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Chapter 1

Introduction

Functional Magnetic Resonance Imaging (fMRI) is a relatively newly developed tech-

nique used to study neural activity as reflected in changes in blood oxygenation and flow.

The results of fMRI data analysis are activation maps which show the specific brain re-

gions related to a mental task. While fMRI has been in use for over 15 years, there

remains a need for more sensitive modeling and inference methods. This dissertation

consists of three studies to improve sensitivity by developing new theoretical results op-

timizing existing techniques. In this chapter, we review fMRI techniques and existing

fMRI statistical methods.

1.1 Background

fMRI is a technique for studying the relationship between brain activities and hu-

man behavior. The blood-oxygen-level-dependent (BOLD) contrast method is the most

important method of several methods for obtaining functional information via magnetic

resonance imaging (MRI) [Ogawa & Lee, 1992]. It is well known that blood flow and

blood oxygen will be changed due to brain activities [Roy & Sherrington, 1890]. When

a portion of the human brain has increased neuronal firing activities, the increased

demand for oxygen stimulates blood flow. Normally, the blood flow response to the

change in blood oxygen level occurs within approximately 1-5 seconds. After that, the

1
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haemodynamic response reaches its peak around 4-5 seconds, followed by a return to

its baseline. During increased brain activity, the ratio of oxygenated (HbO2) to deoxy-

genated hemoglobin (Hb) is larger in the region activated than at rest [Ogawa et al.,

1990; Kwong et al., 1992]. The magnetic susceptibility varies during this process, as de-

oxygenated Hb is paramagnetic, oxygenated Hb is diamagnetic. In a MRI scanner, this

variation alters the homogeneity of the local magnetic field, and results in small changes

in image intensity. Figure 1.1 [Springer et al., 1999] simply illustrates this procedure.

Part (a) shows the mechanism of the BOLD structure, while Part (b) illustrates the

oxygen changes from rest state to active state.

During a fMRI experiment, each subject is presented with two or more conditions,

for example a task and a rest condition. The scanner scans the subject’s brain in regular

intervals during the entire experiment: normally 1-4 seconds. The resulting image is

represented in voxels in 3 dimensional space. The size of a voxel is generally 2-by-2mm

in plane, an 2-4mm thick. A 3D brain image consists of about 100,000 voxels. Each

subject typically has 100 scans or more during an experiment. In addition, the images

have to be realigned and motion corrected before analysis. To allow for inter-subject,

or second level analysis, the brain images are warped to match a standard brain atlas.

This is a crucial step. Next, images are smoothed with a Gaussian kernel in order to

increase the signal to noise ratio (SNR) and reduce residual anatomic differences. It is

important to note that BOLD effect is not an absolute measure, and is only meaningful

as a difference between different conditions.

1.1.1 Experimental Design

A carefully designed experiment is required in order to detect the subtle changes

between conditions. During a fMRI experiment, each subject is provided a specific task

sequence, such as frequent finger tapping, or random finger tapping. A fMRI experiment
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Figure 1.1: Illustration BOLD mechanism structure
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is designed according to scientists’ research goals. A fMRI experiment normally lasts

around one hour. Obviously, the fMRI sequence forms a series of measurements for each

voxel over time. The time series measurements relate brain response to the specific task

sequence at each voxel.

There are three main types of designs related to fMRI data analysis; block design,

event-related design and mixed design. Mixed design which is a combination of block

design and event-related design. The most commonly used design is block design. Figure

1.2 (top) shows a simple block design. There are several discrete binary periods in this

design. The binary external stimulus is 0 if there is no tasks (rest, or baseline condition)

during the experiment or 1 if there is a task. The control task is important since

it provides the baseline against which the cognitive tasks are compared. The design

consists of the same on-off pattern, although the duration of blocks may vary. A block

design normally allows the hemodynamic response function (HRF) reach its maximal

value. In addition, the long rest inter-stimulus intervals (ISI) of the block design allows

the HRF to return to baseline. The HRF is assumed to have a smooth shape, and a

scaled gamma probability distribution function is often used [Lange & Zeger, 1997]. In

SPM1, a mixture of Gamma functions are used in order to mimic the undershoot of HRF

[Friston et al., 1998].

The fMRI response is the external stimulus convolved with a HRF (Figure 1.2 (bot-

tom)). Figure 1.2 (middle) illustrates a HRF.

The stimuli sequence in event-related design is arbitrary. Figure 1.3 (top) shows a

simple event-related design. Figure 1.3 (bottom) illustrates the response of the corre-

sponding design. This randomization property gives the event-related paradigm greater

flexibility than the block design. Moreover, this design is much closer to human being’s

1http://www.fil.ion.ucl.ac.uk/spm
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behavior. However, it has less statistical powerful than the block design because of weak

contrast-to-noise ratio [Chee et al., 2003; Soltysik & J.S., 2006; Friston et al., 1999].

The mixed design is the third design used in practice. In this design, events are

gathered into blocks. This combines the sensitivity of block design with the flexibility of

event-related design. The advantage of the mixed design is that it reduces confounding

due to the stimulus order. For example, if we have three conditions, the sequence of the

stimuli are different but ISI within blocks are the same.
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Figure 1.2: Illustration of stimulus in block design

1.1.2 Temporal Autocorrelation

A subject’s brain is imaged repeatedly at very short intervals, for approximately 2

seconds. At each voxel, the data thus comprise a time series (see Figure 1.4 for an

example).



6

0 50 100 150 200 250 300
0

0.5

1

Time

S
tim

ul
us

Event−related Design Paradigm

0 50 100 150 200 250 300
0

0.5

1

D
en

si
ty

Combination of two Gamma densities

Hemodynamic response function (HRF)

0 50 100 150 200 250 300

0

0.5

1

Response, the stimulus is convolved with HRF

In
te

ns
ity

Figure 1.3: Illustration of stimulus in event-related design

Many authors have investigated the temporal autocorrelation in fMRI time series

[Bullmore et al., 1996; Marchini & Ripley, 2000; Woolrich et al., 2001]. The general

method is to use autocorrelation with one parameter (AR(1)) model to describe the

underlying correlation structure [Worsley et al., 2002]. Although this model can be

extended to an AR(p) model, the complex autocorrelation structure increases compu-

tational requirements. The other issue related to temporal autocorrelation is whether

to assume that the temporal correlation for all voxels is same. Since there are more

than 100,000 voxels in an image and we have to analyze all voxels simultaneously, the

computational complexity is huge. Thus some software packages only estimate a pooled

AR(1) model (e.g. SPM), while FSL2 estimates a local autocorrelation function (ACF).

In reality, we use one model for all voxels.

2http://www.fmrib.ox.ac.uk/fsl
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Figure 1.4: Image data for one voxel

1.2 Statistical Analysis

1.2.1 Methods

The main goal for fMRI data analysis is to investigate the tasks related activated

brain regions. A general linear model (GLM) is applied to each voxel for fMRI data

analysis. In a mass univariate data analysis,

Yi = Xβi + εi

is fitted for each voxel i = 1, . . . , I, where Yi is a N × 1 vector of responses, X is a

common N × q design matrix of predictors, βi is a q × 1 vector of unknown parameters

and εi is a N×1 vector of random errors. Typically, at each voxel, errors are assumed to

be independent and identically distributed N(0, σ2
i ) random variates, though dependent

errors can be accommodated [Luo & Nichols, 2003]. The ordinary least squares estimator

of βi is β̂i = (XTX)−1XTYi, and of σ2
i is σ̂2

i = eT
i ei/η, where ei = Yi−Xβ̂i and where η

is the error degrees of freedom. Then, the Student’s t statistic at voxel i is

Ti = cβ̂i

(
c(XTX)−1cTσ̂2

i

)−1/2

where c is a contrast of interest (row vector). We write the statistic image as T = {Ti}Ii=1.

Performing inference for each voxel independently is known as voxel-wise inference.

If the t statistic of one voxel is greater than a cutoff point, that voxel is considered

statistically significant. An alternative approach is to apply an arbitrary threshold and
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form clusters, and then assess significance based on the spatial extent of the cluster. Such

cluster-wise inference is generally more sensitive than voxel-wise inference, especially for

spatially extended signals.

Whether voxel-wise or cluster-wise inference is used, there is a serious multiple testing

issue when searching the brain for activation. If we use Bonferroni’s method, there is

little power, as Bonferroni is conservative under dependence. Random Field Theory

(RFT) and permutation methods provide inferences that adapt to the smoothness of

the data.

1.2.2 Nonparametric Permutation Method

The classical statistical inference methods are normally based on some assumptions

on the distribution of the underlying population. Once the distribution of a statistic

is derived, the corresponding parameters, such as the mean and variance, will be fully

stated parametrically. All conclusions based on these inference methods on these statis-

tics are valid as long as these assumptions are substantiated. However, in reality, the

distribution of the underlying population is unknown and not easily derived. In addition,

the distributional assumptions are sometimes not reasonable. Nonparametric methods

were developed to address these shortcomings of classical parametric methods.

A permutation test is one type of nonparametric inference. It is based on a resam-

pling of the data without replacement, in contrast to bootstrap methods which sample

data with replacement. All possible values of rearrangements of the data, which are

equivalent under the null hypothesis, are calculated in order to find the distribution

of the corresponding test statistic. The basic requirement for this method is that the

data are exchangeable under the null hypothesis. The advantage of this method is that

it does not assume anything about the distribution of the test statistic. It is widely

used for newly defined or complicated statistics. The limitation for this method is that
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data are sometimes not exchangeable, as in intra-subject fMRI data, where temporal

autocorrelation invalidates exchangeability. In this dissertation, we use a permutation

method only for group-level fMRI data and not for voxels, since it will change the spatial

structure if we permut voxels.

1.3 Existing inference methods and problems

Poline et al. [Poline et al., 1997] developed the parametric joint distribution of cluster

extent and suprathreshold peak height intensity. Their minimum P value approach

is sensitive to clusters with large cluster extent or high suprathreshold peak height

intensity. In addition, Bullmore et al [Bullmore et al., 1999] proposed a nonparametric

cluster mass inference method. Cluster mass is defined as the integral of suprathreshold

intensities within a cluster. They used the permutation framework to obtain cluster

mass P values for all defined clusters. This method is generally considered as a more

sensitive method than cluster extent or voxel intensity inference method since the cluster

mass statistic naturally combines the information from cluster extent and voxel intensity.

Other combining functions were also developed to draw benefits from the two statistics

[Hayasaka & Nichols, 2004]. To date, there is no study that combines methods with

these two statistics.

Although the nonparametric cluster mass inference method is considered a more

sensitive method than the other combining methods, it can not be used for a single

subject fMRI data analysis. The data for a single subject are not exchangeable because

a parametric autocorrelation model is needed. In addition, nuisance covariates are not

easy to accommodate since the permutation scheme depends on experimental design

and not on the design matrix. Thus, a parametric cluster mass inference method is

needed. Moreover, random field theory provides a platform for the development of the
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parametric cluster mass inference method.

For a small group with less than 20 subjects, the critical value is higher than that

for a large group because of the small degrees of freedom. This fact will lead to fewer

significant region. Previous studies found that the smoothed variance t-test has a larger

degrees of freedom and better detection sensitivity than the standard t-test [Nichols &

Holmes, 2002; Hayasaka & Nichols, 2003]. However, the magnitude of the smoothness

parameter applied to variance images in order to achieve this is unknown. In addition,

the true variance image was considered a constant [Worsley et al., 2002], which is a

questionable assumption.

