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ABSTRACT 

 
Progressive building collapse occurs when failure of a structural component leads to the 

failure and collapse of surrounding members, possibly promoting additional collapse. 

Global system collapse will occur if the damaged system is unable to reach a new static 

equilibrium configuration. The objective of this research is to identify and investigate 

important issues related to collapse of seismically designed steel building systems using 

multi-scale computational models. 

 

Coupled multi-scale finite element simulations are first carried out to investigate the 

collapse response of moment resisting steel frame sub-assemblages. Simulation results 

suggest that for collapse resistant construction, designers should strive to use a larger 

number of smaller beam members rather than concentrate resistance in a few larger 

members and should specify ASTM A-992 steel rather than specifying generic steels. 

Improved behavior can also be achieved by increasing the shear tab thickness or directly 

welding the beam web to the column. 

 

Using information gleaned from the sub-assemblage simulations, computationally 

efficient structural scale models for progressive collapse analysis of seismically designed 

steel frames systems are developed. The models are calibrated and utilized within the 

context of the alternate path method to study the collapse resistance of multistory steel 

moment and braced frame building systems. A new analysis technique termed 

“pushdown analysis” is proposed and used to investigate collapse modes, failure loads 

and robustness of seismically designed frames. The collapse and pushdown analyses 

show that systems designed for high seismic risk are less vulnerable to gravity-induced 

progressive collapse and more robust than those designed for moderate seismic risk. 

 



xiv 
 

Motivated by a number of deficiencies in existing ductile fracture models for steel, a new 

micro-mechanical constitutive model is proposed. Damage mechanics principles are used 

and a scalar damage variable is introduced to represent micro-structural evolution related 

to micro-void nucleation, growth and coalescence during the ductile fracture process in 

steels. Numerical implementation and parametric studies are presented and discussed. 

Calibration and validation studies show that the proposed model can successfully 

represent ductile fracture of steels. 

 

Although the system studies in this dissertation focused primarily on in-plane collapse 

response, the models and simulation methodologies developed herein can be extended in 

future work to address the collapse resistance of three-dimensional models. 
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CHAPTER 1  

INTRODUCTION 
CHAPTER 1. INTRODUCTION 

 
 
 
1.1 General Introduction 
 

During their lifetime, civil engineering structures could be subjected to natural hazards 

like earthquakes, hurricanes, tornadoes, floods and fires, and manmade hazards such as 

blast and impact. Structures are usually designed for credible events that can happen 

during their lifespan, but extreme events for which they were not adequately designed for 

can result in catastrophic failure. In recent times, events such as the 1994 Northridge 

earthquake, 1995 Kobe earthquake, 1995 Murrah Federal building bombing and 2001 

attack on the World Trade Center have led to structural failures and collapse resulting in 

related loss of life and staggering economic loss. 

 

After the failure of moment resisting steel frames in the Northridge and Kobe 

earthquakes, considerable research effort was expended by the engineering community to 

design and construct steel structures that are more safe and reliable. In particular, 

extensive research was conducted to make moment resisting connections less susceptible 

to fracture during earthquakes. As a result of these and other related efforts, earthquake 

engineering is now moving towards performance based design of structures. Relevant 

specifications and codes have been developed (FEMA 302 (1997), FEMA 350 (2000), 

FEMA 356 (2000), AISC Seismic (2005)) to guide designers to achieve performance 

objectives that are perceived to be appropriate by the structural engineering community 

and society at large. 
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In contrast to seismic effects, blast and impact effects on steel structures have not been 

adequately studied. Most of the studies carried out in the United States to date were 

commissioned by federal agencies interested in protecting important government 

buildings, and their results are generally not available to the public. There is a consensus, 

however, that one of the prime blast protection objectives for any building is to prevent 

progressive structural collapse. Progressive building collapse occurs when failure of a 

structural component leads to the failure and collapse of surrounding members, possibly 

promoting additional collapse. It is a complex, nonlinear dynamic process characterized 

by multi-scale responses. Global system collapse will occur if the damaged system is 

unable to reach a new static equilibrium configuration.  

 

Progressive collapse has become an issue of increasing importance because of escalation 

in terrorist activities worldwide. Therefore, extreme events such as blast and impact 

which were considered extremely improbable in the past are now considered to be 

credible events, with a finite probability of occurrence. This increasing interest in 

progressive collapse issue is highlighted by a special publication on progressive collapse 

in the Journal of Performance of Constructed Facilities (ASCE, 2006): “Mitigating the 

Potential for Progressive Disproportionate Structural Collapse.” Current building codes 

provide general guidelines to prevent progressive collapse based on redundancy, 

integrity, continuity, ductility and alternate load paths, but besides these guidelines there 

is limited understanding of the phenomenon itself. 

 

1.2 Challenges Facing Research on Structural Collapse 
 

Efforts to develop comprehensive progressive collapse resistant specifications have been 

hindered by a lack of both experimental and analytical information about progressive 

collapse. On the experimental front, the rate of loading and the scale of the problem, i.e. 

that it involves a full system, has made testing difficult. On the other hand, numerical 

simulation is a challenging task because the collapse process involves modeling 

component and system behavior across several length scales. 
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In the case of failure of steel structural systems, the length scales of the physical 

processes involved range from failure at the material atomistic and micro level, 

progression of failure to the structural member level and then ultimately to the system 

level (Fig. 1.1). At the atomic scale, the failure process is characterized by dislocation 

movements and atomic bond breaking/decohesion. At the micro scale, the important 

physical processes that lead to material disintegration include micro-void initiation, 

micro-void growth and finally micro-void coalescence resulting in ductile fracture 

initiation (Fig. 1.1(b)). At the macro scale, the physical processes of interest are crack 

initiation and propagation, and local buckling of structural members and components 

(Fig. 1.1(c)). Finally, at the structural scale, important physical processes include global 

buckling of structural members, failure of structural members and connections, and 

contact and impact of failed members (Fig. 1.1(d) and 1.1(e)). 

 

Simulation of a collapsing building system requires modeling of the associated physical 

processes at the corresponding length scales. As will be discussed in Chapter 2, these 

physical processes can be modeling using quantum mechanics, molecular dynamics and 

continuum mechanics methods. Quantum mechanics and molecular dynamics methods 

are suited for atomic and molecular scale studies. A huge computational effort is needed 

to use these methods for investigating system behavior at the structural scale. Therefore, 

as described in Chapter 2, direct application of these simulation methods to structural 

scales is limited. On the other hand, methods based on continuum mechanics frameworks 

are well suited for studying micro scale to structural scale response. Multi-scale methods 

are necessary because of the inadequacy of a single method to handle all important 

physical processes of interests. Such methods are classified as coupled or uncoupled 

multi-scale methods depending on how the information between the various scales is 

exchanged. In coupled multi-scale methods, the information available from distinct scales 

is combined into a single coherent coupled simulation. In uncoupled multi-scale methods, 

however, the information available from one scale is used to drive model at other scales. 

The work in this thesis employs such techniques. 
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1.3 Continuum Multi-scale Methods for Collapse Studies  
 

In the context of structural analysis, continuum multi-scale methods in conjunction with 

finite element techniques are frequently used to study the behavior of structural systems. 

In this framework micro-scale behavior is typically modeled using micro-mechanical 

constitutive models in conjunction with 3-D solid or shell finite elements. Micro-scale 

behavior of these models is attributed to the constitutive material law which takes into 

account the evolution of the underlying microstructure of the material. These models are 

adequate to capture important micro-scale response such as ductile fracture initiation and 

propagation. On the other hand, macro-scale behavior including local buckling of 

structural components and global buckling of structural members can also be captured 

with 3-D solid or shell finite element models. Phenomenological constitutive material 

models such as classical plasticity theories are adequate for macro-scale applications. 

Structural scale response, however, is most efficiently modeled using 1-D beam/column 

and spring finite elements. Constitutive material models for beam/column finite elements 

are either based on resultant plasticity models (e.g. El-Tawil et al. (1998, 2001)) or fiber 

models (e.g. Liew et al. (2004)). For problems where contact and impact of failed 

members is also important, macro-scale models should be used instead of structural scale 

models. This multi-scale framework based on continuum mechanics is deemed most 

efficient, in terms of computational effort required, for handling structural engineering 

problems and is adopted in this work. 

 

As shown in Fig 1.1(b), ductile fracture in steel at the micro-scale is a multistep process 

resulting from nucleation, growth and coalescence of micro-voids. Micro structure 

evolution during the void growth phase is highly influenced by the state of stress in the 

material. Two important modes of void growth include micro-void elongation under 

deviatoric stress and volumetric void growth under high hydrostatic/triaxial stress. Both 

of these void growth modes should be accounted for in micro-mechanical models that 

represent the ductile fracture process. Existing micro-scale models for steel take into 

account micro structure evolution due to either volumetric growth of micro-voids 

(Gurson 1977; Gologanu et al (1993, 1994); Leblond et al. (1995), Benzerga et al. (1999, 
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2001), Lee et al. (1999) and Garajeu et al. (2000)) or due to micro-voids elongation (e.g. 

Steinmann (1994)). Micro-mechanical constitutive models, which take into account 

micro structure evolution due to both volumetric and deviatoric components of stress, do 

not yet exist and are developed in this thesis. Another source of difficulty with existing 

micro-mechanical models, most which are the extensions of Gurson (1977) model, is that 

they include a number of non-physically motivated parameters which are difficult to 

calibrate. This issue is avoided herein by developing a new constitutive model and 

selecting calibration parameters for it that have physical meaning. 

 

Structural scale models comprised of beam/column and spring finite elements have found 

numerous applications in structural engineering (cf. Hajjar et al. (1998), Kim et al. 

(2001), El-Tawil et al. (1998, 2001), Liew et al. (2004), Rassati et al. (2004) and Jin et al. 

(2005)). However, all of these models were developed primarily for seismic applications. 

There are, however, a few instances in the literature where structural scale models 

developed for seismic applications have been applied for progressive collapse 

investigations, e.g. Gross et al. (1983), Isobe et al. (2003) and Kaewkulchai et al. (2004). 

The applicability of structural scale models, developed for seismic applications, to 

collapse modeling is not adequately justified in these studies, however. This is an 

important issue that is addressed herein and appropriate models which can be used for 

collapse studies are developed in this work. 

 

1.4 Alternate Path Method 
 

One of the techniques used to design against progressive collapse is known as the 

alternate path method (APM). This method is advocated by GSA (2003) and UFC (2005), 

and has become a key tool used by the engineers. APM is a threat independent 

methodology and is generally applied in the context of a ‘missing column’ scenario to 

assess the potential for progressive collapse, i.e. it is used to check if a building can 

successfully absorb loss of a critical column or columns (Fig. 1.2). When applied in 

conjunction with nonlinear-dynamic analysis, APM is widely viewed as a comprehensive 

method for analysis and design of a structural system against progressive collapse. 
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However, appropriate models that can be used for APM analysis are not widely available. 

Development of such models and their application to prototype structural systems are two 

of the key objectives of this work. 

 

Although APM can be used to study progressive collapse behavior, it cannot be used to 

determine the residual capacity of a structural system which is deemed to be able to 

survive loss of critical members. Development of a new analysis technique which can be 

employed to estimate the residual capacity of damaged structure is also one of the 

objectives of this study. 

 

1.5 Seismic Design versus Progressive Collapse 
 

There is an old perception in the structural engineering community, the earliest reference 

to which can be found in Ferahian (1972), that seismically designed structural steel 

frames, such as moment and brace frames, also have better resistance to progressive 

collapse. In other words, there is an implicit assumption that seismic design and detailing 

will translate into enhanced progressive collapse resistance. In fact, due to lack of design 

guidelines for progressive collapse, seismic resistant design is frequently advocated by 

researchers and practitioners for cases where prevention of progressive collapse is a 

design objective (Hamburger et al. 2004). 

 

There is no systematic study to date that shows how seismic design and detailing 

influences structural system behavior in a progressive collapse situation. This is an 

important issue that has to be addressed because seismic forces impose a very different 

type of demand on a structure as compared to collapse. For example, for moment frames 

seismic forces results in high moment demand in the connection region. However, as will 

be discussed in Chapter 3, collapse is associated with high tensile forces, which may 

adversely influence the performance of seismically designed connections. This lack of 

knowledge about structural behavior under collapse conditions is also expressed in 

Hamburger et al. (2004), where the authors states that “it is not apparent what types of 

connections of beam to columns possess sufficient robustness to permit the development 
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of plastic rotations at beam ends together with large tensile forces.” Therefore, behavior 

of seismically designed systems under collapse loads is an open issue that needs thorough 

investigation before such systems can be recommended for progressive collapse 

situations. These issues are addressed herein. 

 

1.6 Objectives  
 

The overall goal of this work is to investigate the progressive collapse behavior of 

seismically designed steel structural systems that have suffered loss of one or more 

critical members as a result of an extreme loading scenario. Another important goal of 

this study is to develop design guidelines that ensure that the damage in a structural 

system is arrested in a local region without compromising the safety and stability of the 

entire structure. These goals are achieved through multi-scale computational models that 

can accurately simulate the important physical process in progressively collapsing steel 

frames. Specific objectives are: 

 

1) Study of seismically designed structural steel sub-assemblages under collapse 

conditions using micro-scale models. 

 

2) Development of structural scale models, appropriate for collapse simulations, for four 

types of steel building systems: special moment frames (SMFs), ordinary moment frame 

(OMFs), special concentric braced frames (SCBFs) and eccentrically braced frames 

(EBFs). These computationally efficient models will allow practitioners to accurately and 

economically study the potential for progressive collapse in steel building frames. The 

developed structural scale models will be used within an APM to study the progressive 

collapse behavior of prototype frames. 

 

3) Development of new analysis technique termed “pushdown method”, which can be 

used to determine the residual capacity of a damaged system in cases where the structure 

under consideration is deemed to be able to survive loss of critical members. 
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4) Development of a new micro-scale model that incorporates microstructure evolution 

due to both volumetric and deviatoric growth of micro-voids; has physically motivated 

calibration parameters; and is computationally efficient. 

 

1.7 Structure of the Report 
 

Following is a brief description of the 7 chapters comprising this report. 

 

Chapter 1: Introduction. A general overview of the research program is given. The 

objectives and scope of the current study are highlighted and an introduction to other 

chapters is presented. 

 

Chapter 2: Literature Review. Important topics related to progressive collapse are 

reviewed including: past studies on progressive collapse of structures; building code 

requirements for prevention of progressive collapse; structural steels and the process that 

influence ductile fracture in steels; multi-scale issues related to progressive collapse; 

simulation methods for modeling the collapse of steel structures; and multi-scale 

simulation methods. 

 

Chapter 3: Collapse Analysis of Steel Moment Frame Sub-assemblages. Formation of 

catenary action and its stability after formation is investigated. Computational finite 

element simulations together with micro-mechanical model are used to investigate a 

number of key design variables that influence formation of catenary action in special 

moment resisting frame sub-assemblages. 

 

Chapter 4: Structural Scale Models for Progressive Collapse Analysis of Steel Frames. 

Structural scales models which are suitable for collapse simulations are developed for 

four types of steel building systems: SMFs, IMFs, SCBFs and EBFs. The developed 

models are calibrated to the available results in the literature. The developed structural 

scale models are then used in conjunction with APM to investigate the ability of 

seismically designed steel frame systems to resist progressive collapse. 
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Chapter 5: Pushdown Analysis of Steel Frames. A new analysis technique is introduced 

that can be used to determine the failure load and collapse mechanism of a damaged 

structure. The presented technique is termed “pushdown analysis”. Structural scale 

models for IMF, SMF, SCBF and EBF building systems are used to investigate the 

residual capacity for APM analysis cases where the system survive the local loss of load 

carrying capacity. 

 

Chapter 6: Micro-mechanical Model for Ductile Fracture Simulation. In this chapter a 

damage mechanics based plasticity model is developed in a finite deformation framework 

for modeling the micro-mechanical process of ductile fracture in structural steels. 

Damage mechanics principles of effective stress and strain equivalence are employed to 

formulate a constitutive model for simulation of material damage due to micro-voids 

nucleation, growth and coalescence. The numerical implementation of the proposed 

model is also presented. A parametric study is carried out to study the effect of various 

parameters on the material response. The proposed model is calibrated to the 

experimental results obtained for notched steel specimens. 

 

Chapter 7: Summary and Conclusions. This chapter presents a brief summary of the 

report and key conclusions that can be extracted from the research project. It also 

includes recommendations for the future research for progressive collapse studies. 
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Figure 1.1 Multi-scale responses associated with progressive collapse of a 

steel building system 
 

(b) Micro scales: Ductile Fracture Initiation 

(c) Macro scales: Fracture 
propagation, Local buckling 

(d) Structural scales: Global Buckling 

(e) Structural scales: Member/connection 
failure, load redistribution, impact and contact  

Flange local buckling

Lateral torsional 
buckling 

Contact and impact of 
failed members 

Column buckling 

(a) Atomic scales: 
Dislocation movements 

Blast at exterior 
column 

Ductile fracture 
propagation 
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Figure 1.2 Alternate path method (APM) 

 
 
 
 
 
 

(b) Damage structure is checked to 
see if it can survive the local loss of 

load bearing capacity  

(a) A critical load bearing member is 
removed after the application of 

gravity loads 



12 

CHAPTER 2 

LITERATURE REVIEW 
CHAPTER 2. LITERATURE REVIEW 

 
 
 
2.1 Introduction 
 

Important topics related to progressive collapse are reviewed in this Chapter. Past studies 

on progressive collapse of structures are surveyed first in Section 2.2. Then, in Section 

2.3 building code requirements for prevention of progressive collapse are discussed. 

Structural steels, the process that influence ductile fracture in steels and multi-scale issues 

related to progressive collapse are also presented and discussed in Section 2.4. This is 

followed by a description of the available methods that can be used for modeling the 

collapse of steel structures in Section 2.5. Specifically, the basic concepts and the 

application of quantum mechanics (Section 2.5.1), molecular dynamics (Section 2.5.2) 

and continuum mechanics are discussed (Section 2.5.3). Finally, in Section 2.5.4 a survey 

of multi-scale simulation methods that can be used for representing the physical 

phenomena associated with collapse is presented. 

 

2.2 Progressive Collapse Studies  
 

Past research on progressive collapse has proceeded in waves initiated in the aftermath of 

high profile structural failures. Progressive collapse issues first drew the attention of 

researchers in 1970’s after the partial collapse of a panel type apartment tower at Ronan 

Point, England (Fig. 2.1). The Ronan Point apartment block was a 22-story building 

constructed of precast panels of two types – floor and unreinforced bearing wall. On May 
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16, 1968, a gas explosion occurred near one of the corners of the building on the 18th 

floor. The explosion blew out the non-load bearing front wall and the load bearing flank 

wall at the corner thus removing the support for the stories above. Lack of continuity 

between the structural elements and the absence of an alternate load carrying path lead to 

the collapse of all the corresponding floors above and below, down to the podium level. 

This is a classical example of progressive collapse where loss of a single load bearing 

members led to a cascade of failures.  

 

After the collapse of Ronan Point building, Ferahian (1972) reviewed the changes that 

were made in the British and Canadian codes to prevent progressive collapse. The author 

argued that it could be possible for a building designed for earthquakes to resist 

progressive collapse after a loss of a load carrying component. It was also recommended 

that ductility and continuity between the structural elements/joints for structural integrity 

should be provided to enhance the toughness of the structure. In another study, McGuire 

(1975) concluded that alternate path method and specific local resistance should not be 

used as the main methods for preventing progressive collapse. The author recommended 

that codes should provide adequate guidelines to reduce the risk of progressive collapse 

to within acceptable limits.  

 

Lewicki et al. (1974) discussed recommendations made by CIB working commission 

W32A on load bearing walls. The authors advocated that although the problem of 

progressive collapse was more critical for large panel type structures, there was a 

potential for progressive collapse in other structural systems also. They asserted that 

although it was possible to design a building to resist progressive collapse after loss of 

local load carrying capacity, it was not economically practicable to prevent local failure 

from occurring due to the uncertainties present in the loading environment and the 

strength of the structure. They also concluded that, with the available knowledge, it was 

not possible to define the size of a local failure that the building should resist 

economically. The need for further theoretical and experimental work was stressed for 

safe and economical structures by limiting the probability of progressive collapse. 
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Most of the earlier studies on progressive collapse were concerned with panel type pre-

cast/prefabricated building systems, flat slab systems and masonry bearing wall 

structures. These structures, at that time, had inherent weaknesses due to inadequate 

continuity and ductility at the member joints, presence of punching shear and other 

failure modes. Little attention was paid to steel structural systems, which were considered 

to be more ductile and robust than their concrete counterparts and therefore more collapse 

resistant. 

 

Leyendecker et al. (1977) proposed guidelines for preventing progressive collapse in 

buildings. The authors outlined three methods to prevent progressive collapse: 1) Event 

control method – in which abnormal loading on the structure is prevented by indirect 

measures; 2) Indirect design method – in which the structure is designed to have 

minimum strength, ductility and redundancy, and then assumed to perform adequately in 

the presence of local failures; 3) Direct design method – in which structural members are 

made adequately strong so that they can resist abnormal loading or the structure is 

designed so that it can tolerate local loss carrying capacity e.g. loss of a critical column. 

Ellingwood et al. (1978) further examined the design criteria to control progressive 

collapse and presented a probabilistic framework for their implementation in existing 

standards at that time. The main objective for such design criteria was to minimize the 

loss of life and to permit safe evacuation of occupants from the damaged structure. 

 

Arora et al. (1980) proposed a methodology for optimal design of damage tolerant 

structures based on optimization of cost function, subject to constraints that must hold for 

the undamaged structure and under projected damage conditions. A structure was called 

damage tolerant or fail-safe if it continued to perform its basic functions even after 

sustaining a particular level of local damage. Damage condition was defined as a state of 

complete or partial removal of selected members or parts of the structure. The fail-safe 

optimization algorithm was tested for a tail-boom of a helicopter which was modeled as a 

3-D space truss-like structure. In particular, the optimization algorithms were developed 

to minimize the total mass of the structure, with constraints on member stress, nodal 

displacement, member buckling and natural frequency. Lower bound constraints were 
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also imposed on the cross sectional area. Static elastic analysis was carried out to 

determine the response of the structural system after failure of one or more members and 

only kinematically stable damaged configurations were studied. The reported results 

show that a structure that was optimized without imposing damage conditions would 

generally fail catastrophically if any damage occurs to the structure at a later instance, 

and significant variation in design is required for achieving a damage-tolerant design 

objective. 

 

The first study involving progressive collapse analysis of steel frames was presented by 

Gross et al. (1983). In this study, the behavior of 2-D moment resisting steel frames with 

the loss of one of the columns or increased load on the beams representing fallen debris 

was examined numerically. The nonlinear analysis program included the modeling of 

inelastic beam column behavior, beam to column connection behavior, and the effect of 

shear infill panels. Both material and geometric nonlinear effects were taken into account 

in an updated Lagrangian formulation. The yield criterion was defined by a two 

dimensional yield surface which accounted for interaction between axial force and 

bending moment. A stress resultant plasticity approach, whereby inelasticity was 

concentrated at the member ends, was utilized. Connection elements to represent the 

nonlinear behavior of the beam column connection were developed on the basis of a 

Ramberg-Osgood model. Shear infill panels were modeled as springs with bilinear shear 

stress – rotational strain relationship. The authors analyzed a four-story, three-bay steel 

frame representing a low-rise apartment or a small office building, designed according to 

1978 AISC specifications. Two cases were considered, one with the second story external 

column removed and other with the second story interior column removed. For the first 

case with external column removed the structure was unable to resist more than 69% of 

the unbalanced load and collapse was predicted. For the second case, the remaining 

structure was able to resist the full unbalanced loads. The beam with debris load was 

divided into smaller segments to model the spread of plasticity and results were obtained 

for different degrees of strain hardening. Catenary action was shown to come into play to 

carry the loads after the formation of plastic hinges at the support and mid-span of the 

beam. 
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The aforementioned studies show that it is possible to get a quasi-static cascade of 

failures once one member has failed, i.e. the remaining damaged structure cannot sustain 

the applied loads statically. But this static analysis for load redistribution is not accurate 

since the actual load redistribution process is dynamic in nature. It is possible that 

transient analyses may give stresses and strains which are higher than those obtained 

from static analysis and thus might result in a more critical progressive collapse situation. 

 

Earlier studies accounting for dynamic redistribution of forces in a progressive collapse 

scenario were carried out by McConnel et al. (1983), Casciati et al. (1984) and Pretlove 

(1986). McConnel et al. (1983) investigated the progressive collapse failure of warehouse 

racking, where local failure is initiated by truck collision or static overload. Studies were 

carried out with pallet racking systems consisting of open section columns, laced in pairs 

by cross bracings and spanned by pairs of beams front and back. Reduced scale 

laboratory collapse tests and dynamic numerical analysis methods were used to identify 

the internal structural mechanisms and rigid body motions of the racks that allow 

collapse. From the actual collapse studies of half scale laboratory specimens, the pull out 

strength of the deforming joint emerged as an important parameter which controlled 

whether the local failure was contained or not.  The authors argued that when the joints in 

the deforming structure are incapable of sustaining the axial tension developed in the 

beams produced by the catenary action of sagging beam elements, the joints separate. 

The collapsing part is then no longer connected to the stationary parts of the structure and 

a confined collapse is likely. If however, the joints have a high ‘pull-out’ strength, no 

separation occurs and the members involved in the initial collapse imposes force on the 

other parts of the rack which may initiate a progressive collapse mechanism. 

Experimental studies were carried out to quantify the joint pullout strength. Nonlinear 

dynamic analyses of a 2-D racking system were done to investigate the potential for 

progressive collapse. It was concluded that for the racking system under consideration, 

the dynamic effects were significant only in the early stages of collapse. However, the 

confined collapse can only be ensured if the joint design provides enough rotational 

stiffness and strength to maximize working load but have low pull out strength to 

guarantee separation.  
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Casciati et al. (1984) discussed progressive failure for seismic reliability analysis of 2-D 

moment resisting reinforced concrete frames. The formulation for beam and column 

elements was based on lumped plastic hinges at the member ends. A modified Takeda 

constitutive model was used for the plastic hinges which modeled the cyclic behavior 

under seismic loading. Two damage parameters were introduced to model damage under 

cyclic and monotonic effects. A geometric stiffness matrix was used to model P-∆ effects 

and failure of members was accounted for by removing their contribution from the global 

stiffness matrix when the damage parameter reached a critical value. Dynamic analysis of 

a 4-story three bay prototype frame designed according to the US Uniform Building Code 

(1973 version) was carried out for a suite of earthquake motions. The study concluded 

that failure of a column initiates a global failure and thus progressive collapse coincides 

with the failure of the first column. 

 

Pretlove (1986) studied the dynamic effects that occur in the progressive failure of a 

simple uniaxial tension structure and concluded that a structure that appears to be safe 

under static load redistribution may actually be unsafe if the transient dynamic effects are 

taken into account.  In another study, Pretlove et al. (1991) carried out experimental and 

numerical investigations with a tension spoke structure to examine the nature of 

progressive failure and dynamic effects associated with the loss of one or more spokes. 

Dynamic and static analysis of the damaged structure is carried out in the framework of 

Monte Carlo simulations to include statistical variations in the strength of the members. 

This study also concluded that the transient analysis may predict fracture even though the 

static analysis predicts safe response.  

 

Malla et al. (1995) examined the effect of member loss in a truss-type space structure to 

evaluate the potential for progressive collapse.  The dynamic effects, associated with the 

sudden failure of a member due to brittle failure in the elastic region or due to buckling 

under compressive forces where the member snaps after reaching a critical load, were 

included. The truss members were modeled as one dimensional truss elements with 

elastic plastic properties and displacements were considered to be small. Dynamic effects 

were considered by suddenly applying failed member loads to the structural nodes. 
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Bombing of the nine story P. Murrah Federal building (Fig. 2.2) in downtown Oklahoma 

City on April 19, 1995, killed 168 people, injured more than 500 people and damaged 

more than 300 buildings. An estimated 80% of the causalities were caused by the 

building collapse rather than the blast itself. The Murrah building had a transfer girder 

running across the face of the structure at the second floor, which transferred the weight 

of 10 building columns to five columns down to the ground. The bomb shattered one 

exterior column at the ground level and damaged a few others in the vicinity of the 

explosion. The loss of one column meant three above it failed, and the lack of an alternate 

load path precipitated progressive collapse of the front half of the building. The local 

damage was not arrested, which resulted in catastrophic failure of the building. After the 

Oklahoma City bombing, progressive collapse issues were again brought to the forefront 

and discussed amongst engineering and federal government officials. Most of the 

subsequent studies were carried out by federal agencies because it was thought that 

federal buildings were at a greater risk to such types of attacks. Prendergast (1995) stated 

the views of different people working with federal agencies. The important ones related 

to progressive collapse were: 

1. Efforts should be undertaken to improve the structure’s ability to sustain 

significant local damage without collapse. 

2. Structures should be designed and detailed to improve the overall ductile 

behavior. 

3. Sufficient redundancy should be present in the structural elements, beam, 

columns, girders and slabs to provide alternate load paths in the case of local 

damage. 

4. Progressive collapse should be prevented by providing for mechanisms like 

catenary and cantilever action to hold the damaged zone in place. 

5. Local damage cannot be avoided but damage can be limited by preventing 

progressive collapse. 

6. Providing progressive collapse resistance for existing structures by retrofitting 

measures is costlier than providing the same measures in a new structure.   

Other than these broad guidelines there were no recommendations for improvements in 

design methodology. 
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Abedi et al. (1996) examined the behavior of single layer braced domes which are prone 

to progressive collapse due to propagation of local instability initiated by member or 

node instability. The process of dynamic snap-through is associated with inertial effects 

and large localized deformations in the structure, which can propagate and lead to 

collapse. The snap-through behavior is modeled by providing initial velocity at the nodes 

in which the snap-through occurs. Elastic perfectly plastic Timoshenko beam elements 

were used to represent tube-type members and Euler-Bernoulli beam element were used 

for members with solid cross-section. Static analysis was carried out followed by 

dynamic analysis and it was concluded from a numerical study of a dome with a span of 

1 m and rise of 40 mm that dynamic snap-through can result in progressive collapse. The 

authors also gave an example of collapse of a pavilion constructed in Bucharest in 1963. 

The pavilion was a braced dome with a span of 100m and rise of 19m. The dome 

collapsed as a result of local snap-through due to an unexpected snow load accumulation 

on a small area. The local buckling propagated rapidly and this propagation of 

deformation caused the dome to pass from the normal position to a fully reversed 

position. 

 

Smith (1988) evaluated the progressive collapse potential for space trusses using the 

alternate path method. Linear and nonlinear static analyses of a hypothetical space truss 

and of a continuous double-layer offset grid space structure used in the Jacob K. Javits 

Convention center in New York City was carried out. Analysis indicated that the space 

truss might be vulnerable to progressive collapse resulting from the redistribution of the 

loads when a compression member buckles and sheds its load. The process may be 

exacerbated by post buckling snap-through which causes large redistribution of forces. 

Likewise, progressive collapse can also result from the loss of a tension member. 

 

There is a renewed interest in progressive collapse after the terrorist attacks on the World 

Trade Center (WTC) (Fig. 2.3) and Pentagon on September 11, 2001. WTC towers 1 and 

2 collapsed after Boeing 767 jetliners hit each of them following this sequence of events: 

(1) A Boeing 767 jetliner crashed into tower at high speed; (2) the crash caused structural 

damage at and near the point of impact and also set off an intense fire within the building; 
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(3) the structure near the impact zone lost its ability to support the load above it as a 

result of some combination of impact damage and fire damage; (4) the structure 

collapsed, having lost its support; (5) the weight and impact of the collapsing upper part 

of the tower caused a progression of failures extending download all the way to the 

ground. This is a progressive collapse but not a disproportionate collapse as it was caused 

by a very large impact and fire. And unlike the case with the Murrah Building, simple 

changes in the structural design that might have greatly reduced the scale of collapse have 

not yet been identified. 

 

Mlakar et al. (2003) presented the findings from a study of the 2001 Pentagon attack and 

gave their recommendations for the future design and research needs for collapse 

prevention. One of the important finding was that despite extensive column damage on 

the floor where the aircraft struck, immediate collapse of the higher floors was prevented. 

This was attributed to the following factors: (a) Alternate load path provided by beams 

and girder framing system; (b) Short spans between columns, and continuity of beam and 

girder bottom reinforcement throughout the supports; (c) Designing for a higher service 

loads (designed for 150 psf in excess of the service loads); (d) Significant residual 

capacity of damaged spirally reinforced columns; (e) Exterior wall performing a dual 

function, that of a transfer girder. The authors expressed the need for research in the 

progressive collapse area and related issues, like influence of extreme column 

deformations on its load carrying capacity and the ability of a structure to withstand 

extreme impact. 

 

Astaneh-asl et al. (2002) investigated the strength of a typical steel structure and floor 

system to resist progressive collapse in the event of removal of a column. They tested a 

specimen of size 60ft by 20ft one story steel structure with steel deck and concrete slab 

floor and wide flange beams and columns. The connections were either standard shear tab 

or bolted seat angle under bottom flange and a bolted single angle on one side of the web.  

It was observed that after removal of the middle perimeter column, the catenary action of 

the steel deck and girders was able to redistribute the load of removed column to other 

columns. The floor was able to resist the design dead load and live load without collapse. 
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Damage to the system was primarily in the form of cracking of floor slab, tension 

yielding of the steel corrugated deck in the vicinity of collapsed column, bolt failure in 

the seat connections of the collapsed column and yielding of the web of the girders acting 

in a catenary configuration.  

 

Astaneh-asl (2003) carried out an experimental investigation of the viability of steel cable 

based systems to prevent progressive collapse of buildings. The tests were conducted on a 

full scale specimen of a one story building. One side of the floor of the specimen had 

steel cables placed within the floor representing new construction and the other side had 

cables placed on the outside as a measure of retrofit of the existing building. The author 

claimed that the test results showed that the system could economically and efficiently 

prevent progressive collapse of the floor in the event of removal of one of the exterior 

columns. 

 

Kaewkulchai et al. (2004) presented a beam element formulation and solution procedure 

for dynamic progressive collapse analysis of planar frame structures. Inelastic beam-

column elements were formulated using flexibility based lumped plasticity approach with 

inelasticity concentrated at the element ends. Axial force and bending moment 

interaction, cyclic behavior, multi-linear force deformation relationship with Morz 

hardening rule and P-∆ effects using geometric stiffness matrix were considered. A 

damage index was used to take into account the strain softening behavior under 

cyclic/monotonic loading as a result of damage. Failure at member ends was assumed to 

happen when the damage index reaches a value of one and the hinge is assumed to be 

separated completely from the structure. After failure the stiffness matrix is updated 

using a condensation process where the degrees of freedom at the failed member ends are 

released. Rotational inertia was ignored and mass and stiffness proportional Rayleigh 

damping was assumed. To illustrate the importance of dynamic effects, static and 

dynamic analyses of two-bay, two-story frame were carried out. The analysis results 

showed a significant increase in nodal displacements, number of plastic hinges and 

plastic rotations when inertial effects were included. It was concluded that static analysis 

might not provide conservative estimates of the collapse potential of frame structures. 
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In other recent efforts, Grierson et al. (2005) proposed a quasi-static framework to study 

progressive collapse. Discussions on progressive collapse which are more of a qualitative 

nature can be found in Baldridge et al. (2003), Magnusson (2004), Hamburger et al. 

(2004), Nair (2006), Dusenberry et al. (2006), Marjanishvili et al. (2006)  and Ellingwood 

et al. (2006). 

 

2.3 Current Provisions in Codes for Preventing Progressive 
Collapse in Structures 

 
2.3.1 General Building Codes  
 
The current philosophy of most of the present building codes is to design structures for 

credible loads that may occur during their lifetime. Structures are not usually designed for 

abnormal events such as explosion due to ignition of gas, vehicle impact, blast effects, 

etc, which can cause catastrophic failure. Most of the mainstream codes have only 

general recommendations for mitigating the effect of progressive collapse in structures 

that are overloaded beyond their design loads. 

 

ASCE Standard 7, Minimum Design Loads for Buildings and Other Structures, (ASCE 7, 

2005): ASCE-7 is the only mainstream standard which addresses the issue of progressive 

collapse in some detail. It emphasizes the need to protect the structure against extreme 

events which can result in progressive collapse, and gives two design alternatives to resist 

progressive collapse: Direct Design Method and Indirect Design Method. In the direct 

design method, the resistance to progressive collapse is considered directly during the 

design process through: (a) Alternate Path Method (APM), which seeks to provide 

alternate load path after a local failure has occurred, so that the local damage is arrested 

and major collapse is prevented, (b) Specific Local Resistance Method, which seeks to 

provide sufficient strength to resist failure at critical locations. The indirect design 

method implicitly considers the resistance to progressive collapse through provisions of 

minimum levels of strength, continuity and ductility. It also provides guidelines for the 

provision of general structural integrity and stresses the need to provide ductile 
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connections between the structural components which can undergo large deformations 

and absorb large amounts of energy under the effect of abnormal conditions. 

 

Progressive collapse issue are briefly discussed in NEHRP Recommended Provisions for 

Seismic Regulations for New Buildings and Other Structures (Part 2): Commentary 

(FEMA 369). It highlights the need to design more redundant structures so that alternate 

load paths are available in the event of local failure and the structure retains its integrity 

and continues to resist lateral load. Additional redundancy in framed structures is to be 

provided by incorporating moment resisting joints in the vertical load carrying system 

and providing different types of seismic force resisting systems, where a backup system 

can prevent catastrophic effects if distress occurs in the primary system. The increase in 

redundancy is considered to be a function of moment resisting frame placement and the 

total number of such frames. It summarizes by stating that “it is a good practice to 

incorporate redundancy into seismic-force-resisting system and not to rely on any system 

wherein distress in any member may cause progressive or catastrophic collapse”. 

Beyond these guidelines in the commentary there are no specific criteria to design for 

progressive collapse. 

 

There are no specific guidelines in the International Building Code (IBC, 2006), Building 

Construction and Safety Code (NFPA 5000, 2006), Uniform Building Code (UBC, 1997) 

and Standard Building Code (SBCCI 1999) to design structures for progressive collapse. 

 

2.3.2 US Government Documents 
 
Design guidelines for progressive collapse resistant design can be found in several US 

Government documents, e.g. General Services Administration (GSA, 2003) - Progressive 

Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major 

Modernization Projects; Department of Defense (DoD) - Unified Facilities Criteria - 

Design of Buildings to Resist Progressive Collapse (UFC, 2005) and Interagency 

Security Committee – “ISC Security Design Criteria for New Federal Office Buildings 

and Major Modernization Projects”, ISC (2004). The GSA (2003) guidelines provide a 
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threat independent methodology to mitigate progressive collapse potential in structures 

based on APM. The GSA criteria are modeled after performance-based seismic design 

concepts that were first proposed in FEMA-273 (1997) and allow both linear and 

nonlinear analysis procedures to investigate alternate load path configurations. GSA 

categorizes building systems into typical and atypical structural systems and proposes a 

different design methodology for each category. It defines scenarios where one of the 

building’s columns is removed and the “damaged” structure is analyzed to study system 

response. It also prescribes the loads for which the damaged structure should be analyzed. 

The Demand Capacity Ratio (DCR) of each primary and secondary member is calculated 

to determine the potential for progressive collapse. GSA criteria require that in order to 

prevent progressive collapse, DCR values should not exceed 2.0 and 1.5 for structures 

with typical and atypical configurations, respectively. 

 

The UFC (2005) methodology is also a performance-based design one, and is partly 

based on the GSA (2003) provisions. In it, progressive collapse resistance depends on the 

desired level of protection (i.e. performance), which are very low, low, medium and high 

levels of protection. Most buildings structures fall in the first two categories and only 

structures that are mission critical or have unusually high risk fall in the last 2 categories. 

Two design approaches are specified, namely the Tie Force Method (TFM) and APM. 

The former is essentially an indirect design approach, wherein a minimum tie force 

capacity must be made available in the system to transfer loads from a damaged part to 

the remainder of the structure. In other words, the intent of the tie force method is to 

quantify minimum ductility, continuity and redundancy requirements. For a very low 

level of protection, it is sufficient to provide prescribed horizontal tie force capacity, 

while for low level of protection both horizontal and vertical tie capacity has to be 

provided. If adequate vertical tie capacity is not present, then APM is required. When the 

objective is to achieve medium or high levels of protection, structures have to be 

designed for prescribed horizontal and vertical tie forces, should satisfy minimum 

ductility requirement and should additionally be checked by APM for specific damage 

scenarios. In all the cases, APM is permitted only if horizontal tie capacity is present.  
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The TFM relies implicitly on the formation of catenary action to mitigate collapse. As 

with any prescriptive criteria, these provisions do not allow designers the choice of a 

desired structural performance level. For instance, it is not clear how much catenary 

action will take place in response to a specified event, or alternatively, must be developed 

to mitigate collapse. Unlike other existing prescriptive provisions, however, these 

provisions are not based on a wealth of publicly available field experience, extensive data 

and analytical results. For example, it is not clear how will a steel moment resisting 

connection behave in the presence of potentially large catenary forces? Therefore, the 

accuracy of the criteria and their appropriateness for adoption by civilian design 

documents are both questionable at this time. 

 

In the ISC (2004) document the problem of progressive collapse is handled indirectly 

through reference to the ASCE 7 standard and GSA (2003), and it recommends 

engineering guidelines to mitigate the effect of blast on structures. 

 

2.4 Structural Steels 
 
The most commonly used steel in structural engineering applications are carbon steels 

(ASTM A36), high strength low alloy steels (HSLA) (ASTM A572, A992) and corrosion 

resistant high strength low alloy steels (ASTM A588). Carbon structural steels have 

maximum carbon content varying from 0.25 to 0.29 wt % and these are used primarily 

for angles, channels and plates. HSLA steels are designed to provide better mechanical 

properties and/or greater resistance to atmospheric corrosion than conventional carbon 

steels in the normal sense because they are designed to meet specific mechanical 

properties rather than a chemical composition. The HSLA steels have low carbon 

contents (0.05 - 0.25 wt %) in order to produce adequate formability and weldability, and 

they have manganese contents up to 1.5%. Small quantities of chromium, nickel, 

molybdenum, copper, nitrogen, vanadium, niobium, titanium and zirconium are used in 

various combinations. Total content of alloying elements other than carbon is less than 5 

wt %. 
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At ambient temperature and pressure the atomic structure of pure iron is body-centered 

cubic (bcc) and it is also known as ߙ-iron or ferrite. This bcc structure is stable up to 

about 910oC. However, in HSLA steels (ASTM A572, A992) with carbon and other 

alloying elements, the two phase’s ferrite and pearlite are the principal constituents of the 

microstructure. For low carbon steels, i.e. below 0.3 wt % such as HSLA, pearlite 

occupies a substantially smaller volume of microstructure as compared to ferrite. 

Inclusions including cementite (Fe3C) and silicates (size 1 െ  together with other ,(݉ߤ  40

second phase particles (size < 1 ݉ߤ) such as sulphides (e.g. MnS) and other carbides 

(ZrC, TiC, VCx, Mo2C etc) are also present in small amounts at grain boundaries. 

Cementite or iron carbide has an orthorhombic crystal structure and it is a hard, brittle 

material, normally classified as a ceramic in its pure form. Pearlite is a two-phased, 

lamellar structure composed of alternating layers of ferrite (88 wt %) and cementite (12 

wt %). Alloying elements in HSLA influences the strength by controlling the ferrite grain 

size and by other mechanisms involving strengthening by interstitial or substitutional 

atoms. 

 

2.4.1 Ductile Fracture Process in Steel 
 

Ductile fracture in steel is a multi-scale and multi-step process resulting from microvoid 

nucleation, growth and coalescence of voids at a microscale level in a plastically 

deforming material. Microvoids typically nucleate at inclusions either by 

decohesion/debonding of the inclusion matrix interface or by fracture of the inclusion 

itself. In a pure material, creation of voids requires a very high stress to break the atomic 

bonds but the deformation is not heterogeneous enough for large stress concentrations to 

reach the atomic bond strength. However, inclusions provide areas where void nucleation 

can easily occur. Hard inclusions are obstacles to dislocations; and pile up can produce 

large stress concentrations in the inclusion itself and at its boundary, large enough to 

cleave it or for interface decohesion. 

 

Following void nucleation under the applied deformation field, voids grow and interact 

until localized plastic flows and necking of the intervoid matrix occurs, which eventually 
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leads to coalescing of adjacent microvoids. The process of microvoid coalescence is often 

accelerated by the rapid growth and coalescence of the secondary microvoids which 

nucleates at the second phase particles (sulphides and carbides) in the localized plastic 

flow zone between the microvoids. This process describes the ductile fracture of steels 

for cases in which void nucleation initiates at small strains and void growth occurs over a 

large strain increment. Under such conditions, fracture properties are controlled by the 

growth and coalescence of voids; and ductility depends on the growth phase of 

microvoids and is strongly influenced by state of stress in the material. Figure 2.4 shows 

the schematic diagram of void nucleation, growth and nucleation in steels. Figure 2.5 

shows a scanning electron micrograph of the surface of steel fractured due ductile 

fracture process.  

 

The third stage of void coalescence mechanism is not predominantly due to dilational 

plastic void growth. Very large volumetric dilation of voids, needed to bring voids in 

close proximity, are not observed in metallurgical examination of regions immediately 

adjacent to ductile fracture surfaces. Scanning electron microscope (SEM) micrographs 

of the fracture surface of tension specimens show void coalescence by complete internal 

necking of the intervoid matrix, between the sites of inclusions, which is not the result of 

dilational plastic void growth. In this stage, failure is due to the plastic limit load 

instability of the intervoid matrix which leads to the catastrophic process of internal 

microscopic necking and causes localized plastic failures and separation of intervoid 

matrix material. This results in the region above and below the ductile fracture surface 

moving apart by rigid body displacements, under decreasing loads, as the intervoid 

matrix necks down to virtually 100% reduction in area.  

 

Plastic instability associated with void coalescence stage has not been studied as much as 

the growth stage. Two important mechanisms of coalescence that are assumed to occur 

are flat dimple mode and void sheet instability. Flat dimple mode occurs for those cases 

in which inclusions-initiated voids nucleate at small strains and void growth occurs over 

a large strain increment. In such cases, at the onset of material failure, there is significant 

density of voids which is nearly uniformly distributed within the deforming section and 
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the void volume fraction typically approaches 0.05 - 0.25 (Bandstra et al., 1998) at 

failure. When growing voids reach a critical size, relative to their spacing, a local plastic 

instability develops between the voids, resulting in failure. In these cases, the fracture 

initiation is characterized by a dimple fracture surface roughly oriented normally to the 

maximum principal stress axis.  

 

In addition to ductile fractures occurring as a result of a global accumulation of damage 

as described above, a “void sheet” failure has been observed in steel containing large 

concentrations of second phase particles. Void sheet failure is caused by nucleation, 

growth and linking of voids but in a manner which leaves the fracture surface with a zig-

zag fracture profile comprised of segments roughly 45o to the principal stress axis. 

Studies by Bandstra et al. (1998) shows that void sheet mechanism involves large 

elongated ‘primary’ voids which are subsequently linked on inclined planes by a sheet of 

microvoids nucleated at a ‘secondary’ population of particles. Hence void sheet failure is 

a result of deformation localization between the primary voids. Plastic instability is 

concentrated along a sheet of voids, and local necking instabilities develop.  There is little 

damage in this case (i.e. void volume fraction much less than 0.10) at the onset of 

localization and failure. The orientation of the fracture path depends on the stress state.  

 
In case where the inclusions are well bonded to the matrix, void nucleation is often the 

critical step and fracture occurs soon after the voids are formed. In this case, on the onset 

of microvoid nucleation, the intervoid matrix immediately undergoes plastic limit load 

failure across a sheet of microvoids to form ductile fracture surface and the void 

coalescence process occurs by a mechanism of internal microscopic necking. Under these 

conditions there is no opportunity for dilational plastic void growth to occur and the 

microvoid nucleation strain is equal to the ductile fracture strain. 

 
2.5 Modeling of Ductile Fracture and Failure of Steel Members 
 
Ductile fracture in structural steel members is a multi-scale process with several 

processes occurring at different length scales. The important physical processes with the 

associated length scales are: 
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1) Dislocation movements and atomic bond breaking/decohesion ~ 10ିଵ଴ ݉   

2) Microvoid initiation ~ 10ି଺ ݉ 

3) Microvoid growth and coalescence ~ 10ି଺ െ 10ିସ ݉   

4) Crack initiation and propagation ~ 10ିଷ െ 10ଵ ݉   

5) Structural system collapse ~ 10ଵ െ 10ଶ ݉ or more 

 

Researchers in the past have used various mathematical theories to model these physical 

phenomenon occurring at various length scales. Some of the important mathematical 

frameworks in which the above phenomena’s are studied include quantum mechanics, 

molecular dynamics, continuum mechanics and multi-scale methods. Usually a single 

mathematical theory cannot be used to model all problems at every length scale. An 

overview of quantum mechanics, molecular dynamics, continuum mechanics and multi-

scale approaches and the range of their applicability are presented next. See Fig. 2.6 for 

an overview of these analysis methods.  

 

2.5.1 Quantum Mechanics (QM) 
 
In quantum mechanics (QM) techniques the motion of electrons is explicitly considered, 

and thus these techniques can be used to study properties of systems which depend on 

electronic distribution. Structural, mechanical and thermo-dynamical properties of 

systems can also be investigated using QM techniques. At the heart of quantum 

mechanics is the Schrödinger wave equation, which for a single electron system is given 

by Eq. 2.1: 

 ቊെ
԰ଶ

2݉ ቆ
߲ଶ

ଶݔ߲ ൅
߲ଶ

ଶݕ߲ ൅
߲ଶ

ଶቇݖ߲ ൅ ܸሺݐሻቋ Ψ൫ݎ, ൯ݐ ൌ ݅԰
߲Ψ൫ݎ, ൯ݐ

ݐ߲  (2.1)

Equation 2.1 refers to a single electron of mass ݉, moving through space (given by 

position vector ࢘ ൌ ࢏ݔ ൅ ࢐ݕ ൅  under the influence of an external potential ,ݐ and time (࢑ݖ

field ܸሺݐሻ. Here, ԰ refers to Plank’s constant divided by ߨ and ݅ ൌ √െ1. The function 

Ψሺ࢘,  ሻ is known as the wave function and it characterizes the motion of the electronݐ

under the applied potential field. Various properties of electron can be derived from this 

wave function. In most of the problems of practical interest, the external potential ܸ is 
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independent of time. In this case, the wave function can be written as the product of a 

spatial part and a time part, i.e. Ψሺ࢘, ሻݐ ൌ ߰ሺ࢘ሻ߶ሺݐሻ. The Schrödinger equation can then 

be written in time-independent form as follows: 

 ቊെ
԰ଶ

2݉ ଶ׏ ൅ ܸቋ ߰ሺ࢘ሻ ൌ ሺ࢘ሻ (2.2)߰ܧ

where  ߘଶ ൌ ቀ డమ

డ௫మ ൅ డమ

డ௬మ ൅ డమ

డ௭మቁ is the Laplacian operator and ܧ is the energy of the 

particle. Alternatively Eq. 2.2 can also be written in compact operator form as follows: 

 ࣢߰ሺ࢘ሻ ൌ ሺ࢘ሻ߰ܧ ܽ݊݀ ࣢ ؝ െ
԰ଶ

2݉ ଶ׏ ൅ ܸ (2.3)

where ࣢ is known as Hamiltonian operator. Equation 2.3 represents an eigen-value 

problem where ߰ሺ࢘ሻ is the eigen-function of operator ࣢ and ܧ is the corresponding 

eigen-value. Mathematical tools from functional analysis are used to find solution of 

these eigen-value problems. In particular, the wave functions ߰ሺ࢘ሻ are assumed to exist 

in Hilbert space, i.e. the space of square-integrable functions. Most of the important 

classes of solutions of time independent Schrödinger equations are constructed in 

separable Hilbert spaces with orthonormal bases functions. Moreover, the solutions are 

either real or occur in complex conjugate pairs. Wave functions are also referred to as 

orbitals and are characterized by discrete integers referred to as quantum numbers.  

 

Using Born’s statistical interpretation of wave functions, the probability of finding an 

electron in a given volume Ω is given by Eq. 2.4 below:  

 න ሺ࢘ሻ߰ሺ࢘ሻ݀Ωכ߰
Ω

ൌ ݊݋ݎݐሼ݈ܾ݁݁ܿ݋ݎܲ ݅݊ Ωሽ (2.4) ݁݉ݑ݈݋ݒ

Additionally, the normality condition of the wave functions is assumed, i.e., 

׬ ሺ࢘ሻ߰ሺ࢘ሻ݀Ωௌ௣௔௖௘כ߰ ൌ 1. The concept of operators is important in QM. The expected or 

mean value of quantity such as energy, position or linear momentum can be can be 

determined using an appropriate operator. For instance, energy can be calculated using 

Hamiltonian operator as follows:  

ܧ  ൌ න߰כሺ࢘ሻ࣢߰ሺ࢘ሻ݀Ω
Ω

 (2.5)
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The Schrödinger Eq. 2.3 can be solved exactly for only a few problems, such as the 

particle in a box, the harmonic oscillator, the particle on a ring, the particle on a sphere 

and the hydrogen atom. For most of the problems of practical interest numerical methods 

are used. An introduction to QM can be found in Shankar (1994), Griffiths (2004) and 

Atkins & Friedman (2005). Some of the important numerical methods and techniques in 

used in QM are discussed next. 

2.5.1.1 Born-Oppenheimer Approximation 
 
Solving Schrödinger equation for polyelectronic and molecular systems is complicated by 

the fact that exact solution of Schrödinger equation with three or more interacting 

particles does not have a closed form. Thus solutions for all such systems are only an 

approximation to the exact solutions. A second complication is that for multi-electron 

species spin of electron has to be accounted, which introduces another quantum number 

known as spin quantum number. One of the important assumptions for polyelectronic and 

molecular systems is the Born-Oppenheimer (BO) approximation. This assumption is 

based on physical reasoning that dynamics of electrons is much faster than the dynamics 

of nuclei. Thus electrons can instantaneously respond to the any change in position of 

nuclei. Hence the electronic wave functions are assumed to be dependent on position of 

nuclei and not on their momenta. With BO approximation the total wave function of the 

multi-electron systems is written in the following form: 

 ߰௧௢௧௔௟ሺ݈݊݅݁ܿݑ, ݏ݊݋ݎݐ݈ܿ݁݁ ሻ ൎ ߰௡௨ሺ݈݊݅݁ܿݑ ሻ߰௘௟ሺ ሻ (2.6) ݏ݊݋ݎݐ݈ܿ݁݁

The total energy is represented as the sum of the nuclear energy (electrostatic repulsion 

between positively charged nucleuses) and the electronic energy. The electronic energy is 

comprised of sum of kinetic and potential energy of electron moving in the electrostatic 

field of nuclei, together with electron-electron repulsion. When the Born-Oppenheimer 

approximation is used, the electronic motions are of prime importance and the nuclei are 

considered to be fixed. For each arrangement of the nuclei the Schrödinger equation is 

solved for the electrons alone in the field of the nuclei. If it is desired to change the 

nuclear positions then it is necessary to add the nuclear repulsion to the electronic energy 

in order to calculate the total energy of the configuration.    
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2.5.1.2 Molecular Orbital Theory 
 
In multi-electronic molecular systems, the electronic distribution for the entire molecule 

is of prime importance as opposed to electronic distribution of electrons in individual 

atoms. Molecular orbital calculations give solutions that are “smeared out” throughout 

the entire molecule, whereas electron orbitals are usually localized in specific regions 

(e.g. in the bonds between atoms). The rules for obtaining the atomic orbitals for N-

electron system are mathematically expressed in terms of Slater determinants. Molecular 

orbitals are expressed as a linear combination of atomic orbitals as given in Eq. 2.7. 

below:  

 ߰௠೔ ൌ ෍ ܿ௜௝߰௔ೕ

௞

௝ୀଵ

 (2.7)

Here ߰௠೔ are the molecular orbitals, ߰௔೔ are the atomic orbitals and ܿ௜௝ are unknown 

scalars. Total energy, ܧ௧௢௧, of an N-electron system can be expressed as the sum of 

components as given in Eq. 2.8 below: 

௧௢௧ܧ  ൌ ௖௢௥௘ܧ ൅ ௘௟௘ܧ ൅ ௘௫௖௛ (2.8)ܧ

where ܧ௖௢௥௘ is the kinetic and potential energies of the electrons moving in the 

electrostatic field of the nuclei and ܧ௘௟௘ associated with the Columbic electron-electron 

repulsion. The third contribution to the energy, ܧ௘௫௖௛, is the exchange ‘interaction’. ܧ௘௫௖௛ 

is due to quantum nature of electrons (since electrons are “fermions” they cannot be 

distinguished when exchanged) and has got no classical counterpart.  

 

Once the expression for the total energy is obtained, the unknown coefficients, ܿ௜௝, can be 

obtained using variational principle. The variational principle states that the energy of 

any generalized wave function is the upper bound of the ground state energy. So by 

minimizing the energy of the generalized wave function of a system one can obtain the 

approximated ground state wave function. An integro-differential system of equations 

known as Hartree-Fock equations is obtained by imposing minimization condition on the 

expression for the energy, subject to the constraint that the molecular orbitals remain 

orthonormal. Hartree-Fock equations can be reformulated in standard matrix form and 

this matrix form is known as Roothaan-Hall equations. Further details on the solution of 
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such systems can be found in Leach (2001), Lewars (2003) and Cook (2005) and in the 

references therein. 

 

2.5.1.3 Ab initio and Semi-empirical methods  
 
Ab initio strictly means “from the beginning” or “from first principles”, which implies 

that a calculation using such an approach requires as input only physical constants such 

as the speed of light, Planck’s constant, the masses of elementary particles, and so on. Ab 

initio usually refers to a calculation which uses the full Hartree-Fock / Roothaan-Hall 

equations, without ignoring or approximating any of the integrals or any of the terms in 

the Hamiltonian. By contrast, semi-empirical methods simplify the calculations, using 

parameters for some of the integrals and/or ignoring some of the terms in the 

Hamiltonian. Further details on semi-empirical methods can be found in Leach (2001), 

Lewars (2003) and Cook (2005). 

