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ABSTRACT 

 
Recent advances in technology dramatically increase the volume of data that 

statistical agencies can gather and disseminate. The improved accessibility translates into 

a higher risk of identifying individuals from public microdata, and therefore increases the 

importance of the evaluation of disclosure risk and confidentiality control. This 

dissertation addresses three related but distinct research questions in statistical data 

confidentiality. 

 The first study concerns the evaluation of disclosure risk for microdata when an 

intruder attempts to identify survey respondents by linking data records with a large 

external commercial data file based on a set of common variables. The dependence of 

disclosure risk to the commercial data coverage, the accuracy of the common 

identification information, and the amount of identification information to which an 

intruder accesses, is discussed theoretically and empirically tested using an experiment. 

The second study presents a practical implementation of fully-imputed synthetic data 

approach for a large, complex longitudinal survey as means of protecting confidentiality, 

following the initial proposal by Rubin (1993) and Little (1993). The imputation uses 

separate semiparametric algorithms for continuous, binary and categorical variables. A 

new combining rule of synthetic data inference is proposed to account for the uncertainty 

due to simultaneously imputing item-missing data and generating synthetic data. The loss 



 xii 

of data utility is evaluated via the use of a propensity score approach in addition to three 

information loss metrics.  

 The third study extends this fully-synthetic data approach to cope with situations 

where small area statistics are essential important. This research is the first in the 

statistical disclosure control literature to consider small area statistics. The goal is to 

create synthetic data with enough geographical details to permit small area analyses, 

which otherwise is impossible because such geographical identifiers are usually 

suppressed due to disclosure control. A Bayesian framework for appropriate small area 

models is proposed to generate synthetic microdata from the predictive posterior 

distributions. Two simulation studies and one empirical illustration are used to evaluate 

this approach.
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CHAPTER I 
 

 

INTRODUCTION 

 

 
1.1. Objectives 

Sample surveys have been a key data source to support research and to inform public 

policy-making. Statistical agencies are obligated to disseminate high-quality data that are 

collected using public funds while also fulfilling the pledges of respondent confidentiality 

that they make to survey participants. One goal of confidentiality protection of such data 

is to avoid legal action in the case violation or to adhere to ethical mandates. The other 

important goal is to build public trust, which is a key contributor to survey response and 

data quality (Singer, 2003; Martin and Straf, 1992). 

The inherent tension between data protection and data access imposes a complex set of 

tasks on the agencies. Research on these tasks arises from a wide spectrum of disciplines, 

from psychology and sociology to statistics and computer science. Over the past several 

decades, research topics on statistical disclosure control have specifically included 1) 

identifying and assessing the risk of disclosure for the original data, 2) developing 

statistical disclosure control (SDC) methods, 3) evaluating the utility of statistical 

analysis for a SDC-modified data set, and 4) re-evaluating the risk of disclosure for the 

modified data. These issues are closely interrelated in such a manner that knowledge 

about the risk of disclosure allows one to decide what data and how much data should be 
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altered, and which SDC method should be used to achieve an optimum tradeoff between 

confidentiality protection and data utility loss. 

The objectives of this dissertation are 1) to provide a more accurate evaluation of the 

disclosure risk for a US national survey by incorporating two largely ignored error 

sources, under-coverage error and measurement error, and 2) to develop robust and novel 

imputation models to construct fully-synthetic datasets for both a large-scale complex 

longitudinal survey and for a geographically referenced survey. The synthetic data can be 

disseminated in place of the real data, thus providing full confidentiality. The research 

issue is assessing the loss of data utility from such a data set. The synthetic data 

generation models can be easily adopted to resolve the confidentiality issue in other 

surveys facing similar disclosure challenges. This line of research is very important for 

data disseminators at large, and fits with the overarching goal of releasing higher quality 

data while still fulfilling the pledge of protecting respondents from having identifiable 

information inadvertently disclosed. 

1.2. A brief review on disclosure risk  

Breach of confidentiality occurs when a data unit is re-identified and the values of 

sensitive variables are disclosed. A distinction is made between disclosure risk from the 

respondents’, the intruder’s and the agencies’ perspectives. From the respondents’ 

perspective, the circumstances in which data, that the survey respondents have provided, 

may be released as identified data to a third party, and how the data will be used and by 

whom are concerned. The risk from the intruder’s perspective emphasizes the real 

increase in intruder’s knowledge about survey respondents provided that the respondents 

are believed to be correctly identified. The agencies’ perspective speaks to the discredit 
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harm to the statistical agency based on intruder claims of achieving disclosure. These 

three perspectives have different implications for the practice of risk assessment. The first 

one corresponds to respondents’ perceived risks of disclosure, which leads to the question 

concerning how such risk influences respondents’ willingness to participate in surveys. 

The latter two collectively concern the actual risk of disclosure, thus the safety of 

disseminating a particular data set after the data is collected. 

More specific to the latter two types of disclosure risks, the literature has discussed 

several statistical measures. From the intruder’s viewpoint, the high per-record risk 

(Skinner, 1998), which reflects the chance of correctly re-identifying one or more 

individuals in a public survey data, is desirable. The main practical usage of such a 

measure is to select records with the highest risk of re-identification in order to modify 

them, and thereby avoid potential disclosure (Skinner, 1998; Little and Liu, 2003; Reiter, 

2005). 

Global risk, on the other hand, measures the risk for the entire data file, which 

concerns the data disseminator in addition to the individual respondent. The global risk is 

commonly defined as the expected number of correct re-identifications and it can be 

computed by summing over all per-record risks, or by counting the number of records for 

which the risk of re-identification exceeds a given threshold (Lambert, 1993; Skinner, 

2007). This measure is often used to inform agencies whether releasing one particular 

data set is safe. It is still up to the agencies to decide what the “safety threshold” should 

be. 

It is worth noting that this definition of individual risk, although widely accepted, is 

rather generic. The specific measures of disclosure risk and the subsequent assessments 
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are, in fact, highly sensitive to the assumptions of a model, based on how the risk 

estimates are derived. The key assumptions include those about the searching methods 

that an intruder may use (Skinner, 2007), the amount of auxiliary information that is 

available to an intruder, the quality of such auxiliary information (Paass, 1988), sampling 

design (De Waal and Willenborg, 1995; Benedetti, Capobianchi, and Franconi, 1998), 

and statistical distribution models for estimating the population frequencies. Examples of 

such distribution models include commonly used Poisson models, binomial models 

(Skinner, 2007), multinomial models (McCullagh and Nelder, 1989), and Poisson–

gamma models (Bethlehem et al., 1990). 

Under different assumptions, the literature includes a large body of risk measures. One 

class of measures is based on the population uniqueness model (Skinner, 1994; 

Fienberg and Makov, 1998; Benedetti and Franconi,1998; Franconi and Polettini, 2004). 

Under this model, by incorporating the sampling information, the risk is evaluated as the 

probability of being a population unique given being a sample uniqueness under various 

search methods (Skinner and Holmes, 1998; Skinner, 2007). An individual is population 

(or sample) unique if this person is unique in a population (or a sample) based on certain 

survey attributes.  

The literatures, specific to microdata, suggest assessing the risk under the framework 

of record-linkage (Fellegi and Sunter, 1969) as the percent or the probability of correctly 

linking pairs of records on certain non-unique identifier(s) (Paass, 1988; Duncan and 

Lambert 1986; Willenborg and de Waal, 2000; Domingo-Ferrer and Torra, 2003). 

Record-linkage (also called exact matching in contrast to statistical matching), was 

originally developed to improve data completeness by linking records in separate files 
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that relate to the same individual, allowing an analyst to pool the two sources of 

information together to develop a more complete statistical picture of each respondent 

(Winkler, 1997). When used by intruders, this technique poses the threat of a 

confidentiality breach. From the data producers’ standpoint, taking a record-linkage 

approach allows statisticians to mimic the intruding behaviors in assessing the risk of 

disclosure. 

Such re-identifications may happen in many situations when the survey respondents 

are matched with the data from other sources, such as publicly available or privately held 

files, a different but related survey data file, or data files held by different 

organizations/businesses (Federal Committee on Statistical Methodology, 2002). The risk 

of re-identification from matching with external commercial data files particularly 

concerns statistical agencies because it is more likely than any other case to lead to 

malicious attacks.  

Re-identification is established when the values of the common variables for survey 

respondents agree to those for the units from the public data. Three important factors 

contribute to the success of the re-identification: the number of common attribute 

variables, measurement quality of such common variables in both data sets, and 

commercial data coverage of the sampling frame population. 

Specifically, the more personal identification information that one knows about survey 

respondents, ceteris paribus, the more likely that one or more particular potential victims 

are distinguished from the others in the data file, which in turn may lead to a higher risk 

of disclosure. Risk assessments thus should take into account the uncertainty about how 

much an intruder knows about the potential victims.  
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Another factor that may affect the success of linking records between two data files is 

the measurement quality of the common variables used in the linkage. Measurement error 

is ubiquitous in surveys. A substantial literature exists on measurement error in sample 

surveys (Biemer et al., 1991; Lyberg et al., 1997; Biemer and Lyberg, 2003). The 

measurement properties of commercial data, however, are rarely known. In any case, 

measurement errors in both data sources, if any, should be incorporated in assessing the 

correctness of the record-linkage. Suppose, one binary variable used in matching has two 

outcomes: 1 and 0. The observed values of this variable for this respondent in both data 

files may deviate from the true values due to measurement error (also called 

misclassification error specific to categorical variables). Table 1.1 shows the relationship 

between the occurrence of re-identification for survey respondent and the measurement 

misclassification errors in a binary key identification variable.  

Table 1.1: Re-identification as functions of measurement misclassification in a binary 
linking variable from both data files. 

   Survey Data 

 True Values  1 0 

  Observed Values 1 0 1 0 

1 Yes No Yes No 
1 

0 No Yes No Yes 

1 Yes No Yes No 

Commercial 
Data 

0 
0 No Yes No Yes 

Note:   : No measurement misclassification errors in neither data files 

   : Measurement misclassification errors in only one data files 

   : Measurement misclassification errors in both data files 

As illustrated in Table 1.1, re-identification occurs, regardless of the true value, as 

long as the observed values match, which is referred as measurement similarity (or 

measurement discrepancy). The exact values of measurement errors are irrelevant to re-



 7 

identification although such information may help evaluate and predict the measurement 

discrepancy. 

The last factor that affects the record-linkage is the coverage property of the 

commercial data. When the information for a survey respondent is not contained in the 

commercial data, the correct re-identification would not occur, thus the risk of disclosure 

is zero. In summary, both under-coverage and the measurement discrepancy are very 

important factors and should not be ignored in the evaluation of the risk of re-

identification. 

1.3. The relationship between disclosure risk and disclosure harm 

Confidentiality breach involves an intruder gaining new information about the 

identified individual. Information about survey attributes that would draw exceptional 

interest to an intruder is usually sensitive in nature, which may lead to nontrivial 

consequences. For example, knowledge of “sensitive, stigmatizing and even illegal 

behavior by unauthorized others (family and friends, employers, insurers, or law 

enforcement agencies, for example) could subject the respondent to loss of reputation or 

employment, or to civil or criminal penalties” (Singer, 2003). 

By taking the correctness of the disclosed sensitive information into account, the 

unanticipated harm due to the disclosure may or may not occur (Lambert, 1993; Trottini, 

2003). The harm may be emotional, financial and physical, and it may damage a person’s 

reputation depending upon the nature of the sensitive attribute. A simple but reasonable 

illustration on the relation between disclosure risk and disclosure harm is provided as 

follows. Suppose the intruder is interested in learning information about a sensitive 

attribute of an individual respondent, for example, a cancer diagnosis result with two 
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possible outcomes: present and not present. Let us also suppose that malicious 

consequences occur, for example, when a health insurance company intrudes the data and 

infers that one survey respondent have cancer, and declines his/her insurance application.  

Due to survey measurement error, a person’s reported value for a survey attribute may 

appear consistent or inconsistent with his/her true value as shown in Table 1.2. If a 

person is correctly identified but his/her observed value is “no cancer”, then disclosure 

harm would not occur regardless the underline true value. On the other hand, if a person 

is falsely identified to be someone who appears to possess the attribute (have cancer in 

our example), then harm occurs despite incorrect identification and the true value. 

Therefore, we may conclude that disclosure harm is statistic-specific and is highly related 

to the correctness of the reported value for the respondent. 

Table 1.2: The occurrence of disclosure harm by the correctness of identification 
and inferred attribute of having cancer. 

True Attribute Have Cancer No Cancer 

Observed Attribute Have Cancer No Cancer Have Cancer No Cancer 

Correctly Identified Yes No Yes No 

Falsely Identified Yes No Yes No 

A quantitative evaluation of the disclosure harm is needed and is still an open area for 

research. The outcome of such research may add another aspect in planning SDC 

procedures. However, it usually requires the knowledge of the true values of the sensitive 

survey attributes and the magnitude of damage to the respondent from the intruder’s 

knowledge of the attributes. Limited by the data availability, we will not address this 

issue in this dissertation. 
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1.4. A review of statistical disclosure control methods 

Prior to public release, data are required to satisfy certain disclosure conditions. To 

achieve such goals, SDC procedures are usually applied to modify data. Common SDC 

methods include top-coding, data masking, data swapping, noise addition, categorical 

threshold, geographical thresholds and, most promisingly, synthetic data. 

1.4.1. Common SDC methods 

Top coding sets top-codes or bottom-codes on continuous variables. A top-code for a 

variable is an upper limit on all values of that variable. Any values greater than this upper 

limit are replaced by the top-code. Similarly, a bottom-code is a lower limit on all 

published values for a variable. Different limits may be applied for different variables, or 

for different subpopulations. For example, the values for the “self-employment income 

last year” within the 2006 American Community Survey (ACS) Public Use Microdata 

Sample (PUMS) files are top-coded at $140,000 and bottom-coded at -$9,999 for the 

State of Alabama (U.S. Census Bureau, 2007).  

A related disclosure control method is data masking (also called data blanking). For 

example, if the observations in the tails of a distribution reveal the highest risk of 

disclosure, such as large firms for establish surveys or high-income persons for 

household surveys, the observations in the higher deciles are top-coded or masked.  

Both top coding and data masking methods have the advantage of easy to implement 

and provide conditionality protection for individuals who have extremely values, which 

are considered to have the potential to reveal the identities. One common disadvantage, 

however, is that the data distribution is distorted, which would bias regression estimations 

and may potentially lead to sample selection problems. Even a data user is capable to 
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apply sophisticated algorithms in analyzing the modified data to such biases; the results 

are still sensitive to the assumptions about the modified tails of the distribution. 

Data swapping (Dalenius and Reiss, 1982; Reiss, 1984) involves swapping the values 

of variables for records that are statistically “similar”. This technique is usually 

implemented in such a manner that guarantees (under certain conditions) the maintenance 

of a set of statistics, such as means, variances and marginal distributions. For example, in 

the PUMS files of 1990 Census, 2000 Census, and the ACS, a percentage of households 

are swapped. The swapped households share a few characteristics but residing in 

different geographic locations. This procedure would not affect the estimation of the 

marginal totals for these areas and totals that include data from multiple areas. Despite 

the merit of this statistical maintenance, the joint distributions involving both swapped 

and un-swapped variables can be distorted.  

Another popular method is to add independent random noises to the numerical 

variables, such as normal noise with the same correlation structure as the actual data, as 

means of controlling disclosure. The effects of such noises in regressions are well 

understood and discussed in the literature of measurement error models (Fuller, 1987; 

Fuller, 1993). Such additive measurement errors would only alter the original values 

slightly, especially when the original value is high. In addition, such random errors need 

to be incorporated appropriately into the statistical models that data users would fit to the 

altered data to ensure inference validity, which increases modeling complexity and the 

amount of burden on data users. 

Categorical Threshold is an often-used approach to detect substantial risks associated 

with releasing one or more categorical variables. A cell in a table of frequencies formed 
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by cross-classifying multiple categorical variable, is considered to be sensitive if the 

number of respondents in that cell is less than a certain predetermined number. When this 

happens, necessary SDC procedures, such as collapsing categories, rounding or 

suppression, have to be applied to avoid disclosure.  

Geographical Threshold can be considered as a special case of categorical threshed 

method where the geographical identifiers are used together with other categorical 

variables in forming tables. Two conventional approaches for preventing this type of 

disclosure are, (1) to withhold reporting information on sensitive attributes in selected 

geographical combination cells, i.e. local suppression; (2) to aggregate all records within 

a geographical area so that the population is large enough to ensure any individuals or 

small groups of individuals can not be re-identified, i.e. geographical threshold, global 

recoding, or more generally, data aggregation. In either case, geographical details in the 

suppressed public data may be limited to areas exceeding a certain size. For example, the 

5 Percent ACS PUMS do not publish geographic identifiers for geographical areas below 

a minimum population threshold of 100,000 and the 1 Percent PUMS uses a minimum 

population threshold of 400,000.  

Local suppression and data aggregation are often used in combination and are 

available in the software program µ-ARGUS (http://neon.vb.cbs.nl/casc/) created by 

Statistics Netherlands (de Waal  and Willenborg 1998). A more concrete description 

about these two methods is given in µ-ARGUS User’s Manual (Statistics Netherlands 

2007). These methods provide confidentiality protection but the information loss in data 

utility can be large, and such loss can not be evaluated systematically. Hurken and 

Tiourine (1998) constructed a mathematical model for minimizing information loss from 
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global recoding and local suppression, but the heavy computation associated with that 

model may be impractical for real applications.  

Specifically, when applied to geographically referred microdata, these SDC methods 

preclude the release of information that would otherwise directly provide solutions to 

address many important concerns in public policy, health or development that 

increasingly face the state and local governments. In addition, multivariate analysis 

describing complex interactions among geographical and social segments may also be 

impossible due to large amount of missing data. Finally, given that these SDC methods 

are somewhat ad-hoc and model free, the analytic properties using suppressed public data 

can not be justified (Winkler 2004).  

1.4.2. Synthetic data approach 

A final SDC method is to synthesize the values of microdata based on a probabilistic 

model. Initially proposed by Rubin (1993) and further developed by Raghunathan et al. 

(2003) and Reiter (2005a, Reiter 2005b), releasing multiply-imputed fully-synthetic 

public-use data in place of the actual data for disclosure control purpose is advantageous 

over alternative statistical perturbation methods (Winkler 2004, Reiter 2005a). Providing 

fully-synthetic data limits the risk of disclosing respondents’ identities and sensitive 

attributes completely since no real information is disseminated. This approach also allows 

users to analyze data validly using standard statistical packages. Information loss due to 

SDC procedures can be evaluated in a systematic fashion for pre-specified analyses in 

which the specific disclosure control procedures are taken into consideration.  

The general idea is to treat the unobserved part of the population as missing data to be 

multiply imputed based on a model fitting with the actual data to complete multiple 
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synthetic populations, then a simple random sample is drawn from each synthetic 

population which comprise the public-use data files. Valid inferences on a variety of 

scalar estimands from fully-synthetic data can be made using the methods developed by 

Raghunathan et al. (2003).  

However, it is likely that the model used for synthesis may be not “congenial” to the 

models used by external data users. The definition of “congeniality” was originally given 

by Meng (1994) in the context of evaluating the inference of multiple imputation for 

item-missing data. Uncongeniality happens when the imputation model does not 

correspond to the analyst model, which in turn may lead to bias in statistical inference. In 

specific, if one fails to include an important dependent or predictor variable in the 

imputation model or mis-specify the relationship functions, the estimated coefficients 

associated with this variable in the analyst model will bias towards zero. In contrast, if 

one falsely incorporates an unrelated predictor variable into the imputation model, the 

estimation of coefficients in the correct analyst model is still unbiased although less 

inefficient. 

In the case of fully-synthetic data, this problem is even more severe for two reasons. 

First, data values for the entire sample are to be imputed, thus imply stronger model 

dependency than the case of imputing for missing data. Second, synthetic data aims to 

allow external data analysts plan and test statistical models at will. In another word, the 

synthetic data is expected to yield valid inference for a large variety of statistical models, 

which are usually unknown to data imputers when the synthetic data are created. 

Uncongeniality can be dealt with by (1) incorporating as many variables as possible into 

the synthesis model to protect against bias, and (2) relaxing the assumptions about the 
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relationships among the variables to avoid model misspecification. These two solutions 

can also be viewed as responses to the a criticism that is often be made about synthetic 

data, in which synthetic data only preserve the relationships considered in the model used 

to create them. However, both aspects would introduce significant extra complexity into 

the model building. 

The SDC literature has taken two routes in response to this challenge by (1) reducing 

model dependency by imputing a smaller amount of data, thus limiting the damaging 

features to a smaller portion of the data or (2) by building imputation models with relaxed 

assumptions about the distributions and the relationships among variables to improve 

prediction. In the first route, there exist two variants to the fully-synthetic data approach, 

partial synthetic data and selective synthetic data (Little and Liu, 2002), in which the 

values for a portion of data records or variables are selectively synthesized at the 

expenses of losing a fraction of disclosure protection. Such selection is usually guided by 

disclosure risk assessments, disclosure harm and/or perceptions of disclosure harm 

suggested by variable sensitivity. The partial-synthetic data approach has been adopted 

by practice in creating public-use data (Little 1993, Kennickell 1997, Abowd and 

Woodcock 2001).  

The second route involves the use of semi-parametric or non-parametric methods in 

place of parametric models in generating fully-synthetic data. Semi- and nonparametric 

models relax the usually strong distributional assumptions as in parametric models, thus 

potentially improve model fit and protect against model misspecification. These models 

are being used increasingly to recover the amount of variation in the dependent variable 

that is not explained by the independent variables under parametric regressions.  
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Several successful attempts of creating fully synthetic data for a small number of 

variable in national surveys with a general data structure have used either parametric or 

semi-parametric methods (Little and Liu 2002, Reiter 2005a). Further exploration of 

semi- or nonparametric models for the imputation of a large number of survey variables 

is necessary to make this fully-synthetic data approach really practically feasible for 

complex surveys in real world applications.  

The existing literature in synthetic data (so far) has been mostly concerned with 

preserving statistics about the entire sample. However, for geographically referred data, 

statistics about small areas are often most important, and therefore, demanded. 

Significant theoretical and practical research on model-based small-area estimation has 

been conducted in the past three decades in an attempt to produce reliable small area 

estimates (Platek, Rao, Sarndal and Singh 1987, Rao 2003). As such, they contribute to a 

profound understanding of how small geographic area data can be summarized by 

statistical models, which can facilitate the building and selection of synthetic data models. 

Moreover, given the fact that surveys are heavily used to produce small-area statistics, 

synthetic data method is naturally challenged to support such analysis. The clustering 

structure due to the small-geographic areas, therefore, needs to be incorporated into the 

generation of synthetic data to produce valid and comparable statistics at the small-area 

level. 

1.5. Organization of this dissertation 

The rest of this dissertation is organized as follows. Chapter 2 evaluates the disclosure 

risk associated with the situation in which records from two datasets are matched by 

establishing a correspondence between shared common variables. We also investigate the 
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effects on the risk assessments of the measurement discrepancies in such common 

variables and the under-coverage of the second dataset relative to the target survey data. 

We present a theoretical evaluation framework and apply it to an empirical experiment 

based on a national survey data and a large commercial data file. 

In Chapter 3, a semi-parametric, multiply imputed, fully-synthetic data approach is 

developed to alter the actual survey data to control disclosure. We develop separate semi-

parametric regression models for different variables. Synthetic data for ninety-eight 

variables are constructed based on the sequential regression algorithm. Item-missing data 

are imputed prior to the generation of the synthetic data. We develop new synthetic data 

inference rule to incorporate the variations due to simultaneously imputing for missing 

data and creating synthetic data. The proposed method is applied to the data from the 

Health and Retirement Study Wave1-4. 

Chapter 4 constructs synthetic data for small areas. We develop parametric small area 

imputation models suitable for variables of different types. We conduct two simulation 

studies to evaluate the performances of the proposed models theoretically. We also 

present an empirical illustration of this method using the data from the 1880 US 

decennial Census. Lastly, Chapter 5 summarizes the main findings from these three 

studies and describes the directions for further research.
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CHAPTER II 

 

 

THE EFFECTS OF MEASUREMENT DISCREPANCY AND 

UNDER-COVERAGE RATES ON DISCLOSURE RISK 

ASSESSMENTS 

 

 

2.1. Introduction 

Statistical agencies pledge to protect the confidentiality when collecting or acquiring 

information for a statistical purpose. Such confidentiality pledges necessitate that 

statistical agencies assure that the identity disclosure of survey respondents is prevented. 

Knowledge about the risk of re-identification is a crucial tool to make informed decisions 

on the disclosure avoidance rules, the selection of data for modification, and the 

evaluation of statistical disclosure limitation methods (Little and Liu, 2003; Reiter, 2005). 

Increasingly, there exist large external databases containing information on the entire 

population of the United States, such as commercial credit bureau records, customer 

transaction records, voting records, property records, employee records, health service 

records, etc. The availability of such databases with certain identifying information and 

key demographic variables coupled with powerful record linkage techniques may 

increase the risk to survey respondent disclosure. 

Such disclosure threats, however, may be overstated, as the inaccuracy of the 

information used in the linking process could decrease the actual success rate of 

identification. Moreover, the commercial data may not have full coverage over the 
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respondents contained in the public-use data. Thus, the re-identification and disclosure 

would not occur for those respondents who are not included in the commercial data. In 

fact, people with certain characteristics, such as youth, poverty or mobility are largely 

under-covered (Groves and Raghunathan, 2005). 

We would expect that the actual re-identification risks would be smaller than those 

estimated when both measurement and under-coverage errors are ignored (Fellegi and 

Sunter, 1969; Willenborg and De Waal, 2001; Skinner and Elliot, 2002; Skinner and 

Carter, 2003; Winkler, 2004; Hawala, Stinson et al., 2005; Skinner, 2007). This argument 

was also echoed by other researchers to the point that the disclosure risk assessed with 

the error sources ignored is labeled as “conservative” and “pessimistic” (Skinner and 

Holmes 1998). Removing the bias towards the “conservativeness” is important in practice 

to ensure a satisfactory tradeoff between disclosure risk and data utility. 

The goal of this chapter is to investigate how data quality, measurement error and 

under-coverage error, can affect the re-identification risk for a national sample survey. 

We also investigate the impacts from the various assumptions about the amount of 

information that is available to an intruder. In Section 2.2 we review the notations and 

develop a record-linkage framework for measuring the risk of re-identification. Section 

2.3 specifies three distance-based measurement discrepancy functions for comparing the 

common key variables between the survey and commercial data, and a coverage measure 

of the commercial data. We also provide a summary of estimators for assessing the risk 

per record as well as for the entire data file under each combination of assumptions. In 

Section 2.4, we present the results from an empirical illustration, evaluating separately 



 19 

the re-identification risks for households and individuals within a national survey data. 

Finally, we conclude in Section 2.5 with discussion. 