In this dissertation, we study the problems mentioned above. In Chapter 2, the

performance of the combining method with suprathreshold average intensity and cluster

extent is evaluated by simulation and real data analysis. In Chapter 3, the parametric

distribution of the cluster mass statistic is fully developed via random field theory. In

Chapter 4, the relationship between three smoothness parameters, smoothing kernel

used for data, smoothing kernel from a true variance image and smoothing kernel size

applied to the variance image, and the effective degrees of freedom of the smoothed

variance t-test are studied.



Chapter 2

Combining Suprathreshold Average Voxel Intensity

and Cluster Extent with Permutation Test

Framework

Neuroimaging inferences are generally based on two statistics, cluster extent, the

number of voxels within a cluster, and voxel intensity, the maximum voxel intensity in

a cluster. Voxel wise inference method focuses on signal intensity, while cluster wise

inference method focuses on signal spatial extent. To leverage the strength from both

statistics, some combining functions were developed. Poline et al. [Poline et al., 1997]

developed parametric joint distribution of cluster extent and suprathreshold peak height

intensity. Their minimum P value approach is sensitive to clusters with large cluster ex-

tent or high suprathreshold peak height intensity. In addition, Bullmore et al [Bullmore

et al., 1999] proposed nonparametric cluster mass inference method. Cluster mass is

defined as the integral of suprathreshold intensities within a cluster. They used permu-

tation framework to obtain cluster mass P values for all defined clusters. This method

is generally considered as a more sensitive method than cluster extent or voxel intensity

inference method since the cluster mass statistic naturally combines the information

from cluster extent and voxel intensity. Other combining functions were also developed

to benefit from the two statistics [Hayasaka & Nichols, 2004]. Since cluster mass is

the product of cluster extent and suprathreshold average intensity within a cluster, we

11
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study some combining functions using the two statistics with permutation framework in

this work. We compare the proposed combining methods to nonparametric cluster mass

method and partial inference methods. We also evaluate them with simulation study

and apply them in real data analysis.

2.1 Introduction

Neuroimaging inferences are generally based on the extent of a cluster or the maxi-

mum voxel intensities within a cluster. Cluster extent inference method is sensitive for

spatially extended signals [Friston et al., 1996; Poline et al., 1997], while methods based

on intensity are sensitive when signal magnitudes are large [Friston et al., 1991; Worsley

et al., 1992]. However, the two inference methods do not have much power for moderate

extent and intensity [Hayasaka & Nichols, 2004].

Poline et al [Poline et al., 1997] developed parametric combining method based on

Gaussian Random Field Theory (RFT). They derived a joint distribution of cluster

extent and suprathreshold peak height intensity. In their approach, the minimum P

value from cluster extent and suprathreshold peak height intensity [Adler, 1981; Wors-

ley et al., 1992; Friston et al., 1994] is used to find a critical region of a brain. Their

approach is sensitive to those clusters with either large signal extent or high suprathresh-

old peak height intensity. In addition, because this method is based on RFT, there are

some assumptions with the method. They assumed all images are smoothed and can be

approximated with a stationary Gaussian field. They also assumed that the autocorre-

lation function between voxels can be measured with a Gaussian correlation function.

In addition, they required that the threshold used to define clusters is relatively high.

Furthermore, this parametric combining method is applicable to Gaussian field. A t-to-

Z transformation has to be applied if the image is a t image, although the degrees of
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freedom of this t image may be small.

Bullmore et al. [Bullmore et al., 1999] proposed a nonparametric cluster mass infer-

ence method without those strict assumptions. Cluster mass is defined as the integral

of suprathreshold intensities within a cluster [Holmes, 1994]. Their method is based on

permutation framework. They recorded cluster mass statistic for each cluster in each

realization to produce the distribution of cluster mass and find the corrected P value

for a specific cluster. They also recorded the maximum cluster mass to generate the

distribution of the maximum cluster mass and find the corrected P value for a specific

cluster. The uncorrected and corrected P values are P values according to whether the

multiple comparison issue is considered or not. The difference between them is explained

in Appendix A.1

Hayasaka and Nichols developed some combining functions from cluster extent and

suprathreshold peak height intensity [Hayasaka & Nichols, 2004]. They used P values

from the above two statistics in combining functions, Tippet and Fisher functions. Their

Tippet combining function used minimum P value approach, which is similar to Poline

et al.’s method. They also developed weighted Tippet and Fisher functions according to

signals of interest, either localized high intensity but small cluster extent or low intensity

but large cluster extent.

In our previous work we found that the cluster mass was generally the most sensitive

inference method [Hayasaka & Nichols, 2004]. As the cluster mass is the product of

the cluster extent and the suprathreshold average intensity, cluster mass can be seen as

a method that combines cluster extent and suprathreshold average intensity with the

“product” combining function. We propose Tippet and Fisher combining functions using

cluster extent and suprathreshold average intensity. The goal of this work is to show if

combining P values from cluster extent P values and suprathreshold average intensity
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P values are more sensitive than other combining statistics. Since we do not know

the distribution of two combining functions, this work is also based on nonparametric

permutation framework. We evaluate the two combining functions with simulation study.

We also apply them to a second level data analysis because we can permute data labels.

2.2 Methods

2.2.1 Statistic Image

In a mass univariate data analysis, a general linear regression model (GLM)

(2.1) Yi = Xβi + εi

is fit for each voxel i = 1, . . . , I, where Yi is a N × 1 vector of responses, X is a common

N × q design matrix of predictors, βi is a q × 1 vector of unknown parameters and εi

is a N × 1 vector of random errors. Typically, at each voxel, errors are assumed to

be independent and identically distributed N(0, σ2
i ) random variates, though dependent

errors can be accommodated [Luo & Nichols, 2003]. The ordinary least squares estimator

of βi is,

β̂i = (XTX)−1XTYi

and σ2
i is

σ̂2
i = eT

i ei/η

where ei = Yi − Xβ̂i and where η is the error degrees of freedom. Then the Student’s

t-statistic at voxel i is

(2.2) Ti =
cβ̂i√

c(XTX)−1cTσ̂2
i

where c is a contrast of interest (row vector). We write the t-statistic image as T =

{Ti}Ii=1.
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Given cluster-forming threshold uc > 0, the set of suprathreshold statistics {Ti : Ti >

uc}Ii=1 is used to define clusters. Contiguous clusters are defined by a neighborhood

scheme, typically 18 connectivity scheme on a three dimensional image, i.e., in a 3×3×3

cube, all 18 voxels are connected to the center except 8 voxels at corner.

2.2.2 Partial inference methods

After a t image is generated and clusters are defined, voxel intensity inference method

will be used for each voxel of the t image, as well as the cluster extent inference method

will be used for all defined clusters. We regard these two methods as partial inference

methods since we use them separately without combining one result with the other.

With voxel intensity inference method, if the degrees of freedom of a t image are known,

then the P value for each voxel is calculated according to t distribution property. The

cluster extent based method is built on RFT [Adler, 1981; Poline et al., 1997]. The P

value for each cluster is generated according to the distribution of cluster extent.

To perform cluster wise inference method, there are two types of P values. One is the

P value from the peak height intensity within a cluster. The distribution of peak height

intensity above a threshold is exponential [Adler, 1981; Friston et al., 1994]. The other

one is the P value from the cluster extent of that cluster. The distribution of cluster

extent is also exponential [Friston et al., 1994; Poline et al., 1997]. Therefore, we have

two types of P values for each cluster with two partial inference methods, a P value for

the peak height intensity within a cluster and a P value for the cluster extent of this

cluster. With permutation framework, those P values are all nonparametric P values.

With nonparametric permutation framework, P values for peak height intensity and

cluster extent will be acquired using separate permutation tests. The only assumption

for the permutation test is exchangeability [Nichols & Holmes, 2002]. Under the null

hypothesis, data labels are randomly assigned without changing the distribution of the
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test statistics. Normally, this method needs long compute times to generate an empirical

distribution. The P value of a specific voxel (cluster) is measured as comparing the test

statistic with the empirical distribution of that statistic. For example, the P value of

peak height intensity of a cluster is the proportion of number of peak height intensity in

its empirical distribution that is greater than or equal to the observed one. To perform

cluster wise inference method, we record the peak height intensity and cluster extent for

each cluster in every realization to calculate uncorrected P values for an observed cluster,

respectively. We also record the maximum of peak height intensity and the maximum of

cluster extent in each realization to calculate corrected P values for an observed cluster,

respectively.

2.2.3 Multiple comparison issue

The number of voxels in a brain image is huge. Generally, there are over 100,000

voxels in a brain image. We have a null hypothesis for each voxel. The crucial point is

that we have to test all hypotheses simultaneously. The use of largest value for a test

statistic in each realization is a way to solve the multiple comparison problem among

clusters. This method controls a family wise error (FWE) [Nichols & Hayasaka, 2003].

The corrected P value of a cluster with voxel intensity inference method is generated by

comparing the peak height intensity of a cluster with the empirical distribution of the

maximum T distribution, Tmax. Similarly, the corrected P value of a cluster with cluster

extent inference method is obtained by comparing the cluster extent of this cluster with

the empirical distribution of maximum cluster extent distribution, Smax. The FWE

correction method with permutation framework is explained in Nichols & Holmes in

detail [Nichols & Holmes, 2002].
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2.2.4 Combining functions

When combining P values we have a choice of combining either corrected or uncor-

rected P values. Let uPt and uPc be the uncorrected P values for suprathreshold average

intensity (AvgT) and cluster extent, respectively; let cPt and cPc be the corresponding

FWE corrected P values. For each cluster we compute Tippet and Fisher combining

functions, or statistics, based on the uncorrected P values, respectively.

WT = 1−min(log10 uPt, log10 uPc)(2.3)

WF = −2(log10 uPt + log10 uPc)(2.4)

as well as the analogous calculations for corrected P values. The Tippet combining

function is equivalent to picking the better of the two P values. Cluster mass WM is

computed as the sum of T values within a cluster above the cluster-defining threshold.

Corrected P values are found with permutation by building the maximum distribution

[Nichols & Holmes, 2002]; uncorrected P values are found by building the distribution

of all clusters found in all permutations.

The combined P values (WF & WT ) represent an arbitrary statistic, upon which

either corrected or uncorrected inferences can be made. There are four types of results

for each combining function. For example, corrected P values from Tippet combining

function using uPt, uPc or cPt, cPc. We can not use uPt with cPc or cPt with uPc. If we

want corrected P values from Tippet function but uPt and uPc are used, we record the

maximum Tippet value in each realization to generate the empirical distribution of the

maximum Tippet statistic. Similarly, uncorrected P values from the Tippet combining

function can be also obtained with uPt, uPc or cPt, cPc. For example, if we want

uncorrected P values from Tippet function but cPt and cPc are used, we record Tippet

values for all clusters from all realization to generate the empirical distribution of the
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Tippet statistic. Considering also the partial (non-combined) tests, we have five cluster

test statistics to compare: AvgT, cluster extent, WT , WF and WM .

2.2.5 Simulation

We use 2,000 realizations of a 15-subject dataset with Gaussian noise images in

3 dimensional space (48×48×32 voxels) and add a sphere-shaped signal with uniform

intensity to each dataset, varying signal diameter and intensity. A cluster defining

threshold is P=0.01 with 14 degrees of freedom of t distribution and nominal α = 0.05

level is used and for each realization. A permutation test (1,000 perms) is performed.

The rejection rate (power) of each type of test is also recorded, we only show results for

corrected inferences based on (cPt, cPc). The results for uncorrected inferences based

on (uPt, uPc) are similar to the results with (cPt, cPc).

