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Szeidl for their invaluable feedback on my work.

Finally, I wish to thank Victoria Farber, Martina Weinhold-Metzner and my family and
friends, especially Moritz Meyer-ter-Vehn for his love, patience and support and Éva and
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Abstract

This dissertation consists of three chapters.
The first chapter, which is written jointly with Lones Smith presents a dynamic model

of deliberation by two privately informed individuals. Even by assuming the coarsest
possible language to communicate information among members, it is shown that the
decision is ‘almost instantaneous’ when individuals have identical objectives. Despite the
coarse syntax, the model also predicts that information aggregation can be quite effective.

The second chapter asks the question under what circumstances can a static voting
mechanism aggregate dispersed information of committee members. I argue that whenever
the voters are able to cast multiple votes, the quality of the joint decision increases. How-
ever, voting mechanisms are intrinsically additive ways of aggregating private information.
This, naturally, is not a binding constraint if the private information is conditionally inde-
pendent. However, if the ‘meaning’ of the private information depends on other members’
signals, i.e. the signals are conditionally correlated, then the joint decision by voting may
be unsatisfactory. I relate this question to a representation problem in utility theory to
derive abstract conditions on the joint signal distribution that are necessary and sufficient
for efficient voting.

The final chapter proposes a game-theory model to study the relationship of margin
and turnout in elections. Common sense suggest that any individual voter is more likely to
participate in a closer election. In an equilibrium model, a closer election is a consequence
of a shift in the preferences of the electorate. A change in preferences may result in a
higher number of voters with strong opinions about the candidates, thus it may directly
influence the number of participating voters. I show that a shift in the preferences of
the electorate decreases the equilibrium margin and increases the equilibrium turnout,
provided that the shift does not decrease the polarization of the preference distribution.
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Chapter 1

Introduction

Decision-making in committees is quite common, such as in juries, tenure committees,
boards of directors, professional panels of doctors or other experts. In the first two chapters
of my dissertation I analyze joint decision-making in committees from a game-theory point
of view. The purpose of a deliberation process can be both to reveal the preferences of the
committee member, as well as to aggregate the members’ private information. I primarily
focus on the aspect information aggregation assuming that the committee members have
aligned interests.

A seminal result on committee decisions, the Condorcet Jury Theorem, claims that
a decision by the majority of a large group is better than the decision made by any of
the individual members (Condorcet (1785)). This is simply because a group of people
overall possesses more information and hence reaches a better conclusion than any of
the individual members. A key assumption of Condorcet’s result is that the committee
members sincerely express their independent opinions. Contrasting this, the paper by
Austen-Smith and Banks (1996) shows that strategic considerations by the committee
members can corrupt the jointly made decision, even if the members’ interests are aligned.

Intuitively, how well the committee members share their private information depends
crucially on the ways in which the members are allowed to convey their information. A
simple one-round voting process does not allow for a sophisticated communication. Hence
one can expect that the inefficiency result by Austen-Smith and Banks (1996) is sensitive
to modeling assumptions. Indeed, in the first two chapters of my dissertation, I suggest
two different extensions of the voting model by Austen-Smith and Banks (1996) and I
argue that as the committee members are able to communicate in a better way, the joint
decision improves. Moreover, I show that whether the full information equivalent decision
can be reached by a voting mechanism depends on the structure of the private information
of the committee members.
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In Chapter 1, I broaden the decision making process into a dynamic mechanism in
which the committee members can consecutively state their opinion about which of the
decisions they think to be better. The member who is the most insisting determines the
final decision. In Chapter 2, I extend the mechanism by allowing multiple votes for each
committee members and I show that multiple votes, similarly to the dynamic extension of
the mechanism, allows for more sophisticated communication among committee members,
hence the overall decision improves.

In the papers of Austen-Smith and Banks (1996), Feddersen and Pesendorfer (1998),
Duggan and Martinelli (2001) and others, it is assumed that the committee members have
conditionally independent private information. However, the committee members are
usually presented the same evidence during deliberation, hence it is plausible to assume
that the members private information is correlated. In Chapter 2, I emphasize that, ad-
ditionally to the insufficient means to communicate private information, the inefficiency
of the joint-decision can be inherent in the structure of the joint private information of
the committee members. Voting is an intrinsically additive method to aggregate private
information. I show that voting is efficient if there is a way to transform the private signals
to votes independently of everyone else’s signal so that the sum of the votes represent
all the relevant information dispersed among the committee members. Given a signal
realization, the relevant information is summarized by the likelihood ratio. Whenever the
signals are conditionally independent, the log-likelihood ratio of a signal profile, which
is a monotone transformation of the likelihood ratio, is the sum of the log-likelihood
ratios of the individual signals. Hence, there is a natural candidate for a voting strategy.
However, committee members are usually presented the same evidence, therefore, it is
plausible to assume that the private signals are conditionally correlated. In this case, the
log-likelihood ratio does not have the above described additive property. Naturally, if there
is another transformation of the signals to votes that has the above mentioned additive
property then voting can be efficient. In Chapter 2, I discuss when such a transformation
exists. More precisely, I provide a conditions on the structure of the private information of
the committee members which is necessary and sufficient to be able conclude the efficient
decision by a voting mechanism.

The final paper addresses how strategic voting affects the outcome of a private value
election, namely the relationship between the election margin and the number of voters
who participate. Common sense suggests that in closer elections the individual incentives
to participate are stronger. A decreasing margin should increase the probability of any
individual vote being pivotal. This is because rational voting decisions are exclusively
based on the comparison between the benefits from voting if the vote is pivotal and the
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costs of voting. However, in an equilibrium model, a closer election is a consequence of a
shift in the preferences of the electorate. A change in preferences may result in a higher
number of voters with strong opinion about the candidates, thus it may directly influence
the number of participating voters. In the language of game theory the question thus
becomes whether the equilibrium turnout increases if the distribution of voters’ preferences
changes in way that causes margins to decrease. As noted by Krasa and Polborn (2008,
footnote 13) this question is, in fact, an open question in the game theoretic literature on
costly voting.

In an equilibrium model of rational voting with a finite population of voters the ques-
tion that I have posed is difficult to address because of the intricacies of analyzing the
comparative statics of the probability with which any vote is pivotal. I propose in this
paper a simplified model in which the mapping that relates turnout and margin into voters’
perception of their probability of being pivotal is exogenous. I construct this mapping so
that it shares some properties with the exact relationship between turnout, margin, and
probability of being pivotal in a model with a finite but large population of voters.

Within this model I show that a shift in the preferences of the electorate decreases the
equilibrium margin and increases the equilibrium turnout, provided that the shift does not
decrease the polarization of the preference distribution. Informally, polarization decreases
if voters move from the extreme ends of the preference distribution to the center of the
preference distribution. The condition that polarization must not decrease is restrictive. It
is, of course, only sufficient. I do not prove that it is necessary, but I do show by means of
an example that, if the condition is violated, the result need not be true. This may explain
why the literature, such as the study by Blais (2000) cited above, finds exceptions from the
rule that decreases in margin lead to higher turnout.
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Chapter 2

We Can’t Argue Forever

2.1 Introduction

Decision-making in committees is quite common, such as in juries, tenure cases, board of
directors, professional panels of doctors or other experts. The purpose of deliberation is to
aggregate the members’ private information. One critical aspect of joint decision making
is its time cost. We assume that individuals wish to make the best decision possible in
the least amount of time. Unfortunately, people with different expertise might find it hard
to efficiently share their information; they might use different terminology that makes it
difficult to understand each other’s argument. That is, we wish to analyze costly committee
decision-making by like-minded individuals who are unable to simply put their private
information ‘on the table’ as it were. In particular, we assume that individuals can only
communicate their information by voting for one of the possible alternatives, i.e. they use
the coarsest possible syntax in the situation.

We model deliberation of like-minded committees by a game of two players who need
to pick one out of two available actions. Each player has private information on which
action is more favorable but they are unable to share this information directly. The process
starts with one of the players stating her opinion about the appropriate action to take. The
other player can either agree or disagree with this opinion. In the first case the game is over
and the corresponding action is executed. In the latter case the players enter a situation
in which both of them insist on their own opinions until one of them gives in. Based on
their private information players could possibly have different opinions about what to do
but before they can act they must reach an agreement. By insisting on her initial choice
a player prolongs the debate but also makes it more likely that her own opinion dictates
the final decision. Realistically, debating is costly. Therefore, players need to trade off the
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costs of longer debate and the benefits of prolonging the decision.
Notice that we simplify the concepts of both the language and the argument. On the

one hand we assume binary message space. On the other hand, detailed arguments are
not considered in the model. The only act that can be convincing for the other player is
sticking to a certain opinion.

In our model two individuals with identical preferences but divergent information can-
not disagree for a long time on a binary decision, even in the case of the coarsest possible
language structure. As the time interval between votes diminishes, the probability that the
final decision is realized in any given real time tends to 1. This result about the length of
the deliberation has the flavor of the Coase Conjecture.1 During the deliberation process in-
formation is revealed in small bits form period to period. We show that as talking becomes
more frequent in the game, almost efficient communication can develop, despite the coarse
language. On the other hand, if we take this model to its limit and allow for continuous
communication, the juror’s incentives to reach a fast decision prevent information sharing
in equilibrium, equilibrium simply does not exist. Our paper suggests that it is impossible
to reconcile delays in committee decision-making with rational, like-minded individuals
with small costs of communication. It should be evident that this result is achieved when
we allow for more sophisticated communication. The only way to understand delay is by
assuming that jury members entertain conflicting objectives.

We explore the monotone structure in the game and establish existence of equilibria.
We think about the deliberation process as a war of attrition game between jurors with
different opinions. This interpretation suggests that waiting in real time is necessary to
signal the strength of opinion. Our finding that the decision is almost instantaneous reveals
that this intuition is not correct.

In a discrete time incomplete information war of attrition game, there are plenty of
unwanted asymmetric equilibria with early or immediate concession by one of the players.
A similar multiplicity is found in our game; we demonstrate that a whole array of equi-
libria is present such that the communication between players terminates ‘too’ early. We
characterize the entire set but for our result about efficient information aggregation, we
focus on the equilibrium with the most efficient communication. Our results show that as
the time between two decision rounds vanishes the decision can be very close to ex-post
efficient. At first glance this finding is intuitive. The players’ preferences are aligned and it
seems that it is in both jurors’ interests to find the best decision given available information.
On the other hand, in our model the communication of the private information is restricted,

1See Gul et al. (1986).

5



as well as costly. Therefore, the effectiveness of the deliberation is not apparent. Players
face a trade-off between refining information, thereby lengthening the decision process
and concluding the debate at once with a poor quality decision. With positive waiting
costs, players are always willing to sacrifice accuracy of the decision for a shorter debate.
Our model shows that this distortion due to the costs is diminishing as the period length
vanishes.

Related Literature. Our project sits between two main areas of research. We aim to
characterize information exchange and decision making in small groups such as juries and
panels of experts, etc. Hence, our paper associates with both the literature on communi-
cation in environments with uncertainty as well as the theory of strategic voting in small
groups. Our title suggests a clear link to the paper by Geanakoplos and Polemarchakis
(1982). They propose and discuss a sequential communication process that leads to a
common posterior as it is emphasized by Aumann (1976). They fix a finite information
partition and show that the repeated communication of the private posteriors leads to an
agreement about the probability of a certain event. By contrast, we make no restriction on
the information partition, and do not allow agents to fully communicate their posteriors.
Rather, we let the players chose their own information partition, essentially, and demand
that they communicate in a binary language. While the communication may last arbitrarily
long, the players in our game do achieve an arbitrarily fast real-time agreement.

The above literature contends itself in finding that the different players finally agree on
a common posterior. We go beyond the setup of Geanakoplos and Polemarchakis (1982)
by explicitly modeling the decision that results from the deliberation. For this reason,
our paper is related to the work by Austen-Smith and Banks (1996) and Feddersen and
Pesendorfer (1998) on strategic voting in juries. Feddersen and Pesendorfer (1998) de-
scribe decision making as a one-round, and hence costless, voting. Surprisingly, they find
that requiring unanimity to convict a defendant can lead to more convictions of innocent
defendants than a majority vote. This is because sophisticated jurors do not naively vote
to acquit if they believe a priori that the defendant is innocent. Rather, they realize that
under the unanimity rule, their votes are only relevant if all the other jurors vote to convict
and update their information accordingly. Although, the model we introduce in this paper
focuses on two-member panels and we do not address the issue of contrasting voting rules,
our results suggest that dynamic mechanisms are more apt than static ones to aggregate
the bits of private information possessed by the group members. Few papers, such as
Coughlan (2000) and Austen-Smith and Feddersen (2006), intend to model pre-voting
communication and reiterate the above result of inferiority of unanimity rule. In their
setup, pre-voting communication is cheap-talk: does not influence the outcome of the
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voting directly and also costless. On the contrary, we see the deliberation as costly repeated
voting where the debate can end at any round with a decision implied.

The structure of the chapter is as follows. Section 2.2 describes the model. In Section
2.3, we establish monotonicity of equilibria and argue for existence. Section 2.4 investi-
gates asymptotic properties of equilibria. We show that the decision is almost instantaneous
and there are equilibria such that the private information of the juror is ‘well’ aggregated.
In Section 2.5, we conclude our findings.

2.2 Model and Preliminary Results

2.2.1 The Dynamic Voting Game

We model the deliberation process of two jurors trying to reach a verdict about a defendant.
We propose the following model of the situation.

Information. There are two states of the world (θ ): the defendant is either guilty (G) or
innocent (I). The common prior belief of G is 0.5. Both jurors have private information
about the state of the world. They observe conditionally iid signals σ i ∈ Σ⊂R. The signal
is informative about the state of the world and drawn from a commonly known distribution
Hθ given state θ with density hθ that is finite and strictly positive in the support. We also
assume that the signal distribution has the strict monotone likelihood ratio property, namely
`(σ i)≡ hI(σ i)

hG(σ i) is strictly decreasing in σ i. Observing a signal σ i, a juror can update his
information using Bayes rule. Her posterior is according to the following equation:

p(σ i) =
hG(σ i)

hG(σ i)+hI(σ i)
=

1
1+ `(σ i)

.

Notice that the posterior is a function of the signal only. Therefore given the conditional
distribution of σ we can derive the conditional distributions FG and F I of the private
posterior. The strict monotone likelihood ratio assumption ensure that the densities f G, f I

exist. Notice that the posterior distribution is such that seeing p a juror must really think
that guilt has the probability p. Formally,

p =
f G(p)

f G(p)+ f I(p)
=

1
1+ `(p)

therefore it is necessary such `(p) = 1−p
p . Also, this condition is sufficient since given Fθ
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we can consider the private posterior as the signal itself.
In the rest of the paper we summarize the private information immediately by pi, the

private posterior of a juror i about state G.2 Given that the signals σ i were conditionally iid,
that the jurors’ posteriors are conditionally iid drawn from Fθ (p) with common support
supp(Fθ (.)) = [p, p] ⊂ (0,1) for θ = G, I. A support being a strict subset of the (0,1)
means that there is an upper bound on the informativeness of the signals. Finally, all these
assumptions are common knowledge among the players. In what follows we refer to the
private posterior (pi) as the type of a juror.

Timing and Strategies. We consider a sequential model of deliberation. In the game
that we propose, the jurors communicate their opinion about the necessary verdict in
turns. Initially (at time zero), one of the jurors (juror 1) decides on either conviction
(C) or acquittal (A). In the next period the other juror (juror 2) has the right to agree or
disagree; an agreement ends the game with the verdict that they both support. In case
of disagreement the first juror talks again; she can either agree with the other juror (by
changing her own opinion) or disagree, etc. In our model jurors cannot choose when to
talk, but are forced to take turns in stating their respective opinions. Denote by N1 the
(even) periods when the juror 1 moves and by N2 the (odd) periods when the juror 2 moves.
We can also refer to the jurors by their roles in the debate. These roles are pinned down
by the first move. If the first vote is for acquittal then the juror 1 becomes the one who
will argue for acquittal in future debate (A-juror) and juror 2 is the one who will argue
for conviction (C-juror). Conversely, if the first vote is for conviction then the roles are
switched. Note that just like in a “War of Attrition” game, players of different opinions
hold out for a while and then eventually give in. Because of this similarity we refer to
the two subgames3 after the roles A-juror and C-juror are assigned as the war of attrition

subgames. However, in contrast to a “War of Attrition”, here the players share the same
preferences over the outcomes, whereas preferences are opposed in a “War of Attrition”.

The deliberation stops as soon as there is an agreement between the jurors about the
necessary action to take. Moreover, the appropriate verdict is immediately delivered after
the agreement. Hence, the only possible histories in the game, beside the null history, are
histories of disagreement. Formally, a possible history is a sequence of actions {dt}T

t=0

such that dt 6= dt+1 where dt ∈ {A,C}. The set of histories is denoted by H , with generic
element hT . The actions at each voting round are: saying either acquit or convict. There-
fore a strategy, that prescribes at any point in the game what to do, is a mapping that

2An example of valid posterior distributions is: F I(p) = 2p− p2 and FG(p) = p2.
3Notice that these are non-proper subgames since they do not start with a singleton information set but

we believe that using this terminology here will not cause problem.

8



assigns to any possible history and type one of the possible actions. Formally a strategy is:
si : [p, p]×H →{A,C}.4

It will be convenient to think about strategies in the war of attrition subgames in two al-
ternative ways. Given assigned roles in the debate, we can define a function τD : [p, p]→N
that indicates the time when the juror gives up arguing (stopping time), where D ∈ {A,C}
marks the first vote in the debate. Alternatively, a strategy defines a partition of the type
space such that the nth subset consists of all the types who stop arguing at period n. For-
mally, for all n ∈ N, TD(n) ⊂ [p, p] stands for the set of the types who stop at period n.
Also, it is useful to refer to the set of all the types who have not yet stopped at period n as
TD+(n).

Payoffs. We assume that both jurors have a common interest in finding the right verdict, i.e.
convict if the defendant is guilty and acquit if the defendant is innocent. As it is standard in
the literature, we normalize the payoffs of the correct decisions to zero while convicting an
innocent defendant costs ρ and acquitting a guilty defendant costs (1−ρ) for both jurors.
We refer to these losses as terminal costs. The value ρ can be interpreted as the reasonable
doubt to convict a defendant. If jurors attach probability higher than ρ to the event that the
defendant is guilty, then they prefer convicting to acquitting. To have a non-trivial problem
we assume that the lowest type ex-ante prefers acquittal while the highest type ex ante
prefers conviction. Formally, ρ ∈ [p, p].

The jurors also face a positive decision cost that is κ > 0 per unit of time or ∆κ per
time period where the length of a period is ∆.5 The overall cost is the sum of the terminal
and the decision costs. Finally, we assume that jurors are risk neutral and cost minimizing.

Before we derive the explicit formula for the total cost we introduce some further
notation. First, let x and y be proxies for the type of juror 1 and juror 2, respectively.
Recall that the jurors do not have fully revealing information about the state of the world.
Therefore the quality of the verdict is evaluated in terms of all the available information.
Recall that `(p) = f I(p)

f G(p) is the likelihood ratio given p. Then by Bayes Rule, conditional
independence, uniform prior and simple algebra the posterior of guilt given the private

4Note that considering only pure strategies is not fully justified at this point. To be precise, one would
need to define mixed strategies. However, in the proof of Lemma 2.1 we show that given any strategy profile
of the opponent, if a certain type of a juror is indifferent between the two actions given a history, then any
other types strictly prefer either one or the other action given the same history. Since there are countably
many different histories and only two possible actions, the consequence of this observation is that in any best
response functions at most countably many type mixes. In a Bayesian game, however, the behavior on a
zero-measure subset of the type space does not influence the payoffs. Thus, for any mixed best response
strategy, there exists a payoff equivalent pure strategy of a juror. Therefore focusing on pure strategies is
without loss of generality.

5Deliberation usually happens on a relatively short time horizon so we believe that modeling the
consequent time cost as a per unit cost is much more appropriate than using discounting.
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signals x and y is:

Prob(G|x,y) =
f G(x,y)P(G)

f G(x,y)P(G)+ f I(x,y)P(I)

=
f G(x) f G(y)P(G)

f G(x) f G(y)P(G)+ f I(x) f I(y)P(I)

=
1

1+ `(x)`(y)
.

Denote by q(x,y) = 1
1+`(x)`(y) this posterior. The expected terminal costs from a verdict

given signal realizations (x,y) are: vA(x,y) = (1−ρ)q(x,y) and vC(x,y) = ρ(1−q(x,y)).
Consider the case when the jurors agree on acquittal. This decision is right if the defendant
is innocent so the related terminal cost is zero. On the other hand, if the defendant is guilty,
an event that has a chance of q(x,y), then the acquittal is the wrong decision and therefore
it costs 1−ρ to both jurors.

The following technical assumption helps the presentation of our results.

Assumption 2.1. The information structure in the game is such that:

vC(p, p) > vA(p, p)⇐⇒ ρ > q(p, p)

i.e. in case of extreme opposite signals, acquittal is preferable to conviction.

Next we derive the the payoffs for a given type and an action of a juror. Fix a type
realization pi, the initial vote and a stopping time t for juror i and a strategy for juror j.
The payoff relevant uncertainty for the juror i are: (i) the opponent’s type and (ii) the state
of the world. The opponent’s type determines the actual time when she gives up debating
which influences both the final verdict and the time of the decision. Given the verdict, the
actual terminal cost is contingent on the state of the world. Notice that the total cost related
to this strategy is necessarily finite: (i) the terminal cost is by definition less than 1 and
(ii) the process concludes the latest at t, so the decision cost is at most t∆κ . Therefore the
payoffs in this game are well defined. First we find the ex-post total cost (for a given state
of the world and a type realization of the opponent) then we take expectations over the
states and finally over the opponent’s type. We focus only on the case when the first vote
is A and to simplify notation we leave out the subscript referring to this.