2.5.1.4 Tight-Binding, Density Functional Theory and Other Methods  
 
Various approximations are used in QM to obtain results of physical interest. The success 

of these approximate methods depends on how closely they can model the phenomena of 

interest. The tight-binding approximation treats a solid as an extended molecule, and 

takes as its starting point orbitals that are confined to individual atoms (hence the name of 

the approach). The molecular orbitals are then formed that spread throughout the solid. 

The tight-binding model is typically used for calculations of electronic band structure and 

energy gaps in solids in the static regime. Density functional theory (DFT) begins with 

the concept of the electron probability density and it takes into account electron 

correlation while being less computationally demanding than Ab initio methods. 

Furthermore, for systems involving d-block metals, DFT yields results that very 

frequently agree more closely with experiment than Ab initio methods calculations do. 

The basic idea behind DFT is that the energy of an electronic system can be written in 

terms of the electron probability density, ߩሺ࢘ሻ. For a system of n electrons, ߩሺ࢘ሻ denotes 

the total electron density at a particular point ࢘ in space. The electronic energy E is said 

to be a functional of the electron density and is denoted E[ߩሺ࢘ሻ], in the sense that for a 
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given function ߩሺ࢘ሻ, there is a single corresponding energy E[ߩሺ࢘ሻ]. Details on 

implementation and application of these methods can be found in Leach (2001) and 

Lewars (2003).  

 

Discussion on other advanced QM methods such as those for open shell systems, valance 

bond theory, hybrid Hartree-Fock/DFT methods, gradient enhanced DFT methods, 

linearized augmented plane wave (LAPW) method for DFT calculations,  band theory for 

metals and other advanced QM methods can be found in Szabo & Ostlund (1996), Leach 

(2001) and Singh & Nordstrom (2005). 

 
In an application to steels, Hao et al. (2004) used DFT to compute binding energy 

relations for the interfacial debonding between the matrix and the primary & secondary 

inclusion particles in high strength steels. In iron matrix, normal adhesion and sliding 

were also considered. The primary aim of these first principles computation was to design 

binding and barrier potentials, which can be used in molecular dynamics simulations. 

 

2.5.2 Molecular Dynamics (MD) and Related Methods 
 
In MD, the classical Newtonian dynamics is used to study the motion of a large number 

of atoms by numerically integrating the equations-of-motion governed by prescribed 

inter-atomic forces. Normally, one has to rely on classical MD to simulate system sizes 

above 50,000 atoms and time-scales on the order of nanoseconds; such system sizes and 

time scales are still beyond the capabilities of quantum mechanics-based methods. One of 

the fundamental differences between MD and QM is that in MD the dynamics of 

electrons is ignored. Thus MD methods cannot provide properties that depend upon the 

electronic distributions. Hence, the total energy ሺܧሻ of the system in MD is only the sum 

of potential energy ሺܷሻ and kinetic energy ሺࣥሻ of the nuclei. Theoretical foundations of 

molecular dynamics are based on Hamiltonian formulation of classical Newtonian 

mechanics (Goldstein et al., 2002). For a system with N-atoms, the Hamiltonian ሺܪሻ of 

the system is the total energy ሺܧሻ of the system, i.e., 

ܪ  ൌ ܧܭ ൅ ܷ ൌ (2.9) ܧ
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ܷ ൌ ܷሺ࢘ଵ, ࢘ଶ, … , ࢘ேሻ (2.10)

where ݉௜,  ௜ and ࢘௜ are the mass, momentum and position vector of the ith atom݌

respectively. The equations of motion are then expressed in terms of Hamiltonian as 

follows: 

ሶ௜݌  ൌ െ
ܪ߲
௜ݎ߲

ܽ݊݀ ሶ௜ݎ ൌ െ
ܪ߲
௜݌߲

 (2.11)

The current state of the system by a 6N dimensional vector made up of the positions and 

momenta of all the particles. This vector defines a point in “phase space”. When the 

Hamiltonian is not an explicit function of time, the Hamiltonian, and consequently the 

energy, is conserved. Conservation of the Hamiltonian implies that in the 6N dimensional 

phase space our system is confined to exist on a 6N-1 dimensional manifold. Further, 

taking into account conservation of momentum, the system has only 6N-5 degrees of 

freedom. 

 

The equations of motions (Eq. 2.11) are integrated numerically to study the evolution of 

system as time progresses. Most commonly used integration algorithm in MD simulation 

is Verlet (Leapfrog) algorithm, however, higher order integration schemes are sometimes 

also considered. For stable time integration, typical time steps used in MD simulations 

are in the range of 1-10 femtoseconds (10ିଵହ െ 10ିଵସ secሻ. Global energy minimization 

techniques such as conjugate gradient methods are also commonly used in MD 

simulations to study the energy landscape of such systems. 

 

Forces at the atomic level are conservative, and hence, a corresponding potential energy, 

ܷ ൌ ܷሺ࢘ଵ, ࢘ଶ, … , ࢘ேሻ, associated with force fields can be defined. Such inter-atomic 

potentials are the core of any MD simulation. Success of MD simulations depends on 

how efficiently and accurately inter-atomic potential can describe structural, mechanical, 

energetic, and other important properties of complex systems. During the last two 

decades, a number of inter-atomic potentials have been proposed with each potential 

having its own strengths and weaknesses. Some of the important commonly used 

empirical force field functions include bonded interactions (bond stretching, angle 
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bending, bond rotation/torsion) and non-bonded interactions (electrostatic, van der 

Waals). Other potential functions that are used range from quantum mechanics based 

methodologies, for e.g. tight-binding potentials, to multi-body and bond order potentials. 

 

Results from equilibrium MD simulations are usually analyzed in a framework of 

statistical mechanics and statistical thermodynamics. These statistical methods are 

typically concerned with statistical properties, known as ensemble averages, of a large 

number of interacting particles. At large length and time scales, the motion of individual 

atoms is not of interest. The important quantities at this scale are macroscopic properties 

such as temperature, pressure, diffusion coefficients, stresses etc. Thermodynamic 

variables such as temperature (T), pressure (P), entropy (S), Hemholtz free energy, Gibbs 

free energy  and chemical potentials (ߤ) are introduced by statistical methods. In addition, 

ensemble averages provides a consistent method for calculating such macroscopic 

quantities and thermodynamic variables from MD simulations. For example, the 

instantaneously value of the property ࣛ can be written as ࣛሺݐሻ ൌ ࣛሺ࢘ேሺݐሻ,  ,ሻሻݐேሺ࢖

where ࢘ே ؠ ࢘ଵ, ࢘ଶ, … . , ࢘ே and ࢖ே ؠ ,ଵ࢖ ,ଶ࢖ … . ,  ே are the position vectors and࢖

momentum of all the particles in the system. The value that is measured experimentally is 

an average of ࣛ over the time of the measurement and is therefore known as a time 

average. As the time over which the measurement is made increases to infinity, so the 

value of the following integral approaches the “true” average value (ࣛ௔௩௚) of the 

property defined in Eq. 2.12: 

 ࣛ௔௩௚ ൌ lim
௧՜ஶ

1
߬ නࣛ൫࢘ேሺݐሻ, ሻ൯݀߬ݐேሺ࢖

ఛ
 (2.12)

Statistical mechanics gives a useful tool for estimating ࣛ௔௩௚, by replacing time average 

by ensemble average, i.e. by using the “ergodic” hypothesis, which is the fundamental 

axiom of statistical mechanics, i.e.: 

 ࣛ௔௩௚ ൌ ۄࣛۃ ൌ න ࣛሺ࢘ே, ேሻ࢖ ܲሺ࢘ே, ேሻ࢖ ݀࢘ே݀࢖ே  (2.13)

where the integral in Eq. 2.13 is taken over the entire phase space and ܲሺ࢘ே,  ேሻ is the࢖

probability density of the ensemble. For constant number of particles, volume and 

temperature, the probability density is given by Boltzmann distribution: 
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 ܲሺ࢘ே, ேሻ࢖ ൌ exp ቆെ
,ሺ࢘ேܧ ேሻ࢖

݇௕ܶ ቇ /ܳ (2.14)

where ܧ is the energy, ݇௕ is the Boltzmann constant, ܶ is the temperature and ܳ is the 

partition function. In practice, thermodynamics averages are obtained from MD 

simulations as time averages using numerical integration of Eq. 2.11.  

ۄࣛۃ  ൌ
1
ܯ ෍ ࣛሺ࢘ே, ேሻ࢖

ெ

௜ୀଵ

 (2.15)

where M is the number of time steps. For example, temperature ሺܶሻ, internal energy ሺܷሻ, 

heat capacity ሺܥ௩ሻ and pressure ሺܲሻ of a system with N-particles can be estimated from 

MD as follows: 

 ܶ ൌ 2ࣥ/݇௕ሺ3ܰ െ ௖ܰሻ (2.16)

 ܷ ൌ ۄܧۃ ൌ
1
ܯ ෍ ௜ܧ

ெ

௜ୀଵ

 (2.17)

௩ܥ  ൌ ܧሺۃ െ ௕ܶଶ (2.18)݇/ۄሻଶۄܧۃ

 ܲ ൌ
1
ܸ ሾܰ݇௕ܶ െ

1
3 ෍ ෍ ௜௝ݎ ௜݂௝

ே

௝ୀ௜ାଵ

ே

௜ୀଵ

ሿ (2.19)

where ௖ܰ are the number of constraints on the system; and  ݎ௜௝ and ௜݂௝ is the distance and 

force acting between the particles i and j respectively. A comprehensive discussion of 

classical statistical mechanics and thermodynamics concepts can be found in Attard 

(2002) and in the references therein.  

  

One of the most popular statistical techniques for estimating equilibrium properties of a 

large system of particles is the Monte Carlo method (MCM). Traditional MCM samples 

from canonical ensemble, i.e. it estimates statistical properties of a system with constant 

number of particles (N), constant temperature (T) and constant pressure (P). MD 

simulations, on the other hand are typically performed under the conditions of constant 

N, constant volume (V), and constant E (microcanonical ensemble). However, MD can 

be modified to simulate from other ensembles such as canonical ensemble, grand 

canonical ensemble (fixed N, T, P) or isothermal-isobaric ensemble (fixed ߤ, V, T ) by 

appropriately modifying the Hamiltonian. But in modified MD simulations, individual 
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trajectories of particles no longer represent the solution of Newton’s equations. Similarly, 

MCM can also be modified to sample from other ensembles.  

 

In the canonical, microcanonical and isothermal-isobaric ensembles the number of 

particles is constant but in a grand canonical simulation the composition can change i.e. 

the number of particles in simulation can increase or decrease. The equilibrium states of 

each of these ensembles are characterized as follows: canonical ensemble - minimum 

Helmholtz free energy, microcanonical ensemble - maximum entropy, isothermal-

isobaric ensemble - minimum Gibbs free energy, and grand canonical ensemble - 

maximum pressure × volume. One of the important benefits of MD simulation is that it 

can be used for non-equilibrium simulations (e.g. surface diffusion and bond failure), as 

opposed to MCM which are only used to estimate equilibrium properties. In some cases, 

however, modified MCM such as Kinetic Monte Carlo method and other related 

techniques can be used for estimation of non-equilibrium properties. Detailed information 

MD methods and related statistical techniques can be found in Haile (1997), Leach 

(2001), Frenkel & Smit (2001) and Rapaport (2004). 

 

An example of application of MD simulations to metals is the study by Horstemeyer et al. 

(2001). In this work authors carried out simple shear molecular dynamics simulations of 

single crystals using EAM potentials. The important variables that were investigated in 

this work were: crystal orientation (single slip, double slip, quadruple slip, octal slip), 

temperature (300 and 500 K), applied strain rate (10଺ െ 10ଵଶ 1/ܿ݁ݏ), specimen size (100 

atoms to 100 million atoms (2 μm)), specimen aspect ratio size (1:8 – 8:1), deformation 

path (compression, tension, simple shear, torsion), and material (nickel, aluminum and 

copper). The largest of these simulations took 13 CPU hours on the 3000 processors 

Sandia/Intel Teraflop machine. The important conclusions drawn from this study were: 1) 

The yield stress is a function of size scale parameter and as the size scale decreases the 

yield strength increases. 2) Although the thermodynamic force (stress) varied at different 

size scales, the kinematics of deformation appeared to be very similar based on atomistic 

simulations, finite element simulations and physical experiments. 
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2.5.3 Continuum Mechanics (CM) 
 

In continuum mechanics (CM) a physical object is modeled in a continuum sense as 

opposed to discrete particle models in QM or MD. In CM, physical behavior of 

continuum bodies is described using kinematic, kinetic and balance principles together 

with appropriate constitutive model for the material under consideration. The CM 

theories are phenomenological in a sense that they strive to represent the immediate 

phenomena of experience without looking into detail as of what is happening at atomistic 

or quantum scales. In a statistical sense, field variables in CM represent statistical 

averages of microscopic quantities over continuum length scales. For example, in crystal 

plasticity theories where the deformation of single crystals is considered, the continuum 

length scales is of the order of 10-6 m. Field variables in crystal plasticity such as 

dislocation density tensors represents the ensemble average of the tensor product of the 

dislocation line and Burgers vectors over the continuum length. Thus the discrete 

dislocation substructure is not explicitly considered. In other CM theories material 

response is usually studied at length scales that are several order of magnitudes greater 

than the inter-atomic distances (usually greater then 10-4 m). For structural engineering 

applications, the continuum models that are of interest include 1-D objects (for example 

beams, columns and springs), 2-D objects (e.g. shells and plates) and 3-D objects (e.g. 3-

D solids). Finally, numerical techniques such as the finite element method is used to 

solve problems of practical interests as closed formed solution of the problems posed by 

CM can be obtained only for a few cases. 

 

Comprehensive treatment of CM for 3-D solids can be found in the classical treatise of 

Truesdell & Toupin (1960) and Truesdell & Noll (2004). Other standard references on 

this subject include Malvern, L.E., (1969), Gurtin, M.E., (1981), Marsden & Hughes 

(1994), Ogden, R. W., (1997) and Holzapfel, G.A. (2000). In Marsden & Hughes (1994) 

mathematical framework of differential geometry on manifolds is used to develop the 

theory, and thus it provides a rich geometrical structure to the CM theory. The 

geometrical structure is particularly useful in understanding fundamental tensors 

operations such as pull back and push forward, and in understanding objective stress rates 
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in nonlinear constitutive theories. A more comprehensive geometric treatment of the 

theory can be found in Van der G.E. et al. (Part I and II, 1996). In this work, the concept 

of dual variables is used, and inner products and scalar products are distinguished. Thus a 

consistent distinction in between self-duality and symmetry of tensors, and in between 

transpose and dual of tensors can be made in this framework. Theories for 1-D and 2-D 

continuum bodies can be found in Antman (1995), Crisfield (1996, 1997), Belytschko et 

al. (2000), Wempner & Talaslidis (2002), and Bathe & Chapelle (2003). 

 

2.5.3.1 Constitutive Models 
 
Constitutive theories play an important role in CM as they represent intrinsic properties 

of material. Kinematic, kinetic and balance principles hold for any continuum body for 

all times and they do not distinguish one material from another. For deformable bodies 

these principles are not sufficient enough to determine the material response. Thus 

additional constitutive laws which are furnished to specify ideal material in question have 

to be established. Such constitutive laws approximate the observed physical behavior of 

the real materials under specific conditions of interests. 

 

Constitutive theory of materials usually deals with continuum bodies which in a local 

neighborhood of a material point can be considered as homogeneous, i.e., kinematical 

and kinetical properties are homogeneous within a small neighborhood of a material 

point. The global material response can be heterogeneous, however. As a prerequisite, the 

continuum itself must be locally homogeneous in the sense of Hill (1956). Real materials 

are heterogeneous locally, as well as possibly globally. Thus the success of CM approach 

depends on the two basic relative length scales: (1) Greatest dimension of the micro-

constituents of the material (e.g. atomic bonds, dislocations, micro-voids, micro-cracks, 

etc) relative to the smallest dimension of the elementary continuum material 

neighborhood (continuum length scale); and (2) the greatest dimension of the elementary 

continuum material neighborhood relative to the smallest dimension of the overall 

continuum. For example, in a polycrystalline solid (e.g. steels) consisting of crystals of 

tens of microns, each crystal can be viewed as a micro-constituent. The elementary 
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continuum material neighborhood must then be, at smallest, of the order of fractions of a 

millimeter, and the overall solid, i.e., the structural component, may have dimensions of 

the order of centimeters or greater. To this end, the concept of a representative volume 

element (RVE) is introduced. In this approach, the actual dimensions of an RVE are of no 

concern. It is only its dimension relative to the dimension of its essential microstructure 

that is of importance. If the smallest dimension of the RVE is D and the greatest 

dimension of its micro-constituent is d, Hill (1956) suggested that an effective continuum 

can be produced for ݀/ܦ ൏ 10ିଷ.  

 

A comprehensive discussion on nonlinear constitutive theories can be found in Truesdell 

& Noll (2004). Other references on this subject include Malvern, L.E., (1969) and Simo 

& Hughes (1998), and Holzapfel, G.A. (2000). Broadly, the constitutive theories can be 

formulated in two mathematical frameworks. In one framework constitutive models are 

formulated without any associated thermodynamic considerations, while in the other 

framework constitutive models are formulated using thermodynamic postulates. Most 

often, thermodynamics postulates of Coleman and co-workers, Coleman & Noll (1963) 

and Coleman & Gurtin (1967), are used. Furthermore, constitutive models can also be 

classified on the basis of length scale at which they are formulated, as follows: 

(a) Micro-mechanical Models 
 
In this class of models the underlying micro-structure of RVE is also modeled using CM 

theories. The final overall properties of RVE are then obtained using averaging 

techniques. A comprehensive introduction to such averaging techniques can be found in 

Nemat-Nasser & Hori (1998) and Nemat-Nasser, S. (1999). As an example, Castaneda et 

al. (1994) proposed a constitutive model for the effective behavior of porous nonlinear 

materials using variational principles. The proposed model was capable of approximately 

accounting for the evolution of microstructures under large quasi-static deformations. 

Variational principles were used to estimate the bounds and the effective behavior of 

porous nonlinear materials from the exact results obtained for the linear material with the 

same microstructure. 
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Continuum damage mechanics based models can also be classified as micro-mechanical 

models. In these models, the evolution RVE micro-structure is modeled by internal 

damage variables which can be either scalars or tensors. A damage mechanics based 

model was first introduced in the pioneering work of Kachanov (1958, 1986) in the 

context of isotropic damage models. Example of other damage mechanics based models 

can be found in Lemaitre (1985), Ortiz (1985), Simo and Ju (1987a, b), Ju (1989), 

Hansen & Schreyer (1994), Govindjee et al. (1995) and Armero & Oller (Part I and II, 

2000), among others.  

(b) Phenomenological models 
 
In this class of models the constitutive theory is postulated for RVE. No direct 

consideration is made to the underlying structure of RVE. Internal field variables may be 

introduced, however, to take into account the effect of evolving micro-structure. Standard 

models such as elasticity, plasticity, viscoplasticity, viscoelasticity etc, fall in this 

category. More information on this class of models can be found in Hill (1998), Lubarda 

(2001), Nemat-Nasser, S., (2004), Ottosen & Ristinmaa (2005) and Lubliner (2008).        

2.5.3.2 Finite Element Method 
 
Finite element method (FEM) is a numerical technique for solving a boundary/initial 

value problems formulated in CM framework. Mathematically, FEM is based on weak 

form of the governing equations of CM and seeks solution of the resulting equations in 

finite dimensional functional spaces known as Sobolev spaces. Weighted residual 

methods such as Bobnov-Galerkin method are usually used to construct solutions of the 

governing equations. Mathematical theory of FEM can be found be Oden & Reddy 

(1976) and Strang & Fix (1973). Other monographs on FEM which are geared towards 

numerical implementations and application are Hughes (1987), Crisfield (1991, 1997), 

Bathe (1996), Simo & Hughes (1998), Belytschko et al. (2000), Zienkiewicz et al. 

(2005), Oden (2006), and Bonet & Wood (2008). 

 

In case of building system failure, impact and contact between the failing members can 

be modeled efficiently in the framework of FEM. Such contact algorithms are formulated 
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within the framework of either the kinematic constrained method or the penalty method. 

A comprehensive discussion of the theory and implementation aspects of these 

algorithms can be found in Wriggers (2006) and in the references therein. 

2.5.3.3 Micro-Mechanical Models for Ductile Fracture in Steels 
 
Various micro-mechanical models have been proposed in the literature to model the three 

stages of ductile fracture in steels i.e. void nucleation, void growth and fracture initiation 

by void coalescence. In micro-mechanical models, the physical length scale of these 

processes is in the range 10-6 to 10-4 m. The proposed models for ductile fracture of steels 

fall in two categories. In the first category, discrete voids are considered, while in the 

second category micro-structure evolution is considered in a damage mechanics 

framework. In this section the important micro-mechanical models proposed in the 

literature are reviewed. 

A) Models based on Discrete Voids  

i) Void Nucleation 
 
The proposed models for void nucleation are based on either continuum theory (Argon et 

al., 1975) or dislocation particle interactions (Goods et al., 1979). Both these models 

assume that the void nucleates due to decohesion between inclusion and matrix interface. 

The Argon model (Eq. 2.20) applies to inclusions with radius r > 1μm and it is 

independent of the size of the inclusion. This model predicts lower nucleation strain at 

high hydrostatic (tensile) stresses.  

Argon Model ߪ௖ ൌ ௛ߪ ൅ ௘௤ (2.20)ߪ݇

where ߪ௖, is the critical stress at failure, ߪ௛ is the hydrostatic stress and ߪ௘௤ is the von 

Mises equivalent stress. The parameter k is a function of particle shape. The Goods model 

applies to inclusions with radius r < 1μm and it shows that the local stress concentration 

increases with decreasing particle size. In this case, the critical strain, ߳௖, for cavity 

nucleation is given by Eq 2.21: 

Goods Model ߳௖ ൌ ௖ߪሺݎܭ െ ௛ሻଶߪ  (2.21)

where ߪ௖ is the interface strength, ݎ is the radius of particle and ܭ is a material constant. 
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Experimental results often vary from the results of these models as nucleation tends to 

occur more readily at large particles. This discrepancy is due to the fact these models fail 

to consider the cracking of the inclusions itself or the pre-cracked and debonded 

inclusions during the fabrication phase. Large particles are more likely to crack under 

plastic deformation as they are more likely to contain defects which can act as Griffith-

like small cracks (Roy et al. (1981), Anderson (2004)). Studies by Beremin (1981) on 

fracture of A508 steel, shows that the mode of cavity formation with MnS inclusions 

depends on the orientation of inclusion with respect to applied loading. In longitudinal 

direction most of the inclusions breaks, while in the short transverse direction, cavity 

formation is usually due to decohesion of particle matrix interface. Using Eshelby’s 

theory for inclusions extended to include plastic deformation, the author shows that 

internal stress in the inclusion is given by ݇ሺߪ௛ ൅  ௘௤ሻ, where k depends on the inclusionߪ

shape and loading direction. 

 

ii) Void Growth 
 
Once the void forms, further plastic strain and hydrostatic stress causes them to grow. 

McClintock (1968) considered growth of a single cylindrical hole, either in a perfectly 

plastic or viscous material. Rice & Tracey (1969) considered growth of isolated spherical 

and cylindrical voids in a non hardening material for the case of a remotely applied strain 

field with superimposed hydrostatic stresses. In the case spherical cavity and von Mises 

material, the rate of increase of radius of cavity was expressed as follows: 

 
ሶܴ

ܴ ൌ 0.283߳ሶ௘௤
௣ exp ቆ

௛ߪ3

௬ߪ2
ቇ  (2.22)

where ܴ is the radius of cavity, ߳௘௤
௣  is the equivalent plastic strain, and ߪ௛ and ߪ௬ are 

hydrostatic and yield stress respectively.  Equation 2.22 shows that the void growth rate 

is proportional to the increment of equivalent plastic strain and an exponential function of 

triaxial stress state. Stress triaxiality is defined as a ratio of hydrostatic stress to Mises 

stress. Huang (1991) made some improvements in the velocity fields assumed by Rice & 

Tracey to derive Eq. 2.23. Huang (1991) suggested that for high triaxiality ሺߪ௛/ߪ௬  ൐
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1.0ሻ, the factor 0.283 in Eq. 2.22 should be replace by 1.28, while for low triaxiality 

ሺߪ௛/ߪ௬  ൏ 1.0ሻ, the void growth equation is expressed as follows: 

 
ሶܴ

ܴ ൌ 1.28߳ሶ௘௤
௣ ቆ

௛ߪ

௬ߪ
ቇ

଴.ଶହ

exp ቆ
௛ߪ3

௬ߪ2
ቇ (2.23)

 

The first micromechanical constitutive model for porous plastic materials was proposed 

by Gurson (1977). Using the upper bound theorem of plasticity, approximate yield 

criterion for dilatant materials was derived by considering unit cell simulations with a 

single spherical or circular cylindrical void in a rigid-plastic cell matrix.  The yield 

criterion, thus obtained exhibits weak pressure dependence as opposed to classical J2-

flow theory which is pressure independent. This model was modified by Tvergaard 

(1981) who carried out numerical studies of materials containing periodically distributed 

circular cylindrical or spherical voids and showed that the Gurson model gives better 

agreement with numerical studies when two more parameters are introduced in the 

model. Tvergaard and Needleman (1984) further modified the Gurson model by 

introducing an effective porosity parameter which accounts for increasing cavitation after 

the voids start to coalesce to more closely match experimental observations. Recent 

application of Gurson model can be found in Dos Santos & Ruggieri (2003) and Rakin et 

al. (2004). Gologanu et al. (1993, 1994) proposed a variation of the Gurson model in 

which voids are modeled as ellipsoids and their orientation and shape evolve during the 

deformation process. The drawback of the Gologanu model is that it has numerous 

parameters that are difficult to calibrate. 

 

The above models describe void growth under monotonic loading conditions. Ristinmaa 

(1997) proposed a void growth model for cyclic loaded porous plastic solids for study of 

low cyclic fatigue. An axisymmetric cell model containing spherical voids was used to 

simulate a porous material and the matrix material was modeled using von Mises yield 

criterion characterized by perfect plasticity and isotopic or kinematic hardening. 

Kanvinde (2004) also proposed a void growth model for materials subjected to very low 

cycle fatigue as in the case of seismic loading. He modified the Rice and Tracey void 
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growth model to take into account the shrinking of voids during the cycles of negative 

hydrostatic tension. 

 

iii) Void Coalescence and Fracture Initiation 
 
Fracture initiation criteria are usually based on the assumption that for the fracture of the 

material to take place, the voids coalesce to reach some critical value of void growth ratio 

or porosity. McClintock (1968) proposed the first fracture criterion according to which 

fracture occurs when two neighboring voids come into contact. The criterion was 

presented in terms of critical strain and stress, and it is assumed that fracture occurs when 

the strain and stress history over a region of the order of the void whole spacing attains a 

critical value. Thus a length scale parameter of the order of void spacing was introduced. 

However, this criterion greatly overestimates ductility because the actual fracture occurs 

by flow localization between the void and not by the impingement of voids. 

 

Hancock et al. (1976) suggested that failure initiation may take place at a critical volume 

fraction of large voids. This is equivalent to a critical hole-spacing averaged over all 

orientations, and corresponds to the observation that void coalescence does not occur on a 

single well defined plane. They proposed an expression for failure strain in steel (Eq. 

2.24), which was a function of stress triaxiality and a material constant.  

 ௙݁ ൌ ݁௡ ൅ expߙ ሺെ
௛ߪ3

௠ߪ2
ሻ (2.24)

where ௙݁is the failure strain, ݁௡is the void nucleation strain, ߙ is a material constant and   

 ௠ are hydrostatic and Mises stresses respectively. For materials in whichߪ ௛ andߪ

appreciable plastic flow occurs before the voids nucleate, the nucleation strain is also 

added to get the failure strain. The authors also recognized the importance of length scale 

and asserted that it is not sufficient for the failure criterion to be reached at a single point 

but the failure criterion must involve a certain minimum amount of material which is a 

characteristic of the scale of physical events leading to local failure. Further, it was 

observed that large voids often do not coalesce completely but are linked by microvoids 

which are the result of the second generation of small scale void growth based on 

carbides and other precipitates between the large holes. In order to produce necessary 
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small scale void growth, high strain and/or high triaxiality are required.  These conditions 

may be provided by plastic instability, resulting in flow localization between the large 

holes. The authors concluded that the failure initiation can be taken as a critical volume 

ratio of large voids, which is equivalent to critical void spacing averaged over all 

orientations at the instance of fracture initiation. This fracture initiation criterion is 

known as the stress modified critical strain criterion (SMCS model). 

 

Mackenzie et al. (1977) used the SMCS criterion to study fracture initiation in 

circumferentially notched tension specimens. Bridgman’s (1952) analysis was used to 

obtain the plastic strain and distribution of stresses across the cross section. According to 

Bridgman model the maximum triaxiality occurs at the center of the cross-section and the 

fracture was assumed to initiate at this point. The strain at which the average stress drops 

was defined as the failure initiation strain. It was observed that strain at fracture initiation 

decreases with the increase in triaxiality. The authors concluded that both triaxiality and 

plastic strain were overestimated by Bridgman’s results and the more severe the notch, 

the greater the errors. It was also indicated that error in the plastic strains at the center 

may be large, which overestimated the failure strains at fracture initiation.  

 

Ritchie et al. (1979) used a SMCS criterion for their fracture initiation studies and used a 

small multiple of ferrite grain diameters as the characteristic length. Bandstra et al. 

(1998) carried out the experiments with notched bars of different notch geometry to vary 

the constraint and also used a similar relationship to model the fracture initiation strain. 

Failure was taken as a point during the test at which the specimen loses significant load 

carrying capacity. They identified two regions where the relationship between triaxiality 

and fracture strain was different. For the first region where triaxiality was small (< 1.05), 

fracture strain decreased rapidly with increase in triaxiality, but in the second region 

where the triaxiality was high (> 1.05), fracture strains were small and decreased slowly 

with increasing triaxiality.  

 

Norris et al. (1978) proposed a fracture criterion based on mean stress and effective 

plastic strain and fracture was assumed to occur when the criterion was satisfied over the 
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characteristic length, ݎ௖, of material which they assumed to be about 25μm. Fracture was 

assumed to occur when accumulated damage variable, ܦ, in Eq. 2.25 reaches a critical 

value ܦ௖ over a characteristic length ݎ௖. 

ܦ  ൌ ׬ ݂ሺߪ௛ሻ݀߳ҧ௣ (2.25)

where ߪ௛ is the hydrostatic stress and ݀߳ҧ௣ is the increment in the equivalent plastic strain. 

The function ݂ሺߪ௛ሻ used in this study is given by Eq. 2.26: 

 ݂ሺߪ௛ሻ ൌ
1

ሾ1 െ ௛ሿ (2.26)ߪܿ

where c is assumed to be a material parameter such that ܿߪ௛ ൏ 1.0. Clearly, as the 

hydrostatic stress increases, the rate of damage accumulation also increases. A critical 

value of damage accumulation, ܦ௖ ൌ 1.16, was used in this study. 

 

Rousselier (1987) proposed a fracture criterion based on Rice and Tracey void growth 

model (VGM). The functional form of the criterion was expressed as follows: 

௖ܦ  ൌ න ܨ ൬
௛ߪ

௠ߪ
, ߳௘௤

௣ ൰ ݀߳௘௤
௣  (2.27)

The fracture was assumed to occur when ܦ௖ in Eq. 2.27 is exceeded over the 

characteristic length, ݎ௖, of the material, which was assumed to be a function of the 

number of inclusions per unit volume. In particular, the functional form that was used is 

given by Eq. 2.28, where A and B are constants. 

௖ܦ  ൌ ൤ln ൬
ܴ
ܴ௢

൰൨
௖

ൌ ௘௤߳ܣ
௣ ሺܤ

௛ߪ

௠ߪ
ሻ (2.28)

 

Panontin et al. (1995) used the criterion based on the Rice and Tracey void growth model 

and the SMCS model to predict the fracture initiation strain. The critical characteristic 

distance was calculated using the physical material characteristics and from the 

phenomenological approach by correcting the values by trial and error procedure until 

experimental fracture initiation data was predicted. In another related study, Kanvinde 

(2004) proposed a fracture initiation model for very low cycle fatigue. A damage 

parameter was included in this model to account for the accumulated damage in the 

cyclic loading process. Fracture initiation was assumed to occur when the critical growth 

ratio is reached over a characteristic length which was determined from SEM studies of 
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the fracture surface. The calibrated the model for monotonic and cyclic loading case was 

used to predict fracture initiation under large scale plasticity. 

 

Thomason P.F. (1985) developed a void coalescence criterion based on limit load 

analysis of the intervoid matrix. This criterion states that coalescence occurs when the net 

section stress between the voids reaches a critical value. However, this criterion does not 

taken into account the formation and growth of micro-voids in the ligaments separating 

the main void, and thus may lead to overestimation of critical stress and ductility.  

 

Benzerga et al. (1999) studied the effects of void shape and inter particle spacing on void 

coalescence using localization based and plastic limit-load based models. They studied 

the anisotropic ductile fracture of rolled plates containing elongated inclusion. It was 

shown that the decrease in ductility with increasing triaxiality was more rapid when the 

macroscopic loading was perpendicular to the common axis of the voids. Initial void 

spacing was shown to be important when triaxiality was high whereas the initial volume 

fraction of inclusions was not important. It was also shown that void shape was important 

for low to intermediate stress triaxiality. 

 

The Gurson model also contains a failure criterion; and failure is assumed to occur as a 

result of a plastic instability that produces a band of localized deformation. Such 

instability occurs more readily in Gurson material because of the strain softening term 

introduced by hydrostatic stress. Although the Gurson model may adequately 

characterize plastic flow in the early stages of the ductile fracture process, it does not 

provide a good description of the events that lead to final failure. Ductile failure results 

from local instabilities; however, because the model does not consider discrete voids, it is 

unable to predict the necking instability between voids. Because of this deficiency the 

Gurson model gives very high values of fracture strains in real materials. This deficiency 

was removed in Gurson-Tvergaard-Needleman (GTN) model (Tvergaard (1981), 

Tvergaard & Needleman (1984)), which has a failure criterion that introduces an abrupt 

failure point when the critical porosity is reached. Xia et al. (1995) used the GTN model 

in their ductile crack growth study using computational cells. Computational cells are the 
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standard solid finite elements with size equal to some characteristic length of the 

material, i.e. RVE, under consideration. Dos Santos and Ruggieri (2003) used the GTN 

model in a computational cell framework to model the ductile fracture behavior in tensile 

specimens. Size of computational cell was assumed to be 100 μm in this study. In another 

related study, Rakin et al. (2004) used specimens without initial crack to calibrate the 

GTN model and then used the calibrated model to predict failure initiation in pre-cracked 

specimens.  

 

In applications to structural engineering, El-Tawil et al. (1999) proposed a rupture index 

based on plastic equivalent strain and failure strain proposed by Hancock (1976). The 

rupture index was used as a performance indicator to study the potential for ductile 

fracture initiation and used it to develop in moment resistant connections with different 

access hole geometries so as to minimize the potential for ductile fracture initiation. 

Ricles et al. (2000) also used the rupture index proposed by El-Tawil et al. (1999) to 

develop access hole geometries in moment resisting connections. The rupture index 

proposed in El-Tawil et al. (1999) was modified by Shih-Ho et al. (2006), to obtain a 

better correlation with the experimental results on notched steel specimens. The modified 

rupture index was used to evaluate potential for fracture in shear links with different 

geometries.  

B) Models Based on Damage Mechanics  
 
For application to steels, Lemaitre (1985) proposed a model of isotropic ductile plastic 

damage, where the damage was linear with the equivalent strain and showed a large 

influence of triaxiality by means of a damage equivalent stress. Rousselier (1987), Tia 

(1990), Dhar et al. (1996) and Reusch et al. (2003) also presented damage models based 

on continuum thermodynamics.   

 

Steinmann et al (1993) proposed a damage model in the context of large deformation 

plasticity, with multiplicative decomposition of the deformation gradient. A scalar 

damage parameter was introduced to model the deviatoric damage leading to a 

degradation of the deviatoric elastic properties of the material. They also formulated the 
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Gurson model in the framework of multiplicative plasticity. Mahnken (1999) discussed 

some of the important aspects of implementation of Gurson model in large deformation 

multiplicative plasticity framework. Other damage models in a large deformation, 

multiplicative plasticity framework for ductile fracture of metals can be found in 

Mahnken (2002, 2005). In another related study, Menzel et al. (2001, 2003) proposed a 

framework for modeling of anisotropic damage in continuum bodies, in the context of 

large deformations.   

 

2.5.4 Multi-Scale Methods  
 
It is not possible to simulate all problems of practical interests using Ab initio methods. 

In fact, even with the availability of high performance parallel computing environment it 

is not possible to solve a problem with more than about 50,000 atoms using QM. In QM 

the motion of electron is explicitly considered, so that even if some of the electrons are 

ignored (as in semi-empirical methods) a large number of particles must still be 

considered. Therefore, many of the problems that are to be tackled in practice are 

unfortunately too large to be considered by QM.  

 

In MD, on the other hand, electronic motions are ignored and the energy of a system is as 

a function of the nuclear positions only. MD therefore, can be used to perform 

calculations on systems containing significant numbers of particles. Moreover, in some 

cases efficiently designed and calibrated empirical force fields can provide answers that 

are as accurate as even the highest-level quantum mechanical calculations, in a fraction of 

the computational time. However, MD cannot provide properties that depend upon the 

electronic distributions. With current computational resources, largest size of the 

simulation models that can be handled MD is of order of tens of nanometers (less than 1 

million atoms). 

 

CM methods ignore the particle structure of the matter altogether, and model the physical 

object as a continuum body. Typical problems that can be handled by CM methods have 

length scale larger than about 10-4 m. However, in some cases micro-structure behavior at 
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length scales of 10-6 m can be modeled using micro-mechanical methods. Although, CM 

models can be used to simulate a wide range of material response, they cannot to simulate 

physical processes at atomic length scales such as atomic bond breaking. 

 

The above limitation of the various methods has led to new development of new methods 

commonly referred to as multi-scale methods. Multi-scale methods have become 

necessary and popular due to the following reasons. First is the recent discovery of new 

nano-scale materials and the corresponding interest in nanotechnology research. Second 

is that experiments have conclusively shown the connection between micro-scale physics 

and macro-scale response. Finally, the concept of linking disparate length and time scales 

has become feasible recently due to the ongoing increase in computational power. Multi-

scale methods can be classified as coupled multi-scale methods and uncoupled multi-

scale methods, and are discussed next. 

2.5.4.1 Coupled Multi-Scale Methods 
 

Coupled multi-scale methods (Fig. 2.7) are those in which the information available from 

distinct length and time scales is combined into a single coherent, coupled simulation. 

Coupled multi-scale analysis is a very active area of research and robust techniques for 

such analysis still do not exist. 

 

Abraham et al. (1998) presented a framework for concurrent multi-scale method. In this 

work tight binding (TB), molecular dynamics (MD) and finite elements (FE) were linked 

concurrently together in a unified approach called MAAD (macroscopic, atomistic, ab 

initio dynamics). Concurrent linking implies that all three simulations run at the same 

time, and dynamically transmit necessary information to and receive information from 

the other simulations. In this approach, the FE mesh is graded down until the mesh size is 

on the order of the atomic spacing, at which point the atomic dynamics are governed via 

MD. Finally, at the physically most interesting point, i.e. at a crack tip, TB is used to 

simulate the atomic bond breaking processes. The interactions between the three distinct 

simulation domains are governed by conserving energy in the system. The overlapping 

regions (FE/MD and MD/TB) are termed ‘‘handshake’’ regions, and it is in these regions 
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where the information between the computational sub-domains is exchanged. The three 

equations of motion (TB/MD/FEM) are all integrated forward using the same time-step. 

This method was applied to the simulation of brittle fracture by Abraham et al. (1998). In 

a related approach, Rudd & Broughton (1998) used only MD and FEM sub-domains. 

Again, the FE mesh is graded down to the atomistic scale and statistical mechanics 

principles are used to estimate the energy of MD system to approximately account for 

loss of electronic degrees of freedom. The success of these approaches depends on 

modeling of “handshake” regions, where the information between two scales is 

exchanged. Common problems associated with this technique were: (1) spurious 

reflection of waves from MD-FE interface, which results in higher temperature in MD 

domain (2) use of a very small FE mesh and a very small time-step even for the FE 

domain i.e. it means that both macro and micro variables are allowed to evolve at the 

same rate, which is not a natural time scale for macroscopic variables. Furthermore, use 

of FE constitutive laws, which are typically determined for RVE, is questionable at 

atomistic length scales in the regions with refined mesh. 

 

Some of these issues were addressed by the bridging scale method proposed by Wagner 

& Liu (2003). In this method, the coarse scale exists everywhere and is not meshed down 

to the atomic spacing allows for a staggered time integration algorithm, which allows the 

atomistic and continuum simulations to evolve on their natural time scales. The boundary 

coupling between the simulations is achieved by use of the Langevin equation, which 

eliminates fine scale reflection at the interface. Further improvements and extensions of 

this method based on multi-scale variational approach can be found in Liu et al. (2006).    

 

In continuum mechanics, variational multi-scale method proposed by Hughes et al. 

(1998) is also used as a basis of coupled multi-scale methods. In variational multi-scale 

method, the displacement field is decomposed into coarse and fine scale components, i.e., 

࢛ሺ࢞ሻ ൌ ࢛௖ሺ࢞ሻ ൅ ࢛௙ሺ࢞ሻ. The coarse scale, ࢛௖ሺ࢞ሻ, is that part of the solution which can be 

represented by a set of standard FE basis functions. The fine scale ࢛௖ሺ࢞ሻ is defined as the 

part of the total solution whose projection onto the coarse scale is zero. The fine scale 

component was used to resolve a local field of interest using an element level enrichment.  
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Mote (1971) proposed a ‘global-local’ formulation to enrich the FE solution. The 

underlying philosophy of this method is to combine the approximate global shape 

functions known a priori to enhance the ‘local’ finite element field. The author combined 

the assumed global Rayleigh-Ritz field with a local finite element field in the solution of 

beam and plate problems. Dong (1983) generalized the concept of combining Rayleigh-

Ritz approximations with the conventional finite element method and surveyed the 

application of this technique. Although these formulations might give better results in 

some applications, their efficacy depends on the a priori knowledge of the global fields. 

 

Belytschhko et al. (1990) proposed a methodology based on spectral overlay method to 

uncouple the FE mesh topography and field orientations effects. In this method, spectral 

approximation was superimposed on the sub-domain of the finite element mesh rather 

than on the individual element domains. In the spectral domain, the displacement field 

consisted of the spectral displacement field and finite element field. The boundaries of 

the spectral patch need not be coincident with the boundary of elements, and hence high 

gradients inclined at an angle to the mesh can be taken into account. The constructions of 

spectral fields require a priori knowledge of the form of the solution. A drawback of this 

method was that it could not resolve the structure of the field tangential to the boundaries 

of the domain because of the homogeneous boundary conditions on the entire spectral 

field. Its efficiency is also reduced if the high gradient fields follow complicated shapes 

and boundaries or if singularities exist within the spectral domain. 

 

Mathematical theory of asymptotic homogenization has been used for analyzing 

heterogeneous medium at different length scales. This theory was developed from the 

studies of partial differential equations with rapidly varying coefficients and is based on 

two important assumptions: 1) fields vary on multiple scales due to the existence of a 

microstructure but are uniform within the same scales; and 2) microstructure is spatially 

periodic. The homogenization theory decomposes the boundary value problem of a 

heterogeneous medium into problems at different length scales and may result in coupled 

or uncoupled models at different length scales and provides a consistent basis for 



55 

transferring information between different length scales. Theory, limitations and 

applications of this methods, and improvements to take into account the local variation of 

fields and non-periodicity can be found in Hollister et al (1992), Ghosh et al. (1995, 

1996), Fish et al. (1993, 1994, 1997) and Takano et al. (2003). 

2.5.4.2 Uncoupled multi-scale methods (UMM) 
 
Uncoupled multi-scale methods (Fig. 2.8) are those in which information available from a 

lower length and/or time scale is used to derive the models at larger length and time 

scales or vice versa. Thus, various scales are decoupled in this method. UMM are 

routinely used in various fields, for example, Ab initio calculations are used to calibrate 

empirical force fields in MD. In CM, response of polycrystalline materials (length scale > 

10-4 m) are derived from response of individual crystal grains (length scale ~10-6 m). 

Micro-mechanical model in CM also represents a class of UMM models, where macro-

scale behavior is estimated from micro-structural properties. Some of other important 

uncoupled multi-scale methods, particularly in FEM, are discussed next.  

 

In FE, sub-modeling technique (Fig. 2.9) can also be to improve the FE solution in the 

region of high gradients. In this method a global model with a relatively coarse FE mesh 

is used to obtain boundary conditions for some local region or sub-model where a much 

more refined FE mesh is used. In a displacement based finite element formulation, the 

displacements converge faster than the stress and strains. Thus, in regions of high 

stress/strain gradients a more refined FE mesh is needed than that required for 

displacements to get the similar level of accuracy for stresses and strains. The submodel 

technique has been used in the past by various researchers (e.g. Shih-Ho et al. (2006)) 

obtain more accurate local solutions and has been implemented in popular finite element 

programs like ABAQUS®. In the analysis of the sub-model, different material properties 

or different constitutive relationship for the material can also be used.  

 

Uncoupled finite element models for structural analysis can be classified into three 

categories: micro scale models, macro scale models and structural scale models. In micro 

scale models, 3-D solid or shell finite elements are used to model the structural 
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components. Micro-scale behavior of these models is attributed to the constitutive 

material law which is derived from micro-mechanical study of the underlying micro-

structure. In macro scale models, 3-D solid or shell finite elements are also used to model 

the structural components. However, material properties for these models are obtained 

from phenomenological models as opposed to micro-mechanical models as in case of 

micro-scale models. Structural scale models, on the other hand, utilize a combination of 

beam-column and discrete spring finite elements to simulate the overall response of the 

structure. The success of structural scale models stems from their ability to adequately 

mimic, in a phenomenological manner, the local and global responses of importance to 

the physical processes being modeled. These types of models are used separately or in 

combination to economically capture the behavior of a structure at different length scales. 

Fig 2.10 shows various modeling techniques for structural analysis and how they span the 

various length scales. 

 

As an example of application to steel, Hao et al. (2004) proposed a UMM approach for 

calculating the fracture toughness and strength of high strength steels. QM calculations 

using density functional theory were carried out to calibrate empirical potentials. These 

potentials were then used in a quasi particle dynamics approach to scale the model up to 

micron size. Finally, properties of effective continuum were also obtained using 

averaging techniques. 

 

2.6 Summary 
 
This chapter summarized the various issues related to progressive collapse of structural 

systems. Current design requirements for prevention of progressive collapse in structures, 

both in public domain and government documents, were discussed. The mechanisms of 

ductile fracture processes in steels together with the available methods for simulation of 

these processes were also presented. In particular, models based on quantum mechanics, 

molecular dynamics, continuum mechanics and multi-scale methods were reviewed. 
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Figure 2.2 Murrah Federal building after April 19, 1995 attack 
 

 

 

Figure 2.3 World Trade Center 1 and 2 on 11th September 2001 
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Figure 2.6 Overview of analysis methods 
 

 

Figure 2.7 Coupled multi-scale methods 

 

Figure 2.8 Uncoupled multi-scale methods 
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Figure 2.9 Sub-modeling technique: Lower length scale model is driven by 
higher length scale model 

 
 

 

Figure 2.10 Overview of continuum mechanics based models 
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CHAPTER 3 

 
COLLAPSE ANALYSIS OF STEEL MOMENT 

FRAME SUB-ASSEMBLAGES 
CHAPTER 3. COLLAPSE ANALYSIS OF STEEL MOMENT FRAME SUB-ASSEMBLAGES 

 
 
 
3.1 Introduction 
 

There are various mechanisms that could contribute to the capacity of a typical steel 

moment frame system to resist collapse. These includes: a) Catenary action of beams and 

slabs allowing loads to span adjacent elements; b) frame action from the structural frame 

members around a damaged region; and c) support provided by nonstructural elements 

such as partitions and infills. Of the three mechanisms listed above, catenary action 

represents the last line of defense against collapse because it is activated only after large 

deformations have occurred. It is furthermore regarded by many practitioners, researchers 

and code developers as a mechanism that will inevitably develop during collapse.  

 

As shown in Fig. 3.1, the term catenary action refers to the ability of beams to resist 

vertical loads through formation of a catenary-like mechanism. At low vertical 

displacements catenary forces developed in the slab may be important; however, at large 

deformations the effect of the slab is relatively insignificant due to damage in the slab 

itself and loss of composite action. Thus, catenary action here implies the development of 

large enough deformations such that gravity and associated debris impact loads are 

mainly resisted by the vertical components of axial forces that develop in the beams, i.e. 

catenary forces. Under such conditions, the beams are unable to resist the applied loads 

through flexural action alone and seek supplemental resistance through formation of the 
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catenary configuration. The structural system must be ductile enough to allow the new 

configuration to be achieved while maintaining sufficient integrity to support the 

developing catenary forces. For example, the connection should not fail prematurely by 

either bolt failure or steel fracture and should have sufficient rotation capacity to reach 

the desired catenary mode of deformation.  

 

The formation of catenary action and its stability after formation have not yet been 

adequately studied and the goal of this chapter is to investigate this critical issue. For this 

purpose, computational finite element simulation is used to investigate a number of key 

design variables that influence formation of catenary action in special moment resisting 

frame sub-assemblages. As previously indicated in Chapter 1, steel moment resisting 

frames are chosen because the inherent toughness of earthquake resistant construction has 

led to the widespread perception that earthquake resistant design and detailing will also 

enhance collapse resistance. However, the effect of potentially large catenary forces on 

connection performance has not yet been adequately investigated.  

 

The micro-mechanical constitutive model for porous plastic materials proposed by 

Gurson (1977) is used for simulation of micro through structural-scale behavior of the 

sub-assemblages.  This is a coupled multi-scale simulation, in which micro-structural 

changes during ductile fracture process such as micro-void nucleation, growth and 

coalescence are taken into account via the micro-mechanical constitutive model. In 

particular, a history-like variable known as void volume fraction is introduced in the 

constitutive model which takes into account the disintegration of material at the micro-

scale due to nucleation, growth and coalescence of voids.  

 

In Section 3.2 a constitutive material model for modeling ductile fracture initiation and 

propagation is presented. In Section 3.3, finite element models of special steel moment 

frame sub-assemblages are presented and important modeling assumptions are discussed. 

Finally, results from the finite element simulations are discussed in Section 3.4 and 

important conclusions are presented in Section 3.5. 
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3.2 Micro-mechanical Constitutive Model for Steel 
 
A constitutive model is required to model the behavior of steel sub-assemblages up to 

failure. To this end, the constitutive the Gurson model for porous plasticity as modified 

by Tavergaard (1981) and Tavergaard et al. (1984) is used for modeling ductile fracture 

mechanism in structural steel. One of main benefits of using the Gurson model over 

regular J2-plasticity based models is that in the Gurson model, softening and failure 

occurs only in the tension regime, while in the compression regime, only plastic flow 

occurs, which is in agreement with the experimental results. The yield function for the 

Gurson model is given by Eq. 3.1. 
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Where  

݂: Void volume fraction 

௖݂: Critical void volume fraction 

ி݂: Failure void volume fraction  

The evolution equations for these internal variables are given by Eq. 3.3, 3.4, and 3.5. 
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where  

 ௣: Effective plastic strainߝ

 ே: Mean nucleation strainߝ

ܵே: Standard distribution of the normal distribution of plastic strain  

 

Failure in the Gurson model is assumed to occur when the void volume fraction reaches a 

failure void volume fraction. It is important to observe that failure of steel is inherently a 

softening process which manifests itself as a dropping load displacement curve in the 

tension test. The Gurson model exhibits softening behavior as the voids grow and new 

voids nucleate. It is a well established fact that the use of softening material in finite 

element gives results which have first order mesh dependency i.e. solution of finite 

element analysis does not converge no matter how small the mesh size is used. This is 

because of the loss of hyperbolicity (in the dynamic case) or ellipticity (in the static case) 

of the underlying partial differential equations. This pathological effect can be removed 

by introducing a length parameter in the constitutive model thus removing the first order 

mesh dependency. Some of the techniques which regularize this behavior include non-

local formulations, gradient based enhancements and visco-plastic formulations. A recent 

non-local formulation of the Gurson model was proposed by Reusch et al. (2003). 

Another way to solve the problem of mesh dependency is to utilize a material model that 

depends on the size of element. In the present study, the length scale parameter is 

introduced by making the material model mesh size dependent i.e. the mean nucleation 

strain, ߝே , is taken a function of element size and thus the problem of mesh dependency 

is thereby alleviated. 

 

The original Gurson model was applicable for 3-D situations, but in this study a 2-D 

variation of this model is used in conjunction with shell elements. This is material 

number 120 in LS-DYNA. Since triaxial stress states are not adequately represented by 

shell elements, the model parameters are not representative parameters obtained by 

material testing using notched and un-notched circular bars. Here, these parameters are 
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only used as fitting parameters which give the best match to experimental results and are 

determined by trial and error. 

 

3.2.1 Model Calibration 
 

Realistic simulation of the ductile fracture process using the Gurson model requires 

calibration of model parameters ݍଵ, ,ଶݍ ி݂, ௖݂ , ,ேߝ ܵே,  ௬ and the plastic hardening curve toߪ

experimental results. The value of parameters ݍଵ,  ଶ and ܵே are taken as 1.5, 1 and 0.1ݍ

respectively, which are same as those used by Tavergaard et al. (1984). The rest of the 

parameters are obtained for A572 Grade 50 steel by calibration to experimental results in 

Kanvinde (2004). The yield strength, ߪ௬, of the steel used by Kanvinde (2004) is 58 Ksi. 

The engineering stress strain curve is shown in Fig. 3.2. The hardening curve is shown in 

Fig. 3.3 and is obtained from the engineering stress-strain data by subtracting elastic 

strains from total strains to get plastic strains. The yield stress to ultimate stress (YUSR) 

ratio of this steel is 0.67. 

 

Kanvinde (2004) tested two different plate specimens to fracture under monotonic tensile 

loading. Figure 3.4 shows schematic views of the specimens. Here these specimens are 

designated as specimen-1 and specimen-2 (Fig. 3.4(a) and 3.4(b)). Finite element models 

of these specimens consist of 4-node quadrilateral shell elements with a four-point- 

through-thickness Lobatto integration scheme, which ensures that two integration points 

are on the surface of the shell elements. The shell element used is a fully integrated shell 

based on an assumed strain formulation to avoid locking and to enhance in-plane bending 

behavior. Additionally, it uses a local coordinate system which rotates with the material 

to account for rigid body motions and automatically satisfies frame invariance of the 

constitutive relations. Ductile fracture is modeled by removing elements from the 

analysis when the effective void volume fraction, ݂כ, exceeds the failure void volume 

fraction, ி݂, at any integration point. From the calibration, studies parameters ௖݂  and ி݂ 

are determined as 0.09 and 0.1 respectively, while the mean nucleation strain, ߝே, is taken 

as element size dependent.  
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Using a mean finite element size of 0.125 inch, the mean nucleation strain ߝே is 

determined to be 0.58 for specimen-1. Figure 3.5 shows the comparison between finite 

element and experimental results for this case. It can be observed that the finite element 

model closely simulates yielding, hardening and fracture of the plate. To validate the 

model, a finite element model of specimen-2 which consists of 3 × 0.375 inches plate 

with two holes of diameter 0.5 inches was created and analyzed. Figure 3.6 shows the 

comparison between finite element and experimental results for specimen-2. It can be 

again observed from Fig. 3.6 that the finite element model results are closely correlated to 

the experimental results. 

 

Since the analysis time step for explicit finite element analysis is element size dependent 

and decreases with element size, the smallest element size is taken as 0.5 inches in the 

simulations of the structural sub-assemblages to reduce the computational load to a 

manageable level. The nucleation strain for element size 0.5 inch is computed using 

calibrated results obtained for elements of size 0.125 inch. For this purpose, a rectangular 

plate of size 3 × 2 inches and thickness 0.375 inches is discretized using element of size 

0.125 inch. The coupon is then pulled in tension until it fails by fracture at a displacement 

of 0.65 inches. The same plate is again discretized using element of size 0.5 inch, and the 

value of nucleation strain is adjusted such that it again fails at a displacement of 0.65 

inches. Figure 3.7 shows results for the two cases. This analysis gives nucleation strain 

ேߝ ൌ 0.40 for element of size 0.5 inches. Calibrated values of material parameters for the 

Gurson model are summarized in Table 3.1.   

 

3.3 Finite Element Model (FEM) Development 
 

Detailed finite element analyses are carried out for the 1st, 5th and 7th story beam-column 

sub-assemblages of an eight story special moment resisting perimeter frame building 

system. Such systems are commonly used on the US West Coast. Figure 3.8 shows the 

design details of the 8 story prototype building used in the study. As shown in Fig 3.9, the 

system was designed with radius cut reduced beam sections (RBS) by Jin et al. (2005) 

according to provisions in FEMA 302 (1997), AISC-Seismic (1997), and FEMA-350 
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(2000). Building frames were designed for loads on standard office buildings located in a 

region near Los Angeles such that short period response acceleration parameter, Ss = 2.48 

g, and response acceleration parameter at one second period, S1 = 1.02 g, and site class = 

C. 

 

The sub-assemblage considered for analysis spans two interior bays of a typical perimeter 

moment frame. An inflection point is assumed at mid-story height and thus only half the 

length of the columns is modeled, with pin conditions assumed at their ends. The middle 

column is assumed to run the full story height, with its top end restrained against all 

motion except vertical displacement, which is prescribed. To account for the out-of-plane 

pulling effect that a transverse gravity beam might impose, the transverse beam is 

modeled and it is assumed pinned at its far end (Fig. 3.10). This beam represents a typical 

gravity system beam and is connected to the moment frame by a shear connection. 