2.2. Disclosure risk under a record-linkage framework 

2.2.1. A record-level measure of disclosure risk 

Below we develop the measure for the risk of disclosure under the framework of re-

identification. We define the risk of disclosure as the probability of one record being 

correctly linked to the same individual in the external database with respect to the values 

of certain key variables that are observed in both the survey data and the external data. 

Skinner (2007) summarizes three commonly used matching rules for re-identification in 

forensic literature. We focus on the rule in which all key variables are mainly categorical 

or can be treated as categorical (the variable “age” for example) and a pair of records is 

said to match only if all the key variables take the same value (i.e. exact matching). 

We assume that a potential intruder has access to an external data, B  with elements 

, 1,2,...,j j N= , which contains the key identifier *Y . He or she attempts to obtain 

additional information on one or more survey respondents by examining the released 

public data, A  with element , where 1, 2,...,i i n= , and identifying individuals whose 

information on the common key identifier X  matches *Y . The typical key variables used 

to construct X  and Y  are routinely collected socio-demographic characteristics such as 

age, gender, race, education and marital status etc. One singular key identifiers X  and 

*Y  are computed as all combinations of the key variables and both have K  distinct 

categories. 

We also assume that there exists a common unique identifier in both data files. Typical 

unique identifiers are a person name, Social Security Number, home address or telephone 
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number, and etc. This type of identification information is almost always withheld from 

the public survey data for the purpose of confidentiality. Having such information 

accessible from the survey data, however, is necessary for the evaluation of measurement 

and coverage properties of the commercial data. The availability and quality of such 

unique identifier may vary by surveys because of the sampling frames and/or the modes 

of data collection. We assume that a carefully chosen common unique identifier 

guarantees that all units in each data file are uniquely identifiable and errors in linking the 

same individuals between A  and B  is ignorable. The type of disclosure risk we intend to 

address in this chapter is only limited to the conditions in which there exists such an 

external data file. 

Suppose that, for an arbitrary respondent ( ),I x  in survey data A  with unique 

identifier value I  and key identifier value x , an intruder attempts to find an individual 

( )* *,
j j

I y  in the commercial data B , which refers to the same individual as ( ),I x . Here *

jI  

is the unique identifier value and *

jy  is the key identifier value individual j  within B , 

where 1, 2,...,j N= . Let the disclosure risk for individual ( ),I x  be  

( ) ( )* *, Pr | , ,j jj
Dr I x I I y i A j B= = ∈ ∈                                  [2.1], 

which can be interpreted as the probability that ( ),I x  and record *

jI  refers to the same 

person. 

Under the assumption that the intruder’s strategy is to link records presenting the same 

value of the key identifier in both data files, we only need to evaluate such disclosure 

probabilities when both records in a pair have the same value. For any pair of records 
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taking different values, this probability of risk is zero, i.e. 

( ) ( )* *, Pr | , , 0i j j ij
Dr I x I I y x i A j B= = ≠ ∈ ∈ = . Therefore, Equation 2.1 reduces to 

( ) ( )* *, Pr | , ,j jj
Dr I x I I y x i A j B= = = ∈ ∈                           [2.2]. 

The interpretation of the disclosure risk becomes the probability that ( ),I x  and record *

jI  

refers to the same person conditional on the fact that both records take the same value of 

the key identifier.  

Let k  be the combination value of the key identifier for individual I , which implies 

x k= . ( ), 1,2,...,k ii n
M I x k k K

∈
= = =∑ , where ( )I i  is the indicator function, ( ) 1I =i  

if the condition is met and ( ) 0I =i  if otherwise, and ( )* * , 1, 2,...,
k jj N

N I y k k K
∈

= = =∑  

are the frequencies of the same combination, k , in A  and B  respectively, and 

*

1

K

kk
N N

=
=∑  and 

1

K

kk
M n

=
=∑ . When 1kM = , the survey respondent with key identifier 

value k  is normally referred to as sample unique. Similarly, if * 1kN = , the individual in 

B  with key identifier value k  is referred to as population unique provided that we 

assume the commercial data set is intended to provide full coverage over the entire 

population of the United States. 

If the intruder attempts multiple links between a survey respondent and the *

kN  known 

individuals in the commercial data, then there is a risk of re-identification for each 

attempted link. Therefore, we assume each pair of records may be resulted from an attack. 

For individual ( ),I x  in A , we get a vector of length *

kN  where each element corresponds 

to the disclosure probability ( ) ( ) ( )* *1
, , ,..., ,

k kN N
I x Dr I x Dr I x Ρ =

 
. 
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Without seeking extra information to verify the correctness of these match-events, we 

assume an intruder searches through the external data file until a match is found. This 

assumption is equivalent to the one made in “Search method r1” of Skinner (2007) and 

the ‘journalist scenario’ of Paass (1988). We also assume that there is not a systematic 

order in the external data. Thus, the intruder’s search is equally likely to result in any 

match in the external data, which implies that the risk of disclosure for individual ( ),I x  

equals the risk from any attack, i.e. ( ) ( ) *, , , 1,...,
kj

Dr I x Dr I x j N= = . Since the 

individual subscript j  in ( ),
j

Dr I x  becomes irrelevant, in the rest of this chapter, we 

reduce ( ),
j

Dr I x  in Equation 2.2 to  

( ) ( ) ( )* * *, , Pr | , ,k kj
Dr I x Dr I x I I y x k M N= = = = =                [2.3]. 

2.2.2. Under-coverage (UC) in disclosure risk  

One important factor that may affect the likelihood for an individual being correctly 

identified is whether the information about this individual is included in the commercial 

data. Suppose for a sample unique record ( ),I x  in A , there exists its true pair record *
I  

in B , which is also population unique. Both sample uniqueness and population 

uniqueness are with respect to the key identifier as defined in Section 2.2.1. Ignoring 

measurement error, individual ( ),I x  has 100 percent certainty to be re-identified and 

sensitive survey attributes pertain to ( ),I x  will be disclosed. On the other hand, if *
I  is 

not included in B , the chance of disclosure is then zero. Therefore, we need to account 

for the impact of under-coverage in the evaluation of disclosure risk. 
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We rewrite the disclosure probability ( ),Dr I x  with respect to whether individual 

( ),I x  is included in B  as follows: 

   

( ) ( )

( ) ( )

( ) ( )

* * *

* * * * *

* * * * *

, Pr | , ,

Pr | , , , Pr | , ,

Pr | , , , Pr | , ,

k k

k k k k

k k k k

Dr I x I I y x k M N

I I y x k M N I B I B y x k M N

I I y x k M N I B I B y x k M N

= = = =

= = = = ∈ ∈ = =

+ = = = ∉ ∉ = =

 [2.4], 

where ( ) ( )* *, Pr | , ,
k k

c I x I B y x k M N= ∈ = =  is the probability for an individual ( ),I x  

to be included in B , and then the probability that ( ),I x  is excluded from B , is 

( )* *Pr | , ,
k k

I B y x k M N∉ = = , which is the complement of  ( ),c I x , therefore, equals 

( )( )1 ,c I x− . Let ( ),FI I x  denote the probability for individual ( ),I x , who is not 

included in B , being falsely identified, i.e. 

( ) ( )* * *, Pr | , , ,
k k

FI I x I I y x k M N I B= = = = ∉ . We assume the risk of disclosure from a 

false identification is zero, therefore, ( ), 0FI I x =  and Equation 2.4 becomes 

( ) ( ) ( )* * *, Pr | , , , ,
k k

Dr I x I I y x k M N I B c I x= = = = ∈ ×                    [2.5]. 

Under the assumptions that (1) there is no measurement discrepancy in values of the 

key identifier between the two data files, and (2) an intruder may infer that individual 

( ),I x , who is included in B , is as likely to be the same person as individual *
I  as to any 

of the other * 1
k

N −  individuals in B , who take the same value of key identifier as ( ),I x , 

the first part of Equation 2.4 equals  

( )* * * *Pr | , , , 1
k k k

I I y x k M N I B N= = = ∈ =                         [2.6]. 

Therefore, when there is no measurement error, Equation 2.4 reduces to 
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( ) ( ) *, , kDr I x c I x N=                                                  [2.7]. 

 

 

2.2.3. Measurement Discrepancy (MD) in disclosure risk  

In addition to under-coverage, the success of establishing exact linkage may also 

depend upon the measurement accuracy of the key identifiers between the two data files. 

The observed values of the key identifiers in both data files may deviate from their true 

values due to measurement error. In record-linkage, however, measurement error is less 

important than measurement discrepancy, which is the difference in the observed values 

between a pair of records that refer to the same entity. The reason is that regardless of the 

true values, identification occurs when the observed values for two records match, and 

this may or may not happen if either/both observed values are, in fact, the true values.  

To incorporate the uncertainty in risk assessment due to measurement discrepancy, we 

further rewrite Equation 2.6 as a function of measurement discrepancy in the key 

identifier according to the Bayes' theorem 

( )

( ) ( )

* * *

* * * * *

* *

Pr | , , ,

Pr | , , Pr | , , ,
     =

Pr( | , , )

k k

k k k k

k k

I I y x k M N I B

I I M N I B y x k I I M N I B

y x k M N I B

= = = ∈

= ∈ = = = ∈

= = ∈

        [2.8]. 

Under the assumptions that (1) an intruder may infer that respondent ( ),I x  is as likely 

to be the same person as individual *
I  as to any of the other 1N −  individuals in B  

when no identification information of any sort is available to the intruder, and (2) the 

external data contains the record for this respondent, the component 

( )* *Pr | , ,k kI I M N I B= ∈  in Equation 2.8 equals 1 N . 
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The second component, ( )* * *Pr | , , ,k kx y k I I M N I B= = = ∈ , is the measurement 

discrepancy on the key identifier between the pair of records that refer to the same 

individual, ( ),I xρ . 

The third component * *Pr( | , , )k ky x k M N I B= = ∈  is the probability that a known 

individual *
I  in the commercial data takes the same key identifier value, k  as individual 

( ),I x . Assuming *Y , which is a vector of length N , follows a multinomial distribution 

with parameters ( ), 0, 1, 2,...,kN p k Kθ = ≥ =  and 
1

1
K

kk
p

=
=∑ , the maximum likelihood 

estimate for ( )* * * *Pr( | , , ) Pr | , ,k j k k j k kp y x k M N i B y k M N i B= = = ∈ = = ∈  is *ˆ
k kp N N= . 

After substituting all above three parts back into Equation 2.7, we get 

( ) ( ) ( )* 1, , ,kDr I x N c I x I xρ−=                                     [2.9]. 

2.3. Evaluating Under-coverage rate and Measurement Discrepancy 

2.3.1. Evaluating Under-coverage rate 

Let ( )
1

|kM

k i
c I I B x k

=
= ∈ =∑  be the frequency of the combination value k  of the key 

identifier for those individuals whose true matches are included in B . Assuming that all 

survey respondents with key identifier value k  are equally likely to be included in the 

commercial data, the probability for an individual ( ),I x  to be included in B , 

( ) ( )* *, Pr | , ,k kc I x I B y x k M N= ∈ = =  defined in Section 2.2, equals ( ) 1, k kc I x c M
−= . 

This equal chance inclusion assumption may not hold if survey respondents are selected 

with unequal probability or individuals are not randomly chosen to be compiled into the 

commercial data file. Nevertheless, both conditions are usually difficult to verify. 
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Furthermore, this assumption may provide a more realistic reflection of the type of 

information that an intruder may have.  

2.3.2. Evaluating Measurement Discrepancy 

In previous sections, the measurement discrepancy is expressed as a probability 

function, which has to be estimated. In this section, we propose three distance-based 

measures to evaluate measurement discrepancies as follows. 

(1) Measure 1 

This measure is developed based on the multi-dimensional key identifiers 

( )1 2, ,..., GX X X X=
�

 and ( )* * *

1 2, ,..., GY Y Y Y=
�

. Each dimension corresponds to one key 

variable. Assuming each key variable is equally important and contributes independently 

to the measurement discrepancy, a Euclidean distance is computed as:  

( ) ( )*

2
1 * 1 *

,|
1

, 1 ( ) 1
i j

G

j g g jij I I
g

I x d x y G x yρ −

=
=

= − − = − −∑
� �

                        [2.10], 

where ( )*

,g g jx y−  takes different forms depending on variable type. Specifically, if gX  is 

binary, ( ) ( )* *

, ,g g j g g j
x y I x y− = ≠ ; if gX  is nominal, ( ) ( )* *

, ,g g j g g jx y I x y− = ≠ , where 

( )levels i  is the number of distinct levels; and finally if gX  is ordinal, 

( ) ( )( )
1

* *

, ,levels 1
g g j g g g j

x y X x y
−

− = − − . ( )1 ,I xρ  takes values from zero to one, where 

one means that the two sets of measures agree perfectly and zero means there is not any 

similarity. 

(2) Measure 2 

An alternative crude measure is defined as the ratio of agreed dimensions over the 

total dimensions in X
�

. The estimator is  
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( ) ( )*

2 * 1 * *

,|
1

, ( ) |
j

G

j g g j jj I I
g

I x r x y G I x y I Iρ −

=
=

= − = = =∑
� �

                        [2.11], 

where gx  and *

,g jy  are the values for the thg  variable for individual ( ),I x  and *

jI  

respectively. ( ) *

2 *

|
, ( )

j
j j I I

I x r x yρ
=

= −
� �

 can take value within the range [ ]0,1 . ( )2 , 0I xρ =  

if the two vectors * *, |j jx y I I=
� �

 don’t agree in any dimension of key identifier; and 

( )2 , 1I xρ =  if the two vectors agree in all dimensions which also means absence of 

measurement discrepancy.  

(3) Measure 3 

This measure is the crudest measure defined based on an indicator function:  

( )
* * *

3

* * *

1 if | ,
,

0 if | ,

j j k

j j k

x y I I N
I x

x y I I N
ρ

 = =
= 

≠ =
                                   [2.12], 

where ( )3 , 1I xρ =  means the true pair records agree in their values on composite key 

identifier, and ( )3 , 0I xρ =  indicates measurement discrepancy present in *

jY . The 

information about both the magnitude and direction of the error are ignored. 

The three measures vary with respect to the broadness of the measurement difference 

in the key identifier between two data sets. Unlike the third measure 3ρ , which is the 

broadest measure of the overall measurement discrepancy, the first and second measure, 

1ρ  and 2ρ , considers each key attribute separately, effectively using the marginal 

distributions of each attribute rather than just their combinations. Therefore, both 1ρ  and 

2ρ  distinguish among key identifiers that are more likely to be associated with errors 

than others. Moreover, 1ρ  differentiates variable types and captures the measurement 
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error accordingly. Given these two distinctions, the respective values of these three 

measures follow a pattern in that 1 2 3ρ ρ ρ≥ ≥ , although they are all bounded at 0 and 1.  

2.3.3. Disclosure risk under assumptions about MD and UCR 

Under different combination of assumptions about the measurement and coverage 

properties, four sets of estimators for the disclosure probability are developed.   

(1) Estimator 1: Neither Measurement discrepancy nor Under-coverage is 

incorporated 

Under this assumption, ( ), 1I xρ =  and ( ), 1k kc I x c M= = , thus ( ) * 1, kDr I x N
−= . As 

noted by Skinner (2007), this simple form of the disclosure risk has been discussed 

extensively in SDC literature when the measurement error is ignored and the intruder 

data set is a complete register of the population or can be treated as providing full 

coverage for the target individual(s).    

(2) Estimator 2: Only Measurement Discrepancy is incorporated 

Since full coverage is assumed, ( ), 1k kc I x c M= = . The disclosure risk is 

( ) ( )* 1, ,kDr I x N I xρ−= .  

(3) Estimator 3: Only Under-coverage is incorporated 

Absence of measurement discrepancy implies ( ), 1I xρ = , thus  ( ) * 1 1, k k kDr I x N c M
− −= .  

(4) Estimator 4: Both Measurement and Under-coverage are incorporated 

When both error sources are present, the disclosure risk for respondent ( ),I x  to be 

correctly identified as subject *
I  is estimated by ( ) ( )* 1 1, ,k k kDr I x N c M I xρ− −= . 
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2.3.4. Global disclosure risk  

The global risk of disclosure for the entire survey data A  can be expressed as a simple 

summary of the individual risks, i.e. ( )( )1

1
,

n

i
Q n g Dr I x

−

=
= ∑ , where ( )g i  is a statistical 

function. Candidate functions for ( )g i  can be (1) an indicator function of whether 

( ),Dr I x  exceeds certain risk threshold, which is considered to be high, thus the global 

measure can be interpreted as the expected proportion of records with risk of disclosure 

exceeding this threshold; 2) an identity function which leads to a global risk of the 

expected proportion of individuals in the survey data who can be correctly re-identified. 

This measure is very useful to inform agencies whether releasing one particular data is 

safe or not, although it is an agency’s judgment on what the “safety threshold” should be. 

2.3.5. Summary of disclosure risk estimators 

In this section, we introduce two main factors that may contribute to the uncertainties 

in disclosure risk assessment: under-coverage and measurement discrepancy. Table 2.1 

summarizes the estimators under each combination of assumptions about under-coverage 

rate and measurement discrepancy. The comparisons among the four sets of estimates 

under different assumptions will reveal the impacts of each error source alone and 

altogether on reducing the risk of disclosure. 
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Table 2.1: The estimators for the individual and global risk of disclosure under different 
assumptions about measurement quality of key identifier, external data coverage and 
intruding search methods 

 Full Coverage Under Coverage 
Measurement 
Discrepancy 

Absent Present Absent Present 

Per-record Risk 

( ),Dr I x  *

1

k
N

 
( )

*

,

k

I x

N

ρ
 *

k

k k

c

N M
 

( )
*

,k

k k

c I x

N M

ρ
 

Global Risk* 

Q  *
1

1 K
k

k k

M

n N=

∑  
( )

*
1

,1 n

i k

I x

n N

ρ

=

∑  *
1

1 K
k

k k

c

n N=

∑  ( )
1

*
1

1
,

n
k k

i k

c M
I x

n N
ρ

−

=

∑  

Note: * ( )( )1

1
,

n

i
Q n g Dr I x

−

=
= ∑  is evaluated based on the identify function, 

( )( ) ( ), ,g Dr I x Dr I x= . It can be evaluated with regard to other functions per 

researchers’ will.  

2.4. An Empirical Illustration 

In order to assess the risk of disclosure, we need to estimate both under-coverage rates 

and measurement discrepancies. In this section, we present an empirical experiment that 

involves a national sample survey A  and a large commercial data file B . The two data 

files are linked at household level based on unique identifiers, therefore, they allow the 

evaluation of both under-coverage rates and measurement discrepancies.  

We evaluate the risk of disclosure for both households and individuals in the survey 

data A  from linking records within B  based on a set of common key variables. We also 

evaluate the impacts of measurement and coverage properties on such risk assessments 

under different assumptions on the amount of information possessed by intruders. 

Varying the amount of linking information also answers the question of how much risk 

data disseminators should expect when releasing different sets of key variables. 

We are obligated not to disclose any identification information about the data files 

used in this study. The information such as the name of survey, survey topic, sponsorship 

and the organizations that collected data, the name of the commercial data vendor, and 
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etc. are held anonymous. Necessary details about sample size, inferential population, key 

identification variables, and unique identifier are given to allow the evaluation of the 

scientific value of this research. 

2.4.1. Data Description 

2.4.1.1. Survey data A  

A survey data, A  with more than 6,000 subjects was used in this study. The key 

demographic variables were Age (7 categories), Gender ( 2 categories), Race (4 

categories), Education (5 categories), Marital Status (2 categories), Household Size ( 6 

categories) and Children (short for “whether there are children in the household” and has 

2 categories) and Household Income (3 categories). Among these variables, three are 

household-specific information: Household Size, Children and Household Income, and 

the remaining variables are individual specific. 

2.4.1.2. Commercial data file B  

The commercial dataset B  is a leased large national population database with 

approximately 120 million household and 200 million person records. Included in the file 

are unique identifiers, names and addresses, and several key demographic variables, such 

as age, gender, education level, race/ethnicity, marital status and the number of children 

in a household. In addition, the database includes a number of indicators of wealth, 

purchasing behavior, and leisure and professional activities. 

These data were complied from a number of public and private sources and modeled 

data. Therefore, the data quality may be implicated by modeling uncertainty. For instance, 

approximately 68% of age values were missing originally and replaced by some model 

estimates. Twenty-nine percent of Marital Status information has missing values and the 
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remaining observed values are marked with quality confidence levels “extremely likely” 

(41%) or “likely” (30%) assigned by the data vendor. Moreover, there is only one 

missing value on Education and 20% values are recorded as “extremely likely” and the 

other 80% as “likely”. 

This type of commercial data file is primarily intended for marketing and market 

research. We assume a potential intruder has access to such commercial data, and intends 

to identify households and/or individuals in A  by matching the values of the common 

variables. We simulate the situations in which an intruder has access to different amount 

of information about the known individuals by attempting linkage based on different 

subsets of variables. Table 2.2 shows the composition and sample size for each sub 

dataset. The common variables in the commercial data file are coded consistently with 

the survey data. 

Table 2.2: The collection of datasets simulating different intruding scenarios for 
household and individual level risk assessments 

Household Level Individual Level Variable  
(No. of Categories) Data 1 Data 2 Data 1 Data 2 Data 3 Data 4 

Age (7)   × × × × 

Race (4)    × × × 

Gender (2)    × × × 

Education (5)     × × 

Marital Status (2)     × × 

HH Size (6) × ×   × × 

Children (2) × ×   × × 

HH Income (3)  ×    × 

2.4.2. Analysis Methods 

The survey data set A  is a file where there is only one individual record in a 

household. B , on the other hand, is a hierarchical file, i.e. there are multiple individual 

records within a household. The disclosure of individual or household information 

requires that the individuals or households be correctly identified. The households from 
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the two data files are matched based on addresses. Due to the non-availability of any 

unique individual identifiers, the exact match on individuals is unattainable. We conduct 

a series of analysis evaluating the risk of disclosure for households and individuals 

respectively.  

 We first investigate the measurement properties of the key variables at the household-

level and the impacts on evaluating the risk of identification for households. These 

evaluations are conducted under the framework presented in Section 2.4 with the unit of 

analysis a household. Second, for each pair of matched households, we assume all 

individuals in B  are equally likely to be the correct link to the survey respondent, we 

evaluate the individual-level risk of disclosure and how the quality of data on individual 

specific key variables affect the risk assessments. 

2.4.2.1. Exact record linkage between the two databases 

Exact linkage method was used to match households between A  and B  based on 

eight components of house addresses present in both files. The address variables are Zip 

Code, City Name, Street Name, House Number, Street Suffix, Pre-direction/Post-

direction, Unit Designator and Unit Designator Number. A pair of households is a true 

match if it agrees completely on all eight variables. The record linkage procedure was 

conducted by another research group and the details about this procedure appear in 

Raghunathan and Van Hoewyk (2008). 

2.4.2.2. Household Level Analysis 

Of the total records in A , 50% households were uniquely linked with households in 

the commercial data B , around 0.8% were multiply linked and the rest of more than 49% 

were not linked of any sort. The primary reason for multiple links is that the physical 
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address can only be used to identify a building where there are more than one residing 

units. We treat this small portion of multiple-links as if they were the non-links, which 

gives around 50% non-linked households. Among the correctly linked HHs, around 6.4% 

were recorded in the commercial data as empty households with reported household size 

of zero, so personal level information is unavailable. Therefore, the proportion of 

uniquely linked non-empty households is 43.6%. The remaining commercial data 

households are not linked to any records in A . 

Table 2.3 shows characteristics on the matched-but-empty, non-matched, and matched 

households based on the information collected in the survey. Missing data are excluded 

from this analysis. We also provide the proportions of complete sub-sample for each type 

of households. For example, the sample size of matched households with the values of 

Household Size observed is 43.6% 28.3%×  times the total sample size n . We also 

incorporate the sampling weights due to unequal probability of sampling selection in 

estimating subclass means and their corresponding standard errors. We conduct two sets 

of independent t-tests of comparing the characteristics for empty households and non-

matched households against matched households respectively. 

The recorded empty households in the commercial data vary widely in size based on 

the survey data, ranging from one to more than six. On average, they tend to be smaller 

households. Both the income and the proportion of HHs with children are similar across 

these two groups. Although race was collected at the individual level, we use the single 

person race information to infer the whole household considering the fact that household 

members are usually in the same race category. Empty households tend to be white rather 

than Black, Hispanic or other races.  
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Table 2.3: Characteristics from survey data for matched households, matched-but-
empty households and non-matched households  

 Matched HHs Empty HHs Non-Matched HHs 

 Mean SE % Mean SE % Mean SE % 

HH Size (persons)   3.2 .03 28.3   3.0** .09 26.3   2.9*** .03 24.3 

Children in HH(%) 47.0 1.2 28.3 47.1 3.3 26.3 41.5*** 1.1 24.3 

HH Income LT 50K (%) 51.5 1.2 25.1 51.6 3.3 24.2 65.8*** 1.1 21.5 

HH Income 50-74K(%) 21.6 1.1 25.1 20.4 2.8 24.2 17.7*** 0.9 21.5 

HH Income GT 75K(%) 26.8 1.1 25.1 28.0 2.9 24.2 16.5*** 0.9 21.5 

White(%) 68.1 1.1 43.5 74.1** 2.7 40.1 55.2*** 1.1 37.3 

Black(%) 12.9 0.8 43.5 11.1 1.9 40.1 15.6** 0.7 37.3 

Hispanic(%) 13.5 0.7 43.5 10.1 1.7 40.1 20.5*** 0.9 37.3 

Other Race(%)   5.5 0.6 43.5   4.7 1.5 40.1   8.8*** 0.6 37.3 

Proportion of sample w/ 
item-missing data: 

43.6% 6.4% 50% 

Note: Significance levels for two-sided tests (matched vs. empty and matched vs. non-

matched): * 0.10a = ; ** 0.05a = ; *** 0.01a = . 

We also compare non-matched HHs with matched HHs. All these characteristics are 

different between the match and non-matched households. On average, the matched HHs 

tend to be larger, have children, and in a higher income category. Non-matched HHs tend 

to be Black, Hispanic or another race other than white. This is not surprising as income is 

often found to be associated with race. Such discrepancies suggest that the commercial 

data tend to omit the financially disadvantaged HHs. It is likely to be explained by the 

sources that B  use to compile the data. If the commercial data rely heavily on credit 

history or transaction reports, then information about financially inactive and low-income 

HHs may be less readily available. In terms of the likelihood of having children within a 

household, there is no difference between these two groups. 

As presented in Table 2.2, we simulate situations where an intruder has access to 

different sets of key information: (1) Data 1: household composition variables only, 

including Household Size and Children; (2) Data 2: household composition and 

household income. Table 2.4 shows the summary statistics for the coverage rates 
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estimated when key identifiers are defined by different sets of common household-level 

attributes. We use the estimator for the coverage probability presented in Section 2.3.1 to 

calculate the coverage rate for a combination value of key identifier, which is the ratio of 

the number of survey HHs that are covered in the commercial data over the total number 

of survey HHs. When only household composition variables are used in constructing the 

key identifier there are a total of 12 distinct categories in the key identifier and the mean 

coverage rate across all 12 categories is around 50%. When the information about 

household income is also used, the number of categories in the key identifier increases to 

34, and the mean coverage rate is around 57%. Under either situation, variations exist in 

the coverage rates across categories. 

