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CHAPTER 1

Introduction to Quantum Dots

Semiconductor quantum dots (QDs), which are solid state analogs of atoms, have

been a hot research topic in the last decade due to their unique physical properties.

A QD is a three dimensional confined solid state system. Therefore, it has atomic-like

quantum properties, such as a discrete energy density of states (DOS). However, in

some sense, it is better than an atom since it can be customized for new technologies

and quantum electronic devices [1].

From quantum mechanics we know that the wave function of a particle can be

strongly modified by quantum confinement [2]. Figure 7.1 shows the DOS as a func-

tion of the quantum confinement. For a bulk semiconductor, the DOS is a continuum,

as shown in Fig. 7.1(a). When a narrow bandgap semiconductor is sandwiched by a

wide bandgap semiconductor material a QW is formed, which is a one dimensional

confined system. As shown in Fig. 7.1(b), the DOS has staircase shape. If a semicon-

ductor nanostructure is two dimensionally confined, such as nanowires or nanotubes,

the DOS has a Van Hove singularity [3] shown in Fig. 7.1(c). When a semiconduc-

tor heterostructure is three dimensionally confined, it is known as a QD and has a

delta function-like discrete DOS, shown in Fig. 7.1(d). The atomic shell structure of

a quantum dot has been shown in both a voltage-capacitance spectrum [17] and an

optical luminescence spectrum [1].

The commonly used methods for growing QDs are colloidal synthesized semicon-

ductor nanocrystals [6] by a chemical reaction process, and molecular beam epitaxy

(MBE) technology. In the MBE process a two dimensional electron gas (2DEG) is gen-
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erated by growing a high quality semiconductor heterostructure, such as GaAs/AlGaAs.

The lateral confinement can be provided by electrostatic gates [7], a strain gradient

originating from lattice mismatch [11], or monolayer thickness fluctuations of QWs [9].

QDs can have very good optical properties due to their unique structures [1, 2].

A QD can interact with light like an atom, but with a stronger interaction strength

than that of an atom due to the large dipole moment of a QD. Compared to an atom,

the optical dipole moment of the a QD is 1 to 2 orders of magnitude larger [15, 28].

Although a QD is embedded in a complex solid state environment, the problems which

occur in higher dimensional semiconductor structures, such as many body effects [12],

are strongly suppressed due to the three dimensional confinement. The suppression of

many body effects in QDs was confirmed by a nonlinear optical experiment in 1998 [5]

and a few recent experiments [15,16]. In some sense, the QD system can be a better

testing platform for quantum optics than an atomic system, since there is no collision

broadening or Doppler broadening effects as in the atomic systems.

The QD system has a great potential for opto-electronic devices. The absorp-

tion/emission energy of a quantum dot can be controlled by bandgap engineering.

By properly choosing the semiconductor materials, the quantum emission energy can

be tuned from ultraviolet to near infrared. The absorption/emission energy can also

be controlled by controlling the size of QDs during the growth process. For a par-

ticular QD, the absorption/emission energy can also be fine tuned through the DC

Stark effect by applying a DC voltage across the QD.

In this chapter, we first review a few applications of the QD system. The thesis

outline is provided afterwards.

1.1 Quantum Dot Light Emitting Diodes (LED)

As we mentioned above, since the emission colors of QDs can be tuned by control-

ling their sizes and components during the growth process, QDs are very promising

for making LEDs. The advantages of LEDs compared to normal light bulbs are a

long life time and low energy consumption. It has been estimated that the use of
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Figure 1.1: Energy Density of States as a Function of Quantum Confinement. Cartoons show the

energy density of states as a function of quantum confinement

LED lighting could reduce 50% of global electricity use.

One application of LEDs is to make high quality displays. Commonly used liquid

crystal displays (LCD) depend on a backlight illuminating the pixels. Each pixel has

3 sub-pixles, which correspond to red, blue and green, respectively. By adjusting the

relative intensities between the three color components, the display shows all kinds of

colors. There are a few drawbacks of LCDs. First, the sub-pixel is color impure, which

will affect the quality of the image. Second, dark pixels just block the light which is

a waste of energy. A display made of QD-LED can overcome these drawbacks [15].

Due to the three dimensional confinement, the QD has a sharp emission linewidth.

Therefore, the QD-LED can output pure blue, green or red colors, which leads to high

quality displays. The QD-LED emits rather than filters light, thus saving energy. The

QD emission spectrum is mostly inside the visible regime, which has been shown to

cover 30% more colors than Cathode ray tube (CRT). Since the QD-LED does not

emits a lot of infrared light, it reduces the heat generated in the lighting process,

which also leads to higher efficiency.

QD-LEDs emitting red, green and blue colors have been demonstrated in the past

few years [16]. One example is a research group in MIT that produced hybrid QD-LED
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devices [17]. The QDs used were CdSe colloidal synthesized core-shell QDs. A single

layer of QDs were sandwiched by two organic thin films. The electro-luminescence

was generated by applying a bias across the device. Due to the narrow emission

bandwidth, 32nm for their devices, a specific color can be produced by the QD-

LED devices. A company, named QD VISION in MA, has made a 32×64 pixel

monochromatic QD-LED display in 2006. In the future, it is possible to use these

low energy consuming QD-LEDs to make high-definition displays for computers, TV,

and portable electronic apparatus.

Besides making energy efficient, high-definition displays, QD-LEDs have impor-

tant applications in making solid state white light sources. For a normal LED light

source, there are two ways to generate white light. The first way is to carefully mix

the green, red and blue light together. In this way, energy is lost due to the internal

absorption and the mixing process. The second way is to add phosphor to blue LEDs.

The emission wavelength of a blue LED is around 380-420 nm, where the absorption

efficiency of conventional phosphors is low. Therefore, high conversion efficiency phos-

phors are needed for generating white light. Researches have shown that the colloidal

synthesized QDs can be good nano-particle phosphors. The advantages of QDs as

a phosphors are: (1) QDs have very high quantum yields; (2) the energy of emitted

photon can be easy tuned by varying the size of QDs; (3) small dot size indicates

that more atoms are at the surface sites and any change of the chemical components

of those atoms will affect the emission energy of the dot, thus single size QDs can

emit multiple colors. In 2003, a research group in Sandia National Labs successfully

made the first white light LED using cadmium sulfide QDs [16]. The drawback of this

scheme is that an extra chemical compound needed to be added into the QDs during

the growth process, which took several weeks for the entire growth process. Later, a

research group in Vanderbilt University successfully made white light QD-LED using

CdSe QDs with the right size, which they called magic size QDs [18]. Using no extra

chemical elements in the QDs, the production process only takes a couple of hours.

The white light QD-LED shows a smoother spectrum with a low energy cost, which

has huge potential to replace the normal light bulb.
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1.2 Quantum Dot Solar Cell

There has been a global focus to search for new and renewable energy due to the

energy shortage and the demand of environmental protection. Solar energy is one of

the promising candidates for clean and renewable energy. One can convert the sunlight

into energy through solar cells, i.e. photovoltaic devices. One of the current research

goals is to design a solar cell with a high conversion efficiency and low fabrication

cost. The solar cells currently on the market are second generation thin film solar cells

with about 10% power conversion efficiency. The advantage of thin film solar cells is

the low fabrication cost. The drawback is the low solar power conversion efficiency.

The way the common solar cell works is that if the photon energy is larger than the

bandgap Eg, the photon creates an exciton, which is an electron hole pair. Since one

photon can only create one exciton, the excess energy of the photon is lost to the

dissipation processes, such as lattice vibrations, i.e. the emission of phonons. The

upper-limit of the power conversion efficiency of conventional single absorber solar

cells is about 30%, which is known as Schokely-Queisser limit [19] .

One way to increase the power conversion efficiency is to avoid the loss of the

excess photon energy by creating multiple excitons with one photon. This process is

known as impact ionization. In the impact ionization process, if the excess photon

energy ∆ = ~ω−Eg is larger than the bandgap, it will excite additional electron-hole

pairs. Impact ionization was observed in bulk semiconductors in 1950s. In the bulk

semiconductor, impact ionization requires both energy and momentum conservation,

which limits the impact ionization efficiency. Furthermore, the phonon induced exci-

ton relaxation process is very fast, which competes with the impact ionization process.

It has been found that when the excess photon energy is many times the bandgap,

the impact ionization efficiency in bulk silicon is about 5% [20].

It has been demonstrated recently that impact ionization is very efficient in the

colloidally synthesized QD systems. Due to the three dimensional confinement, the

exciton has discreet energy states, which leads to the suppression of the phonon

interaction with the exciton states. The impact ionization rate is enhanced due to

quantum confinement. Also, in the zero dimensional system, angular momentum is
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not a good quantum number. Crystal momentum does not need to be conserved

in the impact ionization process. In 2004, R. D. Schaller and V. I. Klimov first

demonstrated impact ionization by using PbSe nanocrystals [21]. In the experiment,

the optical power of the pump pulse was set to excite at most one exciton when the

photon energy Eg < ~ω < 2Eg, i.e. to avoid direct multi-exciton generation. The

weak probe pulse was tuned to probe the ground state exciton population. If there is

only one exciton, the radiative lifetime is about a few ns. It has been shown that the

the exciton decay through Auger process is dramatically enhanced in the presence

of multiple exciton states [22]. Thus, if there are a few ground state excitons, a fast

decay will be observed on the time scale of tens of pico second. After the initial decay,

the signal level stays constant due to the long lifetime of a single exciton state. If

the background level is defined as B and the initial single amplitude is defined as A,

then the number of generated excitons is A/B. In Klimov’s work, when the input

photon energy is 3.8Eg, one photon can generate two excitions, which corresponds to

a quantum yeild of 218%, where quantum yield is defined as the number of ground

state excitons generated by a photon.

Following Klimov’s work, progress has been made to improve the quantum yield

of the impact ionization process. A quantum yield value of 300% was achieved with a

photon energy of 4Eg exciting PbSe QDs [23]. The difference in Ellingson et al.’s work

is that the diameter of QDs is 3.9 nm. In this work, they also show that quantum

yield has a strong dependence on the QD size. Later, Klimov’s group improved the

quantum yields to a value of 700% with a photon energy of 7.8Eg, which means

one photon generates 7 excitons. A quantum yield value of 700% corresponds an

energy conversion efficiency of 65% with a 0.3 eV bandgap [24]. This is about a 100%

increase compared to the Schokely-Queisser limit. QD based photovoltaic devices are

very promising as the third generation of solar cells.

1.3 Quantum Dot Quantum Computing

No one who grew up in the technology age can imagine what the life would be
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like without computers. Since the first computer was built in the early 1940s, its

size has shrunk from the huge monoliths to the present day portable and powerful

personal computers. The key for this great development is the highly integrated

electronic circuit, i.e. many transistors can be built onto a small semiconductor chip.

The speed of the central processing unit (CPU) has been increasing exponentially

according to Moore’s law over the past few decades. However, as of the end of the

last century, the development of the CPU’s speed has deviated from what Moore has

expected because the size of the transistors has reached the nanometer scale, on which

quantum mechanical effects show up and the classical theory is no longer applicable.

Quantum computation and quantum information theory were born as a result of this

situation and have drawn a lot of attentions for the past few years.

In a classical computer, the basic computation and information storage unit is

the binary bit represented by either 0 or 1. As we know, in quantum mechanics, any

state can be represented by a coherent supposition of the eigenstates. If 0 and 1 are

chosen to be the computation basis, then a quantum bit (qubit) can be written as

α|0〉+ β|1〉, where |α|2 + |β|2 = 1. Thus, in the classical computation, n classical bits

can only represent 1 possible state out of 2n possible states. On the other hand, n

qubits can represent all 2n states. The quantum superposition is one of the reasons

why quantum computation is more powerful than classical computation. Based on the

quantum mechanical features of the qubits, such as quantum entanglement between

the qubits and quantum superpositions, a few problems intractable to the classical

computation can be easily solved by quantum algorithms using a quantum computer.

A famous example is Shor’s algorithm [25], which can factor a big integer with ease by

a quantum computer. Currently, public-key cryptography is based on the assumption

that it is infeasible to factor a big integer number by classical computations. This

approach was first proposed by Ron Rivest, Adi Shamir, and Leonard Adleman and

is known as the RSA scheme. By using Shor’s algorithm, an integer N can be factored

by using polynomial time in O(LogN), which is much shorter than O(2LogN1/3
) of the

classical computation. Shor’s discovery puts current cryptography schemes in danger

if quantum computers are eventually successfully made.
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Many schemes have been proposed for quantum computing devices. Ion trap

systems are a great example of the atomic systems [26]. The entanglement of the

ion-qubits located in remote ion-traps has been demonstrated recently [27]. The

solid state approaches towards the quantum computations include superconducting

Josephson tunnelling junctions [28], nitrogen vacancy centers in diamonds [29], and

solid state semiconductor QD system [30]. Since QDs behave like atoms in many ways,

the well developed experimental techniques for atomic systems can be applied to the

QD systems. QD systems are also solid state based and close to our current computer

hardware. The well-developed semiconductor fabrication technology provides strong

support for engineering such advanced quantum devices.

DiVincenzo proposed five requirements for the implementation of quantum com-

putations [7]. In the following, the five requirements are discussed with respect to the

quantum dot system.

1. A scalable physical system with well characterized qubits. In the QD system,

a qubit can be represented by a few means. In a neutral QD, the ground state and

excited state of an exciton can form a qubit. In a charged QD, the spin degree of

freedom can form a two-level system, either spin up or spin down, which can represent

a qubit. In an electrostatically confined double QD, a logical quit can be formed by

a spin singlet state and a spin triplet state. The ability to manipulate one qubit a

time, i.e. one QD a time is already demonstrated in many experiments. In the near

future, the focus will be on the manipulation of coupled qubits in double QDs, which

is an important step towards scalable quantum computation. In principle, scalability

can be achieved by fabricating patterned QD arrays.

2. The ability to initialize qubit states. For any computation, we need to pre-

pare the system to a known state before operations. In order to satisfy fault tolerant

quantum computation, we have to continuously supply initial qubit states for com-

putation and gate operations. In the quantum dot system, fast qubit initialization

can be realized by optical pumping, which is going to be discussed in Chapter 5.

3. Long relevant decoherence time, much longer than gate operation time. In order

to realize fault tolerant quantum computation, the qubit has to be operated on 104
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times before it loses coherence. Thus, the qubit must have long relevant coherence

times compared to the gate operation time. Due to three dimensional confinement,

an electron spin trapped inside a quantum dot is immune to the environment. It has

been experimentally demonstrated that the electron spin coherence time is on the

order of µs [5, 6]. Considering the ultrafast optical operatons on the order of ps, the

spin qubit can be operated at least on 106 times before decoherence happens, which

satisfies element 3.

4. A universal set of quantum gates. It has been shown that any quantum op-

eration can be constructed by a control-not gate (cnot) with a single qubit rotation

gate [34]. A cnot gate is formed by two qubits. In the quantum dot system, a cnot

gate has been demonstrated in the bi-exciton system [35], however, this scheme is not

scalable. Scalable quantum gates can be realized by using electron spins in coupled

quantum dots [36]. A single qubit rotation can be demonstrated by using the Rabi os-

cillation technique. An arbitrary single exciton qubit rotation has been demonstrated

in our lab [37].

5. A qubit-specific measurement capability. In the ideal case, we would like to

do cyclic non-demolition measurements. In this case, the read out efficiency is high

and the quantum state will not be disturbed after read out. This is the read out

process used in ion-trap systems. However, it is not trivial to find a cyclic transition

in QD system. Recently, a scheme for the cyclic read out has been demonstrated

experimentally by using a double-QDs system [38], which is a big step towards optical-

driven quantum computation.

1.4 Thesis chapter outlines

In Chapter 2, the sample structure and experimental techniques are going to be

introduced. The basic idea of excitons, trions, and the selection rules of a trion state

in the presence of heavy-light hole mixing are discussed. In Chapter 3, the Autler-

Townes Splitting and the optical Mollow absorption spectrum are demonstrated in a

single neutral QD. In Chapter 4, the optical Mollow absorption spectrum is demon-
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strated in a single charged QD, which shows the two level atomic feature of the charged

QD system even under a strong optical field. Fast electron spin state initialization

by using an optical pumping technique is realized in Chapter 5. In Chapter 6, the

coherence of the spin ground states of an electron is generated by the means of coher-

ent population trapping in a single charged QD. Based on the coherent population

trapping technique developed in Chapter 6, the dynamic nuclear spin polarization is

investigated in Chapter 7, where a hole spin assisted nuclei spin self-focusing effect

is observed. This self-focusing effect leads to the suppression of nuclear spin fluctua-

tions. Chapter 8 will summarize this thesis work and look into the future directions.
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CHAPTER 2

Samples, Experimental Techniques and Theoretical Background

The first generation of quantum dots (QDs) investigated in our lab was the GaAs

interface fluctuation QDs (IFQD) [1,2]. This type of QD is formed at the interface of

lattice matched heterostructures during growth interruptions. The critical feature of

IFQDs is that they have large dipole moments. Optical absorption measurement in

our lab has yielded a dipole moment of around 100 Debye [28]. The large dipole mo-

ment indicates a strong interaction between laser light and the quantum dot, which

lead to many fantastic achievements, such as Rabi oscillations [4, 10, 11], controlled

exciton qbuit rotation gate [7], arbitrary rotations of an exciton qubit [8], and op-

tical generation and control of electron spin coherence [10, 24]. Despite all of these

wonderful achievements, there is a major drawback of the IFQD system, which is the

dot’s weak lateral confinement. The lack of strong lateral confinement deteriorates

the atomic properties of the IFQD.

In this thesis, another type of QDs, self assembled QDs (SAQDs) [11, 12], are

used. Since SAQDs are formed at the interface of two lattice mismatched semicon-

ductor systems, the lateral confinement is provided by the strain, which is much

stronger than the lateral confinement of IFQD. Therefore, SAQDs have very good

optical qualities and behave like isolated atomic systems in many cases [1,4,14]. Less

favorable characteristics of SAQD include a ground state excitation energy in the

near-infrared regime and an optical dipole moment much smaller than that of IFQD.

But with the development of laser technology and detection techniques, we are able

to perform optical excitation and detection of a single SAQD.

13
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In this chapter, the sample structure is illustrated first. Then the detailed experi-

mental setup and detection techniques will be discussed. Finally, the physical models

and some theoretical background will be provided for the neutral and charged exciton

systems, which are the focus of this thesis.

2.1 Schottky Diode Sample Structure

The sample under study contains InAs self-assembled quantum dots (SAQDs)

grown by molecular beam epitaxy. The QDs are embedded in an n+ intrinsic Schottky

diode structure [1,2,17]. As shown in Fig. A.1(a), the sample layer structure is a 100

nm aluminum thick mask with micron-sized apertures, 5 nm titanium, 10 nm GaAs

cap, 40 nm Al0.3Ga0.7As, 230 nm GaAs, 2.5 nm InAs QDs layer, 80 nm GaAs, 500 nm

GaAs Te-doped ( 5 × 107cm−3) layer and an electronic contact formed by the GaAs

substrate. The dot density is about 1 dot/µm2. The micron-size apertures provide

the spatial resolution to investigate single QDs.

GaAs Si-doped (>1x1018/cm3) Substrate

500 nm GaAs Te-doped (~5x1017/cm3) Layer

80 nm GaAs Tunnel Barrier Layer

2.5 nm InAs Quantum Dot Laye r

230 nm GaAs Barrier Layer

40 nm Al0.3Ga0.7As Current Block Layer

10 nm GaAs  Layer

5 nm Titanium Semi-transparent Layer
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Figure 2.1: Schematics of Sample Structure. (a) The sample layer structure. (b) A schematic

showing the relative energy level between the dot and the electron reservoir that can be controlled

by the DC bias across the sample.

The ground state emission wavelength of the SAQDs is usually above 1µm, which

is beyond the tuning range of common Ti-Saphire lasers and beyond the working

range of the silicon detector. Instead of using rapid thermal annealing to blue shift

the QD ground state energy [19], an In-flush technique [3,4] is used during the growth

process. The As-grown dots are capped with a 2.5 nm layer of GaAs. The growth
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process is then interrupted and the temperature is raised to remove InAs from the

still-exposed portion of the QDs. This produces disk-shaped dots with a transition

wavelength shorter than 1µm, so that silicon detectors can be used to detect the

signals.

Since the QDs are embedded in a Schottky diode structure, the transition energies

can be electrically tuned by the DC Stark effect by varying the DC gate voltage

across the sample [5], as shown in Fig. A.1(b). By continuously adjusting the QD

potential relative to the Fermi sea level from high to low, the QD can be changed from

positively charged state to multi-electron charged state [1, 24]. When the DC Stark

shift is modulated by a small square wave modulation voltage, the transmission signal

can be detected at the modulation frequency by a phase-sensitive lock-in amplifier.

We will discuss this in detail in the next section.

Verdi 10
Coherent

899-21

diode laser

ω

ω

Polarizer
Polarizer

Lens

sample~5K
Lens

Cryostat

DS345

Bias Controller

Polarizer

APD

SR830 Lock-in

Reference

Coherent

Sacher

Figure 2.2: Schematics of General Experimental Setup

2.2 Experimental setup and detection techniques

The experimental setup for the experiments in this thesis is shown in Fig. 3.2.

