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CHAPTER 1 

INTRODUCTION 

 

Investment casting (IC) is a widely used technique for modern metal casting, and 

provides an economical means of mass producing shaped metal parts containing complex 

features. Hollow cored super alloy airfoils in a gas turbine engine are an example of 

complex IC parts. The complex internal hollow cavities of the airfoil are designed to 

conduct cooling air through one or more passageways. These complex internal 

passageways have been fabricated by a lost wax process requiring several process steps. 

These steps include tooling to make the metal injection die, injection molding for the core, 

mold wax pattern used to define metal, pattern assembly in clusters around a common 

sprue and feeder system, and dipping the core encased in wax into the wet slurry to make 

shell mold. 

Several steps in the lost wax process generate problems such as high cost and 

decreased accuracy of the ceramic mold. For example, costly tooling and production 

delay are necessary to produce mold dies for complex cores and wax patterns used in 

injection molding, resulting in a big obstacle for prototypes and smaller production runs. 

Besides, if movement or shifting of the core in the mold occurs during injection molding, 

it will induce unacceptable variations in the wall thickness of the hollow structure and 

decrease the consistency and accuracy of the ceramic core and the shell mold.  

Rather than using separate cores, patterns, and shell molds, it would be 
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advantageous to directly produce a mold that has the casting cavity and the ceramic core 

by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the 

integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects 

from CAD files using many thin liquid layers of powder in monomer, which are 

solidified by polymerization with a UV laser, thereby “writing” the design for each slice. 

In this work we demonstrate the fabrication of an integrally cored ceramic mold (ICCM), 

the ceramic core with a ceramic mold shell in a single patternless construction, fabricated 

by CerSLA. CerSLA is considered as an alternative method to replace lost wax processes, 

for small production runs or designs too complex for conventional cores and patterns. 

This dissertation addresses the integrally cored casting ceramic mold (ICCM) 

fabricated by ceramic stereolithography (CerSLA). The main topic is development of 

methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as 

related issues. The related issues were the segregation of coarse fused silica powders in a 

layer, the degree of segregation parameter to prevent segregation, and sintering and 

cristobalite transformation in fused silica compacts. 

The silica core must be stable when the hot metal is cast. The core must be porous, 

but it cannot densify at casting temperature since this would cause shrinkage. It cannot 

creep at these high temperatures. The classical solution is to use coarse refractory 

powders of larger than 50 μm. However, coarse refractory grade powders in suspension 

quickly sediment, leading to particle size segregation in the layers of a green body. After 

binder burn-out, the particle segregated regions in the green body generated property-

degrading defects such as delamination, distortion, and excessive shrinkage. In order to 

prevent segregation in a layer, the effect of particle size distribution on the segregation is 
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discussed in Chapter 3. 

The tendency for particles to segregate during SLA building was modeled with a 

parameter called degree of segregation (β). Expressions were derived to predict the 

segregation in a layer when a UV laser exposes the ceramic suspension to write a layer. 

The degree of segregation was related to two time constants; settling time and writing 

time. If settling time is shorter than writing time, the coarse powder has already settled 

down in a layer, separating two main phases that are composed of a polymer and a silica 

powder dominated phase. Therefore, in order to suppress the segregation in a layer, 

criteria for no segregation are defined in Chapter 4. 

 Refractory grade fused silica is used to make ceramic molds for Ni-based 

superalloy turbine blades. During sintering of silica molds, the fused silica is partially 

transformed to cristobalite. The cristobalite fraction is a major property determining the 

stability and mechanical strength of ICC molds. Quantitative X-ray diffraction (QXRD) 

was used to calculate the amount of transformed cristobalite in fused silica compact and 

understand the transformation kinetics of fused slica. The transformed kinetics of fused 

silica will be discussed in Chapter 7. 

  The most important aspect of this work is that ceramic stereolithography 

(CerSLA) can replace the lost wax process to fabricate an integrally cored ceramic mold 

(ICCM) which combines the ceramic core with a ceramic mold shell in a single 

patternless construction. The integrally cored casting ceramic mold (ICCM) fabricated by 

ceramic stereolithogaprhy (CerSLA) is shown in Chapter 5. Cracks are initiated from the 

thermal polymerization of residual monomer and photoinitiator in the green body. This 

will be discussed in Chapter 6. 
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CHAPTER 2 

BACKGROUND ON THE TOPICS RELATED TO THE 

APPLICATION OF CERAMIC STEREOLITHOGRAPHY (CerSLA): 

 

2.1 Complex interior cooling passages in Turbine Airfoils 

Gas turbine engines include a compressor for compressing air, a combustor for 

mixing the compressed air with fuel and igniting the mixture, and a turbine blade 

assembly for producing power. The performance of a gas turbine engine generally is 

dependent on the operating temperature in the combustion chamber, increasing the 

efficiency of a gas turbine engine with the working temperature. For increasing the 

efficiency of a gas turbine engine, it should be workable at the high operation temperature 

of 1,400 degrees Celsius.1 With the consideration of new material development to resist 

the catastrophic failure of the engine components at high temperatures, the design of 

complex internal hollow structure has been considered. The airfoils, such as blades and 

vanes, within the engine are among the components exposed to significant thermal 

loading during engine operation.2 Therefore, to prevent the degradation of the airfoils 

when exposed to high temperatures, complex hollow interior passages are used to 

conduct cooling air through one or more passageways in the turbine airfoil. 

Honeywell is the industrial partner on this project, but the details of their cooling 

passages cannot be published. Instead we work with a model design. The attributes of 
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airfoil will be illustrated with a generic airfoil form the literature.1 Figure 2.1 shows a 

perspective view of airfoil, where airfoils are formed from a root portion having a 

platform at one end and an elongated portion forming a blade that extends outwardly 

from the platform coupled to the root portion. The blade is ordinarily composed of a tip 

opposite the root section, a leading edge, and a trailing edge. Figure 2.2 is a cross-

sectional view of airfoil, showing that the inner aspects of most turbine airfoils typically 

contain three intricate cooling channels forming a cooling system. The three cooling 

channels are a leading edge cooling channel, a mid-chord serpentine cooling channel, and 

a trailing edge cooling channel. The mid-chord serpentine cooling channel facilitates the 

efficient removal of heat from the airfoil, especially at the intersection between the tip 

section and the trailing edge. For greater cooling efficiency of airfoils in turbines, these 

more complex internal passageways have been required.  

 

2.2 Lost wax process for investment casting 

Investment casting (IC) is a widely used technique for modern metal casting, and 

provides an economical means of mass producing shaped metal parts containing complex 

features.3 Superalloy airfoils have been produced by investment casting, which use 

ceramic cores and wax patterns with ceramic shell molds. To build a core representing 

hollow cavities and wax pattern to define metal, the permanent tooling firstly takes the 

form of dies. After fabricating dies for a core and wax pattern, several processing steps of 

a lost wax process are required to produce the ceramic cores and shell molds for 

superalloy airfoils. Figure 2.3 shows a schematic diagram of a conventional lost wax 

process with several processing steps; core preparation, injection molding for wax pattern, 
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and dipping process for ceramic shell molds.  

Hollow cavities in cast airfoils have been produced using preformed ceramic 

cores located within the injection mold. The pieces of the complex ceramic core are 

formed separately using injection molding, assembled together. Wax is injected into the 

mold and over cores to make a pattern for the cast metal. Patterns are normally assembled 

in clusters around a common sprue and feeder system prior to building-up the external 

mold shell. Dipping the ceramic core encased in wax, and adding coarse refractory grit 

onto the wet slurry, the ceramic shell mold is built up around each wax pattern. The 

previous procedures are repeated several times to make a shell mold with sufficient 

thickness, for strength and integrity, before being fired.  

Although lost wax process has been used to produce ceramic cores and shell 

molds for investment casting, problems that need to be solved are associated with 

improving accuracy, reproducibility, cost and production delay. For example, given 

several steps in the lost wax process, when the wax is usually injection molded around 

the core, wax lifting occurs as wax cools. This wax lifting problem has been particularly 

detected at the concave core surfaces. Another problem is movement or shifting of the 

core in the mold during injection molding. Those problems result in the distortion of the 

shape of the wax pattern and hence the shape of the cast objects. Since this slight 

displacement of the core results in unacceptable variations in the wall thickness of the 

hollow structure, it will decrease the consistency and accuracy of the ceramic core and 

shell mold designed for turbine airfoils. In addition, costly tooling is required to produce 

mold dies for complex cores and wax patterns by injection molding. The cost and 

production delays associated with this tooling are disadvantageous for prototypes and 
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smaller production runs. 

 

2.3 Ceramic Stereolithography (CerSLA) 

2.3.1 Stereolithography (SLA) vs. Ceramic stereolithography (CerSLA) 

Solid freeform fabrication (SFF) techniques can be used to directly fabricate the 

mold without several intermediate steps of the conventional lost wax process.4 SFF is the 

general name for an emerging technology in which sophisticated three dimensional (3D) 

objects can be produced directly from a layer-by-layer process based on computer aided 

design (CAD) files. Stereolithography (SLA) invented by Chuck Hull is the most 

commercialized technique among the SFF processes.5  

As a general explanation of SLA, this is done with a monomer resin, typically an 

acrylate or an epoxy, which cures upon exposure to radiation from a UV laser. Figure 2.4 

shows a schematic of SLA process that builds the solid polymer object layer-by-layer. 

From a computer aided design (CAD) file, sliced into two dimensional cross-sections, 

each layer is solidified by scanning a laser beam onto the surface of the resin. After 

finishing the ‘build’ of one layer, the support platform on which the layer has been build, 

moves downward into the vat of liquid resin. A new layer flows across the surface, where 

a recoat blade sets the exact thickness of the layer. The laser proceeds to build the second 

layer of the part, where this layer is knitted to the one below. The process is repeated until 

the final object is complete.  

SLA is considered to be the most accurate technique in terms of dimensional 

accuracy among the SFF techniques since it can produce 3D objects with exact tolerances 

and the best surface finishes. SLA is limited in its ability to produce a complex 3D IC 
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pattern composed of only polymers due to the fact that it is a resin-based system. Thus, it 

is difficult to build any 3D complex ceramic mold using the SLA process since this 

process requires extra steps similar to those used here in the lost wax process.  

Griffith and Halloran have addressed a new area for direct fabrication of 3D 

complex ceramic parts by replacing a resin-based system with a ceramic suspension 

based system.6,7 They have prepared ceramic suspensions for dispersing various types of 

ceramic including alumina, silica and zirconia in both aqueous and non-aqueous liquid 

media. Given the ceramic suspension, the SLA process has been called ceramic 

stereolithography (CerSLA). CerSLA builds ceramic green objects from CAD files from 

many thin liquid layers of powder in monomer, which are solidified by polymerization 

with a UV laser, thereby “writing” the design for each slice.  

They have used the SLA process, but initially created a ceramic green body 

instead of a solid polymer part. Ceramic green bodies were shaped composites of ceramic 

powder in a polymeric binder, containing about 50 volume percent ceramic. Ceramic 

green bodies were readily converted to solid ceramics by removing the binder and firing 

the ceramic. In their research, forming the ceramic green body was accomplished by 

photopolymerizing a highly loaded ceramic suspension in an appropriate 

photopolymerizable liquid. The CerSLA suspension must have the following 

characteristics: 1) it must contain at least 40 volume percent ceramic powder to provide 

for subsequent sintering, 2) it must be fluid enough for recoating, so must have a 

viscosity less than 3000 mPa-s at low shear rates and must be self-leveling, 3) it must 

have a depth of cure upon UV irradiation at least as large as a practical CerSLA layer 

thickness, or at least 200 micrometers. 
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2.3.2 Photo-polymerization using free radical polymerization 

Radiation curable polymer technology was developed to reduce volatile organic 

components in coating formulations by government mandates. Radiation curing of 

coatings, inks, and adhesives has enjoyed relatively rapid commercial growth within the 

last 10-20 years. It involves the polymerization and cross-linking of functional monomers 

and oligomers (usually liquid) into a 3-D polymer network (usually a solid film) induced 

by photons (UV curing) or electrons (EB curing).8  

 There are many advantages to using UV radiation curing which is focused on this 

experiment. UV radiation curing allows fast, almost instant, transformation of a liquid 

resin into a solid material by polymerization of a solvent-free formulation at ambient 

temperature selectively in the irradiated areas.9 The cure time is reduced and, since 

heating of the whole component is not required, the overall energy consumption is lower 

than for thermally initiated curing processes, thermal stresses are reduced, and less 

expensive tooling can be used. Another important advantage is the reduction of organic 

emissions into the environment. Since curing starts on the component surface, which is 

exposed to the radiation first, unreacted organic is trapped below the surface and is 

available for ongoing polymerization. 

 For example, polymerization of acrylate monomer is an energetically favorable 

UV curing reaction with the reaction heat 19.2 kcal/mole. UV curing of acrylate 

monomer is based on photoinitiated polymerization that is mediated by photoinitiators. 

Photoinitiators are required to absorb light in the ultraviolet visible spectral range, 

generally 250-550 nm, and generate free radicals, which subsequently initiate and 

catalyze polymerization, from the reaction with photon. There are three basic steps to 
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photopolymerization: initiation, propagation, and termination.10,11 At the step of initiation, 

the photoinitiator absorbs the photons (if at the appropriate frequency, e.g. in the UV 

range), and this photoinitiator photochemically cleaves to produce a free radical. These 

radicals then react with the monomers to start the polymerization reaction. For laser 

induced photopolymerization, an initiator must be chosen that absorbs efficiently at the 

frequency of the incident photons, and then generates the initiating species with a high 

quantum yield. The time to initiate polymerization is on the order of 10-6 seconds. 

 Next is the propagation of the polymerization reaction which takes place in micro-

regions near the site of radical initiation. The growing macro-radical becomes a cross-

linked gel at a relatively low degree of conversion. The rate of polymerization steadily 

decreases as the concentration of unreacted monomer decreases and the viscosity of the 

gel increases. The mobility of free monomer to the site of the macro-radical is thus 

restricted at higher conversion. 

 After time, termination starts to occur, mainly due to recombination and oxygen 

inhibition. Recombination involves two radicals joining together to form a non-reactive 

molecule. Oxygen inhibits the polymerization reaction due to oxygen molecules diffusing 

into the surface of the polymerizing micro-region and terminates the polymerization 

reaction. An extra concern in photopolymerization is the amount of ‘dark reaction’ 

occurring after the laser has moved from the micro-region. Dark polymerization is a 

result of macro-radicals with long lifetimes that proceed to continue the 

photopolymerization process.  
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2.3.3 Photocurable monomers and photoinitiator used in Ceramic suspension 

CerSLA suspensions can be prepared by dispersing powders in essentially pure 

monomers and polymerizing the entire system to create a ceramic green body consisting 

of a solid polymer filled with ceramic powder. Pure monomer is useful for CerSLA. 

However, it has the disadvantage of relatively large polymerization shrinkage, high 

exothermic heat production, and the presence of a large volume fraction of polymer, 

which makes subsequent binder burnout (removal of the binder) difficult. Alternatively, 

the powders can be dispersed in a solution of monomer, which gels upon solidification. 

This gel is quite rigid when it contains a high loading of powder. These photo-gelling 

solutions have the advantages of smaller polymerization shrinkage, less heat evolution, 

and smaller solid polymer residue. 

 The low viscosity of monomer is necessary to facilitate the increase of solids 

loading and to minimize the final suspension viscosity. Pure monomers widely used in 

the CerSLA are 1, 6-hexane diol diacrylate (HDDA 1 , Mw=226 g/mol), Ethoxylated 

pentaerythritol tetraacrylate (EPTA2, Mw=528 g/mol), isobornyl acrylate (IBA, Mw=208 

g/mol), and propoxylated neopentyl glycol diacrylate (PNPGDA, Mw=328 g/mol).  

Figure 2.5 show the material properties and chemical structure of HDDA. HDDA 

is highly reactive difunctional acrylate monomer commonly used in the paint and ink 

industries. HDDA is a low-viscosity (9 mPa-s at 25oC), fast curing monomer with low 

volatility, and good solvency for use in free radical polymerization. In addition, EPTA 

shown in Figure 2.6 is mixed with HDDA to provide excellent cross-linking with high 

stiffness, but it has the skin irritant problem.  

                                                  
1 SR238B, Sartomer Inc., Exton, PA 
2 SR494, Sartomer Inc., Exton, PA 
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As a formulation with low-irritation monomers, the mixture of IBA 1  and 

PNPGDA2 has been used. The material properties and chemical structure of IBA and 

PNPGDA are listed in Figure 2.7. IBA is a low-viscosity (8 mPa-s at 25oC) and 

monofunctional monomer utilized as an excellent reactive diluent. After polymerization 

through free radical polymerization, the cyclic group in IBA increases the glass transition 

temperature. PNPGDA is a low viscosity (15 mPa-s at 25oC), low skin irritation monomer, 

and difunctional monomer employed as a crosslinker.   

 Chemical structures and UV absorption characteristic of Irgacure 184 is shown in 

Figure 2.8.  The photoinitiator, Irgacure 1843 (a hydroxyketone) has been used due to its 

high solubility in monomers such as HDDA, IBA, and PNPGDA and its high absorption 

at long ultraviolet wavelength. High absorption is necessary for the creation of free 

radicals and for efficient photopolymerization. Another useful property of the ketone 

photoinitiator is the ability to scavenge the oxygen from near the surface. Since oxygen 

molecules diffusing into the suspension react with radicals, they terminate or quench the 

polymerization reaction. The ketone photoinitiator catches oxygen molecules in the 

suspension and combine with some of the photoinitiator’s free radicals so that it increases 

the efficiency of polymerization.  

 

2.4 Refractory Ceramics for Investment Casting 

Refractory materials, by definition, are supposed to be resistant to heat and are 

exposed to different degrees of mechanical stress and strain, thermal stress and strain, 

corrosion/erosion from solids, liquids and gases, gas diffusion, and mechanical abrasion 
                                                  
1 SR506A, Sartomer Inc., Exton, PA 
2 SR9003, Sartomer Inc., Exton, PA 
3 Irgacure 184, Ciba specialty chemicals, Tarrytown, NY 
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at various temperatures.12,13 Different refractories are designed and manufactured so that 

the properties of the refractories will be appropriate for their applications. Refractory 

ceramics are widely used in investment casting. Investment casting is also known as the 

“lost wax” process.14 Ceramic slurry to make a shell mold with a uniform face coating is 

used to coat wax patterns produced by injection molding. In order to build up a mold 

strong enough and thermal shock resistant enough, the dip-coating operation is repeated. 

The selection of refractory ceramics is an important process to make ceramic molds with 

their interior precisely duplicating the shape of the part to be cast. In investment casting, 

the ceramic nature of the mold is crucial to the process and lends itself to a wide variety 

of casting applications and an even wider selection of alloys.15,16  

Among the refractory ceramics, silica is the material extensively used for 

ceramic molds due to its advantages; a low thermal expansion and easy removal of silica. 

Although the core is subjected to thermal shock by the mold being plunged into an oven 

at about 1000ºC, fused silica with a very low expansion makes less difference of thermal 

expansion between mold and core when heat is applied.  However, the silica core, being 

composed of a glassy material, starts to soften and will be susceptible to bow or twist if 

the differential expansion forces are imposed on the system. This problem is improved by 

using a modified composition such as 90% silica glass and 10% crystalline cristobalite 

having stiff structure. It would be difficult to use pure cristobalite as a raw material 

because of the disruptive phase change between α and β phases at 220ºC on heating, but 

if it forms at high temperature below 220ºC it will disrupt on cooling, which is ideal for 

assisting easy removal of molds after casting. These peculiarities of silica can also be 

used as a great advantage in preformed ceramic core technology, where it also meets the 
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other essential requirement of being soluble in caustic soda solutions and therefore easily 

removed from the inside of casting. 

In order to limit the effect of the phase change of silica core, alumina or zircon 

powder is used to dilute the silica. These are not soluble in the core leach process but will 

separate as sludge as the silica dissolves. Ceramic materials or impurities added into 

silica promote crystallization while others may retard it. Silica as supplied is usually 

much purer than some of the other ceramic materials used for investment casting, mainly 

because of the natural purity of the silica sand or rock crystal used in its manufacture. 

Most problems therefore arise from other materials added to the silica based core. Zircon 

very slightly degrades the high temperature stiffness because of its own impurities, while 

alumina may significantly modify and retard the amount of cristobalite formed at the core 

firing stage. High levels of alumina greatly reduce the resistance to deformation of a 

silica core. Traces of alkali metals, as in water based binders, promote cristobalite with 

beneficial effects. 
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Figure 2. 1 A perspective view of a turbine airfoil. Illustration from Siemens’s 
turbine airfoil1 
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Figure 2. 2 A cross-sectional view of a turbine airfoil. Illustration from Siemens’s 
turbine airfoil1 
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Figure 2. 3 Schematic diagram of the several processing steps in the 
conventional lost wax process how to build ceramic mold for super alloy airfoils; 
Step1: make core, Step2: mold wax pattern to define metal, and Step3: build shell 
mold over wax pattern. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

18 
 

 
 
 
 
 
 

 
 

Figure 2. 4 Illustrated SL process 
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1, 6 Hexanediol diacrylate (HDDA) 
Functionality 2 

Density @ 25oC 1.02 g/mL 
Viscosity @ 25oC 9 mPa-s 

Refractive index @ 325nm 1.456 
Molecular weight 226 

 
 
 
 
 

 
 
 
 
 
 

Figure 2. 5 Material properties and chemical structure of Hexanediol diacrylate 
(HDDA) 
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Ethoxylated pentaerythritol tetraacrylate (EPTA) 
Functionality 4 

Density @ 25oC 1.12 g/mL 
Viscosity @ 25oC  

Refractive index @ 325nm 1.471 
Molecular weight 528 

 
 

 
 
 

Figure 2. 6 Material properties and chemical structure of Ethoxylated 
pentaerythritol tetraacrylate (EPTA) 
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 IBA PNPGDA 
Functionality 1 2 

Density @ 25oC 0.987 g/mL 1.005 g/mL 
Viscosity @ 25oC 8 mPa-s 15 mPa-s 

Refractive index @ 
325nm 1.472 1.447 

Molecular weight 208 328 
 
 
 

 
Isobornyl acrylate (IBA) 

 
 

 

Propoxylated neopentyl glycol diacrylate (PNPGDA) 
 

 
Figure 2. 7 Material properties and chemical structure of Isobornyl acrylate (IBA) 
and Propoxylated neopentoglycol diacrylate (PNPGDA)  
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Irgacure 184 

Appearance White to off-white 
Crystalline powder 

Melting point (oC) 45-49 oC 
Specific gravity (water=1) 1.1-1.2 

Molecular weight 204.3 
 

 

 

 
 
 
Figure 2. 8 Material properties and chemical structures of Irgacure 184 
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CHAPTER 3 

INFLUENCE OF PARTICLE SIZE DISTRIBUTION (PSD) 

 ON REFRACTORY SILICA USED IN CERAMIC 

STEREOLITHOGRAHY (CerSLA) 

 

 Ceramic stereolithography (CerSLA) requires a highly loaded but fluid 

suspension of ceramic powders in a photopolymerizable solution to produce a dense, 

uniformly particle dispersed green body after solidification and sintered body after firing. 

