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Chapter 1 

 

Introduction 

 

 

Musculoskeletal injury poses a major health care burden in the United States.  

Health care costs for musculoskeletal injury in 2004 were $127.4 billion, an increase of 

37% from 1996.  Although it is difficult to determine exact numbers, it has been 

consistently reported that 60%-67% of all injuries in the U.S. involve the musculoskeletal 

system, and 25% of musculoskeletal injury treatment episodes are for fractures.  In 2004, 

four percent of people reported that a musculoskeletal injury limited their daily activities, 

and there were a total of 72.1 million days of work lost due to injury.  The hospital cost 

for fractures is greater on average than for other injuries.  Fractures accounted for 81% of 

patients hospitalized with a musculoskeletal injury, yet they represent 88% of related 

costs.  Fracture patients remained in the hospital for an average of 5.1 days at a cost of 

$27,740 per day for a total 4.3 million days and $23.44 billion [1]. 

Military trauma provides another incentive for new interventions in fracture 

healing.  Modern warfare has posed interesting challenges in bone repair.  With advances 

in critical care and the advent of new body armor, which protect the body’s core systems, 

75% of war injuries now involve the extremities [18, 66, 77].  These injuries often 

involve severe circulatory damage, major soft tissue trauma, and bacterial contamination 

[65] leading to a more challenging microenvironment for bone healing.   

Based on these data, methods to accelerate the repair of bone under both normal 

and challenging circumstances would benefit a large segment of the population.  With the 

burden of musculoskeletal injury increasing in both civilian and military lives, a better 

understanding of the mechanisms involved in fracture healing is needed to improve the 

treatment of bone injury.  The work presented in this dissertation aims to explore how the 
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mechanical environment, an important variable in the success of bone repair, affects the 

progression of healing and how this environment may influence cells involved in the 

repair process. 

Biologic Fracture Healing Progression 

Normal fracture healing is a process unique from typical wound healing in that 

there is a complete reconstitution of the bone without the formation of scar tissue.  This 

process is complex involving numerous cell types, and many different factors influence 

healing progression.  These factors are related to the physical nature of the fracture 

(severity, location), the biologic environment at the fracture site (vascularity, growth 

factor and cytokine availability), nutritional, physical, and genetic.  Mechanical factors 

such as interfragmentary strain and rigidity of fixation as well as fracture geometry have 

also been shown to effect the progression of healing [9, 24, 108]. 

Fracture healing can progress through one of two methods, primary or secondary 

healing.  Primary fracture healing occurs when there is little interfragmentary strain 

between points of repair and there are areas of bony contact in conjunction with gaps 

along the fracture.  In primary healing, the cortex attempts to directly restore itself by 

bridging the fracture gap.  Mesenchymal progenitor cells differentiate into osteoblasts 

and lay down osteoid along the exposed surfaces.  Once initial bridging occurs, returning 

continuity and providing points of contact between the two halves, osteoclasts form 

cutting cones across the gap recreating the Haversian system and reestablishing 

vascularization.  The return of the blood supply allows for the delivery of endothelial and 

mesenchymal progenitor cells, which establish new osteons further stabilizing the 

fracture.  For a fracture to heal through primary healing alone is rare since it is very 

difficult to fix a fracture without some motion occurring between the two bone ends.  

Therefore most fractures mend through a combination of primary and secondary fracture 

healing.  [27, 29, 82] 

Secondary fracture healing occurs through both intramembranous and 

endochondral bone formation, mimicking embryonic bone development.  Normally, bone 

forms through intramembranous ossification on the callus periphery and through 

endochondral ossification adjacent to the bone with the periosteum and surrounding soft 

tissues contributing to the healing response.  This healing occurs in non-discrete stages 



 

 3 

until lamellar bone bridges the fracture gap to completely restore mechanical stability.  

The immediate response to fracture is the formation of a hematoma and inflammation.  

This response serves to initially provide stabilization between the two bone ends and to 

initiate signaling cascades vital to the healing process.  After the hematoma has formed, 

precursor cells invade to form new blood vessels, fibroblasts, and other supporting cells 

that form granulation tissue between the fractured ends.  Macrophages and other cells 

derive from this tissue and act to remove the original hematoma.  Osteoclasts then begin 

to resorb the damaged and necrotic bone ends, and osteoprogenitors from the periosteum 

proliferate.  Through intramembranous ossification, these osteoprogenitors form woven 

bone creating a hard callus on the periphery.  At the same time, cells from the periosteum 

and surrounding tissues begin to form cartilage within the granulated scaffold, this 

cartilage matrix mineralizes, and bone forms through endochondral ossification.  Finally, 

the woven bone that now constitutes the fracture callus is remodeled to return the bone to 

its original state.  [27, 29, 37, 82] 

Expression of Molecular Factors During Fracture Healing 

Many different molecules are necessary to drive the fracture repair process.  The 

presence and timing of the regulation of these molecular factors determine the overall 

progression of stages in secondary fracture healing.  These promoting and signaling 

molecules can be classified into three groups: the pro-inflammatory cytokines, the 

transforming growth factor-beta (TGF-!) superfamily and other growth factors, and 

angiogenic factors [28, 118]. 

Bones express several different cytokines after injury that intact bones do not, 

suggesting that the fracture event triggers the release of cytokines that begin the process 

of healing [30].  The inflammatory cascade that occurs within the first 24 hours after 

injury is important because without this response the bone will not heal [95, 102].  

Interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-"), and 

macrophage colony stimulating factor (M-CSF) are all present during the initial stages of 

healing [28, 29, 64, 91, 118].  These inflammatory factors are secreted by macrophages 

and other inflammatory cells and also by cells of mesenchymal origin [28, 118].  They 

have many functions including the recruitment of inflammatory cells, regulation of the 
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extracellular matrix, the stimulation of new vessel formation, and chemotactic effects on 

fibrogenic cells and mesenchymal stem cells (MSCs) [28, 91, 118].  

Growth factors also play an important role in early fracture healing.  TGF-! and 

platelet derived growth factor (PDGF) are released from degranulating platelets and 

regulate proliferation and differentiation of MSCs [3, 14, 29, 38, 57, 95].  Bone 

morphogenetic proteins (BMPs) have also been shown to be expressed early in the 

healing process, especially BMP-2 and BMP-4 [87, 88].  BMPs originate primarily from 

the extracellular matrix, but are also released from osteoprogenitor cells and osteoblasts.  

They regulate the differentiation of MSCs into chondrocytes and osteoblasts and 

osteoprogenitor cells into osteoblasts [13, 28, 95].  BMPs may also be important in the 

signaling mechanisms that link mechanical forces to a biologic response [45, 99, 104].  

Fibroblast growth factors (FGFs) are released from macrophages, MSCs, chondrocytes, 

and osteoblasts and may only become available after cell injury or death [95, 102].  FGFs 

are mitogenic factors that help maintain the proliferation of MSCs, chondrocytes, and 

osteoblasts [14, 91, 95].  Insulin like growth factor-I and -II (IGF-I and -II) are also 

released early in the repair process [2, 28], and are involved in the proliferation and 

differentiation of osteoprogenitor cells [95].  

There are thousands of other genes that are either up- or down-regulated during 

the repair process [47].  Matrix metalloproteinases (MMPs), vascular endothelial growth 

factors (VEGFs), angiopoietin-1 and -2, and hypoxia-inducible factor-1 (HIF-1) work 

together to provide vascularization to the fracture site [28, 78, 118].  Indian hedgehog 

(Ihh) and its signaling molecules are important in chondrocyte differentiation and 

maturation and have been shown to be expressed throughout the first several weeks of 

healing [54, 72, 86].  Some other important proteins involved include extracellular matrix 

proteins like osteonectin, alkaline phosphatase, osteocalcin, and various collagens and are 

important in restoring the cartilage and bone matrices [49, 56].  There are many complex 

interactions and many other important molecular events involved in fracture repair, and it 

is too broad a scope to cover them at this time. 

Mechanotransduction in Bone 

Mechanotransduction is the means by which a mechanical signal is sensed and 

converted into a biochemical reaction.  Since the late 1800’s, when Julius Wolff proposed 
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that the form of bone follows its function, it has been postulated that bone is responsive 

to mechanical cues, but the means by which bone senses these cues is still not 

understood.  Cells have been proposed to sense mechanical force through several 

different mechanisms, and there is some debate about which mechanism is most likely to 

elicit a biochemical response. 

One theory proposes that cells sense force through direct stretching at integrin 

binding sites, which may be caused by deformations of the extracellular matrix to which 

they are attached [107].  There are even differing view among those who believe this is 

the cell’s primary means of sensing and responding to mechanical stress.  Some believe 

that cytoskeletal elements form a “tensegrity” structure that transmits forces through a 

prestressed cytoskeletal linkage [52].  Other investigators believe that the cell should be 

viewed as a continuum with an elastic cortex and a viscous cytoplasm.  The continuum 

model relies on the fluid behavior of cells, whereas the tensegrity model assumes a less 

viscous approach [53].       

The other two proposed mechanisms each involve flow of interstitial fluid 

through the lacuno-cannalicular network.  Through molecular tracer methods, fluid flow 

through these channels has been shown to be induced by load in vivo [115], and several 

mathematical models have been developed to describe this phenomenon [110, 111].  In 

the first proposed model, interstitial fluid is forced through the lacuno-cannalicular 

network by strain gradients, placing a fluid shear stress on osteocytes housed in lacunae 

[17, 42].    It is then this fluid shear, and not bulk strain, that causes a cellular response.  

The second fluid flow hypothesis assumes that diffusion of nutritive molecules is not 

enough to sustain viable osteocytes [114].  Instead, nutrient delivery is enhanced as 

molecules are carried to osteocytes via the extracellular fluid [115]. 

Mechanical Stimulation of Fractures 

The mechanical environment of a fracture site has been known to play an 

important role in fracture healing and tissue differentiation for many years [21].  Pauwels 

recognized that distortional and hydrostatic stress played an important role in tissue level 

signaling.  He concluded that hydrostatic compression drove cartilage formation, but that 

no specific mechanical stimulus drove bone formation.  In 1979, Perren proposed the 

concept of interfragmentary strain, in which tissue response was dependent on strain 
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magnitude [92, 93].  If a tissue fails at a lower strain than is imposed within the fracture 

site, that tissue cannot form [20]. 

Appropriately applied mechanical conditions have been known to accelerate 

fracture healing [44, 60, 61, 103], and there are many mechanical properties that 

influence the healing process including strain rate, frequency, magnitude, number of 

cycles, and number of days of stimulation among others.  The sizeable number of 

possible variables involved leads to a wide discrepancy in results between experiments.  

It also leads to a variance in experimental models and design. 

Some experimental designs passively alter the motion at the defect changing only 

the stiffness of the fixation, either by altering the properties of the fixator or by delaying 

fixation.  Most of these studies show that an increase in motion produced by less stiff 

fixation creates a larger callus, but this increase in callus size does not lead to superior 

healing [62, 98, 124].  The result is the same if stabilization is delayed, as early weight 

bearing with limited fixation leads to larger, cartilaginous calluses with less mechanical 

integrity [7, 84].  These results are supported by increased and prolonged chondrogenesis 

in fractures with greater motion, and increased bone formation in defects with more rigid 

fixation [43].  This is contrary to a study by Goodship et. al. [41], which found that an 

increase in fixator stiffness reduced the rate of healing.  These studies show that the 

properties of the fixation device itself and the timing of fixation influence callus 

attributes. 

The majority of investigations into the effects of the local mechanical 

environment on bone repair actively control the motion at the defect.  These devices 

allow for a prescribed motion at set time points.  Normally, these devices are powered by 

an external actuator or through a sliding mechanism that allows a set motion to occur 

during normal ambulation, which is called dynamization.  Experiments designed with a 

dynamization fixator allow for motion at the fracture site via the forces created from 

normal ambulation with a nut or other locking mechanism set to allow a desired 

maximum strain.  Studies using this model have found that larger fracture gap sizes lead 

to poorer fracture healing and that gap size plays a significant role in the progression of 

repair [6, 24, 126].  These studies also showed that small controlled movements in 

smaller gaps can increase bone formation [126], callus size [24, 25], and tensile strength 
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[25].  The disadvantages of this model are that the motion is limited to compressive 

strains, and over time, the motion will decrease as healing progresses and tissues 

progressively fill the defect, altering the experimental conditions. 

Experiments designed with external fixation providing controlled motion with 

mechanical actuation allow for the study of both compressive and tensile strains on 

fracture healing.  These experiments also ensure that the same strain is applied across the 

gap regardless of change in stiffness.  These studies found that fractures subjected to 

cyclic compression demonstrated higher torque and energy to failure, higher torsional 

stiffness, more advanced tissue differentiation, and more complete bony bridging than 

their rigidly fixed counterparts [40, 122].  Having active control over the motion also 

allows for the examination of many different experimental parameters.  For example, 

Goodship et. al. [39] examined the influence of strain rate on healing and found that a 

short term, high strain rate applied early in the healing process encouraged a larger 

periosteal callus than fractures stimulated at a low strain rate.  The direction of strain has 

also been shown to cause a different response in callus formation using these models.  

Studies have suggested that compressive strains encourage peripheral or periosteal callus 

formation, distractive strains allow more central callus formation, and fully reversible 

strains encourage both peripheral and interfragmentary callus formation [48, 112]. 

Not all studies have concluded that mechanical stimulation influences the 

reparative process.  Some studies have shown that the chosen stimulus did not affect 

fracture healing.  In an early study, White, Panjabi, and Southwick did not find any 

mechanical differences in osteotomized rabbit tibiae loaded in either constant 

compression or cyclic compression for four hours per day, seven days per week, when 

compared to sham controls [121].  This same conclusion was drawn in studies applying a 

variety of different controlled micromotions at many different frequencies, as well as 

with applied axial dynamization [5, 8, 123].  Although there are some studies that suggest 

that changing the mechanical environment in a healing fracture may not have an effect, 

the wide array of literature speaking to the contrary provides strong evidence that 

micromotion plays a vital role in fracture repair.     

Many studies have also attempted to relate the local mechanical environment in a 

fracture gap to tissue differentiation patterns though finite element modeling (FEM).  
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These can range from simple models incorporating only solid tissue properties to more 

complicated biphasic models that simulate fluid effects along with tissue strains [71].  

Carter et. al. believe that bone formation occurs in areas of low to moderate tensile strain, 

cartilage formation occurs under hydrostatic pressure, and fibrous tissue growth occurs in 

areas of moderate to high tensile strain [76].  Claes and Heigele [23] hypothesized that 

small strains and small hydrostatic pressures (<±0.15 MPa) lead to direct bone formation, 

compressive hydrostatic pressures above 0.15 MPa lead to chondrogenesis and therefore 

endochondral ossification, and all other stimuli lead to connective tissue or fibrocartilage 

formation.  In contrast, Smith-Adaline et. al. [108] concluded that tensile strains promote 

endochondral ossification and that compressive strains promote intramembranous 

ossification. 