2.2.6 Application

We apply the proposed combining methods on a second level fMRI working memory

dataset, which has 12 subjects [Marshuetz et al., 2000]. The analysis is based on contrast

images for item recognition versus control. All of the statistics described above are

computed, in addition to suprathreshold peak height intensity, i.e. maximum voxel

intensity within a cluster (MaxT) and Tippet and Fisher combining functions with

MaxT (to compare with previous work on MaxT). The total number of permutation

we used is 4096 (212) and the cluster defining threshold is P=0.001 with 11 degrees of

freedom of t distribution.
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2.3 Results

2.3.1 Simulation

The rejection rates of the partial, and combined tests from the simulations are shown

in Figure 2.1. It shows that when the diameter is small, for example, 6, the AvgT,

Tippet and Fisher with AvgT statistic inference methods have the best rejection rate,

and cluster extent inference method is very insensitive. For larger diameters cluster

extent inference method is the most sensitive, but the combining methods are all nearly

as good. In general, for small diameter and moderate intensity (0.5-.5), the AvgT,

Tippet and Fisher using AvgT statistics have the best performance.
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Figure 2.1: Rejection rates versus signal intensity
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2.3.2 Real Data

The combined inferences based on (cPt, cPc) were consistently more sensitive than

those based on (uPt, uPc). The results for the 5 largest clusters are shown in Figure

2.2, Table 2.1 and 2.2. Figure 2.3 shows the rejection regions implied by the different

statistics considered. In lower right corner plot, if we use partial cluster extent inference

method, if the cluster extent of a observed cluster is greater than 50, that cluster will

be considered as a significant one. It is similar to use partial suprathreshold average

intensity method, all clusters are regarded as significant if their AvgTs are above the

horizontal line. If we apply cluster mass inference method, clusters located on the right

side of blue dash curve are regarded as significant. For example, in upper left corner plot,

i.e. the correct combining method using corrected P values plot, the 3rd and 5th cluster

are significant with all method. The the 1st, 2nd and 4th clusters are significant if we

use cluster extent, cluster mass, Tippet and Fisher inference method but suprathreshold

average voxel intensity inference method. Cluster 6-10 are not significant with any

inference methods. The figure also shows that the 1st is a flat cluster with large cluster

extent and small suprathreshold average intensity. Table 2.1 shows results using AvgT

statistic and Table 2.2 shows results with MaxT statistic.

The statistic that has uniformly the worst results is the partial AvgT inference

method based on real data analysis. However, the Fisher combining method with AvgT

and cluster extent is often the most sensitive and never far from optimal. The MaxT

methods appear to be similar or a more sensitive than the AvgT methods in this data.

2.4 Conclusion

Since cluster mass is defined as the integral of suprathreshold intensities within a

cluster, cluster mass can also be considered as the “product” of cluster extent and
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Figure 2.2: 5 largest clusters in working memory data

suprathreshold average intensity. We propose some combining functions with the two

statistics to leverage the strength from cluster wise inference method and voxel wise

inference method. The inference methods based on those combining functions are built

on the nonparametric permutation framework due to less strict assumption about the

image itself and unknown distribution of the combining statistics.

Our simulations and real data analysis show that no single method is optimal for all

types of signals, however the partial methods (cluster extent specifically) vary consider-

ably in their sensitivity, while our combining methods are usually not far from optional.

The main result from this work is that combining with corrected P values appears to be

more sensitive than combining with uncorrected P values. Combining based on AvgT,

while slightly less optimal based on our real data, was found to be more sensitive in our

simulations. In general, for small diameter and moderate intensity (0.5-.5), the AvgT,

Tippet and Fisher using AvgT statistics have the best performance.
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Figure 2.3: Corrected and uncorrected combining using corrected and uncorrected P
′

s.
The numbers (1-10) refer to clusters (from largest to smallest) and clusters
1-5 are further studied in Tables 1 & 2

Although there are less strict assumption involved in the permutation framework,

there are some limitations with this method. Computational complexity is a concern

of this method because of permutation property for large number of subjects in an

experiment. For example, the number of permutation in the real data is 4096, which

is 2 to the power 12 for 12 subjects. If there are 20 subjects, this number is huge. We

can not use all possible permutations . We also can not use this method for a small

group analysis, for example, 4 subjects in a group because all possible permutations is

24 = 16. It is not reasonable to find an empirical distribution. In addition, this method
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can not be applied for a single subject data analysis since it violates the exchangeability

property. We only permute the data labels not voxels. There are not data labels in a

single subject analysis. The voxels can not be permuted, otherwise, the spatial structure

of brain will be broken.

Poline et al. [Poline et al., 1997] developed parametric joint distribution of cluster

extent and suprathreshold peak height intensity. Their method is via RFT, which is

a way to solve multiple comparison problems, it is reasonable to develop a combining

method with superthreshold average intensity and cluster extent via RFT. It is also

rational to develop parametric cluster mass inference method since the cluster mass

inference is generally the most sensitive one according to our previous study [Hayasaka

& Nichols, 2004].
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Corrected P′s Uncorrected P′s
♯ Extent AvgT Partial Combined Partial Combined
i Cluster AvgT WT WF WM Cluster AvgT WT WF WM

1 1154 4.9052 0.0002 0.1362 0.0005 0.0002 0.0002 0.0000 0.0226 0.0001 0.0000 0.0000
2 625 5.0607 0.0037 0.0562 0.0078 0.0024 0.0012 0.0006 0.0087 0.0012 0.0005 0.0002
3 542 5.1987 0.0039 0.0249 0.0078 0.0010 0.0012 0.0008 0.0037 0.0014 0.0002 0.0002
4 485 4.5595 0.0051 0.5259 0.0103 0.0244 0.0107 0.0010 0.1425 0.0017 0.0041 0.0020
5 349 5.325 0.0098 0.0105 0.0193 0.0010 0.0027 0.0018 0.0015 0.0032 0.0002 0.0006

Table 2.1: Cluster extent & AvgT: combining with corrected P′s
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Corrected P′s Uncorrected P′s
♯ Extent MaxT Partial Combined Partial Combined
i Cluster MaxT WT WF WM Cluster MaxT WT WF WM

1 1154 7.3582 0.0002 0.0803 0.0002 0.0005 0.0002 0.0000 0.0131 0.0001 0.0001 0.0000
2 625 9.3708 0.0037 0.0117 0.0068 0.0017 0.0012 0.0006 0.0018 0.0012 0.0004 0.0002
3 542 10.1937 0.0039 0.0051 0.0073 0.0005 0.0012 0.0008 0.0008 0.0013 0.0001 0.0002
4 485 6.3076 0.0051 0.2305 0.0098 0.0220 0.0107 0.0010 0.0458 0.0017 0.0037 0.0020
5 349 13.1468 0.0098 0.0002 0.0002 0.0005 0.0027 0.0018 0.0000 0.0001 0.0001 0.0006

Table 2.2: Cluster extent & MaxT: combining with corrected P′s



Chapter 3

Cluster Mass Inference via Random Field Theory

Cluster extent and voxel intensity are two widely used statistics in neuroimaging

inference. Cluster extent is sensitive to spatially extended signals while voxel intensity

is better for intense but focal signals. To leverage strength from both statistics, several

nonparametric permutation methods have been proposed to combine the two methods.

Simulation studies have shown that of the different cluster permutation methods, the

cluster mass statistic is generally the best. However, to date, there is no parametric

cluster mass inference available. In this paper, we propose a cluster mass inference

method based on random field theory (RFT). We develop this method for Gaussian

images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its

statistical properties via simulation studies and real data. Simulation results show that

the method is valid under the null hypothesis and demonstrate that it can be more

powerful than the cluster extent inference method. Further, analyses with a single-

subject and a group fMRI dataset demonstrate better power than traditional cluster

size inference, and good accuracy relative to a gold-standard permutation test.

3.1 Introduction

Cluster extent and voxel intensity are two widely used statistics in neuroimaging

inference. Cluster extent is sensitive to spatially extended signals [Friston et al., 1996;

26
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Poline et al., 1997], while voxel intensity is sensitive to focal, intense signals [Friston

et al., 1991; Worsley et al., 1992]. Both can suffer from a lack of power for signals of

moderate extent and intensity [Hayasaka & Nichols, 2004]. Furthermore, one does not

generally know, a priori, whether the generated signal is large in extent, intensity or

both. While some practitioners simply select the statistic that gives the most statisti-

cally significant test, this embodies a multiple testing problem and will result in inflated

false positive error rates. An ideal test statistic would combine spatial extent and peak

height intensity and would be sensitive to both without increasing the number of tests

considered.

Poline et al. [Poline et al., 1997] (henceforth referred to as PWEF) developed a method

which combines extent and intensity based on Gaussian random field theory (RFT).

They derived the joint distribution of cluster extent and voxel-wise peak height intensity

and made inference on minimum P value of a cluster extent test and a local maximum

intensity test. However, their method is only applicable to Gaussian or approximately

Gaussian images (e.g. a very large group analysis, or a single subject fMRI analysis).

Cluster mass, the integral of suprathreshold intensities within a cluster, naturally com-

bines both signal extent and signal intensity. Initially suggested by Holmes [Holmes,

1994], Bullmore et al. [Bullmore et al., 1999] used permutation to obtain cluster mass

P values. Currently the cluster mass is the default test statistic in the BAMM1 and

CAMBA2 software, and is implemented in FSL’s randomise3 tool and in the SnPM4

toolbox for SPM5.

Hayasaka & Nichols [Hayasaka & Nichols, 2004] studied the statistical properties of clus-

ter mass along with a variety of other “combining methods” in the permutation testing

framework. Among the combining methods they considered were Tippet’s method [Lazar

1http://www-bmu.psychiatry.cam.ac.uk/BAMM
2http://www-bmu.psychiatry.cam.ac.uk/software/
3http://www.fmrib.ox.ac.uk/fsl/randomise
4http://www.sph.umich.edu/ni-stat/SnPM
5http://www.fil.ion.ucl.ac.uk/spm



28

et al., 2002; Pesarin, 2001] (minimum P values, used by PWEF) and Fisher’s method

(-2 × sum of ln P values). Through simulation studies and analyses of real data they

concluded that the nonparametric cluster mass method is generally more powerful than

other methods they investigated.

A strength of nonparametric inference methods is that they rely on fewer assumptions

about the distributional form of the data. However, they require additional computa-

tional effort and are not very flexible. For example, the precise permutation scheme

used depends on the experimental design and cannot be trivially determined from a

design matrix. Nuisance covariates cannot be accommodated in general, as they induce

null-hypothesis structure which violates exchangeability. Also, nonparametric methods

cannot be used directly for single subject data analysis as a parametric autocorrelation

model or wavelet transformation is needed to whiten the data. For all of these reasons, a

parametric cluster mass inference method that can operate with a general linear model

and deal with single subject analyses would be of great value.

In this paper we develop a theoretical distribution for the cluster mass statistic via

Gaussian RFT. We generalize the work of PWEF, deriving the cluster mass statistic,

extending the method to Gaussianized t data. We study the statistical size and power of

our test on Gaussian and Gaussianized t image data through simulations and illustrate

the method on two real data examples, a single subject fMRI dataset and a group level

fMRI data analysis with low degrees of freedom.

3.2 Materials and Methods

3.2.1 Cluster mass test theory

In a mass univariate data analysis, a general linear regression model (GLM)

(3.1) Yi = Xβi + εi

is fit for each voxel i = 1, . . . , I, where Yi is an N×1 vector of responses, X is a common

N × q design matrix of predictors, βi is a q × 1 vector of unknown parameters and εi
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is a N × 1 vector of random errors. Typically, at each voxel, errors are assumed to

be independent and identically distributed N(0, σ2
i ) random variates, though dependent

errors can be accommodated [Luo & Nichols, 2003]. The ordinary least squares estimator

of βi is β̂i = (XTX)−1XTYi, and of σ2
i is σ̂2

i = eT
i ei/η, where ei = Yi−Xβ̂i and where η

is the error degrees of freedom. Then the Student’s t-statistic at voxel i is

(3.2) Ti = cβ̂i

(
c(XTX)−1cTσ̂2

i

)−1/2

where c is a contrast of interest (row vector). We write the t-statistic image as T =

{Ti}Ii=1.