In the current work, a suspension of refractory grade powders dispersed in monomer has 

been used to make ceramic casting molds in ceramic stereolithography (CerSLA), which 

increases creep resistance and prevent severe dimensional change at high temperature. 

However, suspensions of coarser or denser particles can undergo differential 

sedimentation, leading to particle size segregation in which the population of larger or 

denser particles is greater near the bottom. The particle segregation in a layer should be 

removed to produce a dense, uniform sintered ceramic mold. This chapter describes the 

influence of particle size distribution (PSD) of refractory silica on the viscosity of 

ceramic suspension and the segregation in layers solidified by ceramic stereolithography 

(CerSLA).  
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3.1 INTRODUCTION 

 

Ceramic stereolithography (CerSLA) builds ceramic green objects from CAD 

files from many thin liquid layers of powder in monomer, which are solidified by 

polymerization with a UV laser, thereby “writing” the design for each slice. Given the 

easy and convenient process of CerSLA, it has been widely used as the one of the most 

popular methods for free form fabrication that builds complex ceramic objects without 

the use of molds or tooling. In the this work, CerSLA is used to build silica based 

refractory molds as complex “integrally cored ceramic molds” (ICCM), which are novel 

investment casting shell molds with the core already in place. Ceramic casting molds 

have been made from refractory grade powders to increase creep resistance and prevent 

severe dimensional change of ceramic mold from high temperature of casting metal.  

In CerSLA, the properties of the ceramic suspension directly relate to the 

processing time and quality of complex ceramic objects produced, CerSLA requires a 

highly loaded but fluid suspension of ceramic powders in a photopolymerizable solution.1 

Suspensions require a fairly high solid fraction of ceramic powder to be dispersed 

(usually > 50 vol %) in a monomer of liquid state, depending on the monomer and the 

powder. The goal in the CerSLA suspension is to increase the solids loading while 

lowering the viscosity and maintaining sufficient stability against aggregation and 

agglomeration of the particles.  

The rheology of concentrated suspensions is governed by the effect of different 

factors; interparticle forces, Brownian motion of the particles, hydrodynamic interactions, 

as well as physical characteristics of the particles such as volume fraction of solids and 
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particle size distribution (PSD).2 Among the several factors affecting the rheology of 

concentrated suspensions, particle size polydispersity rend a significantly lower viscosity 

than the one containing only mono-sized particles.3,4 The viscosity of a suspension 

diverges at the maximum packing fraction where the behavior of the system transits from 

a liquid to a solid-like behavior. Farris firstly showed that PSD strongly affected the 

viscosity and solid loading of slurry.5 For example, suspensions made of multimodal 

spherical particles have up to 50-fold reductions in shear viscosity, whilst maintaining the 

same solid volume fraction. Modifying PSD enables to increase the maximum solids 

loading without increasing viscosity.  In the model, especially, the transition from 

monomodal to bimodal distribution displays the most significant effect on the reduction 

of relative viscosity among the multimodal PSD in the suspension.  

Segregation in layers solidified by CerSLA should be considered to produce a 

dense, uniform sintered ceramic casting mold. Previous CerSLA work used submicron 

sized powders, the particles remain in suspension without settling for longer periods.1,2 

However, in this work, since refractory-grade powders were dispersed in the 

photopolymerizable monomer to impart stability at high temperatures, coarser or denser 

particles in suspension quickly sediment during building a layer, leading to particle size 

segregation in which the population of larger or denser particles is greater near the 

bottom.6-8 Particle segregation through fast sedimentation of coarse powders resulted in 

two segregated areas, a particle dominated region and a liquid dominated region; each 

region is largely separated in the green body. After binder burn-out, when the liquid is 

removed from the liquid dominated region, property-degrading defects such as 

delamination, distortion, and excessive shrinkage develop within the remaining green 
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body. Thus, in order to maintain a homogeneous dispersion of particles in the green body, 

solid particle segregation in the liquid should be prevented during processing before the 

slurry is solidified.  

There are several approaches for preventing segregation of particles. Using 

attractive interparticle forces to group particles together into agglomerates overcomes 

different sedimentation rates of individual particles, preventing segregation in colloidal 

processing (particle size ~ < 1μm).9 However, agglomeration is not suitable for the 

refractory powders (particle size ~ 20 μm). Another approach is to control particle size 

and particle size distribution (PSD) in a liquid, wherein segregation of fast settling 

particles is hindered by interparticle forces such as repulsions with slower settling 

particles in the highly concentrated suspension.10,11  

This paper demonstrates the viscosity of suspensions of refractory powders and 

segregation in layers resulting from the fast sedimentation of refractory powders and 

describes the effect of particle size distribution (PSD) on the suspension viscosity and 

segregation in layers solidified by ceramic stereolithography (CerSLA).  
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3.2 EXPERIMENTAL PROCEDURE 

 

3.2.1 Characteristic of the fused silica powders 

The suspension consists of irregular glassy silica powders (SiO2, PCC airfoils, 

Sanford, NC) in monomer solution based on hexane diol diacrylate (HDDA, SR238, 

Sartomer Company, Exton, PA).  HDDA is a Newtonian liquid with viscosity 9 mPa-s 

and density of 1.02 gm/cm3.  The silica powders were milled fused silica (density of 2.2 

gm/cm3).  Blends of two powders were used such that Figures 3.1 and 2 show the particle 

size distributions of the coarse and fine powders. A particle size distribution and a volume 

distribution were determined by Laser diffraction pattern using Malvern Mastersizer 2000 

Laser diffractor at Particle Technology Labs (PTL, Downers Grove, IL). The “coarse” 

powder had a particle size range with a finer decile d10 of 4 microns, median d50 of 27 

microns, and upper decile d90 of 93 microns. The “fine” powder had a particle size range 

with finer decile d10 of 2 microns, median d50 of 7 microns, and upper decile d90 of 24 

microns. The particle size of a bimodal powder computed from a binary mixture (50 wt% 

coarse: 50 wt% fine) is an average size range of 3 μm d10, 12 μm d50 and 66 μm as d90. 

The stokes settling velocity for the median particle in HDDA is 52 μm/sec for the coarse 

powder and 3.5 μm/sec for the fine powder.   

 

3.2.2 Suspension preparation 

A quaternary amine dispersant (CC-59, Goldschmidt,) in an amount equal to 3% 

of the weight of the SiO2 powder was added to lower the viscosity and aid in ceramic 

dispersion. The photopolymerizable monomer and monomer mixture were prepared using 
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1,6-hexanediol diacrylate (HDDA, SR238) and ethoxylated pentaerythritol tetraacrylate 

(EPTA, SR494) as received from Sartomer company (Exton, PA). 1-Hydroxy cyclohexyl 

phenyl ketone (Irgacure 184, Ciba Specialty Chemicals, Tarrytown, NY) used as a 

photoinitiator decomposed on UV- radiation, releasing free radicals, which initiated the 

polymerization reaction of monomer mixtures. SiO2 powder and CC-59 as a dispersant 

for stable colloidal dispersion were added to UV-curable monomer mixtures without 

photoinitiator to prepare the ceramic suspensions. Up to a solid loading of 40 vol%, the 

suspension was mixed and homogenized in a high speed shear mixer for 5 min. At a solid 

loading of 50 vol%, more time was required for the dispersants to adsorb and colloidally 

stabilize the suspension, the mixtures were ball-milled for 24h. Hydroxy cyclohexyl 

phenyl ketone (HK) at a concentration of 2 wt% with respect to the monomer was added 

to a 50 vol% suspension and the final mixture was ball-milled again for 2h. 

 

3.2.3 Rheological measurement and Tap density 

Five groups of suspensions with total solid loading of 60 volume percent silica 

were prepared by the addition of “coarse” (C) powder into “fine” (F) powder; F100 wt%, 

F75-C25, F50-C50, F25-C75, and C100 wt%. The suspensions were formulated at 60 

volume percent silica, using a quaternary amine dispersant (CC-59, Degussa, Parsippany, 

NJ) as a colloidal dispersant. A photointiator 1-Hydroxy cyclohexyl phenyl ketone 

(Irgacure 184, Ciba Specialty Chemicals, Tarrytown, NY) was added at 2 wt % to render 

the monomer photopolymerizable. The viscosity of the five suspensions was measured 

with a rheometer (Model CS-50, Bohlin, East Brunswick, NJ) in a parallel plate settling 

at shear rate of 0.1-100 sec-1. All experiments were conducted at 25oC and the sample 
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temperature was controlled to within ±0.1oC using water as the heat transfer fluid.  

Tap density is used to determine how particles are packed, which shows the effect 

of packing fraction on the viscosity. In this study, tap densities of five samples were 

determined from the mixture of dry “coarse” powder and dry “fine” powder; F100 wt%, 

F75-C25, F50-C50, F25-C75, and C100 wt%.  For each tap density measurement, 

approximately 1.2g of power was poured into the graduated cylinder, and vibrated using 

mini mixer for 5 minutes before measuring volume. The tap density of a powder was 

calculated by 

 

3.1                      
cm

g   
ationafter vibr ebulk volum

powder of massdensity  Tap 3=  

 

3.2.4 Photocuring of layers 

 Layers were produced in a commercial stereolithography apparatus (SLA-250, 3D 

Systems, Inc. Valencia CA), by dipping a substrate into a reservoir of well-stirred 

suspension to make 250 micron thick liquid layers.  After a delay time of either 40 

seconds or 300 seconds, the layer was solidified within 4 seconds by scanning the surface 

in a raster pattern at 1369 mm/sec with a UV laser beam focused in a diameter spot size 

of 120 microns.  The UV radiation was provided by using diode-pumped solid state lasers 

in quasi-CW 355 nm air-cooled format (Xcyte, JDS Uniphase, Milpitas, CA).  The 

experiments were conducted for the coarse powder and for a bimodal mixture of 50 wt% 

fine powder and 50 wt% coarse powder.  
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3.3. THE EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE 

VISCOSITY OF CERAMIC SUSPENSION 

 

Suspensions containing the highest possible fraction of particles are required to 

avoid excessive shrinkage during binder burn-out and densification.  For lower volume 

percentages, the suspensions are more fluid. However, the addition of more powder 

results in a more viscous suspension. In ceramic stereolithography (CerSLA), a ceramic 

suspension should be fluid enough to decrease processing time, while increasing the 

quality of complex ceramic objects in the build process. For this reason, an upper limit to 

the viscosity for feasibility of CerSLA should be satisfied. Given the HDDA monomer 

viscosity of 9 mPa-s, the viscosity and relative viscosity of suspension in CerSLA is 

considered to be 3 Pa-s and 333, respectively. Figure 3.3 shows the relative viscosity 

versus the particle size distribution (PSD) with a constant solid loading of 60 vol%. The 

suspension’s viscosity and relative viscosity at 100% “coarse” silica powder with median 

d50 of 27 microns is 6.3 Pa-s and 742 for a shear rate of 10 s-1. Those viscosities did not 

be included into the upper viscosity limit of ceramic suspension. However, the viscosity 

abruptly decreased as coarse powder was replaced by “fine” powder with median d50 of 7 

microns. Viscosity and relative viscosity of a silica suspension containing 75 wt% fine 

powders was decreased down to 1.2 Pa-s and 139, thus satisfying the upper limit to the 

viscosity of ceramic suspension. 

The flow of suspension has two end member ideal cases; 1) Flocculated 

suspensions, where the particles are aggregated into structures (Floccs). The viscosity of 

flocced suspension is much higher because the aggregate must be disrupted by the floccs. 
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Flocced suspensions are typically shear-thinning because increasing flow rate 

progressively disrupt the aggregates. Colloidal forces dominate the viscosity of flocked 

suspension. 2) Dispersed suspensions, where the particles are not aggregated but faster 

flow dispersed single particles. The viscosities of dispersed suspensions are limited only 

by hydrodynamic effects, as the liquid flows around the solid particles. For dilute 

suspensions, the hydrodynamic viscosity is given by the Einstein equation, which can be 

derived exactly. At higher concentration, various corrections to the hydrodynamic 

viscosity have been proposed. 

The Krieger-Dougherty (K-D) Equation is a popular expression for the Newtonian 

hydrodynamic viscosity at high volume fraction φ.12 The relationship between viscosity 

and solid loading is well described by a relative viscosity as a function of volume 

fraction:  

 

3.2                                  1)(

00

n

r

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

φ
φ

η
φηη  

 

where ηγ is the relative viscosity of the suspension, η0 is the viscosity of the liquid, 

n is an exponent, and φ0 is K-D limit, the particle volume fraction where the particles are 

“jammed”. Ideally the K-D limit is related to the maximum packing fraction for particles 

(φm), so φ0~ φm. The K-D exponent n ideally is 2.5φ0. Equation 3.2 indicates that the 

suspension viscosity is abruptly increased as the particle volume fraction approaches its 

maximum volume fraction or packing fraction φm. Therefore, increasing the maximum 

volume fraction, φm, decreases the viscosity of a suspension at a given φ.  
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It is well known that the maximum packing fraction φm depends on particle size 

distribution.13,14 For example, φm=0.63 for uniform sphere, φm=0.72 for optimal binary 

mixtures (7:1 size ratio, certain mass ratio), φm=0.78 for optimal ternary mixtures. These 

relationships have been extensively treated for ideal mixer spheres and for realistic 

irregular particles. 

The influence of PSD on viscosity in hydrodynamic limit of dispersed particles is 

known as the Farris effect. The maximum solid loading in the Farris effect can be 

expressed in terms of the concentration of fine and coarse particles 
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where V0 is the volume of suspending liquid, V1 the volume of fine powder, and 

V2 the volume of coarse particles in the suspension. Total concentration φm and the 

relative viscosity of the suspension, can be expressed as 

 

3.4           0 if 122121 ==−+= φφφφφφφm  
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where φ1 is the effective volume concentration of the fines and φ2 the effective 

volume concentration of the coarse. H(φ1) and H(φ2) are some functions which can be 

determined either by theoretical modeling or experiments. With equation 3.5, Farris5 
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calculated the relative viscosities for bimodal systems versus blend ratio for a number of 

concentrations, as shown in Figure 3.4. Modifying the PSD from monomodal to bimodal 

distribution (point P to Q) does not only decrease the relative viscosity of original 

suspension from 1000 to 15 while the same total concentration of solids was dispersed, 

but it also shows that the bimodal PSD (point P to S) allows the solid loading to be 

increased from 60 to 75% without increasing viscosity. This effect considerably 

influences the viscosity at a total phase volume of more than 50%.  Increasing higher 

solid loading of suspensions with minimal viscosity increase is more important in 

ceramic processing, allowing higher ceramic green density and improved sinterability.  

Figure 3.5 shows the effect of particle size distribution on the tap density obtained 

with the mixture of fine and coarse powder.  The tap density at 100% “coarse” silica 

powder with median d50 of 27 microns is 0.74 ± 0.03 g/cm3. However, as “coarse” 

powder was replaced by 75 wt% “fine” powder with median d50 of 7 microns, the tap 

density increased to 0.93 ± 0.02 g/cm3. As shown in Figure 3.5, the tap density increases 

by the transition from monomodal to bimodal distribution, which represents closely 

packed particles so that the higher maximum volume fraction, φm, is reached. Equation 

3.2 already showed that increasing the maximum volume fraction, φm, decreases the 

viscosity of a suspension at a given φ. Therefore, higher tap density induced by the 

bimodal particle size corresponds to higher maximum volume fraction, which reduces the 

relative viscosity shown in Figure 3.3.   
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3.4. THE EFFECT OF PARTICLE SIZE DISTRIBUTION ON THE 

SEGREGATION IN A LAYER 

 

This section describes the influences of particle size distribution (PSD) of 

refractory silica in terms of segregation in layers via solidification by ceramic 

stereolithography (CerSLA). Using bimodal PSD, a significant decrease in the suspension 

viscosity is achieved as compared to a suspension of a mono-modal PSD. Large 

segregations in solidified layers are detected when the settling time is long and the PSD is 

mono-modal. However, much less segregation occurs with bimodal PSD due to 

suppressed segregation. To determine the distribution of particle size within each layer, a 

linear intercept method is used, which quantifies the vertical changes in PSD. Initial 

spatially-resolved particle size distribution results contained a great deal of scatter and 

variation.  

 

3.4.1 Spatially resolved size distribution using Diagnostic with Comb Marker 

 In order to characterize the effect of particle size distribution on the segregation of 

ceramic powder in each layer, each layer should be individually detected and analyzed. 

However, it is difficult to distinguish each layer due to the continuous layers along the Z-

axis, thus affecting to the accurate analysis on the particle size distribution in a layer. As 

shown in Figure 3.6, we design a Diagnostic with Comb Marker (DCM) like our teeth to 

easily separate each layer. The diagnostic is composed of 40 layers stacked by two 

different structures; a first fully cured layer and a second partially cured layer which has 

two uncured parts at the both side regions and a fully cured part in the center region. 
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These layers are continually aligned in turn, thus able to determine the top and bottom of 

each layer with an accuracy of 10 microns.  

After 40 layers were built, the object was removed from the SLA apparatus and 

sectioned normal to the direction of the layers using a diamond wafering saw.  Careful 

grinding and polishing was conducted to reveal the cross-section of the microstructure. 

Figure 3.7 shows the cross-section of comb-shaped object showing the microstructure of 

particles dispersed  in a layer with 250 microns thickness in the green body built used 52 

vol% coarse silica powder. When a green body is fabricated, holding time of 300 seconds 

is used prior to building a next layer. Severe segregation resulting from the fast 

sedimentation of coarse silica powder exists in the layers, which are separated to the two 

main phases composed of a polymer and a silica powder dominated phase; particle free 

zone at the top of a layer and segregated coarse SiO2 powders (circles) at the bottom of a 

layer.  

Given the segregation shown in Figure 3.7, the linear intercept is used to represent 

particle size distribution in a layer, as shown in Figure 3.8. A layer with the thickness of 

250 microns was sliced by nine 28 micron intervals. Given the linear intercept method15 

on a layer, the nine intervals including various sizes of particles were denoted from I 

(Top) to A (Bottom), where two totally separated regions of a particle free zone at the top 

(I) and segregated coarse SiO2 powders at the bottom (Z) in a layer are included. Given 

the figure 3.7, Table 3.1 demonstrates size and number of particles measured from nine 

28 micron intervals (A to I) in a layer. Most of particles larger than 40 microns are 

located below the position E (height of 112 to 140 microns) and a particle with the largest 

diameter of 82.9 microns was detected at the position B (height of 28 to 56 microns). On 
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the other hand, no particle larger than diameter of 40 microns exists above the position G 

(height of 168 to 196 microns).   

Given the results in Table 3.1, Figure 3.9 shows particles dispersed in a position 

of a layer. Since the layers were small, only 5-20 particles in each 28 micron interval, the 

scatters within the distributions were considerable. Using repeated linear intercept 

method measures particle size of coarse powder segregated in cross section of comb-

shaped object shown in Figure 3.7. Figure 3.10 shows particle size distribution in 4 

sequential layers obtain from the cross section of comb-shaped object. Although particles 

are dispersed like random noise, 4 sequential layers show a repeated pattern on the 

particle size variation in layer; more fine powders on the top and coarser powders on the 

bottom.   

 

3.4.2 Effect of particle size distribution (PSD) on the segregation 

Given the effect of PSD on viscosity, using a bimodal powder (solid loading of 60 

vol%) allows for a more concentrated suspension than can be made using coarse powder 

s (52 vol%) at similar viscosity (~ 1 Pa·sec).  Figures 3.11 (a) and (b) are the cross 

sections of comb-shaped objects fabricated using both coarse powders and bimodal 

powders respectively (50% fine and 50% coarse powders), which takes holding time of 

300 seconds before the next layer of the comb-shaped object is built. 

Figure 3.11 (a) shows a microstructure image representing severe segregation 

resulting from the fast sedimentation of coarse silica powder in the layers and a plot of 

particle size distribution versus position in combined 4 layers. As shown in Figure 3.7, 

there is bad segregation with two totally separated regions: a particle free zone at the top 
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and segregated SiO2 powders at the bottom of each layer. Given the line intercept method 

on the nine intervals in a layer, the particle size distribution versus position shown in 

Figure 3.11 (a) confirms that there is segregation of particles in each layer. Although each 

layer exhibits particle size variation, the particle size distribution is widely affected by the 

size difference of coarse vs. fine powders. Powders much smaller than 10 microns and 

consisting of pure resin are found at the top region of the first layer, but larger sized 

powders of about 80 microns exist in the bottom region.  

Figure 3.11 (b) shows the microstructure of a cross section of a green body built 

using bimodal PSD. As expected, much less segregation is detected due to the shorter 

sedimentation time of the coarse silica powders. Although these powders are dispersed in 

a layer with a large random noise of particle size distribution, they mainly range in size 

from 20 to 50 microns and are dispersed evenly in a layer. Consequently, the segregation 

pattern is not visually obvious.   

 

Bad segregation or much less segregation in layers is directly related to the 

sedimentation velocity of ceramic powder. In a dilute suspension, the sedimentation 

velocity, νstokes, of a single particle in a fluid of viscosity η is calculated by Stoke’s law: 

 

 

 

where d is the diameter of ceramic powder, ρc the density of ceramic powder, ρf 

the density of fluid, and g the acceleration due to gravity. Equation 3.6 shows that the 

settling rate of a single particle is greatly accelerated by an increase in the particle size 
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(proportional to d2), and retarded by an increase in the liquid viscosity. However, in a 

concentrated suspension, the Stokes velocity is modified since hindered settling occurs 

and reduces the settling velocity of a particle, resulting in a longer residence time for the 

interaction between a particle and its neighboring particles in the hindered region where 

there is a higher solids concentration.  

In a highly concentrated suspension with a more than 50 solid volume percent of 

silica, large particle sizes of fused silica used in this work were governed by the 

hydrodynamic interaction forces and gravitational force so that the settling velocity of 

large particle sizes is calculated by the Richardson-Zaki (R-Z) equation.16 This equation 

is widely accepted to correlate the superficial fluidizing velocity νg and the particle 

volume fraction φ of fluidized beds and suspensions of non-agglomerated particles:   

 

        

 

 

Where ρc and ρf are the density of the solid ceramic particle and the monomer 

liquid, g is the gravitational acceleration, d is diameter of ceramic powder, η is the fluid 

viscosity, φ is the concentration of solid, respectively. The exponent n is an empirical 

parameter whose value has been a discrepancy. For example, Richardson and Zaki 

reported n = 4.65 in the small particle Reynolds number (Ret) regime, while n decreased 

as Ret increased.  