Transverse beams in the gravity system are W21×55 and are the same for all the stories 

considered here. To further investigate the influence of out-of-plane action, other 

configurations in which the transverse beam is not modeled are also considered. In these 

models, the column member is shortened to a stub that protrudes just above the beams 

and the top of the column stub is only allowed to move downwards (Fig. 3.11).   

 

Jin and El-Tawil (2005) had used reduction in the reduced beam section region that 

ranged from 40% to 50% in their connections. In this study, however, the reduction is 

taken as 40 percent for the 3 sub-assemblages in order to minimize variables and promote 

clearer trends in the results. To study the influence of the reduced beam section on 

behavior, identical sub-assemblages are considered in which the connection regions are 

not radius cut, but have the full beam section instead. Although these non-RBS sub-

assemblages do not strictly satisfy seismic design criteria (e.g. they do not satisfy strong-

column-weak-beam criteria), they are intended to shed light – in a qualitative manner – 

on how the RBS detail influences connection response in comparison with a non-RBS 

detail. 
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Square cut shear tabs for these connections are designed per FEMA 350 requirements and 

are connected to the column flanges by complete joint penetration welds and to the beams 

through fillet welds. The shear tab welds as well as the complete joint penetration welds 

joining the beam and column flanges are modeled using rigid point to surface constraints. 

Since the heat affected zone (HAZ) near the welds can significantly alter local material 

properties resulting in a local reduction in ductility, the HAZ effect is considered by 

locally reducing the nucleation strain in the HAZ region for some of the analyses as 

described later on. 

 

Finite element models of the sub-assemblages consist of fully integrated shell elements. 

Two different material models are used as shown in Figure 3.12. Connection regions 

where fracture is likely to occur are assumed to follow the Gurson model. Other regions 

are modeled with a computationally less expensive piecewise linear J2 plasticity model. 

The hardening curve used for this model is the same as that used for the Gurson model. 

Failure in finite elements characterized by the Gurson model is assumed to occur when 

failure void volume fraction ி݂ is achieved. Finite elements that achieve this ratio are 

removed from the analysis thus allowing fracture initiation and propagation to be 

modeled. Prescribed displacements are imposed on the top of the center column such that 

it undergoes a vertical displacement of 100 inches in 2 sec. 

 

The developed finite element models are used to investigate the influence of the 

following parameters on connection catenary response: (1) out-of-plane pulling action 

imposed by the transverse beam; (2) reduced beam section versus no reduction in beam 

flange; (3) yield stress to ultimate stress (YUSR) ratio; (4) beam web connection detail; 

and (5) and reduction of ductility in the HAZ region. To facilitate referral to various 

configurations, beam-column models are designated as S-X-RBS-T. In this notation, X is 

the story number (1, 5 or 7), RBS indicates that the sub-assemblage has a reduced beam 

section (RBS), while T indicates that the transverse beam is present. For example, S-1-

RBS-T represents a 1st story sub-assemblage with reduced beam section and in which the 

transverse beam is modeled, while S-1 represents 1st story sub-assemblage without 

reduced beam section and without a transverse beam. 
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3.4 Model Limitations 
 
The simulation model, as described above, has a number of limitations. First, the model is 

deterministic, i.e. variability of material and geometric properties are not accounted for. 

Second, welds are modeled using rigid point to surface constraints, i.e. yielding and 

subsequent fracture is assumed to occur outside of the weld region. This assumption is 

deemed reasonable given the current stringent requirements on weld quality control. 

Third and perhaps most importantly, the Gurson model is used in conjunction with shell 

elements, which cannot capture triaxial effects. The Gurson model is utilized nevertheless 

because it represents steel material behavior in a convenient and logical manner, i.e. the 

model hardens in compression, represents the associated hardening and softening that 

occurs in tension and captures ductile fracture. Moreover, the influence of triaxiality on 

connection response is felt to be small because regions outside of the welds where failure 

will probably initiate (e.g. root of access hole, RBS flange, and shear tab) do not typically 

have high triaxial constraint. Another important simulation assumption is that the fracture 

process is ductile fracture propagation and there is no transition from ductile to inter-

granular fracture or ductile to cleavage fracture.     

 

3.5 Discussion of simulation results  
 

Explicit dynamic analyses of the above-described finite element models were conducted 

to investigate catenary action. Copious results were generated and the important results 

describing the overall global response of the sub-assemblages are shown in Fig 3.17. to 

Fig. 3.28 and are also discussed next. The behavior of the sub-assemblages is 

characterized by the following global performance indicators: failure load, P୊ୟ୧୪; failure 

displacement, Δ୊ୟ୧୪, where P୊ୟ୧୪ is the peak load on the top-load vs displacement curve 

and  Δ୊ୟ୧୪ is the corresponding displacement; total connection rotation, θ, computed from 

 Δ୊ୟ୧୪ divided by the column center-to-center distance, i.e. 30 ft. The total column 

rotation, θୡ, and beam end rotations, θୠଵ and θୠଶ, are measured at the beam plastic hinge 

locations as shown in Figure 3.13. The plastic components of θୡ, θୠଵ and θୠଵ, i.e. θୡ୮, 

θୠ୮ଵ, and  θୠ୮ଶ, respectively, which are important performance indicators are also 
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computed. Panel zone distortions at peak loads are small and are not computed. Table 3.2 

summarizes the pertinent parameters calculated from the simulation results.  

 

3.5.1 Inelastic Behavior and Failure Characteristics 

All of the sub-assemblages deformed in a ductile manner and developed substantial 

catenary forces prior to failure. The spread of inelasticity in the beams was concentrated 

in the plastic hinge regions, although the plastic moment capacity was not reached in 

some cases because of premature instability. Instability in RBS subassemblies was 

manifested through local buckling of the beam compression flanges and web in the RBS 

region. The magnitude of local bucking was smallest in the 1st floor beams and was most 

severe for 7th story beams. The local buckling was accompanied by lateral torsional 

buckling, which was small in the 1st story, moderate in the 5th story and severe in the 7th 

story subassemblies. These instabilities developed early in the loading regime when loads 

were transferred by flexure in the beams. The growth of local and global instabilities was 

arrested shortly after catenary action started to pick up. 

 

Local buckling in the beams was also observed in non-RBS sub-assemblages. However, 

unlike RBS subassemblies, there was insignificant lateral torsional buckling in these 

configurations. In all subassemblies, plastic hinges formed in the columns just above the 

panel zone region whereas little inelastic action was observed in the panel zones. 

 

Table 3.2 lists the force and deformation characteristics of all the sub-assemblages. 

Failure initiated in one of the middle connections in all specimens except the sub-

assemblages indicated in the table, where failure initiated in one of the exterior 

connections. In RBS sub-assemblages, ductile fracture first initiated at the shear tab 

interface with the column flange. Additional fracture occurred in the vicinity of the 

access hole then propagated through the web into the RBS flange, severing it at its 

narrowest point (Fig. 3.14). As in RBS connections, initial fracture in non-RBS sub-

assemblages first occurred at the shear tab interface with the column flange. Unlike RBS 

sub-assemblages, however, final failure occurred as a result of fracture in the beam flange 
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in near the column face and then propagating through the beam flange, completely 

severing it (Fig. 3.15). No fractures were observed in the transverse beam in all cases. 

 

3.5.2 Deformation Capacity and Catenary Action 

It is clear from Table 3.2 and Figures 3.17(a) to 3.28(a) that deeper beams are 

substantially less ductile than shallower beams. For example, θୠଶ ൌ 0.076-rad for S-1-

RBS, 0.122-rad for S-5-RBS and 0.171-rad for S-7-RBS. Another observation is that 

RBS subassemblages show somewhat more ductile response with inelasticity spreading 

in larger regions as compared to subassemblies without RBS where most of the inelastic 

action is confined in small regions near the beam ends. In addition, RBS subassemblies 

have higher load capacity. For example, S-1-RBS-T has a failure displacement and load 

capacity that is 30% and 10% greater than those for S-1-T, respectively. 

 

RBS subassemblies achieved plastic rotations that are much larger than the permitted 

plastic rotation of 0.035-rad in GSA (2003). The same can be said of the non-RBS 

connections, which achieved plastic rotations ranging from 0.053-rad to 0.144-rad 

compared to 0.020-rad permitted in GSA (2003). However, this apparently high ductility 

is quite sensitive to the yield-to-ultimate stress ratio and web connection detail as 

discussed later on. 

 

Figures 3.17(b) to 3.28(b) shows how the catenary forces developed versus displacement 

in sub-assemblages. Peak catenary forces are quite large, reaching 750 Kips, 584 Kips 

and 424 Kips for S-1-RBS-T, S-5-RBS-T and S-7-RBS-T configurations, respectively. 

The catenary forces developed are significantly larger than the peripheral tie force 

capacity required according to the UFC (2005) provisions, which is only 197 Kips for 

this case. 

 

3.5.3 Effect of Transverse Beam 

As shown in Table 3.2, the majority of sub-assemblages with a transverse beam did not 

have substantially different strength or ductility compared to corresponding 
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subassemblies without it. The greatest effect is observed when comparing S-7-RBS with 

S-7-RBS-T. In this case, the failure displacement and load capacity are increased by 8% 

and 14% respectively when the transverse beam is modeled. The presence of a transverse 

beam pulling the configuration out of plane promoted some additional lateral torsional 

buckling in the 7th story configuration compared to cases with no transverse beam. 

However, S-7-RBS-T was able to carry a higher load in spite of the increased buckling 

because of the participation of the transverse beam, which has increased influence in this 

case. 

 

3.5.4 Effect of YUSR, HAZ and Web Connection Detail  

The effect of the YUSR ratio was studied by modifying the hardening curves for the 

Gurson and linear piecewise plasticity models. The three different YUSR used in this 

study are 0.67, 0.85 and 0.97. The 0.67 ratio represents regular A572-Gr50 steel. The 

0.85 ratio corresponds to the maximum limit imposed on ASTM A992 steel, which is 

required for special moment resisting frames (AISC Seismic 2005). The 0.97 ratio 

corresponds to a reasonable maximum limit on dual certified Gr. 50 steel (Frank 1997). 

The assumed hardening curves are shown in Figure 3.29, where the yield strength is 

fixed, while the ultimate strength is varied to achieve the target YUSR.  

 

Figure 3.30 quantifies the effect of YUSR on the performance of S-1-RBS-T. It is clear 

from the figure that a high YUSR adversely influences both failure displacement and load 

capacity of the sub-assemblage and that the effect is substantial. For example, when 

YUSR = 0.85, the failure displacement and load capacity were 30% and 29% lower, 

respectively, than the corresponding values for the case where YUSR = 0.67.  

 

The influence of the HAZ in the beam flanges is studied in sub-assemblage S-1-RBS-T 

and S-1-T by reducing the ductility of the constitutive model in the HAZ. The inherent 

brittleness in the HAZ is represented by reducing the nucleation strain from 0.4 to 0.2 in a 

single row of finite elements in the beam flanges near the column face. This results in 

approximately a 50% reduction in the ductile fracture strain. Simulation results showed 

that the failure displacement and load capacity remain virtually unaltered for these cases, 
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and thus the local reduction in ductility within the HAZ does not appear to influence the 

global response of the sub-assemblages studied. 

 

The web connection detail seems to play an important role because fracture first initiates 

at the shear tab edge prior to propagating to the rest of the connection. Therefore, it was 

surmised that improving the web connection could likely improve the response of the 

sub-assemblage. To investigate this premise, two variations of configuration S-1-RBS-T 

were considered. In the first, the shear tab thickness was increased from 0.375 inches to 

1.0 inches, whereas in the second, the beam web was assumed to be connected to the 

column through full penetration groove welds. The results of both simulations are shown 

in Fig. 3.31 and Fig. 3.32 along with the response of the original configuration. In both 

cases, the stronger web connection shifted fracture initiation to the RBS region, resulting 

in a substantially stronger and more ductile connection. 

 

3.6 Practical Implications 
 

A number of conclusions with practical implications can be drawn from the simulation 

studies conducted. Analysis of the data shows that the out-of-plane pulling action 

imposed by a transverse beam does not significantly influence sub-assemblage structural 

behavior. The results suggest that it is conservative to conduct simulations and tests that 

do not model the out-of-plane pulling effect, which considerably simplifies testing and 

analysis.  

 

Another observation is that system ductility is adversely influenced by an increase in 

beam depth and an increase in the yield to ultimate strength ratio. This implies that 

designers should strive to use a larger number of smaller beam members rather than 

concentrate resistance in a few larger members, which is common practice in earthquake-

resistant construction. In addition, designers should specify ASTM A-992 steel (which 

has a specified maximum YUSR of 0.85) for collapse resistant construction rather than 

specifying generic steels which could have a detrimentally high YUSR. The simulation 

results further suggest that improving the beam web connection by either increasing the 
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shear tab thickness or directly welding the beam web to the column can better protect the 

beam-column interface by shifting ductile fracture initiation to the reduced flange region 

thereby making the connection stronger and more ductile.  

 

Together, the latter two conclusions could be construed to imply that the combined effect 

of a relatively high YUSR and a relatively weak shear tab could be detrimental to the 

ability of moment resisting connections to adequately develop catenary action. In 

particular, connections with bolted shear tabs and steels with YUSR > 0.85 could be 

vulnerable. Bolted shear tabs are substantially weaker than corresponding welded shear 

tabs because they are susceptible to bolt failure or net section fracture through the bolt 

holes. 

 

3.7 Summary and Conclusions  
 

In this chapter, computational simulation is used to investigate catenary action in moment 

resisting steel subassemblages. The numerical simulations employed a calibrated 

micromechanical constitutive model for steel that accounts for hardening, softening and 

ductile fracture behavior of steel. After mesh sensitivity studies and a validation exercise, 

the simulation model was used to investigate the catenary behavior of a number of steel 

subassemblies taken from a seismically designed special moment frame. Important 

parameters that influence behavior were identified and studied.      

 

The simulation results demonstrate the ductility of seismically designed special moment 

frame assemblies and their ability to deform in catenary mode. Simulation results also 

established that the out-of-plane pulling action induced by transverse beams has no 

adverse effect on system behavior, but that ductility and strength were adversely 

influenced by an increase in beam depth and an increase in the yield to ultimate strength 

ratio. It was also seen that subassemblies with reduced beam sections are somewhat 

stronger and more ductile than corresponding assemblies without RBS. Furthermore, the 

heat affected zone in beam flanges did not have a significant deleterious influence on 

system behavior while an increase in shear tab strength shifted the location of ductile 
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fracture resulting in better overall system behavior. The above conclusions were drawn 

from a limited number of simulations and therefore testing and additional detailed studies 

are needed to confirm and extrapolate them.  

 

The study presented in this chapter is focused on the capacity side of progressive collapse 

issue. A complete study of collapse issues requires an investigation of the demand side as 

well. The demand side of the progressive collapse issue is investigated in the next 

chapter, with an emphasis on the development of reliable and computationally tractable 

structural scale models that can be used by practicing engineers for collapse-resistant 

performance-based design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 

 

 ଵ 1.5 ܵே 0.1ݍ 

 ଶ 1 ி݂ 0.1ݍ

௖݂ 0.09 ߪ௬ 58 Ksi 

 ேߝ

Element Size(in) ߝே 

0.125 0.58 

0.5 0.40 

Table 3.1 Gurson model parameters 
 

 

Model 
Configuration 

 ࢒࢏ࢇࡲࡼ
(Kips) 

ઢ࢒࢏ࢇࡲ 
(in) 

 ࣂ
(Radians)

 ࢖ࢉࣂ
(Radians)

 ૚࢖࢈ࣂ
(Radians) 

 ૛࢖࢈ࣂ
(Radians) 

S-1-RBS-T 370 27.6 0.08 0.006 0.072 0.078 
S-5-RBS-T 356 47.6 0.13 0.039 0.083 0.121 
S-7-RBS-T 305 74.0 0.21 0.114 0.064 0.178 
S-1-RBS 366 29.5 0.08 0.006 0.070* 0.076 
S-5-RBS 340 46.9 0.13 0.036 0.085 0.122 
S-7-RBS 266 68.5 0.19 0.095 0.076 0.171 

S-1-T 335 22.8 0.06 0.007 0.049* 0.055 
S-5-T 319 40.2 0.11 0.033 0.064 0.097 
S-7-T 249 59.1 0.16 0.078 0.063 0.141 

S-1 327 22.4 0.06 0.006 0.047* 0.053 
S-5 307 39.4 0.11 0.034 0.062 0.096 
S-7 244 59.4 0.17 0.080 0.064 0.144 

*Failure occurred in exterior connection 

Table 3.2 Global connection performance parameters 
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Figure 3.1 Frame system responding to loss of interior column 

 
 
 

 
Figure 3.2 Engineering stress vs strain curve for A572 Grade 50 Steel 

Kanvinde (2004) 
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Figure 3.3 Hardening curve for A572 Grade 50 Steel 

 

 
Figure 3.4 Geometry of steel plates tested by Kanvinde (2004) 
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Figure 3.5 Comparison between FEM and experimental results for 

specimen-1 
 

 
Figure 3.6 Comparison between FEM and experimental results for 

specimen-2 
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Figure 3.9 Radius cut reduced beam section 
 
 
 
 

 

Figure 3.10 Sub-assemblage boundary conditions: Model with transverse 
beam. U: Displacements, R: Rotations 
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Figure 3.11 Sub-assemblage boundary conditions: Model without transverse 
beam. U: Displacements, R: Rotations 

 
 

 
Figure 3.12 Details of finite element mesh and material models in 

connection region 
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Figure 3.13 Global connection performance parameters (half of symmetric 

sub-assemblage shown) 
 
 

 

 

Figure 3.14 Typical failure mode in RBS configurations 
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Figure 3.15 Typical failure mode in non-RBS configurations 

 
 
 

 
Figure 3.16 Top View: Lateral torsional buckling in beams 
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(a) Top Force (b) Catenary Force 

(c) Moment at RBS, interior 
connection 

(d) Axial Force: Transverse Beam  

(e) Failure by fracture at interior 
connection 

 

 

 
Figure 3.17 Global response quantities: S-1-RBS-T 
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(a) Top Force (b) Catenary Force 

(c) Moment at RBS, interior 
connection 

(d) Axial Force: Transverse Beam 

(e) Failure by fracture at interior 
connection 

 

 
Figure 3.18 Global response quantities: S-5-RBS-T 
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(a) Top Force (b) Catenary Force 

(c) Moment at RBS, interior 
connection 

(d) Axial Force: Transverse Beam 

(e) Failure by fracture at interior 
connection 

 

 
Figure 3.19 Global response quantities: S-7-RBS-T 
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(a) Top Force (b) Catenary Force 

(c) Moment at a distance of 
ୢ
ଶ

 ሺd: depth of beamሻ from column 
face, interior connection 

(d) Axial Force: Transverse Beam  

(e) Fracture by failure at exterior 
connection 

 

 
Figure 3.20 Global response quantities: S-1-T 
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(a) Top Force (b) Catenary Force 

(c) Moment at a distance of 
ୢ
ଶ

 ሺd: depth of beamሻ from column 
face, interior connection 

(d) Axial Force: Transverse Beam  

(e) Fracture by failure at interior 
connection 

 

 
Figure 3.21 Global response quantities: S-5-T 
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(a) Top Force (b) Catenary Force 

(c) Moment at a distance of 
ୢ
ଶ

 ሺd: depth of beamሻ from column 
face, interior connection 

(d) Axial Force: Transverse Beam  

(e) Fracture by failure at interior 
connection 

 

 
Figure 3.22 Global response quantities: S-7-T 
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(a) Top Force (b) Catenary Force 

(c) Moment at RBS, interior 
connection 

(d) Fracture by failure at exterior 
connection 

 
 

Figure 3.23 Global response quantities: S-1-RBS 
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(a) Top Force (b) Catenary Force 

(c) Moment at RBS, interior 
connection 

(d) Fracture by failure at interior 
connection 

 
Figure 3.24 Global response quantities: S-5-RBS 
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(a) Top Force (b) Catenary Force 

(c) Moment at RBS, interior 
connection 

(d) Fracture by failure at interior 
connection 

 
Figure 3.25 Global response quantities: S-7-RBS 
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(a) Top Force (b) Catenary Force 

(c) Moment at a distance of 
ୢ
ଶ

 ሺd: depth of beamሻ from column 
face, interior connection 

(d) Fracture by failure at exterior 
connection 

 
Figure 3.26 Global response quantities: S-1 
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(a) Top Force (b) Catenary Force 

(c) Moment at a distance of 
ୢ
ଶ

 ሺd: depth of beamሻ from column 
face, interior connection 

(d) Fracture by failure at interior 
connection 

 
Figure 3.27 Global response quantities: S-5 
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(a) Top Force (b) Catenary Force 

(c) Moment at a distance of 
ୢ
ଶ

 ሺd: depth of beamሻ from column 
face, interior connection 

(d) Fracture by failure at interior 
connection 

 
Figure 3.28 Global response quantities: S-7 

 

 
Figure 3.29 Strain hardening curves for steels with different YUSR ratios 

YUSR=0.97
YUSR=0.85 YUSR=0.67 
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Figure 3.30 Effect of YUSR ratio on the performance of sub-assemblage 

 
Figure 3.31 Effect of connection detailing on the performance of sub-

assemblage 
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Figure 3.32 Effect of connection detailing on the performance of sub-

assemblage: Fracture modes 
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CHAPTER 4 

STRUCTURAL SCALE MODELS FOR 
PROGRESSIVE COLLAPSE ANALYSIS OF STEEL 

FRAMES 
CHAPTER 4. STRUCTURAL SCALE MODELS FOR PROGRESSIVE COLLAPSE ANALYSIS OF STEEL 

FRAMES 

 
 
 
4.1 Introduction 
 
The alternate path method (APM) advocated by GSA (2003) and UFC (2005) is 

frequently used to ensure that structural systems have adequate resistance to progressive 

collapse. When applied in conjunction with nonlinear-dynamic analysis, APM is widely 

viewed as a comprehensive method for analysis and design of a structural system against 

progressive collapse. Success of APM, however, depends on the ability of the underlying 

structural model to represent physical phenomena of interest with high fidelity. This 

chapter is concerned with the development of structural scale models which enable 

nonlinear progressive collapse analysis of steel structural systems in a computationally 

efficient manner. The developed structural scale models are then used in conjunction with 

the APM to investigate the ability of seismically designed steel frame systems to resist 

progressive collapse. 

 

The models developed in this study use a combination of beam-column finite elements 

and nonlinear spring elements to represent important physical processes, such as dynamic 

load redistribution and global buckling, at the structural scale. Micro-scale behavior such 

as fracture and local buckling, however, are accounted for by using the appropriate 

constitutive material properties that are calibrated to the micro-scale studies presented in 
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Chapter 3 and to available experimental results. Thus, the models developed herein fall in 

the category of uncoupled multi-scale models, wherein the structural scale models are 

calibrated to represents important physical processes at lower scales. 

 

Section 4.2 gives an overview of the various structural systems considered in this 

research work. The design details of prototype structural systems chosen for use in this 

work are presented in Section 4.3. Section 4.4 and 4.5 describes the proposed structural 

scale models employed for modeling the prototype structural systems. Section 4.6 gives a 

brief overview of continuum based beam/column finite element and details of the 

plasticity model used in this research. Calibration studies of the developed structural-

scale models are presented in Section 4.8. The simulation setup, and assumptions and 

limitations of the simulation model are discussed in Sections 4.9 and 4.10, respectively. 

Finally, the results from the finite element simulations are discussed in Section 4.11 and 

4.12, and important conclusions are presented in Section 4.13. 

 

4.2 Structural Systems and Modeling for collapse  
 
Intermediate moment frames (IMFs) and special moment resisting (SMFs) are commonly 

used structural steel systems for resisting seismic forces. These systems derive their 

lateral force resisting capacity from the beam to column joints which are designed as 

moment connections. IMFs are designed to withstand limited inelastic deformations 

when subjected to forces resulting from design earthquake motions. However, SMFs are 

designed to withstand significant inelastic deformations. Inelastic deformations under 

lateral seismic forces take place in specially designated regions known as “protected 

zones” or “plastic hinge zones”. 

 

Steel braced frames are also popular structural systems that are commonly used in 

regions of moderate to high seismic risk. Two important categories of braced systems 

include: concentrically braced frames (CBF) and eccentrically braced frames (EBF). In 

CBFs, the steel braces provide lateral strength and stiffness to the structural system and 

contribute to seismic energy dissipation by yielding in tension and buckling inelastically 
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in compression. In EBFs, the braces are designed to remain elastic during lateral loading, 

so that energy dissipation is achieved by inelastic deformations in designated regions 

termed shear links. 

 

The seismic behavior of IMFs, SMFs, CBFs and EBFs is fairly well understood as a 

result of extensive research conducted during the past three decades. However, their 

progressive collapse behavior, when critical members are lost, has not been previously 

investigated. In this chapter structural scale models are developed for modeling 

progressive collapse of these steel frames. 

 

Appropriate structural models must be used when the nonlinear version of APM is 

employed. In particular, the structural models must be able to adequately account for the 

formation of catenary action and the resulting interaction that occurs between axial 

tensile loads and moments in beam-column members as shown in Chapter 3. Moreover, 

models for steel moment frames must also be capable of representing the responses that 

influence beam-column and connection responses, such as local buckling at the beam-

column interface, global buckling and lateral torsional buckling, inelastic panel zone 

behavior, local flange yielding in reduced beam connections, and connection fracture. 

Additionally, for braced systems, the structural models must be able to adequately 

account for buckling and post buckling behavior of braces in EBF and SCBF, and 

inelastic behavior of shear links in EBF. 

 

The structural scale models presented in this chapter utilize a combination of beam-

column and discrete spring finite elements to simulate the overall response of the 

structure. The success of structural scale models stems from their ability to adequately 

mimic, in a phenomenological manner, the local and global responses of importance to 

the physical processes being modeled. Structural scale models are fairly simple to build 

and run, and are therefore well suited for use in a design office environment. As such, 

they have been successfully used in the past by many researchers to investigate system 

response to seismic loading, e.g. Jin et al. (2005) and Rassati et al. (2004). However, 
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there are only a few instances in the literature where they have been applied to collapse 

analysis, e.g. Gross et al. (1983), Isobe et al. (2003) and Kaewkulchai et al. (2004). 

 

4.3 PROTOTYPE STRUCTURES 
 
4.3.1 Moment resisting frames  
 
The National Institute of Standards and Technology (NIST) designed prototype steel 

framed buildings for the purpose of studying their response to an event which may cause 

progressive collapse (Liang et al., 2006). The buildings are 10-story office buildings with 

plan dimensions of 150 x 100 ft and utilize moment-resisting frames as the lateral load 

resisting system. The buildings are designed for: (1) Seismic Design Category C (Atlanta, 

Georgia), which results in IMFs as defined is the AISC Seismic Provisions (2002), and 

(2) Seismic Design Category D (Seattle, Washington), which results in SMFs.  The two 

seismic design categories address moderate and high seismic risk, and are considered to 

study the effectiveness of seismic design and detailing in resisting progressive collapse.  

 

The design loads on the buildings are determined based on the International Building 

Code (IBC) 2003. The design standards used in the design of members and their 

connections are those referenced in ASCE 7-02, including the AISC Load and Resistance 

Factor Design Specifications for Structural Steel Buildings (1999) and the AISC Seismic 

Provisions for Structural Steel Buildings (2002). For typical floors, the dead load consists 

of the self-weight of the slab of 46 psf and a super-imposed dead load of 30 psf; while the 

design live load is assumed to be 100 psf.  For the roof, the self-weight of the slab is 46 

psf, the super-imposed dead load is 10 psf; and the design live load is 20 psf.  The 

reduction in live loads is based on IBC 1607.9.1. 

 

The building structural system is comprised of moment frames and a gravity system. The 

design of gravity system is the same for the IMF and SMF buildings. Beams and columns 

in the gravity system are connected through shear (S) connections, which are comprised 

of single plate, shear-tab connections that are fillet welded to the column and bolted using 
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⅞ inch A325 high strength bolts to ⅜ in A36 shear tabs. The IMF building employs 

welded unreinforced flange – bolted web (WUF-B) moment resisting connections, while 

the SMF building employs reduced beam section (RBS) connections with bolted webs. 

To facilitate the modeling exercise, all moment resisting connections are assumed to be 

welded instead of bolted. A992 structural steel (Fy = 50 ksi) is used for all beams and 

columns. Furthermore, a 50 percent reduction is assumed in all RBS connections. Plan 

views of the buildings are shown in Fig. 4.1 and 4.2, while the elevation of the East-West 

frames considered in this research are shown in Fig. 4.3 and 4.4. The East-West frames 

are chosen over the North-South perimeter frames based on the results of Liang et al. 

(2006) that showed that the former are more vulnerable to collapse as a result of their 

longer spans. 

 

4.3.2 Braced frames  
 
The National Institute of Standards and Technology (NIST) also designed prototype 

braced steel framed buildings for the purpose of studying their response to an event 

which may cause progressive collapse (Ghosh, 2006). The buildings are 10-story office 

buildings with plan dimensions of 150 × 150 ft and utilize braced frames as the lateral 

load resisting system. The buildings are designed for: (1) Seismic Design Category C 

(Atlanta, Georgia), which results in SCBFs as defined is the American Institute of Steel 

Construction (AISC) Seismic Provisions (2005), and (2) Seismic Design Category D 

(Seattle, Washington), which results in EBFs. The two seismic design categories address 

moderate and high seismic risk and are considered to study whether more stringent 

seismic detailing improves braced frame resistance to progressive collapse. The plan 

views of the buildings are shown in Fig. 4.5 and 4.6, while the East-West (E-W) frames, 

which are selected for the collapse study, are shown in Fig. 4.7 and 4.8. 

 

The design loads on the buildings are determined based on the American Society of Civil 

Engineers (ASCE) 7-05 Minimum Design Loads for Buildings and other Structures. The 

material and design standards used in the design of members and their connections are 

those referenced in International Building Code (IBC) 2006,  Steel Construction Manual 
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(13th Edition), ANSI/AISC 360-05 Specifications for Structural Steel Buildings (2005) 

and ANSI/AISC 341-05 Seismic Provisions for Structural Steel Buildings (2005). For 

typical floors, the dead load consists of the self-weight of the slab of 46 psf and a super-

imposed dead load of 30 psf; while the design live load is assumed to be 100 psf.  For the 

roof, the self-weight of the slab is 46 psf, the super-imposed dead load is 10 psf; and the 

design live load is 20 psf.  The reduction in live loads is based on ASCE 7-05 Sec. 4.8.1. 

 

The building structural system is comprised of braced frames and a gravity system. The 

design of the gravity system in the E-W frames is the same for both the SCBF and EBF 

buildings. Beams and columns in the gravity system are connected through shear (S) 

connections, which are comprised of single plate, shear-tab connections that are fillet 

welded to the column and bolted to the beam web using ⅞ inch A325-N high strength 

bolts to ⅜ in A36 shear tabs. 

 

The braces in both buildings are square, seismically compact, Hollow Steel Sections 

(HSS). ASTM A500 Grade B steel (Fy = 46 ksi) is used for the braces, while A992 

structural steel (Fy = 50 ksi) is used for all beams and columns. The shear links in the 

EBFs are proportioned according to AISC seismic provisions (ANSI/AISC 341-05) such 

that the inelastic response is dominated by shear yielding, whereas, beams, columns and 

braces are proportioned to behave elastically. Beam-to-column connections away from 

the links are fully restrained welded moment connections.  

 

The original design in Ghosh (2006) specifies single gusset plates for the brace-to-

beam/column connections. Connection of this sort will likely cause the braces to buckle 

out of plane, rather than in plane, forming three plastic hinges, one in the center of the 

brace member and one at each of the two end gusset plates. According to the AISC 

seismic provisions (ANSI/AISC 341-05), the use of cross gusset plates, which are 

essentially gusset plates reinforced by transverse plates, forces the plastic hinges to form 

in the braces and not in the gusset plates, thereby improving behavior and energy 

absorption capacity. Furthermore, since cross plates remain elastic during loading, there 

is no benefit in explicitly modeling their behavior, which facilitates the simulation 
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exercise. Therefore, cross gusset plates are assumed to replace the original single gusset 

plates for the purposes of this research. 

 

4.4 Modeling of steel frame components (IMFs and SMFs) 
 
4.4.1 Moment and shear connection models 
 
The models shown in Fig. 4.9 and 4.10 represent the most important components 

contributing to inelastic connection behavior in both shear (S-connection) and moment 

resisting steel connections, respectively. In particular, the models represent transfer of 

forces at the beam-column interface as well as panel zone behavior. 

 

The S-connection represents the commonly used single plate shear tab connection for 

joining gravity floor beams and girders. In the proposed S-connection model (Fig. 4.11), 

connection resistance is modeled by spring A, beam B, and spring C, which represent the 

binding effect, bolt/shear tab interaction, and concrete slab behavior, respectively. 

Binding occurs when the top or bottom of the beam bears against the column flange. 

Therefore Spring A is essentially a contact condition that prevents the beam from 

penetrating the column flange. Spring C has no resistance in tension and can crush in 

compression when the slab reaches a given strain. Connection element B is a beam 

element with integration points that correspond to individual bolts. The element 

formulation recognizes the interaction between shear and flexural effects through a J2 

plasticity model that was implemented in LS-DYNA (Hallquist, 2006) as a user defined 

model described in Section 4.7. Each integration point is characterized by a relationship 

that represents nonlinear bolt behavior up to failure. The size of the force transfer region, 

݈௧, is taken as the distance between the column flange and bolt line, typically 2.5 inches.  

 

The panel zone in both shear and moment connections are modeled using a representation 

that enforces pure shear deformation (Fig. 4.11(a)). This is consistent with past test 

results of steel sub-assemblages, where it was observed that the shear stress within the 

panel is uniformly distributed throughout the column web and that the panel zone region 
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deforms predominantly in pure shear.  As shown in Fig. 4.11(a), the panel zone model is 

comprised of 4 rigid bars pinned together at their ends to permit the desired deformation 

to occur. The stiffness and strength of the panel zone is provided by a diagonal spring 

joining opposite corners of the panel zone. Stiffness of the panel zone spring (ܭ௣௭) is 

given by Eq. 4.1, while spring strength (ܨ௣௭) is derived from the AISC - Steel 

Construction Manual (2006) recommendations and is given by Eq. (4.2).  

௉௓ܭ  ൌ
൫݀௖ܩ െ ௣௭ݐ௖௙൯ݐ

൫݀௕ െ ௕௙൯ݐ cosଶ ߠ
 (4.1)

௉௓ܨ  ൌ
௣௭ݐ௬݀௖ܨ0.6

cos ߠ ቆ1 ൅
3ܾ௖௙ݐ௖௙

ଶ

݀௕ܾ௖ݐ௣௭
ቇ (4.2)

Where: ܩ: Shear modulus of steel (11150 ksi), ܨ௬: Yield strength of steel (50 ksi), ݐ௣௭: 

Thickness of panel zone, ݀௕: Depth of beam, ݀௖: Depth of column, ݐ௕௙: Thickness of 

beam flange, and ݐ௖௙: Thickness of column flange. 

 

4.4.2 Beam/Column model 
 
Beams and column members outside the transfer area are represented using a Hughes-Liu 

beam-column element formulation (Hallquist, 2006). This fiber formulation samples 

inelastic behavior at one point along the axis of the element and at multiple points across 

the cross-section. The location of integration points in a typical cross section is shown in 

Fig. 4.13. This formulation is chosen because it is incrementally objective i.e. rigid body 

rotations do not generate strains, and thus allows for the treatment of finite strains. The 

radius cut reduced beam sections in SMF connections are modeled with a beam element 

of length equal to that of the RBS region but with cross section properties corresponding 

to that of  the minimum cross section in the reduced section. 

 

The proposed model is capable of representing local behavior such as local buckling and 

fracture by carefully tailoring the stress-strain response at each integration point, as will 

be described later on in the chapter. The proposed model is also capable of capturing the 

interaction between moments and axial catenary loads that commonly occur during 

progressive collapse analysis. Models of the type described above have been successfully 

utilized in the past by many researchers, although most of their application has been for 
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flexure coupled with axial compressive load, rather than flexure coupled with tensile 

load. 

 

4.5 Modeling of steel frame components (EBFs and SCBFs) 
 
The braced frames considered herein are comprised of a variety of components, which 

are modeled separately. Following is a description of how each component is modeled.  

 

Fully-restrained beam-to-column connections: are modeled by rigidly attaching beams 

and columns to the connection region.  

 

Brace-to-beam connections: are not explicitly modeled. As previously discussed, their 

response is expected to be elastic if they are assumed to be of the cross gusset plate type.  

 

Panel zones: are not explicitly modeled. Finite element analyses of sub-assemblages with 

moment connections in Chapter 3 and APM studies of IMFs and SMFs shows that the 

panel zone region behaves elastically under collapse conditions. Thus, to facilitate the 

modeling effort the finite size of the panel zone is also not taken into account for these 

frames.   

 

Single plate beam-to-column shear connections: are modeled in a similar fashion as for 

IMF and SMF frames. 

 

Shear links: are represented as shown in Fig. 4.12(a). The model employs a nonlinear 

spring AC in Fig. 4.12(b), and 4 bars pinned together at their ends to permit the desired 

shear-flexural deformation to occur. Two of the bars are rigid (AB and CD in Fig. 

4.12(b)) and the other two are elastic (AD and CB in Fig. 4.12(b)). The shear stiffness 

and strength of the link is provided by spring AC. The flexural and axial stiffness of the 

sub-assemblage is controlled by the two elastic bars, AD and BC, which are assumed to 

have the stiffness properties of the beam flange. It is expected that the flanges will remain 

axially elastic even when the shear link behaves in an inelastic manner, since inelastic 
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behavior is dominated by shear yielding in the web. The elastic stiffness of spring AC in 

Fig. 4.12(b) is computed by further exploiting the assumption that the panel deforms in 

pure shear, which is a reasonable assumption that has been commonly observed in shear 

link tests. By using analogy to steel panel zones, which also deform in pure shear, the 

elastic stiffness, ܭௌ௅, and strength, ܨௌ௅, of the shear link spring AC are therefore given by 

Eq. 4.3 and 4.4, which are based on the AISC - Steel Construction Manual (2006) 

recommendations for panel zones. The post-yield stiffness is assumed to be 1.5 % of the 

initial elastic stiffness and the failure rotation of the shear link spring is assumed to be 

0.15 rad as recommended in the Federal Emergency Management Agency (FEMA) 356 

(2000).  

ௌ௅ܭ  ൌ
൫݀௕ܩ െ ௪ݐ௙൯ݐ

ߠଶݏ݋ܿܮ  (4.3)

ௌ௅ܨ  ൌ
௬൫݀௕ܨ0.6 െ ௪ݐ௙൯ݐ

cos ߠ ቆ1 ൅
3 ௙ܾݐ௙

ଶ

൫݀௕ܮ െ ௪ݐ௙൯ݐ
ቇ (4.4)

Where: ܩ: Shear modulus of steel (11150 ksi), ܨ௬: Yield strength of steel (50 ksi), ܮ: 

Length of shear link, ݀௕: Depth of beam, ݐ௪: Thickness of beam web, ݐ௙: Thickness of 

beam flange, ௙ܾ: Width of beam flange and ߠ: Angle between the spring AC and member 

AB as shown in Fig. 4.12(b).  

 

Beams, columns and brace members: are represented by beam-columns finite elements 

as in case of IMFs and SMFs. The location of integration points in a typical element is 

shown in Fig. 4.13. To capture buckling and post buckling response, braces are modeled 

with an initial imperfection as shown in Fig. 4.14. Parametric studies showed that the 

magnitude of the imperfection controls the brace buckling strength but that the post 

buckling response is not dependent upon the imperfection. The imperfection size is 

assumed to be ܮ௕/250 in this research, where ܮ௕ is the length of the member. This value 

is deemed representative of typical imperfections present in a member due to production 

and erection processes. 
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4.6 Kinematics of Continuum Based Beam Element 
 
The Hughes-Liu beam finite element used in this work is derived from a continuum solid 

element by imposing appropriate kinematic and kinetic constraint as discussed next.  

 

4.6.1 Geometry 
 
The initial geometry of a typical beam element (Fig. 4.15) is defined by the following 

relations: 

 ࢞ሺߦ, ,ߟ ሻߞ ൌ ഥ࢞ሺߦ, ,ߟ ሻߞ ൅ ,ߦሺࢄ ,ߟ ሻ (4.5)ߞ

,ߦሺࢄ  ,ߟ ሻߞ ൌ ,ߦఎሺࢄ ሻߟ ൅ ,ߦ఍ሺࢄ ሻ (4.6)ߞ

 ഥ࢞ሺߦ, ,ߟ ሻߞ ൌ ෍ ௔ܰሺߦሻഥ࢞௔

௡೐೙

௔ୀଵ

 (4.7)

ఎࢄ  ൌ ෍ ௔ܰሺߦሻࢄఎ௔ሺߟሻ
௡೐೙

௔ୀଵ

 (4.8)

఍ࢄ  ൌ ෍ ௔ܰሺߦሻࢄ఍௔ሺߞሻ
௡೐೙

௔ୀଵ

 (4.9)

ఎ௔ࢄ  ൌ
ฮ࢞ఎ௔

ା െ ࢞ఎ௔
ି ฮ

2 ෡ఎ௔ࢄߟ ሺno sumሻ (4.10)

఍௔ࢄ  ൌ
ฮ࢞఍௔

ା െ ࢞఍௔
ି ฮ

2 ෡఍௔ሺnoࢄߞ sumሻ (4.11)

In Eq. 4.5 to 4.11, ࢞ denotes the position vector of a generic point on the beam; ഥ࢞ is the 

position of a vector point on the reference line; ࢄ is a position vector based at a point in 

the reference surface which defines the “fiber direction” through the point; ഥ࢞ࢇ is the 

position vector of the nodal point ܽ; ௔ܰ denotes a one dimensional shape function 

associated with node ܽ; ݊௘௡ is the number of element nodes (two in this case); ࢄ෡ఎ௔ and 

 ෡఍௔ are the unit vectors emanating from node ܽ in two fiber directions defined by linesࢄ

for ߞ ൌ 0 and ߟ ൌ 0 respectively.  These equations represent a smooth mapping of a bi-

unit cube into the physical beam domain. The lines of constant ߦ are called fibers and the 

unit vectors along fibers are called directors. Thus ࢄ෡ఎ௔  and ࢄ෡఍௔  are directors. The lines 

of constant ߞ or constant ߟ are called laminae. In the above mapping the reference line is 

defined by ߞ ൌ ߟ ൌ 0. 
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In describing beam the geometry, ߦ determines the location along the axis of the beam 

and the coordinate pair ሺߟ, -ሻ defines a point on the cross-section of the beam. The 8ߞ

node brick geometry (Fig. 4.15) is degenerated into 2-node beam geometry by using the 

Eq. 4.5 to 4.11. Orthogonal inextensible fibers (Fig. 4.16) are defined at each node for 

treating the rotational degrees of freedom. 

 

4.6.2 Kinematics 
 
The kinematics of the beam element is defined by invoking the isoparametric hypotheses, 

i.e., the same expressions are used for kinematics as well as for the geometry, with 

displacement variables in place of coordinate variables. The isoparametric assumption 

leads to the following relations: 

 ࢛ሺߦ, ,ߟ ሻߞ ൌ ഥ࢛ሺߦ, ,ߟ ሻߞ ൅ ,ߦሺࢁ ,ߟ ሻ (4.12)ߞ

,ߦሺࢁ  ,ߟ ሻߞ ൌ ,ߦఎሺࢁ ሻߟ ൅ ,ߦ఍ሺࢁ ሻ (4.13)ߞ

 ഥ࢛ሺߦ, ,ߟ ሻߞ ൌ ෍ ௔ܰሺߦሻഥ࢛௔

௡೐೙

௔ୀଵ

 (4.14)

,ߦఎሺࢁ  ሻߟ ൌ ෍ ௔ܰሺߦሻࢁఎ௔ሺߟሻ
௡೐೙

௔ୀଵ

 (4.15)

,ߦ఍ሺࢁ  ሻߞ ൌ ෍ ௔ܰሺߦሻࢁ఍௔ሺߞሻ
௡೐೙

௔ୀଵ

 (4.16)

where ࢛ is the displacement of the generic point; ഥ࢛ is the displacement of the point on the 

reference line; and ࢁ is the fiber displacement. The fibers are assumed to be inextensible 

and therefore they can rotate but cannot stretch or contract. To describe the current 

deformed configuration with respect to undeformed reference configuration, the 

following representation is introduced: 

 ࢟ ൌ ഥ࢟ ൅ (4.17) ࢅ

ࢅ  ൌ ఎ௔ࢅ ൅ ఍௔ (4.18)ࢅ

 ഥ࢟ ൌ ഥ࢞ ൅ ഥ࢛ (4.19)

 ഥ࢟௔ ൌ ഥ࢞௔ ൅ ഥ࢛௔ (4.20)

ࢅ  ൌ ࢄ ൅ (4.21) ࢁ
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௔ࢅ  ൌ ௔ࢄ ൅ ௔ (4.22)ࢁ

ఎ௔ࢅ  ൌ ఎ௔ࢄ ൅ ఎ௔ࢁ and ෡ఎ௔ࢅ ൌ ෡ఎ௔ࢄ ൅ ෡ఎ௔ (4.23)ࢁ

఍௔ࢅ  ൌ ఍௔ࢄ ൅ ఍௔ࢁ and ෡఍௔ࢅ ൌ ෡఍௔ࢄ ൅ ෡఍௔ (4.24)ࢁ

where ࢟ is denotes the position vector of a generic point on the beam on the current 

deformed configuration; ഥ࢟ is the position of a vector point on the reference line in the 

deformed configuration; ࢅ is a position vector based at a point in the reference surface 

which defines the “fiber direction” through the point in the deformed configuration; ഥ࢟ࢇ is 

the position vector of the nodal point ܽ in the deformed configuration; ࢅ෡ఎ௔ and ࢅ෡఍௔ are 

the unit vectors emanating from node ܽ in two fiber directions defined by lines for ߞ ൌ 0 

and ߟ ൌ 0 respectively in the deformed configuration.   

 

For beam elements, the known quantities are the displacement degrees of freedom 

൫࢛௔ ؠ ሺݑ௫௔, ,௬௔ݑ  ௭௔ሻ൯ at nodal points on the reference surface obtained from theݑ

translational equation of motion and rotational quantities ሺߠ ؠ ሺߠଵ, ,ଶߠ  ଷሻሻ at each nodeߠ

obtained from the rotational equation of motion. The kinematic relationships are 

completed by specifying the relationship between nodal rotation ࣂ and fiber 

displacement ࢁ. In incremental form, the linearized relationships between the 

incremental components Δ ෡ܷఎ௔೔ and Δ ෡ܷ఍௔೔ the incremental rotations are given by: 

 ൦
Δ ෡ܷఎ௔భ

Δ ෡ܷఎ௔మ

Δ ෡ܷఎ௔య

൪ ൌ ൦
0 ෠ܻఎ௔య െ ෠ܻఎ௔మ

െ ෠ܻఎ௔య 0 ෠ܻఎ௔భ

෠ܻఎ௔మ െ ෠ܻఎ௔భ 0
൪ ൥

ଵߠ∆
ଶߠ∆
ଷߠ∆

൩ (4.25)

 ൦
Δ ෡ܷ఍௔భ

Δ ෡ܷ఍௔మ

Δ ෡ܷ఍௔య

൪ ൌ ൦
0 ෠ܻ఍௔య െ ෠ܻ఍௔మ

െ ෠ܻ఍௔య 0 ෠ܻ఍௔భ

෠ܻ఍௔మ െ ෠ܻ఍௔భ 0
൪ ൥

ଵߠ∆
ଶߠ∆
ଷߠ∆

൩ (4.26)

Equations 4.25 and 4.26 are used to transforms the incremental fiber tip displacements to 

rotational increments in the equation of motions. Finally, the directors are updated using 

finite rotations expression as follows: 

෡௡ାଵࢅ  ൌ ෡௡ (4.27)ࢅሻࣂ∆ሺࡾ

ሻࣂ∆ሺࡾ  ൌ exp൫ષሺ∆ࣂሻ൯ ؝ ෍
ષሺ∆ࣂሻ

݊!

ஶ

௡ୀଵ

 (4.28)
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 ષሺ∆ࣂሻ ൌ ሻࣂ∆ሺݓ݁݇ݏ ൌ ൥
0 െ∆ߠଷ ଶߠ∆

ଷߠ∆ 0 െ∆ߠଵ
െ∆ߠଶ ଵߠ∆ 0

൩ (4.29)

Second order update is used by including quadratic terms of Eq. 4.28, which results in the 

following relations (Belytschko 2000): 

ሻࣂ∆ሺࡾ  ൌ ࡵ ൅
4

4 ൅ ԡ∆ࣂԡଶ ሺષሺ∆ࣂሻ ൅ ષଶሺ∆ࣂሻሻ (4.30)

 ԡ∆ࣂԡ ൌ ට∆ߠଵ
ଶ ൅ ଶߠ∆

ଶ ൅ ଷߠ∆
ଶ  (4.31)

 

4.6.3 Lamina Coordinate System (LCS) 
 
For enforcing the zero stress normal stress conditions transverse to the axis of the beam, a 

Cartesian reference frame known as lamina system is constructed. This lamina basis 

deforms rigidly with the element as the element deforms. Zero normal stress conditions 

are enforced in the lamina system, i.e., ߪଶଶ
௟ ൌ ଷଷߪ

௟ ൌ 0. The lamina basis vectors are 

defined as follows: 

ଵࢋ 
௟ ൌ

ഥ࢟ଶ െ ഥ࢟ଵ
ԡഥ࢟ଶ െ ഥ࢟ଵԡ (4.32)

Ԣଶࢋ 
௟ ൌ

෡,ఎଵࢅ ൅ ෡,ఎଶࢅ

ฮࢅ෡,ఎଵ ൅ ෡,ఎଶฮࢅ
 (4.33)

ଷࢋ 
௟ ൌ ଵࢋ

௟ ൈ Ԣଶࢋ
௟  (4.34)

ଶࢋ 
௟ ൌ ଷࢋ

௟ ൈ ଵࢋ
௟  (4.35)

The transformation matrix ࢗ ൌ ሾݍ௜௝ሿ from global basis ሼࢋଵ, ,ଶࢋ  ଷሽ to lamina basis systemࢋ

is given by: ݍ௜௝ ൌ ௜ࢋ
௟.  ௝ࢋ

 

4.7 User defined material model for beam elements 
 
A J2 plasticity model is implemented for beam elements in LS-DYNA to model the 

inelastic response and failure of beam elements. Important steps that are used to compute 

the stresses in beam elements are presented in this section. In a typical time step, the 

configuration of the beam at step ݊ ൅ 1 is written as the function of the configuration at 

step ݊ and the step length Δݐ, i.e. 

 ࢟௡ାଵ ൌ ࢟௡ାଵሺ࢟௡, Δݐሻ (4.36)
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The displacement increment over the time step is given by: 

 Δ࢛ ൌ ࢟௡ାଵ െ ࢟௡ (4.37)

The strain and spin increments are calculated from the incremental displacement gradient 

as follows: 

ࡳ  ൌ
߲Δ࢛
߲࢟௡ାଵ (4.38)

where ࢟௡ାଵ is the current configuration. Now the incremental strain ሺΔࢿሻ and spin ሺΔ࣓ሻ 

tensors are obtained as follows: 

 Δࢿ ൌ
1
2 ሺࡳ ൅ ሻ (4.39)்ࡳ

 Δ࣓ ൌ
1
2 ሺࡳ െ ሻ (4.40)்ࡳ

 

With the assumption of hypoelastic–plastic material, an update based on the Jaumann 

stress rate is used and the stress update in the global system is given by: 

 ࣌௡ାଵ ൌ .ࡽ ࣌௡. ்ࡽ ൅ ΔݐΔ࣌௃ (4.41)

where ࡽ ൌ ࡵ ൅ ሺࡵ െ Δ࣓ሻିଵΔ࣓. Since for explicit analysis time increments are small, the 

following approximation is made in the formulation of Eq. 4.41: 

ࡽ  ൌ ࡵ ൅ ሺࡵ ൅ Δ࣓ ൅ Δ࣓૛ ൅ ڮ ሻΔ࣓ ൎ ࡵ ൅ Δ࣓ (4.42)

 ࣌௡ାଵ ൎ ࣌௡. Δ࣓ ൅ Δ࣓. ࣌௡ ൅ ΔݐΔ࣌௃ (4.43)

 ࣌௡ାଵ ൌ ࣌௃௡ ൅ ΔݐΔ࣌௃ (4.44)

where ࣌௃௡ ൌ ࣌௡. Δ࣓ ൅ Δ࣓. ࣌௡. The constitutive relationships are written in the lamina 

coordinate system. Thus, the stress and strains are transformed to the lamina coordinate 

system using transformation matrix ࢗ. The constitutive relationship in the lamina 

coordinate system is given as follows: 

 ΔݐΔ࣌௟௃ ൌ :࡯ Δࢿ௟௘ (4.45)

where ࡯ is the elasticity tensor for homogeneous, isotropic material;  Δࢿ௟௘ is the elastic 

component of Δࢿ௟, and Δࢿ௟௣ is the plastic component of Δࢿ௟, such that: 

 Δࢿ௟ ൌ Δࢿ௟௘ ൅ Δࢿ௟௣ (4.46)

In a user defined material, the objective is to determine the updated stress ࣌௟ሺ௡ାଵሻ in the 

lamina coordinate systems, given the stress, strains and history variable at step "݊" in the 

lamina system. The local to global transformations and Jaumann stress update is handled 

internally in LS-DYNA. 
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4.7.1 J2 plasticity for beam elements   
In this section the formulation of the J2 plasticity model for beam elements is presented. 

Typically, the constitutive update is carried out in LCS and thus all the stress and strain 

quantities are in the local LCS. The yield function in the J2 plasticity model is given by 

Eq. 4.47: 

 ߶ሺ࣌, ௣ሻߞ ൌ ଶܬ െ ଵ
ଷ

௣ሻߙ௣ሺߞ   (4.47)

where ܬଶ ൌ ଵ
ଶ

࢙: ࢙ and ࢙ ൌ :ௗ௘௩ࡼ ࣌ is the deviatoric component of the Cauchy stress 

tensor, ߞ௣ ؠ  ௣ is the internal variable. Assumingߙ ௣ሻ is the hardening variable andߙ௣ሺߞ

associated flow conditions, the rate equations for plastic strain, ࢿሶ ௣, and internal variable, 

ሶߙ ௣, are given by Eq. 4.48 and 4.49. 

ሶࢿ  ௣ ൌ ߛ
߲߶ሺ࣌, ௣ሻߞ

߲࣌ ൌ (4.48) ࢙ߛ

ሶߙ  ௣ ൌ െ ߛ
߲߶ሺ࣌, ௣ሻߞ

௣ߞ߲ ൌ
1
3 (4.49) ߛ

where ߛ is the consistency parameter. The plasticity model is completed by specifying the 

Kuhn-Tucker complementarity conditions (Eq. 4.50) and consistency condition (Eq. 

