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ABSTRACT

A plastic stress-strain relationship or flow rule is sought for a
material obeying the Coulomb yield criterion. In this investigation a
kinematic model 1s developed and experimental evidence is obtained which
suggests that the model may have physical significance. The stress-
strain relationship forms an essential part of the mechanics of deform-
able solids since it is generally recognized that the correct stress so-
lution to boundary value problems must necessarily be associated with a
deformation field. Furthermore, recent work in the theory of plasticity
has shown that stress-strain relationships of a certain class can be
sufficient for the establishment of uniqueness of the stress solution.

The analysis is made within the framework of the assumption of an
ideal rigid-plastic material. Considering the available experimental
evidence, it is not anticipated that this analysis will provide a use-
ful approximation for materials other than relatively large-grained
media such as sand.

The various proposed plastic stress-strain relationships are re-
viewed. Attention is given to the assumption of perfect plasticity and
its thecretical and physical implications. The kinematic model of G.
de Josselin de Jong is discussed in detail. De Jong's model, which is
limited to plane strain, allows a deviation of the directions of prin-
ciple stress and strain rate. His experimental observations show evi-
dence of this phenomenon, and indeed it seems to be a likely explana-
tion for other kinematic observations.

The application of this model to three-dimensional states of strain
made by R. M. Haythornthwaite is further generalized by the addition of
dilatation. The kinematic consequences of this model are investigated
for the axially symmetric case. The model permits the directions of
principal stress and strain rate to deviate except in those particular
circumstances where perfect plasticity dilatations are occurring.

The stress and velocity equations for the various stress states
satisfying the Coulomb condition can be separated into four groups. Of
the two nontrivial groups, one is statically determinate, the other
is kinematically determinate. Additional consideration is limited to
the former group because of its apparent suitability to problems of
classical interest and its mathematical convenience. The stress and
velocity equations of this group are hyperbolic. In general, the
stress and velocity characteristics do not coincide. However, the
kinematic model allows Jjust sufficient deviation of the principal di-

ix



rections such that coincidence of one set of velocity and stress char-
acteristics is possible.

The problem of indentation by a flat-ended, frictionless, circular
punch was chosen for analysis and testing. OSufficient stress boundary
conditions are present such that the stresses can be found independently
of the stress-strain law. The stress characteristics and distribution
were determined by a numerical procedure which was programmed on a high-
speed digital computer. The surface radius of the deforming region was
then determined for the cases of maximum deviation and zero deviation
of the principal directions. This radius was selected as a kinematic
observable since it was confirmed to be adequately sensitive to devia-
tions in the directions of principal stress and strain rate.

Small scale punching tests were performed on a uniform Ottawa sand.
The sequence of surface displacements was photographed and the failure
load was recorded. The failure load was adequately predicted for the
larger angles of friction corresponding to the higher densities of the
material, however, it was underestimated for the lower angles of fric-
tion obtained with lower densities. The observed surface displacements
demonstrated that the dilatation rate was essentially zero and that the
deviation of the principal directions was close to the maximum value
possible with the slip-expansion model developed in this study. This
indicates that under certain circumstances, the kinematic model provides
a physically appropriate flow rule for the Coulomb yield criterion.



CHAPTER I

INTRODUCTION

A law relating the kinematics of plastic flow to the stress state
at failure is an essential part of the complete theory of the plastic
failure of granular materials. Until recently, investigations concern-
ing failure of a granular material were restricted to determinations
of stresses, and the accompanying deformations were considered only
in a qualitative manner if at all. This was due to the statically de-
terminate nature of the governing stress equations obtained from the
yield criterion and the equilibrium equations. However, for many
boundary value problems there are not sufficient stress boundary con-
ditions for a unique determination of the stresses. The additional
information necessary was generally obtained by the application of a
worst condition or similar extremum principle. However, in the me-
chanics of deformable solids, it is generally recognized that this in-
formation must be supplied by the stress-strain relationship and that
the correct stress solution must be associated with a deformation field
satisfying all of the deformation boundary conditions.

Recent work in the theory of plasticity has shown that stress-
strain relationships of a certain type are sufficient for the establish-

ment of uniqueness of solution to boundary value problems. If it is



postulated that the yield criterion relating the stresses at yield is
also the plastic potential from which the strain increments at yield

can be derived, then uniqueness of the stresses can be shown (see Hilll).
This postulate, which has been widely accepted in connection with the
yield of metals, has recently been extended to soils. However, unlike
the situation for metals, the postulate that the plastic potential and
the yield function are identical has led to results which are at var-
iance with experimental data.

The purpose of this study is to obtain evidence of the actual laws
governing flow in granular materials. The analysis here proceeds by
idealized models which reproduce onlythe main features (and hopefully
the important ones) of the actual material. Attention will be centered
on axially symmetric flow. The approach will be to investigate the
possible stress-strain relationships and to apply them to a statically
determinate problem with a suitable flow observable. After the varia-
tion of this observable with the different stress-strain relationships
has been determined, this problem will be reproduced in the laboratory
and information concerning the law governing axially symmetric plastic
flow will be inferred from the comparison of the experimental observa-

tions and the theoretical predictions.

A, COULOMB YIELD CRITERION
If the material is assumed to be isotropic, then the yield crite-

rion must be a function of the stress invariants only, i.e., it must



not change for an arbitrary rotation of the coordinate axes. Drucker
and Prager2 proposed the following generalization of the Coulomb yield

criterion (in principal stress form):

2

5 o) L/2
fyield) = on(cl+cg+oa)+[%(ol-02) +(02-03) +(03-01) ﬂ = k

When specialized to plane strain o and k can be determined in terms of
the cohesion and the angle of friction. When plotted using the princi-
pal stresses as coordinates this function forms a right circular cone
with the octahedral axis as its axis and with its apex in the tension

octant. Shield5

remarked that this yield surface is a valid general-
ization of the Coulomb law to three dimensions, but that there is no
limit to the number of yield functions which reduce to the Coulomb law
in two-dimensional problems. Shield then interpreted the Coulomb law
as giving the limiting stress conditions on any plane in a three-di-
mensional mass of material. He then took the well known result ob-
tained from the fact that the Mohr's circle representing the limiting

stress state must be tangent to the two lines representing the Coulomb

yield criterion in the o-rplane (see Figure 1-1),

opN° - oy = 2N, o, > 0. > op

N = tan (x/L + ¢/2)
where
¢ - cohesion



Figure 1-1. Mohr's circles for a general state of stress
at failure in a Coulomb material.



and found the six possible planes obtained by substituting the princi-
pal stresses 01, 02, and 03 for Oy, 0Oy, and o, in all permutations.
These six planes enclose a right hexagonal pyramid whose axis is the
octahedral axis and whose cross section in the octahedral plane is an
irregular hexagon as shown in Figure 1-2, Because of the mathematical
convenience of the plane sides and the relative success of correlat-
ing with experimental data, this generalized Coulomb yield criterion
will be used throughout this study.

From Figure 1-2, it is seen that the Coulomb yield surface for
an isotropic material has 60° symmetry. Therefore an experimental de-
termination of the yield surface can be made by considering stress
states which lie on only one of the six segments. The ordinary tri-
axial soil testing apparatus is capable of only axial compression and
axial extension tests which give stress states corresponding to the
corners of the yield surface. The two usual methods of reaching stress
states corresponding to intermediate points on a segment of the yield
surface are testing a hallow cylinder with unequal internal and ex-
ternal pressure and an axial load, and stressing a specimen with com-
bined hydrostatic pressure, torsion, and axial load.

Several investigations of the yield surface for sands have been
reported. Habibu performed tests on specimens subjected to combined
hydrostatic pressure, torsion, and axial load. He used solid cylindri-

cal specimens in a dense condition. For intermediate stress states
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Figure 1-2. Section of the Coulomb yield surface in the
octahedral plane,



his results deviated by as much as 5° or 16% from the yield surface

standardized on the results from the standard compression test. More-
over, the extension tests gave an angle of friction of 7° or 22% lower
6

than the compression test. Peltier5 and Haythornthwaite~ reported

similar deviations in extension tests, while Kirkpatrick,7 Wu, Loh,

9

and Malvern,8 and Bishop and Eldin” have found good agreement between
the results of compression and extension tests. Kirkpatrick,7 and

Wu, Loh, and Malvern8 have also reported experimental results with
hollow cylinders loaded with additional axial load and unequal internal
and external pressures. Kirkpatrick's tests essentially covered only
one intermediate stress state and the samples were at the minimum
porosity. He found the angle of friction to be 2° or 5% greater than
that found by the standard compression test. The tests by Wu, Loh, and
Malvern were more comprehensive. Their tests yielded an angle of

friction which was greater than that given by the compression test by

14% at the most for the intermediate stress states tested.

B. IDEAL RIGID-PLASTIC MATERIAL

The ideal rigid-plastic material is homogeneous and time indepen-
dent. The material remains rigid until the stresses in the material
satisfy a certain yield condition, which is independent of the stress
history or stress path and the rate of stress application. Furthermore,
this yleld condition is independent of the total strain. When the

stress state satisfies the yield condition, unrestricted deformation



or flow can occur as long as unloading does not take place. As soon

as the stress state retreats from the yield surface the material be-
comes rigid again. A stress-strain diagram along with an unloading
cycle is shown in Figure 1-3. Note that there is no one-to-one cor-
respondence of stress and total strain. Any number of strains cor-
respond to the stress when it is at the yield level while during tne
unloading-loading cycle an infinity of stresses correspond to the same
strain. Therefore, only a relationship between stress and strain in-
crement or rate is anticipated. The material also lacks viscosity.
Hence for quasi-static problems, only the ratios of the strain incre-
ments or rates will be found, not their actual values. The term "rate”
or "velocity" used in this connection does not necessarily refer to
time but it can refer to any suitable monotonically increasing quantity
associated with progressive deformation. This is completely analogous
to the basic hinge angle in the collapse mechanism of a beam or frame
to which all the other hinge angles in the structure are proportional
(e.g., see Hodgel©).

Admittedly the ideally rigid-plastic material is a rather rough
approximation to the actual behavior of materials. However the ap-
proximations made are not without good reason from the standpoint of
mathematical tractability. Consider the problem of a surface footing
or the problem of indentation with a flat-ended die as it is called in

the literature on metal working. The theory of elasticity (e.g., see
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Timoshenko and Goodierll) shows the stresses to be infinite at the
corners of the die. This indicates that yielding starts at these
points from the onset of loading. Following a steadily increasing
loading program, the yielded zones at any load below the ultimate
collapse load may be as shown in Figure 1-4. When the material at
the corners is stressed to yield, a mechanism comes intc action, per-
haps slippage, which prevents the stress state from going beyond the
yield surface. When additional load is added, the material in the
yielded zone may give or slip thus shifting the additional load to
the rigid portion some of which subsequently yields. The footing or
die is still supported by the rigid, unyielded body of material in the
center until the load increases to the point where the yielded zone
has extended completely under the die. At this load, flow of the ma-
terial, possibly with the same kinematics as the mechanism for yield,
is no longer restrained and may occur indefinitely unless arrested

by the occurrence of some other phenomenon. In this case the predom-
inant arresting factor is possibly the formation of a more favorable
geometry due to the partial burying of the footing or die.

From this possible description of the yielding process in a bound-
ary value problem, the simplicity of the ideally rigid-plastic material
can be appreciated. With such a material, the stress state in the de-
forming mass must satisfy a yield condition which is independent of

the stress path and which is maintained throughout the flow process.



11

Only the plastic strain rates at ultimate failure need be considered

to complete the solution. The load and the extent of the plastic zone,
at ultimate failure only, are investigated. Hence, the intermediate
stages of progressive yielding, where the growth of the elastic-plastic
interface is determined for each load increment, is ignored. Neglected
too are the effects of strain hardening or weakening, the consideration
of which requires a step-by-step determination of the strain history
for each point throughout the yielded zone.

Turn now to the actual behavior of the material under considera-
tion in this study. At the outset, fine-grained, cohesive materials
will be ruled out. These materials are quite time-dependent, usually
due to the presence of pore water. Further, their strength is usually
quite dependent on the stress history. Instead, attention will be con-
fined to relatively large-grained, permeable materials, with full
drainage permitted, the strength characteristics of which are princi—
pally frictional. Since a great deal of testing has been done on sands,
the following discussion will deal with this material exclusively
although the analysis may well be applicable to other cohesionless,
granular materials.

The typical stress-strain curves for sand as found in most text-
books on soil mechanics are shown in Figure 1-5. They are labeled
simply as being for the loose state or the dense state. These curves are

similar for either the triaxial or the shear box testing apparatus.
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Ioad Controlled Test

Strain Controlled Test

Stress

Total Strain

Figure 1-5. Typical stress-strain curves for sand.

The elastic limit is quite low for either density state and it is
followed by an irreversible strain-hardening region. For a dense speci-
men tested in a strain controlled machine this strain-hardening portion
is followed by a strain-weakening portion of considerable extent in
some cases and finally by a fairly constant stress region which is
reached only after considerable strain. The stress in the constant
region is referred to as the ultimate or residual stress and the cor-
responding angle of friction as the ultimate or residual friction angle.
Sand in the loose state exhibits a gradually decreasing strain-harden-
ing rate which eventually becomes nearly zero. The strain at which
flow occurs at fairly constant stress is usually quite large for both
types of curves, anywhere from 5—20% total strain. Now, both types of
stress-strain curves are departures from the ideal rigid-plastic mate-

rial and their general shape is certain to be reflected in the load-
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deflection curves in such tests as footing tests. Hence any results
obtained by assuming the material to be ideally rigid-plastic cannot
be expected to give good agreement with tests performed on a material
for which the stress-strain curves have important deviations from the
idealized model.