Mesenchymal Stem Cells 

Ten years after the characterization of hematopoietic stem cells [73], Friedenstein 

and colleagues first described in vitro what they referred to as colony-forming units, 

which are better known today as mesenchymal stem cells [36].  Mesenchymal stem cells 

are pluripotent cells which give rise to tissues of mesodermal origin such as bone, 

cartilage, muscle, ligament, tendon, adipose, and stroma [10, 15, 19, 46, 96].  There is 

also evidence that they can give rise to cells of ectodermal and endodermal origin such as 

neurons and hepatocytes [68]. 

Mesenchymal stem cells have a therapeutic advantage over some other types of 

cells because they can be easily isolated and expanded through bone marrow aspiration 

with little pain [90].  MSCs also possess an immunomodulatory effect towards many 

immune effector cells including some T-cells, B-cells, natural killer cells, monocytes, and 

dendritic cells [67].  With regard to fracture healing, the bone marrow and periosteum are 

rich sources of MSCs with the most activity occurring in metaphyseal bone and vascular 

periosteum [69].  It may be advantageous to use MSCs to augment fracture repair, since 

they are involved in every aspect of bone regeneration [69]. 

MSCs have been used to repair critical sized, segmental bone defects in vivo [4, 

16, 63, 69, 94].   These cells have also been shown clinically to increase bone mineral 

content and growth velocity in children with severe osteogenesis imperfecta [50, 51].  

MSCs have also been used to treat defects in tissues other than bone including traumatic 
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brain injury [79-81], infarcted myocardium [89], and cerebral ischemia [22, 120] 

demonstrating the diverse promise for tissue repair that these cells possess.  

Mesenchymal Stem Cell Migration and Homing 

Many investigators have explored different factors that may be involved in 

mesenchymal stem cell migration.  The most common assay to determine if MSCs will 

migrate toward a given agent is a modified Boyden chamber assay [101].  In this 

technique, two wells are separated from each other by a filter.  Medium containing the 

potential chemoattractant is placed in the bottom well, and the MSCs are seeded into the 

upper chamber in plain medium.  The number of cells that migrate through the filter can 

then be counted to determine how strong a migratory stimulus was present.  Although 

this is one of the most common experiments to determine factors involved in migration, 

there are also other experiments, including in vivo injury and cancer assays that can be 

used to examine stem cell migration [31, 83]. 

Through these assays, many different regulators of MSC migration have been 

recently identified.  The most commonly studied may be stromal cell-derived factor-1 

(SDF-1).  SDF-1 is expressed in the bone marrow by osteoblasts, fibroblasts, and 

endothelial cells [58].  It has been shown that there is a population of MSCs that express 

CXCR4, the unique receptor for SDF-1, and that these cells migrate toward SDF-1 [11, 

26, 55, 70, 74, 97, 100, 105, 106, 125]. 

There are many other factors that have been implicated in the migration of MSCs.  

Growth factors, such as TGF-!, BMPs, PDGFs, FGFs, and IGFs, which may be released 

during remodeling and injury, have been shown to induce migration of MSCs [12, 28, 32, 

33, 35, 74, 75, 90, 97, 106, 113, 116, 117].  MSCs have also been shown to migrate 

towards VEGFs, angiopoietins, and placental growth factor-1 (PlGF-1), which are 

important in restoring vascularization to the fracture site [28, 34, 106].  Factors that are 

released as part of the initial inflammatory response may be involved in recruiting MSCs 

to the injury site early in repair [12, 28, 58, 85, 100, 106, 119, 120].  Matrix 

metalloproteinases (MMPs) and bone sialoprotein (BSP) may permit the movement of 

MSCs through the bone matrix by mediating matrix degradation [31, 59].  Along with the 

chemokines, growth factors, and other factors mentioned above, there are numerous 

others and their receptors [109] that have also been implicated in MSC migration. 
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Dissertation Overview 

 Fracture healing is a complex process involving numerous cell types, and a 

variety of spatially and temporally related regulators.  Mechanical forces have been 

shown to play an important role in the extent and character of the repair process.  While 

prior studies have investigated the effect of physical forces on cell differentiation, 

biofactor expression, and mechanical competence of repair, the mechanosensory and 

response mechanisms are poorly understood.  The goal of this work was to explore the 

effects of an externally applied mechanical stimulus on fracture healing.  Specifically, 

changes in callus morphology and mesenchymal stem cell migration to the callus were 

examined with respect to the timing of the application of an axial displacement. 

 The mechanical environment is known to play an important role in the course of 

fracture repair.  Chapter 2 examines how callus morphology is altered by an external 

stimulus.  The effect of the timing of the applied stimulus was determined by quantitating 

differences in tissue formation as well as the torsional strength of the healing fracture.  

Chapter 3 examines the potential effect of a mechanical stimulus on the migration of 

systemically delivered mesenchymal stem cells to the fracture sites.  Nuclear imaging and 

immunohistochemistry were used to determine the short- and long-term fates of the 

delivered cells.  Finally, Chapter 4 analyses the differential regulation of genes that have 

been implicated in MSC migration.  Using a high throughput polymerase chain reaction 

assay, expression of genes previously implicated in MSC recruitment was compared in 

displaced and unloaded control fractures. 
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Chapter 2 

 

The Effects of Axial Displacement on Fracture Callus 

Morphology Depend on the Timing of Application 

 

 

Normal fracture healing is a process unique from typical wound healing in that 

there is a complete reconstitution of the bone without the formation of scar tissue.  This 

process is complex involving numerous cell types, and many different factors influence 

healing progression.  These factors are related to the physical nature of the fracture 

(severity, location), the biologic environment at the fracture site (vascularity, growth 

factor and cytokine availability), and the nutritional, physical, and genetic state of the 

individual sustaining the fracture.  Mechanical factors such as interfragmentary strain and 

rigidity of fixation as well as fracture geometry have also been shown to effect the 

progression of healing [1, 5, 22].   

Appropriately applied mechanical conditions have been known to accelerate 

fracture healing [10, 15, 16, 21], and there are many mechanical factors that are known to 

influence the fracture repair process including strain rate, frequency, magnitude, number 

of cycles, and number of days of stimulation among others.  The sizeable number of 

possible variables involved leads to a wide discrepancy in results between experiments.  

It also leads to a variance in experimental models and design. 

There are a wide variety of experiments and models that have been used to study 

mechanical influences on fracture healing in vivo.  Studies using fixation that allow for 

dynamization, which use a fixator to control the amount of displacement allowed during 

normal ambulation, have found that small controlled movements can increase bone 

formation [27], callus size [5, 6], and tensile strength [6].  Models that actively control 
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the displacement through actuated external fixators have found that fractures subjected to 

cyclic compression demonstrate higher torque and energy to failure, higher torsional 

stiffness, more advanced tissue differentiation, and more complete bony bridging than 

their rigidly fixed counterparts [9, 26].  These models also suggest that compressive 

strains encourage peripheral or periosteal callus formation, distractive strains allow more 

central callus formation, and fully reversible strains encourage both peripheral and 

interfragmentary callus formation [12, 23]. 

While prior studies have investigated the effect of physical forces on cell 

differentiation, biofactor expression, and mechanical competence of repair, the 

mechanosensory and response mechanisms are poorly understood.  The purpose of this 

study was to evaluate the temporal effect of a controlled mechanical environment on 

fracture repair with a systemic cell delivery.  Specifically, this study was designed to 

investigate how the timing of an applied axial displacement following a femoral 

osteotomy affects callus morphology and the mechanical properties of the healing 

fracture site. 

Materials and Methods 

Animal Surgery and Mechanical Stimulation 

One hundred ten, six-month-old, male, Sprague-Dawley rats underwent a 2mm 

segmental osteotomy in the mid-diaphysis of each femur.  After a 1cm exposure and 

elevation of the soft tissues, four 0.062-inch diameter, 1.225-inch long threaded pins were 

placed through predrilled holes made in the diaphysis using a specialized guide.  The pins 

were made by cutting threaded Kirschner wire to the appropriate size, grinding a sharp 

point onto one end, and grinding four beveled surfaces on the other end.  The end with 

four faces allowed the pins to be threaded into the bone, while the sharp point allowed the 

pins to cut through the skin after they had been secured in the bone.  After the pins were 

placed, a two-piece external fixator with locking plate was then affixed to the pins.  An 

osteotomy was created with an oscillating saw under constant saline irrigation, and the 

surrounding tissues were then closed.  No infections were present in the animals at any 

time after surgery, and with some minor exceptions, the procedure was well tolerated by 

the animals.  (See Figure 2 - 1) 
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The fixators are comprised of three different pieces all of which are made from 

PEEK (Figure 2 - 2).  The main blocks have channels to accommodate the pins as well as 

a groove to align the locking plate along the axis of the fixator.  During surgery, after the 

pins were secured in the femur, the fixator was attached by clamping the pins between the 

main block and the pin plates.  The construct was held rigid by the locking plate 

connecting the two main blocks.  The fixator was released for axial stimulation by 

removing the locking plate, which was then reattached after every administration of 

displacement.  

Axial mechanical stimulation was performed with a linear precision table and 

servo controlled stepper motor.  The system provides controlled axial motion with 

displacement monitored by a linear variable differential transformer (LVDT).  The rats 

were placed in a sling so that the fixator could be properly aligned, and the locking plate 

was removed once it was secured in the loading device (Figure 2 - 1).  Axial 

displacement was applied to one randomly chosen limb, while the other femur served as a 

contralateral control.  Mechanical stimulation occurred for five consecutive days 

beginning at 0, 3, 10, or 24 days post-operatively (groups A through D respectively) at a 

magnitude of ±8% strain (±0.16 mm) and a rate of 0.313 Hz for 510 loading cycles.  Rats 

were euthanized 10, 24, or 48 days post-operatively for a total of nine groups.  All groups 

had an initial size of 12 rats, with the exception of the group stimulated 24 days after 

surgery, which had an initial size of 14. 

Bone marrow was harvested from 2- to 4-month-old green fluorescent protein 

(GFP) transgenic rats and cultured in growth medium.  The mesenchymal stem cells 

(MSCs) cultered from the marrow were resuspended in 1 ml PBS at a concentration of 1 

million cells per ml prior to injection.  (See Chapter 3 for complete details on how the 

cells were cultured and prepared for injection.)  Systemic injections of these cells were 

performed via the tail vein immediately before mechanical loading, and data from these 

were collected for future analyses.  All experimental procedures were approved by the 

University of Michigan Committee on Use and Care of Animals. 

Microcomputed Tomography 

Immediately after sacrifice, both femora were excised and the surrounding soft 

tissue was removed without disturbing the callus around the fracture site.  A temporary 
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fixator was then placed adjacent to the existing fixator to facilitate the removal of the 

original fixator and central pins.  The original fixator and the two central pins were 

removed in order to both fit the specimen into the scanner and to eliminate metal from the 

volume to be scanned to reduce artifacts.  Bones were scanned via ex-vivo micro-CT (GE 

Healthcare Pre-Clinical Imaging, London, ON) at a voxel size of 18 microns.  After 

scanning, a region of interest was created encompassing the 2mm osteotomy site and any 

remaining cortical bone was subtracted from the region.  The lateral borders of the region 

of interest were defined by visible mineralization on the outermost boundary of the 

callus.  By analyzing image histograms, a gray scale value threshold of 1200 was chosen 

for all specimens to define bone voxels.  Any voxel with a gray scale value above the 

threshold was considered bone, while any voxel with a value below 1200 was not.  The 

micro-CT measures the amount of mineral in the specimen in Hounsfield Units, which 

are converted to bone mineral mass in milligrams through calibration using a 

hydroxyapatite standard.  The callus volume was defined as the volume of the created 

region of interest (units of mm
3
).  The bone volume was defined as the total volume of 

the voxels with a gray scale value above the threshold of 1200 (units of mm
3
).  The bone 

mineral content (BMC) is the mineral mass within the region of interest (units of mg), 

and the bone mineral density (BMD) is the mass of the mineral divided by the callus 

volume (units of mg/cm
3
).  The tissue mineral content (TMC) and the tissue mineral 

density (TMD) are similar to the BMC and the BMD except that they measure only the 

mineral content and density of the bone voxels, those voxels with a gray scale value 

above the set threshold (units of mg and mg/cm
3
 respectively).  Finally, the bone volume 

fraction (BVF) is the fraction of the callus volume that is bone (bone volume divided by 

callus volume).  Callus volume, bone volume, BMC, BMD, TMC, TMD, and BVF were 

recorded for each 2mm osteotomy and were used to determine densitometry differences 

in each fracture callus.  

Histology 

After micro-CT scanning, a set of five specimens per group was placed in 10% 

neutral buffered formalin for three days.  The specimens were then removed and placed 

into 70% ethanol until they were processed.  Specimens were embedded in poly(methyl 

methacrylate) and cut into 5µm thick, longitudinal sections at five different levels spaced 



 

 23 

200-300µm apart through the thickness of the bone.  Sections were mounted and then 

stained using safranin-O and fast green to differentiate cartilage and bone. 

Six images per section were captured at 2.5 times magnification (Axiovert 200M, 

Carl Zeiss, Oberkochen, Germany) and stitched together using Photoshop (Adobe, San 

Jose, CA) in order to obtain a section overview.  One section per level was analyzed for a 

total of five sections per specimen.  Each image was cropped to a height of 2mm to 

correspond to the size of the original osteotomy, and a boundary was drawn 

encompassing the callus periphery to quantify the callus area per section.  Areas of 

cartilage and bone were quantified through color thresholding using the magic wand and 

histogram tools in Photoshop.  Areas were recorded as pixel counts, and bone and 

cartilage areas were normalized to the callus area for each section.  The values obtained 

for each section of the five levels per specimen were averaged to arrive at an average 

cartilage/callus area and bone/callus area for each bone. 

Torsion Testing 

 The remaining seven specimens per group (nine for the group stimulated 24 days 

post-operatively) were tested to failure in a custom designed torsion fixture.  The bone 

ends were secured in aluminum pots with molten bismuth that was then allow to cool.  

The pots were locked into each side of the testing apparatus, and the bones were hydrated 

with lactated ringers solution.  The gage length of each specimen was measured, the 

locking plate of the fixator was removed, and the bones were then tested to failure at a 

rate of 0.5 deg/sec.  A custom MATLAB (Mathworks, Natick, MA) script was then used 

to determine the stiffness, ultimate failure torque, failure twist, and energy to failure.  The 

stiffness was determined by picking points along the elastic curve to determine the slope 

(units of N-mm/deg).  The ultimate failure torque was chosen as the maximum torque 

achieved during the torsion testing (units of N-mm), and the failure twist was defined as 

the amount of twist at the ultimate failure point (units of deg).  The energy to failure was 

defined as the area under the torque/twist curve up to the point of failure (units of N-mm-

deg). 
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Statistical Analysis  

  A two-way, repeated measures ANOVA was run for all of the data using SAS 

(Cary, NC).  Differences for treatment (displaced versus control), timing of displacement 

initiation, and the interaction of treatment and timing were analyzed.  A Tukey-Kramer 

adjustment to correct for multiple comparisons was used to look for differences between 

loaded and control limbs independently at each euthanasia day.  The effect of slices was 

used to determine differences within groups.  Differences were deemed significant for 

p<=0.05.  All error bars represent plus or minus one standard error. 