Table 2.4: Summary statistics of coverage-rate, 1

k k
c M

− , for two sets of household-

specific key variables 

 No. of Categories Min. Mean Max. SD 

Data 1 12 0.000 0.499 0.609 0.166 

Data 2 34 0.000 0.566 0.786 0.135 

To shed some light on the data quality for the household-level information, we 

compare the statistics on matched households from A  and B  as shown in Table 2.5. 

Only a quarter of households agree on their HH size. It is worthy noting that the 

magnitude of measurement discrepancies in Household Size between the two data 

sources are very large, considering the fact that both measures are top-coded (6 in A  and 

8 in B ). Around 50% of measures on Household Income agree, which is very low 

considering that both measures are crudely coded using a 3-category ordinal scale. 

Around 60% of records show consistent reports on whether children are present in a 

household. 34% of households in A  that have children are recorded in B  as without 
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children. In sum, there are large measurement discrepancies in household-level statistics 

between the two data sources.  

Table 2.5: Discrepancies on the household-level measures between A  and B  
for matched households 

HH Size %  HH Income %  Children %  

-5 2.0  -2 8.6  -1 34.0  

-4 4.9  -1 16.0  0 60.5  

-3 9.6  0 51.6  1 5.5  

-2 15.3  1 14.0  Total 100.0  

-1 21.1  2 9.7     

0 25.0  Total 100.0     

1 11.6        

2 5.4        

3 3.1        

4 1.3        

5 0.4        

6 0.1        

7 0.1        

Total 100.0        

To evaluate the risk of disclosure for households in A , we use the framework 

introduced in earlier sections. Table 2.6 and Table 2.7 show the per-record and the global 

risk of disclosure estimated under various conditions of measurement discrepancies and 

under-coverage when different sets of household-level attributes are used in the re-

identification. 



 38 

Table 2.6: Per-record and global risks of disclosure for households in the survey data 
when the re-identification is based on the first set of household variables. 

Data 1: Household Size and Children 

Under-coverage Incorporated Not-incorporated 

Measurement Discrepancy 
Not-

Incor. 
1ρ  2ρ  3ρ  

Not-
incor. 

1ρ  2ρ  3ρ  

Max per-HH risk 610−×  1.5 1.5 1.5 1.5 0.78 0.78 0.78 0.78 

Expected No. of Identified 310−×  1.3 0.69 0.31 0.088 0.71 0.38 0.17 0.049 

Proportion Identified 710−×  1.7 0.92 0.41 0.128 0.51 0.065 0.065 0.065 

Total Prop. of Zero Prob.(%) 54.31 54.31 69.45 90.38 54.31 54.31 69.45 90.38 

 Non-matched HH (%) 46.33 46.33 46.33 46.33 46.33 46.33 46.33 46.33 

 Missing Values in B (%) 6.40 6.40 6.40 6.40 6.40 6.40 6.40 6.40 

 Zero Freq in B (%) 1.58 1.58 1.58 1.58 1.58 1.58 1.58 1.58 

 Due to MD or UCR (%) 0.00 0.00 15.14 36.07 0.00 0.00 15.14 36.07 

Total proportion of households: 26.2% 

Table 2.7: Per-record and global risks of disclosure for households in the survey data 
when the re-identification is based on the second set of household variables. 

Data 2: Household Size, Children and Household Income 

Under-coverage Incorporated Not-incorporated 

Measurement Discrepancy 
Not-
incor. 

1ρ  2ρ  3ρ  
Not-
incor 

1ρ  2ρ  3ρ  

Max per HH risk 610−×  8.4 8.4 8.1 8.1 5.7 5.7 4.4 4.4 

Expected No. of Identified 310−×  3.8 2.7 1.2 0.12 2.2 1.5 0.69 0.07 

Proportion Identified 710−×  5.7 4.0 1.8 0.17 3.3 2.3 1.0 0.1 

Total Prop. of Zero Prob.(%) 54.69 54.69 61.34 94.63 54.69 54.69 61.34 94.63 

 Non-matched HH (%) 46.22 46.22 46.22 46.22 46.22 46.22 46.22 46.22 

 Missing Values in B (%) 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75 

 Zero Freq in B (%) 1.72 1.72 1.72 1.72 1.72 1.72 1.72 1.72 

 Due to MD or UCR (%) 0.00 0.00 6.65 39.94 0.00 0.00 6.65 39.94 

Total proportion of households: 23.2% 

The first column of Table 2.6 displays the risks of disclosure under the assumption 

that both under-coverage and measurement discrepancy are ignored. The risks of 

disclosure shown in the 2nd to 4th columns are estimated with measurement discrepancies 

calculated based on the three measures 1ρ , 2ρ 3and ρ  as defined in Section 2.3.2 

respectively while assuming full coverage. The 5th column contains the estimated risks 

under the assumption of under-coverage but no measurement discrepancy. The 6th to 8th 
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columns contain the disclosure risk under the same assumptions about the measurement 

discrepancy as the 2nd to 4th columns respectively, except that we assume under-coverage. 

Three measures of disclosure risk are considered in Table 2.6. The first one is the 

maximum per-record risk of disclosure. The other two measures are both global measures: 

1) the expected number of truly identified HHs, which is calculated as the summation of 

per-record risk across all HHs within the survey data; 2) the proportion of truly identified 

HHs, which is the mean per-record risk across all HHs within the survey data. Table 2.7 

shows the corresponding risks as in Table 2.6 but estimated when all three household 

specific variables are used in the re-identification. 

As we expected, the risk estimated under alternative measures of measurement 

discrepancy decreases the broader the measure becomes. For example, in Table 2.7, the 

maximum per-record risk decreases from 68.4 10−×  for 1ρ  to 68.1 10−×  for 3ρ  when full 

coverage is assumed. The corresponding reduction is 65.7 10−×  for 1ρ  to 64.4 10−×  for 

3ρ  when under-coverage is assumed. The expected number of identified HHs also 

changes from 30.69 10−×  for 1ρ , 30.31 10−×  for 2ρ , to 30.088 10−×  for 3ρ . Among these 

three measures, 1ρ  leads to the most conservative estimation of the disclosure risk 

because it discriminates the contributions to the measurement discrepancies from each 

identification variable and from each type of variable. For simplicity, the rest of the 

comparisons are based on 1ρ . The risk reduction is considerably larger when the other 

two measures of measurement discrepancies are considered. 

Both per-record risk and global risk decreases when measurement imperfectness and 

under-coverage are appropriately incorporated. Such reduction diminishes as more 

attributes are used in the re-identification. When only two key attributes, Household Size 
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and Children, are used, the maximum per-record risk is cut in half from 61.5 10−×  to 

60.78 10−× (estimated using 1ρ ). When all three HH-level key attributes are used, the 

maximum per-record risk is reduced by 1.5 times from 68.4 10−×  to 65.7 10−× .  

Similar results are found with the global risk measures. For the expected number of 

identified HHs, the combined effects of measurement discrepancy and under-coverage on 

the risk reduction is around 3.5 times (from 31.3 10−×  to 30.38 10−× ) under the condition 

of Data 1, whereas it is around 2.5 times (from 33.8 10−×  to 31.5 10−× ) under Data 2. For 

the proportion of identified HHs, such combined effect is 26 times (from 71.7 10−×  to 

70.065 10−× ) under Data 1 and it is only 2.5 times (from 75.7 10−×  to 72.3 10−× ) under 

Data 2. 

Furthermore, the magnitude of reduction due to under-coverage tends to be larger than 

the measurement discrepancy. For the maximum per-record risk, the risk reduction is 

solely due to under-coverage under both identification conditions. For expected number 

of identified HHs, 1.4 times reduction is due to the measurement discrepancy, whereas 

1.7 times reduction is due to the under-coverage under Data 2. For the proportions of 

identified HHs, the magnitude of risk reduction due to measurement discrepancy and 

under-coverage is 1.85 (1.7/0.92) and 3.33 (1.7/0.51) respectively under Data 1. Under 

the condition of Data 2, the corresponding magnitude is 1.4 (5.7/4.0) and 1.73 (5.7/3.3) 

respectively. 

There are three portions of households in the survey data to whom the disclosure risk 

is zero: they are households (1) that are not included in the commercial data; (2) that are 

included in the commercial data but the values of key identifier are missing in the 

commercial data; and (3) that have combination value(s) in key identifiers that are not 
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present in the commercial data. In addition to the above three reasons, the risk of 

disclosure may become zero because of either measurement discrepancy or under-

coverage rate, such that when either factor takes the value of zero, then the risk is zero. 

The more information that is available to an intruder, the larger the proportion of 

households estimated with zero risk of disclosure because of the measurement 

discrepancy. This may be because more measurement errors are introduced.  

If we consider the measurement discrepancy as whether the two measures from the 

two data sets match, i.e. 3ρ , then the disclosure risk reduction is substantial when the two 

factors of data quality are both incorporated. The reduction can be as high as 50 times. 

In summary, the risk of disclosure for a household decreases when measurement 

discrepancy and under-coverage are considered. Such reduction diminishes as more 

attributes are used in the re-identification. The relative magnitude of such reduction tends 

to be larger from under-coverage than measurement discrepancy. 

2.4.2.3. Individual Level Analysis 

More than 9,000 individual records in data file B  are linked with records in survey A . 

Table 2.8 shows the percentages of different numbers of household members in B  that 

are linked to one respondent in A . As the main goal of this study is to enlighten the 

understanding of the measurement discrepancy between the two data files, we feel 

reluctant to use any social-demographic personal information to attempt the extension of 

the record-linkage to the individual level. Therefore, for each pair of matched households, 

we treat all individual pairs between A  and B  as correct matches.  
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Table 2.8: The percentages of household members in the commercial 
data file B  in matched households 

Number of household 
members 

Percentage 

1 22.4 

2 34.1 

3 20.8 

4 12.6 

5 6.3 

6 3.8 

Total 100.0 

To investigate whether all survey individuals have the same propensity to be included 

in the commercial data, we compare the matched and non-matched respondents as shown 

in Table 2.9. Weights due to unequal sampling selection are incorporated. Item-missing 

data were excluded. The percentage columns are the proportions of observed sample for 

matched and non-matched individuals. Based on the results from the t-tests, compared 

with matched individuals, non-matched individuals tend to be younger, less-educated, 

single, and non-whites. 
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Table 2.9: Individual survey characteristics for matched and non-matched 
survey respondents 

 Matched Non-Matched 

 Mean SE % Mean SE % 

Age (years) 29.0 0.3 23.6 28.2* 0.3 20.4 

    Age LT 19 (%) 17.2 1.0 42.5 14.1* 1.0 36.1 

    Age 19-23 (%) 16.0 1.4 42.5 19.4 1.7 36.1 

    Age 24-29 (%) 19.1 1.2 42.5 25.4*** 1.8 36.1 

    Age 30-34 (%) 14.8 0.9 42.5 15.2 1.1 36.1 

Age 35-49 (%) 32.9 1.5 42.5 25.8*** 1.5 36.1 

Race       

    White (%) 66.9 1.4 23.6 52.6*** 1.8 20.4 

    Black (%) 12.8 1.0 23.6 15.2* 1.1 20.4 

Hispanic (%) 14.3 1.0 23.6 23.0*** 1.7 20.4 

Other Races (%)   6.0 0.9 23.6   9.2*** 0.7 20.4 

Male (%) 44.1 1.5 23.6 49.0** 1.8 20.4 

Education       

    LTHS (%) 30.7 1.4 15.4 29.8 1.4 13.2 

    HS (%) 15.7 0.9 15.4 21.9*** 1.4 13.2 

    Some College (%) 27.0 1.5 15.4 26.9 1.9 13.2 

    College (%) 17.7 1.1 15.4 14.4* 1.4 13.2 

    GRAD/PROF (%)   8.8 1.1 15.4   6.9 1.0 13.2 

Married (%) 40.6 1.6 15.4 28.9*** 1.5 13.3 

Note: Significance levels for two-sided t-tests between matched and non-

matched survey respondents: * 0.10a = ; ** 0.05a = ; *** 0.01a = . 

We simulate four scenarios, namely Data 1-4, where an intruder has access to different 

amount of identification information as shown in Table 2.2.  Table 2.10 describes the 

estimated coverage rates under these four scenarios. There are five categories in the key 

identifier when only Age is used in the re-identification. The coverage rates are very 

similar among each age category. As more variables are used in the re-identification, the 

number of categories increases and so does the variation in coverage rates across 

categories. On average, the mean coverage rate is about 50% under all four scenarios.  
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Table 2.10: Summary statistics of coverage-rate, 1

k k
c M

− , for four sets of individual-

specific key variables 

 No. of Categories Min. Mean Max. SD 

Data 1 5 0.488 0.530 0.563 0.032 

Data 2 40 0.280 0.485 0.639 0.092 

Data 3 1574 0.000 0.494 1.000 0.369 

Data 4 2385 0.000 0.524 1.000 0.412 

According to statistics presented in Table 2.8, 22.4% households in B  are one-person 

households. The one-to-one pair of individuals in a one-person household is more likely 

to produce a correct match. We use this sub-dataset to illustrate the magnitude of the 

measurement discrepancy on several key variables as shown in Table 2.11. The most 

inconsistent measure is Marital Status, where only 16% of reports agree. The consistency 

rates for Age, Education and Gender are around 19%, 32% and 37% respectively. The 

most consistent measure is Race with a 68% agreement rate. The discrepancy goes in 

both directions for all variables.  

Table 2.11: Measurement discrepancies on the individual-level attributes between A  and 
B  for matched one-person households 

Age 
(7 levels) 

% 
Race 

(4 levels) 
% 

Gender  
(2 levels) 

% 
Educ.  

(5 levels) 
% 

Marital 
(2 levels) 

% 

-3 0.2 -3 2.5 0 37.1 -4 0.2 0 16.4 

-2 0.9 -2 5.2 1 62.9 -3 3.6 1 83.6 

-1 3.1 -1 10.2 Total 100.0 -2 9.3 Total 100.0 

0 18.4 0 67.9   -1 20.7   

1 10.6 1 4.1   0 32.4   

2 9.8 2 4.2   1 19.8   

3 7.3 3 6.0   2 10.2   

4 17.5 Total 100.0   3 3.4   

5 17.3     4 0.4   

6 14.7     Total 100.0   

Total 100.0         

Since all matched individuals will be used when we evaluate the disclosure risk, we 

present the percentage of each discrepancy value calculated based on the entire matched 
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sample for all eight key variables separately in Figure 2.1. A zero value on the x-axis 

means that there is no measurement discrepancy and the measures from the two data 

sources agree. Consistent with the results in Table 2.11, the most accurate measure is 

Race followed by Education and Household Income. The least accurate variable is Age 

and Marital Status. 

 

Figure 2.1: Percentages of measurement discrepancies between the values of key 
variables in the commercial data and the survey data on matched individuals. 

The per-individual and global risks of disclosure under each condition of the intruder’s 

information are presented in Table 2.12-15 respectively. The eight columns in these 

tables are defined in the same way as in Table 2.6 of the household-level analysis in 

Section 2.4.2.2. The three measures of disclosure risk are still 1) the maximum per-record 

risk of disclosure, 2) the expected number of disclosed individuals, and 3) the proportion 

of disclosed individuals.  

A total of five groups of individuals are free of disclosure risk. In addition to the four 

groups due to the same reasons as those we discussed in household-level risk assessments, 

such as 1) under-covered individuals; 2) covered individuals but with missing values in 
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key identifiers; 3) individuals with combination values in key identifiers that are not 

present in the commercial data, and 4) individuals for whom the measurement 

discrepancy probability and/or the coverage probability are estimated as zero, teenagers 

who are 19 years old or younger are also assigned zero risks. The reason is that the 

commercial data only compiles information about adults. 

Table 2.12: Individual and global risks of disclosure for individuals in the survey data 
based on the first set of identification variables 

Data 1: Age 

Under-coverage Incorporated Not-incorporated 

Measurement Discrepancy 
Not-
incor. 

1ρ  2ρ  3ρ  
Not-
incor. 

1ρ  2ρ  3ρ  

Max per Ind. risk 710−×  1.0 1.0 1.0 1.0 0.49 0.49 0.49 0.49 

Exp. No. of Identified 410−×  4.6 3.3 1.2 1.2 2.4 1.7 0.62 0.62 

Proportion Identified 810−×  1.5 1.1 0.39 0.39 0.77 0.55 0.2 0.20 

Total Prop. of Zero Prob.(%) 70.9 70.9 88.1 88.1 70.9 70.9 88.1 88.1 

 Non-matched Ind. (%) 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1 

 Missing Values in B (%) 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 

 Teens under-covered (%) 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6 

 Zero Freq in B (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 Due to MD or UCR (%) 0.0 0.0 17.2 17.2 0.0 0.0 17.2 17.2 

Total number of Categories: 5; Sample Unique Categories: 0 

Table 2.13: Individual and global risks of disclosure for individuals in the survey data 
based on the second set of identification variables 

Data 2: Age, Race and Gender 

Under-coverage Incorporated Not-incorporated 

Measurement Discrepancy 
Not-
incor. 

1ρ  2ρ  3ρ  
Not-
incor. 

1ρ  2ρ  3ρ  

Max per Ind. risk 610−×  4.5 4.5 4.5 4.5 2.3 2.3 2.3 2.3 

Exp. No. of Identified 310−×  5.2 3.7 2.4 0.44 2.4 1.7 1.1 0.22 

Proportion Identified 710−×  3.1 2.2 1.4 0.26 1.4 1.0 0.67 0.13 

Total Prop. of Zero Prob.(%) 49.4 49.4 52.9 90.2 49.4 49.4 52.9 90.2 

 Non-matched HH (%) 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 

 Missing Values in B (%) 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 

 Teens under-covered (%) 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.8 

 Zero Freq in B (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 Due to MD or UCR (%) 1.7 1.7 5.2 42.5 1.7 1.7 5.2 42.5 

Total number of Categories: 40; Sample Unique Categories: 0 
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Table 2.14: Individual and global risks of disclosure for individuals in the survey data 
based on the third set of identification variables 

Data  3: Age, Race, Gender, Education, Marital, HH Size and HH Children 

Under-coverage Incorporated Not-incorporated 

Measurement Discrepancy 
Not-
incor. 

1ρ  2ρ  3ρ  
Not-
incor. 

1ρ  2ρ  3ρ  

Max per Ind. risk 410−×  9.8 9.0 5.6 0.49 8.3 7.0 4.7 0.44 

Exp. No. of Identified 210−×  12.0 9.6 5.6 0.045 8.0 6.4 3.7 0.027 

Proportion Identified 610−×  11.0 8.7 5.1 0.041 7.3 5.8 3.4 0.025 

Total Prop. of Zero Prob.(%) 81.4 81.4 81.5 99.5 81.4 81.4 81.5 99.5 

 Non-matched HH (%) 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 

 Missing Values in B (%) 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 

 Teens under-covered (%) 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 

 Zero Freq in B (%) 22.8 22.8 22.8 22.8 22.8 22.8 22.8 22.8 

 Due to MD or UCR (%) 9.4 9.4 9.5 27.5 9.4 9.4 9.5 27.5 

Total number of Categories: 1574; Sample Unique Categories: 539 

Table 2.15: Individual and global risks of disclosure for individuals in the survey data 
based on the fourth set of identification variables 

Data 4: Age, Race, Gender, Education, Marital, HH Size, HH Children and HH 

Income 

Under-coverage Incorporated Not-incorporated 

Measurement Discrepancy 
Not-
incor. 

1ρ  2ρ  3ρ  
Not-
incor. 

1ρ  2ρ  3ρ  

Max per Ind. risk 410−×  16 14 10 0.62 11 9.1 6.7 0.57 

Exp. No. of Identified 210−×  12 9.9 6.0 0.041 8.9 7.3 4.4 0.026 

Proportion Identified 610−×  12 10 6.1 0.042 9.1 7.5 4.5 0.027 

Total Prop. of Zero Prob.(%) 84.0 84.0 84.0 99.7 84.0 84.0 84.0 99.7 

 Non-matched HH (%) 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 

 Missing Values in B (%) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 

 Teens under-covered (%) 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 

 Zero Freq in B (%) 29.2 29.2 29.2 29.2 29.2 29.2 29.2 29.2 

 Due to MD or UCR (%) 8.0 8.0 8.0 23.7 8.0 8.0 8.0 23.7 

Total number of Categories: 2385; Sample Unique Categories: 1227 

Similar results about the impacts of measurement discrepancy, under-coverage, and 

amount of information that an intruder has about the potential victims, on the risk of 

disclosure are found with the risk of disclosure for survey individuals as for survey 

households. 
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In specific, the risk of disclosure increases as more information is available to an 

intruder. When both measurement discrepancy and under-coverage are ignored, the 

maximum per-individual risk increases from 71.0 10−×  under Data 1, 64.5 10−×  under 

Data 2, 49.8 10−×  under Data 3, to 31.6 10−×  under Data 4. Similarly, the expected 

number of identified individuals rises from 44.6 10−×  under Data 1, 35.2 10−×  under Data 

2, to 11.2 10−×  under both Data 3 and Data 4.  Same pattern is found with the proportion 

of identified individuals.  

Similar to the household-level analysis, both the per-individual risk and the global risk 

diminish when the measurement discrepancy and under-coverage are incorporated. The 

collective effect on risk reduction becomes less significant as more individual attributes 

are used in the re-identification. When only Age is used, the maximum per-individual 

risk is reduced by 2 times, which becomes 1.9, 1.4, and 1.76 when more variables are 

involved. For both global measures, the expected number of disclosed individuals and the 

proportions of disclosed individuals, the risk reduction decreases from 2.7 (Data 1), 3.5 

(Data 2), 1.8 (Data 3), to 1.6 (Data 4).   

However, for the maximum per-individual risk, the change in risk reduction from Data 

3 (1.4) to Data 4 (1.76) turns out to be increasing instead of decreasing. Similarly, for 

both global risks, the change in risk reduction from Data 1 (2.7) to Data 2 (3.5) is also 

increasing. A speculation about this irregularity can be that there may exist a systematic 

change in the data composition between the sub data sets because each data set is 

composed of different survey individuals due to item missing data, thus the results are 

distorted by the potential “selection bias”. Another possible reason is that our assumption 

that each household member is equally likely to be the true match of the survey 
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respondent in matched households may not hold. Therefore, the measurement 

discrepancy may be overly overestimated, thus confounding the results. However, these 

two speculations are unverifiable in the current study.  

Figure 2.2-5 are the plots of the average estimated record-level disclosure risk when 

both under-coverage and measurement discrepancy are present, by the combination 

values of the key identifier, with each figure reporting a key identifier defined from a 

different set of key variables. A close examination of these plots suggests the record-level 

disclosure risks vary greatly across different combination values of key identifiers, and 

this finding holds for all conditions on the amount of common key variables that an 

intruder may have access to. Such variation is not solely due to the unbalanced 

population distribution in key identifiers, but also partially because of variations in 

measurement discrepancy and/or under-coverage rate across the key identifier categories.  

 

Figure 2.2: Histogram of record-level disclosure risk for individuals based on key 
identifier in Data 1. 
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Figure 2.3: Histogram of record-level disclosure risk for individuals based on key 
identifier in Data 2. 

 

Figure 2.4: Histogram of record-level disclosure risk for individuals based on key 
identifier in Data 3. 
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Figure 2.5: Histogram of record-level disclosure risk for individuals based on key 
identifier in Data 4. 

2.5. Conclusion and Discussion 

This study addresses and tests three aspects of uncertainty about measuring and 

assessing the risk of disclosure when an intruder attempts to re-identify survey 

respondents in microdata by linking with records in an external data file based on 

common key variables. 

The two main aspects are the measurement discrepancy in the values of common key 

variables between a pair of records that refer to the same entity within the target survey 

data and external commercial data respectively, and the under-coverage of the 

commercial data. Both aspects are largely ignored in the SDC literature. We have 

discussed and illustrated, theoretically and numerically, that ignoring these errors results 

in disclosure risk being over estimated. The magnitude of this reduction has shown to be 

as little as 2 times or as large as more than 40 times. In either case is too large to be 
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treated as ignorable. We also find that although the majority of such influence comes 

from under-coverage, the impact from imperfect measurement is still enormous. This line 

of research result is consistent with our hypotheses and provides evidence about 

important assumptions that future research on risk assessments should take into account.  

This finding is very important to federal statistical agencies and other data 

disseminators for several reasons. On the one hand, overstatement of disclosure risk may 

deter agencies from disseminating the data set that can be of great benefit to the public. 

On the other hand, if agencies have decided to publish the information contained in the 

data set, they may choose to disseminate the information which they consider to be “safe” 

or use a dissemination product that ensures that safety. For example, the agencies may 

preclude the risky information from the microdata, or publish summary statistics, such as 

tables, instead of the microdata. Such a decision process will delay the dissemination at 

the very least and data utility may be sacrificed as well. Lastly, when the over-estimated 

per-record risk is used to decide the records on which the information needs to be 

modified, a significantly larger portion of records will be selected, which leads to more 

information loss due to the modification procedure. In sum, these two factors should be 

incorporated in risk assessments.  

Specific for the effect from the measurement discrepancies, extensive efforts in the 

literature of survey methodology have been made to minimize measurement error on 

survey attributes from social and psychological viewpoints during data collection period. 

The main goal of such research is to produce high quality data to support research and 

policymaking. Similarly, the commercial data are compiled with the goals of achieving 

high data quality and complete coverage. However, the presence of such errors lead to 
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reduced risk of disclosing information about survey respondents, which helps relieve the 

concerns about data confidentiality from the data disseminators. The two roles that 

measurement error play are both important but contradictory to each other. The 

contradiction between statistical inference validity and disclosure control can be resolved 

by merging well-understood measurement error into actual data. Properly designed and 

implemented, measurement error with known statistical properties can be created during 

the data collection procedure. Alternatively and most realistically, we can add random 

error or noise to the original values of identification information in a systematic manner 

during the stage of post-data collection, as in most statistical disclosure control methods. 

The other aspects of intruding assumptions involve the amount of information that an 

intruder possesses about the known victims. It is not surprising that the more information 

that is known about the potential victims, the more likely they are to be identified, as 

suggested by the results. We also found that the effect of data quality on disclosure risk 

diminishes, as more information is available to an intruder. 

Unfortunately, this study has two limitations. First, the definition of household may be 

different across the two data files, which may lead to the large discrepancy in the 

household size. Furthermore, there is no unique identifier at the individual level, such as 

social security numbers. Therefore, our assumption of equal chances for all household 

members in the commercial data to be the correct match for the survey respondent may 

not hold. Because an intruder may use such information to make subjective judgments 

about which household member is the survey respondent, further exploration of the usage 

of household decomposition information should be conducted. Second, there may be a 

time gap between when the survey is implemented and when the commercial data is 
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compiled. Therefore, the time-sensitive variables such as age and household composition 

may not be comparable. We may be over estimating the impact from measurement 

discrepancy if such inconsistency is not resolved.
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CHAPTER III 

 

 

SEMI-PARAMETRIC MULTIPLE IMPUTATIONS OF  

FULLY-SYNTHETIC DATA 

 

 

3.1. Introduction 

Statistical agencies face the inherent tension between the increasing demand for 

publicly accessible data and growing concerns about confidentiality. Common 

disclosure avoidance practices involve perturbing the values in the actual data set. 