Two continuous wave lasers (CW) are in the setup. One is a Coherent 899-21 Ti-

Sapphire laser and the other is a Sacher diode laser. The individual linewidths of

the lasers are less than 1 MHz. The mutual coherence between the two lasers have

been measured to be a few MHz. Depending on the experimental purpose, either

one or two lasers is used. The polarizations of the lasers are individually controlled
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by linear polarizers. The sample is held in a continuous helium-flow superconductor

coil magneto-cryostat at a temperature of 5 K. There is a tight focus lens inside the

cryostat to increase the signal collection efficiency. The QD signal is detected by a

detector outside the cryostat and sent into a lock-in amplifier (model number SR830).

The detector used is a silicon avalanche photodiode with peak sensitivity wavelength

at 940 nm (model number Hamamatsu S8890-15). In the pump-probe experiment, we

set both pump and probe beams to be orthogonally polarized. Hence, we can filter

out the pump beam with a polarizer in front of the detector and detect the probe

beam only.

When a pump-probe differential transmission (DT) experiment is performed, two

acoustic optic modulators are used to chop the laser beams individually and detect

the signal at the difference of the chopping frequencies. The DT technique has been

well explained in my colleagues’ thesis [21, 22] and is not going to be discussed in

detail here. Instead, I will focus on the other experimental technique, known as DC

Stark shift modulation and used quite often in this thesis.

As discussed in the sample structure section, the QD transition energies can be

controlled by varying the DC gate voltage across the sample. On top of the DC

voltage, a small square wave modulation voltage is applied with amplitude κ and

frequency ωm, as shown in Fig. 3.3(a). Therefore, the QD transition frequency

is also modulated at the frequency ωm, and the modulation amplitude δω depends

linearly on κ when the linear DC Stark shift dominates, as shown in Fig. 3.3(b).

The QD signal also oscillates at this modulation frequency and is demodulated by

the lock-in amplifier. The lineshape of the singal can be qualitatively understood

from the following. Assuming the lineshape without modulation is Lorentizan, which

corresponds to A (ω, ωo) = αγ2

(ω−ωo)2+γ2 , the detected signal for laser frequency ω is

S (ω) = A (ω, ωo + δω) − A (ω, ωo − δω). If the modulation amplitude δω << γ,

we obtain S (ω) = 4αγ2(ω−ωo)δω

((ω−ωo)2+γ2)2
, which corresponds to the derivative of a normal

Lorentizan lineshape, illustrated in Fig. 3.3(c). We can see that the signal strength

also depends linearly on the modulation amplitude δω. When δω >> γ, as shown in

Fig. 3.3(d), the detected spectra are two Lorentizan lineshapes separated by 2~δω,
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Figure 2.3: Theory of DC Stark Shift Modulation Technique. A series of cartoons show how the

DC stark shift modulation works. (a) DC bias across the sample is modulated by a square wave

modulation, which leads to (b) the modulation of the atomic transition. The expected lineshape for

modulation amplitudes (c) smaller or (d) larger than the transition linewidth.
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one of which is absorption and the other is transmission. Therefore, the physical

parameters can be extracted directly from the measurements. In our experiment,

we use large modulation voltages at a frequency of 1.103 KHz to avoid complexities

associated with small modulation amplitude [5].

2.3 Physical models and the polarization selection rules for the QD sys-

tem

In this section, the physical models with the polarization selection rules will be

discussed for the neutral and singly charged exciton systems, where the QD interacting

with the external magnetic fields is emphasized.

Depending on the number of electrons in the quantum dots, the QD states have

different physical models and have different optical responses. Two types of QD

states are studied in this thesis. One is for neutral QDs and the other is for single

negatively charged QDs. For a neutral QD, there is no excess electron or hole in the

QD. Without the optical excitation, the QD is in the crystal ground state. With the

optical excitation, an electron and hole pair is formed, which is known as an exciton,

as shown in Fig. 3.4(a). If there is an excess charge in the QD without optical

excitation, it is known as a charged QD, as shown in Fig. 3.4(b). A QD charged with

exactly one electron is the focus of this thesis.
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Figure 2.4: Physical Models of Excitons and Trions. (a) Band structure of (a) a neutral exciton and

(b) a charged exciton. Energy level diagram of a charged QD (c) without and (d) with a magnetic

field.
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The hamiltonian of the electron and hole system in the magnetic field is

HZeeman = He + Hh

He = geµB

∑
i=x,y,z

SeiBi

Hh = −2µB

∑
i=x,y,z

(kJh,i + qJ3
h,i)Bi

, where He is the electron Hamiltonian and Hh is the hole Hamiltonian, ge, k and q

are the Luttinger Zeeman splitting constants [25–27]. In the QD system, if the lateral

confinement is much weaker than the vertical confinement, the heavy-light hole mixing

can be ignored. Since the energy separation between the heavy hole and light hole

is much larger than the the Zeeman splitting due to the strong spin-orbital coupling,

the light hole can be ignored. The sublevels of the heavy hole can be represented

by an effective spin S̃h = 1
2
, where Jh = 3

2
(−3

2
) corresponds to S̃h = 1

2
(−1

2
). The

Zeeman term can be written as

HZeeman = geµB

∑
i=x,y,z

SeiBi − ghµB

∑
S̃hi

i=x,y,z

Bi. (2.1)

Fig. 3.4(c) shows the energy level diagram of a single negatively charged exciton

at zero magnetic field. Without optical excitation, the electron is in the ground

state with two fold degeneracy, either spin up
∣∣1
2

〉
or spin down

∣∣−1
2

〉
. Under optical

excitation, the two electrons form a spin singlet state. So the angular momentum of

the trion state is determined by the hole spin, either
∣∣3
2

〉
or

∣∣−3
2

〉
. The two trions are

also energetically degenerate. After the magnetic field is turned on, the degeneracy of

both spin ground states and the trion states are lifted. There are two configurations

depending on the applied magnetic field direction.

2.3.1 Magnetic Field Applied in the Faraday Geometry

The magnetic field is applied along the sample growth direction (Z axis), i.e. only

Bz is non-zero, which is known as the Faraday geometry. By taking the inner product

of the hamiltonian described by Equ. 2.1 in the basis of |±1/2〉, |±3/2〉, the Zeeman
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energy term is

HZeeman,f=

〈
1
2

∣∣
〈−1

2

∣∣
〈

3
2

∣∣
〈−3

2

∣∣

∣∣1
2

〉 ∣∣−1
2

〉 ∣∣3
2

〉 ∣∣−3
2

〉

µBBz

2




ge,z 0 0 0

0 −ge,z 0 0

0 0 −gh,z 0

0 0 0 gh,z




The Hamiltonian without the interaction of the magnectic field is

H0=

〈
1
2

∣∣
〈−1

2

∣∣
〈

3
2

∣∣
〈−3

2

∣∣

∣∣1
2

〉 ∣∣−1
2

〉 ∣∣3
2

〉 ∣∣−3
2

〉



0 0 0 0

0 0 0 0

0 0 ω0 0

0 0 0 ω0




There are only two optically allowed transitions from the spin ground states to the

trion states. These are
∣∣1
2

〉 σ+→
∣∣3
2

〉
, with a corresponding transition energy ~ω0 −

µBBz

2
(ge,z + gh,z), and

∣∣−1
2

〉 σ−→
∣∣−3

2

〉
, with a corresponding transition energy ~ω0 +

µBBz

2
(ge,z + gh,z).

2.3.2 Magnetic Field Applied in the Voigt Geometry

The magnetic field lies in the XY plane perpendicular to the Z axis, which can

be represented by
→
B = (B cos (θ) , B sin (θ) , 0) . By taking the dot product of the

Eqn. 2.1, we get the Hamiltonian

HZeeman,V =

〈
1
2

∣∣
〈−1

2

∣∣
〈

3
2

∣∣
〈−3

2

∣∣

∣∣1
2

〉 ∣∣−1
2

〉 ∣∣3
2

〉 ∣∣−3
2

〉



0 ge,xµBB cos(θ)

2
0 0

ge,xµBB cos(θ)

2
0 0 0

0 0 0 −gh,xµBB cos(θ)

2

0 0 −gh,xµBB cos(θ)

2
0




(2.2)
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HZeeman,y=

〈
1
2

∣∣
〈−1

2

∣∣
〈

3
2

∣∣
〈−3

2

∣∣

∣∣1
2

〉 ∣∣−1
2

〉 ∣∣3
2

〉 ∣∣−3
2

〉



0 −ige,yµBB sin(θ)

2
0 0

ige,yµBB sin(θ)

2
0 0 0

0 0 0 i
gh,yµBB sin(θ)

2

0 0 −i
gh,yµBB sin(θ)

2
0




(2.3)

So the total Hamiltonian of the spin field interaction is HZeeman,x + HZeeman,y. For

example, if θ = 0, i.e. the field is along the x direction, then the eigen states and the

respective eigen energies are

 Eigenenergy −ge,xµBB

2

ge,xµBB

2
−gh,xµBB

2

gh,xµBB

2

Eigenstates {−1, 1, 0, 0} {1, 1, 0, 0} {0, 0, 1, 1} {0, 0,−1, 1}


 (2.4)

If θ = π
2
, i.e. the field is along the y direction, then the eigen states and eigen energies

are

 Eigenenergy −ge,yµBB

2

ge,yµBB

2
−gh,yµBB

2

gh,yµBB

2

Eigenstates {i, 1, 0, 0} {−i, 1, 0, 0} {0, 0,−i, 1} {0, 0, i, 1}


 (2.5)

The corresponding selection rules can be derived from the above eigenstates. Figure

3.4(d) displays the trion energy level diagram with the applied magnetic field in the
−→
X direction. The outer pair of transitions are vertically polarized and the inner pair

of transitions are horizontally polarized.

2.4 The heavy and light hole mixing effect

In the previous section, we ignored the heavy and light hole mixing (HLHM) due

to the large spin-orbit coupling. This is legitimate for weakly confined QD systems.

For SAQDs, the large lateral strain along with the in-plane anisotropy will induce a

heavy and light hole mixing [10–13]. The trion state is formed by two electrons and

one hole. Since the two electrons form a spin singlet pair, the net spin property of the

trion is determined by the hole spin. Therefore, the charged QD is a good system to

monitor the physical properties of the hole spin. In the following, the selection rules

for the charged QD with a hole mixing effect are going to be discussed.
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2.4.1 Zero Magnetic Field

Without the HLHM, there are only two optically allowed transitions for a singly

charged QD, which are

|1/2〉 σ+

−→ |+ 3/2〉 and | − 1/2〉 σ−−→ | − 3/2〉 (2.6)

In the presence of the HLHM, the trion states can be written as

|ψ±t 〉 = | ± 3/2〉 − β±| ∓ 1/2〉 (2.7)

where, β± = βe±i2θ, represents the hole mixing strength, and θ is the direction of the

polarization axis [10,13]. The electron spin ground states can be excited to the light

hole states by

|1/2〉 σ−−→ | − 1/2〉 and | − 1/2〉 σ+

−→ |1/2〉 (2.8)

Thus, with the HLHM effect, either of the spin ground states |1/2〉 and −|1/2〉 can

couple to the trion state with both σ+ and σ− polarizations. The selection rules

become elliptically polarized. The degree of polarization can be denoted by ρp, where

ρp =
2β3/2

1 + β5/2
(2.9)

ρp can be determined by polarization dependent photoluminescence spectroscopy [10]

and absorption spectroscopy (see Chapter 5). From Equation 2.9, the mixing strength

β can be inferred.

2.4.2 Hole Mixing Effect in The Presence of an External Magnetic Field

In the above section, it was shown that the HLHM affects the selection rules.

This section shows how the HLHM affects the selection rules in the presence of the

magnetic field. This is important because the selection rules are critical for the design

of the experimental schemes.

When the magnetic field is applied in the
−→
X direction, the energy level diagram

associated with the selection rules is shown in Fig. 3.4(d) in the absence of the HLHM.

With the HLHM mixing, the trion states are

|T±〉 =
1√
2
(±e−iθ|ψ+

t 〉+ eiθ|ψ−t 〉) (2.10)
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where |ψ±〉 is the same as in Eqn 2.7. The spin ground states are

|X±〉 =
±|1/2〉+ | − 1/2〉√

2
(2.11)

The unit vectors for the circularly polarized light are

ε̂± = ∓ ε̂x ± iε̂y√
2

(2.12)

The electric field can be represented as

−→
E = Exε̂x + Ey ε̂y (2.13)

Inserting Eqn 2.12 into the above equation, we get

−→
E = −E−1ε̂

+ − E+1ε̂− (2.14)

where

E∓1 = −∓Ex + iEy√
2

(2.15)

This is similar to the dipole operator

−→r = −r−1ε̂
+ − r+1ε̂

− (2.16)

and

−→r .
−→
E = r−1E+1 − r+1E−1 (2.17)

The transition elements can be calculated using the dot product from Eqn 2.17 in

the basis |ψ±t 〉, |X±〉. The results are

〈ψ+
t |−→r .

−→
E |X+〉 = (−E−1 + β+E+1) (2.18)

〈ψ+
t |−→r .

−→
E |X−〉 = (E−1 − β+E+1) (2.19)

〈ψ−t |−→r .
−→
E |X−〉 = (−E+1 + β−E−1) (2.20)

〈ψ−t |−→r .
−→
E |X+〉 = (−E+1 + β−E−1) (2.21)

By using the above results, we get

〈T + |−→r .
−→
E |X+〉 = 〈T − |−→r .

−→
E |X−〉 = e−iθ(−E−1 + β+E+1) + eiθ(−E+1 + β−E−1)

(2.22)
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〈T+|−→r .
−→
E |X−〉 = 〈T−|−→r .

−→
E |X+〉 = e−iθ(E−1−β+E+1)+eiθ(−E+1+β−E−1) (2.23)

If there is no HLHM, i.e. θ = 0 and β = 0, Equ. 1.22 and Equ. 2.23 are simplified to

E−1 + E+1 = iEy and E−1 − E+1 = Ex, respectively, which agree with what we have

in Fig. 3.4(e). In the presence of the HLHM, the trion four level model is still valid.

The only effect induced by the HLHM is that the polarization axis rotates away from

the
−→
X axis with an angle θ. The outer pair and inner pair transitions are still linearly

polarized and orthogonal to each other. Therefore, in the theoretical designs for the

charged QD experiment with the magnetic field on, the HLHM effect can be ignored.

The experimental demonstration of the HLHM and the selection rules of a charged

QD will be discussed in Chapter 5.

2.4.3 Chapter 2 Summary

In this chapter, the detailed sample structure and the general experimental setup

were presented. The physical models of the neutral and charged QDs were also shown.

The interaction of a charged QD with the external magnetic field was studied, which

yielded the 4 level energy level structure of the trion state. The selection rules were

also investigated with and without the presence of the HLHM.
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CHAPTER 3

Coherent Optical Spectroscopy of a Single Neutral Exciton

3.1 The Optical Characterization of a Neutral Quantum Dot

The first step in characterization is to locate an exciton state. Self-assembled

QDs have a large inhomogeneous broadening. The ground state exciton emission

wavelength can vary from 920 nm to 1 µm, therefore, it is not efficient to perform

CW absorption spectroscopy to look for the resonant excitation. Instead, we use

Photoluminescence (PL) technique to perform a rough characterization at first. In

the PL experiment, we use a HR-640 spectrometer with 600 l/mm grove density

grating inside. The detector is nitrogen cooled CCD (Princeton instrument 1024).

We use a laser to excite the sample above the wetting layer (860 nm for this sample)

and detect the QD emission in the 925 to 955 nm window, which is the best working

region for our Ti-Saphire laser in the near infrared regime. We map out the bias

dependent PL intensity map as shown in Fig A.1(a) [1,1]. The horizontal axis is the

applied bias and the vertical axis is the emission energy. The discrete lines represent

QD states. We can see that different states exist at different bias regime. The white

oval highlights the exciton state we use to study in this Chapter. Figure A.1(b) shows

an example of PL spectrum of the QD at a bias of -0.2 V. The green arrow points to

the exciton state of interest. We notice that there is a huge background count which

is possibly from the emission tail of the continuum. From the PL, we can estimate the

linewidth of the exciton state to be roughly 30 µeV , which is limited by the resolution

of the spectrometer and not an intrinsic linewidth of the exciton state.

27
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After we found the target state, we measure the absorption of the state by a DC

Stark shift modulation technique using large modulation (see Chapter 2). we fix the

laser roughly where the emission energy is and scan the bias voltage to tune the QD

transition through the resonance by DC Stark effect, which is equivalent to scanning

the laser [3]. We can characterize the coefficient of the DC Stark effect by examin-

ing the peak position in the voltage spectrum corresponding for different excitation

wavelengths. Figure A.1(c) illustrates such an examination. The horizontal axis is

the peak position in the bias spectrum and the vertical axis is the laser excitation en-

ergy. The linear line fits the data very well, which indicates that the linear DC Stark

effect dominates. We extract the Stark effect coefficient of 0.253 µeV /mv for the

current setup. Thus, we can get the real physical information from the bias scanning

spectrum by using the characterized DC Stark effect coefficient.

In order to demonstrate that this is a neutral exciton state, we perform polariza-

tion characterizations. It is known that due to the in plane anisotropy, the neutral

exciton has two linearly polarized states [4], i.e. one is horizontally polarized and

the other is vertically polarized. The top four curves in Fig. A.1(d) show the ab-

sorption spectra with different polarization excitation, where LCP, RCP, HP and VP

represent left circular polarization, right circular polarization, horizontal polarization

and vertical polarization, respectively. We can see that the HP (VP) polarized light

only excites the corresponding polarized exciton states. Therefore, this is a neutral

exciton state. The top two curves are excited with circular polarized light. Since

circular polarized light is a linear combination of vertical and horizontal polarization,

we observe both polarized exciton states. The light blue curve on top of the LCP

data is a Lorentizan fitting, which yields a natural linewidth of 1.8 µeV (or 440 MHz).

The fine structure splitting between the two polarized exciton states is about 15 µeV .

CW nonlinear differential transmission (DT) measurement has previously been

performed on the interface fluctuation QD (IFQD) [5–7]. However, it has not been

demonstrated in a single InAs SAQD due to the small signal to noise ratio. Besides

the direct absorption data, here we are able to get nonlinear DT signal from this

neutral exciton state. The data is shown in the bottom dark green curve of Fig.
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Figure 3.1: Optical Characterization of a Neutral Exciton. (a) Bias dependent PL intensity map.

The white oval highlights the exciton state studied in this thesis. (b) A typical PL spectrum

of the exciton state at an applied bias of -0.2 V. The green arrow points the exciton state. (c)

Characterization of the DC Stark coefficient. (d) Top four curves: Polarization dependent absorption

spectrum of an exciton state. Bottom curve: nonlinear DT responses of an exciton state.
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A.1(d). For this data set, both pump and probe beams have equal power and are 45o

linearly polarized. Thus we observe the nonlinear responses from the two polarized

exciton states in one scan. We can see that the spectral position of H (V) located

exactly in the middle of two Lorentizan lineshapes in HP (VP) spectrum obtained

by the DC stark shifted modulation. The red curve on top of the NDT data is the

theoretical fitting with Lorentizan square function and yields a natural linewidth of

2 µeV (480MHz). This linewidth is comparable to the linear absorption result. After

we identify a suitable neutral exciton state, we study the strong coupling of an neutral

exciton state with laser radiations.

3.2 A neutral QD driven by a strong optical field

While strong optical excitation of a semiconductor creates a many body problem

because of the extended nature of the exciton wave function [8], confinement of the

wavefunction in quantum dots leads to strong energy level shifts between one exciton

and two or more exciton states, enabling the system to be considered as a relatively

simple few level problem. The strong field excitation regime of the transition from the

ground state to an excited state such as the exciton, a Coulomb bound electron-hole

pair, is then defined by ΩR >> γ where the Rabi frequency ΩR = −→µ .
−→
E/~, γ/π is a

transition line width (FWHM in Hz), −→µ is the transition dipole moment and
−→
E is the

amplitude of the optical electric field. For time scales less than 1/γ, strong excitation

leads to Rabi oscillations [9–11] in time. The effect of vacuum Rabi splitting (11) has

also been observed in a single QD embedded in a nanocavity [26–28].

Under strong continuous wave (CW) narrowband resonant optical excitation of a

simple atomic system, the fluorescence emission spectrum, which is a narrow emission

line at low power (the emission width is the laser bandwidth) consists of three peaks

referred to as the Mollow triplet [15], which has recently been demonstrated in a

single neutral QD [16] and a single molecule with intense resonant pumping [17]. A

simple picture of the origin of this emission pattern is understood from a dressed atom

picture [18]. Figure 3.2(b) shows fully quantized atom-field states, when the driving
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field frequency ω is equal to the electronic frequency ωo. In this limit, the ”bare”

states |3, N − 1 > and |2, N > are degenerate, where N labels the photon number

of the driving field. The atom-field interaction lifts this degeneracy and produces

“dressed” states |α(N − 1) > and |β(N − 1) > having energy separation ~ΩR as

shown. The dressed states are linear combinations of the bare states. The dashed

lines in the figure indicate a triplet of possible emission frequencies, occurring at ω

and ω ± ΩR .