Results 

 The final animal totals for each group are shown in Table 2 - 1.  Due to surgical 

complications, bone fractures at the pin sites, and specimens failing during processing, 

the final number of animals entered into the study is 99 out of a planned 110.  Table 2 - 1 

also explains the nomenclature for each group.  The letters correspond to the timing of 

the start of mechanical stimulation (0, 3, 10, or 24 days), and the numbers correspond to 

the day of euthanasia (10, 24, or 48 days) post-operatively. 

 The ratio of the stimulated to the control limbs shows decreases in all measures of 

mineralization for the groups displaced three days post-operatively (Figure 2 - 3).  This 

decrease was as high as 19% in the BVF for animals euthanized at day 48 (data not 

shown).  All other groups showed an increase in mineralization in the stimulated fractures 

when compared to the unloaded controls. 

 For rats that were sacrificed ten days after surgery (groups A10 and B10), there is 

a significant difference in the interaction of treatment and the timing of displacement 

(Figure 2 - 4).  In those animals, displacement decreased both the callus volume and 

BMC in fractures stimulated starting on day three (group B10), while stimulation 

increased the same measurements in fractures stimulated immediately after surgery 

(group A10).  The decrease between the loaded and control limbs within group B10 is 

significant for the callus volume, and the BMC within group A10 trends toward an 

increase (p=0.074).  

 When fractures are analyzed 24 days post-operatively, there is a strong trend for 

differences across all of the loaded limbs in BMC (p=0.055) and BMD (p=0.059).  

Looking for differences between individual groups reveals that there is less mineralized 
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tissue in the displaced fracture gaps of the animals stimulated on day three versus the 

animals stimulated on either day zero or day ten (Figure 2 - 5).  This difference reached 

significance for BMD between groups B (stimulation day 3) and C (stimulation day 10). 

 At day 48, there is a significant difference in the BMD (p=0.045) and BVF 

(p=0.049) across all the stimulated limbs (Figure 2 - 6).  Individually, there is a difference 

between the group displaced three days post surgery (group B48) and the group displaced 

ten days post surgery (group C48), with the loaded defects from C48 having more 

mineral than those in B48.  There is also a trend toward a higher TMD in group C48 than 

in B48 (p=0.068, data not shown).  Along with the increased mineral content in the 

fractures stimulated ten days post-op, there is a significant decrease in cartilage in the 

healing defect for that group (Figure 2 - 7 and Figure 2 - 8).  The loaded limbs in group 

C48 have significantly less cartilage than their contralateral controls (p=0.045), while the 

loaded limbs in group A48 have more cartilage than there contralateral controls 

(p=0.037).  There is also a difference in cartilage area between limbs stimulated at day 

ten and limbs that were stimulated at day zero (p=0.031) or day three (p=0.015).  (See 

Figure 2 - 9.) 

 Figure 2 - 10 shows that stimulation starting at day three (group B10) induced 

more cartilage formation by day ten than did stimulation immediately after surgery 

(group A10).  It also shows that the control limbs in the B10 group have a larger cartilage 

area than the controls from group A10 suggesting a possible systemic effect.  In animals 

euthanized on day 48, there is a significantly larger percentage of bone in the fracture 

gaps as measured by histology on both the loaded and control sides for the animals 

loaded starting on day ten (group C48) than for any other group (Figure 2 - 11).  

Independently, there is also more bone in the control defect of group C48 than for D48.  

This same pattern is seen in both the stiffness and torque at failure (Figure 2 - 12).  The 

bones from animals loaded on day ten are more stiff and stronger in torsion than bones 

from any other groups.  The controls from that group are also significantly stiffer and 

have a higher failure torque than the control bones from animals stimulated on day 24. 

Discussion 

  The application of an axial displacement has a definitive effect on fracture 

healing.  Specifically, the timing of the stimulus is an important factor in determining the 



 

 26 

progression of callus morphology and mechanical properties.  Differences in healing due 

to displacement can be seen as early as ten days after fracture.  Fractures that were 

stimulated immediately had an increase in callus volume and bone mineral content and 

those that were loaded three days later had a decrease.  By day 24, the group that was 

displaced three days after surgery (group B24) had a decrease in mineralization on the 

displaced side in comparison to the other groups.  Forty-eight days after surgery, the 

group stimulated ten days post-op (group C48) had an elevated mineral content and 

almost no cartilage remaining on the stimulated side, while all the other groups still 

displayed a significant amount of cartilage. 

 The observation that the application of displacement on the animals soon after 

surgery decreased mineralization and mechanical properties in relation to the animals that 

had displacement starting on day ten suggests that axial mechanical stimulation may not 

be beneficial when it is started during the initial response to fracture.  Vascular supply is 

an important factor in determining the success of healing, and it has been suggested that it 

may be necessary to allow neovascularization to progress at the site of repair before 

mechanical load is applied [4, 24].  If motion is allowed too soon at the fracture site, the 

capillaries needed to support osseous tissues are constantly ruptured, and fibrocartilage 

formation is promoted since it requires less vascularization [19].  Therefore, it may be 

beneficial to the overall healing outcome to delay initiation of loading until new vessels 

have had a chance to form [8]. 

The results also suggest that it may be beneficial to start fracture stimulation after 

the inflammatory stage, when some soft tissues have had a chance to form.  After the 

initial inflammatory response, cells that may be responsive to load, such as chondrocytes 

[17, 20], have an opportunity to populate the fracture site.  A beneficial response to 

chondrocyte loading in fracture healing has been shown.  Scaffolds seeded with 

chondrocytes that were implanted in the femora of rabbits and then were compressively 

loaded had a higher bone volume fraction than the unloaded controls [3], showing that 

the application of a stimulus to a chondrocyte population may encourage bone formation 

at the site of repair. 

Mechanically, the local strain patterns induced by displacement are probably 

different between the animals that are stimulated soon after surgery and those that were 
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stimulated later.  The differences would be due to the different patterns of tissue 

formation present at the time of axial displacement.  When the displacement is applied at 

early time points, the only supporting structure in the gap is a loose, provisional matrix of 

granulation tissue.  In the absence of a stiff matrix, the applied stimulus may lead to not 

only high local tissue strains, but also high fluid shear stresses.  These high stresses may 

not be ideal for fracture healing, and the cells present may not be responsive to stresses of 

that magnitude.  As the fracture heals, a stiffer matrix begins to form, reducing the local 

magnitude of the applied stress.  By day ten, the cells that are in the fracture callus that 

may be responsive to load, like chondrocytes, may be receptive to the applied stimulus.  

These favorable conditions may be the reason for the beneficial response seen in group C, 

which was stimulated on day ten.  On day 24, the matrix would be substantially stiffer 

than it would be at any of the earlier time points, and the callus would have begun the 

early stages of mineralization.  The stiffness of the callus would reduce the magnitude of 

the local strain pattern, but the applied displacement may still be too great for the 

mineralized tissue to withstand.  This might lead to damage, and may explain the limited 

response of the group that was stimulated on day 24 (group D).      

 An interesting result from this study is the appearance of a systemic effect due to 

the local mechanical stimulus.  At day ten, the animals loaded three days post-operatively 

(group B10) exhibited significantly more cartilage as a whole (loaded and control 

combined) than those loaded immediately after surgery.  They also had more cartilage in 

the control limbs than those in group A10.  At day 48, the group loaded ten days post-op 

(group C48) had a significantly higher bone to callus ratio, stiffness, and failure torque as 

a whole when compared to all other groups suggesting that, in this group, the applied 

stimulus increased bone formation and mechanical properties in both the loaded and 

control defects.  This is consistent with findings that skeletal injury elicits an osteogenic 

response at distant sites [18].  Einhorn et. al. found that the mineral apposition rates in 

both tibiae of rats in which the right femur had been surgically injured increased as much 

as 350% over baseline controls [7].  Transverse loading of the knee has also been shown 

to accelerate healing in defects in the tibial diaphysis [28]. 

 This systemic response may be due to the release of soluble factors into the 

circulation as a result of the applied stimulus.  Matrix-metalloproteinase-1 (MMP-1), 
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basic fibroblast growth factor (bFGF), transforming growth factor !1 (TGF-

!1), insuin-like growth factor-I (IGF-I), IGF binding protein 3 (IGFBP-3), and human 

growth hormone (hGH) have all been shown to be increased in the sera of patients 

undergoing distraction osteogenesis [25].  Sera from fracture patients and patients 

undergoing distraction osteogenesis have also been shown to promote proliferation of 

osteoblasts, and TGF-! and IGF-I were shown to be important in those processes [13, 

14].  Increased proliferation of osteoblasts was only induced by sera of patients after the 

fractures had some time to heal, and proliferation was actually decreased when sera from 

the first week of healing was used [14].  Vascular endothelial growth factor (VEGF), 

which is important for the formation of new blood vessels, has been shown to be elevated 

in the muscles surrounding a distraction site as well as the muscles surrounding the 

contralateral control site [11].  It is feasible that the controlled displacement at the 

experimental site could increase the concentration of growth factors critical to fracture 

healing [29] in the bloodstream that would then influence the progression of repair in the 

contralateral osteotomy. 

 A complicating issue in the data analysis was the surprising amount of interanimal 

variability.  Figure 2 - 13 shows the difference, plus and minus one standard error, 

between values of the bone and callus volumes for the loaded and control limbs.  The 

error bars show the large amount of variability in the data.  This variability is not unusual 

in a segmental defect model [2], and may be confounded by performing a bilateral 

procedure.  Not only does the presence of two defects create two sources of variability 

per animal, but the systemic effects shown in this study also provide an increased source 

of variability at the contralateral site.  It may be beneficial for future studies to use a 

model with a unilateral defect and to use separate rats for stimulated and control groups.  

This may increase the number of rats needed per group, but will reduce the variability 

and make for a simpler surgical procedure. 

 In future studies, it may also be beneficial to test the mechanical properties of the 

callus in tension as opposed to torsion.  Torsion testing is a good measure of the 

functional properties of the callus under normal healing conditions, but it may not be the 

best measure in a model in which an axial stimulus is applied.  The applied stimulus may 

be causing directional healing where the bone is trying to reduce stress along the axis of 
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loading.  While a torsion test would include a component of any axial alignment, a test 

that looks specifically at properties along the long axis of the bone, like a tensile test, may 

be more appropriate due to the experimental conditions.  

 A controlled, axial stimulation has a definitive effect on fracture healing, and the 

timing of the application of the displacement differentially effects callus morphology and 

mechanical properties.  Stimulation early in the repair process was not beneficial to 

fracture healing, but when the displacement was applied starting ten days after injury it 

increased mineralization, accelerated callus remodeling, and increased torsional 

mechanical properties in comparison to other groups.  The beneficial effect was seen on 

both the experimental and the contralateral control defects, indicating that there may be a 

systemic effect from the applied stimulus.  These findings help to clarify the role of the 

timing of mechanical manipulation of fractures, and may help define parameters to be 

used in future fracture treatment.   
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Chapter 2 Figures 

 

 
 

Figure 2 - 1:  Overview of surgery and fixture for axial displacement.  A two-millimeter 

segmental osteotomy was made at the mid-diaphysis of each femur (a).  The fractures 

were stabilized using four threaded pins and a two-piece fixator that is locked in a rigid 

configuration for normal ambulation (b, c).  During axial stimulation, the rat was 

anesthetized, placed in a sling, and the fixator was aligned with the fixture clamp (d).  

The close-up view of the fixator shows the two unlocked halves during stimulation (e). 
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Figure 2 - 2:  Overview of the fixator and pins.  During surgery, after the pins were 

secured in the bone, they were placed into the grooves in the main fixator blocks and 

locked into place with the pin blocks.  Rigid fixation was established by fastening the two 

main blocks together with the locking plate, which was removed during axial 

displacement to allow motion. 
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Figure 2 - 3:  Ratios of the average displaced and control mineralization values for each 

group.  All measures of mineralization, represented here by BMD and TMC, increased on 

the displaced side for all groups except the groups stimulated starting on day three  

(group B).  In those groups, decreases of up to 19% (in BVF, not shown) in the 

stimulated limbs in comparison to the undisplaced controls were observed.  For these 

values, comparisons can only be made between the stimulated and control calluses within 

each group because the control values are not necessarily equal across the groups due to 

an observed systemic effect caused by the applied displacement.  Differences between the 

groups are explored in more detail in the following figures. 
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Figure 2 - 4:  Displacement decreases callus volume and BMC by day 10 in animals 

stimulated three days post-op.  The plots show the interaction effect between the 

application of the displacement and the timing of the application of the displacement.  

The stimulus increased both callus volume and BMC in animals stimulated immediately 

after surgery (group A10), but had the opposite effect on animals loaded starting on day 

three (group B10).  The interaction between treatment and timing of stimulation was 

significant (p=0.050) signifying that the applied displacement acts differently on the two 

groups due to differences in when the stimulus was applied.  The callus volume in the 

displaced limbs of the animals loaded at day three was significantly lower than controls 

(p<0.050), and the BMC of the displaced limbs of animals loaded immediately displayed 

an increased trend (p=0.074). 
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Figure 2 - 5:  Fractures stimulated three days post-op have reduced BMC and BMD on 

day 24.  In comparison to both the group displaced immediately after surgery (group 

A24) and the group displaced ten days after surgery (group C24), the group loaded 

beginning on day three (group B24) has less mineral in the fracture gap.   
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Figure 2 - 6:  BMD and BVF are significantly higher in Group C (day ten displacement) 

versus Group B (day three displacement) 48 days after surgery.  In the later stages of 

healing, the mineral content is higher on the displaced side in the animals loaded ten days 

post-operatively than those at other stimulation time points.  This reached a significant 

increase over the defects displaced three days post-op, since the mineral levels in those 

gaps were slightly depressed compared to the other groups. 
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Figure 2 - 7:  Cartilage area in animals euthanized 48 days post surgery.  After 48 days, 

there is cartilage remaining in all groups, both stimulated and control, except for the gaps 

stimulated ten days after surgery (group C48).  In these defects there is almost no 

cartilage remaining.  The differences were significant between the displaced limbs of 

A48 and B48 in comparison to C48.  There is also a significant difference between the 

displaced and contralateral control in group C48 (p=0.045), with the displaced side 

containing significantly less cartilage than the control.  There is also more cartilage in the 

displaced side in group A48 when compared to the contralateral control (p=0.037). 

 



 

 37 

 

 

Figure 2 - 8:  Histology for the group stimulated ten days after surgery (group C48).  

When the axial displacement is started ten days after surgery, the stimulated limbs have 

no cartilage and have bony bridging by day 48 (shown above).  The unstimulated controls 

have a substantial amount of bone, but still contain distinct areas of cartilage.  The figure 

shows: (a) a central section of a stimulated gap, (b) a peripheral section of a stimulated 

gap, (c) a central section of a control gap, and (d) a peripheral section of a control gap.  