If the Coulomb yield surface as shown in Figure 1-2 is accepted
as giving an adequate description of the failure condition for sands,
then the yield surface can be established for a particular material
by experimentally establishing one point on it such as a corner point
which can be tested with the standard triaxial apparatus. The maximum
angle of friction, obtained from the peak stress, is not a constant
for a particular sand but is a function of the density. This angle
of friction is usually correlated with the initial density. Hence the
determination of the angle of friction-initial density relationship
for a particular sand will require a series of tests. A noteworthy
example of such a test series, using the standard triaxial apparatus,
has been reported by Chen.12 He was able to obtain very consistent
results due largely to his exceptional specimen preparation techniques.

The question of dependence of the yield surface on the stress
path or history has been investigated for the stress states attainable
with the standard triaxial machine. In the standard compression test,
the hydrostatic pressure is first applied and then the excess axial

load is applied until failure. Bishop and Eldin9 performed a series
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of drained tests using four different stress paths to failure for com-
pression tests. The entire range of initial densities of the partic-
ular sand was tested. The stress paths followed were: (1) application
of hydrostatic pressure and then the application of the excess axial
compression; (2) application of the hydrostatic pressure, then main-
taining the axial stress constant, the pressure was reduced until fail-
ure; (3) stressing with an all-around pressure to 101 psi and then re-
ducing the pressure to 5 psi from which point an axial pressure was
added until failure as in the standard test; and (4) application of the
vertical load and the ambient pressure, varied in such a manner that
no lateral strain occurred, until the pressure reached 30 psi and then
the standard compression test was carried out. Axial extension tests
were also performed with failure being produced by increasing the lat-
eral pressure while holding the axial stress constant and by decreasing
the axial stress while holding the lateral pressure constant. The
tests exhibited only small scatter and the results show that the angle
of friction is practically independent of the stress path and that it
can be expressed as simply a function of the initial cdensity.
Conclusive results concerning the effects of the rate of loading
on the strength of sands have been difficult to achieve due to the
added difficulties encountered in dynamic testing. Casagrande and
Shannon15 carried out a test series on a dense, dry sand in the drained

condition. However, the scatter in the results prevent any definite
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trends from being observed. Through an extensive series of tests,

1L

Whitman—" was able to conclude that the variatio& in the friction angle
in the range of loading times from 5 minutes to 5 milliseconds is not
more than 10% for dry sands. The effects of loading rates on saturated
sands is more serious however. Saturated samples in a drained condition
were tested by Seed and Lundgrenl5 at three various rates of loading
called static, slow, and rapid with loading times of 10-15 minutes, k4
seconds, and .02 second, respectively. First, the results of the rapid
tests on drained and undrained specimens were essentially the same, in-
dicating that, although provisions are made for drainage to take place,
the rate of loading in the rapid test is so fast that there is no time
for drainage to occur and excess or negative pore pressures will de-
velop. Hence, for a drained test on a dense, saturated, fine sand, the
strength was somewhat higher for the slow tests and up to L0% higher
for the rapid tests than for the static tests, and for a dense, sat-

urated, coarse sand, the strengths for the slow and static tests were

the same, but the rapid tests were again up to MO% higher.



CHAPTER II

KINEMATICS OF PILASTIC FLOW

As discussed in the definition of an ideal rigid-plastic material,
the one-to-one correspondence of stress and total strain which exists
for an elastic material will not be expected for a rigid-plastic ma-
terial. The only simple relationship expected between the stresses
and the deformations is a relationship between the stresses at a point
at an instant and the strain increment or the strain rate at that point
at that instant.

The first plastic stress-strain rate relationship for solids was

proposed by St. Venant.l6

It was restricted to plane strain only. The
relationship was obtained by assuming zero volume change and coincidence
of the maximum shear stress and maximum slip directions. Shortly there-
after, M. Ievyl7 generalized St. Venant's equations into a stress-strain
rate law for the general three-dimensional case. The next notable ad-
vance was by R. von Mises when he made the hypothesis that the strain
increments were proportional to the derivatives of the yield surface
with respect to the corresponding stress components. He gave this hy-
pothesis two physical interpretationslB: firstly, for a body at the

yield stress the strain rates occur in such a manner that for infinitely

small variations of stress inside the yield surface no additional work

16
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is dissipated; and secondly, the actual dissipated work of deformation
is an extremum compared to all other amounts of work which would be
dissipated by neighboring states of stress on the yield surface acting
through the same strain rates. Both of these interpretations become
obvicus when one realizes that the hypothesized strain rates are pro-
portional to the components of the normal to the yield surface. More
recently D. C. Druckerl9 has given the normality of the strain rate
components a somewhat different interpretation by postulating that for
an ideally plastic material, the net work done by an external agency
over the cycle of application and removal is positive or zero if plas-
tic deformation has occurred in the cycle. This assumption of normal-
ity of the strain rate components to the yield surface has been termed
the assumption of perfect plasticity or alternatively, a material
whose strain rate components are normal to the yield surface is called
a perfectly plastic material.

These stress-strain rate laws were developed primarily to des-
cribe the flow strains for ductile solids and although very plausible
physical explanations or work postulates may be given to them and cer-
tain uniqueness and variational theorems can be formulated from them,
correctness of solution is desired and the real test of their validity
lies in their agreement with experimental results.

Recently, the assumption of perfect plasticity has been applied

3,6

to granular materials. )19 Since the yield surface is in the shape
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of a pyramid, the strain rate components normal to this surface pre-
dicts that a perfectly plastic Coulomb material will have a certain
expansion rate during plastic flow. This expansion or dilatancy is a
well known property for sands, except when they are in a very loose
condition. However, it is also recognized that the expansion rate
starts to decrease after some deformation and eventually drops to
zero. Hence 1t has been suggested that the perfectly plastic flow
rule be limited to initial motion problems or to problems involving
small total strains; but even then, the predicted dilatation rate is
usually several times the experimentally observed rates.

Consider a set of data for a standard triaxial test showing the
corresponding volume changes for the total axial strains. An initial
contraction usually occurs which is followed by a dilatation except in
very loose sands. As can be seen from Figure 2-1, the initial contrac-
tion is assoclated with the preflow region while dilatation can be ap-
proximately associated with the flow region of the stress-strain curve.
For plastic strain rates it is this dilatation rate during flow which
is important, not the total volume change. Haythornthwaite6 has shown
that for a sand to be acting like a perfectly plastic material, the
curve relating percentage volume change and total axial strain should

have a slope of

= tan®(n/b + 4/2) - 1
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Figure 2-1. Typical stress-strain and volume change diagrams
from triaxial tests on sands.
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Figure 2-2. Variation of the void ratio with shear box displacement.
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regardless of the size and shape of the deforming region. He measured
the actual dilatation rate for a series of triaxial specimens with an
initial porosity in the range of 50%. The largest dilatation rate ob-
served was about 20% of that value predicted by the perfect plasticity
assumption. Comparison of the volume change curves from triaxial
tests with the results shown in Table I will show that, in general,
the volume change rates for the perfectly plastic assumption are much

too high.

TABLE I

SLOPE OF THE VOLUME CHANGE CURVE FOR PERFECT PILASTICITY

4 tan®(x /4 + ¢/2)-1

25° 1.46
30° 2.00
35° 2.69
Lo° 3,60

These dilatations or expansions accompanying the yielding of gran-
ular media have been carefully studied by Roscoe, Schofield, and Wroth.21
Using the shear box designed by Roscoe22 to impose uniform simple shear
strain on samples and hence making it possible to determine the void
ratio with some reliability at all times during the test, they were
able to establish the existence of a unique void ratio, which is reached,

after sufficient ylelding has occurred, regardless of the initial wvoid

ratio of the soil sample. In Figure 2-2 are shown the void ratio paths
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of samples at various initial void ratios. It can be seen that samples
on the dense side of this critical void ratio expand until this void
ratio is reached and then no further volume change occurs and that
samples on the loose side contract to the critical void ratio. This
void ratio was found to be a function of the normal pressure. The in-
vestigators used sand, glass beads, and 1 mm steel balls for their
tests on cohesionless materials. These tests have shown that the
dilatation rate during initial plastic flow is strongly dependent on
the initial void ratio, and that for large total strains involved in
continued plastic flow, the dilatation rate is zero.

In order to reconcile the assumption of perfect plasticity with
the experimental results, thereby retaining the benefit of a proof of
uniqueness of stress and of the upper and lower bound theorems, etc.,
strain-hardening models have been proposed. The essential feature of
the models, as far as the expansion rates are concerned, is that the
yield surface is terminated in the compression octant of principal
stress space. In the model proposed by Jenike and Shield25 the ter-
minating surface is a plane perpendicular to the hydrostatic stress
axis and a semisphere or similar surface was proposed by Drucker, Gib-

L

son, and Henkel.2 With the yield surface so terminated, zero or even
contracting strain rates are possible for certain states of stress.

These yield surface models are capable of describing many more of the

features of the phenocmenon of plastic flow in granular materials than
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the rigid-plastic model, but it should be realized that in order to
show uniqueness of stress with these strain dependent yield surfaces,
the initial surface must be known and the history of strain known
throughout.

Therefore, it appears that if the simplicity of the rigid-plastic
analysis is retained and if a flow rule giving acceptable dilatation
rates 1s desired, then the assumption of perfect plasticity must be
dropped and with it much of the restrictiveness concerning the unique-
ness of stress at yleld. The most obvious step is to assume the vol-
ume change 1s negligible and that the directions of principal stress
and strain rate coincide. This has been done by several investiga-

25,06,27
tors.

However, experimental evidence and the ability to ex-
plain certain kinematic phenomena make the flow rule proposed by G.

de Josselin de Jong appear more promising. De Jong restricted his
considerations to the plane strain problem. He obtained the kinematics
of granular materials from a model in which deformations occurred by
slip or glide along certain directions. De Jong reasoned that since
the supposed mechanism for yileld and redistribution of stresses in a
granular material was slippage along the critical Coulomb shear planes,
then it would be reasonable to use such a mechanism to describe the
flow kinematics. For the zero volume change condition de Jong con-

sidered plane strain flow to be composed of a linear combination of two

independent slips along critical shear planes as shown in Figure 2-3.



Figure 2-3. Distortion of a plane element by

slips on critical shear planes.
This kinematic model allows the remarkable result that the directions
of principal stress and strain rate do not necessarily coincide and
that they can deviate by as much as ¢/2 in either direction. Further-
more, when ¢ = 0, the directions of principal stress and strain rate
do necessarily coincide, a fact which has been experimentally justified
for metals. For an arbitrary dilatation rate, the slip along the
critical shear plane can be replaced by an expanding layer. Here again
the directions of principal stress and strain rate do not necessarily
coincide but the amount of deviation is less and it is dependent on
the expansion rate. It is interesting to note that when the expansion
rate coincides with that required by the perfect plasticity assumption,
then de Jong's slip model gives the same flow rule as the perfect plas-
ticity flow rule and the directions of principal stress and strain

rate do necessarily coincide. Haythornthwaite29 has applied de Jong's
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model to three-dimensional states of strain. He investigated the kine-
matic consequences of this model for the case of zero dilatation and
axial symmetry. He found much the same results concerning the pos-
sible amount of deviation of the principal directions.

Coincidence of the directions of principal stress and strain rate
is a necessary consequence of the combined assumptions of isotropy
and the existence of a functional relationship between stress and strain
rate, or equivalently, from the assumption that the strain rates are
derivable from a potential which is a function of the stress invariants.
Therefore, lack of coincidence does not necessarily imply lack of iso-
tropy but instead, shows the lack of a functional relationship between
stress and strain rate.

A similar flow rule for plane strain deformations has been hy-
pothesized by S. Takagi.Bo Essentially, his flow rule contalns an
arbitrary expansion rate and a corresponding deviation of the princi-
pal directions such that one set of stress characteristics and one set
of velocity characteristics coincide. There is a good possibility
that this frequently occurs as will be seen in the following paragraph,
but Takagi states that this must be true in order to satisfy conditions
on boundary lines, or to connect two discontinuous solutions across a
line. This statement does not seem to be Jjustifiable. Although dis-
continuous velocity fields are generally Jjoined by a velocity character-

istic, this 1s a kinematic phenomenon and there seems to be no justifi-
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cation for assuming that this is necessarily a critical Coulomb shear
plane or stress characteristic.

The rupture planes or boundaries between the undeforming and the
deforming material is the most readily and most often observed kine-
matic phenomenon of flow. In many tests where the rupture planes have
been observed, the stresses are not known throughout the entire deform-
ing region because of the presence of deformation boundary conditions.
However, the stresses in certain portions of the deforming region can
be completely determined by the known stresses on the boundary, the
yield condition, and the equilibrium equations. These statically de-
termined regions are shaded in Figure 2-4. Note that the extent of the
statically determined region cannot be predicted, only its shape. Hence,
in each of these problems the principal stress directions are known in
a certain, not insignificant, zone. The rupture plane is a kinematic
gquantity and it must be a zero extensional strain plane (see discussion

1
by Shield” ). The Mohr's circles for strain rates are shown in Figure
2-5 for de Jong's theory and for the perfect plasticity theory for
plane strain. It can be seen that for the perfect plasticity theory,
both the critical Coulomb shear stress planes are zero extension planes
or potential rupture planes while de Jong's kinematic theory allows the
strain rates enough freedom such that one of the potential rupture
planes can coincide with one of the critical Coulomb shear stress planes.