In absorption, the spectrum can be more complex. For the three level V system

(Fig. 3.2(a)), where the strong field couples levels 2 and 3, theory predicts that the

probe absorption from level 2 to level 1 is strongly modified from the usual simple

Lorentzian seen in the absence of strong field excitation. The probe absorption splits

into two resonances, known as the Autler-Townes (AT) splitting [19]. When the probe

absorption on the strongly driven transition (between levels 2 and 3) is measured, the

spectrum is much richer. New physics beyond that seen in the Mollow fluorescence

triplet is observed [14, 17, 20–22] and arises from the coherent coupling between the

two optical fields. When the Rabi frequency of the strong pump field is sufficiently

large, the absorption spectrum shows gain without population inversion.

Since the neutral QD has two polarized exciton states, it forms a three level V

system, which is excellent for the demonstration of AT splitting and Mollow absorp-

tion spectrum (MAS). Figure 3.2(c) shows the probe absorption spectra with different

polarized light excitation. In this data set, we fix the gate voltage and scan the laser

frequency. The lines on top of the data are Lorentizan fittings and match the data

very well. In the following, first we are going to lay out the theoretical foundation of

the strong coupling of the optical fields with a neutral exciton system. Then we will

show the experimental results of AT splitting and MAS.

3.2.1 Optical bloch equations for a QD driven by a strong optical field

To analytically describe our experiments, we follow the approach used in [15,25],

describing the system with the optical Bloch equations i~dρ
dt

= [H, ρ] + Decay, where
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ρ and H are the density matrix and Hamiltonian of the light-coupled QD system,

respectively. The Hamiltonian is given by H = H0 − ~µ · ~E where ~E = ~E0 + ~E1.

~E0 is the strong pump field and ~E1 is the weak probe field. For calculations of the

absorption spectrum, we can use the semiclassical approach where the fields are taken

to be classical. H0 is the diagonalized Hamiltonian for the quantum dot structure in

the absence of external fields (Fig. 2(a)).

By solving the density matrix equations to all orders in the strong pump field and

first order in the weak probe field, one finds that the absorption coefficient for the

probe field is equal to [25]

αAT = αoIm

{
i
4
[
γ13 − i

(
δ
′ − δ

)]
ρ

(0)
22 − 2iΩRρ

(0)
32

4 (γ21 − iδ′) [γ13 − i (δ′ − δ)] + Ω2
R

}
(3.1)

where αo is a constant, δ = ω32 − ω, δ
′
= ω12 − ω

′
, ω

′
is the probe field frequency,

γ21 = γ1

2
+ Γ21, γ13 = (γ1+γ3)

2
+ Γ13, γ23 = γ3

2
+ Γ23, γiis the population decay rate for

state i, Γij is a dephasing rate, and

ρ
(0)
22 = 1− γ23Ω

2
R/ (2γ3)

γ2
23 + δ2 + γ23Ω2

R/γ3

ρ
(0)
32 = − iΩR/2

γ23 + iδ

γ2
23 + δ2

γ2
23 + δ2 + γ23Ω2

R/γ3

.

Equation (7.7) can be written in a rather simple form when ΩR >> γi, Γij. In

that limit the probe absorption profile separates into two peaks whose positions,

relative strengths, and widths can be predicted simply in the dressed state model.

The splitting of the absorption profile is shown by the green arrows in Fig. 1B. For

δ = 0, the two peaks are symmetric, separated in frequency by ΩR and have FWHM

of γ13 + γ23.

We now ignore level 1 and consider the absorption of a weak probe field on the

2-3 transition that is simultaneously driven by a strong pump field. Once more, we

solve the two-level optical Bloch equations to all orders of the strong pump field and

to first order in the weak probe field. Taking the pump field to be on resonance we

get [25]
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αMS = αoIm

{
iγ3

[
2δ

′2γ23 − 2γ2
23γ3 − iδ

′
(2γ2

23 + 2γ23γ3 − Ω2
R)

]

2 (γ23γ3 + Ω2
R) (γ23 + iδ′) [δ′2 − γ23γ3 − iδ′ (γ23 + γ3)− Ω2

R]

}
(3.2)

If the calculation were carried out using dressed states, one would surmise that the

probe absorption spectrum consisted of three components, one centered at δ
′
= 0 and

two side bands centered at δ
′
= ±ΩR. If δ

′ ∼= ±ΩR , Eq. (3.2) can be written as

αMS = ±αo
γ3

ΩR

(
δ
′ ∓ ΩR

)

4 (δ′ ∓ ΩR)2 + (γ3 + γ23)
2 (3.3)

provided ΩR >> γ23. Eq. (3.3) shows there are two dispersive line shapes as a function

of the probe frequency centered at ±ΩR with their zero crossing at δ
′
= ±ΩR. When

∣∣δ′
∣∣ > ΩR, the probe experiences absorption. Strikingly, when

∣∣δ′
∣∣ < ΩR, the probe

absorption is negative, i.e. the probe sees gain. This gain arises from a two-beam

coupling of the strong pump and weak probe fields and occurs without a population

inversion in any picture. The wings of the dispersive line shapes also provide nearly

constant gain nearδ
′

= 0, but, exactly at δ
′

= 0 the gain is canceled by a weak

absorptive component. Explicitly, near δ
′
= 0 one finds

αMS = −αo

2

(
γ23

ΩR

)2
γ3

γ23

(
δ
′2/γ23

δ′2 + γ2
23

)
(3.4)

The amplitude of the central component is 2(γ23+γ3)
ΩR

times smaller than the height of

the dispersive components.

3.2.2 The Demonstration Autler-Townes Splitting

To experimentally demonstrate the Autler-Townes effect [19], we use two frequency

locked but independently tunable CW lasers with a mutual coherence bandwidth of a

fewMHz. We set a horizontally polarized pump beam resonant with the H transition.

A weak, vertically polarized probe beam then scans across transition V. The probe

absorption spectra for different pump laser intensities are plotted in Fig. 3.3(a) with

increasing pump intensity. The data are shifted vertically for clarity. In agreement

with theory (solid lines) (7.7), the probe absorption splits into a doublet where each
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Figure 3.2: Dressed State Picture of a Neutral Exciton State (a) The energy level diagram of a

single neutral QD. The absorption of the weak probe beam by scanning either transition V or H is

modified by the strong pump beam which is near resonant with transition H. (b) The dressed state

picture of the system shown in (A). The transitions between states |α,N> (|β,N>) and |1,N+1>,

outside the energy range of the diagram, are not shown. If a weak beam probes transition 2-1 as

shown by the green arrows, the absorption spectrum consists of a doublet. Ignoring the state|1>,

the emission spectrum of transition 3-2 consists of three peaks (Mollow triplet): a peak centered at

the electronic transitionω, and two Rabi side bands located at ω±ΩR (shown by the dashed lines).

(c) Single beam, linear absorption profile of a single exciton state. The horizontally (vertically)

polarized light only excites the corresponding linearly polarized exciton transition.

peak has equal strength. There is a small energy shift of the response relative to

the low intensity excitation that is probably due to a small screening of the applied

field by photo-excited charge in the diode. The shift saturates at a power between

the lowest intensity curve and the next higher power spectrum. The pump laser is

adjusted to follow the shift of the resonance.

The frequency separation between the absorption peaks shows a strong depen-

dence on the pump intensity. We plot the measured splitting as a function of the

square root of the pump intensity in the inset of Fig. 3.3(a). It clearly depends

linearly on the pump field strength and goes to zero in the absence of the pump, as

expected for the dependence of the Autler-Townes splitting on the Rabi frequency of

the pump.

Figure 3.3(b) shows the probe absorption as a function of the pump detuning with

a fixed pump intensity of 30I0 (the corresponding photon number per unit volume

is approximately 1.4×1010/cm3), where I0 = 1.2W/cm2, corresponding to a Rabi

frequency of approximately ΩR

2π
= 1.1 GHz. Again, the data are shifted for clarity,
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and the solid lines are the fitting of the data to the theory (7.7) and show good

agreement. If the pump detuning is much larger than the transition linewidth, then

optical field induced AC Stark effect can be observed. Though this is not focus of the

current work, this AC stark effect in the quantum dot system has been demonstrated

either by a strong pulse interacting with a neutral exciton system [26] or a strong

CW beam interacting with a bi-exciton system [27].
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Figure 3.3: Demonstration of the Autler-Townes Splitting. Autler-Townes splitting using a single

QD. A strong pump drives transition H and a weak probe scans across transition V. (a) Probe

absorption spectra as a function of the pump intensity when the pump is on resonance. Io equals

1.2W/cm2. The solid lines are theoretical fits to the data. The inset shows the AT splitting (Rabi

splitting) as a function of the square root of the pump intensity. A linear fit (solid line) matches

the data very well. (b) The probe absorption spectra as a function of the pump frequency detuning

with fixed pump intensity. The lines are the theoretical fits to the data.

The AT splitting can provide a method to measure the dipole moment, as the

Rabi frequency is a product of the transition dipole moment with the optical field.

From the extracted Rabi splitting with the corresponding optical field strength, we

can infer a transition dipole moment of about 30 Debye for this particular QD. The

Einstein A coefficient (spontaneous emission rate) of a QD in a medium is given as

γsp =
9n5

(2n2 + n2
QD)2

× ω3
0µ

2

3πε0~c3
=

9n5

(2n2 + n2
QD)2

γspo, (3.5)

where n (nQD) is the refractive index of the medium (QD), γspo is the spontaneous
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emission rate of a two-level quantum system in the vacuum [28, 29]. By taking n =

nQD = 3.44, inserting the experimental parameters and the extracted dipole moment

into the equation, we obtainγsp

2π
= 190MHz, which corresponds to a lifetime of about

840 ps. Assuming there is no other decay and no pure dephasing, this would lead

to a natural linewidth expected in the low power absorption spectrum also equal to

γ3

2π
= 190MHz, where γj is the decay rate of level j in Fig. 3.2(a). Compared to the

extracted linewidth from the single beam, low power absorption data, which is about

500 MHz, γsp is about 2.5 times smaller. This discrepancy indicates that there is

possibly a spectral wandering process which broadens the transition linewidth [24].

3.2.3 The demonstration of the optical Mollow absorption spectrum

In the MAS experiment, we set both pump and probe beams to be 45◦ linearly

polarized and orthogonal to each other. The pump and probe beams coherently

couple to the same transition and the pump field is tuned to resonance. We observe

a relatively weak maximum centered at zero probe detuning and two Rabi side bands

with dispersive lineshapes. The pump power dependence of the probe absorption

spectra is shown in Fig. 3.4(a). The one beam absorption data is plotted at the

bottom. The spectral shift of the data with the high power pump field is due to the

excitation of the charge states in the buffer layer. The complex lineshape of the MAS

depends strongly on the pump intensity. The splitting between the two side bands is

plotted as a function of the square root of the pump intensity in Fig. 3.4(b), again

showing that the splitting linearly depends on the pump field strength and is zero in

the absence of the pump field.

The data confirms that the probe beam experiences optical gain in the pump-probe

configuration for strong excitation. The data in Fig. 3A show that part of the probe

absorption curve is below zero, which is the “gain” effect. Using the data correspond-

ing to 15Io as an example, the absorption/gain ratio is about 0.066%/0.0024%=27.5.

This gain is from the pump and probe beams coherently exchanging energy through

the QD and corresponds to gain without inversion since there is no population inver-



37

0.0

50.0

0.0

321593.5 321595.5 321597.5

0.0

0.0

0.0

5.0

-5.0

-5.0

5.0

-5.0

5.0

-5.0

5.0

A
b

so
rp

ti
o

n
 (

1
x

1
0
  

)
-5

15I0

10I0

20I0

25I0

  0 I0

R
ab

i 
si

d
e 

b
an

d
s 

sp
li

tt
in

g
 (

G
H

z) (b)

3 60
0

1

2

Pump field strength (    ) I/Io 

Probe frequency (GHz)

(a)

Figure 3.4: The Mollow Absorption Spectrum of a Neutral QD. Mollow absorption spectrum

when the strong pump and weak probe beams couple to the same transition. (a) Measured probe

absorption vs. pump field intensity when the pump is on resonance. The lines are the fits to the

probe absorption function obtained by solving optical Bloch equations. The stocktickerMAS data

show that the part of the absorption signal is “negative”. Using the data corresponding to 15Io as

an example, the absorption/gain ratio is about 0.066%/0.0024%=27.5. (b) The splitting between

the Rabi side bands vs. pump field strength. The solid line is the linear fit to the data.
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sion either in the dressed or bare atom pictures.

Interesting features can also be observed when the pump beam is detuned from the

QD transition. In this situation, gain effect can be demonstrated, but with Lorentizan

lineshape sidebands and population inversion in the dressed state picture [18]. We

are going to show the pump detuned MAS in the next chapter.

3.3 Chapter 3 Summary

In this chapter, we show the characterization and coherent optical spectroscopy

of a single neutral SAQD. We present experimental results of the AT splitting and

complex Mollow absorption spectrum using a single semiconductor QD [15]. We

coherently control the probe absorption with a strong optical field, thus demonstrating

that the single QD coupled with the strong pump can function as a modulator of the

probe absorption [32]. In addition, the spectrum as a function of the probe frequency

shows Rabi splitting and gain without population inversion. The results are in good

agreement with the standard theory using the optical Bloch equations. Our work

demonstrates that on long time scales, the discrete energy level spectrum of the dot

is maintained even at the high field strengths needed for quantum logic operations

(e.g., qubit rotations) and single photon devices, and that the system behaves similar

to a trapped atom. The results suggest that it should now be possible to demonstrate

numerous quantum level based applications, such as dressed state lasers [33], QD

optical modulators [32], and quantum logic devices [34].
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CHAPTER 4

The Optical Mollow Absorption Spectrum of a Single Negatively

Charged Quantum dot

Recently, an electron spin trapped inside a quantum dot has drawn intensive

research interest due to its unique properties. It has been experimentally shown

that the electron spin has long relaxation [3] and decoherence times [2, 6], which are

critical features for quantum logic applications [4]. Much progress has been made in

this direction, such as the electron spin state initialization [2,6] and optical generation

and control of the electron spin coherence [6, 8, 9, 24].

One important task is to understand and control the physical properties of a singly-

charged QD in the strong optical field regime, i.e. the light-matter interaction strength

is much larger than the transition linewidth, under both resonant and nonresonant

excitation. As we showed in the last chapter for an ideal two level atomic system,

the strong coupling leads to interesting spectral features, such as Rabi side bands in

the absorption and, strikingly, the amplification of a probe beam. These effects are

known as the Mollow absorption spectrum (MAS).

Due to the unique atomic properties of the QD system, many body effects which

dominate the nonlinear optical response in higher dimensional heterostructures are

strongly suppressed. In the last chapter, we showed the Autler-Townes splitting and

MAS in a neutral QD system. It is clear that a negatively charged quantum dot has

similarities to a negative ion. However, the excited state of a dot is a many body

system comprised of two electrons and a hole. The Fano interference effect, which

arises from the coupling between a two-level system with a continuum [10], has been

41
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observed in a negatively charged QD [1, 6]. We are going to talk more about this

observation of the Fano interference in the next chapter. The recent study of a single

charged QD in the strong coupling regime does not exhibit the typical MAS [6,12,14].

All these indicate that interactions with a single charged QD could be more complex

due to many body effects than the electron-hole system reported earlier in neutral

dots [15,16]. Interestingly, the results in this chapter show that strong field excitation

tuned near resonance in a negatively charged dot leads to changes in the absorption

spectrum that are in excellent agreement with theory for a strongly driven two level

system.

The chapter is organized as following. First we give the physical model of a

trion state at zero magnetic field. Then we talk about the theoretical explanation

of the MAS, especially the pump detuning conditions. Finally, we will present the

experimental results and summarize this section.

4.1 The Physical Model of a Trion State at Zero Magnetic Field

We show the band structure of a single negatively charged QD in Fig. 7.1(a).

Compared to a neutral QD, there is an excess electron in a negatively charged QD. The

spin ground states of an electron are either spin up or spin down states in the lowest

energy level of the conduction band. Since the neutral exciton state is an excited

state, the electron spin states are favored over an exciton state as a qubit candidate.

With the optical excitation, a trion state is generated with two electrons and one

hole. Since the two electrons form a spin singlet state, the angular momentum of the

trion states are determined by the hole spin. The electron spin ground states (trion

states) are labeled as
∣∣±1

2

〉
(
∣∣±3

2

〉
), where ±1

2
( ±3

2
) denotes the angular momentum.

The only dipole allowed transition is from the spin ground state
∣∣1
2

〉
(
∣∣−1

2

〉
) to the

trion state
∣∣3
2

〉
(
∣∣−3

2

〉
) with σ+ (σ−) polarized light excitation. Since the spin flip

Raman transitions are dipole forbidden, the trion system at zero magnetic field can

be considered as a double two-level structure. Thus, we use the two-level optical

Bloch equations to model the trion system. For simplicity, we labeled the electron
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spin ground state as state |S〉 and the excited state as |T 〉, as shown in Fig 7.1(b).

4.2 Theory for the Trion Mollow

It is known that in a two-level system driven by a strong optical field, the ab-

sorption of the weak probe beam is significantly modified [6, 17, 18]. By solving the

optical Bloch equations to all orders in the pump field and first order in the probe

field, we obtain the absorption coefficient of the probe beam as [6]

α = Im[
αoγT A[iγT A∗(A∗ + i∆) + ∆(

Ω2
R

2
− γB + i (B + i∆) δ1 + δ2

1)]

(γ2
T AA∗ + iΩ2

Rγ∆)(B2 + δ2
1) + γΩ4

RB + γT (Ω2
R(γ + B)(γB + δ2

1)

+iγ2B2∆ + iδ2
1∆(B2 + γ2 + δ2

1))

], (4.1)

where γT (γ) is the population (coherence) decay rate of the trion state, δ1 =

ω1 − ωo is the detuning of the pump frequency (ω1) from the trion transition (ωo),

∆ = ω2−ω1 is the probe (ω2) detuning from the pump, A = γ + iδ1, B = γ + i∆, αo is

a constant, ΩR = µ · Epump/~ is the Rabi frequency of the pump field, µ is the dipole

moment matrix element and Epump is the pump field strength.

When the strong pump is on resonance with the trion transition (δ1 = 0 and

ΩR >> γ), the probe will show a complex Mollow absorption spectrum, which was

discussed in detail in the last chapter, where a neutral exciton was studied with a

strong resonant pump.

When the pump detuning is larger than the transition linewidth, the physics can

be understood in the fully quantized dressed state picture. The uncoupled QD-field

states (Fig. 7.1(c)) map into the dressed states (Fig. 7.1(d)) when the QD-field

interaction is included. In Fig. 7.1(d), we assume the pump detuning δ1 to be

negative, |S〉 and |T 〉 are the quantum dot states, and N is the photon number. Due

to the light-matter interaction, one set of the dressed states can be written as [5]

|I(N)〉 = c |S, N〉 − s |T, N − 1〉
|II(N)〉 = s |S, N〉+ c |T, N − 1〉
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Figure 4.1: Band Structure and Energy Level Diagram of The Trion State (a) The band structure

model of a single negatively charged QD in the absence of magnetic field. (b)The energy level

diagram of a trion state at zero magnetic field. The absorption spectrum of the weak probe (green

arrow) is modified by a strong pump field (red arrow). (c) The uncoupled atom-field states. (d)

Dressed state picture of a two-level system driven by a strong optical field. The energy levels outside

the picture are not shown. The energy splitting between the dressed states with the same photon

number is ~Ωg
R, where Ωg

R is the generalized Rabi frequency.
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where c =

√
1
2

(
1− δ1

Ωg
R

)
, s =

√
1
2

(
1 + δ1

Ωg
R

)
, and Ωg

R =
√

Ω2
R + δ2

1 is the generalized

Rabi frequency. The energy separation between the dressed states |I(N)〉 and |II(N)〉
is ~Ωg

R. As shown in Fig. 1(c), there are three transition frequencies: one centered

at the pump frequency ω1, and two Rabi side bands centered at frequency ω1 ± Ωg
R.

Assuming Ωg
R >> γ and using the secular approximation, i.e. ignoring the cou-

plings between populations and coherence, the steady state solutions for the dressed

state population are

ρI,I =
c4

c4 + s4
, ρII,II =

s4

c4 + s4
.

It is clear when δ1 < 0, the dressed state |I(N)〉 is more populated than the dressed

state |II(N)〉. In Fig. 7.1(d), the size of the dots on states |I(N)〉 (|I(N + 1)〉 and

|II(N)〉 (|II(N + 1)〉 indicates their population. Therefore, the transition centered

at ω1 + Ωg
R represents probe absorption (the purple dashed line in Fig. 7.1(d), and

the transition centered at ω1 − Ωg
R is probe gain due to the population inversion

of the dressed states (the red dashed line in Fig. 7.1(d)). The gain process, in its

simplest form, can also be considered as a three photon process, in which two pump

photons are absorbed at frequency ω1 and a third photon is emitted at frequency

ω1 − Ωg
R [20]. The light blue lines indicate transitions where the probe frequency is

close to the pump frequency and the secular approximation fails. These can give rise

to a dispersive lineshape [20,21].