Note that the difference in color between the top and the bottom images are an artifact of 

the staining procedure. 
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Figure 2 - 9:  Histology for the group stimulated three days after surgery (group B48).  

When the axial displacement is started three days after surgery, the stimulated and the 

control limbs have a substantial amount of cartilage remaining and bony bridging has not 

occurred at day 48 (shown above).  The figure shows: (a) a central section of a stimulated 

gap, (b) a peripheral section of a stimulated gap, (c) a central section of a control gap, and 

(d) a peripheral section of a control gap. 
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Figure 2 - 10:  Histology shows differences between control limbs at day ten, suggesting 

a systemic effect.  For animals euthanized ten days after surgery, there is an overall 

increase in cartilage area (stimulated and control combined) in the group stimulated three 

days after surgery (group B10) when compared to defects from animals stimulated 

immediately after surgery (group A10) (p=0.002).  The control gaps from these animals 

also display an increased amount of cartilage (shown above), suggesting that there may 

be a systemic effect due to load. 
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Figure 2 - 11:  Histology shows differences in normalized bone area from animals 

euthanized on day 48.  The group loaded ten days after surgery (C48) has a higher 

percentage of bone as a whole (stimulated and control limbs considered together) than 

any other group (p=0.005 with group A, p=0.010 with group B, and p=0.009 with group 

D).  There is also more bone in the control gap of C48 than in the control gap of D48 

(*p=0.011).  This suggests that the applied stimulus is promoting more bone formation in 

both the loaded and control limbs in group C than for any other group. 
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Figure 2 - 12:  Stiffness and torque at ultimate failure for animals euthanized on day 48.  

The group loaded ten days after surgery (C48) is stiffer (p=0.036 versus group A and 

p=0.004 versus group D) and had a higher torque at failure (p=0.024 versus group A, 

p=0.059 versus group B, and p=0.001 versus group D) than any other group.  The 

stiffness and ultimate failure torque are also higher in the control gaps of group C than in 

group D  (*p<0.05).  This suggests that the applied stimulus is promoting a more stiff and 

stronger structure in both the loaded and control limbs in group C than for any other 

group.
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Figure 2 - 13:  High variance in fracture healing data.  This graph shows the differences 

in micro-CT outcomes between the displaced limbs and the control limbs for each rat 

averaged within each group.  Data from a bilateral, segmental defect fracture model show 

a high amount of variability, which can complicate analysis.  The bars represent plus and 

minus one standard error. 
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Chapter 2 Tables 

 

 

Group 
Displacement Initiation Day 

(Post-op) 

Euthanasia Day 10: 

Group Name (µCT, 

histology, torsion) 

Euthanasia Day 24: 

Group Name (µCT, 

histology, torsion) 

Euthanasia Day 48: 

Group Name (µCT, 

histology, torsion) 

A 0 A10 (n=11, 5, 5) A24 (n=12, 3, 7) A48 (n=8, 4, 4) 

B 3 B10 (n=11, 5, 5) B24 (n=11, 4, 5) B48 (n=10, 3, 7) 

C 10 -------- C24 (n=12, 5, 7) C48 (n=11, 3, 5) 

D 24 -------- -------- D48 (n=13, 5, 8) 

 

Table 2 - 1:  Table of group sizes.  This table shows the nomenclature for each group used in the study.  The letters correspond to the 

timing of mechanical stimulation, and the numbers correspond to the day of euthanasia.  The numbers in parentheses show the number 

of animals that were entered into the study for micro-CT, histology, and torsion testing. 
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Chapter 3 

 

The Response of Systemically Delivered Mesenchymal Stem 

Cells to an Externally Applied Stimulus in a Model of Fracture 

Healing 

 

 

Ten years after the characterization of hematopoietic stem cells [24], Friedenstein 

and colleagues first described in vitro what they referred to as colony-forming units, 

which are better known today as mesenchymal stem cells [14].  Mesenchymal stem cells 

(MSCs) are pluripotent cells that give rise to tissues of mesodermal origin such as bone, 

cartilage, muscle, ligament, tendon, adipose tissue, and stroma [3, 5, 7, 16, 34].  There is 

also evidence that they can give rise to cells of ectodermal and endodermal origin such as 

neurons and hepatocytes [22]. 

Mesenchymal stem cells have a therapeutic advantage over some other types of 

cells because they can be easily isolated and expanded through bone marrow aspiration 

with little pain [31].  MSCs also possess an immunomodulatory effect towards many 

immune effector cells including some T-cells, B-cells, natural killer cells, monocytes, and 

dendritic cells [21].  With regard to fracture healing, the bone marrow and periosteum are 

rich sources of MSCs with the most activity occurring in metaphyseal bone and vascular 

periosteum [23].  It may be advantageous to use MSCs to augment fracture repair, since 

they are involved in every aspect of bone regeneration [23]. 

MSCs have been used to repair critical sized, segmental bone defects in vivo [2, 6, 

20, 23, 33].   These cells have also been shown clinically to increase bone mineral 

content and growth velocity in children with severe osteogenesis imperfecta [18, 19].  

MSCs have also been used to treat defects in tissues other than bone including traumatic 
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brain injury [25-27], infarcted myocardium [30], and cerebral ischemia [8, 37] 

demonstrating the diverse promise for tissue repair that these cells possess. 

Along with the availability of MSCs at the fracture site, the local mechanical 

environment is also known to be an important factor in the progress of repair.  Studies 

have found that small controlled movements can increase bone formation [39], callus size 

[9, 10], and tensile strength [10].  It has also been found that fractures subjected to cyclic 

compression demonstrated higher torque and energy to failure, higher torsional stiffness, 

more advanced tissue differentiation, and more complete bony bridging than their rigidly 

fixed counterparts [15, 38].  Experimental models have also suggested that compressive 

strains encourage peripheral or periosteal callus formation, distractive strains allow more 

central callus formation, and fully reversible strains encourage both peripheral and 

interfragmentary callus formation [17, 36]. 

Considering the significance of both progenitor cell availability and the 

mechanical environment on healing progression, it is important to understand whether the 

mechanical environment affects the migration of cells to the site of repair.  This study 

examines the effect that an externally applied mechanical stimulus has on systemically 

delivered mesenchymal stems cells.  Specifically, the study was designed to evaluate the 

migration of MSCs to sites of fracture repair and to determine if the timing of an 

externally applied, controlled displacement has an effect on the homing of these cells to 

the fracture site. 

Materials and Methods 

Seventy-nine, six-month-old, male, Sprague-Dawley rats underwent a 2mm 

segmental osteotomy in the mid-diaphysis of each femur.  Briefly, after a 1cm exposure 

and elevation of the soft tissues, four 0.062-inch diameter threaded pins were placed 

through predrilled holes made in the diaphysis using a specialized guide.  A two-piece 

external fixator with locking plate was then affixed to the pins.  An osteotomy was 

created with an oscillating saw under constant saline irrigation, and the surrounding 

tissues were then closed.  (See Chapter 2 along with Figure 2 - 1 for a full description.) 

Axial mechanical stimulation was performed with a linear precision table and 

servo controlled stepper motor.  The system provides controlled axial motion with 

displacement monitored by a linear variable differential transformer (LVDT).  The rats 
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were placed in a sling so that the fixator could be properly aligned, and the locking plate 

was removed once it was secured in the loading device (Figure 2 - 1).  For all the 

animals, mechanical stimulation occurred at a magnitude of ±8% strain (±0.16mm) and a 

rate of 0.313 Hz for 510 loading cycles. 

Bone marrow was harvested from 2- to 4-month-old green fluorescent protein 

(GFP) transgenic rats and cultured in growth medium containing 10% fetal bovine serum 

(Thermo Fisher Scientific (Hyclone), Waltham, MA) at 37°C, in 5% CO2, and 95% 

humidity.  Non-adherent cells were removed after 24 hours and the culture medium was 

changed three times per week.  After 12-14 days, the cells were released from the cell 

culture plate with 0.25% trypsin for 5 minutes, the trypsin was stopped with medium 

containing serum, and then the cells were replated at a density of 700,000 cells per 10cm 

culture dish.  After reaching confluence, the process was repeated.  Twenty four hours 

after the second passage, the standard growth medium was removed and replaced with a 

serum free defined medium consisting of a 60%/40% mixture of Dulbecco's Modified 

Eagle's Medium/MCDB201 (Invitrogen (Gibco), Carlsbad, California/Sigma-Aldrich, St. 

Louis, MO) containing 1% antibioitic/antimycotic (Invitrogen), 1% linoleic acid bovine 

serum albumin (Sigma), 0.01% platelet-derived growth factor-! (Cell Signaling 

Technology, Danvers, MA), 0.001% basic fibroblast growth factor (Cell Signaling), and 

0.05% insulin (Sigma).  In preparation for cell injection, the second passage cells were 

released with trypsin and resuspended in 1ml PBS at a concentration of 1 million cells 

per ml.  Systemic injections of these cells were performed via the tail vein immediately 

before the first application of axial displacement.  All experimental procedures were 

approved by the University of Michigan Committee on Use and Care of Animals. 

Planar Gamma Imaging 

Twenty-eight of the animals were selected to undergo planar gamma imaging to 

detect the short-term fate of the injected cells. 
111

Indium was added to the cell suspension 

prior to injection and allowed to diffuse into the cells for 30 minutes.  The suspension 

was then centrifuged and any free-floating 
111

indium was removed from the supernatant.  

Cells were injected prior to the first application of axial displacement, with the exception 

of group E in which cells were injected starting on load day four (see Table 3 - 1).   
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Mechanical stimulation occurred for three consecutive days starting 0, 3, 10, or 24 

days post-surgery.  After each daily loading cycle, the animals were scanned with a 

Gamma Imager SCT (Biospace, Paris, France).  Due to the scanner’s field of view, the 

upper and lower half of each animal was scanned separately.  Animals were euthanized 

after three days of displacement, with the exception of group E, which was euthanized 

one day after the prescribed displacement had ended.  

Regions of interest were created around each limb for each image using 

GammaVision+ (Biospace, Paris, France).  The regions for each animal were all of 

similar size and shape (Figure 3 - 1).  A circular region was also created in an area 

outside of the animal’s body to detect any background radiation.  The surface activity 

(counts per minute per mm
2
) was measured for each region of interest and recorded.  The 

surface activity (SA) for each region was then normalized by the background activity in 

order to determine a relative increase in activity for each limb.  A circular region was also 

created in a peak intensity region in the lungs in order to compare the amount of lung to 

limb radioactivity.  

Immunohistochemistry 

A group of 45 animals underwent axial displacement for five consecutive days 

beginning at 0, 3, 10, or 24 days post-operatively (groups A through D respectively).  

Rats were euthanized 10, 24, or 48 days post-operatively for a total of nine groups with 

five animals per group.  (See Table 3 - 2.)  After euthanasia, the rats’ femora were 

excised, the soft tissue surrounding the bones was carefully removed, and then the femora 

were placed in 10% neutral buffered formalin for three days.  The specimens were then 

removed and placed into 70% ethanol until they were processed.  Specimens were 

embedded in poly(methyl methacrylate) and cut into 5µm thick, longitudinal sections at 

five different levels spaced 200-300µm apart through the thickness of the bone.  The 

sections were mounted and left unstained in preparation for immunohistochemistry 

(IHC). 

After mounting, slides were deacrylized in a 1:1 mixture of xylene and 

chloroform for 30 minutes.  They were then rehydrated through a series of alcohol baths, 

and then decalcified in 8% formic acid for ten minutes.  After decalcification, the sections 

were incubated in a proteinase K solution for 30 minutes at 37°C (20 minutes at 
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temperature and then 10 minutes to cool the slides) to break the protein cross-links 

formed during formalin fixation.  The proteinase K solution was removed with a five 

minute water bath, and then the endogenous peroxidase was quenched with a 10:1 

mixture of methanol and 30% H2O2 for 30 minutes.  The sections were flushed twice with 

distilled water and then twice covered with PBS containing 0.1% Triton X-100 (TPBS) 

for five minutes each.  A blocking solution of 10% normal goat serum (Vector 

Laboratories, Burlingame, CA), in 0.02% TPBS containing 1.5% bovine serum albumin 

(BSA, Sigma) was then applied for 30 minutes at room temperature.  Then, a 1:1000 

primary antibody solution of rabbit anti-rat GFP (Fisher Scientific) diluted with 0.02% 

TPBS containing 1.5% BSA was placed on the sections and incubated at 4°C overnight.  

 After overnight incubation, the primary antibody was rinsed off with PBS and the 

secondary antibody solution of a 1:500 mixture of biotinylated goat anti-rabbit IgG(H+L) 

(Vector Laboratories) diluted with 0.02% TPBS containing 1.5% BSA was applied for 45 

minutes at room temperature.  The sections were then washed twice with PBS for five 

minutes and then incubated with Vectastain Elite ABC reagent (Vector Laboratories) for 

30 minutes at room temperature.  Then, they were washed twice in PBS for five minutes, 

incubated with stable DAB (Invitrogen) until the desired stain intensity was reached 

(usually two minutes), and rinsed in gently running tap water for five minutes.  Finally, in 

order to visualize the surrounding bone, sections were counterstained with fast green and 

cover slipped.  

Microcomputed Tomography 

Six additional animals underwent stimulation without an injection of exogenous 

MSCs beginning on day 24 to correspond with group D48 from the study in Chapter 2.  

(The group without cells will be labeled DNC.)  Immediately after sacrifice, both femora 

were excised and the surrounding soft tissue was removed without disturbing the callus 

around the fracture site (n=13 for group D48 and n=6 for group DNC).  A temporary 

fixator was then placed adjacent to the existing fixator to facilitate the removal of the 

original fixator and central pins.  The original fixator and the two central pins were 

removed in order to both fit the specimen into the scanner and to eliminate metal from the 

volume to be scanned to reduce artifacts.  Bones were scanned via ex-vivo micro-CT (GE 

Healthcare Pre-Clinical Imaging, London, ON) at a voxel size of 18 microns.  After 
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scanning, a region of interest was created encompassing the 2mm osteotomy site and any 

remaining cortical bone was subtracted from the region.  The lateral borders of the region 

of interest were defined by visible mineralization on the outermost boundary of the 

callus.  A gray scale value threshold of 1200 was chosen for all specimens to define bone 

voxels by analyzing image histograms.  Callus volume, bone volume, bone mineral 

content (BMC), bone mineral density (BMD), tissue mineral content (TMC), tissue 

mineral density (TMD), and bone volume fraction (BVF) were recorded for each 2mm 

osteotomy. 

Torsion Testing 

 Fourteen pairs of fractured femora were tested to failure in a custom designed 

torsion fixture (n=8 for group D48 and n=6 for group DNC).  The bone ends were 

secured in aluminum pots with molten bismuth that was then allow to cool.  The pots 

were secured on each side of the testing apparatus, and the bones were hydrated with 

lactated ringers solution.  The gage length of each specimen was measured, the locking 

plate of the fixator was removed, and the bones were then tested to failure at a rate of 0.5 

deg/sec.  A custom MATLAB (Mathworks, Natick, MA) script was then used to 

determine the stiffness, ultimate failure torque, failure twist, and energy to failure. 