4.51) as follows: 

ߛ  ൒ 0, ߶ሺ࣌, ௣ሻߞ ൑ 0, ,ሺ࣌߶ߛ ௣ሻߞ ൌ 0  (4.50)

ሶ߶ߛ  ሺ࣌, ௣ሻߞ ൌ 0 (4.51)

 

For beam elements, plane stress conditions are imposed in the LCS which results in:  

ଵଷߪ  ൌ ଶଶߪ ൌ ଶଷߪ ൌ ଷଵߪ ൌ ଷଶߪ ൌ ଷଷߪ ൌ 0 (4.52)

With this assumption the stress tensor can be expressed as follows: 

 ࣌ ൌ ൥
ଵଵߪ ଵଶߪ ଵଷߪ
ଶଵߪ ଶଶߪ ଶଷߪ
ଷଵߪ ଷଶߪ ଷଷߪ

൩ ൌ ൥
ଵଵߪ ଵଶߪ 0
ଶଵߪ 0 0
0 0 0

൩ (4.53)

The deviatoric component of stress tensor is given by: 

 ࢙ ൌ ࣌ െ ࡵ݌ ൌ ൥
ଵଵݏ ଵଶݏ ଵଷݏ
ଶଵݏ ଶଶݏ ଶଷݏ
ଷଵݏ ଷଶݏ ଷଷݏ

൩ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
2
3 ଵଵߪ ଵଶߪ 0

ଶଵߪ െ
1
3 ଵଵߪ 0

0 0 െ
1
3 ےଵଵߪ

ۑ
ۑ
ۑ
ۑ
ې

 (4.54)
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where ݌ ൌ ࢒࢕࢜ࡼ  ଵଵ/3. Letߪ ൌ ଵ
ଷ

૚۪૚ and ࢒࢕࢜ࡼ ൌ ૝ࡵ െ ଵ
ଷ

૚۪૚ be the 4th order volumetric 

and deviatoric projection tensors respectively, where ࡵ૝ is the 4th order identity tensor and 

૚ is the unit vector. The following relationships then hold: 

:௩௢௟ࡼ  ሶࢿ ௣ ൌ ૙ ฺ ሶଵଵߝ
௣ ൅ ሶଶଶߝ

௣ ൅ ሶଷଷߝ
௣ ൌ 0 (4.55)

 

ሶࢿ ௣ ൌ ൦
ሶଵଵߝ

௣ ሶଵଶߝ
௣ ሶଵଷߝ

௣

ሶଶଵߝ
௣ ሶଶଶߝ

௣ ሶଶଷߝ
௣

ሶଷଵߝ
௣ ሶଷଶߝ

௣ ሶଷଷߝ
௣

൪ ൌ ቎
ሶଵଵߝ

௣ ሶଵଶߝ
௣ 0

ሶଶଵߝ
௣ െߝሶଵଵ

௣ /2 0
0 0 െߝሶଵଵ

௣ /2 
቏

ൌ ߛ ൥
ଵଵ/3ߪ2 ଵଶߪ 0

ଶଵߪ െߪଵଵ/3 0
0 0 െߪଵଵ/3

൩ 

(4.56)

௣ࢿ  ൌ ൦
ଵଵߝ

௣ ଵଶߝ
௣ ଵଷߝ

௣

ଶଵߝ
௣ ଶଶߝ

௣ ଶଷߝ
௣

ଷଵߝ
௣ ଷଶߝ

௣ ଷଷߝ
௣

൪ ൌ ቎
ଵଵߝ

௣ ଵଶߝ
௣ 0

ଶଵߝ
௣ െߝଵଵ

௣ /2 0
0 0 െߝଵଵ

௣ /2 
቏ (4.57)

The isotropic material the stress components are given by Eq. 4.58: 

 

ە
ۖ
۔

ۖ
ۓ

ଵଵߪ
ଶଶߪ
ଷଷߪ
ଵଶߪ
ଶଷߪ
ଷଵۙߪ

ۖ
ۘ

ۖ
ۗ

ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
ߣ ൅ ߤ2 ߣ ߣ 0 0 0

ߣ ߣ ൅ ߤ2 ߣ 0 0 0
ߣ ߣ ߣ ൅ ߤ2 0 0 0
0 0 0 ߤ2 0 0
0 0 0 0 ߤ2 0
0 0 0 0 0 ےߤ2

ۑ
ۑ
ۑ
ۑ
ې

ە
ۖۖ
۔

ۖۖ
ۓ

ଵଵߝ
௘

ଶଶߝ
௘

ଷଷߝ
௘

ଵଶߝ
௘

ଶଷߝ
௘

ଷଵߝ
௘ ۙ

ۖۖ
ۘ

ۖۖ
ۗ

ൌ

ە
ۖ
۔

ۖ
ۓ

ଵଵߪ
0
0

ଵଶߪ
0
0 ۙ

ۖ
ۘ

ۖ
ۗ

 (4.58)

where ߣ and ߤ are the Lamé elastic constants. It is important to note that inextensibility of 

nodal directors only applies to the motion. Inextensibility contradicts the plane stress 

assumption and this contradiction is reconciled by not using the motion to compute the 

nonzero normal strain components ߝଶଶ and ߝଷଷ. Instead, these components are obtained 

from the constitutive requirement that ߪଶଶ ൌ ଷଷߪ ൌ 0. Equations 4.57 and 4.58 give: 

 

ଶଶߝ
௘ ൌ ଷଷߝ

௘ ൌ െ
ߣ

2ሺߣ ൅ ሻߤ ଵଵߝ
௘  

ଶଶߝ ൌ ଷଷߝ ൌ െ
ߣ

2ሺߣ ൅ ሻߤ ଵଵߝ
௘ െ

1
2 ଵଵߝ

௣  

ଶଷߝ ൌ ଶଷߝ ൌ 0 

(4.59)

Using Eq. 4.58 and 4.59 the constitutive relations can be written as: 

 ሾ෥࣌ሿ ൌ ሾ࢈࡯ሿሾ̃ߝ௘ሿ (4.60)
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 ሾ෥࣌ሿ ൌ ቄ
ଵଵߪ
ଵଶߪ

ቅ ; ሾ࢈࡯ሿ ൌ
ܧ

1 ൅ ߭ ቂ1 ൅ ߭ 0
0 1ቃ ; ሾࢿ෤௘ሿ ൌ ൜ߝଵଵ

௘

ଵଶߝ
௘ ൠ (4.61)

where ܧ ൌ ఓሺଷఒାଶఓሻ
ఒାఓ

  is the modulus of elasticity and ߭ ൌ ఒ
ଶሺఒାఓሻ

 is the Poisson ratio of the 

material. Now, the second invariant of deviatoric stress component, ܬଶ, can be expressed 

as follows:  

ଶܬ  ൌ
1
2 ࢙: ࢙ ൌ ሾ෥࣌ሿ்ሾࡼଵሿሾ෥࣌ሿ where ሾࡼଵሿ ൌ ቂ1/3 0

0 1ቃ (4.62)

 

Following additional notation is employed to simplify the model formulation for 

numerical integration: 

 ሾࢿ෤௣ሿ ൌ ቊ
ଵଵߝ

௣

ଵଶߝ
௣ ቋ ; ሾ෤࢙ሿ ൌ ቄ

ଵଵݏ
ଵଶݏ

ቅ (4.63)

 ሾ෤࢙ሿ ൌ ሾࡼଶሿሾ෥࣌ሿ where ሾࡼଶሿ ൌ ቂ2/3 0
0 1ቃ (4.64)

 

To advance the solution within an incremental solution scheme in a finite element (FE) 

framework, the flow rule (Eq. 4.48) and the evolution equations for the internal variables 

(Eq. 4.48) have to be integrated over a finite time step Δݐ ൌ ௡ାଵݐ െ  ௡. Such aݐ

computation is typically carried out at an integration point. The known values at time 

௡ߙ௡ାଵ includes stress tensor ሺો௡ሻ, internal variables ሺݐ
௣ ሻ and strains ࢿ௡, ௡ࢿ

௣,  ௡ାଵ. Theࢿ

objective of the integration scheme is to compute the stress tensor ሺો௡ାଵሻ and internal 

variable ሺߙ௡ାଵ
௣ ሻ at time ݐ௡ାଵ. The main difference between implicit and explicit FE 

formulations is that for an implicit scheme a consistent algorithmic tangent is required to 

assemble the global tangent stiffness matrix, however for an explicit FE formulation such 

an algorithmic tangent is not required. The proposed elasto-plastic model is implemented 

in the commercial explicit finite element code LS-DYNA. Euler backward method is 

used for integration of flow rule and plastic internal variable. 

 

The integration of plasticity models is usually carried out in two steps (Simo and Hughes, 

1998). In the first step known as “elastic” or “trial” step all inelasticity is freezed. If the 

yielding condition is not exceeded then the trial step gives the correct state. However, if 

the yielding condition is exceeded the algorithm proceeds to “plastic” step where further 

computations are carried out assuming that plastic flow occurs and that the consistency 
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condition is enforced in this step. A two step algorithm based on the above concept is 

described next. 

 
Step -1: Trial Step (Freeze Plastic Flow) 
 
No plastic flow implies: 

௡ାଵߛ  ൌ 0; ቂࢿ෤௡ାଵ
௣೅ೝ

ቃ ൌ ෤௡ࢿൣ
௣൧; ௡ାଵߙ

௣೅ೝ
ൌ ௡ߙ

௣  (4.65)

 ሾ෥࣌௡ାଵ
்௥ ሿ ൌ ሾ࡯௕ሿ ቀሾࢿ෤௡ାଵሿ െ ቂࢿ෤௡ାଵ

௣೅ೝ
ቃቁ (4.66)

 ߶௡ାଵ
்௥ ൌ ሾߪ෤ሿ்ሾ ଵܲሿሾߪ෤ሿ െ

1
3 ௣ߞ ቀߙ௡ାଵ

௣೅ೝ
ቁ (4.67)

The functional form of hardening function is taken as follows: 

௣ሻߙ௣ሺߞ  ൌ ௬ߪൣ ൅ ௣ሻ൧ଶߙሺܪ
 (4.68)

where ܪሺߙ௣ሻ represents hardening curve which is assumed to be a piecewise linear 

curve.   

If ߶௡ାଵ
்௥ ൑ 0, this implies that the trial step is admissible and the following updates are 

carried out. 

 ELASTIC UPDATES 
௡ାଵߙ 

௣ ൌ ௡ାଵߙ
௣೅ೃ

; ෤௡ାଵࢿൣ
௣ ൧ ൌ ቂࢿ෤௡ାଵ

௣೅ೝ
ቃ  (4.69)

 ሾ෥࣌௡ାଵ ሿ ൌ ሾ෥࣌௡ାଵ
்௥ ሿ (4.70)

If ߶௡ାଵ
்௥ ൐ 0, this implies that the trial step is not admissible and the algorithm proceed to 

the second step, i.e. the plastic step. 

 
Step -2: Plastic Step 
 
In this step, the integration of flow rules is carried out and the consistency condition is 

enforced as described next. The flow rule and evolution equations of internal variable are 

integrated using the Euler Backward method as follows: 

෤௡ାଵࢿൣ 
௣ ൧ ൌ ෤௡ࢿൣ

௣൧ ൅ Δߛ௡ାଵሾ෤࢙௡ାଵ ሿ  (4.71)

௡ାଵߙ 
௣ ൌ ௡ߙ

௣ ൅
1
3 Δߛ௡ାଵ (4.72)

where Δߛ௡ାଵ ؠ Δߛݐ௡ାଵ. 

 
Enforcing the consistency condition at time ݐ ൌ  :௡ାଵ givesݐ

 ߶௡ାଵ
௣ ൌ ሾ෥࣌ሿ்ሾࡼଵሿሾ෥࣌ሿ െ

1
3 ௡ାଵߙ௣൫ߞ

௣ ൯ ൌ 0 (4.73)

Using Eq. 4.72, the consistency condition can be written as follows: 
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 ߶௡ାଵ
௣ ൌ ሾ෥࣌ሿ்ሾࡼଵሿሾ෥࣌ሿ െ

1
3 ௬ߪൣ ൅ ௡ାଵߙ൫ܪ

௣ ൯൧ଶ ൌ 0 (4.74)

Also,  
 ሾ෥࣌௡ାଵ ሿ ൌ ሾ࡯௕ሿ൫ሾࢿ෤௡ାଵሿ െ ෤௡ାଵࢿൣ

௣ ൧൯ (4.75)

 
Combining Eq. 4.71 and 4.75 gives: 

 

ሾ෥࣌௡ାଵ ሿ ൌ ሾ࡯௕ሿ൫ሾࢿ෤௡ାଵሿ െ ෤௡ࢿൣ
௣൧ െ Δߛ௡ାଵሾ෤࢙௡ାଵ ሿ൯ 

 
ฺ ሾ෥࣌௡ାଵ ሿ ൌ ሾ෥࣌௡ାଵ

்௥ ሿ െ Δߛ௡ାଵሾ࡯௕ሿሾࡼଶሿሾ෥࣌௡ାଵ ሿ 
 

ฺ ሾ෥࣌௡ାଵ ሿ ൌ ଶࡵൣ ൅ Δߛ௡ାଵሾ࡯௕ሿሾࡼଶሿ൧ିଵሾ෥࣌௡ାଵ
்௥ ሿ 

 

ሾࡼଷሿ ൌ ଶࡵൣ ൅ Δߛ௡ାଵሾ࡯௕ሿሾࡼଶሿ൧ିଵ ൌ

ۏ
ێ
ێ
ۍ

3
2Δߛ௡ାଵܧ ൅ 3 0

0
1

௡ାଵߛΔߤ2 ൅ ے1
ۑ
ۑ
ې
 

(4.76)

 
Equation 4.76 gives: 

 

ሾ෥࣌ሿ்ሾࡼଵሿሾ෥࣌ሿ ൌ ሾ෥࣌௡ାଵ
்௥ ሿ்ሾࡼଷሿ்ሾࡼଵሿሾࡼଷሿሾ෥࣌௡ାଵ

்௥ ሿ 

ฺ ሾ෥࣌ሿ்ሾࡼଵሿሾ෥࣌ሿ ൌ
ଵଵ೙శభߪ3

்௥మ

൅1݊ߛΔܧ2ൣ ൅ 3൧2 ൅
ଵଶ೙శభߪ

்௥మ

൅1݊ߛΔߤ2ൣ ൅ 1൧2 
(4.77)

 
Combining Eq. 4.77, 4.72 and 4.74 gives: 

 
߶௡ାଵ

௣ ൌ
ଵଵ೙శభߪ3

்௥మ

൅1݊ߛΔܧ2ൣ ൅ 3൧2 ൅
ଵଶ೙శభߪ

்௥మ

൅1݊ߛΔߤ2ൣ ൅ 1൧2

െ
1
3 ൤ߪ௬ ൅ ܪ ൬ߙ௡

௣ ൅
1
3 Δߛ௡ାଵ൰൨

ଶ

ൌ 0 

(4.78)

 

Equation 4.78 is a nonlinear equation in independent variable Δߛ௡ାଵ, which is solved by 

standard Newton Raphson method. Starting with the initial values of Δߛ௡ାଵ
ሺ଴ሻ ൌ 0, the 

following iterations are carried out to obtain the solution: 

 

δሺΔߛ௡ାଵ
ሺ௞ାଵሻሻ ൌ

1
߲߶௡ାଵ

௣

߲Δߛ௡ାଵ
ቤ

୼ఊ೙శభ
ሺೖሻ

߶௡ାଵ
௣ ሺΔߛ௡ାଵ

ሺ௞ሻ ሻ 

Δߛ௡ାଵ
ሺ௞ାଵሻ ൌ Δߛ௡ାଵ

ሺ௞ሻ ൅ δሺΔߛ௡ାଵ
ሺ௞ାଵሻሻ 

(4.79)

The derivative డథ೙శభ
೛

డ୼ఊ೙శభ
 is given by: 
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߲߶௡ାଵ
௣

߲Δߛ௡ାଵ
ൌ െ

ଵଵ೙శభߪܧ12
்௥మ

൅1݊ߛΔܧ2ൣ ൅ 3൧3 െ
ଵଶ೙శభߪߤ4

்௥మ

൅1݊ߛΔߤ2ൣ ൅ 1൧3

െ
2
3 ൤ߪ௬ ൅ ܪ ൬ߙ௡

௣ ൅
1
3 Δߛ௡ାଵ൰൨

ܪ߲
߲Δߛ௡ାଵ

 

(4.80)

After solving Eq. 4.78, the relevant updates are obtained using Eq. 4.71, 4.72 and 4.75. 

Two different hardening curves are used to model response in tension and compression. 

Hardening curve followed at integration point is determined by ߪଵଵ
்௥, i.e. if ߪଵଵ

்௥ ൐ 0 then 

hardening curve for tension is followed, else hardening curve for compression is 

followed. Fracture is assumed to occur at an integration point when the tension hardening 

variable reaches a critical value. 

 

4.7.2 Nodal forces  
 
Nodal forces are obtained by numerical quadrature. Two avoid shear locking in the 2-

node finite element described above, a single stack of quadrature points at ξ ൌ 0 is used. 

This quadrature scheme is also called selectively reduced integration. It integrates the 

axial forces exactly (for rectangular section) but underintegrates the transverse shear 

stresses. The number of integration points in the η-direction depends on the constitutive 

law and the degree of accuracy desired. For integration in the η-direction, the trapezoidal 

rule is used, since Guass quadrature implicitly assumes the smoothness of data and is not 

optimal for elastic-plastic models having discontinuous derivatives. 

 

4.8 Model Calibration 
4.8.1 Moment connection calibration 
 
Beam-column constitutive properties are calibrated to data obtained from the micro-

mechanical simulations of sub-assemblages reported in Chapter 3. To ensure that the 

structural scale model captures the main modes of behavior exhibited by the sub-

assemblages results, different stress strain curves for both tension and compression are 

employed; the tensile response accounts for strain hardening and fracture, while the 

compressive response accounts for the effects of local and global buckling. Figure 4.18 

shows a structural scale model of the sub-assemblages that were considered in Chapter 3. 
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Using information from the sub-assemblages response, the stress-strain responses in Fig. 

17 were found to be sufficiently versatile to account for the main modes of behavior. 

Table 4.1 lists the calibration parameters obtained for SMF and IMF, which are 

determined by trial and error. Fig. 4.19, 4.20 and 4.21 shows that the structural scale 

model results matches well with the data from the detailed  study of beam-column sub-

assemblages. As shown in Fig. 4.22, linear relationships between fracture strain ൫ ௙݁൯ and 

beam depth ሺ݀௕ሻ is obtained from this data and are expressed as follows: 

 
RBS: ௙݁ ൌ െ0.0036݀௕ ൅ 0.176  

No RBS: ௙݁ ൌ െ0.0011݀௕ ൅ 0.064 
(4.81)

 

4.8.2 Shear (S) Connection Calibration 
 
Since S-connection behavior under the type of loading expected during progressive 

collapse has not been adequately investigated in the past, experimental data for seismic 

response is used instead to calibrate the model properties. The calibration process entails 

identification of key attributes of the stress-strain relationships for various connection 

components.  

 

Bolts are representing by a beam having integration points at the bolt location as shown 

in Fig. 4.11(b). The J2 plasticity model described in Section 4.7.1 is used for representing 

constitutive behavior at integration points. An elastic perfectly plastic model is assumed 

for each bolt. The area associated with each integration point is determined from the bolt 

design strength. Bolt strength is taken as the minimum of shear and bearing strength and 

is given by AISC Construction Manual (2005): 

 Bolt Strength ௕௢௟௧ܨ ൌ minሼܨ௦, ௕ሽ (4.82)ܨ

 Shear Strenght: ௦ܨ ൌ ௕ (4.83)ܣ௡௩ܨ

݃݊݅ݎܽ݁ܤ  :݄ݐ݃݊݁ݎݐܵ ௕ܨ ൌ ௨ܨݐ௖ܮ1.5 ൑ ௨  (4.84)ܨݐ3݀

where ܨ௡௩ is the nominal shear stress in bearing type connections; ܣ௕ is the cross 

sectional area of bolt; ݀ is the bolt diameter; ݐ is the thickness of the connection part; ܮ௖ 

is the clear distance in the direction parallel to the applied load; ܨ௨ is the ultimate tensile 

stress of the connected part. The area at each integration point, ܣ௜௡௧, is then given by: 
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௜௡௧ܣ ൌ  ௡௩. The fracture plastic strains value is determined from availableܨ/௕௢௟௧ܨ

experimental results from SAC research on the available plastic rotational capacity of 

simple bolted shear type connections, designed using methods of AISC LRFD 

specifications. When adequate clearance between the beam flange and column flange is 

present so that bearing is avoided, the plastic rotational capacity of the connection is then 

given by: 

௣,௠௔௫ߠ  ൌ 0.15 െ 0.0036݀௕௚  (4.85)

where ݀௕௚ is the depth of bolt group. An additional elastic rotational capacity of these 

connections is estimated as 0.02 radians. This gives a total estimated rotational capacity 

of such connections: 

௧,௠௔௫ߠ  ൌ 0.17 െ 0.0036݀௕௚ (4.86)

When a beam is installed close to the column, the top and bottom edges of the beam have 

the potential of bearing against the column. FEMA-355D (2000) suggests that the 

connection flexural strength rises substantially when this happens. Testing reported in 

FEMA-355D (2000) has shown that the connection has essentially exhausted its ductility 

when binding occurs. Therefore the maximum rotation is limited by: 

௧,௠௔௫ߠ  ൌ
݃

݀௠௔௫
 (4.87)

where ݃ is the gap and ݀௠௔௫ is the larger of ݀ଵ and ݀ଶ in Fig. 4.23. Using the smaller of 

 :௧,௠௔௫ from Eq. 4.86 and 4.87, the deformation limit for the bolt is given byߠ

௕,௠௔௫߂  ൌ ௠௔௫ݏ ௧,௠௔௫ (4.88)ߠ

 

where ݏ௠௔௫ is the distance of the center of the bolt group to the most distance bolt. The 

fracture strain is for bolt integration point is then given by: 

 ௙݁,௕௢௟௧ ൌ
௕,௠௔௫߂

݈௧
 (4.89)

where ݈௧ is the size of force transfer region. 

 

The concrete spring acts in the plane of the concrete slab. However for modeling 

convenience it is assumed to act at the top flange of the beam. A bilinear force-

displacement relationship is assumed for the compression behavior of the spring as 
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shown in Fig. 4.24. The strength of the concrete spring is calculated from the following 

equation (FEMA-355D, 2000): 

௖ܨ  ൌ 0.85 ௖݂
ᇱ

௙ܾ௖ݐ௦ (4.90)

where ௙ܾ௖ is the flange width of the column, ݐ௦ is the concrete slab thickness and ௖݂
ᇱ is the 

concrete strength in compression. The extra strength provided by the composite action is 

lost when the plastic rotation reaches a critical value (FEMA-355D, 2000): 

௖,௠௔௫ߠ  ൌ 0.029 െ 0.0002݀௕௚ (4.91)

Therefore the deformation limit for the concrete spring is: 

௙ߜ  ൌ ௖,௠௔௫݀௧ (4.92)ߠ

where ݀௧ is the distance between the center of the bolt group and the center line of the 

slab. At this level, the compression capacity of the slab is assumed to drop to zero. The 

tensile capacity of the concrete spring is assumed to be negligible. The stiffness of the 

concrete spring, ܭ௖, is estimated as: 

௖ܭ  ൌ
௖ܧ ௙ܾ௖ݐ௦

݈௧
 (4.93)

where ܧ௖ is the stiffness modulus for concrete. 

 

To show that the proposed model for S-connection yields reasonable results, the model 

response is compared to previously published experimental results. Liu and Astaneh 

(2004) tested a number of shear tab connections under reversed cyclic loading. Figure 

4.25 shows an envelope of their normalized experimental data for the 9 specimens they 

tested. Also plotted in the figure is the result of the model shown in Fig. 4.9 and 4.11. A 

0.5 inch gap is assumed to exist between the beam flange and the column flange in the 

model. As shown in Fig. 4.25, individual bolt failures are manifested as a sudden drop in 

the moment capacity of the connection, with the connection losing all moment strength 

when all bolts fail (3 in this particular case). The figure also shows that the effect of 

binding on negative bending strength is significant; it not only markedly increases 

strength, but also leads to a reduction in ductility.  

 

A close examination of the figure shows that the model underestimates negative moment 

capacity at low plastic rotations ranging from 0 to -0.05 radians. This is attributed to the 
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fact that the steel, metals deck and tension stiffening in the concrete slab are not 

represented in the model. These effects, however, disappear at larger rotations and the 

model approaches the experimental data when binding does not occur. At larger negative 

plastic rotations and for all positive plastic rotations, the model captures overall behavior 

rather well, including the effect of binding. Since binding is a variable that depends on 

construction tolerances which are inherently unpredictable, it is not considered further in 

this work. 

 

4.8.3 Shear Link Calibration 
 
Test data in Arce (2002) is used to evaluate the accuracy of the proposed shear link 

model. As shown in Fig. 4.26, Arce (2002) tested shear links made from ASTM A992 

steel (Fy = 50 ksi) to investigate the adequacy of current requirements for EBF links with 

higher nominal strength. Figure 4.27 shows a comparison between model results and the 

envelope of the cyclic experimental results for Link 4A. Good comparison is achieved in 

the initial stiffness, yield strength and post-yield stiffness. The macro model, however, 

predicts a much larger failure displacement than observed experimentally, partly because 

the test employed a severe loading regimen that resulted in premature failure and also 

because of non standard test details that promoted early web fracture. In spite of this 

discrepancy, the proposed model should be capable of accurately representing shear links 

that conform to the AISC Seismic (2005) specifications.  

 

4.8.4 Brace Calibration 
 
Brace member properties are tailored to simulate its overall behavior, including buckling 

and post bucking response, as observed in experimental results. Test data from 

experimental studies done by Popov et al. (1979) and Lee et al. (1987) are used to 

calibrate the brace properties. Important properties that are calibrated include constitutive 

behavior at the integration points and initial imperfection. To ensure that the macro 

model captures the main modes of behavior exhibited by the braces, different stress strain 

curves for both tension and compression are used; the tensile response accounts for strain 
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hardening, while the compressive response accounts for the effects of local buckling. 

Using information from the available test data, the general shapes of stress-strain 

responses in Fig. 4.17(a) and (b) were found to be adequate for accounting for the main 

modes of behavior. A hardening modulus of 2% and is assumed for both compression 

and tension, while 5% softening is considered in compression. Fracture of braces is not 

considered since buckling is assumed to be the dominant failure mode. 

 

To validate the brace model experimental results from Popov et al. (1979) are compared 

to those obtained from the numerical model. Popov et al. (1979) studied the cyclic 

inelastic buckling of tubular braces in a Southern California offshore platform. Test result 

of one of the tested struts (Strut-1) is presented here. The diameter of strut was 4 inches 

and the wall thickness was 0.083 inches. Imperfection in form of measured initial camber 

is applied at as shown in Fig 4.14. Yield strength of steel is 32 ksi and constitutive 

properties in Fig. 4.17 are used. The analytical versus test results for axial force–

displacement response are plotted in Fig. 4.28. This result shows that the structural scale 

model reasonably reproduces the inelastic buckling and post buckling behavior of the 

strut.  

 

In another validation study, brace model results are compared to test data in Lee and Goel 

(1987). Lee and Goel (1987) tested 13 brace specimens with hollow and concrete filled 

HSS sections under reversed cyclic loading. The test results for one of the tested hollow 

braces with HSS 4×4×1/4 cross-section is used for validation. This particular brace was 

selected because it had the same compactness as the braces in the prototype building and 

also the same type of end connections, i.e. a cross gusset plate connection. Although the 

HSS 4×4×1/4 member has a compact section, it experienced both global and local 

buckling effects, particularly at larger deformations. The yield strength of steel is 74 ksi. 

Figure 4.29 shows a comparison between model results and the envelope of cyclic test 

results obtained by Lee and Goel (1987). Good comparison is achieved; in particular, the 

model accurately represents the buckling strength and post buckling response of the 

tested specimen. 
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4.9 Simulation setup  

Two-dimensional models of the two moment frames (Fig. 4.3 and Fig. 4.4) and two 

braced frames (Fig. 4.7 and Fig. 4.8) are represented using the developed structural scale 

models. Tables 4.4 to 4.10 gives the important properties of members and elements used 

in the simulation models. Frame loads are computed from the design specifications in 

Liang et al. (2006) and Ghosh (2006), and account for the dead loads plus 25 % of the 

live loads. The gravity loads are slowly ramped up during a 5 sec period then they are 

held constant for an additional 2.5 sec to avoid exciting dynamic effects. Once the gravity 

loads have been fully applied at 7.5 sec, a 1st floor column and its associated brace 

members (if it exists) are forcibly removed by instantaneously deleting them (as shown in 

Fig. 4.30), and the subsequent response of each braced frame is then investigated. The 

simulations are conducted with 5 percent mass proportional damping.  

 

Table 4.2 and Table 4.3 show the list of APM analysis cases considered in this study 

together with the members that are forcibly removed in each case. To facilitate the 

following discussion, the columns, beams and braces are designated as follows: e.g. 

column C-1 represents a first story column in column line C (Fig. 4.3); similarly, beam 

CD-2 represents a second story beam in bay CD (Fig. 4.3); while brace members in the 

first story are represented by letters A, B, C or D as shown in Fig. 4.7 and 4.8. Important 

response quantities of interest obtained from the above APM cases are presented in Fig. 

4.31 to 4.45. 

 

4.10  Assumptions and limitations of the simulation model  
 

The developed models have a number of assumptions and limitations that should be taken 

into consideration when evaluating the results of this research. It is assumed that the fixed 

foundations are able to withstand the redistribution of forces that occurs when individual 

columns are removed. Debris impact loads due to separating pieces are not considered in 

the simulations. Fracture is permitted to occur only in the connection regions, i.e. beam, 

column and brace members cannot fracture and separate into two or more pieces. They 
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can however, respond in an inelastic manner if required. Subsequent analysis of 

simulation results show that strains in the beams and columns do not approach the high 

strain levels observed in the connection regions, i.e. it is unlikely that any beams or 

columns will undergo fracture for the simulation period of interest. Furthermore, strain 

rates during the period of interest are observed to be in the seismic loading range, i.e. 

rather low, which justifies not accounting for strain rate effects in the analysis model.  

Another primary assumption is that the responses of the 2-D models are representative of 

the response of the 3-D buildings when a column is lost. The calibration model does take 

into account some critical 3-D effects such as local and global buckling. However, the 

beneficial effects of structural components outside of the plane of the frames including 

the slab are not considered in the analysis. The compressive strength of the slab and its 

contribution to the moment capacity of the S-connection is, however, accounted for.  

 

4.11  Moment system response to sudden member loss 
4.11.1 IMF building system 
 

When column F-1 is suddenly removed (APM case 1 in Table 4.2), the node 

corresponding to the top of the column vibrates substantially reaching a peak vertical 

displacement of 5 inches (Fig. 4.31(e)). The response eventually damps out coming to 

rest at 2.9 inch. The final axial force in column E-1 increases from 322 kips to 550 kips. 

Frame action in the remaining intact system creates a peak compressive force of 66 kips 

in the first floor beam EF-1 and a peak tensile force of 19 kips in the top floor beam EF-

10. No significant catenary effects develop in this case.  

 

Removal of columns E-1 and D-1 (APM case 2 and 3) result in almost identical 

responses. The peak vertical displacements corresponding to top column nodes are 3.2 

inches and 3.3 inches, respectively, and the final equilibrium displacements are 1.7 inches 

and 1.73 inches, respectively. Low tensile forces occurred in the affected first floor 

beams in both cases, but the deformations are not large enough to activate catenary action 

in the beams.  
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Removal of column C-1 led to a relatively large deformation at the node corresponding to 

the top of the column. The peak vertical displacement in this case is 9.4 inches and the 

damped response is 7.7 inches (Fig. 4.34(f)). The relatively large displacements led to the 

development of a peak catenary force of 22 kips in the gravity beam BC-1. However, the 

demands on this beam are not large enough to precipitate failure in the shear connections. 

Inelastic behavior occurs in the frame in plastic hinge regions in bay CD and in shear 

connections in bay BC as shown in Fig. 4.34(a). The black circles in Fig. 4.34(a) show 

the locations where beam cross-sections are partially plastified. Very large force 

redistribution is observed. For example, as shown in Fig. 4.34(b), the axial force in first-

floor column D-1 triples from 319 kips to a peak load of 994 kips before settling down at 

822 kips. Even though the simulation predicts ‘no-collapse’, the large axial force that 

develops in first-floor column D-1 is concerning. This force is only about 10% below the 

1124 kips axial design capacity of the column (with ߶ ൌ 1.0) and, together with the peak 

moment that develops, exceed the design axial/flexural interaction capacity of the column 

by 18%. These peak demands develop during a short duration (0.24 seconds) and quickly 

retreat to below the design capacity of the column, where the final design interaction 

demand is 0.86. However, given the non-ductile nature of compressive column failure, it 

appears that the frame is vulnerable to collapse. 

 

Removal of column B-1 created catenary forces that initially overloaded the shear 

connections in the lower levels of the corresponding bays (Fig. 4.35(a)). The shear 

connection failures traveled up the frame as the affected bays progressively collapsed and 

the simulation therefore shows that both bays AB and BC could suffer collapse. It is 

possible that the bay adjacent to the collapsing bays, i.e. bay CD (for column loss B-1) 

could suffer damage by potential debris impact.  

 

Column A-1 in the IMF is not truly a ‘gravity’ column, since it belongs to a moment 

frame in the transverse direction (Fig 4.1). Given the results associated with loss of 

column F-1, it is unlikely that loss of column A-1 will lead to collapse. 
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4.11.2 SMF building system 
 

Three APM analyses (cases 6, 7, and 8) are conducted due to symmetry, i.e. removal of 

first story columns D-1, E-1 and F-1. The resulting damaged systems are able to 

successfully absorb unbalanced forces in all 3 cases, i.e. the simulations predict that the 

system will not collapse for these scenarios. Elastic system behavior occurs when 

columns E-1 and F-1 are removed, but some inelastic behavior occurs when column D-1 

column is removed. The panel zones behaved in an elastic manner in all three cases.   

 

With the loss of column D-1, the peak vertical displacement of the node corresponding to 

the top of the column D-1 is 6.5 inches. The response eventually damps out coming to 

rest at 5.23 inches. This scenario leads to the development of a peak tensile force of 45 

kips in gravity beam CD-1. The demands on the shear connections, however, are not 

large enough to precipitate failure. This scenario also leads to a substantial redistribution 

of forces where the axial force in column E-1 increase from 329 kips to a peak value of 

945 kips. Unlike the C-1 scenario in the IMF frame, the peak demands remains well 

below the column design capacity (Fig. 4.36(b)). As shown in Figure 4.36(a), the RBS 

regions of beams in bay DE and shear connections in bay CD undergo some inelastic 

behavior.  

 

4.11.3 Discussion of results for moment frames 
 
The simulation results suggest that the SMF building designed for high seismic risk is 

generally less vulnerable to progressive collapse than the IMF building designed for 

moderate seismic risk. There are two reasons for this. First, the structural layout for the 

SMF building is somewhat better than that for the IMF building in that it includes fewer 

gravity columns on the perimeter. Gravity bays with one or more gravity columns are 

vulnerable to the increased force and deformation demands imposed by the system when 

it loses a first floor gravity column. The SMF building has only one such column on each 

NS frames and none on the EW frames. The IMF building, on the other hand, has a total 

of 4 gravity columns, one in each of the 4 exterior faces of the building. Second, 
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members of the moment bays in the SMF building are stronger and stiffer than 

corresponding members of the IMF building, which facilitates force redistribution when 

critical members are lost. 

 

The deformations associated with column loss in the moment bays are rather small, 

which prevents catenary action from developing fully. The inelastic deformation 

demands are not large and are well within the capacity of the seismic detailing employed, 

which implies that the frames do not benefit from the ductility of seismic detailing for the 

scenarios investigated. Column loss is resisted primarily through frame action that 

mobilizes members throughout the entire frame.  

 

In contrast, catenary action does develop in gravity bays and plays a critical role in 

providing resistance against collapse. Since catenary action only develops after large 

deformations occur, gravity connections must therefore be ductile enough to permit 

catenary action to occur and must also be strong enough to resist the large tensile 

catenary forces that develop. Based on the limited simulation exercises presented, it 

appears that the shear tab connections considered herein have the necessary ductility, but 

not the strength to resist progressive collapse. As previously mentioned, the resistance of 

gravity bays to collapse must take into consideration the effect of catenary action in the 

slab. However, without a full 3-D analysis, it is difficult to determine the beneficial effect 

of this source of resistance and whether catenary action in the slabs combined with 

catenary action in the beams is sufficient to mitigate collapse.  

 

The APM analyses presented show that substantial redistribution of forces occurs for 

cases where the building frame survives a column loss. However, the APM analyses do 

not provide information about the reserve capacity of the frame. For example, the 

simulation results predict that the loss of column C-1 in the IMF will not lead to 

progressive collapse, whereas engineering judgment, based on the design capacity of the 

adjacent column, suggests that this is likely a critical situation. 
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4.12 Braced system response to sudden member loss 
4.12.1 SCBF building system 
 
When the corner column A-1 is suddenly removed (APM Case I in Table 4.3), the shear 

connections in the lower floors in bay AB are initially overloaded and start deforming 

inelastically. The shear connection at the right end of beam AB-1 fails first at a vertical 

displacement of 35 inches. Shear connection failures propagate up the frame as the 

affected bay AB progressively collapses as shown in Fig. 4.39(a). It is possible that the 

bay adjacent to the collapsing bays, i.e. bay BC could suffer damage by potential debris 

impact from the collapsing bay. 

 

APM Case II involves sudden removal of column B-1 and brace A. The simulation 

results show that the system is able to successfully absorb the loss of the two members. 

The node corresponding to the top of the removed column vibrates substantially reaching 

a peak vertical displacement of 1.3 inches. The response eventually damps out coming to 

rest at 0.94 inches as shown in Fig. 4.40(f). A large redistribution of forces is observed to 

take place as shown in Fig. 4.40(b). For example, the force in column C-1 doubles from 

445 kips to a peak of 901 kips before settling down at a steady value of 759 kips. The 

peak compression force is accompanied by a peak moment of 123 k-ft. Concurrently, the 

force in brace B spikes from 36 kips to a peak value of 283 kips before settling down at a 

steady value of 248 kips. Other frame members and connections remain in the elastic 

regime. 

 

By assuming a strength reduction factor of 1.0 and an effective length factor, K=1.0, the 

axial capacity of column C-1 (a W14×233) is 2827 kips. This is substantially more than 

the peak load computed in that column, which when combined with the relatively small 

moment generated on the column, implies that the column will not be overloaded. More 

seriously, however, is brace B, which is a HSS7×7×½. Assuming a strength reduction 

factor of 1.0 and an effective length factor, K = 0.85, the capacity of this brace is 312 

kips. This is only 10 % more than the peak load of 283 kips to which the brace is 

subjected. 
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Even though the simulation predicts “no collapse”, the large axial force that develops in 

brace B is of concern given the non-ductile and softening post buckling behavior of 

braces. Another simulation (Case III), where brace B is removed simultaneously with 

column B-1 and brace A, is conducted to investigate whether failure of brace B will 

initiate progressive collapse. The results of this simulation (Fig. 4.41) show that the 

system still does not collapse and that the gravity loads tributary to the BC bays are 

channeled into column C-1. The column, which is designed to support the seismically 

induced overturning forces, is so massive that is still able to successfully carry all the 

gravity loads. Bays AB and BC derive their stability from the intact bay DE and they 

therefore do not collapse. Transmission of loads between the damaged and intact bays 

takes place through the gravity beams in bay CD. These beams are under significant 

tension forces, but the members and their gravity connections are able to successfully 

transmit these loads. The magnified deformed shapes for both cases are shown in Fig. 

4.40(a) and 4.41(a). 

 

The sudden simultaneous loss of column C-1 and brace B is considered in APM Case IV. 

The results of this simulation (Fig. 4.42) are very similar to APM Case II and will 

therefore not be discussed further. 

 

4.12.2 EBF building system 
 
Three APM analyses are conducted for the EBF frame as outlined in Table 4.3. Loss of 

corner column A-1 is not considered because it is part of the transverse EBF system. It is 

deemed not vulnerable based on the previously discussed simulation results for the SCBF 

where simultaneous loss of column B-1 and braces A and B did not lead to collapse. The 

simulations results (Fig. 4.43-4.45) shows that the EBF system is capable of successfully 

absorbing the loss of the various elements considered, i.e. the simulations predict that the 

system will not collapse for these scenarios. The force levels in the remaining beams, 

column and braces are small enough that they essentially respond in an elastic manner. 

The shear links and shear connections also behave in an elastic manner in all 3 cases.   
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The peak vertical displacements of the nodes corresponding to the top of the removed 

columns are 1.8 inches, 0.63 inches and 1.93 inches for analyses Cases V, VI and VII, 

respectively. The corresponding damped out responses are 1.3 inches, 0.47 inches and 1.4 

inches respectively. In Case V, the axial force in column C-1 triples from 415 kips to a 

peak value of 1288 kips. However, this force, combined with the peak moment developed 

on the column, is well below the capacity of the column. Figure 4.43(b) shows the 

column force redistribution that occurs in this case. The peak axial force in brace B (HSS 

8×8×½) is 51 kips, which is significantly below it nominal axial capacity of 429 kips. The 

demands are comparably low for Cases VI and VII, signifying that the EBF configuration 

has much resistance to progressive collapse. 

 

4.12.3 Discussion of results for braced frames  
 
The results of the simulations suggest that the EBF building, which is designed for high 

seismic risk, is less vulnerable to progressive collapse than the SCBF building, which is 

designed for moderate seismic risk. An examination of the simulation results shows that 

the main reasons for the improved response is that the structural layout for the EBF 

building is better than that for the SCBF building in that it includes no gravity columns 

on the perimeter (Fig. 4.5 and Fig. 4.6). Gravity bays with one or more gravity columns 

are vulnerable to the increased force and deformation demands imposed by the system 

when it loses a first floor gravity column. The EBF building has no such column on its 

perimeter. The SCBF building, on the other hand, has four gravity columns on the 

perimeter, one in each of the corner of the building.  

 

An important observation is that none of the seismically designed bays collapsed when 

one or more critical members were removed. For example, in Case III, column C-1 

successfully supported all the gravity loads previously carried by adjacent column B-1 

and the two adjacent braces. This is directly a result of seismic design, albeit not ductile 

detailing, in which the need for lateral seismic resistance fortuitously resulted in 

sufficient vertical resistance to resist progressive collapse. Clearly, this will occur in 

perimeter systems, where seismic resistance is concentrated on the exterior of building. 
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While this is a common practice in the U.S. West Coast, it is also common to place 

seismic frames within the building, leaving the outside columns as gravity columns, 

which are vulnerable to first floor column loss, as demonstrated in Case I.     

 
4.13  Summary and Conclusions 
 

The study in this chapter was concerned with the development of computationally 

efficient structural scale models which can be used for progressive collapse analysis of 

steel building moment and braced frames using nonlinear dynamic APM. Specifically, 

structural scale models for three popular connections types: reduced beam sections for 

SMF, welded unreinforced flange – welded web moment resisting connections for IMF 

and shear connections, were developed in this work. In addition, models for braces and 

shear links were proposed for SCBF and EBF. The structural scale models were 

calibrated and validated through sub-assemblages results obtained in Chapter 3 and 

through available experimental results. Developed models were then utilized within the 

context of APM to study the progressive collapse resistance of 2-dimensional, 10-story 

SMF, IMF, SCBF and EBF buildings designed according to contemporary seismic design 

specifications and practices. Based on the simulation studies conducted and within the 

assumptions and limitations described in the chapter, the following conclusions can be 

drawn. These conclusions are valid only for the particular framing schemes chosen and 

generalization requires a broader study involving many buildings of different 

configurations. 

 

1. The SMF designed for high seismic risk is less vulnerable to gravity-induced 

progressive collapse than the IMF designed for moderate seismic risk. The relative 

success of SMF versus IMF stems from a somewhat improved layout that consists of 

more as well as generally stronger moment bays.  

 

2. The simulation results suggest that while SCBF and EBF systems benefited from 

locating the seismic systems on the perimeter of the buildings, the EBF designed for 

high seismic risk is less vulnerable to gravity-induced progressive collapse than the 
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SCBF designed for moderate seismic risk. The relative success of EBF versus SCBF 

stems essentially from an improved system layout rather than activation of ductile 

detailing. 

 

3. Ductility demands associated with column loss in the moment bays of all types of 

buildings are rather small and therefore the advantage of using ductile seismic 

detailing for mitigating progressive collapse is not evident. The ductility demands are 

likely small because the moment bays, which are primarily proportioned for lateral 

seismic loading, carry light gravity loads. This is, nevertheless, a common situation 

because designers tend to concentrate seismic resistance in a few moment bays 

arranged mostly around the building perimeter to reduce the number of expensive-to-

construct moment resisting connections. 

 

4. Shear tab connections, which are used in gravity bays, have the necessary ductility to 

develop catenary action. For the system designs considered herein, they do not have 

the strength to resist progressive collapse once a gravity column is lost. This 

conclusion is reached without taking into consideration the beneficial effect of 

catenary action in the slab. However, even if the combined resistance of catenary 

action in the slab and beams is enough to prevent collapse of adjacent gravity bays, it 

is likely that large deformations and severe damage will occur in the affected bays. It 

is therefore recommended that gravity columns not be placed on the perimeter of a 

seismically designed building when gravity induced progressive collapse due to an 

external threat, e.g. blast, is a design consideration. If such columns are necessary, 

structural designers should carefully evaluate collapse resistance of perimeter gravity 

bays through refined analysis models or detailed simulations methods of the sort 

proposed here.  

 

5. A nonlinear APM analysis is useful for judging the ability of a system to absorb the 

loss of a critical member. Compared to an elastic APM analysis, inelastic APM 

simulation provides more resolution, shows failure progression and provides 

information on the likelihood of complete versus partial collapse. It does not, 
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however, provide information about the reserve capacity of the system and so its 

results should be carefully evaluated. 
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Beam depth = 30.2 in Beam depth = 27.1 in Beam depth = 21.4 in 
WUF-W RBS WUF-W RBS WUF-W RBS 

Eh 2% 2% 2% 2% 2% 2% 
Es 5% 3% 5% 3% 5% 3% 
eo - 2.55E-02* - 2.63E-02* - 2.57E-02*
ef 0.03 0.06 0.035 0.09 0.04 0.095 

 *Corresponding to 0.04 radian rotation 

Table 4.1 Moment connection calibration parameters 

 

 
 

APM 
Case 

Building 
Frame Members removed 

1 IMF Column F-1 
2 IMF Column E-1 
3 IMF Column D-1 
4 IMF Column C-1 
5 IMF Column B-1 
6 SMF Column D-1 
7 SMF Column E-1 
8 SMF Column F-1 

Table 4.2 Alternate path method (APM) analysis cases for moment frames 

 

 
APM 
Case 

Building 
Frame Members removed 

I SCBF  Column A-1 
II SCBF  Column B-1, Brace A 
III SCBF  Column B-1, Brace A, Brace B 
IV SCBF  Column C-1, Brace B 
V EBF  Column B-1, Brace A 
VI EBF  Column C-1, Brace B, Brace C 
VII EBF  Column B-1, Brace A, Brace B 

Table 4.3 Alternate path method (APM) analysis cases for braced frames  
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Story Column Axial Capacity
 Pu (kips) Beam Plastic Moment Capacity

Mp (k-ft) 

10 W18×55 397 W21×50 458 
9 W18×55 397 W21×50 458 
8 W18×55 397 W21×50 458 
7 W18×97 1073 W24×62 642 
6 W18×97 1073 W24×62 642 
5 W18×97 1073 W24×76 833 
4 W18×97 1073 W24×76 833 
3 W18×119 1333 W24×76 833 
2 W18×119 1333 W24×76 833 
1 W18×119 1124 W24×76 833 

Table 4.4 Member properties for IMF (SDC-C) 

 
 
 
 

Story Column Axial Capacity
 Pu (kips) Beam Plastic Moment Capacity

Mp (k-ft) 

10 W24×84 732 W16×26 184 
9 W24×117 1366 W21×50 458 
8 W24×117 1366 W21×50 458 
7 W24×131 1536 W27×94 1158 
6 W24×131 1536 W27×94 1158 
5 W24×131 1536 W27×94 1158 
4 W24×146 1726 W27×94 1158 
3 W24×146 1726 W27×94 1158 
2 W24×146 1726 W27×94 1158 
1 W24×146 1506 W27×94 1158 

Table 4.5 Member properties for SMF (SDC-D) 
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Story Column 
Axial 

Capacity 
Pu (kips) 

Beam 
Plastic 

Moment 
Capacity 
Mp (k-ft) 

Brace 
Axial 

Capacity Pn 
(kips) 

10 W14×43 361 W21×50 458 HSS4½×4½×3/8 70 
9 W14×43 361 W21×50 458 HSS4½×4½×3/8 70 
8 W14×74 789 W21×50 458 HSS5½×5½×3/8 152 
7 W14×82 868 W21×50 458 HSS5½×5½×3/8 152 
6 W14×120 1531 W21×50 458 HSS6×6×1/2 251 
5 W14×132 1685 W21×50 458 HSS6×6×1/2 251 
4 W14×176 2290 W21×50 458 HSS6×6×1/2 251 
3 W14×193 2515 W21×50 458 HSS6×6×1/2 251 
2 W14×193 2515 W21×50 458 HSS7×7×1/2 352 
1 W14×233 2827 W24×76 833 HSS7×7×1/2 312 

Columns: Effective Length Factor (K) = 1.0, Braces: Effective Length Factor (K) = 0.85 

Table 4.6 Member properties for SCBF (SDC-C) 

 
 

Story Column 
Axial 

Capacity 
Pn (kips) 

Beam 
Plastic 

Moment 
Capacity 
Mp (k-ft) 

Brace 
Axial 

Capacity 
Pn (kips) 

10 W14×48 409 W10×39 195 HSS7×7×1/2 367 
9 W14×48 409 W10×39 195 HSS7×7×1/2 367 
8 W14×61 642 W10×39 195 HSS7×7×1/2 367 
7 W14×82 868 W10×39 195 HSS7×7×1/2 367 
6 W14×109 1387 W12×45 268 HSS8×8×1/2 469 
5 W14×109 1387 W12×45 268 HSS8×8×1/2 469 
4 W14×109 1387 W12×45 268 HSS8×8×1/2 469 
3 W14×132 1685 W12×45 268 HSS8×8×1/2 469 
2 W14×145 1883 W12×45 268 HSS8×8×1/2 469 
1 W14×176 2122 W14×48 327 HSS8×8×1/2 429 

Columns: Effective Length Factor (K) = 1.0, Braces: Effective Length Factor (K) = 0.85 

Table 4.7 Member properties for EBF (SDC-D) 
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Story Stiffness 
(kip/in) 

Strength  
(kips) 

1, 2, 3 15100 689 
4, 5 12371 544 
6, 7 12356 543 

8, 9, 10 8796 344 

Table 4.8 Panel zone spring properties IMF (SDC-C) 

 

 

Story Stiffness 
(kip/in) 

Strength  
(kips) 

1, 2, 3, 4 25788 1348 
5, 6, 7, 24787 1274 

8, 9 12400 583 
10 11415 444 

Table 4.9 Panel zone spring properties SMF (SDC-D) 

 

 
Story Stiffness 

(kip/in) 
Strength  

(kips) 
1 11730 412 

2, 3, 4, 5, 6 14387 402 
7, 8, 9, 10 12868 374 

Table 4.10 Shear link spring properties EBF (SDC-D) 
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Figure 4.1 Plan layout for IMF building system 

 
 
 
 

 
Figure 4.2 Plan layout for SMF building system 
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Figure 4.3 IMF Building Frame (SDC-C): E-W Elevation (Line 6) 

 
 
 

 

Figure 4.4 SMF Building Frame (SDC-D): E-W Elevation (Line 6) 
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Figure 4.5 Plan layout for SCBF building system 

 

 

Figure 4.6 Plan layout for EBF building system 
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Figure 4.7 SCBF Building Frame (SDC-C): E-W Elevation (Line 6) 

 

 

Figure 4.8 EBF Building Frame (SDC-D): E-W Elevation (Line 6) 

D E F 
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Figure 4.9 Shear (S) connection model 
 

 
 

Figure 4.10 Moment connection model 
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Figure 4.11 Panel zone and S-connection region 

 
 
 
 

 
Figure 4.12 Shear Link Model 

 
 
 
 
 
 

θ 
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Figure 4.13 Integration points in beam column finite elements 

 
 
 
 

 
 

Figure 4.14 Imperfection in brace model 
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Element 
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brace members   
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Figure 4.15 Smooth mapping of a bi-unit cube into the physical beam 
domain 

 
 
 

 
Figure 4.16 Directors at nodal points 
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Figure 4.17 Stress strain responses for beam and brace elements 
 
 

 

 
Figure 4.18 Structural scale (SS) model for moment connection calibration 
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Figure 4.19 Calibration Results: Story-1 sub-assemblages and structural 

scale (SS) models 
 

 
Figure 4.20 Calibration Results: Story-5 sub-assemblages and structural 

scale (SS) models 
 

 
Figure 4.21 Calibration Results: Story-7 sub-assemblages and structural 

scale (SS) models 
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Figure 4.22 Calibration of fracture strain 
 
 

 
 

Figure 4.23 Shear connection details 
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Figure 4.24 Force displacement relationship for concrete spring 

(compression) 
 
 

 
Figure 4.25 Comparison between S-Connection model result and 

experimental data 
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Figure 4.26 Experimental and model setup for validation of shear link model 

 
 

 
Figure 4.27 Shear link validation- Comparison between test and model data 
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Figure 4.28 Brace validation- Comparison between test and model data 

 
 

 
Figure 4.29 Brace validation- Comparison between test and model data 
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Figure 4.30 Simulation Setup - member/s removed at 7.5 sec 
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Figure 4.31 Response quantities - APM case-1, IMF F-1 column loss 

 

(a) Deformed Shape: Time = 30 sec 
Magnification Factor = 10 

(b) Column Axial Forces 

 

 
(c) Beam Axial Forces (d) Beam Bending Moments 
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Figure 4.32 Response quantities - APM case-2, IMF E-1 column loss 

(a) Deformed Shape: Time = 30 sec 
Magnification Factor = 10 

(b) Column Axial Forces 
 

(c) Beam Axial Forces (d) Beam Axial Forces 
 

(e) Beam Bending Moments 
 

(f) Beam Bending Moments 
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(g) Column Displacement 
 

(h) Roof Displacement 

 
 

 
 
 
 

Figure 4.33 Response quantities - APM case-3, IMF D-1 column loss 

 
(a) Deformed Shape: Time = 30 sec 

Magnification Factor = 10 
(b) Column Axial Forces 
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(c) Beam Axial Forces (d) Beam Axial Forces 

(e) Beam Bending Moments 
 

(f) Beam Bending Moments 
 

(g) Column Displacement 
 

(h) Roof Displacement 
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Figure 4.34 Response quantities - APM case-4, IMF C-1 column loss 

(a) Deformed Shape: Time = 30 sec 
Magnification Factor = 10 

(b) Column Axial Forces 
 

(c) Beam Axial Forces (d) Beam Axial Forces 

(e) Beam Bending Moments 
 

(f) Column Displacement 
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(g) Roof Displacement 
 

 

 
 
 
 
 

Figure 4.35 Response quantities - APM case-5, IMF B-1 column loss 

(a) Deformed Shape: Time = 8 sec 
Magnification Factor = 1 

(b) Column Axial Forces 
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(c) Column Axial Forces 
 

(d) Beam Axial Forces 

(e) Column Displacement (f) Roof Displacement 
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Figure 4.36 Response quantities - APM case-6, SMF D-1 column loss 

 
(a) Deformed Shape: Time = 30 sec 

Magnification Factor = 10 
(b) Column Axial Forces 

 

(c) Beam Axial Forces (d) Beam Bending Moments 
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Figure 4.37 Response quantities - APM case-7, SMF E-1 column loss 

 
Deformed Shape: Time = 30 sec 

Magnification Factor = 20 
Column Axial Forces 
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Column Displacement 
 

Roof Displacement 
 

 
 
 
 
 

Figure 4.38 Response quantities - APM case-8, SMF F-1 column loss 

 
(a) Deformed Shape: Time = 30 sec 

Magnification Factor = 20 
(b) Column Axial Forces 
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(c) Beam Axial Forces (d) Beam Axial Forces 

(e) Beam Bending Moments (f) Column Displacement 

 

(g) Roof Displacement  
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Figure 4.39 Response quantities – SCBF APM case I 

(a) Deformed Shape: Time = 7.9 sec 
Magnification Factor = 1 

(b) Column Axial Forces 

(c) Column Axial Forces (d) Brace Axial Forces 

(e) Brace Axial Forces (f) Roof Displacement 
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Figure 4.40 Response quantities – SCBF APM case II 

(a) Deformed Shape: Time = 30 sec 
Magnification Factor = 20 

(b) Column Axial Forces 

(c) Column Axial Forces (d) Brace Axial Forces 

(e) Brace Axial Forces (f) Column Displacement 
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Figure 4.41 Response quantities – SCBF APM case III 

 
(a) Deformed Shape: Time = 30 sec 

Magnification Factor = 20 
(b) Column Axial Forces 

(c) Column Axial Forces (d) Brace Axial Forces 

(e) Brace Axial Forces (f) Column Displacement 

 

0
200
400
600
800

1000
1200
1400

0 5 10 15 20 25 30
Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s)

C-1

B-1

A-1

-600
-400
-200

0
200
400
600
800

1000
1200
1400
1600

0 5 10 15 20 25 30

Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s) D-1

E-1
F-1

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30

Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s)
Brace A

Brace B

-150

-100

-50

0

50

100

150

200

250

0 5 10 15 20 25 30

Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s)

Brace D

Brace C

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30
Time (sec)

D
is

pl
ac

em
en

t (
in

)

COLUMN - B1



170 

Figure 4.42 Response quantities – SCBF APM case IV 

(a) Deformed Shape: Time = 30 sec 
Magnification Factor = 20 

(b) Column Axial Forces 

(c) Column Axial Forces (d) Brace Axial Forces 

(e) Brace Axial Forces (f) Column Displacement 
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Figure 4.43 Response quantities – EBF APM case V 

(a) Deformed Shape: Time = 30 sec 
Magnification Factor = 20 

(b) Column Axial Forces 

(c) Column Axial Forces (d) Brace Axial Forces 

(e) Brace Axial Forces (f) Column Displacement 
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Figure 4.44 Response quantities – EBF APM case VI 

(a) Deformed Shape: Time = 30 sec 
Magnification Factor = 20 

(b) Column Axial Forces 

(c) Column Axial Forces (d) Brace Axial Forces 

(e) Brace Axial Forces (f) Column Displacement 
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Figure 4.45 Response quantities – EBF APM case VII 

(a) Deformed Shape: Time = 7.8 sec 
Magnification Factor = 20 

(b) Column Axial Forces 

(c) Column Axial Forces (d) Brace Axial Forces 

(e) Brace Axial Forces (f) Column Displacement 

0
200
400
600
800

1000
1200
1400
1600

0 5 10 15 20 25 30
Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s)

C-1

B-1

A-1

-100

0

100

200

300

400

500

600

0 5 10 15 20 25 30

Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s)

D-1

E-1

F-1

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30

Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s)
Brace-C

Brace A and B

-60

-40

-20

0

20

40

60

80

0 5 10 15 20 25 30

Time (sec)

A
xi

al
 F

or
ce

 (K
ip

s)

Brace - F

Brace - D

Brace - F

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20 25 30
Time (sec)

D
is

pl
ac

em
en

t (
in

)

COLUMN - B1



174 

CHAPTER 5 

PUSHDOWN ANALYSIS OF STEEL FRAMES 
CHAPTER 5. PUSHDOWN ANALYSIS OF STEEL FRAMES 

 
 
 
5.1 Introduction 
 

The alternate path method (APM) was used in Chapter 4 to study the progressive collapse 

behavior of moment and braced frames. However, as indicated in Chapter 4, APM cannot 

be used for estimating the residual capacity of a damaged structure and the probable 

collapse modes in cases where the structural system survives the loss of critical members. 

Also, as discussed in Chapter 4, APM may indicate no collapse even when a critical 

member is near capacity, which then leads to questions about the robustness of the 

system. In other words, will the system fail if the member near capacity fails?   

 

In this chapter a new analysis technique is introduced that can be used to determine the 

failure load and collapse mechanism of a damaged structure. The presented technique is 

termed “pushdown analysis” and parallels the pushover method commonly used for 

assessing the seismic resistance of building structures. The proposed analysis method is 

used to find the collapse load and the failure modes of steel structural systems using the 

structural scale models developed in Chapter 4. 

 

The proposed pushdown analysis method is described in Section 5.2. Section 5.3 

discusses the structural scale models used for pushdown analysis, while simulation results 

for various pushdown analysis cases are presented in Section 5.4. Finally, the simulation 

results are discussed in Section 5.5 and 5.6, and the important conclusions are presented 

in Section 5.7. 
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5.2 The Pushdown Analysis Method 
 

The proposed pushdown analysis method consists of analyzing the structure, which has 

suffered loss of one or more critical members, under increasing gravity loads. Gravity 

load is increased until failure leading to disproportionate collapse of the structure occurs. 