The concentration of solid in Equation 3.6 is considered to the main reason of the 

bad segregation and much less segregation, as shown in Figure 3.11. As already 
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mentioned above, using a bimodal powder (solid loading of 60 vol%) allows for a more 

concentrated suspension than can be made using coarse powder (52 vol%) at similar 

viscosity (~ 1 Pa·sec). The particle size of a bimodal powder (50 wt% coarse: 50 wt% 

fine) is an average size range of 3 microns as d10, 12 microns as d50 and 66 microns as d90.  

The “coarse” powder had a particle size range with a finer decile d10 of 4 microns, median 

d50 of 27 microns, and upper decile d90 of 93 microns.  

In order to apply two phenomena of bad segregation and much less segregation to 

Equation 3.6, median deciles d50 of a coarse powder and a bimodal powder were selected 

as a diameter of particles. Diameters and solid loading of a coarse powder are 27 microns 

and 52 vol%, while a bimodal powder has diameter of 12 microns and solid loading of 60 

vol%. Equation 3.6 is used to calculate the settling velocity for a coarse powder or a 

bimodal powder. In the case of a coarse powder inducing bad segregation, the coarse 

powder with diameter of 27 microns has the settling velocity of 0.84 microns/sec. On the 

other hand, in the other case of a bimodal powder showing much less segregation, the 

settling velocity for a bimodal powder with diameter of 12 microns was 0.06 microns/sec.  

Given the solid loading and settling velocity according to the powders, Table 2 

shows the settling distances of the coarse or bimodal powder for 300 seconds. The 

settling distance is ν * τ, where τ is the time delayed to build a next cross section of a 

green body.  The settling distance of the coarse powder is 252 microns, while the bimodal 

powder settles 18 microns. Using the bimodal powder increases the solid concentration 

and decrease the median particle size, thus modifying the sedimentation velocity of fused 

silica powder. Therefore, slow settling velocity in the bimodal powder leads to less 

settling distance, which prevents segregation in a layer. No segregation or much less 
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segregation exists in layers when bimodal powders are used to suppress segregation.  

 

3.5 Conclusion 

 

 The suspension viscosity and segregation in layers solidified from suspension 

prepared from refractory silica was investigated as a function of particle size distribution 

(PSD). In the case of bimodal mixture, relative viscosity of suspension is significantly 

decreased by the increase of the maximum solid loading resulting from the presence of 

small particles between the larger ones. The transition from monomodal to bimodal 

distribution increases maximum volume fraction, φm, thus exerting the most significant 

effect on the reduction of relative viscosity among the multimodal PSD in the suspension. 

The reduction of relative viscosity, shown in Figure 3.3, is a result of the increase of the 

maximum volume fraction induced by the bimodal particle size distribution. 

The use of a linear intercept method can determine the distribution of particle size 

within each layer to quantify the vertical changes in PSD.  The distribution of particle 

size vs. position in each layer shows clear segregation patterns in the case of long settling 

time and mono-modal PSD. However, subtle patterns can be seen visually due to a great 

deal of scatter and variation in the spatially-resolved particle size distribution in the other 

conditions. Severe segregation associated with mono-modal PSD is suppressed by using 

bimodal PSD. In a concentrated suspension, the Stokes velocity is modified since 

hindered settling occurs and reduces the settling velocity of a particle, resulting in a 

longer residence time for the interaction between a particle and its neighboring particles 

in the hindered region where there is a higher solids concentration. The median diameters 
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of the coarse powder or the bimodal powder are used to calculate the settling velocities. 

In the case of a coarse powder inducing bad segregation, the settling velocity of 0.84 

microns/sec was calculated from a coarse powder with diameter of 27 microns. On the 

other hand, in the other case of a bimodal powder showing much less segregation, the 

settling velocity for a bimodal powder with diameter of 12 microns was 0.06 microns/sec. 

Using a bimodal powder increases the solid concentration and decreases the particle size, 

thus modifying the sedimentation velocity of fused silica powder and preventing 

segregation in a layer due to slow settling velocity. No segregation or much less 

segregation exists in layers when bimodal powders are used to suppress segregation.  
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Figure 3. 1 Cumulative mass percent versus particle size distribution (PSD) of 
coarse and fine powders used to decrease the high viscosity of a 60 vol% coarse 
SiO2 particles dispersed in the hexane diol diacrylate (HDDA) 
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Figure 3. 2 Volume percent versus particle size distribution (PSD) of coarse and 
fine powders used to decrease the high viscosity of a 60 vol% coarse SiO2 
particles dispersed in the hexane diol diacrylate (HDDA) 
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Figure 3. 3 The effect of particle size distribution on the relative viscosity of 
suspension. 60 volume percentage of silica dispersed suspensions are prepared 
by two different particle sizes; coarse (d50:26 μm) and fine (d50:7 μm) fused silica 
suspensions. 
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Figure 3. 4 Dramatically decreased relative viscosity can be explained by the 
Farris effect; Line PQ exhibits a 50% reduction in viscosity at the same solids 
loading. Line PS: An increase in the solids loading, from 60 to 75%, without an 
increase in viscosity. 
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Figure 3. 5 The effect of particle size distribution on the tap density obtained with 
the mixture of two different particle sizes; coarse (d50:26 μm) and fine (d50:7 μm) 
fused silica suspensions. 
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Figure 3. 6 Comb-shaped object to detect segregation in a layer: Comb marker 
like our teeth is used to distinguish layers. 
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Figure 3. 7 The cross-section of the microstructure from a comb-shaped object 
showing the segregation of coarse powder in a layer having 250 μm thickness in 
a green body built used 52 vol% coarse silica powder: Particle free zone at the 
top of a layer and segregated coarse SiO2 powders (circles) at the bottom of a 
layer. When a green body is fabricated, holding time of 300 seconds is used prior 
to building a next layer. 
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Figure 3. 8 Schematic diagram to represent particle size as a function of position 
in a layer. Average particle sizes are determined by line intercept in layers. 
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Table 3.1 Size of particles measured from nine 28 micron intervals from A 
(bottom) to I (top) in a layer with layer thickness of 250 μm and number of particle.  
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Figure 3. 9 Particle size versus position in a layer. Data for dispersed Particles 
contain random noise. 
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Figure 3. 10 Particle size versus position in combined 4 layers. Data for 
dispersed Particles contain random noise, but the particle size variation in a layer 
show a repeating pattern; more fine powders on the top and more coarse 
powders on the bottom. 
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Figure 3. 11 The effect of particle size distribution (PSD) within a CerSLA layer 
as a function of segregation as represented by SEM images and data generated 
by line count method: (A) Coarse powder and (B) Bimodal powder; Layers in 
image (B) built use bimodal PSD to suppress segregation. When a green body is 
fabricated, holding time of 300 seconds is used prior to building a next layer. 
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Table 3. 2 The settling distance modified according to the particle size 
distribution (PSD) 
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CHAPTER 4 

PROCESS MODEL FOR CERAMIC STEREOLITHOGRAPHY AND 

SEGREGATION MODEL 

 

 This chapter covers the aspects of predicting the process model to represent the 

relationship between the time to write a layer (τwrite) and several process parameters, and 

the segregation model to suppress the segregation in a layer when UV laser expose on the 

ceramic suspension to write a layer. The goal is to understand the fundamental aspects 

governing the ceramic stereolithography process, and establish the criteria for segregation 

resulting from the consideration of time to write a layer in acrylate-powder mixture and 

settling time. Given the process model and the segregation model, the stereolithography 

operator can easily select optimum variables and maximize the efficiency of ceramic 

stereolithography (CerSLA), thus able to suppress segregation in a layer. 
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4.1 PROCESS MODEL FOR CERAMIC STEREOLITHOGRAPHY 

(CerSLA): TIME TO WRITE A LAYER (τwrite) 

 

4.1.1 Process Parameters used in CerSLA  

Ceramic stereolithography (CerSLA) builds ceramic green objects from CAD 

files from many thin liquid layers of powder in monomer, which are solidified by 

polymerization with a UV laser, thereby “writing” the design for each slice. A certain 

energy dose, E (J/cm2) for the UV laser is required to cure the resin by 

photopolymerization. We used a cure depth (Cd) which is comparable to the layer 

thickness (λ). Faster laser velocity permits a shorter time required to write a layer (τwrite). 

Factors affecting to the writing time are the resin sensitivity (Dp) and the critical energy 

dose (Ec). The Dp which is a material-dependent and wavelength-dependent characteristic 

length and is defined as the resin “penetration depth” at the laser wavelength. For an 

energy dose, the cure depth (Cd) is given by the Jacob’s version of the Beer-Lambert law1 

4.1                                         ln ⎟⎟
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where Cd is the absolute cure depth, Dp is the resin sensitivity representing the 

distance at which the laser intensity is reduced by 1/e, Ec is the critical exposure for the 

resin to gel, and E is the exposure or energy density at the surface.   

The resin sensitivity for a ceramic resin depends on the solid volume fraction, 

particle size of ceramic powder, and refractive index of ceramic powder. When ceramic 

particles are added to the acrylate monomers, the ceramic particles in the suspension 

serve as scattering centers to the incoming radiation. The scattering in ceramic SLA resin 
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is dependent upon the ceramic solids loading and the refractive index difference between 

the ceramic powder and the medium, or Δn=nceramic-n0.2 The detailed description of 

scattering in concentrated suspension is complex. However, we can describe the essential 

relationship between resin sensitivity [Dp] and volume fraction powder [φ] with an 

approximation derived by Griffith1,3  
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 where d is particle diameter, Δn2 is the square of the refractive index difference 

between the ceramic and the monomer [Δn2 = (nc-n0)2], φ the volume fraction solids, and 

Q is the scattering efficiency term. Note that Equation 4.2 is for a scattering dominated 

resin. The relationship between resin sensitivity and refractive index difference or solid 

loading with several refractory ceramics such as silica (nsio2=1.56), alumina (nAl2O3=1.72), 

and silicon nitride (nsi3n4=2.1) at the aqueous-based and HDDA-based system was 

previously measured.1,3 Due to the large refractive index of alumina, alumina suspension 

has the smaller value of resin sensitivity than silica. These results illustrate the very 

important role of 1/Δn2 because Δn is the major parameter for different material.  Thus for 

a certain ceramic material, which has a particular reflective index nceramic, the resin 

sensitivity will be strongly dependent upon the refractive index of the monomer, nr. In 

addition, if the ceramic powder with the similar index is dispersed into monomer, the 

resin sensitivity is dominated according to the particle size of ceramic powder and solid 

volume fraction. Equation 4.2 can be simplified as a function of particle size of ceramic 
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powder and the solid volume fraction in Equation 4.3. 

When a laser scans on the ceramic suspension to solidify a layer, the laser 

drawing speed is influenced by several variables including laser beam width, hatch 

spacing, and power of laser. With these parameters, the laser drawing speed is expressed 

by4 

4.4                                   
Eh

PV
s

L
L =  

 where PL is power of laser (mW), hs is hatching spacing (cm), and E is the 

exposure or energy density at the surface at the surface (mJ/cm2). Hatch space is the 

distance from the center of cured lines. Figure 4.1 shows laser power, layer thickness, and 

hatch space, which are apparatus parameters relating to the time to write a layer. When 

higher beam power, thinner layer thickness, and wider hatch space are used, it takes much 

shorter time to write a layer. Therefore, using apparatus parameters controls the beam 

speed to write a layer (τwrite), finally adjusting total build time (τb) for 3D complex shape.  

 

4.1.2 Total Build Time (τb): Time to build an object  

Total build time is the time required to produce an object with n layers, expressing 

the sum of the time for recoating τr and the time to write each layer τwrite
5 

4.5               
1

  , ∑+=
n

writertotalb n τττ
 

where τb, total is the total build time, τr is the time for recoating each layer, and τwrite 

is the time to write a layer. The number of layers (n) is an important processing parameter, 

which is directly related to build time and surface finish.6  For example, it take less time 
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to build a green body with thicker layers, but surface quality may be diminished by stair-

stepping problems resulting from thicker layers existing on the non-vertical surfaces. The 

recoating time, τr, is limited by the three operations: dipping to prepare the fresh layer 

using the mechanical method, wiping away excess material using blade to make a flat 

surface, and the time required for the surface of the new layer to become smooth. All 

depend on the rheology of the suspension.  

The viscosity of a suspension depends on the amount of solid volume fraction (φ) 

of the suspension. The lowest possible viscosity is the hydrodynamic limit when all 

particles are dispersed as single particles. For this case, the viscosity can be calculated by 

the Krieger - Dougherty model7 
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 where η is the viscosity of the suspension and η0 is the viscosity of the solvent. 

The variable φm is the theoretical packing factor and the true volume fraction of the 

powder dispersed in the suspension is represented by the variable φ. In equation 4.6, the 

viscosity remains low until the particle packing hinders the flow of the suspension, φ → 

φm. The viscosity diverges as the concentration approaches φm, where this asymptotic 

value is used as an index of dispersion. For dispersed suspension, φm → φp, the maximum 

packing of singlets where φp = 0.64 for random packing of uniform spheres. If the 

suspension is highly flocculated, and the particles are agglomerated into flocs, φm is much 

less than φp. [η] is the intrinsic viscosity of the suspension and a function of particle 

geometry. The term β is the effective packing factor of the ceramic powder. Since the 

effective packing factor is used to account for the thickness of the dispersant absorbed on 
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the particles, this factor is the important in the submerge particles.  

The Krieger – Dougherty in equation 4.6 does not have an explicit particle size 

dependence, but the only variable is volume fraction. However, dispersed particles have a 

layer of adsorbed dispersant of finite thickness b. For similar particles in hexane diol 

diacrylate (HDDA) monomer, chu et al. found finite thickness of 13 nm.8 The β factor 

can be estimated by the following expression; 

 

4.7                                   )2( 3

d
bd +

=β  

 

 where d is the diameter of the particle and b is the adsorbed layer thickness. 

Figure 4.2 shows the value of effective packing factor (β) as a function of particle size 

such that β is dominated by the diameter of the particle as the size difference between 

diameters of the particle. For particles larger than 1 µm, β approach to 1 so that the effect 

of β on the viscosity can be disregarded. However, for smaller particle size, β is larger 

than l and dominated by the diameter of the particle. When the diameter of the particle 

decreases from 1 µm to 0.3 µm, β largely increases from 1.08 to 1.283. The result 

indicates that large β resulted from the smaller particle size largely influence the viscosity 

of suspension.   

  Given the Krieger and Dougherty model, Figure 4.3 shows the viscosities of 

suspension as a function of volume fraction of ceramic powder with different particle size. 

For lower volume percents, as expected, the suspensions are more fluid. However, the 

addition of more powder results in a more viscous suspension. For all suspensions in 
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CerSLA, a highly loaded but fluid suspension of ceramic powders in a 

photopolymerizable solution is required to produce a dense, homogeneous particle 

dispersed green body after solidification and sintered body after firing. In CerSLA, 3000 

mPa-s as an upper limit to the viscosity for feasibility have been considered.1 Figure 4.4 

show the maximum solid loading of fused silica in the HDDA monomer as a function of 

particle size with an upper limit of viscosity of 3000 mPa-s. Due to the larger β of smaller 

particle size, as particle size changes from 0.3 μm to 40 μm, the maximum solid loading 

increased from 49 to 62.       

 

The equations 4.6 and Figure 4.4 show the relationship between viscosity and 

volume fraction silica in the HDDA. The suspension viscosity is abruptly increased as the 

particle volume fraction approaches its maximum volume fraction or packing fraction φm. 

In order words, increasing the maximum volume fraction, φm, decreases the viscosity of a 

suspension at a given φ. Therefore, increasing the maximum volume fraction and 

decreasing the viscosity can be achieved by the Farris effect. As previously explained in 

chapter 3, this effect shows that the transition from monomodal to bimodal distribution 

increases maximum volume fraction, φm, thus exerting the most significant effect on the 

reduction of relative viscosity among the multimodal particle size distribution (PSD) in 

the suspension. This reduction in relative viscosity by the incorporation of fine particles 

is known as the Farris effect in which the PSD strongly affects the solid loading of 

suspension at the same relative viscosity.9 

 

 



 
 

66 
 

4.1.3 Writing Time (τwrite): Time to write a layer 

For CerSLA, the recoat time is the same for all layers, while the time to write a 

layer, τwrite can be different for each layer due to the different exposure layer Ai. The time 

to write a layer can be calculated by the relationship between area (design factor) and the 

beam velocity4 

4.8                          
Ls

write h
A
ν

τ =
 

 where τwrite is the writing time (sec), A the area of a layer (cm2), hs hatching 

spacing (cm), and VL the beam velocity (cm/sec). Calculation of the writing time is more 

difficult than that of settling time because the writing time is largely affected by two 

factors: apparatus and material properties. Apparatus parameters considered in the current 

experiment are hatch spacing and power of laser influence scanning on the sliced layers. 

The equation derived by combination of Jacob’s version of the Beer-Lambert law 

(equation 4.1) and laser velocity (equation 4.4) is: 
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where hs is hatching spacing (cm), VL the beam velocity (cm/sec), PL laser power 

(mW), Ec the critical exposure for the resin to gel (mJ/cm2), λ layer thickness (μm), and 

Dp the resin sensitivity, the distance at which the laser intensity is reduced by 1/e.  From 

the addition of equations 4.9 into the addition of eq.4.8,   
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From Equation 4.3, Dp=γd/φ, for the case of a scattering-dominated system 
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where A is an exposure surface area (cm2), λ layer thickness (μm), PL power of 

laser (mW), Ec the critical exposure for the resin to gel (mJ/cm2), φ the concentration of 

solid, γ the term for the resin sensitivity related to the refractive index difference between 

ceramic powder and resin, and d is light scattering diameter. In equation 4.11, τwrite is 

dependent on the several factors. Factors affecting the time to write a layer can be divided 

by the three different main categories; Design factor (a surface area (A) and layer 

thickness (λ)), Apparatus factor (laser power PL), and Material factor (volume fraction 

ceramic (φ), resin sensitivity (γ), and particle size (d)).  

In order to take the shorter time to write a layer, several approaches can be 

applied. Two conditions in the design factor, a surface area (A) and layer thickness 

(λ), are related to τwrite. Given equation 4.11, an average surface area and layer thickness 

have a linear and an exponential relationship with τwrite, respectively. With the layers with 

small surface areas (A) as well as thicker layer thickness (λ), it takes shorter τwrite, and 

then decreasing τb for an object. Another approach is to adjust a laser power (PL), the 

main variable in the apparatus factor capable of adjusting τwrite. When a large laser power 

is applied, a fast laser speed results in much less τwrite, thus leading to a shorter τb to build 

an object. The main material factor affecting τwrite is γ representing the resin sensitivity, 
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which is dependent on the difference of the refractive indices of the ceramic and medium. 

Therefore, the fast writing for a layer is achievable under the refractive index match 

between the ceramic and medium. For example, since fused silica powder has a small 

refractive index difference compared to that of the resin, γ increases and 

τwrite exponentially decreases, thus resulting in the shorter τb for several objects and 

increasing the production efficiency. 

 

4.1.3. a. Writing Time in the Case of Building Several Objects 

Given the equations 4.10, if n objects will be built at a time, the time to build a 

layer will be obtained from the recoating time and the writing time for the n surface areas 

of n objects. Therefore, with an average exposure layer Aav, the time to build a layer for 

several objects can be expressed in terms of the time for recoating and writing each layer 

τr and the time to write each layer τwrite 
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where τb, a layer is the time to build a layer for several objects, τr is the time for 

recoating each layer, and τwrite is the time to write a layer. Aav is an average exposure 

surface area (cm2), λ layer thickness (μm), PL power of laser (mW), φ the concentration 

of solid, and Dp the resin sensitivity related to the refractive index difference between 

ceramic powder. There are several initial conditions. As already explained, the recoat 

time for all layers is the same. Conditions used to write a layer for several objects are the 

average surface area (16 cm2), laser power (PL=40mW), solid loading (φ=60 vol%), and 
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critical energy dose (Ec=10.19 mJ/cm2), layer thickness (λ=100 μm) and resin sensitivity 

(Dp=803 microns) of fused silica dispersed suspension with 40 second recoating time.  

Time to build a layer for several objects (τb, a layer) in equation 4.12 is limited by 

the recoating time (τr) and the writing time (τwriting). Figure 4.5 shows the τb, a layer as a 

function of number of objects in tank, which is divided by two dominated regions: the 

recoating time and the writing time dominated region. When a layer for an object is 

fabricated under the previous conditions, it takes about 5 seconds for τwriting and 45 

seconds for τb, a layer so that τb, a layer is dominated by τr.  However, increasing number of 

objects takes longer time to write a layer for several objects. When τwriting takes as much 

as τr, the transition point from the recoating time to the writing time dominated region 

can be detected. For example, since τwriting for 9 objects takes longer than τr, the transition 

point under the previous conditions is 8. The transition point means extra objects can be 

built within the same τb, a layer, directly relating to the production yield. Consequently, 

delaying the transition point is the same as the increase of the production yield, which is 

achievable from the shorter τwriting. Therefore, the production yield increases by 

controlling the three different factors in order to take the shorter τwriting: Design factor (a 

surface area (A) and layer thickness (λ)), Apparatus factor (laser power PL), Material 

factor (volume fraction ceramic (φ), and the resin sensitivity (γ), and particle size factor 

(particle size (d)). The time required to complete build of many layers in a more general 

case of Dp in which scattering and adsoption limit was presented in a recent paper.10 
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4.2 SEGREGATION MODEL: SEGREGATION PARAMETER (β) IN 

THE CASE OF UNIFORM PARTICLES 

 

In the case of suspensions of coarser or denser particles, fast sedimentation of 

coarse particles lead to particle size segregation in which the population of larger or 

denser particles is greater near the bottom of the layer, as shown in Figure 4.6. The 

segregation in a layer is dependent on the two time constants: writing time and settling 

time. Figure 4.7 shows the effect of two time constants on the segregation in layers that 

segregation or no segregation in a layer occurs. If the writing time in equation 4.10 is 

longer than the settling time, coarse powder settles down, separating two main phases in a 

layer that is composed of a polymer and a silica powder dominated phase. The condition 

to suppress the segregation in a layer is that the time required to write a layer must be 

shorter than the time required for the suspended particle to settle a short distance.  

The degree of segregation in a layer can be estimated based on the relationship of 

two time constants: the time to write a layer, τwriting, and the time how long it takes for 

particle to settle a layer thickness, τsettling. As shown in equation 4.10, τwriting is dependent 

on the layer geometry, laser power, and resin photosensitivity. The photosensitivity varies 

with the type of ceramic and the particle volume fraction, depending on the adsorption 

parameters for the photoinitiator and scattering parameters for the powder, a function of 

the particle refractive index and particle size. To derive the segregation parameter (β) 

representing the degree of segregation, τsettling is calculated by Stokes settling rate and 

time and is based on the particle size, density, monomer viscosity, and volume fraction. In 

order to calculate τsettling using the Richardson-Zaki (R-Z) equation to, the uniform 
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particles with an average particle size in Stokesian hindered settling is applied. 