Data Analysis 

A two-way, repeated measures ANOVA was run for the planar gamma imaging, 

micro-CT, and torsion data using SAS (Cary, NC).  Differences for treatment (displaced 

versus control), timing of displacement initiation, and the interaction of treatment and 

timing were analyzed.  A Tukey-Kramer adjustment was used to correct for multiple 

comparisons.  The effect of slices was used to determine differences within groups.  

Differences were deemed significant for p<=0.05.  All error bars represent plus or minus 

one standard error. 

For the IHC, three of the five levels per bone were used for a qualitative analysis.  

The levels chosen (levels one, three, and five) represent a symmetric view of the whole 

callus.  The sections were broken into eight different areas for analysis: the area 

physically within the fracture gap, the marrow area between the gap and the inside pin 

sites, the marrow area between the inside and the outside pin sites, the cortical bone 
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between the gap and the inside pin sites, the cortical bone between the inside and the 

outside pin sites, the periosteal callus between the gap and the inside pin sites, the 

periosteal callus between the inside and the outside pin sites, and the area surrounding the 

pin sites themselves.  The number of cells within each area was scored and then totaled.  

A score of zero corresponds to no cells present in that given area, a score of one 

represents 1-10 cells in that area, and a score of two signifies that 11 or more cells were 

present in a given area. 

Results 

 A detectable number of MSCs are delivered to both femora after a systemic 

injection of cells as measured by planar gamma imaging.  A high number of cells also 

remain in the visceral organs, especially the lungs, spleen, and liver.  Averaging all of the 

groups over all three days of imaging shows that on average the peak radioactivity in the 

abdominal organs was 4.2 times higher than in the femora.  Over the course of the three 

days, the cells began to migrate towards the lower extremities as can be seen in Figure 3 - 

2.  This pattern was not seen when 
111

indium was injected without first being incubated 

with MSCs (Figure 3 - 3). 

 In the femora, immediately after injection (displacement day one) there is a strong 

trend (p=0.0586) toward more activity in the stimulated femora in comparison to the 

controls regardless of when displacement was initiated (Figure 3 - 4).  On day one, there 

is significantly more activity in the stimulated limbs of the rats displaced on day three 

(group B) and a trend for more activity in the rats stimulated on day 24 (group D) (Figure 

3 - 4).  On the second day of loading, the timing of displacement administration with 

respect to the systemic injection of cells had a significant bearing on the migration of the 

MSCs, regardless of side (p=0.0079).  The group in which displacement did not start until 

three days after injection (group E) had significantly less activity on both the stimulated 

and control sides as compared to groups B (displacement day three) and D (displacement 

day ten) and a trend toward less activity when compared to group A (displacement day 

zero) (Figure 3 - 5).  By the third day of scanning, there were no differences within or 

between groups. 

 IHC shows that even though there is a small number of exogenous MSCs present 

throughout the healing process, the largest population of cells does not appear until 48 
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days after surgery (Table 3 - 2).  At that time, MSCs are detected in large populations 

throughout the marrow in the medullary canal (Figure 3 - 6) and the marrow spaces 

within the periosteal callus (Figure 3 - 7).  This is true for all of the groups euthanized on 

day 48 except for the group stimulated ten days post-op (group C).  It also appears that 

stimulation slightly increases the number of cells in the fractured limb, as the scores for 

the stimulated limbs were slightly higher than the control limbs at most time points 

(Table 3 - 3). 

To look at the effect that the cells may have on healing, a group in which 

exogenous cells were not injected was compared via micro-CT and mechanical testing in 

torsion to the group D48.  The group without cells had a higher bone volume, BMC, 

BMD, TMC, and BVF than the group with injected cells.  Stiffness and torque to failure 

were also higher in the group without exogenous cells as compared to the group that had 

cells delivered via the tail vein (Figure 3 - 8). 

Discussion 

Planar gamma imaging shows that many of the injected cells initially are detected 

in the lungs and liver.  This is probably due to the large number of cells delivered to the 

lungs all at once, and the cells are either sticking in the lungs or to each other as they 

attempt to make their way through the circulation.  If 
111

indium alone (without cells) is 

delivered via the tail vein under the same conditions that the cells were injected, the 

pattern of activity is more disperse and the lungs and liver do not see as high a level of 

activity (Figure 3 - 3).   

Despite the fact that the cell number initially prevents the cells from moving 

freely through the circulation, some of the cells do find their way to the injured limbs.  

They do not localize to the injury directly, but instead the activity seems to encompass 

the entire femur (Figure 3 - 1).  This may be due to the fact that the surgical procedure 

involves the placement of four bicortical pins to stabilize the fracture.  These pins may 

act as additional sites of injury that encourage the cells to populate the region around the 

entire femur as opposed to localizing to the osteotomy. 

The planar gamma images also show a transient difference in the radioactivity 

detected between different groups.  On the first day of axial displacement, the stimulation 

increases the activity in the loaded limbs versus the unstimulated controls.  That 
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difference disappears by day two, when no differences between the two sides are 

observed.  On day two though, there is a difference between all of the groups that 

underwent axial displacement immediately after cell injection and the animals in which 

cell injection was delayed until the fourth day of stimulation (group E).  This may suggest 

a transient systemic effect of load timing in relation to when the cells are delivered, as 

activity on both sides of the late delivered cell group showed a decrease.  This effect 

could be due to many factors.  The extra sessions of axial displacement could have 

triggered the systemic release of antimigratory factors (or hindered the expression of 

migratory factors).  Damage that could be induced by displacement could have 

accumulated over the course of the first three days and caused an adverse response.  This 

could especially be true in this group (group E) since displacement is not started until day 

24 and the mineralized tissue that is starting to form may not be able to tolerate the 

applied displacement.  It could also be that the animals that had the delay in cell injection 

could have experienced different stress factors, as they had to undergo three additional 

periods of anesthesia and stimulation in comparison to the other groups.  All of the 

radioactivity differences appear to be transient though, as there were no differences 

between any group by day three.  The inability to detect differences by that time point 

may also be due to a decline in sensitivity, as the half-life of 
111

indium is about three 

days, which would reduce the overall signal that can be detected. 

The sections stained for GFP through IHC confirmed that cells are able to migrate 

to the femora.  It also showed that the injected MSCs were, in most cases, able to 

establish a population in the marrow by day 48.  The exogenous MSCs were found in 

other locations other than marrow compartments (Figure 3 - 9), but it seems that the most 

consistent populations were found in the marrow.  This is probably because the marrow 

and the cambium layer of the periosteum are considered primary stem cell niches [23], 

and so it is natural for the cells to engraft there as opposed to other locations.  This is 

consistent with other studies that have found exogenous MSCs in the bone marrow for 

long periods after a systemic injection [13], and do not appear in large numbers in the 

first few weeks after delivery [32].  Most of these other studies though involve 

pretransplant conditioning like irradiation of the host animal [12], while few have been 

able to show long-term engraftment after bone marrow transplants without conditioning 
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[28].  Many studies deliver cells on a scaffold or genetically modify the cells before 

injection to increase healing or engraftment success [29], and our current study is one of 

the few to demonstrate long-term engraftment in the bone marrow and other tissues after 

a tail vein injection without host conditioning [11].  

The apparent higher number of cells in the bone marrow in comparison to other 

tissues may also be due to the available area of evaluation.  It could be that there is a 

greater opportunity for them to engraft or be detected in the marrow versus the cortices.  

There were a fair amount of cells detected in the cortices.  A common location for the 

cells to be detected in the cortical bone was the Haversian system as the cells move 

through the bone’s circulation as evidenced by cells travelling together along the same 

line.  This area though is much smaller than the marrow, so it may be that proportionally 

there were as many cells in the cortices as the marrow but the smaller numbers and area 

made them harder to consistently detect.  To prevent any skewing of results from this 

phenomenon, the results presented in Table 3 - 2 and Table 3 - 3 are from the marrow 

spaces only and do not represent areas of cortical bone. 

Probably the most curious result from these studies is that the presence of cells 

seems to have a deleterious effect on the fracture healing process.  The animals that had 

stimulation and cell delivery at day 24 exhibited less mineralization and lower 

mechanical properties in torsion than animals in the same group in which cells were not 

injected.  In this case, it could be that the actual delivery of the cells provided the effect.  

The animals that did not have cells delivered did not undergo a sham procedure, so it 

could be that the actual action of a needle stick and delivery of fluid, in this case PBS, 

caused an adverse effect.  It seems unlikely though that the act of injecting in the tail vein 

alone could cause such an adverse effect in healing bone defects in the femora. 

 The same deleterious effect can be seen in all of the groups except for the group 

that was stimulated starting on day 10 (Group C48).  In the current study, this group had 

the fewest amount of exogenous MSCs present around the fracture site.  In the previous 

study presented in Chapter 2, this group had the highest mineral content and displayed 

evidence of accelerated fracture healing.  For the case of group C48, it could be that the 

cells themselves had a problem, like a high population of cells that died in between cell 

preparation and injection, before or during delivery.  There were five different rats 
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examined by IHC in group C48.  Two of the rats were injected with one batch of cultured 

cells, and the other three rats were injected with a different batch of cells.  The only rat to 

exhibit strong populations of MSC was one of the first two rats, while none of the other 

rats showed signs of large MSC populations.  If the marrow from all the rats from one 

batch of injections had contained large numbers of MSCs, that would suggest a problem 

with the other batch of cells.  However, since four out of the five rats did not have an 

MSC population, it seems unlikely that a cell injection problem is the cause of this result. 

Since it is unlikely that the act of injection or problems with the cells is the cause 

of the adverse healing response, other hypotheses should be considered.  One plausible 

hypothesis is that the exogenous MSCs are preventing T-cells from proliferating at the 

fracture site.  MSCs act upon different subpopulations of T-cells, inhibiting T-cell 

proliferation but not their activation [35].  It has also been found that T-cells are recruited 

to the fracture callus during the inflammatory phase, and they may release cytokines and 

growth factors that are important in the progression of repair [1].  If the delivered MSCs 

are inhibiting T-cells from populating the area of the injury, this might explain the lower 

mineralization seen in the groups in which cells were delivered early on (groups A and 

B), but may not fully explain the response in the late delivered group (group D).   

Other hypotheses that could explain the decreases in healing involve a reaction 

from the host animal.  It could be that there is an immune response to the injected cells 

that is interfering with the healing process.  It is generally excepted that MSCs enjoy a 

certain amount of immune privilege [12], so it may not be that the host animal is trying to 

reject the injected cells.  It could also be that injected MSCs are somehow competing 

with the endogenous MSCs [4, 12] and instead of having a mutual beneficial effect, have 

a combined deleterious effect.   

This study has shown that mesenchymal stem cells delivered through the tail vein 

are capable of migrating to the site of injury.  The planar gamma imaging showed that the 

majority of cells initially reside in the visceral organs.  There was a population of cells 

that travelled out of these areas and into the femora, and mechanical stimulation seemed 

to have a transient effect on the migration of the cells.  Results from IHC demonstrated 

that in the long term, the exogenous MSCs form large populations in the marrow by 48 

days after surgery.  Mechanical stimulation immediately after the inflammatory phase 
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(stimulation on day 10) seemed to prevent these cells from engrafting and also improved 

healing in comparison to the other groups.  In addition, cell injections had a deleterious 

effect on fracture healing in animals that had cells delivered on day 24 (group D).  

Further study will need to be done to fully understand the mechanism by which the MSC 

are affecting bone fracture repair.  
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Chapter 3 Figures 

 

 
 

 

 

Figure 3 - 1:  Regions of interest encompassing radioactivity in the femora from planar 

gamma imaging.  Three regions were selected for each image acquired for the lower 

limbs.  The two rectangular regions encompass the femora, and the circular region is used 

to detect background signal.  The surface activity for each limb was measured and then 

normalized to the background signal.  The strong signal at the left of the image is 

radioactivity from the visceral organs.  
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Figure 3 - 2:  Systemically injected MSC migrate out of the lungs.  Immediately after 

injection of the MSCs, many of the cells are seen in the lungs.  On days two and three 

after injection, the cells can be seen more in the liver as the outline of the lungs has faded.  

The intensity of radioactivity, which is the measure for the size of the injected MSC 

population, is also decreased in the upper body by day three.  This could be due to both 

the MSCs migrating inferiorly out of the lungs and liver and to the half-life of 
111

indium, 

which is about three days.  The box around the internal organs on the illustration 

represents the area shown in the planar gamma scans. 
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Figure 3 - 3:  Difference in radioactivity distribution with and without cells.  When 
111

indium is injected via the tail vein without being incubated with MSCs, the distribution 

of activity is different than when cells are injected.  The large number of cells delivered 

to the lungs may be the cause of the delay in the cells migrating out of the visceral organs 

as the cells may stick in the lungs or each other as they try to make their way through the 

circulation. 
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Figure 3 - 4:  The normalized surface activity of the femora after the first application of 

axial displacement.  The displaced limbs in the rats stimulated starting three days after 

surgery (group B) showed an increase in radioactivity when compared to the unloaded 

controls (*p<0.05).  There was also a trend for an increase in the displaced limbs of the 

rats stimulated 24 days after surgery (group D) (p=0.0818).  
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Figure 3 - 5:  The group that was injected with MSCs after three bouts of displacement 

(group E) shows less activity in both limbs than in any other group.  There was a 

significant difference for both the stimulated and control values across all groups.  The 

effect of load initiation was also significant for groups B and D when compared to group 

E (there was a trend between groups A and E).  This indicates that a smaller proportion of 

injected cells are available to both femora when the delivery of cells is delayed until axial 

displacement has already begun. (*p<0.05) 
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Figure 3 - 6:  GFP positive cells in the marrow 48 days after surgery.  At all of the time 

points there was evidence of some GFP positive staining, but it was not until day 48 that 

there were large populations of GFP positive cells in the marrow spaces.  Cells were also 

present in other locations (cortices and pin sites), but the most consistent location for the 

MSC populations was in the medullary marrow and the marrow within the periosteal 

callus.  The above image is of cells in the medullary cavity, and the scale bar is shown.  
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Figure 3 - 7:  GFP positive cells in the periosteal callus.  The injected MSCs populated 

any area that consisted of marrow spaces.  The areas in between the original cortex and 

the hard callus shell that formed from a periosteal response consist of marrow tissue.  The 

injected MSCs were often found in these areas.  The above image is of cells in the 

periosteal callus, and the scale bar is shown. 
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Figure 3 - 8:  Cells produce an adverse effect as measured by micro-CT and mechanical 

testing in torsion.  The group that was stimulated on day 24 but did not have exogenous 

cells introduced had a higher bone volume (p=0.017, not shown), BMC (p=0.025, not 

shown), BMD (p=0.011), TMC (p=0.014), and BVF (p=0.010, not shown) than the group 

that had cells injected via the tail vein on day 24.  The same decreases due to cell 

injection were seen in the stiffness of the callus in torsion (p=0.0301) and the torque to 

failure (p=0.0142). 

