., New York), and the entire assembly was sealed with dental 

acrylic. The skin around the acrylic was tightened with sutures, anti-bacterial cream was 

applied, and the animal was then given two days to recover from the surgery.  

Eight rats were implanted with one microelectrode array having four identical 

penetrating shanks separated by 200 µm. Each 3.8 mm shank contained four recording 

sites at the shank tips separated by 200 µm (catalog # 4x4_4mm200chron, Center for 
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Neural Communication Technology, University of Michigan, Ann Arbor). Each electrode 

site had a surface recording area of 1250 µm2.  

We chose our implantation coordinates to span a region of the cingulate cortex 

involved in reward-based motor planning (Walton et al., 2003, de Wit et al., 2006). The 

coordinates used for all cingulate cortex implantations spanned cingulate cortex subareas 

Cg1 and Cg2: 1.5-2.5 mm anterior to bregma, 0.3-0.7 mm lateral from bregma, and 1.6-

2.5 mm deep from the surface of the brain (Paxinos and Watson, 1998). The seven rats 

ultimately used in the data presented here had unit activity that lasted at least three weeks.  

Three of the rats had a right hemisphere implant, and four rats had a left hemisphere 

implant. Operant conditioning training began immediately after surgical recovery; 

cingulate cortex implantation was only verified after training completion with histology. 

B. Electrophysiology and Behavior System 

Units were sorted via a Multichannel Neuron Acquisition System (Plexon, Inc., 

Dallas, TX) and spike times were relayed with nominal delays (1 ms) via TCP/IP to a 

dual 1.25 GHz Dell Dimension Computer (Dell, Inc., Austin, TX) that both analyzed the 

spike activity using in-house designed software (Mathworks, Inc., Natick, MA) and 

controlled the behavioral box (Coulborne Instruments, Inc., Allentown, PA). During each 

experimental session neural electrophysiological data from the 16 electrode channels 

sampled at 40 kHz were simultaneously amplified and bandpass filtered (450 – 5000 Hz). 

Manual spike sorting was conducted prior to each experimental session. The auditory 

stimuli were delivered via a speaker (Yamaha NS-10M Studio, Yamaha Corporation, 

Buena Park, CA) located 35 cm directly above the test box. The system delivered a near-

flat frequency response between 500 Hz and 32 kHz. The system was calibrated to a 

position at the food delivery tray, although calibration measurements indicated that the 

test box approximated a free field. 

C. Behavioral Training 

All rats entering training were kept at 85% of their free-feeding weight.  For each 

behavioral session, the rats were plugged into the headstage and commutator cables and 

placed into the behavioral box. Rats were typically trained six days a week, at 2-5 

sessions per day. 
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Single units and multi-unit clusters were selected for training by the experimenter 

prior to each session. Each behavioral session consisted of 200 trials. Each trial began 

with a two second baseline period during which the average firing rate and standard 

deviation was calculated via a sliding window of 500 ms in 100 ms steps for the selected 

single neuron or multi-neuron cluster. After the baseline period, a 0.1-1 second one kHz 

tone was presented, and the rat was given 2-4 seconds to increase the 500 ms firing rate, 

sliding in 100 ms steps, beyond a threshold level. The threshold was calculated by: 

    μ + ßσ = R 

where μ is the baseline mean firing rate, ß is a user defined coefficient,  σ is the baseline 

firing rate standard deviation, and R is the threshold for reward. If the rat successfully 

exceeded the threshold during the response window, the rat was reinforced with a 45 mg 

food pellet. A pseudorandom 8-12 second intertrial interval occurred before the 

beginning of the next trial. 

In pilot experiments, we empirically found that operant rates of 30-40% were 

optimal for learning within 2-3 days. ß was thus selected on a cell-by-cell basis to keep 

the operant rate at ~35%. For cells trained to increase firing rate, the distribution of ß was 

2.6 ± 1.1 (mean, standard deviation), meaning in a typical session the rat had to modulate 

its firing rate 2.6 standard deviations above the baseline firing rate to receive reward. For 

cells trained to decrease firing rate, the distribution of ß was -2.0 ± 0.5 (mean, standard 

deviation), meaning in a typical session the rat had to modulate its firing rate 2.0 standard 

deviations below the baseline firing rate to receive reward. Thus, the mean chance reward 

rate for all trained cells was kept at 36.1% ± 7.7% (mean, standard deviation). After each 

session, chance was recalculated, and occasionally ß was changed from session to session 

to keep the operant rates at ~35%. Otherwise ß did not change for a given cell. 

Monte Carlo simulations were performed to verify if the animal was performing 

above chance (Manly, 1997). After each behavioral session, the neurophysiological data 

was randomized by shuffling the tone cue times while keeping the spike trains intact. The 

entire behavioral session data was run 200 times offline with the same training algorithm 

described above, but each Monte Carlo simulation run used a new set of randomized tone 

presentations. The distribution of the percent correct was then used to determine 

statistical significance. Two hundred runs of the Monte Carlo simulation were found 
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empirically to be high enough for a stabilized mean and variance (i.e., both no longer 

changed, to the first decimal place, with higher numbers of runs). If the animal performed 

at a percent correct rate that was greater than the 95% distribution of the Monte Carlo 

simulations (p<0.05), the session was considered a demonstration of learning. The mean 

of the Monte Carlo simulation for each session was also used as our metric of chance 

performance (operant rate) for a given session. 

To determine if a recorded unit showed a significant inhibitory or excitatory 

response, confidence intervals were calculated for the peri-stimulus time histograms 

(PSTH’s) using the NeuroExplorer software package (NeuroExplorer, Littleton, MA). 

The computations for these intervals assumed spike trains are the result of independent 

Poisson-point processes as described in the literature (Abeles, 1982). Unit responses that 

crossed the upper 95% confidence interval during the response window were labeled as 

excitatory responses while those that crossed the lower 95% confidence interval during 

the response window were labeled as inhibitory responses, similar to previous work in 

our group (Gage et al., 2005). 

However, in line with expectation coding aspects of the cingulate cortex 

(Takenouchi et al., 1999), some cells later in the training process (see figures 2 and 4) 

appeared to have slight excitatory or inhibitory responses to the tone before training had 

begun for that cell. If the cells had excitatory responses prior to training, the cells were 

then trained to decrease their firing rates (negative ß). If the cells had inhibitory responses 

prior to training, they were, as usual, trained to increase their firing rates (positive ß). 

Some cells, as shown in figure 4C, had a brief transient response to the tone, though 

Monte Carlo simulations revealed that this was not sufficient for the rat to achieve reward 

above chance. Both the Monte Carlo simulations and the PSTH’s had to show significant 

modulation (p<0.05) in response to the tone stimulus in order for the cell to be classified 

as trained.  

To determine the distribution of neurons in the cingulate cortex that could be used 

for a control signal for a neuroprosthetic device, each single neuron or multi-neuron 

cluster was required to be stable for at least two-three days, or at least eight sessions of 

behavioral training, for it to be classified as “untrained” or “trained.” Occasionally, a 

single neuron or multi-neuron cluster would not be statistically significant (p > 0.05) at 
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the end of three days or eight sessions, but a response could be seen forming in the PSTH 

or the performance was approaching significance via the Monte Carlo simulations. If this 

occurred, the single neuron or multi-neuron cluster would be trained for at most another 

three days before it was finally classified as “trained” or “untrained.” The “trained” or 

“untrained” designation did not begin until the first cell per rat was trained, in order to 

verify that the rat had learned the nature of the task. Single neurons were discriminated 

based on stable spike waveforms verified by isolation in principal component analysis 

(PCA) space and autocorrelograms that showed distinct refractory periods no less than 

Figure 2.1 Legend: Electrode Placement 
 (A) Schematic depicting microelectrode array placements for the seven rats used 
for training. Cg1 = Cingulate Cortex Area 1; Cg2 = Cingulate Cortex Area 2; IL = 
Infralimbic Cortex. S1J = Primary Somatosensory Cortex, Jaw Region; M1 = Primary 
Motor Cortex; M2 = Secondary Motor Cortex; PrL = Prelimbic Cortex (Adapted with 
permission from Paxinos and Watson, 1998). CMI numbers designate individual rats. 
(B) Right: Photomicrograph of electrode track tips for CMI-13. Coronal slice is 40 µm 
thick. Of the four tracks for the four electrode shanks, two electrode shanks were in 
layer one. As layer one consists mostly of axons and dendrites, no cells were isolatable 
from those two electrode shanks. Left: Photomicrograph of intact electrode in brain slice 
of CMI-25. Coronal slice is 250 µm thick in order to visualize intact electrode. The 
electrode displaced slightly ventrally upon slicing, causing some tips to enter the corpus 
callosum. Thus, shank medial lateral position is accurate while depth is exaggerated. 



 39 

two ms (Connors et al., 1982, Connors and Gutnick, 1990, Nadasdy et al., 1999, Harris et 

al., 2000).  

If a single neuron was stable and demonstrated learning, the rule of reinforcement 

was changed. In this special case, ß was switched from a positive to a negative value, 

such that the firing rate had to decrease (rather than increase) in response to the tone in 

order for the subject to receive reinforcement. This was done to examine the flexibility of 

the single unit responses. Multi-unit clusters were not used in this manipulation, as we 

could not ensure that multi-unit clusters consisted of two or more neurons modulating 

differentially. Single neurons were tracked over days by examining the autocorrelogram 

for identical refractory periods and bursting characteristics and again additionally 

verifying the stability of the spike waveform through isolation in PCA space. 

At the close of the study, to test whether feedback of auditory stimuli would affect 

the ability of the cingulate cortex to be trained for a neuroprosthetic device, two rats were 

trained with auditory feedback, similar to previous work in our group (Gage et al., 2005). 

Briefly, μ (from above equation, the baseline firing rate) was represented as a 1 kHz tone. 

R (the threshold for reward), was represented as a 5 kHz tone. The gradations of auditory 

feedback were then linearly transformed to represent the neural response firing rate of the 

rat such that if the rat’s neural firing rate approached R on a given trial, the feedback, 

updating in 100 ms steps, would approach 5 kHz.  

D. Histology 

Upon completion of training, the rats were euthanized by intraperitoneal overdose 

of sodium pentobarbital. Following transcardial perfusion with 4% formaldehyde, the 

brain was removed, sectioned into coronal 40 µm slices, and stained with conventional 

cresyl violet Nissl stains. The sections were then analyzed using a Leica MZFLIII light 

microscope (Leica Microsystems, Inc., Germany) to determine probe placement. Rat 

CMI-25 was sliced in 250 µm sections, and left unstained, for intact probe visualization 

in situ (see Fig. 1). 

III. Results 

 Of the eight rats implanted, seven had unit activity sufficient (lasting greater than 

three weeks) for the training experiments. See Figure 1A for electrode placement in the 

seven rats used for training.  
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2.Table.1 Legend: Subjects and Training Summary 
 Performance and neural viability for the seven rats used in this study. SU: Single Unit (Single Neuron), MUA: Multi-Unit 

Activity (Multi-Neuron Cluster). Trained of total refers to number of successfully trained neurons or multi-neuron clusters out 
of the total selected for training. CMI-24 and CMI-25 were trained with auditory feedback representative of neural firing rate. 

 
 
 
 
 
 
 
 

Animal Duration Units Trained SUs of Total Trained MUAs of Total

CMI-13 176 days (sacrificed) 1 of 4 3 of 7

CMI-16 85 days (sacrificed) 3 of 4 1 of 1

CMI-18 24 days (implant failure) 2 of 2 0 of 0

CMI-21 65 days (sacrificed) 1 of 1 2 of 4

CMI-23 165 days (implant failure) 3 of 3 1 of 2

CMI-24 56 days (sacrificed) 0 of 0 3 of 3

CMI-25 97 days (implant failure) 1 of 1 2 of 2

Total=11 of 15 (73%) Total=12 of 19 (63%)

Net=23 trained of 34 total (68%)
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Individual neurons and multi-neuron clusters were trained from the population of 

seven rats to test if the cingulate cortex could be useful for a neuroprosthetic device. 