• Denote by V i(t, p j,θ ,T ) the total cost for a juror i who quits the debate at t in the
war of attrition subgame if the signal realizations is (pi, p j) and the state is θ . Due to
the conditional independence of the jurors’ signals the value of pi does not enter this
expression. Also, recall that we can represent a strategy as the partition it generates
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on the type space. Hence, T refers to the opponent’s strategy in the expression.
• Denote by V i(t, pi, p j,T ) = ∑θ V i(t, p j,θ ,T )P(θ |pi, p j), the expected cost if the

state of the world is unknown.
• The total cost for a juror of type pi who quits the debate at time t in the war of

attrition subgame is:

V i(t, pi,T ) =
∫
T j(0)

V i(t, p j, pi,T )dF(p j|pi). (2.1)

where T(0) stands for the typeset of juror j that is consistent with an initial A vote.
Notice that if j = 2 this refers the whole type space and for j = 1 it refers to the
types voting A at period zero. Also, F(p j|pi) denotes the cdf of the opponent’s type
given own signal pi.

By substituting for the total cost and using the proxies x and y for juror i’s and j’s
signal, respectively, we get the followings:

V 1(t,x,T 2) = ∑
n∈N2,t>n>0

∫
T 2(n)

[vA(x,y)+n∆κ]dF(y|x)+
∫
T 2

+ (t)
[vC(x,y)+ t∆κ]dF(y|x)

V 2(t,y,T 1) = ∑
n∈N1,t>n>0

∫
T 1(n)

[vC(x,y)+n∆κ]dF(x|y)+
∫
T 1

+ (t)
[vA(x,y)+ t∆κ]dF(x|y)

The first terms in the above equations represent the cost in case the opponent gives in at
a period n < t so the juror wins the argument. The second term represents the cost if the
juror gives in first, i.e. the opponent has not yet stopped by period t.

For example, the total expected cost for the juror 1 if she is an A-juror with a type x

who plans to hold out until t is the following: (i) if the opponent’s type y is such that she
stops prior to t then the realized verdict is A so the expected terminal cost is vA(x,y) and
the decision cost is according to the opponent stopping time; (ii) if the opponent’s type
is such that she would only stop after t then the realized verdict is C with an expected
terminal cost equal to vC(x,y) and the deliberation ends at t with a decision cost t∆κ .

Equilibrium Concept. We consider Perfect Bayesian Equilibria of the dynamic game of
incomplete information as defined above.

2.2.2 Monotonicity

Next, we explore the monotone structure of the game. Monotonicity allows us to think
about the strategies as vectors of the critical types.

We model the committee decision as a war of attrition game preceded by an initial
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round that decides the sides in the debate. Our intuition in this setup is that, after taking
sides, a juror with a more extreme posterior waits longer before agreeing to the verdict
favored by the opponent than a juror with a less extreme posterior. Notice that the jurors
can choose between learning more about the posterior of the opponent or concluding
the debate immediatly. This translates to a trade-off between obtaining information that
possibly improves the decision and paying the cost of the decision making. We think that a
juror with more extreme posterior finds it more valuable to refine the decision so is willing
to ‘pay’ more for it.

First, we show that each juror’s best response is monotone no matter the opponent’s
strategy. Results of this flavor usually follow from the single crossing property of the
payoff function in action and type. We can phrase this property more intuitively: if players
are arranged according their types then if a player ‘weakly prefers’ an action to an other
action that implies that anyone with ‘higher’ type must strictly prefer the same action
compared to the other action.

This is not quite obvious in our story. First, consider a case when a juror prefers to
stop at n+2 over stopping at n, i.e. her expected cost decreases by switching from n to
n+2. By doing this, she changes the outcome of the voting with some probability and by
assumption that change is favorable for her. On one hand, the same change in the outcome
is more ‘valuable’ for a more extreme juror; on the other hand a more extreme juror might
find it less likely that the change actually happens. Therefore, the overall effect on the
expected cost is unclear. Fortunately, on balance we found a favorable effect.

A delay improves the quality of the verdict in one state of the world and worsens it in
the other state of the world. For example, insisting on conviction adds to the probability
that the final verdict is convict which is correct if the defendant is guilty but is incorrect if
the defendant is innocent. Considering the necessarily increasing decision cost, a delay in
the above example might decrease the total cost if the defendant is guilty and definitely

increases total cost if the defendant is innocent. A juror finds it profitable to insist on
convict if (i) the drop in terminal cost is worthwhile the waiting costs in case of a guilty
defendant and if (ii) she is convinced enough of the guilt of the defendant. If both condi-
tions hold then all the types who are even more optimistic about guilt prefer to delay as
well. Therefore a type with a higher posterior will optimally hold out for at least as long as
a one with a lower posterior. The key assumption for the monotonicity argument is that the
signals are affiliated, a condition which in this setup follows from assuming conditional iid
signals.6

6The definition for affiliation is the following: for any x′ > x and y′ > y, f (x′,y′) f (x,y) ≥
f (x′,y) f (x,y′). By conditional independence of the signals we can write: f (x,y) = f G(x) f G(y)P(G) +
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The same reasoning is not valid for the period 0 decision. Holding out in the war
of attrition subgame simply means that a juror repeats her vote, say for convict, and by
doing so she increases the chance of that particular verdict. At period 0, on the other hand,
whether a certain vote does increase the chance of the same verdict is unclear. Voting for
convict instead of acquit at period 0 does not necessary make a convict verdict more likely
since the final decision depends on the opponent’s strategy as well. It is possible, although
quite unintuitive, that the juror 2 considers a convict vote by the juror 1 at period 0 as a
signal supporting innocence. Therefore she insists more on acquit than she would do in
case of acquit as a first vote. This behavior of the juror 2 would induce the juror 1 to follow
the unintuitive monotone strategy such as opening the debate with a convict vote if she is a
low type and with an acquit vote is she is a high type. Finally, to finish up the argument, the
above unintuitive best response of the juror 1 makes juror 2’s belief consistent. Although
we believe that the asymptotic properties of these irregular equilibria are aligned with the
ones of the intuitive equilibria, we simply exclude them from the analysis.

Next we define our monotonicity concept and present the formal statement and proof.
The definition describes that jurors with more extreme signal hold out longer or to put
differently, all types who stop at a certain period must have a more extreme signal than the
ones stopping prior to that period.

Definition 2.1 (Monotone Strategy). A strategy is monotone if more extreme types hold

out longer. Formally, for a C-juror if

τC(p′)≥ τC(p) iff p′ > p

and for an A-juror if

τA(p′)≥ τA(p) iff p′ < p.

The following statements ensure that we can refer equilibrium strategies by the vector
of critical types that are indifferent between stopping and waiting an additional round.

Lemma 2.1 (Monotonicity).

1. In the war of attrition subgame, for any strategy of juror j, the best response of
juror i is monotone.

2. All equilibria in a war of attrition subgame are such that if there are types who give
in at time t then there are either types who give in at time t ′ for all t ′ < t or the
verdict is delivered with certainty by t.

f I(x) f I(y)P(I) = f G(x) f G(y)P(G)[1 + `(x)`(y)`0]. Therefore the signals are affiliated if [1 +
`(x′)`(y′)`0][1 + `(x)`(y)`0] ≥ [1 + `(x′)`(y)`0][1 + `(x)`(y′)`0] equivalently `(x′)`(y′) + `(x)`(y) ≥
`(x′)`(y)+`(x)`(y′) and equivalently [`(x)−`(x′)][`(y)−`(y′)]≥ 0 which is an identity in our setup knowing
that `(p) = 1−p

p so that p′ > p⇒ `(p) > `(p′).
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Proof. 1. Without loss of generality, we give the proof for an A initial vote and to
simplify notation, we abandon the subscript referring to this. Recall that the total
cost for juror i with a type pi who quits at t is:

V i(t, pi,T ) =
∫

V i(t, p j, pi,T )dF(p j|pi).

where T refers to the opponent’s fixed strategy. We show our result for a juror 2
who insists on conviction. All the other cases are similar. We assume a fixed strategy
of the opponent characterized by the partition T but to simplify notation we will
not have it apparent in the following expressions. Also, to reduce the number of
confusing typos we replace the notation pi and p j and refer to the players private
posterior as x and y for juror 1 and 2 respectively. Next, we make the dependence of
the total cost on the state of the world more explicit:

V 2(t,y) = ∑
θ

∫
T (0)

V 2(t,x,θ ,y)P(x,θ |y)dx

= ∑
θ

(∫
T (0)

V 2(t,x,θ ,y)dFθ (x)
)

P(θ |y) (2.2)

where the second equality is due to the fact that the signals are iid conditional on
the state. Also, V 2(t,x,θ ,y) does not depend on y so from now on we only use
V 2(t,x,θ). Then the change in the total cost if a juror holds out until t ′ instead of t
where t ′ > t can be decomposed in the following way:

V 2(t ′,y)−V 2(t,y) = ∑
θ

(∫
T (0)

(V 2(t ′,x,θ ,y)−V 2(t,x,θ ,y))dFθ (x)
)

P(θ |y)

=
(∫

T (0)
(V 2(t ′,x, I)−V 2(t,x, I))dF I(x)

)
(1− y)

+
(∫

T (0)
(V 2(t ′,x,G)−V 2(t,x,G))dFG(x)

)
y.

We show that if a type y prefers stopping at t ′ to stopping at t then all types y′ > y
also prefers stopping at t ′ to stopping at t. Namely if

V 2(t ′,y)−V 2(t,y)≤ 0

i.e. the expected cost decreases when quitting is delayed to a later period, then for
all y′ > y

V 2(t ′,y′)−V 2(t,y′) < 0.

A delay by a C juror increases expected cost if the state is I: the decision cost rises
with some probability and also the incorrect, convict verdict is made with higher
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chance. Formally this means that:∫
T (0)

(V 2(t ′,x, I)−V 2(t,x, I))dF I(x) > 0.

By assumption, the difference in the total cost for y is non-positive, therefore∫
T (0)

(V 2(t ′,x,G)−V 2(t,x,G))dFG(x)≤ 0.

In this way, we can conclude that the cost difference decreases in the own posterior
if that posterior is high enough. If a delay is profitable for some types then it is
profitable for all the more extreme types, hence stronger types optimally hold out
at least as long as weaker types. Notice that this result does not rely on any special
property of the other’s strategy. Therefore any best response in a war of attrition
subgame is monotone in the above defined sense.

2. We need to show that in equilibrium if T i(t) 6= /0 then either ∀t ′ < t, T i(t ′) 6= /0 or
there exists an t ′′ < t such that T j

+(t ′′) = /0.
We prove this by contradiction. We assume that T i(t) 6= /0 and T i(t−1) = /0 and
show that this is impossible unless T j

+(t−1) = /0. This will be sufficient to prove
our statement that is stronger since we can repeat this step again and again.
Consider the value difference as a juror holds out until t instead of t−2. For all types
who prefer stopping at t compared to t−2 this value difference must be negative, i.e.
the total costs must decrease. By our assumption, there are types like that.
Recall the value difference conditional on the state. We can decompose this differ-
ence to the sum of the change in terminal cost and in the decision cost. Without loss
of generality we again assume a juror 2 who insists on conviction.∫

T 1(0)
(V 2(t,x,θ)−V 2(t−2,x,θ))dFθ (x) =∫

T 1(t−1)
(u(C,θ)−u(A,θ)+∆κ)dFθ (x) +

∫
T 1

+ (t−1)
2∆κdFθ (x).

Notice that if the set T 1(t−1) is empty and the set T 1
+ (t−1) is non-empty then

the conditional value differences are both strictly positive and there is no type y
such that the appropriate convex combination of those will lead to a negative value.
Therefore no type can prefer stopping at t over stopping at t−2.

Corollary 2.1. All equilibria in a war of attrition subgame are in monotone strategies.

We have demonstrated that all equilibria in the war of attrition subgame are monotone
in the sense that if a type y weakly prefers to hold out with her convict vote instead of
giving in at t then any types y′ > y strictly prefer to hold out with a convict vote at period t.

Similarly, if a type x weakly prefers to hold out with her acquit vote instead of giving in
at t then any types x′ < x strictly prefer to hold out at period t. Thus any best response
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strategy can be represented by the vector of indifferent types.
A similar argument can show that the juror 1 at period zero follows a cutoff strategy in

equilibrium. Given the strategies in the war of attrition subgames, we can calculate the
payoff difference if the juror 1 votes for convict at period zero instead of acquit. Again,
this payoff difference can be written as the weighted sum of the payoff differences given
the state of the world. Since the conditional payoff differences do not depend on the
juror 1’s type, we can conclude that if a type x is indifferent then all types x′ < x strictly
prefer one action while all types x′ > x strictly prefer the other action. However, here we
cannot pin down the signs of the conditional payoff differences. Those depend on the
actual strategies in each subgame. As we argued before, it may happen that all types x′ > x

actually prefer to vote for acquit while all types x′ < x prefer to vote for convict, hence the
period 0 strategy is counterintuitive.

In the remaining part of the paper, we only concentrate on equilibria such that the
period 0 behavior is ‘regular’.

Assumption 2.2. We restrict attention to a subset of all Perfect Bayesian Equilibria such

that at time zero the strategy is intuitive in the sense that higher types are voting for

conviction.

Corollary 2.2 (Vector Representation of the Strategies). All equilibria satisfying the in-

tuitive assumption above, are monotone and can be referred to by the vector of critical

types.

Denote the vector of critical types by p such that the nth element, pn is the indifferent
type between giving in to the other’s opinion at the nth period or holding out for two more
periods in the hope of changing the decision. Moreover, p0 is the type who obtains the
same payoff saying A or C at period 0.

2.3 Equilibrium Analysis

In this part we demonstrate that there are multiple equilibria in the game if the jurors can
move frequently enough, i.e. the period-length ∆ is small enough. We start the analysis
with providing a few examples of those equilibria. The way we suggest a sequence of
equilibria is informative in terms of characterizing the entire set. During the deliberation,
the jurors communicate the strength of their opinion and at the same time they learn about
the opponent’s type. Unfortunately, this communication can fail too soon along the debate,
since either of the jurors prefers to rush into a decision if she believes that the other will
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stop reacting to information in the future rounds. In what follows, we explain the worst
case scenario and then we suggest a possible way to improve on the communication such
that it results in a ‘better’ equilibrium. After presenting the examples we turn to a general
treatment of equilibria. We show that the jurors necessarily reach a verdict after finitely
many rounds of communication.

2.3.1 Examples of Equilibria

Period-1 Equilibrium. First, we establish an equilibrium such that the decision is made
with certainty by period 1. In this equilibrium, in period zero the juror 1 proposes her
favored verdict based on her own information and insists on this verdict forever. Given
this stubborn behavior the best response of juror 2 is to give in immediately as disagreeing
would be a waste of time only. We can determine this equilibrium by finding the type (x0)
of juror 1 who is indifferent between voting for A and C in period 0. Figure 2.1 illustrates
this equilibrium.

The above strategies can be formalized in the following way: x0 = xn for all n ∈ N1 and
y1 = p in the C-subgame and y1 = p in the A-subgame. Given the strategy x of the juror,
the strategy of the juror 2 is optimal since any further delay only increases the decision
cost but does not change the verdict. The total cost for juror 1 with private posterior x is:∫ p

p (1−ρ)q(x,y)dF(y|x)+∆κ if she votes A and it is
∫ p

p ρ(1−q(x,y))dF(y|x)+∆κ if she
votes C. Therefore, the critical type x0 is defined by

∫ p

p
(ρ−q(x0,y))dF(y|x0) = 0. (2.3)

As the game is without delay, the value of x0 is independent of the actual period length.

Lemma 2.2. A unique period 1 equilibrium exists.

Proof. I have shown the indifference condition for the juror 1 since it gives the idea how I
approach further equilibria. However, there is an easier way to find a period 1 equilibrium.
Notice that juror 2’s action has no information content. Thus, for a juror 1 of type x,
announcing acquit has the expected cost of (1−ρ)x+∆κ while announcing convict has
the expected cost of ρ(1− x)+ ∆κ . Hence, in the period-1 equilibrium the indifferent
juror 1 has a signal equal to ρ and uniqueness naturally follows.

Period-2 Equilibrium. Notice that the period-1 equilibrium is unfit to aggregate private
information, i.e. the signal of the juror 2 is not at all considered for the final decision. We
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argue that this equilibrium can be ‘refined’ into a period-2 equilibrium if the period-length
is sufficiently small. The necessity of an upper bound on the period-length for this result
is quite intuitive. The jurors cannot possibly improve on the terminal cost by more than
max{q,1−q}< 1. Therefore no one is willing to sacrifice more than 1 in decision costs
to get a possibly better decision. Hence, if ∆ > 1/κ then it is never optimal for the juror 2
to disagree. Next, we assume that the period-length is sufficiently short and we consider a
refined strategy of the juror 2 such that types with high enough posteriors do not agree with
a juror 1 supporting acquit but rather vote convict and insist on conviction forever. At the
same time, the juror 1’s strategy can be modified such that all the types who initially voted
acquit can be convinced to switch to convict if the opponent is insisting on that decision.
With appropriate critical types these strategies form an equilibrium. Figure 2.2 illustrates
this example.

The above strategies can be formalized in the following way. For the juror 1, x0 is
the type who is indifferent between voting for A and C at period 0 and all xn = x0 in
the C-subgame and all xn = p in the A-subgame. For the juror 2, y1 is the type who is
indifferent between giving in and holding out at period 1 and all yn = p in the C-subgame
and all yn = y1 in the A-subgame. The values x0 and y1 form an equilibrium if they satisfy
the following system of equations:

x0 :
∫ y1

p
(ρ−q(x0,y))dF(y|x0) = ∆κ(1−F(y1|x0))

y1 :
∫ x0

p
(q(x,y1)−ρ)dF(x|y1) = ∆κF(x0|y1)

The first equation characterizes the type of the juror 1 who is indifferent between voting
for A or C in the initial period. If juror 2 follows the strategy described above then a C vote
by juror 1 at period 0 triggers an immediate agreement so the convict verdict is delivered
in period 1. On the other hand, an A vote at period 0 triggers (i) an agreement on acquittal
in period 1 with a certain probability (equal to the probability that juror 2 has a lower
posterior than y1) and (ii) an agreement on conviction in period 2 with the complementary
probability. Therefore, if juror 1 switches from C to A, (i) her action might change the
verdict from convict to acquit if the juror 2 happens to have a posterior lower than y1 and
(ii) her action possibly extends the debate by one period if the juror 2 happens to have a
posterior higher than y1. We refer to the drop in the total cost due to the refined decision
as the marginal gain while the additional decision cost due to the prolonged debate is the
marginal loss associated to this choice.

Note that the critical type x0 in this example is higher than the similar critical type in
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the period-1 equilibrium. This is due to the fact that the juror 2 insists on a convict verdict
in cases of strong signals, hence reduces the risk of acquitting a guilty defendant. As a
consequence the juror 1 does not need to be so concerned about this scenario as in the
period-1 equilibrium.

We can interpret the second equation in a similar way. By switching from A to C,
juror 2 (i) changes the final verdict if juror 1’s type is lower than x0 and (ii) extends the
debate by one period if juror 1’s type is lower than x0.

Finally, we show that a Period 2 equilibrium exists for low enough ∆.7

Lemma 2.3. A Period-2 equilibrium exists for sufficiently low period-length.

Proof. First, we rewrite the indifference conditions.

x0 : ρF I(y1)(1− x0)− (1−ρ)FG(y1)x0 = ∆κ(1−F(y1|x0))

y1 : (1−ρ)FG(x0)y1−ρF I(x0)(1− y1) = ∆κF(x0|y1).

Then, using the fact that F(pi|p j) = FG(pi)p j +F I(pi)(1− p j) we can further modify the
system above:

x0 : (ρ +∆κ)F I(y1)(1− x0)− (1− (ρ +∆κ)FG(y1)x0 = ∆κ

y1 : (1− (ρ +∆κ))FG(x0)y1− (ρ +∆κ)F I(x0)(1− y1) = 0.

The first equation implicitly defines the best response of juror 1 given a strategy of the
juror 2 (BRx) while the second equation implicitly defines the best response of juror 2 given
a strategy of the juror 1 (BRy). The best responses are continuous. To prove existence, we
show that (i) BRx(p) > BR−1

y (p) and (ii) if we define x and y as the ‘fixed points’ of the
best responses, i.e. BRx(x) = x and BRy(y) = y then x < y. Then, by the continuity of the
best response functions the existence of a period-2 equilibrium is implied.

If y1 = p then the indifferent type of juror 1 is x0 = ρ . Also to make y1 = p to be the
critical type of juror 2, x0 must satisfy: `(p < x0)`(p) = `(ρ +∆κ), where `(p < x)≡ F I(x)

FG(x) .
By Assumption 2.1 for low enough ∆κ , an x0 like this exists and is less than ρ .

Define x and y such that

(ρ +∆κ)F I(x)(1− x)− (1− (ρ +∆κ)FG(x)x = ∆κ

(1− (ρ +∆κ))FG(y)y− (ρ +∆κ)F I(y)(1− y) = 0

7Unfortunately, we were not able to show the uniqueness of this type of equilibrium.
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Dividing the equations by FG(x)x and FG(y)y respectively and summing them up we get
that

(ρ +∆κ)(`(p < x)`(x)− `(p < y)`(y)) =
∆κ

FG(x)x
> 0

Therefore `(p < x)`(x)− `(p < y)`(y) > 0 and this implies that x < y since the likelihood
ratio is decreasing.

Period-3 Equilibrium. For short enough period-length we can further refine the period-2
equilibrium. Notice that in the period-1 equilibrium, the juror 1 declares her opinion
and insists on it forever. In the period-2 equilibrium there is a similar persistence in the
behavior of the juror 2. Once she casts a vote for conviction she insists to it forever. To
construct a period-3 equilibrium, we make the juror 2’s behavior more cooperative and
instead we assume that there are certain types of juror 1 who hold on their initial vote
forever. In particular, we assume that a juror 2 might disagree in period 1 but definitely
gives in at period 3 latest. At the same time a juror 1 will not change her opinion after
period 2. These strategies can be formalized by determining the critical values: x2,x0 and
y1. The following conditions specify those values (yet different from the values of x0 and
y1 in the above examples).

∫ p

y1

(ρ−q(x2,y))dF(y|x2) = ∆κ(1−F(y1|x2))∫ x0

x2

(q(x,y1)−ρ)dF(x|y1) = ∆κ[F(x0|y1)+F(x2|y1)]∫ y1

p
(ρ−q(x0,y))dF(y|x0) = ∆κ(1−F((y1|x0))

One can interpret these equations in a similar way than the indifference conditions before.
They ensure that the additional gain from switching ones vote at a certain period is equal
to the extra costs due the switch. Figure 2.3 illustrates the period-3 equilibria.