Therefore, if the expansion rates are less than that required by perfect
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plasticity, then the occurrence of coincidence of the rupture planes
with the Coulomb shear planes is a good indication of the occurrence
of deviation of the directions of principal stress and strain rate.

The coincidence of rupture planes and the Coulomb shear planes is in
evidence in many triaxial specimens, in footing tests (see Sylwestro-

32

wicz, or Selig and MeKeeEB), and in model retaining wall tests (see

J. Brinch Hansen

25)'

A detailed experimental study concerning the
possibility of deviation of the principal directions was also made by

8

de Jong.2 Using the apparatus shown in Figure 2-4, he measured dis-
placement increments, rupture lines, and strain rates by means of
photographs and reported further evidence supporting the occurrence of
the deviations of the directions of principal stress and strain rate.
The deviation of the directions of principal stress and strain
rate may be difficult to accept because of the notion that isotropy
necessarily implies coincidence of the principal directions. It is
much to de Jong's credit to have made this deviation plausible through
the use of his slip model. Indeed, this deviation seems to be a likely

explanation for the occurrence of commonly observed rupture planes and

other kinematic phenomena which de Jong studied in detail.



CHAPTER III

FIOW RULE FOR A FRICTIONAL DILATING MATERIAL

In this section flow rules for the cases of plane strain and axial
symmetry will be investigated by the use of a slip-expansion model.

28 gnd Haythornthwaite,? it will be

Extending the ideas of de Jong,
assumed that the general plane strain and axially symmetric velocity
state is caused by independent slips and expansions on any or all planes
on which the critical or limiting Coulomb shear stress is acting. It
will be seen that such a model will not restrict the principal strain
directions to coincide with the principal stress directions, but in-
stead it will only limit the possible deviations between the two. It
should be noted that the perfect plasticity flow rules assoclated with
the Tresca yield criterion and with the Coulomb criterion can be shown
to be special cases of this flow rule.

The Coulomb yield surface has been previously discussed in Chapter
I and illustrated in Figure 1-2. It is recalled that this surface can
be constructed by plotting the Coulomb yield criterion in the normal
stress-shearing stress plane and constructing the Mohr's circles for
permutations of the principal stresses. These circles are shown in

Figure 3-1 for any side regime and any two diametrically opposite

corner regimes. For a side regime, which is a side exclusive of end

29



30

a
a
T A
Tg Ua o, 0 ;’b
x_¢
L 2
Side Regimes
T T
! I\
Jg,
Corner Regimes D, B, F Corner Regimes A, E, C

Figure 3-1. Mohr's circle representation and corresponding physical
elements for the regimes of the Coulomb yield criterion.
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points, one of the principal stresses has a value intermediate to the
other two and the critical shear stress occurs on only two planes in-
clined to the principal stress directions as shown on the element be-
side the corresponding Mohr's circle. However, for the corner regimes,
two of the principal stresses are equal. Hence in the plane of the
directions of the two equal stresses, every direction is a principal
stress direction. In this case the critical shear stress occurs on
all planes tangent to the cone which has the unequal stress direction
for its axis and a half-angle of n/4t + ¢/2 or n/h - ¢/2 for regimes

A, E, Cy or D, B, ¥, respectively. This is shown in the physical ele-

ment below the corresponding Mohr's circle in Figure 3-1.

A, SLIP-EXPANSION MODEL

The model is shown in Figure 3-2. An arbitrary direction is rep-
resented by the unit vector AB which is at an angle N from the og-axis
and whose projection on the op-0e. plane forms an angle € with the oy-
axis. The unit vector E represents the direction of the critical
Coulomb shear stresses acting at point B. It forms an angle ¥ with
the og-axis, ¥ assuming the values n/b + ¢/2 or n/b - ¢/2 depending
on the regime. The vector E represents the slip on a plane through
point B and it forms an angle of {+wB with the oy-axis, where B is the
angle of expansion and W = *1. The sign of W is chosen such that
positive B is associated with expansion. The projections of both G

and E in the Op-0c plane subtends an angle of © with the op-axis. The
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Figure 3-2, The slip=expansion model.
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plane of sliding is tangent to the cone which has its vertex at B and
has G as a generator. Hence, this plane is uniquely determined by
vectors a—and 5, where s is the intersection of the slip plane with
the op-0e plane.

Since the motion is the same over the plane of sliding, the motion
of point B with respect to point A varies only with respect to the
perpendicular distance from A to the planeof sliding through B. De-

noting the absolute value of this variation by "e"

and choosing its
sign such that the sliding takes place in the same direction as the

shear stress on the sliding plane, the slide vector is
E = wel-cos(y+wB)T + sin(y+wp)cos6T + sin(u+7B)sind k).

The state of strain rate at a point in any direction can be com-
pletely specified by the extensional strain rate in that direction and
by the shearing strain rate between that direction and any two mutually
perpendicular directions. Let the line KE be the general direction
and let N be the unit normal to the plane of slip. These can be rep-

resented by the vectors

o=
o
I

coshi + simh coség + sin\ sintk

=
f

sinw; + cosVy cos@E + cosy sinei

Then using the engineering definition of extensional strain rate

¢ - (I5.F)(E.).
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Carrying out the specified vector and scalar operations

€ = %;[cosz(E-G)sin2k(sin(2w+ﬁﬁ)+ sin WB)
(3.1)
- cos(£-8)sino\ cos(2y+wB)- cos@\(sin(2y+wB)- sinwB)]

Denote the shearing strain rate of AB and another line perpendicular
to it and in the plane of AB and the og-axis as 7, (Figure 3-3). Let
BE be a unit vector in this plane and let it be perpendicular to ZE,

then the rotation rate of KE in the positive N direction is

where
DB = - simi + cosh cosgg + cos\ sintk
Hence, calling positive shearing strain rate
no= o - <i>w/2 (3.2)
then this shearing strain rate is

;N = %?[-cos(&-@)cos(E$+§B)cos€k + c0s2(£-6)sin2\(sin(2y+WB)+ sinwB)
(3.3)

+ sin2(sin(2y+WB)- sinWB)]

Denoting the shearing strain rate of AB and a third line normal to ZE

and to the plane of AB and the 0g-axis as 7, (Figure 3-4) and letting
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J H

Figure 3-4. Illustration of the shearing strain rate y;
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FB be a unit vector in this plane and normal to AB and in the positive

£ direction, then the shearing strain rate in this plane is

where
FB = O + sintj - costk.
Upon carrying out the operations, this becomes

;g = - wesin(&-0)[cos(2y+wB)cosh - cos(€-8)sin(sin(2y+wB) + sinwp)]

(3.4)

If slip and expansion occur on many planes through point B, which
is possible for all stress regimes, then the resultant strain rates
can be considered as the sum of the strain rates from all of the slips.

They can be expressed

n
é = % sin®\ Wéicose(é-ei)[sin(2w+WBi)+sidﬁﬁi]
i=0
(3.5a)
n n
- Lsinan Weicos(é-ﬁi)cos(2W+W6i)- L cos%&jg%ei[sin(2W¥WBi)—sinwﬁi],

2 2

i=0 i=0

where n is any non-negative integer
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n n
& = -Ccoso\ Weicos(é-ei)cos(2w+ﬁﬁi)+ % sinon Wei[sin(2¢+ﬁﬁi)—sinﬁﬁi]
i=0 i=0
N (3.50)

+ % sin2\ Weicosg(g-Oi)[sin(2¢+wﬁi)+sinﬁﬁi],

i=0

n
& = sin\ Wéisin(é-ei)cos(i-ei)[sin(2w+ﬁﬁi)+sinﬁBi]
20
' (3.5¢)
n
-cosgg%éisin(é-@i)cos(2w+ﬁﬁi).
i=0

B. FLOW RULES

These results can be specialized to give a rule governing the

plastic flow possible for each of the stress regimes.

1. Side Regimes (¥ = +1 from Figure 3.1)
On a side regime of the yield surface slip-expansion can occur
on only two planes through B, one at 6 = 0, ¥ = n/k-¢/2 and one at

6 =, ¥ =n/b-¢g/2. Thus,

¢ = - %(cosgx—cos2&sin2k)[eocos(¢-60)+elcos(¢-ﬁl)]
+ %(sinzxcoszé+coszk)(eosinﬁo+elsinﬁl) (3.6a)

- %siancosE[eosin(ﬁ-ﬁo)—elsin(¢—6l)]
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R

;K = %sinEX(l+cos¢§){eﬁcos(é—80)+e}cos(¢—61)]
(3.6b)

- %sinzxsingé(eosinﬁo+elsinﬁl)-cos2kcos§[eosin(ﬁ-ﬁo)—elsin(ﬁ-ﬁl)],

&é = %sinxsin2é{eo(cos(%—BO)+sinBo)+el(cos(¢-51)+sin51)]

-cosksiné[egsin(¢—60)—elsin(¢-ﬁl)].

It is clear that A = /2, - n/2, & = n/2, - n/2 are directions of
principal strain rate since &x = &é = 0 at these values. Furthermore
= 0 in the direction, therefore this type of slip and expansion gives
plane strain deformation which is the case de Gosselin de Jong con-
sidered. The other directions of principal strain rate are € = 0, =«

and values of A equal to

1 -1 Jegsin(g-Bo)-e1sin(g-p
“ = tan ﬂeocos(é +elcos d J (5.7)

For simplicity in discussing the results, it will be assumed that B;

1s restricted within the practical limits of
- /2 <B1 < 4, (3.8a)
and that the angle of friction ¢ is bracketed by

0<g<mn/h. (%.8b)
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Then from Eq. (3.7) it can be seen that @, the angle of deviation of
the direction of principal strain rate from the direction of principal

stress, is limited within the range

- 2 ($-B2)S 4 < ($-80). (3.9)

From Eq. (3.6a) the strain rates in the principal stress directions

are

ébb = % [egcos(g-B,)+ercos(g-B1)] + % [epsinBy+ersindy]
(3.10a)

éaa = - % [eocos(¢-Bo)+elcos(¢-Bl)] + % (e sinBytersin,]
(3.10b)

The ratio between these two strain rates is independent of the in-
dividual slips only if Bo = B;. It will be assumed that this is the

case. Therefore, the flow rule can be written

: os (-8 )+sinB : :
€bb  _ Coséé—ﬁg Sin = - Q, SRS z 0, € S 0 (3.11)

€aa cos -sinf
Since Q 1s assumed to be independent of the actual slips its value
can be determined from any plane strain test in which the ratio be-
tween the strain rates in the principal stress directions are observed.
This plane strain flow rule contains several other flow rules of

particular note as special cases. For the simple Coulomb glide case,
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the expansion rate is zero. Hence P = O, and the above results become

-%gocg%, Lo L1, & >0, and g <O,

where éa and éb are principal strain rates. Note that principal
strain rates can be used in this case since the slip model indicates
that their ratio is independent of the individual slips. In the case
where ¢ = 0, the above results show that the principal directions nec-

essarily coincide. When B = 4, Eq. (3.9) shows coincidence to be nec-

essary and Eq. (3.11) becomes

&y _ - tan“(x/k +4/2), € >0, e <O

€a

which is the perfect plasticity flow rule for a material obeying the

Coulomb criterion.

2. Corner Regimes
From Figure 3-1, w = +1 for regimes D, B, and F. For these stress
states it is possible for slip and expansion to occur on infinitely

many planes through B, all at ¥ = n/L-§/2. The strain rates from Eq.