Following surgical recovery, it took the seven rats an average of seven days to learn the 

task and begin modulating their cingulate cortex (mean sessions to first learning: 20). If 

a subject demonstrated learning for a single neuron or multi-neuron cluster, then another 

neuron or multi-neuron cluster was selected for training. Table 1 shows the statistics for 

the single neuron and multi-neuron cluster modulation. Out of 15 single neurons tested, 

Figure 2.2 Legend: Single Neuron Modulation 
 Examples of three single neurons (A-C), from three rats (CMI-18, CMI-23, 
and CMI-13, respectively), that improved responses upon training.  Waveforms and 
autocorrelograms for the behavioral session are shown adjacent to the peri-stimulus 
time histogram (PSTH). As in all subsequent figures, waveform samples are collapsed 
over each other at the threshold crossing point of the time discrimination window. 
PSTH layout is as follows: Zero indicates time tone was delivered to animal. PSTH’s 
are plotted to represent the neuron minimum and maximum firing rate. Each PSTH 
represents the 200 trials of a single behavioral session. Dotted lines indicate neuron’s 
mean firing rate. Dashed lines indicate neuron’s 95% confidence intervals for mean 
firing rate. Confidence lines and means were calculated on raw data for the entire 
behavioral session (NeuroExplorer, Littleton, MA). The neurons in A and B were 
trained to increase firing rate after the tone, whereas the neuron in C was trained to 
decrease firing rate after the tone. PSTH’s are Gaussian smoothed over five bin widths 
of 100 ms/bin. 
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11 showed significant modulation with training. Out of 19 multi-neuron clusters tested, 

12 showed significant modulation with training. Figures 2 and 3 show example single 

neuron and multi-neuron responses to the tone cue before and after training. The average 

learning time for all cells was 3 ± 1.3 days (8.2 ± 4.5 sessions, mean, standard deviation). 
The average learning time for single neurons was 3.5 ± 1.4 days (9.9 ± 4.6 sessions, mean, 
standard deviation), and the average learning time for multi-neurons clusters was 2.7 ± 1.1 
days (7.1 ± 4.0 sessions, mean, standard deviation). We did not find any effect of learning 
time in early-trained cells vs. later-trained cells either within rats or across all rats. 

Two rats, of the total seven, were trained with auditory feedback representative of 

the neural response firing rate. For the six total cells trained with auditory feedback, the 

mean learning time was 3.0 ± 1.5 days (7.0 ± 4.6 sessions, mean, standard deviation). For 

the 17 cells trained without auditory feedback, the mean learning time was 3.1 ± 1.2 days 

(8.8 ± 4.5 sessions, mean, standard deviation).  

 To test the flexibility of the cingulate cortex in response to varying algorithm 

rules, we performed a brief subsequent experiment examining single neuron responses. 

Once a subject was trained to increase a neuron’s firing rate in response to the tone to 

receive food reward, the subject was trained to decrease  the neuron’s firing rate  after the  

Figure 2.3 Legend:  
Multi-neuron Cluster Modulation 
 Examples of three multi-neuron 
clusters (A-C), from three rats (CMI-
25, CMI-21 and CMI-24, respectively), 
that improved responses upon training. 
PSTH layout is the same as figure 2. 
All multi-neuron clusters were trained 
to increase firing rate after the tone. 
PSTH’s are Gaussian smoothed over 
five bin widths of 100 ms/bin. The 
multi-neuron clusters in A and C were 
trained with auditory feedback 
delivered to the rats. 
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tone in order to receive reinforcement. The different responses were required of a single 

neuron to ensure that two or three neurons were not modulating differentially in this 

condition.  

We were able to record from six neurons, across four subjects, for 9-16 days for 

our flexibility test experiment (see methods for isolation criteria). Of these six neurons 

that were held long enough to change reinforcement rules, four of the neurons, from three 

rats, showed flexible responses. The mean time to learning the transition was 4.2 ± 2.5 

days (10.9 ± 6.5 sessions, mean, standard deviation). Figure 4 shows these four neurons 

that demonstrated ability to modulate in response to changes in rules of reinforcement. 

Though the baseline activity did slightly change from day to day, ß was changed, if 

necessary, from session to session to ensure the operant rate (chance) was held at ~35%. 

For Fig. A-D, the mean and standard deviation of the baseline firing rates for the single 

neurons across days was: A: 14.8 ± 4.9 Hz, B: 5.2 ± 1.8 Hz, C: 19.7 ± 4.9 Hz, D: 18.0 ± 
2.6 Hz. 

We were also interested in the network dynamics of the cingulate cortex in our 

training task. When only a subpopulation of neurons is used for the control signal in a 

neuroprosthetic device, what occurs to the other neurons in the brain area during the task? 

Figure 2.4 Legend: Single Neuron Plastic Responses 
 Four single neurons (A-D), from three rats (CMI-16. CMI-25, CMI-23, and 
CMI-16, respectively) that showed responses to changes in rules of reinforcement. 
Waveforms and autocorrelograms are shown below the PSTH’s. PSTH layout is the 
same as figure 2. PSTH’s are Gaussian smoothed over 10 bin widths of 100 ms/bin. 
Percentage numbers above PSTH’s show behavioral performance for the session. Day 
refers to the day of training. Analysis of the spike train of the neuron shown in B 
revealed it to have a low mean firing rate coupled with bursting behavior. The cell 
would sometimes not emit a single spike for two seconds but also exhibit intense 
bursting activity sometimes approaching instant frequencies of 400 -500 Hz  with an 
absolute refractory period of 2 ms. The neuron in B was also trained with auditory 
feedback delivered to the rat. The neuron shown in C had a transient response to the 
tone in all conditions, concurrent with expectation coding theories of the cingulate 
cortex (Takenouchi et al., 1999). However, even with the constant initial response to 
the tone, the neuron was still trainable. The neuron shown in D was trained 
immediately after the neuron in A (both A and D are from CMI-16). Thus, the “before 
training” session in D is from the same session as day 16 for the neuron shown in A 
(which explains why the neuron in D before training has a prolonged positive response 
after tone).  Note: During training of the neuron in A, equipment issues prevented 
training of the neuron for four days between training days five and six. 
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We investigated this by examining neural modulation as a function both of ensemble 

activity and distance from the trained single neuron or multi-neuron cluster.  

 We were able to demonstrate training for 23 out of 34 single neurons and multi-

neuron clusters in this study; however, during the course of the training, we also were 

able to record far more cells than we trained. In total we were able to record from 234 

cells (77 single neurons and 157 multi-neuron clusters). See Table 2 for the full 

description of this data. We found that 71 of 77 single neurons showed some modulation 

in response to the tone, but the modulation did not necessarily follow that of the trained 

cell. Approximately half increased firing rate, and half decreased firing rate. Similar 

results were obtained for the 75 of the 157 multi-neuron clusters that showed responses to 

the tone. The heterogeneity of firing rate modulation, for both the multi-neuron clusters 

and single neurons, occurred regardless of whether the selected trained cell was trained to 

increase or decrease firing rate. Thus, ensemble cingulate cortex neurons did not 

necessarily follow the firing rate modulation of the trained cingulate neuron, suggesting 

additional independent control signals may be available for a neuroprosthetic device. 

Since the geometry of our silicon probes is fixed due to the fabrication process 

(Vetter et al., 2004), we were able to examine whether cells in closer physical proximity 

to the cell being trained showed different responses to cells that were farther away on the 

electrode array. We analyzed cells at the beginning of training and at the end of training 

and scored neural activity via firing rate modulation in response to the tone stimulus. We 

hypothesized that closer cells would show similar firing rate modulation as the selected 

trained cell. We found that the only difference in populations, using an alpha value of 

0.10 (Curran-Everett and Benos, 2004), was between cells with any modulation and cells 

that had no responses at all (student’s t test, p=0.09). Responding cells were an average 

of 364 µm (σ = 215 µm, n=109) away from the trained cell, and non-responding cells 

were an average of 414 µm (σ = 230 µm, n=53) away from the trained cell. All other 

classes, such as cells that increased or decreased firing rates after the tone during training 

and cells that maintained their elevated or depressed firing rates after the tone during 

training, were not statistically significant with respect to distance to the trained cell 
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2.Table.2 Legend: Ensemble Analysis 

Ensemble analysis tabulation of all cells recorded from the microelectrode arrays when selected cells were trained. In A, total 
cells recorded are subdivided into single cells and multi-cell clusters. B shows the subpopulation of cells and multi-cell clusters 
that showed significant modulation by crossing the 95% confidence intervals of firing rate after tone presentation. C shows the 
same data as B, but classes the single cells and multi-cell clusters by method of firing rate modulation.  

When Selected When Selected 
 Cell Trained to  Cell Trained to

All Sessions Increase Firing Rate Decrease Firing Rate
Total Cells Recorded 234 199 35

A Single Cells 77 (33%) 62 (31%) 15 (43%)
Multi-Cell Clusters 157 (67%) 137 (69%) 20 (57%)

Total Cells Modulating Firing Rate 146 119 27
B Single Cells Modulating Firing Rate 71 (49%) 57 (48%) 14 (52%)

Multi-Cell Clusters Modulating Firing Rate 75 (51%) 62 (52%) 13 (48%)

Single Cells Increasing Firing Rate 40 (56%) 33 (58%) 7 (50%)
Single Cells Decreasing Firing Rate 31 (44%) 24 (42%) 7 (50%)

C

Multi-Cell Clusters Increasing Firing Rate 40 (53%) 32 (52%) 8 (62%)
Multi-Cell Clusters Decreasing Firing Rate 35 (47%) 30 (48%) 5 (38%)
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(student’s t test, p>0.10). Again, this suggests multiple independent control channels may 

be available within the cingulate cortex. 

IV. Discussion 

 The aim of this study was to investigate the possibility that the cingulate cortex 

could be used as an output control signal for a neuroprosthetic device, and our data 

indeed suggest this. Sixty eight percent of our sampled neurons in the cingulate cortex 

could be voluntarily modulated by the rats, and single neurons were flexible in changing 

their response properties due to changes in the rules of reinforcement. 

During the course of the training experiments, we did observe stereotyped motor 

behaviors in the rats, but the movements appeared to be highly variable. For example, 

rats would turn their heads left or right, duck, or paw at the food aperture upon tone onset 

during many of the experiments. Whether these stereotyped behaviors were related to the 

cingulate cortex neurons’ firing rate modulation, or whether the motor behaviors were 

merely superstitious behaviors, is not known. Recent studies have shown that humans can 

modulate the gross metabolic activity of their cingulate cortices in a real-time functional 

magnetic resonance imaging (fMRI) scanner where movement is severely constrained 

(Weiskopf et al., 2003, Weiskopf et al., 2004, Decharms et al., 2005). Such human data 

provides compelling evidence that the cingulate cortex can be modulated with minimal 

motor movement of subjects. 
Intuitively, some areas of the brain may be more useful than others as control 

signals for a neuroprosthetic device. The parietal cortex, as it encodes goal-directed location 
in space, has been demonstrated to be a useful site for neuroprosthetic control signals 
(Musallam et al., 2004). The premotor cortices and motor cortex, involved in movement 
planning and voluntary movement, have been the primary target structures for many 
research groups (Kennedy et al., 2000, Serruya et al., 2002, Carmena et al., 2003, Taylor et 
al., 2003, Hochberg et al., 2006, Santhanam et al., 2006). Other areas of the prefrontal 
cortex, however, have been neglected. In our rat model, the cingulate cortex was the most 
compelling implantation site due to its involvement in encoding reward-based motor 
planning (Shima and Tanji, 1998, Shidara and Richmond, 2002). Anatomically, the cingulate 
cortex has synaptic connections with both the motor cortex (Gu et al., 1999) and nucleus 
accumbens (Berendse et al., 1992), potentially providing the cingulate cortex with highly 
flexible properties in response to varying demands of a neuroprosthetic  device. The 
cingulate cortex may be able to "switch" between different device modes more readily than 
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other cortical implantation sites. Experiments in primate models, using real-time decoding of 
cursor control and other devices, could test this hypothesis. 

Since the cingulate cortex is involved in expectation coding (Takenouchi et al., 

1999), the possibility exists that the responses observed in figures 2 and 3 were due to 

Pavlovian learning rather than operant conditioning or, alternatively, that the responses 

were a manifestation of habits (due to overtraining) rather than goal-directed behavior. 

However, since we were constantly changing which cells the animals had to modulate in 

order to receive reward, we effectively locked the task perpetually in the early learning 

stages, ensuring that the animals never achieved mastery of the task through over-

training. For example, previous work in our group (Gage et al., 2005) has achieved 

performance rates of 90% through extensive training, but the rats in our current study 

rarely achieved performance rates beyond approximately 60%, even when operant rates 

were kept at the reasonably high rate of 35%. In addition, our work demonstrates that the 

cingulate cortex neurons’ responses could change response properties due to changes in 

reinforcement rules (positive ß vs. negative ß) even though the stimuli and reward were 

exactly the same throughout. It is unlikely that such flexibility is the result of habits or 

associative learning. 