Our examples suggest that for short enough period-length, there can be equilibria in
which the verdict is delivered by the nth period. Namely, at least one of the juror’s strategy
is such that by n all the types are quitting the debate. A strategy of this kind can be optimal
(i) if the juror believes that there is no way to convince the opponent, i.e. she is simply
stubborn or (ii) if the juror is already very much convinced that the opponent’s opinion is
correct. There is a normative difference between these two situations. In the first scenario,
although both jurors are aware that there is information out there that should be considered
(given the cost of communication) they do not do it. Simply put, one juror’s strategy
is insensitive to information (stubborn) and therefore the other juror does not provide
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information just agrees (accommodate) and thereby concludes the debate. In the second
scenario, all the information that is profitable to consider is considered.

Moreover, starting from an equilibrium in which communication collapses too early, it
is possible to introduce additional informative rounds in the following way. First, we relax
the stubbornness of the appropriate juror, then we allow for best response iteration. This
process may converge to a new equilibrium such that the number of rounds are increasing.
This argument holds in the war of attrition subgame starting with am A vote or with s C

vote or even in both subgames at the same time. Refining an equilibrium is possible again
and again until we reach detailed enough communication. Next, we formalize the above
intuition about the finite monotone strategies. Let x and y denote a strategy of juror 1 and
2, respectively. A certain type of juror is stubborn if that particular type insists on one of
the actions all along the game and there is no history convincing enough to change her
vote. This term is defined for a realization of the signal so it is possible that some types
of a juror behave stubborn while others do not. We call a strategy stubborn if there are
types who cannot be convinced. We classify stubborn strategies according to the time
period when they become insensitive to information provided by the opponent. A strategy
is accommodating if at some period all the types give in to the opponent. We classify
accommodating strategies according to their ‘length’ as well.

Definition 2.2 (Stubborn / Accommodating Strategy). We define the following finite strate-
gies in the game:

• We call a monotone strategy n-accommodating if any type of the juror insist at most
until period n. Formally, if pn−2 < pn = pn+2 · · ·= p (or p).
• We call a monotone strategy m-stubborn if the juror never changes her opinion after

period m. Formally if pm−4 < pm−2 = pm = pm+2 · · ·< p (or p).

Using these strategies we can characterize the finite equilibria of the dynamic voting
game.

Definition 2.3 (Finite Equilibria). We call an equilibrium period-n equilibrium if one

player plays an (n+1)-stubborn strategy while the other plays n-accommodating strategy.

A period-n equilibrium produces verdict by period n with certainty.

Although in general, we refer to the strategies as an infinite dimensional vector of the
critical types, when talking about the m-stubborn or the n-accommodating strategies, we
only mention the distinct critical types.
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2.3.2 Properties of the Equilibria

A type y of juror 2 is indifferent at period n, such that n ∈ N2 if∫ xn−1

xn+1

(q(x,yn)−ρ)dFn−1(x|yn) = ∆κ +∆κFn−1(xn+1|yn).

where the Fn−1(p1|p2)≡ F(p1|p2, p1 < xn−1). This equation contrasts the additional gains
and losses related to a further delay at a certain period n. A delay has an effect on the final
verdict if and only if the opponent happens to be one of the types who are just about to
give in. On the flip side, the decision cost increases for sure by a delay. Given the signal
realizations x,y, the gain from changing the verdict can be represented as the difference
between the reasonable doubt and the public posterior. Particularly, the gain if the verdict
changes form A to C is: vA(x,y)− vC(x,y) = q(x,y)−ρ while if the verdict changes from
C to A, the it is: vC(x,y)− vA(x,y) = ρ−q(x,y). The total gain for a juror is the expected
value of this function with respect to the opponent’s type, x. The increase in the decision
cost is more straightforward. It is ∆κ for sure and an additional ∆κ if the opponent does
not give in immediately.

A sequence of similar indifference conditions characterize the equilibria. We argue
that the equilibrium strategies must be ‘embedded’ in the sense that types whose private
information offsets each other should give in in consecutive periods. Intuitively, there is
no reason to hold out if it is sure that the opponent has an extreme enough signal to make
her preferred decision better overall. The flip side of this coin is that costly deliberation
induces jurors to stop before a ‘sufficient’ amount of information is acquired for doing so.
To maintain the equilibrium, each juror should provide enough incentive for the opponent
not to give in too early. This intuition is formalized below.

Definition 2.4 (Signal Strength). A signal x is at least as A-strong as y or x �A y, if

q(x,y)≤ ρ . In other words, if x is A-stronger than y then the jurors prefer acquittal ex-post.

Similarly, a signal y is at least as C-strong as x or y�C x, if q(x,y)≥ ρ . In other words, if

y is C-stronger than x then the jurors prefer conviction ex-post.8

We show that in equilibrium the cutoff type at period n cannot be stronger, in the sense
of the definition above, than the one in period n+1. Not having this, allows for profitable
deviation, the indifferent type at n will strictly prefer to agree with the other juror. She is
compelled to do so since waiting until n+2 increases both the terminal and the decision
cost for her, thus it is strictly dominated. The following lemma proves this.

8Notice that equivalence in this ordering gives us the types those are offsetting each other.
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Lemma 2.4. For any ∆, in equilibrium xn �A yn−1 ∀n ∈ N1 and yn �C xn−1 ∀n ∈ N2.

Proof. (by contradiction) We only prove that yn �C xn−1, the other case is similar. Assume
yn �C xn−1 where n ∈ N2 and show that a type yn strictly prefers stopping at n to n + 2.
Consider the indifference condition:∫ xn−1

xn+1

[q(x,yn)−ρ] f (x|yn)dx = ∆κ [F(xn+1|yn)+F(xn−1|yn)]

By monotonicity, yn �C xn−1 implies that yn ≺C xn+1, so for any x ∈ [xn−1,xn+1],
q(x,yn) ≤ ρ . Therefore, the LHS is strictly negative, so yn strictly prefers stopping at
n.

Next, we show that the marginal gain for the indifferent C-juror is proportional to
|x∆

n−1− x∆
n+1|2, while the marginal cost is proportional to ∆. Hence, the indifference con-

dition forces |x∆
n−1− x∆

n+1| to approach zero slower than ∆. In the following, we need to
index the critical types with the period-length.

Lemma 2.5. For all α > 0 there exists ∆α > 0 such that |x
∆
n−1−x∆

n+1|
∆

> α for all ∆ < ∆α , if

n ∈ N2.

Proof. Let us start the proof with defining the type that offsets the highest posterior.

Definition 2.5. For a given ∆, define ζ such that

q(ζ , p)−ρ = 0. (2.4)

By the Assumption 2.1, the value ζ > p exists.
By Lemma 2.4, we know that in equilibrium x∆

n+1 �A y∆
n �C x∆

n−1, ∀n ∈ N2. So there
exists ξ ∆

n ∈ (x∆
n+1,x

∆
n−1) such that q(ξ ∆

n ,y∆
n ) = ρ . By the definition of y∆

n , the following
must hold:

∫ x∆
n−1

x∆
n+1

[
q(x,y∆

n )−ρ

]
f (x|y∆

n )dx = ∆κ

[
F(x∆

n−1|y∆
n )+F(x∆

n+1|y∆
n )
]
. (2.5)

The LHS of (2.5) gives us the marginal gain from waiting, i.e. how much the terminal cost
decreases in expectation while the RHS of (2.5) describes the expected increase in decision
cost. Next, we compare them and an find upper bound for the LHS and a lower bound for
the RHS. Notice that for low x, q(x,y∆

n ) < ρ . So the terminal cost actually increases by the
delay and the marginal gain is negative, while for high x, the opposite holds. It turns out
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to be convenient to separate these effects. Using the definition of ξ ∆
n , the marginal gain∫ x∆

n−1
x∆

n+1

[
q(x,y∆

n )−ρ
]

f (x|y∆
n )dx equals:

∫
ξ ∆

n

x∆
n+1

[
q(x,y∆

n )−q(ξ ∆
n ,y∆

n )
]

f (x|y∆
n )dx +

∫ x∆
n−1

ξ ∆
n

[
q(x,y∆

n )−q(ξ ∆
n ,y∆

n )
]

f (x|y∆
n )dx

=
∫ x∆

n−1

ξ ∆
n

[∫ x

ξ ∆
n

qx(ξ ,y∆
n )dξ

]
f (x|y∆

n )dx −
∫

ξ ∆
n

x∆
n+1

[∫
ξ ∆

n

x
qx(ξ ,y∆

n )dξ

]
f (x|y∆

n )dx

<
∫ x∆

n−1

ξ ∆
n

[∫ x

ξ ∆
n

qx(ξ ,y∆
n )dξ

]
f (x|y∆

n )dx <
∫ x∆

n−1

ξ ∆
n

q̄x(x∆
n−1−ξ

∆
n ) f̄ dx

< q̄x f̄ (x∆
n−1−ξ

∆
n )2

where first we used qx(x,y) > 0 and then that qx(x,y) and f (x|y) are bounded above for
x,y ∈ [p, p], with bounds q̄x and f̄ , respectively.

Also, for the marginal cost (RHS of (2.5))

∆κ

[
F(x∆

n−1|y∆
n )+F(x∆

n+1|y∆
n )
]

> ∆κ2F

where F is a lower bound for F(x|y), this exists since x∆
t > ζ .

Therefore, we can conclude that the upper bound for the marginal benefit is bigger
than the lower bound for the marginal costs.

q̄x f̄ (x∆
n−1−ξ

∆
n )2 > ∆κ2F .

Hence, we find that

|x∆
n−1− x∆

n+1|
∆

>
|x∆

n−1−ξ ∆
n |

∆
>

A√
∆

, (2.6)

where A2 = 2κF
f̄ q̄x

> 0 and the first inequality follows by Lemma 2.4.
Lemma 2.5 shows that in equilibrium two consecutive critical types are well apart.

Next we provide an alternative approach for the existence of equilibria and using the fact
that the game is common valued and that all equilibria are finite.

Theorem 2.1. A strategy profile that minimizes the expected costs is a Bayes - Nash

Equilibrium and such a profile exists for any ∆.

Proof. PART 1: In any common value game a welfare maximizing strategy is necessary
equilibrium. Assume on the contrary that given a welfare maximizing profile, there is
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an alternative strategy of a player that leads to higher payoff for her. Then, the common
welfare increased and that is a contradiction.

PART 2: By Lemma 2.5, for any ∆ there exists a constant A such that the distance be-
tween two consecutive critical type is at least A

√
∆. Hence, the number of the deliberative

rounds is necessary less than 1
A
√

∆
. Therefor we restrict attention to finite strategies when

searching for a cost minimizing strategy profile. Finite strategies can be represented by
finite dimensional vectors. Hence, any cost minimizing profile is a solution of a finite
dimensional minimization problem and such as it necessarily exists.

2.4 Asymptotic Properties

After describing the equilibrium set, we show the asymptotic properties of the equilibria as
the period-length approaches zero. Our results discuss the real time length of the debate
as well as the quality of the decision made as the communication gets more frequent. We
are interested (i) if a real time waiting is necessary to signal the strength of ones opinion
and (ii) whether the deliberation process sufficiently aggregates private information. Our
conclusion is that the jurors can signal their information effectively during a very short
period of time. This implies that even in the equilibrium in which the deliberation takes
the longest time the verdict is delivered quite fast. We also demonstrate that there is an
equilibrium that leads to a decision close to the ex-post efficient one.

Earlier we conceptualized a strategy as a partition implied on the signal space. By
the monotonicity of any equilibrium strategies, the subsets in the partition are intervals
bounded by the consecutive indifferent types. Intuitively, the frequency of those critical
types displays the detailedness of the communication in equilibrium. Therefore, how fine
does the equilibrium partition become as the period-length vanishes reveals our asymptotic
results. We argue that as ∆ goes to zero the partition might become detailed but at a lower
rate than ∆.

2.4.1 The Length of the Deliberation

We aim to estimate the length of deliberation, i.e. the length of time that elapses before the
conclusion is made. We find, in spirit of the Coase Conjecture, that as the time-interval
shrinks the delay vanishes too. Formally, we demonstrate that by any real time T , the
decision has been made by this time if the period length is small enough.
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Proposition 2.1. For any T > 0 there exists a period-length ∆T > 0 such that the jurors

reach a verdict with certainty by T whenever the period length ∆ < ∆T .

Proof. By Lemma 2.5, there exists a constant A such that the distance between consec-
utive indifference types is at least A

√
∆, hence the number of the deliberative rounds is

necessarily less than 1
A
√

∆
. Thus the total time to verdict is less than

√
∆

A . Consequently, for
a period-length shorter than T 2A2 the verdict is reached in T real time.

2.4.2 The Efficiency of the Verdict

In this section, we evaluate the deliberation process in terms of how well it aggregates the
private information that is available to the jurors. As it is shown earlier in the paper, there
are multiple equilibria in the game. We emphasized that in most of them the communica-
tion terminates too soon. For certain signal realizations the jurors rush into the decision
without being sufficiently convinced about the correctness of the final verdict because they
believe that arguing is just a waste of time. Certainly, those equilibria do not lead to good
information aggregation.

We argue that, at the same time, there exists an equilibrium that aggregates information
quite effectively. This equilibrium is special in the sense that it is without communication
break-down, i.e. at the time of giving in the highest possible type is quite convinced that
the opponent votes for the correct decision.

Importantly, this feature forces all the critical types to be very close to be convinced
at the point of giving in. Due to the aligned interests of the jurors this ensures that the
decision is likely to be very good.

We call a decision ex-post efficient if the jurors conclude the verdict they would choose
had all the private information been public.

Definition 2.6 (Efficiency). The verdict d(x,y) is ex-post efficient if

d(x,y) =


A if q(x,y) < ρ

A or C if q(x,y) = ρ

C if q(x,y) > ρ.

Note that the ex-post efficient decision may still be mistaken since the true state of the
world is not known to the jurors. However, this is a risk that the jurors cannot avoid since
their information is never fully revealing. Also, for every signal realization, except from a
zero-measure subset, there is a unique ex-post decision. Hence, the sets of ex-post and
ex-ante decision rules coincide. We show that the verdict can be asymptotically efficient
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as the period-length vanishes, in the sense that the probability of the signal realizations for
which the verdict is not efficient goes to zero. In another way, the expected welfare loss
due to insufficient information aggregation goes to zero. However, this does not mean that
for every possible type realizations the verdict is necessarily the efficient one.

The following lemma is technical and helps in the proof of the main theorem of this
section.

Lemma 2.6. There exists a constant A so that for all X ,Y such that X = [x,x] and Y = [y,y]
and X ,Y ⊂ [p, p]: ∫

X×Y
f (x,y)dxdy≤ A

∫
X

f (x)dx
∫

Y
f (y)dy.

Proof. Recall that the conditional densities are bounded. Denote by k and K these bounds,
i.e.for all p ∈ [p, p], f θ (p) ∈ [k,K]. Then,

∫
X×Y

f (x,y)dxdy =
∫

X×Y

(
∑
θ

f θ (x) f θ (y)P(θ)

)
dxdy≤ K2(x− x)(y− y).

Also,

∫
X

f (x)dx
∫

Y
f (y)dy =

∫
X

(
∑
θ

f θ (x)P(θ)

)
dx
∫

Y

(
∑
θ

f θ (y)P(θ)

)
dy≥ k2(x−x)(y−y).

Therefore, ∫
X×Y

f (x,y)dxdy≤ K2

k2

∫
X

f (x)dx
∫

Y
f (y)dy.

Finally, we state the result about the quality of the decision reached in the equilibria
that takes the longest time.

Proposition 2.2. For all µ > 0, there exists a period-length ∆µ such that the expected

welfare loss in the decision process is less than µ if ∆≤ ∆µ .

Proof. We suggest a feasible strategy profile that generates a verdict that is already quite
close to the ex-post efficient one. Therefore, there must be an equilibrium profile that is
at least as good. Given ∆ define a strategy x for the juror 1 in the following way. For all
n≤ 1

∆
and n ∈ N1, let F(xn) = n∆ and define ξn such that q(xn,ξn) = ρ . Then, define the

juror 2’s strategy y such that for all n ∈ N2, F(yn) = F(ξn−1)+F(ξn+1)
2 and define ξn such

that q(ξn,yn) = ρ. Consider the outcome function generated by the strategies x and y.
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By Lemma 2.6, the probability of an inefficient verdict is not more than

K2

k2 ∑
n

(
(F(yn)−F(ξn−1))(F(ξn)−F(xn−1))

2
+

(F(ξn)−F(yn−1))(F(xn)−F(ξn−1))
2

)
≤ ∆

2
K2

k2 .

Since the loss due to a mistaken decision is certainly less than 1, the welfare loss is bounded
by ∆

2
K2

k2 which approaches zero as ∆→ 0.

2.5 Conclusion

In this paper we proposed a dynamic model of deliberation in a panel of two like-minded
jurors. We assumed positive time costs of the decision making. We explored the monotone
properties of the game and described the set of equilibria. Our main contribution was to
show that in a deliberation process with positive time-cost the verdict is almost instanta-
neous and approximately information efficient as the period-length vanishes. This result
suggests that dynamic models of group decision making are able to properly aggregate
members’ private information.
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y1 = p

y−1

A,1 C,1

Figure 2.1 Period-1 Equilibrium. We indicate the type of the juror 1 on the horizontal axis while
the type of the juror 2 is measured on the vertical axis. We can represent any signal realization as
a point in the coordinates. The cutoff types are shown on the axis. The realized verdict and the
time of the decision are marked as well. This figure shows an equilibrium in which only juror 1’s
information matters for the final verdict. She follows a strategy such that type x0 is the critical
type at the initial round. All the types that are lower than x0 say acquit no matter what the history
is while all higher than x0 say convict no matter what the history is. Any type of juror 2 gives in
immediately. We think about this situation as a very poor way of aggregating the private information
available for the jurors. Juror 1 states her opinion based on her own signal and is not willing to
‘listen’ to juror 2. As a best response, juror 2 does not reveal information but terminates the game
immediately. Therefore, juror 1’s strategy is best response. (y1 and y−1 are the critical types for the
second juror if she is a C- or an A-juror, respectively). Notice that here y1 = ”highest possible type”
exactly means that all the possible types of juror 2 give in for acquit immediately if juror 1 voted
for acquit initially. We can interpret y−1 = lowest possible type similarly, i.e. all the possible types
of juror 2 gives in for convict if juror 1 voted so.
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Figure 2.2 Period-2 Equilibrium. This figure shows an equilibrium in which the communication
is improved. In this new equilibrium the strategy of juror 2 is more informative than before in
the sense that not all the types give in to acquit immediately at period 1. The type y1 of juror 2 is
critical, all the types who find it more likely than y1 that the defendant is guilty insist on convict.
The type x0 is again a critical type for the juror 1 and separates the types who say acquit at period 0
from the ones who say convict. Also, all the types of juror 1 who voted for acquit initially switch to
convict if the opponent insists on convict.
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Figure 2.3 Period-3 Equilibrium. This figure shows yet another improvement of the previous
equilibrium. Here, the juror 1’s strategy reveals more information than before. Type x0 is the
critical type at period 0 and all the types in the range [x2,x0] can be convinced by the action of the
juror 2. Furthermore, all the types who are more extreme then x2 insists on A. Concerning the
juror 2, some types (ones with higher posterior than y1) hold out in period 1 and give in at period 3
if the other juror has not yet done so.
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Chapter 3

Committee Decision with Multiple Votes

3.1 Introduction

When can a voting mechanism correctly aggregate the dispersed information of the com-
mittee members? The papers by Austen-Smith and Banks (1996) and Feddersen and
Pesendorfer (1998) illustrate how a voting procedure can induce committee members to
vote insincerely. With this behavior, the committee members obscure and hence fail to
convey their, otherwise valuable, private information through the decision process. Thus,
the final verdict can be corrupted.

In this paper, I suggest a variation of the voting procedure discussed in the papers
above. I allow more votes for the committee members. I show that whether the efficient
decision rule arises in equilibrium depends on the structure of the committee members’
private information. When the members have conditionally independent signals and are
allowed sufficient number of votes, then the joint decision will be efficient. On the other
hand, for a conditionally correlated signal distribution the above result may not be true.
The main result of the paper introduces a necessary and sufficient condition on the signal
distribution so that voting results in efficient decision.1

Why would a committee members ever vote against her information in a common
interest setting? Consider a situation where each committee member receives a condition-
ally i.i.d. binary signal about the guilt of a defendant. The strength of the signals and the
common preference is such that all jurors would prefer conviction if more than half of the
private signals suggest guilt and similarly, acquittal if more than half of the private signals

1A significant part of the committee decision literature is concerned about the efficiency of information
aggregation when the number of the committee members participating in the decision increases. However,
assuming conditionally independent private information, more members means a refined information struc-
ture such that in the limit, the true state reveals. In this paper, I follow a different approach by keeping the
structure of the private information fixed.
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suggest innocence. However, the voting rule is such that acquittal is the status quo and
a conviction requires a 2/3 majority. Now, if all committee members but one, say i, are
voting sincerely, then the vote of i is pivotal only if approximately 2/3 of the others have
voted for conviction, hence received guilty signal. In this case, the preferred verdict is
conviction irrespective of i’s signal. Thus, i should vote for conviction even if her signal
suggests innocence.2 The dilemma of the committee members is that they would like to
transmit their information to the voting procedure but the latter is not flexible enough to let
them do so accurately as two votes for conviction are required to compensate one vote for
acquittal. However, the problem disappears when a simple majority is required for either
conviction or acquittal.

Now, consider a variant of this problem such that the signals for innocence and guilty
are not equally informative, and the commonly preferred verdict is acquittal only if at least
2/3 of the signals point to innocence. In this case the simple majority rule works badly:
If everybody else votes sincerely, the remaining committee member i is pivotal only if
approximately half of the signals are for guilt. In which case, acquittal is the preferred
verdict and i will vote for that alternative even if her signal suggest guilt. In this case
the 2/3 majority rule for would incentivize sincere voting and lead to perfect information
aggregation. The take-away from this variant is that a good voting procedure should let
committee members report the intensity of their information accurately: In the original
example they should be able to cast votes for acquittal and conviction that are weighted
equally. In the variant they should be able to cast votes for acquittal that count for less than
votes for conviction.