(3.5) become



L1

n

= %sinegg}icosg(ﬁ-@i)[cos(¢-6i)+sinﬁi]

i=0
(%3.12a)
n n
- % cosggg%i[cos(¢—ﬁi)fsinBi]- %sin2k ejcos(E-0;)sin(g-Bi),
i=0 i=0
n n
-cos2\)e;cos(£-61 )sin(d-B1 )+ %sian ei[cos(g-B; )-sinB; ]
i=0 i=0
(3.12b)
n
+ %sinzx eicosz(é-@i)[cos(d—&i)+sinﬁi],
i=0
n
= —cosgg}isin(é-@i)sin(¢—ﬁi)
i=0
(3.12¢)
n

+sin\)eisin(£-61)cos(£-61)[cos(g-B; )+sinBil.
i=0

For regimes A, E, and C,¥W = -1 by Figure 3-1. The stresses at

these regimes are such that slip and expansion is possible on an in-

finity of planes through B, all at ¥ = n/4+¢/2. Hence from Eq. (3.5)

€ =

n
- %sin%gz?icos2(§—®i)[cos(¢—ﬁi)-sinﬁi]
i=0

(3.13a)

n

n
+ %COSE€E}i[COS(¢-Bi)+SinBi]- %singk ejcos(£-61)sin(g-Bi),
i=0 i=6
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n n
%h = -cos2v)ejcos(£-01 )sin(g-By )- %sin2€£}i[cos(¢-5i)+sinBi]
i=0 i=0
(3.13b)
n
- %sinQ%E}icosz(E—Qi)[cos(d-ﬁi)-sinﬁi],
i=0
n n
%é = —cosgg}isin(E-Qi)sin(¢-ﬁi)-sink eisin(i—Qi)cos(E-Oi)[cos(%-ﬁi)-sinﬁi]
1=0 1=0 (3.13c)

The components of strain rate for the principal stress directions

for regimes D, B, and F are,

n
Caa = - % }}ﬁicos(¢‘5i)-8iﬂﬁi], (3.1ka)
1-0
n
pp = %Zeicosg@i[COS(¢—Bi)+Sinﬁi] (3.1h4p)
1=0 '
n
écc = = )e;sin®0;[cos(g-B1)+sinB;] (3.1ke)
1=0
n
Yac = - )eisindjsin(g-pi), (3.1k44)
i=0
n
Yeb = )eisindjcosd;lcos(d-Bi)+sing;] (3. 1ke)
1=0
n
Yab = -Eicosgisin(é-ﬁi), (3.14f)
1=0

and for regimes A, E, and C are,
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n
€qn = % j{%i[cos(¢-ﬁi)+sinﬁi], (3.
i=0
n
Epp = - = E}ﬁcosin[cos(¢—Bi)-sinﬁi], (3.
i=0
n
€ = - % j{%isingQi[cos(¢—Bi)-sinﬁi], (3.
i=0
n
Tee = - )eisind;sin(g-By), (3
i=0
n
&cb = - )ejsin0;cos0; [cos(g-P;)-sinBs], (3.
i=0
n
Yeb = - ejcos0isin(g-By ). (3.
i=0

It can be seen that the strain rates in any direction for any of

six regimes can be written as

singx(cosaé ébb + 1 sinot &cb + sin®t écc)
2
(3
+ cos®\ ggy +~% sino\(cost ygp + siné vg.),
. . 5 - ' . . .
sino\(-e,, + cos™E epp + % sin2€ 7., + sinZ¢ €oc)
(3

+ cos2\(cost 7gp + sink 7g0),

15a)

15b)

15¢)

.154d)

15e)

15f)

these

.16a)

.16b)

sinx[sinQE(ébb-éCC)- 052t 7op) + coshlsint &ab-cosé Yool

(3.

16c)
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If the deformations at the corner stress regimes are specialized
to the case of axial symmetry, then the circumferential direction is
a principal strain rate direction by definition. Let the oz axis be
the circumferential direction, then for regimes ¥, D, and A, C, the cir-
cumferential stress is one of the equal stresses. Then axial symmetry

requires that

Yab = 7eb = O

From Egs. (3.1ke), (3.14f), (3.15e), and (3.15f), it can be seen that
this can be satisfied by an infinite variety of slips and expansions.
The directions of principal strain rate are those directions in
which axial strain rates alone occur. A line in such a direction has
no shearing strain rate with any line perpendicular to it. Such a con-
dition can be assured by equating to zero the shearing strain rate be-
tween this line and any two other lines perpendicular to it and non-
colinear with each other. Thus the principal directions can be found

by finding the angles A and £ where

Imposing axial symmetry on Egs. (3.16b) and (3.16c), this means that
sinh sin2E (& -€..) - cosh cosk 7, = O, (3.17a)

sino\(cos®E epp+sin®t €.o-€q4) + COSON sink &ac = 0.

(3.17p)
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The only significant roots to these equations are § = ﬁ/2 and values

_ y
o = Ltanl| —8%), (3.18)
e €aa~€cc

Substituting the strain rates in terms of the slips and expansions

of N equal to

into Eq. (3.18) for regimes D and F gives

o = Litant 2eisindisin(g-B1)
2 Yeslcos(g-Bi)-sinBy ]+ e;s1in®01 [cos (f-B1)+sinBy ]
(3.19a)
and for regimes A and C gives
g = 1iapl -2leisin0;sin(4-B;)
= g e Ye; lcos(g-Bs )+sinBi J+2essin~0; [cos(#-P1)-sinBy |

(3.19v)

This angle of deviation of the directions of principal stress and
strain rate, Q, assumes its largest positive and negative values when
slip is occuring on only one plane described by either 0 = n/2 or

0 = -n/2. Therefore @ is limited by

] % ($-Bo) < @ < = (4-B1), (5.20)

n =

where Bo or Pi1 is that expansion angle acting on the single plane of
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sliding that gives the maximum positive or negative deviations. Note
that the upper and lower limits on & are realized only when a plane
strain velocity field is occurring. However, these limiting values can
be approached without the plane strain case actually being realized.
For regimes B and E, the unequal stress direction is the circum-
ferential direction. Therefore, the og-axis is the circumferential

direction and axial symmetry requires that

The other two principal strain rate directions lie in the plane of oy
and Oc. Since every direction in the oy-0. plane is a principal stress
direction, the relationship between the principal stress and strain
rate directions in this plane is not definite.

Since it ispossible for slip and expansion to occur in a completely
arbitrary manner on any or all of the critical shear planes, the flow
rule for the corner regimes has a good deal of freedom. Again, it
should be noted that it is necessary that all the expansion angles Bi
be equal in order for any relationship between the strain rates to be
independent of the individual slips. It will be assumed that this is
the case. Then take the strain rates for regimes D and F as an example.
From Egs. (3.14) it can be seen that

il

€ce ' ’
0>+—2>-Q, 0>2—2>-0, ¢€,<0, ¢

23 ag S ce Z 0, and €g Z 0.
aa aa

[Q]

(3.21a)
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The only relationship independent of the individual slips is

ég+écc __cos(g-P)+sinp _
) Q (3.21b)

€2a cos -sinp

Equations (3.21) are a complete statement of the flow rule for regimes

D and F. Similarly, from Egs. (3.15) it can be seen that

€9 -1 €ce -1 . . .
0 2 E;; z -7, 0 2 E;; 2 -a7, €aa Z 0, €ce S 0, € = 0
(3.22a)
for regimes A and C, and that
.o ) 1
Sgtecc _ _cos(g-P)-sinB _ (3.220)
€an cos(g-B)+sinB

For regimes B and E, éaa corresponds to ég and any of the strain rates

in the op-o, plane are principal strain rates. Therefore, from Egs.

(3.14) the flow rule for regime B is

m
Mo

0>2>-0, 0>2>-0, >0, e >0, e <0,
€ ~ 6~ - B -
(3.23a)
and
-
€? €b - Q, (3.23b)
e

and from Egs. (3.15), the flow rule for regime E is given by

0>R2>_9t, 0>X>.0l & <o, <0, &>0,
- &9 — — € T B a -

(3.24a)
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and

-0 . (3.24b)

Since the dilatation rate parameter () is assumed to be independent of
the particular slips occurring, then its value at a certain instant
can be determined from any test for which the appropriate regime is
known. The observations necessary are merely the volume change rate
and the appropriate axial strain rate.

These results can be specialized to give some flow rules of par-
ticular note. The Coulomb glide case discussed by Haythornthwaite29
is obtained by setting B = 0. The limitation on the possible devia-

tion of the principal stress and strain rate directions changes to

- g/e<a<+g/2, (3.25)

and the dilatation rate is zero, hence the parameter

o = 1. (3.26)
If in addition the material is insensitive to hydrostatic pressure,
i.e., ¢ = 0, then & = O from Eq. (3.25). Hence the directions of
principal stress and strain rate coincide and the flow rule is iden-
tical with the flow rule associated with the Tresca yield condition.
The special case where P = ¢ gives the perfect plasticity case since

Eq. (3.20) shows the deviation to be necessarily zero and since

Q = tan®(x/b + ¢/2). (3.27)
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The regimes of the yield surface and the associated axially
symmetric flow rule can be separated into four groups. Assuming

01 > 02 they are as follows:

(I) At B o1 = 02, o0g = 01N -2cN (3.31a)
€1 >0, €>0, <0, € +eéx+0é = O

(3.31b)

AtE o1 = o0p = ogN®-2¢cN (3.32a)
£1<0, <0, >0, & té+aley = o0

(3.32b)

(II) On AB 03N°-0g = 2cN, o1 > 02 > og (3.3%a)

€1>0, € = 0, ¢g<0, € +0 ée? = 0

(3.33b)

On EF ggN®-02 = 2cN, og > 01 > 0p (3.34a)

€1 = 0, €2<0, € >0, Qz+ég = 0 (3.3ub)

The directions of stress and strain rate necessarily coincide for this
group since the zero strain direction is a principal stress and princi-
pal strain rate direction by the plane strain condition and the circum-
ferential direction is a principal stress and principal strain rate di-

rection from axial symmetry.

(III) On AF o1N®%-02 = 2cN, o1 > og > 05 (3.35a)

€11 20, €22<0, ée = 0, €11+Q0¢€p = O

(3.35b)
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For this group the circumferential direction is also the zero strain
rate direction, hence the other two directions of principal stress and
strain rate do not nesessarily coincide by Egq. (3.7), and the deviation

is bracketed by Eq. (3.9)

: o1 = 0n, 0Os = o01N“-2¢ . 36a

(IV) At F o NZ-2¢cN (3.36a)
€11 > 0, E.322 <0, E.’-@ >0, €11 + 0 é22 + é@ = 0

(3.36b)

At A o5 = Og = 61N2—2CN (5.57a)

€11 >0, €220, €<0, 0 en+temteg = O

(3.370)

By Eq. (3.9) the €1 and ég directions do not necessarily coincide with

the o1 and oo directions, and the deviations are limited by Eq. (3.20).



CHAPTER IV

ANALYSIS OF THE FIELD EQUATIONS

An analysis of the stress and velocity equations and solutions
for both plane strain and axial symmetry will be presented herein.
Although the plane strain case has been treated in much detail by de
Jong,28 it is included here to show the effects of a dilatation rate
on the velocity field. The axial symmetry problem will involve the
investigation of all of the differing regimes of the Coulomb yield
surface. ©Similar investigations of the axial symmétry case have been
performed by ShieldBu for perfectly plastic materials yielding accord-
ing to the Tresca criterion and by Cox, Eason, and Hopkins2 for per-
fectly plastic materials obeying the Coulomb criterion.

The analysis of the stress fields will be limited to considera-
tions of quasi-static conditions. In addition, the effects of granu-
lar material weight will be included where possible. Therefore for
the axial symmetry case, it will be required that the stresses satisfy
the equations of equilibrium

ooy | OTzy , Or-99
or oz r

0, (L.1a)

aTzr + aGZ + TZI'*_*_ y

> 3% o r = 9 (4. 1b)

51
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where y is the welght density of the granular material.
Assuming the velocity field is axially symmetric when the stress

field is axially symmetric, the velocity-strain rate relations are

o

e o= X/, = Mo oon oo UL ()

dr’ oz r 3z Or

where u and w are the radial and axial velocity components, respectively.
Likewise the plane strain velocity-strain rate relations are given by
du . v y dou N ov

=% Y Ty vyt (4.3)

where u and v are the velocity components in the x and y directions.

A. PIANE STRAIN

For the case of plane strain, the stress field is hyperbolic.
The stress characteristics are the planes of critical Coulomb shear
stress as shown in Figure 4-1. The equations governing the stress
field are the well known Kotter equations (see Hil19( or Sokolovsk155).
These will not be discussed; instead attention will be restricted to
the velocity equations.

The plane strain flow rule Eq. (3.7) and Eq. (3.11) is shown in
Figures 4-2 and 4-3. Introducing the angle v as the angle between the
0o direction and the x-axis, then the two independent relationships be-

tween the strain rates can be written as
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X = tan2(oty) (4.ka)
€x-€y
éx - éy tan(v+otk )tan(via-k) = O (k.bb)

where k 1s the first quadrant solution of

cosok = SL ooy - 1B cos2a (h.he)
Q+1 cos(4-B)

The velocity field described by these two equations is hyper-

bolic. The characteristics are given by

A tan(v+atk);  tan(v+a-k). (L.5

dx

From Figure L4-3 it can be seen that these are the zero extensional
strain rate directions, hence the characteristics are inextensible.
The relationship of the velocity characteristics to the stress char-
acteristics depends on eg, e1, and B. For the case of perfect plas-
ticity B = 4, @ = 0 and from Eq. (L.Lke) k = n/k-4/2. Comparing Fig-
ure 4-1 and Figure 4-2 it can be seen that both sets of velocity and
stress characteristics coincide. For expansion angles less than ¢,
k > n/b-¢/2, and the velocity characteristics will not coincide with
the stress characteristics, in general. However, the principal di-

rections can deviate between the limits

(6-8).

(3-6) < o <

M =
n -
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For the lower limit k = n/4-B/2 by Eq. (L.4c), hence the inclination

of the first velocity characteristic v+Q+k becomes

v +O + K = VvV -

(¢-8) + (x/u-B/2) = v +x/h - g/2.

R

Comparing Figure 4-1 and Figure L4-2 shows that the first velocity char-
acteristics coincide with the first stress characteristics. Similarly
second velocity and stréss characteristics coincide for the upper limit.
Thus the slip and expansion model allows enough freedom in the princi-
pal strain direction such that one set of stress and velocity character-
istics can coincide for expansion rates smaller than the perfect plas-
ticity expansion rate.