 

 



 

 66 

 
 

Figure 3 - 9:  GFP positive cells in cortical bone.  Even though the marrow contained the 

highest amount of GFP positive cells, other locations including the cortex (shown here) 

and the bone directly adjacent to pins sites also contained populations of the injected 

MSCs. 
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Chapter 3 Tables 

 

        Group 
Load Initiation 

Day (post-op) 

Cell Injection Day 

(post-op) 

Euthanasia Day 

(post-op) 

A (n=4) 0 0 2 

B (n=4) 3 3 5 

C (n=4) 10 10 12 

D (n=7) 24 24 26 

E (n=8) 24 27 29 

 

Table 3 - 1:  Explanation of the timing of axial displacement and cell injection for planar 

gamma imaging.  All of the animals were injected with MSCs via the tail vein 

immediately before the first application of mechanical stimulation with the exception of 

group E.  In that group, cell injection and planar gamma imaging began on the fourth day 

of axial displacement. 

 



 

 68 

 

Group 

Load 

Initiation Day 

(post-op) 

Marrow and 

Callus: Cell 

Score for 

Euthanasia  

Day 10 

Marrow and 

Callus: Cell 

Score for 

Euthanasia  

Day 24 

Marrow and 

Callus: Cell 

Score for 

Euthanasia  

Day 48 

A 0 0.25 0.51 0.74 

B 3 0.12 0.80 1.21 

C 10 ------- 0.73 0.54 

D 24 ------- ------- 1.40 

 

Table 3 - 2:  The score for the amount of MSCs detected in the marrow and the periosteal 

callus marrow for each group.  Sections were scored out of two, with a score of zero 

representing no cells present, one meaning that there were only a few cells (one to ten) 

cells present, and two signifying that there was an established population of cells present.  

The scores were then averaged within each group.  The highest number of cells was 

detected in the marrow spaces of the animals after 48 days.  The lone exception to this is 

group C48, which saw a decrease in the number of cells present.   

 

 



 

 69 

 

Group 
Marrow and Callus: Cell 

Score for Stimulated Limb 

Marrow and Callus: Cell 

Score for Control Limb 

A10 0.22 0.29 

A24 0.52 0.50 

A48 0.87 0.62 

B10 0.13 0.11 

B24 0.90 0.70 

B48 1.38 1.04 

C24 0.88 0.57 

C48 0.67 0.42 

D48 1.58 1.43 

 

Table 3 - 3:  The scores for the amount of MSCs in the marrow spaces of the displaced 

and control limbs for each group.  The stimulated limbs have more cellular activity in the 

marrow when compared to the unstimulated control limbs.  The number of cells also 

increases with the amount of time after injection (i.e. A48>A24>A10), except in group C, 

which had the cell delivery and axial displacement begin ten days after surgery.
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Chapter 4 

 

PCR Array for the Examination of Molecular Factors 

Implicated in Mesenchymal Stem Cell Homing 

 

 

Ten years after the characterization of hematopoietic stem cells [50], Friedenstein 

and colleagues first described in vitro what they referred to as colony-forming units, 

which are better known today as mesenchymal stem cells [26].  Mesenchymal stem cells 

are pluripotent cells which give rise to tissues of mesodermal origin such as bone, 

cartilage, muscle, ligament, tendon, adipose, and stroma [2, 8, 9, 32, 62].  There is also 

evidence that they can give rise to cells of ectodermal and endodermal origin such as 

neurons and hepatocytes [45].  With regard to fracture healing, the bone marrow and 

periosteum are rich sources of MSCs with the most activity occurring in metaphyseal 

bone and vascular periosteum, and MSCs are involved in every aspect of bone 

regeneration [46]. 

Through in vivo and in vitro assays, many different regulators of MSC migration 

have been recently identified.  The most commonly studied may be stromal cell-derived 

factor-1 (SDF-1).  SDF-1 is expressed in the bone marrow by osteoblasts, fibroblasts, and 

endothelial cells [40].  Recent data suggest that there is a population of MSCs that 

express CXCR4, the unique receptor for SDF-1, and that these cells migrate toward SDF-

1 [4, 18, 39, 47, 51, 63, 65, 68, 70, 83]. 

There are many other factors that have been implicated in the migration of MSCs.  

Growth factors, such as TGF-!, BMPs, PDGFs, FGFs, and IGFs, which may be released 

during remodeling and injury, have been shown to induce migration of MSCs [5, 19, 22, 

23, 25, 51, 52, 60, 63, 70, 74, 76, 77].  MSCs have also been shown to migrate towards 

VEGFs, angiopoietins, and placental growth factor-1 (PlGF-1), which are important in 
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restoring vascularization to the fracture site [19, 24, 55, 70].  Factors that are released as 

part of the initial inflammatory response may be involved in recruiting MSCs to the 

injury site early in repair [5, 19, 40, 56, 65, 70, 79, 80].  Matrix metalloproteinases 

(MMPs) and bone sialoprotein (BSP) may permit the movement of MSCs through the 

bone matrix by mediating matrix degradation [21, 41].  Along with the chemokines, 

growth factors, and other factors mentioned above, there are numerous others and their 

receptors [72] that have also been implicated in MSC migration. 

The mechanical environment of a fracture site has been known to play an 

important role in fracture healing and tissue differentiation for many years [11]. 

Appropriately applied mechanical conditions are known to accelerate fracture healing 

[31, 43, 44, 66].  Studies that apply a controlled stimulus across the fracture site have 

found that small controlled movements in smaller fracture gaps can increase bone 

formation [84], callus size [15, 16], and tensile strength [16].  Models that actively 

control the displacement through external fixation have found that fractures subjected to 

cyclic compression demonstrated higher torque and energy to failure, higher torsional 

stiffness, more advanced tissue differentiation, and more complete bony bridging than 

their rigidly fixed counterparts [29, 82]. 

Interestingly, it has also been shown that skeletal injury and stimulation elicit an 

osteogenic response at distant sites [53].  Einhorn et. al. found that the mineral apposition 

rates in both tibiae of rats in which the right femur had been surgically injured increased 

as much as 350% over baseline controls [20].  Transverse loading of the knee has also 

been shown to accelerate healing in defects in the tibial diaphysis [85], and distraction 

osteogenesis has been shown to increase growth and other soluble factors in the sera of 

patients [34, 42, 81].  The results outlined in Chapter 2 of this thesis also support that an 

axial displacement applied to a healing femoral fracture affects the repair of a fracture in 

the contralateral femur.   

Since both the mechanical environment and MSCs are known to be integral parts 

of fracture repair, it seems logical that changes in the mechanical environment can alter 

the migration of these cells.  Due to the wide range of biologic factors and mechanical 

stimuli that can affect fracture healing, the factors that encourage MSCs to migrate to the 

site of repair have not been fully studied.  The purpose of this study is to examine how 
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altering the local mechanical environment in an in vivo model of fracture healing affects 

the release of molecular factors that have been implicated in MSC migration. 

Materials and Methods 

Animal Surgery and Mechanical Stimulation 

Twelve, six-month-old, male, Sprague-Dawley rats underwent a 2mm segmental 

osteotomy in the mid-diaphysis of each femur (Figure 2 - 1).  Briefly, after a 1cm 

exposure and elevation of the soft tissues, four 0.062-inch diameter threaded pins were 

placed through predrilled holes made in the diaphysis using a specialized guide.  A two-

piece external fixator with locking plate was then affixed to the pins.  An osteotomy was 

created with an oscillating saw under constant saline irrigation, and the surrounding 

tissues were then closed. 

Axial mechanical stimulation was performed with a linear precision table and 

servo controlled stepper motor.  The system provides controlled axial motion with 

displacement monitored by a linear variable differential transformer (LVDT).  The rats 

were placed in a sling so that the fixator could be properly aligned, and the locking plate 

was removed once it was secured in the loading device.  Mechanical stimulation occurred 

for five consecutive days beginning at three or 24 days post-operatively at a magnitude of 

±8% strain (±0.16mm) and a rate of 0.313 Hz for 510 loading cycles.  A control group for 

each time point, which had a unilateral, unstimulated osteotomy, was also entered into the 

study.  Rats were euthanized on either day seven or 28, immediately after the final 

application of mechanical stimulation.  All experimental procedures were approved by 

the University of Michigan Committee on Use and Care of Animals. 

Harvest of Callus Tissue 

 Immediately after each animal was euthanized, the callus tissue was removed 

under sterile conditions.  The legs of each animal were shaved, the femora were exposed 

and harvested, and the fracture calluses were removed from the osteotomy using a scalpel 

blade.  After each callus was removed, it was immediately placed in an RNase-free 

microfuge tube and snap frozen in liquid nitrogen.  The harvested tissues were then 

stored at -80°C until they were processed for RNA extraction. 
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Isolation of RNA 

TRIzol reagent (Invitrogen, Carlsbad, California) was used to isolate RNA from 

the harvested samples.  Samples were thawed in 1ml TRIzol on ice, and then 

homogenized using a Polytron disperser (Lucerne, Switzerland).  After the separation of 

the remaining bone tissue from the reagent, 200µl of chloroform was added to separate 

the solution into aqueous and organic phases.  The liquid phase was removed, placed into 

clean tubes, and then the RNA was precipitated out of solution through the addition of 

0.5ml isopropanol.  After centrifugation, the resulting pellet was washed in 75% EtOH, 

dried, and suspended in RNase/DNase free water.  In preparation for RT-PCR, TURBO 

DNA-free (Applied Biosystems/Ambion, Austin, TX) was used to remove genomic DNA 

contamination. 

RT-PCR Array 

 The concentration of RNA for each sample was determined by spectrometer.  All 

of the samples except one, which had a lower concentration, were diluted to a 

concentration of 126 ng/µl.  Samples were examined on an Agilent 2100 bioanalyzer 

(Agilent Technologies, Santa Clara, California) to determine the integrity of the RNA.  

Two, 5µl amounts of each sample were alloquated for analysis, and all experiments were 

performed in duplicate.   

 An RT
2
 Profiler

TM
 PCR Array System (all components from SABiosciences, 

Frederick, MD) was used for PCR analysis.  The RNA in the 5µl samples was converted 

to cDNA using the RT
2
 First Strand Kit, and the experimental cocktail for RT-PCR was 

created using the RT
2
 qPCR master mix.  A 384-well, custom PCR array was used to 

determine the expression of selected genes.  Each array contained four sets of: a panel of 

84 genes of interest (See Table 4 - 1 and Table 4 - 2), five housekeeping genes, and three 

RNA and PCR quality controls.  The genes of interest were selected through a literature 

search and chosen due to evidence that they are involved in the migration of 

mesenchymal stem cells [5, 18, 19, 22-25, 39-41, 47, 51, 52, 55, 56, 60, 63, 65, 68, 70, 

72, 74, 76, 77, 79, 80, 83]. 
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Statistical Analysis 

 Comparisons were made between the stimulated and control fracture gaps within 

each group to determine the effect of displacement on gene expression at each time point.  

To test for the systemic release of factors due to displacement, comparisons were also 

made between the unstimulated control in the bilateral rats and the unstimulated fracture 

in the rats that only had one osteotomy.  The data was normalized to the mean cycle 

threshold (Ct) of the five housekeeping genes for each plate.  All comparisons were made 

using generalized least squares, which takes into account the correlation between the 

technical replicates [71].  Differences were deemed significant for p<=0.05. 

Results 

 In animals that underwent axial displacement starting three days after surgery and 

then were euthanized on day seven, IGF-2, IGF-2 receptor, and Col1a1 were up-regulated 

in the loaded fracture gap versus the contralateral control gap (Table 4 - 3).  HGF and 

angiopoietin-1 were down-regulated in the loaded callus tissue when compared to the 

contralateral control. 

 For animals that were stimulated starting on day 24 and euthanized on day 28, 

CXCL-10 (IP-10), BMP-6, Bglap-2 (BGPR), EGF, and Ihh were all up-regulated in the 

displaced fracture tissue versus the contralateral control (Table 4 - 4).  Several genes 

were also down-regulated in the stimulated callus in comparison to the control including 

IL-8 receptor beta, MMP-8, CX3CR-1, IL-6, and CSF-3. 

 To test for effects that the displaced gap may be having on the distant, control 

fracture, the control fracture tissue from animals that had bilateral osteotomies was 

compared to the fracture gaps from animals that only had one, unstimulated osteotomy.  

HGF, CCL22 (MDC), and TNF-! were up-regulated in tissue from control fractures in 

bilateral rats stimulated starting day three in comparison to the fractures in the unilateral 

model (Table 4 - 5).  IBSP, GDF-5, Col1a1, Ihh, MMP-2, and Fn-1 were all down-

regulated in those animals. 

 For animals euthanized on day 28, FGF-4 and CX3CR-1 were up-regulated in 

control fractures from the bilateral rats versus the fracture tissue from the rats with only 

one osteotomy (Table 4 - 6).  Ihh, BMP-6, CXCL-1, IBSP, FGF-3, CXCL-10 (IP-10), 

GDF-5, and CSF-3 were all down-regulated in the same comparison.  
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Discussion 

 At both time points, both experimental groups showed several differences in gene 

expression in fracture gap tissue.  Genes of all the factors that were chosen for PCR 

analysis show some evidence from previous studies that they can influence the migration 

of mesenchymal stem cells, and these genes can also give insight to how healing is 

progressing in general.  The data show that expression of some genes are up-regulated, 

while the expression for others was down-regulated, suggesting that mechanical 

stimulation can alter chemotactic patterns.  

After undergoing five days of axial displacement, fracture gap tissue harvested 

seven days after surgery showed an up-regulation in insulin-like growth factor-2 (IGF-2), 

the IGF-2 receptor, and type-1 collagen.  This group also expressed lower levels of 

hepatocyte growth factor (HGF, also known as scatter factor) and angiopoietin-1. 

Previous studies have also shown peak mRNA expression of IGF-2 to occur seven days 

after fracture in a mandibular osteotomy model [73].  IGF-2 is known to stimulate the 

production of type-1 collagen, and is important in late-stage endochondral ossification 

[19, 64].  HGF is expressed very early on in fracture healing and plays a role in 

neovascularization as well as BMP signaling [6, 30, 35, 75].  New vessel formation is 

also induced by angiopoietin-1, whose expression has been shown to be increased three- 

to five-fold in the early stages of fracture healing [27, 28, 49] and is also critical in 

distraction osteogenesis [10].  These results suggest that when mechanical stimulation is 

applied at an early time point, displacement encourages type-1 collagen synthesis but 

discourages neovascularization at the fracture site.  This may not be a beneficial 

environment for healing to progress since a good vascular supply is necessary for 

successful repair [14, 78].  These results are also consistent with the findings from the 

data presented in Chapter 2 that showed that fractures exposed to displacement at early 

time points healed at a slower rate than those displaced after the inflammatory phase had 

ended. 