 

4.2.1 Settling Rate and Time 

 The sizes of particles in suspension affect the stability of suspensions. Colloidal 

particles will remain suspended within fluid systems even after long times. Large 

particles will settle quickly when suspensions are at rest and flow velocities are low. The 

fast sedimentation rate of large particles is directly related to the segregation in a layer. In 

previous CerSLA work, since submicron sized powders are used, the particles remain in 

suspension without settling for periods longer than the time required building a layer. But 

refractory-grade powders have coarse particles to impart creep resistance at high 

temperatures, inducing segregation in a layer resulting from the fast sediment of coarse 

powder during building a layer in CerSLA. Thus, settling time, a time constant related to 

the segregation, is calculated in order to prevent segregation in a layer as considering the 

time how long it take for particle to settle a layer thickness.  

Any discussion of silica powder settling must start with a consideration of simple 

systems, since the downward migration of silica through photo-curable monomer occurs. 

Hence, the steady settling rate on the various particle sizes of silica powder as a given 

particle in isolation in fluid is calculated by Stokes’ law11, with 
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          where ρc and ρl are the density of the solid ceramic particle and the monomer 

liquid, g is the gravitational acceleration, d is diameter of ceramic powder, and η is the 

fluid viscosity, respectively. Inspection of equation 4.13 shows that the settling rate of a 
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single particle is much larger by an increase in the particle size (proportional to d2), and 

retarded by an increase in the liquid viscosity. 

When increasing solid loading in a suspension, the rate of sedimentation is less 

than the velocity given by the Stokes law. Stoke’s law does not apply when circumstances 

cause settling to be ‘hindered’. One example of this is when too many particles are in 

suspension, and particles crowd one another. Another example is when coarse particles 

settle and the turbulence in their wakes drags along other particles. In the hindered region 

with more concentrated solid, hindered settling occur and reduce the settling velocity of a 

particle, and longer residence time from the interaction between a particle and its 

neighboring particles.12  

Large particle sizes1 of fused silica used in this work were governed by the 

hydrodynamic interaction forces and gravitational force. The settling rate of large particle 

sizes is calculated by the Richardson-Zaki (R-Z) equation. This equation is widely 

accepted to correlate the superficial fluidizing velocity ν and the particle volume fraction 

φ of fluidized beds and suspensions of non-agglomerated particles13 
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 Where ρc and ρl are the density of the solid ceramic particle and the monomer 

liquid, g is the gravitational acceleration, d is diameter of ceramic powder, η is the fluid 

viscosity, φ is the concentration of solid, respectively. The exponent n is an empirical 

                                                  
1 At large size, turbulence sets in and Stokes law (a laminar flow mode) does not work. In 
particular sedimentation, Stokes law is for the case of low Reynolds number, Re= 
(diameter)(fluid density)(stokes velocity)/(fluid viscosity). Given the values of coarse particles, 
the particle Reynolds number is 5.18 * 10- 4. 
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parameter whose value has been a discrepancy. For example, Richardson and Zaki 

reported n = 4.65 in the small particle Reynolds number (Ret) regime, while n decreased 

as Ret increased. Given the Richardson-Zaki (R-Z) equation 4.14, the settling rate of 

silica with different particle sizes in the suspension as a function of volume faction silica 

is calculated, as shown in Figure 4.8. Note that the exponent of 4.65 was applied due to 

the small particle Reynolds number. In the dilute region, coarser silica powders by rapid 

settling rate quickly settle. However, in the concentrated region, when the amount of 

silica increased from 40 to 60 volume fraction silica in the HDDA, the settling rate for 

silica powders with diameter of 60 microns decreased from 2.2 x 10-5 m/sec to 3.3 x 10-6 

m/sec. 

Given the settling rate, two regions relating to the settling are divided by Micro-

sedimentation and Macro-sedimentation, as shown in Figure 4.9. Micro-sedimentation 

shows the settling time for the length scale with micrometer unit of a layer thickness (10 

μm) and Macro-sedimentation settling time is considered for the centimeter scale on the 

tank scale (10 cm). 

 

4.2.1. a. Settling Time in Micro-Sedimentation 

Figure 4.10 show the settling time for particles to settle a layer thickness of 100 

microns. With on the rate represented by the Stokes velocity multiplied by a term of 

function of concentration, the settling time is calculated, with 
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where λ is a layer thickness, ν is the settling rate of fused silica calculated by the 
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Richardson-Zaki (R-Z) equation, and φ is the concentration of solid, respectively. When 

the settling time of particles in a layer thickness of 100 microns is calculated as a function 

of silica particle size at the 60 volume fraction silica added into suspension, Figure 4.10 

shows that it takes 30.1 seconds for silica powders with particle size of 60 microns and 

76.3 seconds for silica powders with particle size of 40 micron.  

 

4.2.1. b. Settling Time in Macro-Sedimentation 

 Given equation 4.15, the settling time in macro-sedimentation is calculated for 

long range settling of particles. Figure 4.11 shows the settling time in Macro-

sedimentation, which is based on the centimeter length scale of a full tank size (10 cm), 

as a function of volume fraction of silica with different particle sizes. At the suspension 

including 60 volume fraction of silica powder, it takes 8.3 or 21.2 hour for silica powders 

with diameter of 60 microns or 40 microns for sedimented sludge to form in bottom of 

tank. 

 

4.2.2 Segregation Parameter (β) for Degree of Segregation  

To estimate the degree of segregation parameter, we have calculated derived the 

segregation parameter (β). In order to suppress the segregation in a layer, a prerequisite 

was established such that the time required to write a layer must be shorter than the time 

required for the suspended particle to settle a short distance. Given the relation of two 

time constants; the writing time and the settling time, a parameter (β) representing the 

severe or little segregation in a layer is  
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where τ write is time to write a layer and τ settling is time to settle particles. For 

preventing segregation in a layer, the segregation parameter, β in Equation 4.16 should be 

less than 1 to prevent segregation in a layer. For example, when writing time takes less 

than the settling time, β is smaller than 1 or approaches to 0 and generates less or no 

segregation in a layer. On the other hand, when β is larger than 1, since the writing time 

takes longer than the settling time, particle size segregation shown in Figure 4.6 will be 

detected such that full segregation with two completely separated regions, a ceramic and 

a polymer part, in a layer exist. Therefore, since small β represents short writing time or 

long settling time, small β is required for no segregation in a layer. 

  

 Given the prerequisite, segregation in a layer will be suppressed when writing 

time and settling time are equal. According to equation 4.16, the segregation parameter 

(β) can be derived from the comparison between the writing time in equation 4.10 and the 

settling time in equation 4.15. The segregation parameter (β) is expressed by 
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 where Aav is the average surface area (cm2), λ layer thickness (μm), PL power of 
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laser (mW), νstokes the stoke’s settling rate, φ the concentration of solid, γ the term for the 

resin sensitivity related to the refractive index difference between ceramic powder and 

resin, and d is light scattering diameter. In equation 4.17, the segregation parameter 

(β) representing the degree of segregation is dependent on the several factors. Among the 

factors affecting the degree of segregation, the relationship between β and layer thickness 

(λ) are characterized in detail using two regimes of layer thickness. In addition, for the 

parametric study to define the criteria for the region of no segregation, there are several 

initial conditions; layer thickness (λ=250 microns), area (A=16 cm2), and laser power 

(PL=40 mW). For low degree of segregation at β=0.1, the dependence of segregation on 

several parameters is demonstrated by the relationship between the following factors 

governing segregation: surface area A vs. layer thickness λ (the design factor) and laser 

power P (the apparatus factor) vs. particle size (d90).  

 

 

4.2.2. a. Segregation Parameter (β) vs. Layer Thickness (λ) 

Equation 4.17 shows the dependence of the degree of segregation on several 

factors. Among the factors related to the segregation in a layer, the segregation parameter 

(β) and the layer thickness in equation 4.17 are able to express two different regimes, the 

linear or exponential regime. Figure 4.12 shows the connection between β and the layer 

thickness, where linear or exponential association is dependent on the size difference 

between layer thickness and resin sensitivity. For considering the β, the resin sensitivity 

(Dp) is necessary to compare the ratio of layer thickness to resin sensitivity in the 

exponential term. The resin sensitivity of 60 volume percent of fused silica in the 
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hexanediol diacrylate monomer (HDDA) with 2 wt% photoinitiator is 803 microns, 

which is calculated from the relationship between cure depth and energy dose in Beer-

Lambert equation. Given the relationship between layer thickness and resin sensitivity, 

where two regimes according to the size difference between layer thickness and resin 

sensitivity are divided to thinner or thicker layer thickness. The degree of segregation 

depending on the layer thickness can be simplified by; 
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where β is the segregation parameter, λ layer thickness, and Dp is the resin 

sensitivity, the distance at which the laser intensity is reduced by 1/e. Given equation 

4.18.1 for the thinner layer thickness, the degree of segregation is limited by inverse 

proportion to the layer thickness since resin sensitivity of 803 microns is much larger 

than the layer thickness of 100 microns. Therefore, β linearly decreases according to the 

increase of the layer thickness. On the other hand, for the thicker layer thickness shown 

in equation 4.18.2, when the layer thickness is larger than the resin sensitivity of 803 

microns, β exponentially increases according to the layer thickness. Since the thickness of 

layers built by ceramic stereolithography is less than 200 microns, the linear relationship 

between the degree of segregation and layer thickness will be mainly considered.  

In chapter 3, Figures 3.11 (a) and (b) showed severe segregation and much less 

segregation in sequential layers according to the conditions, respectively. The criteria for 

no segregation should be necessary for a thorough understanding the segregation in a 
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layer and solve the segregation problem. In order to suppress the segregation in a layer, 

we already established the prerequisite that the time required to write a layer must be 

shorter than the time required for the suspended particle to settle a short distance. Given 

the prerequisite, the segregation parameter (β) can be expressed by 
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where β is the segregation parameter, A surface area (cm2), λ layer thickness (μm), 

PL power of laser (mW), νstokes the stoke’s settling rate, φ the concentration of solid, γ the 

term for the resin sensitivity related to the refractive index difference between ceramic 

powder and resin, and d is light scattering diameter. Equation 4.19 represents the degree 

of segregation, and is used to define the criteria, thus revealing the region of segregation 

or no segregation. Additionally, equation 4.19 represents the degree of segregation from 

the ratio of writing time to settling time. β less than 1 or approaching 0 induces less or no 

segregation, while β larger than 1 causes full segregation with two completely separated 

regions, a ceramic and a polymer part, in a layer.  

 

4.2.2. b. Surface Area (A) vs. Layer Thickness (λ) 

 The surface area (A), as a design factor, was compared with layer thickness (λ) to 

determine the conditions required to write a layer without segregation. By looking at the 

equation for the degree of segregation parameter, the relationship between area and layer 

thickness is shown below:  
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 where A is the surface area of a largest layer among the several layers, and λ is the 

layer thickness. There are several initial conditions; laser power (PL=40mW), solid 

loading (φ=60 vol%), and critical energy dose (Ec=10.19 mJ/cm2) and resin sensitivity 

(Dp=803 microns) of fused silica dispersed suspension. Initial conditions are applied to 

Equation 4.20 in order to predict the region where segregation occurs or the region of no 

segregation.  Figure 4.13 shows the relationship between surface area and layer thickness, 

and also the effect of layer thickness on segregation. When layers with the maximum area 

of 40 cm2 are built from a suspension including silica powder with uniform particle size 

of 40 microns, layers with thickness larger than 200 microns are required to build a 3D 

complex part without segregation.  

Figure 4.14 shows the influence of layer thickness and particle size on the surface 

area of a layer. Given layer thickness, the figure helps to find a proper large area for the 

3D complex part without segregation. For example, when a layer is fabricated under the 

following conditions, layer thickness of 200 microns and silica powder with particle size 

of 60 microns, ceramic stereolithography can build layers with the surface area less than 

18.4 cm2 without segregation. However, if five parts will be built at a time, the 

segregation in a layer is resulted from the large surface area of 92 cm2. This segregation 

problem can be fixed based on the modification of particle size distribution shown in 
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Figure 4.14. Under suspension including particle size of 20 microns, ceramic 

stereolithography can build a layer with the surface area less than 165.8 cm2 without 

segregation. Therefore, using a powder with uniform particle size of 20 microns can write 

a total surface area of 92 cm2 for five parts at a time or a larger surface area of 92 cm2 for 

a part without segregation.  

 

4.2.2. c. Laser Power (PL) vs. Particle Size (d90) 

In the case of the apparatus parameter, since the scanning speed on the sliced 

layers is proportional to the power of laser, segregation in a layer is largely influenced by 

the laser power. Given equation 4.19, the relationship between laser powder and particle 

size is obtained by: 
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 where PL is a laser power, λ is the layer thickness, and ν(φ) is settling velocity 

calculated from the silica powder with uniform particle size. Several initial conditions, 

solid loading (φ=60 vol%), surface area (A=16 cm2), and critical energy dose (Ec=10.19 

mJ/cm2) and resin sensitivity (Dp=803 microns) of fused silica dispersed suspension, 

were used to build layers. Values of laser powder required to prevent segregation in a 

layer are calculated from Equation 4.21 and largely varies according to particle size, 

where laser powder ranges from 10 to 150 mW for a layer thickness of 100 microns. 

Larger particles can be used in the resin without segregation if laser power is increased. 

As shown in Figure 4.15, the region of no segregation is detected in the upper region 

above plot. No segregation is originated from the shorter writing time than the settling 



 
 

81 
 

time, where the shorter writing time is resulted from the high laser speed induced by the 

high laser power. On the other hand, the area below plot is the region where segregation 

occurs and it should be avoided. When 3D complex parts are prepared under the 

following conditions; a layer thickness of 100 micron and a suspension including fused 

silica powder with uniform particle size of 40 microns, laser power larger than 26.5 mW 

is required to prevent segregation.  

However, since high laser power usage is limited due to its expensive price, it 

would be much better to consider the dependence of laser power on the layer thickness in 

order to find the region of no segregation under the current laser power (40 mW) and 

particle size. Figure 4.16 shows the effect of the laser power and PSD with different layer 

thickness, 50 to 250 microns. The layer thickness is directly related to the settling time so 

that changing layer thickness is a strategy to prevent segregation in a layer. For example, 

at the current condition (laser power of 40 mW), segregation is expected for 100 microns 

layers if particles are larger than 48 microns. The segregation can be prevented by 

modifying layer thickness from 100 to 150 micron, thus able to use fused silica powder 

with uniform particle size of 48 microns without any segregation. In addition, since the 

degree of segregation depends on the relationship between layer thickness and laser 

power, laser powers required for no segregation can be calculated according to the 

different layer thickness. In the particle dispersed suspension with uniform particle size of 

40 microns, laser powers larger than 89 mW or 60 mW is required to build layers with 

layer thicknesses of 150 microns or 250 microns, respectively.  
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4.3 CONCLUSTION 

 

Ceramic stereolithography (CerSLA) is a repeated layered manufacturing process 

where thin liquid layers of powder in monomer are solidified by photopolymerization 

with a UV laser, thereby “writing” the design for each slice. Total build time τb to 

produce an object is the same as the sum of the time for recoating τr and the time to write 

each layer τwrite. Since the recoat time is the same as 40 seconds for all layers, τb is 

mainly limited by τwrite. In order to take the shorter τb, τwrite can be modified by the 

several factors in the three different main categories; Design factor (a surface area (A) 

and layer thickness (λ)), Apparatus factor (laser power PL), and Material factor (volume 

fraction ceramic (φ), resin sensitivity (γ) , and particle size (d)). With the layers with small 

surface areas (A), thicker layer thickness (λ), and high laser power, it takes shorter τwrite, 

and then decreasing τb for an object. Moreover, a small refractive index difference 

between the ceramic and medium increases γ, thus reducing the τb and increasing the 

production efficiency.    

In the case of suspensions of coarser or denser particles, fast sedimentation of 

coarse particles lead to particle size segregation in which the population of larger or 

denser particles is greater near the bottom of the layer. For the optimization of parameter 

used in CerSLA to suppress segregation in a layer, the segregation parameter (β) is 

derived from the ratio of the writing time, τwrite to settling time, τsettling. β larger than 1 

indicates severe segregation, while β smaller than 1 represents little or no segregation in a 

layer. The small β for little segregation is generated when τwrite should be shorter than 
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τsettling. For low degree of segregation at β=0.1, the dependence of segregation is 

demonstrated by the relationship among particle size (d90), laser power P (the apparatus 

factor), and layer thickness λ (the design factor). In the particle dispersed suspension with 

uniform particle size of 40 microns, laser powers larger than 89 mW or 60 mW is 

required to build layers with layer thicknesses of 150 microns or 250 microns, 

respectively. 
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Figure 4. 1 Apparatus parameters, Laser power (PL), Layer thickness (λ), and 
hatch space (hs), related to the time to write a layer. 
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Figure 4. 2 Effective packing factor (β) as a function of particle size of fused 
silica. 
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Figure 4. 3 Model calibration of the viscosity versus volume faction silica 
dispersed in the HDDA ultraviolet curable solution. Silica powder between 1 and 
40 μm are shown. The maximum loading amount of silica is determined by the 
Krieger-Dougherty model.   
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Figure 4. 4 Maximum solid loading as a function of particle size at an upper limit 
to the viscosity of 3000 mPa-s for feasibility of CerSLA . 
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Figure 4. 5 Time to build a layer for several objects as a function of number of 
objects on the platform, for the case when each object has an area of 16 cm2 and 
recoat time is 40 seconds. 
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Figure 4. 6.  Particle size segregation in a layer due to the fast sedimentation of 
coarse powder. Suspensions of coarser or denser particles can undergo 
differential sedimentation, leading to particle size segregation in which the 
population of larger or denser particles is greater near the bottom.  
 
 
 
 
 
 
 
 
 
 
 
 



 
 

90 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 4. 7 Schematic diagram representing segregation or no segregation in a 
layer. In order to prevent segregation in a layer, the time required to write a layer 
must be shorter than the time required for the suspended particle to settle a short 
distance. 
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Figure 4. 8 Settling rate as a function of volume fraction silica.  
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Figure 4. 9 (a) Micro-sedimentation with length scale of the layer thickness of 
100 microns and (b) Macro-sedimentation with length scale of the height of tank 
of 10 centimeter. 
 
 
 
 
 
 
 
 
 



 
 

93 
 

 
 
 
 
 
 
 
 
 

 
Figure 4. 10 Settling time for  a layer thickness of 100 μm, as a function of 
volume fraction of silica with different particle size 
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Figure 4. 11 Settling time in Macro-sedimentation on the length scale of a full 
tank (10 cm) for long range settling of particles, as a function of volume fraction 
of silica with different particle size 
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Figure 4. 12 Degree of segregation as a function of layer thickness. The degree 
of segregation and the layer thickness show two different regimes; the linear 
regime in the thinner layer thickness (λ«Dp) and the exponential regime in the 
thicker layer thickness (λ≥Dp). 
 
 
 
 
 
 
 
 
 
 



 
 

96 
 

 
 
 
 
 
 
 
 

 
Figure 4. 13 Regions representing segregation and no segregation in a layer at 
the degree of segregation parameter (β=0.1). The occurrence of segregation is 
dependent on the design factors (surface area, A and layer thickness, λ).  
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Figure 4. 14  Effect of design factor (area, A and layer thickness, λ) on the 
segregation in a layer at the degree of segregation parameter (β=0.1). Three 
different parameters (area vs. layer thickness vs. particle size) are used to 
determine conditions escaping segregation in a layer. 
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Figure 4. 15 Regions representing segregation and no segregation in a layer at 
the degree of segregation parameter (β=0.1). The occurrence of segregation is 
dependent on the Apparatus factor (laser powder, PL). 
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Figure 4. 16  Effect of apparatus factor (laser power, P) on the segregation in a 
layer at the degree of segregation parameter (β=0.1). Three different parameters 
(laser power vs. particle size vs. layer thickness) are used to determine 
conditions escaping segregation in a layer. Larger particles can be used in the 
resin without segregation if laser power is increased. 
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CHAPTER 5 

INTEGRALLY CORED CERAMIC MOLD (ICCM) FABRICATED 

BY CERAMIC STEREOLITHOGRAPHY (CerSLA): 

 

Ceramic casting molds for superalloy airfoils have been produced by lost wax 

processes, which use ceramic cores, wax patterns, and ceramic shell molds. Due to the 

several steps involved in the lost wax process, costly tooling is required to produce mold 

dies for complex cores and wax patterns by injection molding. The cost and production 

delays associated with this tooling are disadvantageous for prototypes and smaller 

production runs. 

This chapter covers ceramic stereolithography (CerSLA) as an alternative method 

to replace lost wax processes, for small production runs or designs too complex for 

conventional cores and patterns. Using layer-by-layer growth enabled by CerSLA, it is 

possible to eliminate the pattern and produce a one-piece mold integrated with the core, 

or an Integrally Cored Ceramic Investment Casting Mold (ICCM).   
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5.1 INTRODUCTION 

 

 Investment casting (IC), where refractory shell molds are embedded in wax 

patterns, is a widely used technique for modern metal casting, and provides an 

economical means of mass producing shaped metal parts containing complex features. 

Hollow cored super alloy airfoils are examples of complex IC parts.  These complex 

structures of airfoils are designed to conduct cooling air through one or more 

passageways in the turbine. Demands for these more complex internal passageways are 

related to greater cooling efficiency of airfoils in turbines.1  

For these complex airfoils, a lost wax process that involves several processing 

steps is used to make ceramic molds as shown in Figure 5. 1.2 Hollow cavities in cast 

airfoil are produced using preformed ceramic cores located within the injection mold. The 

pieces of the complex ceramic core are formed separately using injection molding, 

assembled together. Wax is injected into the mold and over cores to make a pattern for the 

cast metal. Patterns are normally assembled in clusters around a common sprue and 

feeder system prior to building-up the external mold shell. Wax pattern is dipped in 

ceramic slurry, and adding coarse refractory stucco onto the wet slurry, the ceramic shell 

mold is built up around each wax pattern. The aforementioned procedures are repeated 

several times to make a shell mold with sufficient thickness, for strength and integrity, 

before being fired.  

Given steps in the lost wax process, these multiple steps generate high cost and 

include many artifacts, thereby decreasing the accuracy of the targeted ceramic mold. 

Costly tooling is required to produce mold dies for complex cores and wax patterns by 
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injection molding. The cost and production delays associated with this tooling are a 

disadvantage for prototypes and smaller production runs.3 Furthermore, when a lost wax 

pattern over a core part is added, movement or shifting of the core in the mold may occur. 

Since this slight displacement of the core results in unacceptable variations in the wall 

thickness of the hollow structure, it will decrease the consistency and accuracy of the 

ceramic core and shell mold designed for turbine airfoils with complex internal 

passageways. With one process rather than using separate cores, patterns, and shell molds, 

would be advantageous to directly produce a mold that has the casting cavity and the 

ceramic core.4 In this work we demonstrate the fabrication of an integrally cored ceramic 

mold (ICCM) which combines the ceramic core with a ceramic mold shell in a single 

patternless construction, as shown in Figure 5. 2.  