The velocity discontinuities for plane strain are restricted by
the possible strain rates shown in Figure 4-3. From this figure it
can te seen that strain rate states corresponding to only normal or
to only tangential velocity discontinuities are not permitted for a
dilating material. Thus both normal and tangential discontinuities
must be occurring simultaneously, implying incipient separation of ad-
Jjacent particles. As discussed by Shield,31 this separation requires
that the line of discontinuity in the velocity field must be regarded
as a thin transition layer.

From geometrical congiderations, a tangential velocity discon-
tinuity will create a strain rate state in which the strain rate étt

is negligible compared to the shearing strain rate &nt in Figure L-L4.
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Flowing n t
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Figure 4-4. Velocity discontinuity for plane strain conditions.

From Figure L4-3, this condition is only satisfied along the velocity
characteristics. Therefore, the lines of discontinuity, which are
often referred to as "rupture lines," are velocity characteristics.
The fact that the rupture lines are frequently observed to be in close
coincidence with the computed stress characteristics is good evidence
of the éeviation of the principal directions.

The shearing strain rate along the discontinuity and the exten-
sional strain normal to the discontinuity are then given by points C

or D on Figure 4-3 from which it can be seen that

sﬁg = cot2k ()4”6)
7nt

Writing the strain rates in terms of the velocity jumps V, and Vg,

Eq. (4.6) gives the relationship between the velocity jumps

..V_g. = cot2k (""'7)
Vi
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B. AXTAL SYMMETRY

1. Group I
Regimes B and E form Group I. In both cases the principal stresses

in the r-z plane are equal. Introducing the pure number W which has

the property

w = + 1 for regime B

- 1 for regime E,

then directly from Egs. (3.3la) and (3.32a) it can be written that

ow w
61 = 0z = 0Op = 0z, 09 = 0opN -w2cN , and Ty, = O.
The equilibrium Eqgs. (4.1) simplify to
_a_gz + —————Gr—GO = O and ?—q_r_ + '}’ = O.
or r dz

The second of these equations implies

op = -7z + f(r).

Substitution of this equation along with the expression for oy into the

first equilibrium equation ylelds

df
L (v -1
dr( )

o _
(N7 -1)y z+oeN 7
r

f
r

But no expression for f(r) can satisfy this equation without being a
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function of z. Since this violates the definition of f(r), the equilib-
rium equations do not admit a solution unless y = O. When y = O, the

solution is

where C1 is an arbitrary constant to be evaluated at a boundary. Then

the stresses for regime B are,

(N®-1
o, = 0, = Cir + ¢ cotg, (4.9a)
5 (NP1
o, = CuNr + ¢ cotd, (k.9p)
Tpy = O (k.9¢)
and for regime E,
-2
o = = C (v -1) b
r = 0, = Cir + ¢ cotd, (4.10a)
-2
- N -1
gg = CaN 2r( )+ ¢ cotd, (L.10p)
Ty = 0 (4.10c)

The principal stress directions are undefined in the meridional

plane, hence the velocities are restricted only by the dilatation, rule

Y_ o (k.11a)
r
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and by the conditions

=]
=]

Weg <O, €1 >0, €s > 0. (k.11b)
2. Group II
The plastic regimes AB and EF of this group are characterized by
the vanishing of either one of the principal strain rates in the r-z

plane. Let

W = + 1 for regime AB

- 1 for regime EF.

Denoting éb as the zero principal strain rate and éa as the non-zero
principal strain rate the flow rule, Egs. (3.33b) and (3.34b), can be

written

e - -0 wée (4.12a)

We. < 0. (k.12Db)

Introducing v as the inclination of the €, direction from the r-axis,

then from Figure 4-5 the strain rate components can be written

. . 5 . © .
€pp = €4C08 V, €,, = €48107V, Yrg = ea51n2v.

Substituting Egs. (4.12a) and (L4.2) into these equations, the velocity

field is completely defined by
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Figure 4-5. Mohr's circle for strain rates of group II.

€2, 7zr/2

Figure 4-6. Mohr's circle for strain rates of group III.

o.Z’TZl’

\
Na--cr
V

Figure 4-7. Mohr's circle for stress states of group III.
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9"l eos® = 0, (4.13%a)
or r
i + QW %sindy = 0, (k.13b)
dz T
Su + e + Qw Y sinoy = 0, (k.13c)
dz  Or r

Tu < 0. (4.13d)

The velocity field described by Egs. (h.lB) has been shown to be
. , 20
hyperbolic by Cox, Eason, and Hopkins. They found the character-

istics to be the principal strain rate directions, i.e.,

dz

el tanv,  tan(v+r/2). (h.1L)

A recent paper by H. Lippmann36

treats the hyperbolic characteristics
of these equations in more detail. TFor the purposes here, it will

Just be noted on first characteristics that,

. W
€g = -8

(k.15a)

RIS

and on second characteristics,
e, = O (4.15Db)

After the velocity characteristics have been found, the stress

field can be determined from the two equations of equilibrium, the
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yield condition, and the condition that the principal axes of stress
coincide with the principal axes of strain rate. The slip model an-
alysis has shown that this latter requirement is necessary for these

regimes. The yield condition gives the equation

2
01N -2¢N, 01 > 02 > og for regime AB (k.16a)

08

i

% ooN"24+2eN"1,09 > 01 > 0o for regime EF. (4.16b)

The condition of coincidence of the directions of principal stress and

strain rate is satisfied by the cartesian stress components

op = = (o1top)+ % (01-02)cos2v (k.17a)
a, = -é— (gl+02)- % (01-02)C052V (h.l’?b)
Tor = % (01-05)sin2y (k.17¢)

Substituting these stress components into the equilibrium equations

yields

<ff 0%>+co 2v ——<§i %%>+s1n2v ——<§} §%>
(4.18a)
+ (01-02)<E%s2v %Z -sin2v i;>+ [K:}+Uf>+<§f é%>cos2v - c%} = 0
z
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_?_ 01102 _ _é 01-02 . _a_ 01-02
5z<§55_5> cos2Vv az<5f§—— +sin2v . ——5——

oy v 1
+ (01-0 sin2y — +cos2y — + — sin2v}+ = 0.
(02 2)(:; oz 5t or © Y

(4.180b)

The stress field described by Egs. (4.16) and (L4.18) is hyper-
bolic; the stress characteristics are the same as the velocity character-
istics, Egq. (L.14). The equations relating the stresses along the

first characteristics are,

sin2v

d(cl+02)+d(cl-cg)+[gcl-02) +2%}dz+[(ol+02)+(01-02)c052v-20é]gz

r

(L.19a)

+ 2(0‘]_—0‘2)[—2—"2i dr- %% dz] = 0

and on the second characteristics,

d(01+02)-d(01-02)+[F01-02) sinay +2%jdz+[(Gl+02)+(01—02)0052v-20@]§£
r r

(4.19b)

-

- z(cl-og)[%f dr- g% dzJ = 0

3. Group III
On Side AF, €11 > 0, €22 < 0, and g = u/r = O from Eq. (3.35b).
Hence u = O and €r = Ou/dr = 0 also. Let k be the absolute value of

the inclination of the €5 direction from the r-axis and define W as
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W= sign yp,.

Using Eq. (3.35b) and Figure 4-6, the value of k is given by

cosok = L oson (4.20)
Q+1

The description of the velocity field is completed by writing

w ?rz
€g

= tan2k

which becomes upon substitution of the velocity expressions

— Ow ow
V- tan2k 5, - 0. (Lk.21)

The characteristics for this first-order equation are the

straight lines

42 | _ Ftanok (h.22)
dr

and the velocities along the characteristics are simply
dw = O. (L4.23)

Once the principal strain rate directions have been determined,
the principal stress directions can be determined at any point for any
deviation & and the stress field can then be found from the equilibrium
equations and the yield condition. From Figure 4-7 stress components

satisfying the yield criterion are
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o, = o+(c cosg-osing)cos2(k+ict) (L.2La)
op = 0-(c cosg-osing)cos2(k+war) (4.2kb)
T,p = W(c cosg-osing)sin2(k+a), (L.2ke)
where
¢ = .;.(glmz).

With some loss in generality, it will be assumed that & is a constant

throughout. Then from the equations of equilibrium

0g = Op+rT %%[l+sin¢cos2(m+ﬁd)]—r %g singsin2(k+wa) (L4.25a)
do . — 1 00 — . . —
— [1-sindcos2(k+wa)]- == ¥ singsin2(k+wr)
oz or
(k.25p)
+ g (c cosg-osing)sin2(k+wat)+y = O.

Equation (h.25b) has one set of characteristics given by the

family of lines

dz _ - [1-sindcos2(k+wa) ] (4.26)

dr singsin2(k+wa)

and the variation of o along these lines is given by
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%2 + 2 - ¢ cotg Wy cscd csco(k+war).
r T r

The solution to this equation is

s = Lae cotg + — yr cscg csc2(k+wt)
r

=)

where A is an arbitrary constant to be evaluated on some curve inter-

secting the characteristics. Then the stresses can be written

g, = [% + E%E csc¢ cscE(n#ﬁxﬂ [l—sin¢ cosE(K+ﬁd)]+ e cotd,
(k.27a)

op = {? + E%E csed csc2(x¥ﬁaﬂ [1+sing cos2(k+wa)l+ ¢ cotg,
(k.270)
Typ = =W % sing sin2(k+wa) - %;- (k.27¢)

Finally, it should be verified that the stresses satisfy the in-

equalities from Eq. (3.35a)

oy > 0g >02.

b, Group IV
Regimes A and F comprise this group. In both cases one of the
principal stresses in the r-z plane is equal to the circumferential

stress og. Introducing the variables mn and oo where 7 is the angle
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which the plane of the positive critical shear stress forms with the
r-axis (Figure 4-8) and where oo is the radius of the Mohr's circle
for stress then from Figure 4-9, stress components satisfying the

Coulomb yield criterion are

o, = (c cotd-ogesed)-ogsin(g+en), (4.28a)
o, = (c cotg-oocsed)+ta sin(g+en), (4.28p)
T, = (c cotg-ooesed)cos(g+en), (L.28c)
gg = (c cotg-ogcscd)+wag, (4.284d)
where
W = + 1 for regime F

- 1 for regime A.

Substituting Egs. (4.28) into the equilibrium equations

Bdr aTZI- JOr-0Q aTzr aO'Z Tgr
= = O
or ’ dz ’ r 0 and or * oz ¥ r T ’
yields
[cscd+sin(g+2n) ] Qoo _ cos(g+en) égQMFQG cos(g+2n) il
or dz © or
(4.29a)
+ 2agsin(d+en) %lzl + % [frsin(geen)] = 0
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—

Figure 4-8. Stress characteristics and principal stress
directions for group IV.
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Figure 4-9. Mohr's circle for stress states of group IV.
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+on) 9% - 9% - o
cos(g+2n) ~ [cseg-sin(g+2n)] S, -20,sin(g+2on) S
(4.29p)
+ 20,cos(g+en) %ﬂ + %? cos(g+en)+y = O.
zZ
These two Egs. (4.29) together with the equations
_ 9% 9%
do, = S, dr+az dz, (L4.30a)
an = é% dar + é% dz, (L.30p)

can be used to find the variation of o, and n along any chosen direction.

The most convenient or characteristic directions are found from

92)2 4 (cot(g+n)-tann) dz _ cot(g+n)tann = O.
dr dr

Solutions are

q tan 1 which are called the first characteristic directions and
z

dr

tan(n+rn/2+¢) which are the second characteristic directions.

(4.31a)

Hence it is seen that the characteristics are the lines of critical
Coulomb shear stress. The variation of the dependent variables o,

and mn along the first characteristic directions is given by

dog+otangoodn + EQEEEQ [Weosddr+(1-wsing)dz]-tangd(singdr+cosgdz)y = O

(L.32g)
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and on the second characteristics by,

do,-2tandoydn + gotang [Weosgdr-(1-Wsing)dz ]+tand(sinddr-cosgdz)y = O.
r

(k.32b)

For regimes A and F, éll >0 and €22 < 0, and the principal di-
rections of stress and strain rate do not necessarily coincide but can
deviate by . One of the independent relationships inveclving the
strain rates is the relationship between the directions of principal
stress and strain rate. Noting Figures L4-10 and 4-11 this can be ex-

pressed by

ZZLé— = tan2v, where v = 1n-(n/4-¢/2)+x (L.33)
r-€z

The angle n is the inclination of the first stress characteristic and
it must be determined from stress considerations. Hence v is con-
sidered as known for any . The second independent relationship on

the strain rates is given by Egs. (3.36b) and (3.37b)
€11 + 0 égg + ée = O for regime F (3.%6b)
and

Q" €1n +eop €y = O for regime A. (3.37Db)

From Figure 4-11 strain rates in the principal stress directions are
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lst Characteristic

2nd Characteristic

Figure 4-10. Velocity characteristics and principal strain
rate directions for group IV.

€r, 7’rz/2
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Figure 4-11. Mohr's circle for strain rates of group IV.
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R L R CR (1.3k)
fop = % (é,4¢p) - % (é,-¢p) % (4.3k4)

Then letting
COS2k = gi% cos2 = ES§%§%§7 cos20 (4.35)

the second independent relationship can be written

- éztan(v+x)tan(v-m) + cos2vég = 0. (4.36)

€ cos(v+k )cos(v-k) (1+Q7)

r

Writing these two equations in terms of the velocities, it can be
seen that the velocity field so described is hyperbolic, with character-
istics defined by

tan(v+n) which are the first velocity characteristics and

tan(v-k) which are the second velocity characteristics.