A possible way to address this issue would thus be to tailor the majority requirement of
a voting rule to the information structure of the committee members. This is problematic
for two reasons. First, we should think of voting mechanisms as widely applicable rules,
like those outlined in a constitution, rather than specific mechanisms that need to be
tailored to the situation at hand. Second, optimizing over the majority rule reaches its
limits as soon as the signals of committee members can take on more than two possible
values. Obviously, a committee member needs at least as many possible actions as she has
possible signals to enable an efficient verdict (if each pair of two signals can be pivotal for
some realizations of other signals).

The latter observation points to the approach of this paper: Allowing committee mem-
bers to cast multiple votes rather than a single vote. If each committee member can cast
two, say, instead of one vote the above problems can be resolved by casting only one vote

2Note that this insincere behavior of i is in everybody’s interest as all agents and society are trying to
maximize the same preferences.
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for conviction if one’s signal suggests guilt but both votes for acquittal if one’s signal is
suggests innocence in the original example and vice versa in the variant.

Formally, I extend the voting model in Austen-Smith and Banks (1996) in the following
ways: (i) I allow committee members to cast multiple votes to express the intensity of
their private information and (ii) I allow for conditional correlation of the private signals.3

Focusing on efficient equilibria, I show the following:

• Increasing the number of votes available to the members improves the verdict for
any non-unanimous voting rule (Propositions 3.2 and 3.3).

Whether or not the efficient decision is reached as the number of the votes becomes
big, depends on the correlation of the underlying private information.

• If the private information of the committee members is conditionally independent
then the efficient decision is possible with sufficiently many votes (Proposition 3.6).
• If the private information of the committee members is correlated then the efficiency

of the verdict is not guaranteed. I give an intuitive necessary condition for efficient
voting and a more abstract condition that is necessary as well as sufficient.
The former essentially requires that each two signals si,s′i of a committee member
(and each two signal sub-profiles for groups of committee members) are uniformly
ordered in the sense that there are no two realizations of others’ signals such that in
one case the verdict should be acquittal for si and conviction for s′i and vice versa
in the other case. The latter abstract condition requires additionally that this order
extends to an irreflexive partial order on the formal sums of signal profiles.

The intuition for the first result was given above: introducing multiple votes allows
committee members to increase the accuracy of their vote, align the effect of their action
on the joint decision to the information content of their signals.

Note that voting is an intrinsically additive method to aggregate private information.
It is efficient if there is a way to transform the private signals to votes independently of
everyone else’s signal so that the sum of the votes represent all the relevant information dis-
persed among the committee members. Given a signal realization, the relevant information
is summarized by the likelihood ratio. Whenever the signals are conditionally independent,
the log-likelihood ratio of a signal profile, which is a monotone transformation of the
likelihood ratio, is the sum of the log-likelihood ratios of the individual signals. Hence,
there is a natural candidate for a voting strategy. However, committee members are usually
presented the same evidence, therefore, it is plausible to assume that the private signals
are conditionally correlated. In this case, the log-likelihood ratio does not have the above
described additive property. Naturally, if there is another transformation of the signals to

3Note that it is often the case that the committee members observe the same evidence, hence correlation
among their private information can be quite natural.
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votes that has the above mentioned additive property then voting can be efficient. In the
paper, I discuss when such a transformation exists.

The necessary condition above is straightforward: Committee member i must cast a
certain number of votes di(si) and di(s′i) (counting votes for conviction positively and
votes for acquittal negatively) depending on her signal and as one of these numbers is
greater than each other the efficient verdict cannot be reached if the above condition is not
satisfied. It is tempting to think that this condition is sufficient as well as necessary for
efficient voting. This is indeed the case for committees with two members. However, I
give a counterexample with three voters where the condition is satisfied but efficient voting
is not possible. Fortunately, I can draw a parallel to a mathematically identical question
in utility theory. In this way, I can apply a theorem by Krantz et al. (1971) to derive the
necessary and sufficient condition for efficient voting.

Related Literature. The quality of the decisions that are made by groups of decision mak-
ers has interested researchers for a long time. A seminal result on committee decisions, the
Condorcet Jury Theorem, claims that a decision by the majority of a large group is better
than the decision made by any of the individual members Condorcet (1785). Moreover, if
the committee is big enough, it can outperform the decision of even a highly competent
individual. The early formal arguments to support this statement are of statistical nature.
For Condorcet, committees are groups of people with limited decision skills (probability
with which the member makes the right decision), who sincerely report their independent
opinion. The sincere behavior and the independence of the occasional mistakes by the
members allow the use of Law of Large Numbers to show that (i) the group is less likely
to conclude a mistaken decision than any individual member and that (ii) the decision by
the majority is almost certainly good when the committee is big.

The model of joint decision situations that I use in this paper builds on the work of
Austen-Smith and Banks (1996). They consider privately informed committee members,
such that the private information is conditionally independent and identical. They spell
out the optimization problem of an individual committee member.4 They show that in
equilibrium, the individuals with binary signals may conclude the inappropriate verdict
depending on the voting rule. This inefficiency is connected to insincere voting on the side
of the committee members. Moreover, rational voters do not vote sincerely whenever the
signal is more than binary and in committees with conflicting interests.

4The literature on ‘statistical voting’ is silent on the origin of the voters’ decision skills, whether the
limited competence is due to a cognitive constraint or to lack of information. Miller (1986) links a mistaken
vote to insufficient information and Ladha (1993) refers to a Bayesian updating process prior to voting.
However, neither papers explicitly uses a state space and a signal distribution.
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Further papers elaborate on the model by Austen-Smith and Banks (1996). Theorem
3.1 builds on the result of McLennan (1998) linking Bayes-Nash equilibria of the game to
the cost minimizing voting profiles. Feddersen and Pesendorfer (1998) use the concept
of pivotal voting to explain the behavior of the rational committee members. Their work
demonstrates that a strategic individual considers not only her own information but the
information content of the event that her vote is decisive in the process (pivotal voting).
They show that the equilibrium verdict can be mistaken and this problem is the most
severe if unanimity is required. Feddersen and Pesendorfer (1998), Coughlan (2000)
and Duggan and Martinelli (2001) establish limit behavior of voting mechanisms as the
committee becomes big, a question that is not in the focus of my work. All the papers
above assume that only a single vote is available for each committee member and compare
the performance of the different voting rules.

A few paper considers multiple votes for the committee members. Casella (2005)
discusses a repeated joint-decision problem of individuals with independent private prefer-
ences. In her model, committee members may have multiple votes available in a decision
round since they are able to transfer votes inter-temporally. She concludes that in this
mechanism voters preference intensity can be expressed hence the quality of the decision
is improved compared to a one vote / one decision problem mechanism. However, she
investigates a situation with conflicting interests, where the goal is aggregating private
preferences rather than private information. Li et al. (2001) considers a two-member
committee with conditionally independent private information. They show that whenever
the interests of the members are aligned, efficient decision is possible if the number of votes
is sufficiently big. However, with conflicting interests, in the equilibrium the information
is garbled, in other words, there is no equilibrium in which the private information is
fully revealed by any strategies. They state that with conflicting interests more votes can
improve the decision but there are bounds on the quality of the verdict as the number of
votes increases.

The independent work of Chakraborty and Ghosh (2003) is the closest to this paper.
They establish that with perfectly divisible votes and conditionally independent signals effi-
cient information aggregation is possible. However, their main focus is the limit properties
of voting mechanisms as the number of committee members increases.

The paper is organized as follows. In Section 3.2, I introduce the formal model. In
Section 3.3, I argue that increasing the number of the votes that are available for the
committee members improves the joint decision. In Section 3.4, I state a condition on the
joint signal distribution so that the private information can be effectively aggregated by a
voting mechanism. Section 3.5 concludes the paper.
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3.2 A Model of Committee Decision

Next, I introduce the model of a committee decision situation and define voting procedures.
Juries are well-known examples of groups of people with the task of reaching a joint
decision. Therefore, in the paper I use the terminology of a jury situation.

3.2.1 The Joint Decision Problem

Private Information. There are N jurors who have to come up with a joint decision. N

denotes the set of jurors. There are two possible states of the world: innocence and guilt
(θ ∈Θ = {I,G}). The jurors’ prior probability of each state is 0.5. Each juror i is endowed
with a private signal si ∈ Si about the true state of the world. I assume that Si is finite.
The signal space is S = S1×S2×·· ·× SN and a signal profile is (s1,s2, . . . ,sN) = s ∈ S.
The probability and conditional probability of the signal profiles are P(s) and Pθ (s),
respectively.

I assume that no signal profile is fully revealing. Hence for any signal profile the
likelihood ratio `s ≡ PG(s)

PI(s) exists and is non-zero. It then follows that there is an upper
limit on the informativeness of any signal profile.

Payoffs. There are two possible decisions to make: acquit or convict (ω ∈ {A,C}). The
jurors’ common preference is characterized by a parameter q ∈ [0,1] such that q is the cost
of convicting an innocent defendant and 1−q is the cost of acquitting a guilty defendant.
The cost of reaching the appropriate verdict is zero. Formally, denote the payoff of decision
ω in state θ by u(ω|θ). Then u(C|I) =−q, u(A|G) =−(1−q) and u(C|G) = u(A|I) = 0.

The ex-post cost of a decision ω if the signal profile is s is:

c(ω,s) = ∑
θ

−u(ω|θ)P(θ |s)

where P(θ |s) is the probability of the state θ when s is realized. Consider an outcome

function Ω : S→{A,C} that maps any signal profile into a decision. Then we can define
the following costs:

• The ex-post cost for a signal realization s is c(Ω(s),s).
• The interim cost for a juror i with a signal si is:

C i(Ω,si)≡ E(s−i|si)c(Ω(s−i,si),(s−i,si)).
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• The ex-ante cost of the mechanism with outcome function Ω is:

C (Ω)≡ Esc(Ω(s),s).

Efficiency. The jurors’ goal is to acquit whenever the defendant is innocent and to convict
whenever the defendant is guilty. However, no matter what the mechanism is, the decision
they reach can never be the right one with certainty, simply because there is no fully infor-
mative signal profile. Given a signal realization s, the efficient verdict is argminω c(ω,s).
An efficient outcome function is cost minimizing for any realized signal profile, i.e. it is
ex-post efficient for any signal realizations.

Next, I show that the likelihood ratio of a signal realization is a convenient measure to
characterize the efficient decision. Acquitting is costly only if the state is G and in this
case it costs 1−q. Similarly, conviction is costly if the state is I and then it costs q. Hence,
for a signal profile s, the cost of acquittal is: c(A,s) = (1− q)P(G|s) while the cost of
conviction is: c(C,s) = qP(I|s). Therefore, the efficient decision rule is:

Ω
e(s) =

{
C if (1−q)P(G|s)≥ qP(I|s)
A otherwise.

Intuitively, acquittal is better if the available information suggests that the state is rather
I than G, and if acquitting a guilty defendant is not too costly compared to convicting
an innocent defendant. Using that P(G|s)

P(I|s) = PG(s)
PI(s) by the Bayes rule and the uniform prior

assumption, the above decision rule can be conveniently rephrased as a threshold problem:

Ω
e(s) =

{
C if `s ≥ `q

A otherwise.
(3.1)

where `q ≡ q
1−q is the relative costs of the mistaken decisions and `s = PG(s)

PI(s) is the likeli-
hood ratio of a signal profile s. This latter ratio expresses how likely guilt is relatively to
innocence, given the signals. To summarize, if the likelihood ratio exceeds the ratio of the
costs of mistaken decisions then conviction is the better verdict.

3.2.2 Voting Game (V,α)

Voting Procedure (V,α). In this paper, I focus on voting procedures to mediate the joint
decision problem. I assume that the jurors reach a verdict in a one-shot game. Each
juror is endowed with V ∈ N votes that she can fully or partly cast to either of the two
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possible decisions. The joint decision is convict if and only if a certain majority of the
cast votes is for convict. The voting rule can be described by a parameter α ∈ [0,1], so
that the decision is convict if at least a proportion α of the cast votes is convict, i.e. if
α(# votes cast for convict )≥ (# votes cast for convict and acquit ) then the joint verdict
is convict.5

Strategies. A juror can determine the number of the votes she casts and which decision she
supports. Her choice depends on her private signal about the state of the world. Formally,
a strategy of player i is vi = (vi

A,vi
C) : Si→{0,1,2, . . . ,V}2 such that either vi

A(si) = 0 or
vi

C(si) = 0.6 To simplify the analysis I alter the action space in two ways. I sign votes for
acquittal as negative and votes for conviction as positive. Second, I normalize a juror’s
vote with the total number of votes that is available for her. Assume that the voting rule is
simple majority, i.e. α = 1/2, then define

X1/2
V ≡

{
k

2V
|k ∈ {1,2, . . .V}

}
.

Then there is a one-to-one correspondence between the intuitive action set and X1/2
V . For

any α-majority rules, I can generalize the method above and define:

Xα
V ≡

{
−α

k
V
|k = {1,2 . . . ,V}

}
∪
{

(1−α)
k
V
|k = {1,2 . . . ,V}

}
.

Then a normalized strategy is di : Si→ Xα
V such that

di(si)≡
(1−α)vi

C(si)−αvi
A(si)

V
. (3.2)

5For a given number of votes, V , any voting rule α < 1
NV requires unanimity for acquittal, and similarly,

any voting rule α ≥ NV−1
NV requires unanimity for conviction. In the limit, as the number of votes increases,

α = 1 refers to the unanimity rule for conviction, however, α = 0 does not mean unanimity for acquittal.
This asymmetry follows from defining the tie breaking rule in an asymmetric manner. Recall, that if exactly
α proportion of the cast votes is convict, the joint verdict is convict. It is possible to make the tie breaking
rule dependent on the actual level of α and hence restore α = 0 as a unanimous rule for continuous votes.
This change would not alter my results except Proposition 3.5 in which I would need to make sure that I only
compare voting rules that have the same tie breaking rule.

6Notice that by formalizing the strategies in this way, I do not allow for abstention from voting. This
assumption is standard in the models of Austen-Smith and Banks (1996), McLennan (1998) and Feddersen
and Pesendorfer (1998), however others especially papers on elections allow for abstention. Assuming that
both vi

A(si) = 0 and vi
C(si) = 0 is possible, I can easily formalize my model in a way that makes it possible

for jurors to stay neutral. This modification would not change any of the result, however it would make it
somewhat harder to present concise examples illustrating the advantages of introducing more votes into the
voting procedure.
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Denote by ∆i
(V,α) the set of feasible normalized voting strategies for the juror i and ∆(V,α)

the profiles of feasible normalized voting strategies.
This representation is convenient since the sum of di translates easily into the verdict.

That is convict if ∑N di(si)≥ 0 and acquit otherwise, no matter the voting rule. However,
the strategy space will depend on the voting rule.

I refer to the joint decision problem with a voting procedure as a voting game. Finally,
denote by Ωd the outcome function that is generated by a strategy profile d. An outcome
function Ω is feasible in the voting game (V,α) if there is a feasible strategy profile that
generates it.

Equilibrium Concept. I consider Bayes-Nash Equilibria of the voting game. I say that
voting is efficient in a voting procedure if some equilibrium strategy profile in the actual
voting game implements the efficient decision rule.

3.3 Committee Decisions with Finite Votes

I am interested in how well a voting procedure can aggregate the private information of
the committee members. The papers by Austen-Smith and Banks (1996) and Feddersen
and Pesendorfer (1998) emphasize possible inefficiencies in the process. In this section, I
argue that allowing more votes can improve the joint verdict for all voting rules except
the unanimous rule. In all voting games there are potentially multiple equilibria. An
important limitation of my analysis is that I state my results only with respect of one
of those equilibria, namely the one with the highest welfare.7 I neither investigate the
effect of allowing more votes on equilibria with low welfare nor the question whether new
equilibria with high ex-ante costs arise as the number of available votes increases. I cannot
refer to any intuitive selection mechanisms that can support my treatment, however, given
that the equilibrium I focus on is the one with the highest welfare a designer would want
players to coordinate on that.

The first set of results shows that whenever the jurors have common interests, the equi-
librium with the lowest ex-ante costs can be found by solving a constrained minimization
problem. This result is convenient for two reasons. First, it simplifies the process of finding
a particular equilibrium of the game. Second, it makes it easy to compare equilibria of
games that only differ in the number of available votes. I argue that having more votes
translates into a relaxed constraints of the optimization. This leads to the second set of

7The ordering of the equilibria according to the ex-ante costs is possible since the players have common
interest.
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results: allowing more votes for each juror raises expected welfare in equilibrium. I close
the section with examples that illustrates this point.

3.3.1 Constrained Efficiency in Voting Games

Definition 3.1 (Constrained Efficiency). Given a voting procedure (V,α), I refer to an

outcome function Ω as constrained efficient if it is feasible with the voting procedure (V,α)
and generates the lowest ex-ante costs among the feasible outcome functions in the voting

game (V,α).

Next, note that there are finitely many signal profiles thus finitely many different out-
come functions, which makes the feasible set finite as well given any voting game (V,α).
Thus the infimum of the ex-ante costs over the set of feasible outcome functions is always
attained and we have the following result.

Proposition 3.1. A constrained efficient outcome function exists in any voting game (V,α).

The last result in this section shows that a voting profile that generates the constrained
efficient outcome function is a Bayes-Nash Equilibrium in the voting game. It is easy to
establish that if a deviation from the constrained efficient profile by juror i results in a lower
interim cost for the juror then the original voting profile could not have been constrained
efficient.

Theorem 3.1 (McLennan, 1998). If the voting profile de is such that

de = arg min
d∈∆(V,α)

C (Ωd)

then de is a Bayes-Nash Equilibrium in the voting game.

Proof. Assume that all but juror i follow the prescribed strategy, d−i
e . If there exists di and

si such that C i(Ω(d−i
e ,di),s

i) < C i(Ωde,s
i) then C (Ω(d−i

e ,d′i)) < C (Ωde). Contradiction.

Corollary 3.1. In any voting game (V,α), an equilibrium exists.

3.3.2 More Votes Are Better

In this section, I show that a better joint decision can be reached when more votes are
available for the jurors. I have argued before that the constrained efficient equilibria are
solutions of a constrained minimization problem. By allowing more votes, the constraint
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of the optimization problem is relaxed. Hence, the ex-ante cost in equilibrium cannot
increase. To illustrate the point, I provide some examples after the formal results.

Proposition 3.2. Consider a jury of size N and a voting game (V,α). Denote by dV

and dV+1 the constrained efficient equilibria of the voting games (V,α) and (V + 1,α),
respectively. Then C (ΩdV )≥ C (ΩdV+1).

Proof. I argue that the feasible outcome set in the voting game (V + 1,α) contains the
one in the voting game (V,α). For any strategy profile in ∆(V,α) there is a strategy profile
that is feasible in the voting game (V +1,α) and generates the same outcome. Consider
a strategy profile dV ∈ ∆(V,α) and define d′V ∈ ∆(V+1,α) such that d′iV (si) = di

V (si) V
V+1 .

Then the set {s|∑N di
V (si) ≥ 0} is identical to {s|∑N d′iV (si) ≥ 0} since by definition

∑N d′iV (si) = V
V+1 ∑N di

V (si). Hence, the outcome functions implemented by dV and d′V
are identical.

Therefore, the constrained efficient outcome function is at least as good in the voting
game (V +1,α) as in the voting game (V,α).

An additional vote may improve the decision if the voting rule is not too extreme. On
the other hand, if the required majority is too strong, i.e. a single acquit vote of a single
player can determine the verdict, then an additional vote is not useful. Whether or not
this happens depends on the parameters of the model: the number of jurors involved in
the decision process and the number of votes available for each juror. However, when
unanimity is required, increasing the number of votes does not improve the equilibrium
verdict. All voting games (V,1) (voting games (V,0)) are equivalent in the sense that they
generate the same equilibrium outcome.

Proposition 3.3. If Ω is a feasible outcome function in the voting game (V,1) then Ω is a

feasible outcome function in the voting game (1,1). Hence, in unanimous voting games,

allowing more votes never strictly improves the verdict.

Proof. Denote by dV an equilibrium strategy profile in the voting game (V,1). For vot-
ing games such that unanimity is required for conviction, the set of normalized votes is
X1

V ⊂ [−1,0]. Define the following strategy profile d1 in the voting game (1,1):

di
1(s

i) =

 0 if di
V (si) = 0

−1 otherwise.

The profile d1 is valid in the voting game (1,1) since for every i it maps to {−1,0}.
Second, the profile d1 induces the same outcome function as the profile dV . In a voting
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game (V,1) for a signal realization s the verdict Ωd(s) =C if and only if for all i, di(si) = 0.
Therefore, for all s ∈ S, Ωd1(s) = ΩdV (s).

Notice that if the feasible votes are in [−1,0] then the only action supporting conviction
is to assign all the available votes to convict. Therefore, even though multiple votes are
available, there is no instrument to express signal strength in these procedures. This implies
that the unanimity rule rarely allows for efficient information aggregation. The jurors are
only able to express a binary partition of their signal space and that is sufficient only for
very restricted information structures.

Finally, I give two illustrative examples. The first example shows that even with binary
signals, a single vote can be insufficient for efficient voting if the voting rule is simple
majority but the signals are not symmetric. In case of such biased signals, the information
carried by one guilty signal does not cancel the information carried by one innocent signal.
However, due to simple majority, casting the single available vote to acquit exactly balances
a convict vote by an opponent. This implies that the intuitive strategy profile in which
all the jurors vote according to their own signal is not an equilibrium strategy profile.8

Thus, in the equilibrium, which necessarily exists, a juror’s action is non-responsive to her
information with some probability. Therefore, the equilibrium cannot implement efficient
voting.

As I discussed it in the introduction, there are two ways to address this problem. One
solution is to adjust the voting rule so that the relative strength of the two kind of votes are
aligned to the relative strength of the opposing signals. However, if one follows this route,
then the adequate voting rule depends on the details across distributions. There is no rule
that generally works well. A more robust solution for the problem is to allow more votes
for the jurors. Having multiple votes to allocate for either of the two possible decisions
enables the jurors to refine the effect of their actions on the final verdict. One can conclude
that allowing multiple vote is a robust way to improve the quality of the joint decision
while the optimal α would have to be tailored to the problem at hand.