One such approach, proposed by Rubin (1993) and Little (1993), further developed by 

Raghunathan et al. (2003) and Reiter (2005a), is releasing the multiple fully-imputed 

synthetic data in place of the actual data. This approach has several advantages over 

alternative statistical perturbation methods (Winkler 2004, Reiter 2005a). First, it 

allows the researchers to completely eliminate the risk of disclosing respondents’ 

identities or sensitive attributes as no real information is disseminated. Second, valid 

statistical inference can be made by analyzing the synthetic data using standard 

statistical packages and similar statistical inference can be achieved using the 

synthetic data and the actual data.  

In general, the synthetic data are generated from models of the actual data and can 

be viewed as imputations (or predictions) of data values for a new sample drawn from 

the same population as the actual sample. In order to preserve statistical properties of 

actual data, the imputation models have to be carefully chosen after a thorough 

analysis of the complex relationships among survey variables. This task is challenging 
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because typically surveys collect data on hundreds of variables whose distributions 

often cannot be adequately captured with standard parametric models. Therefore, it is 

preferable to use semi-parametric methods, which relax the distributional assumptions 

of the parametric models, thus protecting against model misspecification. Two 

alternative synthetic data approaches, partial (Reiter 2005b) and selective synthesis 

(Little and Liu 2002), in which values of selected variables and/or selected individuals 

are replaced by imputations, have been shown to be considerably less model-

dependent but offer weaker confidentiality protection.   

Multivariate relationships are preserved when imputations are drawn from the joint 

posterior predictive distributions of the unobserved data. However, it is difficult to 

specify such a joint distribution model for a large number of variables of different 

types. In response to this challenge, a multivariate sequential regression approach is 

first proposed by Raghunathan et al. (2001) and widely used in missing data 

imputation. A regression model, for instance, a linear, logistic, Poisson or polynomial 

regression depending on the type of the variable, is fitted for one variable at a time 

conditional on the remaining variables. The joint distribution is then approximated by 

sequentially fitting the conditional models for multiple rounds. The imputations 

created using this approach are statistically comparable to those obtained by the 

Bayesian method, in which joint distributions are modeled explicitly (Raghunathan, 

Lepkowski, van Hoewyk and Solenberger 2001) and the computation may be intense 

when the number of variables gets large. 

This chapter presents and evaluates a sequential regression-based semi-parametric 

approach for constructing fully-synthetic data for a large national survey. We use 

different semi-parametric models to create synthetic data for each type of variables; 

specifically, Alternating Conditional Expectations (ACE) models (Breiman and 
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Friedman 1985) for continuous variables, Ridge-penalized logistic regression models 

(Schaefer 1986, Cessie and Houwelingen 1992) for binary variables, and sequential 

nested ridge-penalized logistic regression models for multinomial categorical 

variables with more than two levels. 

Most existing imputation models for continuous variables are built on the 

normality assumption. However, the distributions of variables we encounter in real-

data applications often deviate from normality. Transformations can be used to 

improve model fit in the presence of non-normality. A class of parametric 

transformation techniques with an emphasis on transforming the response variable has 

been suggested (Box and Cox 1964). However, such parametric transformation 

methods are still susceptible to failing to meet a priori assumptions about the 

functional forms that relate the response variable and covariates, thus they may lead to 

model misspecification. 

The ACE method (Breiman, et al. 1985) makes minimal assumptions about the 

data distribution and functional forms by estimating the optimal nonlinear 

transformations for both the response and predictor variables in a multiple regression 

model. This algorithm aims to maximize the correlations between variables and 

normalize the unexplained errors. This method also allows the complex relationships 

among variables to be revealed more accurately, thus improving predictions. 

For binary data, the predictions based on logistic regressions can become very 

unstable due to sparse data. Such data sparseness is very common in surveys and can 

occur in any of the three situations: (1) when the binary response variable is skew-

distributed, for example, measures with low population prevalence, such as rare 

disease or severe health condition, (2) when the number of covariates is relatively 

large, and (3) when the covariates are highly correlated. Ridge-penalized logistic 
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regression resolves this ill-conditioning problem by estimating the regression 

parameters using a shrinkage technique. The shrinkage estimators are consistent, and 

asymptotically more efficient than traditional alternatives, thus potentially improving 

the predictions. The amount of shrinkage can be determined by the data, which 

precludes the uncertainty associated with the estimation due to subjectivity.  

The success of this fully-synthetic data approach critically depends upon 

demonstrating whether the synthetic data inferences are valid. Raghunathan et al. 

(2003) evaluates such “validity” from a repeated sampling perspective. However, 

such evaluations are too computational burdensome to be practical or realistic. 

Furthermore, it is more meaningful to assess whether a particular set of synthetic data 

sets produce similar results as the actual data set, because eventually only a small 

number of synthetic data are disseminated for public use. Therefore, diagnostic tools 

are needed to assess such similarities in terms of the distributional properties and 

statistical inferences for a set of pre-specified analyses. 

In this chapter, we evaluate this fully-synthetic data approach using the data from 

the Health and Retirement Study conducted by the University of Michigan. The rest 

of this chapter is organized into six sections. In Section 3.2, we review the notations 

and the inference method for multiple fully-synthetic data. Then we describe the 

imputation algorithms for generating the synthetic data based on the sequential 

regression technique in Section 3.3. Separate regression models, specifically, ACE for 

continuous variables, Ridge logistic for binary data and hierarchical ridge logistic for 

polynomial variables, are used to model the conditional distributions. We introduce a 

diagnostic tool for synthetic data in Section 3.4. After the description of the data 

structure in Section 3.5, we introduce three information loss matrices, and compare 



 59 

the statistical inferences from the synthetic data with those from the actual data in 

Section 3.6. Finally, Section 3.7 concludes this chapter with discussion.  

3.2. Methods 

3.2.1. Synthetic data 

Suppose the actual data is a sample of size n  from a finite population ( ),Z YΡ =  

of size N , by a given sample design and recruitment protocol. ( ), 1, 2,...,iZ Z i N= =  

denotes design variables available on all population units. ( ), 1, 2,...,iY Y i N= =  

represents survey variables of interests, which can be decomposed into ( ),inc excY Y Y= , 

where ( ), 1, 2,...,inc iY Y i n= =  is the sampled portion of Y , and 

( ), 1,...,exc iY Y i n N= = +  is the non-sampled portion of Y .  incY  may include data 

values on units who (1) respond to survey requests and provide answers to questions 

that measure Y , (2) respond to survey requests but fail to answer this particular 

question that Y  pertains to, and the resulting loss of data is called Item-nonresponse, 

and (3) refuse to participate in the survey, and the subsequent loss of cases is called 

Unit-nonresponse. For simplicity, we assume that there is no unit-nonresponse, and all 

missing data are due to item-nonresponse and they are missing at random (MAR). We 

first describe the formulations of generating synthetic data as if there were no item-

missing data, and then we extend this framework to cope with item-missing 

imputation and full synthesis simultaneously. 

We study the case where statistical agencies seek to release multiple fully-synthetic 

data { }.( , ), 1,...,l l incD Z Y l L= =  built on the actual survey data ( , )incD Z Y= . Each 

synthetic data .( , )l l incD Z Y=  of size n , is achieved by (1) filling in the unobserved 

values of Y  by draws from the posterior predictive distribution of ( )| , incY Z Y , thus 
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completing a synthetic population, and then (2) drawing a simple random sample 

from this synthetic population. We repeat this two-step process independently L  

times to obtain L  synthetic samples, which are released for public use. In practice, the 

first step of generating complete synthetic population data is unnecessary and we only 

need to generate values of Y  for synthetic samples. 

When item-missing data is present, the synthesis approach then involves a two-

stage imputation. The sampled portion of data 
incY  breaks down into two components 

( ),inc mis obsY Y Y= , where misY  is the portion of item-missing data. In the first stage, the 

missing data 
misY  is multiply-imputed with draws from the posterior predictive 

distribution ( )| ,mis obsY Z Y  (Raghunathan, et al. 2001) to complete the sampled 

rectangular data. We repeat these draws independently M  times to obtain M  

complete data sets ( ){ }, 1, 2,...,
mM

D D m M= = , where ( ) ( )( ),
m m

incD Z Y=  and 

( ) ( )( ),
m m

inc mis obsY Y Y= . 

In the second-stage, conditional on each complete data ( )m
D , L  synthetic samples 

( ) ( ){ }., , 1, 2,...,
m m

l l incD Z Y l L= =  are generated independently as there were no item-

missing data. Therefore, we obtain a total of M L×  fully-synthetic datasets which are 

to be released for public use. We assume there is no confidentiality concern over 

releasing information about Z . If Z  is also subject to confidentiality constraint, the 

above setup can be conveniently adapted to synthesize Z . 

The number of multiple imputations (or syntheses), (i.e. M  and L ), is chosen 

based on the fraction of missing data (Rubin, 1987; Little and Rubin, 2002), the 

desired accuracy for synthetic data inference and the risk of disclosing identities 

and/or sensitive attributes of survey respondents (Reiter and Drechsler, 2007). The 
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last factor becomes irrelevant under the assumption that the claim from statistical 

agencies that the public data contains no real information about any survey 

respondents is effective in deterring any potential intruders.  

To account for uncertainty for a small fraction of missing information due to the 

imputation for item-nonresponses, 5M =  is usually sufficient to achieve satisfactory 

precision in statistical inference (Rubin 1987). Theoretically, a larger L  is needed for 

creating fully-synthetic samples because the fraction of missing information is one-

hundred percent. A modest number of fully-synthetic data sets, for instance, 5, 10 or 

20, is still sufficient to ensure the inference validity (Raghunathan et. al, 2003).  

3.2.2. Multiple fully-synthetic data inference 

Item-missing data are ubiquitous in surveys. It is logical to impute for item-

missing data and build fully-synthetic data simultaneously. However, neither the 

multiple fully-synthetic data inference (Raghunathan et. al, 2003) nor the standard 

multiple imputation inference (Rubin 1987) by themselves will result in valid 

inference because both inference methods ignore the fact that there are two separate 

sources of variability due to imputing item-missing data and synthesizing the entire 

data set. Reiter (2004) developed a combination rule to ensure valid inference for 

partial synthetic data where item-missing data are handled prior to the synthesis 

procedure. However, this inference rule is unsatisfactory when fully-synthetic data are 

created. Therefore, a new combination rule is needed. Before presenting this new rule, 

we first review multiple imputation inference for missing data and multiple fully-

synthetic data inference.  

3.2.2.1. Single-stage multiple imputation inference 

For each imputed complete data ( ) , 1, 2,...,
m

D m M= , a scalar estimand Q  which 

may be a function of ( ),Z Y  is estimated with a point estimate ( )m
q  and associated 
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variance estimate ( )m
v . Under the assumptions described in Rubin (1987), Q  can be 

estimated by  

 ( )1

1

M m

m m
q M q−

=
= ∑  [3.1] 

with variance  

 ( )11
m m m

T M b v
−= + +  [3.2], 

where ( ) ( )( )
21

1
1

M m

m mm
b M q q

−

=
= − −∑  is the between imputation variance and 

( )1

1

M m

m m
v M v

−

=
= ∑  is the within imputation variance.  

Developed under a Bayesian framework, when M  is small to modest, for example 

5 to 10, the posterior distribution of Q  can be approximated by a Student’s t-

distribution with degrees of freedom ( ) ( )( )
2

1 11 1
m m m

M M b Tγ
−

− −= − + . The degrees of 

freedom, mγ , reflect the statistical uncertainty due to missing data. When a quantity 

being estimated is strongly influenced by missing data, its inference then is based on a 

smaller value of mγ , thus a wider confidence interval.   

3.2.2.2. Single-stage full synthesis inference  

Raghunathan et. al (2003) presented the combining rule for fully-synthetic data. 

Suppose there are no missing data and fully-synthetic data , 1, 2,...,lD l L=  are 

generated conditional on D . For each lD , Q  is estimated with a point estimate lq  

with variance lv . The multiple synthetic data estimate of Q  can be expressed as  

 
1

L

L ll
q q L

=
=∑  [3.3] 

with variance 

 ( )11
L L L

T L b v
−= + −  [3.4], 
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where ( ) ( )
2

1
1

L

L l Ll
b q q L

=
= − −∑  is the between synthesis variance and 

1

L

L ll
v v L

=
=∑  is the within synthesis variance. Because there is an additional level of 

sampling of drawing synthetic samples from each synthetic population, the between 

synthesis variance already reflects the within synthesis variability. Therefore, LT  is 

defined as the between imputation variance minus within imputation variance, which 

is different from the one in standard multiple imputation inference. The posterior 

distribution of Q  given fully-synthetic samples is approximated by a normal 

distribution with mean Lq  and variance LT . The Bayesian confidence intervals are 

shown to be identical to the large sample frequentist intervals (Raghunathan et. al, 

2003). 

3.2.2.3. Two-stage item-missing data imputed fully-synthetic data inference 

In presence of item-missing data, we apply a two-stage fully-synthetic data 

approach. The goal becomes making inference of Q  based on M

LD . Let ( )m

lq  and ( )m

lv  

be the point estimates and associated variance estimates based on ( )m

lD , the thl  

synthetic data generated from the thm  complete data, where 1,...,l L=  and 

1,...,m M= . Assuming Bayesian asymptotic conditions meet, Q  can be estimated by  

 ( ) ( )1

1 1

M L m

M lm l
q ML q

−

= =
= ∑ ∑  [3.5] 

with variance  

 ( ) ( )1 11 1
M M M M

T M B L b v
− −= + + + −  [3.6], 

where ( ) ( ) ( )( )
21

1 1
1

M L m m

M lm l
b M L q q

−

= =
 = − −  ∑ ∑ , ( ) ( )( )

21

1
1

M m

M Mm
B M q q

−

=
= − −∑ , 

and ( ) ( )1

1 1

M L m

M lm l
v ML v

−

= =
= ∑ ∑ . Mq  and Mv  are the overall means of point estimates 

and estimated variances across all synthetic data. MB  is the variance of ( )m
q  across all 
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complete data. When , n M  and L  are large, the inference can be approximated by 

normal distribution, thus the 95% confidence interval can be computed as 

0.975 0.975,M M M Mq z T q z T − +  . For small to modest ,  n M  and L , the inference 

about Q  is made by approximating its posterior distribution by a t  distribution with 

degrees of freedom ( ) ( )( )
2

1 11 1M M MM M B Tγ
−

− −= − + .  

One drawback about this variance estimator is that the variance estimates can be 

negative, which is shared by the inference method about single stage fully-synthetic 

data. This problem can be avoided by increasing ,   and/or n M L , however, the 

computational requirements soon became practically unrealistic. We provide a 

modified variance estimator to accommodate this situation in that  

 *

M M MT T vλ= +  [3.7], 

where ( )0MI Tλ = ≤ . Note that negative MT  happens when within synthetic data 

variation dominates the total variance. What this modification does is replace the total 

variance with the summation of the estimated between missing data imputation 

variance and between synthesis variance. Note that the within synthetic data variance 

is already included in the between synthetic data variance. This new estimator ensures 

the estimated variance is always positive and somewhat slightly conservative.  

 In addition, the estimated degrees of freedom, 
Mγ , can be very small when within 

synthetic data variation is large. As a result, the confidence intervals tend to be 

excessively wide, which responds to overly conservative inferences. We use the 

adjusted estimates for the degrees of freedom similarly as described in Reiter and 

Drechsler (2007) as  

 ( )* max 1,M MMγ γ= −  [3.8] 
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3.2.3. Theoretical justification for the two-stage inference 

We built this new combining rule based on the two existing rules developed by 

Rubin (1987) and Raghunathan, Reiter, and Rubin (2003). We also assume all the 

conditions specified in both articles meet.  

3.2.3.1. First-stage inference: ( )| M
f Q D  

The first stage of this synthetic data approach creates multiply-imputed item-

missing data ( )( ), 1, 2,...,
mM

D D m M= = . Let mq , mb , mv , mγ  and 

( ) ( )( ){ }, , 1, 2,...,
m m

q v m M=  be defined as in Section 3.2.2.1. By Rubin (1987), the 

inference of Q  based on MD  can be approximated by a t-distribution with posterior 

mean 
mq , posterior variance 

mT  and degrees of freedom 
mγ . 

3.2.3.2. Second-stage approximations 

In the second stage, L  fully-synthetic data ( ) ( )( ), 1, 2,...,
m m

L lD D l L= =  are generated 

from each complete data ( )m
D  separately. We treat each imputed sample 

( ) , 1, 2,...,
m

D m M=  as if it was an actual sample from the population. Then for each 

( )m
D , a frequentist could make inference of Q  on ( )m

D  with unbiased estimate ( )m
q  

and sampling variance ( )m
v . Using fully-synthetic data inference results in Section 

3.2.2.2, the equivalent Bayesian inference of Q  based on ( )m

LD  can be approximated 

by the normal distribution with the posterior mean ( ) ( )1

1

Lm m

ll
q L q

−

=
= ∑  and posterior 

variance ( ) ( ) ( ) ( )11
m m m

L L
T L b v

−= + − , where ( ) ( ) ( )( ) ( )
2

1
1

Lm m m

L ll
b q q L

=
= − −∑  and 

( ) ( )
1

Lm m

L ll
v v L

=
=∑ . From randomization validation point of view, ( )m

q  and ( )m
T  are 

unbiased estimates of ( )m
q  and ( )m

v  respectively (Raghunathan et al, 2003). 
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3.2.3.3. Approximate ( )| M
f Q D  with ( )| M

L
f Q D  

In deriving ( )| M
f Q D , ( ) ( ) and 

m m
q v  are viewed as the sufficient summaries of 

( )m
D . In Section 3.2.3.2, unbiased estimates for ( ) ( ) and 

m m
q v  are constructed based on 

the set of synthetic data nested within ( )m
D . The next step, therefore, is to 

approximate ( )| M
f Q D  with ( )| M

L
f Q D  by substituting ( ) ( )( ){ }, , 1, 2,...,

m m
q v m M=  

with their estimates ( ) ( )( ){ }, , 1, 2,...,
m m

q T m M=  respectively in the first stage t-

distribution inference equations. The posterior mean of Q  based on M

LD  is 

( ) ( )
1 1 1 1

ˆ
ˆ

M M M Lm m

m lm m m l
m M

q q q
q q

M M M L

= = = == = = =
×

∑ ∑ ∑ ∑
, and its posterior variance is  

 

( )

( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1

211 1

1 1

1 1 1

1

1 1

ˆˆ ˆ1

ˆˆ ˆ1 1

1 1

1 1

m m m

M Mm m

mm m

M m m

M L Lm

M M M M

T M b v

M M q q M v

M B M L b v

M B L b v T

−

−− −

= =

− − −

=

− −

= + +

= + − − +

 = + + + − 

= + + + − =

∑ ∑

∑
 [3.9], 

where Mq , Mv , MB  and Mb  are defined as in Section 3.2.2.3.  

To estimate the degrees of freedom, we assume a t-distribution for first-stage item 

imputation and normal distribution for second-stage full synthesis. These assumptions 

are very reasonable as they are consistent with those we impose in deriving the mean 

and variance estimators. After substituting the between Item-missing imputation 

variation mb  and total variance mT  with their estimates MB  and MT  respectively in the 

degrees of freedom estimator in Section 3.2.2.1, the estimated degrees of freedom 

based on M

LD  is, therefore, ( ) ( )( )
2

1 11 1M M MM M B Tγ
−

− −= − + . 
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3.2.4. Simulation validation  

This section presents a simulation study for the two-stage full synthesis. We 

evaluate this new combining rule, the degrees of freedom estimator as well as the 

adjustments for negative variance and degrees of freedom. 

We first generate a population of size 1000N =  from a 5-variate normal 

distribution with means equal to zero, variances equal to one and a common 

covariance of 0.5. Then we draw 500 independent actual samples of size 100n =  

from this population by simple random sampling. For each actual sample, we create 

general pattern item-missing data on all five variables under the assumption of 

missing at random (MAR). Each incomplete actual sample is considered to be one 

observed data set. The algorithms for generating the missing data are described below. 

Under the assumptions of multivariate normality and MAR, for each observed data, 

we impute for the missing data independently 5M =  times using Markov chain 

Monte Carlo (MCMC) method (Schafer, 1997), which gives five imputed complete 

samples. For each complete sample, 5L =  synthetic populations of size 1000 are 

created. Finally, from each synthetic population, a random sample of size 250k =  is 

drawn. Thus, we obtain 500 5 5 12,500× × =  synthetic samples, which are considered 

the public data. 

3.2.4.1. Generate item-missing values 

MAR assumption suggests that the missing-data mechanism depends only on the 

observed data. To simulate the arbitrary missing data pattern, we develop four logistic 

models of creating item-missing data on only one variable, jointly on two variables, 

jointly three variables, and jointly four variables respectively. Every unit has at least 

one observed value across all five variables.   
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Specifically, for each actual sample, we divide the entire sample equally into four 

groups. The missing-data-generation models are then randomly assigned to the groups, 

such that each model is applied to one and only one group in an actual sample. For 

each data group, after the model is assigned, we 1) randomly select one or more 

variables to be subject to missing data, in which the number of variables to select is 

informed by the model; 2) fit the deletion model on the rest of variables, and finally 3) 

create missing values on selected variable(s) as suggested by the model. We repeat 

this three-step process for all four groups to complete the data deletion procedure for 

one actual sample. We repeat the above procedure for all 500 actual samples 

independently to create 500 observed samples with missing values. 

We next illustrate this procedure using the following example. Let 1X , 2X , 3X , 

4X , and 5X  be the five normally distributed variables respectively. The missing-data-

generation models have this general form: ( )( )logit Prob 1| T
R X X β= = , where R  is 

the missing indictor and X  is one subset of the data matrix, which varies by models. 

Suppose for the first group, one-variable model is assigned and the selected item-

missing-data variable is 1X . The model creating around 50% missing data is 

( )( )2 3 4 5 2 3 4 5logit Prob 1| , , , 0.5 ;  1,2,..., 4
i

R X X X X X X X X i n= = + + + + = . 

In specific, the missing data are created using the following steps: 

a. Estimate the predictive probabilities P  for 1X  to be missing from the above 

model, where P  is a vector of size 4n .  

b. Generate a Uniform random deviate vector of size 4n , ( )~ Uniform 0,1U . 

Calculate the missing indictor ( )R I P U= >=  where ( )I •  is indictor function. 
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c. Create missing data on 1X . For observation i , 1 missing if 1 i iX R= =  and 

1 1  if 0i i iX X R= = . 

If a three-variable model is assigned and a random selection of variables that are 

subject to item missing data is ( )1 2 4, ,X X X , then the model of creating around 50% 

missing data is ( )( )3 5 3 5logit Prob 1| , 0.5 ;  1,2,..., 4
i

R X X X X i n= = + + = . The 

estimated predictive probabilities are for ( )1 2 4, ,X X X  to be jointly missing. R  is 

computed in the same way as shown above. Then, for individual i , we assign 

1 2 4,  and i i iX X X  missing values if 1iR = . Similar steps apply when other missing-

data-generation models are selected. 

3.2.4.2. Generate synthetic data 

We use the same synthetic data model as described in the Simulation Study 1 in 

Raghunathan et. al (2003). Specifically, the synthesis model assumes multivariate 

normal distribution with unknown mean and covariance matrix. Non-information 

Jeffrey priors are applied (Jeffreys, 1961). Because the synthesis model matches the 

true model, the synthetic data are created under the best situation. This setup allows 

for the evaluation of our inference method without unnecessary implications from 

other factors. 

3.2.4.3. Simulation results 

The estimands of interest are the marginal means for all five variables and the 

regression coefficients of 1X  on ( )2 3 4 5,  ,  , X X X X . Almost all variance estimates are 

positive with only one negative estimate out of 5000. 670 out of 5000 estimated 

degrees of freedoms are smaller than 1 4M − = , and adjustment rule for the degrees 

of freedom applies. Small estimates for the degrees of freedom occur mostly on 

analytic statistics with only one on descriptive mean estimate. The sampling 
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distribution of the actual sample and synthetic sample estimates of the regression 

coefficients are almost the same. Table 3.1 compares the inferences of descriptive and 

analytic statistics from the synthetic data sets and the actual data. The point estimates 

for both types of statistics are very similar across the synthetic and the actual data. 

The synthetic data standard errors are larger than the actual data suggesting some loss 

of precision. Consistent results with respect to this precision loss are found with the 

coverage rates as the synthetic data provides an over nominal coverage, 96.08% than 

the actual sample, 95.52%. The intervals from synthetic samples are wider than those 

from the actual samples as the average interval lengths are 0.38 and 0.66 respectively. 

Based on this new combining rule, the repeated sampling properties of the inference 

from the actual and synthetic sample are almost identical as predicted. In conclusion, 

the combining rule and degrees of freedom estimator yield valid synthetic inference 

when item-missing data is imputed prior to creating fully-synthetic data. 

Table 3.1: Descriptive and analytic statistics estimated from the synthetic data sets 
and the actual data in the simulation evaluation of combining rule. 

 Synthetic Actual 

Type Estimate S.E. Coverage (%) Estimate S.E. Coverage (%) 

No. of 
estimates 

Mean 0.04 0.14 97.6 0.04 0.10 95.7 2500 

Intercept 0.05 0.12 97.6 0.05 0.08 95.7 500 

Slope 0.20 0.13 95.1 0.20 0.10 96.0 2000 

3.3. Imputation models 

3.3.1. Sequential regression 

Sequential regression was originally motivated by the widely recognized difficulty 

of generating imputes for a large number of variables of different types from a full 

Bayesian model (Raghunathan, et al. 2001). For complex data structure, such a 

realistic joint model is difficult to formulate, although it is theoretically appealing to 

impute for the missing values from the joint posterior predictive distribution. 
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Multivariate sequential regression imputation approach is a flexible alternative that 

only requires the specification of a series of multivariate conditional models. 

Suppose that a dataset without missing data is comprised of survey variables 

( )1 2, ,...,
p

Y Y Y  and a design variable Z . Fully-synthetic approach replaces the 

observed values of ( )1 2, ,...,
p

Y Y Y  for all respondents with imputations performed 

multiple times. Under the sequential regression approach, each set of imputes is 

created by draws from the posterior predictive distribution generated from a series of 

conditional regressions, ( )| ,  all ,
k k j k k

f Y Z Y θ≠ , 1, 2,...,k p= , where 
kf  are the 

conditional distribution function with parameter 
kθ . We assume a diffuse non-

informative prior for 
kθ . The sequence of imputation is continued in a cyclical 

manner, each time using updated predictor sets and overwriting previously drawn 

values. This procedure is repeated independently multiple times to complete multiple 

synthetic-data. More details on the sequential regression imputation procedure for 

missing data appear in Raghunathan et. al (2001).  