(L.37)

Along the characteristics, the velocities for the first velocity

characteristics are given by

duttan(v+k )dw + [ dr ] (4.%8a)

(1+0%)cos= (v+k)

s lc
fl
)

and on the second velocity characteristics by,
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0. (4.38p)

dr u
dut+tan(v-k)dw + — = =
(v-r) [(l+QW)cosg(v-K)] r

The relationship of the velocity characteristics to the stress
characteristics is a function of the dilatation rate and of the devia-
tion angle . In general the velocity characteristics will not coin-
cide with the stress characteristics since in all but the perfect
plasticity case, the angle between the velocity characteristics 2k is
greater than the corresponding angle between the stress character-
istics n/2-¢ (compare Figure 4-8 and Figure 4-10). However, the princi-
pal stress and strain rate directions can deviate so that there is the
possibility that one set of velocity and stress characteristics can

coincide. This deviation is limited by

N ol

(§-8) <@ <3 (#8).

For the upper limit of this inequality, Eq. (4.35) gives the angle

k = =n/b - B/2.
Hence the inclination of the second velocity characteristic
n-(n/b-g/2)+ a - & = n-(x/b-g/2)+($/2-B/2)-(n/4-B/2) = n-(n/2-¢)

is also the inclination of the second stress characteristic from Fig-
ure 4-10. Similarly first velocity and stress characteristics coin-

cide for the lower limit of the inequality. Hence Jjust as in the plane
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strain case, the slip-expansion model allows enough freedom in the pos-
sible directions of the principal strain rates so that one set of

stress and velocity characteristics can coincide for expansion rates
smaller than that required by perfect plasticity. Again it is interest-
ing to note that for the perfect plasticity condition B = ¢, then & = O
and k = nt/L-¢/2 and both sets of velocity and stress characteristics

coincide.

5. Summary

Summing up the results of the investigation of the axially sym-
metric velocity and stress fields for each of the regimes of the
Coulomb yield surface, it can be seen that the regimes of Groups I and
ITIT admit only trivial stress or velocity solutions and hence will be
of very limited importance. The regimes of Group II produce kinemat-
ically determinate velocity fields in the sense that there are suffi-
cient equations to determine the velocities if sufficient velocity
boundary conditions are known. The stress field is not statically de-
terminate since it requires the determination of the principal strain
rate directions and hence the principal stress directions by the veloc-
ity analysis. The regimes of Group IV are statically determinate in
the same sense as given above. The velocity field is indeterminate

and can be found only after the stress field has been determined.



CHAPTER V

SPECIFIC SOLUTIONS

Adopting the generalized Coulomb yield criterion, an associated
flow rule with a reasonably arbitrary dilatation rate has been de-
rived. DNext, a study of the stress and velocity solutions for the
various sides and corners of the yield surface has shown that only
the regimes of Groups II and IV are important. Of these two groups,
the statically determinate Group IV has been the more popular and
although the suitability of both groups should be checked for each
problem, Group IV will probably be the more important. However, the
flow rule is not sufficiently restricted for the reg%mes of this
group as the relationship between the directions of principal stress
and strain rate is undetermined. Thus the velocity field contains a
degree of freedom which can be varied to correlate with experimental
results. In this chapter a problem will be sought in which some fea-
ture of the velocity field provides an observable from which an es-

timate of the deviation of the principal directions can be made.

A. THE TRIAXIAL TEST
Since the most common axially symmetric test in soil mechanics is
the triaxial test, it is a logical first choice in the search for a

velocity observable. The discussion here will be restricted to the

™



76

standard compression test.

Let the specimen have the dimensions and coordinate systems as
shown in Figure 5-1. In the standard compression test the loading is
an ambient pressure plus an additional vertical load applied through
relatively rigid end caps. If it is assumed that the end caps are
sufficiently rough that radial slippage is prevented, then the boundary

conditions may be completely stated as

zr
at r = Df2, L/2>z>-1L/¢, (5.1)

w = constant
at z = % L/2, D/2>r>0. (5.2)

It seems likely that the negative vertical stress is larger in
magnitude than either the radial or circumferential stresses, hence
regime F is applicable. Further, let it be assumed that effects of
material weight are negligible so that y may be set zero. Then using
Egs. (4.31) and (4.32) the characteristics and the stresses are uniquely
determined in the region shown in Figure 5-2 from the boundary values

of Eqg. (5.1). The stresses in this region are
Ur = 0g = - P (5'33-)

o, = - ptang(ﬂ/h+¢/2)-20tan(n/h+¢/2). (5.3b)
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The stresses in the conical zones adjacent to the caps cannot be
uniquely determined due to the lack of sufficient stress boundary con-
ditions.

A theoretical and experimental investigation of the velocity
fields of triaxial specimens was made by Hay‘bhornthwaite.29 He meas-
ured the length of the velocity field during two stages of the total
deformation to failure. During the initial stage, the deformation
occurred over almost the entire length of the specimen. At a later
stage, the length of the deforming zone was very nearly equal to the
diameter. Unfortunately, the variety of the theoretically possible
velocity fields makes definite correlation with the experimental re-
sults nearly impossible. As an example of one of these fields, a
somewhat new velccity field will be found, and its significance with
respect to the test results and to determining the relationship be-
tween the principal stress and strain rate directions will be dis-
cussed.

The velocities in the statically determined region shown in Fig-
ure 5-2 can be found from Egs. (h.38). However, in this case it is
simpler to obtain them directly from Egs. (h.BB) and (3.36b). Assum-

ing in this case that the dilatation rate is small enough to be neg-

lected, then

du _ ow _ (du ow
3, + el <:;r - 6;) tan2o (5.k4a)



aLmLu _ o, (5.4p)
r

2
Haythornthwaite 7 obtained a solution to these equations by assum-
ing that the velocity components u and w at a point are functions of only
the angle between the r-axis and a line from the origin to the point.

Hence using the notation of Figure 5-3
u = u(y) and w = w(¥) where tany = z/r.

Then velocities satisfying the boundary conditions

w = u = Owhen V¥ = x/k+q (5.5a)
w = lwhen ¥ = O, (5.5D)

are given by
_ cos22a‘Jl+2tan20tan¢—tan2w (5.6a)

L L sinho+2o
2 2

% + % SinMOPJl+2tan20tanw-tan2W—sin‘1(taanosQQ—sinE@)

L L sinkotoo
2 2

(5.6b)

Another interesting boundary condition satisfied by Egs. (5.6) is
that

u = Owhen ¥ = - (n/h-a). (5.7)
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Using this fact, a complete velocity field satisfying the velocity
boundary conditions required by Eq. (5.2) is as follows: (1) the
velocities in the region above the line V| = n/h+a are identically
zero; (2) the region below the line ¥ =-m/4+0 is moving vertically
as a rigid body; (5) the velocities in the intermediate region are
given by Egs. (5.6). Figure 5-4 shows the deformation of a grid re-
sulting from this velocity field being maintained for a finite de-
formation.

Since Haythornthwaite sought to determine & from the measure-
ments of the sizes of actual triaxial velocity fields, it is important
to iqvestigate the changes in the size of this new field for various
values of . From Figure 5-3, the length of the deforming zone is

simply

p = 2 [tan(x/b+a) +tan(n/b-a)]

no

which reduces to the simple expression

L = Dsecoq. (5.8)

Hence this velocity solution could well explain the short deforma-
tion zone observed by Haythornthwaite during the later stages of
failure. However, recalling that -§/2 < a < $/2, the length

of the deforming region given by Eq. (5.8) for an angle of friction

of , say 35°, varies at most by only some 22% between the largest
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~

Figure 5-4. Deformation of a grid resulting from maintaining a triaxial
velocity field for a' finite deformation, (o = 20°).



82

absolute value of the deviation and zero deviation. Since this par-
ticular velocity field shows that the length of the deforming zone is
not sufficiently sensitive to &, the triaxial test was abandoned as a
means of determining C.
B. THE PROBLEM OF THE RIGID CIRCULAR PUNCH INDENTING A SEMI-INFINITE

REGION

A punching type of test was considered next because an easily
perceived and readily measured velocity observable, the extent of the
deforming zone at the surface, exists for this type of test. Further-
more, the amount of material deforming and the type of velocity field
occurring are such that the observable is quite sensitive to any pre-
dominance of a certain angle of deviation between the principal stress
and strain rate directions. For example, in the plane strain problem
of the identation of a weightless Coulomb material by a smooth, rigid,
flat-ended punch deforming according to the velocity field due to Hill,
shown in Figure 5-5, the three cases where the deviation is exclusively

at one extreme, at zero, and at the other extreme are shown in Table II.

1 | K I
I Punch Free Surface

Figure 5-5. Deformation of a weightless Coulomb material by a strip punch.
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TABLE IT

RADIUS OF THE DEFORMING REGION FOR PLANE STRAIN INDENTATION
OF A WEIGHTLESS COULOMB MATERTAL

a(deviation) K K(g = 30°)
4/2 cot (n/li-g /2)e (Tt80H 2 29
0 &/ 2tand /2 1.56
4/2 tan(x/b-g/2) 577

If the extent of the deforming region corresponding to @ = ¢/2 or
a = -¢/2 is observed, it can be concluded that the principal stress
and strain directions are deviating by the corresponding amount through-
out the deforming zone. However, the observation of a field correspond-
ing to perfect coincidence can only indicate that the material may be
deforming in this manner throughout since an infinity of combinations
of varying deviations can be constructed to give the same intersection
point of the deforming zone with the free surface.

The axially symmetric punch problem has been the subject of sev-

3k

eral investigations. Shield” has presented a detailed discussion and
a numerical solution of the problem for materials which obey the Tresca
yield criterion. This analysis was extended to materials yielding
according to the Coulomb criterion by Cox, Eason, and Hopkinsgo for

the case of weightless materials and by Cox58 for the material with

weight. However, the stress fields for the latter two investigations

were computed including a surcharge of atmospheric pressure. This
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case is not normally realized in practice and in this study the stress

fields are computed for the more usual circumstance of zero surcharge.

1. Stress Field

A necessary preliminary to theuse of the circular punch test to
identify deviations between the principal stress and strain direc-
tions 1is an analysis of the stress distribution. The problem is
statically determinate if the actual friction occurring on the punch
face (not necessarily the maximum angle of friction) during plastic
flow is known. The case of zero friction was chosen. The problem
must be statically determinate so that the stress field can be found
independently of any assumptions regarding the nature of the flow rule.

Let the material occupy the region z > O with the origin of co-
ordinates located at the center of the punch. ILet the radius of the
punch be R. Assume that the cylindrical punch is rigid, flat ended,
and perfectly smooth. The boundary conditions under the punch are

then

T,p = O (5.9a)

W = W, = constant (5.9b)

Let the surface outside the punch be stress free. This boundary con-
dition is normally realized in practice since most granular media are
not impervious and the atmospheric pressure is within the material.

The boundary conditions expressing this situation are



TZI'- = g = 0 on r > R, Z = O- (5'10)

Since the material is cohesionless and no surcharge acts on the
surface, the strength of the material is dependent on its weight.
This suggests that Egs. (4.32) may be put into nondimensional form
most simply and conveniently by expressing each length in terms of
the punch radius R and by replacing the radius of the Mohr's circle,
Oy, by the parameter F = 9%. Thus Egs. (L4.32) on the first char-

4

acteristics become,

dF + 2tangFdn + Ftang [weosddr+(1-Wsing )dz]-tang(singdr+cosgdz) = O
r

(5.11a)
and on the second characteristics become

dF - 2tangFdn + Ftang [Weosddr-(1-wsing )az ] +tangd(singdr-cosgdz) = O
r

(5.11b)

Considering stresses only, the corner regimes A and F are dis-
tinguished by comparing the relative magnitude of the unequal princi-
pal stress with that of the two equal ones. At A the unequal princi-
pal stress is larger and at F it is smaller than the two equal stresses.
It seems reasonable to suppose that the vertical stress under the punch
is smaller (larger negatively) than the radial or circumferential
stresses. At or near the free surface, the radial stress is probably

smaller than the vertical stress, which becomes zerc at the surface,
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and it might well be smaller than the circumferential stress. This
suggests the use of regime F throughout and consequently W = +1 will
be used in Egs. (5.11).

With the help of Figures 5-6 and 5-7 the boundary conditions can
be written in terms of the dependent variables F and n. Taking first
the conditions at the free boundary, Figure 5-6 shows the state of

stress satisfying Eq. (5.10). From this it can be shown that

r
1l

c
—R:; COt(ﬂ'/LI-—Q{/Q)
onr >R, =z = O. (5.12)

n/b-4/2

e}
Il

For a cohesionless material F vanishes and the direction of the char-
acteristics is undetermined, but 1f a cohesionless material is con-
sidered as the limiting state as the cohesion ¢ approaches zero, then

it is seen that

onr>R, z = O. (5.13)

n/4-¢/2

=
[

Similarly from Figure 5-7 it can be seen that Eq. (5.9a) is satisfied

by the expression

1l
O

T - % on0<r<R, z (5.1ka)

=
i
=\

and that the normal punch pressure can be found from
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Figure 5-6. State of stress at the free boundary.