The second example shows that for more than two signals, multiple votes are necessary
to express different intensities of information carried by different signals.

Example 1. Consider a joint decision problem of N = 5 jurors, each with a prefer-
ence parameter q = 0.5 (`q = 1) and conditionally iid binary signals with the following
distribution:

8The other fully informative profile in which each juror vote against her signal cannot be an equilibrium
either.
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PI(si) PG(si) `si

s1 4/7 1/7 1/4

s2 3/7 6/7 2

The efficient decision rule in this joint decision problem is:

Ω
e(s) =

{
C if #{i|si = s2} ≥ 4
A otherwise.

In this example, the signals are initially biased in the sense that one innocent signal
and one guilty signal do not balance out, i.e. in case of the same number of innocent and
guilty signals the committee has a strict preference for acquittal. In other words, more
than the simple majority of the signals have to be s2 for a convict verdict to be efficient.
If the voting procedure is such that V = 1 and α = 1/2 then there is no equilibrium that

implements the efficient decision rule. First, a mixed strategy equilibrium cannot lead to the
efficient outcome. For any signal profile, the efficient verdict is unique, either convict or
acquit. However mixed strategies lead to a probabilistic outcome, that means inefficiency
with positive probability. Second, the only strategy profile that may implement the efficient
decision rule must be informative for all jurors and also, must assign a C vote, (1/2) to
s2 and an A vote (−1/2) to s1. To see this consider the situation when the others received
one s1 and three s2 overall. Then the jurors information is decisive, hence her vote must be
decisive, it has to push the joint decision to be convict if her signal is s2 and to be acquit if
her signal is s1. The only possible pure strategy of such is (di(s1),di(s2)) = (−1/2,1/2).
However, this is not an equilibrium in this voting game since if all the others follow this
strategy then the juror wants to vote acquit no matter. Her vote only counts if exactly two
of the others received s1 but then even if her signal is s2, the efficient verdict is acquittal.

Notice that there is an equilibrium that implements the efficient decision rule if the
voting procedure is such that V = 1 and α = 2/3. The following strategies lead to the
efficient outcome:9

α = 2/3 vA(si) vC(si) di(si)

s1 1 0 −2/3

s2 0 1 1/3

It is easy to check that the verdict is C exactly if at least 4 out of the 5 members received
s2.

9In this example I show the strategies with both the ‘natural’ votes and the normalize votes to help the
understanding.
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Next, I demonstrate that allowing multiple votes for the jurors, can also improve on
information aggregation. I show that with the voting procedure (2,1/2), the efficient
decision rule in the above joint decision problem can be implemented as an equilibrium
outcome. Consider the following voting profile:

α = 1/2 vA(si) vC(si) di(si)

s1 2 0 −1/2

s2 0 1 1/4

If two jurors received s1 and three jurors received s2 then the sum of the votes are (4,3),
for acquit and convict respectively, and the verdict is A according to simple majority. (The
sum of the weighted votes is −1/4 < 0.) If one juror received s1 and four jurors received
s2 then the sum of the votes are (2,4) so the verdict is C. (The sum of the vote difference
is 1/2 > 0.) Hence, the above voting profile implements the efficient decision rule and by
the Theorem 3.1 it is an equilibrium in the voting game (2,1/2).

Example 2. Consider the joint decision problem of N = 3 jurors with preferences q = 0.5
(`q = 1). Assume that the jurors have conditionally iid signals according to the following
distribution:

PI(si) PG(si) `si

s1 5/12 1/12 1/5

s2 4/12 2/12 1/2

s3 2/12 4/12 2

s4 1/12 5/12 5

If the voting procedure is such that V = 1 and α = 1/2 then the efficient decision rule
cannot be implemented. The argument in the previous example, such that mixed strategies
cannot lead to the efficient decision rule, is equally valid here. Then notice that there are
only two different actions to take: vote for convict (1/2), vote for acquit (−1/2). However,
each juror can have four different signals, a strong and a weak signal supporting acquittal
and a strong and a weak signal supporting conviction. Thus, in any pure strategy of a juror,
at least two signals trigger the same action.

Next, I show that any two signals of a juror can be decisive in the sense that one of the
signals with a possible realization of the others information suggests acquittal while the
one signal with the same realization of the others suggests conviction. If the two signals
of the juror support different alternatives then, whenever the two others received s2 and
s3, the signal of the juror is decisive. If the two signals of the juror support the same
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alternative but with different strength then, whenever the others both have the opposite but
weak signals, the signal of the juror is decisive

Nevertheless, if the juror’s action is the same for the signals, the verdict is the same
as well given any realization of the other. Therefore the resulting outcome cannot be
efficient. To implement the ex-post decision rule it is important to follow different actions
for different signals, which is impossible if every juror only has one vote.

If at least 3 votes are available for the jurors, then there is an equilibrium voting profile
which implements the efficient decision rule, see for example, the strategy below.

vA(si) vC(si) di(si)

s1 3 0 −1/2

s2 1 0 −1/6

s3 0 1 1/6

s4 0 3 1/2

3.4 Committee Decisions with Continuous Votes

In the previous section, I argued that allowing the committee members to cast multiple
votes enables them to communicate their information in a more accurate way. As the num-
ber of the votes grows, an obstacle is removed from the way of information aggregation. It
is reasonable to ask if there are limits to this improvement. Can the jurors always conclude
the efficient verdict if there are sufficiently many votes available? It turns out that the
answer to this question is sensitive to the underlying signal structure.10

Focusing on voting mechanisms to reach a joint verdict restricts the feasible outcome
functions in the joint decision problem. Simultaneous voting does not allow the jurors’
strategies to depend on each other’s signals. As a consequence, it is possible that the
ex-post efficient outcome rule cannot be implemented by a voting game, i.e. voting is not
efficient. Consider, for example, a situation with two jurors and binary signals, such that
matching signals suggest one decision while opposite signals suggest the other decision.
In this case it is, indeed, impossible to always reach the efficient verdict by simultaneous
voting such that the individual’s vote only depends on the juror’s own signal. In this
situation not even increasing the number of available votes help. Example 3 formalizes
this argument.

10When answering the above question, I focus on the constrained efficient equilibria in the voting games,
similarly to the treatment in Section 3.3.
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First, I define the limit game where each committee member can cast a continuous
rather than a discrete number of votes. Proposition 3.4 shows that this game is not just the
limit of a sequence of discrete voting games with growing number of votes but that for
large enough V every decision function that is implementable in the limit voting game is
also implementable in a discrete game with V or more votes. Then, I show that whenever
the private signals of the jurors are conditionally independent, then one can construct an
equilibrium voting profile in the limit game that leads to the efficient verdict for any signal
realizations. Hence, having conditionally independent private information is sufficient
for efficient voting. Using the intuition in the previous paragraph, I provide examples of
correlated signals such that the private information cannot be perfectly aggregated. Then, I
give a necessary and sufficient condition on the joint signal distribution for the voting to
be efficient.

Definition 3.2 (Voting Game (∞,α)). There are N jurors to make a joint decision. The
private information and the preferences of the jurors are as characterized earlier. Define
the voting procedure (∞,α) in the following way.

• A pure strategy for a juror i is a function mapping from the signal space to the
interval [−α,1−α], formally di : Si→ [−α,1−α].
• The outcome Ωd(s) is convict if ∑N di(si)≥ 0 and it is acquit otherwise.

I intend refer to the voting procedure (∞,α) as the limit of the procedures with finite
votes as the number of the votes increases. Next, I show that if the number of the available
votes is high enough then a decision rule is feasible in the limit game if and only if it is
feasible in the finite games. This fact conveniently implies that (i) a constrained efficient
decision rule exists in the limit game since it exists in the finite games by Proposition 3.1
and (ii) there is a V such that for all V > V̄ the constrained efficient decision rule is the
same as the one in the limit game. Therefore the limit game is informative about voting
games with high but finite number of votes.

Proposition 3.4 (Properties of the Limit Game). For a given voting rule α there is a

finite number V such that for all V > V the set of feasible decision rules in the voting

game (V,α) is identical to the set of feasible decision rules in the voting game (∞,α).

The difficulty lays in showing that every decision rule that is feasible in the limit game
is feasible in the finite game. Notice, that an action that is available in the limit may be
impossible in the finite game. However, if V high enough then for any voting strategy in
the infinite game, one can define voting strategies in the finite game that are sufficiently
close. Thus, for any signal profile the sums of the individual votes are close to each other,
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especially the sign of the sums are the same. Therefore the two voting profiles implements
the same outcome function.

Proof. Since, the action set in the continuous game contains the action set of any finite
game Xα

V ⊂ Xα
∞ , the set of the feasible decision rules in the limit game clearly contains the

set of the feasible decision rules in any voting game (V,α). Next, fix a decision rule Ω

that is implementable with the voting procedure (∞,α) and denote by d the voting profile
that implements it. Note that if V votes are available for the jurors and the voting rule is
α then the distance between two consecutive elements, x and x′ of the action set, Xα

V is
exactly α

V if x,x′ < 0 and is exactly α

V if x,x′ > 0. In any case there is a feasible action in
any interval I ⊂ [−α,1−α] of length 1

V .
Next, due to the finite signal space, I can find the smallest margin by which acquittal is

chosen with d, denote this margin by

mΩ ≡min

{
|∑
N

di(si)||s ∈Ω
−1(A)

}
.

Fix a V such that V > N
mΩ

and define

di
V (si) = min

{
δ |δ ∈ Xα

V ,δ ≥ di(si)
}

.

For every i, di(si) + mΩ

N ≥ di
V (si) ≥ di(si). Therefore, ∑N di(si) + mΩ ≥ ∑N di

V (si) ≥
∑N di(si) which implies that ∑N di

V (si)≤ 0⇐⇒ ∑N di(si)≤ 0.

The next result shows that with continuous votes the voting rule does not influence the
efficiency of the voting mechanism.

Proposition 3.5 (Neutrality of the Voting Rule). If a decision rule Ω is feasible in a voting

procedure (∞,α ′) then it is feasible with a voting procedure (∞,α ′′), where α ′,α ′′ ∈ (0,1).

Proof. Assume that a decision rule Ω is implemented in the voting game (∞,α ′) by the vot-
ing profile d′. If α ′ > α ′′, then α ′′

α ′ d
′ is a feasible strategy profile in the voting game (∞,α ′′)

and implements Ω while if α ′ < α ′′ then 1−α ′′

1−α ′ d
′ is a feasible strategy profile in the voting

game (∞,α ′′) and implements Ω.

3.4.1 Conditionally Independent Signals - A Sufficient Condition for
Efficient Voting

Next, I argue that the efficiency of a voting mechanism, as a method of reaching a verdict,
hinges critically on the structure of the information possessed by the jurors.
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If the jurors have conditionally independent information then it is possible to construct
a voting profile that is feasible in the limit game and that generates the efficient verdict in
the joint decision problem. Hence it is an equilibrium in the limit game. By Proposition
3.4 voting games with sufficiently many votes then have efficient equilibria as well.

Whenever the private information is conditionally independent across the committee
members, it is possible to disentangle the information content of any individual signal
from the rest of the signals. Formally, the log-likelihood ratio of any signal profile is the
sum of the log-likelihood ratios of the individual signals. Hence, one can construct an
efficient strategy such that the vote for any signal is a linear function of the log-likelihood
ratio of the signal. The following theorem formalizes this argument.11

Proposition 3.6 (Efficient Voting Profile). Consider a joint decision problem such that

the jurors have conditionally independent private information. In the voting game (∞,α)
the efficient decision rule is implemented by the voting profile do such that a juror i with

signal si casts

di
o(s

i) = a
(
log`si−bi) (3.3)

where ∑i bi = log`q and a < min{α,1−α}
maxi,si | log`si−bi| .

12 Hence, the voting profile do is an equilib-

rium.

If the committee members are more concerned with, say, convicting an innocent defen-
dant than they are with acquitting a guilty defendant, i.e. log`q > 0, then the equilibrium
votes should reflect this by concluding acquit whenever the ex-post probability of guilt and
innocence are equal. The terms bi take care of this. Second, a feasible strategy requires
that di(si) ∈ [−α,1−α]. The constant a rescales the value of (log`si−bi) making sure
that it falls into this range.

Proof. By Theorem 3.1, if the outcome function implemented by do is efficient then it
is an equilibrium in the voting game. An outcome function is efficient if the verdict is
acquittal whenever the probability of innocence is high enough. Recall equation (3.1)
that characterizes the efficient decision rule. With conditionally independent signals it
simplifies to:

Ω
e(s) =

{
C if ∑N log`si ≥ log`q.

A otherwise.

Without loss of generality, pick a signal realization, s such that ∑N log`si ≥ log`q, hence
the efficient verdict for s is conviction. Then according to the strategy in (3.3) the sum

11In the independent work of Chakraborty and Ghosh (2003) Theorem 4 demonstrates an equivalent result.
12Given that the signal space is finite and there is no perfectly informative signal, the bound on the

likelihood ratio exists.
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of the votes is ∑N di
o(s

i) = κ ∑N (log`si−ai) = κ(∑N (log`si)− logq)≥ 0. Hence, con-
vict is concluded. For signal realization such that the efficient verdict is acquittal the proof
is analogous.

The construction of the efficient voting profile in Proposition 3.6 suggests that the
additivity of the log-likelihood ratio is important for information aggregation by a voting
procedure. Conditionally independent signals imply this property.

However, conditional independence is not necessary for additivity of the log-likelihood
ratios. It is possible to tweak conditionally independent distributions in a way so that the
log-likelihood ratio remains additive. For example, assume that P(s,θ) is a conditionally
independent joint signal distribution and define P̃(s,θ)≡∏i P(si,θ)µ(s) where µ is not
constant and picked appropriately so that P̃ is a probability distribution. The distribution P̃

implies the same likelihood ratios as the distribution P. Thus, signals according to P̃ also
allow efficient information aggregation, although P̃ is not conditionally independent.

Below, I show that even additive log-likelihood ratios are not necessary for efficient
voting when the signal space is finite.

3.4.2 Ordered Signals - A Necessary Condition for Efficient Voting

In the case of conditionally independent signals and the efficient voting strategies defined
in (3.3), the sum of the individual votes is a strictly increasing function of the likelihood
ratio of the realized signal profile. It is important to realize that this is not necessary
for efficient voting. To reach an efficient outcome it is enough if the sign of sum of the
individual votes is positive if the efficient verdict is conviction and is negative if acquittal
is the efficient verdict.

Before coming to a necessary and sufficient condition for efficient voting in the next
subsection, I first introduce a necessary condition. Namely, for every committee members
there needs to be an unambiguous relation between every two signals of her, in the sense
that one of the signals always makes conviction more favorable than the other.

Example 3. Consider a decision problem of a two-member committee. Prior to the voting,
each member can observe the realization of a binary signal. The values s j refer to the
signal of the first and t j to the signal of the second juror. The table below represents the
efficient decision rule given each of the four possible signal profiles. A ‘+′ indicates that
the efficient verdict is conviction while a ‘−′ refers to realizations such that the efficient
verdict is acquittal.
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` t1 t2
s2 - +

s1 + -

For example, the following conditional distributions with the preference parameter
q = 0.5 generate this decision rule.

PG t1 t2
s2 3/14 2/14

s1 6/14 3/14

PI t1 t2
s2 4/14 1/14

s1 5/14 4/14

` t1 t2
s2 3/4 2

s1 6/5 3/4

Next, I show that there is no voting profile that leads to the efficient decision in this
case. Assume, to the contrary, that there exist appropriate voting strategies d1 and d2.
Then for (s1, t1) and (s2, t2) the sum of the votes must be positive while for (s2, t1) and
(t1,s2) it must be negative. Therefore the following must be true:

d1(s1)+d2(t1) > d1(s2)+d2(t1) (3.4)

d1(s2)+d2(t2) > d1(s1)+d2(t2).

However, there are no numbers d1(s2),d2(t2),d1(s1) and d2(t2) that satisfy the above
system. Adding up the two strict inequalities leads to a strict inequality with the same
expression on both sides, which is a contradiction.

In this example, s1 is more favorable for conviction than s2 if the opponent has t1 and
less if the opponent has t2. This feature makes it impossible to find good voting strategies.
The signal s j must be more or less favorable for conviction than an s j′ independently of
the opponents’ realization.

Does excluding the above pattern always allow for efficient information aggregation?
The answer is positive for two-member panels, no matter the number of possible signal
values. The following definition generalize the notion that efficient voting fails in the
above examples because there is no order on Si such that Ωe is monotone in si.

Definition 3.3. For any subset of the committee members, I ⊂ N, denote the signal space

by SI , which is the product of the signal spaces Si such that i ∈ I. Define a binary relation

on SI by sI �I s′I such that sI,s′I ∈ SI if there exists t−I ∈ S−I such that Ωe(sI, t−I) = C

and Ωe(s′I, t−I) = A.

The idea of this definition is that sI is better news for conviction that s′I whenever
sI �I s′I . It follows immediately from this definition that if the voting profile d is to
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implement the efficient decision rule then it needs to be that ∑i∈I di(si) > ∑i∈I di(s′i). This
points straight to the next definition and the statement afterward.

Definition 3.4 (No flip-flop). The signal distribution satisfies no flip-flop if �I is a non-

reflexive binary relation on SI , i.e. sI �I s′I implies that s′I �I sI is not true.

Lemma 3.1. No flip-flop is necessary for efficient voting, and it is necessary and sufficient

for efficient voting for a two-member committee.

The proof of the second statement is constructive. I argue that for two jurors, no flip-
flop allows for an intuitive order on the signals and based on this order one can construct
an efficient voting profile.

Proof. PART 1: Whenever the binary relation is irreflexive, i.e. sI �I s′I as well as s′I �I sI ,
efficient voting requires that ∑i∈I di(si) > ∑i∈I di(s′i) as well as ∑i∈I di(s′i) > ∑i∈I di(si),
which is a contradiction.

PART 2: I denote by s j the signals of juror 1 and by tk the signals of juror 2. For any s j,
I define T (s j) = {tk|Ωe(s j, tk) = C}. The no flip-flop condition implies that for any s j and
s j′ either T (s j)⊆ T (s j′) or T (s j′)⊆ T (s j). Hence, it is possible to order the signals of the
first juror such that s j ≥ s j′ if T (s j′)⊆ T (s j). A similar property is true for the signals of
the second juror and hence, there is an order on S2 as well.

Rename the signals such that the indices now refer to the order in the above defined
sense, i.e. such that T (s1)⊆ T (s2) · · · ⊆ T (sJ)⊆ S2, where J is the number of the signals
in S1. Find values φ 1(s j) such that φ 1(s j) < φ 1(s j+1) for all j ∈ {1,2, . . .J− 1} and
φ 1(s1) < 0 while φ 1(sJ) > 0.

For a tk ∈ T (s1) set φ 2(tk) > −φ 1(s1). The set T (s1) includes all the tk signals of
the juror 2 such that the efficient verdict in case of (s1, tk) is conviction, and with this
constriction the vote does conclude convict since, φ 1(s1)+φ 2(tk) > 0.

For all j ∈ {2,3 . . .J}, if tk ∈ T (s j+1)\T (s j), set φ 2(tk)∈ (−φ 1(s j+1),−φ 1(s j)). Note
that a tk ∈ T (s j+1)\T (s j) requires conviction if the juror 1 receives s j+1 but acquittal if
the juror 1 receives s j, and hence this construction ensures that φ 1(s j)+φ 2(tk) < 0 while
φ 1(s j+1)+φ 2(tk) > 0.

For a tk ∈ S2\T (sJ), let φ 2(tk) <−φ 1(sJ). Note that a tk ∈ S2\T (sJ), requires acquittal
for sJ which happens since φ 2(tk)+φ 1(sJ) < 0.

Thus, we assigned φ 2 for every elements of S2. Finally, depending on the voting rule α

in the actual voting game, one can find a > 0 to make sure that di ≡ aφ i is a valid voting
strategy, i.e. it maps into [−α,1−α].

I have argued that no flip-flop is the necessary and sufficient condition of efficient vot-
ing in two members committee. The next section shows that for more than two committee
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members, further restrictions are needed to ensure efficient voting. But before I discuss
the relation of two orders on the individual signal space, the one implied by the efficient
decision and the one implied by the likelihood ratio function.

Remark. It is tempting to think that the “no flip-flop” condition implies some sort of
monotonicity of the likelihood ratio in the signals. This is not the case. Remember the
earlier discussion that full information aggregation is sufficient but not necessary for
efficient voting. The following example illustrates this:

PG t1 t2
s1 3/7 2/7

s2 1/7 1/7

PI t1 t2
s1 1/7 1/7

s2 3/7 2/7

` t1 t2
s1 3 2

s2 1/3 1/2

There is no order on the signals such that the likelihood ratio function is monotone and
still efficient voting is possible for any value of q as for any value of q there is an order on
the signals with respect to which the efficient decision rule Ωe is monotone. The following
tables represent the efficient decision for `q < 1/2, `q ∈ [1/2,2] and `q > 2, respectively.

PG t1 t2
s1 + -

s2 - -

PI t1 t2
s1 + +

s2 - -

` t1 t2
s1 + +

s2 - +

Hence, the order on the signal space of the second juror, S2 and hence the efficient vote
will depend on q, i.e. if `q < 1/2 then t2 �1 t1 and if `q > 2 then t1 �1 t2 while for any
other preference parameter either of the orders work.

3.4.3 A Necessary and Sufficient Condition for Efficient Voting

I start the section with an example that does not violate the flip-flop condition, however,
does not allow for efficient voting. I discuss the property that blocks efficient voting in
this example and suggest a sequence of conditions that are necessary for the existence of
efficient voting profile. Then, I link the problem of efficient voting to a classic problem in
utility theory. Finally, I present a necessary and sufficient condition for efficient voting.
My formal argument relies on the work of Krantz et al. (1971).