4.3 Trion Mollow Spectrum with a Strong Resonant Pumping

We first set the pump detuning δ1 to zero and scan the probe frequency across the

trion transition frequency ωo. Figure B.1(a) shows the probe absorption lineshapes

with various pump intensities. Instead of a Lorentzian absorption lineshape in the

absence of the pump, as shown at the bottom of the Fig. B.1(a), the lineshape of the

probe beam in the presence of a strong pump beam shows a complex structure. As

we explained in the last chapter, a triplet-like absorption pattern appears with one

weak central structure and two Rabi side bands.

The Rabi sidebands have dispersive lineshapes and zero crossings at ±ΩR provided
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Figure 4.2: Trion Mollow Absorption Spectrum (a) Trion Mollow absorption spectrum as a function

of the pump intensities with the resonant pumping. (b) The energy separation of the Rabi side

bands as a function of square root of the pump intensity. (c) Trion Mollow absorption spectrum

with various pump detuning with a fixed pump intensity of 95 W/cm2. Two Rabi side bands are

clearly observed, where one is the AC Stark shifted absorption peak and the other shows gain. (c)

The spectral position of the Rabi side bands as a function of the pump detuning. We use the trion

transition energy as the zero point. The anti crossing feature of the Rabi side bands is demonstrated

as the pump is detuned from the red to the blue of the trion transition. (d) The energy separation

of the Rabi side bands as a function of the pump detuning. The solid blue line is the fits by the

formula 2
√

δ2
1 + Ω2

R.
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ΩR >> γ. We extract the splitting of the Rabi side bands from the data and plot

it as a function of the pump field strength in Fig. B.1(b). Since ΩR is linearly

proportional to Epump, as expected, the extracted splitting depends linearly on the

pump field strength and goes to zero in the absence of the pump. The observation of

the Rabi side bands is a signature of the optical generation of single dot trion Rabi

oscillations.

The negative part of the absorption lineshape demonstrates the gain of the probe

beam, as shown by Fig. B.1(a). Since the pump is resonant with the trion transition,

there is no population inversion in the steady state of the trion system in any picture.

The gain effect comes from the coherent energy exchange between the pump and

probe beams through the QD nonlinearity. We define the efficiency of the probe gain

as the ratio of the amplitude of the negative absorption to the probe absorption in the

absence of the strong pump. As an example, the probe gain efficiency corresponding

to a pump intensity of 95 watts/cm2 is 5.3 %. The earlier work by Kroner et. al. [12]

did not observe the typical spectral features for a isolated two-level system, such as

the dispersive side bands with optical gain effect, and they attribute this difference

to possible effects of dephasing.

4.4 Trion Mollow Spectrum with a Detuned Pump

As we tune the pump laser frequency away from the trion transition, the dispersion-

like lineshapes of the Rabi side bands evolve into three spectral features: one weak

central structure with a dispersive lineshape and two Rabi side bands with Lorentzian

lineshapes. Figure B.1(c) displays the probe absorption spectrum as a function of the

pump detuning with a fixed pump intensity of 95 W/cm2.

A distinct feature of the probe absorption spectrum is that one of the side bands

shows purely negative “absorption”, which is the gain effect. Using the pump detuning

at −1.5 GHz as an example (the bottom curve of Fig. B.1(c)), there is an absorption

peak located at ω1 +Ωg
R . This is an AC stark shifted absorption peak. The side band

centered at ω1 − Ωg
R is negative, which signifies the amplification of the probe beam.
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In lowest order perturbation theory, this reflects a three photon Raman gain effect:

the QD absorbs two pump photons at frequency ω1 and emits a photon at ω1 − Ωg
R

. The frequency at which gain occurs can be tuned by adjusting the pump detuning.

As expected, if the pump detuning is positive, the probe sees gain at ω1 + Ωg
R. The

data with pump detuned +0.3 GHz is shown at the top of Fig. B.1(c). A gain peak is

clearly observed for the positive detuning of the probe. It has been shown theoretically

that the maximum gain occurs at the absolute value of the pump detuning |δ1| = Ωg
R/3

provided Ωg
R >> γ [?]. For the pump detuning −0.3 GHz, the data shows a probe

gain of 9.7 %, which is much larger than under resonant pumping with the same

intensity. When the probe frequency is nearly degenerate with the pump beam, there

is also a small dispersive structure in the probe absorption spectrum, as shown in

Fig. B.1(c)).

The solid lines in Fig. B.1(c) are theoretical fits of the data to Eq. (1). The fits

yield γT /2π and γ/2π of (580±90) MHz and (350±35) MHz, respectively. Since γT is

almost twice γ, the amount of pure dephasing in this QD is statistically insignificant

compared with the error bars. These fits show that our results can be well reproduced

by the optical Bloch equations and that the singly charged QD behaves like a single

isolated atomic system.

Figure B.1(d) shows the spectral positions of the Rabi side bands as a function

of the pump detuning. In the plot, we use the trion transition frequency ωo as the

zero energy point. Figure B.1(d) clearly illustrates the anti crossing behavior of the

Rabi side bands. The separation between the two peaks at zero pump detuning

represents the interaction strength between the light and QD, which is equal to the

Rabi frequency. The dotted curves in the plot are the theoretical predictions of the

peak positions as a function of the detuning, which is in good agreement with the

measurements. The laser light induced transition energy shifts at the large pump

detuning are a demonstration of the dynamic, or AC Stark effect.

We extracted the energy separation of the side bands from the data and plotted it

as a function of the pump detuning in Fig. B.1(e). The solid blue line is a fit by the

expression 2
√

Ω2
R + δ2

1 and gives ΩR/2π = (1.5± 0.1) GHz. Since ΩR = µ ·Epump/~,
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we infer a trion dipole moment of (25±2) D. The trion dipole moment we calculated

is similar to the reported neutral exciton dipole moment [15].

The Einstein A coefficient, or spontaneous emission rate, is [22]

γsp =
9n5

(2n2 + n2
QD)2

ω3
oµ

2

3πεo~c3
(4.2)

=
9n5

(2n2 + n2
QD)2

γspo

where γspo is the spontaneous emission rate in the vacuum, n and nQD are the re-

fractive index of the medium and the QD, respectively. By inserting the parameters

into Eq. (4.2), we get a spontaneous emission rate of 2π × 130 MHz, which corre-

sponds to a trion radiative lifetime of 1.2 ns. Assuming there is no pure dephasing in

the QD, as we showed earlier, then the trion transition linewidth is about 130 MHz,

which is smaller than what we extracted from our previous fits. Also, the low power

single beam absorption data yields a transition linewidth of 600 MHz, which is much

larger than what we calculated from the Einstein A coefficient. This discrepancy

could come from the spectral diffusion process, which broadens the trion transition

linewidth [15,24].

4.5 Chapter 3 Summary

In summary, we have shown that an electron trapped inside a QD with its ground

state and the excited two electron and one hole state behaves as an isolated quantum

system even in the strong field limit by observing the optical Mollow absorption

spectrum as well as the AC Stark effect. The behavior is well described by the

solutions to the optical Bloch equations for a two-level system and show that the

state of the electron can be switched at a rate of 2π×1.6 GHz with low power cw

diode lasers.



50

References

[1] Miro Kroutvar et al., Nature 432, 81 (2004).

[2] J. R. Petta et al., Science 309,2180 (2005).

[3] A. Greilich et al., Science 313, 341 (2006).

[4] D. Gammon, D. G. Steel, Physics Today 55, 36 (2002).

[5] Mete Atature et al., Science 312, 551 (2006).

[6] Xiaodong Xu et al., Phys. Rev. Lett. 99, 097401 (2007).

[7] M. V. Gurudev Dutt et al., Phys. Rev. Lett. 94, 227403 (2005).

[8] A. Greilich et al., Science 317, 1896 2007.

[9] J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, D. D. Awschalom,
Science 320, 349(2008).

[10] U. Fano, Phys. Rev. 124, 1866 (1961).

[11] M. Kroner et al., Nature 415, 311 (2008).

[12] M. Kroner et al., Appl. Phys. Lett 92, 031108 (2008).

[13] B. R. Mollow, Phys. Rev. A. 5, 2217 (1972).

[14] F. Y. Wu, S. Ezekiel, M. Ducloy, B. R. Mollow, Phys. Rev. Lett. 38, 1077 (1977);

[15] Xiaodong Xu et al., Science 317, 929 2007.

[16] A. Muller et al., Phys. Rev. Lett. 99, 187402 (2007).

[17] E. V. Baklanov, V. P. Chebotaev, Sov. Phys. JETP 34, 490 (1972).

[18] S. Haroche, F.Hartmann, Phys. Rev. A 6, 1280 (1972).

[19] J. Dupont-Roc, G. Grynberg, C. Cohen-Tannoudji, Atom-Photon Interactions:
Basic Processes and Applications (John Wiley and Sons Inc, 1998).

[20] M. T. Gruneisen, K. R. MacDonald, R. W. Boyd, J. Opt. Soc. Am. B 5, 123
(1988).

[21] G. Grynberg and C. Cohen-Tannoudji, Opt. Comm. 96, 150 (1993); P. R.
Berman and G. Khitrova, Opt. Comm. 179, 19 (2000).



51

[22] A. Thranhardt, C. Ell, G. Khitrova, H. M. Gibbs, Phys. Rev. B. 65, 035327
(2002); J. R. Guest et al., Phys. Rev. B. 65, 241310(R) (2002).

[23] A. Hogele et al., Phys. Rev. Lett. 93, 217401 (2004).



CHAPTER 5

Fast Electron Spin State Preparation in a Single Negatively Charged

Quantum dot

As discussed in Chapter 4, the use of electron spins in semiconductor quantum

dots (QDs) as quantum bits (qubits) is being widely explored for quantum information

and quantum computation (QIQC) [1–6]. A key element for QIQC is the initial

quantum state preparation. QIQC requires not only qubits initialized in a known

state for computation and gate operations, but also a continuous supply of low-

entropy ancillary qubits for quantum error correction (QEC) [7, 8]. A fault-tolerant

quantum computation requires about 104 quantum operations before the qubits lose

their coherence [7, 8]. This requirement demands that the state initialization speed

must be much faster than the quantum state decoherence rate.

The spin relaxation time (T1) of an electron spin trapped in a self-assembled

In(Ga)As QD has been measured to be on the order of 20 ms [3], which sets an

upper limit for the spin decoherence time in the absence of other interactions (e.g.

phonon scattering, hyperfine interaction). The initialization of an electron spin state

has been demonstrated recently in a singly-charged QD by applying magnetic fields

in the Faraday geometry [2]. Although near unity fidelity is successfully achieved,

the initialization rate is about 3×105s−1 [9], making it challenging for this scheme to

satisfy the QEC requirement. A fast state initialization method with a high efficiency

is essential for practical QEC processes.

In this chapter, we are going to present how to achieve fast spin state initialization

in a singly charged QD. We will start with the characterization of the trion state at

52
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zero magnetic field, where the heavy and light hole mixing (HLHM) and nonlinear

Fano effect are introduced. Then we will examine the theoretical and experimental

results of the fast spin state initialization.

5.1 Polarization Dependent Study of a Singly Charged Quantum Dot at

Zero Magnetic Field

In Chapter 4, the trion band structure model at zero magnetic field was illustrated.

We learned there that the selection rules are either σ+ or σ− with degenerate transition

energies, and there is no particular polarization axis for the QD. This statement is

based on the assumption that there is no HLHM. This assumption is legitimate for the

IFQD. However, it could fail for SAQDs due to the strong in-plane anisotropy [10–13].

When HLHM exists, the intermediate trion state is affected by the mixing, but not

the electron spin ground state. The HLHM leads to a polarization axis (−→ρ ) of the QD

which is intrinsic to the dot and the degree of polarization depends on the strength

of the mixing between the heavy and light holes (see Chapter 2 for more details).

In the experiment, polarization dependent absorption spectroscopy is used to iden-

tify the HLHM effect. In previous reports, the HLHM effect has been observed in

CdSe/ZnSe SAQDs [10, 12, 13] by polarization resolved PL spectroscopy. First we

define the polarization of the light in the lab frame. The sample has a rectangular

shape with the short axis parallel to the [110] direction and the long axis to the [110]

direction, as shown in Fig. 7.1(a). The sample growth direction is along the [001]

direction. Therefore, if the polarization of the light is parallel to the [110] ([110])

direction, it is horizontally (vertically) polarized, as shown in the Fig. 7.1(a).

Figure 7.1(b) shows the normalized absorption signal strength as a function of the

light polarizations, where H polarization is used as a zero degree point. A clear and

moderate oscillation of the signal strength is observed as the polarization of the light

is varied. The data can be fitted by the equation

Signal = 1 + ρ× cos(α− θ) (5.1)

where ρ is the degree of quantum dot polarization, α is the rotation angle of the
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fitted by equation Signal = 1+ρ×cos(α−θ). (c) The replot of data in (b) in the polar coordinates.
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polarizer with respect to H polarized light, and θ is the angle of −→ρ with respect to H.

In the fitting process, we limit 0 < θ < 90◦. The dashed line on top of the data is the

fit which yields |ρ| = 0.16 and θ = 45◦ for this particular quantum dot. The data in

Fig. 7.1(b) are replotted in polar coordinates in Fig. 7.1(c) to clearly show that the

QD is elliptically polarized. The long (short) axis is −45◦ (45◦) rotated away from

the H axis. For simplicity, the short axis is defined as the polarization axis (−→ρ ) of

the QD. From now on, the light polarized along (perpendicular to) ~ρ is referred to as

horizontally (vertically) polarized, as shown in Fig. 7.1(c).

In a short summary, the HLHM in a charged QD is characterized by the polariza-

tion dependent absorption spectra. The HLHM effect leads to an intrinsic polarization

axis of the QD. The direction of −→ρ and the degree of the polarization depend on the

mixing strength of the HLHM.

5.2 Nonlinear Fano Interference Effect

The Fano interference effect is a classic example of a two level system coupled

to a continuum and characterized by a factor q [14]. As shown in Fig. B.1(a), two

discrete states |0〉 and |1〉 form a two level system and are coupled to each other

with a strength of w. Both |0〉 and |1〉 also couple to the continuum states |K〉 with

coupling strengths of u and v. The Fano q-factor is defined as

q =
1

πD

w

uv
(5.2)

where D is the density of the continuum states. This definition shows that when Fano

q-factor is small (large), the Fano effect is strong (weak). The optical response of a

two level system with Fano effect is described by the following formula

S(ω) = α
((ω − ωo) + q × γ)2

(ω − ωo)2 + γ2
(5.3)

where γ is the decoherence rate between |0〉 and |1〉, and ω (ωo) is the laser (atomic)

frequency. The Fano effect has been observed in the atomic systems [15, 16]. In-

terestingly, we are able to observe a Fano interference effect in this charged QD.

Furthermore, we show that we can control the Fano q-factor either with laser power,
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which is called a nonlinear Fano effect [17], or with the applied bias voltage across

the sample.
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Figure 5.2: Signature of Fano Interference Lineshape (a) A two-level system coupled to a contin-

uum. (b) The probe absorption spectrum of a non-Fano charged QD with a small DC stark shift

modulation. (c) The probe absorption spectrum of a charged QD in the presence of Fano effect with

a small DC stark shift modulation. (d-h) The theoretical plots of Fano interference lineshape with

various q factors. In each figure, the top curves is the transmission spectrum and the bottom curve

is the derivative of the top curve.

If the Fano effect does not exist, the absorption spectrum of a laser probing a

single QD has a Lorentzian lineshape. Because of the voltage modulation technique,

as we discussed in Chapter 2, the spectrum is either a Lorentizan lineshape for a

large DC Stark shift modulation or a symmetric differential lineshape for a small

modulation amplitude. Figure B.1(b) shows the probe absorption spectrum of the

charged QD studied in Chapter 4 with a small modulation. A typical symmetric

differential lineshape for a non-Fano QD is observed. However, Fig. B.1(c) shows the

absorption spectrum with a small modulation of the charged QD used in this chapter,

which shows a strong asymmetric differential lineshape caused by the Fano effect.

Figure B.1(d-h) are the theoretical plots of Fano interference lineshape with various
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q factors. In each figure, the top curves is the transmission spectrum and the bottom

curve is the derivative of the top curve. Ideally, a single QD is an isolated quantum

system. However, due to the sample structure, a continuum could be formed in the

barrier layer, which may couple to the QD states and lead to the Fano interference

lineshape. A similar Fano effect in the QD system is also reported in Ref. [17] by an

optical measurement and in [18] by a transport measurement.
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Figure 5.3: Bias Dependent Fano Effect (a) Bias dependent probe absorption spectra of a charged

QD in the presence of the Fano effect. The lines on top of the data are theoretical fittings. (b) The

extracted Fano q-factors and (c) trion decoherence rate γ as a function of the applied bias.

The Fano effect is examined as a function of the bias voltage first. The plots in

Fig. 7.3(a) show the evolution of the lineshape as a function of the applied bias. As

the bias voltage is tuned from low to high, the absorption lineshape evolves from

symmetric to strongly asymmetric. The data are fitted by the follow equation

S (ω, ωo + κ)− S (ω, ωo − κ) =
4ακγ (γδ − q2γδ + q (κ2 + γ2 − δ2))

κ4 + 2κ2 (γ2 − δ2) + (γ2 + δ2)2
,
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where δ = (ω − ωo) is the laser detuning and κ is half of the modulation amplitude.

The red solid lines on top of the data are the fits. The q-factors are extracted from the

fits and plotted in Fig. 7.3(b) as a function of the applied bias. The q factor starts as

a large positive number at a low bias voltage, which means the absence of the Fano

effect and falls to a finite positive number as we increase the bias. Therefore, the

coupling of the QD with the continuum states can be controlled by varying the bias

voltage. The bias dependent γ is also plotted in Fig. 7.3(c). The increase of γ at the

edge of the trion plateau is caused by co-tunneling induced linewidth broadening [19].

At the edge of the trion plateau, the electron in the dot is not stable and tunnels back

and forth between the back contact and the QD with a considerable rate, which leads

to the increase of γ.

The Fano interference effect as a function of the excitation laser power was also

investigated. Fig. 5.4(a) shows the absorption spectra by varying the laser power

at a bias voltage of 0.14 V. It shows that the lineshape changes from somewhat

symmetric to strongly asymmetric as we increase the laser power, which indicates that

the coupling of the QD system to the continuum states gets stronger as we increase

the laser power. The observed nonlinear Fano effect agrees with the report in Ref [17].

The lines on top of the data are theoretical fits. The extracted q-factors are plotted

as a function of the excitation power in Fig. 5.4(b), which shows a “saturation” type

behavior. The q-factor approaches a constant as the power increases. The line on top

of the data is a guide to the eye.

Figure 5.4(c) shows the extracted γ as a function of the laser power. The increase

of the transition linewidth as the laser power increases is known as the power broad-

ening effect [20], which will be discussed in the next section. The data are fitted

with the power broadening function γo

√
1 + I/Is, which yields γo = 0.015cm−1 (or

450 MHz) and the saturation intensity Is = 4.7Io, where Io = 1W/cm2. The signal

strength is also checked as a function of the laser power and the data are plotted in

Fig. 5.4(e), which also shows the saturation effects. The fit of the data yields the

saturation intensity of 4.2Io, comparable to the number we got from the fit of γ.

The peak position shifts as the laser power increases, as shown in Fig. 5.4(a).



59

γ 
(0

.0
1

 c
m

-1
)

q

1

2

3

1.5

3.0

4.5

p
ea

k
 p

o
si

ti
o

n
(c

m
-1

)

Laser Power
0 10 20 30

10681.15

10681.17

10681.18

10681.16

0.5

1

10

14

18

22

26

30

2

4

10681.0 10681.2 10681.4

(a)

(b)

(d)

(c)

(e)

N
o

rm
al

iz
ed

 S
ig

n
al

 S
tr

en
g

th

Intesnity (Io)

Laser frequency (cm-1)

Figure 5.4: Laser Power Dependent Fano Effect. (a) Laser power dependent VM absorption

spectra. The extracted (b) Fano q-factor, (c) γ, (d) peak position, and (e) signal strength as a

function of laser power.
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This trend is displayed in Fig. 5.4(d), which shows the saturation effect. The data

are fitted with a saturation function and yields a saturation intensity of 4.1 Io. This

power induced frequency shift could arise from the excitation of carriers in the buffer

layer, as discussed in Chapter 4.

In a short summary, the Fano interference effects are observed in a single charged

QD system by the optical absorption measurement. It is demonstrated that the

coupling strength between the QD states and the nearby continuum can be controlled

by both bias voltage and laser excitation power.

5.3 Fast Spin State Initialization

The ultimate limit on the optical pumping rate in the Faraday geometry is the

fact that the spin flip Raman transition is ideally dipole forbidden. In order to

implement a fast spin state initialization, the dark transitions have to become bright,

since the optical pumping rate depends on the spin flip Raman scattering process.