The variables in the dataset are assumed to be one of the following three types: 

continuous, binary or categorical. Separate regression models are used for different 

type variables. The specific conditional functions suitable for each variable type are 

described in the next section.  

3.3.2. ACE model for continuous data 

The Alternating Conditional Expectation (ACE) model (Breiman, et al. 1985) is a 

semi-parametric regression technique aiming to fully explore and explain the effect of 

covariates on a continuous response variable in multiple regression while making few 

assumptions about the regression function. This motivation is facilitated by estimating 

the transformations of the response and a set of covariates that produce the maximum 
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linear effect between the (transformed) covariates and the (transformed) response 

variable. Because the ACE algorithm does not require defining the relation structure a 

priori, it is superior to the standard parametric tools in modeling the complex and 

irregular relationships among survey variables. 

An ACE regression model has the following general form: 

 
1

( ) ( )
p

j j

j

Y a Xψ φ ε
=

= + +∑  [3.10], 

where ( )~ 0,1Nε , ψ  is a function of the response variable, Y  and jφ  are functions 

of the covariate variable 
jX , 1, 2,...,j p= . The optimal transformation functions ψ  

and jφ  are estimated using an iterative method by minimizing the unexplained 

variance, 2ε , of a linear relationship between the transformed response variable and 

the sum of transformed covariates: ( ) ( ) ( )
2

2

1

1

, ,...,
p

p j j

j

E Y Xε ψ φ φ ψ φ
=

   
= −  

   
∑ . 

If a covariate is a categorical variable (either ordinal or nominal), the final optimal 

function 
jφ  assigns a real valued score to each level. The algorithm can be 

implemented using the ace function in the R statistical package. For details of the 

iterative fitting algorithm, see Breiman and Friedman (1985). 

To demonstrate how the ACE algorithm can be used to identify the functional 

relationship between response and covariates and improve prediction precision, we 

use the data from the Health and Retirement Study (n=12319) as an example. Suppose 

that the response variable is the household assets. The covariates include age (years), 

school years (years), height (cm), weight (pounds), household income (1000 dollars), 

gender (men and women), self-rated health status (5 points Likert-scale), smoking 

status (never smoked, Past and current smoker). Figure 3.1 shows the transformations 

for the response variable and the four covariates estimated by ACE. From these 
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figures, it can be seen that the transformation functions are rather tailored to the 

irregular empirical distributions that are observed in a real data set. This flexibility of 

simultaneously estimating such transformation functions for multiple variables makes 

the ACE superior to parametric approaches. 

 

 

Figure 3.1: ACE optimal transformations for continuous variables in the HRS dataset 
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Figure 3.2 displays the normality Q-Q plots for the residuals from the simple linear 

regression and ACE regression. From comparing these two plots, the model fit is 

improved for ACE as the error is more distributed more towards normality.  

 

Figure 3.2: Q-Q Plots for the residuals from ACE and standard linear regression 

A regression of the transformed response variable on all transformed covariates 

results in all parameter coefficients of the predictors as positive and close to one as 

shown in the following equation:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3 4

5 6 7

ˆ ˆ ˆ ˆˆ .99 .96 1.04

ˆ ˆ ˆ1.02 .98

Assets Hgt Income Wgt Age

Gender Smoke Health

ψ φ φ φ φ

φ φ φ

= + + + +

+ +
. 

The adjusted 2R  for the ACE model, 0.37, is larger than that for the Ordinary 

Least Squares (OLS), 0.31. Thus, more variation in response variable is explained by 

the independent variables in ACE. Therefore, ACE improves model fit and increases 

the correlations between the response and predictor variables. ACE is exceptionally 

powerful in predictions. However, when the sole goal in statistical analysis is 

estimation, ACE should be used with caution because the interpretations are 

complicated by the transformation functions. 
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In addition, the prediction performance using the ACE approach depends on the 

order in which the covariates are entered into the model (Hastie and Tibshirani, 1990, 

Breiman and Friedman, 1985). To capture the prediction uncertainty, random 

permutation on the order of the continuous covariates is built within each imputation 

iteration in constructing the synthetic data. 

3.3.3. Ridge-logistic regression model for binary data 

Standard parametric logistic regression is often used to impute values for a binary 

data by random draws from the posterior predictive distribution. However, with the 

presence of sparse or highly correlated binary covariates, the maximum likelihood 

estimates, though unbiased, are very unstable. Therefore, the imputation may perform 

poorly because of large prediction errors. One commonly used technique to obtain 

more stable estimates is to drop non-significant covariates. However, it comes with a 

cost of losing the full conditionality, on which we build the imputation framework. 

An alternative approach, which maintains full conditionality, is to shrink the 

parameters and permit a slight bias in the estimates but with smaller variances. These 

type of estimators are usually achieved by minimizing the mean square errors (MSE) 

instead of bias as in standard logistic models.  

One such useful shrinkage method is based on ridge-penalized function, which was 

originally developed under standard linear regression (Duffy and Santner, 1989), then 

extended to logistic regression by Le Cessie and Van Houwelingen (1992).  

The ridge-penalized logistic estimator is derived as the restricted maximum 

likelihood estimator, which can be obtained by Newton-Raphson algorithm with ridge 

parameter defined a priori. Choosing the optimum ridge parameter to minimize the 

prediction error is very important. A cross-validation method is usually used to 

evaluate several selected ridge parameter values. However, it is very time consuming 
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and computation intensive to build this procedure into each iteration of imputation. 

Alternatively, the appropriate ridge parameter can be estimated from the data 

(Schaefer et al., 1984). Two ridge estimators with different definitions are proposed in 

the literature. These two approaches have been shown to be equivalent asymptotically 

(Le Cessie and Van Houwelingen, 1992).  

Let us consider the probability function p  for a standard logistic regression model: 

 ( ) ( ) ( ){ }exp 1 exp
i i i

p X X Xα β α β= + + +  [3.11], 

where β  is a p -dimensional parameter vector excluding the intercept, and the ridge 

estimator ( ),λ λα β  is obtained by maximizing the following penalized log-likelihood 

( ),lλ α β  (Le Cessie and Van Houwelingen, 1992):  

( ) ( ) ( ) ( ){ } 2
, log 1 log 1i i i i

i

l Y p X Y p X
λ α β λ β = + − − − ∑ , 

where ˆ ˆ
2

MLE MLEp
λ β β′=  (Schaefer et al., 1984). The first component is the 

unrestricted log-likelihood as in standard logistic regression and the second part is the 

penalty as a function of maximum likelihood estimator for β . The penalizations only 

apply on β  because adding a constant to the base of odds ratio would not result in a 

shift of the prediction by a constant.  

Computationally, this estimation is achieved in two steps. In the first step, the point 

estimates ˆ mleβ  is obtained by Newton-Raphson algorithm by maximizing the 

unrestricted log-likelihood. The ridge parameter λ  is computed as a function of ˆ mleβ . 

Then another Newton-Raphson procedure is carried out by maximizing the penalized 

log-likelihood initialized with ( )ˆˆ ,mle mle
a β  to obtain the point and interval ridge 

estimates. 
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We next present a simple example to show how ridge regression helps improve 

prediction. The binary response variable is whether a respondent was working for pay 

at the time the interview was carried out. The marginal percentage estimated from the 

HRS (n=12652) is 33.5%. Ninety-two covariates measuring social-demographic, 

health characteristics and design variables are included. For categorical variables with 

more than two levels a set of dummy variables are created, so that the final number of 

covariates is 116. Some categorical predictors are highly correlated. The proportions 

of dichotomized predictors range from 0.7% to 80%, which suggests a sparse data 

condition. 

The first step of Newton-Rapson algorithm of maximizing the unrestricted 

likelihood takes 16 iterations. The penalty parameter based on ˆ ˆ
2

MLE MLEp
λ β β′=  is 

4.55. When 0λ = , the ridge estimator then reduces to standard maximum likelihood 

estimator. Three model fit statistics are defined as follows:  

a. Mean Square Error (MSE): ( )
21

1
ˆ

n

i
MSE n y p−

=
= −∑ , 

b. Mean Classification Error (MCE): 

( ) ( ) ( ) ( )1

1
ˆ ˆ ˆ0.5 1 0.5 0.5 0.5

n

i
MCE n y I p y I p p

−

=
 = × < + − > + = ∑ , and 

c. Akaike Information Criterion (AIC): 

( ) ( ) ( )
1

ˆ ˆ2 log 1 log 1 2 df
n

i
AIC y p y p

=
 = − × + − − + × ∑ , where we substitute 

df  with the effective version, effdf , for penalized regression as suggested by 

Cessie and Houwelingen (1992).  

Table 3.2 shows the comparisons on these statistics, between the standard and 

ridge-penalized logistic regressions. Both AIC and MCE provide support that more 

precise predictions can be expected to obtain based on ridge regression. The MSE is 
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almost identical between the two models. Considering the extreme complexity of 

these models, the model fitting for the ridge-logistic model is significantly improved 

as suggested by much lower values associated with AIC and MCE. 

Table 3.2: Model fit statistics for unrestricted logistic and ridge logistic regressions 

 AIC MCE MSE 
Unrestricted Logistic 8997.8 .1434 .1044 

Ridge Logistic 8985.8 .1400 .1046 

3.3.4. Hierarchical ridge-logistic regression model 

A multinomial categorical variable of total k  levels can break down into 1k −  

nested binary variables. Then sequential ridge penalized logistic regression is 

employed to impute for each binary variable. For example, suppose Y  has three levels, 

which are sorted in a decreasing order by frequency and each takes a value: 1, 2 and 3. 

Let 1n , 2n  and 3n  be the cell sizes respectively. Y  is redefined using 1 2k − =  binary 

variables, ( )1 1Z I Y= =  and ( )2 2 | 2Z I Y Y= = ≥ . Ridge-logistic regression is used to 

model 1Z  and 2Z  separately. First, the mode on 1Z  is fit on all sample units of size 

( )1 2 3n n n+ +  to generate imputations for ˆ 1Y =  versus ˆ 2 or 3Y =  collectively. 

Second, we estimate the parameters of the model on 2Z  using the portion of sample 

defined by ( )2 3n n+ , and then create imputations for ˆ 2Y =  versus ˆ 3Y =  for those 

sample units who are predicted to take values 2 or 3 from the first step. For a 

categorical variable with a more general number of levels, say k  levels, the nested 

imputation approach then involves 1k −  steps with each subsequent step used to 

generate imputations for one level versus the collection of all later levels. Prior to 

imputation, we order all the k  levels decreasingly by the frequencies. The reason is to 

ensure the resulted nested binary variables are optimally balanced in such a manner 

that their means are mostly close to 0.5, thus precluding one potential contributor to 
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the ill-conditioning problem in logistic regressions due to the skewness of the 

response variable. The gains in predictions are expected to be more prominent for a 

later nested variable as the sample size can be very small and the numerical ill-

conditioning problems are more likely to occur (Clogg et al., 1991). 

3.4. Diagnostic tool for synthetic data inference 

3.4.1. Propensity score balance check 

As discussed in Raghunathan (2008), the success of this synthetic data approach 

depends on establishing the validity of the synthetic data generation process, and 

achieving inferential validity of analyzing particular synthetic datasets. Both model 

inadequacy and random errors may contribute to the statistical discrepancies between 

analyzing one synthetic data and the actual data. Even if created from a carefully 

tested model, one synthetic dataset may appear very different from the actual data 

solely due to random errors because there are several levels of randomizations during 

the whole process of synthetic data generation.  

One useful approach of evaluating the statistical similarities between a particular 

synthetic sample and the actual data is the propensity score analysis (Raghunathan, 

2008). We use this approach as a diagnostic tool to detect potential data imbalances 

and reject imbalanced synthetic data.  

The propensity score model (Rosenbaum and Rubin 1983) was originally 

developed to reduce bias when making casual inference about certain treatments 

based on observational data. The imbalance in the distributions of a set of covariates 

between treatment and control groups is summarized through a singular measure, the 

propensities for individuals of belonging to the treatment group. Bias reduction then is 

achieved by weighted analysis inversely proportional to the propensities.  
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To evaluate the dissimilarity between a synthetic data of size m  and actual data of 

size n , we construct a propensity score model to estimate the propensity for a unit to 

belong to the synthetic data. To achieve this goal, we append a synthetic data matrix, 

S , to the actual data, C , from which S  is generated. An indicator variable R  is 

created as ( )R I i S= ∈  if unit i  belongs to the synthetic data and 0R =  otherwise. 

We fit a ridge-penalized logistic model for R  on all synthesized variables. The 

predicted probabilities are then sorted and grouped into deciles (or quintile, if sample 

size is limited). If the two datasets are equivalent in the distribution of perturbed 

variables, the proportion of units belonging to the synthetic data within each decile is 

very close to m n . In this study, all synthetic data are of the same size as the actual 

data, therefore, 0.5m n = . Simple t-tests for the discrepancy between the observed 

proportion and the expected rate, i.e. 0.5, are conducted for each decile group. In 

addition, a chi-square test with 10 degrees of freedom (if deciles are used, otherwise 

the degrees of freedom equals the number of propensity groups) provides summary 

statistics for the overall balance of the synthetic data. One must be cautious when 

trying to draw conclusions based on these tests because of 1) overpowered tests due to 

large sample size and 2) violated independence conditions between the two datasets 

(Raghunathan, 2008). Despite these two limitations, the descriptive evaluation based 

on this diagnostic tool is still very informative. Empirical evidence in later sections 

show that proportions falling within the range of ( )0.4,0.6  in the propensity balance 

checking procedure are often associated with smaller information loss in the analytic 

estimates from substantive models.  

3.4.2. Information loss functions 

The extent of information loss in statistical inference when analyzing the synthetic 

data compared to the actual microdata is a very important criterion for evaluating a 
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statistical disclosure control method. Data utility (Willenborg and De Waal 2001), the 

accuracy of inferences obtained from publicly released data, can be evaluated by 

judging the closeness of the confidence intervals based inference using the release 

synthetic data with the confidence intervals obtained using the actual data.  

Our first measure is adopted from Karr et al. (2006). By approximating the 

posterior distribution of estimand Q  by normal distribution, the 95% confidence 

interval for the multiple synthetic data estimate Mq  is ( ), ,,
M Msyn q syn qL U . Let 

( )ˆ ˆ, ,,
act q act q

L U  be the corresponding interval for point estimate q̂  obtained using the 

actual data which also follows t distribution with ( )n p−  degrees of freedom where n  

and p  are sample size and the number of parameters fitted in one particular analysis 

model respectively, which are different from those defined in the imputation model in 

later sections. Let , Msyn qf  and ˆ,act qf  be the estimated posterior distributions of Q  

computed using synthetic and actual data respectively. So the probability overlap in 

the confidence intervals for Q  equals  

 
ˆ, ,

ˆ ˆ, ,
ˆ, ,

1
( )

2

syn p act pM

M
syn p act p

U U

Q act p syn p
L L

I f t dt f dz
 = +  ∫ ∫  [3.12]. 

QI  may take value [ ]0,0.95 . If there is no overlap, then 0QI =  and if the two interval 

overlap perfectly then 0.95QI = . Therefore, a large value for QI  implies better data 

utility in estimating this scalar estimand Q .  

We define the second measure as the relative overlap in the interval lengths. Let 

( ), ,,
over q over q

L U  be the overlap of the two intervals, then the relative overlap in the 

interval length is 

 ( ) ( )ˆ ˆ, , , ,Q over q over q act q act q
J U L U L= − −  [3.13]. 
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 QJ  can take any value between 0 and 1. Zero means that there is no overlap between 

the two intervals and one means the synthetic interval completely covers the actual 

interval. This measure is different from the analogue measure used by Karr et al. 

(2006) in that they took the average of the relative overlap in the interval lengths for 

actual data and for synthetic data. Our measure is more realistic as the interval from 

actual data is what is to be compared against and we want to evaluate what proportion 

of the actual interval length is overlapped with the synthetic interval without being 

contaminated by the length of the synthetic interval.   

A third measure is to evaluate whether point estimate Wq  falls within the actual 

confidence interval: 

 ( )ˆ ˆ, ,,Q W act q act qK I q L U = ∈    [3.14], 

where ( )I i  is an indicator function. 1QK =  if ˆ ˆ, ,act q M act qL q U≤ ≤  and 0QK =  

otherwise. This measure allows evaluation of the bias of the inference drawn based on 

synthetic data. 

We also compute the Z score. The Z score for a scalar statistics Q  is calculated by  

 ( ) ( )ˆ ˆ
Q syn act act act

Z q q se q= −  [3.15], 

which merely considers the closeness of the two point estimates. Small absolute Z 

value suggests low information loss.  

Lastly, we evaluate whether similar statistical hypothesis testing conclusions can 

be drawn using the synthetic and actual data at some significance level. The statistical 

validity is met if either of the following two conditions are satisfied. The first 

condition is satisfied if given a significant result based on actual data, a significant 

testing result in the same direction using synthetic data is achieved. The second 

condition is given a non-significant result based on actual data; a non-significant 
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result is achieved regardless of the directions. This measure allows one to summarize 

how sensitive the actual statistical conclusions are to the synthetic data.  

3.5. Data description 

In this section, the semi-parametric fully-synthetic algorithm described in earlier 

sections is applied to the HRS data. HRS is a longitudinal survey with a two-year 

interval starting in 1992. The data comes from a United States national multistage 

area probability sample of elder adults aged 51-61 as of 1992. This survey provides 

extensive information on physical and mental health, insurance, financial status, 

family support systems, labor market status and retirement planning. The microdata 

are publicly accessible and have been heavily used by researchers in health, public 

policy and social-economic areas. Thousands of papers or book chapters based on 

HRS data have been published (Institute for Social Research, 2008). Three articles are 

selected among those identified with a Medline search with keyword HRS. These 

articles encompass the main types of heavily used statistical models. Table 3.3 shows 

the citations and types of analytic models used in each article.  

Table 3.3: Analysis types and article citations of three articles using HRS data 

Citations Analysis Models 
Cited 
by* 

1 

Buckley, C. B., Angel, J. L. and Donahue, D. 
(2000). Nativity and Older Women’s Health: 
Constructed Reliance in the Health and Retirement 
Study, Journal of Women and Aging Vol.12, 21-37 

One sample t-test 
Two sample t-test 
Logistic-
Regression 

4 

2 

He, X. and Baker, D. W., (2004). Changes in 
Weight among a Nationally Representative Cohort 
of Adults Aged 51 to 61, 1992 to 2000, American 
Journal of Preventive education, Vol. 27(1), 8-15 

One sample t-test 
Two sample t-test 
Linear Regression 

4 

3 

Siegel, M. J., Bradley, E. H., Gallo, W. T. and Kasl, 
S. V. (2004). The Effect of Spousal Mental and 
Physical Health on Husbands’ and Wives ´ 
Depressive Symptoms, Among Older Adults: 
Longitudinal Evidence From the Health and 
Retirement Survey, Journal of Aging and Health 
Vol. 16(3), 398-425 

One sample t-test 
Two sample t-test 
Seemly Unrelated 
Regression 

11 

Note: * statistics dated March 2008 
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This empirical study is based on a subset of the public release data selected by and 

including all the units and variables used in these articles. The data comprise 98 

variables across four waves measured on 12,652 respondents. Due to panel attrition, 

there are some missing data due to wave unit nonresponse as shown in Table 3.4. 

Table 3.4: Sample size and realization of panel attrition 

Wave 1 Wave 2 Wave 3 Wave 5     Design/Common 
Variables 1992 1994 1996 2000     

HHID     

PN     

SECU, Stratum     

Sampling Weights  Note:  

Age   : Observed 

 

 Gender 

n=8896 

 

 

:  Missing data 
due to panel 
Attrition  

Race 

n=10964 

      

Hispanic 

n=11492 

       

School year 

n=12652 

           

The synthetic data procedure is applied on all 98 variables involved in the 

statistical analysis described in these articles. Five complete data are generated by 

imputing the item-missing data caused by either item nonresponse or wave unit 

nonresponses. Based on each complete data, ten fully-synthetic data are generated for 

public dissemination. The data values in the synthetic data that are originally missing 

due to panel attrition are reset to be missing to ensure the same amount of information 

are used in the actual data analysis as published and synthetic data analysis. The 

inferential models of interest are those statistical analyses conducted in these articles.  

Table 3.5 shows the descriptions of variables used in this study. CES-D, Center for 

Epidemiologic Studies Depression Scale, comprises eight items measuring depressive 

symptoms: felt depressed, felt everything she or he did was an effort, experienced 

restless sleep, could not get going, felt lonely, felt sad, enjoyed life and was happy. 

All eight items are dummy coded as one, if depressive symptom present and zero 
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otherwise. Health status is an index of self-reported presence of physician-diagnosed 

health conditions including high blood pressure, diabetes, cancer, chronic lung disease, 

heart problems, stroke and arthritis. ADLs are comprised of 17 items measuring self-

reported limitations on functional ability, including ability to run or jog a mile; walk 

several blocks; walk one block; walk across a room; get up from a chair after sitting 

for long periods; get in and out of bed without help; climb several flights of stairs 

without resting; climb one flight of stairs without resting; lift or carry weights more 

than 10lb; stoop, kneel or crunch; pick up a dime from a table; bathe or shower 

without help; reach or extend arms above shoulder level; pull or push large objects 

such as a living room chair; eat without help and dress without help. Items within 

each index are mostly correlated with each other as some concepts are nested. 

Furthermore, the reports for very severe conditions are usually associated with sparse 

distribution, such as less than 0.1% respondents report to difficult to eat without help. 
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Table 3.5: Description of variables used in the empirical simulation 

 Variables Units Range/Coding 

Age Years [23, 85] 

HH Income $ (0, 1378,750) 

HH Assets $ (-743,677, 8,096,385) 

Non-housing Assets $ (-733.871, 8,230,173) 

School Year year [0, 17] 

Height 92 cm (94, 211) 

Weight 92 kg (36, 181) 

Weight 96 kg (27, 177) 

C
o

n
ti

n
u

o
u

s 

Weight 2000 kg (31, 181) 

Gender 2 Men; Women 

Foreign born  2 Foreign born; Native born 

Neighbor chat 2 Chat w/t neighbor, Not chat 

Volunteer 2 Volunteer 100hrs plus, Less or no volunteer 

Attend church 2 Attend church 1+/month, Less or No attend 

Satisfy w/t family life 2 Good+Fair+Poor; Excel+Vgood 

Self Rated Health 94 2 Excel+VGood+Good, Fair+Poor 

Religious 2 Have religion, No religion 

Work for pay 92 2 Work for pay, Not work for pay 92 

Work for pay 94 2 Work for pay, Not work for pay 94 

No income 92 2 No income, Have Income 

Proxy Interview 92 2 Yes, No 

Proxy Interview 94 2 Yes, No 

Primary respondent 92 2 Primary Respondent, Secondary Respondent 

HS degree 2 HS/GED, less than HS/GED 

CES-D 92 2 8 binary variables 

CES-D 94 2 8 binary variables 

Health Status 92 2 7 binary variables 

Health Status 94 2 7 binary variables 

ADLs 92 2 17 binary variables 

B
in

ar
y

 

ADLs 94 2 17 binary variables 

Work involves labor 92 4 None, Some, Most and All of the time 

Work involves labor 94 4 None, Some, Most and All of the time 

Race 5 
White, African American, Mexico-Hispanic, 
Other-Hispanic and Other races 

Marriage status 4 
Never Married, Div/Separated, Widowed, 
and Married 

Smoking status 3 Never, Past smoker and Current smoker 

Alcohol usage 3 Abstainer, Moderate and Heavy 

Heavy housework 5 
Never, <0.25/wk,0.25-0.74/wk, 0.75-2/wk, 
and >=3/wk 

Light activity 92 5 
Never, <0.25/wk,0.25-0.74/wk, 0.75-2/wk, 
and >=3/wk 

Vigor activity 94 5 
Never, <0.25/wk,0.25-0.74/wk, 0.75-2/wk, 
and >=3/wk 

M
u

lt
in

o
m

ia
l 

Self Rated Health 92 5 Excellent, Very good, Good, Fair and Poor 
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3.6. Evaluations Inference from Synthetic Data 

In this section, we use the HRS data comprised of all variables previously 

identified to compare the properties of inferences for a variety of descriptive and 

analytic statistics from the multiply-imputed fully-synthetic data and the actual data.  

3.6.1. Generating synthetic data 

The generation of multiple synthetic data involves accomplishing two tasks. We 

first impute the item-missing data 5M =  times to complete the actual data and then 

for the second task create 10L =  fully-synthetic data based on each complete data. 

The multiple synthetic data produced from completing the second task are released for 

the public use. Both tasks are fulfilled in two steps in a similar fashion. The only 

difference is the amount of data that replaced by imputes. Item-missing data are 

imputed in the first task and values on all units are imputed in the second task. The 

specific steps for generating the synthetic data are as follows. We also show the 

modifications to these steps for completing the first task.   

The first step involves constructing synthetic population  

( ) ( )( ), , 1, 2,...,
m m

l lP Z Y m M= =  from a rectangular actual data ( )m
D  of size n , which is 

achieved by semi-parametric approach using Bayesian bootstrap (Rubin, 1981, 

Raghunathan et al, 2003). Specifically,  

a. Draw ( )1n −  uniform random numbers. Sort those numbers in ascending order. 

We label this ordered sequence as 0 1 2 10, , ,..., , 1n na aα α α −= = . 

b. Draw n  uniform random numbers 1 2, ,..., Nu u u . Select unit j  (row j ) if 

1j r ja u a− < ≤  where 1,2,...,r n= . The resulting n p×  matrix ( )m

lY  together 

with Z , is a synthetic population ( )m
P , where p  is the dimension of survey 
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variables to be imputed. Repeat a b−  M  times independently giving multiple 

synthetic samples. 

Raghunathan et al. (2001) shows comparable inferences can be obtained by 

analyzing these bootstrap synthetic samples and the actual data. However, imputations 

from bootstraps might still cause concern about confidentiality due to two reasons: (1) 

the released data still contains the actual values, and (2) this type of de-identification 

is reversible. Thus, further data perturbation based on imputation models is necessary. 

In the second step, the conditional density function for the th
k  variable 

( )
( )

( )
( )( )| , , 1, 2,...,

m m

k k
p Y Z Y k p

−
=  is estimated based on synthetic population ( )m

P . The 

impute, ( )
( )

,

m

i k
Y

∗
 is drawn from the posterior predictive distribution 

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( ) ( ), ,
| , , | , , , |

mm m m m

i k k i k k
p Y X Y P p Y X Y P p P dθ θ θ∗ ∗

− −
= ∫  for 1,2,...,i n= , 

which can be accomplished by drawing ( )mθ  from the posterior distribution of θ  

given ( )m
P , where θ  is the regression parameter. Then, we update the actual values of 

( ),i k
Y  by ( )

( )
,

m

i k
Y

∗
 to complete the imputation. We repeat step 2 in a cycling manner for all 

( )k
Y , each time conditional on updated predictors, and overwrite previously imputed 

values multiple iterations gives synthetic data ( ) ( )( )*
,

m m

l lD X Y= . We repeat the above 

procedure independently to create L  multiple synthetic data nested within a complete 

data. For each complete data, repeat the above synthetic steps to account for synthesis 

uncertainty. 