Example 4. Consider a decision problem of a three-member committee. Prior to the voting
each member can observe the realization of a private signal that has three possible values.
The signals s j, t j and z j refer to the signals of the juror 1, 2 and 3, respectively. The table
below represents the efficient decision rule given all the possible signal profiles. Again, a
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‘+′ indicates that the efficient verdict is conviction while a ‘−′ refers to the realizations
such that the efficient verdict is acquittal.

z1 z2 z3

t1 t2 t3
s3 - - +

s2 - - +

s1 - - -

t1 t2 t3
s3 + + +

s2 - - +

s1 - - -

t1 t2 t3
s3 + + +

s2 - + +

s1 - + +

To see that this is a valid example, consider the conditional distributions below that
generate this decision rule with the preference parameter q = 0.5.

z1 z2 z3

PG t1 t2 t3
s3

12
376

14
376

18
376

s2
4

376
10

376
16
376

s1
2

376
6

376
8

376

PG t1 t2 t3
s3

16
376

18
376

22
376

s2
15

376
14

376
20

376

s1
16

376
15

376
15

376

PG t1 t2 t3
s3

15
376

15
376

15
376

s2
15

376
15
376

15
376

s1
15

376
15
376

15
376

z1 z2 z3

PI t1 t2 t3
s3

15
376

15
376

15
376

s2
15

376
15

376
15

376

s1
15

376
15

376
15

376

PI t1 t2 t3
s3

15
376

15
376

15
376

s2
20

376
15
376

15
376

s1
22

376
18
376

16
376

PI t1 t2 t3
s3

8
376

6
376

2
376

s2
16

376
10
376

4
376

s1
18

376
14
376

12
376

z1 z2 z3

` t1 t2 t3
s3

12
15

14
15

18
15

s2
4

15
10
15

16
15

s1
2

15
6
15

8
15

` t1 t2 t3
s3

16
15

18
15

22
15

s2
15
20

14
15

20
15

s1
16
22

15
18

15
16

` t1 t2 t3
s3

15
8

15
6

15
2

s2
15
16

15
10

15
4

s1
15
18

15
14

15
12

One can check that there is no flip-flop in this example. However, efficient voting is
still impossible. Assume, on the contrary, that there exist good voting strategies: d1,d2 and
d3. Then the sum of the votes for the signal profiles (s2, t3,z1),(s3, t1,z2) and (s1, t2,z3) has
to be positive while for (s3, t2,z1),(s1, t3,z2) and (s2, t1,z3) it has to be negative. Therefore
the following system of inequalities must have a solution.

d1(s2)+d2(t3)+d3(z1) > d1(s3)+d2(t2)+d3(z1)

d1(s3)+d2(t1)+d3(z2) > d1(s1)+d2(t3)+d3(z2) (3.5)

d1(s1)+d2(t2)+d3(z3) > d1(s2)+d2(t1)+d3(z3).

54



However, one can see that there are no numbers d1(s j),d2(t j) and d3(z j) that satisfy
the system. Adding up the three lines again, leads to a strict inequality with the same
expression on both sides.

What goes wrong here? One can directly compare two signal sub-profiles if there
is a profile of all the other jurors, such that the two signal sub-profiles are decisive. No
flip-flopping occurs whenever directly comparison is not possible or if it is possible and
the order is consistent. However, there are implicit ways of comparing signals.

Consider two pairs of signals (sL, tH) and (sH , tL) so that sH �i sL and tH � j tL and
(sL, tH) �i, j (sH , tL). Then one can conclude that tH signal of juror j relatively to tL is
stronger than the signal sH is relatively to sL, when comparing (sH , tL) to (sL, tH), juror i’s
information becomes more favorable for acquittal while juror j’s information becomes
more favorable for conviction. When these two effects are aggregated the one for con-
viction dominates. Now, consider an additional signal for both jurors, sM and tM such
that sH �i sM and sM �i sL and also tH � j tM and tM �i tL. Then, there is an implicit way
toevaluate the relative strength of the above changes of the jurors information. First, one
may compare (sH , tM) to (sM, tH) and then (sM, tL) to (sL, tM). In the example,

• If the third juror has the realization z1, then the first inequality shows that having
t3 instead of t2 is stronger news for conviction then having s2 instead of s3 is for
acquittal.
• If the third juror has the signal realization z2, then the second inequality shows that

having t3 instead of t1 is weaker news for conviction then having s1 instead of s3 is
for acquittal.
• And finally, with z3, having t2 instead of t1 is stronger news for conviction then

having s1 instead of s2 is for acquittal.
However, a problem occurs since the change from t1 to t2 dominates the change from s2

to s1 and the change from t2 to t3 dominates the change from s3 to s2, however the change
from t1 to t3 is dominated by the change from s3 to s1.

If efficient voting exists, then the sum of votes for all signals profiles such that the
efficient decision is convict is bigger than the sum of votes for all to the signal profiles
such the efficient decision is acquit. By this requirement, any private information structure
induces a system of inequalities that has to be solvable. The no flip-flop condition ensures
that any two-element subset of the inequality system is consistent in the sense that it has
solution. However, this condition does not guarantee a solution for the entire system.
Example 4 presents an information structure such that, although, any two inequalities are
solvable, there is system of three inequalities that is inconsistent. Hence, the whole system
has no solution.

As the number of jurors and the possible signal values increases, the system becomes
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more and more difficult. Fortunately, there is an alternative way to represent the prob-
lem and an easily understandable condition is available which is equivalent to the set of
inequality conditions.

There is a widely discussed question in utility theory, namely what are the properties
of a preference relation that allows for an additive separable utility representation. This
problem mathematically is very similar to the question whether there are voting profiles
that represents the information content of the signals well, i.e. the sum of the votes are
higher whenever the signal profile is better news for conviction.

However, an earlier remark suggested that efficient information aggregation is not
necessary for efficient voting. The jurors have to get a binary decision right, so as long
as the sum of the votes are positive whenever the efficient verdict is convict the voting is
efficient.

Hence, I define a binary relation on the signal profiles that is implied by the efficient
decision rule: A signal profile is ‘bigger’ then another whenever the efficient decision is
convict for the first and acquit for the second profile. For s,s′ ∈ S

s�N s′⇐⇒Ω
e(s) = C and Ω

e(s′) = A. (3.6)

Notice that this relation is not complete.
Then, I ask what characteristics of this binary relation ensure that there exist voting

functions di that represent the binary relation in the sense that the sum of the votes is
positive if and only if the efficient decision is convict, or formally, so that there exist
functions di : Si→ R such that:

Ω
e(s) = C⇐⇒∑

N

di(si)≥ 0. (3.7)

Definition 3.5. A function φ : S→ R is an additive separable representation of a binary
relation if there exist functions φ i : Si→ R such that

s� s′⇐⇒ φ(s) = ∑
N

φ
i(si) > ∑

N

φ
i(s′i) = φ(s′).

The first result shows that the existence of the voting profile that is characterized by
Equation (3.7) is equivalent to the existence of an additive separable representation of a
binary relation on the signal space.

Lemma 3.2. An efficient voting profile in a voting game (∞,α) exists if and only if there

is an additive separable representation of the binary relation defined by Equation (3.6).
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Proof. A voting strategy itself is an additive separable representation since s�N s′⇐⇒
Ωe(s) = C and Ωe(s′) = A⇐⇒ ∑N di(si)≥ 0 > ∑N di(s′i).

If there exist functions {φ i}i∈N representing a binary relation then the functions
{di|di = aφ i + bi,a > 0}i∈N represent the binary relation as well. s � s′ if and only
if ∑N φ i(si) > ∑N φ i(s′i). Notice that ∑N φ i(si) > ∑N φ i(s′i) ⇐⇒ ∑N aφ i(si) >

∑N aφ i(s′i)⇐⇒∑N aφ i(si)+∑N bi > ∑N aφ i(s′i)+∑N bi⇐⇒∑N di(si)> ∑N di(s′i).
Hence, one can transform the functions φ i representing �N into valid, efficient vot-

ing strategies. There are two conditions to satisfy: (i) valid voting functions map into
[−α,1−α] and (ii) ∑N di(si)≥ 0 if and only if Ωe(s) = C.

By construction, there exists φ with the property that for all s such that Ωe(s) = C,
φ(s) ≥ φ and for all s′ such that Ωe(s) = A, φ(s′) < φ . Then setting bi = φ

N gives that
Ωe(s) = C if and only if ∑N di(si) > 0. Finally, a small enough a can make sure that the
voting functions di map into [−α,1−α].

Examples 3 and 4 indicated that we may need to consider combinations of signal
profiles comparisons and to sum votes across these combinations. Therefore, I start with
introducing formal sums of signal profiles. Since the sum of the signal profiles has no
meaning in the signal space, it is more convenient to think in terms of the following vector
representation.

Define Ki = |Si| and K = ∑N |Si|. Then every signal realization can be written in the
form of a vector of zeros and ones of length K, and hence there is a set X ⊂ {0,1}K such
that each elements of X represents and element of S and all elements of S is represented in
X . Consider the order �N on S and denote the inherited order on X by �X .

Given the vectors in X , I define the set Y ⊂ ZK as the additive span of X . A vector y is
element of Y if and only if it is the finite sum of elements of X , i.e. y = ∑m≤M xm for any
xm ∈ X and M ∈ N. The relation �X can be extended to Y in the following way: y = ∑xm

is greater than y′ = ∑x′m, i.e. y�Y y′ if for all m, xm �X x′m.
Next, I state the main theorem. The proof is adopted from Krantz et al. (1971) Theorem

9.1

Theorem 3.2. Efficient voting is possible if and only if the binary relation �Y is irreflex-

ive.13

In the proof I show that the existence of a voting profile is equivalent to the existence of
a solution of a system of linear inequalities (Step 1) and that the reflexivity of the relation
�Y is equivalent to the existence of a solution of an other system of linear inequalities (Step

13The theorem in Krantz et al. (1971) originally allows for indifference between elements of the set. Here,
I do not discuss this case, although the proof easily goes through.
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3). I refer to a duality theorem stated in Krantz et al. (1971) Theorem 2.7 to demonstrate
that the two systems are dual pairs and hence exactly one of the system has a solution
(Step 2).

Proof. By Lemma 3.2 the existence of an efficient voting profile is equivalent to the
existence of an additive separable representation φ i(si) of �N .

STEP 1: The set {Ω−1(C),Ω−1(A)} is a partition of S. Denote by {XC,XA} the respective
partition of X . Then for any xc ∈ XC and xa ∈ XA, xc �X xa. Denote byKA = |XA| and by
KC = |XC|.

Any functions φ i(si) imply a K-dimensional vector δ such that the first K1 entries of
δ equal to the K1 values of φ 1(s1), then the next K2 entries of δ equal to the K2 values
of φ 2(s2), and so on. At the same time, any K-dimensional vector imply a family of φ i

functions.
Thus, φ i(si) is a representation of �N if and only if there is a δ such that xcδ > xaδ

for all xc ∈ XC and xa ∈ XA.
Define KCKA vectors rn = xc− xa ∈ {0,1}K with x′ ∈ XC and x ∈ XA. Then, collect

all these vectors into an integer matrix R of size (KCKA)×K such that rn is the nth row of
the matrix. Then there is a representation of �N if and only if Rδ � 0.14

Thus, I have shown so far that an efficient voting profile exists if and only if there exists
a vector δ ∈ RK such that Rδ � 0.

STEP 2: The Theorem 2.7 in Krantz et al. (1971, pp. 62) states that the system Rδ � 0
has a solution if and only if the system RT ρ = 0 such that ρ > 0 has no solution.15

Moreover, immediately after the theorem they argue that if the elements of the matrix
R are rational numbers then the system Rδ � 0 has a rational solution if and only if the
system RT ρ = 0 such that ρ > 0 has no rational solution. Also, if ρ is a solution of the
second system, than for any a > 0, aρ is a solution as well. Therefore, the theorem implies
that if Rδ � 0 has no solution then the system RT ρ = 0 such that ρ > 0 has an integer
solution.

STEP 3: Now, I show that the existence of a KAKC-dimensional integer vector, ρ > 0 with
RT ρ = 0 is equivalent to �Y being reflexive.

RT ρ = 0 is equivalent to saying that ∑XA ∑XC ρxa,xc
(xc− xa) = 0, where xc are the

elements of XC, xa the elements of XA and ρxa,xc ∈ N the KAKC dimensions of ρ . Recall,
that ρ is weakly positive and integer vector, hence each entries of it is a natural number.

14v� 0 denotes that every component of the vector v is strictly positive.
15v > 0 denotes that every component of v is weakly positive and that v 6= 0.
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Thus, if there exists ρ > 0 with RT ρ = 0 then

∑
XA

∑
XC

ρ
xa,xc

xc = ∑
XA

∑
XC

ρ
xa,xc

xa.

Since any ρxa,xc
is a non-negative integer there are xc

1,x
c
2, . . . ,x

c
M ∈ XC and xa

1,x
a
2, . . . ,x

a
M ∈

XA, not necessarily distinct vectors, such that ∑M xc
m = ∑M xa

m ∈ Y which is the definition
of �Y being reflexive.

On the other hand, if �Y is reflexive then there are xc
1,x

c
2, . . . ,x

c
M ∈ XC and

xa
1,x

a
2, . . . ,x

a
M ∈ XA, not necessarily distinct vectors, such that ∑M xc

m = ∑M xa
m ∈Y . Then a

vector ρ ∈ NKAKC
can be generated in the following way. For all n ∈ KAKC, the nth entry

ρn ≡ {#m|rn = xc
m− xa

m}. Then RT ρ = 0.

To summarize, I have shown that an efficient voting profile exists⇐⇒ there exists
an additive representation φ i(si) of �N ⇐⇒ there exists a K-dimensional vector δ with
Rδ � 0⇐⇒ there exists no KAKC-dimensional vector ρ > 0 such that RT ρ = 0⇐⇒ the
relation �Y is irreflexive.

Notice that while the elements of the set X represent signal profiles, the elements of the
set Y represents collections of signal profiles. Recall the information structure in Example
3, there, (s1, t1) �1,2 (s2, t1) and (s2, t2) �1,2 (s1, t2). Hence, the representations of the
collection {(s1, t1),(s2, t2)} and the collection {(s1, t2),(s2, t1)} in Y are related according
to �Y . Moreover, it is easy to see that they are equivalent in Y , so �Y is irreflexive.

Similarly, in Example 4 (s2, t3,z1) �1,2,3 (s3, t2,z1), (s3, t1,z2) �1,2,3 (s1, t3,z2) and
(s1, t2,z3)�1,2,3 (s2, t1,z3). Therefore the collection {(s2, t3,z1),(s3, t1,z2),
(s1, t2,z3)} is related to the collection of {(s3, t2,z1),(s1, t3,z2),(s2, t1,z3)}. Moreover, they
are equivalent in Y.

Hence, an element y in the set Y such that y�Y y suggest that there are multiple ways
- explicit or implicit - of comparing two signal sub-profiles and the implied relationship
between them is ambiguous. Hence, it is impossible to assign efficient votes to those
sub-profiles.

3.5 Conclusion

In this paper, I have studied the joint decision problem of a committee of privately informed
individuals. I argued that allowing multiple votes for the members, improves the quality of
the joint decision made by the committee. I also showed that for conditionally independent
signals, full efficiency can be reached if there are sufficient number of votes available. I
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discussed that with correlated private information full efficiency may not be possible for
any number of votes. Moreover, I provided conditions to ensure that full efficiency exists.
To summarize, allowing multiple votes makes a voting mechanism better and is a remedy
for a certain type of inefficiencies in the joint decision problem. However, the efficient
information aggregation with correlated private signal would require a different class of
decision mechanisms. In both cases, individuals want to express their private information
but due to some institutional constraint are unable to do so.

One can think about an additional obstacle to aggregate private knowledge in a com-
mittee setting. As it is shown by Li et al. (2001) if individual members have conflicting
interests, they may not want to communicate their private signals even if that would be
possible.
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Chapter 4

Costly Voting, Polarization and Turnout

4.1 Introduction

When the margin in elections decreases, does the turnout increase? Blais (2000, pp. 58 -
62) surveys a variety of studies from different countries and concludes that “the verdict
is crystal clear [...]: closeness has been found to increase turnout in 27 of the 32 differ-
ent studies that have tested the relationship, in many different settings and with diverse
methodologies. There are strong reasons to believe that [...] more people vote when the
election is close” (p. 60).

To understand the connection between margin and turnout theoretically, one might
turn to an equilibrium model of rational voting with voting costs. It seems relatively
obvious that individual incentives for participation increase as margin decreases because a
decreasing margin should increase the probability of any individual vote being pivotal, and
rational voting decisions are exclusively based on the comparison between the benefits
from voting if the vote is pivotal and the costs of voting. Indeed, Blais (2000), in the
second sentence quoted above, writes that the effect found in the studies that he cites is “as
predicted by rational choice theory” (p. 60).

However, a change in margin is presumably the result of a change in the distribution
of voters’ preferences over the candidates or decisions voted upon. While for any voter
with given preferences the incentive to vote increases as the margin decreases, a prediction
of the effect of margin on turnout must combine this observation with an analysis of the
effect on turnout of the change in the distribution of voters’ preferences that caused margin
to decrease in the first place.

In the language of game theory the question thus becomes whether equilibrium turnout
increases if the distribution of voters’ preferences changes in a way that causes margins to
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decrease. In other words: if we observe equilibrium voting decisions by populations of
voters with different preference distributions will we find that there is a negative relation
between margin and turnout? As noted by Krasa and Polborn (2008, footnote 13) this
question is, in fact, an open question in the game theoretic literature on costly voting.

In an equilibrium model of rational voting with a finite population of voters the ques-
tion that I have posed is difficult to address because of the intricacies of analyzing the
comparative statics of the probability with which any vote is pivotal. I propose in this
paper a simplified model in which the mapping that relates turnout and margin into voters’
perception of their probability of being pivotal is exogenous. I construct this mapping so
that it shares some properties with the exact relationship between turnout, margin, and
probability of being pivotal in a model with a finite but large population of voters. Thus, the
model might either be interpreted as a model of boundedly rational voters who misperceive
in an exogenously specified way the probability of being pivotal, or as an approximation
of a model of fully rational voters in the case that the number of voters tends to infinity.1

Within this model I provide a sufficient condition that guarantees that a decrease in
margin leads to higher turnout. The condition is that the change in the distribution of voters’
preferences that causes margin to decrease must not involve a decrease in the polarization

of voters. The notion of “polarization” is defined formally in the paper. Informally, polar-
ization decreases if voters move from the extreme ends of the preference distribution to the
center of the preference distribution. The condition that polarization must not decrease is a
very restrictive condition. It is, of course, only sufficient. I do not prove that it is necessary,
but I do show by means of an example that, if the condition is violated, the result need not
be true. This may explain why the literature, such as the study by Blais (2000) cited above,
finds exceptions from the rule that decreases in margin lead to higher turnout.

Related Literature. The theory of rational voter dates back to the seminal work of Downs
(1957). According to his views, rational voters vote when the expected benefit of changing
the election result outweighs the strictly positive costs of voting. Downs puzzling observa-
tion was that, since the probability of being pivotal is minuscule in large election, rational
voter theory implies zero turnout. Among the many attempts to resolve this paradox
of voting, Ledyard (1984) and Palfrey and Rosenthal (1983) proposed a game theoretic
revision of the election models. They pushed the argument one step further observing
that if voter turnout is expected to be zero then the pivotal probability is actually high.
Therefore, complete absenteeism is not a Nash Equilibrium of the voting game. They
emphasize positive voter turnout in equilibrium, however decreasing turnout rate as the

1Note that I do not provide an exact limit result that would support this latter interpretation.
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size of the electorate increases.
Building on the model of Ledyard (1984) the works of Börgers (2004) and Krasa and

Polborn (2008) pose normative questions, whether the aggregate welfare can be improved
as additional incentives are present for voting (mandatory voting or voting subsidies).
Subsidies increase participation, since they implicitly make the preference distribution
more polarized. Krasa and Polborn (2008) shows that whether this increased participation
is welfare enhancing depends on the relative preference towards the two alternatives in the
population as well as on the number of voters.

My setup is the closest to Campbell (1999). He models a private value election with
heterogeneous voters and homogeneous voting costs. His key observation is that with
positive voting costs voters with weak preference abstain, hence if minority voters have
more intense preferences than majority voters, it might happen that the minority wins the
election, since supporters of the majority might abstain in much higher number. Campbell’s
paper therefore emphasize the role of voters with intense preference and thus points to the
importance of polarization in the turnout.

In Section 4.2, I describe the model and discuss my main assumptions. Section 4.3
characterizes the equilibrium, proves existence and gives necessary and sufficient condi-
tions for uniqueness. In Section 4.4, I turn to the comparative statics of the equilibrium
turnout and margin and prove that they are negatively related when the polarization of the
underlying preference distributions coincides. Section 4.5 concludes.

4.2 A Model of Elections

Next, I describe the model of an electorate where voting is costly. The main deviation
from the models often used in the literature is that I allow voters who misperceive the prob-
abilities with which the different election outcomes happen, moreover, they misperceive
their effect on those probabilities. In this section, after describing the model, I discuss the
assumptions about those subjective probabilities and illustrate them with an example.

Alternatives. I describe an election in which one of two parties, LEFT or RIGHT , is
chosen.

Players. A continuum electorate2 participate in a binary election. A voter’s preferences are
described by a parameter zt distributed independently across voters on [−1,1] according to

2Recall the two possible interpretations of the setup discussed in the introduction. Here, I present the
model as an approximation of an election with a large number of voters and I state the results accordingly.
Though, the results can be restated in terms of finite and boundedly rational voters. In that case, the implica-
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a continuously differentiable cumulative distribution function F that is common knowledge
among the voters.

Actions. The voters can either vote Left or Right or not vote, Abstain. Let at the action of
player t, hence at ∈ {L,A,R}. A pure strategy of player t, vt(z), is a measurable function
assigning actions to player t’s preference type. A symmetric strategy profile is denoted by
v, without an index referring to the player.

Outcome / Election Margin. The winner of the election is the party, LEFT or RIGHT ,
that receives the majority of the votes. Denote by µ(v) the measure of right voters and by
λ (v) the measure of left voters when all voters follow the symmetric strategy v. I define
the election margin M(v)≡ µ(v)−λ (v) as the difference between the support of the right
and the left party. The winner of the election is the RIGHT party whenever the margin is
positive and the LEFT party whenever it is negative.

Payoffs. I characterize the voters’ preferences in the following way: A voter with a
preference parameter z has payoff ut(z,LEFT ) = −z in case of a LEFT victory and
ut(z,RIGHT ) = z in case of a RIGHT victor. One can see that for types z below 0, LEFT

is the preferred alternative and for types z above 0, RIGHT is the preferred alternative.
The cost of voting is c > 0 for all voters.