Given cluster-forming threshold uc > 0, the set of suprathreshold statistics {Ti : Ti >

uc}Ii=1 is used to define clusters. Contiguous clusters are defined by a neighborhood

scheme, typically 18 connectivity scheme on a three dimensional image.

Let L be the number of clusters found, with cluster ℓ having Sℓ voxels (i.e. the cluster

extent), ℓ = 1, 2, . . . , L. Further let Iℓ be the set of voxel indices corresponding to cluster

ℓ. The cluster mass, Mℓ, of cluster ℓ is the summation of the suprathreshold intensities:

(3.3) Mℓ =
∑

i∈Iℓ

Hi

where Hi = Ti − uc. Note that Mℓ = SℓH̄ℓ where H̄ℓ =
∑

i∈Iℓ
Hi/Sℓ is the average

suprathreshold intensity of cluster ℓ, showing cluster mass to be the product of the clus-

ter extent and the average suprathreshold intensity.

To use Random Field Theory results, we begin by assuming that the standardized er-

ror images, called the component fields, are discrete samplings of a continuous, smooth,

stationary Gaussian random process. The component field for scan j is {εij/σi}i, where

εij is the error for scan j at voxel i. The component fields are assumed to follow a

mean zero, unit variance multivariate Gaussian distribution. Stationarity implies that

the spatial correlation is determined by an autocorrelation function that is homogeneous

over space. The process is regarded as “smooth” if the autocorrelation function has two
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derivatives at the origin. Based on these assumptions, the t image defined by (3.2) de-

fines a Student’s t random field.

While any univariate random variable can be transformed into a Gaussian variate, or

Gaussianized, a Gaussianized t image may not resemble a realization of Gaussian ran-

dom field. Randomness in σ̂2
i reduces the smoothness of the statistic image relative to

the component fields [Worsley et al., 1992], as reviewed in Appendix A.2.7. However,

Worsley et al [Worsley et al., 1996] argues that when the t degrees of freedom exceed

120, the Gaussianized t-statistic can be regarded as a Gaussian Random Field. Hence

we proceed by deriving results assuming T is a Gaussian image, but later return to the

issue of Gaussianization.

The full derivation of our null distribution of the cluster mass statistic is given in Ap-

pendix A.2, but we sketch an overview of the result here. The derivation starts by

approximating the statistic image about a local maximum as a paraboloid [Siegmund

& Worsley, 1995; Yendiki & Fessler, 2007], which allows cluster mass to be obtained a

function of cluster extent, Sℓ, and suprathreshold peak intensity, Hℓ = max{Hi : j ∈ Iℓ},

(3.4) Mℓ ≈ 2/(D + 2)× Sℓ ×Hℓ

where D is the dimension of the image. While this parabolic approximation is essential

to the derivation of the null distribution of Mℓ, note we do not actually fit paraboloids

to the image, and the test statistic computed from the data is exactly as specified in Eq.

(3.3).

By assuming that the autocorrelation function of the image is proportional to a Gaussian

probability density function, the distribution of Mℓ conditional on Hℓ can be found. We

follow PWEF, making a small excursion assumption that replaces peak height uc + Hℓ

with uc, creating what we denote the U result, but also repeat the derivation without

this assumption, deriving the Z result.

Finding the joint distribution of (Mℓ, Hℓ) and integrating out Hℓ yields the final

result, an expression for P(Mℓ > m), the uncorrected P-value for an observed cluster
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mass value of m. This requires two numerical integrations, one dependent on uc, and

one on m. In practice, for any given dataset, P-values for a grid m values can be

pre-computed and interpolation used to find the P-value for an arbitrary value of m.

This theoretical approach also produces a new result for cluster extent Sℓ, distinct

from the original ([Friston et al., 1991]) result, which we also evaluate for completeness.

As P(Mℓ > m) is an uncorrected P-value which does not account for searching

over all clusters in the image, it is only appropriate for a single cluster that can be

pre-identified before observing the data [Friston, 1997], a situation that rarely arises in

practice. As detailed in Appendix A.2, the uncorrected P-values can be transformed

into familywise-error corrected P-values which accounts for the chance of one or more

false positive clusters anywhere in the image.

Student’s t-statistic image

As discussed above, when the degrees of freedom are small a Gaussian random field

will not provide a good approximation for a Student’s t-statistic image. In such cases we

Gaussianize the t image via the probability integral transform. The transformed image,

however, will be rougher than the component fields, and so the roughness parameter

must be adjusted according to the degrees of freedom of the t-statistic image. Thus

we can apply our method to Gaussianized t images with just a modification to the

smoothness estimate, as described in Appendix A.2.7.

3.2.2 Simulations

To evaluate the accuracy of our cluster mass result, Equation (3.4), both 2D (256×

256) and 3D (64 × 64 × 30) Gaussian noise images are simulated. To understand the

influence of image roughness on the proposed statistic, each of the 10,000 independent

Gaussian noise images are convolved with different isotropic Gaussian smoothing ker-

nels. Kernel sizes 2, 4, 8, 10, and 12 voxels full width at half maximum (FWHM6) are

6Kernel standard deviation = FWHM /
√

8 ln 2 ≈ 0.4247 FWHM
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used, and these sizes then directly determine |Λ|, the image roughness parameter. Two

cluster forming thresholds are investigated (uc = 2.326 and uc = 3.090, corresponding

to uncorrected P = 0.01 and P = 0.001, respectively). A nominal significance level of

0.05 is used for all inferences.

To evaluate the method on Gaussianized t-statistic images, 15 Gaussian noise images are

simulated, mean-centered and divided by the voxel-wise standard error to produce 14

degrees-of-freedom t images. A t-toz transformation is then applied to generate Gaus-

sianized t images with the necessary adjustment to the smoothness parameter (Appendix

A.2.7).

To assess the power of our method, a spherically shaped signal (radius 1, 3, 5, 7, 10mm)

with various uniform intensities (0.25, 0.5, 0.75, 1, 1.5, 2) is added to the center of

Gaussian noise images. Power is measured as the probability of a true positive cluster,

defined a significant cluster that contains one or more non-null voxels. The cluster ex-

tent inference methods are those from RFT [Adler, 1981] implemented in the Statistical

Parametric Mapping (SPM) software.

One objective of the evaluations is to determine whether the U result, based on the small

excursion approximation, or the Z result is more accurate. Since the derivation depends

on the joint distribution of cluster mass and peak height, we examine the approxima-

tion accuracy of our results for this bivariate distribution with simulation. In addition

to visualizing images of the predicted and simulated densities for the Z and U results,

we compute the Kullback-Leibler divergences [Kullback & Leibler, 1951], a measure of

distance between two distributions. This allows a quantitative comparison between the

two results.

The ultimate accuracy of the method depends on the marginal distribution of cluster

mass. We compare the specificity and validity of the mass test statistic for the U and Z

results, as well as cluster size P-values found with our derived cluster extent distribution

and cluster extent P-values produced by SPM. We present results for both uncorrected
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and corrected P values to understand the performance of the method, though only the

corrected P-values are of practical interest. The specificity and validity is gauged with

plots of theory-based P-values versus Monte Carlo (“true”) P-values, called P-P plots.

When a method has exact specificity the theory will produce the same P-value as Monte

Carlo simulation, and the plotted line will follow the identity. When a method is con-

servative the line will fall above the identity, and when anticonservative (fails to control

Type I error rate) the line will fall below the identity.

3.2.3 Applications

We demonstrate our cluster mass inference method on two fMRI data sets, one single

subject and one group dataset

FIAC data

The first example is the Functional Imaging Analysis Contest (FIAC)7 example .

The experiment uses a sentence listening task, considering effects of different or same

speakers and different or same sentences. We only consider the sentence effect “Different

Sentence vs. Same Sentence”: In each block, six sentences are read; in the “Different”

condition six different sentences are read, while in “Same” condition the same sentence

is repeated six times. For complete details see [Madic & Group, 2005].

We use subject 3 (“func4”), block design data with 6mm FWHM smoothing, fit with

a GLM which produces a t statistic image with 179 degrees-of-freedom. Here we can

assume that the t image reasonably approximates a Gaussian image and use the method

directly on the t image. The cluster forming threshold is P = 0.001 uncorrected.

7http://www.madic.org/fiac/



34

Working Memory Data

We also use a group level analysis with 12 subjects from a working memory experi-

ment. Since the degrees of freedom are rather small (11), we perform a t-to-z transfor-

mation to generate a Gaussianized t image.

While the experiment considers different aspects of working memory, we only use

the item recognition task. In the item recognition condition subjects are shown a set of

five letters and, after a 2 second delay, shown a probe, to which respond “Y” if it was

in the set, or “N” otherwise; in a control condition five “X”s are shown and the probe

is just “Y” or “N” indicating the required response. For full details see Marshuetz et al

[Marshuetz et al., 2000].

A one-sample t-test is used to model the data. We use t-to-z transformation and a cluster

defining threshold of P = 0.01 uncorrected (t11 = 4.02 or z = 3.09). The roughness

parameter is adjusted by 1.3891 [Holmes, 1994; Worsley et al., 1992] to account for

increased roughness of the Gaussianized t statistic. In addition to parametric results

in SPM, we also use SnPM to obtain nonparametric cluster extent and mass results

(see Appendix A.1 for a summary of permutation cluster inference). With 12 subjects

there are 212 = 4096 possible sign flips of the contrast data to create a permutation

distribution.

3.3 Results

3.3.1 Simulations

For the simulation studies, we only show results for a smoothness parameter of

FWHM = 8 voxels, as the results are similar to the other smoothness parameters.

Accuracy of derived joint distribution

The top row of Figure 3.1 shows the true (simulated) joint distribution of cluster

mass and peak height intensity, the Z result and the U result for 3D Gaussian noise
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images. The bottom row shows difference images of true and derived distributions for

the Z and U results. The distributions are qualitatively similar, though for very small

cluster masses and cluster height around 0.5 to 1.0, the two results tend to underestimate

the truth; while for cluster mass between 0 and 50 and cluster heights between 0 and

0.5, the results can overestimate the truth. The Kullback-Leibler divergences are 1.285

for the Z result and 1.610 for the U result.

Figure 3.2 displays corresponding results for 3D Gaussianized t image. Again, there

is little difference between the true distribution and the two results, and again the

Kullback-Leibler divergence between the true distribution and the Z result is smaller

than that between the true distribution and the U result (1.701 vs. 2.338). Thus, for

both Gaussian images and Gaussianized images, the Z result appears to be superior to

the U result.

Accuracy of derived cluster mass null distribution

Figure 3.3 shows the P-P plots for 3D Gaussian null simulated data and Figure 3.4

3D Gaussianized t-statistic null simulated data. Both cluster mass (dot-dashed lines)

and cluster size results (solid lines) are shown. For all of our derived methods, the U

results are more conservative (the null will be rejected less often than nominal) than the

Z results. The SPM cluster size results are also more conservative than the Z results for

Gaussian null simulated data and the U results for Gaussianized t-statistic null simulated

data. While our Z result for cluster size exhibits some anticonservativeness, overall the

Z result of cluster mass is the least conservative method, while maintaining validity over

most of the range of probabilities included in this simulation study.