This can be realized by applying a magnetic field perpendicular to the sample growth

direction [001]. As discussed in Chapter 2, the B field induces off diagonal terms in

the Hamiltonian that couple both electron and hole states. The coupling leads to

linearly polarized transitions from the spin ground states to the trion states. Figure

5.6(b) shows the corresponding four level trion model, where |x±〉 (|t±〉)are the spin

(trion) eigenstates in the magnetic field. The Zeeman splitting of the electron spin

(trion) states is |ge⊥µBBx| (|gh⊥µBBx| ), where ge⊥ (gh⊥) is the electron (hole) spin

in-plane g factor, µB is Bohr magneton, and Bx is the applied magnetic field. The four

linearly polarized transitions are labeled as V1, H1, H2, and V2, where
−→
V 1||−→V 2 ⊥ ~ρ

and
−→
H1||−→H2|| ~ρ.

In the following, the system is modeled with the optical Bloch equations, followed

by the derivations of the analytical formulas for the optical pumping rate and the

fidelity of the spin state initialization. The experimental results will be discussed

afterwards.
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5.3.1 Theoretical Calculations of Fast Spin State Initialization

In the optical pumping scheme, the pump laser is set to be on resonance with

one trion transition. Hence, the four level model can be reduced to a three level

Lambda system, as shown by Fig. 5.5, where 1 and 3 denote the spin ground states,

2 represents the trion state, Γij(γij) is the decay (decoherence) rate from state i →
j, and E(ω) is the pump laser, which only interacts with transition 1 → 2. The

Hamiltonian of the system can be written as

H =




0 X12 0

X21 ω21 0

0 0 ω31


 ,

where Xij is the interaction term between the light and quantum dot transition. The

density matrix equation can be derived from [20]

i
dρ

dt
= [H, ρ] + Decay

.

Γ21 Γ23

Γ31,γ31
1

3

2

γ21 γ23

E(ω)

Figure 5.5: Schematic of A Three Level Lambda System

From the above formula, the rate equation for spin state 1 is derived as

·
n1 = Γ21 n2 + Γ31(n3 − n1) +

2 |X21|2 γ21

γ2
21 + (ω21 − Ω1)

2 (n2 − n1) (5.4)
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where ni is the population of state i. Solving the rate equation, we get

n2 − n1 = − Γ2Γ31

(3A + 2Γ21)Γ31 + Γ23(A + 2Γ31)
, (5.5)

where

A =
2 |X|2 γ21

γ2
21 + (ω21 − Ω1)

2 (5.6)

In the equation, X is half of the Rabi frequency Ω.

Therefore, the absorption of the pump beam is

Im[ρ21] = α
γ2

21

(1 + I/Is)γ2
21 + (ω21 − Ω1)

2 ,

where

Is =
~2Γ2Γ31γ21

(3Γ31 + Γ23)µ2
21

is the saturation intensity for a three level Lambda system. One should note that

if I is much smaller than Is, then the transition linewidth is 2γ21. However, if I is

comparable or larger than Is, then the transition linewidth is 2
√

(1 + I/Is)γ21, which

is known as power broadening.

Assuming the spin relaxation rate Γ31 ¿ Γ23, the saturation intensity for a three

level Lambda system has the following formula

Is =
~2Γ2Γ31γ21

Γ23µ2
21

= I two
s × Γ31

Γ23

,

where

I two
s =

~2Γ2γ21

µ2
21

is the saturation intensity for a two level system. Hence, it is shown that the saturation

intensity of a three level system is a factor of Γ31

Γ23
smaller than two level system. If

the spin relaxation rate is on the order of ms−1 and trion relaxation rate Γ23 is on

the order of ns−1, then the former is a factor of 106 smaller. It indicates that since

the trion transition is easily saturated, we are likely to achieve optical pumping effect

in a charged QD system.
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Now we examine how quickly the electron spin state can be initialized, i.e. in what

time scale the system can reach the steady state. By writing out the explicit density

matrix equations from Eqn 5.3.1, we can see that there are only three independent

variables, which can be rewritten as a vector [21]

−→
V = (n1, n3, Im[ρ12])

′

The density matrix equations can be written as

d
−→
V

dt
= Â

−→
V +

−→
B

where

Â =




−Γ31 − Γ21 Γ31 − Γ21 2X

Γ31 − Γ23 −Γ31 − Γ23 0

2X X −γ21




−→
B = (Γ21, Γ23, X)

′

The solution of
−→
V is proportional to e

−→
At. The eigen value of

−→
A equals

λ =
Γ23

6bκ1/3
(32/3 + 2× 32/3b + 32/3b2 − 16× 32/3r2

− 3κ1/3 − 3bκ1/3 + 31/3κ2/3), (5.7)

κ = 72r2 +
1

3
[46656r4 − 27(1 + 2b + b2 − 16r2)3]1/2, (5.8)

where r = Ω
Γ21

and the branching ratio b is Γ23

Γ21
. Therefore, the characteristic time for

the system is −1/λ, i.e. the optical pumping rate is −λ. If we take b = 1 and r >> 1,

the optical pumping rate is Γ23/2 [21].

In the above, the optical pumping rate is derived by assuming a three level Lambda

system. However, a 4 level trion model has to be adopted to derive the initialization

fidelity. The reason is that the outer pair of transitions of the trion model have the

same selection rules (see Fig. 5.6(b)). When the pump laser is on resonance with

one of the transitions, it will be off resonantly coupled to the other transition. This

bi-directional pumping effect will slightly reduce the optical pumping efficiency. The
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detailed procedure for deriving the optical pumping efficiency can be found in the

Appendix (A). The basic idea is to use the rate equation approximation. Assuming

the laser is pumping the transition from 1 to 2 and solving the rate equations, we can

get

n1 = (Ω2 + Γ2)/(4Ω2 + 2Γ2 + ∆2)

where we take all excited state decay rates as Γ, ∆ is the detuning of the laser to the

transition V2 and equivalent to the sum of the electron and hole Zeeman splitting.

Then the ideal optical pumping efficiency equals (1 − n1). In principle, the spin

preparation efficiency can be improved by increasing the magnetic field.

5.3.2 Experimental Results

In this section, the experimental results of the fast spin state initialization are

discussed. Figure 5.6(a) shows the VM absorption map as a function of the applied

bias at a magnetic field of 0.88 T along the [110] axis. The laser field is linearly

polarized and 45◦ to the polarization axis (~ρ) of the quantum dot. The difference

in the range of the applied bias between PL and VM maps arises from the local

electric field effect, which depends on the excitation wavelength [19]. In bias region

II, the optical pumping rate is larger than the spin relaxation rate. Fast spin cooling

is demonstrated, where the absorption of the laser beam is strongly suppressed by

optical pumping. In region I, the co-tunneling (the tunneling of the electron between

the quantum dot and the Fermi sea [2,22]) induced spin relaxation rate is comparable

or larger than the optical pumping rate, so the depletion of the spin ground state is

not achieved. Thus, the strong suppression of the absorption disappears in region

I and a quartet transition pattern appears. The physics of the two bias regions is

discussed below along with the bias dependent g factor associated with transitions

H1 and H2.

We first start with the bias region I of Fig. 5.6(a). As mentioned earlier, when

a magnetic field is applied along the [110] axis, it induces off diagonal terms in the

Hamiltonian that couple both electron and hole states. The coupling leads to linearly
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Figure 5.6: Demonstration of Optical Pumping Effect. (a) Bias dependent VM absorption map of

a singly-charged SAQD at a magnetic field of 0.88 T. The laser is 45o polarized. Voltage Region I

shows all four trion transitions. Spin state preparation is achieved in Voltage range II. (b) Energy

level diagram of a trion. The gate voltage is set at 0.19V for plots (c), (d), and (e). (c) Polarization

dependent VM spectra of a singly-charged QD at magnetic fields 0.88T . The black curves are the

fittings. (d) 3d plot of the trion evolution with various magnetic fields. The laser is 45o polarized.

The data are inverted for clarity. (e) The electron (black dots) and hole (orange dots) Zeeman

splitting as a function of the magnetic fields.
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polarized transitions from the spin ground states to the trion states. Figure 5.6(c)

shows the polarization study of the trion state at gate voltage 0.19 V . The lines

on top of the data are the fits. A quartet transition pattern is excited with 45◦

linearly polarized light. When the light is vertically (horizontally) polarized, the

optical field only excites the outer (inner) two transitions of the quartet. Thus, the

inner and outer transitions are strictly linearly polarized and orthogonal to each other,

which inhibits spontaneously generated coherence (SGC) [24]. The observation of the

quartet demonstrates that under a transverse magnetic field all four trion transitions

are optically allowed and obey well defined polarization selection rules, which agree

with what have been discussed about the selection rules in the presence of HLHM in

Chapter 2.

The evolution of the trion states as a function of the magnetic field is illustrated

with the fan diagram in Fig. 5.6(d). The trion states start with a single peak at

zero magnetic field and split into four lines at finite magnetic fields. The energy

difference between transitions V1 and H1 (H2) corresponds to the hole (electron)

Zeeman splitting. The electron and hole Zeeman splitting are plotted in Fig. 5.6(e)

as a function of the applied magnetic fields. The linear fittings yield values for |ge⊥|
and |gh⊥| of 0.48 and 0.31, respectively. Although the absolute signs of |ge⊥| and

|gh⊥| are not identified experimentally, we are able to tell that |ge⊥| and |gh⊥| have

the same sign.

In region II of Fig. 5.6(a), spin relaxation is inhibited. When the laser beam is

resonant with transition V1, as shown in Fig. 5.6(a), the electron spin in the |x+〉
state will be excited to the trion state |t+〉 and then relax equally to the two spin

ground states as suggested by the comparable absorption strengths and linewidths.

That is to say, because the spin flip resonant Raman scattering process is now allowed

in the Voigt profile, the optical induced spin flip process is dramatically “sped up”,

ensuring a fast spin cooling. Since the electron spin in the ground state has a much

slower relaxation rate than the trion spontaneous decay rate, the electron spin will

be optically pumped into the |x−〉 spin state within a few radiative cycles. The

signature of optical pumping is that transition V1 becomes transparent to the laser
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beam. The preparation of |x+〉 works in a similar way. This is clearly demonstrated

in bias range II of Fig. 5.6(a). When the laser is on resonance with V1(V2), the

absorption is strongly suppressed and the transition becomes transparent. Thus, the

polarized spin states can be selectively prepared in either the |x−〉 or |x+〉 spin state.

The mechanism of the spin state preparation can also be explained in terms of

saturation spectroscopy, as we discussed in the previous section. The rate equation

calculation for a three level lambda system gives the saturation intensity for a trion

transition as ISAT ' ISATo × Γs

Γ
, where ISATo is the trion saturation intensity at zero

magnetic field, Γs is the spin relaxation rate, and Γ is the trion spontaneous decay

rate. The spin relaxation time 1
Γs

has been reported to be on the order of tens of

milliseconds [3]. It is much longer than the trion decay time 1
Γ
, which is about a

few hundred picoseconds [22]. Therefore, in the presence of the transverse magnetic

fields, the saturation intensity ISAT of the trion system could be about 6 to 7 orders

of magnitude weaker than ISATo . Thus, the trion transition is easily saturated and

becomes transparent to the optical beam.

The data in the transition region from I to II in Fig. 5.6(a) shows the signature

of a bias dependent electron g factor, which leads to transitions H1 and H2 evolving

from two well-resolved lines in region I into a central absorption peak in region II.

Since transitions H1 and H2 are nearly degenerate in region II, when the laser is on

resonance with transition H1, it is also nearly resonant with H2. Therefore, the optical

pumping effect is partially canceled by the bi-directional pumping induced by the

same optical field. Hence, the optical pumping effect is suppressed and results in the

central absorption peak. The origin of this behavior remains under investigation, but

it is likely that the strong bias dependence is more complex than the bias dependent

g-factors reported earlier in quantum wells [25] and for holes in QDs [26]. Fortunately,

the behavior does not impact the main conclusion of the work.

In order to prove that the laser beam leads to nearly complete spin polarization

and prepares the spin state as |x−〉 (|x+〉) by pumping transition V1 (V2), a polar-

ization inversion beam (PIB) is tuned to be on resonance with transition V2 (V1). As

shown in Fig. 5.7(a,b), while the PIB is tuned to be on resonance with transition V1,
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it repolarizes the spin ground states prepared by pumping transition V2 (i.e. redis-

tributes the population between the spin ground states). This leads to the recovery

of the absorption peaks at transitions V2 and H2. Fig. 5.7(c) and (d) show that

transitions V1 and H1 can also be recovered by tuning the PIB to be on resonance

with transition V2. Considering that the spin cooling process prepares a low-entropy

polarized spin state, depending on the intensity of the PIB, the effect of the PIB is

to increase the entropy of the system by generating a mixed spin ground state at low

intensity or to reverse the spin polarization at high intensity.

The excited state decay rate is 2π times the absorption linewidth in the absence

of pure dephasing or spectral wandering. Nearly degenerate differential transmission

(NDT) is particularly sensitive to these latter two effects [27,28]. We have performed

NDT on the trion state (data shown in the next section), and while the data are

complicated by the effect of the Fano interference, they show no evidence of either

significant pure dephasing or spectral wandering.

The optical pumping rate is analyzed by the method described in the theory sec-

tion [21]. Using the lineshape data in Fig. 5.7, a linewidth of order 1.2 GHz (1.5 GHz)

is extracted. In the absence of pure dephasing or spectral wandering, corresponds to

Γt+x+ (Γt+x−) of 7.5 × 109s−1 (9.4 × 109s−1). In the spin state preparation experi-

ment, the Rabi frequency of the pump beam approximately equals Γt+x+. Thus, by

inserting b = 1.25 and r = 1 into Eqn 5.7, we infer an optical pumping rate of order

4× 109 s−1. The optical pumping rate inferred from the measured linewidth may be

an upper limit if the linewidth is broadened by the spectral diffusion process [24]. The

hole coupling to the continuum states might also result in uncertainty in the radiative

lifetime (at most a factor of 3). Even including this uncertainty, the optical pumping

speed is increased by a few orders of magnitude due to the magnetic field induced

state mixing. Using a more conservative trion relaxation rate of 1× 109 s−1 reported

by Ref [31], our scheme infers an spin state initialization rate of order 5× 108 s−1.

Figure 5.7(f) simulates the population evolution of spin state |x−〉 when the laser

is on resonance with transition V1. Since the electron spin Zeeman splitting is about

24 µeV at 0.88T, which is much smaller than the thermal coupling energy at 5 K, the
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Figure 5.7: Confirmation of Optical Pumping Effect. Demonstration of the spin state preparation

in |x+> (|x->) state at magnetic field 1.32 T and gate voltage 0.12 V. The scanning laser is 45o

polarized and the PIB is vertically polarized. (a) and (b) ((c) and (d)) The PIB is resonant with the

transition V1 (V2) while probing the transitions H2 and V2 (H1 and V1). (e) One beam absorption

spectrum of the trion state in the absence of the PIB. The absorption of transitions V1 and V2 are

strongly suppressed due to the optical pumping effect. Since the degeneracy of transitions H1 and

H2 are lifted by increasing the magnetic field to 1.32 T, the central peak is also suppressed. f The

evolution of the population in |X−〉 state under the optical pumping condition. Dashed (solid) line

is the analytical (numerical) result.
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initial spin population for the simulation is taken to be equally distributed between

the spin ground states. The parameters for the simulation are extracted from the

experimental data. The simulation shows that the state preparation efficiency is near

unity when the evolution time is about 2 ns.

The Voigt profile introduces a limitation to the optical pumping efficiency [21]. As

we discussed in the theoretical section, this arises from the fact that transitions V1

and V2 have the same polarization selection rules. When the laser is resonant with

transition V1(V2), transition V2(V1) will be off-resonantly coupled, which causes a

small amount of the spin population to be pumped back. As mentioned above, this

type of off-resonant coupling is responsible for the central absorption peak in Fig.

5(a). At a magnetic field of 0.88T, a spin state preparation efficiency of (98.9±0.4)%

is achieved experimentally, where the error comes from the measurement noise. As-

suming the spin state is prepared in |x−〉 state, the preparation efficiency is defined

as 1− ρx+x+/(ρx+x+ + ρx−x−). The spin temperature can be calculated by assuming

Maxwell-Boltzmann distribution, which corresponds to a spin temperature of 0.06

K [2, 29]. This demonstrates laser cooling of an electron spin from 5 K (the experi-

mental temperature) to 0.06 K in a singly-charged QD. To reach the same efficiency

at 5K by thermal equilibration, the applied magnetic field would need to be 69 T and

the initialization would be much slower.

5.4 Nonlinear Differential Transmission Measurement of the Optical Pump-

ing Effect

In the previous discussion, the optical pumping was confirmed by recovering of

the absorption with a depolarizing beam. In this section, we are going to show a

direct proof that the recovered spin population comes from the other spin state by

nonlinear differential transmission (NDT) technique [30]. As shown in Fig. 5.8(a),

the idea is that the pump and probe beams are chopped at ω1 and ω2, respectively,

and the nonlinear signal are homodyne detected at frequency |ω1 − ω2| by a phase

sensitive lock-in amplifier.
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The pump and probe beams can be frequency degenerate or non-degenerate [27].

Figure 5.8(b) shows the degenerate NDT spectrum of the trion state at zero magnetic

field. Due to the Fano effect, as we discussed in the earlier section of this chapter, the

spectrum has a differential lineshape instead of Lorentizan lineshape. The line on top

the data is a guide to the eye. For comparison, the inset is an absorption spectrum

taken by the VM modulation technique, which shows the typical absorption lineshape

in the presence of the Fano effect. We also checked the non-degenerated NDT signal.

Two examples are plotted in Fig. 5.8(c,d) with different pump detunings. The arrows

indicate the pump position and the data are shifted for clarification. A positive

signal means reduced absorption of the probe beam induced by the presence of the

pump beam. For comparison, the theoretical plots with (bottom inset) and without

(top inset) pure dephasing are shown in Fig. 5.8(c,d). Although the lineshape is

distorted by the Fano effect, the data clearly shows that there is no “Prussian helmet”

profile [27], which confirms that there is no significant pure dephasing process in the

QDs [20]. This single charged QD behaves as a homogeneously broadened system.

This supports our previous assumption for calculating the optical pumping speed of

the charged QD system.

With the magnetic field turned on to 1.32T, a pump beam is set to be on resonance

with transition V2, as shown in Fig. 5.9(a). The spin population is transferred from

the |X−〉 to the |X+〉 state with an amplitude modulation at a frequency of ω1,

which is probed by a weak probe beam at transition V1. Since only the signal with

frequency components |ω1 − ω2| will be picked up by the lock-in, this guarantees two

points: (i) the spin population in the |X+〉 state is indeed from |X−〉 state; (ii) the

probe beam does read out the target spin state |X+〉. In the other words, the NDT

experiment demonstrates the writing and reading process of an initial quantum state,

which is very important for QIQC. We have to point out that since the spin in the

|x+〉 state will be driven by the probe beam to the trion state and will then relax

to the |x−〉 state through trion spontaneous emission, the reading efficiency is low in

our scheme.

Figure 5.9(a,b) displays the data from pumping on resonance with transition V2
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are lorentzian square fits.

and probing the |X+〉 state. The negative signal means the induced absorption

of the probe beam, which is due to the increased spin population at |X+〉 by the

pump beam moving the electron spin from |X−〉. Transition V1 and H1 can be

selectively probed by the polarization selection rules. The Lorentzian square fits

yield a trion transition linewidth of 1.6 GHz and 2.1 GHz for the transition V1 and

H1, respectively. Although the numbers here are a little bit larger than the ones from

the VM absorption spectrum, the ratio between V1 and H1 is about 1.3, which is

similar with the absorption measurement.

5.5 Chapter 5 Summary

In this chapter, the fast spin state preparation was demonstrated by a optical

pumping technique. The heavy and light hole mixing effect was characterized. The

Fano interference effect was observed in this charged QD, which can be controlled by

the applied bias and laser power. The NDT experiment was performed on a singly
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charged QD and the homodyne detected four-wave mixing signal was detected either

with and without a magnetic field.
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CHAPTER 6

Coherent Population Trapping of an Electron Spin in a Single Quantum

Dot

When two radiation fields drive coupled transitions in a three-level lambda system,

a steady-state coherent superposition of the ground states can be formed that is totally

decoupled from the applied fields, a process that is referred to as coherent population

trapping (CPT) [1]. Recently, CPT has been observed in an ensemble of donor bound

spins in GaAs [2] and in single nitrogen vacancy centers in diamond [3] by using a

fluorescence technique. A critical condition for realizing CPT is to have a pair of

stable ground states with a relatively long coherence time compared to the excited

state decay time. An electron spin trapped inside a single QD is a system that meets

this requirement and constitutes an excellent opportunity for the realization of CPT.

The demonstration of CPT shows the existence of the dark state which is important

for various physical phenomena, such as electromagnetically induced transparency

(EIT) [7, 8] and slow light [9]. The dark state also has applications in quantum

information storage [10] and quantum repeaters [11,12].