Before I proceed, let me discuss that an alternative model of costly voting. The work
of Börgers (2004), Krasa and Polborn (2008) and others assumes binary preferences, a
voter either prefers the LEFT or the RIGHT with the same intensity, however the cost of
voting is diverse.

Independently of the framework, a voter’s payoff is determined by the election out-
come - which is an uncertain event - and her own action, whether she votes or not. If there
is a utility function on the space of the consequences: (LEFT,vote),(LEFT,abstain)
and (RIGHT,vote),(RIGHT,abstain) that gives an expected utility representation of the
voter’s preferences then any affine transformation of that utility function also represents
the same preferences. The following tables show the utility for a voter with z < 0 in the
preference heterogeneity model and a for a left voter in the cost heterogeneity model.

u LEFT RIGHT

vote −z− c z− c

abstain −z z

v LEFT RIGHT

vote 1−κ −κ

abstain 1 0

tions are about the expected margin and the expected turnout. Note, however, that considering empirical
implications the two interpretations differ since the expected values of the election margin and election
turnout are not observable.
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Setting α =− 1
2z > 0 and β = 1

2 , it is transparent that the utility in the cost heterogeneity
model is an affine transformation of the utility in the preference heterogeneity model via
αu+β = v. A similar transformation is possible whenever z > 0 and the voter has a right
preference, respectively. Therefore the two models lead to the same voting behavior which
is the focus of this paper.3

Subjective Probability and the Influence. I intend to model voters who misperceive
their effect on the election outcome. A voter’s subjective probability of a right victory is

Pr(RIGHT,M,T,a)≡ H(M,T,a)

and it depends on the predicted margin, M ∈ [−1,1], the predicted turnout, T ∈ [0,1], and
her own action, a ∈ {L,A,R}. Similarly, a voter’ subjective probability of a left victory is

Pr(LEFT,M,T,a)≡ 1−H(M,T,a).

I assume the following about the subjective probability:

1. H(M,T,R) > H(M,T,A) and (1−H(M,T,L)) > (1−H(M,T,A)), whenever M ∈
(−1,1). Intuitively, a vote cast for a party strictly increases the winning chances of
the party.

2. H(M,T,R)−H(M,T,A) = (1−H(−M,T,L))− (1−H(−M,T,A)). Holding the
expected margin and the turnout fixed, the effect of a vote cast for either party is
independent of the identity of the party, given the lead for that party held constant.
Notice that the election margin is by definition the lead of the right party, and hence
−M is the lead for the left party.

3. H(M,T,R)−H(M,T,A) = (1−H(M,T,L))− (1−H(M,T,A)). Holding the ex-
pected margin and the turnout fixed, the effect of a vote cast for either party is
independent of the identity of the party.

4. The probability H(M,T,a) is continuous and differentiable in M and T , and

∂

∂M
[H(M,T,R)−H(M,T,A)] > 0 if M < 0

∂

∂M
[H(M,T,R)−H(M,T,A)] = 0 if M = 0

∂

∂M
[H(M,T,R)−H(M,T,A)] < 0 if M > 0

∂

∂T
[H(M,T,R)−H(M,T,A)]≤ 0.

The effect of a vote is the highest when the election is a tie and it decreases as the
3However, note that the welfare differs in these models. In my model, the welfare is fully described by

the turnout and the election outcome, while in the alternative model, it matters who voted.
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absolute value of the election margin increases. Moreover, the voter’s influence
decreases in the average turnout.

A left voter believes that for given margin M, her action increases the winning probability
of her favored party by

IR(M,T ) = H(M,T,R)−H(M,T,A).

Similarly, for a right voter the impact is:

IL(M,T ) = (1−H(M,T,L))− (1−H(M,T,A)).

The above assumptions imply the following properties for a voter’s impact:

1. IR(M,T ) > 0 and IL(M,T ) > 0 whenever M ∈ (−1,1).
2. IR(M,T ) = IL(−M,T )
3. IR(M,T ) = IL(M,T )
4. Both IR(M,T ) and IL(M,T ) are continuous and differentiable in M, and they are

symmetric and single peaked in zero. Moreover, the influence is weakly decreasing
in T .

Hence, I can define the influence function: I(M,T )≡ IR(M,T ) = IL(M,T ) such that
it is strictly positive on (−1,1), it is symmetric: I(M,T ) = I(−M,T ), is single peaked at
zero-margin and it is continuous and differentiable in M and it is continuous, differentiable
and weakly decreasing in T. Moreover, by construction I(M,T ) ∈ [0,1].

Next, I compare my assumptions regarding the influence function I to the exact rela-
tionship between margin, turnout, and the probability of a voter being pivotal. First note
that in my model, if all voters have the same probability of voting for either of the two
candidates, and the same probability of abstaining, these probabilities are unambiguously
pinned down by M and T . Now suppose that there were a finite population of voters of
size N. We can then calculate the probabilities ΠL

M,T ,ΠR
M,T with which a voter who casts

a vote for the left or the right party is pivotal. The influence function may be seen as the
voter’s perception of this functions ΠL

M,T and ΠR
M,T .

With exact probabilities, intuitively, as the expected election margin decreases, having
equal (almost equal) number of left and right voters is more likely. However, the pivotal
probability of a right voter is the average of the probability of the realized margin among
all the other voters is either 0 or −1 which is the highest when the left party has a slight
lead.

The effect of the average turnout is two-fold. Intuitively, if the turnout increases, then
the expected number of voters who participate in the election increases, hence it is less
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likely that one is pivotal. On the other hand, if the election margin is relatively high, there
is an additional effect, namely, increasing the turnout while holding the margin constant
makes the group of actual voters more balanced and hence, increases the chance of being
pivotal. Moreover, as the number of the voters grows large, the effect of the average turnout
is diminishing compared to the effect of the margin, except in the neighborhood of zero
margin, where is has a negative effect on the pivotal probability. To summarize, the effect
of the turnout is likely to be smaller than the effect of the expected margin and where it
matters it has a negative effect on the pivotal probability.

In the appendix, I calculate the exact pivotal probabilities and I point to the effects
mentioned above. I show analytically how the margin changes the pivotal probabilities
for a a significant subset of the possible margin and turnout values. I refer to numerical
computations in characterizing the effect of the turnout.

The most important misperception by the voters is that they overestimate their effect
on the election outcome.4 Furthermore, they disregard the slight asymmetry in the margin
that appears in the exact probabilites and also simplify the effect of the turnout greatly. My
assumptions on the exogenous form of the influence function result a tractable, symmetric
form of equilibria in my model and allow comparative statics results as the preferences of
the electorate changes.

Example. This example illustrates the construction above for the case that the effect of
the turnout is zero. I provide a subjective probability of a right victory given the different
actions of the voters and then show that influence function that these probabilities imply.
Intuitively, the higher the lead of the right party, the higher the probability that RIGHT

wins. Consider the following family of valid density functions on [−1,1]

γα(x) =
1
2
−αx.

Then the distribution Γ describes the winning probability of the right party as its lead
increases.

Γα(M) =
∫ M

−1

(
1
2
−αx

)
dx =

1+α

2
+

M
2
−α

M2

2
.

Then H(M,A) = Γ0(M), H(M,R) = Γα(M) and H(M,L) = Γ−α(M) are valid subjec-
tive probabilities for any α ∈ (0,1/2]. The influence function I that is implied by this

4Klor and Winter (2008) report an experiment in which voters overestimate the probability that their
vote is pivotal. Note, however, that the experiment is more closely related to committee decision than to
large elections. Also the experiment results find overestimated impact for voters who belongs to the majority
whereas in my model all voters are subject to misperception.
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specification of H is:
I(M) =

α

2
− α

2
M2.

Intuitively, as α increases, the voter’s perceived impact on the outcome of the election
increases.

Subjective Expected Payoff. The following is the expected payoff of a voter choosing
action a such that a ∈ {L,A,R} with a preference parameter z if the other voters follow
strategy profile v:

π(a,z;v) = (1−H(M(v),T (v),a))(−z)+H(M(v),T (v),a))z−C(a).

The first part of this expression describes the probability that the outcome is LEFT multi-
plied by the payoff in that case. The second part is the expected payoff in case of a RIGHT

victory. Finally, C(a) denotes the cost related to the action followed, it is equal to c for the
actions L and R and equal to zero for the action A.

Turnout. The turnout is defined as the overall measure of the players who vote, i.e. choose
action L or R: T (v)≡ λ (v)+ µ(v).

Equilibrium Concept. I consider pure strategy Nash equilibria of the game defined above
such that the strategies are symmetric across voters.

4.3 Equilibrium of the Voting Game

I show that best response strategies of voter t in the voting game are in symmetrical cutoff
strategies with two critical types zt ∈ [−1,0) and zt ∈ (0,1] that satisfy zt = zt . The type
zt separates the range of voters who optimally vote for the left party from the ones who
do not vote. Type zt separates the range of non-voters from right voters. For z ∈ (0,1], I
denote by zt the symmetric cut-off strategy of voter t with cutoff values zt =−z and zt = z :
vote Left for zt ≤ zt , Abstain for all zt ∈ (zt ,zt), and vote Right for all zt ≥ zt .

Since any best response is always in cutoff strategies, an equilibrium must have
the same feature. Voters with strong preference for one of the alternatives vote for this
alternative and voters with weak preference between the alternatives abstain in equilibrium.

Lemma 4.1 (Monotone Best Response of a Voter). Given any strategy profile v followed

by the other voters, the best response for voter t is a symmetric cut-off strategy zt , defined
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by

zt =
−c

2I(M(v),T (v))

zt =
c

2I(M(v),T (v))
.

Proof. First, for any voter with z < 0 voting Right is strictly dominated strategy and for
any voter with z > 0 voting Left is strictly dominated strategy. The payoff differences
between actions A and L and R and A are the following:

π(A,z;v)−π(L,z;v) = 2zI(M(v),T (v))+ c

π(R,z;v)−π(A,z;v) = 2zI(M(v),T (v))− c.

A voter weakly prefers to vote Left if the first difference is non-positive and she weakly
prefers to vote Right if the second difference is non-negative. Therefore, all types
z <− c

2I(M(v),T (v)) vote left and all types z > c
2I(M(v),T (v)) vote right.

From the above equations, one can also see that zt < zt as the influence is always
positive. Hence, there is a strictly positive measure of types who abstain. In particular we
have the following corollary:

Corollary 4.1. Voters who are indifferent between the two alternatives, i.e. with preference

parameter 0 abstain.

Example. In this example, I calculate the equilibrium for an electorate such that the voters
preferences are uniformly distributed, i.e. f (z) = 1/2 for all z ∈ [−1,1]. Consider the
influence function derived in Section 4.2, I(M) = α/2− (α/2)M2 Hence, x represents
an equilibrium if 2(α/2−α/2M(x)2)x = c. Notice that the margin is necessarily zero in
this electorate, since for all z, F(−z) = 1−F(z). Therefore for general α and c, the cutoff
types in equilibrium as x =−(c/α) and x = c/α. Finally, the turnout here is 1− c/α.

Next, I discuss existence and uniqueness of equilibrium. Every symmetric strategy
profile with symmetric cutoff types is characterized by a single number z ∈ (0,1] defin-
ing the right cutoff type in every voter’s cutoff strategy zt . I use the notation z for the
corresponding symmetric strategy profile v.

The condition for this symmetric strategy profile being an equilibrium is that the
expected benefit from voting for the cutoff types z and z is equal to the participation costs
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c:5

−2zI(M(z),T (z)) = c (4.1)

2zI(M(z),T (z)) = c.

One can see that these equations are closely related, namely, whenever there is a
z ∈ (0,1] that satisfies the second one such that z = (−z,z) then −z satisfies the first one.
Therefore, I investigate only one of the above indifference conditions. Moreover, with a
slight abuse of notation, I write M and T as functions of z rather than z.

Finally, I define a partial order on the set of cutoff strategies.

Definition 4.1. A cutoff strategy x is more extreme than y if

x < y < y < x.

Theorem 4.1 (Existence). Define c = 2I(0,0). If c≥ c then the unique equilibrium is such

that no one votes.

If c < c then there exists Nash Equilibrium in monotone strategies, x, with non-zero

turnout. In all equilibria, the critical types x and x are symmetric about 0. Moreover,

if x and y are both equilibrium strategies then the critical values are ordered and the

equilibrium with more extreme cutoffs has lower turnout and higher margin.

Proof. First, by the previous argument in any equilibrium z + z = 0. If c > c then
2zI(M(z),T (z))≤ c≤ c for all z and the only equilibrium is that no voter participates.

If c < c the function 2zI(M(z),T (z)) is continuous in z and takes on the value
2I(0,0) = c > c at z = 1 and the value 0 < c at z = 0. By the intermediate value theorem
there must be z ∈ (0,1] with 2zI(M(z),T (z)) = c.

The next Theorem assumes that the influence function does not depend on the average
turnout and states a sufficient and necessary condition such that the equilibrium is unique
for all influence function and cost parameters.6 Uniqueness requires that the preference
distribution reflects a uniform population bias for either party.

5Note the form of the marginal benefit of voting here. First, there is no need to tie break here, since the
margin is a continuous variable, second, the multiplier 2 comes from the fact that the benefit from changing
the election outcome for a voter with type z is actually 2z, the difference between the utilities assigned to the
two alternatives.

6Notice that the failure of this condition does not mean that there are necessary multiple equilibria. If the
condition is violated, there may exist influence functions such that the equilibrium is unique, however this
will not be true for all influence functions.
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Theorem 4.2 (Uniqueness). If c < c then the voting game has a unique equilibrium for all

influence functions I and costs c, if and only if it is either f (−z)≤ f (z), for all z ∈ (0,1],
or f (−z)≥ f (z) for all z ∈ (0,1].

Proof. The strategy (−z,z) is an equilibrium if and only if it satisfies the indifference
conditions, in other words, if the marginal benefit from voting 2zI(M(z)) is equal to the
cost of voting c.

IF: Next notice that M′(z) =− f (z)+ f (−z) therefore the condition implies that the deriva-
tive of the margin is either weakly increasing or weakly decreasing. Given that M(1) = 0, it
follows that |M(z)| is weakly decreasing in the cutoff z. Thus, I(M(z)) is weakly increasing
in z. Finally, the marginal benefit is a product of a weakly and a strictly increasing function,
hence it is strictly increasing. Thus, the equilibrium is unique.
ONLY IF: I show that whenever the condition of the theorem fails then there exists an
influence function and voting cost such that there are multiple equilibria.

The condition fails if and only if there exists z′,z′′ ∈ [0,1] such that f (−z′) > f (z′)
and f (−z′′) < f (z′′). This is equivalent to having z′,z′′ ∈ [0,1] such that M′(z′) > 0 and
M′(z′′) < 0. So assume that this is the case.

STEP 1: I show that there is a z such that M(z) > 0 and M′(z) > 0 or a z′ such that
M(z) < 0 and M′(z) < 0.

We know that M(1) = 0.

If M(0) > 0 then it is either true that for all z ∈ [0,1], M(z)≥ 0 or there exists ẑ ∈ [0,1]
such that M(ẑ) < 0.

Consider the case when for all z ∈ [0,1], M(z)≥ 0. By assumption there is a z′ ∈ [0,1]
such that M′(z′) > 0. Then M(z′) is either strictly positive itself or M(z′) = 0. If M(z′) = 0
by the continuous differentiability of the election margin in the critical type, there exists
zo > z′ close to z′ such that M′(zo) > 0 and M(zo) > 0.

Now consider the case when a ẑ∈ [0,1] exists such that M(ẑ) < 0. Then since M(0) > 0
and M(1) = 0 by the differentiability of the margin in the critical type there must be a
zo ∈ [0,1] such that M′(zo) < 0 and M(zo) < 0.

If M(0) < 0 a similar proof shows that there exists zo such that the signs of M(zo) and
of M′(zo) coincide.

STEP 2: I show that Step 1 implies the claim.
Pick the value zo such that the the signs of M(zo) and of M′(zo) coincide. Without

loss of generality assume that M′(zo) > 0 and M(zo) > 0. Then there exists an influence
function, that is sensitive enough to the changes in the election margin at the value M(zo),
such that d

dz2zI(M(z))|z=zo < 0. Let c = 2zoI(M(zo)).
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Then there exists a z̃ < zo such that 2z̃I(M(z̃)) > 2zoI(M(zo)) = c.

We know that 2zI(M(z)) = 0 if z = 0. Therefore by the Intermediate Value Theorem,
there is a z∗ ∈ [0, z̃] such that 2z∗I(M(z∗)) = c.

Thus both zo and z∗ are equilibria.

4.4 Election Margin and Voter Turnout

After having characterized the equilibria of the voting game in the previous section, I
now focus on the comparative statics of equilibrium turnout and margin with respect to
changes of the preference distribution. I prove the main result of this paper, Theorem
4.3. If polarization is weakly higher under distribution G than under F and some some
equilibrium under G has a weakly lower margin than some equilibrium under F then the
equilibrium under G must have weakly higher turnout.

Before I turn to the formal discussion and the definition of the polarization of a prefer-
ence distribution, I would like to take up the example from the introduction and use the
model to show how the first intuition on the negative correlation of election margin and
voter turnout can be misleading in general.

Example. Recall the example in Section 4.3 calculating the equilibrium for a uniform
electorate. Here, I find the equilibrium for a more polarized type distribution than the
uniform one and show that it has both higher margin and turnout. Define the following
type distribution:

g(z) =


1 if z <−0.8
1/4 if z ∈ [−0.8,0.8]
2 if z > 0.8.

Consider the parameter values α = 0.2 and assume that the cost of voting is 0.1. Sub-
stituting these values into the formula derived in the previous example, we get that in
case of a uniform electorate the critical preference intensity is 0.5, the equilibrium margin
is zero while the turnout is 0.5. Now, I calculate the related values under the reference
distribution defined above.

As before, the equilibrium is characterized by the indifference condition: 2(0.2/2−
0.2/2M(x)2)x = 0.1. Notice that whenever the critical type x < 0.8, the election margin
is: 0.2(2-1) = 0.2. Therefore, if x is a solution of the equation 0.2(1−0.04)x = 0.1 and
x < 0.8 then it represents an equilibrium. Finally, the value x = 50/96 < 0.8 satisfies
the indifference condition. Hence, there is an equilibrium with election margin 0.2 and
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turnout 1− (25/96), and both of these values are higher than the respective values under
the uniform type distribution.

The equilibrium is also unique in this example. Hence, no z < x can satisfy the indiffer-
ence condition since M(z) = M(x) = 0.2 and therefore (α−αM(z)2)z < (α−αM(x)2)x =
c. Also, if z > x, M(z)≤M(x) and hence (α−αM(z)2)z > (α−αM(x)2)x = c.

While it is true that a closer election under the uniform distribution is associated with
“more types participating in the election”, this effect is overcompensated by the fact that
there are more extreme voters under the distribution G.

The example above illustrates the need to disentangle the change of voters’ preferences
shifting from left to right from the change of voters’ preferences becoming more extreme
(for either one of the possible outcomes).

I now introduce the formal notion of a distribution having the same or a higher polar-
ization than another. This notion needs to capture a sense of a large part of the electorate
having strong preferences of L over R (represented by z close to 0) or strong preferences
of R over L (represented by z close to 1).

Definition 4.2. Distribution G is weakly more polarized than distribution F if and only if

∀z ∈ (0,1]: G(−z)+1−G(z)≥ F(−z)+1−F(z).

A distribution is more polarized than an other if there are more voters with strong
preference for either outcome under the first distribution than under the second one. Note
that this defines solely a partial order on distributions. For arbitrary distributions F , G it
can generally be the case that there are both more indifferent voters (with z close to 0) and
more extreme voters (with z close to −1 or 1) under distribution F than under G. The next
graph shows two possible type distributions with different level of polarization (the type
on the horizontal and the density on the vertical axes).

0.0
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0.4

0.6

0.8

1.0
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An alternative way to define an order for polarization is based on the average absolute
preference of the voters:

∫ 1
−1 |z| f (z)dz or the average squared preference of the voters∫ 1

−1 |z|2 f (z)dz. While the former weights differences in preferences equally across the
whole spectrum the latter emphasizes changes of types that are already extreme.

Actually, it is possible to show that the above definition of polarization can be inter-
preted as the joint of all possible such measures.

Lemma 4.2. The distribution F has the same polarization as the distribution G if and only

if ∫ 1

−1
|z|α f (z)dz =

∫ 1

−1
|z|αg(z)dz (4.2)

for all values of α ∈ [0,∞].

Proof. ONLY IF: The distributions F and G have the same polarization if and only if the
associated pdfs satisfy f (−z)+ f (z) = g(−z)+g(z) for all z ∈ (0,1]. Thus,

∫ 1

−1
|z|α f (z)dz =

∫ 1

0
|z|α( f (−z)+ f (z))dz =∫ 1

0
|z|α(g(−z)+g(z))dz =

∫ 1

0
|z|αg(z)dz.

IF: Set ψ(z)≡ f (−z)+ f (z)−g(−z)−g(z). Then the condition in (4.2) implies that for
all n ∈ N,

∫ 1
0 znψ(z)dz = 0. Also, ψ(z) = 0 for all z is equivalent to the definition of polar-

ization. Hence, to show the if part of the statement, I have to argue that
∫ 1

0 znψ(z)dz = 0
for all n implies ψ(z) = 0. Notice that if

∫ 1
0 znψ(z)dz = 0 then for any p(z) polynomial of

z, it is true that
∫ 1

0 p(z)ψ(z)dz = 0. Therefore,

∫ 1

0
ψ(z)2dz =

∫ 1

0
ψ(z)(ψ(z)− p(z))dz≤max

z
|ψ(z)− p(z)|

∫ 1

0
|ψ(z)|dz.

But by the Weierstrass approximation theorem7 we can uniformly approximate any contin-
uous function ψ(z) by a polynomial p(z). Thus the RHS can be made arbitrarily small and
thus the LHS must be equal to 0, hence ψ(z) = 0.