Figure 3.5 shows the Type I error rates for a 3D Gaussianized t image with 14

degrees of freedom with various smoothness parameters (FWHM) and cluster defining

thresholds. The figure shows that the Z cluster mass result provides better results for

high thresholds and large FWHM than for low threshold and low FWHM. For corrected

P values, this result is valid for all levels of smoothing studied, whereas the Z result
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Figure 3.1: Comparison of true and theoretical joint distributions of cluster mass and peak
height intensity, for Gaussian images. On top left is the true distribution obtained
from simulation, on the top middle is the U result and on the top right is the Z
result. Below each of the theoretical results is the true minus estimated distribu-
tions. While only an intermediate result, the agreement is reasonable, with better
performance obtained with the Z result. All distributions are transformed by the
fourth root to improve visualization. Unless otherwise noted, simulation settings
used in the figures are: uc = 2.3263 (p=0.01), 64 × 64 × 30 image at FWHM 8
voxels.

of cluster extent is, by and large, invalid. Furthermore, the Z cluster mass corrected

P-values—those that are used in practice—are always closer to the nominal significance

level when correcting for multiple comparisons.

Power comparisons

Having found our own cluster extent result to be invalid, we compare the power of our

Z cluster mass result only to SPM’s cluster extent result. Figure 3.6 lists simulated power

for the cluster extent (SPM) and cluster mass (Z). As expected, for a given intensity,

the power increases with signal intensity, and, for a given radius, power increases as
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Figure 3.2: Comparison of true and theoretical joint distributions of cluster mass and peak
height intensity, for Gaussianized t14 images. Same format as in Figure 3.1. Again
the agreement between simulated truth and derived theoretical result is good, with
a closer match seen with the Z result.

the signal intensity increases. When the image smoothness is low (FWHM ≤ 4 voxels),

SPM cluster extent generally provides better power than the Z mass result. However,

for greater smoothness (FWHM ≥ 8 voxels), the Z result is more powerful than SPM,

regardless of signal extent or signal intensity.

3.3.2 Real Data Evaluations

The FIAC data results show the method’s performance at high degrees-of-freedom,

while the working memory data assess the method using Gaussianization of the t image.

FIAC data

The estimated smoothness of the component fields based on the residuals is [2.4964

2.3599 1.7525] voxel FWHM with 27,862 3.0 × 3.0× 4.0mm3 voxels. Figure 3.7 shows
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Figure 3.3: Monte Carlo simulation P -values versus theoretical P -values for uncorrected and
corrected P -values with Gaussian images. Values in the plot above the identity
indicate conservative performance, below the identity invalid performance. Our
Z cluster mass method exhibits slightly conservative performance, but much less
conservative than the other methods.

the maximum intensity projection of the all clusters found with a P = 0.001 threshold,

the three most prominent being a pair of bilateral activations in inferior frontal gyri and

one in the frontal pole. Note that the primary auditory cortex effect did not survive

P = 0.001 threshold, and inspection of the unthresholded statistic image suggests the

frontal pole cluster is a false positive activation due to susceptibility artifacts. However,

the general shape and size of the clusters are still representative of true positive signals

and are useful for evaluating our method.

Table 3.1 provides the values of cluster extent, suprathreshold peak height intensity

and cluster mass for each cluster, as well as the P-values, all sorted by peak height. The

first three clusters have corrected significance with cluster mass, while peak height and

cluster extent only find one cluster significant each. The uncorrected significances show
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Figure 3.4: Monte Carlo simulation P -values versus theoretical P -values for uncorrected and
corrected P -values with Gaussianized t14 images. Despite Gaussianization, our Z
cluster mass method provides close to exact performance, and less conservative
performance than other methods.

that if a cluster is significant by any of the three methods, it is significant by cluster

mass. Again, while we do not advocate use of uncorrected inferences, this demonstrates

the relative sensitivity of the method.

Working Memory Data

The estimated smoothness is [4.8611 6.4326 6.6156] voxel FWHM with 122,659

2.0 × 2.0 × 2.0 voxels. Figure 3.8 shows the all of the clusters found with a P =

0.001 cluster-forming threshold. Table 3.2 compares our RFT cluster mass results to

an equivalent permutation method. Our RFT method finds the five largest clusters

significant, as does the RFT cluster size statistic. Notable is the close correspondence

between the RFT P-values and the permutation P-values.
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3.4 Discussion and conclusion

Although cluster mass inference with nonparametric permutation has been found to

be a quite sensitive inference method for neuroimaging data [Hayasaka & Nichols, 2004],

permutation is computationally intensive, not a very flexible modeling framework. We

propose a new theoretical cluster mass inference method for Gaussian images and Stu-

dent’s t-statistic images, based on Gaussian RFT. Our simulation studies show that our

derived null distribution is accurate, and performs well not only for Gaussian images,

but also for Student’s t-statistic image. Like other RFT methods, our results depend

only on the smoothness and the volume of the image. While we did not find closed form

results for the P-value for an arbitrary mass value, the P-value can be quickly found

based on interpolation of a pre-computed look-up table.

Our evaluations of the test’s specificity reveal that the proposed cluster mass inference

method works best when the image is sufficiently smoothed, at least 4 voxel FWHM,

and ideally for larger smoothness parameters (FWHM ≥ 8 voxels). We stress that this

is a substantial magnitude of smoothness (typical estimated smoothness is FWHM 2-4

voxels). However, our real data evaluations found our method to perform as good or

better than parametric cluster size inference, even though image smoothness was only

about 2 voxels FWHM in the single subject dataset. Hence, even with slightly conser-

vative P-values, the mass statistic appears very sensitive to real data signals.

Consistent with findings using the nonparametric cluster mass inference method, our

theoretical cluster mass inference statistic generally has better power than either the

cluster extent inference statistic or the voxel intensity statistic, alone. This is especially

true when the cluster extent and the suprathreshold peak height intensity are moderately

sized. More remarkable, is that despite a large number of assumptions and a sequence

of approximations, our RFT cluster mass P-values are very close to the permutation

results which have very few assumptions.

The Gaussianization of t images is a shortcoming of the method, but it is not an uncom-



41

mon strategy. The FSL 8 software has always (as of version 4.0) used Gaussianization of

t and F images. While the SPM software has abandoned Gaussianization for voxel-wise

inference ever since SPM99, its cluster extent inference has always (as of SPM5) used

Gaussian and not t random field results cluster extent P-values and currently neglects

the smoothness adjustment described in Appendix A.2.7.

Although the proposed cluster mass inference method has many good statistical proper-

ties, it has its limitations. When we derive the formulas for the marginal distribution of

cluster mass, we assume that the shape of a cluster above a certain threshold is approxi-

mated by a paraboloid. This assumption is rational for a Gaussian image that has been

convolved with a Gaussian smoothing kernel. However, for real data, this assumption

may be too strong, even after smoothing the data. For example, we may have a large flat

cluster with only one voxel of high intensity. The activated regions may also have other

shapes that are not well approximated by a paraboloid. In addition, we use a Gaussian

shaped correlation function to simplify the variance in the derivation. We also assume

that we have stationary fields, though an extension to accommodate local variation in

smoothness [Hayasaka et al., 2004] may be possible.

While we have only attempted to derive Gaussian results, a reviewer notes that [Wor-

ley, 1994] derived the Hessian of a t field which, when simplified by conditioning and

combined with results from [Cao, 1999], could provide a means to derive t cluster mass

statistic.

Finally we note that, while both real data examples were fMRI, the method makes no

assumptions about the modality and should operate well with PET and other types of

imaging data. To this end, an extension to SPM will be available soon to allow use of

our results; check the SPM Extensions website9 for a link.

8http://www.fmrib.ox.ac.uk/fsl/
9http://www.fil.ion.ucl.ac.uk/spm/ext
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Figure 3.5: Type I error rate for Gaussianized t images, for both P = 0.01 and P = 0.001
cluster-forming thresholds, with different smoothness. While uncorrected P-values
perform poorly under low smoothness, our Z cluster mass method has the cor-
rected P-values that are closest to the nominal α = 0.05 level without being
invalid.
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Figure 3.6: Power of our proposed cluster mass inference method (solid lines), compared
with standard cluster extent inference method implemented in SPM (dashed
lines), for different cluster sizes and signal intensities. Gaussian images were
used with a cluster defining threshold of 2.3263 (p=0.01).



45

3 3

3

1 1

1

2

2

2

Figure 3.7: Results for “sentence” effect in FIAC single subject data.
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Cluster Cluster Uncorrected P values Corrected P values Location
No Extent Height Mass Extent Height Mass Extent Height Mass (x,y,z mm)

1 13 5.09 9.35 0.0069 0.0008 0.0011 0.1606 0.0192 0.0279 (-52,22,-5)
2 24 4.52 12.54 0.0009 0.0092 0.0004 0.0238 0.2096 0.0106 (8,75,8)
3 13 4.45 7.97 0.0069 0.0122 0.0018 0.1606 0.2665 0.0451 (34,29,35)
4 5 4.10 2.09 0.0633 0.0463 0.0404 0.7999 0.6920 0.6425 (49,22,18)
5 10 4.08 3.60 0.0140 0.0508 0.0138 0.2992 0.7251 0.2959 (-44,34,21)
6 6 3.87 2.60 0.0446 0.1056 0.0269 0.6782 0.9319 0.4960 (-41,56,12)
7 5 3.65 1.22 0.0633 0.2134 0.0967 0.7999 0.9956 0.9145 (52,-2,15)
8 5 3.48 0.98 0.0633 0.3492 0.1334 0.7999 0.9999 0.9664 (73,39,32)
9 3 3.43 0.64 0.1447 0.4013 0.2324 0.9764 1.0000 0.9973 (37,-15,25)
10 1 3.34 0.25 1.0000 0.5261 0.6816 1.0000 1.0000 1.0000 (35,33,3)
11 2 3.21 0.22 0.2433 0.7304 0.7648 0.9979 1.0000 1.0000 (23,24,-19)
12 1 3.18 0.09 1.0000 0.7924 1.0000 1.0000 1.0000 1.0000 (-18,19,68)
13 1 3.16 0.07 1.0000 0.8429 1.0000 1.0000 1.0000 1.0000 (13,-19,8)

Table 3.1: Real data results for FIAC single subject data analysis, comparing extent, peak height and mass statistics for cluster
inference. The cluster mass has good sensitivity, and, in particular, when any of the three inference methods are
significant, cluster mass is usually significant,
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Figure 3.8: Results from item recognition effect in the working memory data.
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Random Field Theory Cluster Mass Inference
Cluster Cluster Uncorrected p-values Corrected p-values Location

No Extent Height Mass Extent Height Mass Extent Height Mass (x,y,z mm)
1 347 5.47 182.19 0.0005 0.0001 0.0002 0.0043 0.0011 0.0018 (-8,-18,2)
2 540 4.99 262.29 0.0001 0.0012 0.0001 0.0007 0.0111 0.0004 (36,-58,48)
3 620 4.82 272.05 0.0000 0.0026 0.0001 0.0004 0.0231 0.0004 (-10,16,44)
4 1150 4.34 448.15 0.0000 0.0192 0.0000 0.0000 0.1602 0.0000 (-30,-46,48)
5 481 4.02 119.41 0.0001 0.0621 0.0008 0.0012 0.4313 0.0076 (-48,8,40)
6 40 3.43 5.26 0.1012 0.4110 0.1684 0.6014 0.9761 0.7836 (-34,24,4)

Permutation-based Cluster Mass Inference
Cluster Cluster Uncorrected P values Corrected P values Location
No ‡ Extent Height Mass Extent Height Mass Extent Height Mass (x,y,z mm)

1 347 5.47 182.19 0.0018 0.0000 0.0007 0.0098 0.0002 0.0034 (-8,-18,2)
2 540 4.99 262.29 0.0008 0.0008 0.0003 0.0039 0.0051 0.0015 (36,-58,48)
3 620 4.82 272.05 0.0006 0.0018 0.0002 0.0037 0.0117 0.0012 (-10,16,44)
4 1150 4.34 448.15 0.0000 0.0132 0.0000 0.0002 0.0803 0.0002 (-30,-46,48)
5 481 4.02 119.41 0.0010 0.0461 0.0018 0.0049 0.2305 0.0093 (-48,8,40)
6 40 3.43 5.26 0.0658 0.3327 0.1202 0.2759 0.7515 0.4312 (-34,24,4)

Table 3.2: Real data results for the small group fMRI data, comparing RFT parametric and permutation nonparametric in-
ferences. Note the similarity between the RFT P-values and permutation P-values, even though the RFT method
depends on many assumptions and approximations.