Solid freeform fabrication (SFF) techniques can be used to directly fabricate the 

mold without several intermediate steps of the conventional lost wax process.5,6 SFF is 

the general name for an emerging technology in which sophisticated three dimensional 

(3D) objects can be produced directly from a layer by layer process based on computer 

aided design (CAD) files. Stereolithography (SL) invented by Chuck Hull7 is the most 

commercialized technique among the SFF processes. It is considered to be the most 

accurate technique in terms of dimensional accuracy among the SFF techniques since it 

can produce 3D objects with exact tolerances and the best surface finishes.7,8 However, 

SL is limited in its ability to produce a complex 3D IC pattern composed of only 

polymers due to the fact that it is a resin-based system. Thus, it is difficult to build any 

ceramic mold using the SL process since it requires extra steps similar to those used here 

in the lost wax process, as shown in Figure 5. 1. CerSLA9-11 is used to directly build an 
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ICCM for the turbine airfoil by creating three-dimensional parts as a UV laser draws each 

layer on a photopolymerizable suspension of ceramic powder. 

 

5.2 EXPERIMENTAL PROCEDURE 

 

5.2.1 Suspension preparation 

Irregular glassy silica powders (SiO2, PCC airfoils, Sanford, NC) with an average 

size range of 3 μm d10, 12 μm d50 and 66 μm as d90 was used to prepare a ceramic 

suspension. The silica powders were milled fused silica (density of 2.2 gm/cm3).  A 

quaternary amine dispersant (CC-59, Goldschmidt,) in an amount equal to 3% of the 

weight of the SiO2 powder was added to lower the viscosity and aid in ceramic dispersion. 

The photopolymerizable monomer and monomer mixture were prepared using 1, 6-

hexanediol diacrylate (HDDA, SR238) and ethoxylated pentaerythritol tetraacrylate 

(EPTA, SR494) as received from Sartomer company (Exton, PA). 1-Hydroxy cyclohexyl 

phenyl ketone (Irgacure 184, Ciba Specialty Chemicals, Tarrytown, NY) used as a 

photoinitiator decomposed on UV- radiation, releasing free radicals, which initiated the 

polymerization reaction of monomer mixtures. SiO2 powder and CC-59 as a dispersant 

for stable colloidal dispersion were added to UV-curable monomer mixtures without 

photoinitiator to prepare the ceramic suspensions. Up to a solid loading of 50 vol%, the 

suspension was mixed and homogenized in a high speed shear mixer for 5 min. At a solid 

loading of 60 vol%, more time was required for the dispersants to adsorb and colloidally 

stabilize the suspension, the mixtures were ball-milled for 24h. Hydroxy cyclohexyl 

phenyl ketone (HK) at a concentration of 2 wt% with respect to the monomer was added 
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to a 60 vol% suspension and the final mixture was ball-milled again for 2h. 

 

5.2.2 WINDOWPANE technique 

The WINDOWPANE technique is used to measure material properties cure depth 

(Cd), critical energy dose (Ec), and resin sensitivity (Dp) of fused silica dispersed 

suspension to obtain the proper energy dose required for writing a layer with 100 µm 

thickness. This technique consists of one frame and five separate double panes with 

different cure depths resulting from different laser beam exposure. The laser scans the 

surface of the suspension to draw a frame with the three horizontal lines, followed by the 

outline of the “panes”. Next the laser scans the interior of each pane at different scanning 

velocities so that each pane receives a different dose. After fabrication of the 

windowpanes, the cured part is removed from the rest of the uncured suspension and 

rinsed in deionized water and then ethanol for acrylate suspension. Each windowpane 

thickness is measured with a micrometer to obtain the cure depth. From the linear curve 

resulting from the relationship between the cure depth and the maximum exposure, the 

resin sensitivity of suspension, Dp, and the critical energy dose of that resin, Ec, are 

obtained from the slope and intercept of the linear curve, respectively.  

 

5.2.3 Fabrication of integrally cored ceramic mold using photopolymerization 

(ultraviolet curing) 

A three-dimensional green part is fabricated by using a layer-by-layer CerSLA 

machine having the following steps. First, a 3D computer image is sliced into many 

cross-sectional layers 100 µm thick. As laser radiation is scanned on the surface of the 
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liquid monomer to write a layer, the monomer is solidified to a polymer. The laser is a 

solid state laser (Xcyte, JDSU, Milpitas, CA), which has a quasi-continuous wave (CW) 

emitting at 355 nm, output power 40 mW, and a beam diameter of 125 μm. The Ec and 

Dp measured by the WINDOWPANE technique are used to determine the laser speed by 

controlling the radiation exposure (mJ/cm2) and build the layer thickness. Figure 5.3 

shows the processing steps of CerSLA required to fabricate the ICCM. As laser radiation 

is focused in predefined areas on the surface of the liquid monomer to write a layer, the 

monomer is solidified to a polymer in Figure 5.3 (a).  When the layer is finished, the 

support platform and first layer move downward into the vat of liquid monomer resin. 

The liquid monomer flows across the first polymerized layer, and then takes 40 seconds 

of “Z-wait time” to make a flat surface of suspension before building the second layer of 

monomer. The laser scans this new surface, polymerizing the second layer. This process 

is repeated many times until the part is finished. When part building is done, the platform 

is raised and the solid polymer part emerges from the vat. After fabricating a green part, 

the cured part is removed from the rest of the uncured suspension and rinsed in isopropyl 

alcohol for 20 minutes. As shown in Table 5.1, the solidified polymer in a green body is 

removed at temperature up to 600oC in the binder burn-out process consisting of several 

heating steps. This temperature is maintained for 2 hours, and then the burned part is 

sintered at 1300oC for 30 minutes in air. Optical images of the green and sintered bodies 

were taken by an OVM1000NM (Olympus) microscope.  
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5.3. RESULTS AND DISCUSSION 

 

5.3.1 Integrally cored ceramic mold (ICCM) for turbine airfoil 

Figure 5.4 shows a cross-sectional view of the internal features of most turbine 

airfoils typically containing three intricate cooling channels that form a cooling system. 

The channels are a leading edge cooling channel, a mid-chord serpentine cooling channel, 

and a trailing edge cooling channel. The mid-chord serpentine cooling channel facilitates 

the efficient removal of heat from the airfoil, especially at the intersection between the tip 

section and the trailing edge. Three complex internal passageways have been required for 

greater cooling efficiency of airfoils in turbines. Gas turbine engines workable at higher 

temperatures are being required for high efficiency of gas turbine engines. The airfoils, 

such as blades and vanes, within the engine are among the components exposed to 

significant thermal impact during engine operation. Therefore, as shown in Figure 5.4, 

interior cooling passages with complex hollow structure in the airfoils are used to prevent 

the degradation of the airfoils when exposed to high temperature. 

Figure 5.5 demonstrates an ICCM with overall dimensions of 38.83 mm x 38.83 

mm x 104.78 mm (X x Y x Z) for fabricating a turbine airfoil with complex cooling 

passages. The ICCM is composed of core, casting cavity, and shell parts, where the core 

generates internal cooling passages of a turbine airfoil. After molten metal cast into the 

ICCM through a pouring cup, the fused silica core is leached away in aqueous solutions 

of either NaOH or KOH.12 The interior cavities resulting from the leached core are the 

three different cooling channels in a turbine airfoil, previously described, and shown in 

Figure 5.6.  
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Using CerSLA builds the ICCM for the turbine airfoil by creating three-

dimensional parts as a UV laser draws each layer on a photopolymerizable suspension of 

ceramic powder. In order to generate each layer of the ICCM, a slicing step is required in 

CerSLA processing.  The ICCM was sliced with a layer thickness of 100 μm so that 1047 

layers were generated based on the Z height of 104.7 mm. Figure 5.7 shows five layers 

among 1047 layers of a sliced ICCM, where the initial root conducting air for cooling 

purposes is created in layer 200 and several passage ways mainly ranging from 400 and 

800 layers are formed by the core and shell mold.   

Given the sliced layers in figure 5.7, the cross section of STL file and a green 

body of ICCM are shown in Figure 5.8. The line in the image of STL file vertically cross-

sectioned represents the position of the cross section. At the 400th layer, two separated 

parts are growing in the core region, where they turn into the leading edge cooling 

channel and mid-chord serpentine cooling channel after pouring casting metal and 

leaching out two parts. It only takes 50 seconds to build a layer, generally requiring 5.5 

hours to build the green body of ICCM up to 400 layers. 

For the high-quality surface of cast metal, the smooth inner surface in the green 

body of ICCM is required. During the building of green bodies, if stair stepping problems 

occur, the surface of sintered body and the interface between sintered body and cast metal 

will be affected. One of processing parameters affecting stair-stepping problem is the 

layer thickness, where thicker layers generate harmful surface quality of the green body. 

Due to the layer-by-layer process of the stereolithography, stair-stepping problems 

usually occur on the non-vertical surfaces.13  

In order to investigate the stair-stepping problem at the green body of ICCM, the 
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inner surface shown in figure 5.9 was selected as the interface with the cast metal. The 

green body composed of 1024 layers has a layer thickness of 100 μm.  An optical image 

shows 22 layers of the ICCM; there are no stair stepping problems at the inner shell 

surface.  

 

5.3.2 Processing parameterization for optimum energy exposure in CerSLA 

Figure 5.10 shows an image of a support structure, which is used to hold the part 

while it is being generated. For SL systems, anchor supports have been used to help 

control warpage that may occur during part fabrication using resins. For example, when 

photo-curable resin is exposed by UV light, it undergoes a polymerization reaction and 

shrinkage. Unconstrained shrinkage of pure resin induces curl, which leads to part 

inaccuracy. Therefore, the support structure has been used to not only hold a part, but to 

prevent curl and warpage in the case of pure resin for SL systems.  

Figure 5.11 shows the gap between the core and shell was generated after building 

800 layers, which is the passageway for the cast metal. When ICCM is produced via 

exposure to ultraviolet radiation on the suspension, the gap should be completely 

resolved to cast the metal between core and shell. At the initial stage, however, we could 

not resolve the gap for cast metals. A possibility of unresolved gap may be related to the 

support structures. We assumed that the unresolved gap was a drainage problem resulting 

from support structures. In order to examine the effect of support structures on the 

unresolved gap, an ICCM is built without any support structure. Although an ICCM does 

not include any support structure, the unresolved gap between the core and the inner wall 

of the shell was produced as shown in Figure 5.12. Therefore, a drainage problem 
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resulting from the support structure is not a reason of the unresolved gap.  

Another possibility of unresolved gap may result from the complexity in the 

ceramic stereolithgraphy (CerSLA). The addition of ceramic powders in CerSLA creates 

a complex suspension having physical properties that differ from the pure resin in SL. 

Ceramic particles added to the acrylate monomer serve as scattering centers to the 

incoming radiation, as a result laser illumination occurs by multiple scattering of ceramic 

particles in the ceramic suspension and absorption by the photoinitiator. During 

photopolymerization of suspension, the most important parameter affected from this 

multiplied scattering is the resin sensitivity (Dp). As shown in Chapter 4, when the 

ceramic and the monomer have a large refractive index difference, the Dp decreases due 

to multiple scattering. Griffith et al. demonstrated the relationship between the refractive 

index and the Dp using several refractory ceramics: silica (nsio2=1.56), alumina 

(nAl2O3=1.72), and silicon nitride (nsi3n4=2.1), dispersed in the HDDA-based system 

(nHDDA=1.46). The large refractive indices of alumina and silicon nitride produce smaller 

values of resin sensitivity than silica. Additionally, acceptable cure depths (Dc=200 

microns stereolithography requirement) were not achievable with silicon nitride due to 

the large refractive index difference between the ceramic and diacrylate.9,10 

Due to the complexity in the CerSLA resulting from the multiple scattering, 

inaccurate processing parameters, Dp and Ec, can be used such that they may lead to an 

unresolved gap between core and shell mold, as shown in Figure 5.12. If layers are 

overexposed due to inaccurate values, negative effects on the spatial resolution and 

overall dimensional control in the layers exist. For example, each layer can be 

overexposed due to incorrect cure depth, thereby influencing the cure width of each layer 
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and causing line width that are too large. The large width may block the gap between core 

and shell mold of ICCM fabricated by CerSLA.  

The fundamental properties of the ceramic suspension, the resin sensitivity (Dp) 

and the critical energy does (Ec), are the most important parameters among the several 

processing parameters. When a layer is fabricated from the ceramic suspension in 

CerSLA, two parameters Dp and Ec vary the laser beam speeds (VL). Figure 5.13 shows 

the relationship between VL and Ec at constant Dp of 805 microns: VL linearly decreased 

upon the increase of Ec. Therefore, if small or large Ec is used, these inaccurate 

parameters seriously affect VL, and the smaller or larger energy dose (E) will be exposed.  

Dp and Ec, of suspension including ceramic powders can be calculated from the 

relationship in Jacob’s equation:  

 

5.1                       ln ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

c
pd E

EDC  

 

where Ec is the critical (minimum) energy dose required for polymerization, and E 

the exposure energy dose delivered to the surface. Exposure energy dose is E=PL/Vshs, 

where PL is laser power, Vs laser drawing speed, and hs line spacing. Other parameters are 

cure depth (Cd), the distance of photopolymerization through the surface as targeted by 

the user and DP, the distance at which the laser intensity is reduced by e-1.  

To resolve the gap between core and shell, Windowpane technique was applied to 

calculate two accurate parameters: Dp and Ec. Figure 5.14 shows that cure depth as a 

function of energy doses were measured using WINDOWPANE on the suspension 
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including 60 volume percentage of fused silica so that Dp of 805 ± 48 microns and Ec of 

15 ± 1.29 mJ/cm2 are calculated from the slope and the x-intercept value, respectively. 

Figure 5.15 (A) and (B) show the resolved gap of green body and sintered body, 

respectively. The calculated fundamental properties, Dp 805 microns and Ec 15 mJ/cm2, 

are used to build a layer with 100 μm thickness so that the gap between core and shell 

mold is resolved. Therefore, the unresolved gap shown in Figure 5.12 is not a result of a 

drainage problem but inaccurate processing parameter. 

  

5.3.3 Consistency and accuracy issues in Ceramic Stereolithography (CerSLA) 

Consistency and accuracy are the important factors that should be considered 

when integrally cored ceramic molds (ICCM) are fabricated using CerSLA. For example, 

ceramic shell molds are required to have a constant thickness for strength and thermal 

behaviour predictions to avoid mold failure resulting from the cast metal.4 In addition, for 

consistent and accurate cast metal, since the consistency and accuracy of green bodies 

affect those of sintered bodies, the ICCM green bodies should be produced within 

dimensional tolerances so that the CerSLA will be a process able to replace the lost wax 

process.  

In the lost wax process, the accuracy and consistency problems generally occur 

due to the difficult control resulting from several processing steps. Investment casting 

techniques require very high temperatures, e.g., in the range of about 1450oC to 1750oC, 

while many conventional ceramic molds do not exhibit sufficient strength at those 

temperatures. Whiskers or plates as reinforcing materials have been used to increasing 

mechanical property of ceramic mold.14,15 However, reinforcements of whiskers or plates 
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with anisotropic shape undergo preferred orientation during mixing or mold filling in 

ceramic injection molding process. The pattern of orientation in binder is partly 

dependent on the mold and gate configuration and on the machine conditions, notably 

injection speed, resulting in non-uniform distribution of binder.14,15 Furthermore, mold 

thickness is not consistently controlled due to several dipping steps, making it difficult to 

control the mold thickness. Non-uniform distribution of reinforcement materials in binder 

and non-consistent mold thickness induce differential shrinkage during binder burn-out 

and sintering and alter the dimension of the mold, finally affecting the dimensional 

consistency and accuracy of a cast part. Generally, linear tolerances of about ± 0.15-0.25 

mm are usually being recommended up to a size of 25 mm in the case of the conventional 

investment casting.2  

In order to evaluate how accurately CerSLA can build an ICCM, the sizes of 

specific areas shown in Figure 5.16 are measured and compared with the core and shell 

parts in layer 630 of 4 samples. Figure 5.16 (a) and (b) show a STL file including core 

and shell parts, representing a cross section of the layer in a targeted ICCM and the cross 

section of a green body composed of polymer and ceramic material fabricated by 

CerSLA, respectively. Given the STL file of the layer, the size difference of green and 

sintered body (not shown) and shrinkage factor is compared and calculated. Symbols, A-

A' to D-D' in Figure 5.16 (a) indicate positions measured in each demonstration to 

evaluate the accuracy of CerSLA. Table 5.1 displays the size difference resulting from the 

comparison between a green and a sintered body with the STL file, for both core and 

shell parts of the cross section of layer 630. At the positions of cross section measured in 

the X-Y plane, the linear tolerance of the green body are fairly controlled under ± 0.2 
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mm. After sintering, sintered ICCM shows the similar sintered factor of ~10 % in all axes 

(X-Y and Z).  

Figure 5.17 demonstrates images showing a full size integrally cored ceramic 

mold: STL file, green body, and sintered body without any cracks at the core and shell 

parts. Given the STL file, after the ICCM green body shown in Figure 5.17 (b) was 

fabricated using CerSLA, the optimum thermal conditions are necessary during a BBO 

schedule consisting of a series of heating steps and multiple dwell times prior to ceramic 

densification. The solidified polymer is removed at temperatures up to 600ºC in the 

binder burn-out process. Here, the role of solidified polymer in CerSLA is to bind the 

homogeneously dispersed ceramic particles together. Since the cured resin will be 

removed in the binder-burnout step, it does not have to be very strong to impart adequate 

strength to the green ceramic. After removing the binding polymers, the sintered ICCM 

shown in Figure 5.17 (C) is fabricated through sintering at 1500ºC for 2 hours.  

Position G shown in Figure 5.17 represents the trailing edge cooling channel parts, 

that could not be resolved by CerSLA at the current stage. Unresolved trailing edge parts 

may be generated by the following reasons: no support structure or tiny small size. The 

inner support structures used for sustaining the complex curved parts is difficult to 

completely remove, and hence residual support structures may block the cooling passage 

of ICCM. In the current experiment, support structures are not used so that trailing edge 

part is not supported and generated.  

Another possibility of unresolved trailing edge parts is the small size of cross 

section at the trailing edge parts, which has thinnest size of 22 μm. In this case, the 

resolution of the processing is controlled by the cured line width which is dependent on 
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the beam size of UV laser. We are currently using a solid state laser with a beam diameter 

of 125 μm to build ICCM parts. The available smallest line width can be calculated using 

the beam size and resin sensitivity of the suspension, given by: 

 

5.2                       
2 p

d
w D

CBL =  

 

where Lw is the line width of cured line, B the beam size, Dp resin sensitivity, and 

Cd is the thickness of cured line. The cured line width is directly proportional to the laser 

beam size and the square root of the ratio of the cure depth to the resin sensitivity. Given 

the current variables: B of 125 microns, Cd of 100 microns, and Dp of 805 microns, the 

solid state laser can resolve the smallest size with a line width of 44 microns. The 

resolution limitation in our CerSLA may be the reason that the thinnest size of 22 

microns representing trailing edge is not resolved. In order to increase the resolution of 

CerSLA, since the cured lined width is directly related to the square root of cure depth, an 

approach is to decrease the cure depth.  From the equation 5.2, cure depth of 50 microns 

is required to resolve the thinnest size of 22 microns.  
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5.4 CONCLUSION 

 

Ceramic stereolithography (CerSLA) as a novel process is investigated to replace 

the lost wax process which is a technique widely used to fabricate refractory molds for 

investment casting. In the lost wax process, however, several problems, lead time delay 

and high cost for pattern production and the risk of core motion during wax injection, are 

generated from the several processing steps: core preparation, injection molding, and 

dipping process. In the CerSLA process, on the other hand, the mold can be directly 

fabricated without several intermediate steps of the conventional lost wax process. In this 

work we demonstrate an integrally cored ceramic mold (ICCM), the ceramic core with a 

ceramic mold shell in a single patternless construction, for turbine airfoils with complex 

internal passageways.  

CerSLA creates a complex ICCM as a UV laser draws each layer on a 

photopolymerizable suspension of ceramic powder. Due to the layer-by-layer process, 

stair-stepping problems usually occur on the non-vertical surfaces, while there is no stair 

stepping problems at the inner shell surface of ICCM. At the initial stage, the gap as the 

passageway for the cast metal between core and shell could not be resolved. The 

unresolved gap is induced from inaccurate processing parameter, since the complexity in 

the CerSLA increases as ceramic powders serve as scattering centers to the incoming 

radiation, as a result, laser illumination occurs by multiple scattering of ceramic particles 

in the ceramic suspension and absorption by the photoinitiator.  