However, though the cingulate cortex may be a useful alternative site for a 

neuroprosthetic device due to its role in reward-based motor planning (Shima and Tanji, 

1998, Shidara and Richmond, 2002), some limitations may exist. The cingulate cortex is 

also involved in pain perception, error detection, social evaluations, attention, and a 

variety of other functions (Devinsky et al., 1995, Gehring and Willoughby, 2002, 

Eisenberger et al., 2003, Williams et al., 2004). Any output signals in the cingulate cortex 

may be masked by the inherent processing of the cingulate cortex in a real world 

environment. Though our rats which received feedback were still able to modulate their 

cingulate activity even in the presence of constant tone presentation, our experiments still 

occurred in the highly artificial environment of a behavioral box. In addition, due to the 

cingulate cortex’s medial location and proximity to the sagittal sinus, implantation in a 

human patient is inherently more difficult than a motor cortex implantation. 
Our work builds on that of E. Fetz and M. Baker (Fetz and Baker, 1973) in which 

they trained single units using single microelectrode recording in the primate motor cortex. 
In their study they found 33 units that could be trained and 18 units that could not. This 
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results in an approximate 65% training rate for the motor cortex cells in their data set. Our 
data in the cingulate cortex are in agreement with Fetz's data in that approximately 68% of 
our cingulate cortex cells examined under similar criteria could operantly conditioned by 
rats. Perhaps this ~65% training rate represents an approximate "ceiling" of trainable cells 
in neocortex, regardless of neocortical area. 

 In addition, Fetz and Baker were sometimes able to track two neurons 
simultaneously. They found that though they could train two different neurons in opposite 
response patterns, without such a contingency most neurons followed each other (i.e., if one 
cell was trained to increase its firing rate, the other cell would usually follow it). We did not 
see this effect in our data, but our neurons were recorded from a much broader sampling 
area with our 16-channel microelectrode array. We recorded an average of 9.8 additional 
cells in the ensemble per trained neuron, and we did not find any consistent relationship 
between the response of the trained cell and the responses of the neighboring cells. Since 
the neuron pairs in Fetz and Baker's study were always from the same microelectrode, they 
were no doubt observing closely coupled circuits over a probable 100-150 microns distance 
(Humphrey and Schmidt, 1990), whereas we could record larger scale circuits with a 
maximal ~850 micron distance between the most distant microelectrodes on the same array. 

We found that approximately 68% of the neurons or multi-neuron clusters 

selected for training could be successfully trained, and all of the implanted rats with 

sufficient unit activity were able to modulate the cingulate cortex to receive reward. 

Assuming a binomial probability model, this results in a 95% confidence interval of 52-

84%. Thus, any neuron or multi-neuron cluster recorded from the cingulate cortex has a 

52-84% chance of being trainable, which, given large multi-electrode arrays, may be 

sufficient for a neuroprosthetic device. With algorithm improvement and different 

training paradigms, it is possible that more neurons could be recruited, more states could 

be discriminated, and learning could be faster.  

V. Conclusion 

We report that the cingulate cortex of rats can come under voluntary control. 

Thus, if the motor cortex is damaged by a neurodegenerative disease such as primary 

lateral sclerosis and cannot be used for a neuroprosthetic device, the cingulate cortex can 

potentially be used in neuroprosthetic devices in human patients.  
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Chapter III 
 
Spikes, Local Field Potentials, and Electrocorticogram Correlations in the Motor Cortex 

of Rats 
 
 

Abstract 
 
 Neuroprosthetic development for limb or computer cursor control typically falls 

into two arenas, invasive extracellular recording and non-invasive electroencephalogram 

recording methods. The relationship between action potentials and field potentials is not 

well understood, and investigation of the co-dependencies between the two types of 

signals may improve design of neuroprosthetic control systems. To this end, we recorded 

spikes, local field potentials (LFPs), and electrocorticograms (ECoGs) simultaneously 

from the motor cortex of rats during three behavioral states: anesthetized, performing a 

motor learning task, and performing a motor unit operant conditioning task. In the motor 

learning task, the rats had to simultaneously place both forepaws on levers on the cage 

floor while holding their snouts in a nosepoke aperture. After the rats learned the motor 

learning task, they were trained on an operant conditioning task whereby they had to 

modulate their spiking activity during the delay period in order to receive a food reward.  

We hypothesized that 1) during anesthesia, the spikes would phase-lock to the 1-2 

ketamine oscillation rhythms, 2) during motor learning epochs, the spikes would phase-

lock to the 20 Hz movement related ß rhythms, and 3) during the neural operant 

conditioning task, the spikes would phase-lock to the high frequency (>30 Hz) gamma 

rhythms. 

 During anesthesia, the spikes phase-locked to the 1-2 Hz ketamine rhythm, and 

during the motor learning and operant conditioning tasks, the spikes phase-locked to the 

theta (8 Hz) rhythm. We did not see any gamma frequency modulation in any behavioral 

condition. Thus, combining spikes and field potentials for a neuroprosthetic control 

signal may be feasible in the motor cortex if the local field potentials are high-passed 
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above 10 Hz. In addition, perhaps the <10 Hz rhythms may provide an indicator of 

cortical modulation for a neuroprosthetic device should the recordings of spiking activity 

fail. 

I. Introduction 

  The past decade has seen a dramatic growth in the technology of neuroprosthetic 

devices. By recording and providing computer monitor feedback of the spiking activity of 

motor cortex neurons to awake subjects, many research groups have demonstrated 2D or 

3D cursor control, as well as the manipulation of robotic arms (Kennedy et al., 2000, 

Carmena et al., 2003, Taylor et al., 2003, Musallam et al., 2004, Hochberg et al., 2006, 

Velliste et al., 2008). However, there is a concurrent drive to develop lower-cost lower-

risk brain-computer interface alternatives, specifically, using the electroencephalogram 

activity (recorded from the scalp) (Wolpaw and McFarland, 2004, Trejo et al., 2006) or 

the electrocorticogram activity (recorded from the cortical surface) (Leuthardt et al., 

2004, Wilson et al., 2006, Schalk et al., 2008). Combining the resolution of motor cortex 

spiking activity with long-term stability of the population field potential provide the best 

solution of long-term viability with high information transmission for a neuroprosthetic 

device controller. 

However, local field potential modulation for neuroprosthetics remains 

unexplored, with only two brief reports demonstrating use of LFP amplitude modulation 

(Kennedy et al., 2004a, Kennedy et al., 2004b). In addition, the relationship between 

action potentials and field potentials in awake, behaving subjects is currently an active 

subject of speculation, research, and debate in neurophysiology.  

The majority of neuroprosthetics target the motor cortex (for review, see 

(Schwartz, 2004, Fetz, 2007); thus, we focused our attention on oscillations of the motor 

cortex during motor learning tasks. In monkeys, a “preparatory potential” of the 25-35 Hz 

beta rhythm occurs when monkeys are actively exploring or planning to move (Murthy 

and Fetz, 1996a, Murthy and Fetz, 1996b), and the single units isolated during these 

experiments indicated the spikes were phase-locking to the 25-35 Hz rhythm (See Figure 

13). Other groups have found additional ~20 Hz potential modulation during the 

preparatory phase of movements in monkeys (Donoghue et al., 1998, Baker et al., 1999) 

and a quadriplegic human (Hochberg et al., 2006). In spite of this, it was recently found 
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that <13 Hz frequency bands and 60-200 Hz frequency bands code for movement 

direction more accurately than 20-50 Hz in a center-out reaching task (Mehring et al., 

2003, Mehring et al., 2004, Rickert et al., 2005). Moran and his colleagues additionally 

found high frequencies (50 – 200 Hz) in both ECoGs and LFPs encode movement 

direction in eight and four directions, respectively (Leuthardt et al., 2004, Heldman et al., 

2006).  

As the monkey neocortex and rat hippocampus literature has indeed shown that 

spikes tend to fire in phase with certain frequency ranges of the field potential during 

specific behavioral epochs (Murthy and Fetz, 1996a, Fries et al., 2001, Womelsdorf et al., 

2006, Kjelstrup et al., 2008), we hypothesized that the spikes of the motor cortex neurons 

would also phase lock to specific frequencies of the field potentials during different 

behavioral epochs, and our study aimed to determine this.  

We sampled spikes, LFPs, and ECoGs simultaneously in a chronic preparation 

during multiple behavioral states: ketamine-induced anesthesia, a motor learning task, 

and a neural operant conditioning task. In the motor learning task, rats were trained to 

simultaneously place both forepaws on levers on the cage floor while performing a 

simple nosepoke task and holding the position for 1-5 seconds. After the rats learned this 

task, the rats were then trained in a neural operant conditioning mode whereby they had 

to modulate the spiking activity of cells in the motor cortex during the delay period in 

order to receive a food reward. We hypothesized that 1) during anesthesia, the spikes 

would phase-lock to the 1-2 ketamine oscillation rhythms (Fontanini et al., 2003), 2) 

during motor learning epochs, the spikes would phase-lock to the 20 Hz movement 

related ß rhythms (Murthy and Fetz, 1996b), and 3) during the neural operant 

conditioning task, the spikes would phase-lock to the high frequency (>30 Hz) gamma 

rhythms (Gray and Singer, 1989, Fries et al., 2001). 

Using the spike-triggered averages of single neurons with regard to the 

simultaneously recorded LFPs and ECoGs, in the anesthetized state the spikes aligned 

precisely in phase with the slow 1-2 Hz rhythm, whereas in the motor learning and neural 

operant conditioning states the spikes synchronized to the theta rhythms (8 Hz). 

Surprisingly, we did not observe any evidence of phase locking to gamma rhythms during 

periods of firing rate modulation. Thus, the low frequencies of the LFP and ECoG do not 
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provide additional information than spikes alone. However, if the spiking activity fails, 

the lower frequencies of the field potential can potentially be used as an alternative 

cortical control signal. 

II. Methods: 

A. Surgical Preparation 

 All animal procedures were approved by the University of Michigan University 

Committee on Use and Care of Animals and were in accordance with the National 

Institutes of Health guidelines. Three hundred gram, three months old Long Evans rats 

were chronically implanted with silicon substrate multi-site microelectrode arrays into the 

motor cortex. Surgery was done as previously described (Vetter et al., 2004, Marzullo et 

al., 2006). Anesthesia was maintained through intraperitoneal injections of a mixture of 

50 mg/ml ketamine, five mg/ml xylazine, and one mg/ml acepromazine at an injection 

volume of 0.125 ml/100 g body weight. Every subsequent hour of surgery, 0.1 ml 

ketamine (50 mg/ml) was delivered to the animal to maintain anesthesia.  Each animal 

was secured to a standard stereotaxic frame, and three stainless steel bone screws were 

inserted into the skull.  A stainless steel ground wire attached to the electrode connector 

was connected to one bone screw over the parietal cortex to provide a ground point and 

temporary mechanical support until the connector was permanently cemented to the skull 

using dental acrylic. A craniotomy (approximately three mm by two mm) was made over 

the target cortical area, and the dura mater was cut away to reveal the cortical surface. 

The electrode array was inserted by hand using #5 fine Teflon-coated forceps into the 

Fig. 3.1 Electrode Placement. Above image shows arrangement of ECoG electrodes 
and motor cortex depth electrode in a rat during surgical implantation. 
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target cortical area. The surface of the brain was sealed with the biocompatible hydrogel 

ALGEL (Neural Intervention Technologies, Ann Arbor, MI), the electrode assembly was 

wrapped with GelFoam (Pfizer, Inc., New York), and the entire assembly was sealed with 

dental acrylic. The skin around the acrylic was tightened with sutures, anti-bacterial 

cream was applied, and the animal was then given two days to recover from the surgery.  

Each electrode consisted of a single silicon shank with sixteen 1250 µm2 

platinum/iridium electrode sites separated by 100 µm (catalog c1x16-6mm100-1250, 

NeuroNexus Technologies, Ann Arbor, MI). We chose our implantation coordinates to 

span the forelimb/neck area of the right rat motor cortex (Sanes et al., 1990): 1-3 mm 

anterior to bregma, 2-3 mm lateral from bregma, and 1.5 mm deep from the surface of the 

brain (Paxinos and Watson, 1998). Each electrode was inserted in an attempt to ensure 

that the dorsal electrode site was at the top of the brain. 

Electrocorticograms (ECoGs) were recorded via screws inserted into the skull 

with wire leads coming off the screws (catalog number E363/20/1.6, PlasticsOne, 

Roanoke, VA) (see Fig. 1 for electrode schemata). The ECoG electrodes were implanted 

such that the base of the screw was in contact with the dura mater of the brain. The 

electrode wire sleeves were then mounted in a pedestal on the animal's head for chronic 

Fig. 3.2. Behavioral Paradigm. Above 
image shows the design of the 
behavioral task. Images to the left and 
right show behavioral apparatus. In the 
motor learning mode, no auditory cues 
were delivered and the rat was not 
required to modulate its motor cortex as 
in the neuroprosthetic task. 
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recording (MS363 pedestal, PlasticsOne, Roanoke, VA). Two ECoG screws were placed 

approximately two mm anterior and two mm posterior to the microelectrode craniotomy. 

A ground ECoG was placed over the cerebellum of the rat.  

B. Electrophysiology and Behavior System 

 Units were sorted via a Multichannel Neuron Acquisition System (Plexon, Inc., 

Dallas, TX) and spike times were relayed with nominal delays via TCP/IP to a dual 1.25 

GHz Dell Dimension Computer (Dell, Inc., Austin, TX) that both analyzed the spike 

activity using in-house designed software (Mathworks, Inc., Natick, MA) and controlled 

the behavioral box (Coulborne Instruments, Inc., Allentown, PA). During each 

experimental session neural electrophysiological data from the 16 electrode channels 

sampled at 40 kHz were simultaneously amplified and bandpass filtered (450 – 5000 Hz). 