Chapter 4

Optimizing Kernel Size for the Smoothed Variance

t-test

Previous study showed that, for small group studies with 20 or fewer subjects, the

smoothed variance t-test has been found to increase detection sensitivity and to be a

powerful alternative to the usual t-test [Nichols & Holmes, 2002; Hayasaka & Nichols,

2003]. The reason is that the effective degrees of freedom (EDF) of a smoothed sample

variance image will be larger than the degrees of freedom (DF) of the original sample

variance image. However, smoothing a sample variance image will induce bias because

a voxel based sample variance is an unbiased estimator of the true variance. Moreover,

the smoothing kernel size applied to sample variance is another concern since we do not

know how much is enough. The concern is that with a large smoothing kernel, high

variance “hot spot” may be smoothed out. This smoothing procedure will cause too

many false positive results. If variance images are smoothed with a small size smoothing

kernel, the EDF do not change appreciably. One purpose of this study is to increase EDF

in order to increase detection sensitivity while avoiding too much bias. In this work, we

study the relationship between the smoothing kernel size and EDF, mean square error

(MSE), bias and variance (VAR) of smoothed sample variance images, while accounting

for the data smoothness and true variance variance smoothness. The final goal is to find

the optimal smoothing kernel size for smoothed sample variance images.
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4.1 Introduction

Generally, in two level fMRI data analysis, the degrees of freedom (DF) at the first

level study are large enough to capture the significant signals because there are over 100

scans for the whole experiment. The t statistic images can be regarded as Gaussian image

because of large DF. However, in the second level analysis, it is not that case. For small

group studies with 20 or fewer subjects, the threshold is relatively high compared with

large group studies having over 100 subjects. Since the expense for a large experiment

with many subjects is large, the sample size is often small. However, the results from

a small sample have lower detection sensitivity because of large critical value. For

example, if we use voxel wise inference method, the critical value is 2.8214 (p=0.01) for

a t distribution with 9 DF but 2.3642 when the DF is 100. Given a t statistic image, the

lower the valid critical value, the greater the power. If the effective DF (EDF) can be

increased, the detection sensitivity will increase because of relative lower critical value.

Our previous studies has found that the smoothed variance t-test is a powerful al-

ternative to the usual t-test [Nichols & Holmes, 2002; Hayasaka & Nichols, 2003]. The

power is greater than the usual one because smoothed variance images effectively in-

creases the error DF. Lukic et.al had also shown that pooled variance smoothing would

have better detection results than those from the usual methods [Lukic et al., 2002].

Worsley et. al [Worsley et al., 2002] considered to smooth the ratio of the random ef-

fects variance to the fixed effects variance for group data analysis when the fixed effects

variance were assumed to be fixed and same in different subjects. They also used the

Satterthwaite approximation to develop the relationship between the EDF and the size

of smoothing kernels, which were applied for the ratio images.

Since an unsmoothed sample variance image is unbiased estimator of the true variance

image, any smoothing will induce bias. The severity of bias depends on the size of

smoothing kernel used for true variance images. In addition, if the true mixed-effects

variance image for the second level data analysis is not proportional to the fixed effects
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variance, Worsley et. al’s ratio smoothing approach will not succeed. In this work,

we develop a theoretical framework to obtain bias, mean squared error (MSE), EDF

and variance (VAR) of the smoothed sample variance image, as a function of (1) data

smoothness, (2) true variance image smoothness and (3) applied variance smoothing.

One novel aspect is we use of χ2 random fields to model the true variance images. We

compare our theoretical results with empirical ones derived from 10-subject samples of

a 150-subject dataset. We also compare the theoretical results with simulated ones to

evaluate the proposed relationship between different smoothness parameter and bias,

MSE, EDF and VAR of the smoothed variance images.

4.2 Methods

4.2.1 Models

Generally, there are over 100 scans for each subject in fMRI data analysis. In two

level data analysis, it is not necessary to smooth the sample variance at the first level

since the DF are large enough that t statistic images at this level can be regarded as

normal images. In this study, we only focus on the second level analysis in a two level

fMRI data analysis. We use a random effects model for the two level study.

Suppose we have a model,

The first level,

For the vth voxel of the kth subject,

Yk(v) = Xk(v)βk(v) + ǫk(v)

where, Yk(v) is a T time series vector of fMRI response, Xk(v) is a T × p design matrix,

βk(v) is a p vector, and ǫ(v) ∼ N(0, σ2(v))

The second level,

βk(v) = Zk(v)β(v) + ηk(v)

where, Zk(v) is the inter subject parameter for the kth subject, β(v) is the group-level

parameter at the vth voxel, and ηk(v) ∼ N(0,Σ(v)).
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Let β̂k(v) denotes the estimate from the first level, and β̃k(v) denotes the estimate

from the second level. We also assume there are N subjects in an experiment. Then,

the usual sample covariance estimate is,

Σ̂(v) =
1

N − 1

∑
(β̂k(v)− β̃k(v))t(β̂k(v)− β̃k(v))

If we assume the second level parameter β(v) is a scalar, this will be the usual univariate

sample variance of the first level β̂k. We then smooth the sample variance in order to have

large EDF yet avoid too much bias. We estimate MSE, VAR of the smoothed variance

image and EDF for different Σ cases separately. We develop methods for a Σ that is

constant, heterogeneous but fixed and heterogeneous random three cases, respectively.

Spatially homogeneous variance images

We first consider a special case where the true variance image Σ is known as ho-

mogeneous. Σ = σ2

0
, where Σ = {σ2

1, . . . , σ
2
Np
}, Np is the number of voxels within an

image, and σ2

0
= {σ2

v = σ2
0 , v = 1, 2, . . . , Np}. In this case, according to the derivation

B.1, there is no bias due to variance smoothing. The EDF, VAR and MSE are,

1/EDF ≈ 1

η
·
[
1 + 2

(
FV

FD

)2
]−D/2

(4.1)

MSE = VAR =
2σ4

0

η
·
[

1 + 2

(
FV

FD

)2
]−D/2

(4.2)

where FV is full width half maximum (FWHM) of the smoothing kernel used for a

sample variance image, FD is FWHM of the smoothing kernel used for the original data,

which are assumed to be independent between any two voxels before smoothing, η is

the DF before the sample variance image is smoothed, and D is the dimension of the

data (e.g. D = 3 for a space). Eq. (4.1 & 4.2) show that the EDF, VAR are related

to the DF of the unsmoothed sample variance. They are also related to the smoothing

kernels for smoothing a sample variance image and the data. If the sample variance

image is not smoothed, the EDF is same as the DF of the unsmoothed variance image.
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If FV = FD, then EDF = 5.2η, a large change in DF. If we know the η = 14 and we

want EDF = 100, then FV = 1.16 FD is sufficient. In addition, there is no bias due to

variance smoothing in this case, and the MSE is proportional to 1/EDF. We note that

Eq. (4.1) is consistent with the result derived by Worsley et.al [Worsley et al., 2002].

They smoothed the ratio of random effects variance to fixed effects variance, while we

directly smoothed random effects variance. The derivation for EDF, MSE and VAR of

the smoothed variance images are summarized in Appendix B.1 in detail.

Spatially heterogeneous but fixed variance images

We now consider the case where the true variance image Σ is spatially heterogeneous

but fixed. Σ 6= σ2

0
, and for any two voxels, j, k in Σ, σ2

j , σ2
k are fixed, where j, k ∈

I = {1, 2, . . . , Np}. For a specific jth voxel, Vj is the sample variance at the jth voxel.

We assume the covariance between two voxels j, k is Cov(Xj , Xk|σ2
j , σ

2
k) = ρjkσjσk. We

also assume the corresponding smoothed variance at the jth voxel is,

V̂j =

Np∑

k=1

wjkVk , and

Np∑

k=1

wjk = 1

According to the derivation in Appendix B.2, the EDF, VAR and MSE are

(4.3) EDF ≈ (
∑Np

k=1 wjkσ
2
k)

2

1
η

∑Np

k=1

∑Np

l=1 wjkwjlρ2
klσ

2
kσ

2
l

(4.4) VAR = Var(V̂j|σ2
1, . . . , σ

2
Np

) =
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klσ

2
kσ

2
l

(4.5) Bias2 = (biasj|σ2
1 , . . . , σ

2
Np

)2 = (

Np∑

k=1

wjkσ
2
k − σ2

j )
2

And MSE = VAR + Bias2. The above three equations are very complicated since

the variance image is heterogeneous and fixed. We do not have closed forms for those

formulas in this case.
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Spatially heterogeneous and random variance images

Generally, the true variance image Σ is not always constant or fixed but random and

unknown in reality, Σ 6= σ2

0
. We propose modeling the true variance as a scale of a χ2

random field. We plot the empirical probability density function (PDF) and theoretical

PDF of the true variance image generated with 153 subjects when FD = 4mm (see

section 4.2.3 below). If σ2 denotes the true variance, we assume
νσ2

σ2
0

∼ χ2
ν . We estimate

ν = 4.498 using the Satterthwaite approximation method and let σ2
0 = 0.3895 be the

mean of the sample variance.
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Figure 4.1: The empirical and theoretical PDF of the sample variance image generated
with 153 subjects

Figure 4.1 shows that the empirical distribution of the sample variance image have a

heavy right tail similar to the χ2 distribution with certain degrees of freedom. Though
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not a perfect fit, we proceed to use χ2 random field to model the true variance image

Σ. For any voxels i, j, k ∈ I = {1, 2, . . . , Np}, we assume that the true variance

σ2
i , σ2

j , σ2
k ∈ Σ have properties,

ν · σ2
i

σ2
0

∼ χ2
ν

Correlation

(
ν · σ2

j

σ2
0

,
ν · σ2

k

σ2
0

)
6= 0

where ν is the degrees of freedom of the χ2 distribution. Obviously, σ2
i can be measured

as
χ2

v · σ2
0

ν
. The EDF, VAR, MSE and bias2 for this case are

(4.6) 1/EDF ≈ 1

η

[

1 + 2

(
FV

FD

)2
]−D/2

+
2

ην

[

1 + 2

(
FV

Fσ2

)2

+ 2

(
FV

FD

)2
]−D/2

,

(4.7) VAR =
2σ4

0

ην




ν

[
1 + 2

(
FV

FD

)2
]−D/2

+ 2

[
1 + 2

(
FV

Fσ2

)2

+ 2

(
FV

FD

)2
]−D/2




 ,

(4.8) bias2 =
2σ4

0

ν






[
1 + 2

(
FV

Fσ2

)2
]−D/2

− 2

[
1 +

(
FV

Fσ2

)2
]−D/2

+ 1




 .