Figure 5-7. State of stress under the punch.
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9 - _[F(lt+cscd) - — cotd] onO<r<R, z = O.
Ry Ry -

(5.1hb)

From the boundary conditions, Egs. (5.13) and (5.lLka), it can be
seen that the characteristics must change their angle rapidly in going
from the stress free boundary to the flat punch boundary. This sug-
gests a field of characteristics as shown in Figure 5-8 in which a
fan of characteristics centered at the edge of the punch accomplishes
the required change in angle. ©Such a type of field is to be expected
from the solution of the analogous plane strain problem. The fan center,
point A, is the point of intersection for all of the first character-
istics in the fan; therefore, the inclination of the first character-
istic takes on many values here. Just to the right of A the boundary
conditions are given by Eq. (5.13) and so the characteristic at the
edge of the fan, AC, is initially inclined at n/4-¢/2 to the r-axis.
The conditions just to the left of A are given by Egs. (5.1L4) and hence
the characteristic AD starts out at 3/bw-¢/2 to the r-axis. This
limits the included angle of the fan to n/2.

The variation of the stress parameter around the singular point A
can be found by considering the point to be a degenerate second char-

acteristic of zero length, then Eq. (5.1lb) becomes

d(cotgdlnF) - 2dn = O.
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Figure 5-9. Illustration of typical calculation situation.
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Integrating and imposing the known conditions at the free boundary,
Egs. (5.12), the variation of the stress parameter around the sin-
gularity becomes

F

Infc cos = 2[n-(n/bk-4/2)]tand (5.15)

Ry l-sing
For the case of a cohesionless material, the logarithmic term becomes
indefinitely large and the only way to preserve the equality is to
set F = 0. Hence all the stress components are zero i1f the singular-
ity is approached from any direction.

The field of characteristics and the stress distribution can be
obtained by the integration of the differential equations involving F
and n along the characteristics simultaneously with the differential
equations of the characteristics themselves. The solution of these
equations usually involves a numerical procedure because of the dif-
ficulties in obtaining an analytical solution. The numerical procedure
is based on a finite difference approximation of Egs. (4.31) and (5.11).
These finite difference equations are in turn used to extend the solu-
tion from the boundary values.

In the usual situation F, n, r, and z are known at two intersec-
tions P, Q of the characteristics as in Figure 5-9. It is desired to
extend the solution to point 1. The unknown coordinates (ri,z1) can
be initially approximated by finding the intersection of the two char-

acteristics if they are extended at their initial inclination. This
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means solving the equations

Zi-Zp . tann,, and ZatZg | tan(nQ+ n/2+¢) for ry and z;.
rl—rp rl—rQ

However, subsequent approximations for r; and z; can be made more
accurately by extending each characteristic one-half its projection at
the initial angle and one-half its projection at the approximated
angle of the characteristic at the point being determined. Hence for

the first characteristic

Z7 /n-2Z z -2
4G . tannp and —i——llg = tann;.
rl/g-rp rl-rl/2

If one-half the vertical projections are used, then rl/g and 21/2 can

be eliminated for the first characteristics to give,

Ti-p  cot nptcotny

.16
— > (5.16a)

and for the second characteristics to give,

ri-rq  cot(ngtn/2+f)+cot(nitn/2+4)

Zl—ZQ 2

Solving these in turn for r; and z:
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zp(cotnp+cotnl)+zQ[cot(nQ+ﬂ/2+¢)+cot(nl+n/2+¢)]+2(rQ-rp)

S [cotnp+cotnl—cot(nQ+n/2+¢7¥cot(nl+n/2+¢)]
(5.17a)
[I'Q( C'Ot'f]p+cot'r]1)-rp [cot (T]Q-Hr/2+¢)+cot (ni+n/2+4)]
+%(ZP-ZQ)(COtnp+COtn1)[COt(nQ+ﬁ/2+¢)+COt(nl+ﬂ/2+¢)ﬂ
ry =

[cotnpreotna-cot (ngtn/2+g)~cot(ni+r/2+4) ]

(5.17b)

The equations on the dependent variables f and n along the character-
istics are approximated by the finite difference equations on the first

characteristic,

/ a\
Fl-Fp+tan¢(F1+Fp)(nl-np)+/ FatFp )tan¢[Wcos¢(rl—r )
\ r l+I'I) J/ P

+(1-Wsin¢)(zl-zp)]-tan¢[sind(rl-rp)+cos¢(zl-zp)] =0

(5.18a)
and on the second characteristic,
Fl-FQ-tan¢(Fl+FQ)(nl-nQ)+-(é;{%g tang[Weosg(ry-rq)
L ratrQ
-(1-wWsing)(z1-2q) l+tang[sing(r1-rq)-cosg(z1-2q)] = 0
(5.18b)

Then F; and ni are
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/-
i

F, = D[‘F +FQ-tan¢ (n1- Np)-Fa(ni-nq) +wcos¢/ (??I%E’+FQ/;l+rQ))
NS )

)

iz Z Z31 '

+ (1- ws1n¢ \ri+r€> q<£}+rQ)) sing(rq-r . )-cosg(2z1 -2 -ZQ)J
(5.192)

where

rl+rQ rl+rp r1+rQﬁ

_ ri-r ry-r Z1-% -2q
D = 2+ tang nQ-np+wcos¢(;i+ri + 2 §)+(1-Wsin¢ 1-%2p  21-2Q

1 — fl'rp r1-rQ _ . zZ1-Zp Zl-ZQ)
= - +nn-weCos - -({1- +
M1 5 | Mg 4 LTy r1+rQ (1-Wsing T r1+rg/

Z1-Zp ri -rp r1-1Q -Fp F,- FQ
Fi+Fp l+F Fi+F,  FiiFg) F1+F,  Fy+F

(5.19b)

After the initial approximations for r; and zi are calculated, ni1 is
estimated and a new Fi and 71 can be calculated from Egs. (5.19).
Subsequently a new r; and zi can be calculated from Eq. (5.17) and
the iteration performed until successive values become sufficiently
unchanged.

In this manner the characteristics and stresses in field ABC are
uniquely determined from the known boundary AB and from the boundary
values of F and n along it. Following the same procedure the stresses
and characteristics are uniquely determined in the fan CAD from the com-

puted values along the characteristic AC and from the boundary values
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at the singularity A. Finally, the region ADO is uniquely computed
starting from computed values on the first characteristic AD and know-
ing that the second characteristics terminate on the line z = 0 at

the inclination of n/4+$/2 to the r-axis. The radius at which this

occurs can be found from Eq. (5.16b)

ri-rg _ cot(ng+r/2+4 ) +eot (5n/h+d2) ] (5.20)
0-zq 2

Simply solving for r;

ry

- %? [cot(ngtn/2+g)+cot(5/bntd/2)+ry

The equation on the dependent variables F and n along the second char-

acteristic is

F1-Fo-tang(F1+FQ) (3 /bn-4/2-1q)

n (F1+F )

wcosd(r1-rq)-(1-Wsind)(z1-2q)]
8(ET0) (50 (11-q) (1T 23-20)

+tand[sing(r,-rQ)-cosg(z1-2q)] = O.

Then F on the punch surface is found to be

FQ[E}tan¢ (3/bn-g/2- nQ )-Wsing —l—£g>+tan¢ 1-Wsing) ’EL_QQ—]

rl+rQ

-tang[sing(ri-rq)-cosg(z1-2q)] (5.21)

1-(3/bx-g/2- nQ)tan¢+ws1n¢<?i—%§> -tang(1-Wsing) —i:EQ
rirrqQ/
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and the normal pressure under the punch can be found from Eg. (5.1Lb).
The above procedure was programmed on the IBM 7090 digital com-
puter at The University of Michigan. The iteration at each point was
terminated when the change in every variable (r,z,F, and 1) fell be-
low lO'5 of its previous value. The number of iterations required to
attain this accuracy was usually five. Whenever a characteristic ex-
perienced a change in angle of more than 6° from point to point, the
mesh size was decreased locally until this requirement was satisfied.
As a result, the mesh size became very small near the singularity
point due to the large curvature of the characteristic AD at the sin-
gularity. In order to keep the required mesh size from becoming pro-
hibitively small, a slight surface pressure of the order of lO'2R7 was
assumed along the surface AB. This was considered to be a reasonable
step, because in the physical problem the boundary conditions given by
Eq. (5.13) will be perturbed by the initial preflow sinkage of the
punch, and the slight overburden then added along AB will provide a
source for this pressure. The pressure assumed corresponds to an ini-
tial sinkage of the order of 10-2R where the thin overburden has no
strength. The resulting fields of characteristics and pressure dis-
tributions under the punch for angles of friction varying from 20°-45°
are shown in Figures 5-10 through 5-15. The computer program as written
in the Michigan Algorithm Decoder (MAD) language, is given in a previous

£ .09

repor
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An overall equilibrium check equating the resisting forces act-
ing on the outer second characteristic to the combined forces from the
soll weight and from the punch pressure was made for the ¢ = 30° case.
The error in vertical equilibrium amounted to less than 0.4% of the

punch load.

2. Velocity Field

As a first step in finding a possible velocity field, the extent
of the deforming region must be assumed. The boundary line separating
the deforming region from the rigid region must be determined from the
strain rate state in the material adjacent to the rigid region. Using

the notation of Figure 5-16, the occurrence of a tangential velocity

Deforming
Region

Region

Figure 5-16. Boundary of rigid and deforming regions.

discontinuity will cause a strain rate state in which €1t and €g are
both negligible compared to y,i- If no velocity discontinuities occur,

then the continuity requires

Ee = €.t.t = 0
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in the region immediately adjacent to the rigid zone; but it can be
seen that énn and &nt can be nonzero. Therefore, whether a velocity
discontinuity is occurring or not, plane strain conditions occur in
the material adjacent to the rigid region, and the strain rate state
is identical to that occurring along a velocity characteristic in the
plane strain case. Hence the rigid and deforming regions are separated
by a velocity characteristic, and the velocity discontinuities are re-
lated by Eq. (M.?). Since the deforming region must extend the full
width of the punch, the smallest deforming region is that contained
within the r-axis and the second velocity characteristic which passes
through the origin. This is the axially symmetric analogy to Hill's
velocity field for the same problem for the plane strain case.57

The velocity characteristics are uniquely determined in this de-
forming region from the stress characteristics by Eq. (L4.37) for any
permissible values of  and . Three such fields of velocity character-
istics are shown in Figures 5-17 through 5-19 for the case of ¢ = 30°,
zero dilatation (Q = 1, k = n/h) and different values of &. These
fields of velocity characteristics were constructed graphically from
the stress characteristics.

As anticipated, the extent of the deforming zone is quite sen-
sitive to &, as can be seen in Figures 5-17, 5-18, and 5-19. Similar
velocity fields were drawn from the stress characteristics shown in

Figures 5-10 through 5-15. The resulting ratios of OB'/OA, 0B"/OA,
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Figure 5-18. Velocity characteristics for ¢ = 30°, zero dila-
tatlion rate, and coincldence of first stress
and velocity characteristics.
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Figure 5-19. Velocity characteristics for ¢ = 30°, zero dlla-
tatlon rate, and colncidence of the principal
directiong of stress and straln rate.
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and OB”VOA were plotted in Figure 5-20 and a smooth curve was drawn
through the points. In like manner, the average punch pressure was
computed and presented in Figure 5-21. As noted in Figure 5-20,
OB'/OA will not change for dilatation rates within the restrictions
of Eq. (4.8a) because the second velocity characteristic, which forms
the boundary of the deforming region, coincides with the second stress
characteristic for this case. However, the ratios OB"/OA and OB" /OA
will change with the dilatation rate. For the usual case of a positive
dilatation rate it can be seen from Figures 5-18 and 5-19 that both of
these ratios will increase.

When the velocity characteristics have been found, the velocities
in the deforming region can be determined by integrating Egs. (4.38)
along the velocity characteristics. The boundary conditions on the
velocity field require constant normal velocity directly under the
punch, by Eq. (5.9b). 1In addition, the velocities along the outer sec-
ond characteristic are related by Eq. (L4.7) since plane strain flow
occurs along this characteristic. Written in terms of the velocity

components u and w, Eq. (4.7) requires that

% = - tan(v+k) (5.22)

along the outer velocity characteristic. Substitution of Eq. (5.22)

into Eq. (4.38b) yields
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Curve A: Coincidence of second stress and velocity characteristics.
Curve B: Coincidence of principal stress and strain rate directions.
Curve C: Coincidence of first stress end veloclty characteristics.

5.0
g 4,0 //,
o]
% /
()
P ///’
0
s 3.0
ha 4
I
Q
(]
§ 2.0 ,///
[ ’////
o]
; g "”",,,,
3 et
e}
& B

Cc
1.0

20° 25° 30° 35° Lo° L5°

Flgure 5-20. Varlation of the deforming reglon with angle of
friction.

200

100 //

50
ko

30 ,//

20

10

Average Pressure / Ry

20° 25° 30° 35° Lo° 45°

Figure 5-21. Variation of the average pressure with angle
of friction.