Manual spike sorting was conducted prior to each experimental session. LFPs were 

amplified 500 Hz and filtered from 3-90 Hz. The spikes and LFPs shared a common 

ground over the cerebellum. The ECoGs were recorded with a SR560 low noise 

preamplifer (Stanford Research Systems, Sunnyvale, CA), at 5000x gain, filtered at 0.3-

300 Hz with a 6 dB rolloff, in differential mode between the anterior and posterior ECoG 

screws about the motor cortex with respect to a cerebellar ground ECoG screw.  

 The auditory stimuli were delivered via a speaker (Yamaha NS-10M Studio, 

Yamaha Corporation, Buena Park, CA) located 35 cm directly above the test box. The 

system delivered a near-flat frequency response between 500 Hz and 32 kHz. The system 

was calibrated to a position at the food delivery tray, although calibration measurements 

indicated that the test box approximated a free field.  

C. Behavioral Training and Neuroprosthetic Algorithm 

 Upon surgical recovery (typically one week), the rats were trained to insert their 

noses in an aperture in the behavioral cage in order to receive a food pellet. See Fig. 1 for 

a depiction of the behavioral task. After learning this task (typically five days), the foot 

pedals were introduced. These foot pedals consisted of 3 in by 1 in platforms attached to 

clicker switches. After about a week of training, the rats were able to place both forepaws 

on the platforms while simultaneously placing their nose in the aperture, and gradual 

shaping procedures enabled the rats to be able to maintain this position for 3 seconds. 

Though the rats were able to keep both paws on the platform and their noses in the 
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aperture to attain the reward, video observation of the rats revealed an "anxious" behavior 

whereby the rats would often manically contract and twist their shoulder and neck 

muscles while in the nosepoke task.  

 After a week of training in this mode, the rats were trained on the neural operant 

conditioning task whereby the rats had to modulate the ensemble neural activity of the 

motor cortex to receive a food reward. Formal mathematical details of this algorithm 

(Marzullo et al., 2007) consist of the following:  

 We used an in-house developed z-scored based weighted ad hoc linear algorithm. 

Trials consisted of a 1 sec baseline, a 0.3 sec 1 kHz tone stimulus period, and a 1.7 sec 

response window. The mean baseline firing rate and standard deviation were calculated 

by sliding a 450 ms window in 90 ms second steps over the baseline period. The response 

firing rate was calculated similarly by sliding 450 ms in 90 ms steps. In general, if the 

rat’s motor cortex firing rates response level was greater than a given threshold on a given 

trial (Rt >Tt ), the animal was rewarded. The response level Rt was calculated on every 

trial as: 
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Where rc,t is the number of spikes in the sliding 500 ms response window; bc,t is the mean 

baseline number of spikes, and Wc,t is the individual channel weight. The subscripts c and 

t refer to a given channel on a given trial. n is the number of channels. The threshold Tt  

was calculated on every trial as: 
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Where ĸ is an arbitrary coefficient, usually set to 2.5, used to set the difficulty of the task, 

and σt,c is the baseline firing rate standard deviation. 

 Initially, the weights were all set to one but were then updated after each 

successful trial as: 
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Where m is a history buffer of previous trials, and Wc,t was the ten trial average weight 

for each channel. In our experiments, m was set to ten, meaning the weights were 

calculated as a running average of the previous ten successful trials. wc,t  (individual 

channel, individual trial weight) was calculated as:  

Fig. 3.3. Normalization of spike-triggered averages. Left Top shows spike-triggered 
average of a spike/LFP pair and its accompanying power spectral density. Right Top 
shows a randomized spike-triggered average and its accompanying power spectral 
density. Bottom graph shows the ratio of the power between the two spectra. This 
"power ratio" vs. frequency was used as our chief metric for all subsequent analysis. 
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 Our group has empirically found that operant rates of 35-40% are optimal for 

quick learning in cortical control applications. Thus, we changed the к value from eq. 2, 

if necessary session-to-session, to keep chance ~40%.  

 In addition, auditory feedback, in the form of pure tones delivered every 90 ms, 

was continuously given to the rat during the response period to give the rat some 

indication of the state of the neural ensemble. As the rat's Rt approached Tt, the frequency 

of the auditory tone would increase from 0-1000 Hz. If the rat achieved the firing rates 

necessary for reward Tt prior to the end of the three second window, the auditory tone 

would continue as 1000 Hz pips until the end of the nose-in period.  

D. Data Analysis 

 All neurons were subject to automated (using Matlab) autocorrelogram analysis, 

whereby the absolute refractory period was examined to determine whether the unit was a 

single neuron or multi-neuron cluster. Neurons with an absolute refractory period of 2 ms 

were considered to be single units (Henze et al., 2000).  

 The single units were then analyzed using spike-triggered averages (STAs) to the 

adjacent (100 µm distance) electrode's LFP as well as the ECoG. The power spectral 

density of the STA was then used to determine the frequency of phase-locking as a 

function of behavioral state. In order to normalize for the effects of electrode impedance 

and animal variation, the STA was calculated again for the same spike train, but the spike 

train was randomized such that the timing of all the spikes was shuffled. The power 

spectral density of the normal STA was then divided by the randomized STA to 

determine the magnitude of the phase-locking frequencies. See figure 3 for a graphical 

explanation of this technique.  
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 In addition, the spike-triggered averages were also subjected to an interval filter 

whereby only periods of high spiking modulation (two standard deviations above the 

neural  firing rate  means,  assuming  a  Poisson  distribution  of  the  spike  firing)  were  

Fig. 3.4. Neural Traces of the Three States. Figures above show rasters of the spikes 
and traces of the LFPs and ECoGs. The spikes are single units, and the LFP from the 
same channel, and accompanying ECoG, are displayed below the rasters (LFP in 
black, and the ECoG in grey). Nine second snapshots are shown. The spike-triggered 
averages for the accompanying LFPs and ECoGs are shown on the right. 
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Fig. 3.5 Power Spectral Densities across all Neurons. Green line indicates 
neuroprosthetic mode, red line indicates motor learning mode, and black line represents 
anesthetized mode. Whole Session indicates the spike triggered averages were 
calculated over the whole behavioral session, and High Firing indicates the spike 
triggered averages were calculated over epochs where the firing rate exceeded two 
standard deviations of the neural firing rates mean. Dashed lines indicate standard error 
of the mean of the power ratio for a given frequency. Notice harmonics of theta (8 Hz) 
are prominent. Only frequencies up to 50 Hz are plotted; higher frequencies had 
essentially flat responses. 
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analyzed to determine frequency of phase locking during neural spiking modulation. 

Finally, the periods during nose insertion (three seconds before food delivery) in both the 

motor learning and neural operant conditioning modes were also subjected to the STA 

analysis.  

  

 III. Results: 

 The data set consists of an analysis of 6 animals, and we were able to record a 

total of 1934 units (under the assumption of treating every training day as unique). Upon 

analysis of the autocorrelograms of the units to reveal absolute refractory periods of 2 ms 

(Connors et al., 1982, Connors and Gutnick, 1990, Henze et al., 2000), we isolated 310 

single neurons. Of these, 199 of them had noise-free ECoGs, 212 had noise-free LFPs, 

and 120 had simultaneous noise-free LFPs and ECoGs. Thus, we recorded 15 

anesthetized, 80 motor learning, and 117 neural operant conditioning STA-LFP pairs, and 

4, 67, and 128, respectively, STA-ECoG pairs. We here present the analysis of these STA 

pairs.  

Fig. 3.6 Comparison of Power Spectral Densities between Motor Learning and 
Neuroprosthetic Modes for the LFP and ECoG for the three seconds prior to food 
delivery. 
 



 66 

 During ketamine anesthesia (immediately after the implantation surgery), the 

spikes, LFPs, and ECoGs were all highly synchronized to the 1-2 Hz ketamine rhythm 

(Fontanini et al., 2003). See figure 4 for a raster plot of anesthetized single unit activity, 

combined with its respective LFP and ECoG traces and STAs. See figure 5 for the 

population analysis of single unit phase-locking during anesthesia.  

 During the motor learning and neural operant conditioning tasks, the spikes were 

weakly entrained to the theta rhythm (~8 Hz) in both the ECoG and LFP. However, we 

hypothesized that if we sorted the spikes to only calculate the STAs during periods of 

high firing, perhaps the phase-locking would shift from the low frequencies (specifically, 

theta) to the high >10 Hz brain rhythms. See figure 5 for a population level analysis of 

the single neurons during the whole session and the periods of the high spiking. Though 

the power of the phase-locking in the theta bands and its respective harmonics was 

reduced (though still present) in the neural operant conditioning period, we did not 

observe any phase-locking in the gamma frequencies in either the motor learning or 

neural operant conditioning tasks during periods of high firing. 

 However, since the rats were also trained to insert their nose in an aperture for a 

certain delay period in order to receive a food reward, we analyzed the three second 

period prior to food reward in 1) the motor learning task where the rat simply had to hold 

still and 2) the neuroprosthetic task where the rat had to modulate its firing rate activity 

while holding still in order to receive the food reward. In these epochs of STA analysis, 

there was still weak phase locking to the theta rhythm, but again, there was no 

entrainment to any high frequency >10 Hz ranges. See figure 6 for the population level 

analysis during the epochs prior to food delivery. 

IV. Discussion: 

 Why did we not observe any phase locking to >10 Hz oscillations (beyond 

harmonics of the 8 Hz theta rhythms)? Though theta rhythms have been relatively 

unexplored in the motor cortex, it has been previously reported that theta rhythms are 

modulated in the motor cortex of dogs (Black and Young, 1972). Other groups have 

observed high frequency oscillations as a function of movement direction in monkeys 

(Heldman et al., 2006). Perhaps because we did not have a movement direction task, we 

did not observe the gamma oscillations. Figure 7 shows a snapshot spectrogram of our 
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behavioral task; there are no clear gamma oscillations. 

 Our results in our rat model indicate that spiking modulation in the motor cortex 

in rats is largely correlated with the theta rhythm. In designing a neuroprosthetic control 

system, the frequency ranges of the gamma rhythms could still be added as an additional 

control signal for a neuroprosthetic device, but it is doubtful the controller would actually 

use/modulate the gamma frequencies. Of course, this will have to be verified by further 

experimentation. To design a neuroprosthetic control system in a rat combining both 

LFPs and spikes, an algorithm could bandpass the LFPs to only include the >10 Hz 

Fig. 3.7: Spectrograms of Motor Learning and Neuroprosthetic Mode LFPs and 
ECoGs during Two Exemplary Sessions. Notice an obvious lack of significant 
frequency modulation in the LFP and ECoG channels above >20 Hz frequencies. Grey 
line overlays on spectrograms indicate spike firing rate modulation on the same 
channel. Firing rates of spikes are shown on the right y-axis. 
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frequencies, and use the bandpassed amplitude of the LFPs as an additional information 

channel. The "weights" Wc,t of equation 3 in the methods above could then be examined 

to determine whether the animals are indeed using the LFPs as a modulating signal in 

preference to, or in equality with, the spiking activity. 

 As local field potentials can be recorded relatively easily when recording 

extracellular multi and single-unit activity, it has been proposed in the neural engineering 

community that local field potentials and spikes could be combined to create a high 

fidelity neuroprosthetic device controller. Here we report that the two signals are not 

exclusively independent. Thus, if field potentials, as well as ECoGs, were to be used 

concurrently with spikes for a neuroprosthetic device controller, the lower frequencies 

(<10 Hz) would provide redundant information.  This may provide a benefit should the 

spiking activity fail; the low frequency field potentials could then be used for the control 

signal. 
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Chapter IV 
 

A Sensorimotor Closed-loop Neural Interface Case Study in Rats 
 

Abstract: 

 Developments of the past decades have shown it is possible to extract and decode 

control signals directly from the brain for use in neuromotor prosthetics. Currently, there 

is a push towards developing closed-loop interface systems combining recording output 

signals and, via microstimulation techniques, generating input feedback signals. Here we 

describe our iterative results in a rat model of a sensory/motor neurophysiological 

feedback control system. 

 Five rats were chronically implanted with microelectrode arrays in both the motor 

and visual cortices. The rats were subsequently trained over weeks to modulate their 

motor cortex ensemble in response to intra-cortical microstimulation (ICMS) of the 

visual cortex in order to receive a food reward. Rats were also given continuous feedback 

via visual cortex ICMS during the response periods of the behavioral trials that was 

representative of the motor cortex ensemble dynamics. The animals were able to use the 

feedback as a signal, and analysis revealed the rats were using the feedback as indicators 

of behavioral trials. We also show exemplary data with motor movement minimization as 

well as using electrical brain stimulation as reward.  