On the path towards all optical driven quantum computation, we need to have

the ability to manipulate an electron spin and to generate and control the electron

spin coherence [13]. In the time domain, evidence of spin manipulation includes

the demonstration of spin Rabi oscillations [11, 12], which has not been achieved by

optical methods. The coherence between the spin ground states can be generated

by a pair of Raman pulses and manifests itself as quantum beats [4–6, 22]. In the

frequency domain, electron spin coherence can also be generated by means of coherent

77
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population trapping (CPT) [1].

Another critical element for quantum information science is the initial quantum

state preparation [14]. We have demonstrated an electron spin state initialization

in Chapter 5. However, the limitation is that only two possible initial qubit states

can be prepared, either spin up or spin down. CPT is a process that generates an

arbitrary coherent superposition of electron spin ground states, whose probability

amplitudes can be controlled by varying the ratio of Rabi frequencies between the

driving and probe optical fields. Therefore, we can prepare an arbitrary initial qubit

state by using the CPT technique. In this scheme, the initialization rate is limited

by the excited state decay rate. In this particular system, the initialization rate is on

the order of 109s−1 [15].

In the following, we first gain insight about CPT and derive the formula for the

probe absorption under the CPT condition. The experimental results are presented

afterwards.

6.1 Theoretical Calculation of CPT

The schematic of a three-level lambda system is shown in Fig. 7.1(a), where Γij

(γij) is the trion population decay (dipole dephasing) rate, Γs (γs) is the electron spin

relaxation (decoherence) rate, Ωi = µi×Ei

~ is the Rabi frequency, µi is the transition

dipole moment, and Ei is the optical field strength. For simplicity, we assume Γs,

γs ¿ Γij, γij, Ωi. The strong pump beam is nearly resonant with the transition from

the |X−〉 to the |T−〉 state and a weak probe scans across the transition from the

|X+〉 to the |T−〉 state. The Hamiltonian of the system is written as

H = ~




−ω21 X12e
iω1t 0

X21e
−iω1t 0 X23e

−iω2t

0 X32e
iω2t −ω23


 , (6.1)

where X12 = X21 = X1 = Ω1/2 and X23 = X32 = X2 = Ω2/2. The rotating wave

approximation is used to abtain the above Hamiltonian.

In order to get some insight into the generation of the dark state, all decay pa-
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H1. (d) The theoretical plots of the probe absorption spectrum as a function of the ground state

decoherence rate. The CPT is generated when two lasers match the two-photon Raman resonance

condition (TPR).

rameters are ignored first. A vector

~V = (C1, C2, C3)
′

(6.2)

is used to describe the system, where Ci is the state amplitude. In this vector model,

the system can be written as

|ψ〉 = C1|1〉+ C2|2〉+ C3|3〉. (6.3)

From −i~~V /dt = H.~V , the time dependent equations for the amplitudes are

Ċ1 = −i
(
C2e

iω1tX1 − C1ω21

)
(6.4)

Ċ2 = −i
(
C1e

−iω1tX1 + C3e
iω2tX2

)
(6.5)

Ċ3 = −i
(
C2e

−iω1tX2 − C3ω23

)
(6.6)

.

It’s convenient to write the amplitude Ci in the field interaction picture. We

substitute

C1 = C̃1e
iω1t, C2 = C̃2, C3 = C̃3e

iω3t (6.7)
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into the above equation and obtain

˙̃
C1 = −i

(
C̃2X1 + C̃1δ1

)
(6.8)

˙̃
C2 = −i

(
C̃1X1 + C̃3X2

)
(6.9)

˙̃
C3 = −i

(
C̃2X2 + C̃3δ2

)
(6.10)

The above equations lead to

X2
˙̃
C1 −X1

˙̃
C3 = −i(X2C̃1δ1 −X1C̃3δ2) (6.11)

Under the condition of δ1 = δ2 = δ, then equation 6.11 can be simplified to

X2
˙̃
C1 −X1

˙̃
C3 = −i(X2C̃1 −X1C̃3)δ (6.12)

A new state |D〉 = X2|1〉 −X1|3〉 is defined with an amplitude of D = X2C̃1−X1C̃3.

Equation 6.12 can be rewritten as

Ḋ = −iDδ. (6.13)

It is clear that state |D〉 is not excited by the optical fields, and is therefore known

as the dark state. If there is no relaxation of the ground states, then this dark state

is the steady state for the three level Lambda system. From the quantum computing

point of view, the dark state is an initialized qubit state. The probability amplitudes

of the ground states in this superposition state can be controlled by varying the ratio

of the pump and probe Rabi frequencies.

In the following, this system is considered in the presence of relaxation. The

analytical formula for the probe absorption can be derived by solving the optical

Bloch equations. The general form is unwieldy, however, a relatively simple form can

be achieved in the weak probe field limit. By solving the optical Bloch equations to

the lowest order of the probe beam with the approximation Γs = 0, the formula for

the probe beam absorption is

αT−X+ =
γT−X+

(
X2

2γs + γT−X+

(
γ2

s + (δ1 − δ2)
2))

X4
2 +

(
γ2

T−X+ + δ2
1

) (
γ2

s + (δ1 − δ2)
2) + 2X2

2 (γ21γs + δ1 (−δ1 + δ2))
(6.14)
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Under the condition of two-photon Raman resonance, i.e δ1 = δ2, equation 6.14 is

simplified to

αT−X+ =
γT−X+ (X2

2γs + γT−X+γ2
s )

X4
2 +

(
γ2

T−X+ + δ2
1

)
γ2

s + 2X2
2γ21γs

(6.15)

It is shown that the strength of the probe beam absorption is proportional to the

ground state decoherence rate γs. If there is no decoherence between the ground

states, then the transition is transparent to the probe beam, i.e there is no absorption

for the probe beam. The generation of the dark state is the central physics behind

EIT. Figure 7.1(b) shows the theoretical plots of the probe absorption spectrum by

varying the ground state decoherence rate. In this plot, the Rabi frequency of the

pump equals the trion decay rate Γ. It clearly shows that under the two-photon

Raman resonance condition, the absorption decreases as γs decreases. When γs = Γ,

the dip caused by the CPT disappears.

6.2 Experimental Results Demonstrating CPT

In order to get a clean lineshape, the particular QD used in this experiment is

the same as the one discussed in Chapter 4. Figure B.1(a) shows the energy level

structure for the lowest lying states of a negatively charged QD at zero magnetic

field, as talked about in Chapters 4 and 5. Since the spin flip Raman transitions

are dipole forbidden, the trion system at zero magnetic field can be considered as a

double two-level structure, not adequate for the realization of CPT.

It has been shown in Chapters 2 and 5 that if a magnetic field is applied in the

Voigt geometry (
−→
X axis), i.e. perpendicular to the sample growth direction (

−→
Z axis),

a four level trion system is created, as shown in Fig. B.1(b). The new electron spin

eigenstates |X±〉 can be excited to either trion states |T±〉 with linearly polarized

light [15]. Hence, the forbidden Raman transitions at zero magnetic field are turned

on when the magnetic field is applied along the
−→
X axis. As shown by Fig. B.1(b),

we choose |X±〉 and |T−〉 to form a three-level lambda system.

First the QD is characterized with a single beam voltage modulation absorption

experiment [15, 18]. The gate voltage is set at the edge of the trion charge plateau,
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(horizontally) polarized. At zero magnetic field, the spin flip Raman transitions are dipole forbidden.

By applying a magnetic field in the Voigt geometry, the dark transitions become bright. A three-level

lambda system is formed by these levels enclosed in the dashed line box. (c) Single beam absorption

spectrum of the trion state at a magnetic field of 1.32 T with 45◦ linearly polarized light excitation.

A quartet transition patterned is observed as the gate voltage is set in the non optical pumping

region.



83

where the optical pumping of the electron spin effect is suppressed [15, 16]. Figure

B.1(c) shows the quartet transition pattern of the trion state using 45◦ linearly po-

larized light to excite the transitions at a magnetic field of 1.32T. The observation

of the four transition lines confirms that all four trion transitions are turned on and

have similar transition strengths [15]. The four transitions are labeled as V 1, H1,

H2, and V 2. The energy difference between V 2 and H1(H2) is the electron (hole)

spin Zeeman splitting. The Zeeman splitting as a function of the magnetic field has

been studied and yields the electron and hole in plane g factors of 0.49 and 0.13,

respectively, which are similar to the g factors measured for the other trion state in

Chapter 5.

The gate voltage is then set to where the co-tunneling induced spin flip process is

suppressed [28]. Figure 3(a) shows a single beam absorption spectrum by scanning the

laser across transition H1 at a magnetic field of 2.64 T . An almost flat line is observed

for the probe absorption spectrum reflecting the absence of the absorption due to

optical pumping [15, 16]. The optical pumping induced saturation of the absorption

shows that the spin relaxation rate is much slower than the trion relaxation rate.

Hence, the spin ground states can be considered as meta-stable states compared to

the short lived trion states.

To understand the experimental conditions for the measurements, we consider the

interaction scheme shown in Fig. 7.1(a). A strong optical field (the driving field)

is tuned on resonance with transition V 2 and a weak optical field (the probe) is

scanned across transition H1. When the probe laser is resonant with transition H1,

the two-photon Raman resonance condition is reached. As seen in Fig. 7.3(g), a

clear dip in the probe absorption spectrum is observed for Ωd/2π = 0.83 GHz. This

observation demonstrates both the generation of CPT of an electron spin and the

Raman coherence between the spin ground states. For this particular set of data,

the applied magnetic field is 2.64 T , corresponding to an electron Zeeman splitting

of 75.4 µeV (18.2 GHz).

The observation of CPT can be understood from the point of view of optical

pumping. When the driving and probe lasers are on the two-photon Raman resonance,
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a coherent dark state is created that is decoupled from the applied optical fields and

can be represented as |D〉=Ωd|X+〉−Ωp|X−〉√
Ω2

d+Ω2
p

. Part of the population is excited from the

electron spin ground state to the trion state and relaxes spontaneously into the dark

state. Since the dark state is not “seen” by the optical fields, the total population is

eventually trapped there within a few radiative cycles of the trion state. In CPT, the

coherence between the spin ground states is created by the coherent optical fields.

Therefore, the whole process is an optical pumping process, whose rate is ultimately

limited by the excited state decay rate, with the transfer of the mutual coherence

between the optical fields to the electron spin coherence.

An arbitrary initial state for the quantum computation can be prepared by varying

the ratio of the Rabi frequencies between the driving and probe fields. Ultimately,

if Ωd is set to be zero, the initialized spin state will be |X−〉. This is the fast spin

state preparation effect as discussed in Chapter 5 and Ref [15]. The difference is

that when Ωd is zero, there is no coherence involved in the state initialization and

the preparation efficiency is determined by the electron spin relaxation rate. In the

initialization of the arbitrary coherent superposition state, we generate an electron

spin coherence by the optical fields, and the state preparation efficiency is limited by

the electron spin decoherence rate.

The linewidth of the dip in the probe absorption spectrum is ultimately limited

by the electron spin decoherence rate. In the experiment, the smallest Ωd applied is

0.56 GHz, which is about half of the trion transition linewidth, but still much larger

than γs. Hence, the linewidth of the dip is broadened by the laser power. When Ωd is

strong, it will dress the spin ground state |X−〉 and the trion state |T−〉. In the case

where Ωd is larger than the trion transition linewidth, the absorption spectrum of

the probe beam will split into two peaks when scanning across transition H1, which

are known as Autler-Townes (AT) doublets [29], and has been demonstrated in a

neutral QD [23, 30]. The spectral features of the probe absorption spectrum in our

experiment are a combination of the AT splitting and the CPT quantum interference

effect [7], where the spectral positions of the side bands can be determined by the AT

splitting and the central feature in the absorption spectrum is due to the CPT effect,
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Figure 6.3: Demonstration of CPT. The experimental evidence of the CPT of an electron spin

The gate voltage is set in the optical pumping region and the applied magnetic field is 2.64 T. (a)

The probe absorption spectrum across transition H1 in the absence of the driving field. (b-f) Probe

absorption spectra with various driving field Rabi frequencies. The driving field is set to be resonant

with the transition from |X−〉 to |T−〉. The red solid lines are the theoretical fits by solving the

optical Bloch equations. A pronounced dip is observed in the probe absorption due to generation

of the dark state. (g) An example of the probe absorption spectrum and shows the generation

of the CPT. The inset is a theoretical plot with large electron spin decoherence rate, which does

not show the dip in the spectrum. (h) The energy separation of the AT doublets as a function of

driving field strength. (b) Theoretical curves of the creation of the electron spin coherence in a single

charged quantum dot. Red line: experimentally generated electron spin Raman coherence ρX+X−

inferred from the optical Bloch equations calculation by using the experimental parameters. The

calculation is done under the experimental condition that the driving and probe fields are resonant

with transition V2 and H1, respectively. Green line: the calculated maximum electron spin Raman

coherence in the absence of the electron spin dephasing. Blue line: the ratio of the experimentally

generated coherence to the ideal case.
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not a simple summation of the tails of the AT Lorentzian lineshapes.

The probe absorption spectra with various driving field strengths and fixed probe

Rabi frequencies are illustrated in Fig. 7.3(b-f). The energy separation of the two

peaks is increased by increasing the driving field intensity. As Ωd becomes larger than

the trion transition linewidth, two AT peaks with Lorentzian lineshapes appear in the

probe absorption spectrum, as shown by Fig. 7.3(e, f). Figure 7.3(h) displays the

energy separation of the AT splitting peaks as a function of the driving field strength.

A linear regression fits the data and extends to zero in the absence of the driving

field, which indicates that the splitting is dominated by Ωd. The red solid lines on

top of the data shown in Fig. 2(b-f) are the theoretical fits obtained by solving the

optical Bloch equations to all orders in the driving field and to first order in the

probe. Assuming that γs is a few orders of magnitude larger than Γs (as we show

below), γT−X+/2π, and γs/2π are found to be (0.54± 0.1)GHz, and (40± 12)MHz,

respectively. The value of 40MHz corresponds to the electron spin decoherence time

T ∗
2 (1/γs) of 4 ns. Although an electron spin trapped inside a single QD is studied, the

electron spin T ∗
2 extracted from the data is not the intrinsic electron spin decoherence

time due to the hyperfine interaction between the electron spin and the neighboring

nuclear ensemble [26, 27, 32, 34, 35]. The intrinsic T2 can be measured by spin echo

techniques [11] or mode locking of the spin coherence [5]. The hyperfine interaction

between an electron spin and the lattice nuclei will be discussed in detail in the next

chapter.

The generation of the dark state is accompanied by the excitation of the electron

spin coherence, which corresponds to the density matrix element ρx+x−. The param-

eters extracted from the fits are inserted into the optical Bloch equations and obtain

the value of the coherence between the spin ground states, which are represented by

the red line in Fig. 7.3(i). The green line in Fig. 7.3(i) represents the theoretical

values for the coherence in the absence of spin decoherence, given by ΩdΩp

Ω2
d+Ω2

p
. The

blue line represents the ratio of the experimentally generated coherence to the ideal

case. The light blue dashed lines indicate the applied Ωd in the experiment. At the

maximally applied Rabi frequency of 1.38 GHz, we infer that 94% of the optimal
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coherence is generated in our system.

6.3 Chapter 6 Summary

In this chapter, coherent population trapping of a single electron spin in a QD is

demonstrated as a dark state dip in the probe absorption spectrum. The generation

of the CPT accompanies the creation of the spin ground states coherence. This CPT

technique can be a viable technique to achieve arbitrary qubit state initialization.

Furthermore, the results presented in this chapter could lead to experiments such as

EIT, slow light, and quantum information storage in charged QD systems.
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CHAPTER 7

Optically Controlled Locking of The Nuclear Field via Coherent Dark

State Spectroscopy

A single spin trapped inside a quantum dot (QD) has been playing a central role

in quantum computation (QC) and spintronics applications in recent research [1–9].

In these III-V materials, a single spin is coupled to the lattice nuclear spins. The spin

resonance and spin coherence are inevitably affected by the hyperfine interaction [5,

10], while the dynamics of the spin can also actively affect the nuclear environment.

Understanding and controlling the hyperfine interaction between a single spin and

the lattice nuclei in such a system is critical from the point of view of both QC and

fundamental physics [6,11–16]. Recent efforts have been made to enhance the electron

spin decoherence time (T2*) by suppressing the nuclear spin fluctuations in electronic

gate confined double dot systems [14] and in an ensemble of self-assembled QDs [6].

The coherent manipulation of a single spin is essential for all optically driven QC.

It is a critical challenge to be able to coherently manipulate a single electron spin

while probing and eventually controlling the nuclear spin environment. Coherent

population trapping (CPT), which is the central physics behind electromagnetically

induced transparency (EIT) [17], is a process to generate coherence between spin

ground states of an electron and represents a manipulation of electron spin in the

frequency domain. The generation of this coherent dark state requires the satisfaction

of a two-photon Raman resonance (TPR) condition, i.e. the energy difference of two

CW lasers exactly match the electron spin Zeeman splitting. Because absorption of

the probe laser by trion excitation increases abruptly with detuning from the TPR

90
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condition, the dark state generated by the CPT process is very sensitive to the effects

of the Overhauser field on the TPR and can be used as a direct probe of the nuclear

spin environment [18].

This chapter is organized as follows. The basic theory of the hyperfine interaction

is discussed first. The experimental results of the dynamical nuclear spin polarization

(DNP) effect are then presented. The theoretical explanation of the experimental

observations is shown afterwards. The suppression of the nuclear spin fluctuations is

discussed at the end of this chapter.

7.1 Basic Concepts of the Hyperfine Interaction of a Spin with Nuclei In

this section, I will give a brief review of the basic concepts of the hyperfine interaction

with respect to the QD system. The hyperfine interaction induced electron spin

dephasing is also discussed briefly.

The general form of the hyperfine interaction of an electron/hole with nuclei is

described as [19]

Hf = 2µBγN~
∑

j

Ij · L
r3

+

(
(3S · ~r) (Ij · ~r)− S r2

r5

)
+

8

3
S · Ijδ (rj) (7.1)

where µB is the Bohr magneton, γN is the nuclear spin gyromagnetic ratio, L is the

orbital momentum of the electron, Ij is the jth nuclear spin, rj is the relative position

between the electron/hole and the jth nuclear spin, and S is the electron/hole spin.

The first term shows the hyperfine interaction from the motion of the electron/hole

spin, which is known as the chemical shift and is usually observed in molecules. The

second term is the hyperfine interaction from the dipole-dipole interaction. Obviously,

there is no dipole-dipole interaction for the S wave function. In QDs, the ground state

electron spin has an S like wave function. Hence, the dipole-dipole interaction can

be ignored for the electron spin. On the other hand, the hole spin has p like wave

function. Thus the hole spin can interact with the nuclear spins through the dipole in-

teraction. The third term is the isotropic Fermi contact hyperfine interaction, which

depends on the wave function overlap between the electron/hole spin and nuclear

spins. Since the electron spin in the QDs has a S wave function, the hyperfine inter-



92

action between the electron spin and nuclear spins is dominated by the Fermi contact

interaction, but not for the hole spin because of its P wave function.

The Fermi contact hyperfine interaction term can be rewritten as

H =
νo

2

∑
j

Aj|Ψ(rj = 0)|2(Ij
zSz + (Ij

+S− + Ij
−S+)/2) (7.2)

where Ij
± (S±) are the nuclear (electron) spin raising and lowering operators, Aj is the

isotropic hyperfine constant, νo is the InAs unit cell containing 8 nuclei, and Ψ(rj = 0)

is the electron wave function at the jth nuclear spin. In the above equation, Ij
zSz is the

static part which affects the energies of the electron spin, known as the Overhauser

field, and the nuclei, known as the Knight field. The dynamics of Knight field in

a single charged QD has recently been studied [20]. The Overhauser field can be

written as [10]

BN =
νo

8geµB

∑
j

Aj|Ψ(rj = 0)|2Ij
z , (7.3)

. If there is no external magnetic field, the nuclear spins are randomly oriented.