The load corresponding to this failure state is defined as the failure load. The overload 

capacity of the structure is expressed in terms of overload factor (Eq. 5.1), defined as the 

ratio of failure load to the nominal gravity loads. The proposed pushdown analyses of a 

damaged structure can be accomplished in three different ways: Uniform pushdown (Fig. 

5.1); Bay pushdown (Fig. 5.2); and Incremental dynamic pushdown (Fig. 5.3). These 

analysis cases are applicable when APM shows that a structure is safe but the residual 

capacity of the damaged structure has to be determined. 

݀ܽ݋݈ݎ݁ݒܱ  ݎ݋ݐܿܽܨ ൌ
݁ݎݑ݈݅ܽܨ ݀ܽ݋݈

݈ܽ݊݅݉݋ܰ ݕݐ݅ݒܽݎ݃  (5.1) ݏ݀ܽ݋݈

 

In the uniform pushdown case (Fig. 5.1), gravity loads on the damaged structure are 

increased proportionally in a nonlinear static analysis framework until the failure limit is 

reached. This analysis will lead to a collapse state corresponding to failure of the weakest 

part of the damaged structure. The failure may occur outside the damaged bays, and thus 

it might not be possible to estimate the residual capacity of the damaged bay. For 

example, a gravity bay may dominate the collapse response. 

 

To focus the method on the damaged bays, the bay pushdown method is proposed (Fig. 

5.2). In this method, the gravity load is increased proportionally only in the bays that 

suffered damage until failure occurs within the damaged bays. The remaining part of the 

structure is only subjected to nominal gravity loads. Hence, this analysis will lead to a 

collapse state corresponding to failure in the damaged bays. As in the previous method, 

the residual capacity of the damaged bays is measured in terms of an overload factor 

calculated as the ratio between the load leading to failure and the nominal gravity load. 
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The incremental dynamic pushdown method (Fig. 5.3) is similar to nonlinear dynamic 

APM but with one important difference, i.e. the gravity load in the damaged bays is 

increased incrementally up to a limit where failure occurs. Multiple analyses with 

increasing gravity loads in damaged bays may be required until a load factor 

corresponding to the failure in damaged bays is established. This analysis method 

accounts for dynamic effects, which may be important for some cases and is similar to 

incremental dynamic analysis used in earthquake engineering. However, this a costly 

analysis in terms of required computational effort. 

 

5.3 Structural Scale Models for Pushdown Analysis 
 

Pushdown analysis of structural scale models of the 2-D 10 story IMF, SMF, SCBF and 

EBF building systems developed in Chapter 4 is carried out to investigate their residual 

capacity after loss of a critical member. As discussed for the collapse analyses in Chapter 

4, appropriate structural models that are to be used in pushdown analysis should be able 

to represent important modes of failure. For instance, in case of steel frames some of the 

failure modes can be related to instability of the column members and fracture in the 

structural members or connections. Additionally in the braced frames, the failure may 

also correspond to buckling of braces. Global collapse of the structural system may 

involve a combination of these failure modes. 

 

The structural scale models considered herein account for the following failure modes: 

(a) fracture in beam to column moment connections and shear connections; (b) failure 

due to column buckling out of plane (weak axis buckling); (c) failure due to buckling of 

braces; and (d) failure of shear links. The detailed calibration exercises in Chapter 4 

ensure that these models are able to represent system behavior with high fidelity. For 

analysis purpose, only the in-plane response of the frames is considered, however, ground 

story columns are allowed to deform out of plane to model failure due to column 

buckling. To allow weak axis buckling of columns to occur, ground story columns are 

provided with out of plane imperfection of 250/ܮ (ܮ ൌ length of column) to model their 

inelastic buckling and post buckling response. Support conditions at ground story column 
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bases are modeled as fixed in plane but hinged out of plane. The models are subjected to 

the limitations discussed in Section 4.10.  

 

5.4 Pushdown Analysis Results 
 

Pushdown analyses of the abovementioned frames are carried out using the three analysis 

methods described in Section 5.2. Table 5.1 to Table 5.4 show the list of pushdown 

analysis cases for IMF, SMF, SCBF and EBF systems considered in this study together 

with the corresponding APM case considered in Chapter 4. For example in Table 5.1 for 

IMF system, pushdown analysis case 1 corresponds to the APM case 1 in Chapter 4 

(Table 4.2) where the column F-1 of the IMF system was removed. In this case, uniform 

pushdown analysis is carried by removing the column F-1 in the IMF system. The 

pushdown analysis method, overload factors, and modes of failure are also reported in 

these tables. 

 

5.4.1 IMF 
 

From the analysis results in Table 5.1, it can be observed that both uniform and bay 

pushdown cases generally lead to similar collapse modes. However, in uniform 

pushdown, a lower overload factor is obtained as compared to the corresponding bay 

pushdown case. This is because of the fact that the structure is under higher overall loads 

for uniform pushdown cases. It is also observed that moment bays have higher overload 

factor as compared to the case where one of the bays is a gravity bay. This is due to 

failure of shear connections in the gravity bay, which limits the overload capacity that 

can be achieved. 

 

The collapse mode is related to out of plane buckling of the ground story columns for 

uniform and bay pushdown analysis cases 1, 2, 3, 5 6 and 7. The failure modes for these 

cases are shown in Fig. 5.4 (a), (b) and (c). The maximum axial load supported by a 

ground story column in moment bays (W18×119 section) prior to failure by buckling is 

about 1250 kips.  The design capacity of W18×119 column (Fy = 50 ksi, Ky = 1.0 and φ 
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= 1.0) is 1124 kips. Thus, the proposed column model with imperfections produces 

results that are sufficiently close to the design capacity. For analysis cases 2, 3, 6 and 7, a 

peak axial force of about 52 kips is developed in the first story beams in the damaged 

bays, before the collapse occurs by column buckling. In remaining uniform and bay 

pushdown analyses cases 1 and 8, collapse occurs as a result of shear connection failures 

in gravity bays as shown in Fig. 5.4 (d) at overload factors of 1.64 and 1.65 respectively. 

A peak axial tension of about 66 kips develops in the 1st story gravity beam before the 

shear connection fails. 

 

The collapse modes for the incremental dynamic pushdown cases 10, 11 and 12 are same 

for as those for the corresponding uniform and bay pushdown cases. For analysis case 9, 

however, failure occurs by formation of a collapse mechanism over the entire story height 

where plastic hinges formed at two ends of beams in the bay EF as shown in Fig. 5.4 (e). 

No fractures were observed during the simulation time of interest i.e. until the column F-

1 (top end) hits the ground level, however, rotations obtained at these locations show that 

fracture of connections is imminent. 

 

Failures due to column buckling (pushdown analyses cases - 1, 2, 3, 5, 6, 7, 10 and 11) 

result in catastrophic failure of the entire frame in the sense that full collapse occurs as 

soon as a column buckles. The IMF frame is unable to safely transfer the load shed by the 

buckling column.  

 

5.4.2 SMF 
 

Analysis results for SMF frame are reported in Table 5.2 and corresponding collapse 

modes are shown in Fig. 5.5. For analysis cases 1 and 4 (Fig. 5.5 (a)), collapse started as 

a result of failure of shear connections in gravity bay CD. The shear connection in beam 

CD-1 (left end) failed first and is followed by failure of shear connections in the upper 

stories. A peak axial force of 85 Kips is developed in beam CD-1. Failure of shear 

connections is followed by failure of moment connections in bay DE. An overload factor 

of 1.82 is achieved in both analyses cases. 
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For this frame, differences are noted in the collapse modes associated with the uniform 

and the bay overloading cases. In the uniform overloading analysis case 2, for example, 

collapse occurred due to shear connection failures in gravity bay CD (Fig. 5.5 (b)), while 

for the corresponding bay overloading case 5, collapse is due to the fracture in connection 

regions (RBS zone) in bays DE and EF (Fig. 5.5 (d)). Peak catenary force of 240 kips 

develops in beams DE-1 and EF-1 for analysis case 5. Similarly, uniform overloading 

analysis case 3 results in collapse due to buckling of column E-1 (Fig. 5.5 (c)), however, 

for bay overloading case 6, failure is due to the fracture in connection regions (RBS 

zones) in bay EF (Fig. 5.5 (e)). The maximum axial load supported by ground story 

column E-1 (W24×146), prior to failure by buckling is about 1681 kips.  The design 

capacity of this column (Fy = 50 ksi, Ky = 1.0 and φ =1.0) is 1506 kips. 

 

Collapse modes for incremental dynamic overloading cases is similar to bay overloading 

cases except for case 7, where the collapse is triggered by shear connection failure in 

beam CD-1 (right end) as opposed to shear connection failure in beam CD-1 (left end) for 

case 4. A peak catenary force of 256 kips is developed in beams DE-1 and EF-1 for the 

pushdown analysis case 8, at a vertical displacement of about 42 inches.  

 

As shown in Fig. 5.5 (g), for analysis case 7 and for load factor of 1.5 only a partial 

collapse occurs with failure of shear connections in gravity beams CD-1 and CD-2. The 

number of shear connection failures in gravity bay CD increases with load factor (Fig. 5.5 

(h)) and complete collapse of the bay CD occurs at load factor of 1.7 (Fig. 5.5 (i)).  

 

5.4.3 SCBF 
 

As shown in Table 5.3 and Fig. 5.6, collapse in this frame is initiated by buckling of 

braces or shear connection failures. Failure modes are also consistent across various 

analysis cases. For example, in pushdown analysis cases 1, 4 and 7 for uniform, bay and 

incremental dynamic overloading respectively, the failure is initiated by buckling of 

brace B as shown in Fig. 5.6 (a). The peak force in brace B (HSS 7×7×½) is 471 kips. 

Assuming a strength reduction factor of 1.0 and an effective length factor, K = 0.5, the 
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capacity of this brace is 445 kips. Thus, the proposed brace model with imperfections 

produces results that are sufficiently close to the design capacity. For pushdown analysis 

cases 2, 5 and 8 (Fig. 5.6 (b) and (d)), collapse started from failure of shear connections 

in beam CD-10. A peak axial force of 64 kips is developed in beam CD-10. For 

pushdown analysis cases 3, 6 and 9, collapse occurred due to buckling of brace A (Fig. 

5.6 (c)), which is followed by shear connection failure in bay CD.   

 

The collapse cases associated with brace buckling have a higher overload factor than 

cases where collapse is initiated by shear connection failures.  

 

5.4.4 EBF 
 

Analysis results for EBF frame are reported in Table 5.4 and corresponding collapse 

modes are shown in Fig. 5.7. For uniform and bay pushdown cases 1 and 4 (Fig. 5.7 (a)), 

collapse is initiated by buckling of column C-1 and is followed by shear connection 

failures in bay AB. Maximum axial load supported by ground story column C-1 

(W14×176), prior to failure by buckling is about 2357 kips.  The design capacity of 

column C-1 (Fy = 50 ksi,  Ky = 1.0 and φ =1.0) is 2122 kips. Peak axial force of 61 kips 

is developed in beam AB-1. Overload factors of 2.19 and 2.32 are achieved for uniform 

and bay pushdown cases respectively. 

 

For uniform and bay pushdown cases 2 and 5 (Fig. 5.7 (b)), collapse initiated due 

buckling of column B-1 and is followed by shear connection failure in bay AB. Overload 

factors of 3.39 and 3.60 is achieved for uniform and bay pushdown cases respectively. 

Pushdown analysis cases 3 and 6 (Fig. 5.7 (c)) results in collapse initiated by buckling of 

column C-1 with overload factors of 2.08 and 2.20 respectively. 

 

For incremental dynamic pushdown case 7, damage increases progressively (Fig. 5.7 (d), 

(e) and (f)) with the increase in overload factor due to failure of shear connections in bay 

AB. Complete bay collapse take place at an overload factor of 2.0. Similar results are 

obtained for incremental dynamic analysis case 9 (Fig. 5.7(h), (i) and (j)), where the 
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complete bay collapse occur at an overload factor of 1.8.  For case 8 (Fig. 5.7(g)), 

collapse initiate due to buckling of column B-1 at an overload factor of 3.2.  

 

5.5 Discussion of Results for Moment Frames 
 

Results presented in Section 5.4.1 and 5.4.2 shows that the proposed pushdown methods 

can be successfully used to estimate the residual strength and collapse modes of a 

damaged structure. APM case 4 for IMF system in Chapter 4 predicts that the loss of 

column C-1 will not lead to progressive collapse. However, engineering judgment 

suggested that this is likely a critical situation. This judgment is reaffirmed by the 

incremental dynamic pushdown analysis, which gives and overload factor of only 1.2 for 

this case. 

 

The simulation results suggest that the SMF building designed for high seismic risk is 

generally more resistant to progressive collapse and hence more robust than the IMF 

building designed for moderate seismic risk. This is evident from the overload factors 

which for the SMF building range from 1.4 to 3.6 while the IMF building has overload 

factors in the range of 1.2 to 2.9. Collapse modes across the three pushdown analysis 

cases are usually consistent, except for few cases where the dynamic pushdown case 

predicted a different collapse mode than the static cases. 

 

The superior robustness of SMF frames is also manifested by the collapse modes 

associated with the various analysis cases.  Except for analysis case 3, collapse in the 

SMF frame is associated with failure of shear connections and fracture in RBS zones in 

connection regions. Such collapse modes are desirable as they limit the failure in the 

damaged bays while shielding the rest of the structure, thus limiting the extent of 

collapse. In contrast, most the collapse modes in the IMF frame are associated with 

buckling of ground story columns. Such collapse modes are undesirable as they 

jeopardize the stability of the entire structural system. This is evident from pushdown 

analysis cases for the IMF system where column buckling is followed by instability and 

collapse of the entire frame. 
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The better performance of SMF system can be attributed to stronger beams and columns 

present in this system as compared to IMF frame. This is a result of stringent seismic 

requirements which the SMF frame has to satisfy. Seismic detailing requirements in SMF 

system also play an important role as it helps in the formation of catenary action. A peak 

catenary force of 256 kips is successfully transferred by the reduced beam connections.   

Moreover, the weaker RBS zones act as structural fuses which fail relatively early, 

thereby limiting the loads that are transferred to the columns.  

 

5.6 Discussion of Results for Braced Frames 
 

The simulation results suggest that the EBF building designed for high seismic risk is 

generally more resistant to progressive collapse and hence more robust than the SCBF 

building designed for moderate seismic risk. This is evident from the overload factors 

which for EBF building ranges from 1.8 to 3.6 while SCBF building has overload factors 

in the range of 1.3 to 2.0.  

 

Collapse modes in SCBF system are usually associated with buckling of a brace or failure 

of shear connections and results in collapse of entire frame. Collapse modes for SCBF 

across the three pushdown analysis cases are consistent. For EBF frame static pushdown 

analysis cases results in collapse initiated by column buckling while for incremental 

dynamic pushdown, collapse is usually due to failure of shear connections. 

 

5.7 Summary and Conclusions 
 

The study in this chapter was concerned with the development of a new analysis 

technique that can be used for estimating the residual capacity of a damaged structure and 

the corresponding collapse modes. Specifically, three pushdown methods are proposed - 

uniform pushdown, bay pushdown and incremental dynamic pushdown. The proposed 

methods were then used to estimate the residual capacity and collapse modes of 2-

dimensional, 10 story SMF, IMF, SCBF and EBF frames, for cases where APM analyses 

in Chapter 4 predicts no collapse. Based on the simulation studies conducted and within 
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the assumptions and limitations described in the chapter, the following conclusions can 

be drawn.  

 

1. The proposed pushdown analysis methods can be used for estimating the residual 

capacity and collapse modes of a damaged structure.  

 

2. Incremental dynamic pushdown gives a best estimate of residual capacity and 

collapse modes. Collapse modes across the three pushdown analysis cases usually 

agree for the building systems considered in this study. However, there are 

scenarios where dynamic analysis yields a different collapse mode as compared to 

the static case. For such cases dynamic analysis is indispensable, since the static 

analyses, even with dynamic impact factors, cannot predict the correct collapse 

mode. 

 

3. The proposed analyses methods can be used to study the robustness of structural 

systems and to design new more robust structural systems. Overload factor 

together with collapse modes is a good indicator of robustness of the system. 

Simulation results shows that SMF and EBF frames are more robust than the IMF 

and SCBF systems respectively.  

 

4. Seismic detailing in SMF system play an important role by allowing catenary 

forces to be developed in beams. Further, the fracture of the RBS connections in 

this frame limits the maximum force being transferred to the columns. This limits 

the extent of damage in the frame. It is desirable to have failure in beams rather 

than in columns. The column failure mode is undesirable as it is more catastrophic 

than beam failures since it undermines the stability of the entire structural system. 

Thus, the robustness of the IMF system can be increased by using stronger 

columns, which might then shift the failure locations to beams connection regions 

instead of collapse by column buckling. 
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Pushdown 
Analysis Case 

APM  
Case 

Pushdown 
Analysis Type 

Overload 
Factor Failure Mode 

1 1 Uniform 2.12 Buckling of Column E-1 

2 2 Uniform 2.53 Buckling of Column D-1 

3 3 Uniform 2.54 Buckling of Column E-1 
and C-1 

4 4 Uniform 1.64 Failure of shear 
connections in bay CD 

5 1 Bay 2.33 Buckling of Column E-1 

6 2 Bay 2.90 Buckling of Column D-1 

7 3 Bay 2.90 Buckling of Column E-1 
and C-1 

8 4 Bay 1.65 Failure of shear 
connections in bay CD 

9 1 Incremental 
Dynamic 2.0 Plastic mechanism 

formation in bay EF 

10 2 Incremental 
Dynamic 2.2 Buckling of Column D-1 

11 3 Incremental 
Dynamic 2.2 Buckling of Column E-1 

and C-1 

12 4 Incremental 
Dynamic 1.2 Failure of shear 

connections in bay CD 

 
Table 5.1 Pushdown Analysis Results - IMF (SDC-C) 
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Pushdown 
Analysis 

Case 
APM  
Case 

Pushdown 
Analysis 

Type 
Overload 

Factor Failure Mode 

1 6 Uniform 1.82 Failure of shear connections 
in bay CD 

2 7 Uniform 3.23 Failure of shear connections 
in bay CD 

3 8 Uniform 2.93 Buckling of Column E-1 

4 6 Bay 1.82 Failure of shear connections 
in bay CD 

5 7 Bay 3.60 Failure of connections (RBS 
zone) in bay DE and EF 

6 8 Bay 3.5 Failure of connections (RBS 
zone) in bay EF 

7 6 Incremental 
Dynamic 1.7 Failure of shear connections 

in bay CD 

8 7 Incremental 
Dynamic 3.0 Failure of connections (RBS 

zone)  in bay DE and EF 

9 8 Incremental 
Dynamic 3.0 Failure of connections (RBS 

zone) in bay EF 

 
Table 5.2 Pushdown Analysis Results - SMF (SDC-D) 
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Pushdown 
Analysis Case 

APM  
Case 

Pushdown 
Analysis Type 

Overload 
Factor Failure Mode 

1 II Uniform 1.91 Buckling of Brace B 

2 III Uniform 1.77 Failure of shear 
connections in bay CD 

3 IV Uniform 1.87 Buckling of Brace A 

4 II Bay 1.96 Buckling of Brace B 

5 III Bay 1.97 Failure of shear 
connections in bay CD 

6 IV Bay 2.00 Buckling of Brace A 

7 II Incremental 
Dynamic 1.8 Buckling of Brace B 

8 III Incremental 
Dynamic 1.3 Failure of shear 

connections in bay CD 

9 IV Incremental 
Dynamic 1.7 Buckling of Brace A 

 
Table 5.3 Pushdown Analysis Results - SCBF (SDC-C) 
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Pushdown 
Analysis Case 

APM 
Case 

Pushdown 
Analysis Type 

Overload 
Factor 

Failure Mode 

1 V Uniform 2.19 Buckling of column C-1 

2 VI Uniform 3.39 Buckling of column B-1 

3 VII Uniform 2.08 Buckling of column C-1 

4 V Bay 2.32 Buckling of column C-1 

5 VI Bay 3.60 Buckling of column B-1 

6 VII Bay 2.20 Buckling of column C-1 

7 V Incremental 
Dynamic 2.0 Shear connection failures 

in bay AB 

8 VI Incremental 
Dynamic 3.2 Buckling of column B-1 

9 VII Incremental 
Dynamic 1.8 Shear connection failures 

in bay AB 

 
Table 5.4 Pushdown Analysis Results - EBF (SDC-D) 
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Figure 5.1 Pushdown analysis - case (a) Uniform pushdown 

 

 

Figure 5.2 Pushdown analysis - case (b) Bay pushdown 
 

 
Figure 5.3 Pushdown analysis - case (c) Incremental dynamic pushdown 
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Figure 5.4 Failure Modes - IMF (SDC-C) 

(a) Failure Mode: Pushdown Analysis Case 
1 and 5  

(b) Failure Mode: Pushdown Analysis Case 
2, 6 and 10 

(c) Failure Mode: Pushdown Analysis Case 
3, 7 and 11 

(d) Failure Mode: Pushdown Analysis Case 
4, 8 and 12 

 

 

(e) Failure Mode: Pushdown Analysis 
Case 9 
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Figure 5.5 Failure Modes - SMF (SDC-D) 

(a) Failure Mode: Pushdown analysis case 1 
and 4  

(b) Failure Mode: Pushdown analysis case 2

(c) Failure Mode: Pushdown analysis case 3 (d) Failure Mode: Pushdown analysis case 5 
and 8 

(f) Failure Mode: Pushdown analysis case 6 
and 9 

(g) Failure Mode: Pushdown analysis case 7
Load Factor: 1.5 
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(h) Failure Mode: Pushdown analysis case 7
Load Factor: 1.6 

(i) Failure Mode: Pushdown analysis case 7
Load Factor: 1.7 
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Figure 5.6 Failure Modes - SCBF (SDC-C) 

(a) Failure Mode: Pushdown analysis case 1, 
4 and 7  

(b) Failure Mode: Pushdown analysis case 2 
and 5 

(c) Failure Mode: Pushdown analysis case 3, 
6 and 9  

(d) Failure Mode: Pushdown analysis case 8
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Figure 5.7 Failure Modes - EBF (SDC-D) 

(a) Failure Mode: Pushdown analysis case 1 
and 4  

(b) Failure Mode: Pushdown analysis case 2 
and 5 

(c) Failure Mode: Pushdown analysis case 3 
and 6  

(d) Failure Mode: Pushdown analysis case 7 
Load Factor 1.3  

(e) Failure Mode: Pushdown analysis case 7 
Load Factor 1.6 

(f) Failure Mode: Pushdown analysis case 7 
Load Factor 2.0 
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(g) Failure Mode: Pushdown analysis case 8 
Load Factor 3.2 

(h) Failure Mode: Pushdown analysis case 9 
Load Factor 1.3 

(i) Failure Mode: Pushdown analysis case 9 
Load Factor 1.6 

(j) Failure Mode: Pushdown analysis case 9 
Load Factor 1.8 
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CHAPTER 6  

MICROMECHANICAL MODEL FOR SIMULATION 
OF DUCTILE FRACTURE IN STEEL 

CHAPTER 6. MICROMECHANICAL MODEL FOR SIMULATION OF DUCTILE FRACTURE IN STEEL 

 
 
 
6.1 Introduction 
 

Ductile fracture in steel is a multi-step process resulting from microvoid nucleation, 

growth and coalescence of voids in a plastically deforming material. Microvoids typically 

nucleate at inclusions either by decohesion/debonding of the inclusion matrix interface or 

by fracture of the inclusion itself. Void nucleation is followed by a void growth stage 

where voids grow and interact until localized plastic flow and necking of the inter-void 

matrix occurs. The final phase of ductile fracture occurs when adjacent micro-voids 

coalesce together into a crack. The micromechanical constitutive model for porous plastic 

materials proposed by Gurson (1977) and further modified by Tvergaard (1981) and 

Tvergaard and Needleman (1984), here referred to as Gurson-Tvergaard-Needleman 

(GTN) model, is frequently used to simulate ductile fracture in steels. Variations of 

Gurson model such as those proposed by Gologanu et al. (1993, 1994) and Garajeu et al. 

(2000) also exists, but they are difficult to calibrate and therefore not commonly used in 

practice. 

 

The GTN model was successfully used in Chapter 3 to simulate the behavior of steel sub-

assemblages under collapse conditions. The relative success of the GTN model is 

primarily due to the incorporation of a sufficient number of adjustable parameters to 

enable curve fitting of the desired experimental results. However, the chosen parameters 

are found to be inconsistent with metallurgical results and thus have no physical 
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significance (Thomason, 1998).  Following are important issues that are not address by 

the GTN model: 

 

a) Void nucleation strain is independent of hydrostatic stress. Void nucleation models 

proposed by Argon et al. (1975) and Goods et al. (1979), and metallurgical studies 

(Beremin (1981), Le Roy et al. (1981), Thomson (1990)) have shown that void nucleation 

strain is sensitive to hydrostatic stress and that the nucleation strain decreases with 

increase in mean stress. 

 

b) Material damage due to elongation of micro-voids is not considered by the GTN 

model, which assumes disintegration of material due to only dilation of micro-voids. 

However, the assumed void coalescence mechanism is not primarily due to micro-void 

dilations. The very large volumetric dilations needed to bring voids into close proximity 

are not observed in metallurgical examinations. Metallurgical results (Liu et al. (1968), 

Hayden et al. (1969), Brown (1976), Le Roy et al. (1981), Wilsdorf (1983), Thomson 

(1990)) have confirmed that void coalescence is primarily due to plastic limit load failure 

of the intervoid matrix which is sometimes assisted by micro-void nucleation at second 

phase particles. An additional parameter known as the critical void volume fraction is 

introduced in the GTN model to artificially account for the rapid disintegration of 

material after critical conditions are reached. 

 

c) Most importantly, model parameters in the GTN model that are calibrated to a 

particular experiment cannot be considered as material properties and cannot be used to 

simulate ductile fracture in situations which differ largely from the original experiment 

used for model calibration. This is because the model parameters are dependent on the 

state of stress within the material and thus cannot be used to simulate fracture under a 

different state of stress. 

 

In this chapter a damage mechanics-based plasticity model is developed within a finite 

deformation framework for modeling the micro-mechanical process of ductile fracture in 

structural steels. Damage mechanics principles of effective stress and strain equivalence 
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are employed to formulate a constitutive model for simulation of damage due to micro-

voids nucleation, growth and coalescence. The micro-scale response of the damage 

model arises from the addition of history variables known as damage variables that 

represents the change in micro-structure of the material undergoing a deformation 

process. In the micro-mechanical model proposed in this work, a scalar damage variable 

is used to represents the changes that arise due to micro-structural evolution during the 

ductile fracture process in structural steels. In particular, the three stages of ductile 

fracture initiation: micro-void nucleation, growth and coalescence are modeled by an 

appropriate evolution function for the damage variable. Moreover, damage to due to both 

void elongation and volumetric void growth is modeled. This is a distinct advantage over 

the existing micro-mechanical models where only one void growth mode is usually 

represented. Also, the void nucleation strain is taken to be a function of stress triaxiality, 

thus rendering the model parameters as material properties. This model also belongs to 

the class of coupled multi-scale models, wherein the response at the macro-scale is 

directly coupled to the micro-structural evolution via constitutive material models. The 

model is calibrated and validated by comparing its response to the results obtained from 

experimental testing of notched steel bar specimens. 

 

The relevant theoretical details of finite deformation continuum theory are first presented 

in Section 6.2, while other background details of the theory are included in Appendix A. 

The continuum mechanics framework presented here is based on the work of Van Der et 

al. (1996) and consistently employs the concepts of dual variables to formulate the 

theory. Numerical implementation of the proposed model is presented in Section 6.3. The 

result of parametric studies to investigate the effect of various model parameters on the 

material response is presented in Section 6.4. Experimental testing of steel specimens and 

model validation and calibration studies are presented in Section 6.5. and finally the 

important conclusions are presented in Section 6.6. 
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6.2 Theoretical Aspects 
6.2.1 Kinematics 
 

A continuum body ܤ with a reference configuration ी௢ is considered as a 3-dimensional 

differentiable manifold. Let ܷ ؿ  ी௢ be an open set. A coordinate system, ሼܺ஺ሽ, on ी, is 

a one-to-one mapping between the point’s ܲ א ܷ and the points in an open subset of Թଷ 

i.e. ሼXAሽ:  ܷ ื Թଷ. Let ݐ be the time scale with ݐ א ሾ0, ∞ሿ. Motion of the body is 

considered as a one parameter family of at least ܥଵ diffeomorphism ࣐ሺܲ, :ሻݐ ी௢ ՜

ी௧: ܲ հ  is the time. ी௧ is the actual configuration of the body ݐ where the parameter ,݌

at time ݐ and is again a manifold. A coordinate system on ी௧ is denoted by ሼݔ௔ሽ. The set 

of all possible configurations ी௣ is called the configuration space ࣝ. The motion of the 

body ܤ is then simply a curve in configuration space ࣝ. 

 

For the following discussion, let ሼࡳ௜ሽ and ሼࡳ௜ሽ be the basis vectors of tangent ( ௉ܶी௢) and 

cotangent ( ௉ܶ
 ௜ሽ be the basis vectors ofࢍ௜ሽ and ሼࢍी௢) spaces, respectively. Also, let ሼכ

tangent ( ௣ܶी௧) and cotangent ( ௣ܶ
 .ी௧) spaces, respectivelyכ

 

Definition 6.1: The material velocity field, ࢂሺܲ,  ሻ is a vector field on ी௢ and is definedݐ

as follows: 

,ሺܲࢂ  :ሻݐ ी௢ ՜ ௉ܶी௢ ,ሺܲࢂ ሻݐ ؝
߲࣐ሺܲ, ሻݐ

ݐ߲  (6.1)  

 

Definition 6.2:  The motion ࣐ሺݐሻ is called ܥ௥-regular if it is a ܥ௥- diffeomorphism for all 

time ݐ. 

Definition 6.3:  The spatial velocity field of at least ܥଵ-regular motion is a vector field on 

ी௧ and is defined as follows:  

 ࢜ሺ݌, :ሻݐ ी௧ ՜ ௣ܶी௧ ࢜ሺ݌, ሻݐ ؝ ,ሺܲࢂ ሻݐ ל ࣐ିଵ  (6.2)  

Definition 6.4:  The spatial velocity gradient, ࢒\, is defined as mixed ( \ ) 2nd order tensor 

field on ी௧:  

௣ܶी௧ :\࢒  ՜ ௣ܶी௧ \࢒ ൌ grad ࢜ሺ݌,   ሻ (6.3)ݐ
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where the gradient operation is taken with respect to the current configuration. 

 

Definition 6.5:  The tangent, ௉࣐ܶ, of the map ࣐ሺܲ, :ሻݐ ी௢ ՜ ी௧, for fixed ݐ, is known as 

the deformation gradient and is a two point tensor defined as follows: 

 
ऐ\ ൌ ऐ\ሺܲ, ሻݐ ൌ ௉࣐ܶ ൌ ऐ: ௉ܶी௢ ՜ ௣ܶी௧ 

ד ऐ ൌ ·࣠஺
௔·ࢍ௔۪ࡳ஺ and ·࣠஺

௔· ൌ
߲߮௔

߲ܺ஺ฬ
௉

 
(6.4)  

 

Also, ࢒\ is related to the deformation gradient by the following relationship: 

\࢒  ൌ ऐሶ ऐିଵ (6.5)  

Deformation gradient, ࢒\, is a mixed tensor and therefore it can be decomposed into 

symmetric and skew-symmetric parts as follows:  

 
\࢒ ൌ \ࢊ ൅ ࢝\ 

ד \ࢊ   ൌ
1
2 ൫࢒\ ൅ ൯்\࢒ and ࢝\ ൌ

1
2 ሺ࢒\ െ  ሻ்\࢒

(6.6)  

where ࢊ\is known as the rate of deformation tensor and ࢝\is known as the spin tensor. 

The rate of deformation tensor ࢊ\can also be expressed in terms of Lie derivative of the 

mixed spatial 2nd order identity tensor ࢏\: ௣ܶी௧ ՜ ௣ܶी௧, as follows: 

 

1
2 ख௩൫࢏\൯ ൌ

1
2 כ࣐ ቆ

ܦ
ݐܦ ൯ቇ\࢏൫כ࣐ ൌ

1
2 ऐି் ൤

ܦ
ݐܦ ൫ऐ்࢏\ऐ൯൨ ऐିଵ 

ൌ
1
2 ऐି்൫ऐሶ ்ऐ ൅ ऐ்ऐሶ ൯ऐିଵ ൌ  \ࢊ

(6.7)  

In general, the Lie derivative of spatial 2nd order tensor field ࢚\: ௣ܶी௧ ՜ ௣ܶी௧, can be 

obtained as follows: 

 
ख௩൫࢚\൯ ൌ כ࣐ ቆ

ܦ
ݐܦ ൫࢚\൯ቇכ࣐ ൌ ऐି் ൤

ܦ
ݐܦ ൫ऐ்࢚\ऐ൯൨ ऐିଵ 

ൌ ऐି்ऐሶ ்࢚\ ൅ ࢚\ ൅ ࢚\ऐሶ ऐିଵ ൌ ሶ࢚\ ൅ \࢒\࢚ ൅  \்࢚\࢒

(6.8)  

 

6.2.2 Deformation and Strain Measures 
 
Deformations are usually measured in terms of the difference of the square of line 

elements in the reference configuration ( ௉ܶी௢) and in the current configuration ( ௣ܶी௧). 
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Let ݀ࡼ ൌ ሻ࢖ሺ݀כ࣐ א ௉ܶी௢ and ݀࢖ ൌ ሻࡼሺ݀כ࣐ א  ௣ܶी௧ be the vectors in reference and 

current configuration respectively. Then the squared length is expressed in terms of the 

inner product as follows:    

 
݀ܲଶ ൌ .ࡼ݀ ࡼ݀ ൌ .ሻ࢖ሺ݀כ࣐ ሻ࢖ሺ݀כ࣐ ൌ ऐିଵ݀࢖. ऐିଵ݀࢖

ൌ .࢖݀ ऐି்ऐିଵ݀࢖ ൌ .࢖݀  ࢖൯݀\ࡵ൫כ࣐
(6.9)  

 

 
ଶ݌݀ ൌ .࢖݀ ࢖݀ ൌ .ሻࡼሺ݀כ࣐ ሻࡼሺ݀כ࣐ ൌ ऐ݀ࡼ. ऐ݀ࡼ

ൌ .ࡼ݀ ऐ்ऐ݀ࡼ ൌ .ࡼ݀  ࡼ൯݀\࢏൫כ࣐
(6.10)  

where ࡵ\: ௉ܶी௢ ՜ ௉ܶी௢   and ࢏\: ௣ܶी௧ ՜ ௣ܶी௧  are 2nd order mixed identity tensors. 

The following strain tensors are introduced: 

Right Cauchy Green Tensor 
:\࡯ ௉ܶी௢ ՜ ௉ܶी௢  

\࡯ ؝ ऐ்ऐ ൌ  ൯\࢏൫כ࣐
(6.11)  

Left Cauchy Green Tensor 
:\࢈ ௣ܶी௧ ՜ ௣ܶी௧ \࢈ ؝ ऐऐ் 

ଵି\࢈ ൌ ऐି்ऐିଵ ൌ  ൯\ࡵ൫כ࣐
(6.12)  

Piola deformation Tensor 
:\࡮ ௉ܶी௢ ՜ ௉ܶी௢  

\࡮ ؝ ଵି\࡯ ൌ ऐିଵऐି் 
(6.13)  

Green-Lagrangian Tensor 
:\ࡱ ௉ܶी௢ ՜ ௉ܶी௢  

\ࡱ ؝
1
2 ൫࡯\ െ ൯\ࡵ ൌ  ൯\ࢋ൫כ࣐

(6.14)  

Euler-Almansi Tensor 
:\ࢋ ௣ܶी௧ ՜ ௣ܶी௧  

\ࢋ ؝
1
2 ൫࢏\ െ ଵ൯ି\࢈ ൌ  ൯\ࡱ൫כ࣐

(6.15)  

 

The difference of the squares of line elements can be expressed as follows: 

ଶ݌݀  െ ݀ܲଶ ൌ .ࡼ2݀ ࡼ݀\ࡱ ൌ .࢖2݀   (6.16) ࢖݀\ࢋ

 

Remark 6.1:  The strain tensors presented above are some of the common measures of 

deformation employed in nonlinear solid mechanics. However, these are not the 

only strain measures that can be defined. A comprehensive review of strain 

measures can be found in Hill (1968, 1978) and Lubarda (2001). 
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The material time derivatives of the strain tensors ࡯ and ࡱ, which are defined on the 

reference configuration, can be computed as follows: 

ሶ࡯  \ ൌ ऐሶ ்ऐ ൅ ऐ்ऐሶ ൌ   ൯ (6.17)\ࢊ൫כ2࣐

ሶࡱ  \ ൌ
1
2 ሶ࡯ \ ൌ   ൯ (6.18)\ࢊ൫כ࣐

where ࣐כ൫ࢊ\൯ ൌ ऐ்ࢊ\ऐ ൌ ଵ
ଶ

ऐ்൫ऐሶ ऐିଵ ൅ ऐି்ऐሶ் ൯ऐ ൌ ሶ࡯ \/2 

 

The material time derivatives of spatial tensor fields are not objective. However, Lie 

derivatives of spatial tensors fields are objective tensor fields. Thus, Lie derivatives of 

spatial strain tensor fields are commonly used in constitutive equations. For instance, Lie 

derivative of spatial tensor fields ࢈ ,\ࢋ\ and ି࢈ଵ are given by: 

 ख௩൫ࢋ\൯ ൌ כ࣐ ቆ
ܦ
ݐܦ ൯ቇ\ࢋ൫כ࣐ ൌ ሶࡱ൫כ࣐ \൯ ൌ   (6.19) \ࢊ

 ख௩൫࢈\൯ ൌ ख௩൫࢈\ିଵ൯ ൌ ૙ (6.20)  

 

6.2.3 Intermediate Configurations 
 

Intermediate configurations are usually introduced in plasticity theories implemented 

within finite deformation framework (Lee & Liu, 1967; Lee, 1969; Mandel, 1973; Simo 

and Ortiz, 1985; Simo, 1988 and others). In this section the geometrical aspects of such 

decompositions are discussed. 

 

Let ी෡ ௧ be an intermediate configuration (Fig. 6.1), then the following tangent maps are 

defined: 

 

ऐఝ: ௉ܶी௢ ՜ ௣ܶी௧ ऐ ൌ ऐఝ ൌ ௉࣐ܶ 

ऐఝభ: ௉ܶी௢ ՜ ௣ܶොी෡ ௧ ऐଵ ൌ ऐఝభ ൌ ௉࣐ܶଵ 

ऐఝమ: ௣ܶොी෡ ௧ ՜ ௣ܶी௧ ऐଶ ൌ ऐఝమ ൌ ௣ܶො ࣐ଶ 

(6.21)  

Also, since ࣐ଵ and ࣐ଶ are diffeomorphisms, the tangent ऐఝcan be expressed as the 

composition of ऐఝభand ऐఝమ, i.e. 

 ऐఝ ൌ ऐఝమऐఝభ (6.22)  
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Unless the deformation is homogeneous, i.e. ऐఝ ്  ሺܲሻ, it is not possible to݊݋݅ݐܿ݊ݑܨ

find diffeomorphisms  ࣐ଵ and ࣐ଶ such that Eq. 6.22 is satisfied for all ܲ א ी௢ at a fixed 

time ݐ. However, local diffeomorphisms ࣐ଵ: ܷ௉ ՜ ෡ܷ௉෠  and ࣐ଶ: ෡ܷ௣ො ՜ ௣ܸ can be defined 

such that Eq. 6.22 is true in some neighborhoods ܷ௉, ෡ܷ௣ො and  ௣ܸ of  ܲ, ̂݌ and ݌, 

respectively. For further discussion, intermediate configuration, ी෡ ௧, and  

diffeomorphisms,  ࣐ଵ and ࣐ଶ, are interpreted in this spirit. 

 

Let ݀ࡼ ൌ ሻ࢖ሺ݀כ࣐ ൌ ࣐ଵ
ෝሻ࢖ሺ݀כ א  ௉ܶी௢, ݀࢖ෝ ൌ ሻࡼሺ݀כ࣐ ൌ ࣐ଶ

כ ሺ݀࢖ሻ א   ௣ܶොी෡ ௧ and ݀࢖ ൌ

ሻࡼሺ݀כ࣐ ൌ ෝሻ࢖ሺ݀כ࣐ א ௣ܶी௧ be the vectors in reference, intermediate and current 

configurations respectively. Then the following kinematic relationships exist between 

these configurations: 

 

݀ܲଶ ൌ .ࡼ݀ ࡼ݀ ൌ .ሻ࢖ሺ݀כ࣐ ሻ࢖ሺ݀כ࣐ ൌ ࣐ଵ
.ෝሻ࢖ሺ݀כ ࣐ଵ

 ෝሻ࢖ሺ݀כ

ൌ .࢖݀ ऐି்ऐିଵ݀࢖ ൌ .࢖݀  ࢖൯݀\ࡵ൫כ࣐

ൌ .ෝ࢖݀ ऐଵ
ି்ऐଵ

ିଵ ෝ࢖݀ ൌ .ෝ࢖݀ ࣐ଵכ൫ࡵ\൯݀࢖ෝ 

(6.23)  

 

 

ଶ݌݀ ൌ .࢖݀ ࢖݀ ൌ .ሻࡼሺ݀כ࣐ ሻࡼሺ݀כ࣐ ൌ ࣐ଶכሺ݀࢖ෝሻ. ࣐ଶכሺ݀࢖ෝሻ 

ൌ .ࡼ݀ ऐ்ऐ݀ࡼ ൌ .ࡼ݀  ࡼ൯݀\࢏൫כ࣐

ൌ .ෝ࢖݀ ऐଶ
்ऐଶ݀࢖ෝ ൌ .ෝ࢖݀ ࣐ଶ

כ ൫࢏\൯݀࢖ෝ 

(6.24)  

 

 

ଶ̂݌݀ ൌ .ෝ࢖݀ ෝ࢖݀ ൌ .ሻࡼଵሺ݀כ࣐ ሻࡼଵሺ݀כ࣐ ൌ ࣐ଶ
כ ሺ݀࢖ሻ. ࣐ଶ

כ ሺ݀࢖ሻ 

ൌ .ࡼ݀ ऐଵ
்ऐଵ݀ࡼ ൌ .ࡼ݀ ࣐ଵ

 ࡼ൫ଙ̂\൯݀כ

ൌ .࢖݀ ऐଶ
ି்ऐଶ

ିଵ ࢖݀ ൌ .࢖݀ ࣐ଶכ൫ଙ̂\൯݀࢖ 

(6.25)  

where ଙ̂\: ௣ܶොी෡ ௧ ՜ ௣ܶොी෡ ௧  is the 2nd order mixed identity tensors on intermediate 

configuration. 

 

Remark 6.2:  In plasticity theories that employ an intermediate configuration, the 

intermediate configuration ी෡ ௧ is considered to be a stress free configuration, i.e. 

ी෡ ௧ is obtained from the current configuration ी௧ by relaxing each particle ݌ א ी௧ 
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to the stress free state  ̂݌ א ी෡ ௧. The tangent map ऐ is then expressed as ऐ ൌ

ऐ௘ऐ௣. 

 

6.2.4 Stress Measures 
 

To measure the internal power consumed inside the body due to instantaneous rate of 

deformation ࢊ\, stress measures that belongs to the dual space relative to deformation 

measures are introduced. Cauchy stress tensor field, ࣌/: ௣ܶ
ी௧כ ՜ ௣ܶ

/࣌  ी௧ andכ ൌ

 ࣌/ሺ݌,  :ሻ, is defined on the current configuration such that  the internal power is given byݐ

 Internal Power, P୧୬୲ ൌ න ,/࣌ۃ ݒ௣݀ۄ\ࢊ
ी೟

 (6.26)  

 

The scalar product, ݓ௜௡௧ ൌ ,/࣌ۃ  ௣, measures the rate of work per unit volume in theۄ\ࢊ

current configuration. Moreover, for non-polar materials, the Cauchy stress tensor is a 

symmetric tensor, i.e. ࣌/ ൌ ࣌/், this result follows from the balance of angular 

momentum. Other important stress measures that are of interest in solid mechanics are 

introduced below: 

 

Kirchhoff Stress Tensor ࣎/: ௣ܶ
ी௧כ ՜ ௣ܶ

ी௧כ ࣎/ ؝   (6.27) /࣌ܬ

Second Piola-Kirchhoff 
Stress Tensor 

:/ࡿ ௉ܶ
ी௢כ ՜ ௉ܶ

ी௢כ  

/ࡿ ؝ ሺ࣎/ሻכ࣐ ൌ ऐ்࣎ିכ/ऐିכଵ 
(6.28)  

First Piola-Kirchhoff 
Stress Tensor 

:/ࡼ ௉ܶ
ी௢כ ՜ ௣ܶ

ी௧כ  

/ࡼ ؝ ऐࡿ்כ/ 
(6.29)  

Mandel Stress Tensor ઱/: ௉ܶ
ी௢כ ՜ ௉ܶ

ी௧כ ઱/ ؝   (6.30) /ࡿכ\࡯

 

where ܬ ൌ det ሺऐሻ. In formulating constitutive equations for a pure mechanical theory, 

i.e. ignoring thermodynamic, magnetic and other related effects, using Coleman-Noll 

principle, the rate of work per unit reference volume enters into the expression for 

mechanical energy dissipation. Thus, rate of mechanical work per unit volume in the 

reference configuration or stress power, ௜ܹ௡௧, is introduced, where ௜ܹ௡௧ ൌ ,/࣎ۃ  .௣ۄ\ࢊ
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࣎/and ࢊ\are known as work conjugate pairs. Equivalent expressions of ௜ܹ௡௧ in terms of 

other stress and strain measures can be obtained as follows: ࣎ۃ/, ௣ۄ\ࢊ ൌ ,/࣎ۃሺכ࣐ ௣ሻۄ\ࢊ ൌ

,/ࡿۃ ሶࡱ ௉ۄ\ ൌ ,/ࡿۃ ଵ
ଶ

ሺऐሶ ்ऐ ൅ ऐ்ऐሶ ሻۄ௉ ൌ ,/ࡿۃ ऐ்ऐሶ ௉ۄ ൌ ,/ࡿ்כऐۃ ऐሶ ௉ۄ ൌ ,/ࡼۃ ऐሶ ௉ۄ ൌ

,/ࡿכ\࡯ۃ ሶࡱଵି\࡯ ௉ۄ\ ൌ ,/઱ ۃ ଵ
ଶ

ሶ࡯ଵି\࡯  .௉ۄ\

Therefore the rate of mechanical work can be expressed as follows: 

 ௜ܹ௡௧ ൌ ,/࣎ۃ ௣ۄ\ࢊ ൌ ,/ࡿۃ ሶࡱ ௉ۄ\ ൌ ,/ࡼۃ ऐሶ ௉ۄ ൌ ۃ ઱/,
1
2 ሶ࡯ଵି\࡯   ௉ (6.31)ۄ\

 

6.2.5 Hyperelastic Material 
 

Hyperelastic materials admit existence of a free energy function  ߖ. For a purely 

mechanical theory, ߖ is assumed to be a function of  ࢏ ,\ࡵ\ and ऐ\, i.e. ߖ ൌ ,\ࡵሺߖ  ,\࢏ ऐ\ሻ. 

This is the most general form of free energy function that can be assumed for hyperelastic 

materials that are assumed to be “local”, i.e. derivates of higher order other than the first 

derivative ऐ are not used (Marsden & Hughes, 1994). Free energy can be interpreted as 

the energy stored in the material as it is being deformed. The underlying physical 

mechanism includes, for example energy stored in elastic atomic lattices for crystalline 

solids, energy stored in molecular chains in polymers etc.  

 

The functional form of free energy function can be further simplified by assuming the 

postulate of spatial covariance. Spatial covariance means that the free energy 

function ߖሺࡵ\, ,\࢏ ऐሻ, expressed per unit volume, should be invariant under any arbitrary 

superposed spatial diffeomorphism. Let ࣈ be any diffeomorphism superimposed on 

current configuration ी௧, with ऐక ൌ and det൫ऐక൯ ࣈܶ ൐ 0, (Figure 6.2) such that: 

 ऐక ൌ :ࣈܶ ௣ܶी௧ ՜ ௣ܶᇱी௧
ᇱ  (6.32)  

Covariance implies that: 

,\ࡵ൫ߖ  ,\࢏ ऐ൯ ൌ ሻߖሺכࣈ ൌ ,\ࡵ൫ߖ ,ሻ\࢏ሺכࣈ ऐకऐ൯ (6.33)  

Now since ࣈ is arbitrary, assuming ࣈ ൌ ࣐ିଵ, i.e. ऐక ൌ ऐିଵ ൌ ࣐ܶିଵ gives: 
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ߖ ൌ ,\ࡵ൫ߖ ऐ࢏כ\ऐ, ऐିଵऐ൯ ൌ ,\ࡵ൫ߖ ,ሻ\࢏ሺכ࣐ ऐିଵऐ൯ ൌ ,௕ࡳ൫ߖ  ൯\࡯

׵ ߖ ൌ ,\ࡵ஼൫ߖ ൯\࡯ ൌ ,\ࡵா൫ߖ ൯\ࡱ  
(6.34)  

Thus free energy is expressed as a function of 2nd order mixed identity tensor ࡵ\ and 

strain tensor (࡯\ or ࡱ\) in the reference configuration. For a purely mechanical theory the 

second law of thermodynamics in form of Clausius-Plank inequality implies the non-

negativeness of the internal mechanical energy dissipation rate, ܦ௜௡௧, per unit reference 

volume where: 

௜௡௧ܦ ൌ ௜ܹ௡௧ െ ሶߖ ൒ 0 

This inequality represents a simple fact that for any real physical process energy 

dissipation is always non-negative. The material time derivative of free energy, ߖሶ , can be 

expressed as follows: 

ሶߖ  ൌ ۃ
஼ߖ߲

\࡯߲ , ሶ࡯ ۄ\ ൌ ۃ
ாߖ߲

\ࡱ߲ , ሶࡱ ۄ\ ൌ ۃ
࣠ߖ߲

߲ऐ , ऐሶ ۄ  (6.35)  

The gradients డఅ಴
డ࡯\ , డఅಶ

డࡱ\  and  డఅ࣠
డऐ

 are 2nd order mixed tensor of type / and డఅ಴
డ࡯\  and  డఅಶ

డࡱ\  are 

symmetric. Also the following relationships exist between them: 

஼ߖ߲ 

\࡯߲ ൌ
1
2

ாߖ߲

\ࡱ߲  (6.36)  

࣠ߖ߲ 

߲ऐ ൌ 2ऐ்כ ஼ߖ߲

\࡯߲  (6.37)  

Eq. 6.37 follows from the fact that: ۃడఅ಴
డ࡯\ , ሶ࡯ ۄ\ ൌ డఅ಴ۃ

డ࡯\ , ऐሶ ்ऐ ൅ ऐ்ऐሶ ۄ ൌ డఅ಴ۃ
డ࡯\ , 2ऐ்ऐሶ ۄ ൌ

்כ2ऐۃ డఅ಴
డ࡯\ , ऐሶ ۄ ൌ డఅ࣠ۃ

డऐ
, ऐሶ  ۄ

Internal mechanical energy dissipation rate can be expressed using Eq. 6.31 and Eq. 6.35 

as follows: 

 
௜௡௧ܦ ൌ /ࡿۃ െ

ாߖ߲

ࡱ߲ , ሶࡱ ௉ۄ\ ൒ 0 or equivalently 

௜௡௧ܦ ൌ /ࡼۃ െ
࣠ߖ߲

߲ऐ , ऐሶ ௉ۄ ൒ 0 
(6.38)  

For a hyperelastic material ܦ௜௡௧ ൌ 0, for all admissible strain rates. Therefore, with this 

restriction Eq. 3.38 gives: 

/ࡿ  ൌ
ாߖ߲

ࡱ߲ ൌ 2
஼ߖ߲

\࡯߲  (6.39)  
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/ࡼ  ൌ
࣠ߖ߲

߲ऐ  (6.40)  

Equation 6.39 and 6.40 are the expressions of constitutive relation for the material under 

consideration. This procedure of deriving constitutive relation is formally known as 

Coleman-Noll procedure (Coleman & Noll, (1963) and Coleman & Gurtin, (1967)). 

Other constitutive relationships in terms of stress measures ࣎/, ࣌/ and ઱/can be obtained 

as follows: 

 ࣎/ ൌ ሻ/ࡿሺכ࣐ ൌ 2ऐ்כ ஼ߖ߲

\࡯߲ ऐכ ൌ
࣠ߖ߲

߲ऐ ऐכ ൌ   (6.41) כऐ/ࡼ

 ࣌/ ൌ
1
ܬ ࣎/ ൌ

2
ܬ ऐ்כ ஼ߖ߲

\࡯߲ ऐכ ൌ
1
ܬ

࣠ߖ߲

߲ऐ ऐכ ൌ
1
ܬ   (6.42) כऐ/ࡼ

 ઱/ ൌ /ࡿכ\࡯ ൌ כ\࡯2 ஼ߖ߲

\࡯߲  (6.43)  

 

Remark 6.3:  The material response depends on the specific form of free energy 

function chosen. In particular, the above described model in terms of free energy 

is valid for material without any internal constrains. For material with internal 

constrains, for example incompressible material, the form of free energy function 

is altered to represent such constraints. Furthers specific examples of free energy 

models for material with or without internal constraints can be found in Ogden 

(1997) and Holzapfel (2000) and in the references therein. 

 

Remark 6.4:  For isotropic materials, the free energy function can be reduced further in 

terms of invariants or eigen-values of tensors ࡯\ or ࢈\. Isotropy implies that the 

free energy function ߖ should be invariant under any arbitrary superposed 

isometry on the reference configuration. Consider a diffeomorphism 

superimposed on reference configuration ी௢, ࣈ௜௦௢: ी௢ ՜ ी௢
ᇱ , with tangent 

ऐక೔ೞ೚ ൌ ௕ሻࡳሺכ௜௦௢ࣈ  ௜௦௢ andࣈܶ ൌ  ௕, such diffeomorphism are known asࡳ

isometries. The invariance of free energy with respect to isometries is then 

expressed as follows: 

ߖ  ൌ ,\ࡵ൫ߖൣכ௜௦௢ࣈ ൯൧\࡯ ൌ ,\ࡵ൫ߖ ऐక೔ೞ೚
ି் ऐక೔ೞ೚\࡯

ିଵ ൯ (6.44)  

Choosing ऐక೔ೞ೚ ൌ \ࡽ א ܱܵሺ3ሻ, Eq. 6.44 implies that 
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ߖ  ൌ ,\ࡵ൫ߖ   ൯ (6.45)்\ࡽ\࡯\ࡽ

Thus the free energy function is a rotationally invariant function of ࡯\. Since ࡯\ is 

symmetric it can be brought to a diagonal form by an orthogonal transformation, so ߖ is 

function of only eigen-values or invariants of ࡯\. 

 

6.2.6 Multiplicative Plasticity  
 

In multiplicative plasticity model for finite deformation, an intermediate configuration is 

introduced, which is assumed to be stress free (Figure 6.3).The deformation gradient is 

decomposed into elastic and plastic parts as follows: 

 ऐ ൌ ऐ௘ऐ௣ (6.46)  

In case of steel plasticity, from the micromechanical point of view, ऐ௣ is an internal 

variable related to the amount of plastic flow or dislocation movement associated with 

the underlying crystalline structure. However, from the phenomenological standpoint the 

intermediate configuration defines the local, stress free unloaded configuration. 