 Combining ICMS of sensory cortex with ensemble decoding of motor cortex 

holds promise for future neuroprosthetic applications, and our preparation offers a useful 

test model for improving the technology of closed-loop neural devices. 

 

I. Introduction 

Technological developments over the past decade have caused a dramatic growth 

in the capabilities of brain-controlled applications in rats (Chapin et al., 1999, Gage et al., 

2005), monkeys (Wessberg et al., 2000, Serruya et al., 2002, Taylor et al., 2002, Carmena 

et al., 2003, Musallam et al., 2004), and humans (Kennedy and Bakay, 1998, Kennedy et 
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al., 2000, Hochberg et al., 2006). However, all the studies above focused on 

exploiting/creating output signals of the brain, with either visual or auditory feedback 

given to the experimental subjects indicating the state of the respective neural ensembles. 

The scientific community speculates that the next technological growth area will be 

delivering feedback of neural output states directly back to sensory areas of the central 

nervous system (Abbott, 2006, Fagg et al., 2007), as doing so could potentially improve 

operator performance and efficacy of neuroprosthetics. For example, in a recent report 

(Velliste et al., 2008) in which a monkey controlled a robot arm to feed itself using its 

motor cortex activity, the monkey had to visually watch the arm's movement to control it. 

While visual feedback is sufficient for the highly controlled lab environment, this 

severely limits the use of a neuroprosthetic device if the user has to carefully watch the 

device/limb everytime he uses it (for example, typing on a computer, playing a musical 

instrument, and walking/running are motor behaviors that humans do without looking 

directly at their limbs). Thus, there is increasing itself in delivering feedback to the brain 

of the "state" of a neuroprosthetic device, 

Concurrent with the development of neuroprosthetic output devices, some groups 

have explored sensory replacement/augmentation and fundamental neural encoding 

through delivering sensory information to the neocortex in the form of electrical 

stimulation (Dobelle et al., 1979, Romo et al., 1998, Bradley et al., 2005, Fitzsimmons et 

al., 2007, London et al., 2008). However, the simultaneous use of neural 

recording/decoding techniques with sensory cortex intracortical microstimulation (ICMS) 

in real-time for neuroprosthetic models remains unexplored. 

Our group has previously investigated both ensemble decoding for 

neuroprosthetics (Gage et al., 2005, Marzullo et al., 2006) and sensory cortex ICMS 

(Rousche et al., 2003, Otto et al., 2005) in separate experiments, and here we combine 

these two techniques for a closed-loop preparation with the long-term goal of improving 

both neuroprosthetic applications. We explored 1) the feasibility of sensory cortex ICMS 

as a "go" stimulus in a cortical control task, and 2) the use of sensory cortex ICMS 

feedback simultaneously with motor ensemble decoding. 

In this report we describe, case by case, our iteratively developed preparation. 

Five rats were trained to modulate their motor cortices in response to ICMS of the visual 
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cortex. Three of these animals were also given feedback, via visual cortex ICMS, during 

the response periods that was representative of the dynamics of the motor cortex 

ensembles. The rats were able to use the ICMS as an information source and were able to 

appropriately modulate the motor cortex. We also report pilot results utilizing electrical 

stimulation of the reward pathway and minimization of motor movement. Finally, we 

discuss the limitations of our model, technological issues, and future applications.   

II. Methods 

A. Electrode Arrays, Surgical Procedure, and Neural Recordings 

All animal procedures were approved by the University of Michigan University 

Committee on the Use and Care of Animals and were in accordance with the National 

Institutes of Health guidelines. Five male Long-Evans Rats (400-500 grams) naïve to the 

behavioral task were implanted with two 16 or 32-channel chronic silicon-substrate 

microelectrodes (Vetter et al., 2004), each consisting of a single silicon shank with 1250 

μm2 platinum/iridium electrode sites separated by 100 µm (catalog #3mmChron100-1250, 

Center for Neural Communication Technology, University of Michigan, Ann Arbor or 

catalog #6mmChron100-1250, NeuroNexus Technologies, Inc., Ann Arbor, MI). The 

visual cortex electrodes were activated prior to the surgery using cyclic voltammetry 

through the electrode sites to create an iridium oxide layer to both increase charge 

capacity and reduce the impedance (Weiland and Anderson, 2000). In addition some rats 

were implanted with medial forebrain bundle electrodes (MFB) at 4.6 mm posterior to 

bregma, 0.9 mm lateral from bregma, and 8.4 mm deep from the surface of the skull, 

using bipolar concentric electrodes (catalog #MS308, PlasticsOne Inc., Roanoke, VA). 

 Surgery was performed as previously described (Vetter et al., 2004, Marzullo et 

al., 2006). Briefly, the rats were anesthetized with a ketamine/xylazine cocktail, and heart 

rate and blood oxygen were monitored with a pulsoximeter. The skull was exposed and 3 

mm diameter craniotomies were made over the target cortical areas. The silicon 

electrodes were inserted in the motor cortex (target 2.5-3.0 mm anterior to bregma, 2.5 

mm lateral from bregma) (Sanes et al., 1990) and visual cortex (0 mm posterior to 

lambda, 3-4 mm lateral from bregma) (Shuler and Bear, 2006). The electrodes were 

hand-inserted using #5 Teflon coated forceps, and the electrode ribbon cables were 

wrapped with gelfoam before enclosing the whole electrode assembly in acrylic. Total 
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surgery time was typically seven hours, and rats were given a week to recover before 

training began. 

During each experimental session neural electrophysiological data from the 

electrode channels sampled at 40 kHz were simultaneously amplified and bandpass 

filtered (450 – 5000 Hz) on a Multichannel Neuronal Acquisition Processor (MNAP; 

Plexon Inc, Dallas, TX). Local field potentials were amplified at 500x and filtered from 1-

500 Hz.  

B. Visual Cortex Characterization 

 Immediately after surgery, while the animal was still anesthetized, it was placed in 

a dark behavioral box, and visual and motor cortex neural responses were recorded as the 

house lights flashed on and off every 20 seconds. The spiking and field potential 

responses about light onset and offset were then analyzed with peri-event time histograms 

(PETHs) to determine the extent of visual evoked responses. The visual cortex channel 

with the most robust response, as determined by a maximal increase in spiking unit firing 

rate or maximal field potential amplitude at light onset, was used as the stimulation 

channel in subsequent behavioral experiments after surgical recovery.  

C. Training Paradigm: 

 After surgical recovery, all rats were maintained at 85% of their free-feeding 

weight.  For each behavioral session, the rats were plugged into the headstage and 

commutator cables and placed into the dark behavioral box. Rats were typically trained 4-

6 days a week, at 2-5 sessions per day. Units were sorted by hand prior to each training 

session using Plexon Sortclient software (Plexon Inc, Dallas, TX). All spike times from 

the sorted units were then relayed with nominal delays via TCP/IP to a dual 1.25 GHz 

Dell Dimension Computer (Dell, Inc., Austin, TX) that analyzed the spike activity using 

in-house designed software (Mathworks, Inc., Natick, MA) and controlled both the 

behavioral box (Coulborne Instruments, Inc., Allentown, PA) and the stimulation 

hardware (A-M Systems 2200 Analog Stimulus Isolator, Sequim, WA, for single channel 

stimulation or Tucker Davis Technologies Multichannel Stimulator RX7 with MS16 

Stimulator Base Station, TDT Systems, Alachua, FL, for multichannel stimulation). 

 Initially, we used an ad hoc linear algorithm to train the rats (Rats M5, M6). 

Briefly, this algorithm transformed the firing rates of all the sorted units into z-scores 
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based on the neural firing rate means, and the rats were rewarded for increasing the 

neural firing rates an experimenter-determined z-score away from the firing rate means 

after presentation of the visual cortex ICMS "go" cue. See Fig. 1 for a schematic of the 

behavioral task. Formal mathematical details of this algorithm are previously published 

by our group (Marzullo et al., 2007).  

However, the ad hoc linear algorithm does not allow the animal to initiate a trial 

(trials occur at random 8-12 second inter-trial intervals), so subsequent rats (M10-M12) 

were trained using a co-adaptive Kalman filter based on previous work by our group 

(Gage et al., 2005). Briefly, the co-adaptive Kalman filter finds correlated signals in the 

neural patterns that modulate from baseline firing rates with respect to the visual cortex 

ICMS "go" cue. To begin a trial, the rat had to maintain its motor cortex ensemble 

baseline firing rates, calculated in running two minute averages, for 450 ms (giving the 

rat some indirect power to "decide" when a trial begins). The visual cortex ICMS "go" 

cue then occurred, and the rat had to modulate its motor cortex for 450 ms within the 4-5 

s response window in order to receive the food reward. We did not consider decreases in 

firing rates to be a neural response for reasons described below.  

Fig. 4.1: General Behavioral Scheme. Rats M5 and M6 were trained without 
feedback (with the exception of the motor minimization training with rat M5), 
whereas M10, M11, and M12 were trained with feedback. 
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In all training paradigms, Monte Carlo simulations, in which the visual cortex 

stimulation times were shuffled while keeping the spike trains intact, were done offline to 

determine whether the animals were performing above chance (Gage et al., 2005, 

Marzullo et al., 2006). On a given session, if a rat performed at a percent correct rate that 

was greater than the 95% distribution of the Monte Carlo simulations (p<0.05), the 

session was considered a demonstration of learning. The mean of the Monte Carlo 

simulations for each session was also used as our metric of chance performance (operant 

rate) for a given session. 

 Our stimulation parameters used in the visual cortex ICMS "go" stimulus 

consisted of cathodic first, 200 μsec/phase biphasic pulses, delivered at 150 Hz, for 0.25 

seconds, at an amplitude of 50-98 μA peak-to-peak for rats M5 and M6, and 20 μA for 

rats M10-M12. These parameters were chosen as such stimulation has been shown to be 

both perceivable, safe, and exhibits reversible faradaic reactions at the electrode interface 

(Rousche et al., 2003, Merrill et al., 2005). Periodically (every month), impedances at one 

kHz where taken for both the motor and visual electrodes with an Autolab system (Eco 

Chemie, Utrecht, Netherlands) to determine if any electrode sites had failed (typically 

revealed by an impedance >2-3 MΩ). If bad sites were found, the channels were dropped 

from the visual cortex ICMS paradigms during subsequent training. 

D. Feedback 

The three rats run on the Kalman filter training algorithm were also given 

feedback during the response window in the form of visual cortex ICMS representative of 

the motor cortex ensemble activity. However, as clearly seen in Figs. 3-8 (see neural 

responses at time = 0, or visual cortex ICMS "go" cue delivery), delivering current into 

the visual cortex causes a stimulation artifact in the motor cortex recordings. The 

amplifier saturation artifact prevents the recording of spikes during the ICMS, in effect 

reducing the observed firing rates of the motor cortex ensemble. To mitigate ICMS 

artifacts corrupting the motor cortex recordings, we used an interleaved feedback system. 

All of our training software used 90 ms clock cycles, whereby the number of spike 

occurrences since the last query to the neurophysiology system, and all calls to hardware, 

were made every 90 ms. Only during the first 10 ms of each 90 ms cycle was ICMS 

feedback delivered to the visual cortex. This effectively resulted in a drop of ~11% in 
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recordable spikes in the motor cortex recordings, but nonetheless was designed such that 

this "spike-drop rate" would still be minimal enough to observe the rat's motor cortex 

modulations during the response period. However, since the Kalman filter would 

interpret a consistent ~11% drop in firing rates across the ensemble during the response 

period as the rat decreasing firing rates in order to be rewarded, we modified the 

algorithm to only allow increases in firing rate to be considered actual neural responses to 

the visual cortex ICMS "go" stimulus.  

 We used three feedback codes over the course of our experiments as our hardware 

and software became more sophisticated: first an amplitude-based code, then a rate-based 

code, and finally a spatial-based code. In the amplitude-based code, the same parameters 

as the initial visual stimulus were used (a 150 Hz pulse train), but only two pulses were 

delivered every 90 ms, and the amplitude of these two pulses was varied from 0 μA to the 

amplitude of the initial stimulus (50-98 μA) in a linear transformation of distance 

between the baseline firing rates and reward threshold firing rates. Simply put, if the 

initial visual stimulus was 50 µA, and the animal's motor cortex ensemble firing rates 

were at baseline, the amplitude of the two feedback pulses was 0 µA. If the animal's 

response firing rates were midway between the baseline and threshold for reward, the 

amplitude of the two pulses was 25 µA. If the animal's response firing rates were at the 

threshold for reward, the amplitude of the two pulses was 50 µA. Thus, in this feedback 

model, the volume of the tissue activated, and hence putatively the magnitude and 

salience of the perceived stimulus, would be the feedback signal (Penfield and Perot, 

1963, Brindley and Lewin, 1968, Merrill et al., 2005). 