MSE = VAR + bias2, where

• FV , the FWHM of smoothing kernels used for smoothing the sample

variance images

• FD, the FWHM smoothness of data

• Fσ2 , the FWHM smoothness of the true variance image Σ

Eq. (4.6) shows that spatially homogeneous variance images is a specific case of spatially

heterogeneous variance images since Eq. (4.1) is a part of Eq. (4.6). When FV = 0, no

smoothing used for sample variance images, EDF is same as the original DF and there

is no bias involved. Given other parameters constant, the larger FV used for the sample

variance, the larger EDF and bias, but smaller VAR becomes. In addition, EDF is also
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related to the degrees of freedom of the χ2 random field, the data smoothness FD, and

the true variance smoothness Fσ2 . Eq. (4.8) shows that bias does not depend on the

data smoothness nor the original DF. It also shows that bias is bounded, for example,

bias2 ∈ [02σ2
0/ν) when D = 2. Appendix B.3 provides all derivation in detail.

4.2.2 Simulation

Because of the stocastic model for the true variance, the simulation requires three

levels: Realization, Experiment and Subject. We generate one true variance image in

each realization, which includes multiple experiments, within which are several subjects.

The simulation scheme consists of the following steps:

1. For Realization k = 1, . . . , nR, the true variance image Σk is generated by squaring,

summing ν standard smoothed Gaussian images, and scaling the summation with

σ2
0/ν. Those smoothed Gaussian images are produced by Gaussian noise images

smoothed with Fσ2 and scaled to have unit variance after smoothing. The true

variance image Σk has mean σ2
0, i.e. Σk ≈

χ2
ν · σ2

0

ν
. In this step, we also set the

true variance image Σk to be constant σ2

0
in order to evaluate the results on the

derivation for spatially homogeneous variance images case.

2. For Realization k, Experiment j = 1, . . . , nE are created. In Experiment j, a set

of nS subjects are created by generating standard Gaussian noise images N(0, 1),

then smoothed with FD and scaling each by
√

Σk.

3. A one-sample model is applied to each Experiment, creating a sample variance

image Vjk. The sample variance image is smoothed with a smoothing kernel FV ,

producing the smoothed variance image V̂jk

4. A smoothed variance t statistic image is generated with the smoothed variance

image V̂jk
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The image dimensions are [64 64] voxels in 2D. Ideally we would make 3D images but

the simulations are very memory intensive. The whole simulation starts with padded in

each dimension by 2× Fσ2 to prevent kernel truncation artifacts. For example, padded

image dimensions are [176 176] voxels when Fσ2 = 28. Those specific parameters are

nR = 1000, nE = 15 and nS = 10. The number of experiments in a realization and the

number of subjects within an experiment are same as the those in real data analysis,

respectively. The range of FV is set to [0:2:24], where voxel size is [1 1]mm. FV = 0 is

used to check the consistency of simulation results and theory results in no smoothing

status. FD is set to 4, 6, 8, and 10 voxels, which are matched to real data analyses.

Fσ2 are different with different FD. For example, Fσ2 = 20 for FD = 4 and Fσ2 = 28

for FD = 10. The selection strategy is motivated by the results from both real data

analysis and theory derivation. σ2
0 = 0.3895, which is the average over all voxels in

the sample variance image, which is generated from 153 subjects. To access the power

of our method, a spherically shaped signal (radius = 2 voxels) with various uniform

intensities (0.25, 0.5, 1) is added to the center of those standard smoothed Gaussian

images. The smoothed sample variance t threshold for each α, α = 0.05, 0.01 and 0.001,

is determined by simulation when the true variance is constant and no signal is added

to those standard smoothed Gaussian images, for each different combination of FD and

FV .

This simulation framework allows Monte Carlo estimation of VAR (variance of V̂jk),

bias2 (average of (V̂jk − Σk)
2) possible. We compute bias2 intead of bias, because we

do not want a positive bias in one part of the image to cancel with a negative bias in

another part. We can compare our theoretical results with those simulation results.

4.2.3 Application to real data

With a large fMRI dataset, we have nR = 1 Realization from which we can generate

multiple Experiments and subjects. From a 153 subjects odd-ball fMRI dataset, we use

resampling without replacement method to create several sets of nE = 15 Experiment,
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within each has nS = 10 subjects. This strategy is to mimic the Realization level in the

simulation. The original data were smoothed with FWHM = 4mm. In order to compare

the results for low FD, moderate FD and high FD, we smooth the data to make FD be 6,

8 and 10 mm, respectively. For each FD, we smooth the sample variance image with FV

= [0:2:24]mm for each Experiment. Variance, bias and MSE of the smoothed variance

images and EDF are measured and compared with the simulation results.

4.3 Result

4.3.1 Theory and simulation results

We only show those results for constant variance images and spatially heterogeneous

random variance images cases, respectively, from simulation and derivation. In the

constant variance image case, the true variance Σ is set to be constant spatially, while

in the spatially random field variance image case, the true variance image is a scaled χ2

random field.

Spatially homogeneous variance images

In this case, the true variance image is set to be a constant, Σ = σ2

0
, i.e. values for

all voxels are same as σ2
0, which is obtained by averaging over all voxels in the sample

variance image, which is generated with whole subjects from real data. We compare

the simulation results with theoretical results to evaluate the accuracy of our derivation.

Figure 4.2 and 4.3 show that the simulation and theory agree with MSE, VAR. Figure

4.2 displays the results when FD = 4 voxels, while Figure 4.3 displays the results when

FD = 6 voxels. The two figures show that MSE drops faster at the very beginning

and the trend becomes slow when FV /FD turns to be larger, for example, FV /FD > 2.

Finally, MSE goes toward zero. In addition, the simulation and derivation also agree

with bias, which is zero both in simulation and derivation results since MSE = VAR.

The higher the FV , the less MSE is. The two figures also show that the EDF from the

simulation is similar to that from theory.
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Figure 4.2: MSE, VAR, Bias2 vs FV /FD for sample variance smoothing from simulation
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the results from simulation, while the dash lines represent the results from
theory. The vertical line means the smoothing kernel size for data (FD = 4
voxels) is same as the smoothing kernel size for the sample variance, while
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Spatially heterogeneous and random variance images

In order to compare the results from simulations and theory in this case, we set

ν = 10. Figure 4.4, 4.5, 4.6, 4.7, 4.8 show the MSE, VAR, Bias2 and EDF from simulation

results and theoretical derivation. The Fσ2 is set to be different according to different

FD since the ratio of these two plays an important role in the results. Figure 4.4 and

4.5 show that Fσ2 = 14 and 20, respectively, for FD = 4 in order to compare different

Fσ2 . Figure 4.6 and Figure 4.7 are for FD = 6 and 8, respectively. The Fσ2 is set to be

same for FD = 6 and 8 in order to compare the difference because of different FD. For

smaller FD, FD = 4, the Fσ2 is generally smaller than that for larger FD, for example,

FD = 10. Figure 4.8 is the results for FD = 10.

Figure 4.4 and 4.5 are for FD = 4 with different FV , respectively. The curvature

of MSE turns to be smaller with larger Fσ2 , although the starting points are same in

both figures. The optimal FV for MSE obtaining its minimum is 8 (FV /FD = 2) when

Fσ2 = 14, but 10 (FV /FD = 2.5) when Fσ2 = 20. This result shows that the optimal FV

depends on the Fσ2 given FD. However, there is no big difference in EDF with different

Fσ2 .

Figure 4.6 and 4.7 show that, given Fσ2 and FV , EDF is generally smaller when FD

= 8 than that when FD = 6, although EDF turns to be larger for larger FV /FD. The

trend for MSE goes down to a minimum point then goes up in the two figures. The

optimal FV to make MSE attain its minimum is 12 (FV /FD = 2) when FD = 6, while

FV = 14 (FV /FD = 1.75) when FD = 8, for both simulation and theoretical results.

The trend for VAR always goes down and is opposite for Bias2. This is consistent with

the intuition because larger FV will reduce variability as smoothing does, but discards

information which increases bias. However, the curvature of MSE for FD = 6 is slightly

smaller than that for FD = 8. It also shows that the starting points of VAR are always

same for all FD when FV = 0 since the start number is independent of FD when FV =

0 according to Eq. (4.7). The two figures provide similar information in comparing the



62

0 0.5 1 1.5 2 2.5 3
0

0.009

0.018

0.027

0.036

0.045

M
S

E

F
V
/F

D

 

 

0 0.5 1 1.5 2 2.5 3
0

40

80

120

160

200

E
D

F

MSE, VAR, and Bias2 in simulation (solid) and theory (dash)

 

 

Fσ2 = 20vx, F
D

 = 4vx, and ν = 10

EDF

MSE Var
var Var

Bias2

Figure 4.4: MSE, VAR, Bias2 and EDF vs FV /FD for sample variance smoothing from
simulation results and theoretical derivation for FD = 4 voxels, Fσ2 = 20
voxels. The solid lines represent the results from simulation, while the dash
lines represent the results from theory. The vertical line means the smooth-
ing kernel size for data (FD = 4 voxels) is same as the smoothing kernel
size for the sample variance, while the horizontal line illustrates the degrees
of freedom of the original sample variance. For example, DF = 9 in the
simulation setup.
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Figure 4.5: MSE, VAR, Bias2 and EDF vs FV /FD for sample variance smoothing from
simulation results and theoretical derivation for FD = 4 voxels, Fσ2 = 14
voxels. The solid lines represent the results from simulation, while the dash
lines represent the results from theory. The vertical line means the smooth-
ing kernel size for data (FD = 4 voxels) is same as the smoothing kernel
size for the sample variance, while the horizontal line illustrates the degrees
of freedom of the original sample variance. For example, DF = 9 in the
simulation setup.
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simulation results to the theoretical results, although there is slightly difference due to

Monte Carlo simulation error.
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Figure 4.6: MSE, VAR, Bias2 and EDF vs FV /FD for sample variance smoothing from
simulation results and theoretical derivation for FD = 6, Fσ2 = 22. The solid
lines represent the results from simulation, while the dash lines represent the
results from theory. The vertical line means the smoothing kernel size for
data (FD = 6) is same as the smoothing kernel size for the sample variance,
while the horizontal line illustrates the degrees of freedom of the original
sample variance. For example, DF = 9 in the simulation setup.

Figure 4.8 shows that EDF turns to be smaller for FD = 10 than those for FD =

4, 6, and 8. This phenomenon also happens for the curvature of MSE. The optimal

FV to make MSE attains its minimum in both simulation and theory is 18, which also

illustrates the agreement between the simulation and theoretical results. The difference

between them turns to larger for larger FV .

We also plot the ratio of MSE from our simulation to MSE from the theory. Figure
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Figure 4.7: MSE, VAR, Bias2 and EDF vs FV /FD for sample variance smoothing from
simulation results and theoretical derivation for FD = 8, Fσ2 = 22. The solid
lines represent the results from simulation, while the dash lines represent the
results from theory. The vertical line means the smoothing kernel size for
data (FD = 8) is same as the smoothing kernel size for the sample variance,
while the horizontal line illustrates the degrees of freedom of the original
sample variance. For example, DF = 9 in the simulation setup.
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Figure 4.8: MSE, VAR, Bias2 and EDF vs FV /FD for sample variance smoothing from
simulation results and theoretical derivation for FD = 10, Fσ2 = 28. The solid
lines represent the results from simulation, while the dash lines represent the
results from theory. The vertical line means the smoothing kernel size for
data (FD = 8) is same as the smoothing kernel size for the sample variance,
while the horizontal line illustrates the degrees of freedom of the original
sample variance. For example, DF = 9 in the simulation setup.
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4.9 shows that the maximum of ratio is smaller with small smoothing kernel size than

that with large smoothing kernel, whatever kernel size for data, the true variance image

and the sample variance. In addition, the maximum shifts to right with large smoothing

parameters. It is also shown that the FV to make ratio obtain its maximum is close to

the optimal FV for MSE.
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Figure 4.9: Ratio of MSE from simulation to MSE from theory vs variance smoothing
kernel size

4.3.2 Application to real data

Figure 4.10, 4.11, 4.12 and 4.13 show the empirical relationship between MSE, VAR,

Bias2 and EDF of estimated variance as a function of variance smoothness parameter

FV , for FD = 4, 6, 8 and 10 mm. In general, the shape of the curves is similar to

the theoretical and simulation results, except at the smallest variance smoothing kernel

size. For FD = 4 mm, the FV = 10 mm (FV /FD = 2.5) gives minimum MSE, while for
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FD = 6 mm, the FV is 12 mm (FV /FD = 2) and for FD = 8 mm, the FV is 14 mm

(FV /FD ∈ (2 3)). This result is consistent with that from simulation and theory results.