Different conditional models are used to draw imputations for various variable 

types. Computationally, binary and multinomial data are imputed identically.     

a. If ( )k
Y  is continuous, 

I. The estimated conditional distribution based on ( )m
P  is  
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( ) ( )
( ) ( ) ( ) ( ) ( )1

,, ,
| , , ~ ( ) ( )

p
m m m m m

i x i j i ji k i k

j k

Y X Y P a X Yψ φ φ ∗∗ ∗ −

−
≠

 
+ + 

 
∑ , 

 where 1θ −  is achieved by linear interpolation on θ . 

II. Then, the posterior distribution of parameter θ  is given by 

( )
( ) ( ) ( ) ( )

,,
| , ~ ( ) ( ) ,1

p
m m m m

i x i j i ji k

j k

X Y N a X Yθ φ φ ∗∗

−
≠

  
+ +  

   
∑ . 

III. Draw a random value, ( )mθ  from its posterior distribution in II. It can be 

accomplished by drawing a random residual r  from ( )0,1N  or from r̂� , 

observed residual vector obtained from I, then  

( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

,

1

,

( ) ( )

( ) ( )

p
m m m m m

x i j i j

j k

p
m m m m m

x i j i jk
j k

a X Y r

Y a X Y r

θ φ φ

ψ φ φ

∗

≠

∗ ∗−

≠

 
= + + + 
 

 
= + + + 

 

∑

∑
. 

b. If ( )k
Y  is binary,  

I. The estimated conditional distribution is  

                
( ) ( )

( )

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }
, ,

| , ,

~ Bernoulli exp 1 exp

m

ii k i k

m T m m m T m m

i i

Y X Y P

X X
λ λ λ λα β α β

∗ ∗

−

 + + +
 

. 

II. Then, the posterior distribution of parameter θ  is  

( )
( ) ( ),

| , , ~ Uniform 0,1
m

i i k
X Y Pθ ∗

−
. 

III. Draw a random value, ( )mθ  from its posterior distribution in II, then  

    ( )
( )

( )
( ) ( )( )*l l m

k i k
Y I p θ∗

= >= , where ( )
( )

( ) ( ) ( )( )
( ) ( ) ( )( )

*
exp

1 exp

l T l l

il

i k l T l l

i

X
p

X

λ λ

λ λ

α β

α β

+
=
 + +
 

. 

To impute for item-missing data, let ( ),
1

i k
M =  if unit i  for the  th

k  variable is 

missing and hence need to be replaced with imputed value. In addition, let ( ),
0

i k
M =  
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if it is observed and left unchanged. This n K×  missing indictor matrix of 

( ) ( )( )1
,...,

K
M M M=  is constant for creating all complete data ( ) ,  1, 2,...,

m
D m M= . 

Step 1 is unchanged as in full synthesis task. We replace Step 2 with drawing values 

( )
( )

,

m

i k
Y

∗
 for only those records with ( ),

1
i k

M =  from the estimated posterior predictive 

distribution with this general form: 

( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )( ), , , ,
| , 1, , | , 1, , , |

m m m m m

i k i k k i k i k k
p Y X M Y P p Y X M Y P p P dθ θ θ∗ ∗

− −
= = =∫ . 

The rest of procedures in Step 2 are unchanged, which include 1) sequentially 

imputing for missing values for each variable multiple rounds to produce a complete 

data ( )m
D , and 2) repeating Step 1 and this modified Step 2 M  times independently 

to produce multiple complete data. 

3.6.2. Results 

We first evaluate the similarity of the synthetic data as a whole with the actual data 

based on the propensity scoring method, and then we examine the information loss 

due to the disclosure control procedures on a series of pre-defined statistics. 

3.6.2.1. Propensity scoring balance 

We create a total of 50 synthetic samples, 10 synthetic samples based on each of 

five imputed data. As explained in Section 3.4.1, we append the synthetic data to the 

imputed actual data and estimate the propensity probability for each observation to 

belong to the actual data. Because the synthetic data size and the actual data size are 

the same, the estimated probabilities are expected to equal or be close to 0.5 if the 

synthetic data is similar to the actual data in terms of distributions of covariates 

contained in the propensity-scoring model aggregately. Figure 3.3 shows the side-by-

side histograms of estimated propensity probabilities for observations in the synthetic 

and the actual data sets across all 50 synthetic data. The distributions for the two sets 
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of probabilities are almost indistinguishable with the mass largely concentrated 

around their peaks at 0.5. Therefore, the synthetic data is very comparable to the 

actual data as a whole with regard to the distribution of estimated propensities. 

 

Figure 3.3: Overlap of estimated propensity probabilities for observations in the 
synthetic data and the actual data 

We further group the observations into deciles according to their order in the 

estimated propensities. Table 3.6 shows the average estimated proportions of 

observations that belong to the actual data within each decile, and the chi-square 

statistics with degrees of freedom of 10 for all 50 synthetic data. Although both the t-

tests and chi-square test appear significant because of overpowering by a large sample 

size, the mean proportions are very close to 0.5. 

Table 3.6: Propensity score balance statistics across all 50 
synthetic data 

 Mean Min. Max. 

Estimated Prob. p̂  0.50 0.39 0.62 

Chi-square Statistics 462.10 310.06 588.13 

Sample Size 25304   

We also test the similarities in the distributions of all 98 synthesized covariates 

within each propensity deciles (or propensity strata). For continuous variables, we test 

the differences in means between two groups: synthetic data group and actual data 
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group using one-way ANOVA tests. Non-significant F test results suggest that there is 

no difference between the two data groups with regards to the distributions of the 

variable of interest. For both binary and categorical variables, we test whether the 

proportions of observations with certain variable attributes in the synthetic data is 

about the same as the proportion in the actual data across all propensity strata using 

Cochran-Mantel-Haenszel Chi-Squared test. Table 3.7 summarizes the test statistics 

for all 98 variables by variable types. All test values are very small for all three types 

of variables. The corresponding p values for such tests are very large on average. 

These non-significant test results indicate that the synthetic data and the actual data 

are very similar with regard to the distributions of the synthesized variables. The 

balancing test statistics for each variable are provided in Appendix 3.A. 

Table 3.7: Distributional homogeneity test for all 98 synthesized variables 
across all 50 synthetic data sets 

Test Values P-Values 
Variable Type 

No. of 
Variables Mean Min. Max. Mean Min. Max. 

Binary†  80 0.255 0.000 12.347 0.784 0.000 1.000 

Categorical† 9 0.400 0.000 3.320 0.953 0.506 1.000 

Continuous* 9 4.723 0.000 120.138 0.379 0.000 0.999 

Note:* For continuous variables, the test values are F-values with numerator 
degrees of freedom of 1 and denominator degrees of freedom of 25293; 

           †
 For both binary and categorical variables, the test values are Chi-square 
test values. 

3.6.2.2. Information loss in statistics 

These synthetic data are analyzed as described in the published articles as if they 

were the actual data. A total of 572 statistics, which include 203 means, 197 mean 

differences and 172 regression coefficients, are estimated from the synthetic data and 

the actual data. The variance estimates are almost positive. Only 3 out of all 572 

variance estimates are negative. For these variance estimates, we use adjusted 

variance estimators as shown in Equation 3.7. They are the overall sample means for 

CES-D 92, ADLs 92 and ADLs 94. All three statistics are computed as the sums of 
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several highly positively correlated binary indictors, thus we speculate that sampling 

variance for these composite variables is large. Therefore, within-synthesis variance 

may dominate the total variance, which leads to negative variance estimates. Only two 

estimated degrees of freedom are less than 1 4M − =  and are set to be 4 following 

Equation 3.8. 

Figure 3.4 shows the scatter plots of the point estimates obtained using the 

synthetic data and the actual data. The fact that the points are almost clustered around 

the 45-degree line provides evidence that synthetic data yield similar point estimates 

as those from the actual data.  

 

Figure 3.4: Scatter plots of point estimates in means, subgroup mean 
differences and regression coefficients from synthetic and actual data 

We also fit a simple linear regression of the synthetic estimates on the actual data 

estimates. If the two sets of estimates are similar, we expect an intercept of 0 and a 

slope of 1. The estimated intercept and slope of this regression with 570 degrees of 

freedom are 0.033 0.56− ±  and 0.996 0.004±  respectively. Neither estimate is 

significantly different from its respective expected value according to results from the 

Wald tests.  
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We compare the point and interval estimates for all statistics from the actual and 

synthetic data as shown in Table 3.8. We first examine the loss of synthetic data 

utility with respect to the estimation of means/proportions. Then we discuss such 

information loss in statistics that involve sub domain comparisons and regression 

models. 

Table 3.8: Information loss for various descriptive and analytic statistics 

  Actual Synthetic 

  Est. SE Est. SE 
QI  QJ  QK  Z Test 

Article 1: Buckley et al., 2000 

Means          

 Binary 0.31 0.02 0.29 0.02 0.67 0.64 0.96 -0.39 56/56 

 Continuous 55.68 0.13 55.39 0.35 0.67 0.95 1.00 -3.51 7/7 

Mean Differences        

 Binary 0.10 0.03 0.09 0.03 0.69 0.65 1.00 0.03 19/24 

 Continuous 0.07 0.22 0.15 0.20 0.84 0.74 1.00 0.43 3/3 

Logistic Coefs. -0.16 0.12 -0.11 0.08 0.65 0.53 1.00 0.31 37/52 

Article 2: He and Baker, 2004 

Means          

 Binary 0.23 0.01 0.23 0.01 0.68 0.69 0.93 0.55 85/86 

 Continuous 12.48 0.31 12.21 0.37 0.69 0.76 0.95 -0.70 27/38 

Mean Differences          

 Binary 0.24 0.07 0.23 0.10 0.57 0.59 0.80 -0.38 115/133 

 Continuous 26.12 0.57 25.84 0.84 0.47 0.53 0.78 -0.72 27/37 

Linear Coefs. -0.06 0.35 0.00 0.35 0.79 0.78 1.00 0.11 42/54 

Article 3: Siegel et al., 2004 

Means          

 Binary 0.62 0.01 0.60 0.01 0.37 0.37 1.00 -1.44 6/6 

 Continuous 15.71 0.28 14.82 0.23 0.57 0.54 0.80 -2.01 10/10 

SUR Coefs. 0.08 0.01 0.07 0.02 0.73 0.82 1.00 -0.52 54/66 

TOTAL         488/572 

On average, the point estimates for estimating the means or proportions are very 

similar between the actual and synthetic data across all three articles. The standard 

errors obtained from synthetic estimates are larger than those from the actual data. 

The confidence interval overlap measures, QI  and QJ , yield almost identical results. 

For article 1 and 2, the average probability for both QI  and QJ  are nearly 0.70. For 

article 3, these probabilities are lower with 0.37 for proportions and 0.57 for means. 
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From the perspective of QK , on the other hand, the agreement in the confidence 

intervals is higher with almost perfect coverage across all articles. The reason is that 

QK  is defined as whether the actual point estimates are covered by the synthetic data 

intervals and the information about the synthetic data variance is ignored, thus it is a 

lower overlap criterion than QI  and QJ . Another “similarity” measure is the Z score, 

which estimates the biasness of the synthetic data estimates. The average Z scores are 

all close to zero except for the continuous variables in article 1, which is -3.51. A 

close examination of these statistics with larger Z scores indicates that they are mostly 

statistics about small domains, such as the mean age for individuals who are born 

abroad and self-reported to have poor health. Therefore, the imputations may be less 

stable because of small sample sizes, thus leading to larger discrepancies in point 

estimates relative to the variance. The last column in Table 3.8 is the number of 

hypothesis tests and the number of tests about which the synthetic and the actual data 

yield the same inference conclusions. For means or proportions, the null hypotheses 

for these t-tests are whether the means are equal to zero. Almost all such t-tests yield 

consistent conclusions.  

For the estimation of the mean differences between domains, similar findings are 

found as in means or proportions. On average, the overlap probabilities range from 

around 60% to 80% according to QI  and QJ . Z scores are all very close to zero, 

which suggests the synthetic point estimates are all close to the center of the actual 

confidence intervals. In terms of the consistency in hypothesis testing, the tests 

conclusions on domain differences are less consistent, in which around 20% synthetic 

data inferences conclude differently from the actual data inferences. 

Three types of regression models are fitted in each article. The point estimates for 

the synthetic data and the actual data are very close for all three types of regression 
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coefficients. Synthetic data analyses are less efficient than the actual data analysis for 

both linear and SUR regressions. However, for logistic regression, the synthetic 

standard errors (0.08) are smaller than their actual data counterparts (0.12). One 

possible reason is that some of these substantive logistic models are included in the 

imputation model, thus the relationships among variables may be strengthened due to 

the imputation procedures. The Z scores are almost all zero, suggesting nearly 

unbiased point estimates for all coefficients are obtained from the synthetic data. 

However, only 133 pairs of coefficients tests, out of 172, yield consistent inference 

conclusions. This may be partly due to the large sample size, which gives great 

statistical power in detecting small differences. Given the extreme complex data 

structure and large number of synthetic variables, the achieved levels of similarity are 

very satisfactory. 

Figure 3.5-7 shows the side-by-side confidence intervals of the estimated 

regression coefficients from the synthetic and actual data for each article. The two sets 

of confidence intervals are very close for all three articles. Generally, the synthetic 

data intervals are wider than the actual data intervals, except for some logistic 

regression coefficients in Buckley et al. (2000), where the synthetic data inference is 

more efficient. This may be due to the fact that some of the substantive models are 

originally poorly fitted and improved because of the synthesis procedures. Therefore, 

the synthetic data estimates of the relationship among variables are more efficient as 

more information is included. 
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Figure 3.5: Side-by-side confidence interval plots for the logistic regression coefficients estimates in Buckley et al, 2000 

9
7
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Figure 3.6: Side-by-side confidence interval plots for the Seemly-Unrelated regression coefficients estimates in Siegel et al, 2004 

9
8
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Figure 3.7: Side-by-side confidence interval plots for the linear regression coefficients estimates in He et al, 2004 

9
9
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3.7. Conclusion and discussion 

In this chapter, we develop and evaluate a multiple-imputation approach of creating 

fully-synthetic datasets to be disseminated in place of the actual data to avoid 

inadvertently disclosing information about survey respondents. We derive a new 

combining rule for making inferences about a scalar estimand using multiple synthetic 

data when item-missing data are imputed prior to the synthetic data generation. We 

validate this new rule via a simulation study. 

We investigate the use of a series of semi-parametric regression models for generating 

imputations for different types of variables under the framework of sequential regressions. 

We tested this approach using a national longitudinal complex survey sample, which is 

comprised of a large number of variables of different types and the distributions of most 

variables are irregular. We also showed the successful use of the propensity score balance 

check as a diagnostic tool for assessing the similarity between a particular synthetic data 

and the actual data, and as selection criteria to select “best” synthetic data. Based on 

several information loss functions, the descriptive and analytic statistics estimated from 

the synthetic data are very similar to those from the actual data. 

As all data values contained in any data record are to be modified, it no longer makes 

sense to refer the resulted synthetic data record as it pertains to any individual. This lack 

of correspondence between data values and individuals can be used by agencies to deter 

intruders from exploiting the published data.  

The statistical modeling challenges presented in the HRS dataset, such as 

nonnormality, sparseness, multi-linearity, correlation due to longitudinal data, complex 

sample designs etc., are commonly shared with other large-scale complex national 
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surveys. Therefore, it is very promising to evaluate the techniques on this data set to 

speculate about its value for other surveys. 

This research provides solid evidence for filling the gap between the fully-synthetic 

data approach being considered as only conceptually attractive to highly practically 

feasible. This approach is particularly suitable and practicable for surveys, which collect 

information on a small to modest number of variables, such as the short-form United 

States Decennial Census with only about only ten variables, because of reduced modeling 

complexity. 
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Appendix 3.A. Distributional homogeneity test for all 98 synthesized variables 

  Test Value  P Value 

Type Variable Mean Min. Max DF Mean Min. Max 

Age 17.886 0.001 120.138 1 0.162 0.000 0.980 

Height 92 9.857 0.006 87.207 1 0.203 0.000 0.936 

Non-housing assets 1.009 0.000 6.238 1 0.501 0.013 0.990 

School years 5.922 0.004 32.453 1 0.208 0.000 0.951 

HH assets 0.926 0.000 5.699 1 0.555 0.017 0.999 

Non zero HH income 2.238 0.000 14.174 1 0.394 0.000 0.999 

Weight 2000 1.683 0.002 11.963 1 0.466 0.001 0.968 

Weight 92 1.566 0.001 13.929 1 0.469 0.000 0.981 

C
o

n
ti

n
u

o
u

s*
 

Weight 96 1.420 0.002 11.664 1 0.455 0.001 0.968 

Church Asked 0.036 0.000 0.206 1 0.890 0.650 0.997 

HS degree 0.751 0.000 9.806 1 0.596 0.002 0.994 

Family 0.023 0.000 0.225 1 0.913 0.635 0.996 

Foreign born 0.073 0.000 0.439 1 0.836 0.507 0.999 

Gender 0.066 0.000 0.386 1 0.846 0.535 0.997 

Health rating 94 0.252 0.000 2.448 1 0.705 0.118 0.991 

Zero income 2.026 0.000 9.535 1 0.427 0.002 0.998 

Marriage status 0.639 0.006 3.663 3 0.882 0.300 1.000 

Neighbor chat 0.015 0.000 0.079 1 0.926 0.779 0.999 

Primary respondent 1.489 0.006 4.716 1 0.346 0.030 0.941 

Proxy interview 92 0.140 0.000 0.863 1 0.760 0.353 0.989 

Proxy interview 94 0.496 0.000 2.896 1 0.571 0.089 0.987 

Race 1.682 0.166 7.437 4 0.798 0.115 0.997 

Run or jog 92 0.019 0.000 0.142 1 0.917 0.706 0.998 

Walk blocks 92 0.115 0.000 1.094 1 0.794 0.296 0.999 

Walk one block 92 0.336 0.000 2.673 1 0.664 0.102 0.992 

Walk across room 92 0.170 0.000 1.916 1 0.776 0.166 0.996 

Sit 2 hours 92 0.026 0.000 0.283 1 0.907 0.595 0.999 

Get up chair 92 0.043 0.000 0.289 1 0.875 0.591 1.000 

In and out bed 92 0.135 0.000 1.078 1 0.790 0.299 0.994 

Climb flights 92 0.060 0.000 0.345 1 0.849 0.557 1.000 

Climb one flight 92 0.127 0.000 1.475 1 0.795 0.225 0.995 

Carry 10 lb more 92 0.054 0.000 0.491 1 0.861 0.484 0.992 

Stoop, kneel 92 0.046 0.000 0.435 1 0.877 0.510 0.999 

B
in

ar
y
†
 

Dime 92 0.093 0.000 0.559 1 0.814 0.455 0.999 
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Bathe 92 0.231 0.000 1.920 1 0.736 0.166 0.997 

Shoulder  92 0.126 0.000 1.608 1 0.793 0.205 0.999 

Large object  92 0.079 0.000 0.766 1 0.840 0.382 0.997 

Eat 92 1.400 0.000 5.897 1 0.385 0.015 0.998 

Dress 92 0.425 0.000 1.928 1 0.596 0.165 0.986 

High blood pressure 92 0.042 0.000 0.300 1 0.874 0.584 1.000 

Diabetes 92 0.043 0.000 0.382 1 0.879 0.536 0.998 

Cancer 92 0.022 0.000 0.192 1 0.914 0.661 0.998 

Lung 92 0.067 0.000 0.834 1 0.847 0.361 0.999 

Heart 92 0.031 0.000 0.386 1 0.901 0.535 1.000 

Stroke 92 0.232 0.000 1.529 1 0.725 0.216 0.999 

Arthritis 92 0.028 0.000 0.146 1 0.902 0.702 0.998 

Depressed 92 0.128 0.000 0.769 1 0.784 0.381 0.999 

Effort 92 0.102 0.000 0.653 1 0.805 0.419 0.999 

Restless sleep 92 0.046 0.000 0.388 1 0.866 0.533 0.997 

Happy 92 0.058 0.000 0.864 1 0.871 0.353 0.999 

Lonely 92 0.104 0.000 1.217 1 0.818 0.270 0.997 

Enjoy life 92 0.051 0.000 0.277 1 0.867 0.599 1.000 

Sad 92 0.119 0.000 0.631 1 0.786 0.427 0.997 

Not going 92 0.067 0.000 0.576 1 0.845 0.448 0.999 

Volunteer 0.047 0.000 0.276 1 0.865 0.600 0.999 

Run or jog 94 0.082 0.000 0.391 1 0.813 0.532 0.996 

Walk blocks 94 0.089 0.000 0.753 1 0.827 0.386 1.000 

Walk one block 94 0.187 0.000 1.083 1 0.740 0.298 1.000 

Walk across room 94 2.498 0.000 12.347 1 0.348 0.000 0.998 

Sit 2 hours 94 0.033 0.000 0.246 1 0.892 0.620 0.999 

Get up chair 94 0.031 0.000 0.289 1 0.903 0.591 0.995 

In and out bed 94 0.576 0.001 4.830 1 0.582 0.028 0.980 

Climb flights 94 0.076 0.000 1.180 1 0.839 0.277 0.998 

Climb one flight 94 0.148 0.000 1.258 1 0.779 0.262 0.992 

Carry 20 lb more 94 0.106 0.000 0.829 1 0.799 0.363 0.997 

Stoop, kneel 94 0.057 0.000 0.605 1 0.866 0.437 0.999 

Dime 94 0.079 0.000 0.706 1 0.827 0.401 0.996 

Bathe 94 0.225 0.000 2.005 1 0.745 0.157 1.000 

Shoulder 94 0.087 0.000 0.772 1 0.832 0.380 0.998 

Large objects 94 0.085 0.000 0.814 1 0.835 0.367 1.000 

B
in

ar
y
†
 

Eat 94 0.633 0.001 3.748 1 0.586 0.053 0.980 
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Dress 94 0.167 0.000 1.037 1 0.764 0.309 0.997 

High blood pressure 94 0.046 0.000 0.503 1 0.883 0.478 0.998 

Diabetes 94 0.143 0.000 0.997 1 0.772 0.318 0.995 

Cancer 94 if cancer 92 0.198 0.000 1.189 1 0.745 0.276 0.994 

Lung 94 0.147 0.000 1.423 1 0.794 0.233 1.000 

Heart 94 if heart 92 0.122 0.000 0.937 1 0.787 0.333 0.990 

Stroke 94 0.799 0.002 3.475 1 0.509 0.062 0.967 

Arthritis 94 0.011 0.000 0.093 1 0.943 0.761 1.000 

Depressed 94 0.187 0.000 1.424 1 0.753 0.233 0.995 

Effort 94 0.143 0.000 2.220 1 0.810 0.136 0.998 

Restless sleep 94 0.050 0.000 0.496 1 0.884 0.481 1.000 

Not going 94 0.096 0.000 1.323 1 0.831 0.250 0.999 

Lonely 94 0.086 0.000 0.717 1 0.843 0.397 0.999 

Sad 94 0.154 0.000 1.160 1 0.764 0.282 0.998 

Enjoy life 94 0.153 0.000 1.443 1 0.804 0.230 0.999 

Happy 94 0.099 0.000 1.719 1 0.848 0.190 0.999 

Work for pay 92 0.055 0.000 0.345 1 0.852 0.557 0.999 

B
in

ar
y
†
 

Work for pay 94 0.388 0.000 2.062 1 0.622 0.151 0.998 

Alcohol usage 0.128 0.001 0.698 2 0.940 0.705 1.000 

Church 0.077 0.001 0.314 2 0.963 0.855 1.000 

Heavy house work 0.616 0.020 2.098 4 0.945 0.718 1.000 

Health rating 92 0.762 0.036 2.993 4 0.928 0.559 1.000 

Light activity 92 0.174 0.011 0.979 4 0.994 0.913 1.000 

Smoke status 0.075 0.000 0.603 2 0.964 0.740 1.000 

Vigor activity 92 0.250 0.015 1.242 4 0.988 0.871 1.000 

Work involves labor 92 0.474 0.005 1.972 4 0.968 0.741 1.000 

C
at

eg
o

ri
ca

l†
 

Work involves labor 94 1.042 0.043 3.320 4 0.887 0.506 1.000 

Note: * For continuous variables, the test values are F-values with numerator degrees of 
freedom shown in the column of DF. The denominator degrees of freedom all 
equal 25293; 

 †
 For both binary and categorical variables, the test values are Chi-square values. 

†
 For both binary and categorical variables, the test values are Chi-square values.
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CHAPTER IV 

 

 

SYNTHETIC DATA FOR SMALL AREA ESTIMATION 
 

 

4.1. Introduction 

The need for detailed statistics on small geographical areas is constantly increasing. 

Such information is an indispensable tool in policy and decision-making at all levels of 

government and business. For example, the American Community Survey (ACS) is a key 

part of the 2010 Decennial Census Program and is designed to replace the long form 

sample used in past censuses to produce timely population estimates on demographic, 

social, housing and economic characteristics for a broad spectrum of geographic areas in 

the United States (2006). However, releasing small geographic details, for instance, for 

counties, regions, or even small areas, may increase the risk of identification of the ACS 

respondents when such geographic information is combined with some distinct personal-

level characteristics. This issue is even more critical when there is good background 

knowledge of particular areas.  

Current disclosure avoidance practices involve suppressing geographical details or 

making the data available only through data enclaves or Research Data Centers (RDC). 

For example, the Department of Energy precludes geographic identifiers for areas below 

the Census Division level (The U.S. Department of Energy, 2004). The Census Bureau 

and the National Center for Health Statistics release information for only areas with more 
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than 100,000 residents (Census Bureau, 2007). As an alternative, the researchers are 

forced to use one or more research data centers and have to go through several hurdles to 

obtain permission to perform analyses. In addition, computer software environments in 

these RDCs may not permit implementing user defined specialized software for advanced 

analysis. 

The key research question of interest, therefore, is how to release more geographical 

details without increasing the risk of disclosure. This chapter, built on a basic method 

described in Rubin (1993), creates and releases multiple fully-synthetic data sets with 

geographical details, and hence, permits small area estimation. Under this proposed 

methodology, no real data on the survey attributes are disseminated, thus, it offers full 

protection against disclosure. The data can be analyzed using the statistical package of a 

user’s choice. 

The general idea is to treat the unobserved part of the population as missing data, 

which includes all non-sampled individuals within sampled areas and all individuals 

within non-sampled geographic areas. The unobserved portion of the population is 

multiply imputed to create synthetic population datasets. A simple random sample (SRS) 

for each area is drawn from each synthetic population. The collection of SRS samples 

then comprises the public use data file, which contains statistical information on not only 

sampled areas but also non-sampled areas. 