 In the rate-based code, the amplitude of the feedback was invariant (identical to 

the amplitude of the initial visual cortex ICMS "go" stimulus), but the pulse rate was 

modulated. During the first 10 ms of every 90 ms of the response window, 0-10 pulses 

were delivered with inter-biphasic pulse intervals of 600 µsec. Thus, if the animal's firing 

rates were at baseline, zero pulses were delivered, and if the animal's response firing rates 

were in the response band necessary to be rewarded, 10 pulses were delivered. In this 

model, putatively the volume of activation is kept the same, but the firing rates of the 

activated neurons in the same volume are modulated by the feedback ICMS.  
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 In the spatial-based code, the top electrode in the electrode array was stimulated 

as the initial visual cortex ICMS "go" stimulus, initiating a trial. This feedback paradigm 

consisted of stimulating the electrode sites in a dorsal direction as the animal's response 

firing rates got closer and closer to the threshold for reward. That is, if the animal's 

response firing rates were at baseline, the bottom-most site was stimulated. If the animal's 

response firing rates were in the response band necessary to be rewarded, the top-most 

site was stimulated. In the spatial feedback scheme, five biphasic pulse pairs were 

Fig 4.2: Histology and Evoked Responses to Light Flash. M5 and M6 depict LFP 
evoked responses to light flash, whereas M10-M12 depict spiking responses to light 
flash. Evoked responses in both motor cortex and visual cortex were recorded 
simultaneously post-surgery. Grey line above each evoked response shows time light 
was presented to the ketamine-anesthetized rats. The length of the dotted line on the 
histology images, showing the reconstruction of the recording tract, was calculated 
with a combination of measuring the angles of the electrodes post mortem along with 
the location of the microlesions. The AP numbers above each brain image are the 
distance, in mm, from bregma. Positive values represent anterior to bregma. These AP 
values were reconstructed by comparing the images to standards in a popular rat brain 
atlas (Paxinos and Watson, 1998). These slices only show the location of the most 
ventral electrode site; electrodes were implanted in a posterior angle for motor cortex 
and an anterior angle for visual cortex. 
 



 80 

delivered to the appropriate electrode site with an inter-biphasic pulse interval of 600 

µsec. Only one electrode site was stimulated at any given moment in this paradigm. 

 During all feedback sessions, 15-20% of the trials were "catch trials" where either 

1) feedback was randomized, or 2) no feedback was delivered. Percentage correct, and 

latency to reward, between the "normal trials" and "catch trials" were then used as our 

metrics in determining whether the rats were using the feedback signal.  

E. Data Analysis 

 Peri-event time histograms (PETHs) of spikes about the visual cortex ICMS "go" 

cue were examined to see whether the spiking activity of the neurons increased in 

response to the stimulus. To determine if a recorded unit showed an excitatory response, 

95% confidence intervals were calculated for the peri-event histograms using the 

NeuroExplorer software package (NeuroExplorer, Littleton, MA). The computations for 

these intervals assumed spike trains are the result of independent Poisson-point processes 

as described in the literature (Abeles, 1982). For the sessions with feedback, a chi-square 

test with a Yates correction was used to determine whether the "catch trials" percentage 

correct and the "normal trials" percentage correct were significantly different from each 

other (Pagano and Gauvreau, 2000). 

F. Histology 

Upon completion of training, the top, middle, and bottom sites of the 

multielectrode arrays were microlesioned by passing 35 μA of constant DC current for 

two seconds while the animal was anesthetized. Three hours after the microlesioning 

procedure, the rats were euthanized by intraperitoneal overdose of sodium pentobarbital. 

Following transcardial perfusion with 4% formaldehyde, the brain was removed, 

sectioned into coronal 100 µm slices, and stained with conventional cresyl violet Nissl 

stains. The sections were then analyzed using a Leica MZFLIII light microscope (Leica 

Microsystems, Inc., Germany) to determine probe placement. Upon extraction of the 

skull, we were able to keep the probes intact in situ, and thus we were able to post 

mortem measure implantation angles with respect to the skull in order to reconstruct the 

recording spans shown in Fig. 2. 

III. Results 
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The objective of this study was to determine if microstimulation of the visual 

cortex could be combined successfully with real-time ensemble decoding of the motor 

cortex with the ultimate goal of fine-tuning the variety of technical issues involved with a 

closed-loop neuroprosthetic device. We below discuss our iterative progress on the five 

rats successfully implanted in this study (rats M5, M6, M10, M11, M12). 

A. Visual-Evoked Responses 

Fig. 2 shows the histology for both the motor and visual cortex implantation sites 

for the five rats used in this study, as well as the evoked responses to light flash in both 

the visual and motor cortices. Immediately after surgery, both M5 and M6's discernable 

unit activity in both motor and visual cortex did not reveal any evoked response to light 

flash. However, in both rats the local field potentials (LFPs) revealed an evoked response. 

M5's visual cortex evoked LFP response had a 2-fold greater amplitude than the motor 

cortex response, while M6's visual cortex evoked response had a similar amplitude to the 

motor cortex evoked response. M10-M12 had discernable units immediately after surgery 

in both the motor and visual cortex; for these rats the visual cortex spiking evoked 

Fig. 4.3: Initial Feasibility of Visual Cortex ICMS with Motor Cortex Control. PETHs  
above show two motor cortex units, from rat M5, modulating (top), and not (bottom), 
in response to the visual cortex ICMS "go" cue. Dashed lines indicate upper 95% 
confidence level of the mean of the neurons' firing rates. Insets show waveform 
samples of the respective neurons. Time zero indicates the delivery of the 0.25 second 
ICMS pulse train delivered to the visual cortex, signaling the beginning of a trial. 
Notice the ICMS artifact causing a transient decrease in observable firing rates. 
Feedback during the response period was not given in this case. 
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responses to light flash were much greater than the motor cortex spiking evoked 

responses. Spiking unit responses in visual cortex were typically very rapid with a 3-5 

fold increase in firing rate with light onset and offset.  

B. Feasibility of Visual Cortex ICMS Stimuli with Motor Cortex Ensemble Training 

Fig. 3 shows PETHs from rat M5 during successful modulation of motor cortex 

neurons in response to visual cortex ICMS. The rat was trained using the ad hoc linear 

algorithm without feedback; for clarity only two neurons of the six neurons used are 

shown. The top PETH shows the neuron that was driving successful performance of the 

task by increasing firing rate after visual cortex ICMS, and the bottom PETH shows an 

unresponsive neuron, which was characteristic of the other four cells in the ensemble. In 

the early stages of the training, the rat was observed to simply scurry around the food tray 

and eat the food  pellets  when it would randomly get the task right. However, on learning 

sessions where the rat performed above chance, we observed the rat would immediately 

turn its head left after the visual cortex ICMS "go" cue. This motor behavior was likely 

the behavioral correlate of the modulation of the motor cortex. Rat M5 was able to learn 

the task within seven days of training, after which was it was trained with the "movement 

minimization" method discussed below in Section D. 

Rat M6 was trained with the ad hoc linear algorithm as well, but beyond the 

exemplary medial forebrain bundle stimulation data discussed below in Section E, the rat 

never was able to successfully perform the task after four weeks of training. One possible 

cause may be the weakness of the ad hoc algorithm; all subsequent rats were trained with 

the Kalman Filter algorithm. Another possible cause may be that the visual cortex ICMS 

was not sufficiently salient a signal for this particular rat (notice in Fig. 2 that the visual 

cortex evoked response to light flash in this rat was identical to the motor cortex evoked 

response). However, the results with rat M5 showed that the visual cortex ICMS "go" 

stimulus could be perceived, and in our subsequent rats we moved to examining the use 

of ICMS feedback. 

C. Feasibility of Visual Cortex ICMS Feedback with Motor Cortex Ensemble Training 

Figs. 4-6 depict the behavioral learning curves and spiking responses for the three 

rats  (M10-M12)  trained  with  visual cortex  ICMS  feedback during the response period.  
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Sessions where behavioral performance for the normal trials was significantly  

Figure 4.4: Rat M10 Learning Curve and Motor Cortex Spiking Responses. Top: Graph 
shows performance for M10.  Chance calculation includes 95% confidence bands.  Text 
at the top of graph indicates the percentage of total trials consisting of catch trials, the 
type of catch trials, and whether these catch trials were rewarded. Bottom: PETHs of 
responses to visual cortex ICMS  “go” cue (time=0) for both normal trials and catch 
trials from selected sessions. For clarity, only two neural units, typically the most 
modulated of the ensemble, are shown per session. Dotted line on neural responses 
indicates neuron's mean firing rate, and dashed lines indicated 99% confidence bands for 
the mean firing rate, for the entire session. Each session refers to a different day of 
training, except for sessions 20 and 21, which are from the same day and show the same 
two units. 
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Figure 4.5: Rat M11 Learning Curve and Motor Cortex Spiking Responses. The 
format is identical to figure 4. In sessions 19-21, no visual cortex ICMS "go" cue 
was delivered. As such, time = 0 on the session 21 PETHs indicates the beginning of 
the feedback delivery. 
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Figure 4.6: Rat M12 Learning Curve and Motor Cortex Spiking Responses. The 
format is identical to figure 4. In sessions 12-15, no visual cortex ICMS "go" cue was 
delivered. As such, time = 0 on the session 15 PETHs indicates the beginning of the 
feedback delivery. 
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Sessions where behavioral performance for the normal trials was significantly different 

from the catch trials, at an alpha value of 0.05 using a chi-square test with a Yates 

correction (Pagano and Gauvreau, 2000), are indicated by asterisks. PETHs show spiking 

responses to the visual cortex ICMS "go" cue from two selected neurons of the ensemble 

used in the respective sessions. Results from these three animals are presented in 

sequence below. 

Rat M10 (Fig. 4) was initially trained on the amplitude-based feedback (sessions 

1-5), then on the rate-based feedback (sessions 6-14), and finally on the spatial-based 

feedback (sessions 15-21). Note that rat M10 was able to achieve performance above 

chance with all three feedback schemes, though performance was best with the spatial-

based feedback. Whether this was due to the spatial-based feedback being more salient or 

the rat simply performing better with time cannot be determined with this dataset. It may 

seem surprising that rat M10 was able to perform the task above chance on the first day. 

However, for one week prior to session one, the rat was run with developmental versions 

of the Kalman filter algorithm and thus the rat might have already been familiar with the 

general nature of the task. 

For rat M10, the normal trials and the catch trials began to be consistently 

different in performance rates in sessions 11-15. In these sessions, catch trials occurred 

15% of the time and had no feedback during the response window. M10 performed 

significantly better (p<0.05) on the normal trials than the catch trials, indicating that the 

rat was using the feedback as a source of information (see Fig. 4, session 14 neural 

response).  

We examined the salience of the feedback by testing the hypothesis that 

behavioral performance on normal trials should be better than the catch trials regardless 

of reward. This was answered in two ways. First, the non-feedback catch trials were 

rewarded if the animal successfully modulated its motor cortex (session 16). Second, in 

sessions 17-20 the catch trials consisted of randomized feedback such that the feedback 

was not related to the motor cortex ensemble firing rates. In session 16 the performance 

of the normal trials was significantly higher than the catch trials even though the catch 

trials were rewarded, arguing that the rat was using the feedback as a source of 

information and not simply responding to the visual cortex ICMS "go" cue. However, in 
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sessions 17-20, where the catch trials consisted of randomized feedback, there was no 

significant difference in performance between the normal trials and the catch trials, even 

though the animal could still perform the task above chance (see neural responses in Fig. 

4, session 20; the normal trials and catch trials are effectively identical). These results 

argue that the rat was using the feedback as a measure of whether a trial was still 

occurring but not attending to the subtle features of the feedback signal. Indeed, on the 

last session (21) of rat M10 (Fig. 4), 50% of the trials had no feedback. Though the rat 

performed above chance in both the feedback and non-feedback trials, the animal 

performed significantly better during feedback trials than the non-feedback trials, and the 

neural responses during the feedback trials was greater than the non-feedback trials for 

some neurons (see Fig 4, session 21, neuron 1).  

Rat M11 (Fig. 5) was initially trained on the rate-based feedback (sessions 1-7) 

before being trained on the spatial-based feedback (sessions 8-21). The rat only 

performed above chance during the spatial-based feedback sessions, but again, whether 

this was due to the higher salience of the spatial-based feedback, or simply delayed 

learning of the general nature of the task, remains to be explored. During sessions 8-17, in 

which the catch trials contained no feedback, this animal actually performed better on the 

catch trials than the normal trials (see Fig 5, session 15. Notice the neural responses on 

the catch trials are greater than the normal trials). We hypothesized that the rat was 

merely paying attention to the initial visual cortex ICMS "go" stimulus, and the feedback 

merely made the task harder because of the ~11% reduction of detectable spikes during 

the response window. We tested this hypothesis by training the animal for one session 

where the feedback was removed, and only the initial visual cortex ICMS "go" cue was 

delivered to the animal. The rat was then immediately able to perform the task above 

chance (see Fig 5, session 18). We then trained the animal for three additional sessions in 

which the initial visual cortex ICMS "go" cue was removed, spatial-based feedback was 

re-introduced, and the catch trials consisted of randomized feedback. In this manipulation, 

the rat was able to perform the task successfully above chance, but with no significant 

difference in performance between the randomized feedback catch trials and the normal 

feedback trials. Thus the animal was able to do the task even with the feedback causing 

the reduction in detectable spikes, suggesting that it was able to perceive the spatial-based 
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feedback as indicative of an ongoing trial (see Fig. 5, session 21). However, the 

behavioral performance similarity between the normal and catch trials suggests the rat 

was not using the information in the subtle features of the spatial-based feedback. 