IGF-2, type-1 collagen, and HGF are all known to promote the migration of 

MSCs, whereas the chemotactic effect of angiopoietin-1 on MSCs is not as firmly 

established and it may require VEGF to act as a chemoattractant [55].  The study in 

Chapter 3 on in vivo MSC migration also found that even though there were not many 
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cells present in the femora of this group ten days after surgery, there were established 

populations of cells later on at 24 and 48 days.  The results also indicated that there may 

be a greater MSC presence in the stimulated limbs versus the control limbs.  These results 

taken together could suggest that axial displacement is creating a stronger chemotactic 

local environment than in the nondisplaced controls.  Without knowing the relative 

strength of the migration cues or the specific gradients of these chemotactic factors 

through the tissue, it is impossible to definitively say if the expression profile of these 

genes would cause the MSC to preferentially home to one defect over another. 

When controlled displacement is applied 24 days after surgery, there is an 

increased expression of bone morphogenetic protein-6 (BMP-6), osteocalcin (Bglap-2), 

epidermal growth factor (EGF), and Indian hedgehog (Ihh) suggesting that the 

stimulation is promoting endochondral ossification.  BMP-6 and Ihh work together in 

chondrocyte maturation [48, 61] and promote bone formation through endochondral 

ossification [13, 57, 67].  BMP-6 has also been shown to accelerate fracture healing when 

it is injected directly into the defect [3, 36], and induces ectopic bone formation after 

subcutaneous injection [38].  EGF is also thought to be involved in skeletal growth by 

regulating chondrocyte activity [7], and its receptor has been shown to be mechanically 

regulated in osteoblasts undergoing fluid shear in vitro [59].  These results, along with the 

increased expression of osteocalcin, suggest that the applied stimulus is encouraging 

endochondral ossification and mineralization in the regenerating tissue.  It is also 

important to note that the expression of inflammatory factors and proteinases is reduced 

in the stimulated limb.  Interleukins are involved in inflammation and have been 

implicated in osteoclast resorption during diseased states [54], and CX3CR-1 and 

granulocyte colony stimulating factor are pro-inflammatory factors that promote 

monocyte accumulation [17, 58, 69].  Matrix metalloproteinases degrade extracellular 

matrix proteins early in healing [37] and increased serum levels of MMP-8 have been 

detected in patients with non-healing fractures [33].  These results taken as a whole 

suggest that controlled axial displacement applied 24 days after surgery may provide a 

favorable environment for endochondral bone formation. 

 It is possible that applying a controlled stimulus at the site of injury promotes the 

release of soluble factors that can influence remote sites.  In this case, there were many 
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molecular changes detected in the non-stimulated fracture tissue of rats that had a 

stimulated fracture in the contralateral femur.  At post-operative day seven, there was an 

elevation in macrophage and inflammatory factors (CCL22 and tumor necrosis factor-

alpha), and a decrease in factors that are important in fracture repair like Ihh and growth 

differentiation factor-5 (GDF-5) [1, 12].  There was also a decrease in bone extracellular 

matrix proteins type-1 collagen, bone sialoprotein (IBSP), and fibronectin (Fn-1), which 

are typically expressed early in bone healing [86].   

At post-operative day 28, it appears that more chemotactic factors are down-

regulated in the unloaded fracture in the bilateral model versus the unloaded unilateral 

fracture suggesting that the systemic response to displacement is to reduce cell homing to 

distant sites.  Again, without knowing the relative strength of these signals in relation to 

each other, it is not possible to be certain of any directional migration cues.  It also seems 

that the distant site has a decrease in several important healing factors like Ihh, BMP-6, 

IBSP, FGF-3, and GDF-5 when compared to the unilateral defects.  This would suggest 

that the unstimulated site at later time points might be undergoing changes that would 

negatively affect healing.  Clinically, this would only make a difference if the patient had 

two major fractures and only one was treated with a controlled motion.  If mechanical 

stimulation was to be prescribed as a fracture treatment in this case, it would be likely 

that both injuries would be treated, which may eliminate the negative systemic effects. 

Coupling the data from the bilateral comparison with the systemic comparison 

suggests that the axial displacement may be having a bigger influence systemically than 

locally.  For example, at post-operative day 28 more BMP-6 was found in the displaced 

fracture gap in comparison to the contralateral, undisplaced control.  There was also more 

BMP-6 in the gap of the unilateral fracture in comparison to the unstimulated, bilateral 

fracture.  This means that it is possible that the differential expression seen in the loaded 

versus the unloaded fractures in the bilateral animals is actually a systemically induced 

decrease in expression.   

It is evident that mechanical stimulation has an effect on the expression of 

molecular factors in the fracture site.  At seven days post-op, there was a decrease in 

angiogenic factors, and at 28 days, there was an increase in genes implicated in 

endochondral ossification and mineralization on the stimulated side.  There were also 
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differences in expression between unstimulated limbs in a unilateral model and a bilateral 

model suggesting that the applied stimulus is having a systemic effect.  The mechanisms 

by which these changes are occurring are not fully understood.  More studies need to be 

performed to understand the cellular response to strain in vivo and how circulating factors 

affect fracture healing at distant sites.    
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Chapter 4 Tables 
 

Symbol Description  Symbol Description 

Cxcl12 

 

Chemokine (C-X-C motif) ligand 12  Ihh Indian hedgehog homolog, (Drosophila) 
Il1a Interleukin 1 alpha  Bglap2 Bone gamma-carboxyglutamate protein 2 

Il1b Interleukin 1 beta  Igf2 Insulin-like growth factor 2 

Il6 Interleukin 6  Fgf1 Fibroblast growth factor 1 

Tnf Tumor necrosis factor  Fgf2 Fibroblast growth factor 2 

Tgfb1 Transforming growth factor, beta 1  Fgf3 Fibroblast growth factor 3 

Tgfb2 Transforming growth factor, beta 2  Fgf4 Fibroblast growth factor 4 

Tgfb3 Transforming growth factor, beta 3  Fgf5 Fibroblast growth factor 5 

Pdgfa Platelet derived growth factor, alpha  Mmp2 Matrix metallopeptidase 2 

Pdgfb Platelet derived growth factor, beta  Mmp7 Matrix metallopeptidase 7 

Bmp1 Bone morphogenetic protein 1  Mmp8 Matrix metallopeptidase 8 

Bmp2 Bone morphogenetic protein 2  Cx3cl1 Chemokine (C-X3-C motif) ligand 1 

Bmp3 Bone morphogenetic protein 3  Cxcl16 Similar to chemokine (C-X-C motif) ligand 16 

Bmp4 Bone morphogenetic protein 4  Mip1 Myocardial ischemic preconditioning 1 

Bmp5_predicted Bone morphogenetic protein 5 (predicted)  Egf Epidermal growth factor 

Bmp6 Bone morphogenetic protein 6  Hbegf Heparin-binding EGF-like growth factor 

Bmp7 Bone morphogenetic protein 7  Tgfa Transforming growth factor alpha 

Cxcl1 Chemokine (C-X-C motif) ligand 1  Hgf Hepatocyte growth factor 

Gdf5 Growth differentiation factor 5  F2 Coagulation factor II 

Gdf8 Growth differentiation factor 8  Ccl2 Chemokine (C-C motif) ligand 2 

Fn1 Fibronectin 1  Ccl5 Chemokine (C-C motif) ligand 5 

Vtn Vitronectin  Ccl22 Chemokine (C-C motif) ligand 22 

Col1a1 Procollagen, type 1, alpha 1  Lif Leukemia inhibitory factor 

Angpt1 Angiopoietin 1  Ntf3 Neurotrophin 3 

Angpt2 Angiopoietin 2  Pgf Placental growth factor 

Vegfa Vascular endothelial growth factor A  Cxcl10 Chemokine (C-X-C motif) ligand 10 

Vegfb Vascular endothelial growth factor B  Csf2 Colony stimulating factor 2 (gran-macrophage) 

Vegfc Vascular endothelial growth factor C  Csf3 Colony stimulating factor 3 (granulocyte) 

Igf1 Insulin-like growth factor 1  Ibsp Integrin binding bone sialoprotein 

Cd44 CD44 antigen  Flt1 FMS-like tyrosine kinase 1 

 

Table 4 - 1: List of ligands used for PCR analysis.  These ligands were chosen based on evidence from the literature that they promote 

the migration of mesenchymal stem cells, and primers encoding for these ligands were preseeded onto a PCR array for analysis. 
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Symbol Description 

Cx3cr1 Chemokine (C-X3-C) receptor 1 

Bmpr1a Bone morphogenetic protein receptor, type 1A 

Bmpr1b Bone morphogenetic protein receptor, type 1B (mapped) 

Bmpr2 Bone morphogenic protein receptor, type 2 

Igf1r Insulin-like growth factor 1 receptor 

Igf2r Insulin-like growth factor 2 receptor 

Pdgfra Platelet derived growth factor receptor, alpha polypeptide 

Pdgfrb Platelet derived growth factor receptor, beta polypeptide 

Kdr Kinase insert domain protein receptor 

Ccr1 Chemokine (C-C motif) receptor 1 

Ccr2 Chemokine (C-C motif) receptor 2 

Ccr4 Chemokine (C-C motif) receptor 4 

Ccr7 Chemokine (C-C motif) receptor 7 

Il8rb Interleukin 8 receptor, beta 

Cxcr3 Chemokine (C-X-C motif) receptor 3 

Cxcr4 Chemokine (C-X-C motif) receptor 4 

Cxcr6 Chemokine (C-X-C motif) receptor 6 

Fgfr1 Fibroblast growth factor receptor 1 

Fgfr2 Fibroblast growth factor receptor 2 

Fgfr3 Fibroblast growth factor receptor 3 

 

Table 4 - 2: List of receptors used for PCR analysis.  These receptors were chosen based 

on evidence from the literature that they promote the migration of mesenchymal stem 

cells, and primers encoding for these receptors were preseeded onto a PCR array for 

analysis. 



 

 84 

 

Up-regulated gene Up p value  Down-regulated gene Down p value 

IGF-2 0.0179  HGF 0.0257 

Col1a1 0.0197  Angiopoietin-1 0.0479 

IGF-2 receptor 0.0213    
 

Table 4 - 3:  Differential gene expression in rats with bilateral osteotomies that received 

unilateral displacement and were euthanized on post-operative day seven.  These genes 

were either up- or down-regulated in the stimulated fracture gap of animals with one 

fracture displaced starting on post-operative day three in comparison to the contralateral, 

unstimulated control fracture. 
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Up-regulated gene Up p value  Down-regulated gene Down p value 

CXCL10/IP-10 0.0095  IL-8 receptor beta 0.0116 

BMP-6 0.0140  MMP-8 0.0160 

Bglap-2/BGPR 0.0161  CX3CR-1 0.0204 

EGF 0.0438  IL-6 0.0252 

Ihh 0.0451  CSF-3 0.0412 
 

Table 4 - 4: Differential gene expression in rats with bilateral osteotomies that received 

unilateral displacement and were euthanized on post-operative day 28.  These genes were 

either up- or down-regulated in the stimulated fracture gap of animals with one fracture 

displaced starting on post-operative day 24 in comparison to the contralateral, 

unstimulated control fracture. 
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Up-regulated gene Up p value  Down-regulated gene Down p value 

HGF 0.0292  IBSP  0.0003 

CCL22/MDC 0.0311  GDF-5 0.0003 

TNF-! 0.0357  Col1a1 0.0025 

   Ihh 0.0036 

   MMP-2 0.0050 

   Fn-1 0.0115 
 

Table 4 - 5:  Genes involved in a systemic response to axial displacement on post-

operative day seven. These genes were either up- or down-regulated in the unstimulated 

control fracture gap of animals with bilateral osteotomies in comparison to the gap tissue 

from rats with one, unstimulated osteotomy. 
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Up-regulated gene Up p value  Down-regulated gene Down p value 

FGF-4  0.0120  Ihh 0.0001 

CX3CR-1 0.0482  BMP-6 0.0100 

   CXCL-1 0.0159 

   IBSP 0.0168 

   FGF-3 0.0236 

   CXCL-10/IP-10 0.0332 

   GDF-5 0.0353 

   CSF-3 0.0419 
 

Table 4 - 6:  Genes involved in a systemic response to axial displacement on post-

operative day 28. These genes were either up- or down-regulated in the unstimulated 

control fracture gap of animals with bilateral osteotomies in comparison to the gap tissue 

from rats with one, unstimulated osteotomy.
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Chapter 5 

 

Conclusion 

 

 

 Normally, fractures heal without many complications or the need for major 

clinical intervention.  However, the incidence of long-bone non-union is between 5% and 

20% [11], and the health care cost for these cases is on the rise [1].  In addition, the 

advent of advanced body armor has increased survival of soldiers in warfare, but has also 

increased the number of complicated musculoskeletal injuries that need to be treated [4, 

6, 7, 10].  To better treat these injuries, methods need to be developed to accelerate 

fracture repair and reduce complications in difficult cases.  While there is a very good 

understanding of the cellular processes that occur during healing, it is not well known 

how these processes respond to environmental cues. 

 The local mechanical environment is one of the cues that is known to play an 

important role in the healing of fractures, but the mechanisms by which the cells in the 

defect sense and respond to this environment is still poorly understood.  One of the 

reasons for this is the wide array of possible variables that can affect healing.  Different 

and complicated fracture geometries can make it difficult to standardize results between 

experiments.  The magnitude and direction of the stimulation, strain rate, frequency, 

duration, and rest insertion periods can all vary between studies making it difficult to 

compare results from experiment to experiment.   

 Due to differences in these experimental parameters and the inherent variability in 

fracture healing, even concepts that are generally accepted as far as the mechanical 

environment and fracture repair have evidence to the contrary.  For example, there is 

strong evidence in the literature, including this thesis, that controlled motion at the site of 

fracture has an influence on healing.  Even so, other research has demonstrated that 
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motion has no influence on healing progression [2, 3, 13, 14].  It is also generally thought 

that tensile strains lead to direct bone formation, while compression leads to cartilage 

formation and endochondral ossification [5, 9].  Yet, research from our lab has shown the 

opposite, that areas of tension lead to cartilage formation and compression promotes 

intramembranous bone formation [12].  These two examples demonstrate that variability 

between models and in fracture healing in general can lead to different results. 

 Keeping in mind the wide array of parameters that can be varied, this dissertation 

set out to determine the effect of a reversible, axial displacement applied at 8% strain.  

This strain was chosen based on work in our laboratory that showed that 8% strain was an 

acceptable level of stimulation and elicits a response [12].  A rate of 0.313 Hz over 510 

cycles for five consecutive days was also chosen, and for the most part, these were all 

held constant for all of the experiments.  The only parameter that varied throughout was 

when the displacement was applied with respect to the day of surgery.  To change any 

more parameters than one would have led to a much more complicated experiment, and 

with the variability, the size of the experiment would have had to be much larger to 

achieve statistical significance.  Any experiment that would try to tie together a majority 

of the variables mentioned above would be impossibly large, and for that reason, this 

dissertation tried to answer important questions by varying only one parameter.  Namely, 

this work tried to answer how the timing of the application of the axial stimulus effects 

fracture healing.  It also shed light on how the stimulus and its timing effects the homing 

dynamics of mesenchymal stem cells (MSCs).      