The fully-synthetic sample size does not have to be the same as the actual data. In fact, 

we can increase the sample size to the extent of allowing direct estimates of small areas 

statistics. Small area analyses then are simplified, which otherwise usually requires fit 

complex random effect models. For state-level statistics, each synthetic data set is 
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analyzed as if it were the actual data. Valid inferences are obtained by combining the 

point estimates and the associated variances from each synthetic sample using the method 

described by Raghunathan, Reiter and Rubin (2003). 

The proposed method developed in Section 4.2 is evaluated via two simulation studies 

in Section 4.3. In Section 4.4, this method is applied to the microdata from the 1880 

Census. We evaluate whether such synthetic data sets yield valid inferences for statistics 

at subnational and state-levels. Finally, in Section 4.5, we provide conclusions with 

discussions. 

4.2. Methods 

4.2.1. Overview 

Suppose that a population of size N  consists of C  small geographical areas for which 

we desire estimates, and , 1, 2,...,
i

B i C=  are the population area sizes. The survey data of 

size n  consists of data from c  areas drawn using certain sample design. Let 

, 1,2,...,
i

b i c=  be the sample size for the sampled area i , and 
1

c

ii
b n

=
=∑ . Let 

, 1,2,..., ; 1,2,...,
ij i

y i c j b= =  be a survey variable of interest (possibly a vector, but 

consider a scalar case for simplicity, for now). Let , 1, 2,..., ; 1, 2,...,
ij i

i C j Bπ = =  be the 

inclusion probability for subject j  in area i . Let , 1,2,..., ; 1, 2,...,
ij i

z i C j B= =  be a vector 

of subject specific auxiliary information available for all population subjects.  

Conceptually, we propose to create a synthetic population 

{ }* , 1, 2,..., ; 1,2,...,
syn ij i

p y i C j B= = = , from which we select a synthetic sample 

{ }* *, 1,2,..., ; 1,2,...,
syn ij i

d y i C j b= = =  by probability proportional to size (PPS) design. In 

specific, we draw *

i
b  units from each of C  areas in 

syn
p . The area sample size *

i
b  equals 
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i
f B× , for some fixed value of f . We repeat this procedure independently M  times and 

create multiple synthetic data sets { }, 1,...,l

syn syn
D d l M= = .  

The following general three-stage model, for example, could be used to create synthetic 

data sets. In the first-stage sampling model, the distribution of 
ij

y  (discrete or continuous) 

is assumed as ( )~ , , 1,2,..., ;  1, 2,...,
ij ij i

y f i C j bθ ψ = = , where the density function ( )f i  is 

parameterized with individual specific mean ijθ  and scale parameter ψ . Then ijθ  is 

modeled using T
ij ij ijz vθ β= +  in the second-stage, where ijz  are known auxiliary vectors 

of size p  for individual j  in area i , β  is the unknown regression coefficients also of size 

p , and ijv  is the scalar error. It is assumed β  is random and follows a normal distribution. 

We also assume that ijv  is distributed normally with mean zero and variance 2
vσ , i.e. 

( )2~ 0,ij vv N σ . We are interested to obtain the joint posterior distribution of all unknown 

parameters ( )2, , vβ ψ σ  under a fully Bayesian framework, from which we generate 

predictions for 
ij

y  within a synthetic sample. We assume mutually independent prior 

distributions for the model parameters ( )2, , vβ ψ σ . 

Given the model assumptions, we can use Markov chain Monte Carlo (MCMC) 

methods such as Gibbs sampling or Metropolitan-Hasting approach to simulate the joint 

posterior distribution of the model parameters. M  synthetic data sets are drawn 

independently from the simulated posterior predictive distribution. Synthetic data 

inference is then obtained based on the method presented in Section 4.2.2. To illustrate 

the basic idea we present two simulation studies and one empirical example. The first 

study simulates the situation when the sample is drawn by simple random sampling from 
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a scalar normal population. The second study extends this scalar model to a mixed-type 

bivariate model comprised of one binary and one normal scalar variable. The last study 

presents a real data solution to synthesize values on variables of three different types: 

scalar, binary and semicontinuous. The synthesis models for these studies are describled 

in Section 4.2.3, 4.2.4 and 4.2.5 respectively. 

4.2.2. Analysis of synthetic data sets 

Suppose the statistic of interest is a scalar estimand Q , which may be a function of the 

population. Let 
l

q  and lv  be the point estimate and associated variance estimate of Q  

based on l

synd , the thl  synthetic data generated from the actual survey data. Then Q  can 

be estimated by q  with variance T , 

1

1

1

(1 )

M

ll

T M B v

q M q

−

−

=

= + −

= ∑  [3.16], 

where ( ) ( )
1 2

1
1

M

ll
B M q q

−

=
= − −∑  and 1

1

M

ll
v M v

−

=
= ∑ . 

One disadvantage of this variance estimator is that it may be negative, although 

negative values generally can be avoided by making M  and/or n  large. To 

accommodate this possibility, we use the adjusted variance estimator  

( ) ( )* 0 0T I T T I T v= > × + ≤ ×  [3.17], 

where ( )I i  is the indicator function. When M  is small or modest, inferences for scalar 

Q  can be obtained based on a t-distribution with 1M −  degrees of freedom, thus, a 95% 

synthetic confidence interval for Q  is approximated by *

0.975, 1df Mq t T= −∓ . For large M , 

the inference can be made based on a normal distribution (Raghunathan, et al. 2003).  
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For inferences on state-level statistics, each synthetic data set is analyzed as if it was 

the actual data set as in multiple imputation inference (Rubin, 1987) or fully-synthetic 

data inference (Raghunathan et al, 2003). 

However, for inferences on small area statistics, the synthetic data are analyzed 

differently from the actual data. For example, suppose an analyst seeks inferences about 

the county-level means on a scalar variable Y , , 1, 2,...,
i

i Cθ = , where 
i

θ  is the 

population mean for county i , and C  is the total number of counties. Synthetic estimate 

for 
i

θ  from l

synd  is based on the direct estimator *ˆl l

i i
yθ =  with variance ( )ˆˆvar l

i
θ , where 

( )
*1

* * *

1

ibl l

i i ijj
y b y

−

=
= ∑  and ( ) ( ) ( )

*1 2
* * * *

1

ˆˆvar 1
ibl l l

i i i ij ij
b b y yθ

−

=
 = − −  ∑ . The synthetic data 

inference on 
i

θ  is obtained by combining ( )( ){ }ˆ ˆˆ, var , 1,...,l l

i i
l Mθ θ =  using the rule 

presented earlier in this section. 

In contrast, the point and interval estimates of 
i

θ  from the actual data are usually 

based on a small area model. One possible such model for a scalar variable can be in the 

following form: 

( )

( )

( )

2

2

2 2

1. Sampling model: ~ , , 1,..., ;  1,...,

2. Linking model: ~ ,

3. Independent diffuse priors on , ,  

ij i e i

i v

v e

y N i C j b

N

θ σ

θ µ σ

µ σ σ

= =

               [3.18]. 

Then the actual data inference on 
i

θ  can be obtained by a normal distribution with mean 

and variance approximated by the posterior mean and posterior variance respectively. 

4.2.3. Model for a scalar variable 

Under this setup, the general sampling and linking models presented in Section 4.2.1 

reduce to  
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( )

( )

2

2

Stage 1. ,  0,

Stage 2. , 0,

ij i ij ij e

i i i v

y e e N

v v N

θ σ

θ µ σ

= +

= +

∼

∼

                                     [3.19], 

where a constant variance, 2

v
σ , is assumed across areas. We assume a flat prior for µ , 

i.e. ( ) 1π µ ∝ , and vague inverse gammar distributions for 2

e
σ  and 2

v
σ . 

4.2.4. Bivariate model for a scalar and a binary variables 

For a bivariate situation with one scalar variable and one binary variable, the general 

sampling and linking models can be reduced as below.  

( )

( )

( ) ( )

2

0 1

0 1

Stage 1. Sampling Model

    ~ , 1,2,..., , 1,2,...,

    | ~ ,

Stage 2. LinkingModel

    logit , , ~ ,

ij i i

ij ij i i ij e

i i i

x Bernoulli i C j b

y x N x

MVN

θ

β β σ

θ β β µ

= =

+

  ∑ 

                               [3.20], 

where 
ij

x  is the value of the binary variable for individual j  in area i , and 
ij

y  is the 

corresponding value of the scalar variable. µ  is a 3 1×  mean vector and Σ  is a 3 3×  

variance-covariance matrix for the joint prior distribution of the mean function of ( ),X Y . 

We again assume a flat prior for µ , a diffuse inverse-Wishart distribution for Σ , i.e. 

( )~ ,IW vΣ Ψ , where Ψ  is an identity matrix of size 3 with degrees of freedom 3v = , 

and a diffuse inverse gammar distribution for 2

e
σ . 

4.2.5. Trivariate model for a scalar, a binary and a semicontinuous variables 

In this section, we further extend the models to include another common type of 

variable, a semicontinuous variable. A variable is classified as semicontinuous if a large 

portion of data values is zero and the rest of the values that are greater than zero are 

continuously distributed. We adopt a two-step approach to model this type of variable. 
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The value of zero is treated as a discrete category. A Bernoulli distribution is assumed to 

model this zero versus non-zero status. Then, conditional on being non-zero, a normal 

distribution is used to capture the non-zero values.  

Let ,  and X Y Z  be the binary, semicontinuous, and scalar variables respectively. To 

explain the mixed distributional structure in Y , we create a zero status indicator such that 

( )Y.d 1I Y= = . The synthesis model is as follows: 

( )

( )

( )

( ) ( )

1 1

2

2 2 1

3 3 4

Stage 1. Sampling model: 

    X ~ Bernoulli ;  1, 2,..., ;  1,2,..., .

    Y.d | X ~ Bernoulli

    Y | X ~ N X ,

    Y Y Y.d 1 +Y.d Y.d 0

    Z | X ,Y ~ N X Y

ij i i

ij ij i i ij

ij ij i i ij

ij ij ij ij ij

ij ij ij i i ij i

i C j b

X

I I

θ

α β

α β σ

α β β

= =

+

+

= × = × =

+ +( )

( ) ( )

2

2

i 1 1 2 2 3 3 4 8

,

Stage 2. Linking model:   

    logit , , , , , , , ~ ,

ij

i i i i i i i
MVN

σ

θ α β α β α β β µ  Σ 

               [3.21]. 

Similar to the Bivariate model, we assume a flat prior for µ , a vague inverse Wishart 

distribution for ∑ , and vague inverse Gamma distributions for 2 2

1 2 and σ σ . 

4.3. Simulation studies 

In this section, we describe two simulation studies to compare the properties of 

inferences from multiple fully-synthetic data and the actual data. In both simulations, we 

create the actual survey sample data from a model that matches the synthetic data model. 

Thus, the comparison of inferences is optimal where the imputer’s assumed model is 

indeed the true model. 
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4.3.1. Simulation study 1: a scalar variable 

4.3.1.1. Generate actual survey sample 

The survey data are generated as below: 

1. Draw c  areas from a total of C  population areas. 

2. Generate a vector of area-specific effect ( ) ( )2, 1,2,...,  from ,
i v

v v i c N µ σ= = . 

3. Within each selected area, 
i

b  subjects are randomly drawn from its population.  

, 1,2,...,
i

b i c=  is calculated by proportional allocation. 

4. Individual values are generated on the variable of interest , 1, 2,...,
ij i

y j b=  from 

( )2,
i e

N v σ . The observed sample is then denoted by 

( ){ }, , 1, 2,..., , 1, 2,...,
i ij i

D I y i c j b= = =  where I  is the area identifier. 

4.3.1.2. Generate synthetic data 

We use the Gibbs sampler to generate synthetic data sets as follows: 

a. To draw ( ){ }* * 2* 2*, 1, 2,..., , , ,
i e v

i cθ µ σ σ= , we use the standard Gibbs sampler to 

draw ( ){ }2 2, 1, 2,..., , , ,
i e v

i cθ µ σ σ=  from their joint posteriror distribution (we used 

WinBUGS for this step). For nonsampled areas, draw *, 1, 2,...,
i

i c c Cθ = + +  from 

the normal distribution ( )* 2*,
v

N µ σ . 

b. Define area sample size for both sampled and nonsampled areas as 

* , 1, 2,...,
i i

b f B i C= × = .  

c. Finally, draw values ( )* * * * 2* * 2*, 1,2,..., , 1,2,..., | , , ,
ij i i i e i e

y i C j b b Nθ σ θ σ= = ∼ . The 

synthetic data set is then denoted by ( ){ }* *, , 1,2,..., , 1, 2,...,
syn i ij i

d I y i C j b= = = . 
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d. Repeat steps 1 to 3 a total of M  times to get M  synthetic data 

( )1 2, ,..., M

syn syn syn syn
D d d d= . 

4.3.1.3. Results 

This simulation was carried out using R and WinBUGS, which is developed based on 

BUGS (Bayesian inference Using Gibbs Sampling). We used the estimated population 

for a total of 100 counties from the state of North Carolina published on the American 

FactFinder (The Census Bureau, 2006) as the measure of size for our hypothetical 

population. The sampling fraction λ  is chosen to ensure the county sample sizes range 

from single digit to hundreds, which mimics the common situation in most national 

surveys.  

Specifically, the model parameters used in this simulation are: 0.5µ = ; 2 2 1
e v

σ σ= = ; 

0.367λ = ; 50c = ; 100C = ; ( ), 1, 2,..., 14, 2800iB i C= = ; ( ), 1,2,..., 5,307ib i c= =  and 

1
3000

c

ii
n b

=
= =∑ . 250 replicates and 20M =  synthetic data sets from each replicate are 

generated. We increase the sampling proportion by a factor of ten, i.e. 10
i i

b Bλ= × × , 

when generating the synthetic data to allow the production of direct county-level 

estimates. All 25250 synthetic variance estimates are positive. Indirect county-level 

estimates on the actual data are obtained based on the same model as the one used to 

generate synthetic data. We compare the county-level and state-level means of Y  as well 

as the corresponding variance and confidence intervals, which are obtained by analyzing 

the synthetic data against the same set of estimates obtained from the actual data.  

Figure 4.1 displays the scatter plot of the posterior means of all sampled counties from 

the actual data and the direct means from multiple synthetic datasets across all replicates. 
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The fact that the points are clustered tightly around the 45-degree line provides evidence 

that synthetic data yield almost identical small area estimates. We fit a simple linear 

regression of a vector of the synthetic data estimates on the vector of the actual data 

estimates. Both vectors are of length 12500 ( )No.of replicatesc= × . If the two sets of 

estimates are similar, we expect an intercept of 0 and a slope of 1. The estimated intercept 

and slope of this regression with 12498 degrees of freedom are 0.0005 0.0008− ∓  and 

1.0003 0.0008∓  respectively. Neither estimate is significantly different from its 

respective expected value according to the Wald tests.  

 

 

Figure 4.1: County-level estimates for sampled counties 

Figure 4.2 shows the histogram of small area estimates from multiple synthetic data 

sets and the actual data for all nonsampled counties across all replicates. The estimates 

are distributed symmetrically around the population mean, 0.5µ = , which indicates the 

synthetic estimates for nonsampled counties are similar to those based on observed data. 

There is a slight loss in precision for synthetic data estimates, as the distribution is flatter 

compared with those for the actual data estimates. On average, the synthetic data yield a 
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confidence interval width of 0.707 compared with 0.655 for actual data based county-

level estimates for sampled counties, which also indicates a slight loss in efficiency in 

estimating area means based on synthetic data compared with the actual data. The level 

of efficiency loss is indeed a decreasing function of county sample size as shown in 

Figure 4.3. For large counties, of size 50 or 100, the ratio of synthetic data variance and 

actual data variance is relatively small, around 1 or slightly more than 1. For small 

counties, of size 10 or less, the relative efficiency can be as high as 3 times, which means 

the synthetic data confidence interval may be 70% wider than the confidence interval 

from the actual data. 

 

 

Figure 4.2: County-level estimates for nonsampled counties 
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Figure 4.3: Efficiency loss of county-level estimates by size of sampled county 

We also evaluate the repeated sampling properties of these estimates. The coverage 

rates for all 100 county-level estimates from the synthetic data range from 90% to 99%, 

and the average coverage rate is 95%. In contrast, the coverage from the actual data 

ranges from 92% to 99% with average value of 95%. The two sets of coverage rates are 

similar. The average biases on these estimates from synthetic and actual data are almost 

identical and both very close to zero (both are -.0015). The average Mean Square Error 

(MSE) is 0.555 and 0.533 from the synthetic and actual data respectively. Considering 

the fact that these estimates are unbiased, this relative larger MSE value from analyzing 

the synthetic data suggests again a slight loss in efficiency. Consistent with the finding on 

relative efficiency, all of the three statistics, coverage rate, bias and MSE, on sampled 

county-level estimates present decreasing relationships with county sample size as shown 

in Figure 4.4-4.6. These relationships are similar across synthetic and actual data.  
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Figure 4.4: Mean Square Error (MSE) as functions of county sample size 

 

Figure 4.5: Coverage-rate as functions of county sample size 

 

Figure 4.6: Bias as functions of county sample size 
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Statistical inferences for statistics at state-level are also compared. The sampling 

expectations for estimating the direct state mean are almost identical between synthetic, 

0.507 and actual data, 0.518. The bias (0.007) is almost zero. The MSE from synthetic 

data, 0.023, is slightly smaller than that from the actual data, 0.035, which is again due to 

the strength from synthesizing values of nonsampled areas and subjects. 

In sum, in this simulation, both the imputer’s model and the analyst model agree with 

the true model, which is a univariate normal random effect model. The synthetic data are 

optimal in terms of preserving the distributional properties of the actual data. The 

synthetic data inferences are valid for both small area and state-level statistics from the 

repeated sampling point of view, except the fact of being slightly less efficient than the 

actual data.  

4.3.2. Simulation study 2: a mixed-type bivariate situation 

4.3.2.1. Generate actual survey sample 

The survey data are generated as below: 

1. Draw c  counties from a total of C  population counties. 

2. Generate ( )( )0 1logit , , , 1,2,...,
i i i i

v i cθ β β= = , from a 3-variate normal distribution 

with mean µ  and variance-covariance matrix Σ . 

3. Within each selected county, 
i

b  subjects are randomly drawn from its population. 

, 1, 2,...,
i

b i c=  is calculated by proportional allocation. 

4. Individual values of , 1,2,...,
ij i

x j b=  are drawn from ( )iBernoulli θ . 
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5. Conditional on the values of 
ij

x , draw values 
ij

y  from ( )2

0 1 ,
i i ij e

N xβ β σ+ , where 

2 1
e

σ = . The observed sample is then denoted by 

( ), , , 1, 2,..., ; 1, 2,...,
i ij ij i

D I x y i c j b= = = . 

4.3.2.2. Generate synthetic data 

We again use the Gibbs sampler to generate synthetic data sets as follows: 

1. To draw ( )( ){ }** * * * 2*

0 1, = logit , , ; 1, 2,..., ,
i i i e

i cµ θ β β σΣ =  for the sampled areas, we 

use the Gibbs sampler to draw ( )( ){ }2

0 1, logit , , ; 1,2,..., ,
i i i e

i cµ θ β β σΣ = = from 

their joint posterior distribution. For nonsampled areas, draw 

( )( ){ }** * * *

0 1, = logit , , ; 1, 2,...,
i i i

i a a Cµ θ β βΣ = + +  from ( )* *,MVN µ Σ .  

2. Define area sample sizes for both sampled and nonsampled clusters as 

* , 1, 2,...,
i i

b f B i C= × = .  

3. Draw values ( ) ( )** * * *, 1, 2,..., | , , logit ~ Bernoulli
ij i i i i

x j b i b θ θ= .  

4. Finally, draw values ( )* * * * * * * * * 2*

0 1 0 1, 1, 2,..., | , , , , ~ ,
ij i i ij i i i i ij e

y j b i b x N xβ β β β σ= + . The 

synthetic data set is then denoted by ( ){ }* * *, , , 1,2,..., , 1,2,...,
syn i ij ij i

d I x y i C j b= = = . 

5. Repeat steps 1 to 4 a total of M  times to get M  synthetic data 

( )1 2, ,..., M

syn syn syn syn
D d d d= . 

4.3.2.3. Results 

The model parameters specific to this simulation are 
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2 1
e

σ = , [ ]0.5,0,0µ =  and 

0.5 0.1 0.1

0.1 1 0.5

0.1 0.5 1

Σ = . 

We generated 250 replicates and 20M =  synthetic data sets for each replicate. We 

evaluated small area estimates, state-level descriptive mean estimates and two types of 

state-level regression coefficients estimates, i.e. Ordinary linear regression (OLS) and 

Logistic regression. The total number of estimands is 206. They include 50 sampled 

small area means, 50 nonsampled small area means and one state-level direct mean 

estimate of Y  (continuous data); the same set of 101 estimands for the binary variable X ; 

1 intercept and 1 slope for the linear regression of Y  on X ; and another 1 intercept and 1 

slope for the logistic regression of X  on Y . 

All 51500 synthetic variance estimates are positive. To ensure fair comparison 

between synthetic data estimates and actual data estimates, we assume one data user is 

interested in inference on either variable but not both at the same time1. Therefore, actual 

data county-level inferences are based on marginal models with only one variable 

involved. The point estimates of small area statistics are unaffected by this assumption 

about the analyst model. The only possible implication, however, is that the estimation is 

generally more efficient when the correlation between the two variables is considered.  

Figure 4.7 and Figure 4.8 show the scatter plots of the direct county means for all 

sampled counties from the synthetic data and corresponding posterior means from the 

actual data on the normal variable Y  and binary variable X  across all replicates 

                                                 
1 We also simulated the situation where one data user is interested in making county-level 
inference on both variables, and the results are similar to what we present under the 
current assumption 
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respectively. The fact that the two sets of small area mean estimates on both variables 

line up very well provides evidence that synthetic data yield almost identical estimates. 

 

 

Figure 4.7: Area means for continuous variable Y  from synthetic and actual data. 

 
 

 

Figure 4.8: Area means for binary variable X  from synthetic and actual data 

Similarly as in simulation study 1, we fit separate simple linear regressions of the 

actual data estimates on the synthetic data estimates of sampled areas for X  and Y  as 

shown in Table 4.1. The fact that both intercepts and slopes are not significantly different 
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from their respective expected values suggests that the synthetic estimates are very 

similar to the actual estimates. 

Table 4.1: The correlation statistics of the synthetic and actual 
estimates for sampled counties 

 X  Y  
 

Expected 
values Estimate S.E. Estimate S.E. 

Intercept 0 0.0009 0.0006 0.0018 0.0007 

Slope 1 0.9838 0.0012 0.9981 0.0005 

Next we evaluate the simple mean statistics, the linear and logistic regression 

coefficients based on the entire state. As shown in Figure 4.9, for state-level means, 

means of the continuous variable and proportions of the binary variable, the synthetic 

data estimates are very similar to the corresponding actual data estimates as these two 

sets of estimates line up around the 45 degree line. Table 4.2 shows the regression 

intercept and slope coefficients of the actual data estimates on the synthetic data 

estimates for these six sets of state-level estimates respectively. The fact that all 

intercepts and slopes are not significantly different from their expected values, 0 and 1, 

provides further evidence for such similarities. 

Table 4.2: The correlation statistics of the synthetic and actual estimates for state-
level statistics 

  X  Y  

  

Expected 
value Estimate S.E. Estimate S.E. 

Intercept 0 -0.016 0.016 -0.009 0.034 
Mean 

Slope 1 1.029 0.033 1.004 0.041 

Intercept 0 -0.003 0.018 0.009 0.009 
Regression Intercept 

Slope 1 0.999 0.035 1.023 0.036 

Intercept 0 -0.011 0.028 -0.004 0.009 
Regression Slope 

Slope 1 1.012 0.041 1.016 0.037 
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Figure 4.9: Scatter plots of state-level means for X  and Y , as well as state-level linear 
and logistic regression intercepts and slopes estimates involve X  and Y . 
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We next compare the inferences from a repeated sampling perspective. Table 4.3 

shows the sampling expectation and variance over repeated samples, as well as the 

coverage, bias and mean square error for the small area statistics. All expectations are 

similar between synthetic and actual data, which suggests the point estimates are 

unbiased from the repeated sampling viewpoint. On the other hand, the fact that all 

synthetic data variances are larger than their corresponding actual data variance suggests 

there is a slight loss in estimation precision. Both average coverage rates for small area 

estimates are below the nominal level, though the average coverage rate for small area 

estimates on Y  is slightly better than that on X . The biases of synthetic data estimates 

are almost zero, which suggest these estimates are unbiased on average. In addition, 

consistent with the findings from the first study, the coverage rate, bias and MSE are all 

negatively correlated with county sizes.  

Table 4.3: Repeated sampling properties for county-level statistics 

  Expectation Variance Coverage MSE Bias 

Synthetic 0.805 1.036 0.947 0.991 0.010 
Y 

Actual 0.804 0.991 0.948 0.945 0.008 

Synthetic 0.501 0.017 0.952 0.016 0.000 
X 

Actual 0.502 0.016 0.954 0.016 0.000 

From Table 4.4, the expectations for all state-level statistics, including both 

descriptive and analytic statistics are almost identical across synthetic and actual 

estimates. The synthetic data variances larger than those from actual data are due to this 

disclosure limitation procedure. The magnitude of variance inflation is more significant 

for the state-level statistics than for the small area statistics. The relative efficiency, in 

expectation, ranges from 8, for estimating the slope coefficient for the linear model of Y  

on X , to 75 for estimating the state-level mean of Y . 
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Table 4.4: Repeated sampling properties for state-level statistics 

   Expectation Variance 

Synthetic 0.805 0.075 
Y Mean 

Actual 0.799 0.001 

Synthetic 0.501 0.001 
X Mean 

Actual 0.500 0.000 

Synthetic -0.196 0.028 
Intercept 

Actual -0.192 0.002 

Synthetic 0.228 0.008 

Linear 
Regression 

Y~X Slope 
Actual 0.228 0.001 

Synthetic 0.475 0.046 
Intercept 

Actual 0.472 0.002 

Synthetic 0.655 0.074 

Logistic 
Regression 

X~Y Slope 
Actual 0.651 0.004 

In sum, these results provide evidence that the inference from synthetic data is valid 

for both county-level and state-level inferences. The geographic area random effect 

imputation model not only reproduces the small area data structure, but also ensures the 

statistical integrity for inferences involving larger areas. Based on the above results, we 

can conclude that the inference from synthetic data sets is valid from the Frequentist 

point of view. The information loss in estimation precision is very small. Thus releasing 

multiple synthetic data is a very promising method for protecting confidentiality while 

allowing high quality research on small geographic areas. 