Among preference distributions with the same polarization, the equilibrium turnout
is already determined by the critical voters. While, the critical voters are determined by
the election margin. Therefore the intuition that the turnout is higher when the margin is
lower is definitely true for changes in preference distributions that leave the polarization
unchanged, or that increase the polarization. In this later case, one has to be careful about

7See Theorem 1.1 in Rivlin (1981, pp. 1). The theorem states that given a function f (x) that is continuous
on [a,b] and ε > 0, there exists a polynomial p(x) such that | f (x)− p(x)|< ε for all x ∈ [a,b].
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the effect of the turnout on the influence, however, a higher turnout decreases the influence
even further and, hence, decreases the preference intensity of the critical types.

This relation between the election margin and the turnout is formalized in the next
Theorem.

Theorem 4.3. If the distribution G is weakly less (more) polarized than the distribution F

and the margin is weakly higher (lower) in an equilibrium y under G than in an equilib-

rium x under F, i.e. |MG(y)| ≥ |MF(x)| (|MG(y)| ≤ |MF(x)|) then the equilibrium y has a

weakly lower (higher) turnout than the equilibrium x, i.e. TG(y)≤ TF(x) (TG(y)≥ TF(x)).8

Proof. I prove only one of the statements in the Theorem. I show that if the equilibrium
margin weakly increases while the type distribution becomes weakly less polarized then the
turnout weakly decreases. Assume, on the contrary, that the turnout corresponding to the
strategy y and the preference distribution G is strictly higher than the turnout corresponding
to the strategy x and the preference distribution F . Since the distribution G is weakly less
polarized than the distribution F , it is necessary that y < x. Thus, the equilibrium conditions
require that I(MG(y),TG(y)) > I(MF(x),TF(x)) which implies that |MG(y)|< |MF(x)| and
that is a contradiction.

Next, I discuss what kind of shifts in the preference distribution can affect the election
margin to rise or fall. I consider a shift in the type distribution such that it represents a
new electorate that prefers the right alternative even more. I characterize the change in the
equilibrium margin for shifts of this kind. For this result, I assume that the turnout has no
effect on the influence function.

Lemma 4.3. Consider a preference distribution F0 on [−1,1] such that for all z∈ [0,1] the

margin M(z,0)≡ 1−F0(z)−F0(−z) = 0. Then consider a family of distribution functions

Fa such that for all z, Fa(z) is continuously differentiable and strictly decreasing in a.9

Let x ∈ (0,1) be an equilibrium under the preference distribution Fα . If

∂

∂ z
2zI(M(z,a))|(x,α) 6= 0

and ε is small, then there exists a unique continuous equilibrium selection ξ : [α− ε,α +
ε]→ (0,1) such that ξ (α) = x. Moreover, the election margin MFa(ξ (a)) increases in a

whenever ∂

∂ z2zI(M(z,a))|(x,α) > 0 and it decreases in a whenever ∂

∂ z2zI(M(z,a))|(x,α) < 0.

8Notice, that if F = G this theorem implies that whenever the game has multiple equilibria they are such
that a higher turnout coincides with lower margin.

9Note that if α ′ > α then the distribution Fα ′ dominates the distribution Fα in the sense of first order
stochastic dominance.
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Additionally, if x is the equilibrium with the highest or the lowest level of participation

among the equilibria under Fα , then the equilibrium margin necessarily increases in a.

Proof. Denote by ψ(z,a)≡ 2zI(M(z,a)). Then z ∈ (0,1) is an equilibrium under Fa(z) if
ψ(z,a) = c, hence ψ(x,α) = c.

By assumption, ψ(z,a) is continuously differentiable in both z and a. Therefore, the
Implicit Function Theorem implies that, if

∂

∂ z
ψ(z,a)|(x,α) =

∂

∂ z
2zI(M(z,a))|(x,α) 6= 0

then there is a unique function ξ (a) on an open neighborhood A of α , mapping to (0,1)
such that ψ(ξ (a),a) = c for all a ∈ A.

Also, ξ (α) = x.

Moreover,
dξ

da

∣∣∣∣
a=α

=− ∂ψ/∂a
∂ψ/∂ z

∣∣∣∣
(x,α)

.

Using the definition of ψ , the derivative with respect to a

∂

∂a
ψ(z,a) = 2zI′(M(z,a))

∂

∂a
M(z,a).

The above expression is strictly negative since I′ < 0 and

∂

∂a
M(z,a) =−∂Fa(z)

∂a
− ∂Fa(−z)

∂a
> 0

by assumption.
Therefore the sign of dξ

da at a = α is determined by the sign of

∂

∂ z
ψ(z,a) =

∂

∂ z
2zI(M(z,a))|(x,α).

Hence, marginal voter gets more extreme in a whenever

∂

∂ z
2zI(M(z,a))|(x,α) > 0

and less extreme whenever

∂

∂ z
2zI(M(z,a))|(x,α) < 0.

To finish the argument, notice that the lemma is stated for influence functions with
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no turnout effect. Thus the indifference conditions imply that the absolute value of the
equilibrium margin is higher whenever the marginal voter is more extreme and it is lower
whenever the marginal voter is less extreme.

Finally, notice that if x is the equilibrium with the highest level of participation then
the sign of ∂

∂ z2zI(M(z,a))|(x,α) is necessarily positive. Assume on the contrary that it is
negative, then there is an x′ < x such that 2x′I(M(x′,a)) > c. Since 2zI(M(z,a)) = 0 for
z = 0, by Intermediate Value Theorem there is an x∗ < x′ < x with 2x∗I(M(x∗,a)) = c.
Thus x is not the equilibrium with the highest turnout. The proof for the equilibrium
with the lowest level of participation is analogous, considering that 2zI(M(z,a)) > c for
z = 1.

By Theorem 4.3, we can conclude that if the shift in the preference distribution from Fα

to Fα ′ at the same time decreases polarization, then the turnout decreases in the equilibria
with the highest and the lowest participation.

Above, I discussed shifts in preferences such that voters’ support one alternative even
more. Before I end this section, I take a quick look at a complementary change in prefer-
ences that only affects polarization but does not represent a shift in preferences to one side
or the other. For this result, I again assume that the turnout has no effect on the influence.

Lemma 4.4. Consider a change in the political landscape from preference distribution F

to G so that G has higher polarization while the relative preferences for the left and the

right party are the same, i.e. for all z ∈ (0,1], f (−z)− f (z) = g(−z)−g(z).10 Then, if x is

an equilibrium given the preference distribution F then x is an equilibrium given G as well.

Moreover, the corresponding equilibrium margin MF(x) is equal to the equilibrium margin

MG(x) while the corresponding equilibrium turnout is unambiguously higher under G.

Proof. The condition f (−z)− f (z) = g(−z)−g(z) implies that the election margins MF(z)
and MG(z) coincide for all symmetric cut-off strategy profiles (−z,z). Therefore, if x is an
equilibrium under F , i.e. it satisfies the conditions in (4.1) then it is an equilibrium under
G as well. However, the equilibrium turnout is unambiguously higher for the preference
distribution G, since that is more polarized.

10Notice that two distributions may represent the same relative preferences for the left and the right party
without being the same. For example, any symmetric preference distribution has equally strong relative
preferences for the left and the right party.
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4.5 Conclusion

I proposed a tractable game-theory model of large elections. My key assumptions were
the strictly positive voting cost and strategic voters who misperceive their influence on
the election outcome. I have shown that in equilibrium the margin decreases and the
turnout increases as the distribution of the voters’ preference shifts but the polarization of
the preferences remains constant or increases. I also provided an example in which the
election margin and turnout exhibited positive relationship. My result sheds light on the
importance of polarization of the voters’ preference in explaining election turnout and
suggests an empirical test of the model where turnout is regressed on closeness controlling
for measures of polarization.
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4.6 Appendix: Influence in the Finite Model

The negative relation between turnout and margin in Theorem 3 depends crucially on
the fact that a voter’s perceived probability of being pivotal is increasing in the expected
margin. However this fact - that I(M) is decreasing in |M| - is an assumption on the
subjective probabilities in my model. In this appendix, I relate this assumption to the
properties of the exact pivotal probabilities. Also, I discuss the assumptions about the
effect of the turnout on the influence compared to the effect on the exact probabilities.

Consider the election with N +1 voters, each with preference types zt i.i.d. according
to the cdf F(z). The preferences over the outcomes and participation are as in Section 2.
Just as in Lemma 4.1, the best response strategies are determined by cutoff types (z,z) but
the indifference conditions are no longer given by the exogenous influence function but by
the actual probability of being pivotal. Equations (4.1) thus turn into

−2
1
2
(
P0(z)+P1(z)

)
z = c

2
1
2
(
P0(z)+P−1(z)

)
z = c

where Pm(z) is the probability that the realized margin from N voters, each voting accord-
ing to the cutoff strategy (z,z), is m. Assuming that ties are broken by a fair coin toss,
the probability that a potential left voter is pivotal is ΠL

z = 1
2(P0(z)+ P1(z)). Thus, the

first equation is the indifference condition for the marginal left voter z < 0 and the second
equation is the equivalent condition for the marginal right voter z > 0.

Now, I express the pivotal probabilities by the preference distribution and the cutoff
types. Then, I change variables and rewrite the expressions by the average margin and
turnout. This form allows me to discuss the properties of interest.

Denote by p(l,r,N− l− r) the probability that exactly l voters vote Left and r vote
Right under strategy z.

p(l,r,N− l− r) =
N!

l!r!(N− l− r)!
F(z)l(1−F(z))r(F(z)−F(z))N−l−r

Now, I can express the probabilities that the realized margin takes up the values −1,0 and
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1.

P0(z) =
[N/2]

∑
k=0

p(k,k,N−2k)

P1(z) =
[(N−1)/2]

∑
k=0

p(k,k +1,N−2k−1)

P−1(z) =
[(N−1)/2]

∑
k=0

p(k +1,k,N−2k−1)

Note that the average margin is given by M = M(z) = 1−F(z)−F(z) and the average
turnout is given by T = T (z) = 1−F(z)+F(z). I can thus express the critical probabilities
F(z) = T (z)−M(z)

2 and 1−F(z) = T (z)+M(z)
2 as functions of the average margin and turnout

and substitute these expressions back into the probabilities of being pivotal:

P0(M,T ) =
[N/2]

∑
k=0

N!
k!k!(N−2k)!

[
T −M

2

]k [T +M
2

]k

[1−T ]N−2k

P1(M,T ) =
[(N−1)/2]

∑
k=0

N!
k!(k +1)!(N−2k−1)!

[
T −M

2

]k [T +M
2

]k+1

[1−T ]N−2k−1

P−1(M,T ) =
[(N−1)/2]

∑
k=0

N!
(k +1)!k!(N−2k−1)!

[
T −M

2

]k+1[T +M
2

]k

[1−T ]N−2k−1.

One can immediately see that the pivotal probabilities are positive. Also, holding
the lead of the preferred party constant, the pivotal probability does not depend on the
alternatives, i.e. P0(M,T )+P1(M,T ) = P0(−M,T )+P−1(−M,T ).

The Effect of the Average Margin on the Pivotal Probabilities. With respect to the
effect of the average margin, I assume that (i) the influence function is symmetric at zero
margin and (ii) it is decreasing in the absolute value of the margin.

Intuitively, a smaller margin increases the probability that the left and the right votes
are equally distributed among the voters and the influence function captures this intuition.
However, for the exact probabilities, this property is not true in an equally clean way since
the probability of being pivotal is equal to average of the probabilities that the realized mar-
gin is 0 and −1, 1

2(P0(M,T )+P−1(M,T )).11 It is transparent that P0(M,T ) is symmetric
to zero margin, however, the same is not true for P−1(M,T ). The probability P−1(M,T ))
is actually strictly decreasing at zero margin and thus strictly decreasing as we decrease
the margin below 0 by a little. This reflects the intuitive fact that the probability of being

11Without loss of generality, I consider a right voter.
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pivotal is largest when one’s own side is slightly behind, by say half a vote in expectation.
Formally, the pivotal probability of a right voter decreases in the margin whenever the

right party has a lead, M ≥ 0 and it increases in the margin whenever the left party has
reasonable lead M < −ε for ε > 0.12 Partial differentiation of the pivotal probabilities
with respect to M yields:

∂P0

∂M
=

[N/2]

∑
k=0

P0(k)
[

2k
T +M

− 2k
T −M

]
∂P1

∂M
=

[(N−1)/2]

∑
k=0

P1(k)
[

2(k +1)
T +M

− 2k
T −M

]
∂P−1

∂M
=

[(N−1)/2]

∑
k=0

P−1(k)
[

2k
T +M

− 2(k +1)
T −M

]

where P0(k), P1(k) and P−1(k) are the kth elements of the respective probabilities. Notice
that for M ≥ 0 both P0 and P−1 are sums of elements that are individually weakly decreas-
ing in the margin. The kth element of ∂P0

∂M is the product of the positive probability that
exactly k left an k right voters participate and the term

( 2k
T+M −

2k
T−M

)
which is necessarily

non-positive given T +M ≥ T −M. Similarly, the kth element of ∂P−1

∂M is the product of
the positive probability that exactly k + 1 left an k right voters participate and the term(

2k
T+M −

2(k+1)
T−M

)
that is necessarily non-positive.

For M < 0, the probability P0 is increasing in M while the properties of P−1 are
ambiguous. The sign of any element of the derivative again depends on the sign of(

2k
T+M −

2(k+1)
T−M

)
which is positive for all k whenever T−M

T+M > 2. So, this condition ensures
that the pivotal probability increases in the margin. However, the above condition is only
sufficient and the derivative can be positive even for higher values of M (lower absolute
values).

The next two graphs illustrate the discussion above. The first graph shows the pivotal
probability of a right voter as a function of the average margin if the size of the electorate
is N = 30 and the expected turnout is T = 0.7. Changing these parameter values does not
alter the graph qualitatively.

12I was not able to derive the value of ε analytically.
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The second graph suggests that the pivotal probability becomes symmetric to the
margin as the size of the electorate increases. I plot the pivotal probability of a right voter
as a function of the expected margin for electorate sizes N = 50 and N = 100. The curves
indicating higher pivotal probabilities gives the values for the population with size N = 50.
To indicate asymmetry, I included the pivotal probability of a left voter here, marked with
dashed and dotted lines.
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The Effect of the Average Turnout on the Pivotal Probabilities. I assume that the
influence is decreasing in the average turnout.

The effect of the turnout on the pivotal probabilities is ambiguous. As the turnout
increases, it is more likely that a higher number of people vote, hence the chance of being
pivotal decreases. However, keeping the margin constant, increasing turnout levels the

82



expected number of left and right voters and hence increases the chance of being pivotal.
These two effects are shown in the partial derivatives.

∂P0

∂T
=

[N/2]

∑
k=0

P0(k)
[

2k
T +M

+
2k

T −M
− N−2k

1−T

]
∂P1

∂T
=

[(N−1)/2]

∑
k=0

P1(k)
[

2(k +1)
T +M

+
2k

T −M
− N−2k−1

1−T

]
∂P−1

∂T
=

[(N−1)/2]

∑
k=0

P−1(k)
[

2k
T +M

+
2(k +1)
T −M

− N−2k−1
1−T

]

For example, in case of P0, the first two terms in the expression
[ 2k

T+M + 2k
T−M −

N−2k
1−T

]
refers to the positive effect while the last one reflects the case that increasing turnout,
making the expected number of actual voters higher decreases the chance that a voter is
pivotal.

Numerical computations show that (i) the positive effect disappears for zero margin
but (ii) for high absolute value of margin, the positive effect overtakes as the size of the
electorate increases.

The following graph shows the pivotal probabilities as a function of average turnout
if the size of the electorate is N = 50 and the expected margin is M = 0 (dotted line) or
M = 0.1 (dashed line) or M =−0.1 (unbroken line).
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To illustrate the positive effect of the turnout on the pivotal probabilities when the
margin is relatively high, the next graph plots the pivotal probabilities as a function of
the turnout for electorate sizes N = 50 (dashed line) and N = 100 (unbroken line) and a
margin M = .2.
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Finally, numerical computations also show that the effect of the margin on the pivotal
probability is relatively stronger than the effect of the turnout, as the size of the electorate
increases, except when, the margin is close to zero.
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Chapter 5

Conclusion

My dissertation presented three papers on strategic voting.
In the first paper, which is written jointly with Lones Smith, we proposed a dynamic

model of deliberation in a two-member committee. We assumed that the decision making
presumes time-cost. We explored the monotone properties of the game and described
the set of equilibria. Our main contribution was to show that in a deliberation process
with positive time-cost the verdict is almost instantaneous and approximately information-
efficient as the period-length vanishes. This result suggests that dynamic models of group
decision-making are able to properly aggregate members’ private information.

In the second paper, I studied the joint-decision problem of a committee of privately
informed individuals whose interests are aligned. I argued that if multiple votes are avail-
able for the committee members, then the quality of the joint decision can improve. I also
showed that if the committee members have conditionally independent signals, the efficient
verdict can be reached if there are a sufficient number of votes available. I discussed that
with correlated private information, full efficiency may not be possible for any number of
votes. Moreover, I gave a necessary and sufficient condition on the joint distribution of
the private signals to ensure that the decision by the committee is efficient. To summarize,
allowing multiple votes compared to a single vote improves a voting mechanism and
is a remedy for a certain type of inefficiency in the joint-decision problem. However,
the efficient decision with correlated private signals would require a different class of
mechanisms.

In the final paper, I proposed a tractable game-theory model of large elections. My
key assumptions were a strictly positive voting cost and strategic voters who misperceive
their influence on the election outcome. I showed that in equilibrium the election margin
decreases and the turnout increases as the distribution of the voters’ preferences shifts,
but the polarization of the preferences remains constant or increases. I also provided an
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example in which the election margin and turnout exhibited a positive relationship. My
result sheds light on the importance of polarization of the voters’ preferences in explaining
the election turnout and suggests an empirical test of the model where turnout is regressed
on closeness, controlling for measures of polarization.
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Blais, André. 2000. To Vote or Not to Vote, University of Pittsburgh Press.

Börgers, Tilman. 2004. Costly voting, American Economic Review, 94(1), 57–66.

Campbell, Colin M. 1999. Large electorates and decisive minorities, Journal of Political
Economy, 107(6), 1199–1217.

Casella, Alessandra. 2005. Storable votes, Games and Economic Behavior, 51(2), 391–419.

Chakraborty, Archishman and Parikshit Ghosh. 2003. Efficient equil-
bria and information aggregation in common interest voting games.
Http://aux.zicklin.baruch.cuny.edu/chakraborty/jury091105.pdf.

Condorcet, Marquis de. 1785. Essay on the application of mathematics to the theory of
decision-making, in Keith Michael Baker, (Ed.) Condorcet: Selected Writings, Indi-
anapolis: Bobbs-Merrill Co., 1976.

Coughlan, Peter J. 2000. In defense of unanimous jury verdicts: Mistrials, communication
and strategic voting, American Political Science Review, 94(2), 375–393.

Downs, Anthony. 1957. An Economic Theory of Democracy, Harper & Row.

Duggan, John and César Martinelli. 2001. A bayesian model of voting in juries, Games
and Economic Behavior, 37, 259–294.

Feddersen, Timothy J. and Wolfgang Pesendorfer. 1998. Convicting the innocent: The
inferiority of unanimous jury verdicts under strategic voting, American Political Science
Review, 92(1), 23–35.

Geanakoplos, John and Heracles M. Polemarchakis. 1982. We can’t disagree forever,
Journal of Economic Theory, 28(1), 192–200.

87



Gul, Faruk, Hugo Sonnenschein, and Robert Wilson. 1986. Foundation of dynamic
monopoly and the coase conjecture, Journal of Economic Theory, 39(1), 155–190.

Klor, Esteban F. and Eyal Winter. 2008. On public opinion polls and voters’ turnout.
Http://economics.huji.ac.il/facultye/klor/Publications.htm.

Krantz, D.H., R.D. Luce, P. Suppes, and A. Tversky. 1971. Foundations of Measurement,
Vol. 1: Additive and Polynomial Representations, New York: Academic Press.

Krasa, Stefan and Mattias K. Polborn. 2008. Is mandatory voting better than voluntary
voting?, Games and Economic Behavior. Forthcoming.

Ladha, Krishna K. 1993. Condorcet’s jury theorem in light of de finetti’s theorem, Social
Choice and Welfare, 10(1), 69–85.

Ledyard, John. 1984. The pure theory of large two candidate elections, Public Choice,
44(1), 7– 41.

Li, Hao, Serwin Rosen, and Wing Suen. 2001. Conflicts and common interests in commit-
tees, American Economic Review, 91(5), 1478–1497.

McLennan, Andrew. 1998. Consequences of the condorcet jury theorem for beneficial
information aggregation by rational agents, American Political Science Review, 92(2),
413–418.

Miller, Nicholas R. 1986. Information, electorates, and democracy: Some extensions and
interpretation of the condorcet jury theorem, in Bernard Grofman and Guillermo Owen,
(Eds.) Information Pooling and Group Decision Making: Proceedings of the Second
University of California, Irvine, Conference of Political Economy, JAI Press, 173–192.

Palfrey, Thomas R and Howard Rosenthal. 1983. A strategic calculus of voting, Public
Choice, 41(1), 7 – 53.

Rivlin, Theodore J. 1981. An Introduction to the Approximation of Functions, New York:
Dover Publications, Inc.

88


	Title
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	Abstract
	Chapter Introduction
	Chapter We Can't Argue Forever
	Introduction
	Model and Preliminary Results
	The Dynamic Voting Game
	Monotonicity

	Equilibrium Analysis
	Examples of Equilibria
	Properties of the Equilibria

	Asymptotic Properties
	The Length of the Deliberation
	The Efficiency of the Verdict

	Conclusion

	Chapter Committee Decision with Multiple Votes
	Introduction
	A Model of Committee Decision
	The Joint Decision Problem
	Voting Game (V,)

	Committee Decisions with Finite Votes
	Constrained Efficiency in Voting Games
	More Votes Are Better

	Committee Decisions with Continuous Votes
	Conditionally Independent Signals - A Sufficient Condition for Efficient Voting
	Ordered Signals - A Necessary Condition for Efficient Voting
	A Necessary and Sufficient Condition for Efficient Voting

	Conclusion

	Chapter Costly Voting, Polarization and Turnout
	Introduction
	A Model of Elections
	Equilibrium of the Voting Game
	Election Margin and Voter Turnout
	Conclusion
	Appendix: Influence in the Finite Model

	Chapter Conclusion
	Bibliography