Whether this was due to a lack of perception or a lack of learning is unknown. 

Rat M12 (Fig. 6) was trained only on the spatial-based feedback scheme, but other 

than that difference, the performance, training manipulations, and interpretations of the 

behavioral results are the same as M11, with one exception. Like M11, during the last 

sessions of training (Fig. 6, sessions 12-15), no visual cortex ICMS "go" cue was 

delivered, and the feedback was the only indicator to the rat that a trial was occurring. 

Also like M11, the rat was able to perform the task above chance for both the normal 

trials and randomized feedback catch trials. In the first three of the four days of this 

manipulation, there was no significant difference in performance between the two types 

of trials. However, on the last session, the randomized feedback catch trials were 

significantly higher in performance than the non-randomized feedback normal trials (Fig. 

6, session 15). One potential explanation is that randomized spatial feedback may be more 

salient in that it is more likely to activate a broader area of the visual cortex. For example, 

in the normal feedback trials, the rat has to be close to the threshold for reward for the 

most dorsal electrode sites to be stimulated. In the randomized feedback, any site on the 

visual cortex electrode array is as likely to be stimulated as any other, regardless of how 

close the animal is to achieving reward. 

We also analyzed reaction times in rats M10-M12, but significant differences in 

reaction time to reward  (student's t-test) between catch trials and normal trials were 

sporadic across the training data, and no consistent patterns were observed. Since catch 

trials only occupied 15-20% of all the trials, we often needed differences in mean reaction 

time on the order of 600 ms to have the power to detect a significant difference. As such, 

the low number of catch trials often prevented us from detecting a difference in reaction 

time between the catch and normal trials, regardless if such differences indeed existed. 

D. Minimization of Movement During Closed-Loop Control 

A potential concern with this work is that the trained animals were not 

behaviorally clamped; that is, the rats were free to use any strategy they wished in order 

to modulate their motor cortices to receive the food reward. To address this, rat M5 was 
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pre-trained for a week to keep its snout in an aperture in the behavioral box for three 

seconds in order to receive a food pellet. Following this pre-training, the rat was trained 

on the cortical control task. Once the rat put its nose in the aperture, 1.1 seconds of 

baseline motor cortex ensemble firing rate data were collected, followed by the visual 

cortex ICMS "go" cue after which the rat, with its snout still in the aperture, had to 

modulate its motor cortex ensemble activity in order to receive a food reward (using the 

ad hoc linear algorithm). The rat was also given feedback during the response window 

using the amplitude-based code described above. Fig. 7 (top) shows the learning curve 

Figure 4.7: Rat M5 Nosepoke Motor Minimization Cortical Control Task. Top: 
Graph shows performance of rat M5 performing motor ensemble modulation in 
response to visual cortex ICMS while simultaneously holding its snout in an 
aperture during the "movement minimization" task. Chance calculations on animal 
performance include the 95% confidence bands. Photos on sides of top graph 
depict behavioral apparatus. Bottom: Ensemble PETHs at beginning and end of 
training. Neurons are numbered on the left, and alphabetized on the right, to 
indicate that the neurons are not necessarily the same. Notice, on session 10 
PETHs, units b, c, and h increased firing rates immediately after visual cortex 
ICMS "go" cue (time=0). 
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for the rat. On the first two days the rat performed significantly below chance, likely 

because the feedback, mentioned above, drops the recordable spike firing rates by ~11%. 

Out of 12 sessions (seven days) of training, the rat was able to perform significantly 

above chance during four sessions (three days, sessions 5, 6, 7, and 10). The PETHs for 

the neural responses at the beginning of training and near the end of training are shown in 

Fig. 7 (bottom left and right, respectively). It is especially evident in the PETHs for both 

instances that around -2 seconds and +2 seconds relative to visual cortex ICMS "go" cue 

delivery, robust modulation occurs on almost all the units. Video monitoring indicated 

that this robust modulation was likely due to the rat inserting and exiting its nose in the 

nosepoke aperture, as the motor cortex implant was in the neck/shoulder region of motor 

cortex (Sanes et al., 1990).  

However, during the actual behavioral trial, when the rat's nose was in the 

aperture and the rat was performing above chance, a modulation signal can be seen on 

units b, c, and h (Fig. 7, bottom right) where the neurons increased firing rates after the 

visual cortex ICMS "go" cue. Thus, even in this movement minimization model, where 

the behavior was clamped, we were still able to train the rat to modulate its motor cortex. 

Such exemplary data suggests that our preparation is viable even in a more realistic 

neuroprosthetic model where movement is constrained.  

E: Medial Forebrain Bundle Stimulation (MFB) Reward during Closed-Loop Control 

The experiments described in this manuscript were developed to explore the 

technology of closed-loop neuroprosthetic devices combining motor ensemble decoding 

with sensory cortex ICMS. However, in one accessory experiment, deep brain stimulation 

(DBS) of the MFB, part of the classic reward pathway, was used to replace food reward. 

In this unique preparation, the entire behavioral task, with the stimulus, behavioral action, 

and consequence, was “virtual,” done solely through multiple brain-machine interfaces. 

 The efficacy of the MFB stimulation was determined, prior to the closed-loop 

sessions, by running a brief task in which the rat had to put its nose in an aperture in the 

behavioral cage in order to receive 30 pulses of biphasic MFB stimulation at 60 Hz (Olds 

and Milner, 1954). Ideal current was determined by increasing current amplitude, starting 

at 40 µA and proceeding in 20 µA steps, until the rat began inserting its nose 

approximately once every 10-15 seconds. Once the rat was effectively "self-stimulating," 
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the rat was then run on the neuromodulation task using the ad hoc linear algorithm.  

Given the complexity of the surgery with multiple brain regions implanted with 

recording and stimulating electrodes, along with accurately targeting the MFB, only one 

of the implanted rats (M6) self-stimulated reliably. The rat was run on 26 sessions of 100-

200 trials each, and in an exemplary session the rat performed above chance (p=0.03). 

Fig. 8A depicts the rat successfully self-stimulating with the initial nosepoke test, done 

immediately prior to the closed-loop task. Fig. 8B shows the histological location of the 

medial forebrain bundle implant. Fig. 8C shows the PETH of a neuron the rat was 

modulating during the task to obtain the MFB reward. Notice the neuron increased its 

Fig 4.8: Rat M6 MFB Closed-Loop Self-Stimulation. A. Immediately prior to the 
closed-loop session, the efficacy of the MFB self-stimulation was assessed by a 
nosepoke paradigm where the rat's MFB was stimulated every instance it put its 
nose in an aperture. Schematic shows how many times the rat self-stimulated over 
three minutes. B. Histology of MFB implant (see Fig. 2 for the histology of the 
visual and motor cortex). Arrow shows electrode tip location. C. PETH of motor 
cortex unit aligned to visual cortex ICMS "go" cue. Dotted line indicates neuron's 
mean firing rate, and dashed lines indicate 95% confidence bands for mean firing 
rate. Inset shows waveform samples for this unit. D. PETH of same motor cortex 
unit aligned to MFB stimulation. 
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firing rate from 9 Hz to 16 Hz after the visual cortex ICMS "go" cue. Fig. 8D shows the 

PETH of the same neuron aligned to the MFB stimulation event. As the internal capsule 

lies near the MFB, perhaps the increase in firing rate seen in Fig. 8C is due to antidromic 

stimulation of the upper motor neurons. However, the rat had to modulate its motor 

cortex before it received MFB stimulation, thus any antidromic stimulation could only 

occur after the reward stimulus. Indeed, Fig. 8D demonstrates the motor neuron 

modulation occurring only before the MFB stimulation reward. 

 We attempted this technique in three rats (M6, M10, and M12), and only in the 

data described above did we get successful performance, and even then, in only one 

session. The low overall performance, though disappointing, is probably due to the 

“highly unnatural” form of the task. The rat had to perceive a putative phosphene-like 

percept due to the visual cortex ICMS and then modulate its motor cortex neural firing 

rates in order to receive a DBS reward. In addition, we noted that the DBS reward was 

much more of an ephemeral motivator than the food reward. The rats rewarded with food 

pellets would continually work over hours in order to obtain the reward, whereas the rats 

rewarded with DBS would quickly lose motivation if they had not received a DBS reward 

in the previous two minutes, and the rats would then simply fall asleep in the cage. In 

addition, as the MFB stimulating electrode is made of stainless steel, it has a lower 

charge carrying capacity (50 µC/cm2) than other materials such as the iridium oxide 

electrodes we implanted in the visual cortex (2200 µC/cm2). It is possible we were 

eventually damaging the MFB by causing irreversible faradaic reactions (Merrill et al., 

2005). Nonetheless, further technological and behavioral development may improve this 

technique, and we show the exemplary data here as it may be of broad interest to other 

investigators attempting to develop similar preparations. 

IV. Discussion 

 As the technology of neuroprosthetics moves forward, the use of neocortex ICMS 

as a feedback signal for control of a neuromotor device is speculated to increase (Fagg et 

al., 2007). Here we present proof-of-concept results of a rat model closed-loop 

neuroprosthetic system by combining recording from motor cortex with electrical 

stimulation of sensory cortex. Previous work has demonstrated the use of simultaneous 

recording and stimulation techniques for neuroprosthetics, though almost entirely for 



 93 

functional electrical stimulation (FES) applications, whereby neural activity from dorsal 

roots of the spinal cord or peripheral nerves are then used as a signal to stimulate limb 

musculature (Popovic et al., 1993, Strange and Hoffer, 1999, Weber et al., 2007).  One 

recent exception is a study that combined stimulation and recording in the motor cortex to 

investigate plasticity of muscle representation (Jackson et al., 2006). However, delivering 

ICMS feedback to sensory cortex as a direct consequence of motor cortex activity in a 

cortical control task remains unexplored, and as a proof-of-concept we have developed a 

suitable preparation with which to improve and examine closed-loop control technology 

for neuroprosthetics.  

Despite the success of this model, we feel that increased technological 

development needs to occur before significant improvements can be made. First and 

foremost, the brain does not encode sensory features by firing action potentials for 10 ms 

out of every 90 ms, as was the protocol with our interleaved feedback scheme. The only 

way to avoid an interleaved feedback scheme is to find a way to excite brain tissue at fine 

temporal resolution without the stimulation artifact interfering with the signals on the 

recording electrodes. One solution may be via hardware development, such as faster 

switching amplifiers and improved artifact cancellation. Another solution may be through 

improved electrode technology, such as reducing the impedance of the electrodes via 

bioactive polymers conjugated to the electrode site, which would cause a reduction in the 

compliance voltage needed to stimulate at physiological current levels (Ludwig et al., 

2006). Yet, a promising technique would be to avoid ICMS altogether and excite brain 

tissue with optical methods (Boyden et al., 2005, Farah et al., 2007). 

 As is the case with any microstimulation experiment, the question of perception is 

always of paramount importance. Our visual cortex characterization consisted of 

measuring the neural responses to bright-field illumination immediately after surgery. 

Animals M5 and M6 only had evoked local field potential responses to the illumination, 

whereas M10, M11, and M12 had robust evoked spiking responses to the illumination. 

M5's visual cortex implant straddled the hippocampus for the majority of its length. It is 

highly unlikely that this animal perceived phosphenes, though M5 was still able to 

successfully perform the task. This begs the questions of what exactly the animal had 

perceived. M10-M12's visual cortex implants were almost all deep enough in the visual 
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cortex that half of the electrodes were in the axonal fiber tracts. Since all these rats could 

respond to the microstimulation appropriately, there is no doubt they perceived the 

stimuli. In the absence of more rigorous behavioral experiments (Bradley et al., 2005, 

Otto et al., 2005), the question of what these animals perceived is merely a subject of 

conjecture and not necessarily of importance for the success of this model. The variability 

in the visual cortex implantation sites in our study actually offers compelling evidence 

that using ICMS feedback is generalizable to many other areas of the brain. 

 Since rats use their whiskers profusely for tactile sensation, perhaps utilizing the 

barrel cortex instead of the visual cortex would convey more salient perceptions of the 

feedback signal. While previous work by our group has used ICMS in the auditory cortex 

(Rousche et al., 2003, Otto et al., 2005), we choose to implant the visual cortex because 

the surgical access of visual cortex in the rat is less difficult than the auditory cortex, 

especially in the context of multiple implants in a single animal.  