4.4. An empirical study 

4.4.1. Data source 

The 1880 Census Integrated Public Use Microdata Series (IPUMS) is a 1% national 

random, representative sample of the United States population. It is comprised of 

approximately 107,000 household records and 503,000 person records. The small 

geographic areas of interest in this study are counties. To reduce the computational 

burden, we randomly chose a subset of 1880 IPUMS, which includes 2877 households 
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for a total of 11,408 people from the region of South Pacific. This data set covers all 3 

states within this region, i.e. California, Washington and Oregon, and all 97 counties 

within these states. The county sample sizes vary from 4 to 2425. To illustrate the 

application of this approach in real data, we consider fully synthesized values of 3 

variables: Age, Gender and SEI (Duncan’s Socioeconomic Index). 

We select these three variables not only to present several generic modeling 

challenges, but also due to the fact that they are routinely collected survey variables, 

therefore, are most likely to be used by an intruder in the re-identification of survey 

respondents. Among these three, SEI is a widely used measure of occupational standings 

and it plays an important role in studies of stratification in the United States (Duncan et 

al., 1972). The types of variables presented in this data set include numerical, binary, and 

semicontinuous. The empirical distribution of some numerical variables deviates largely 

from normality and/or is zero inflated. The data structure presented here is sufficiently 

complex to permit a wide variety of analyses and can be used to speculate the creation of 

synthetic data for the ACS. The description of these variables is presented in Table 4.5. 

Table 4.5: Description of the variables used in this empirical study 

Variable Type Data Range 

Age Continuous 1-110 years 

Gender Binary 0: Male; 1: Female 

SEI Semicontinuous 0-96 

4.4.2. Generate synthetic data 

To capture the zero-inflated probability mass for SEI, we create a zero-status indicator, 

SEI.d. For a respondent, SEI.d takes the value 1 if his SEI is greater than zero, and 0 if it 

equals zero. We normalize Age and non-zero SEI by Box-Cox power transformation 

(Box and Cox, 1964). For simplicity, we round the estimated power parameters for the 
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Box-Cox transformation for Age and non-zero SEI to 0.5 and -0.5 respectively, which are 

used in creating the transformed variables. Table 4.6 shows the estimated Box-Cox 

transformation parameters, the corresponding standard errors and the rounded parameters. 

Figure 4.10 shows the quantile-quantile (q-q) plots for Age and Non-zero SEI in their 

original scale and Box-Cox transformed scale based on the rounded power parameters 

respectively. If the plots approximate straight lines, the distributions for the variables are 

close to normality. Comparisons of  the plots between the orignal and transformed scale 

suggest Box-cox transformations significantly improve normality for both Age and SEI. 

 

Figure 4.10: Q-Q plots for Age and Non-zero SEI in the original and Box-
Cox transformed scales 
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Table 4.6: Rounded and estimated Box-Cox transformation 
power parameters 

 
Rounded Power 

Parameters 
Estimated Power 
Parameters (SE) 

Age 0.5 0.55 (0.0093) 

SEI -0.5 -0.4751 (0.0187) 

To ensure the synthetic data distributes within the same range as the actual data, we 

use truncated normal distributions for both Age and SEI. We have attempted the 

truncated t-distributions to capture the outliers. We treat the degrees of freedom as 

unknown parameters and assigned non-informative Gamma prior distributions (Xie, 

Raghunathan and Lepkowski, 2007). Since the estimated degrees of freedom for both 

Age (estimated degrees of freedom equals 15) and SEI (estimated degrees of freedom 

equals 30 plus) are quite large, this means the distributions are very close to the normality. 

Thus, we consider normal distributions for our final imputation model for simplicity. The 

synthetic data generation model is as below. 

( )

[ ]

( )1 1

2

2 2 1

Stage 1. Sampling Model

    Gender ~ Bernoulli ;  

        where, 1,2,..., ;  1, 2,..., ;  97;  4, 2425

    SEI.d | Gender ~ Bernoulli Gender

    SEI | Gender,SEI.d 1 ~ TN Gender , ,

ij i

i i

ij ij i i ij

ij i i ij

i C j b C b

a

θ

α β

α β σ

= = = ∈

+

= +( )

( )

( )

1 1

2 2 2

3 3 4 2

2

,

    Age | Gender,SEI ~ TN Gender SEI, , ,

        where, TN ,  denotes the truncated normal 

        distribution with mean , variance , truncation points  and .

Stage 2. Linkin

ij i i ij i

2

b

a b

, a,b

a b

α β β σ

µ σ

µ σ

+ +

( ) ( )

( )
i 1 1 2 2 3 3 4 8

2 2

1 2

gModel

    logit , , , , , , , ~ ,

Stage 3. Independent diffuse priors for the model parameters , , ,

i i i i i i i
MVNθ α β α β α β β µ

µ σ σ

  Σ 

Σ

  [3.22]. 

The synthetic transformed data are generated from the posterior predictive 

distributions estimated based on this following model fitted using WinBUGs. Then they 
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are reversely transformed into their original scales. Both Age and SEI are discrete 

quantitative variables, which only take integer values. Therefore, it is desirable to round 

the imputed and reversely transformed noninteger values to the discrete scales. The 

county size is calculated proportional to the corresponding population sizes at the rate of 

10% to allow the direct estimation of small area statistics from the synthetic data. 

We again use the Gibbs sampler to generate synthetic data sets as follows. Since all 

counties are covered in this Census data, we only need to generate imputations for 

nonsampled individuals within each county to complete the synthetic population, and 

then draw random samples from each synthetic population to obtain the synthetic samples. 

Specifically, we generate the synthetic samples following the steps below.  

1. To draw 

( )( ){ }* * * * * * * * * * 2* 2*

1 1 2 2 3 3 4 1 2, log , , , , , , , ; 1, 2,..., , ,i i i i i i i iit i Cµ θ α β α β α β β σ σ∑ = = , where 

C=97 , we use the Gibbs sampler to draw 

( )( ){ }2 2

1 1 2 2 3 3 4 1 2, log , , , , , , , , ,i i i i i i i iitµ θ α β α β α β β σ σ∑ =  from their joint 

posterior distribution.  

2. Define county sample sizes as * , 1, 2,..., , where 0.1
i i

b f B i C f= × = = . 

3. Draw values of ( ) ( )* * * * *, 1, 2,..., | , , logit ~ Bernoulli
ij i i i i

Gender j b i b θ θ= .  

4. Draw values of 

( )* * * * * * * * *

1 1. , 1,.., | , , , ~
ij i i ij i ij i ij ij

SEI d j b b Gender Bernoulli Genderα β α β= + . For an 

individual j  in area i , whose value of *. 1ijSEI d = , assign * 0ijSEI = . For 

individuals whose value of *. 0ijSEI d = , then draw values of 
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( )* * * * * 2* 1 1 *

2 2 1| . 0 ~ , , , | . 0
ij ij i i ij ij

SEI SEI d TN Gender a b SEI dα β σ= + × = , and transform 

the values back to the original scale by taking squares and finally round them to 

the nearest integers to be consistent with the actual data. 

5. Finally, draw values ( )* * * * * * 2* 2 2

3 3 4 2~ , , ,
ij i i ij i ij

Age TN Gender SEI a bα β β σ+ + , and 

transform them back into its original scale by taking the inverse of square, and 

finally round them to the nearest integers. The resulted synthetic data set is then 

denoted by ( ){ }* * * * *, . , , , 1,..., ; 1,...,
syn ij ij ij ij i

d Gender SEI d SEI Age i C j b= = = . 

6. Repeat Step 1 to Step 6 M  times to get the synthetic data, ( )1 ,..., M

syn syn syn
D d d= . 

4.4.3. Results 

We evaluate the synthetic data utility by comparing the descriptive statistics, at both 

county-level and region level, and two types of regression coefficients, Ordinary linear 

regression (OLS) and Logistic regression, estimated from the synthetic data with those 

from the actual data. The total number of estimands is 599. They include six sets of 97 

county means for Gender, Age, transformed Age, SEI.d, SEI and transformed SEI , 6 

state-level direct mean estimates and 2 median estimates for these variables, and 9 linear 

and logistic regression coefficients of each variable on the remaining variables. The 

synthetic variance estimates are mostly positive, only about 2 of a possible 403 variance 

estimates are negative (i.e. approximately 0.5%). 

Table 4.7 shows the region-level means, proportions or medians, as well as three sets 

of regression coefficients estimated from synthetic and actual data. The mean estimates 

are similar across synthetic and actual data except for Non-zero SEI. However, the mean 

is a good measure of central tendency for roughly symmetric distributions. As for a 
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skewed distribution, it is sensible to be summarized using a typical value, in which 

median would serve as a good measure for such typicality. For both Age and SEI, the 

medians and intraquartile range estimated from the synthetic data match perfectly with 

the ones from the actual data. 

Table 4.7: Comparisons on region-level descriptive and analytic statistics estimates from 
the synthetic and the actual data set. 

Synthetic Actual 
 Variable Name Type 

Est. SE Est. SE 

Z 
Score 

Overlap 
Prob. 

Descriptive Statistics 

 Sex Mean 0.60 0.00 0.60 0.00 -0.31 0.93 

 Age Mean 40.01 0.21 40.82 0.22 -3.66 0.05 

 Age Median 36.00 5.57* 36.00 5.57* 0.00 0.95 

 I(SEI=0) Mean 0.56 0.01 0.56 0.00 0.32 0.94 

 Non-zero SEI Mean 17.35 0.14 20.09 0.27 -10.12 0.00 

 Non-zero SEI Median 14.00 3.32* 14.00 3.32* 0.00 0.95 

 Transformed Age Mean 6.05 0.02 6.09 0.02 -2.09 0.45 

 Transformed 
Non-zero SEI 

Mean 0.28 0.00 0.28 0.00 2.62 0.18 

Logistic Regression        

 Intercept -0.55 0.05 -0.43 0.04 -3.00 0.24 

Age Slope 0.00 0.00 0.00 0.00 1.18 0.82 
Sex~ 

Age+SEI 
SEI Slope 0.19 0.01 0.15 0.00 7.36 0.01 

Linear Regressions        

 Intercept 39.00 0.28 40.33 0.35 -3.78 0.02 

Sex Slope 1.74 0.49 1.07 0.49 1.38 0.74 
Age~ 

Sex+SEI 
SEI Slope 0.00 0.01 -0.02 0.01 0.89 0.77 

 Intercept 1.51 0.14 2.07 0.33 -1.71 0.46 

Sex Slope 10.38 0.20 11.89 0.29 -5.18 0.00 
SEI~ 

Sex+Age 
Age Slope 0.00 0.00 -0.01 0.01 0.98 0.68 

Note: * denotes the Intra-quartile range (the range between 25th and 75th quartile).  

The Z score in Table 4.7 is computed as the difference in point estimates from the 

synthetic and the actual data relative to the actual data standard error. A Z score with very 

small absolute value, for example, less than 2 or 3, suggests that the synthetic data and 

the actual data produce similar point estimates. Examining the absolute values of Z scores 

in Table 4.5, larger values tend to associate with statistics about SEI and Age in their 
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original scales. The largest one is 10.12 for the mean of SEI and the second largest is for 

the slope coefficient for Sex when the dependent variable is SEI. Because both are 

measures about the central tendency of the distribution of SEI, they are very sensitive to 

extreme values and can be seriously contaminated even by one observation. Extreme 

values are very likely when we transform the imputed values of SEI back into its original 

scale by a power of -2, thus distorting the means.  

The last column in Table 4.7 is the probability overlap in the confidence intervals for a 

scalar estimand Q  (Karr, et al. 2006). By approximating the posterior distribution of 

estimand Q  by normal distribution, the 95% confidence interval for the multiple 

synthetic data estimate q  is ( ), ,,
syn q syn q

L U . Let ( )ˆ ˆ, ,,
act q act q

L U  be the corresponding 

interval for point estimate q̂  obtained using the actual data which follows a t-distribution 

with ( )n p−  degrees of freedom, where n  and p  are sample size and the number of 

parameters in an analyst model. Let ,syn q
f  and ˆ,act q

f  be the estimated posterior 

distributions of Q  computed using synthetic and actual data respectively. Therefore, the 

probability overlap in the confidence intervals for Q  equals 

( )
ˆ, ,

ˆ, ,

1
ˆ, ,2

syn p act p

syn p act p

U U

Q act p syn p
L L

I f t dt f dz
−  = +  ∫ ∫ . 

Q
I  may take value [ ]0,0.95 . 0

Q
I =  if there is 

no overlap and 0.95
Q

I =  if the two intervals overlap perfectly. A large value on 
Q

I  

implies better data utility in estimating Q . 

Almost all descriptive statistics have perfect confidence interval overlaps. Somewhat 

high overlap probabilities, in the range of 0.50 to 0.80, are found with the regression 

coefficients describing the bivariate relationships among Age, Sex and SEI. The only 



 

 134 

exception is the slope coefficient of Sex on SEI, where the overlap probability is only 0.1, 

and it is also detected by Z scores. 

Figure 4.11 shows the histograms of SEI in the transformed and original scales. To 

ensure the cell frequencies of the synthetic data and the actual data are in a comparable 

scale, we choose one synthetic data randomly and compare its distribution with the actual 

data. The shape of the distribution is preserved although the outliers at the high end of 

distribution in actual data are not reflected perfectly. 

       

Figure 4.11: Histogram of SEI from one randomly chosen synthetic data and the actual 
data on transformed scale (left panel) and original scale (right panel) 

 It is interesting that for some regression slopes, the synthetic data estimates are 

larger than the actual data estimates in their absolute values. For example, the slope 

coefficient for SEI when we regress Sex on Age and SEI (synthetic 0.19 vs. actual 0.15), 

the coefficient for SEI in the regression of Age on Sex and SEI (synthetic 0.00 vs. actual 

-0.02), and the coefficient for Age in the regression of SEI on Age and Sex (synthetic 

0.00 vs. -0.01). A close look at these statistics gives us the similarity among these 

estimates, which is that they all are highly associated with the variable SEI. Such 

contradiction may be due to the inadequacy of replicating the actual sampling distribution 
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of SEI in the synthetic data, which leads to the distortion of estimating the regional level 

statistics. 

 Suppose that data users are interested in the county-level means or proportions on 

Age, Sex and SEI. Given that the county sample size is too small to permit the direct 

estimation, indirect estimators based on a small area model are appropriate. Under the 

parametric approach, one option of normalizing both Age and SEI to meet the model 

assumption on normality is Box-Cox transformation. Then indirect means on Sex and the 

transformed Age and SEI are the posterior county means from the small area model on 

the transformed data. Because data users may be more interested in inference on the 

original scale, we also obtain the posterior means in the original scales by simulating the 

corresponding posterior distributions.  

 Table 4.8 summarizes the comparison of county means on 2 binary variables, Sex and 

SEI.d, 2 continuous variables in the original scales, Age and SEI, and 2 in their 

transformed scales. On average, the synthetic and actual data produce similar county-

level means. The average overlap probabilities are very close to 0.95, which suggest the 

confidence intervals constructed based on the synthetic and actual data are very close. 

The fact that all z-scores are close to zero provides evidence that the point estimates are 

very similar. 

Table 4.8: County-level means estimated from synthetic and actual data 

Synthetic Data Actual Data 
Variable 

Estimate SE Estimate SE 

Overlap 
Prob. 

Z score 

Sex 0.62 0.05 0.62 0.04 0.93 -0.04 

SEI.d 0.55 0.05 0.55 0.05 0.93 0.03 

Trans.Age 6.05 0.14 6.05 0.15 0.92 -0.02 

Age 39.99 1.67 40.01 1.86 0.92 -0.01 

Trans.SEI 0.13 0.02 0.13 0.02 0.93 -0.03 

SEI 7.13 1.23 7.17 1.32 0.93 -0.04 
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 As shown in Figure 4.12, the estimates from synthetic and actual data are clustered 

around the 45-degree line for all six variables, which indicates all county means are 

similar regardless of their county sample sizes. The correlation statistics of evaluating the 

closeness of two sets of estimates from the synthetic data and the actual data respectively 

are shown in Table 4.9. If a simple regression of the synthetic data estimates on the actual 

data estimates fit the line of identity (intercept = 0, slope = 1), then the estimates are 

identical. The non-significant Wald-tests suggest the synthetic data estimates on county 

means are very similar to the actual data counterparts for all variables involved in this 

study. 

Table 4.9: The correlation statistics of the synthetic and actual estimates 
for region-level statistics 

Variable  Expected Value Estimate S.E. 

Intercept 0 0.017 0.014 
Sex 

Slope 1 0.970 0.022 

Intercept 0 1.629 1.819 
Age 

Slope 1 0.959 0.045 

Intercept 0 0.221 0.273 
Age boxcox 

Slope 1 0.963 0.045 

Intercept 0 0.015 0.009 
SEI.d 

Slope 1 0.976 0.016 

Intercept 0 -0.069 0.173 
SEI 

Slope 1 1.004 0.024 

Intercept 0 0.002 0.002 
SEI boxcox 

Slope 1 0.978 0.015 
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Figure 4.12: County-level mean estimates from synthetic and actual data 
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In conclusion, this empirical illustration shows this synthetic data approach provides 

similar statistical inferences on both small area levels as well as region-level as the actual 

data. The techniques that we demonstrate in dealing with non-normality, outliers and 

zero-inflated data can potentially be applied to a situation that involves a larger data set. 

4.5. Conclusion 

In this chapter, we evaluate this method of using multiple imputation techniques to 

create fully-synthetic data for small area estimation both theoretically and empirically. 

Compared with the current practices of using geographic threshold and restricted data 

access, the synthetic data method not only offers the data users full flexibility to conduct 

customized geographical analysis, but also has the potential to extend the scope of 

analysis to the non-sampled areas, which are not contained in the actual data. 

Synthetic microdata generated from the posterior predictive distributions built on 

properly specified small area models yield similar statistical inference on small area level 

statistics with the ones on the actual data. Via this 1880 Census empirical study, we 

successfully demonstrated the solutions for several common modeling challenges, such 

as non-normality, outliers, bounds and zero-inflation. These techniques can be adapted 

easily for synthesis projects that involve large-scale survey data such as the American 

Community Survey, which will have significant impacts in a broad-spectrum of areas 

such as demographics, sociology and economics.
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CHAPTER V 

 

 

CONCLUSIONS AND DISCUSSIONS 

 

 

5.1. Summary of this dissertation 

The issue of data confidentiality has become increasingly important because of the 

improvements in record linkage technology and ease of access to electronic databases. It 

concerns both federal statistical agencies, who constantly face the pressure to publish 

high quality data, and researchers, who depend upon the collaboration of individuals and 

businesses in data sharing.  

This dissertation addresses two topics in statistical data confidentiality: disclosure risk 

assessment and the synthetic data method for disclosure control. The two topics are 

closely related in two ways. The risk of disclosure is usually used to inform whether a 

statistical disclosure avoidance procedure should be implemented to the actual data, and 

if such procedures should be applied, then to which data records. In addition, the 

comparison of estimated disclosure risks for a survey data set prior to and after the 

modifications offers another way to evaluate an SDC method. Under this framework, the 

best SDC procedure is the one that achieves the optimal trade-off between disclosure risk 

reduction and data utility loss.  

This dissertation, rather than attempting to offer an “end-to-end” solution by using 

disclosure risk as a guidance and/or checkup for the SDC procedures, provides answers to 
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three separate questions that have puzzled the field. The reason for lack of connections 

between the chapters is that such linkage between disclosure risk and SDC methods is 

meaningless in the case of this dissertation. Both SDC methods we proposed involve a 

full synthesis of the values of all survey variables in all subjects, thus, each record of the 

resulting microdata can no longer be interpreted as having originated from a given 

individual, which leads to no grounds for evaluating the risk of being re-identified. 

Specifically, Chapter 2, 3 and 4 identified and provided answers to three separate 

research questions. Chapter 2 is motivated by the prevailing concern of increased risk of 

disclosure of survey respondents due to the availability of commercial databases with 

identifying information and key demographic variables coupled with powerful record 

linkage techniques. This study illustrated, theoretically and empirically using an 

empirical experiment, the significant impacts of four sources of uncertainties on 

disclosure risk assessments. The uncertainties include assumptions about the amount of 

identification information to which an intruder has access, the accuracy of such 

identification information and the under-coverage of the commercial data. The latter two 

factors, both largely ignored in the literature, worked collectively in the direction of 

reducing the risk of disclosure. This finding, when used to inform SDC procedures, is 

very reassuring to the field as it suggests that fewer data modifications are needed to 

achieve a desired amount of disclosure prevention. 

 Chapter 3 demonstrates a successful practical implementation of fully-imputed 

synthetic data for a large complex longitudinal survey as means to protect confidentiality. 

Ever since this approach was initially proposal by Rubin (1993) and Little (1993), 

skepticism about its feasibility has abounded. This research filled this feasibility gap by 
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synthesizing the values of about one hundred variables of different types derived from 

more than 12,000 cases, from a national longitudinal survey. Separate semiparametric 

imputation algorithms for continuous, binary and categorical variables were developed 

and tested. We also developed a new combining rule for synthetic data inference to 

account for the imputation variation due to both item-missing data and synthetic data. 

Data utility of the synthetic data is comparable to that of the original data. The imputation 

models illustrated in this chapter can be easily adapted to resolve confidentiality issues 

for other large-complex surveys.  

 The third study, discussed in Chapter 4, extends this fully-synthetic data approach to 

cope with situations where small area statistics are of vital importance. This study is the 

first in the SDC literature to respond to this ever-increasing demand for small-area 

microdata. The goal was to create synthetic microdata with enough geographical detail to 

permit small area analyses, which otherwise is not permitted, because such geographical 

identifiers are usually suppressed due to disclosure control. Small area models developed 

under a Bayesian framework are used to generate synthetic data. This approach is 

evaluated by the use of an empirical example in addition to a series of simulations. Both 

small-area statistics and national level statistics based on synthetic data are similar to 

those obtained from the original data. Moreover, the modeling burden is reduced, 

especially when public data users attempt to produce small-area statistics from the 

synthetic data. 
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5.2. Future research 

5.2.1. Generalization of results from the risk assessment experiment 

In Chapter 2, the evaluation of disclosure risk was facilitated by the per-record 

measures of measurement discrepancies and the disaggregated measures of under-

coverage rates for a large number of subclasses. However, in real practice, assessment of 

measurement discrepancies between the survey data and the commercial data are rarely 

attainable. Therefore, despite the importance of these two factors in risk assessments, the 

direct estimation of such factors is not possible. Methods for incorporating the 

uncertainties due to these two types of errors into the assessments of the risk of disclosure 

when the exact estimates are not available, are needed.  

5.2.2. Synthetic data utility assessments 

In both Chapter 3 and Chapter 4, we evaluated the validity of synthetic data inference 

separately for a singular estimand by assessing closeness of the two confidence intervals 

obtained from the actual data and synthetic data. We assumed that estimands are 

independent from each other, thus the correlation among estimands are ignored in the 

evaluation of the inference validity. The current approach has the advantages of 

simplicity and easy interpretation. However, it is very unlikely that the assumptions 

would hold. For instance, the estimated regression coefficients from a multivariate 

regression model are usually correlated, and statistics for one small area, especially the 

ones obtained based on “indirect estimators2”, by definition, are related to those for other 

small areas. Furthermore, the evaluation of data utility on multi-dimensional statistics, 

such as the joint confidence intervals of two or more estimands, which may be of interest 

                                                 
2 “Indirect estimators have been characterized in the empirical Bayes literature as estimators that 

"borrow strength" by incorporating values of the variable of interest from units in domains other than 
the domain of interest” (U.S. Office of Management and Budget, 1993). 
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to public data-users, is not permitted. Future research should include the evaluation of 

information loss for multivariate statistics.  

In addition, synthetic data utility is evaluated by comparing the estimates with those 

from the actual data. Information loss is considered negligible if similar estimates are 

obtained from the two data files. However, a disadvantage of this evaluation method is 

the lack of definition for what constitutes similarity (or dissimilarity). Diagnostic tools 

are needed for assessing how sensitive the current data evaluation methods are to 

different definitions of “similarity”. 

5.2.3. Future research associated with synthetic data for small-area estimation 

In Chapter 4, we provide a small area synthetic data model incorporating three types 

of variables: continuous, binary and semicontinuous. Another common type of survey 

variable is a categorical variable with more than two levels. Model ill-conditioning is a 

problem that is very likely to occur in a small-area model if an unequally distributed 

high-dimensional categorical variable correlates with the small areas for which statistics 

are desired. Further research is needed to deal with this situation.  

Another modeling challenge may occur when we plan to create synthetic data for a 

large number of variables of different types. Specifying a proper joint-distribution model, 

as the data set dimensions increase, may become difficult or even impossible. To deal 

with this situation, one may adopt the idea of sequential conditional regression 

(Raghunathan, et al. 2001). We demonstrated this approach in Chapter 3 when we 

generated synthetic data for microdata without geographical area structures. In specific, 

the joint-distribution is replaced with a series of conditional distributions of one outcome 

variable conditional on the rest of the outcome and auxiliary variables. One iterates the 



 

 144 

process of drawing imputed values from each conditional posterior predictive distribution 

so that the final values converge to draws from the multivariate distribution. 

We model the semi-continuous variable via assuming the non-zero portion of data 

follows a normal distribution after the Box-Cox transformation. However, the several 

peaks of density at the right tail of this distribution were not fully captured which distorts 

the validity of regional level analysis. This type of distribution is very common in survey 

data. Two common causes are 1) rounding to the nearest integer when survey respondents 

report their answers and 2) aggregating several closely related variables in creating 

another summary variable. Possible variables may be Age, Income, Education (in years) 

etc. Potentially, such model inadequacy can be overcome by further relaxing the 

distributional assumption. One can employ a more non-parametric approach by breaking 

the distribution into more segments and fit separate models for each segment of data. 

Another option is to fit a more complex parametric model, such as a Tukey's gh 

distribution model, with additional model parameters to capture such irregularity in the 

empirical distribution. 

Most survey data are realizations of the population from complex sample designs. 

Without losing generalizability, this method can be adapted to solve the disclosure 

problem for such sample data. A complex multistage design is usually well-approximated 

by a two-stage stratified clustered sampling design with strata formed in the first stage, 

clusters selected within stratum, as well as weighting to account for unequal sampling 

probabilities, nonresponse, and postratification. Among these three factors, stratification 

can be incorporated by building an imputation model within each stratum, and clusters 

can instead be treated as random effects. The most challenging task is how to deal with 
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survey weights. The general principles of modeling weights imply that models should be 

constructed incorporating all variables that affect each component of weighting. However, 

such models can quickly become overwhelmingly complicated as the number of the 

adjustment cells increase (Gelman 2007). Therefore, we propose to treat survey weights 

as a scalar summary of the variables related with unequal selection, nonresponse and 

postratification, and to then incorporate it as a covariate in the regression imputation 

model.  

To improve the model efficiency, a set of area-specific auxiliary variables such as the 

number of households, per capita income (PCI), value of housing, geographic size, social 

demographic decompositions, etc., can be extracted from external sources and used as 

covariates. Incorporating such information into the synthesis model offers additional 

protection against model failure. 

Lastly, unbiasedness of small area estimates with respect to survey sampling design is 

often desired. Future research on synthetic data models should consider ensuring that 

small-area estimates are calibrated with external design-based benchmarks.
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