The WINDOWPANE technique can produce two fundamental properties of 

ceramic suspension: resin sensitivity (Dp) and critical energy dose (Ec). When 60 volume 
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percentage of fused silica is dispersed into 1,6-hexanediol diacrylate (HDDA), Dp of 805 

± 48 microns and Ec of 15 ± 1.29 mJ/cm2 are calculated from the slope and the x-

intercept value in the cure depth as a function of energy doses, respectively. Furthermore, 

CerSLA directly controls the desired thickness of shell molds over inconsistent state 

resulting from the several dipping steps in the lost wax process and shows fairly accurate 

geometry dimensions (within 0.20 mm) which are fitted into the linear tolerance required 

in the conventional casting.  
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Figure 5. 1 Schematic diagram of the several processing steps in the 
conventional lost wax process how to build ceramic mold for super alloy airfoils; 
(a) Step1: make core, (b) Step2: mold wax pattern to define metal, and (c) Step3: 
build shell mold over wax pattern. 
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Figure 5. 2 Schematic diagram of targeted integrally cored ceramic mold (ICCM) 
fabricated by ceramic stereolithography (CerSLA).  
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Figure 5. 3 Schematic diagram of the fabrication of integrally cored ceramic mold 
(ICCM): Outline of fabrication procedures for ICCM made by ceramic 
stereolithography (CerSLA) 
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Table 5. 1 Thermal condition for binder burn-out and sintering  
 
 

 
Temperature (oC) Rate (oC/min.) Holding time 

(hour) 

Binder burn-out 

25 (room temp.) - 100 5 1 

100 - 200 5 2 

200 – 335 3 2 

335 – 415 1 2 

415 – 480 3 2 

480 – 600 2 2 

Sintering 25 – 1300 3 0.5 

Cooling 
1300 – 300 5 0 

300 – 25 (room temp.) 1 0 
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Figure 5. 4  A cross-sectional view of a turbine airfoil.  
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Figure 5. 5 Integrally cored ceramic mold (ICCM); (a) the size of ICCM and (b) 
the cross section of ICCM showing core and shell parts.  
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Figure 5. 6 A cross-sectional view of ICCM showing three cooling channels; 
Leading edge cooing channel, Mid-chord serpentine cooling channel, and Trailing 
edge cooling channel. 
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Figure 5. 7 Integrally cored ceramic mold (ICCM) has been built using layer by 
layer process, which has 1042 layers with the thickness of 100 µm. Core and 
shell parts are shown between 200 layer and 800 layer. 
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Figure 5. 8 An image showing a layer of 400 at the root part. The image 
represents core (red circle), casting cavity, and shell parts, which are built using 
layer by layer process.  
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Figure 5. 9 No stair stepping at inner shell surface of ICCM, which has layers 
with layer thickness of 100 µm. 
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Figure 5. 10 An image showing a support structure used to hold the part while it 
is being generated; (a) a support structure used for simple cubic box and (b) the 
image magnified from the region (A).  
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Figure 5. 11 Image of gap between core and shell. The gap is the passageway 
for the cast metal. 
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Figure 5. 12 Gap between core and shell for the passageway for the cast metal; 
A. STL file for the gap and B. Unresolved gap. 
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Figure 5. 13 Laser beam velocity as a function of energy dose 
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Figure 5. 14 Cure depths as a function of energy doses measured using 
WINDOWPANE technique on the suspension including 60 volume percentage of 
fused silica. The resin sensitivity (Dp) and critical energy dose (Ec) calculated 
using Eq. 5.1 are 805 μm and 15.33 mJ/cm2. 
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Figure 5. 15 Resolved gap between core and shell mold; A. STL file and B. 
Resolved gap of green body 

 
 
 



 
 

135 
 

 
 

 
 

 
Figure 5. 16 Demonstrations in order to measure the accuracy of the integrally 
cored ceramic mold (ICCM) built by CerSLA. A. STL file and B. Green body of 
ICCM with core and shell mold at the layer number 630 (A-A' to D-D': measured 
length, G: missing part) 
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Table 5. 2 Evaluation on accuracy of CerSLA from the comparison between STL 
file and Green body of ICCM 

 

 As-built  
before sintering state After sintering state 

Axis Part STL file Green body 
Sintering 
shrinkage 

(%) 
Sintered 

body 

X-Y 

A-A' 33.6 33.37±0.11 10.8 29.72±0.07 

B-B' 4.66 4.42±0.11 10.9 3.93±0.07 

C-C' 4.72 4.60±0.1 10.7 4.11±0.08 

D-D' 3.89 3.87±0.09 10.9 3.45±0.04 

Z 
E-E' 26.67 26.71±0.17 10.6 23.91±0.05 

F-F' 22.72 22.81±0.07 10.7 20.36±0.04 
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Figure 5. 17 Integrally cored ceramic mold (ICCM) for turbine airfoil with a 
complex internal hollow structure fabricated used ceramic stereolithography 
(CerSLA); A. STL file, B. Green body, and C. Sintered body without any cracks at 
core and shell parts. (E-E' and F-F': measured) 
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CHAPTER 6 

INFLUENCE OF RESIDUAL MONOMER ON THE CRACKS IN 

INTEGRALLY CORED CASTING CERAMIC MOLD (ICCM) 

 

The goal of ceramic stereolithography (CerSLA) is to replace the traditional wax-

pattern investment casting with tool-less rapid prototyping methods. CerSLA is used to 

build silica-based refractory molds as complex “integrally cored ceramic molds” (ICCM), 

which are novel investment casting shell molds with the core already in place. For details 

about the integrally cored ceramic mold, the reader is referred to Chapter 5. In order to 

fabricate the integrally cored ceramic mold (ICCM) for turbine airfoil, the green body of 

the ICCM fabricated by CerSLA must be fired to remove the cured polymer binder and to 

sinter the ceramic. After the mold is fired, no macro cracks or flaws should exist in the 

sintered ICCM, which should have sufficient mechanical properties to avoid ceramic 

mold failure resulting from the cast metal. However, early in the project, molds made by 

CerSLA had severe flaws. As shown in Figure 6.1, vertical and horizontal cracks exist in 

the sintered ICCM fabricated by a 50 volume percentage suspension of fine silica powder 

(average particle size ~ 7μm). This chapter describes how the causes of these flaws were 

identified and eliminated, and presents a process optimization for fabricating a macro 

horizontal-flaw-free integrally cored ceramic mold (ICCM).  
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6.1 BUILD STYLES 

 

Ceramic stereolithography (CerSLA) builds ceramic green objects from CAD 

files from many thin liquid layers of powder in monomer, which are solidified by 

polymerization with a UV laser, thereby “writing” the design for each slice. A layer is 

written according to a “build style” which controls X and Y directions of the UV laser. If 

a build style is incorrect, defects such as delamination, distortion, and bending in the 

green body can be induced. The origin of the distortion is the inevitable volume decreases 

when the monomers are polymerized. The “build styles” involve strategies to suppress 

macroscopic distortions related to volume change. It is important to find the proper build 

style for ceramic suspensions.  Since CerSLA originates from the stereolithography (SL) 

based on the photopolymerizable monomer system with no ceramic filler, the build styles 

widely used in the conventional unfilled resin system are explained. 

 

6.1.1 Conventional build style in the resin system: Tri-Hatch to WEAVE 

Recall that the SL builds by curing strings of resin as the laser is scanned to cure 

the resin. When the stereolithography process was developed (Jacobs), the layers were 

cured by defining the outside “Border lines” first, then curing the inside with a series of 

“Fill lines” in a hatch pattern.1 The fill lines can connect between two border lines, or 

they can connect to just one border line and leave a small gap between the other lines (an 

“end contraction”). 

Tri-Hatch was the most widely used internal hatch style of resin system. Tri-Hatch, 

a method used to solidify the inside of a part or the volume between borders, uses a 
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scanned line parallel to the x axis combined with lines at 60o and 120o to the x axis. The 

most common spacing between these lines is 1.25 mm, thus producing an internal 

structure of equilateral triangles. However, within a laser-cure, too much residual resin 

remains in the SL part structure, which directly influences the post-cure distortion. 

Specifically, a large fraction of uncured liquid resin (roughly 50%) remains, which leads 

to excessive post-cure distortion.  

To reduce the amount of residual liquid resin, WEAVE style was developed. This 

style considerably improves post-cure distortion when compared to parts built using the 

Tri-Hatch method.2 WEAVE typically uses two sets of orthogonal vectors per layer, 

which draws a set of parallel Y-hatch vectors was drawn on the first pass, followed by an 

orthogonal set of parallel X-hatch vectors drawn on the second pass. Hatching spacing is 

approximately 0.011˝ for both the x and y hatch.  

WEAVE build style advanced from Tri-Hatch minimizes the postcure distortion 

by reducing the amount of uncured monomer, but this process can produce large 

solidified regions that are a dominant cause of part distortion. This distortion is due to 

internal stresses developed during part building, with the most significant distortions 

occurring on large, nominally flat slabs. For example, as shown in Figure 6.2 (a), the 

short vectors drawn using the WEAVE style sequentially writes the border line, X-hatch 

vectors from left to right, and Y-hatch vectors from the front of the vat toward the back. 

In this process, the Y-hatch vectors attach to the border line and the previous layer 

partially polymerized by the border vectors and the X-hatch vectors. Subsequent 

shrinkage is generated from the left toward the right according to a propagating “wave” 

of curing. Figure 6.2 (b) shows a distorted thin vertical wall exaggerated for the purpose 
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of visual representation.  The curvature shown is attributed to the net result of subsequent 

shrinkage at the parts largely attached to the lower layer and the border lines.  

Build styles are being developed to avoid the dominant source of error, like part 

distortion resulting from internal stress developed during part building, with the most 

significant distortions occurring when large, flat, and complex 3-D objects are built. One 

recently developed build type is the STaggered weave build style. The style enables 

internal stresses to be released using the smallest contact area between cure lines based 

on STaggered hatch and Retracted hatches.   

 

6.1.2 STaggered weave build style  

6.1.2. a) STaggered hatch 

Figure 6.2 shows the conventional hatch of WEAVE style and STaggered hatch of 

Staggered WEAVE style. Most significant distortions under the conventional WEAVE 

style occur due to internal stresses developed during part building. Since WEAVE style 

was similar to building a brick wall with all the bricks located directly on top of one 

another, the full height of the wall in a straight line is extended. As shown in Figure 6.3 

(a), a UV laser controlled by conventional WEAVE style writes the X hatch vectors on 

the nth layer which are positioned directly above the X vectors on the (n-1)th layer. The Y 

vectors are also positioned directly above one another. However, the weaker regions exist 

between the hatch vectors as the maximum values of solidified areas are located directly 

down the centerline of each vector. Those weaker regions should be diminished, because 

the regions are possible to be used as the area generating tiny cracks resulting from the 

internal stresses developed during part building. 
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STaggered hatch is developed in order to reduce internal stress as filling the 

weaker regions between layers.3 STaggered hatch style is a similar method that the bricks 

are “staggered” to avoid weak spots and a tendency to develop long cracks directly down 

a given mortar line. As shown in Figure 6.3 (b), the fill vectors on the nth layer are offset 

by exactly half the regular hatch spacing (hs/2), relative to fill vectors on the (n-1)th layer. 

The advantage of this hatch is to intentionally offset the fill vectors on successive layers 

to reduce stress concentrations along the relatively weaker regions between fill vectors. 

 

6.1.2. b) Retracted hatch 

In the conventional build types, the shrinkage resulting from a reaction between a 

given cured border vector and hatch vector would be the dominant source of error on part 

accuracy. In addition, Tri-Hatch and WEAVE types cause another problem as all hatch 

vectors are attached to the border vectors. As shown in Figure 6.4, when a solidified line 

is written by a UV laser, it undergoes shrinkage on the first pass due to its attachment to 

the borders on both ends. Hatch lines attached at both borders increase the net effect of 

the shrinkage forces, thus generating considerable internal forces. Those forces lead to 

the distortion near an end part of borders and reduce part accuracy.  

Retracted hatch style is developed to avoid the internal forces escalated near 

border vectors, which connects one end of each hatch vector to one of the borders.2 Hatch 

vectors in X or Y direction are only attached at one and only one border so that the first 

pass hatch vectors do not generate any reactive forces resulting from shrinkage forces to 

be exerted on the borders.  Figure 6.4 shows the retracted hatch style in which the other 

end of the hatch vector is disconnected about 250 μm from the adjacent border. Note that 
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the retraction sequence itself is alternated such that a given X-hatch vector is attached to 

the border on one end, while its nearest neighbors will be disconnected at that end. This 

end contraction of retracted hatch type releases continuous increment of the internal 

stress. 

Given the STaggered weave build type, the ceramic green body of ICCM from 

CAD files is built using Ceramic stereolithography (CerSLA). Contrary to the processing 

of photopolymerizable monomer system with no ceramic filler, the CerSLA process for 

fabricating sintered ceramic casting mold requires extra processing steps; a binder burn-

out step to remove polymer from the green body and a sintering step to densify the 

ceramic. We find that flaws appear during the subsequent heating of the green body. This 

chapter presents evidence that the origin of these flaws is related to uncured monomer, 

which the wall, polymerized during heating to 200oC, as well as effects due to burnout of 

the polymer (~300-600oC), which are aggravated by sintering shrinkage upon subsequent 

high temperature firing (~1500oC). These phenomenon are investigated by various 

experiment techniques. 

 

6.2 EXPERIMENTAL INSTRUMENTATION 

 

6.2.1 Thermogravimetric Analysis (TGA) and Differential Scanning Calorimeter 

(DSC) 

Samples of 5-20 mg placed in alumina pans were used to detect optimal thermal 

condition. The thermal degradation characteristics were examined by TGA in an 

SDT2960 TA simultaneous TGA-DTA instrument. Simultaneous recording of the TGA-
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DTA data allows for observation of the temperatures corresponding to the maximum rate 

of mass loss. The heating rate consisted of 5ºC/min to 600ºC in atmospheres of air. 

The heat flow during polymerization were detected using differential scanning 

calorimetry (DSC) at a heating rate of 5oC/min, using a TA Instruments Inc., Thermal 

Analyst model 2100 system equipped with a model 2910 MDSC cell. The sample 

compartment was subject to a constant purge of dry nitrogen at 50 ml min-1. 

 

6.2.2 Gas chromatography/Mass spectrometry (GC/MS) 

 Powder was prepared from crushing a SLA cured green sheet with the layer 

thickness of 1 mm and retracted hatch of 200 μm. The powder was submerged in the 

dichloromethane (CH4Cl2) for 4 hours to extract residual monomer at the retracted hatch. 

The extract was analyzed on a Finnigan Trace GC/MS, equipped with a Supelco SLB-5 

column, 30 meters long x 0.25 mm I.D.  Helium at 1 ml/min was used as the carrier 

gas.  The injector temperature was 200 C., set up for a splitless injection. The oven 

temperature was held at 30 oC for 3 minutes, and then heated to 275oC at 20 degrees per 

minute.  The mass range was set from m/z (mass-to-charge ratio) 35 to m/z 400, with 

electron energy of 70 eV.  Identification of the components was done by comparison of 

the mass spectra with ones found in the Wiley NBS library. 

 

6.2.3 CerSLA condition 

A photopolymerizable suspension is prepared from ceramic particles, a 

photoreactive monomer solution, and photointiator are firstly prepared. Initially, the silica 

powder is suspended in a solution of hexane diol diacrylate (HDDA) and ethoxylated 
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pentaerythritol tetraacrylate (EPETA), using a Variquat CC59 (a polypropoxy quaternary 

amine modified with an acetate polar group) as a dispersant. Photoinitiation is performed 

by using a 325 nm UV laser in an SLA 250/40 stereolithograpy apparatus in the presence 

of an Irgacure 184 (a hydroxyketone) as the photoinitiator.  

The acrylate-based suspension is polymerized via free radical polymerization 

initiated by UV radiation. The free radical polymerization generally occurs based on the 

following steps. When photo-initiators are exposed to UV light, they generate radicals 

which play a role of breaking the carbon double bonds of the acrylate functional group in 

the monomer. Acrylate monomers with broken acrylate functional group link together to 

make a polymer, which fabricate the green body resulting from the acrylate based 

suspension. 

 

6.3 Horizontal and Vertical Cracks during Binder Burn-Out (BBO) 

 

6.3.1 Optimum thermal condition to remove organic binder and sinter ICCM 

In order to successfully eliminate the polymer from the green body, the optimum 

thermal conditions are necessary during a BBO schedule consisting of a series of heating 

steps and multiple dwell times prior to ceramic densification. Practically, the yield of 

ceramic processes is not so much due to a variety of defects resulting from binder 

removal. For instance, carbon retention, cracking, blistering, warping, anisotropic 

shrinkage, and delamination of fired bodies can all result from binder removal. 

Thermogravimetric analysis (TGA) is an effective tool able to identify temperature 

regions of rapid mass loss used to obtain thermal conditions for several heating steps and 
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dwell times in a BBO schedule.4 Using TGA-DTA represents the weight loss and 

temperature difference as a function of temperature, as shown in Figure 6.5. TGA plots 

provide evidence that all organic binders are removed below 600oC in atmosphere of air. 

They show four main mass removal events, the first of which occurs from 200 to 335oC 

removing 4 wt% of material, the second exothermic event from 335 to 415oC removing 

21 wt% of material, and the third exothermic event from 415 to 480oC removing 3 wt% 

of material, and the final event from 480 to 600oC removing the final 5 wt%. The 

exothermic events of the process demonstrate that the degradation involves oxidation 

reaction. 

Given the TGA results, a BBO, sintering and cooling schedules shown in Figure 

6.6 were designed.  Since 21 wt% of the binder is quickly removed at the second event 

from 335 to 415oC, 1oC per minute as a heating rate is used to prevent any defects 

resulting from fast binder removal.  The porous ceramic mold is obtained after removing 

all binders in the green body, and then it is sintered to densify ceramic powder at 1500oC. 

Especially, the more cautious cooling schedule is required in order to decrease the abrupt 

contraction of sintered body. Since this contraction results from the phase transformation 

of cristobalite from β to α phase between 250oC and 150oC during cooling induced 

microcracks and decreased mechanical strengh of ceramic sintered body, cooling rate of 1 

degree per minute was used at the temperature region.5 
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6.3.2 What is the origin of vertical and horizontal cracks detected during binder 

burn-out? 

As can be seen in Figure 6.1, after experiencing the thermal conditions to remove 

the organic product and subsequent sintering of the green body, the sintered ICCM 

exhibits cracks. To describe the origin of the crack, a cube shaped green body is used to 

accurately detect the temperature at which cracks initiate during BBO. The state of cube 

shaped green body is monitored at regular temperature increments of 20oC to 600oC 

based on the thermal conditions in Figure 6.6. Figure 6.7 shows macro horizontal and 

vertical cracks in the cube shaped green body during BBO. Cracks initially are found 

around 240oC. Comparing with TGA in Figure 6.5, very little weight loss at 240oC 

suggests that the cracks do not directly result from BBO. More and longer cracks, 

horizontal and vertical cracks, are detected at 400oC. Those cracks mean that cracks in 

the sintered ICCM shown in Figure 6.1 already exist during a BBO process.  

 Note that vertical cracks also exist in the green body during BBO. Green bodies 

are built by the layer-by-layer process of CerSLA, easily including horizontal cracks 

generated from weak bond of layers after BBO. However, vertical cracks are not 

observed as frequently.  Given the vertical and horizontal cracks, the question arises as to 

the origin of the cracks detected during binder burn-out and ways to prevent them. The 

relationship between the cracks and the build style is considered as the origin of the 

cracks. Since CerSLA process utilized STaggered and Retracted hatch type in the 

STaggered method to relieve internal stress by intentionally leaving residual monomer in 

the green body, as shown in Figure 6.3 and 6.4., the cracks in the green bodies during 

BBO may be connected to the build style used in CerSLA process.  
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 In the case of photopolymerizable monomer system with no ceramic filler, the 

free-radical photopolymerization reaction is exothermic. Measuring the heat flow from 

the sample during UV irradiation monitors the kinetic parameters, the rate of 

polymerization (Rp) and percentage conversions of monomer. Rp and percent conversion 

of monomer represent the number fraction of C=C bonds reacting in the sample per unit 

dose at the initiation and propagation steps and the total amount of converted monomer 

after termination.6 Those kinetic parameters were not only reliant on the UV irradiation,  

but also raising the isothermal curing temperature has enhanced kinetic parameters; rate 

of polymerization (Rp) and percentage conversions of monomer. The increase of kinetic 

parameters results from a thermal contribution towards the photo-radical polymerization 

of the acrylates and increase of mobility of the unreacted monomer during initiating and 

propagating in the network.7  

 In the CerSLA process, Heat energy applied during a binder burn-out process to 

remove polymer in the green body may influence the polymerization of the unreacted 

monomer. DSC (Differential Scanning Calorimeter) is used to measure the exothermic 

heat flow from the free-radical polymerization, examining the thermal decomposition of 

the hydroxyketone photointiator at polymerization in the monomer system including 

hexane diol diacrylate (HDDA), ethoxylated pentaerythritol tetraacrylate (EPETA). 

Figure 6.8 shows the exothermic heat flow, representing polymerization of 

photopolymerizable monomer system generated by thermal degradation of photoinitiator 

around 190oC.  The exothermic reaction means that the rest of uncured monomer in the 

green body can be polymerized by heat energy during a BBO process. We hypothesize 

that cracks are generated by the internal stress resulting from volumetric change of 
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uncured monomers polymerized through the heat energy. The sites in which a residue of 

monomer can be located are roughly the middle and end part of each layer in the green 

body resulting from STaggered and Retracted hatch build type.  

 

6.4 STAGGERED WEAVE BUILD TYPES VS. CRACKS 

 

6.4.1 STaggered hatch space vs. Cracks 

 In the STaggered hatch build type, the amount of residual monomer is dependent 

on hatch space defined as the distance between the centerlines of adjacent parallel hatch 

type in the STaggered build method. Firstly, in the case of conventional resin system, 

optimum hatching space is obtained using the calculated cured linewidth as a function of 

beam size and resin property. Line width and hatching space are calculated with 1 

 

 

 

 

 where B is the beam width (125 μm), Cd is the depth of photopolymerization 

through the surface, and Dp is the resin sensitivity or the distance at which the laser 

intensity is reduced by e-1. This cured linewidth function shows that for a Gaussian laser 

scanned in a straight line across a photopolymer obeying the Beer-Lambert equation: The 

cured linewidth, Lw, is directly proportional to the laser spot diameter, B. The cured 

linewidth is also proportional to the square root of the ratio of the cure depth to the resin 

penetration depth (Cd/Dp). Given the B, Cd, and Dp at the laser power 40 mW in our 
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system, calculated linewidth cured on the fused silica based suspension and useful 

hatching space are 90 μm and 52 μm, respectively.  

An experiment was designed in order to compare the effect of STaggered hatch 

type to the cracks of sintered body. The amount of residual monomer located on the 

inside of green body is changed by STaggered hatch type. As shown in Figure 6.9, cracks 

in the sintered body fabricated with hatching space ranging from 25 to 100 μm are 

represented by circles. If the residual monomer located on the STaggerd hatch is the main 

reason for generating the cracks in the sintered body, more cracks should be detected 

from the residual monomer in the larger hatch space. However, although sample with 

hatching space 40 μm has fewer cracks, vertical and horizontal cracks are found in the all 

samples with different hatching spaces. Therefore, the residual monomer located on the 

Staggered hatch is not the origin of cracks in the sintered body. There is another residual 

monomer in Figure 6.9. Since residual monomer shown in Figure 6.10 was added in the 

end contraction of 20 μm between border and fill vector near the surface, this monomer 

may affect the cracks of the sintered bodies shown in Figure 6.9.  

 

6.4.2 Retracted hatch vs. Cracks 

Previous results contained not only the effect of STaggered hatch, but were also 

coupled with the effects of the Retracted hatch. In order to separately analyze the effect 

of Retracted hatch on the crack, sintered bodies are prepared with the different hatch 

space from 25 to 100 μm and no retracted hatch. No retracted hatch means that the fill 

vectors are attached to the border lines on both ends to remove residual monomer near 

border line at the surface. Figure 6.11 shows the effect of no retracted hatch on the cracks 



 
 

153 
 

in the sintered body. With no end contraction in retraction hatch, vertical and horizontal 

cracks in the sintered body are removed.  

The reason for this improvement is related to the retracted hatch of the resin 

system. One end of fill vectors in a layer was only attached to one of borders to relieve 

the internal stress, reducing any reactive forces to be exerted on the borders. However, 

the residual monomer marked as red circles in Figure 6.10 exists at retracted hatch 

between fill and border vectors and it may be the cause of cracks.  It can be concluded 

that the internal stress is resulted from the residual monomer thermally polymerized 

during heating to ~ 200oC. As shown in Figure 6.1 and 6.7, the vertical and horizontal 

macro cracks in the green and fired bodies are initiated by releasing the internal stress 

from the polymerization shrinkage of the residual monomer. 