The average of BN on a long time scale will be zero. However, since the electrons

spin precession much faster in the hyperfine field of nuclear spins than the precession

of nuclear spins in the hyperfine field of the electron spin, the electron spin sees a

”frozen fluctuation” of nuclear fields BN [10]. Since the direction and magnitude of

BN randomly distribute, BN has a dispersion of [10]

∆2
N =

16

3NL(geµb)2

∑
j

Ij(Ij + 1)A2
j (7.4)

where ∆N is the dispersion of Overhauser field and NL is the number of nuclei inter-

acting with the nuclear spin. ∆N limits the electron spin decoherence time T2* for a

time ensemble measurement. The electron spin decoherence rate γs (1/T2*) can be

calculated given by [10]

γs =

√
16

3~2NL

∑
j

Ij(Ij + 1)A2
j (7.5)

For GaAs QDs, the hyperfine constant A is about 90 µev and NL is on the order of

106. Equation 7.5 gives an electron spin T2* in GaAs QDs on the order of 10 ns [21,24].
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Self-assembled QDs are much smaller QDs than interface fluctuation or gate-confined

GaAs QDs. Using the dot studied in this thesis as an example, the QD is 3nm in

height and 15 nm in the base diameter [23]. The number of nuclei in a QD is estimated

to be 2.5 × 104. Taking IIn = 9/2, IAs = 3/2, Ain = 56µev, and AAs = 47µev [24],

Eqn. 7.5 gives an electron spin T2* of around 400 ps. The origin of the short T2* in

the SAQD is the strong confinement of the electron spin wave function. The Fermi-

contact interaction between an electron spin and a nuclear spin is proportional to the

electron spin wave function on that particular nuclear spin. Therefore, the strong wave

function confinement in the self assembled QD leads to strong hyperfine interaction,

which causes the large inhomogeneous broadening of the Overhauser field and short

T2*. One would think that a high degree of polarization of nuclear spins would

be required for suppressing the nuclear spin fluctuations. However, if we consider a

particle inside a three dimensionally confined box, from quantum mechanics, we learn

that the ground state (S wave function) has maximum amplitudes in the center of

the box and minimum in the edge. Therefore, it is expected that the Fermi-contact

hyperfine interaction depends strongly on a small portion of the nuclear spins, which

strongly overlap (hyperfine coupling) with the electron spin. This portion of nuclear

spin is scaled as 1√
NL

, which indicates that only less than 1% of the total nuclear

spins need to be polarized to suppress the nuclear spin fluctuations [14]. This effect

is known as the Zamboni effect [25].

In Eqn 7.2, (Ij
+S− + Ij

−S+)/2 is the dynamic part, which corresponds to the

momentum transfer between the electron and nuclear spins, i.e a flip of the electron

spin associated with a flip of a nuclear spin. The built up nuclear spin polarization

through the dynamical process will affect the electron spin Zeeman energy through the

Overhauser field. At relatively high magnetic fields, the electron spin Zeeman splitting

is a few orders of magnitude larger than the Zeeman splitting of a nuclear spin. The

energy conservation could be satisfied by phonons. However, the coupling efficiency

with the phonon can be very low, and the dynamic process is usually suppressed at

high magnetic fields.

Since the hole spin in the QD has a P type wave function, it does not interact
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with the nuclear spins through the isotropic Fermi contact hyperfine interaction. It

has been taken for granted that there is no significant hyperfine interaction between

the hole spin and nuclear spins in the QDs. Therefore, the positively charged QD

is proposed for quantum computing applications since the hole spin is expected to

immune to the hyperfine interaction. However, there is a fact that the hole spin can

interact with nuclear spins through dipolar interaction. Recently, two papers have

looked into this problem and have shown the hole spin dephasing mechanism due to

the hyperfine interaction [26,27] in positively charged QDs.

In our experiment, we show that even in a negatively charged QD, the hole spin

can dominate the dynamic nuclear spin polarization at high magnetic fields through

the dipole-dipole interaction, which arises from the properties of the excited trion

state determined by the hole spin. This hole-spin assisted DNP process can lead to

the suppression of nuclear spin fluctuations, evident by the enhanced electron spin

T2*. In the following, we will present the experimental observation of the hole spin-

assisted DNP. The theoretical explanation of the data will be presented afterwards.

7.2 Experimental Results of the Nuclear Self-Focusing Effect

The experiment is performed on a single negatively charged QD embedded in a

Schottky diode structure at a temperature of 5 K [28, 29]. We set the bias voltage

across the sample to charge only one electron into the QD. By applying an exter-

nal magnetic field perpendicular to the sample growth direction, we generate a four

level trion system, where a three level Lambda system can be selectively isolated,

as shown in the dash box of Fig. 7.1(a). |X±〉 (|T±〉) are the electron (hole) spin

Zeeman sublevels [29]. Two continuous wave (CW) lasers are used in the pump-probe

experiment. As shown in Fig. 7.1(a), a strong pump beam (red arrow) is horizontally

polarized and fixed to be nearly resonant with transition H1. The weak probe beam

(green arrow) is vertically polarized. Since the polarization axis of the QD rotates

about 20o away from the lab frame due to the heavy and light hole mixing [30], the

probe beam can pick up both V2 and H2 transitions in a single scan.
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Figure 7.1: The Observation of Hysteresis Effect. (a) The schematic of a trion energy level diagram

with a magnetic field applied in the Voigt geometry. Due to the heavy-light hole mixing, the out pair

(inner pair) of transitions rotates about 20o away from the vertical (horizontal) polarization in the

lab frame. The dashed box isolates the selected three-level Lambda system. A strong pump beam

is near resonant with transition H1 and a weak beam probes transition V2. A dark state is formed

when both lasers match the two-photon Raman resonance. (b) The probe absorption spectrum at

an external magnetic field 1.32T. The black (red) curve represents the probe absorption spectrum

of the forward (backward) scan. (c) The probe absorption spectrum as a function of the laser scan

rate, indicated by the Lock-in time constant. The top red curve is the backward scan with a 1 ms

Lock-in time constant.
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Figure 7.1(b) shows the probe absorption spectrum at a magnetic field of 1.32

T. In this data set, each data point is integrated with a one second lock-in time

constant. The narrow peak on the left and the broad peak on the right correspond

to transitions H2 and V2, respectively. We define the forward (backward) scan by

sweeping the probe laser from low (high) frequency to high (low) frequency. The black

(red) curve in Fig. 7.1(b) is the probe absorption spectrum obtained by scanning the

laser forward (backward). We focus on the optical response from transition V2, where

the sharp dip in the spectrum is due to the generation of the dark state when both

lasers match TPR [31].

Ideally, the overall lineshape of transition V2 should be Lorentzian like with a dark

state dip, as shown in Fig. 7.3(a). However, the spectrum clearly shows a broadened

lineshape with a round top and sharp edges, far from Lorentzian. The width and the

strength of the observed dip (the dark state) are also narrower and shallower than

what are expected. More remarkably, the spectra of forward and backward scans do

not completely overlap. The spectral position of the dark state in the backward scan is

shifted from the forward one, which indicates a change of TPR when the scan direction

is switched. We also observe hysteresis on the sharp edges of the V2 absorption

peak between the forward and backward scans, similar to the hysteresis effect in the

DC transport characteristics observed in GaAs heterostructures due to DNP in the

quantum Hall regime [32]. As the external magnetic field is unchanged in the forward

and backward scans, the above observations indicate that we optically create and

probe the DNP in this charged QD system, where the nuclear spin configuration can

be controlled by the scan direction of the optical field.

We study the characteristics of the dark state as a function of laser scan rate.

As a part of our measurement method, an increase of the laser scan rate is accom-

panied by a decrease of the lock-in time constant. The data in Fig. 7.1(c) clearly

show that the dark state becomes more pronounced concomitant with a broader dip

width as we increase the laser scan rate. Under faster scans, the edge hysteresis and

the spectrum shift of the dark state also become less pronounced, and the observed

lineshape is closer to the standard EIT spectrum in a Lambda level scheme (see Fig.
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3A), showing that the anomalous spectral features are due to a dynamic shift of the

spectral resonances on a timescale as slow as seconds.

The dynamics of the nuclear spin configuration are further explored by fixing

both lasers and recording the optical response as a function of time. The data shown

in Fig. B.1 are taken at a magnetic field of 2.64 T. Figure 2A shows the probe

absorption spectra with forward (black) and backward (red) scans. We observe a

stronger hysteresis effect but a weaker dark state resonance than at 1.32 T, which

could be ascribed to a decrease of the relaxation rate of the nuclear spin polarization

caused by increasing the magnetic field. For simplicity, we name the two hysteresis

states 1 and 2 in Fig. B.1(a).

To show switching between hysteresis states 1 and 2, we first scan the laser back-

ward and stop the laser right before the sharp rising edge of the trion peak, as shown

by the green curve in Fig. 2C. We continue to record the absorption signal as a

function of time with the laser parked. As seen in Fig. B.1(b), the signal level re-

mains unchanged at first, which means the system stays in hysteresis state 1. After

some time, we observe a sharp jump of the signal, up to a signal level consistent with

hysteresis state 2, where it remains. This jump is a signature of the switching of

the nuclear spin configuration. The time delay between parking the laser and this

switching between hysteresis states can be controlled by the laser parking position.

If the laser is parked closer to the sharp edge, the switching between the hysteresis

states happens faster. However, if the laser is parked far away from the sharp edge,

the system will stay in hysteresis state 1 and never jump to hysteresis 2. Finally, we

scan the probe laser forward and map out hysteresis state 2. The blue curve in Fig.

B.1(d) shows the partial forward scan spectrum which agrees with the full forward

scan pretty well.

The dynamics of the nuclear spin are also examined by monitoring the dark state.

In the following, we detune the pump to emphasize the dark state. After a full forward

scan to locate the dark state position, as shown by the black curve in Fig. 2E, we

take a partial forward scan to prepare the initial nuclear spin configuration and stop

the laser right before where the dark state is formed, shown in the red curve in Fig.
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Figure 7.2: The Dynamics of Nuclear Spin Configuration. Data are taken at a magnetic field

of 2.64 T. (a) Black (red) curve represents a full forward (backward) scan. (b) Green curve is a

partial forward scan. Immediately after stopping the laser right before the rising edge of the trion

absorption, (c) the probe absorption signal is taken as a function of time. The switching between

hysteresis states 1 and 2 is observed. (d) Blue curve is the partial forward scan taken after the

switching of the hysteresis states, which agrees with the full forward scan pretty well. The fine

differences are explained in the theoretical discussion part of the text. (e) After we locate the dark

state by a full forward scan (black curve), we take a partial forward scan (red curve) to prepare the

nuclear spin configuration. L, D and R denote three system statues. Immediately after parking the

laser right before where the dark state is formed, (f) we take the absorption signal as a function of

the time. The system starts from statues L, switches to D, and finishes at status R, which indicates a

dynamic evolution of the nuclear spin configuration. (g) and (h) show the dark state is a meta-stable

state.
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B.1(e). Immediately following that, we measure the absorption signal as a function

of time, as shown in Fig. B.1(f). The system starts in status L, evidenced by the

signal level, and jumps into status D after some time. This observation indicates that

the Overhauser field shifts the electron spin Zeeman energy to match the two-photon

resonance condition through the DNP process. The switching from status L to D

happens very fast and we could not resolve the time scale. In experiments we noticed

that the system can stay in the dark state on a time scale from a few seconds to 3

minutes. A few examples are shown in Fig. B.1(f-h). Since any change in the two-

photon resonance will destroy the dark state, the system staying in the dark state

indicates that the nuclear spin configuration is “quasi-frozen” for this time scale.

Figure B.1(f) shows an example where status D lasts about 40s and then switches to

status R.

7.3 Theoretical Explanation of the Hole Spin-Assisted Nuclei Self-Focusing

Effect [33]

In order to fully understand the experimental observations, we gain insight into

the hyperfine interaction by the realization that instead of the electron spin, it is the

hyperfine interaction between the heavy hole spin of the trion and lattice nuclei which

accounts for the experimental observations. In a single charged QD, the properties of

the trion state are determined by the spin of the heavy hole, which is in the P state.

The hyperfine interaction between the heavy-hole spin and nuclear spin is strongly

anisotropic [26, 27]. Strictly speaking, the nuclei not only interact with the fraction

of the hole in the same primitive unit cell (“on-site” interaction), but also with the

probability density localized at more distant unit cells (long-ranged interactions).

Nevertheless, it has been shown that the long-range part only leads to corrections on

the order of 1% relative to the on-site interaction, and hence can be neglected [26,27].

We use 1/2 pseudo-spin Sh to denote the heavy hole subspace.

For a small quantum dot, heavy-light hole mixing is a non-negligible effect. The

two “heavy hole” states after mixing are |Sz
h = 1

2
〉 ≡

∣∣Jz = 3
2

〉 − η
∣∣Jz = −1

2

〉
and
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|Sz
h = −1

2
〉 ≡

∣∣Jz = −3
2

〉− η
∣∣Jz = 1

2

〉
where ẑ is assumed to be the growth direction.

The amount of mixing can be identified using polarization dependent absorption

spectroscopy [30], as shown in Chpater 5. For the SAQD used in the experiment,

η ∼ 0.2 (refer to Eqn 1.9 in Chapter 2). Assuming the hole envelope function fh (Rk)

varies slowly on the length scale of a primitive cell, one finds the hyperfine interaction

between the heavy hole spin and the nuclear spins [26, 27]

Hh−n =
∑

k

Ah,k

[
Sz

hI
z
k + O (η) (Sy

hIy
k + Sx

hIx
k ) + O

(
η2

)
(Sx

hIz
k + Sy

hIz
k)

]
(7.6)

where Ah,k ≡ Ah,αk
|fh (Rk)|2 c30

4
. We have Ah,k ∼ 2

N
Ah,αk

, similar to the electron

case. For In and As, experiments and calculations lead to the estimation Ah ∼
0.1− 0.2Ae [26, 27]

Unlike the electron, the heavy hole spin couples to the nuclear spins through the

anisotropic hyperfine interaction, which results in a significantly different dynamic

polarization effect on the nuclear spins. In a magnetic field applied in the x̂ direction,

we define the nuclear spin raising and lowering operators I±k = Iy
k ± iIz

k . For the

electron, the terms that flips the nuclear spin eigenstates in the field direction are

S∓e I±k which always involve the simultaneous flip of the electron spin eigenstate. For

the hole, we have unique terms like Sx
hI±k , which flip the nuclear spin eigenstates

without changing the hole spin. This type of process is of direct relevance for the

dynamics of the nuclear Overhauser shift observed in this experiment. If the magnetic

field is entirely in the x− y plane, such processes arise from the O (η2) (Sx
hIz

k + Sy
hIz

k)

term in Eq. (7.6). If the magnetic field has some out-of-plane components, such

processes can also arise from the Sz
hI

z
k term in Eq. (7.6).

In particular, we focus on the non-collinear hyperfine coupling term Sx
hIz

k . This

interaction operator can flip a nuclear spin without flipping the hole spin, cost-

ing only the nuclear Zeeman energy ~ωN ∼ 0.01 GHz/Tesla [34, 35]. Therefore,

this process stands out from the various DNP interactions since the small energy

cost can be directly compensated by the homogeneous broadening of the trion state

∼ 0.4 GHz, while the processes by other collinear terms have to involve phonon emis-

sion/absorption to compensate for the energy cost of flipping the hole or electron
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spin.

In contrast, for the electron spin states, the term that can flip a nuclear spin

eigenstate is S∓e I±k . The spin state of the electron has to be simultaneously flipped

with that of the electron, which costs the energy of the electron Zeeman energy

~ωe. This energy (about ∼ 7 GHz/T) can only be compensated by the emission or

absorption of phonons. Although the hyperfine interaction is stronger for the electron,

the efficiency of DNP by electron interaction may be significantly limited due to the

weak coupling to the phonon bath.

Terms such as Sz
hI

z
k and Sy

hIy
k in the trion-nuclear hyperfine interaction can also

flip the nuclear spin with a simultaneous flip of the hole spin. But similarly, their

roles in DNP can be diminished by the fact that phonon processes are necessary to

compensate for the energy cost of flipping the hole spin. Below we focus on the role

of the Sx
hI±k terms.

From Fermi’s Golden rule, we find the nuclear spin flip rates are proportional to

ρt,iρt,f , where ρt,i (ρt,f ) is the trion population before (after) a nuclear spin flip. The

rates for the nuclear spin to flip up and down are different, since they have different

effects on the electron Zeeman splitting and hence create different trion populations

ρt,f . Since ρt,i is the same for a particular flipping process, it is clear that the one

resulting in a larger ρt,f always wins, i.e. the DNP process tends to maximize trion

excitation. The net DNP rate is proportional to ρt
∂ρt

∂δ
, where δ is probe laser detuning

from the trion frequency. Figure 7.3(b) plots the calculated ρt
∂ρt

∂δ
as a function of

the laser frequency without the DNP effect. We can see that the net DNP rate

goes to zero at the maxima of the trion population (also the position of strongest

absorption), located at ±δs. In our theory, a positive DNP rate pulls trion transition

V2 (i.e. it shifts the entire spectrum) to the red while a negative DNP rate pushes

trion transition V2 to the blue. This creates a restoring force around the absorption

maxima, such that when the laser is slightly detuned from the position of strongest

absorption, the Overhauser field acts to adjust the Zeeman splitting to maximize the

trion excitation. Thus, as the laser scans, the system actively self-focuses into its

stable configuration by tuning the electron spin Zeeman splitting through the DNP
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Figure 7.3: The Self-Focusing of Nuclei With the Narrowing the Inhomogeneous Broadening of

the Overhauser Field. The calculated (a) probe absorption spectrum and (b) ρt
∂ρt

∂ω by solving the

three-level Lambda system with pump on resonance in the absence of DNP. Figure (b) shows the

Overhauser field acting as a restoring force. Numerical simulation results including the self-focusing

of the nuclei effects for (c) slow scan and (d) fast scan corresponding to a magnetic field of 1.32

T. (e) is the calculated Overhauser shift corresponding to the slow scan. The positive (negative)

Overhauser-shift shifts the probe absorption spectrum to the blue (red). (f) The hysteresis (black

dots) and the detuning of the dark state (orange dots) caused by the DNP effect as a function of the

magnetic field, which shows a saturation effect. Lines on top of the data are guides to the eye. (g)

The extracted γs/2π from the dark state data as a function of square root of the pump intensities,

where Io = 2W/cm2.
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process.

We can use this self-focusing mechanism to further explain our experimental ob-

servations. When the laser scans forward and approaches the first trion population

maximum, the scan and “pull” directions are anti-parallel. The DNP effect “pulls”

the trion resonance into the oncoming laser, leading to a fast, sharp rise of the ab-

sorption signal. As the laser keeps stepping forward, the DNP will “push” the trion

transition to follow the laser frequency in order to maintain the stable configuration,

which leads to the round top in the spectrum and pushes the two-photon resonance to

the blue. However, intrinsic nuclear spin relaxation eventually wins out and depolar-

izes the nuclear spins, which shifts the spectrum opposite to the DNP direction. This

brings the system quickly into the dark state and leads to the sharp edge. Parking the

laser in or near this dark state configuration leads to the observations shown in Fig.

B.1(f-h), which confirms that the dark state is metastable and the trion absorption

maximum is indeed the stable configuration for DNP. If the laser continues to scan,

the system again self-focuses quickly into its stable configuration in region II, leading

to another round top, until, once more, nuclear spin relaxation wins over.

The features of the backward scan can also be understood in the same way as

the forward scan. As the probe laser moves into region II, the laser scan direction is

antiparallel to the DNP “push” direction, leading to a sharp increase in absorption.

An interesting feature we should point out is that there is no dip observed in the

partial forward scan in Fig. B.1(d) (blue line) compared to the full forward scan (black

line). This is a signature that the system jumps from the low absorption hysteresis

state 1 into the stability region II. Since region II is already on the blue side of the

dark state, there is no dark state formed during the partial forward scan. We can also

expect that spectra of the partial (blue line) and full (black line) forward scans should

be shifted from each other by a small amount, seen in Fig. B.1(d). The spectral shifts

between partial and full forward scans can be controlled by adjusting the relative

spectral positions between the dark state and the sharp rise of the backward scan,

which is controlled by the pump detuning.

The dynamics of the Overhauser shift ∆ ≡ ωe − ωe,0 (where ωe,0is the Zeeman
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splitting by the external field only) are described by the equation:

d∆

dt
= −γn∆ + αρt

∂ρt

∂δ
(7.7)

where γn is the nuclear spin relaxation rate, α ∼ O (η4) A2
hA

2
eγ
−1
t N−3, η is the amount

of heavy-light hole mixing, Ah(Ae) is the hyperfine constant for hole-nuclear (electron-

nuclear) coupling, γt is the trion homogeneous broadening, and N is the number of

nuclear spins in the quantum dot [28]. ρt as a function of δ is calculated using the

optical Bloch equations.

We numerically simulate the self-focusing process by including DNP in the optical

Bloch equations. Figure 7.3(c) ((d)) shows an example of the simulation result for

slow (fast) scans at magnetic field of 1.32T. We can see that the numerical simulations

qualitatively reproduce many features of the experimental observations, including the

edge hysteresis, the shape and spectral detuning of the dark state dip, the round

and broadened top of the absorption peak in the slow scan. The evolution of the

Overhauser shifts as a function of the probe frequency and scan direction are plotted in

Fig. 7.3(e), which clearly show the origins of all the spectral features. A best fit to the

fast scan data is produced with parameters γn = 2.5
2π

Hz; α = 35 MHz3, while a best

fit to the slow scan data is obtained with γn = 1.5
2π

Hz; α = 3.2 MHz3. These values

of α correspond to hole-nuclear hyperfine constant Ah ≈ 16 µeV and Ah ≈ 5 µeV

respectively, in reasonable agreement with the estimation given in Ref [26, 27]

7.4 Suppression of the Nuclear Spin Fluctuations

We also examine the hysteresis effect and the detuning of the dark state by varying

the magnetic fields up to 6 T. The hysteresis is quantified by the separation between

the rising edge of the backward scan and the falling edge of the forward scan. Figure

7.3(f) plots the hysteresis (black dots) and the separation of the dark states (orange

dots) as a function of the magnetic fields. The hysteresis and the detuning increase

first and saturate at high magnetic fields. Since the magnitudes of the hysteresis and

the dark state shift reflect the nuclear field established by DNP, larger hysteresis and

dark state shifts could correspond to smaller nuclear spin relaxation rates. The above
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field dependent observations may indicate that the nuclear spin relaxation rate in the

charged QD system decreases with increasing magnetic fields and saturates at high

fields, consistent with the observations in other systems [19].