 Chapter 2 focused on the effects that the mechanical stimulus had on callus 

morphology, and how the timing of the stimulus had differential effects on tissue 

formation.  Timing was shown to have a significant effect on the progression of healing.  

The fracture calluses from animals that had axial displacement applied starting ten days 

after surgery had more mineralization and showed signs of earlier remodeling when 

compared to other groups.  Stimulation had the opposite effect on animals that were 

displaced starting on day three, and these gaps showed signs of delayed healing.  In the 

early stages of healing, the fracture is beginning to revascularize, and it could be that by 

displacing the fracture at day three, new vessels that are needed for healing to progress 

are being disrupted.  However, after new vasculature has been allowed some time to take 
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root, it may be that the mechanical stimulation is sensed by the cells that are present in 

the gap and a subsequent stimulatory response is triggered. 

One of the most interesting findings from this study is that the applied 

displacement appears to have a systemic response.  When displacement is applied to the 

fracture on one side, the same effects can be seen on the gap on the contralateral side, 

which was not stimulated.  This could be from a release of soluble factors into the 

circulation that then affect the gap on the other side.  If the displacement releases factors 

locally, either inhibitory or stimulatory, these factors may then be transported to the 

opposite side and therefore have the same effect. 

In all of the animals, mesenchymal stem cells were systemically injected via the 

tail vein immediately before the onset of axial displacement.  The central point of 

Chapter 3 was tracking the migration of these cells.  Cells tagged with 
111

indium and 

tracked with planar gamma imaging were used to determine the short-term fate of the 

injected cells.  In the first two days of axial displacement, there were some differences 

due to load, but these seem to be transient as they all disappeared by day three.  The most 

pronounced difference occurred when the injection of cells was delayed until day four.  

These animals showed significantly less cellular presence in the femora than their 

counterparts that had cells injected on day one, but again this was a transient response 

that disappeared the next day.  The half-life of 
111

indium is around three days, so the 

transient nature of the response could also be due to a loss of sensitivity as the radiolabel 

decays. 

Immunohistochemistry (IHC) was used to track the fate of the injected cells in the 

long term.  The results showed that the cells do not take residence in the marrow early on, 

but as healing progresses, a large population of cells is present in the femora.  Even 

though there are MSCs within all of the tissues in the femora, the majority of the cells are 

found in the marrow.  It is also notable that unless the fracture had progressed far enough 

to contain marrow within the gap itself, that MSCs were rarely found in the actual gap.  

This is a reasonable result, considering that the main MSC niche is within the marrow 

and the cambium layer of the periosteum.  It also seems that there may be more MSCs in 

the stimulated femur as compared to the unstimulated control.  This result is hard to 

verify though considering that the outcome was measure qualitatively. 
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There were very few MSCs located in the marrow of the group that underwent 

displacement on day ten.  This is significant because it corresponds to the group that had 

the most advanced healing by micro-CT and histology analysis.  It seems counter 

intuitive that a lack of MSC activity would correspond to accelerated fracture repair (or 

alternatively that MSC activity leads to retarded healing).  The response though could 

stem from interaction with the immune system.  It could be that the injected MSCs are 

eliciting an immune response since the injected cells did not come from syngeneic 

animals, and this response could be inhibiting repair.  There is also evidence that MSCs 

inhibit T-cell proliferation, and the action of the T-cells may be necessary for fracture 

healing to normally progress.   

Chapter 4 examined data from a polymerase chain reaction (PCR) array to try to 

begin to understand what underlying molecular processes may be behind the response to 

mechanical signals in fracture healing.  This array was unique in that it allowed for the 

analysis of a wide variety of genes, like a small gene chip, with the validation of PCR.  

All of the genes of interest that were chosen have some relation to the migration of 

mesenchymal stem cells.  The analysis showed differences in gene expression between 

the displaced and the control gaps, and it showed a strong systemic response.  It is 

difficult to say what overall chemotactic effect the genetic expression pattern has on 

MSC migration, but the early PCR data coupled with the immunohistochemistry results 

suggest that the axial displacement may provide a favorable environment for MSC 

homing.  Without knowing the relative strength of each signal and how potent each 

homing factor is, it is difficult to know the overall effect. 

Even though the genes of interest in the PCR study were selected based on MSC 

migration literature, the results also validate the data on callus morphology.  Angiopoietin 

and hepatocyte growth factor both had lower expression in the stimulated gap of the 

animals that underwent stimulation early in the repair process.  This suggests that 

neovascularization, which is crucial in the early stages of healing, may be hindered.  

When the displacement is applied at a later time point, bone morphogenetic protein-6, 

epidermal growth factor, and Indian hedgehog have a higher expression and 

inflammatory factors have a lower expression in the stimulated gap.  This suggests that if 
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displacement is applied later on that endochondral bone formation is promoted while 

inhibitory inflammatory factors are down regulated by load. 

As a whole, the evidence from this dissertation suggests that mechanical 

stimulation is beneficial if it is applied after the fracture has had time to reestablish 

vasculature as well as begin to form some supporting tissue.  After fracture, it is critical 

to healing for the callus to reconnect with the blood supply.  If the load is applied too 

early, in the case of these studies zero to three days after injury, the blood vessels that are 

trying to form are continually being torn apart and are not allowed to establish a good 

vascular network.  This demonstrates that a mechanical stimulus should not be applied 

too soon after bony injury.  

Mechanical stimulation is known to have a positive effect if applied under the 

correct set of conditions.  The calluses that were stimulated after ten days showed more 

advanced signs of healing (more mineral and less cartilage by day 48) and had less of an 

MSC presence.  It could be that the cellular milieu that is present after ten days of healing 

is more receptive to load than at other time points.  Chondrocytes are known to be 

responsive to mechanical stimuli and when loaded have been shown to enhance fracture 

healing.  It is also possible that early in fracture healing, when granulation tissue 

dominates the fracture callus, that the strain and fluid shear magnitudes are much higher 

in the absence of a stiff matrix [8].  As the fracture is allowed time to heal, the overall 

shear strain is decreased to a level conducive to promotion of healing.  Based on the work 

in this dissertation, it seems that a beneficial regimen of mechanical stimulation can be 

applied during the soft callus phase of fracture repair. 

All of the results from this work also showed a systemic response to the local 

application of axial displacement.  Data from micro-CT, histology, mechanical testing in 

torsion, and PCR all confirmed that this systemic effect is occurring.  The stimulation is 

probably releasing soluble factors into the circulation that then become available to the 

fracture in the distant limb.  If a clinical treatment is developed to aid in fracture repair 

and it is applied at a distant site, the magnitude and the timing of the mechanical load 

could be very different from that applied in this dissertation.  It would not matter if the 

treatment was applied soon after fracture if it would not disrupt neovascularization.  In 

fact, it may be beneficial to have an early stimulus if the local structure of the healing 
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callus did not need to be disrupted.  The understanding of this systemic effect could 

potentially play an important role in studying and treating bone fractures in the future.   

The set of experiments in this work were not without their problems and 

limitations, and there are several things that could be done in future works to improve 

upon the experimental design.  The first major hurdle that needed to be overcome in the 

analysis was the large amount of variability in the data.  Fracture healing by nature is a 

variable process sensitive to many variable conditions.  This is especially true with the 

2mm segmental defect model used in this work.  The 2mm defect is significantly large, 

but not a critical sized defect.  With a 2mm osteotomy, the defect will heal without any 

additional factors or scaffolding.  This defect is large enough though that without every 

condition, like gap placement, pin placement, and the height of the fixator on the pins, 

held exactly the same from fracture to fracture, which is impossible to do, that there is an 

inherent variability that is not controllable.  It may be beneficial for future studies to 

consider using a unilateral segmental defect.  This would increase the amount of rats that 

would be necessary to complete the study, but it will reduce some of the variability.  With 

only one defect to create, there are fewer chances for complications from surgery.  A 

model with only one fracture would also reduce the noise created from systemic effects, 

as the unstimulated, control fractures would be in separate animals.  

The histology for this study also proved to be challenging.  The original goal for 

the determination of the long-term fate of the mesenchymal stem cells was to use 

fluorescent microscopy to track the cells.  In order to better visualize the cells through 

fluorescence, the femora were all embedded in poly(methyl methacrylate) instead of 

paraffin, which is known to auto fluoresce in the green fluorescent protein (GFP) range.  

What was not expected though was the strong auto fluorescence from the bone itself.  

This made it impossible to detect the cells through fluorescence since the signal to noise 

ratio would be small, especially considering the limited populations of MSCs that 

eventually made it to the femora.  Due to this noise, IHC was used to locate the cells 

within the bones.  Both the histology and the IHC would be more efficient and of a much 

higher quality if it was done in paraffin.  Future work should consider these 

complications and may want to embed the specimens in paraffin and plan to use IHC to 

identify the GFP positive MSCs that migrate to the bones. 
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One other technique that could be explored for future studies is the use of in vivo 

micro-CT to perform a longitudinal study on the time course of fracture healing.  The 

fixators were made from PEEK so that they could be radio-translucent for this reason.  

Unfortunately, the metal from the pins provided enough scanning artifact to make the 

images difficult to read.  In addition, the in vivo micro-CT scanner has a lower resolution 

than the ex vivo scanner does, which would make it even more difficult to detect 

differences in a high variability model.  If a reliable protocol could be developed to 

utilize the in vivo scanner to answer fracture-healing questions, a comprehensive study 

could be completed using a half of the number of rats and half of the time required to 

complete the experiments outlined in this dissertation.  Care will have to be taken to 

balance the noise and resolution issues of the in vivo scanner, and proper hypotheses will 

have to be chosen to be analyzed considering these issues.  Special equipment might also 

need to be built to help align the pins in the plane of the scan, which would reduce the 

artifact that is created when the pins are out of plane. 

The work in this dissertation has answered questions about how axial 

displacement effects callus morphology and torsional strength and how systemically 

delivered cells respond to the fracture environment.  It also began to answer questions 

about the molecular nature of the cellular response.  There are several experiments that 

could be done in the future to build on this work. 

The first would be to validate the chemotactic response of MSCs to the factors 

that were either up- or down-regulated by mechanical stimulation.  Even though the 

genes of interest in the PCR array study were chosen from evidence in the literature that 

they can promote the directed migration of MSCs, this should be validated.  It would be 

possible to validate the chemotactic response of MSCs to all of the detected factors in one 

experiment to generate data on the potency of their individual effects relative to each 

other.  Using a modified Boyden chamber, the bottom wells of each chamber could be 

filled with media containing each detected factor in the same concentrations.  The relative 

chemotactic index could then be determined for each factor.  Then, the relative 

chemotactic intensities for each growth factor or chemokine would be known.  It still 

would not answer how much of each protein was physically present in the fracture tissue, 

but it would answer which has the highest relative potency.   
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Using information from the Boyden chamber to focus on proteins of interests, it 

could be determined what cells are producing those proteins and in what concentrations.  

IHC could be used to localize protein presence in the cells of the callus and to make an 

estimation of how much of each protein is present.  The information from the Boyden 

chamber tests and the IHC could then be used as a starting point for in vivo experiments 

of MSC migration.  The actual form of the in vivo experiment might be dependent on the 

actual proteins that turned out to be the most potent chemoattractants, the proteins that 

were found to have high concentrations in the fracture callus, or a combination of the 

two.  Depending on the factors chosen, the experiments could then look at MSC 

migration to the site of injury in either a knockout mouse model, a locally injected 

protein, or a matrix seeded with the factor of interest. 

Another interesting question that has yet to be answered is what role the injected 

MSCs are playing in fracture healing.  It would be reasonable to assume that the majority 

of the cells that were detected by the planar gamma imaging did not actively participate 

but instead had some other role since at ten days post-op there were very few cells 

detected by IHC.  Most of the cells that were detected by IHC were found in the marrow 

and did not show any evidence that they had differentiated.  The data also suggested that 

the injected cells may have actually inhibited healing progression.  One possible scenario 

that could cause this is an alteration in the inflammatory response by the MSCs.  To 

determine if the MSCs are playing a role in the inflammatory response, IHC could be 

used to determine the status of the inflammatory cell population.  It is possible that the 

host rat is trying to reject the cells and therefore there will be more immune cells present.  

It is also possible that the MSCs are hindering T-cell proliferation and there will be few 

immune cells present.  It could also be that the cells are increasing the inflammatory 

response early on, but inhibiting it later, and a study using IHC could answer these 

questions. 

An intriguing result from this dissertation was the finding that the promotion of 

fracture healing is a systemic event.  Essentially, what happened in one femur also 

happened in the other.  This result could have a translational application.  It is possible 

that mechanical stimulation at a distant, intact site could promote fracture healing.  A 

study could be done in mice or rats with a femoral fracture or segmental osteotomy along 
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with ulnar loading.  At set time points after the creation of the fracture, the animal would 

undergo a weeklong regimen of ulnar loading.  Measures of fracture healing through 

micro-CT, histology, and torsional mechanical testing could be made to determine if the 

ulnar loading has an effect on healing versus an unloaded control group.  If a positive 

effect on healing was found, the results could then be extended to clinical applications.  It 

could be feasible that, in humans, a finger could undergo mechanical stimulation to 

promote not only fracture healing, but could help promote bone formation in osteoporotic 

patients.  It could also be used as a countermeasure for astronauts to help reduce bone 

loss during long-term space flight, in which they will lose 1-2% of their bone mass per 

month while in space.      

 This dissertation has shown that the timing of the application of a mechanical 

stimulus can play a role in the progression of healing in a fractured bone.  An axially 

applied displacement had a beneficial effect on mineralization and the progression of 

remodeling in animals that were stimulated after ten days when compared to other 

stimulus timings.  The opposite was true of animals that were stimulated starting on day 

three.  Mesenchymal stem cells were also injected into these animals, and it was found 

that the cells took residence in the marrow spaces of all the animals after 48 days, with 

the exception of the animals stimulated starting on day ten.  The data also suggest that 

these exogenous cells may not be beneficial for fracture healing, as seen in the groups 

stimulated on day 24.  Finally, a PCR array was used to start to elucidate any alterations, 

caused by axial displacement, in the molecular factors that are involved in fracture repair 

as well as well as MSC migration.  It was found that the applied stimulus causes changes 

in genetic expression of several important factors, both locally and systemically. 

 This work has advanced knowledge with regard to the mechanical environment 

and cellular and tissue responses in fracture healing.  Future work is needed to determine 

what cells are responding to this environment as well as the mechanism by which those 

cells are responding to the mechanical stimuli.  Once these processes are better 

understood, this knowledge could then be translated into clinical interventions to help 

repair moderate to severe fractures as well as measures to counteract bone loss for 

diseases like osteoporosis. 
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