In order to examine the effect of uncured monomer on the cracks of fired bodies, 

the length of horizontal and vertical cracks located at the 4 side surfaces of each cube 

sample are measured, and then sum the lengths of the cracks. Relative crack length is 

obtained from the total crack length divided by 4 (number of side surfaces). Figure 6.12 

shows the relative length of horizontal and vertical crack as a function of end contraction 

of 0 to 200 μm. In order to neglect the effect of STaggered hatch, all samples with hatch 

spacing of 50 μm are prepared so that the effect of end contraction is considered to be a 

main variable on the horizontal and vertical cracks. The horizontal and vertical crack 

does not have any trend on the relative crack length. However, note that relative total 

crack length is gradually increased as end contraction is getting larger. The amount of 

residual monomer increases with end contraction, and the volume contraction due to 

thermal polymerization of the monomer should increase with end contraction. This trend 
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means that the strain resulting from thermal polymerization of monomer causes the 

horizontal and vertical cracks.  

The more uncured monomer left, the longer the total crack length.  This result can 

be explained by the following reason. Uncured and residual monomers located near 

border vector are polymerized by the radicals generated by the thermal decomposition of 

the hydroxyketone photo-initiator during binder burn-out process. They undergo the 

volumetric change like shrinkage resulting from the density difference between the 

monomer and polymer. In contrast, for the case of zero end contraction in the Retracted 

hatch without uncured monomer, the fill vectors already polymerized by UV light are 

firmly connected with border vectors so that they are able to sustain its original shape 

during BBO. Hence, much less or no internal stress exists between shrinkage of uncured 

monomer and previous cured polymer of border vector, which creates no cracks at the 

surface of fired bodies.  

 

6.4.3 Detection of residual monomer located in the retracted hatch 

 Through comparison between crack length and end contraction, we can conclude 

that residual monomer in the end contraction was polymerized by thermal decomposition 

of hydroxyketone photoinitiator during BBO, inducing the volume change and increasing 

the internal stress according to the amount of the residual monomer. The generated 

internal stress causes the horizontal and vertical cracks, gradually increasing the total 

crack length as the length of end contraction including residual monomer increases, as 

shown in Figure 6.12. Given the results, residual monomer may exist at the retracted 

hatch in the green body. Therefore, the step is necessary to know what materials exist at 



 
 

155 
 

the retracted hatch part of green body before BBO.  

Materials can be detected using Gas chromatography/Mass spectrometry 

(GC/MS), which uses the difference in the chemical properties between different 

molecules in a mixture to separate the molecules.8 For example, since each element has 

different molecule weight and shape, it travels through the column at different speeds so 

that the molecules take different amounts of time to come out of the gas chromatograph. 

This allows the mass spectrometer downstream to evaluate the molecules separately, 

which can be separated in the GC column and produce their ideal specific spectral peaks, 

while mass spectrometry as the identification technique has been used. 

The compounds, extracted from a green sheet with end contraction of 200 μm or 

no end contraction, were investigated by GC/MS analysis. Figure 6.13 shows GC 

chromatogram corresponding to the compounds extracted from a green sheet with end 

contraction of 200 μm. Two distinctive peaks, #1 and #2, are detected at the retention 

time of each component is ideally detected at a specific spectral peak that was recorded 

electronically at the different retention time elapsed between injection and elution.  

Figures, 6.14 and 6.15 show the results of mass spectrometry and Wiley NBS 

library for identifying peaks on two distinctive peaks of #1 and #2. Individual compounds, 

#1 and #2 eluted from the GC column enter the mass spectrometry, breaking apart into 

large or small fragments of the original molecules. Those fragments are represented as 

the signal intensity (relative abundance) for each of fragments in the y-axis and the mass 

to charge ratio (M/Z) in the x-axis, as shown in Figure 6.14 (a). Fragments of individual 

compounds, #1 and #2, are compared with the reference data in Wiley NBS library to 

indentify each compound. Figure 6.14 (b) shows the reference data of HDDA in Wiley 
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NBS library, the matching result between the reference data and fragments, and 

fragments of a compound #1. Given the result of peak identification, the peak of #1 and 

#2 are identified as the HDDA (monomer) and Irgacure 184 (photoinitiator), respectively. 

Those compounds detected from GC/MS analysis are supporting our hypothesis that 

cracks are initiated from the thermal polymerization of residual monomer and 

photoinitiator in the green sheet with end contraction of 200 μm during binder burn-out.  

 

6.5 CONCLUSION 

 

Ceramic stereolithography (CerSLA) builds ceramic green objects from CAD 

files from many thin liquid layers of powder in monomer. Layers are written according to 

a “build style” which controls X and Y directions of the UV laser. The purpose of the 

“build style” is to suppress macroscopic distortions resulting from the inevitable volume 

decreases when the monomers were polymerized. STaggered or Retracted hatch in the 

WEAVE style are used to reduce internal stress as filling the weaker region between 

layers or as disconnecting one of the ends of the hatch vector to the adjacent border, 

respectively.  

Uncured photo-polymerization monomer located at the STaggered or Retracted 

hatch is polymerized by heat energy. In the CerSLA process, heat energy is applied 

during a binder burn-out process to remove polymer in the green body. In order to 

examine thermal polymerization of uncured monomer, differential scanning calorimetric 

(DSC) is used to detect the exothermic heat flow from the free-radical polymerization. 

The exothermic heat flow represents polymerization of monomer generated by the 
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thermal decomposition of the hydroxyketone photo-initiator around 190oC.  

Retracted hatch vector shows the significant effect on the crack that more uncured 

monomer initiates the longer total crack length. Vertical and horizontal cracks are 

generated from the volumetric change like shrinkage resulting from the density difference 

between the monomer. On the other hand, for the case of zero end contraction in the 

Retracted hatch without uncured monomer, the fill vectors already polymerized by UV 

light are firmly connected with border vectors so that they are able to sustain its original 

shape during BBO. In addition, uncured monomer and photoinitiator residing in the 

Retraction hatch are detected by GC/MS. Those results obtained from GC/MS analysis 

indicates that cracks are initiated from the thermal polymerization of residual monomer 

and photoinitiator in the end contraction hatch. 
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Figure 6. 1 Vertical and horizontal cracks of ICCM sintered mold 
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Figure 6. 2 Short vectors drawn using the WEAVE style. (a) cross-sectional view 
of each layer and (b) a distorted thin vertical wall attributed to the net result of 
subsequent shrinkage at the regions which largely attached to the lower layer 
and the border lines. 
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Figure 6. 3 STaggered hatch build type to reduce internal stress 
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Figure 6. 4 Retracted hatch to reduce internal stress 
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Figure 6. 5 Thermogravimetric analysis (TGA) used to identify temperature 
regions of rapid mass loss 
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Figure 6. 6 Thermal conditions for organic product removal and sintering of 
green body 
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Figure 6. 7 Vertical and horizontal cracks detected in the green body during 
binder burn-out 
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Figure 6. 8 Heat flow as a function of temperature measured by DSC. 
Exothermic heat flow around 200oC represents thermal polymerization induced 
by thermal decomposition of photoinitiator. 
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Figure 6. 9 Cracks generated in the whole regions of hatching space (hs); (a) hs 
= 25 μm, (b) hs = 30 μm, (c) hs = 40 μm, (d) hs = 50 μm, (e) hs = 80 μm, and (f) hs 
= 100 μm. 
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Figure 6. 10 Residual monomer resulted from Retracted hatch near border 
vector 
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Figure 6. 11 No cracks resulting from no residual monomer near surface); (a) hs 
= 25 μm, (b) hs = 30 μm, (c) hs = 40 μm, (d) hs = 50 μm, (e) hs = 80 μm, and (f) hs 
= 100 μm. 
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Figure 6. 12 Relative crack length as a function of retracted hatch style 
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Figure 6. 13 GC/MS chromatogram of HDDA (#1) and photoinitiator (#2) 
extracted from a green sheet with end contraction of 200 μm. 
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Figure 6. 14 Peak identification of a component (#1) detected using GC; (a) 
Mass to charge ratio analyzed using MS and (b) Matching a component (#1) with 
a reference data in Wiley NBS library. HDDA (residual monomer) as a component 
(#1) is identified using MS and Wiley NBS library. 
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Figure 6. 15 Peak identification of a component (#2) detected using GC; (a) 
Mass to charge ratio analyzed using MS and (b) Matching fragments of a 
component (#2) with a reference data in Wiley NBS library. Irgacure 184 
(photoinitiator) as a component (#1) is identified using MS and Wiley NBS library. 
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CHAPTER 7 

SINTERING AND CRISTOBALITE TRANSFORMATION IN FUSED 

SILICA COMPACTS 

 

This chapter covers the sintering of fused silica compact and the transformation to 

cristobalite for refractory grade silica powders. The goal is to investigate the 

transformation kinetics of fused silica studied by quantitative X-ray diffraction (QXRD) 

and choose the optimal thermal condition for controlling the cristobalite transformation in 

fused silica compact during sintering. Given the transformation kinetics of fused silica, 

the amount of cristobalite in the integrally cored ceramic casting mold (ICCM) can be 

controlled, thus able to fabricate the ceramic molds with sufficient mechanical properties 

to avoid ceramic mold failure resulting from the cast metal.  
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7.1 INTRODUCTION  

 

A fused silica based integrally cored ceramic mold (ICCM), the ceramic core with 

a ceramic mold shell in a single patternless construction shown in Chapter 5, is fabricated 

by ceramic stereolithography (CerSLA). The ICCM is designed to directly cast a turbine 

airfoil with complex hollow interior passages that are used to conduct cooling air through 

one or more passageways. To produce ceramic cores for the hollow cooling passages in a 

turbine airfoil, the selection of refractory ceramics is crucial since the quality and 

accuracy of the cast part is dependent on the ceramic core material.  

Refractory ceramics, the material capable of making internal hollow cavity of 

turbine airfoil, should satisfy the following restrictions: similar strength to that of cast 

metal during solidification, thermal stability for dimensional accuracy, and easy removal 

of core after casting. If the ceramic is much stronger than the cast metal, hot cracking of 

the metal occurs due to the larger thermal contraction of the metal during cooling. On the 

other hand, if the ceramic is too weak, the mold will fail from the weight of the hot cast 

metal. The refractory ceramic must have excellent thermal stability to prevent creep and 

dimensional change resulting from the secondary sintering due to high casting 

temperature as high as 1600oC.  

Among the refractory ceramics, fused silica is the material extensively used for 

ceramic cores to produce complex, internal cooling passage in investment-cast, 

superalloy turbine airfoils.1 Fused silica is the best candidate for non-reactive alloys 

fulfilling the restrictions on refractory ceramics used for investment casting such that it 

has thermal stability at high temperature resulting from a low thermal expansion 
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coefficient (about 0.6x10-6/oC) and excellent thermal shock resistance. In addition, a 

fused silica core is easily removed due to the complete chemical leachability in aqueous 

solutions such as NaOH and KOH, where the solutions are non-deleterious to the nickel-

base superalloys.2 

Given the various advantages of fused silica, the sintering of a fused silica 

compact and the transformation to cristobalite should be considered. During the sintering 

of fused silica molds, cristobalite transformed from the fused silica provides stiffness for 

the fused silica molds.3 The silica mold, being composed of a glassy material, starts to 

soften and will be susceptible to bow or twist if the differential expansion forces are 

imposed on the system. This problem is improved by using a modified composition such 

as 90% silica glass and 10% crystalline cristobalite. However, if an excessive amount of 

cristobalite exists in fused silica molds, abrupt contraction induced from beta- to alpha-

cristobalite at ≈200oC on cooling leads to extensive cracking, thus decreasing the 

strength.4 Therefore, it is necessary to investigate the reaction kinetics and phase 

transformation mechanism of cristobalite. 

The purpose of this study is to investigate the transformation kinetics of fused 

silica studied by quantitative X-ray diffraction (QXRD) and choose the optimal thermal 

condition for controlling the cristobalite transformation in fused silica compact during 

sintering. The relation between transformation and microstructure after sintering is 

reported, and related to the physical properties of silica investment casting molds and 

cores. Given the transformation kinetics of fused silica, the amount of cristobalite in the 

ICCM can be controlled, thus able to fabricate the ceramic molds with sufficient 

mechanical properties to avoid ceramic mold failure resulting from the cast metal.  
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7.2 BACKGOURND ON VISCOUS FLOW SINTEIRNG AND 

CRYSTALLIZATION OF FUSED SILICA 

 

7.2.1 Viscous flow sintering of fused silica powder 

Sintering is the term used to describe the consolidation of the product during 

firing, which reduces the surface area of the powder particles. The driving force of 

sintering arises from the excess free energy of the surface of the powder over that of the 

solid material.5 The fundamental research of sintering is to explain the main mechanism 

inducing the reduction of energy. Mechanisms for mass transport during sintering are 

divided by four types: surface diffusion, evaporation-condensation, volume diffusion, and 

viscous flow. 5,6 

Surface diffusion is a general transport mechanism that can produce surface 

smoothing, particle joining, and pore rounding. In the case of evaporation-condensation 

mechanism, there is a positive radius of curvature where the vapor pressure is relatively 

high. Sublimation and vapor transport to surfaces of lower vapor pressure also produce 

these effects. Volume diffusion along the grain boundaries and through the lattice of the 

grains produces both neck growth and volume shrinkage. The mechanisms of bulk 

viscous flow may be effective when a wetting liquid is present and when a mechanical 

pressure is applied, respectively. Among the mechanisms, surface diffusion and 

evaporation/condensation do not produce densification, but diffusions along the grain 

boundaries and through the lattice of grains and viscous flow in amorphous materials 

produce densification in the course of reducing surface area. 7 

In this thesis, since fused silica powders (amorphous or glass powders) are only 
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used to fabricate an ICCM, viscous flow sintering in amorphous materials are mainly 

presented. In the sintering of glass powders, it can be shown that densification by 

viscosity flow is faster than densification by diffusion. Given the sintering stages, two 

models, Frenkel model and the Mackenzie-Shuttleworth (M-S) analysis, have been 

developed to account for the sintering of glasses. Frenkel’s model of viscous sintering, 

which describes the early stages of sintering of spherical, monodispersed particles, allows 

one to calculate the shrinkage rate of two equal particles whose centers approximate each 

other. Mackenzie and Shuttleworth developed a model to explain the final sintering steps 

of a matrix with spherical monodispersed pores.  

 

In the initial stage, viscous flow produced by the driving force of surface tension 

causes neck growth. For two glass spheres of uniform diameter, the initial shrinkage 

ΔL/L0 is given by the classic Frenkel equation8  

 

7.1                               
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where t is the isothermal sintering time, γs surface tension, η viscosity, and r the 

radius of the uniform spherical particles. Equation 7.1 demonstrates that the initial rate of 

shrinkage is directly proportional to the surface tension, inversely proportional to the 

viscosity, and inversely proportional to the particle size. This description assumes that the 

void space between particles forms a continuous pore structure during the initial stages of 

sintering.  
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In the final stage or near the end of the sintering process, isolated pores should be 

represented as small spherical pores. A negative pressure equal to 2γ/r exists at the 

interior of each pore. This is equivalent to an equal positive pressure on the exterior of the 

compact tending to consolidate it. Mackenzie - Shuttleworth have derived a relation from 

the behavior for sintering of a viscous body containing dispersed isolated pores. The 

Mackenzie-Shuttleworth equation can be written as9  

 

7.2                  )()1( 3/13/23/1
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where K is a constant that depends on geometry, γs surface tension, n the number 

of pores per unit volume of bulk material, D the relative density (bulk density/ glass 

density), and η viscosity. Equation 7.2 represents the densification rate dD/dt of uniform 

spherical pores dispersed in an isotropic, incompressible viscous medium. In the final 

stage, gas solubility and its diffusion in the glass and pore coalescence decrease the 

number of pores n, thus affecting the final pore shrinkage. Although finer pores have a 

larger driving force for shrinkage, the driving force is reduced by an increase in the gas 

pressure due to an increase in temperature or from gas evolved from within the glass, or 

pore coalescence.  

 

7.2.2 Devitrification of fused silica 

In the sintering of silica powder compact, less surface energy at the surface areas 

reduced by viscous flow plays a role of the driving force to enhance the densification. In 
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some cases of vitreous systems, however, surface crystallization occurs as a concurrent 

process of the sintering. The crystalline phases do not undergo as much shrinkage due to 

the viscous flow of vitreous silica, thus preventing the sintering induced by viscous flow.1 

Crystallization or “devitrification” of glass can lead to different glass properties 

such as viscosity and coefficient of thermal expansion, and serious problems such that 

high stresses resulting from nonuniform contraction on cooling can cause fracture of the 

piece.10 In the application of an optical fiber, additionally, crystals in a glass affect the 

transmission capability. The optical properties of a glass are changed due to the light 

scattered by the crystals such that this scattering degrade transparency in an optical fiber 

for long distance transmission.  

Experimental and theoretical studies on the crystallization of glass have been 

focused on predicting crystallization rates in new compositions, and also defining the 

limiting times and temperatures to which a glass piece can be subjected.  

   

7.2.3 Nucleation & growth of cristobalite in the fused silica 

In order to predict and control the crystallization of fused silica compact, the 

mechanism of nucleation and growth of cristobalite in the fused silica compact powder 

are reviewed. Crystals usually form in glass by a nucleation and growth mechanism: a 

small region of the equilibrium crystal composition forms by nucleation and then grows. 

Nucleation involves the formation of numerous small particles, or nuclei of the new 

phase (often having size of only a few hundred atoms), which are capable of growing.  

 

The formation of a stable nucleus is expressed by a thermodynamic parameter 
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called Gibbs free energy, G. Gibbs free energy is a function of the internal energy of the 

system (i.e., the enthalpy, H) and a measurement of the randomness or disorder of the 

atoms or molecules (i.e. entropy, S). When ΔG has a negative value, a transformation will 

occur spontaneously. According to the site where nucleating events occur, there are two 

types of nucleation: homogeneous and heterogeneous.  

In the homogenous nucleation, nuclei of the new phase form uniformly 

throughout the parent phase. In the heterogeneous nucleation, on the other hand, nuclei 

form preferentially at structural inhomogeneities, such as container surfaces, insoluble 

impurities, grain boundaries, dislocations, and so on. In glasses, since it is difficult to 

remove structural inhomogeneities, crystallization is initiated from heterogeneous 

nucleation not homogeneous nucleation.11 A general equation for the rate of steady-state 

nucleation (I) in condensed systems has the following form:  
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where A represents a jump frequency and is relatively weakly temperature 

dependent, k is the Boltzmann constant, T is temperature (K), η is dynamic viscosity, and 

ΔG* is the thermodynamic energy barrier to form a nucleus of the critical size in the 

heterogeneous kinetics, such that  
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where Vm is molar volume of the melt, ΔGc is the bulk free energy change for 

crystallization, σ∞ is the surface free energy between the crystal and liquid in the absence 

of a heterogeneity (surface), and θ is the contact angle between crystal and heterogeneity. 

In the equations 7.3 and 7.4, given the extreme dependence of the nucleation rate on the 

surface free energy, small changes of surface free energy (σ) result in large changes in the 

nucleation rate (I). Zanotto showed that a 30% decrease in σ results in a 100 increase in 

the nucleation rate using parameter values for lithium disilicate.12 

Once a stable nucleus has been formed, crystal growth propagates from certain 

centers by the addition of atoms or molecules to the nucleus at a rate which is determined 

by the reaction of crystal-liquid interfaces. The rate of growth of a crystalline phase from 

a glass has been studied by many investigators. According to Turnbull, the rate of 

propagation of the interface between the crystalline and amorphous (i.e, liquid or glass) 

state of a pure substance is obtained13  
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where f is fraction of sites in the interface to which molecules can be attached, Du 

is the kinetic constant (in units of distance2/time) for the process, a is the molecular 

displacement, and Δg is the molecular free energy change.  
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7.3 EXPERIMENTAL PROCEDURE 

 

Fused silica (SiO2, Alfa Aesar Chemicals, Ward Hill, MA) shown in Figure 7.1 

(a) was fired at 1550oC for 10 hours to produce cristobalite powder. Devitrification 

generally occurred on the surface of the silica grains and grinding is done to expose the 

unconverted fused silica, prior to refiring. Ground powders were heated at 1550oC for 

another 10 h, and then a second grinding was done to produce cristobalite with relatively 

high purity. Figure 7.1 (b) shows the SEM micrographs of transformed cristobalite. 

Thermal facets representing crystal not amorphous are detected in the transformed 

cristobalite. 

The reference data was gathered by taking XRDs (X-ray Diffraction Pattern) of 

pure 0.2 grams of cristobalite with the addition of 0.05g grams of calcium fluorite. The 

fluorite (CaF2) as a standard sample is used to plot a calibration curve. Then, the intensity 

ratio between cristobalite and calcium fluorite (CaF2) was plotted as a function of weight 

percentages of cristobalite to make a calibration curve. Figure 7.2 shows two strong 

peaks, 80% of cristobalite (2θ = 21.95o) and fluorite (2θ = 28.26o), determined by X-ray 

diffraction and it is found that α-cristobalite and fluorite. Each sample was crushed and 

was put on the glass holder. Each sample was placed on the sample stage face up in the 

goinimeter part of the Rigaku MiniFlex.  The diffractions were done a scan speed of 2θ = 

1o/min over a wide 2θ range of 20-29 degrees.   

Ceramic test bars with dimension (8 mm height x 8 mm width x 83 mm length) 

for a three-point bending test were built by CerSLA. The ceramic suspension in the 

CerSLA was prepared from the mixture of fused silica powder; 25 weight percent of 
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coarse (d50: 27 μm) and 75 weight percent of fine (d50: 7μm). A quaternary amine 

dispersant (CC-59, Goldschmidt,) in an amount equal to 3% of the weight of the SiO2 

powder was added to lower the viscosity and aid in ceramic dispersion. The 

photopolymerizable monomer and monomer mixture were prepared using 1,6-hexanediol 

diacrylate (HDDA, SR238) as received from Sartomer company (Exton, PA). 1-Hydroxy 

cyclohexyl phenyl ketone (Irgacure 184, Ciba Specialty Chemicals, Tarrytown, NY) used 

as a photoinitiator decomposed on UV- radiation, releasing free radicals, which initiated 

the polymerization reaction of monomer mixtures. SiO2 powder and CC-59 as a 

dispersant for stable colloidal dispersion were added to UV-curable monomer mixtures 

without photoinitiator to prepare the ceramic suspensions. Green bodies of test bars were 

produced in a commercial stereolithography apparatus (SLA-250, 3D Systems, Inc. 

Valencia CA), by dipping a substrate into a reservoir of well-stirred suspension to make 

100 micron thick liquid layers.  After a delay time of either 40 seconds, the layer was 

solidified within 4 seconds by scanning the surface in a raster pattern at 1369 mm/sec 

with a UV laser beam focused in a 120 diameter spot size.  The UV radiation was 

provided by using diode-pumped solid state lasers in quasi-CW 355 nm air-cooled format 

(Xcyte, JDS Uniphase, Milpitas, CA).   

Given the thermal schedule listed in Table 7.1, green bodies of test bars were 

processed by binder burn-out to remove cured polymer, and then test bars were heated at 

10oC/min to temperature between 1200oC and 1500oC, held for 2 hours, and then cooled 

at 10oC/min to room temperature before being subjected to a three-point bending test. 