The use of the feedback in rats M10-M12 varied across the subjects.  M10 

appeared to be using the feedback, as it didn't perform above chance on the non-feedback 

catch trials from sessions 10-16 (Fig. 4). However, in sessions in which the catch trials 

consisted of randomized feedback, M10 achieved the same performance level between 

the catch trials and the normal trials. Thus, M10 was merely using the feedback as an 

indicator of whether the trial was still occurring. Rather surprisingly, M11 and M12 

performed better on the trials where feedback was not delivered. The visual cortex ICMS 

feedback, even in our interleaved stimulation paradigm, would drop the recording of 

spikes by our acquisition hardware by ~11%. Since decreasing motor cortex firing rates 

were not considered a behavioral response by our algorithms precisely for this reason, the 

task was more difficult with the feedback, as the animals had to work harder to increase 

their firing rates to an appropriate level to be rewarded. When we removed the visual 

cortex ICMS "go" cue, forcing the animals to attend to the feedback, animals M11 and 

M12 were able to do the task significantly above chance (M11: sessions 19-21, M12: 

sessions 12-15). We believe the animals were thus perceiving the visual cortex ICMS and 

appropriately modulating their motor cortex ensemble, though in reality the task would 

probably be easier with traditional tone-based or light-based feedback. 
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Ideally, delivering ICMS without causing artifact in the motor cortex recordings 

would ensure a greater transmission of the ensemble dynamics. Development of 

stimulation and recording technology that ameliorates the artifact remains a priority of 

neural engineering. Finally, though the animals were able to consistently perform above 

chance, alternative algorithms, such as Bayesian state estimators (Lehmkuhle et al., 2006, 

Achtman et al., 2007) or support vector machines (Olson et al., 2005), may improve 

performance and learning in our closed-loop preparation.  
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Chapter V 
 

Conclusion 
 

The microelectrode continues to be the primary tool for neuroprosthetics of limb 

and cursor control; however, there remains the critically important problem of long-term 

recording of unit activity. In order for cortical neuroprosthetics to become part of the 

milieu of modern medical technology like pacemakers, deep brain stimulators (DBS), and 

cochlear implants, cortical microelectrodes need to reliably record unit activity over a 

period of years. While some examples exist in the literature of long-term recording up to 

a year (Vetter et al., 2004, Suner et al., 2005), reliability remains the essential problem in 

neural engineering. The theory of why electrodes fail to reliably record stable neural 

signals over time is unknown and a largely speculative area of debate.  

Our group, and others, are beginning to systematically examine the problem 

through a combination of measuring electrode impedance over time, electrode/tissue 

interface modeling, unit reliability recordings combined with chemical sensing, and 

careful histological examinations (Szarowski et al., 2003, Subbaroyan et al., 2005, 

Ludwig et al., 2006, Johnson et al., 2007, Seymour and Kipke, 2007). One reason why 

electrodes fail may be microvasculature damage upon insertion of the probe. A way to 

avoid this damage would be to map the microvasculature prior to the insertion. Continued 

improvements in optical imaging of cerebral vasculature in vivo may allow this to occur 

(Schaffer et al., 2006). 

For brain stimulation applications, the technology is more mature (given the 

development of pacemakers, cochlear implants, and DBS for Parkinson's disease over the 

past decades), as stimulating electrodes are not limited by the technical requirement of 

recording small voltage signals over time. Stimulating electrodes are only limited by 

biocompatibility issues, maintaining reversible faradaic reactions at the tissue interface, 

and mitigating the tissue response and scarring to the surrounding area of tissue. 

However, stimulation technology for sensory replacement/feedback in neocortex still has 
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fundamental engineering limitations. Some work in primates has attempted to design a 

visual cortex prosthesis with intracortical microelectrode arrays (Bradley et al., 2005), but 

the authors note that to have a visual neocortex array that would faithfully replicate vision 

would require implanting a high density array over the entire posterior pole of the brain. 

Such technology has not yet been invented. 

Though the ultimate goal of the neuroprosthetic community is to restore fine limb 

control to humans with complete sensory feedback, sub-optimal restoration of motor 

commands and senses is still an improvement for some people. For example, even though 

cochlear implants do not have the dynamic tonal range of normal hearing, they still 

improve quality of life for the deaf (Moller, 2006). And though control systems of 

functional electrical stimulation (FES) of limb musculature are not nearly as graceful as 

natural brain control, again, the crude technology is still an improvement (Popovic et al., 

2007). Thus, even though there are fundamental problems to high-density 

recording/stimulation of brain tissue and musculature, continued development in these 

technologies may further ameliorate nervous system pathologies. 

This dissertation covered three promising new areas for neuroprosthetics: 

alternative cortical areas (chapter 2), alternative cortical signals (chapter 3), and sensory 

cortex ICMS feedback (chapter 4). Progress was made in all three of these arenas, but 

limitations exist. 

The cingulate cortex experiments only trained the animals on a one state (one 

degree of freedom) task, and the animals were free-moving (that is, the behavior was not 

clamped). Whether the cingulate cortex can be used for a multiple degree of freedom 

control system for a human paralyzed patient is unknown. It is also debatable whether the 

cingulate cortex function in rats is generalizable to the function of the cingulate cortex in 

humans. To escape this generalization problem, neurosurgeons would have to implant 

humans in the cingulate cortex for a cortical control task. However, to date most humans 

implanted with a neuroprosthetic device have been quadriplegic due to spinal cord injury 

(Hochberg et al., 2006); thus their motor cortex is not degenerated due to an upper motor 

neuron disease. In these patients there is no compelling reason to implant the cingulate 

cortex, especially given the cingulate cortex's proximity to the saggital sinus. 
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In the beginning of this decade, the question of whether non-purely motor areas 

could be used for a neuroprosthetic control signal was still very much an active topic of 

research. Since then, the work in this dissertation, along with work by other groups, has 

indeed shown that much of the parietal (Musallam et al., 2004, Lebedev et al., 2005), 

temporal (Leuthardt et al., 2004, Felton et al., 2007), and prefrontal lobes (Santhanam et 

al., 2006) of the neocortex can be used as alternative implantation sites. Indeed, recent 

advances in fMRI using biofeedback of the BOLD signal has begun to systematically 

map which areas of the brain can be self-modulated by human subjects (Weiskopf et al., 

2003, Decharms et al., 2005, Bray et al., 2007, Yoo et al., 2007) (see Figure 1). 

Local field potential control has remained unexplored in the neuroprosthetic 

community, though groups continue to show, as indeed this dissertation did, that the LFP 

is co-modulated along with spikes during a given behavioral task (Mehring et al., 2003, 

Rickert et al., 2005, Heldman et al., 2006). Perhaps investigators have tried to train 

subjects to modulate local field potentials but have failed to achieve compelling results 

similar to spike-driven cursor or limb control. Such a result would be curious, as the 

Figure 5.1: Self Modulation of the fMRI BOLD signal in human subjects. Subjects were 
instructed to imagine movements of either the foot or the hand, and feedback was given 
in the form of a monetary reward if the subject successfully increased the BOLD signal. 
Left: Subjects had to modulate the foot area of motor cortex. Notice increasing signal 
change over time. Right: Subjects had the modulate the hand area. Again, notice 
increasing signal change over time (Bray et. al, 2007) 
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spikes in the motor cortex appear to be tightly coupled to the oscillatory periods of local 

field potential modulation.  

In the experiments in this dissertation investigating the relationships of spikes to 

LFPs and ECoGs, correlations existed between all three signals, but as a function of 

specific frequency oscillations. Specifically, during anesthesia, the spikes entrained to the 

1-2 Hz ketamine-induced oscillation, and during the motor learning and neuroprosthetic 

modes, the spikes entrained to the 8 Hz theta rhythm. During periods of high spiking, the 

spikes continue to entrain to theta, though at a lower power. Thus, a potential human 

neuroprosthetic device may gain an additional control signal by adding local field 

potentials and ECoGs high passed above 10 Hz. However, should the spiking activity 

fail, the local field potential frequency components below 10 Hz could also be used. 

However, this still needs to be experimentally verified by inputting field potentials and 

spikes into a real-time controller and measuring user-performance compared to traditional 

spiking based cortical control algorithms. Such experiments can be easily implemented in 

animal models. 

Finally, delivering feedback to the brain for control of a neuroprosthetic device is 

an obvious iterative technological development. Though yet still undemonstrated, the 

community hypothesizes that giving feedback about the output states of a neural 

controller directly back to the central nervous system (either through sensory neocortex 

or the dorsal roots of the spinal cord) would optimize operator performance of a 

neuroprosthetic device (Abbott, 2006, Fagg et al., 2007). To investigate this, in this 

dissertation's final data chapter, the visual cortex and motor cortex of rats was implanted, 

and the animals were trained to modulate the ensemble activity of the motor cortex in 

response to visual cortex ICMS. Though the preparation was moderately successful (the 

animals could indeed interpret visual cortex ICMS as a signal during a neuromodulation 

task), technical limitations existed as to the feasibility of simultaneous microstimulation 

with motor cortex recording.  

The microstimulation codes used in the experiments did not mimic or emulate the 

visual cortex's naturalistic encoding of visual stimuli. The experiments also did not 

determine what the animals were perceiving in response to visual cortex ICMS. In 

addition, continuous feedback was not used whereby information about the "state" of the 
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motor ensemble was constantly being delivered to the rat. Because the ICMS artifact 

swamped the recording amplifiers, an interleaved feedback scheme was implemented 

where ICMS was delivered only during the first 10 ms of every 90 ms. Until a further 

understanding of the electrical properties of the artifact occurs, and ways to ameliorate it 

are further developed (Boyden et al., 2005), the combination of naturalistic sensory 

cortex ICMS with motor cortex ensemble decoding is impossible. 

Regardless, the animals (four of five) were still able to do the task, showing that 

interleaved feedback schemes are feasible when combined with motor cortex ensemble 

decoding. The experiments then reached a stopping point, as the stimulation artifact 

prevented any improvements in the ICMS encoding. At this point, further experiments 

should not examine 1) determining what the animals are perceiving, 2) improving the 

ensemble decoding algorithms, or 3) examining the efficacy of various sensory areas of 

the brain. Two more basic improvements need to be made: 1) investigating methods of 

reducing the stimulation artifact, and 2) enabling the recording of back voltage during 

stimulation to make sure that excessive charge is not being delivered through the 

stimulating electrodes, possibly causing irreversible faradaic reactions and damaging the 

brain tissue (Merrill et al., 2005). 

 

***** 

This thesis covered three avenues in the parameter space of neuroprosthetic 

design, and promising directions were presented for future technological refinement. 

However, basic development in fundamental electrode technology needs to occur before 

fully operational and long-term viable neuroprosthetics can be clinically implemented 

beyond the demonstration stage. 

  

 As a final dalliance, in my experimental endeavors I often recollected the 

following passage from the final chapter of Henry David Thoreau's "Walden." 

 
 "There was an artist in the city of Kouroo who was disposed to strive after perfection. One day it 
came into his mind to make a staff. Having considered that in an imperfect work time is an ingredient, but 
into a perfect work time does not enter, he said to himself, "It shall be perfect in all respects, though I 
should do nothing else in my life." He proceeded instantly to the forest for wood, being resolved that it 
should not be made of unsuitable material; and as he searched for and rejected stick after stick, his friends 
gradually deserted him, for they grew old in their works and died, but he grew not older by a moment. His 
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singleness of purpose and resolution, and his elevated piety, endowed him, without his knowledge, with 
perennial youth. As he made no compromise with Time, Time kept out of his way, and only sighed at a 
distance because he could not overcome him. Before he had found a stock in all respects suitable the city of 
Kouroo was a hoary ruin, and he sat on one of its mounds to peel the stick. Before he had given it the 
proper shape the dynasty of the Candahars was at an end, and with the point of the stick he wrote the name 
of the last of that race in the sand, and then resumed his work. By the time he had smoothed and polished 
the staff Kalpa was no longer the pole-star; and ere he had put on the ferule and the head adorned with 
precious stones, Brahma had awoke and slumbered many times. But why do I stay to mention these things? 
When the finishing stroke was put to his work, it suddenly expanded before the eyes of the astonished artist 
into the fairest of all the creations of Brahma. He had made a new system in making a staff, a world with 
full and fair proportions; in which, though the old cities and dynasties had passed away, fairer and more 
glorious ones had taken their places. And now he saw by the heap of shavings still fresh at his feet, that, for 
him and his work, the former lapse of time had been an illusion, and that no more time had elapsed than is 
required for a single scintillation from the brain of Brahma to fall on and inflame the tinder of a mortal 
brain. The material was pure, and his art was pure; how could the result be other than wonderful? " 
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