 

The multiplicative decomposition given by Eq. 6.46 is not unique, it is defined up to a 

rigid body rotation. Indeed for any rotation ࡽ\ א ܱܵሺ3ሻ, the decomposition implies that 

ऐ ൌ ሺऐ௘ࡽ\ሻሺࡽ\்ऐ௣ሻ. Based on this decomposition the following strain tensors can be 

defined: 

RC ࡯௣
\ : ௉ܶी௢ ՜ ௉ܶी௢ ௣࡯

\ ؝ ऐ௣
்ऐ௣ (6.47)  

RC ࡱ௣
\ : ௉ܶी௢ ՜ ௣ܶी௢ ௣ࡱ

\ ؝
1
2 ൫࡯௣

\ െ   ൯ (6.48)\ࡵ

RC ࡱ௘
\ : ௉ܶी௢ ՜ ௣ܶी௢ ௘ࡱ

\ ؝ \ࡱ െ ௣ࡱ
\ ൌ

1
2 ൫࡯\ െ ௣࡯

\ ൯ (6.49)  

IC 
෡௣࢈

\ : ௣ܶොी෡ ௧ ՜ ௣ܶොी෡ ௧ ෡௣࢈
\ ؝ ऐ௣ऐ௣

் 

෡௣࢈
\ିଵ ൌ ऐ௣

ି்ऐ௣
ିଵ 

(6.50)  

IC ࢋො௣
\ : ௣ܶොी෡ ௧ ՜ ௣ܶොी෡ ௧ ො௣ࢋ

\ ؝
1
2 ൫ଙ̂\ െ ෡௣࢈

\ିଵ൯ (6.51)  

IC ࢉො௘
\ : ௣ܶොी෡ ௧ ՜ ௣ܶොी෡ ௧ ො௘ࢉ

\ ؝ ऐ௘
்ऐ௘ (6.52)  
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IC ࢋො௘
\ : ௣ܶොी෡ ௧ ՜ ௣ܶොी෡ ௧ ො௘ࢋ

\ ؝
1
2 ሺࢉො௘

\ െ ଙ̂\ሻ (6.53)  

IC ࢋො\: ௣ܶොी෡ ௧ ՜ ௣ܶොी෡ ௧ \ොࢋ ؝ ො௘ࢋ
\ ൅ ො௣ࢋ

\  (6.54)  

CC 
௘࢈

\ : ௣ܶी௧ ՜ ௣ܶी௧ ௘࢈
\ ؝ ऐ௘ऐ௘

் 

௘࢈
\ିଵ ൌ ऐ௘

ି்ऐ௘
ିଵ 

(6.55)  

CC ࢋ௘
\ : ௣ܶी௧ ՜ ௣ܶी௧ ௘ࢋ

\ ؝
1
2 ൫࢏\ െ ௘࢈

\ିଵ൯ (6.56)  

CC ࢋ௣
\ : ௣ܶी௧ ՜ ௣ܶी௧ ௣ࢋ

\ ؝ \ࢋ െ ௘ࢋ
\ ൌ

1
2 ൫࢈௘

\ିଵ െ   ଵ൯ (6.57)ି\࢈

where ௣ܶොी෡ ௧, is the tangent space in intermediate configuration and ଙ̂\: ௣ܶොी෡ ௧ ՜ ௣ܶොी෡ ௧  is 

the 2nd order mixed identity tensors on intermediate configuration. Also the following 

notation is used - RC: reference configuration, IC: intermediate configuration, and CC: 

current configuration. These tensors are related by push-forward and pull-back operations 

as follows: 

 

 

\ࡵ ൌ ଵ൯ି\࢈൫כ࣐ ൌ ࣐௣
כ ൫࢈௣

\ିଵ൯ 

\࡯ ൌ ൯\࢏൫כ࣐ ൌ ࣐௣
כ ൫ࢉො௘

\ ൯ 

\ࡱ ൌ ൯\ࢋ൫כ࣐ ൌ ࣐௣
כ ൫ࢋො\൯ 

௣࡯
\ ൌ ௘࢈൫כ࣐

\ିଵ൯ ൌ ࣐௣
כ ൫ଙ̂\൯ 

௣ࡱ
\ ൌ ௣ࢋ൫כ࣐

\ ൯ ൌ ࣐௣
כ ൫ࢋො௣

\ ൯ 

௘ࡱ
\ ൌ ௘ࢋ൫כ࣐

\ ൯ ൌ ࣐௣
כ ൫ࢋො௘

\ ൯ 

 

(6.58)  

 

ଙ̂\ ൌ ࣐௣כ൫࡯௣
\ ൯ ൌ ࣐௘

כ ൫࢈௘
\ିଵ൯ 

෡௣࢈
\ିଵ ൌ ࣐௣כ൫ࡵ\൯ ൌ ࣐௘

כ ൫࢈\ିଵ൯ 

ො௣ࢋ
\ ൌ ࣐௣כ൫ࡱ௣

\ ൯ ൌ ࣐௘
כ ൫ࢋ௣

\ ൯ 

ො௘ࢉ
\ ൌ ࣐௣כ൫࡯\൯ ൌ ࣐௘

כ ൫࢏\൯ 

ො௘ࢋ
\ ൌ ࣐௣כ൫ࡱ௘

\ ൯ ൌ ࣐௘
כ ൫ࢋ௘

\ ൯ 

\ොࢋ ൌ ࣐௣כ൫ࡱ\൯ ൌ ࣐௘
כ ൫ࢋ\൯ 

 

(6.59)  



209 

 

\࢏ ൌ ൯\࡯൫כ࣐ ൌ ࣐௘כ൫ࢉො௘
\ ൯ 

ଵି\࢈ ൌ ൯\ࡵ൫כ࣐ ൌ ࣐௘כ൫࢈෡௣
\ିଵ൯ 

\ࢋ ൌ ൯\ࡱ൫כ࣐ ൌ ࣐௘כ൫ࢋො\൯ 

௘࢈
\ିଵ ൌ ௣࡯൫כ࣐

\ ൯ ൌ ࣐௘כ൫ଙ̂\൯ 

௘ࢋ
\ ൌ ௘ࡱ൫כ࣐

\ ൯ ൌ ࣐௘כ൫ࢋො௘
\ ൯ 

࢖ࢋ
\ ൌ ௣ࡱ൫כ࣐

\ ൯ ൌ ࣐௘כ൫ࢋො௣
\ ൯ 

(6.60)  

The material time derivatives of strain tensor on RC and Lie time derivatives of tensors 

defined on IC and CC are useful in deriving constitutive relations and are given as 

follows: 

 

ሶ࡯ \ ൌ ൯\ࢊ൫כ2࣐ ൌ ࣐௣
כ ቀख௩൫ࢉො௘

\ ൯ቁ 

ሶࡱ \ ൌ ൯\ࢊ൫כ࣐ ൌ כ࣐ ቀख௩൫ࢋ\൯ቁ ൌ  \ࡰ

ሶ࡯ ௣
\ ൌ ऐሶ ௣்ऐ௣ ൅ ऐ௣

்ऐ௣ሶ ൌ כ࣐ ቀख௩൫࢈௘
\ିଵ൯ቁ 

ሶࡱ ௣
\ ൌ ࣐௣

כ ቀख௩൫ࢋො௣
\ ൯ቁ ൌ ௣ࡰ

\  

ሶࡱ ௘
\ ൌ ࣐௘

כ ቀख௩൫ࢋො௘
\ ൯ቁ ൌ ௘ࡰ

\  

 

(6.61)  

 

ख࢜൫࢈෡௣
\ିଵ൯ ൌ ૙ 

ख࢜൫ࢋො௣
\ ൯ ൌ ࣐௣

כ ൫ࡱሶ ௣
\ ൯ ൌ ෡௣ࢊ

\  

ख࢜൫ࢉො௘
\ ൯ ൌ ࣐௣

כ ൫࡯ሶ \൯ 

ख࢜൫ࢋො௘
\ ൯ ൌ ࣐௣

כ ൫ࡱሶ ௘
\ ൯ ൌ ࢋ෡ࢊ

\  

ख࢜൫ࢋො\൯ ൌ ࣐௣
כ ൫࡯ሶ \൯ ൌ  \෡ࢊ

 

(6.62)  

 

ख࢜൫࢈\ିଵ൯ ൌ ૙ 

ख࢜൫ࢋ\൯ ൌ ሶࡱ൫כ࣐ \൯ ൌ  \ࢊ

ख࢜൫࢈௘
\ିଵ൯ ൌ ሶ࡯൫כ࣐ ௣

\ ൯ 

ख࢜൫ࢋ௘
\ ൯ ൌ ሶࡱ൫כ࣐ ௘

\ ൯ ൌ ௘ࢊ
\  

ख࢜൫ࢋ௣
\ ൯ ൌ ሶࡱ൫כ࣐ ௣

\ ൯ ൌ ௣ࢊ
\  

(6.63)  
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For a pure mechanical theory, the most general form of free energy function is given 

by ߖ ൌ ,\࢏ሺߖ  ऐ௘
\ , ऐ\ሻ. This functional form can be further reduced by assuming the 

following two axioms (Simo, 1988 (Part-1)): 1) Invariance of free energy under rigid-

motion (or isometry) superposed onto the intermediate configuration; and 2) Covariance 

of free energy with respect to diffeomorphism superposed onto the current configuration. 

For first axiom, consider an isometry ࣈ௜௦௢: ी෡ ௧ ՜ ी෡ ௧
ᇱ  with tangent ऐక೔ೞ೚ ൌ

௜௦௢superposed on intermediate configuration ी෡ࣈܶ ௧, then invariance of free energy 

requires that: 

,\࢏൫ߖൣכ௜௦௢ࣈ  ऐ௘
\ , ऐ\൯൧ ൌ ,\࢏൫ߖ ऐక೔ೞ೚ ऐ௘

\ , ऐ\൯ (6.64)  

 

Now choosing ऐక೔ೞ೚ ൌ ௘ࡾ
\ , where ࡾ௘

\  is the rotation part in the polar decomposition 

of ࡲ௘
\ , that is ࡲ௘ ൌ ࢜௘

\ ௘ࡾ
\ , results in the following functional form of free energy: 

,\࢏൫ߖ  ௘ࡾ
\ ऐ௘

\ , ऐ\൯ ൌ ,\࢏෡൫ߖ ࢜௘
\ , ऐ\൯ ൌ ,\࢏෩൫ߖ ௘࢈

\ିଵ, ऐ\൯ (6.65)  

 

The covariance of free energy with respect to current configuration can be expressed as 

follows. Let ࣈ be any diffeomorphism, with tangent ऐక ൌ  superposed on current ,ࣈܶ

configuration with det൫ऐక൯ ൐ 0, then covariance implies that ߖ ൌ ,\࢏൫ߖൣכࣈ  ऐ௘
\ , ऐ\൯൧. 

The related transformations can be then expressed as follows: 

ߖ  ൌ ,\࢏෩൫ߖൣכࣈ ௘࢈
\ିଵ, ऐ\൯൧ ൌ ,ሻ\࢏ሺכࣈ෩൫ߖ ௘࢈൫כࣈ

\ିଵ൯, ऐకऐ\൯ (6.66)  

Now since ࣈ is arbitrary, assuming ࣈ ൌ ࣐ିଵ, i.e. ऐక ൌ ऐିଵ ൌ ࣐ܶିଵ gives: 

 
ߖ ൌ ,൯\࢏൫כࣈ෩൫ߖ ௘࢈൫כࣈ

\ିଵ൯, ऐకऐ\൯ ൌ ,൯\࢏൫כ෩൫࣐ߖ ௘࢈൫כ࣐
\ିଵ൯, ऐିଵऐ൯ 

׵ ߖ ൌ ,\࡯஼൫ߖ ௣࡯
\ , ൯\ࡵ ൌ ,\ࡱா൫ߖ ௣ࡱ

\ , ൯\ࡵ  
(6.67)  

Equation 6.672 gives the most general functional form of free energy which can be 

assumed. Moreover, both isotropic and anisotropic material responses can modeled with 

the above form of free energy. Further discussions on this form of free energy can be 

found in Simo (1988 (Part-1)). 

 

Using Eq. 6.672, the material time derivative of free energy, ߖሶ , can be expressed as 

follows: 



211 

ሶߖ  ൌ ۃ
஼ߖ߲

\࡯߲ , ሶ࡯ ௉ۄ\ ൅ ۃ
஼ߖ߲

௣࡯߲
\ , ሶ࡯ ௣

\ ௉ۄ ൌ ۃ
ாߖ߲

\ࡱ߲ , ሶࡱ ௉ۄ\ ൅ ۃ
ாߖ߲

௣ࡱ߲
\ , ሶࡱ ௣

\   ௉   (6.68)ۄ

Thus, the internal mechanical energy dissipation rate can be expressed using Eq. 6.672 

and Eq. 6.68 as follows: 

௜௡௧ܦ  ൌ /ࡿۃ െ
ாߖ߲

\ࡱ߲ , ሶࡱ ௉ۄ\ െ ۃ
ாߖ߲

௣ࡱ߲
\ , ሶࡱ ௣

\   ௉ (6.69)ۄ

For elastic process, ࡱሶ ௣
\ ൌ ૙ and the non-negativity of ܦ௜௡௧ for all such process gives 

(Coleman-Noll procedure):   

/ࡿ  ൌ
,\ࡱா൫ߖ߲ ௣ࡱ

\ , ൯\ࡵ
\ࡱ߲  (6.70)  

 

For the case of steel plasticity, free energy can be interpreted as the energy stored in the 

atomic lattice as the material is deformed. The intermediate configuration is related to 

plastic deformation, that are a result of dislocation movements and hardening effects are 

caused by pile-ups and hindrance of these movements. For isotropic hardening, it is 

assumed that no residual micro-stresses develop in the material. In reality, however, due 

to various mechanisms caused by cross-slip, mismatch of grain boundaries and other 

constraints, residual micro-stresses accumulate and manifest themselves in terms of the 

Bauchinger effect. However, modeling of Bauchinger effect is only important under 

cyclic loading of material. To model physical behavior related to hardening and 

Bauchinger effects, additional variables, known as internal variables, are also included in 

the functional form of free energy. Specifically, for isotropic hardening a spatial scalar 

field ߙ௣ ൌ ,݌௣ሺߙ  :ሻ is introduced. The free energy function then becomesݐ

׵  ߖ ൌ ,\࡯஼൫ߖ ௣࡯
\ , ,\ࡵ ௣ሻ൯ߙሺכ࣐ ൌ ,\ࡱா൫ߖ ௣ࡱ

\ , ,\ࡵ   ௣ሻ൯  (6.71)ߙሺכ࣐

where ࣐כሺߙ௣ሻ ؝ ௣ߙ ל ࣐, is the pull-back of scalar field ߙ௣.  

 

The plasticity model is completed by introducing a yield function to specifying the elastic 

domain in stress or strain space and by specifying the functional form of flow rules which 

describes the evolution of internal variables. The yield function and flow rules are 

specified to describe the important properties of material under consideration. Yield 

function and flow rules are also subjected to invariance and covariance requirements 
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similar to free energy function. The commonly used yield function and flow rule for the 

case of steel plasticity is discussed next. 

 

Remark 6.5:  For the case of isotropic response with respect to reference configuration, 

the functional form of free energy, Eq. 6.672, is further reduced as follows: 

 
ߖ ൌ ,்\ࡽ\࡯\ࡽ஼൫ߖ ௣࡯\ࡽ

\ ,்\ࡽ ,\ࡵ  ௣൯ߙ

ൌ ,்\ࡽ\ࡱ\ࡽா൫ߖ ௣ࡱ\ࡽ
\ ,்\ࡽ ,\ࡵ ௣൯ߙ ׊ \ࡽ א ܱܵሺ3ሻ  

(6.72)  

Thus, the free energy for isotropic material depends on strain tensors (࡯\, ௣࡯
\ , ,\ࡱ ௣ࡱ

\ ሻ only 

through their invariants or eigen-values. One of the commonly used free energy function 

is expressed in terms of elastic Finger tensor, ࢈௘
\ , as ߖ ൌ ௘࢈ሺߖ

\ ,  ௣ሻ. Further discussionsߙ

on the use of this yield function can be in Simo and Hughes (1998).  With this free 

energy function in terms of strain tensor ࢈௘
\ , the rate if energy dissipation can be 

expressed as: 

௜௡௧ܦ  ൌ ,/࣎ۃ ௣ۄ\ࢊ െ ۃ
ߖ߲
௘࢈߲

\ , ሶ࢈ ௘
\ ௣ۄ െ

∂Ψ
௣ߙ∂ ሶߙ ௣ ൒ 0 (6.73)  

Now ࢈ሶ ௘
\ ൌ ऐሶ ௣࡯

\ିଵऐ் ൅ ऐ࡯ሶ ௣
\ିଵऐ் ൅ ऐ࡯௣

\ିଵऐሶ ் ൌ ௘࢈\࢒
\ ൅ ௘࢈

\ \࢒ ൅ ऐ࡯ሶ ௣
\ିଵऐ், thus 

 

ۃ
ߖ߲
௘࢈߲

\ , ሶ࢈ ௘
\ ௣ۄ ൌ ۃ

ߖ߲
௘࢈߲

\ , ௘࢈\࢒
\ ൅ ௘࢈

\ \࢒ ൅ ऐ࡯ሶ ௣
\ିଵऐ்ۄ௣ 

ൌ ௘࢈ۃ
כ\ ߖ߲

௘࢈߲
\ , ௣ۄ\࢒ ൅ ௘࢈ۃ

כ\ ߖ߲
௘࢈߲

\ , ௣ۄ்\࢒ ൅ ௘࢈ۃ
כ\ ߖ߲

௘࢈߲
\ , ऐ࡯ሶ ௣

\ିଵऐ்ۄ௣ 

ൌ ௘࢈2ۃ
כ\ ߖ߲

௘࢈߲
\ , ௣ۄ\ࢊ ൅ ௘࢈2ۃ

כ\ ߖ߲
௘࢈߲

\ ,
1
2 ௘࢈

\ିଵऐ࡯ሶ ௣
\ିଵऐ்ۄ௣ 

(6.74)  

From Eq. 6.73 and Eq. 6.74, ܦ௜௡௧ can be written as follows: 

 
௜௡௧ܦ ൌ /࣎ۃ െ ௘࢈2

כ\ ߖ߲
௘࢈߲

\ , ௣ۄ\ࢊ ൅ ௘࢈2ۃ
כ\ ߖ߲

௘࢈߲
\ , െ

1
2 ௘࢈

\ିଵऐ࡯ሶ ௣
\ିଵऐ்ۄ௣

െ
∂Ψ
௣ߙ∂ ሶߙ ௣ ൒ 0 

(6.75)  

Since Eq. 6.75 should be true for all admissible processes Coleman-Noll argument gives: 

 ࣎/ ൌ ௘࢈2
כ\ ߖ߲

௘࢈߲
\  (6.76)  

Also, the internal energy dissipation rate becomes: 
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௜௡௧ܦ  ൌ ,/࣎ۃ െ
1
2 ௘࢈

\ିଵऐ࡯ሶ ௣
\ିଵऐ்ۄ௣ ൅ ሶߙ௣ߞ ௣ ൒ 0 (6.77)  

Isotropy implies that the tensors ࢈௘
and డఅכ\

డ࢈೐
\  are coaxial and hence commutes. Thus, Eq. 

6.76 can be written as: ࣎/ ൌ ௘࢈2
כ\ డఅ

డ࢈೐
\ ൌ 2 డఅ

డ࢈೐
\ ௘࢈

௣ߞ ,The scalar variable .כ\ ؝ െ பஏ
பఈ೛, is 

conjugate to ߙሶ ௣ and is used in to define the yield function of the material.   

 

Remark 6.6:  Let ࡭ be any symmetric and positive definite 2nd order tensor, therefore it 

is diagonalizable. Let ߣ௔ and ࢔௔ ሺܽ ൌ 1,2,3ሻ be the eigen values and eigen 

vectors of ࡭, then its spectral representation is given as follows: 

   

࡭ ൌ ෍ ௔࢔௔ሺߣ ٔ ௔ሻ࢔
ଷ

௔ୀଵ

for ଵߣ ് ଶߣ ്  ଷߣ

࡭ ൌ ࡵሺߣ െ ሺ࢔ଷ ٔ ଷሻሻ࢔ ൅ ଷ࢔ଷሺߣ ٔ ߣ ଷሻ   for࢔ ൌ ଵߣ ൌ ଶߣ ്  ଷߣ

࡭ ൌ ࡵߣ for ଵߣ ൌ ଶߣ ൌ ଷߣ ൌ  ߣ

(6.78)  

where ࡵ is the identity tensor. Now since ߣ௔ ൌ  ሻ the following relationships exists࡭௔ሺߣ

(Holzapfel, 2000): 

 

௔ߣ߲

࡭߲ ൌ ሺ࢔௔ ٔ ௔ሻ࢔ for ଵߣ ് ଶߣ ്  ଷߣ

൞

ߣ߲
࡭߲ ൌ ࡵ െ ሺ࢔ଷ ٔ ଷሻ࢔

௔ߣ߲

࡭߲ ൌ ሺ࢔௔ ٔ ௔ሻ࢔
    for ߣ ൌ ଵߣ ൌ ଶߣ ്  ଷߣ

ߣ߲
࡭߲ ൌ ࡵ for ଵߣ ൌ ଶߣ ൌ ଷߣ ൌ  ߣ

(6.79)  

 

Remark 6.7:  A quadratic logarithmic model that is frequently used for the description 

of free energy function in terms of eigen values or principal stretches of elastic 

Finger tensor ࢈௘
\  is presented here. For polycrystalline materials like steels, the 

bulk deviatoric response of the material is different from volumetric response. For 

application to such materials, the strain tensor ࢈௘
\can be decomposed into volume 

changing (࢈௘
\௩௖) and volume preserving (࢈௘

\௩௣) parts as follows: 
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௘࢈ 
\ ൌ ௘࢈

\௩௖࢈௘
\௩௣

௘࢈
\௩௣ ൌ ௘ܬ

ିଶ
ଷ࢈௘

\
௘࢈

\௩௖ ൌ ௘ܬ

ଶ
ଷ(6.80) \࢏  

Note that: ݀݁ݐሺ࢈௘
\௩௖ሻ ൌ 1 and ݀݁ݐሺ࢈௘

\௩௖ሻ ൌ ௘ܬ
ଶ ൌ ௘࢈ሺݐ݁݀

\ ሻ. 

Let the spectral decomposition of ࢈௘
\  be:  

௘࢈ 
\ ൌ ෍ ௔ߣ

௘మሺ࢔௔ ٔ ௔ሻ࢔
ଷ

௔ୀଵ

 (6.81)  

where ߣ௔
௘  and ࢔௔ (ܽ ൌ 1, 2, 3) are the eigen values and eigen vectors of tensor 

௘࢈
\  respectively. Then the following relationships exists:  

 

௘ܬ ൌ ሺऐ௘ሻݐ݁݀ ൌ ௘࢈ሺݐ݁݀ൣ
\ ሻ൧

ଵ/ଶ
ൌ ଵߣ

௘ߣଶ
௘ߣଷ

௘

௘࢈
\௩௣ ൌ ෍ ቆܬ௘

ିଵ
ଷߣ௔

௘ ቇ
ଶ

ሺ݊௔ ٔ ݊௔ሻ
ଷ

௔ୀଵ

௘࢈
\௩௖ ൌ ෍ ௘ܬ

ଶ
ଷሺ݊௔ ٔ ݊௔ሻ

ଷ

௔ୀଵ

and let  ߣሚ௔
௘ ൌ ௘ܬ

ିଵ
ଷߣ௔

௘

 (6.82)  

 

With kinematic assumption (6.46), a unique decoupled representation of free energy 

function ߖ ൌ ௘࢈ሺߖ
\ ,  :௣ሻ is postulated such thatߙ

ߖ  ൌ ௘࢈ሺߖ
\ , ௣ሻߙ ൌ ௩௢௟ߖ

௘ ሺ࢈௘
\௩௖ሻ ൅ ௜௦௢ߖ

௘ ሺ࢈௘
\௩௣ሻ ൅   ௣ሻ (6.83)ߙ௣ሺߖ

where ߖ௩௢௟
௘  is the energy stored in lattice due to volumetric changes and ߖ௜௦௢

௘ is the energy 

stored due to isochoric material response. For a quadratic logarithmic energy model, the 

specific forms of these functions are given by: 

 

௩௢௟ߖ
௘ ൌ

1
2 ݇ሺln ௘ሻଶܬ ൌ

1
2 ݇ሺlnߣଵ

௘ ൅ lnߣଶ
௘ ൅ lnߣଷ

௘ ሻଶ 

௜௦௢ߖ
௘ ൌ ߤ ቂ൫lnߣሚଵ

௘൯ଶ ൅ ൫lnߣሚଶ
௘൯ଶ ൅ ൫lnߣሚଷ

௘൯ଶቃ

ൌ ଵߣሾሺlnߤ
௘ሻଶ ൅ ሺlnߣଶ

௘ሻଶ ൅ ሺlnߣଷ
௘ሻଶሿ െ

ߤ
3

ሺln  ௘ሻଶܬ

(6.84)  

 

Linear Hardening: ߖ௣ሺߙ௣ሻ ൌ
1
2 ,௣ଶߙ௣ܭ ௣ܭ ൌ ݃݊݅݊݁݀ݎܽܪ  ݏݑ݈ݑ݀݋ܯ

Saturation Hardening: ௣ሻߙ௣ሺߖ ൌ ሺߪ௠௔௫ െ ௒ሻߪ ൬ߙ௣ ൅
௣ሻߙሺെܽ݌ݔ݁

ܽ ൰ 

,௠௔௫ߪ ,௒ߪ ܽ ՜ model parameters 

(6.85)  

where ݇ is the bulk modulus and ߤ is the shear modulus of the material. This free energy 

based on logarithmic strain measures satisfies the growth conditions, i.e. ߖ௘ ՜ ∞ as 
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௘ܬ ՜ 0 and  ߖ௘ ՜ ∞ as ܬ௘ ՜ ∞ where ߖ௘ ൌ ௩௢௟ߖ
௘ ൅ ௜௦௢ߖ

௘ . However, ߖ௘ is not a convex 

function of ܬ௘, and therefore cannot be used for problems with very large elastic strains 

(Simo, 1992). But this model gives excellent approximation for moderately large elastic 

strains. 

 

Remark 6.8:  For formulation of yield function in spatial description, elastic domain in 

stress space, ॱఛ, is frequently introduced in terms of Kirchhoff stress tensor ࣎/, 

which restrict the admissible stress fields i.e. 

ॱఛ ൌ ൛ሺ࣎/, ௣ሻߞ א  ॺ ൈ  Թ௡ | ߔ௣ሺ࣎/, ௣ሻߞ ൑ 0ൟ 

where ߔ௣ሺ࣎/, ߞ ௣ሻ is known as the yield function and the scalar variableߞ ൌ  ௣ሻ isߙሺߞ

known as isotropic hardening parameter and is used model isotropic hardening of 

material. Principle of objectivity further restricts the function form of yield function as 

follows: 

,\௣൫࣎ߔ  ௣൯ߞ ൌ ,்\ࡽ\࣎\ࡽ௣൫ߔ ௣൯ߞ ׊ \ࡽ א ܱܵሺ3ሻ    (6.86)  

Thus if spatial description is employed then ߔ௣ is necessarily an isotropic function of  ࣎\. 

 

6.2.7 Hyperelastic-Plastic-Damage Model 
 

The hyperelastic-plastic model described above can adequately model material responses 

related to metal plasticity. However, these models are inadequate to describe the response 

of metals that undergoes micro-structure changes due to formation, growth and 

coalescence of micro-voids or micro-defects. To this end continuum models based on 

damage mechanics are frequently employed. In damage mechanics based models 

additional history variables are introduced to account for the disintegration or damage of 

material undergoing deformations. 

 

The concepts of effective stress and/or strain can be found in the literature in the 

development of damage models. These ideas can be traced back to the pioneering work 

of Kachanov (1958) in the context of isotropic damage models. The resulting models 

consider a scalar variable measuring the ratio between damage and intact surfaces on 

which the stresses act, thus defining the concept of effective stress as the equivalent stress 
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acting on the intact material. In early development of damage mechanics theory such 

models have been employed by Krajcinovic (1984), Lemaitre (1985), and Chaboche 

(1981, 1988, 1995) among others. Other damage mechanics based models in context of 

small deformation theory also considering plasticity effects, include Simo and Ju 

(1987a,b), Ju (1989), Lubliner et al. (1989) and Luccioni et al. (1996) among many 

others. A comprehensive discussion of damage mechanics based models for the case of 

small deformations can be found in Hansen & Schreyer (1995) and Armero & Oller 

(2000). Application of damage mechanics based models in context of finite deformation 

can be found in Kattan & Voyiadjis (1990), Lubarda (1994), Mahnken (2000), Steinmann 

(1994), Steinmann & Carol (1998), Menzel et al. (2003, 2005), Mediavilla et al. (2006) 

and Lin & Brocks (2006), among others. 

 

The two important damage mechanics concepts that are used to formulate the proposed 

damage model are the effective stress concept and the strain equivalence principle. 

Consider a damage scalar internal variable, ߙௗ, that accounts for damage due to micro-

voids nucleation, growth and coalescence then, according to the effective stress concept, 

the actual stress resisted by the undamaged or intact material surface is expressed as 

follows: 

 ത࣎\ ؝
࣎\

1 െ   ௗ (6.87)ߙ

where ത࣎\ is known as the effective stress. Together with the strain equivalence principle 

(Lemaitre, 1971), which states that “any strain constitutive equation for a damaged 

material may be derived in the same way as for the virgin material except that the usual 

stress is replaced by the effective stress”, the effective stress concept can be used to 

formulate material constitutive laws. A hyperelastic-plastic-damage model based on these 

two concepts is derived in this work. 

 

For the proposed hyperelastic-plastic-damage model, the Helmholtz free energy function 

is defined as follows: 

ߖ  ൌ ௘࢈൫ߖ
\ , ,ௗߙ   ௣൯ (6.88)ߙ



217 

where ߙௗ is a internal damage variable that describes the damage of material and ߙ௣is the 

strain-like internal variable that describe the state of material at the micro-level induced 

by dislocation pileups and other micro-defects. 

 

The following functional form of Helmholtz free energy is proposed: 

ߖ  ൌ ሺ1 െ ௘࢈௘൫ߖௗሻߙ
\ ൯ ൅   ௣ሻ (6.89)ߙ௣ሺߖ

 

A similar free energy decomposition was proposed by Mahnken (2000), however the 

damage model was formulated at the intermediate configuration in that work. Another 

form of Helmholtz free energy was proposed by Steinmann (1994) such that  

ߖ ൌ ௩௢௟ߖ
௘ ሺ࢈௘

\௩௖ሻ ൅ ሺ1 െ ௜௦௢ߖௗሻߙ
௘ ሺ࢈௘

\௩௣ሻ ൅  ௣ሻ. In this case, damage was onlyߙ௣ሺߖ

considered to be a function of the deviatoric component of stress. However, such a 

formulation is inadequate to model damage due to void growth under high triaxial 

stresses. With the free energy potential given by Eq. 6.89, the Clausius-Plank inequality 

becomes: 

 

௜௡௧ܦ ൌ /࣎ۃ െ 2ሺ1 െ ௘࢈ௗሻߙ
כ\ ௘ߖ߲

௘࢈߲
\ ,  ௣ۄ\ࢊ

൅ 2ሺ1ۃ െ ௘࢈ௗሻߙ
כ\ ௘ߖ߲

௘࢈߲
\ , െ

1
2 ௘࢈

\ିଵऐ࡯ሶ ௣
\ିଵऐ்ۄ௣ ൅ ሶߙ௘ߖ ௗ ൅ ሶߙ௣ߞ ௣ ൒ 0 

(6.90)  

 

Using the Coleman-Noll argument, the Kirchhoff stress tensor which is defined on the 

current configuration is given by: 

 ࣎/ ൌ 2ሺ1 െ ௘࢈ௗሻߙ
כ\ ௘ߖ߲

௘࢈߲
\  (6.91)  

 

The internal mechanical energy dissipation rate can now be expressed as follows: 

௜௡௧ܦ  ൌ ,/࣎ۃ െ
1
2 ௘࢈

\ିଵऐ࡯ሶ ௣
\ିଵऐ்ۄ௣ ൅ ሶߙ௘ߖ ௗ ൅ ሶߙ௣ߞ ௣ ൒ 0 (6.92)  

 

Thus for any admissible process, the inequality given in Eq. 6.92 should be satisfied. For 

describing the evolution of plastic internal variable, ߙ௣, a potential approach is adopted, 
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wherein a plastic potential function is introduced in terms of the effective Kirchhoff 

stress ത࣎\ ؝ ࣎\

ଵିఈ೏ as follows: 

 ߶௣൫ത࣎\, ௣൯ߞ ൌ ฮത࣎\ௗ௘௩ฮ െ ටଶ
ଷ

ሺߪ௬ െ   ௣) (6.93)ߞ

where ߪ௬ is the yield strength, ߞ௣ ൌ  ௣ሻ is the hardening variable and ത࣎\ௗ௘௩ is theߙ௣ሺߞ

deviatoric component of effective Kirchhoff stress tensor ത࣎\. Thus Eq. 6.93 represents the 

von Mises yield criteria in terms of the effective Kirchhoff stress tensor ത࣎\. 

Also, ߶௣൫ത࣎\,  ௣൯ is a convex function of ത࣎\ௗ௘௩. The evolution of plastic internal variablesߞ

is then expressed by the following associative flow rules: 

ሶߙ  ௣ ൌ ߛ
߲߶௣

௣ߞ߲ ൌ ඨ2ߛ
3 (6.94)  

 െ
1
2 ௘࢈

\ିଵऐ࡯ሶ ௣
\ିଵऐ் ൌ

߲߶௣

߲࣎\ ൌ
ߛ

1 െ ௗߙ
߲߶௣

߲ത࣎\  (6.95)  

The plasticity part of the model is completed by specifying the following Kuhn-Tucker 

complementarity conditions: 

ߛ  ൐ 0, ߶௣ ൏ 0 and ௣߶ߛ ൌ 0 (6.96)  

and the plastic consistency condition: 

ሶ߶ߛ  ௣ ൌ 0 (6.97)  

 

For evolution of the damage internal variable, ߙௗ, a typical approach is to introduce an 

additional potential in terms of variable conjugate to ߙௗ, i.e. ݎ ؠ  ௘. Such an approachߖ 

have been suggested by Lemaitre (1985) for small deformation plasticity-damage models, 

and is also been used by Steinmann (1994) and Mahnken (2000) for large deformation 

elasto-plastic damage models. In particular a quadratic damage potential in terms of ݎ is 

introduced in these approaches. Such a model trivially satisfies the dissipation inequality 

but this model has no micro-mechanical basis to it. The damage evolution laws proposed 

in this study are based on micro-mechanical theories; and the damage due to micro-void 

growth in triaxial stress fields and due to elongation of voids in deviatoric stress fields are 

modeled in a phenomenological sense. The evolution laws that are suggested in this study 

are given in equation 6.98, and 6.99 below: 
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ሶߙ  ௗ ൌ ܽ௢ ଵ࣮ሺߙ௣ሻߙሶ ௣ ൅ ܽଵܶ ଵ࣮ሺߙ௣ሻߙሶ ௣ ൅ ܽଶ expሺܽଷߙ௣ሻ ଶ࣮ሺߙ௣ሻߙሶ ௣ (6.98)  

 ܶ ؝
ฮ࣎\௩௢௟ฮ
ԡ࣎\ௗ௘௩ԡ (6.99)  

where ࣎\௩௢௟ and ࣎\ௗ௘௩ are volumetric and deviatoric components of the Kirchhoff stress 

tensor ࣎\ and ܽ௢, ܽଵ, ܽଶ, and  ܽଷ are material parameters all ൒ 0. 

 

The first term in the evolution of ߙௗ (Eq. 6.98) represents the material damage due to 

elongation of void under applied shear. The second terms represents the material damage 

due to void growth under high triaxiality. In addition, a threshold function, ଵ࣮ሺߙ௣ሻ, is 

introduced so that damage is activated only if a certain limit ߝ௡௨௖ is attained for ߙ௣. The 

value of ߝ௡௨௖, typically represents the nucleation strain and is equal to the plastic strain at 

which the micro-voids nucleates. A user-defined relationship between ߝ௡௨௖ and ܶ can be 

defined, which can be used in Eq. 6.98 above.  

 

Thus the first and second terms of the damage evolution equation model the material 

damage due to elongation and volumetric growth of micro-voids after void nucleation. 

The last term represents material damage due to micro-void coalescence. An exponential 

function is chosen to model the rapid disintegration of material due to micro-voids 

coalescence in this stage. Again, a threshold function, ଶ࣮ሺߙ௣ሻ, is introduced so that the 

void coalescence term is activated only if a certain limit ߝ௖௟ is attained for  ߙ௣. The 

plastic strain limit ߝ௖௟ typically represents the plastic strain value at which the micro-

voids start to coalesce due to localization in the intervoid matrix. 

 

The functional form of the threshold function is chosen as a Hermitian polynomial to 

facilitate numerical implementation because of its smoothness. The functional forms of 

threshold functions are given as follows (Mahnken, 2000): 

 

ە
ۖ
۔

ۖ
ۓ ଵ࣮ሺߙ௣, ,௡௨௖ߝ Δߝሻ ൌ 0 if ௣ߙ ൏ ௡௨௖ߝ

ଵ࣮ሺߙ௣, ,௡௨௖ߝ Δߝሻ ൌ
ሺߙ௣ െ ௡௨௖ሻଶߝ

Δߝଶ ቈ3 െ
2ሺߙ௣ െ ௡௨௖ሻߝ

Δߝ ቉     

if ௡௨௖ߝ ൏ ௣ߙ ൏ ௡௨௖ߝ ൅ Δߝ
and  ଵ࣮ሺߙ௣, ,௡௨௖ߝ Δߝሻ ൌ 1 if ௣ߙ ൒ ௡௨௖ߝ ൅ Δߝ

 (6.100)  
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ە
ۖ
۔

ۖ
ۓ ଶ࣮ሺߙ௣, ,௖௟ߝ Δߝሻ ൌ 0 if ௣ߙ ൏ ௖௟ߝ

ଶ࣮ሺߙ௣, ,௖௟ߝ Δߝሻ ൌ
ሺߙ௣ െ ௖௟ሻଶߝ

Δߝଶ ቈ3 െ
2ሺߙ௣ െ ௖௟ሻߝ

Δߝ ቉     

if ௖௟ߝ ൏ ௣ߙ ൏ ௖௟ߝ ൅ Δߝ
and ଶ࣮ሺߙ௣, ,௖௟ߝ Δߝሻ ൌ 1 if ௣ߙ ൒ ௖௟ߝ ൅ Δߝ

 (6.101)  

 

The parameter, Δߝ, represents the range over which the damage activation process is 

smoothened out and can be regarded as a material parameter. 

 

6.3 Numerical Implementation 
 

The above described hyperelastic-plastic-damage model is implemented in the 

commercial finite element program LS-DYNA. Further details and the integration 

algorithm for elastic-plastic damage model presented above are described in this section. 

For the purpose of model implementation, Cartesian coordinates are used. Following are 

the important properties of the Cartesian coordinates system: 

 

Covariant and contravariant basis are identical and are given by standard Euclidean basis 

vectors of:  ሼࢍ૚ ൌ ૚ࡳ ൌ ,ଵࢋ ૛ࢍ ൌ ૛ࡳ ൌ ,ଶࢋ ૜ࢍ ൌ ૜ࡳ ൌ  ,ଷሽ. Thus symbol distinguishingࢋ

contravariant, covariant and mixed tensors, i.e., ܾ, #,\  and/, are not used. 

The metric tensors ࢍ and ࡳ are equal to the identity tensor, ࡵ ൌ   .௝ࢋ௜۪ࢋ௜௝ߜ

The dual of a tensor is equal to its transpose, and scalar product can be identified with the 

inner product. 

 

Thus, in Cartesian coordinate systems, standard rules of tensor algebra are applicable. An 

introduction to tensor algebra in Cartesian system can be found in Holzapfel (2000). 

A quadratic logarithmic model for free energy, ߖ௘, in terms of eigen values of tensor ࢈௘ 

is assumed (Remark 5.7), with the following functional form: 

 
௘ሻ࢈௘ሺߖ ൌ

1
2 ݇ሺlnߣଵ

௘ ൅ lnߣଶ
௘ ൅ lnߣଷ

௘ ሻଶ

൅ ଵߣሾሺlnߤ
௘ሻଶ ൅ ሺlnߣଶ

௘ሻଶ ൅ ሺlnߣଷ
௘ሻଶሿ െ

ߤ
3

ሺln  ௘ሻଶܬ
(6.102)  
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Chain rule of differentiation of free energy function (Eq. 6.102) with respect to ࢈௘ gives: 

 
௘ߖ∂

௘࢈∂ ൌ ෍
∂Ψ௘

∂ሺlnߣ௔
௘ ሻ

∂lnߣ௔
௘

௔ߣ∂
௘

௔ߣ∂
௘

௔ߣ∂
௘మ

௔ߣ∂
௘మ

௘࢈∂

ଷ

௔ୀଵ

ൌ ෍
1

௔ߣ2
௘మ

∂Ψ௘

∂ሺlnߣ௔
௘ ሻ

ଷ

௔ୀଵ

ሺ࢔௔ ٔ  ௔ሻ࢔

 

(6.103)  

 

Also differentiating, ߖ௘, with respect to lnߣ௔
௘  gives: 

 
∂Ψ௘

∂ሺlnߣ௔
௘ ሻ ൌ ݇lnܬ௘ ൅ ௔ߣlnߤ2

௘ െ
ߤ2
3 lnܬ௘ (6.104)  

 

Combining Eq. 6.91, 6.103, and 6.104, Kirchhoff stress tensor, ࣎, is given by: 

 

࣎ ൌ ൫1 െ ൯2݀ߙ ൥෍ ௔ߣ
௘మሺ࢔௥ ٔ ௥ሻ࢔

ଷ

௥ୀଵ

൩ ൥෍
1

௔ߣ2
௘మ ൬݇lnܬ௘ ൅ ௔ߣlnߤ2

௘ െ
ߤ2
3

lnܬ௘൰ ሺ࢔௔

ଷ

௔ୀଵ

ٔ  ௔ሻ൩࢔

׵  ࣎ ൌ ෍ሺ1 െ ௗሻߙ ቆ൬݇ െ
2
3 ൰ߤ lnܬ௘ ൅ ௔ߣlnߤ2

௘ ቇ ሺ࢔௔ ٔ ௔ሻ࢔
ଷ

௔ୀଵ

 

(6.105)  

 

Introducing the 4th order identity tensor, ॴ ൌ  ௝ and the 4th order volumetricࢋ௜۪ࢋ௝۪ࢋ௜۪ࢋ

ሺԶ୴୭୪ሻ and 4th order deviatoric ሺԶୢୣ୴ሻ tensors where: 

 Զ୴୭୪ ؝
1
3   (6.106) ࡵ۪ࡵ

 Զୢୣ୴ ؝ ॴ െ
1
3   (6.107) ࡵ۪ࡵ

Զ୴୭୪ and Զୢୣ୴ are the volumetric and deviatoric subspace projectors on ࣦሺॱ۪ॱ, Թሻ 

respectively, in the sense that ࡭ ׊ א ࣦሺॱ۪ॱ, Թሻ: 

 
Զ୴୭୪: ࡭ ՜  ሻ࡭ሺݒ݁݀

Զୢୣ୴: ࡭ ՜  ሻ࡭ሺ݈݋ݒ
(6.108)  

and ࡭ ൌ ௩௢௟࡭ ൅ ௩௢௟࡭ ௗ௘௩, where࡭ ؝ Զ୴୭୪: ࡭ ൌand  ࡭ௗ௘௩ ؝ Զୢୣ୴:  In principal basis .࡭

system, {࢔ଵ, ,ଶ࢔ ଷሽ, ॴ࢔ ൌ ࡵ ௝ and࢔௜۪࢔௝۪࢔௜۪࢔ ൌ ଵ࢔ଵ۪࢔ ൅ ଶ࢔ଶ۪࢔ ൅   .ଷ࢔ଷ۪࢔
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From Eq. 6.1052, deviatoric ሺ࢙ሻ and volumetric ሺ࢖ሻ components of Kirchhoff stress 

tensor can be obtained as follows: 

࢖  ൌ Զ୴୭୪: ࣎ ൌ ሺ1 െ ௗሻߙ ෍ ݇lnܬ௘ሺ࢔௔ ٔ ௔ሻ࢔
ଷ

௔ୀଵ

 (6.109)  

 ࢙ ൌ Զୢୣ୴: ࣎ ൌ ሺ1 െ ௗሻߙ ෍ ൬2ߤlnߣ௔
௘ െ

2
3 ௘൰ܬlnߤ ሺ࢔௔ ٔ ௔ሻ࢔

ଷ

௔ୀଵ

 (6.110)  

The yield function (Eq. 6.93), ߶௣ሺത࣎,  :௣ሻ, can be written in terms of ࢙ as followsߞ

 ߶௣ሺത࣎, ௣ሻߞ ൌ ԡത࢙ԡ െ ටଶ
ଷ

ሺߪ௬ െ   ௣) (6.111)ߞ

Since డథ೛

డത࣎\ ൌ డԡԶౚ౛౬: ത࣎ԡ
డത࣎\ ൌ Զౚ౛౬: ത࣎

ԡԶౚ౛౬: ത࣎ԡ ൌ ത࢙
ԡത࢙ԡ, the flow rule (Eq. 6.95) can written as: 

 െ
1
2 ௘࢈

ିଵऐ࡯ሶ ௣ିଵऐ் ൌ
߲߶௣

߲࣎ ൌ
ߛ

1 െ ௗߙ
ത࢙

ԡത࢙ԡ (6.112)  

 

The free energy, ߖ௣ሺߙ௣ሻ, due plastic hardening is taken as a sum linear and saturation 

hardening terms (Eq. 6.85) as follows:  

௣ሻߙ௣ሺߖ  ൌ
1
2 ௣ଶߙ௣ܭ ൅ ሺߪ௠௔௫ െ ௒ሻߪ ൬ߙ௣ ൅

௣ሻߙሺെܽ݌ݔ݁
ܽ ൰ (6.113)  

Using the above model the plastic hardening variable, ߞ௣, is given by: 

௣ߞ  ൌ െ
௣ߖ߲

௣ߙ߲  ൌ െܭ௣ߙ௣ െ ሺߪ௠௔௫ െ ௒ሻሺ1ߪ െ   ௣ሻሻ (6.114)ߙሺെܽ݌ݔ݁

With the above assumed functional forms the internal energy dissipation rate, (Eq. 6.92) 

can be expressed as follows: 

 

௜௡௧ܦ ൌ ߛ ቌԡത࢙ԡ ൅ ௣ඨ2ߞ
3ቍ 

൅ߛඨ2
3 ൫ሺܽ௢ ൅ ܽଵܶሻ ଵ࣮ሺߙ௣ሻ ൅ ܽଶ expሺ൅ܽଷߙ௣ሻ ଶ࣮ሺߙ௣ሻ൯ ൒ 0 

 

(6.115)  

Combining Eq. 6.111 and 6.115 gives: 
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௜௡௧ܦ  ൌ ඨ2ߛ
3 ௬ߪൣ ൅ ൫ሺܽ௢ ൅ ܽଵܶሻ ଵ࣮ሺߙ௣ሻ ൅ ܽଶ expሺܽଷߙ௣ሻ ଶ࣮ሺߙ௣ሻ൯൧ ൒ 0 (6.116)  

Now since ߛ ൒ ௬ߪ ,0 ൐ 0 and all the other terms entering in Eq. 6.116 are also positive, 

the internal energy dissipation rate is greater than zero for any process. This shows that 

the dissipation inequality is satisfied for the proposed damage model. 

 

Another important feature of the above described elasto-plastic damage model is that no 

volume change is associated with the plastic deformations. This is an important result 

which is used in the numerical implementation of the model and can be obtained as 

follows. With ܬ ൌ detሺऐሻ ൌ detሺऐ௘ऐ௣ሻ ൌ  ௣, the total and elastic volume changes areܬ௘ܬ

given by ܬ ൌ detሺऐሻ ൐ 0 and ܬ௘ ൌ ሾdetሺ࢈௘ሻሿଵ/ଶ ൐ 0, respectively. So the rate of change 

ሶܬ :is given by ܬ ൌ ௣ܬሶ௘ܬ ൅  :ሶ௘ can be obtained as followsܬ ሶ௣. Now the expression forܬ௘ܬ

 

ሶ௘ܬ ൌ
1
2

ሾdetሺ࢈௘ሻሿିଵ/ଶ ∂detሺ࢈௘ሻ
௘࢈∂

: ሶ࢈ ௘ 

֜ ሶ௘ܬ ൌ
1
2 ௘࢈௘ܬ

ିଵ: ሶ࢈ ௘ ൌ
1
2 ௘࢈௘ܬ

ିଵ: ௘࢈࢒ൣ ൅ T࢒௘࢈ ൅ ऐ࡯ሶ ௣ିଵऐ்൧ 

֜ ሶ௘ܬ ൌ ௘ܬ ൤ࡵ: ࢊ െ
ߛ

1 െ ௗߙ :ࡵ
ത࢙

ԡത࢙ԡ൨ 

(6.117)  

Now since ࡵ: ത࢙
ԡത࢙ԡ ൌ 0, Eq. 6.1173 gives: 

ሶ௘ܬ  ൌ :ࡵ௘ܬ   (6.118) ࢊ

Similarly, an expression for ܬሶ௣ can be obtained as follows: 

 
ሶ௣ܬ ൌ

1
2 ൣdetሺ࡯௣ሻ൧ିଵ/ଶ ∂detሺ࡯௣ሻ

௣࡯∂
: ሶ࡯ ௣ 

֜ ሶ௣ܬ ൌ
1
2 ௣࡯௣ܬ

ିଵ: ሶ࡯ ௣ 

(6.119)  

Now since, െ ଵ
ଶ

௘࢈
ିଵऐ࡯ሶ ௣ିଵऐ் ൌ డథ೛

డ࣎
, this implies that: ࡯ሶ ௣ ൌ ௣ऐିଵ࡯ߛ2 డథ೛

డ࣎
ऐ. Therefore, 

௣࡯
ିଵ: ሶ࡯ ௣ ൌ ௣࡯

ିଵ: ௣ऐିଵ࡯ߛ2 డథ೛

డ࣎
ऐ ൌ :ࡵ ऐିଵߛ2 డథ೛

డ࣎
ऐ ൌ :ࡵߛ2 డథ೛

డ࣎
. Combining this relation 

with Eq. 6.1192 gives: 

ሶ௣ܬ  ൌ :ࡵ௣ܬߛ డథ೛

డ࣎
ൌ :ࡵ௣ܬߛ ത࢙

ԡത࢙ԡ ൌ 0 and ܬ௣ ൌ 1 (6.120)  

Combining, the relation ܬሶ ൌ ௣ܬሶ௘ܬ ൅  :ሶ௣ and Eq. 6.120, givesܬ௘ܬ
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ሶܬ  ൌ   ሶ௘ (6.121)ܬ

Thus the plastic volume is conserved for the case when the yield function is pressure 

independent i.e. plastic deformation is isochoric and all the volume change is due to the 

elastic part of the deformation.  

 

To advance the solution within an incremental solution scheme in a finite element (FE) 

framework, the flow rule (Eq. 6.112) and the evolution equations for the hardening and 

damage variables (Eq. 6.94 and 6.98) have to be integrated over a finite time step Δݐ ൌ

௡ାଵݐ െ  ௡. Such a computation is typically carried out at an integration point. The knownݐ

values at time ݐ௡ include Cauchy stress tensor ሺો௡ሻ, deformation gradient ऐ௡ and internal 

variables ሺߙ௡
௣ , ௡ߙ

ௗሻ. The known values at time ݐ௡ାଵ includes deformation 

gradient ሺऐ௡ାଵሻ, which is found from the global FE formulation. Global FE formulation 

can be an implicit or an explicit scheme. The objective of the integration scheme is to 

compute the Cauchy stress tensor ሺો௡ାଵሻ and internal variables ሺߙ௡ାଵ
௣  , ௡ାଵߙ

ௗ ሻ at 

time ݐ௡ାଵ. The main difference between implicit and explicit FE formulations is that for 

implicit scheme a consistent algorithmic tangent is required to assemble the global 

tangent stiffness matrix, however for explicit FE formulation such an algorithmic tangent 

is not required. The proposed elasto-plastic-damage model is implemented in the 

commercial explicit finite element code LS-DYNA. Thus an algorithmic tangent is not 

computed in this work. Moreover, the integration of the flow rule is carried out using an 

exponential map integrator first proposed by Weber and Anand (1990) and was 

advocated by Eterovic and Bathe (1990) and Simo (1992). In the context of damage 

based models such integrators have been used by Steinmann (1994, 2005) and Mahnken 

(2000). The integration of damage and plastic internal evolution laws is carried via the 

Euler backward method. 

 

The following additional terms are introduced to facilitate the implementation of the 

algorithm: 

௘ࢿ  ൌ ቐ
ଵߝ

௘

ଶߝ
௘

ଷߝ
௘

ቑ ൌ ቐ
lnߣଵ

௘

lnߣଶ
௘

lnߣଷ
௘

ቑ ࢼ ൌ ൝
ଵߚ
ଶߚ
ଷߚ

ൡ ෥ࣁ ൌ ൝
෤ଵߟ
෤ଶߟ
෤ଷߟ

ൡ ࣁ ൌ ൝
ଵߟ
ଶߟ
ଷߟ

ൡ (6.122)  
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ࢇ  ؝ ݇૚ ٔ ૚ ൅ ߤ2 ൬ࡵ െ
1
3 ૚ ٔ ૚൰ (6.123)  

ࢼ  ؝ ௘ࢿࢇ ׵     ࣎ ൌ ሺ1 െ ௗߙ ሻ ෍ ௔࢔௔ሺߚ ٔ ௔ሻ࢔
ଷ

௔ୀଵ

 (6.124)  

ࣁ  ؝ ߤ2 ൬ࡵ െ
1
3 ૚ ٔ ૚൰ ௘ࢿ ൌ ࢼ െ

1
3

ሺ૚.   ሻ૚ (6.125)ࢼ

׵  ത࢙ ൌ ෍ ௔࢔௔ሺߟ ٔ ௔ሻ࢔
ଷ

௔ୀଵ

 (6.126)  

 ԡത࢙ԡଶ ൌ ࣁ்ࣁ ൌ ௘೅ࢿߤ2 ൬ࡵ െ
1
3 ૚ ٔ ૚൰   ௘ (6.127)ࢿ

෥ࣁ  ؝
ࣁ

ԡࣁԡ ൌ
1

ඥࣁ்ࣁ
  (6.128) ࣁ

࢔  ؝
ത࢙

ԡത࢙ԡ ൌ ෍ ௔࢔෤௔ሺߟ ٔ ௔ሻ࢔
ଷ

௔ୀଵ

 (6.129)  

 ߶௣ሺ࣎, ௣ሻߞ ൌ ԡࣁԡ െ ඨ2
3 ሾߪ௒ െ   ௣ሻሿ (6.130)ߙ௣ሺߞ

 

The integration of the plasticity models is usually carried out in two steps (Simo and 

Hughes, 1998). In the first step known as “elastic” or “trial” step, all inelasticity is frozen. 

If the yielding condition is not exceeded then the trial step gives the correct state. 

However, if the yielding condition is exceeded the algorithm proceeds to “plastic” step 

where further computations are carried out assuming that plastic flow occur and the 

consistency condition is enforced in this step. A two step algorithm based on the above 

concept is described next. 

 

Step -1: Trial Step (Freeze Plastic Flow) 

No plastic flow implies: 

௡ାଵߛ  ൌ 0, ௣೙శభ࡯
ିଵ೅ೃ ൌ ௣೙࡯

ିଵ, ௡ାଵߙ
௣೅ೃ

ൌ ௡ߙ
௣, ௡ାଵߙ

ௗ೅ೃ ൌ ௡ߙ
ௗ (6.131)  

௘೙శభ࢈ 
்ோ ൌ ऐ௡ାଵ࡯௣೙శభ

ିଵ೅ೃ ऐ௡ାଵ
்  (6.132)  

௡ାଵܬ 
௘೅ೃ ൌ detሺऐ௡ାଵሻ ௡ାଵܬ

௣೅ೃ
ൌ 1 (6.133)  
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Let ቄߣ௔೙శభ
௘మ೅ೃ

, ෝ௔೙శభ࢔
்ோ ቅ be the eigen pairs of ࢈௘೙శభ 

்ோ , then using Eq. 6.122 to 6.130, the 

following relationships can be obtained:  

௡ାଵࢿ 
௘೅ೃ ൌ

ە
۔

ଵ೙శభߣlnۓ
௘೅ೃ

lnߣଶ೙శభ
௘೅ೃ

lnߣଷ೙శభ
௘೅ೃ

ۙ
ۘ

ۗ
 (6.134)  

௡ାଵࢼ 
்ோ ൌ ௡ାଵࢿࢇ

௘೅ೃ and ௡ାଵࣁ
்ோ ൌ ௡ାଵࢼ

்ோ െ
1
3

ሺ૚. ௡ାଵࢼ
்ோ ሻ૚ (6.135)  

 

ԡࣁ௡ାଵ
்ோ ԡଶ ൌ ௡ାଵࢿቀߤ2

௘೅ೃ ቁ
்

൬ࡵ െ
1
3 ૚ ٔ ૚൰ ௡ାଵࢿ

௘೅ೃ  

߶௡ାଵ
௣೅ೃ

ൌ ԡࣁ௡ାଵ
்ோ ԡ െ ඨ2

3 ሾߪ௒ െ ௣ߞ ቀߙ௡ାଵ
௣೅ೃ

ቁሿ 
(6.136)  

ഥ௡ାଵ࢖  ൌ ෍ ݇૚. ௡ାଵࢿ
௘೅ೃ ሺ࢔ෝ௔೙శభ

்ோ ٔ ෝ௔೙శభ࢔
்ோ ሻ

ଷ

௔ୀଵ

 (6.137)  

 

௡ାଵࣁ
்ோ ൌ ߤ2 ൬ࡵ െ

1
3 ૚ ٔ ૚൰ ௡ାଵࢿ

௘೅ೃ  

ത࢙௡ାଵ
்ோ ൌ ෍ ௔೙శభߟ

்ோ ሺ࢔ෝ௔೙శభ
்ோ ٔ ෝ௔೙శభ࢔

்ோ ሻ
ଷ

௔ୀଵ

 
(6.138)  

 ത࣎௡ାଵ
்ோ ൌ ത࢙௡ାଵ

்ோ ൅   ഥ௡ାଵ (6.139)࢖

 ࣎௡ାଵ
்ோ ൌ ሺ1 െ ௡ାଵߙ

ௗ೅ೃ ሻത࣎௡ାଵ
்ோ  (6.140)  

If ߶௡ାଵ
௣೅ೃ

൑ 0, this implies that the trial step is admissible and the following updates are 

carried out. 

ELASTIC UPDATES 

௡ାଵߙ 
௣ ൌ ௡ାଵߙ

௣೅ೃ
and ௡ାଵߙ

ௗ ൌ ௡ାଵߙ
ௗ೅ೃ  (6.141)  

௣೙శభ࡯ 
ିଵ ൌ ௣೙శభ࡯

ିଵ೅ೃ (6.142)  

 ࣎௡ାଵ ൌ ࣎௡ାଵ
்ோ  (6.143)  

 ࣌௡ାଵ ൌ
1

௡ାଵܬ
௘೅ೃ ࣎௡ାଵ (6.144)  

If ߶௡ାଵ
௣೅ೃ

൐ 0, this implies that the trial step is not admissible and the algorithm proceeds 

to the second step, i.e. the plastic step. 
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Step -2: Plastic Step  

 

In this step, the integration of flow rules is carried out and the consistency condition is 

enforced as described next.  