108

= 0 (5.23)

dw [?v cos(v-k) N 1 sin(v+n)]

— gin2k + w|— =
dr dr cos(v+k) r(1+0%W) cos(v-k)

It is seen that when w % O the second term approaches positive infin-
ity as the origin of the coordinates is approached. This means that
dw/dr must correspondingly approach negative infinity. This will re-
quire w to be infinity at the origin, approached along the outer char-
acteristic. In order to avoid this, u and w are set equal to zero
along the characteristic separating the rigid and deforming regions.
Since dilatation is expected to occur in the actual tests, some
theoretical velocity solutions are necessary in order to estimate the
degree of dilatation. For comparison purposes the velocity field for
the perfect plasticity case will be computed. For this case Q = tan2
(n/b+4/2) from Eq. (3.27) and hence k = n/L-¢/2 from Eq. (4.35). The
velocity characteristics coincide with the stress characteristics by
Eq. (4.37) and Egs. (L4.38) on the first characteristics become,
(L-sing) dr

cosn du + sinnm dw + oo us— = 0 (5.24a)

and on second characteristics,

sin(n+g)du - cos(n+g)dw + é%ﬁ%%%%% u %% = 0 (5.24p)

A numerical integration of these equations can be accomplished

by approximating them by finite difference equations. Similar to the
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method of computing the stress characteristics, the solution is marched
out from a known boundary. The usual stiuvation is shown in Figure 5-9.
The characteristics themselves are known from the stress solution and
the velocities u and w are known at two intersections P, Q of the char-
acteristics. It is desired to find the velocities at the point 1. The
two differential equations are approximéted by the finite difference

equations

(1-sing)
cos(ﬁigﬂih(ul—up)+sin<%igﬂg (Wl-Wp) + o os<?1+n (ul+up)(§i;§§) - 0
(5.25a)
31n<%+ ﬂ__ﬂQ\ ul-uQ COS<%+ (Wl'WQ)
(l:sin¢) rl §
2sin \/\gz§+ﬂ_l-“2:1]-9.> (u1+ug) I‘1+I‘Q>
(5.25b)

These equations are then solved for u; and wy

(1- é
w. wp + up|cot ﬂéiﬂﬁ\ Sln+ \ (:E—EE
P - "Q 1% 2 ) sm?(n—l—np \ritr

g - (1- s1n¢ //rl r
+uQ &an @ “/ - Slng(¢+ > r——Q‘l+rQ “]
(1-sing) P

/ l 51n¢
COt(ﬁi—lé\ * tan/;+ ﬂ——mg\ * s1n2<hl;n‘} <rl—r T>+ sin2 ¢+ ———3é> - r\>

JT1trp \rl+r

Ul=

(5.26a)
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1 ' \
Yio= tan<%lgﬂg>+cot<%+ |1+ﬂ§> Wptan<?ign%>+chot<?+ nl;ﬁ%>
2 - .

(1-sing) _ (1-sing) ferer R
N 1= _ N 1-Ip )
* ul{fsin2<%+ ﬂigﬂgb <;1+r;> 2cos2<§i%ﬂpj\\rl+rp>‘

)

(1-sing) ‘\F
- P2) I‘]_-I‘n
+uP . 2cos <?£gﬂp> <;l+;p>i

o

(1-sing) g )
: -I
el g 20 ()

"——“T““—J

(5.260)

The numerical solution begins by setting the velocity compo-
nents to zero along the outer second characteristic in accordance
with the boundary conditions. Then the computations are stated at the
straight boundary OA under the punch. Along this boundary the verti-

cal velocity is the constant w, from Eg. (5.9b). The radial velocity

]

must be found by integrating along a first characteristic. This 1is

done numerically by solving Eq. (5.25a) for ui
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(1-sing) ™
Up 1= 20052<?igﬂé> <§i§£§2J—(wo-wp)tan<§igﬂ%>

(1-sing)
T rl—rp
L+ 2cosg<?i§ﬂﬁ> <;1+rp

Ui

After this step, the velocities are computed along the entire second
characteristic by repeated use of Egs. (5.26). This procedure is con-
tinued until the velocity field is completely determined. This numer-
ical integration technique was programmed on the digital computer. The
vertical surface velocities for the cases of ¢ = 20° and 30° are shown
in Figures 5-22 and 5-23, respectively. The very large velocities pre-
dicted casts further doubt on the validity of the perfect plasticity
theory even for initial plastic flow. The volume change per unit punch

displacement for three angles of friction are shown in Table IIT.

TABLE IIT

VOLUME CHANGE PER UNIT PUNCH DISPLACEMENT FOR PERFECT PIASTICITY

52{ AVol
20° 39
30° 190

L1° 2400
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ticity theory (4 = 30°).

-
| ] | | | | n | ] | J
0 .2 L .6 .8 1.0 1.2 1.k 1.6 1.8 2.0 2.2 2.k
Figure 5-22. Vertical surface velocitles by perfect plas-
ticity theory (4 = 20°).
| 1 J | J
0 .2 L 6 8 1.0 1.2 1.k 1.6 1.8 2.0 2.2 2.k
Figure 5-23. Vertical surface velocitles by perfect plas-



CHAPTER VI

THE EXPERIMENTAL INVESTIGATION

Having selected a problem with an appropriate velocity observable
and having made certain theoretical predictions from which the experi-
mental data can be interpreted, the next step in order is to reproduce
this test as accurately as possible in the laboratory. Although the
circular surface footing test is of great practical interest and the
load-sinkage relation has been investigated in many experimental pro-
grams, little or no attention has been given to velocity fields. For
this reason, a review of the experimental work of previous investigators
will not be included.

The material tested was a uniform Ottawa sand in the air dry con-
dition. The material was graded such that 98% passed the No. 20 sieve
and 97% was retained on the No. 40 sieve (ASTM). The material was pri-
marily quartz, so a nominal specific gravity of 2.65 was chosen for
use in the calculations. A series of standard triaxial tests were per-
formed to determine the maximum angle of friction of the material. The
test points and the smooth curve drawn through themare shown in Figure
6-1 where the angle of friction is plotted as a function of the initial
void ratioc. The low void ratios were achieved by dropping the sand

into the specimen mold from a height of about 14 inches. The other
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Figure 6-1. Angle of friction as a function »f the initial void ratio.
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void ratios were obtained by depositing the material in layers under
essentially zero drop height conditions and compacting each layer with
a piston-like tamper.

The test bin for the footing or punching tests measured 12 inches
inside diameter and U4 inches in depth. It was cut from a standard
aluminum pipe with 5/8—inch thickness walls. The bin was mounted on a
turntable driven by an electric motor and controlled through a variable
speed reducer. It was slowly rotated during filling in order to facil-
itate the preparation of homogeneous and consistent specimens. The
specimens were prepared in a manner similar to that used in the tri-
axial tests. For the very dense specimens the sand was showered into
the bin from a height of 18 inches. The showering device was a 10-inch
diameter perforated pan filled by gravity flow from a lli-quart hopper.
This device was raised during filling of the bin in order to maintain
a constant drop height, and it was adjusted so that the surface of the
sand specimen was quite level. This specimen preparation apparatus is
shown in Figure 6-2. The specimens of looser density were obtained by
hand filling the bin in layers and compacting each layer by tamping with
a 45-pound weight. 1In all cases the surface was given a final leveling
with a 12-inch diameter plate piston to which vertical pressure was
applied by hand. With this piston in place, the average height of the
sample was measured with a depth gauge using the edge of the bin as the

reference. With this measurement, the average area of the bin, and the
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weight of the sand, the average void ratio was computed and the angle
of friction was found from Figure 6-1 for each test.

The circular punch was machined to 2.4 inches in diameter and 3
inches in length from a piece of cold-rolled steel bar stock. In order
to approximate the frictionless punch condition as closely as thought
to be practical, a disc of commercial grade, double-strength glass was
obtained and fastened to the base of the punch. Sliding-block type of
tests were conducted to determine the maximum friction between glass
and sand. The results of two series of tests are shown in Figure 6-3.
The limiting angle of friction was found to be about 7.5° or less. The
punch was rigidly fastened in series with a Baldwin load cell by means
of a threaded Jjoint. The load cell in turn was rigidly attached to the
loading head. A cursory check of the calibration by means of calibra-
tion weights indicated that the load cell was accurate to within 0.1
pound which was as close as the load indicator dial could be read. The
punch displacement was measured to the nearest 0.001 inch by a machin-
ist's dial gauge. The loading rate used for the tests was 0.018 inch/
minute.

The sequence of surface displacements during a punch test was re-
corded by photographing dyed grains of sand spaced at equal intervals
along a diameter of the specimen surface. A camera equipped with a
dropping front enabled the surface to be photographed without reducing
the vertical scale. The photographs were subgequently enlarged and

measurements of the surface displacements were taken.
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Load-deflection curves and corresponding surface profiles are
shown in Figures 6-4 through 6-6 for different specimen densities.
Generally, the tests on dense specimens exhibited a peak or maximum
load which was chosen as the yield load, whereas the loose specimens
exhibited a gradually increasing load-deflection curve which sometimes
became quite level as in Figure 6-6. In this case, in accordance

40

with Terzaghi, the failure load was considered to be the load at
the point where the curve passes into the fairly straight portion.

The average failure pressures from the tests are plotted in Figure
6-7 on which the theoretical curve from Figure 5-21 is also shown for
purposes of comparison. Except for the tests on the very dense spec-
imens where ¢ is about 40°, the theory badly underestimates the actual
failure pressures. One of the contributors to the actual strength is
the initial indentation or sinkage prior to total yielding. The
effects of this indentation on the theoretical bearing pressure was
approximated by the addition of a surcharge equal to the weight of the
thin overburden. The stress characteristics and the pressure distribu-
tion was recomputed for different surcharges or indentations for the
case where ¢ = 30°. The results are shown in Figure 6-8. The order of
magnitude increase in the surcharge from lO—eRy to lO_lRy, which is a
more realistic value according to the test results, gives a 50% in-

crease in the bearing pressure. However, the increase is only 23% for

the same increase in surcharge when ¢ = 40°. The bearing pressures are
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expected to be decreasingly affected by the surcharge for increasing
angle of friction because the inherent bearing capacity increases with
the angle of friction. Thus it has been shown that the theoretical
problem is of such a nature that the bearing pressures are quite sensi-
tive to small changes in the geometrical configuration. This is neither
an expected nor a satisfying result. While such corrections can ex-
plain the reasons for the larger actual bearing pressures at the lower
angles of friction, they would cause an overestimation of some 20% or
more of the actual bearing pressures on the specimens where ¢ is about
40°. The reason for this can only be speculated.

Since the actual yield load is better approximated by the theoret-
ical solution for angles of friction around 40°, more attention con-
cerning the velocities was focused on tests at these densities. Con-
sider the dilatations first. An expansion rate was observed in every
test. The maximum dilatations per unit deflection computed from the
photographs of the surface displacements for each test are plotted in
Figure 6-9 along with the theoretical results from Table III. It can
be seen that the actual dilatation rate was never more than 3% and was
usually less than 1% of that by the perfect plasticity theory. Hence
as far as the flow rule is concerned, the material was essentially
volume conserving.

In all instances the observed deforming region expanded with in-
creasing punch displacement and,as in the case of selecting the failure

load, the radius of the deforming region at failure is somewhat ar-
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Experimental observations of the dilation
rate in circular punch indentation tests.
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bitrary. It was selected as that radius corresponding to the previously
selected failure load. These radii are plotted in Figure 6-10 along
with the theoretical results from Figure 5-20. Before any conclusions
are reached from these results, it should first be noted that they con-
firm the occurrence of the velocity field due to Hill which was assumed
in the previous chapter. The velocity field proposed by Prandtl, which
requires a wedge of material directly under the punch, would require a
much larger deforming region than was actually occurring. Secondly,

the theoretical results shown in Figure 6-10 are lower limits, i.e.,
punch friction and initial indentation will cause the theoretical radius
of the deforming region to increase. Therefore, corrections for these
two factors should be made before the data can be properly interpreted.
This was done for the case of ¢ = 4L1°. The indentation was taken into
account by adding a surcharge equivalent to the average initial indenta-
tion occurring in the tests. A correction for the punch friction was
made by assuming the friction to be the limiting value of 7.5°. The
stress characteristics and pressure distribution are shown in Figure
6-11. The outer-most second velocity characteristic for the case of
coincidence of the directions of principal stress and strain rate is
also shown in the figure by a heavy dotted line. It can be seen that
the increase in the radius of the deforming region for this case is

only some 10%. It should be noted that the corrections applied are

overly conservative as evidenced by the fact that the failure pressure
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Curve A: Coincidence of second stress and velocity characteristics
Curve B: Coincidence of principal stress and strain rate directions

Curve C: Coincidence of first stress and velocity characteristics
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Figure 6-10. Experimental observations of the deforming region
occurring in circular punch indentation tests.
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given by the pressure distribution in Figure 6-11 is twice the actual
value. With this upper bound case thus computed, it can be concluded
from the data in Figure 6-10 that the deviation of the directions of

principal stress and strain rate is quite close to the maximum amount.



CHAPTER VIT

CONCLUSIONS

Analysis and experimental observations support the following con-

clusions regarding axially symmetric plastic failure of granular media:

1.

A rigid-plastic, initial motion analysis of surface in-
dentation will underestimate the indentation load except
possibly for large angles of friction. Geometry changes
during the process of failure have a significant effect

on the predicted indentation load.

The dilatation rates predicted by the theory of plasticity
are much larger than those observed.

The deviation of the directions of principal stress and
strain rate may approach the maximum amount 1/2(g-B), pre-

dicted by the kinematic model.
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