The three-point bending tests of the sintered test bars were conducted using a universal 

materials testing machine (Instron 4502, Instron Corp., Norwood, MA) with a crosshead 
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speed of 1.27 mm/min and a 10 kN load cell. The flexural strength of the samples was 

monitored with software (Testworks 4, MTS system Corp., Eden Prairie, MN).  Three 

specimens of each material were tested to obtain an average flexural strength along with 

its standard deviation.  

The various images were taken to analyze how the temperature and time affect the 

amount of cristobalite formation in fine powder. Optical images of the green and sintered 

bodies were taken by an OVM1000NM (Olympus) microscope. SEM images were 

obtained by a FEI Philips XL 30 Scanning Electron Microscope (FEI Co., OR, USA) 

with samples sputtered with gold for 3 min (SPI Sputter Coater, SPI Supplies, PA, USA) 

prior to imaging. 

 

7.4 CRISTOBALITE VS. FLEXULAR STRENGTH 

 

7.4.1 Quantitative X-ray analysis for weight fraction of cristobalite 

In internal standard method, a diffraction line from the phase being determined is 

compared with a line from a standard substance mixed with the sample in known 

proportions. The relationship between the intensity of the phase and the standard and 

weight fraction of the phase is14 
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where K is a constant, IA the intensity of the phase A, IS the intensity of the 
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standard S, and wA the weight fraction of A. Therefore, the intensity ratio of a line from 

phase A and a line from the standard S is a linear function of wA, the weight fraction of A 

in the original samples. A calibration curve can be prepared from measurements on a set  

of synthetic samples, containing known concentrations of A and a constant concentration 

of a suitable standard. Once the calibration curve is established, the concentration of A in 

an unknown sample is obtained simply by measuring the ratio IA/IS for a composite 

sample containing the unknown and the same proportion of standard as was used in the 

calibration.  

A calibration curve using internal standard method was prepared in order to 

measure the amount of transformed cristobalite in the fused silica powder. Mixtures of 

cristobalite and fused silica, of known composition, were mixed with enough fluorite to 

make the weight fraction of fluorite in each composite sample enough to 0.20. Figure 7.3 

shows a calibration curve plotted from the intensity ratio of a line from cristobalite and a 

line from the fluorite (CaF2) vs. weight percent of cristobalite. The curve is linear and 

through the origin, as predicted by Equation 7.6.  

Given the calibration curve of cristobalite, the amount of transformed cristobalite 

in the bars for flexural strength test is measured from the crushed powder. Figure 7.4 

shows a result of quantitative X-ray diffraction data for weight percent of cristobalite in 

isothermally sintered test bar. It indicates that the amount of transformed cristobalite in 

the test bar sintered for 2 hours increased with increasing sintering temperature. The 

formation of cristobalite should be controlled, since the cristobalite in fused silica plays 

important roles such as increase of stiffness and decrease of mechanical property. 

Generally, casting industries are using ceramic molds with the amount of cristobalite of 
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less than 10%. Among the parameters relating to the generation of cristobalite, the 

holding time significantly affects the amount of transformed cristobalite. When holding 

time of test bars sintered at the same temperature of 1300oC were changed from 2 hours 

to 30 minutes, there was much less formation of cristobalite during sintering from 27.6 to 

8.3 %. 

 

7.4.2 Flexural strength of fused silica test bar vs. Phase transformation of 

cristobalite 

The flexural strength of test bars sintered at different temperatures from 1200oC to 

1500oC is measured, as shown in Figure 7.5.  Red lines indicate the optimum ranges in 

the flexural strength between 10 and 15 MPa required for the ceramic mold. Test bar 

samples sintered at 1250oC and 1300oC for 2 hours have the proper flexural strength of 

10.6 and 11.8 MPa. In addition, a different sample heated at 1300oC with a holding time 

of 30 minutes has the proper flexural strength of 10.2 MPa. The flexural strength of test 

bars increased with increasing sintering temperature. However, the flexural strength 

decreased to 4.6 MPa with the higher sintering temperature of 1500oC. Figure 7.6 shows 

the flexural strength of test bars and the corresponding amount of cristobalite plotted as a 

function of sintering temperature. The flexural strength increased with increasing 

contents of transformed cristobalite up to 27.6%, yet it declined with more than the 

cristobalite formation of 30%.  

The flexural strength was directly dependent on the amount of cristobalite, which 

is correlated with the transformation of cristobalite. When cristobalite was heated to 

temperature between 200oC and 275oC, the tetragonal alpha- or low-cristobalite 

transforms to the cubic beta- or high-cristobalite. Figure 7.7 shows the unit cell 
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dimensions of cristobalite calculated by Wright et al. 15 The actual transition temperature 

is dependent upon the degree of crystallinity of the specimen: well-crystallized material 

transforms at the highest temperatures; material which is poorly crystallized has lower 

transition temperatures. The transition shows marked hysteresis; the beta → alpha 

transformation occurs on cooling at a temperature about 35oC lower than the alpha → 

beta warming transition. With the lattice parameter measurements, the amount of 

contraction observed during cooling through the beta- to alpha- cristobalite 

transformation was considerably less than the 1.34% contraction and induced a specific 

volume change of ~5 vol% for cristobalite, thus generating microcracks. The microcracks, 

resulting from the beta- to alpha-cristobalite transformation, are the main reason for the 

degradation of the flexural strength.  

Figures 7.8 and 7.9 show the microstructure of a sample sintered at 1400oC for 8 

hours to examine the effect of transformed cristobalite on the crack. Thermals facet, 

crystal not amorphous, detected near the microcracks represent the cristobalite. The 

presence of thermal facets near the microcracks indicates that the microcracks were 

generated from the abrupt contraction induced when beta cristobalite transforms to alpha-

cristobalite at ≈200oC on cooling, which affects the flexural strength with the contents of 

transformed cristobalite in the test bars shown in Figure 7.6. Therefore, to prevent the 

degradation of flexural strength from microcracks, cristobalite in the sintered ceramic 

molds used in the casting industry should be less than 10%.  
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7.5 KINETICS: CRISTOBALITE TRANSFORMATION IN FUSED 

SILICA COMPACTS 

 

 Figure 7.10 shows the QXRD data for weight fraction of cristobalite transformed 

in isothermally sintered fused silica powder for various annealing times and temperature. 

The weight percent increases sigmoidally with annealing time t, indicating that the 

formation of cristobalite can be fitted to a nucleation and growth kinetic model. The 

incubation time, τ0, was represented arbitrarily by extrapolating the curve of the 

experimental results to the 2 wt% transformation level. An incubation time decreases 

with increasing sintering temperature, from 20 min at 1370 oC to 194 min at 1295 oC.  

 

An incubation energy, Q, for the formation of a stable nucleus is a function of 

temperature in the Arrhenius equation; 

 

7.7                       )exp(
RT
QAk −=  

 

where k is the rate constant and Q is an incubation energy. In the nucleation step, 

k represents the number of stable nuclei (n*) and A is related to the total number of nuclei 

of the solid phase. For the exponential term of this expression, changes in temperature 

have a greater effect on the magnitude of the Q term in the numerator than the T term in 

the denominator. This Q corresponds to the free energy required for the formation of a 

stable nucleus at the critical radius. Figure 7.11 shows the incubation energy resulting 
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from the Arrhenius plot of incubation time against transformation temperature. The 

incubation time, τ0, was obtained arbitrarily by extrapolating the curve of the 

experimental results to the 2 wt% transformation level.16 The incubation phenomenon 

includes both diffusion and reaction. The data suggest that the cristobalite incubation 

involves an activated process with an apparent activation energy Q of 161 ± 13 

Kcal/(g·mol) (674 ± 53 kJ/(g·mol)), determining the temperature dependence of the 

diffusion and reaction processes which form cristobalite nuclei. The activation energy 

represented in this research is in the range of those reported (122 to 170 kcal) by 

Heterington et al. for apparent intrinsic crystallization of various vitreous silicas.17  

  

If we assume that the nucleation and growth processes occur after the incubation 

process, the transformation data can be described by a quantitative Avrami kinetic 

equation of the form 18,19 

 

7.8             ]),()(exp[1% n
mtGNfDKwt

••

−−=  

 

where tm = t – τ0, where τ0 is the temperature-dependent incubation time and n is 

the time exponent (or Avrami exponent). The term K(D) is a constant that correlates the 

volume fraction to weight fraction. If the density of the parent phase is equal to the 

product phase, then K (D) = 1. The function f (N
-

, G
-

) depends upon nucleation rate and 

growth rate. Time exponent (n) is independent of temperature when the nucleation and 

growth mechanism is not changed during crystallization. The time exponent (n) listed in 
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Table 7.2 is dependent on the mechanism of transformation reaction, which vary from 0.5 

to 1.5 for diffusion-controlled, and from 1 to 3 for interface controlled kinetics. 20  

 A regression method was used to extract the time exponent and the function K (D) 

f (N
-

, G
-

) for each temperature. The curve, which corresponds to the rising parts of the 

transformed cristobalite shown in Figure 7.10, can be described by straight lines by 

rearranging Equation 7.8:  

 

7.9            ln]),()(ln[)
%1

1ln(ln n
mtnGNfDK

wt
+−=

−

••

 

 

Given the equation 7.9, the function K (D) f (N
-

, G
-

) and time exponent (n) of the 

cristobalite transformation can be calculated from the intercept and the slope of plot. 

Figure 7.12 shows that function K (D) f (N
-

, G
-

) and time exponent (n) are 4.55 × 10-2 and 

1.53 ± 0.09, respectively. The results listed in Table 7.3 show the function K (D) f (N
-

, G
-

) 

and time exponent on the four different annealing temperatures, which have values of the 

time exponents between 1.5 and 2.0. The average time exponent of the transformed 

cristobalite is 1.85. In the case of crystallization of fused silica, there is no change of 

composition when fused silica transformed to cristobalite. Given the relation between the 

mechanism and avrami time exponent shown in Table 7.2, transformation kinetics are 

controlled by 2-dimensional interfacial growth. This transformation kinetics are close to 

the crystallization of cristobalite reported by Jean et al. that occurs either by 3-
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dimensional diffusional (n=1.5) or 2-dimension interfacial (n=2) growth mechanism.20 

 

7.6 CONCLUSION 

 

The flexural strength of test bars increased with increasing sintering temperature, 

while the flexural strength decreased to 4.6 MPa with the higher sintering temperature of 

1500oC due to an increase in the amount of cristobalite. The flexural strength increased 

with increasing contents of transformed cristobalite up to 27.6%, yet it declined with 

cristobalite formation of more than 30%. Thermals facets, crystal not amorphous, 

detected near the microcracks represent the cristobalite. The presence of thermal facets 

near the microcracks indicates that the microcracks were generated from the abrupt 

contraction induced when beta cristobalite transforms to alpha-cristobalite at ≈200oC 

upon cooling, which affects the flexural strength with the contents of transformed 

cristobalite in the test bars.   

Transformation kinetics of fused silica powder have been studied by the QXRD data 

for weight fraction of cristobalite transformed in isothermally sintered fused silica 

powder for various annealing times and temperature. In the transformation-time-

temperature (TTT) plot, the weight percent increases sigmoidally with annealing time t, 

indicating that the formation of cristobalite can be fitted to a nucleation and growth 

kinetic model. The transformation is preceded by a temperature dependent incubation 

time. The incubation is an activated process with an apparent activation energy of 161 ± 

13 Kcal/(g·mol) (≈674 ± 53 kJ/(g·mol)). Transformation kinetics by QXRD can be fitted 

to an Avrami equation with an average time exponent of 1.85. Since fused silica 
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transformed to cristobalite, there is no change of composition such that the 

transformation kinetic is controlled by short range diffusion across the interface rather 

than long range diffusion control. 
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Figure 7. 1 SEM images of (a) as received fused silica powder and (b) 
cristobalite. 
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Figure 7. 2 X-ray diffraction of 80 % α-cristobalite (2θ = 21.95o) and fluorite (2θ = 
28.26o), used to prepare a calibration curve in order to measure the amount of α-
cristobalite in the sintered ceramic mold.  
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Table 7. 1 Thermal condition for binder burn-out and sintering  

 
 

 
Temperature (oC) Rate (oC/min.) Holding time 

(hour) 

Binder burn-out 

25 (room temp.) - 
100 5 1 

100 - 200 5 2 

200 – 335 3 2 

335 – 415 1 2 

415 – 480 3 2 

480 – 600 2 2 
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Figure 7. 3 Calibration curve for cristobalite analysis, with fluorite as internal 
standard. ISiO2 is the intensity of the d = 4.05Å line of cristobalite, and ICaF2 is the 
intensity of the d = 3.16Å line of fluorite. 
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Figure 7. 4 Amount of transformed cristobalite as a function of annealing 
temperatures. 
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Figure 7. 5 The flexural strength of test bar sintered as a function of different 
sintering temperatures. 
 
 
 
 
 
 
 
 



 
 

200 
 

 
 
 
 
 
 
 
 
 

1100 1200 1300 1400 1500 1600
0

5

10

15

20

0

20

40

80

100

 Flexural strength

Transform
ed cristobalite (%

)

 

Fl
ex

ur
al

 S
tr

en
gt

h 
[M

Pa
]

Temperature [oC]

 Cristobalite

 

 
Figure 7. 6 Dependence of the flexural strength on the contents of transformed 
cristobalite in the test bars. 
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Figure 7. 7 A discontinuous change in the lattice dimensions of transformed 
cristobalite; (a) Lattice parameter a0 of cristobalite (b) Lattice parameter c0 of 
cristobalite.15 
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Figure 7. 8 SEM micrographs for a sample sintered at 1400 oC for 8 h; Thermals 
facets representing cristobalite are detected near the microcracks. 
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Figure 7. 9 SEM micrographs at different position of a sample sintered at 1400 
oC for 8 h; Thermals facets representing cristobalite are detected near the 
microcracks. 
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Figure 7. 10 Weight percent of transformed cristobalite versus annealing time 
plotted according to nucleation and growth kinetics. 
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Figure 7. 11 Arrhenius plot of incubation time versus the annealing temperature 
gives the incubation energy Q of 161 ± 13 kcal/(g·mol). 
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Table 7. 2 Avrami time exponent (n) representing the mechanism of 
transformation. 
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Figure 7. 12 Time exponent (n) of the cristobalite transformation plotted under 
normalized time and transformation weight scale. The slope, n, is 1.53 ± 0.09 at 
1345 oC.  
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Table 7. 3 Time exponents (n) and K (D) f (N

-

, G
-

) of the cristobalite transformation 
of fused silica compacts 
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CHAPTER 8 

CONCLUSIONS 

 

8.1 OVERVIEW 

Investment casting (IC) is a widely used technique for modern metal casting 

providing an economical means of mass producing shaped metal parts containing 

complex features. However, investment casting needs refractory ceramic cores and shell 

molds. The shell molds are built by multiple dip coating on injection-molded wax 

patterns, which themselves are formed over injection-molded ceramic cores. The tooling 

required for these two injection molding operations lead to excessive costs and very slow 

prototype cycles. These limitations often present problems in justifying costs of 

producing parts requiring a small number of castings.  

As an alternative for small production runs or designs too complex for 

conventional cores and patterns, we used ceramic stereolithography (CerSLA).  CerSLA 

is an extension of the standard RP process of stereolithography, using a 

photopolymerizable suspension of ceramic powders. Using the layer-by-layer growth 

enabled by CerSLA, we eliminate the pattern production delay and cost issue, which 

produce a one-piece mold integrated with the core, or an Integrally Cored Ceramic 

Investment Casting Mold (ICCICM). We can deeply understand on the nature and 

properties of the photopolymerizable suspension for refractory silica powders, the build 
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parameters (layer thickness, laser write style, etc), and the processing steps after CerSLA 

fabrication (draining, binder removal, sintering). Given the suspension including 60 

volume percentage of fused silica, two processing parameters: Dp of 805 ± 48 microns 

and Ec of 15 ± 1.29 mJ/cm2 are obtained from the slope and the x-intercept value in the 

cure depth as a function of energy dose. The accuracy of CerSLA is evaluated by the size 

difference resulting from the comparison between a green and a sintered body with the 

STL file, for both core and shell parts of the cross section of layer 630. At the positions of 

cross section measured in the X-Y plane, the linear tolerance of the green body are fairly 

controlled under ± 0.2 mm.  

In the suspension of CerSLA, the use of non-reactive and unsinterable coarse 

ceramic powder is required to maintain its physical dimensions in the mold when the hot 

metal hits it. However, the differential sedimentation of coarse or denser particles induces 

segregation in a layer, where the population of larger or denser particles accumulate near 

the bottom. Severe segregation associated with mono-modal PSD is suppressed by using 

bimodal PSD. In the case of a coarse powder inducing bad segregation, the settling 

velocity of 0.84 microns/sec was calculated from a coarse powder with diameter of 27 

microns. On the other hand, in the other case of a bimodal powder showing much less 

segregation, the settling velocity for a bimodal powder with diameter of 12 microns was 

0.06 microns/sec. Using bimodal powder increases the solid concentration and decrease 

the particle size, thus modifying the sedimentation velocity of fused silica powder and 

preventing segregation in a layer due to slow settling velocity. No segregation or much 

less segregation exists in layers when bimodal powders are used to suppress segregation.  
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In order to prevent segregation in a layer, a criterion should be satisfied such that 

the time required for the suspended particle to settle a layer thickness is longer than the 

time required to write a layer. Given the criterion, the degree of segregation (β) was 

derived based on the two competing factors; settling time of powder and writing time of a 

layer.  

            )exp()1(1    
d

Ev
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where A surface area (cm2), λ layer thickness (μm), PL power of laser (mW), 

νstokes the stoke’s settling rate, φ the concentration of solid, γ the term for the resin 

sensitivity related to the refractive index difference between ceramic powder and resin, 

and d is light scattering diameter. β is dependent on the Design factor (surface area (As) 

and layer thickness (λ)) and Apparatus factor (laser power PL). In the case of design 

factor, layer thickness of 200 microns and silica powder with particle size of 60 microns, 

ceramic stereolithography can build layers with the surface area less than 18.4 cm2 

without segregation. In the case of apparatus factor, a layer thickness of 100 micron and a 

suspension including fused silica powder with uniform particle size of 40 microns, laser 

power larger than 26.5 mW is required to prevent segregation.  

In order to apply ICCICM to investment casting, the sintering of a fused silica 

compact and the transformation to cristobalite should be considered. During the sintering 

of fused silica molds, cristobalite transformed from the fused silica provides stiffness for 
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the fused silica molds. The silica molds, being composed of a glassy material, starts to 

soften and will be susceptible to bow or twist if the differential expansion forces are 

imposed on the system. This problem is alleviated by using a modified composition such 

as 90% silica glass and 10% crystalline cristobalite. However, if an excessive amount of 

cristobalite exists in fused silica molds, abrupt contraction induced from beta- to alpha-

cristobalite at ≈200oC on cooling leads to extensive cracking, thus decreasing the 

strength. Therefore, it is necessary to investigate the reaction kinetics and phase 

transformation mechanism of cristobalite. 

 Transformation kinetics of fused silica powder has been studied by the QXRD data 

for weight fraction of cristobalite transformed in isothermally sintered fused silica 

powder for various annealing times and temperature. In the transformation-time-

temperature (TTT) plot, the weight percent increases sigmoidally with annealing time t, 

indicating that the formation of cristobalite can be fitted to a nucleation and growth 

kinetic model. The transformation is preceded by a temperature dependent incubation 

time. The incubation is an activated process with an apparent activation energy of 161 ± 

13 Kcal/(g·mol) (≈674 ± 53 kJ/(g·mol)). Transformation kinetics by QXRD can be fitted 

to an Avrami equation with an average time exponent of 1.85. Since fused silica 

transformed to cristobalite, there is no change of composition such that the 

transformation kinetics are controlled by short range diffusion across the interface rather 

than long range diffusion control. 
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8.2 FUTURE DIRECTIONS 

 

1. Oxygen inhibition. The formulation of suspension based on the acrylate 

monomer as photo-curable polymer due to the high reactivity and fast cure time has been 

used. However, acrylate monomers easily absorb oxygen so that molecular oxygen 

quenches the active initiators, decreasing the rate of initiation and monomer conversion. 

As shown in Chapter 6, since residual monomer initiates cracks during binder burn-out 

(BBO), the monomer conversion should be increased. New and more efficient monomer 

system (Acrylate/Epoxide) could be used to prepare the suspension formulation with less 

absorbed oxygen. Using the system can give following advantages; low viscosity, low 

shrinkage, and no inhabitation of oxygen.  

 

 2. Improved rheology. It is necessary to have a stereolithography ceramic 

suspension fluid enough for the recoat step in the build process. Therefore it is important 

to know the viscosity and to achieve the most fluid suspension possible. Suspensions 

require a fairly high solid fraction of ceramic powder to be dispersed (usually > 50 vol %) 

in a monomer of liquid state. However, the addition of more powder results in a more 

viscous suspension. New electrosteric dispersants consisting of polymeric chains with a 

polar end group will be used. As the polar group readily adsorbs onto hygroscopic 

ceramic surfaces with the polymer chain extending into the hydrophobic medium to 

provide steric repulsion, high solid loaded suspension will be prepared. 

 

 3. Ceramic stereolithography (CerSLA) as a novel process is investigated to 
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replace the lost wax process which is a technique widely used to fabricate refractory 

molds for investment casting. When CerSLA build ceramic casting shell mold with an 

integral core designed by Honeywell, the most important aspect is how to precisely 

evaluate the consistency and accuracy of ceramic mold. Micro-computer tomography 

(Micro CT) would be used to compare a STL file to a green body of ICCICM, which 

obtains 360o radioscopic image data while irradiating object with X-rays. Given the data, 

cross-sectional images of a green body are generated so that more consistent and accurate 

comparison can be possible.  

 

 4. After preparing integral cored shell molds directly fabricated using CerSLA, 

molds will be delivered to Precision Castparts Corporation (PCC) for making a casting 

metal component for a turbine airfoil. This CerSLA will in fact provide a significant 

benefit very quickly, as the core tooling is often the bottleneck in investment casting 

research. The molds with the different mold thicknesses: 1.8, 3.3, 6.4 millimeters will be 

fabricated to investigate the effect of mold thickness on the investment casting. With 

directly fabricated integral cored shell mold, experts at PCC will pour the molten metal 

into ceramic mold to cast turbine airfoil. Additionally, we will compare cast result of 

separately fabricated core and shell mold by conventional investment casting with that of 

directly fabricated integral cored shell mold. 

 

 This thesis investigates is the development of a novel process to replace the lost 

wax process, producing an integrally cored ceramic investment casting mold (ICCICM). 

Through the results of the thesis, the process for fabricating the ceramic core with a 
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ceramic mold shell in a single patternless construction for turbine airfoils with complex 

internal passageways is outlined. Given the sintered ICCICM, we hope that CerSLA 

replaces lost wax process and brings new opportunities and research direction for the 

investment casting. 

 

 

 