(a) Integration of flow rule using exponential integrator: 

 

െ
1
2 ௘࢈

ିଵऐ࡯ሶ ௣ିଵऐ் ൌ
ߛ

1 െ ௗߙ  ࢔

֜ ሶ࡯ ௣ିଵ ൌ െ
ߛ2

1 െ ௗߙ ऐିଵ࢈࢔௘ऐି் ൌ െ
ߛ2

1 െ ௗߙ ऐିଵ࢔ऐ࡯௣
ିଵ ऐ்ऐି் 

֜ ሶ࡯ ௣ିଵ ൌ
ߛ2

1 െ ௗߙ ऐିଵ࢔ऐ࡯௣
ିଵ 

(6.145)  

Using the exponential integrator, the integration of Eq. 6.1453 over the time period 

Δݐ ൌ ௡ାଵݐ െ  :௡, yields the following expressionݐ

 
௣೙శభ࡯

ିଵ ൌ exp ቆെ
௡ାଵߛ߂2

1 െ ௡ାଵߙ
ௗ ऐ௡ାଵ

ିଵ ௡ାଵऐ௡ାଵቇ࢔ ௣೙࡯
ିଵ 

֜ ௣೙శభ࡯
ିଵ ൌ ऐ௡ାଵ

ିଵ exp ቆെ
௡ାଵߛ߂2

1 െ ௡ାଵߙ
ௗ ௡ାଵቇ࢔ ऐ௡ାଵ࡯௣೙

ିଵ 

(6.146)  

where ߛ߂௡ାଵ ؠ Δߛݐ௡ାଵ. Now combining Eq. 6.146 with the relationships: ࢈௘೙శభ ൌ

ऐ௡ାଵ࡯௣೙శభ
ିଵ  ऐ௡ାଵ

் , gives: 

 
௘೙శభ࢈ ൌ exp ቆെ

௡ାଵߛ߂2

1 െ ௡ାଵߙ
ௗ ௡ାଵቇ࢔ ऐ௡ାଵ࡯௣೙

ିଵऐ௡ାଵ
்  

֜ ௘೙శభ࢈ ൌ exp ቆെ
௡ାଵߛ߂2

1 െ ௡ାଵߙ
ௗ ௡ାଵቇ࢔ ௘೙శభ࢈

்ோ  

(6.147)  

where ࢈௘೙శభ
்ோ ൌ ऐ௡ାଵ࡯௣೙

ିଵऐ௡ାଵ
் .  

Using the following spectral forms for ࢔௡ାଵand ࢈௘೙శభ: 

 
௡ାଵ࢔ ൌ ෍ ෝ௔೙శభ࢔෤௔೙శభሺߟ ٔ ෝ௔೙శభሻ࢔

ଷ

௔ୀଵ

 

௘೙శభ࢈ ൌ ௔೙శభߣ
௘మ ሺ࢔ෝ௔೙శభ ٔ  ෝ௔೙శభሻ࢔

(6.148)  

and combining with Eq. 6.1472 gives: 
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௘೙శభ࢈
்ோ ൌ ௘೙శభ࢈ exp ቆ

௡ାଵߛ߂2

1 െ ௡ାଵߙ
ௗ  ௡ାଵቇ࢔

ൌ ෍ ቈexp ቆ
௡ାଵߛ߂2

1 െ ௡ାଵߙ
ௗ ෤௔೙శభቇߟ ௔೙శభߣ

௘మ ቉ ሺ࢔ෝ௔೙శభ ٔ ෝ௔೙శభሻ࢔
ଷ

௔ୀଵ

 

(6.149)  

Also,  ࢈௘೙శభ
்ோ ൌ ௔೙శభߣ

௘మ೅ೃ
ሺ࢔ෝ௔೙శభ

்ோ ٔ ෝ௔೙శభ࢔
்ோ ሻ, thus the uniqueness of the spectral decomposition 

of ࢈௘೙శభ
்ோ yields: 

 

௔೙శభߣ
௘మ೅ೃ

ൌ exp ቆ
௡ାଵߛ߂2

1 െ ௡ାଵߙ
ௗ ෤௔೙శభቇߟ ௔೙శభߣ

௘మ  

ෝ௔೙శభ࢔ ൌ ෝ௔೙శభ࢔
்ோ  

ܽ ൌ 1,2,3 

(6.150)  

Taking the logarithm of both sides of Eq. 6.1501 gives: 

௡ାଵࢿ 
௘ ൌ ௡ାଵࢿ

௘೅ೃ െ
௡ାଵߛ߂

1 െ ௡ାଵߙ
ௗ   ෥௡ାଵ (6.151)ࣁ

Combining Eq. 6.124 and 6.151 gives: 

 

௡ାଵࢼ ൌ ௡ାଵࢿࢇ
௘  

֜ ௡ାଵࢼ ൌ ௡ାଵࢿࢇ
௘೅ೃ െ

௡ାଵߛ߂

1 െ ௡ାଵߙ
ௗ  ෥௡ାଵࣁࢇ

֜ ௡ାଵࢼ ൌ ௡ାଵࢼ
்ோ െ

௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ  ෥௡ାଵࣁࢇ

(6.152)  

Now Eq. 6.1523 together with Eq. 6.124 gives: 

 

௡ାଵࣁ ൌ ߤ2 ൬ࡵ െ
1
3 ૚ ٔ ૚൰ ௡ାଵࢿ

௘  

֜ ௡ାଵࣁ ൌ ൬ࡵ െ
1
3 ૚ ٔ ૚൰ ቈࢿ௡ାଵ

௘೅ೃ െ
௡ାଵߛ߂

1 െ ௡ାଵߙ
ௗ  ෥௡ାଵ቉ࣁ

֜ ௡ାଵࣁ ൌ ௡ାଵࣁ
்ோ െ

௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ  ෥௡ାଵࣁ

֜
௡ାଵࣁ

ԡࣁ௡ାଵԡ ԡࣁ௡ାଵԡ ൌ
௡ାଵࣁ

்ோ

ԡࣁ௡ାଵ
்ோ ԡ

ԡࣁ௡ାଵ
்ோ ԡ െ

௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ  ෥௡ାଵࣁ

֜ ෥௡ାଵࣁ ቆԡࣁ௡ାଵԡ ൅
௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ ቇ ൌ ෥௡ାଵࣁ

்ோ ԡࣁ௡ାଵ
்ோ ԡ 

(6.153)  

Equation 6.1535 implies that: 
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 ԡࣁ௡ାଵԡ ൅
௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ ൌ ԡࣁ௡ାଵ

்ோ ԡ (6.154)  

෥௡ାଵࣁ  ൌ ෥௡ାଵࣁ
்ோ  (6.155)  

 

(b) Consistency Condition 

Enforcing the consistency condition at time ݐ ൌ  :௡ାଵ givesݐ

 ߶௡ାଵ
௣ ൌ ԡࣁ௡ାଵԡ െ ඨ2

3 ሾߪ௬ െ ௡ାଵߙ௣ሺߞ
௣ ሻሿ ൌ 0 (6.156)  

Using Eq. 6.154, the consistency condition can be written as follows: 

 ߶௡ାଵ
௣ ൌ ԡࣁ௡ାଵ

்ோ ԡ െ
௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ െ ඨ2

3 ሾߪ௬ െ ௡ାଵߙ௣ሺߞ
௣ ሻሿ ൌ 0 (6.157)  

 

(c) Integration of damage and plastic internal variables 

Integrating Eq. 6.94 using Euler backward method gives: 

௡ାଵߙ 
௣ ൌ ௡ߙ

௣ ൅ ඨ2
3 Δߛ௡ାଵ (6.158)  

Integrating Eq. 6.98 using Euler backward method gives: 

 
௡ାଵߙ

ௗ ൌ ௡ߙ
ௗ ൅ ඨ2

3 Δߛ௡ାଵൣሺܽ௢ ൅ ܽଵ ௡ܶାଵ ሻ ଵ࣮൫ߙ௡ାଵ
௣ ൯

൅ ܽଶ exp൫ܽଷߙ௡ାଵ
௣ ൯ ଶ࣮൫ߙ௡ାଵ

௣ ൯൧ 

(6.159)  

where ௡ܶାଵ ൌ ԡ࢖ഥ೙శభԡ
ԡࣁ೙శభԡ ൌ ԡ࢖ഥ೙శభԡ

ฮࣁ೙శభ
೅ೃ ฮିమഋ೩ം೙శభ

భషഀ೙శభ
೏

 

(d) Solution by Newton Raphson Method 

Equations 6.157 and 6.159 are nonlinear equations in Δߛ௡ାଵ and ߙ௡ାଵ
ௗ . These equations 

are solved together with the Eq. 6.158 to obtain Δߛ௡ାଵ and ߙ௡ାଵ
ௗ . For solution of these 

equations, writing Eq. 6.157 as follows: 

ଵሺ݇௡ାଵܨ 
ௗ , Δߛ௡ାଵሻ ൌ ԡࣁ௡ାଵ

்ோ ԡ െ
௡ାଵߛ߂ߤ2

1 െ ൅1݊ߙ
݀ െ ඨ2

3 ௬ߪൣ െ ௡ାଵߙ௣൫ߞ
௣ ൯൧ ൌ 0 (6.160)  

Similarly, writing Eq. 6.159 as follows: 
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௡ାଵߙଶ൫ܨ
ௗ , Δߛ௡ାଵ൯ ൌ ௡ାଵߙ

ௗ െ ௡ߙ
ௗ 

െඨ2
3 Δߛ௡ାଵൣሺܽ௢ ൅ ܽଵ ௡ܶାଵ ሻ ଵ࣮൫ߙ௡ାଵ

௣ ൯ ൅ ܽଶ exp൫ܽଷߙ௡ାଵ
௣ ൯ ଶ࣮൫ߙ௡ାଵ

௣ ൯൧

ൌ 0 

(6.161)  

Thus, Eq. 6.160 and 6.161 can be considered as two equations in two variables  ߙ௡ାଵ
ௗ  and 

Δߛ௡ାଵ, and therefore can be solved by the standard Newton-Raphson method. Starting 

with the initial values of Δߛ௡ାଵ
ሺ଴ሻ ൌ 0 and ߙ௡ାଵ

ௗሺబሻ ൌ ௡ߙ
ௗ, the following iterations are carried 

out to obtain the solution: 

 ቈ
δሺΔߛ௡ାଵ

ሺ௞ାଵሻሻ
δሺߙ௡ାଵ

ௗሺೖశభሻሻ
቉ ൌ

ۏ
ێ
ێ
ێ
ۍ

ଵܨ߲

߲Δߛ௡ାଵ

ଵܨ߲

௡ାଵߙ߲
ௗ

ଶܨ߲

߲Δߛ௡ାଵ

ଶܨ߲

௡ାଵߙ߲
ௗ ے

ۑ
ۑ
ۑ
ې

ሺ୼ఊ೙శభ
ሺೖሻ ,ఈ೙శభ

೏ሺೖሻ
ሻ

ିଵ

቎
ଵܨ ቀߙ௡ାଵ

ௗሺೖሻ, Δߛ௡ାଵ
ሺ௞ሻ ቁ

ଶܨ ቀߙ௡ାଵ
ௗሺೖሻ, Δߛ௡ାଵ

ሺ௞ሻ ቁ
቏  (6.162)  

The incremental updates are obtained as follows: 

 
Δߛ௡ାଵ

ሺ௞ାଵሻ ൌ Δߛ௡ାଵ
ሺ௞ሻ ൅ δሺΔߛ௡ାଵ

ሺ௞ାଵሻሻ 

௡ାଵߙ
ௗሺೖశభሻ ൌ ௡ାଵߙ

ௗሺೖሻ ൅ δሺߙ௡ାଵ
ௗሺೖశభሻሻ 

(6.163)  

The derivatives entering in Eq. 6.162 are given as follows: 

 
ଵܨ߲

߲Δߛ௡ାଵ
ൌ െ

ߤ2
1 െ ௡ାଵߙ

ௗ െ
2
3

݌ܭൣ ൅ ܽሺߪ௠௔௫ െ ௡ାଵߙ௒ሻexp൫െܽߪ
௣ ൯൧ (6.164)  

 
ଵܨ߲

௡ାଵߙ߲
ௗ ൌ െ

൅1݊ߛ߂ߤ2

൫1 െ ௡ାଵߙ
ௗ ൯ଶ (6.165)  

 

ଶܨ߲

߲Δߛ௡ାଵ
ൌ െඨ2

3 ൣሺܽ௢ ൅ ܽଵ ௡ܶାଵ ሻ ଵ࣮൫ߙ௡ାଵ
௣ ൯

൅ ܽଶ exp൫ܽଷߙ௡ାଵ
௣ ൯ ଶ࣮൫ߙ௡ାଵ

௣ ൯൧

െ ඨ2
3 Δߛ௡ାଵ ቎ሺܽ௢ ൅ ܽଵ ௡ܶାଵ ሻ

߲ ଵ࣮

߲Δߛ௡ାଵ

൅ ܽଵ ଵ࣮൫ߙ௡ାଵ
௣ ൯

߲ ௡ܶାଵ

߲Δߛ௡ାଵ
൅ ܽଶ exp൫ܽଷߙ௡ାଵ

௣ ൯
߲ ଶ࣮

߲Δߛ௡ାଵ

൅ ඨ2
3 ܽଶܽଷ exp൫ܽଷߙ௡ାଵ

௣ ൯ ଶ࣮൫ߙ௡ାଵ
௣ ൯቏ 

(6.166)  
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߲ ଵ࣮

߲Δߛ௡ାଵ
ൌ 0 if ௡ାଵߙ

௣ ൏ ௡௨௖ߝ

߲ ଵ࣮

߲Δߛ௡ାଵ
ൌ 2ඨ2

3
൫ߙ௡ାଵ

௣ െ ௡௨௖൯ߝ
Δߝଶ ቈ3 െ

2൫ߙ௡ାଵ
௣ െ ௡௨௖൯ߝ

Δߝ ቉

൅ 
൫ߙ௡ାଵ

௣ െ ௡௨௖൯ଶߝ

Δߝଶ ቎3 െ 2ඨ2
3

1
Δߝ቏      if  ߝ௡௨௖ ൏ ௡ାଵߙ

௣ ൏ ௡௨௖ߝ ൅ Δߝ

 

and  
߲ ଵ࣮

߲Δߛ௡ାଵ
ൌ 0 if ௡ାଵߙ

௣ ൒ ௡௨௖ߝ ൅ Δߝ

 (6.167)  

 

 

߲ ଶ࣮

߲Δߛ௡ାଵ
ൌ 0    if ߙ௡ାଵ

௣ ൏  ௖௟ߝ

߲ ଶ࣮

߲Δߛ௡ାଵ
ൌ 2ඨ2

3
൫ߙ௡ାଵ

௣ െ ௖௟൯ߝ
Δߝଶ ቈ3 െ

2൫ߙ௡ାଵ
௣ െ ௖௟൯ߝ

Δߝ ቉

൅ 
൫ߙ௡ାଵ

௣ െ ௖௟൯ଶߝ

Δߝଶ ቎3 െ 2ඨ2
3

1
Δߝ቏      if  ߝ௖௟ ൏ ௡ାଵߙ

௣ ൏ ௖௟ߝ ൅ Δߝ

 

and  
߲ ଶ࣮

߲Δߛ௡ାଵ
ൌ 0    if ߙ௡ାଵ

௣ ൒ ௖௟ߝ ൅ Δߝ

 

 

 

(6.168)  

 

 

߲ ௡ܶାଵ

߲Δߛ௡ାଵ
ൌ

ԡ࢖ഥ௡ାଵԡ

ቆԡࣁ௡ାଵ
்ோ ԡ െ ௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ ቇ

ଶ ቆ
ߤ2

1 െ ௡ାଵߙ
ௗ ቇ (6.169)  

ଶܨ߲ 

௡ାଵߙ߲
ௗ ൌ 1 െ ඨ2

3 Δߛ௡ାଵܽଵ ଵ࣮൫ߙ௡ାଵ
௣ ൯

߲ ௡ܶାଵ

௡ାଵߙ߲
ௗ  (6.170)  

 
߲ ௡ܶାଵ

௡ାଵߙ߲
ௗ ൌ

ഥ௡ାଵԡ࢖௡ାଵԡߛ߂ߤ2

ቆԡࣁ௡ାଵ
்ோ ԡ െ ௡ାଵߛ߂ߤ2

1 െ ௡ାଵߙ
ௗ ቇ

ଶ
1

൫1 െ ௡ାଵߙ
ௗ ൯ଶ 

(6.171)  
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After solving these equations, the relevant updates are obtained using Eq. 6.1502, 6.151, 

6.152, 6.155, 6.159 and 6.158. 

 

6.4 Model Results 
6.4.1 Single Element Response 
 

To investigate the effect of various parameters entering in the model, a parametric study 

is carried out using a single element of size 0.25×0.25×0.25 inches, with one point 

integration. The model set up is shown in Fig. 6.4. The bulk modulus and shear modulus 

are taken as follows: ݇ ൌ ߤ and ,݅ݏܭ 24167 ൌ  A critical value of the damage .݅ݏܭ 11154

parameter, ߙ௖௥
ௗ , is introduced and the element is removed (is assumed to have failed) 

when this critical damage parameter is reached. For this parametric study ߙ௖௥
ௗ  is taken as 

0.9. The various cases considered for this parametric study are given in Table 6.1. and the 

results are shown in Fig. 6.5 to Fig. 6.10. The figures show that a wide range of material 

responses can be simulated and that the model has the flexibility to address micro-

structural changes due to void growth and coalescence. For example as shown in Fig. 

6.10, the two stages of material response can be modeled; the first descending branch of 

the curve corresponds to the damage due to void growth processes, while the second 

descending branch corresponds to the rapid disintegration of the material due to the void 

coalescence processes. Clearly, the rate of damage growth can be controlled by 

appropriate selection of parameters. 

 

6.5 Experimental Verification of the Proposed Model 
6.5.1 Experimental Testing 
 

To validate and calibrate the proposed micro-mechanical model an experimental program 

is carried out as a part of this research. The experimental study involved tension tests of 

Grade A36 steel specimens that were notched to a desired geometry. Figures 6.11 and 

6.12 show the geometry of the two steel specimens used in this work. The specimen 

shown in Fig. 6.11 has symmetric notches while the specimen in Fig. 6.12 has 

asymmetric notches. Specimens are prepared from flat hot rolled bars of dimension 18×4 
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inches. These two different notch patterns are chosen to promote different stress 

conditions in the material. In particular, specimens with symmetrical notches are 

subjected to higher triaxial stresses as compared to specimens with asymmetrical notches 

which are subjected to lower triaxiality. Thus these specimens will experience different 

modes and rates of damage, and are chosen to calibrate the proposed micromechanical 

model to represent damage modes due to both dilation and elongation of micro-voids. 

Two different thicknesses of 0.25 inch and 0.5 inch are used for each of the test 

specimens and two specimens of each type are tested. Specimens are tested to failure and 

the data of interest from the tension test is the force versus displacement response of the 

specimens. 

 

The notched bars are tested in a 50 kip servo-hydraulic MTS load frame under 

displacement control. The data channels acquired from the test are time, extensometer 

displacement, and force. An extensometer of 1.5 inch gage length is used for measuring 

displacement. Figure 6.13 shows a photo of the test setup. A loading rate 0.03 in/min is 

used in the tests. 

 

To facilitate further discussions, symmetrically notched specimens are designated as SN-

X-Y, where X represents the thickness (in inches) of the specimen, while asymmetrically 

notch specimens are designated as ASN-X-Y. The appended letter Y represents the 

specimen number in the same series and is either 1 or 2. Figure 6.14 shows one of the 

fractured specimens at the end of the test. Load displacement curves for SN-0.25, SN-0.5, 

ASN-0.25 and ASN-0.5 specimens are shown in Fig. 6.15, 6.16, 6.17 and 6.18, 

respectively. 

 

6.5.2 Model Calibration 
 

Calibration of the developed constitutive material model is carried out using finite 

element analysis of the notched specimens used in the experimental part of this study. 

Failure of steel members results in softening response and is characterized by formation 

of localization zones or bands associated with high deformations and most of the energy 
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dissipation occurs in these zones. The size of such localization zones cannot be resolved 

by classical continuum mechanics theories due to the lack of an intrinsic length scale in 

these theories. This leads to finite element results that are mesh dependent. Indeed, the 

finite element results fail to converge no matter how small an element size is used. 

Various theories are proposed in the literature that are used to regularize the localization 

behavior including: (a) higher order gradient based theories (Aifantis (1984,1987)); (b) 

nonlocal theories (Bazant et al., (1984)) (b) rate dependent constitutive models 

(Needleman (1988)); (c) Cosserat continua (deBorst et al., (1991)); and (d) mesh size 

dependent constitutive models (Hillerborg et al., 1976). In this work, this pathology is 

addressed by making the material parameters mesh size dependent and the constitutive 

model is calibrated for finite elements of size 0.025 in.  

 

Model parameters are obtained from finite element simulations of specimen SN-0.25, 

wherein multiple simulations are carried out to adjust the model parameters in order to 

match the experimental results. Finite element models of the notched bar employ 

selectively reduced fully integrated eight node isoparametric solid elements (Hallquist, 

2006). Table 6.2 shows the material parameters, obtained by trial and error, which give a 

good match to the experimental results obtained for SN-0.25. The yield strength of the 

steel is 42 ksi and the hardening curve is shown in Fig. 6.19. The void nucleation 

strain, ߝ௡௨௟, is taken as a function of stress triaxiality. Figure 6.20 shows the bilinear 

relationship that is used to model void nucleation strain as a function of stress triaxiality. 

This relationship is modeled after the results obtained by Bandstra et al. (1998), where it 

was shown that the effective strain to failure first decreases rapidly with triaxiality and 

then at higher triaxiality the decrease is at a slower rate. Fracture is simulated by 

removing affected elements when the damage variable, ߙௗ, reaches a value of 0.9. Figure 

6.21 shows the finite element mesh of SN-0.25. As shown in Fig. 6.23, with the above 

model parameters a good match is obtained between experimental and finite element 

results for this specimen. 
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6.5.3 Model Validation 
 

Model validation is carried out by using the model parameters obtained in Section 6.5.2 

to simulate the response for other test cases i.e. for specimens SN-0.5, ASN-0.25 and 

ASN-0.5. Figure 6.21 and 6.22 shows the finite element meshes of SN-0.25 and ASN-

0.5. Figure 6.24 to 6.26 show comparisons between finite element and experimental 

results. A good match between the finite element and experimental results is obtained for 

all the cases. 

 

6.5.4 Discussion of Results 

Validation studies presented in Section 6.5.3 shows that the model parameters obtained in 

Section 6.5.2 can be considered as material properties and therefore can be used to 

represent material response under a variety of stress states. Plots of stress triaxiality at 

various locations of the specimens are shown in Fig. 6.27 to Fig 6.30. The average 

triaxiality on the fracture plane (as defined in Fig. 6.31 and Fig. 6.32), together with the 

triaxiality value at the center and the edge of the fractured plane are plotted in these 

figures. It can be observed that stress triaxiality varies from an average value of about 1.5 

for symmetric notches to an average of about 0.9 for asymmetric notches. A large 

variation of triaxiality within the section can also be observed. The locations of fracture 

initiation for various cases are shown in Fig 6.33 and Fig 6.34. Failure initiation occurs at 

the edge of specimens near the notch where triaxiality is high during the initial loading 

stage leading to smaller values of void nucleation strain in these regions. The location of 

fracture initiation is consistent with the results reported by Kuwamura et al. (1997), 

which showed that for sharp notched steel specimens fracture initiation occurred just 

under the surface of the notch where the triaxiality was highest. Fracture initiation is also 

consistent with the results reported by Toribio et al. (2003), who carried out mechanical 

and scanning electron micrograph testing of 27 notched samples of high-strength pearlitic 

steel bars and noted that fracture initiates at locations of highest triaxiality. Thus, the 

proposed damage evolution law is able to successfully model the ductile fracture process 

under various states of stress. 
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6.5.5 Summary and Conclusions 

The study in this chapter was concerned with the development of a damage mechanics 

based micro-mechanical model which can be used to simulate ductile fracture in 

structural steels. Specifically, a damage model based on the concept of effective stress 

and strain equivalence principle in a finite deformation framework was proposed. The 

damage evolution law was designed to take into account the changes that arise due to 

micro-structural evolution during the ductile fracture process. In particular, damage due 

to the three stages of ductile fracture initiation: micro-void nucleation, growth and 

coalescence were modeled. Damage evolution due to void elongation and dilation were 

also modeled and a triaxiality based void nucleation criterion was included. The 

algorithm for numerical integration of the proposed damage model was presented and 

implemented in the explicit finite element code LS-DYNA. A parametric study showing 

the effect of various model parameters was also presented. 

 

Experimental testing of symmetrically and asymmetrically notched steel bars was carried 

out and results from the tests were used to calibrate and verify the proposed model. A set 

of model parameters were proposed for the developed micro-mechanical model. 

Simulation results from the finite element analysis showed that the proposed damage 

model can be used to model the ductile fracture process in steel. 

 

 

 

 

 



237 

 

Analysis 
Case 

Parameters 

Case 1 
ܽ ൌ ܽ଴ ൌ ܽଵ ൌ ܽଶ ൌ ܽଷ ൌ 0, ௬ߪ ൌ  ݅ݏܭ 50

ሻ݅ݏܭ௣ሺܭ ൌ 1450, 72.5, 29.0, 3.625 

Case 2 
௣ܭ ൌ ܽ଴ ൌ ܽଵ ൌ ܽଶ ൌ ܽଷ ൌ 0, ௬ߪ ൌ 50 ,݅ݏܭ ௠௔௫ߪ ൌ  ݅ݏܭ 85

ܽ ൌ 5, 10, 20, 50 

Case 3 
௣ܭ ൌ ܽ଴ ൌ ܽଵ ൌ ܽଶ ൌ ܽଷ ൌ 0, ௬ߪ ൌ 50 ,݅ݏܭ ܽ ൌ 40 

௠௔௫ߪ ൌ 65, 75, 85, 100 

Case 4 

ܽଵ ൌ ܽଶ ൌ ܽଷ ൌ 0, ௬ߪ ൌ 50 ݅ݏܭ , ௠௔௫ߪ ൌ 65 ,݅ݏܭ ܽ ൌ 40, ௣ܭ ൌ 29  ݅ݏܭ

௡௨௖ߝ ൌ 0.2, Δߝ ൌ 0.05 ௖௥ߙ
ௗ ൌ 0.9 

ܽ଴ ൌ 0, 0.25, 0.5, 1, 2.5, 5, 10 

Case 5 

ܽ௢ ൌ ܽଶ ൌ ܽଷ ൌ 0, ௬ߪ ൌ 50 ݅ݏܭ , ௠௔௫ߪ ൌ 65 ,݅ݏܭ ܽ ൌ 40, ௣ܭ ൌ 29  ݅ݏܭ

௡௨௖ߝ ൌ 0.2 Δߝ ൌ 0.05 ௖௥ߙ
ௗ ൌ 0.9 

ܽଵ ൌ 0, 0.25, 0.5, 1, 2.5, 5, 10 

Case 6 

௬ߪ ൌ 50 ݅ݏܭ , ௠௔௫ߪ ൌ 65 ,݅ݏܭ ܽ ൌ 40, ௣ܭ ൌ  ݅ݏܭ 29

௡௨௖ߝ ൌ 0.2 ௖௟ߝ ൌ 0.4 Δߝ ൌ 0.05, ܽ௢ ൌ ܽଵ ൌ 0.5 ܽଶ ൌ ௖௥ߙ  1.0
ௗ ൌ 0.9 

ܽଷ ൌ 1, 5, 10, 15 

Table 6.1 Analyses cases 
 

 

Model parameters 

Bulk Modulus 24167 ksi 
Shear Modulus 11154 ksi 

Hardening-curve Fig. 6.15 
Yield Stress σ୷ 42 ksi 

ܽ௢ 0.175 
ܽଵ 0.325 
ܽଶ 1.75 
ܽଷ 2.5 
 ௖௟ 0.5ߝ

 ௡௨௖ Fig. 6.16ߝ

Table 6.2 Model parameters 
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Figure 6.1 Intermediate configuration 
 

 

 

Figure 6.2 Covariance with respect to superposed diffeomorphism 
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Figure 6.3 Multiplicative plasticity with intermediate configuration 
 

 

Figure 6.4 Model setup for parametric study 

Fi
xe

d 
Fa

ce
 

Prescribed 
Displacement 

0.25 in

0.25 in 

0.25 in

࣐ሺܲ,  ሻ ी௢ ी௧ݐ

ऐࢋ 

ऐ௣ 

 ݌ ܲ

̂݌

ܷ௉  
௉ܸ  

෡ܷ௉෠  ी෡ ௧ 

ऐ௣
ିଵ 

ऐࢋ
ିଵ 

࣐௘ሺ̂݌, ,ሻ ࣐௉ሺܲݐ  ሻݐ

ऐିଵ 

ऐ 



240 

 

Figure 6.5 Effect of Kp 

 

 

Figure 6.6 Effect of parameter “a” 
 

 

Figure 6.7 Effect of parameter σmax 
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Figure 6.8 Effect of parameter ao 

 

Figure 6.9 Effect of parameter a1 

 

Figure 6.10 Effect of parameter a3 
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Figure 6.11 Geometry of specimen with symmetric notch 
 

All Dimensions 
in inches

4.0

2.25

0.125
0.125

2.25

0.125

0.5

0.25

5.0

1.25

1.75

1.0

A A Section A - A

3.0

4.75

3.0
0.5

1.75

16.75
90o

3.0

3.0

4.0

1.75 0.5 1.75

1.25

0.5

0.5

Section A - A

SN-0.5

SN-0.25



243 

 

Figure 6.12 Geometry of specimen with asymmetric notch 
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Figure 6.13 Photo of the test setup 
 

 

 

 

Figure 6.14 Specimen fractured after the test 
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Figure 6.15 Load displacement curve for specimens SN-0.25 
 

 

Figure 6.16 Load displacement curve for specimens SN-0.5 
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Figure 6.17 Load displacement curve for specimens ASN-0.25 
 
 

 

Figure 6.18 Load displacement curve for specimens ASN-0.5 

ASN-0.5-1 

ASN-0.5-2

ASN-0.25-1 

ASN-0.25-2



247 

 

Figure 6.19 Hardening curve for steel 

 

Figure 6.20 Nucleation strain vs stress triaxiality 
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Figure 6.21 Finite element model for specimen SN-0.25 
 

 

Figure 6.22 Finite element model for specimen ASN-0.5 

(a) Model

(b) Mesh in notch region

(a) Model 

(b) Mesh in notch region
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Figure 6.23 Comparison of simulation and experimental results (SN-0.25) 
 

 

Figure 6.24 Comparison of simulation and experimental results (SN-0.5) 
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Figure 6.25 Comparison of simulation and experimental results (ASN-0.25) 
 

 

Figure 6.26 Comparison of simulation and experimental results (ASN-0.5) 
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Figure 6.27 Variation of stress triaxiality (SN-0.25) 

 

Figure 6.28 Variation of stress triaxiality (SN-0.5) 

 

Figure 6.29 Variation of stress triaxiality (ASN-0.25) 
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Figure 6.30 Variation of stress triaxiality (ASN-0.5) 
 

 

 

 

 

Figure 6.31 Fracture mode in symmetric notches 
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Figure 6.32 Fracture mode in asymmetric notches 

 

 

 

 

Figure 6.33 Location of fracture initiation (SN) 
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Figure 6.34 Location of fracture initiation (ASN) 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 
CHAPTER 7. SUMMARY AND CONCLUSIONS 

 
 
 
7.1 Summary 
 

This dissertation focused on the progressive collapse response of seismically designed 

steel frames. It dealt with a variety of critical issues that influence the collapse of steel 

structures within a multi-scale computational framework. The dissertation starts with a 

discussion of past studies related to progressive collapse of structural systems. Current 

design requirements and the mechanisms of ductile fracture processes in steels together 

with the available methods for simulation of these processes were also reviewed. In 

particular, models based on quantum mechanics, molecular dynamics, continuum 

mechanics and multi-scale methods for linking models at various scales were discussed. 

 

In the first phase of the study, finite element computational simulation was used to 

investigate the collapse behavior of moment resisting steel frame sub-assemblages. An 

existing micro-mechanical constitutive model for porous plastic materials was calibrated 

using available test data and employed for simulation of micro through structural-scale 

behavior of the sub-assemblages. Termed coupled multi-scale simulation, this approach 

ties micro-structural changes that occur during the ductile fracture process, such as 

micro-void nucleation, growth and coalescence, to macro-scale response via the micro-

mechanical constitutive model. A history-like variable in the constitutive model, known 

as void volume fraction, took into account the disintegration of material at the micro-

scale due to nucleation, growth and coalescence of voids. The micromechanical model 



256 

was calibrated to experimental results available in literature. Finite element mesh 

sensitivity studies were then conducted and the simulation model was used to investigate 

the catenary behavior of a number of steel subassemblies taken from a seismically 

designed special moment frame. Important parameters that influence behavior were 

identified and studied. In particular, the effect of out-of-plane pulling action imposed by a 

transverse beam, yield stress to ultimate strength ratio (YUSR), heat effected zone (HAZ) 

and web connection details such as shear tab thickness were investigated.  

 

Computationally efficient structural-scale models, which can be used for progressive 

collapse analysis of steel moment and braced frames systems using nonlinear dynamic 

APM, were also proposed in this dissertation. The developed structural scale models used 

a combination of beam-column finite elements and nonlinear spring elements to represent 

important physical processes of interest at the structural scale. Micro-scale behavior, such 

as fracture, and macro-scale behavior such as local buckling was also taken into 

accounted by using appropriate constitutive material properties. The developed models 

fall in the category of uncoupled multi-scale models, wherein the structural scale models 

are calibrated to represent micro and macro scale processes. Using the developed 

structural scale models, models for three popular connections types: reduced beam 

sections for special moment frames (SMF), welded unreinforced flange - welded web 

moment resisting connections for intermediate moment frames (IMF) and shear 

connections, were proposed in this work. In addition, models for braces and shear links 

were also proposed for special concentrically braced frames (SCBF) and eccentrically 

braced frames (EBF). A brief overview of nonlinear beam elements together with 

numerical implementation of the J2 plasticity model employed in this research was 

presented. The proposed structural scale models were calibrated and validated and then 

utilized within the context of APM to study the progressive collapse resistance of 2-

dimensional, 10-story SMF, IMF, SCBF and EBF buildings designed according to 

contemporary seismic design specifications and practices. 

 

A new analysis technique was proposed in this dissertation that can be used to determine 

the failure load and collapse mechanism of a damaged structure. The proposed technique 
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was termed “pushdown analysis” and it parallels the pushover method commonly used 

for assessing the seismic resistance of building structures. The new method was used to 

examine the robustness of structural systems. In particular, the residual capacity and 

collapse modes of 2-dimensional, 10 story SMF, IMF, SCBF and EBF frames were 

investigated. 

 

Motivated by a number of deficiencies in existing fracture models for steel, a new micro-

mechanical constitutive model which can be used for simulation of ductile fracture in 

steel was also proposed. The proposed model employed a scalar damage variable to 

represents the changes that arise due to micro-structural evolution during the ductile 

fracture process in structural steels. In particular, the three stages of ductile fracture 

initiation: micro-void nucleation, growth and coalescence were modeled by prescribing 

appropriate evolution functions for the damage variable. The model belongs to the class 

of coupled multi-scale models, wherein the response at macro-scale is directly coupled to 

the micro-structural evolution via a constitutive material model. The proposed 

constitutive model was implemented within a finite deformation framework using 

effective stress and strain equivalence principles. Numerical implementation of the 

proposed model was also presented and parametric studies were conducted to investigate 

the effect of various model parameters on the material response. The model was 

calibrated and validated by comparing its response to the results obtained from 

experimental testing of symmetrically and asymmetrically notched steel specimens. 

 

7.2 Conclusions 
 

The following conclusions can be drawn from the limited analytical, computational and 

experimental studies conducted in this dissertation: 

 

1) From the simulation results of steel sub-assemblages it can be concluded that 

seismically designed special moment frame assemblies are ductile enough to permit 

catenary mode to fully develop. Simulation results also established that the out-of-plane 

pulling action induced by transverse beams has no adverse effect on system behavior, but 



258 

that ductility and strength were adversely influenced by an increase in beam depth and an 

increase in the yield to ultimate strength ratio. It can also be concluded that 

subassemblies with reduced beam sections are stronger and more ductile than 

corresponding subassemblies without RBS. Furthermore, the heat affected zone in beam 

flanges did not have a significant deleterious influence on system behavior while an 

increase in shear tab strength shifted the location of ductile fracture resulting in better 

overall system behavior. 

 

2)  Nonlinear dynamic analysis using APM of seismically designed structural 

systems show that the SMF designed for high seismic risk is less vulnerable to gravity-

induced progressive collapse than the IMF designed for moderate seismic risk. The 

relative success of SMF versus IMF stems from improved layout that consists of more as 

well as generally stronger moment bays.  

 

3) The results further showed that ductility demands associated with column loss in 

the moment bays of IMF and SMF buildings systems considered in this work are rather 

small and therefore the advantage of using ductile seismic detailing for mitigating 

progressive collapse is not evident.  

 

4) APM also suggest that while SCBF and EBF systems benefited from locating the 

seismic systems on the perimeter of the buildings, the EBF designed for high seismic risk 

is less vulnerable to gravity-induced progressive collapse than the SCBF designed for 

moderate seismic risk. The relative success of EBF versus SCBF stems essentially from 

an improved system layout rather than mobilization of ductile detailing. 

 

5) The proposed pushdown analysis method can be used for estimating the residual 

capacity and collapse modes of a damaged structure. Of the three techniques investigated, 

incremental dynamic pushdown gives a best estimate of residual capacity and collapse 

modes.  
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6) The proposed pushdown analysis method can be used to study the robustness of 

structural systems and to design structural systems that are more resistant to collapse. 

Simulation results shows that SMF and EBF frames are more robust than the IMF and 

SCBF systems respectively. The results also show that failure associated with beams is a 

preferable failure mode when compared to column failure. 

 

7) The proposed micromechanical model can be used for simulation of ductile 

fracture in steel. Parametric study shows that a variety of responses needed to represent 

the physical process of interest can be obtained by choosing appropriate model 

parameters. Comparisons with the experimental results show that the proposed model is 

able to represent damage under a variety of stress states. 

 

7.3 Practical Implications 
 

Following are important conclusions with practical implications that can be drawn from 

the studies conducted in this dissertation: 

 

1) As indicated in Section 7.2, the simulation studies of steel sub-assemblages shows 

that the out-of-plane pulling action imposed by a transverse beam does not significantly 

influence sub-assemblage structural behavior. This results suggest that it is conservative 

to conduct simulations and tests that do not model the out-of-plane pulling effect, which 

considerably simplifies testing and analysis.  Another observation is that system ductility 

is adversely influenced by an increase in beam depth and an increase in the yield to 

ultimate strength ratio. This implies that designers should strive to use a larger number of 

smaller beam members rather than concentrate resistance in a few larger members, which 

is common practice in earthquake-resistant construction. In addition, designers should 

specify ASTM A-992 steel (which has a specified maximum YUSR of 0.85) for collapse 

resistant construction rather than specifying generic steels which could have a 

detrimentally high YUSR. The simulation results further suggest that improving the beam 

web connection by either increasing the shear tab thickness or directly welding the beam 

web to the column can better protect the beam-column interface by shifting ductile 
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fracture initiation to the reduced flange region thereby making the connection stronger 

and more ductile.  

 

2) The APM frame studies show that shear tab connections, which are used in 

gravity bays, have the necessary ductility to develop catenary action. However, for the 

system designs considered herein, they do not have the strength to resist progressive 

collapse once a gravity column is lost. If such columns are necessary, structural designers 

should carefully evaluate collapse resistance of perimeter gravity bays through refined 

analysis models or detailed simulations methods of the sort proposed here. 

 

3)  Pushdown analysis shows that it is desirable to have failures in beams rather than 

in columns. The column failure mode is undesirable as it is more catastrophic since it 

undermines the stability of the entire structural system. Thus, designers should strive to 

use stronger columns to facilitate a more benign collapse mode that limits the extent of 

damage in the system and reduces the risk of total collapse.  

 

7.4 Recommendations for Future Research 
 

The following research topics are recommended for further research to better understand 

the progressive collapse behavior of structural systems: 

 

1) Collapse studies of moment sub-assemblages with welded web connections were 

considered in this study. Research is needed to study collapse behavior of sub-

assemblages with other types of moment connections such as flange plate bolted/welded 

moment connections, extended end-plate moment connections, etc. 

 

2) Collapse behavior of only seismically designed 2-D steel frames was investigated 

in this research. Research is needed to study the progressive collapse behavior of gravity 

systems in a 3-D framework where slabs can play an important role in providing 

resistance to collapse.   
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3) Further research is also needed to study the collapse behavior of different shear 

connections in gravity systems prone to collapse, such as double angle connections, 

stiffened/unstiffened seated connections. These connections are frequently used in beam 

to column connections in gravity systems. 

 

4) A micro-mechanical model for ductile fracture initiation in steels was developed 

in this dissertation. After the crack starts it can propagate in either a ductile manner or in 

a brittle manner, i.e. sometimes the propagation mode switches from ductile to brittle 

fracture mode, where the brittle mode is associated with cleavage or intergranular 

fracture. Conditions under which such ductile to brittle transitions occur are not well 

understood.  Therefore, further research is needed to address the issue of ductile fracture 

to cleavage fracture or inter-granular fracture transitions. 

 

5) A micromechanical model proposed in this study is intended for monotonic 

loading only. Steel structures may also be subjected to cyclic loading, for example, 

during earthquakes. However, there is a limited understanding of ductile fracture process 

under cyclic loading conditions and high fidelity constitutive models for simulating 

fracture under cyclic loading are not available. Further research is needed to develop 

constitutive models for simulating ductile fracture process under cyclic loading 

conditions. 

 

6)  The model parameters for the proposed micro-mechanical model are mesh 

dependent and are calibrated to a particular mesh size. Further research is needed to 

regularize the model by incorporating a length scale in the model. Regularization 

methods such as nonlocal theories, gradient plasticity theories and other related methods 

can be exploited for this purpose. 
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APPENDIX A 

A.1 Introduction 

In this appendix chapter an introduction to geometric concepts related to continuum 

mechanics concepts is presented in a differential manifold framework. This framework is 

adopted from the work done by Giessen & Koffmann (1996). The salient features of this 

framework are that the importance of dual variables is emphasized, and a distinction 

between inner product and scalar product is made. 

 

A.2 Theoretical Aspects 
A.2.1 Body 

A continuum body ܤ with configuration ी is considered as a 3-dimensional 

differentiable manifold. Let ܷ ؿ  ी be an open set. A coordinate system, શ, on ी, is a 

one-to-one mapping between the point’s ܲ א ܷ and the points in an open subset of Թଷ i.e. 

શ:  ܷ ื Թଷ. 

 

A.2.2 Tangent and Cotangent Spaces 

The covariant basis vectors ࡳ௜ሺ݅ ൌ 1,2,3ሻ on ी are defined as: 

௜ࡳ  ؝
߲ܲ

߲Ψ௜ , ݅ ൌ 1,2,3 ׊ ܲ א ܷ (A.1)

 

Definition A.1: The tangent space ௉ܶी at a point ܲ א ी is the linear vector space 

of all vectors ࢂ א Թଷ, such that 

ࢂ  ൌ ܸ௜ࡳ௜, ܸ௜ א Թ, emanating at point ܲ א ी (A.2)
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Definition A.2: A vector field ࢂሺܲሻ on the manifold ी is the map 

:ሺܲሻࢂ  ी ՜ ௉ܶी ׊ ܲ א ी (A.3)

 

Definition A.3: The cotangent space ௉ܶ
ܲ ी at a pointכ א ी is the linear vector 

space ࣦሺ ௉ܶी, Թሻ of all linear maps ࢻ: ௉ܶी ՜ Թ emanating at ܲ א ी, i.e. 

 ௉ܶ
ीכ ൌ ࣦሺ ௉ܶी, Թሻ (A.4)

 

Remark A.1: Tangent and cotangent spaces are dual spaces. The elements of the tangent 

space are called vectors while those of cotangent space are called one-forms or 

covectors. 

 

A.2.3 Scalar Product 

A scalar product is a bilinear mapping, ۃ· , :௉ۄ· ௉ܶ
ीכ ൈ ௉ܶी ՜  Թ such that 

 
,ࢻۃ ௉: ௉ܶۄࢂ

ीכ ൈ ௉ܶी ՜ Թ, ࢻ א ௉ܶ
ीכ ܽ݊݀ ࢂ א ௉ܶी 

,ࢻۃ ௉ۄࢂ ؝  ሻࢂሺࢻ
(A.5)

 

Remark A.2: The dual of the cotangent space ௉ܶ
 ी is identical (isomorphic) to tangentכ

space ௉ܶी. Therefore, a vector ࢂ א ௉ܶी can be considered as a linear function on 

௉ܶ
,ࢻۃ .ी, thus scalar product acts as a symmetric bilinear form, i.eכ ௉ۄࢂ ൌ ,ࢂۃ  .௉ۄࢻ

The basis of the cotangent space ௉ܶ
 ी is known as dual basis and is denoted byכ

,௜ࡳ i ൌ 1,2,3. The dual basis is given by the requirement: 

,௜ࡳۃ  ௉ۄ௝ࡳ ൌ ௝ߜ
௜ (A.6)

where ߜ௝
௜ is the Kronecker symbol. 

For one-form ࢻ א ௉ܶ
 ी the following representation in terms of basis vectors can beכ

obtained: 

ࢻ  ൌ ௜ (A.7)ࡳ௜ߙ

Therefore, in component form the inner-product is given by: 

,ࢻۃ  ௉ۄࢂ ൌ ,௜ࡳ௜ߙۃ ܸ௝ࡳ௝ۄ௉ ൌ ௜ܸ௜ (A.8)ߙ
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A.2.4 Tensors 

Definition A.4: Tensors are defined as multi-linear mappings on product spaces of 

tangent and/or cotangent spaces, for example a second order tensors can be defined as 

follows: 

 

:\ࢀ ௉ܶ
ीכ ൈ ௉ܶी ՜ Թ 

:/ࢀ ௉ܶी ൈ ௉ܶ
ीכ ՜ Թ 

:௕ࢀ ௉ܶी ൈ ௉ܶी ՜ Թ 

:#ࢀ ௉ܶ
ीכ ൈ ௉ܶ

ीכ ՜ Թ 

(A.9)

 

In component form, for example: 

 
,ࢻሺ\ࢀ ሻࢂ ൌ ,௜ࡳ௜ߙ൫\ࢀ ܸ௝ࡳ௝൯ ൌ ,௜ࡳ൫\ࢀ௜ܸ௝ߙ ௝൯ࡳ ൌ ௜ܸ௝ߙ

·ܶ௝
௜· 

where ·ܶ௝
௜· ؝ ,௜ࡳ൫\ࢀ  ௝൯ࡳ

(A.10)

 

Similarly, for other 2nd order tensors: 

 

,ࢂሺ/ࢀ ሻࢻ ൌ ܸ௜ߙ௝ ௜ܶ·
·௝  and ௜ܶ·

·௝ ؝ ,௜ࡳ൫/ࢀ  ௝൯ࡳ

,ࢁ௕ሺࢀ ሻࢂ ൌ ܷ௜ܸ௝
௜ܶ௝ and ௜ܶ௝ ؝ ,௜ࡳ௕൫ࢀ  ௝൯ࡳ

,ࢻሺ#ࢀ ሻࢼ ൌ ௝ܶ௜௝  and ܶ௜௝ߚ௜ߙ ؝ ,௜ࡳ൫#ࢀ  ௝൯ࡳ

(A.11)

 

The symbols \ (mixed tensor), / (mixed tensor), b (covariant tensor) and # (contravariant 

tensor) indicates the position of spaces ௉ܶी and ௉ܶ
 ी. The space of all the multi-linearכ

mappings on product spaces themselves forms linear vector spaces. For example, 2nd 

order tensors belong to the linear spaces as follows: 

 

\ࢀ א ࣭ ·ଵ
ଵ· ൌ ࣦሺ ௉ܶ

,ीכ ௉ܶी, Թ) 

/ࢀ א ଵ࣭·
·ଵ ൌ ࣦሺ ௉ܶी, ௉ܶ

,ीכ Թሻ 

௕ࢀ א ࣭ଶ
଴ ൌ ࣦሺ ௉ܶी, ௉ܶी, Թ) 

#ࢀ א ࣭଴
ଶ ൌ ࣦሺ ௉ܶ

,ीכ ௉ܶ
,ीכ Թ) 

(A.12)

Similarly, higher order tensors and tensor-spaces can be defined. 
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Remark A.3: Vectors and one-forms can be considered as tensors on spaces ࣭଴
ଵ ൌ

ࣦሺ ௉ܶ
,ीכ Թ) and ଵ࣭

଴ ൌ ࣦሺ ௉ܶी, Թ) respectively. 

 

Definition A.5: A second order tensor field on the manifold ी is a map 

:ሺܲሻࢀ  ी ՜ ௉ܶी ׊ ܲ א ी (A.13)

where ࢀ is any 2nd order tensor. Similarly any other tensor field on a manifold can be 

defined. 

 

Definition A.6: Tensor product, ࢀଵ۪ࢀଶ, of two tensors ࢀଵ and ࢀଶ is illustrated by 

an example. Let ࢀଵ א ࣭ଶ
଴ and ࢀଶ א ଵ࣭·

·ଵ 

 
ሺࢀଵ۪ࢀଶሻ א ࣭ଶ

଴۪ ଵ࣭·
·ଵ ൌ ࣭ଷ·

·ଵ ൌ ࣦሺ ௉ܶी, ௉ܶी, ௉ܶी, ௉ܶ
,ीכ Թሻ and 

ሺࢀଵ۪ࢀଶሻሺࢁଵ, ,ଶࢁ|ଵࢂ ଶሻࢻ ؝ ,ଵࢁଵሺࢀ ଵሻࢂ ,ଶࢁଶሺࢀ  ଶሻࢻ
(A.14)

Remark A.4: Tensor product of tensors is a higher order tensor. For example, second 

order tensors can also be defined as tensor product of vectors and one-forms as 

follows: 

Let ࢁ, ࢂ א ௉ܶी  and ࢻ, ࢼ א ௉ܶ
 ी, thenכ

 

ࢂ۪ࢁ א ࣭଴
ଶ ד ሺࢂ۪ࢁሻሺࢻ, ሻࢼ ؝ ,ࢁۃ ,ࢂۃ௣ۄࢻ  ௣ۄࢼ

ࢻ۪ࢁ א ·࣭ଵ
ଵ· ד ሺࢻ۪ࢁሻሺࢼ, ሻࢂ ؝ ,ࢁۃ ,ࢻۃ௣ۄࢼ  ௣ۄࢂ

ࢁ۪ࢻ א ଵ࣭·
·ଵ ד  ሺࢁ۪ࢻሻሺࢂ, ሻࢼ ؝ ,ࢻۃ ,ࢁۃ௣ۄࢂ  ௣ۄࢼ

ࢼ۪ࢻ א ࣭ଶ
଴ ד ሺࢼ۪ࢻሻሺࢁ, ሻࢂ ؝ ,ࢻۃ ,ࢼۃ௣ۄࢁ  ௣ۄࢂ

(A.15)

Similarly, higher order tensor products can be defined. 

 

Remark A.5: In terms of tensor products of basis vectors, 2nd order tensors can be 

represented as follows: 

 

Mixed: \ࢀ ൌ ·ܶ௝
௜·ሺࡳ௜۪ࡳ௝ሻ 

Mixed: ࢀ/ ൌ ௜ܶ·
·௝ሺࡳ௜۪ࡳ௝ሻ 

Covaraint: ௕ࢀ ൌ ௜ܶ௝ሺࡳ௜۪ࡳ௝ሻ 

Contravariant: #ࢀ ൌ ܶ௜௝ሺࡳ௜۪ࡳ௝ሻ 

(A.16)
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Remark A.6: Tensors can also be considered as linear maps on appropriate spaces. For 

example, ࢁ۪ࢻ א ଵ࣭·
·ଵ and ࢀ\ א ·࣭ଵ

ଵ· can be defined as linear operators as follows: 

 

:ࢁ۪ࢻ ௉ܶ
ीכ ՜ ௉ܶ

ीכ ד ሺࢁ۪ࢻሻࢼ ؝ ,ࢁۃࢻ ௣ۄࢼ ׊ ࢼ א ௣ܶ
   ,ीכ

:\ࢀ ௉ܶी ՜ ௉ܶी ד ሻࢁሺ\ࢀ ൌ ࢁ\ࢀ ؝ ·ܶ௝
௜·൫ࡳ௜۪ࡳ௝൯൫ܷ௤ࡳ௤൯

ൌ ·ܶ௝
௜·ܷ௤ࡳ௜ࡳۃ௝, ௣ۄ௤ࡳ ൌ ·ܶ௝

௜·ܷ௝ࡳ௜ 

(A.17)

Since tensor space is a linear vector space itself, the dual space of tensor space can be 

defined. For example, the dual of tensor space ࣦሺ ௉ܶ
,ीכ ௉ܶी, Թ) is the tensor space 

ࣦሺ ௉ܶी, ௉ܶ
,ीכ Թ).  

 

Definition A.7: The scalar product of two tensor which live in dual tensor spaces is 

illustrated by an example as follows: 

 

Let ࡭\ ൌ ௝·ܣ
௜· ௝ࡳ௜۪ࡳ א ·࣭ଵ

ଵ· ٿ /࡮ ൌ ௣ܤ ·
·௤ ௤ࡳ௣۪ࡳ א ଵ࣭·

·ଵ 

,\࡭ۃ ௣ۄ/࡮ ൌ ,\࡮ۃ ௣ۄ/࡭ ؝ ௝·ܣۃ
௜· ,௝ࡳ௜۪ࡳ · ௣ܤ

·௤  ௣ۄ௤ࡳ௣۪ࡳ

ൌ ௝·ܣ
௜· ௣ܤ ·

·௤ ,௜ࡳۃ ,௝ࡳۃ௣ۄ௣ࡳ ௣ۄ௤ࡳ ൌ ௝·ܣ
௜· ௜ܤ ·

·௝ 

(A.18)

Similarly, scalar products of higher order tensors living in the dual tensor spaces can be 

defined. 

Remark A.7: Following is the duality relationships for 2nd order tensor spaces: 

 
࣭଴

ଶ ஽௨௔௟
ሯልሰ ࣭ଶ

଴ 

·࣭ଵ
ଵ· ஽௨௔௟

ሯልሰ ଵ࣭·
·ଵ 

(A.19)

Remark A.8: If ܷ and ܸ are two vector spaces with duals ܷכand ܸכ, respectively. Then 

the dual, ሺܷ۪ܸሻכ of vector space ܷ۪ܸ is naturally isomorphic to ܷכܸ۪כ. 

Definition A.8: Let ࢀ\, ,/ࢀ  be second order tensors, then their dual or#ࢀ ௕ andࢀ

adjoint are denoted by כ\ࢀ, ,כ/ࢀ  :respectively and are defined as follows ,כ#ࢀ and כ௕ࢀ

 

:כ\ࢀ ௉ܶ
ीכ ՜ ௉ܶ

ीכ ד ,ࢁ\ࢀۃ ௣ۄࢻ ൌ ,ࢁۃ ·௣ or ௜ܶۄࢻכ/ࢀ
·௝כ

ൌ ·ܶ௝
௜· 

:כ/ࢀ ௉ܶी ՜ ௉ܶी ד ,ࢻ\ࢀۃ ௣ۄࢁ ൌ ,ࢻۃ ௣ or ·ܶ௝ۄࢁכ\ࢀ
௜·כ ൌ ௜ܶ·

·௝ 

:כ௕ࢀ ௉ܶी ՜ ௉ܶ
ד ीכ ,ࢁ௕ࢀۃ ௣ۄࢂ ൌ ,ࢁۃ כ௣ or ܶ௜௝ۄࢂכ௕ࢀ ൌ ܶ௝௜ 

:כ#ࢀ ௉ܶ
ीכ ՜ ௉ܶी ד ,ࢻ#ࢀۃ ௣ۄࢼ ൌ ,ࢻۃ ௣ or ௜ܶ௝ۄࢼכ#ࢀ

כ ൌ ௝ܶ௜ 

׊ ,ࢁ ࢂ א ௣ܶी ٿ ,ࢻ ࢼ א ௣ܶ
 ीכ

(A.20)
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Remark A.9: The matrix components of dual of a tensor are identical to the transpose of 

component matrix of original tensor. 

 

Remark A.10: Mixed 2nd order tensors, כ\ࢀ א ଵ࣭·
·ଵ,  but  ࢀ\ א  ࣭·ଵ

ଵ· , similarly כ/ࢀ א ·࣭ଵ
ଵ·but 

/ࢀ א ଵ࣭ ·
·ଵ. However, ࢀ௕ࢀ  ٿכ௕ א ࣭ଶ

଴ and ࢀ  ٿכ#ࢀ# א ࣭଴
ଶ, belongs to the same tensor 

spaces. Thus for covariant and contravariant 2nd order tensors self-duality or self-

adjointness can be defined. 

 

Definition A.9: A map ࢀ௕: ௣ܶी ՜ ௣ܶ
 ी is called self-dual or self-adjoint ifכ

כ௕ࢀ ൌ ௉ܶ :#ࢀ ௕. Similarly, a mapࢀ
ीכ ՜ ௣ܶी is called self-dual or self-adjoint if 

כ#ࢀ ൌ  .#ࢀ

 

A.2.5 Riemannian Metric 

In solid mechanics, manifolds that are of interests are Riemannian manifolds, i.e. the 

manifold ी is endowed with a Riemannian metric. The Riemannian metric can then be 

used to define inner product of tensors. 