The self-focusing effect can lead to the suppression of the nuclear spin fluctua-

tions, which enhances the electron spin T2*. Once the system has switched to a

configuration of maximum trion excitation, the electron spin Zeeman energy and

hence the nuclear field are only determined and controlled by the instantaneous laser

frequency, regardless of the initial nuclear spin configuration before the scan starts.

In this regime, DNP can actively work to maximize the trion population and any

nuclear spin fluctuations which shift the Zeeman resonance are canceled out through

feedback via the DNP mechanism. Therefore, the self-focusing process narrows the

inhomogeneous broadening of the Overhauser field and enhances the electron spin

decoherence time T2*.

The narrowing effect on the inhomogeneous broadening is verified from the CPT

spectroscopy which provides frequency domain information on the electron spin T2*.

From the fast scan data, we can extract the electron spin decoherence rate of γs/2π ≈
50 MHz. In contrast, for our dot (∼3 nm in height and∼15 nm in base diameter [23]),

the spin inhomogeneous broadening due to a thermally distributed nuclear environ-

ment is estimated to be 360 MHz [10], much larger than the 50 MHz extracted from

our fast scan CPT data. We attribute this discrepancy to the suppression of the

nuclear spin fluctuations caused by the self-focusing effect.

Furthermore, we find that the narrowing of inhomogeneous broadening of the spin

coherence becomes more significant with increasing pump power. The extracted spin

inhomogeneous broadening is plotted in Fig. 7.3(g) as a function of the square root

of the laser intensities. Surprisingly, a linear line fits the data. We extrapolate γs/2π

of 290 MHz in the absence of the DNP by extrapolating the line to zero pump power,

which reasonably agrees with the theoretical prediction. For the highest applied pump

power, we find γs/2π = (7± 3) MHz, which corresponds to a 40 times enhancement

of the spin T2* time and is limited by the current experimental configuration. We

expect the narrowing effect to be more significant under higher pump powers. We
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further anticipate a spin quantum beats experiment to confirm this enhancement of

spin T2* from direct time domain measurement.
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CHAPTER 8

Summary and Future Direction

In this chapter, I will summarize the work in this thesis and look into the experi-

ments and research directions for the near future.

8.1 Thesis Summary

This thesis focused on the coherent optical spectroscopy of a single InAs SAQD.

The QD is embedded in a Schottky diode structure, which gives us the ability to

actively control the number of electrons in the QD by adjusting the bias across the

sample [1]. We started with photoluminescence characterization of a single QD and

show the charging effects [2]. The SAQD has a very strong lateral confinement,

therefore, it behaves like a single atom in many ways [3, 4]. When a strong laser

interacts with an atomic transition, the atomic states will be dressed by the laser

photons [5]. We first demonstrated the dressed QD states by the optical Mollow

absorption spectrum [3, 6]. In this experiment, we utilized the V system formed by

two polarized neutral exciton states. The Autler-Townes splitting was demonstrated

when pump and probe beams couple different transitions [7], while the optical Mollow

absorption spectrum was shown if the pump and probe beams were on the same

transition. Gain without inversion was also demonstrated by observing the negative

absorption of the probe beam. This gain effect results from the coherent energy

exchange between the pump and probe beams through the QD nonlinearity. This

work shows that the QD state is well isolated from the solid state environment and

behaves like a single atom even in the high optical field strength limit. In systems with

109
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weaker confinement or higher dimensionality, we have seen the transition from simple

atomic behavior to complex many body behavior, which is not good for quantum

devices. In the experiment, we found we could achieve ultrafast operation of the dot

state using a relatively inexpensive CW diode laser rather than the more expensive

but common time domain pulsed laser, achieving Rabi oscillation of up to 1.4 GHz.

These results, which are published in Science 319, 929 (2007), may dramatically

change how researchers can imagine achieving optically driven quantum computing

based on QDs systems using commercial telecommunications technology.

In the next step, we studied a single charged QD driven by a strong optical field

and also observe the optical Mollow absorption spectrum. When the strong pump

was on resonance with the trion transition, a triplet appeared in the probe absorption

spectrum with a weak center peak and two Rabi side bands with dispersive lineshapes.

As the pump beam was detuned from the trion transition, three spectral features were

observed: a weak dispersive lineshape centered at the driving field frequency flanked

by an AC Stark shifted absorption peak and a Raman gain side band. The observation

of the typical features of a two level atomic system demonstrated that the manybody

system of 2 electrons and 1 hole follow the predictions of the atomic theory first

developed by Mollow for a strongly driven 2 level system.

The spin state initialization experiment in Chapter 5 demonstrated that a solid

state qubit can be initialized at a rate much faster than its decoherence rate [8]. A

single electron spin has been proposed as a good qubit candidate for quantum infor-

mation and quantum computation (QIQC) where the qubit replaces the bit (used in

a classical computer). One of the key requirements of the QIQC is qubit preparation.

QIQC requires not only qubits to be initialized in a known state for computation

and gate operations, but also a continuous supply of low-entropy ancillary qubits for

quantum error correction [9]. Fault tolerant QIQC requires about 104 operations be-

fore the qubit looses its coherence. In our work, we demonstrated a fast electron spin

state initialization by applying a magnetic field perpendicular to the sample growth

direction. This so called spin cooling technique is the same as the optical pumping

effect in atomic systems. The experimental results are an important step towards the
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realization of the fault tolerant QIQC in the solid state QD system, and is reported

in Phys. Rev. Lett. 99, 097401 (2007).

The coherent population trapping of an electron spin was demonstrated in a singly-

charged quantum dot in Chapter 6. Coherent population trapping (CPT), resulting

from the coherent superposition of two ground states coupled by coherent optical

fields to an intermediate state, is the basis for electromagnetically induced trans-

parency [10]. By applying a magnetic field in the Voigt geometry, we created a

three-level lambda system, formed by two Zeeman sublevels of an electron spin and

an intermediate trion state [8]. As we tuned the driving and probe fields to the

two-photon Raman resonance, we observe a pronounced dip in the probe absorption

spectrum, indicating the CPT of the electron spin. An arbitrary superposition of

the electron spin states can be prepared by varying the ratio of the Rabi frequencies

between the driving and probe fields. The experimental results, published in Nature

Physics 4, 692 (2008) show that spin based semiconductor quantum dot systems have

the potential to be used for EIT, slow light [11], and quantum information storage

applications [12].

By using the CPT technique developed in Chapter 6, we demonstrated the prepa-

ration, subsequent probe and control of the Overhauser field in a single charged QD.

With a finite magnetic field and fixed pump laser frequency, we can control the nu-

clear spin configuration by simply switching the scan direction of the probe laser.

The dynamic nuclear spin polarization (DNP) manifested itself both in a laser scan

direction dependent hysteresis effect and the frequency detuning of the dark state.

We also observe the switching of the nuclear spin configuration by fixing the laser

frequencies and monitoring the coherent optical response as a function of time. Our

data indicate a narrowing of the inhomogeneous broadening of the Overhauser field

evident by the enhancement of the electron spin T2*. The self-focusing of nuclei into

its stable configuration through the hole spin-assisted DNP process can well explain

all the experimental observations. Both experimental results and theoretical devel-

opment can lead to a valuable understanding and possibly arbitrary control of the

hyperfine interaction while coherently manipulating a single spin in such hyperfine
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interaction mediated solid state nano-structures.

8.2 Future Directions

Based on the experimental achievements in this thesis, I will discuss a few possible

experiments which could be performed either immediately or in the near future in

this section.

8.2.1 Hyperfine Interaction of a Single Spin With Nuclei

Since QDs have a three dimensional confinement, the wave function of a electron

spin inside a QD is strongly localized. Thus, the primary spin relaxation mecha-

nism in the bulk semiconductor, the coupling of the spin and orbital momentum,

is strongly suppressed [13]. However, the strongly localized wave function enhances

the hyperfine coupling between the electron spin and lattice nuclei, which leads to

electron spin decoherence [14–16]. Although the intrinsic electron spin T2 can be

measured by the spin echo technique [17], this technique is not convenient in the real

quantum computing application of spins. One would like to fully utilize the intrinsic

T2 by simple techniques without any complicated coherence recovery process during

the manipulation of spins, which can be achieved by the suppression of the nuclear

spin fluctuations before operating on the spins. Although there are many proposals

about suppressing the nuclear spin fluctuations in QDs [18–20], only two experiments

towards this goal have been performed. One is on a gate-confined double dot system

using a transport measurement [21], and the other is on an ensemble of SAQDs using

an optical measurement [22].

In the optical measurement, the electron spin precession frequencies are focused

into a few modes assisted by the Overhauser field, where the modes are determined

by a designed pulse protocol [22]. In this way, the fluctuation of the nuclear spins is

suppressed. Due to the long lifetime of the nuclear spins, the electron spin coherence

can be imprinted into the nuclei spins and stored for a few minutes in the dark. A

better scheme is realized in the transport measurement [21]. In that experiment, no



113

complex pulse sequence is used. The nuclear spin fluctuations are suppressed by a

cyclic evolution of the two-spin states, although the physical origin of the suppression

is not clear yet. The basic experimental process is that the electron spins, which

are in a singlet state, are adiabatically brought into a spin triplet state, and then

immediately non-adiabatically pumped back to the initial spin singlet state. There-

fore, angular momentum is transferred between the electron and nuclear spins in this

one cycle. The cyclic process is done at a 4 MHz rate and the maximum nuclear

spin polarization achieved in the experiment is about 1%, which leads to a 70 times

increase of the electron spin T2*.

In our experiment, we would like to optically manipulate a single spin in a single

QD. An ideal way to extend spin T2* is to suppress the nuclear spin fluctuations

before the manipulation of the spin. The early proposal for suppressing the nuclear

spin fluctuations is to initialize the nuclear spin polarization > 99% [13]. Such a

high degree of polarization of the nuclear spins is very difficult to achieve [23]. In our

case, we could use the the self-focusing process developed in chapter 7 to suppress the

nuclear spin fluctuations. The proposed experimental procedure is as follows. First

we can use two CW lasers to suppress the nuclear spin fluctuations. As discussed in

chapter 7, a strong pump is fixed to be nearly resonant with one trion transition and

a weak probe scans across the other trion transition in a three-level Lambda system.

After the strong absorption peak is located, which is the most stable configuration of

the nuclei, the probe laser is fixed at this particular frequency. Since the nuclear spin

has a long lifetime, after narrowing the inhomogeneous broadening of the Overhauser

field, we could block both CW lasers and do time domain operations. After the

pulse operations, the nuclear spin configuration is re-initialized by unblocking both

CW lasers. Therefore, in each run, we illuminate the QD with both CW lasers for a

second, and then manipulate the electron spin with pulse lasers. Longer lasting spin

quantum beats would be direct experimental evidence of the suppression of nuclear

spin fluctuations. The electron spin T2* is also expected to be bigger as the laser

power is increased.

Anther method to suppress the nuclear spin configuration is proposed based on
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coherent population trapping in Ref [25]. When the pump and probe lasers match

the two-photon resonances in a three level lambda system, the spin ground states

form a dark state. Therefore, the emission from the excited trion state will be greatly

reduced. Due to the fluctuation of the Overhauser field, the two photon resonance

condition is destroyed and, thus, the emission of the trion state increases. In this

scheme, the change of the emission of the trion state can be used to as a feedback

signal to re-adjust the laser frequencies. Once the change of trion emission is detected,

the lasers are adjusted to new positions to minimize the emission. In this dynamic

feedback process, the nuclear spin fluctuation can be suppressed. The numerical

simulation in Ref. [25] shows a factor of 100 enhancement of T2*. However, since we

observe the self-focusing effect of the nuclei in the CPT process, the impact of the

self-focusing mechanism on this scheme is not clear.

8.2.2 A Singly Charged Quantum Dot in a Nano-Cavity

Cavity quantum electrodynamics experiments in semiconductor nano-cavities by

using QDs as artificial atoms have been emerging quickly in the past few years.

Vacuum Rabi splitting has recently been demonstrated in Ref [26–28]. The controlled

transmission, reflection, and phase of light by a QD embedded in a photonic crystal

(PC) Nano-cavity are also realized [29, 30]. Recently, there has also been a report

on a single QD in a PC Nano-cavity as a single photon transistor [31]. There are

many proposals on quantum networks based on the QD coupled cavity system. Many

experiments have been done in the area of cavity QED with atomic ensembles, such

as entanglement distribution between two remote nodes [32] and mapping photonic

entanglement into and out of the atomic states [33]. One common feature for these

experiments is that a three-level Lambda system is used. We know that a singly

charged quantum dot can form a three-level Lambda system with the applied magnetic

field in the Voigt geometry. Further more, current progress of QD cavity QED is on

neutral QDs. Therefore, it will be interesting and important to study a single charged

QD embedded in a cavity.
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Ideally, we would like to embed the QD in a nanocavity with a very high Q and

very small mode volume, which leads to small cavity damping and strong coupling to

the QD. We also require bias control of the quantum dot, so that the charging state

can be controlled using the applied voltage. While the bias control is critical, it is a

technical challenge to build a diode structure into the cavity since the Q factor will

be significantly decreased. Recently, there was a talk on a charged QD in a micro-

cavity [34]. The switching of the polarization of light was demonstrated. However, the

cavity in that work had a very large mode volume in order to build a diode structure.

These technical issues must be solved before charged QD nano-cavity systems can be

applied to solve real world problems. Nerveless, there is rich physics in a charged QD

embedded in the nanocavity system that has yet to but needs to be explored .

In summary, this thesis has reviewed many new results in area of coherent optical

control and spectroscopy of single electron doped quantum dots. The results demon-

strate the important achievement of many milestones identified to build an optically

driven quantum dot based quantum computer as well as revealing new and exciting

physics regarding nuclear coupling that may open the door to even more novel ideas.
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APPENDIX A

Derivation of Spin State Preparation Efficiency

In appendix A, we will derive the optical pumping efficiency for the scheme presented

in Chapter 5. Considering a four-level trion system shown in Fig. A.1, a pump beam

is near resonant with transition V1 with a vertical polarization. Since transition V2

is also vertically polarized, the pump beam is also off resonantly coupled to transition

V2. The Hamiltonian can be written as

H = ~




ω14 X∗
12 0 0

X21 ω24 0 0

0 0 ω34 X34

0 0 X∗
43 0




(A.1)

where Xij =
−µij∗E

2~ , µij is the dipole moment and E is the pump field strength. From

the optical Bloch equations, we write out the density matrix equations

dρ11

dt
= −i(X∗

12ρ21−X21ρ12) + Γ21ρ22 + Γ31ρ33 + Γ41(ρ44 − ρ11) (A.2)

dρ22

dt
= −i(X21ρ12−X∗

12ρ21)− Γ21ρ22 − Γ24ρ22 (A.3)

dρ33

dt
= −i(X34ρ43−X∗

43ρ34)− Γ31ρ33 − Γ34ρ33 (A.4)

dρ44

dt
= −i(X∗

43ρ34−X34ρ43) + Γ24ρ22 + Γ34ρ33 + Γ41(ρ11 − ρ44) (A.5)

dρ21

dt
= −i(X21ρ11−X21ρ22 + ρ21ω21)− γ21ρ21 (A.6)

dρ34

dt
= −i(X34ρ44−X34ρ33 + ρ34ω34)− γ34ρ34 (A.7)

In the above equations, Γij (γij) is the decay (dephasing) rate from state i to state j.
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∆

Γ41

Ε(ω)

Ε(ω)

Figure A.1: Schematic of a Four Level Structure

We rewrite the density matrix elements in the field interaction picture

ρ21 = ρ̃21e
−iωt, ρ34 = ρ̃34e

−iωt (A.8)

Substituting the above formula into equations A.6 and A.7, we obtain

ρ̃21 =
iX1(ρ22 − ρ11)

iδ1 + γ21

ρ̃34 =
iX2(ρ33 − ρ44)

iδ2 + γ34

(A.9)

where X1 = µ21.E/2~ and X2 = µ34.E/2~.

We insert ρ̃21 and ρ̃34 back to equation A.2-A.4 and obtain the rate equations

dn1

dt
=

2X2
1 (n2 − n1)γ21

γ2
21 + δ2

1

+ Γ21n2 + Γ31n3 + Γ41(n4 − n1) (A.10)

dn1

dt
=

−2X2
1 (n2 − n1)γ21

γ2
21 + δ2

1

− (Γ21 + Γ24)n2 (A.11)

dn3

dt
=

−2X2
2 (n3 − n4)γ34

γ2
34 + δ2

2

− (Γ31 + Γ34)n3 (A.12)

dn4

dt
=

2X2
2 (n3 − n4)γ34

γ2
34 + δ2

2

+ Γ24n2 + Γ34n3 + Γ41(n1 − n4) (A.13)

(A.14)

where δ1 = ω21 − ω, δ2 = δ1 + ∆ and ∆ is the sum of the electron and hole Zeeman

splitting. By solving the rate equations, we obtain

n1 =
2Ω2

1γ21 + Γ2γ
2
212Γ31Ω

2
2γ34

[(4(Γ24 + Γ31)Ω2
2γ34 + Γ24Γ3(γ2

34 + ∆2))]2Ω2
1γ21 + 2Γ31Γ2Ω2

2γ
2
21γ34

(A.15)
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If we assume Ω1
∼= Ω2 = Ω, Γ24

∼= Γ31 = Γ, γ21
∼= Γ, Γ2

∼= Γ3 = 2Γ, the formula of

n1 can be simplified to

n1 =
Ω2 + Γ2

4Ω2 + 2Γ2 + ∆2
(A.16)

Therefore, the optical pumping efficiency is 1− n1.



APPENDIX B

Derivation of The Probe Absorption Formula for the Mollow Absorption

Spectrum

In appendix A, we will derive the analytical formula for the probe absorption under

a strong optical pump field presented in Chapters 3 and 4. Considering a two level

system shown in Fig. B.1, a pump beam is near resonant with the atomic transition

and a probe beam scan across it. Since the pump beam is much stronger than the

probe, we can solve the probe to the first order and pump to all order. First we

ignore the probe beam and solve the pump to all order. The Hamiltonian in the field

interaction picture with rotating wave approximation can be written as

H = ~


 0 X1

X1 δ1


 (B.1)

where X1 = −µ∗E1

2~ = −Ω1/2, µ is the dipole moment ,E1 is the pump field strength,

and delta1 = ω1 − ωo is the pump detuning from the resonance. From the optical

Bloch equations, we write out the density matrix equations

0 = iX1(ρ
o
21 − ρo

12)− Γρo
22 (B.2)

0 = −iX1(ρ
o
22 − ρo

11)− (γ − iδ1)ρ
o
12 (B.3)

1 = ρo
11 + ρo

22 (B.4)

(B.5)

In the above equations, Γ (γ) is the decay (dephasing) rate from state 2 to state 1.

Solving the above equation, we can obtain the density matrix elements ρo
22,ρ

o
11,ρ

o
21
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corresponding to all orders to the pump E1. Then we write out the density matrix

equation in the pump field interaction picture including the probe field

dρ22

dt
= (iX1 + iX2e

−i∆t)(ρ21 − ρ12)− Γρ22 (B.6)

dρ12

dt
= (−iX1 − iX2e

i∆t)(ρ22 − ρ11)− (γ − iδ1)ρ12 (B.7)

1 = ρ11 + ρ22 (B.8)

(B.9)

We try a solution with a form of

ρij = ρo
ij + ρ1

ij, (B.10)

where

ρ1
ij = aij + bije

i∆t + cije
−i∆t (B.11)

∆ is the probe detuning from the pump frequency, b12 corresponds to the probe

absorption and c12 corresponds to the new four wave mixing signal.

Ε1(ω)

Ε2(ω)

Figure B.1: Schematic of a Two-Level System. A weak beam (green arrow) probe a level-system

driven by a strong pump (red arrow).

We substitute Eqn. B.10 into Eqn. B.9 and equate constants and the coefficients

of ei∆t. We obtain

0 = 2iX1b22 + (γ − iδ1 + i∆)b12 + iX2(ρ
o
22 − ρo

11) (B.12)

0 = (−i∆− Γ)b22 + iX1b21 − iX1b12 + iX2ρ
o
21 (B.13)

0 = 2iX1b22 − (γ + iδ1 + i∆)b21 (B.14)

(B.15)
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Solving the above equations, we obtain the absorption coefficient

α = Im[
αoΓA[iΓA∗(A∗ + i∆) + ∆(

Ω2
1

2
− γB + i (B + i∆) δ1 + δ2

1)]

(Γ2AA∗ + iΩ2
1γ∆)(B2 + δ2

1) + γΩ4
1B + Γ(Ω2

1(γ + B)(γB + δ2
1)+

iγ2B2∆ + iδ2
1∆(B2 + γ2 + δ2

1))

], (B.16)

where A = γ + iδ1, B = γ + i∆, and αo is a constant.