 

Definition A.10: A Riemannian metric ࡳሺܲሻ ؠ  ஶ 2nd order covariantܥ ௉ on ी is aࡳ

tensor field on ी such that: 

 
,ଵࢂ௉ሺࡳ ଶሻࢂ ൌ ,ଶࢂ௉ሺࡳ ଵሻࢂ ׊ ,ଶࢂ ଵࢂ א ௉ܶी 

,ࢂ௉ሺࡳ ሻࢂ ൐ ׊ 0 ࢂ א ௉ܶी with ࢂ ് ૙ 
(A.21)

 

Definition A.11: The inner product on tangent space ௉ܶी at P is the mapping: 

.ࢁ  :ࢂ ௉ܶी ൈ ௉ܶी ՜ Թ ד .ࢁ ࢂ ؝ ,ࢁ௉ሺࡳ ሻࢂ ׊ ,ࢁ ࢂ א ௉ܶी (A.22)

 

Remark A.11: ࡳ௉ is a covariant tensor field (ࡳ௉ ؠ ௉ࡳ 
௕ ؠ ௕) and belongs to ࣭ଶࡳ

଴. In 

component form, ࡳ௉ ൌ  ௉ can also be considered as linearࡳ .௝ሻࡳ௜۪ࡳ௜௝ሺܩ

map: ࡳ௉
௕: ௉ܶी ՜ ௉ܶ

௉ࡳ ी . The inverse mapכ
௕ିଵ: ௉ܶ

ीכ ՜ ௉ܶी can also be defined 

where ࡳ௉
௕ିଵ ؠ ௉ࡳ 

# ؠ #ࡳ ,is a contravariant metric tensor ,#ࡳ ൌ  .௝ሻࡳ௜۪ࡳ௜௝ሺܩ
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Definition A.12: The contravariant metric tensor, ࡳ#, defines an inner product on 

cotangent space ௉ܶ
 :ी at P as followsכ

.ࢻ  :ࢼ ௉ܶ
ीכ ൈ ௉ܶ

ीכ ՜ Թ ד .ࢻ ࢼ ؝ ௉ࡳ
#ሺࢻ, ሻࢼ ׊ ,ࢻ ࢼ א ௉ܶ

ी (A.23)כ

 

Remark A.12: Both covariant and contravariant metric tensors are self-dual or self-

adjoint, i.e. ࡳ௕ ൌ #ࡳ and כ௕ࡳ ൌ  .כ#ࡳ

 
Remark A.13: In component form, ࢁ. ࢂ ൌ .ࢻ ௜௝ܷ௜ܸ௝ andܩ ࢼ ൌ  ௜. Also, it can beߚ௜ߙ௜௝ܩ

shown that: ࢁ. ࢂ ൌ ,ࢁ௕ࡳۃ ௉ۄࢂ ൌ ,ࢁۃ .ࢻ , ௉ۄࢂ௕ࡳ ࢼ ൌ ,ࢻ#ࡳۃ ௉ۄࢼ ൌ ,ࢻۃ  ,௉ۄࢼ#ࡳ

,௜ࡳ௕൫ࡳ ௝൯ࡳ ൌ ,௜ࡳ൫#ࡳ ௜௝ andܩ ௝൯ࡳ ൌ  .௜௝ܩ

 

A.2.6 Transpose 

Let ࢀ\, ,/ࢀ  be second order tensors, then their transpose are denoted by #ࢀ ௕ andࢀ

,்\ࢀ ,்/ࢀ  :respectively and are defined as follows ,்#ࢀ ௕் andࢀ

 

:்\ࢀ ௉ܶी ՜ ௉ܶी ד .ࢁ\ࢀ ࢂ ൌ .ࢂ்\ࢀ or ·ܶ௝ ࢁ
௜·೅ ൌ ௜௤ܩ

·ܶ௤
௣·ܩ௣௝ 

:்/ࢀ ௉ܶ
ीכ ՜ ௉ܶ

ד ीכ .ࢻ/ࢀ ࢼ ൌ .ࢼ்/ࢀ ·or ௜ܶ ࢻ
·௝೅

ൌ ௜௤ܩ ௣ܶ·
·௤ܩ௣௝ 

:௕்ࢀ ௉ܶ
ीכ ՜ ௉ܶी ד .ࢁ௕ࢀ ࢻ ൌ .ࢻ௕்ࢀ or ܶ௜௝೅ ࢁ ൌ ௜௣ܩ

௣ܶ௤ܩ௤௝ 

:்#ࢀ ௉ܶी ՜ ௉ܶ
ד ीכ .ࢻ#ࢀ ࢁ ൌ .ࢁ்#ࢀ or ௜ܶ௝  ࢻ

் ൌ  ௤௝ܩ௜௣ܶ௣௤ܩ

׊ ,ࢁ ࢂ א ௉ܶी ٿ ,ࢻ ࢼ א ௉ܶ
 ीכ

(A.24)

 

A.2.7 Mapping Between Manifolds: Diffeomorphism and Two-point Tensors 

Definition A.13: A ܥ௥- diffeomorphism between manifolds ीଵ and ीଶ is a ܥ௥map, 

࣐: ीଵ ՜ ीଶ, such that the inverse map ࣐ିଵ: ीଵ ՜ ीଶ exists and is also ܥ௥. Two 

manifolds are considered to be diffeomorphic if there exists a diffeomorphism 

between them. 

Definition A.14: A map, ࣐: ीଵ ՜ ीଶ, between manifolds is called a local 

diffeomorphism if every point ܲ א ीଵ has a neighborhood ܷ such that ߮ሺܷሻ is open 

in ीଶ and ࣐: ܷ ՜ ࣐ሺܷሻ is a diffeomorphism. 
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Let ܲ א  ीଵ and ࣐ be a ܥ௥- diffeomorphism such that  ࣐ሺܲሻ ൌ ݌ א  ीଶ , then define the 

following spaces: 

 

௉ܶीଵ : Tangent space at ܲ א  ीଵ with basis ሼࡳ௜ሽ and ࢂ א ௉ܶीଵ 

௉ܶ
ܲ ीଵ : Cotangent space atכ א  ीଵ with basis ሼࡳ௝ሽ 

௣ܶीଶ : Tangent space at ݌ א  ीଶ with basis ሼࢍ௜ሽ and ࢜ א ௣ܶीଶ 

௣ܶ
݌ ीଶ : Cotangent space atכ א  ीଶ with basis ሼࢍ௝ሽ and ࢼ א ௣ܶ

 ीଶכ

 

Now a mixed two point tensor is defined as follows: 

Definition A.15: A mixed two point tensor ञ\ over the map ࣐ is a linear map 

 ञ\: ௉ܶीଵ ՜ ௣ܶीଶ: ࢂ հ ࢜ ൌ ञࢂ (A.25)

Coordinates representation: ञ\ ൌ ·࣮஺
௔·ࢍ௔۪ࡳ஺. Since \ is the only type of 2-point tensors 

considered in this study, this symbol is dropped, and 2-point tensors are written as ञ ؠ

ञ\. 

 

Definition A.16: The dual of a two point tensor, ञ, is defined as: 

 ञכ: ௣ܶ
ीଶכ ՜ ௉ܶ

ीଵכ ד ,ࢂञۃ ௣ۄࢼ ൌ ,ࢂۃ ञۄࢼכ௉ ׊ ࢂ א ௉ܶीଵ, ࢼ א ௣ܶ
ीଶ (A.26)כ

Coordinates representation: ञכ ൌ ஺࣮·
·௔ࡳכ஺۪ࢍ௔ ൌ ·࣮௔

஺·ࡳ஺۪ࢍ௕ 

 

Definition A.17: The transpose of a two point tensor, ञ, is defined as: 

 ञ்: ௣ܶीଶ ՜ ௉ܶीଵ ד ञࢂ. ࢼ ൌ ञ்ࢼ. ࢂ ׊ ࢂ א ௉ܶीଵ, ࢼ א ௣ܶ
ीଶ (A.27)כ

Coordinates representation: ञ் ൌ ·࣮௔
஺·೅ࡳ஺۪ࢍ௔  ൌ ݃௔௕ ·࣮஻

௕·ܩ஻஺ࡳ஺۪ࢍ௔ 

 

Definition A.18: The tangent or differential, ࣐ܶ ൌ ऐఝ ൌ ऐ, of the map ࣐: ीଵ ՜

ीଶ is defined as: 

 
ऐ: ௉ܶीଵ ՜ ௣ܶीଶ ד ऐ ൌ ·࣠஺

௔·ࢍ௔۪ࡳ஺ and ·࣠஺
௔· ൌ

߲߮௔

஺ฬߖ߲
௉

 

ऐ ؝ ௉࣐ܶ 
(A.28)

where ࢸ are the coordinates on ीଵ. Thus, ऐ is a two point tensor. 
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Definition A.19: The tangent of the inverse map ࣐ିଵ: ीଶ ՜ ीଵ, that is ऐିଵ ,is 

defined as: 

 
ऐିଵ: ௣ܶीଶ ՜ ௉ܶीଵ ד ऐିଵ ൌ ·࣠௔

஺·షభࡳ஺۪ࢍ௔ and ·࣠௔
஺·షభ ൌ

߲߮஺షభ 
߲߶௔ ቤ

௣
 

ऐିଵ ؝ ௣࣐ܶିଵ 

(A.29)

where ࣘ are the coordinates on ीଶ. 

 

A.2.8 Invariant transformations 

The main concern in application of manifold structure to solid mechanics is the study of 

properties of differentiable manifolds that are preserved by diffeomorphisms. In this 

section the important transformation under a diffeomorphism are considered. 

 

Definition A.20: The push-forward, ࣐כሺ·ሻ, of a vector field ࢂሺܲሻ: ीଵ ՜ ௉ܶीଵunder 

the diffeomorphism ࣐: ीଵ ՜ ीଶ is defined as: 

ሻ: ௉ܶीଵࢂሺכ࣐  ՜ ௣ܶीଶ: ࢂ հ ࢜ ൌ ऐࢂ where ऐ ൌ ௉࣐ܶ (A.30)

 

Definition A.21: The pull-back, ࣐כሺ·ሻ, of a vector field ࢜ሺ݌ሻ: ीଶ ՜ ௣ܶीଶunder the 

diffeomorphism ࣐: ीଵ ՜ ीଶ is defined as: 

ሺ࢜ሻ: ௣ܶीଶכ࣐  ՜ ௉ܶीଵ: ࢜ հ ࢂ ൌ ऐିଵ࢜ where ऐିଵ ൌ ௣࣐ܶିଵ (A.31)

 

Definition A.22: The push-forward, ࣐כሺ·ሻ, of a one-form field ࢻሺܲሻ: ीଵ ՜

௉ܶ
:࣐ ीଵunder the diffeomorphismכ ीଵ ՜ ीଶ is defined by the requirement that the 

scalar product, ࢂۃ, ,ࢂۃ .௉, remains invariant under the diffeomorphism ࣐, i.eۄࢻ ௉ۄࢻ ൌ

,ሻࢂሺכ࣐ۃ  .௣ۄሻࢻሺכ࣐

:ሻࢻሺכ࣐  ௉ܶ
ीଵכ ՜ ௣ܶ

:ीଶכ ࢻ հ ࢼ ൌ ऐିכଵࢻ (A.32)

 

Definition A.23: The pull-back, ࣐כሺ·ሻ, of a one-form field ࢼሺ݌ሻ: ीଶ ՜ ௣ܶ
 ीଶunderכ

the diffeomorphism ࣐: ीଵ ՜ ीଶ is defined by the requirement that the scalar product, 
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,࢜ۃ  .௣, remains invariant under the diffeomorphism ࣐, i.eۄࢼ

,࢜ۃ ௣ۄࢼ ൌ ,ሺ࢜ሻכ࣐ۃ  .௉ۄሻࢼሺכ࣐

ࢼሺכ࣐  ሻ: ௣ܶ
ीଶכ ՜ ௉ܶ

:ीଵכ ࢼ հ ࢻ ൌ ऐࢼכ (A.33)

 

For application to continuum mechanics, the push-forward and pull-back operations on 

second order tensor fields are formed to preserve symmetry and self duality of 2nd order 

tensors. To this end invariance of quadratic forms are employed. For example, push-

forward of 2nd order tensor ࢀ\ is defined by the invariance of  ࢂ\ࢀ. ࢁ ൌ .ࢂ\ࢀ൫כ࣐ ൯ࢁ ൌ

.ሻࢂሺכ൯࣐\ࢀ൫כ࣐ ሻࢁሺכ࣐ ൌ ऐ்࣐כ൫ࢀ\൯ऐࢂ. ࢁ ฺ ൯\ࢀ൫כ࣐ ൌ ऐି்ࢀ\ऐିଵ. Table A-1 gives the 

summary of important push-forward and pull-back operations. 

 

A.2.9 Objective Time Derivatives 

Definition A.24: Let ࣐: ीଵሺ݌ሻ ՜ ीଶሺ݌Ԣሻ, be a diffeomorphism and let ࢚ሺ݌ሻ be a 

spatial tensor field of arbitrary order defined on ीଵ. Further, let ࢚ᇱሺ݌Ԣሻ be the 

transformed tensor field under the diffeomorphism ࣐: ीଵሺ݌ሻ ՜ ीଶሺ݌Ԣሻ. The tensor 

field ࢚ሺ݌ሻ transforms objectively under the transformation ࣐ if: 

 ࢚ᇱ ൌ ሺ࢚ሻ (A.34)כ࣐

where ࣐כሺ࢚ሻ is the push-forward of ࢚ under the diffeomorphism ࣐. 

 

Remark A.14: A tensor field ࢚ሺ݌ሻis said to be spatially covariant if A.43 hold for every 

diffeomorphism ࣐: ीଵሺ݌ሻ ՜ ीଶሺ݌Ԣሻ. 

Remark A.15: An isometry is a diffeomorphism which leave the metric tensor invariant, 

i.e.  ࣐כሺࡳሻ ൌ  .is a metric on ीଵ ࡳ where ,ࡳ

 

Definition A.25: Let ߖ be a an object defined on the reference configuration ी, 

where ߖ can be a scalar , a vector, a one form or a tensor of arbitrary order. The 

material time derivative of this object is defined as: 

ሶߖ  ؝
ߖܦ
ݐܦ ൌ

ߖ߲
ݐ߲ ฬ

௉
 (A.35)

where the index ܲ indicates that the particle ܲ is held fixed during differentiation. 
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Definition A.26: The Lie derivative of an object ߖ (scalar , vector or tensor) defined 

on current configuration ी௧ is defined as follows: 

 ࣦ௩ሺߖሻ ൌ כ࣐ ൬
ܦ
ݐܦ ሿ൰ (A.36)ߖሾכ࣐

Remark A.16: Material time derivative of any spatial tensor field (field defined on the 

current configuration) is not an objective tensor field. However, Lie derivatives of 

spatial tensor field are objective tensor fields. 
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Push-forward 

 ሺ·ሻכ࣐

Pull-back 

 ሺ·ሻכ࣐

Scalar ࣐כሺܵሻ ൌ ܵ ל ࣐ିଵ ࣐כሺܵሻ ൌ ܵ ל ࣐ 

Vector 
One-form 

ሻࢂሺכ࣐ ൌ ऐࢂ 

ሻࢻሺכ࣐ ൌ ऐିכଵࢻ 

ሺ࢜ሻכ࣐ ൌ ऐିଵ ࢜ 

ሻࢼሺכ࣐ ൌ ऐࢼכ 

2nd Order Tensors 

൯\ࢀ൫כ࣐ ൌ ऐି்ࢀ\ऐିଵ 

൯/ࢀ൫כ࣐ ൌ ऐࢀ்כ/ऐכ 

௕ሻࢀሺכ࣐ ൌ ऐିכଵࢀ௕ऐିଵ 

ሻ#ࢀሺכ࣐ ൌ ऐࢀ#ऐכ 

൫࢚\൯כ࣐ ൌ ऐ்࢚\ऐ 

൫࢚/൯כ࣐ ൌ ऐ்࢚ିכ/ऐିכଵ 

ሺ࢚௕ሻכ࣐ ൌ ऐ࢚כ௕ऐ 

ሺ࢚#ሻכ࣐ ൌ ऐିଵ࢚#ऐିכଵ 

Table A-1: Push-forward and Pull-back Operations 



275 

 
 
 
 
 
 
 
 
 
 
 
 

BIBLIOGRAPHY 
 
 
 
 
 
 
 
 
 



276 

Abedi, K., and Parke, G.A.R. (1996). “Progressive collapse of single-layer braced 
domes,” International Journal of Space Structures, Vol. 11, No 3, 291-306. 

Abraham, F.F., Broughton, J., Bernstein, N., and Kaxiras, E. (1998). “Spanning the 
continuum to quantum length scales in a dynamic simulation of brittle fracture,” 
Europhysics Letters, Vol. 44, No. 6, 783-787. 

Abraham, F.F., Broughton, J.Q., Bernstein, N., and Kaxiras, E. (1998). “Spanning the 
length scales in dynamic simulation,” Computers in Physics, Vol. 12, Issue 6, 
538-546. 

Aifantis, E.C. (1984). “On the microstructural origin of certain inelastic models,” Journal 
of Engineering Materials and Technology - transactions of the ASME, Vol. 106, 
326-330. 

Aifantis, E.C. (1987). “The physics of plastic deformation,” International Journal of 
Plasticity, Vol. 3, No. 3, 211-247. 

AISC (1997). Seismic Provisions for Structural Steel Buildings, ANSI/AISC  341-97, 
American Institute of Steel Construction, Chicago, Illinois.  

AISC (2002). Seismic Provisions for Structural Steel Buildings, ANSI/AISC  341-02, 
American Institute of Steel Construction, Chicago, Illinois.  

AISC (2005). Seismic Provisions for Structural Steel Buildings, ANSI/AISC  341-05, 
American Institute of Steel Construction, Chicago, Illinois.  

AISC-LRFD (1999). Manual of Steel Construction –Load and Resistant Factor Design, 
Third Edition, American Institute of Steel Construction, Chicago. 

AISC (2005). Steel Construction Manual, 13th Edition, American Institute of Steel 
Construction, Chicago.  

ANSI/AISC 360-05 (2005). Specifications for Structural Steel Buildings. American 
Institute of Steel Construction, Chicago. 

Arce, G. (2002). Impact of Higher Strength Steels on Local Buckling and Overstrength of 
Links in Eccentrically Braced Frames. Master’s Thesis, Dept. of Civil 
Engineering, Univ. of Texas at Austin, Austin, TX. 

Argon, A.S., Im, J., and Safoglu, R. (1975). “Cavity formation from inclusions in ductile 
fracture,” Metallurgical Transactions, Vol. 6A, 825-837. 

Armero, F., and Oller, S. (2000). “A general framework for continuum damage models. I. 
Infinitesimal plastic damage models in stress space,” International Journal of 
Solids and Structures, Volume 37, Issues 48-50, 7409-7436. 



277 

Armero, F., and Oller, S. (2000). “A general framework for continuum damage models. 
II. Integration algorithms, with applications to the numerical simulation of porous 
metals,” International Journal of Solids and Structures, Volume 37, Issues 48-50, 
7437-7464. 

Arora, J.S., Haskell, D.F., and Govil, A.K. (1980), “Optimal design of large structures for 
damage tolerance,” AIAA Journal, Vol. 18, No. 5, 563-570. 

Anderson, T.L. (2004). Fracture Mechanics: fundamentals and applications, CRC Press, 
Boca Raton, FL, 3rd ed. 

Antman, S. (2005). Nonlinear Problems of Elasticity, Springer, 2nd ed. 

ASCE Standard 7-02, Minimum Design Loads for Buildings and Other Structures (ASCE 
7-02/ANSI A58) (2002), American Society of Civil Engineers, Reston, VA. 

ASCE Standard 7-05, Minimum Design Loads for Buildings and Other Structures (ASCE 
7-05/ANSI A58) (2005), American Society of Civil Engineers, Reston, VA. 

Astaneh-Asl, A. (2003). “Progressive Collapse Prevention in New and Existing 
Buildings”, Proceedings, 9th Arab Structural Engineering Conference, November 
29-December 1, Abu Dhabi, United Arab Emirates (UAE). 

Astaneh-Asl, A., Jones, B, Zhao, Y., and Hwa, R., (2002), Progressive collapse resistance 
of steel building floors”, Report number: UCB/CEE-STEEL-2001/03, University 
of California at Berkeley. 

Atkins, P., and Friedman, R. (2005). Molecular Quantum Mechanics, Oxford University 
Press, USA, 4th ed. 

Attard, P. (2002), Thermodynamics and Statistical Mechanics, Academic Press, 1st ed. 

Baldridge S.M. and Humay F.K. (2003). “Preventing progressive collapse in concrete 
buildings,” Concrete International, November 2003, 73-79. 

Bandstra, J. P., Goto, D. M. and Koss, D. A. (1998). “Ductile failure as a result of a void-
sheet instability: Experiment and computational modeling,” Material Science and 
Engineering, A249, 46-54. 

Bathe, K.J. (1995). Finite Element Procedures, Prentice Hall. 

Bathe, K.J., and Chapelle, D. (2003). The Finite Element Analysis of Shells: 
Fundamentals, Springer; 1st ed. 

Bazant, Z.P., Belytschko, M., and Chang, T.P. (1984), “Continuum theory for strain-
softening,” ASCE Journal of Engineering Mechanics, Vol. 110, 1666-1691. 



278 

Belytschko, T., Fish, J. and Bayliss, A. (1990). “The Spectral Overlay on Finite Elements 
for Problems with High Gradients,” Computer Methods in Applied Mechanics and 
Engineering, Vol. 81, No. 1, 71-89. 

Belytschko, T., Liu, W.K., and Moran, B. (2000). Nonlinear Finite Elements for Continua 
and Structures, Wiley, 1st ed. 

Benzerga, A.A., Besson, J., and Pineau, A. (1999). “Coalescence-controlled anisotropic 
ductile fracture,” Journal of Engineering Materials and Technology, Vol. 121(2), 
221-229. 

Benzerga, A. A. and Besson, J. (2001). “Plastic potentials for anisotropic porous solids,” 
European Journal of Mechanics A/Solids, 20(3), 397–434. 

Beremin, F.M. (1981). “Cavity formation from inclusions in ductile fracture of A508 
steel,” Metallurgical Transactions A, Vol. 12(5), 723-731. 

Bonet, J., and Wood, R.D. (2008). Nonlinear Continuum Mechanics for Finite Element 
Analysis, Cambridge University Press, 2nd ed. 

Bridgman, P.W., (1952). Studies in Large Flow and Fracture. McGraw Hill, NewYork. 

Broughton, J.Q., Abraham, F.F., Bernstein, N., and Kaxiras, E. (1999). “Concurrent 
coupling of length scales: methodology and applications,” Physics Review B, Vol. 
60, Issue 4, 2391-2403. 

Brown, L.M., and Stobbs, W.M. (1976). “The work hardening of copper silica vs 
equilibrium plastic relaxation by secondary dislocations,” Philosophical 
Magazine, Vol. 34, 351-372. 

Casciati, F., and Faravelli, L. (1984). “Progressive Failure for Seismic Reliability 
Analysis”, Engineering Structures, Vol. 6, No. 2, 97-103. 

Castaneda, P., and Zaidman, M. (1994). “Constitutive models for porous materials with 
evolving microstructure,” J. Mech. Phys. Solids, Vol. 42, No. 9, 1459–1497. 

Chaboche, J.L. (1981). “Continous damage mechanics - a tool to describe phenomena 
before crack initiation,” Nuclear Engineering and Design, Vol. 64, No. 2, 233-
247. 

Chaboche, J.L. (1988). “Continuum damage mechanics. Part-I General concepts,” 
Journal of Applied Mechanics,” Vol. 55, No. 1, 59-64. 

Chaboche, J.L. (1988). “Continuum damage mechanics. Part-II Damage growth, crack 
initiation, and crack growth,” Journal of Applied Mechanics,” Vol. 55, No. 1, 65-
72. 



279 

Chaboche, J.L., Lesne, P.M., and Maire, J.F. (1995). “Continuum damage mechanics, 
anisotropy and damage deactivation for brittle materials like concrete and ceramic 
composites,” International Journal of Damage Mechanics, Vol. 4, No. 1, 5-22. 

Chaboche, J.L. (1995). “A continuum damage theory with anisotropic and unilateral 
damage,” La Recherche Aerospatiale 2, 139-147. 

Coleman, B.D., and Gurtin, M.E. (1967). “Thermodynamics with internal state 
variables,” The Journal of Chemical Physics, Vol. 47, 597-613. 

Coleman, B.D., and Noll, W. (1963). “The thermodynamics of elastic materials with heat 
conduction and. Viscosity,” Archives for Rational Mechanics and Analysis, Vol. 
13, 167-178. 

Cook, D.B. (2005). Handbook of Computational Quantum Chemistry, Dover 
Publications. 

Crisfield M.A. (1991). Non-Linear Finite Element Analysis of Solids and Structures, 
Volume 1, Wiley. 

Crisfield M.A. (1997). Non-Linear Finite Element Analysis of Solids and Structures, 
Volume 2 - Advanced Topics, Wiley, 1st ed. 

de Borst, R., and Sluys, L.J. (1991). “Localization in a cosserat continuum under static 
and loading conditions,” Computer Methods in Applied Mechanics and 
Engineering, Vol. 90, Issue 1-3, 805-827. 

Dhar, S., Sethuraman, R., and Dixit, P.M. (1996). “A continuum damage mechanics 
model for void growth and micro crack initiation,” Engineering fracture 
mechanics, Vol. 53, No. 6, 917-928. 

Dong, S. B. (1983). “Global-Local Finite Element Methods,” Chapter 14 In: Noor, A. K., 
and Pilkey, W. D. (ed.), State of the Art Surveys on Finite Element Technology, 
pp. 451-474. American Society of Mechanical Engineers (ASME), New York. 

Dos Santos, F.F. and Ruggieri, C. (2003). “Micromechanics modelling of ductile fracture 
in tensile specimens using computational cells,” Fatigue and Fracture of 
Engineering Materials and Structures, 26(2), 173-181. 

Dusenberry, D.O., and Hamburger, R.O. (2006). “Practical Means for Energy-Based 
Analyses of Disproportionate Collapse Potential,” Journal of Performance of 
Constructed Facilities, Volume 20, Issue 4, 336-348. 

Ellingwood, B.R., and Dusenberry D.O. (2005). “Building design for abnormal load and 
progressive collapse,” Computer-Aided Civil and Infrastructure Engineering, Vol. 
20, 2005, 194-205. 



280 

Ellingwood, B.R. (2006). Mitigating Risk from Abnormal Loads and Progressive 
Collapse,” Journal of Performance of Constructed Facilities, Vol. 20, Issue 4, 
315-323. 

Ellingwood, B., and Leyendecker, E.V. (1978). “Approaches for design against 
progressive collapse,” Journal of the Structural Division, ASCE, 104(3), 413-423. 

El-Tawil, S. and Deierlein, G. G. (1998). “An Examination for Stress Resultant Plasticity 
for Frame Structures,” Journal of Engineering Mechanics, ASCE, Vol. 124, No. 
12, pp. 1360-1370. 

El-Tawil, S., and Deierlein, G.G. (2001). “Nonlinear analysis of mixed steel concrete 
frames I: Element formulation,” Journal of Structural Engineering, ASCE, Vol. 
127, No. 6, 647-655. 

El-Tawil, S., and Deierlein, G.G. (2001). “Nonlinear analysis of mixed steel concrete 
frames II: Implementation and Verification,” Journal of Structural Engineering, 
ASCE, Vol. 127, No. 6, 647-655. 

El-Tawil S., Vidarsson, E., Mikesell, T., and Kunnath, S.K. (1999). “Inelastic behavior 
and design of steel panel zones,” Journal of Structural Engineering, ASCE, Vol. 
125, No. 2, 183-193. 

Eterovic, A.L., and Bathe, K.J. (1990). “Hyperelastic-based large strain elasto-plastic 
constitutive formulation with combined isotropic-kinematic hardening using the 
logarithmic stress and strain measures,” International Journal for Numerical 
Methods in Engineering, Vol. 30, Issue 6, 1099-1114.  

FEMA 273 (1997). NEHRP Guidelines for the Seismic Rehabilitation of Buildings, 
Federal Emergency Management Agency, Washington, DC. 

FEMA 302 (1997). Recommended Provisions for Seismic Regulations for New 
Buildings, Federal Emergency Management Agency, Washington, DC. 

FEMA 350 (2000).  Recommended Seismic Design Criteria for New Steel Moment-
Frame Bulidings, Federal Emergency Management Agency, Washington, DC. 

FEMA 355D (2000). State of the Art Report on Connection Performance, Federal 
Emergency Management Agency, Washington, DC. 

FEMA 356 (2000). Prestandard and Commentary for the Seismic Rehabilitation of 
Buildings, Federal Emergency Management Agency, Washington, DC. 

FEMA 369 (2000). NEHRP Recommended Provisions for Seismic Regulations for New 
Buildings and Other Structures. Part 2: Commentary, Federal Emergency 
Management Agency, Washington, DC. 



281 

Ferahian, R.H. (1972). “Buildings: Design for prevention of progressive collapse”, Civil 
Engineering- ASCE, February 1972, pp. 66-69. 

Fish, J., Nayak, P., and Holmes, M.H. (1994). “Microscale Reduction Error Indicators 
and Estimators for a Periodic Heterogeneous Medium,” Computational 
Mechanics, Vol. 14, No. 4, 323-338. 

Fish, J., Shek, K., Pandheeradi, M., and Shephard, M.S. (1997). “Computational 
Plasticity for Composite Structures Based on Mathematical Homogenization: 
Theory and Practice,” Computer Methods in Applied Mechanics and Engineering, 
Vol. 148, No. 1, 53-73. 

Fish J., and Wagiman A. (1993). “Multiscale finite element method for a locally 
nonperiodic heterogeneous medium,” Computational Mechanics, Vol. 12, No. 3, 
164-180. 

Frenkel, D., and Smit, B. (2001). Understanding Molecular Simulation, Academic Press, 
2nd ed. 

Garajeu, M., Michel, J. C., and Suquet, P. (2000). “A micromechanical approach of 
damage in viscoplastic materials by evolution size, shape and distribution of 
voids,” Computer Methods in Applied Mechanics and Engineering, 183(3-4), 
223–246. 

Ghosh, S.K. (2006). Assessing Ability of Seismic Structural Systems to Withstand 
Progressive Collapse: Design of Steel Braced Frame Buildings. Report - SK 
Ghosh and Associates, 334 E Colfax, Unit E, Palatine, IL 60067. 

Ghosh S., Lee K., and Moorthy S. (1995). “Multiple scale analysis of heterogeneous 
elastic structures using homogeneization theory and Voronoi cell finite element 
method,” International Journal of Solids and Structures, Vol. 32, No. 1, 1995, 27-
42. 

Ghosh, S., Lee, K., and Moorthy, S. (1996). “Two scale analysis of heterogeneous 
elastic-plastic materials with asymptotic homogenization and Voronoi cell finite 
element model,” Computer Methods in Applied Mechanics and Engineering, Vol. 
132, Issue 1-2, 63-116. 

Gologanu, M., Leblond, J. B., and Devaux, J. (1993). “Approximate models for ductile 
metals containing non-spherical voids - case of axisymmetric prolate ellipsoidal 
cavities,” Journal of the Mechanics and Physics of Solids, 41(11), 1723–1754. 

Gologanu, M., Leblond, J. B., and Devaux, J. (1994). “Approximate models for ductile 
metals containing non-spherical voids - case of axisymmetric oblate ellipsoidal 
cavities,” Journal of Engineering Materials and Technology, Transactions of the 
ASME, 116(3), 290–297. 



282 

Goldstein, H., Poole, C.P., and Safko, J.L. (2001). Classical Mechanics, Addison Wesley, 
3rd ed. 

Goods, S.H., and Brown, L.M., (1979). “The nucleation of cavities by plastic 
deformation,” Acta Metallurgica, Vol. 27, No. 1, 1-15. 

Govindjee, S.D, Kay, G.J., and Simo, J.C. (1995). “Anisotropic modeling and numerical 
simulation of brittle damage in concrete,” International Journal of Numerical 
Methods in Engineering, Vol. 38, Issue 21, 3611-3633. 

Gross, J.L., and McGuire, W. (1983). “Progressive collapse resistant design,” Journal of 
Structural Engineering, ASCE, 109(1), 1-14. 

Grierson, D.E., Xu, L., and Liu, Y. (2005). “Progressive-failure analysis of buildings 
subjected to abnormal loading,” Computer-Aided Civil and Infrastructure 
Engineering, Vol. 20, No. 3, 155-171. 

Griffiths, D.J. (2004). Introduction to Quantum Mechanics, Benjamin Cummings, 2nd ed.  

Gurson, A. L. (1977). “Continuum theory of ductile rupture by void nucleation and 
growth.  Part I: Yield criteria and flow rules for porous ductile media,” Journal of 
Engineering Materials and Technology, 99(1), 2-15. 

Gurtin, M.E. (1981). An Introduction to Continuum Mechanics, Academic Press.  

Haile, J.M. (1997), Molecular Dynamics Simulation, Wiley-Interscience, 1st ed. 

Hajjar, J.F., and Molodan. A. (1998). “A distributed plasticity model for cyclic analysis 
of concrete-filled steel tube beam-columns and composite frames,” Engineering 
Structures, Vol. 20(4-6), 398-412. 

Hallquist, J. (2006), “LS-DYNA”, Livermore Software Technology Corp, Livermore, CA. 

Hamburger, R., and Whittaker, A. (2004), “Design of steel structures for blast-related 
progressive collapse resistance,” Modern Steel Construction, AISC, March 2004, 
45-51. 

Hancock, J.W., and Mackenzie, A. C., (1976). “On the mechanics of ductile failure in 
high-strength steel subjected to multi-axial stress-states,” Journal of Mechanics 
and Physics of Solids, Vol. 24, 147-169. 

Hao, S., Liu, W.K., Olson, G.B., and Moran, B., (2004). “Multi-scale constitutive model 
and computational framework for the design of ultra-high strength, high 
toughness steels,” Computer Method in Applied Mechanics and Engineering, Vol. 
193, Issue 17-20, 1865-1908. 



283 

Hansen, N.R., and Schreyer, H.L. (1994). “A thermodynamically consistent framework 
for theories of elastoplasticity coupled with damage,” International Journal of 
Solids and Structures, Vol. 31, Issue 3, 359-389. 

Hayden, H.W., and Floreen, S. (1969). “Observations of localized deformation during 
ductile fracture,” Acta Metallurgica, Vol. 17, 213-214. 

Hill, R. (1956). “The mechanics of quasi-static plastic deformation in metals,” In: 
Batchelor,” Surveys in Mechanics: The G.I. Taylor 70th Anniversary Volume, 
G.K., Davies, R.M. (Eds.), Cambridge University Press, Cambridge, 7-31. 

Hill, R. (1968). “On constitutive inequalities for simple materials-I,” Journal of 
Mechanics and Physics of Solids, Vol. 16(4), 229-242. 

Hill, R. (1978). “Aspects of invariance in solid mechanics,” in: C.-S. Yih (ed.), Advances 
in Applied Mechanics, Vol. 18, Academic Press, New York, 1-75. 

Hill, R. (1998), The Mathematical Theory of Plasticity, Oxford University Press, USA  

Hillerborg, A., Modeer, M., and Petersson, P.E. (1976). “Analysis of crack formation and 
crack growth in concrete by means of fracture mechanics and finite elements,” 
Cement and Concrete Research, Vol. 6, 773-782. 

Hollister, S.J., and Kikuchi, N. (1992). “A comparison of homogenization and standard 
mechanics analyses for periodic porous composites,” Computational Mechanics, 
Vol. 10, No. 2, 73-95. 

Holzapfel G.A. (2000). Nonlinear Solid Mechanics: A Continuum Approach for 
Engineering, Wiley, 1st ed. 

Horstemeyer, M.F., Baskes, M.I., and Plimpton, S.J. (2001). “Computational nanoscale 
plasticity simulations using embedded atom potentials,” Theoretical and Applied 
Fracture Mechanics, Vol. 37, No. 1-3, 49-98. 

Huang, Y. (1991). “Accurate dilation rates for spherical voids in triaxial stress fields,” 
Journal of Applied Mechanics, Vol. 58, 1084-1086. 

Hughes T.J.R (2000). The Finite Element Method: Linear Static and Dynamic Finite 
Element Analysis, Dover Publications. 

Hughes, T.J.R., Feijoo, G.R., Mazzei, L. and Quincy, J.B. (1998). “The variational 
multiscale method - a paradigm for computational mechanics,” Computer 
Methods in Applied Mechanics and Engineering, Vol. 166, No. 1, 3-24. 

IBC (2003). International Building Code, International Code Council, Washington, D.C 

IBC (2006). International Building Code, International Code Council, Washington, D.C 



284 

Interagency Security Committee (ISC) (2004). ISC Security Design Criteria for New 
Federal Office Buildings and Major Modernization Projects, Washington, DC. 

Isobe, D., and Tsuda, M. (2003). “Seismic collapse analysis of reinforced concrete 
framed structures using the finite element method,” Earthquake Engineering and 
Structural Dynamics, 32(13), 2027-2046. 

Jin, J., and El-Tawil, S. (2005). “Evaluation of FEMA-350 Seismic provisions for steel 
panel zones,” Journal of Structural Engineering, ASCE, 131(2), 250-258. 

Ju, J.W., (1989). “On energy-based coupled elastoplastic damage theories: constitutive 
modeling and computation aspects,” International Journal of Solids and 
Structures, Vol. 25, Issue 7, 803-833. 

Kaewkulchai, G., and Williamson, E.B. (2004). “Beam element formulation and solution 
procedure for dynamic progressive collapse analysis,” Computers & Structures, 
Vol. 82, Issue 7-8, 639-651. 

Kachanov, L.M., (1958). “Time rupture process under creep conditions,” Izv. ARad. 
SSSR Teckh. Nauk 8, 26-31, (in Russian). 

Kachanov, L.M., (1986). Introduction to Continuum Damage Mechanics, Springer, 1st ed. 

Kanvinde A.M. (2004), “Micromechanical simulation of earthquake induced fracture in 
steel structures,” PhD Thesis, Stanford University. 

Kattan, P.I., and Voyiadjis G.Z. (1990). “A coupled theory of damage mechanics and 
finite strain elasto-plasticity. I: Damage and elastic deformations,” International 
Journal of Engineering Science, Vol. 28, No. 5, 421-435. 

Kim, K.D., and Engelhardt, M.D. (2000). “Beam-coulmn element for nonlinear seismic 
analysis of steel frames,” Journal of Structural Engineering, ASCE, Vol. 126, No. 
8, 916-924. 

Krajcinovic, D. (1984). “Continuum damage mechanics,” Applied Mechanics Review, 
Vol. 37, 397-402. 

Kuwamura, H., and Yamamoto, K. (1997). “Ductile crack as a trigger of brittle fracture 
in steel,” Journal of Structural Engineering, ASCE, Vol. 123, No. 6, 729-735. 

Leach, A. (2001). Molecular Modeling: Principles and Applications, Prentice Hal, 2nd ed. 

Leblond, J. B., Perrin, G., and Devaux, J. (1995). “An improved Gurson-type model for 
hardenable ductile metals,” European Journal of Mechanics A/Solids, 14(4), 499-
527. 

Lee, B. J., and Mear, M. E. (1999). “Evolution of elliptical voids in power-law viscous 
solids,” Mechanics of Materials, 31(1), 9-28. 



285 

Lee, E.H. (1969), “Elastic-plastic deformation at finite strains,” Journal of Applied 
Mechanics, Vol. 36(1), 1-6. 

Lee, E.H., and Liu, D.T. (1967). “Finite-strain elastic-plastic theory with application to 
plane-wave analysis,” Journal of Applied Physics, Vol. 38(1), 19-27. 

Lee, S., and Goel, S.C. (1987). Seismic behavior of hollow and concrete-filled square 
tubular bracing members, Research report UMCE 87-11, CEE Department - 
University of Michigan, Ann Arbor, MI 48109-2125. 

Lemaitre, J. (1971). “Evaluation of dissipation and damage in metals submitted dynamic 
loading,” In: Proceedings of ICM1, Kyoto, Japan. 

Lemaitre, J. (1985). “A continuous damage mechanics model for ductile fracture,” 
Journal of Engineering Materials and Technology, Trans. ASME, Vol. 107(1), 
83-89. 

LeRoy, G., Embury, J. D., Edward, G., and Ashby, M. F. (1981). “A model of ductile 
fracture based on the nucleation and growth of voids,” Acta Metallurgica, Vol. 
29, No. 8, 1509-1522. 

Lewars, E.G. (2003). Computational Chemistry: Introduction to the Theory and 
Applications of Molecular and Quantum Mechanics, Springer, 1st ed. 

Lewicki, B. and Olesen, S.O. (1974). “Limiting the possibility of progressive collapse,” 
Building Reseacrh & Practice, Vol. 2, No.1, 10-13.   

Leyendecker, E.V. and Ellingwood, B.R. (1977). “Design to reduce the risk of 
progressive collapse,” Building Science Series 98, National Bureau of Standards, 
Washington, D.C. 

Liang, X., Shen, Q., and Ghosh, S.K. (2006). “Assessing ability of seismic structural 
systems to withstand progressive collapse: seismic design and progressive 
collapse analysis of steel frame buildings.” Report, SK Ghosh and Associates, 334 
E Colfax, Unit E, Palatine, IL 60067. 

Liew, J.Y.R. and Chen, H. (2004). “Explosion and fire element analysis of frames using 
fiber element approach,” Journal of Structural Engineering, ASCE, Vol. 130, No. 
7, 991-1000. 

Lin, R.C., and Brocks, W. (2006). “On a finite-strain viscoplastic law coupled with 
anisotropic damage: theoretical formulations and numerical applications,” Archive 
of Applied Mechanics, Vol. 75, No. 6-7,  

Liu, C.T., and Gurland, J. (1968). “Fracture behavior of spheroidized carbon steels,” 
Transactions of the American Society of Metals, Vol. 61, 156-157. 



286 

Liu, J., and Astaneh-Asl, A. (2003). “Moment-Rotation Parameters for Composite Shear 
Tab Connections,” Journal of Structural Engineering, ASCE, 130(9), 1371-1380.  

Liu, W.K., Park, H.S., Qian, D., Karpov, E.G., Kadowaki, H., and Wagner, G.J. (2006). 
“Bridging scale methods for nanomechanics and materials,” Computer Methods in 
Applied Mechanics and Engineering, Vol. 195, Issue 13-16, 1407-1421. 

Lubarda, V.A. (2001). Elastoplasticity Theory, CRC Press, 1st ed. 

Lubarda, V.A. (1994). “An analysis of large-strain damage elastoplasticity,” 
International Journal of Solids and Structures, Vol. 31, No. 21, 2951-2964. 

Lubliner, J. (2008). PlasticityTheory, Dover Publications. 

Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). “Plastic-damage model for 
concrete,” International Journal of Solids and Structures, Vol. 25, No. 3, 299-
326. 

Luccioni, B., Oller, S., and Danesi, R. (1996). “Coupled plastic-damaged model,” 
Computer Methods in Applied Mechanics and Engineering, Vol. 129, Issue 1-2, 
81-89. 

Mackenzie, A.C., Hancock, J.W., and Brown, D.K., (1977). “On the influence of state of 
stress on the ductile failure initiation in high strength steels,” Engineering 
Fracture Mechanics, Vol. 9, 167-188. 

Magnusson J. (2004). “Learning from structures subjected to loads extremely beyond 
design,” Modern Steel Construction, AISC, March 2004, 31-34.  

Mahnken, R. (1999). “Aspects on the finite-element implementation of the Gurson model 
including parameter identification,” International Journal of Plasticity, Volume 
15, Issue 11, Pages 1111-1137. 

Mahnken, R. (2000). “A comprehensive study of a multiplicative elastoplasticity model 
coupled to damage including parameter identification,” Computers and 
Structures, Vol. 74, No. 2, 179-200. 

Mahnken, R. (2002). “Theoretical, numerical and identification aspects of a new model 
class for ductile damage,” International Journal of Plasticity, Volume 18, Issue 7, 
July 2002, Pages 801-831. 

Mahnken, R. (2005). “Void growth in finite deformation elasto-plasticity due to 
hydrostatic stress states,” Computer Methods in Applied Mechanics and 
Engineering, Volume 194, Issues 34-35, Pages 3689-3709. 

Malla, R.B. and Nalluri, B.B. (1995). “Dynamic effects of member failure on response of 
truss type space structure,” Journal of Spacecrafts and Rockets, Vol. 32, No. 3, 
545-551. 



287 

Malvern, L.E. (1969). Introduction to the Mechanics of a Continuous Medium, Prentice-
Hall. 

Mandel, J. (1973), “Equations constitutives et directeurs dans les milieux plastiques et 
viscoplastiques,” International Journal of Solids and Structures, Vol. 9, Issue 6, 
725-740. 

Marjanishvili, S., and Agnew, E. (2006). “Comparison of Various Procedures for 
Progressive Collapse Analysis,” Journal of Performance of Constructed 
Facilities, Volume 20, Issue 4, 365-374. 

Marsden, J.E., and Hughes, T.J.R. (1994). Mathematical Foundations of Elasticity, Dover 
Publications.  

McClintock, F.A., (1968). “A criterion for ductile fracture by the growth of holes,” 
Journal of Applied Mechanics, June 1968, 363-371. 

McConnel, R.E. and Kelly, S.J. (1983). “Structural Aspects of progressive collapse of 
warehouse racking,” The Structural Engineer, Vol. 61A, No.11, 343-347. 

McGuire, W. (1975). “Prevention of progressive collapse,” presented at the Jan., 1975, 
ASCE International Association for Bridge and Structural Engineering Regional 
Conference on Tall Buildings, Asian Institute of Technology, Bangkok, Thailand. 

Mediavilla, J., Peerlings, R.H.J., and Geers, M.G.D. (2006). “A nonlocal triaxiality-
dependent ductile damage model for finite strain plasticity,” Computer Methods 
in Applied Mechanics and Engineering, Vol. 195(33-36), 4617-4634. 

Menzel, A., Ekh, M., Runesson, K., and Steinmann, P. (2005). “A framework for 
multiplicative elastoplasticity with kinematic hardening coupled to anisotropic 
damage,” International Journal of Plasticity, Vol. 21, No. 3, 397-434. 

Menzel, A., and Steinmann, P. (2001). “A theoretical and computational framework for 
anisotropic continuum damage mechanics at large strains,” International Journal 
of Solids and Structures, Vol. 38, No. 52, 9505-9523. 

Menzel, A., and Steinmann, P. (2003). “Geometrically non-linear anisotropic inelasticity 
based on fictitious configurations: Application to the coupling of continuum 
damage and multiplicative elasto-plasticity,” International Journal for Numerical 
Methods in Engineering, Vol. 56, No. 14, 2233-2266. 

Mlakar P.F., Dusenberry, D.O., Harris, J.F., Haynes, G., Phan, L.T. and Sozen, M.A. 
(2003). “Findings and recommendations from pentagon crash”, Forensic 
Engineering : Proceedings of the Third Congress, San Diego, California. Pp. 43-
45.   

Mote C. D. (1971). “Global-local finite element,” International Journal for Numerical 
Methods in Engineering, Vol. 3, 565-574. 



288 

Nair R.S. (2004). “Progressive collapse basics,” Modern steel construction, March 2004, 
37-42. 

Needleman, A. (1988). “Material rate dependence and mesh sensitivity in localization 
problems,” Computer Methods in Applied Mechanics and Engineering, Vol. 67, 
Issue 1, 69-85. 

Nemat-Nasser, S. (1999). “Averaging theorems in finite deformation plasticity,” 
Mechanics of Materials, Vol. 31, 493-523. 

Nemat-Nasser, S. (2004). Plasticity: A Treatise on Finite Deformation of Heterogeneous 
Inelastic Materials, Cambridge University Press. 

Nemat-Nasser, S., and Hori, M. (1998). Micromechanics: Overall Properties of 
Heterogeneous Materials, North Holland, 2nd ed. 

NFPA 5000 (2006): Building Construction and Safety Code, National Fire Protection 
Association, Quincy, MA. 

Nair, R.S. (2006). “Preventing Disproportionate Collapse,” Journal of Performance of 
Constructed Facilities, Volume 20, Issue 4, 309-314. 

Norris, D.M., Jr., Reaugh, J.E., Moran, B. and Quinones, D.F. (1978). “A plastic-strain, 
mean-stress criterion for ductile fracture,” Journal of Engineering Materials and 
Technology, Vol 100, 279-286. 

Oden, J. T. (2006). Finite Elements of Nonlinear Continua, Dover Publications. 

Oden, J.T. and Reddy, J.N. (1976), An Introduction to the Mathematical Theory of Finite 
Elements, Wiley, New York. 

Ogden, R.W. (1997). Non-Linear Elastic Deformations, Dover Publications.  

Ortiz, M. (1985). “A constitutive theory for the inelastic behavior of concrete,” 
Mechanics of Materials, Vol. 4, 67-93. 

Ottosen, N.S. and Ristinmaa, M. (2005). The Mechanics of Constitutive Modeling, 
Elsevier Science. 

Panontin, T. L., and Sheppard, S. D. (1995). “The relationship between constraint and 
ductile fracture initiation as defined by micromechanical analyses,” Fracture 
Mechanics: 26th Volume. ASTM STP 1256. 

Popov, E. P., Zayas, V. A., and Mahin, S. A. (1979). “Cyclic inelastic buckling of thin 
tubular columns,” Journal of The Structural Divison, ASCE, 105(11), 2261-2277. 

Prendergast, J. (1995). “Oklahoma City aftermath”, Civil Engineering (New York), Vol. 
65, No. 10, 42-45. 



289 

Pretlove, A.J., Ramsden, M., and Atkins, A.G. (1991). “Dynamic effects in progressive 
failure of structures,” International Journal of Impact Engineering, Vol. 11, No. 
4, 539-546. 

Pretlove, A.J. (1986). “Dynamic effects in fail-safe structural design,” In: Proceedings, 
International Conference on Steel Structures: Recent Advances and their 
Application to Design, Budva, Yugoslavia, 749-757. 

Rakin M., Cvijovic Z., Grabulov V., Putic S., and Sedmak, A. (2004). “Prediction of 
ductile fracture initiation using micromechanical analysis,” Engineering Fracture 
Mechanics, 71(4), 813-827. 

Rapaport, D.C. (2004). The Art of Molecular Dynamics Simulation, Cambridge 
University Press, 2nd ed. 

Rassati, G. A., Leon, R. T., and Noè, S. (2004). “Component modeling of partially 
restrained composite joints under cyclic and dynamic loading,” Journal of 
Structural Engineering, ASCE, 130(2), 343-351. 

Reusch, F., Svendsen, B., and Klingbeil, D. (2003). “Local and non-local Gurson-based 
ductile damage and failure modelling at large deformation,” European Journal of 
Mechanics and Solids, 22(6), 779-792. 

Rice, J.R., and Tracey, D.M. (1969). “On the ductile enlargements of voids in the triaxial 
stress fields,” Journal of Mechanics and Physics of Solids, Vol. 17, 201-217.    

Ricles, J.M., Mao, C., Lu, L.W., and Fisher, J.W. (April 2000). “Development and 
evaluation of improved details for ductile welded unreinforced flange 
connections,” SAC Report: SAC Task 7.05.   

Ristinmaa, M. (1997). “Void growth in cyclic loaded porous plastic solid,” Mechanics of 
Materials, Volume 26, Issue 4, 227-245. 

Ritchie, R.O., Server, W.L., and Wullaert, R.A. (1979). “Critical fracture stress and 
fracture strain models for the prediction of lower and upper shelf toughness in 
nuclear pressure vessel steels,” Metallurgical Transactions A, Vol. 10A, No. 10, 
1557-1570. 

Rousselier, G. (1987). “Ductile fracture models and their potential in local approach of 
fracture,” Nuclear Engineering and Design, Vol. 105, 97-111. 

Rudd, R.E., and Broughton, J.Q. (1998). “Coarse-grained molecular dynamics and the 
atomic limit of finite elements,” Physics Review B, Vol. 58, Issue 10, 5893-5896. 

SBCCI (1999). Standard Building Code, International Code Council, Washington, D.C. 

Shankar, R. (1994). Principles of Quantum Mechanics, Springer; 2nd ed.  



290 

Shih-Ho, C., Khandelwal, K., and El-Tawil, S. (2006). “Analytical Investigation of the 
web fracture failure in steel shear links,” Journal of Structural Engineering, 
ASCE. Vol. 132, No. 8, 1192-1200. 

Simo, J.C. (1988). “A framework for finite strain elastoplasticity based on maximum 
plastic dissipation and the multiplicative decomposition. Part II Computational 
aspects,” Computer Methods in Applied Mechanics and Engineering, Vol. 68, No. 
1, 1-31. 

Simo, J.C. (1992). “Algorithms for static and dynamic multiplicative plasticity that 
preserve the classical return mapping schemes of the infinitesimal theory,” 
Computer Methods in Applied Mechanics and Engineering, Vol. 99, Issue 1, 61-
112. 

Simo, J.C., and Hughes, T.J.R. (1998). Computational Inelasticity, Springer, 1st ed.  

Simo, J.C., and Ju, J.W., (1987a). “Strain- and stress-based continuum damage models 
Part I: Formulation,” International Journal of Solids and Structures, Vol. 23, 
Issue 7, 821-840. 

Simo, J.C., and Ju, J.W., (1987b). “Strain- and stress-based continuum damage models 
Part II: Computational Aspects,” International Journal of Solids and Structures, 
Vol. 23, Issue 7, 841-869. 

Simo, J.C., and Ortiz, M. (1985). “Unified approach to finite deformation elastoplastic 
analysis based on the use of hyperelastic constitutive equations,” Computer 
Methods in Applied Mechanics and Engineering, Vol. 49, No. 2, 221-245. 

Singh, D.J., and Nordstrom, L. (2005). Planewaves, Pseudopotentials, and the LAPW 
Method, Springer; 2nd ed.  

Smith, E.M. (1988). “Alternate path analysis of space trusses for progressive collapse,” 
Journal of Structural Engineering, ASCE, Vol. 114, no. 9, 1978-1999. 

Special Issue: Mitigating the Potential for Progressive Disproportionate Structural 
Collapse, Journal of Performance of Constructed Facilities, Volume 20, Issue 4, 
pp. 305-437 (November 2006).  

Steinmann, P., and Carol, I. (1998). “A framework for geometrically nonlinear 
continuum damage mechanics,” International Journal of Engineering Science, 
Vol. 36, No. 15, 1793-1814. 

Steinmann, P., Miehe, C., and Stein, E., (1994). “Comparison of different finite 
deformation inelastic damage models within multiplicative plasticity for ductile 
materials,” Int. J. Comput. Mech., 13(6), 458–474. 

Strang, G.W. and Fix, G.J. (1973). An Analysis of the Finite Element Method, Prentice 
Hall, Englewood Cliffs, New Jersey. 



291 

Szabo, A., and Ostlund, N.S. (1996). Modern Quantum Chemistry: Introduction to 
Advanced Electronic Structure Theory, Dover Publications. 

Takano N., Zako M., Okuno Y. (2003). “Multi-scale finite element analysis of porous 
materials and components by asymptotic homogenization theory and enhanced 
mesh superposition method,” Modeling and Simulation in Materials Science and 
Engineering, Vol. 11, No. 2, 137-156. 

Tai, W.H. (1990). “Plastic damage and ductile fracture in mild steels,” Engineering 
Fracture Mechanics, 37(4) 853-880. 

Thomason, P.F. (1985). “Three-dimensional models for the plastic limit-load at incipient 
failure of the intervoid matrix in ductile porous solids,” Acta Metallurgica, Vol. 
33, 1079-1085. 

Thomason, P.F. (1990). Ductile fracture of Metals, Pergamon Press, Oxford. 

Thomason, P.F. (1998). “A view on ductile-fracture modeling,” Fatigue and Fracture of 
Engineering Materials and Structure, Vol. 21(5), 1105-1122. 

Toribio,  J., and Ayaso, F.J. (2004). “Macro and microscopic approach to fracture of high 
strength steel notched bars,” Macro and Microscopic Approach to Fracture, Ed. 
S.I. Nishida, WIT Press, Southampton, Boston, 201-242. 

Truesdell, C.A., Noll, W. and Antman S.S. (2004). The Non-Linear Field Theories of 
Mechanics, Springer, 3rd ed. 

Truesdell, C.A., and Toupin, R. (1960). The classical field theories. In Flügge’s 
Handbuch der Physik, Vol. 3, Part 1, 226-793, Berlin, Springer-Verlag. 

Tvergaard, V. (1981). “Influence of voids on shear band instabilities under plane strain 
conditions,” International Journal of Fracture, 17(2), 389-407.  

Tvergaard, V. and Needleman A. (1984). “Analysis of the cup-cone fracture in a round 
tensile bar,” Acta Metallurgica, 32(1), 157-169. 

UBC (1997). Uniform Building Code, International Code Council, Washington, D.C. 

Unified Facilites Criteria (UFC 2005). Design of buildings to resist progressive collapse, 
Dept. of Defense, Washington, D.C. 

U.S. General Service Administration (GSA 2003). Progressive collapse analysis and 
design guidelines for new federal office buildings and major modernization 
projects, Washington, D.C. 

Van der G.E., and Kollmann, F.G. (1996). “On mathematical aspects of dual variables in 
continuum mechanics, Part 1: mathematical principles,” Z. Angew. Math. Mech, 
ZAMM, 76(8), 447-462.  



292 

Van der G.E., and Kollmann, F.G. (1996). “On mathematical aspects of dual variables in 
continuum mechanics, Part 2: Application in nonlinear solid mechanics,” Z. 
Angew. Math. Mech, ZAMM, 76(9), 497-504. 

Wagner, G.J. and Liu, W.K. (2003). “Coupling of atomistic and continuum simulations 
using a bridging scale decomposition,” Journal of Computational Physics, Vol. 
190, Issue 1, 249-274. 

Weber, G., and Anand, L. (1990). “Finite deformation constitutive equations and a time 
integration procedure for isotropic hyperelastic-viscoplastic solids,” Computer 
Methods in Applied Mechanics and Engineering, Vol. 79, Issue 2, 173-202. 

Wempner, G., and Talaslidis, D. (2002). Mechanics of Solids and Shells: Theories and 
Approximations, CRC Press, 1st ed. 

Wilsdorf, H.G.F. (1983). “The ductile fracture of metals: a microstructural viewpoint,” 
Material Science and Engineering, Vol. 59, No. 1, 1-39. 

Wriggers, P. (2006). Computational Contact Mechanics, Springer, 2nd ed. 

Xia, L. and Shih F.C. (1995). “Ductile crack growth - I. A numerical study using 
computational cells with microstructurally based length scales,” Journal of 
Mechanics and Physics of Solids, 43(2), 233-259. 

Zienkiewicz, O. C., Taylor, R. L., and Zhu, J.Z. (2005). The Finite Element Method: Its 
Basis and Fundamentals, Butterworth-Heinemann, 6th ed. 