Note for FV = 0, EDF should be η = 9. However, the approximation is EDF = 7.3. This

shows the inaccuracies in the Satterthwaite approximation in estimating EDF when FV

= 0. Moreover, the EDF from real data is much smaller than that from simulation and

derivation since there is no information about the underneath true variance image of

this experiment. It is unreasonable to estimate the ν, Fσ2 for the real data analysis.
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Figure 4.10: MSE, VAR, Bias2 and EDF vs FV /FD for real data analysis when FD =
4 mm. The vertical line means the smoothing kernel size for data (FD

= 4) is same as the smoothing kernel size for the sample variance, while
the horizontal line illustrates the degrees of freedom of the original sample
variance. For example, DF = 9 in real data analysis.



69

0  0.5 1  1.5 2  2.5 3  
0

0.01

0.02

0.03

0.04

0.05

M
S

E

F
V
/F

D

MSE, VAR, Bias2 and EDF vs F
V
/F

D
, when data smoothness (F

D
) = 6mm

 

 

0  0.5 1  1.5 2  2.5 3  
0

6

12

18

24

30

E
D

F

 

 

MSE

VAR

Bias2

Data Smo.(F
D
=6)

EDF

original DF (9)

Figure 4.11: MSE, VAR, Bias2 and EDF vs FV /FD for real data analysis when FD =
6 mm. The vertical line means the smoothing kernel size for data (FD

= 6) is same as the smoothing kernel size for the sample variance, while
the horizontal line illustrates the degrees of freedom of the original sample
variance. For example, DF = 9 in real data analysis.
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Figure 4.12: MSE, VAR, Bias2 and EDF vs FV /FD for real data analysis when FD =
8 mm. The vertical line means the smoothing kernel size for data (FD

= 8) is same as the smoothing kernel size for the sample variance, while
the horizontal line illustrates the degrees of freedom of the original sample
variance. For example, DF = 9 in real data analysis.
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Figure 4.13: MSE, VAR, Bias2 and EDF vs FV /FD for real data analysis when FD =
10 mm. The vertical line means the smoothing kernel size for data (FD

= 10) is same as the smoothing kernel size for the sample variance, while
the horizontal line illustrates the degrees of freedom of the original sample
variance. For example, DF = 9 in real data analysis.
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4.3.3 Detection sensitivity

Table 4.1 lists power changes with FV and signal intensity when FD = 6. It shows

that power increases with increasing FV , although there are slight changes when signal

intensity is 0.25, FV = 8 voxles and α = 0.05 and 0.01. It also shows power increases

when intensity increases, which is consistent with our expectation.

4.4 Discussion and Conclusion

Worsley et. al. proposed to smooth the ratio of the random effects variance to the

fixed effects variance for group data analysis when the fixed effects variance has been

assumed to be fixed and same in different groups [Worsley et al., 2002]. Raz and Fessler

also considered to smooth the variance images to increase the degrees of freedom in

1999, though their work was never published. However, they did not provide closed

forms for the relationship about all kinds of smoothness parameters. Although they

considered the true variance image is heterogeneous, they did not discuss whether the

true variance image is fixed or random. We develop results to relate variance smoothing

kernel size to MSE, VAR, bias and EDF of those smoothed variance images. We find

qualitatively similar results in real data for EDF. Our simulation studies show that

our derived methods are accurate under null distribution. It performs well both in

constant variance case and random variance case. Our method includes the smoothness

parameters for data, true variance image and the sample variance images. Although the

theoretical and simulation results have similar shape curves as real data analysis, the

exact values are significant different as we were not able to estimate ν and Fσ2 .

The theory shows that if the true variance image is constant, the EDF is related to

DF, FD, FV and spatial dimension D. The simulation and theory also show MSE always

decreases towards zero with increasing Fσ2 . There is no bias for the smoothed variance

image in this case since MSE is always same as VAR both in simulation results and

theoretical derivation when FV = 0. The increase trend for EDF is smaller than that
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α 0.05 0.01 0.001
Uniform spherical shaped signal intensity

FV 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0 0.0502 0.3529 0.7752 0.9921 0.0108 0.1368 0.5047 0.9494 0.0016 0.0326 0.2223 0.7889
2 0.0499 0.3598 0.7857 0.9931 0.0105 0.1463 0.5348 0.9603 0.0017 0.0412 0.2754 0.7889
4 0.0493 0.3694 0.8000 0.9945 0.0102 0.1583 0.5719 0.9722 0.0019 0.0511 0.3364 0.9048
6 0.0487 0.3746 0.8085 0.9954 0.0100 0.1635 0.5927 0.9782 0.0019 0.0558 0.3682 0.9298
8 0.0484 0.3758 0.8134 0.9958 0.0098 0.1646 0.6052 0.9813 0.0018 0.0569 0.3835 0.9423
10 0.0478 0.3752 0.8167 0.9961 0.0097 0.1633 0.6113 0.9833 0.0019 0.0570 0.3908 0.9494
12 0.0475 0.3740 0.8191 0.9964 0.0098 0.1614 0.6148 0.9846 0.0020 0.0562 0.3928 0.9544
14 0.0472 0.3722 0.8210 0.9967 0.0099 0.1592 0.6168 0.9857 0.0021 0.0554 0.3928 0.9579
16 0.0469 0.3701 0.8222 0.9969 0.0100 0.1575 0.6175 0.9867 0.0022 0.0549 0.3911 0.9608
18 0.0468 0.3684 0.8233 0.9971 0.0101 0.1562 0.6174 0.9875 0.0023 0.0546 0.3890 0.9631
20 0.0466 0.3667 0.8239 0.9972 0.0102 0.1547 0.6167 0.9882 0.0025 0.0541 0.3862 0.9651
22 0.0465 0.3652 0.8245 0.9973 0.0105 0.1532 0.6164 0.9889 0.0025 0.0541 0.3843 0.9668
24 0.0465 0.3654 0.8250 0.9974 0.0107 0.1525 0.6158 0.9894 0.0026 0.0537 0.3821 0.9682

Table 4.1: Power comparison when FD = 6, Fσ2 = 22
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when the data smoothness (FD) turns to larger, for example, Figure 4.2 and 4.3.

When the true variance image is a random field, the EDF is related to not only DF,

FD, FV and D, but also Fσ2 , ν. There is optimal Fσ2 to let MSE attain its minimum for

small ν for random true variance image. The χ2 random field with larger ν is much closer

to a constant image, for example, ν = 1,000. It is a challenge for us to find the optimal

Fσ2 for MSE for large ν. In real data analysis, we do not have any information for ν

either. However, it is reasonable to assume ν is small based on the real data analysis

result in this study, for example ν = 10.

Given a Fσ2 , EDF when FD is large is always less than that when FD is small, for

example, EDF is less for FD = 8 than that for FD = 6. Given a FD, the optimal

FV to make MSE attain its minimum when Fσ2 = 14 is less than that when Fσ2 =

20. Fortunately, there is no big difference for EDF for different Fσ2 with same ν. The

important point is that Fσ2 turns to be larger for larger FD, for example, Fσ2 = 20 when

FD = 4, and Fσ2 = 28 when FD = 10. In addition, it is easily to show bias is bounded

for D = 2, although bias always increases with larger FV whatever how large FD and

Fσ2 are.

There are some assumptions for deriving those formulas. We assume that the corre-

lation between any two voxels are expressed with Gaussian correlation function for data

and the true variance. We also assume that the random true variance is a stationary χ2

random field. Moreover, we assume all data are continuous. However, there are some

limitations with the method. Although we do not know ν and Fσ2 before we do any

data analysis, we can also use the sample variance image to estimate ν and Fσ2 for the

true variance image since the sample variance image is an unbiased estimator of the

true variance image. We use Satterthwaite method to estimate ν. When we use the

sample variance image generated with 153 subjects, ν̂ is 4.498. Figure 4.1 shows that

the empirical distribution of the sample variance image is similar to the shape of the

theoretical distribution, which is from χ2 distribution with ν degrees of freedom. In
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addition, the sample variance is unbiased estimator of the true variance. Kiebel et al.,

Forman et al., Jenkinson and Hayasaka et al. used the smoothness estimation based on

standard residual images for real data [Kiebel et al., 1999; Forman et al., 1995; Jenk-

inson, 2000; Hayasaka & Nichols, 2003]. In order to estimate Fσ2 for the real data, we

propose to use the following strategy. Let X =
ν̂σ̂2

σ2
0

∼ χ2
ν̂ and then standardize with

XZ =

„

ν̂σ̂2

σ2
0

−ν̂

«

√
2ν̂

. We estimate the smoothness parameter, F̂χ2 with XZ with smoothness

estimator function in the SPM2 package, modified to work with a single standardized

image.

As Fσ2 =
√

2Fχ2 according to Appendix B.3.1, we can then obtain an estimate of

Fσ2 . Further work is needed to create estimators for Fσ2 in detail, and compute P value

bias.
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Chapter 5

Conclusion & Future Work

In this dissertation, we introduced new modeling and inference methods for fMRI

data. The first topic was to propose a new combining method with cluster extent and

suprathreshold average voxel intensity statistics with the permutation testing frame-

work. This method was used to leverage the strength from the cluster wise inference

method and the voxel wise inference method. However, there were some limitations with

this nonparametric permutation framework. We proposed a parametric cluster mass in-

ference method as a complementary method to nonparametric competitors. This para-

metric method showed increased sensitivity for sufficiently smoothed images. Lastly, we

introduced a method to increase the effective degrees of freedom of variance images for

smoothed variance t-test while avoiding accessive bias. We used a χ2 distribution to

model the true variance images for small group data analysis.

Since cluster mass is defined as the integral of suprathreshold intensities within a

cluster, cluster mass can also be considered as the “product” of cluster extent and

suprathreshold average intensity. We proposed some combining functions with the two

statistics. Our simulations and real data analysis showed that no single method was

optimal for all types of signals, however the partial methods (cluster extent specifically)

varied considerably in their sensitivity, while the combining methods were usually not

far from optional.

There were some limitations with this method. Computational complexity was a

concern of this method because of permutation property for large number of subjects in
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an experiment. This method could not be applied for single subject data analysis since

it violated the exchangeability property. The voxels could not be permuted, otherwise,

the spatial structure of brain would be affected.

The proposed parametric cluster mass inference method was a complementary method

to its nonparametric competitor and all kinds of permutation based combining methods.

This proposed method was based on Gaussian RFT. Our simulation studies showed that

our derived null distribution was accurate, and performed well not only for Gaussian

images, but also for Student’s t statistic images. Like other RFT methods, our results

depended only on the smoothness and the volume of the image. This method assumed

that the shape of a cluster above a certain threshold was approximated by a paraboloid.

A Gaussian shaped correlation function was assumed to simplify the variance in the

derivation. In addition, we also assumed that all fields were stationary.

Finally, we had developed results to relate variance smoothing kernel size to variance

estimator MSE, bias2 and DF, finding qualitatively similar results in real data for EDF.

Our simulation studies showed that our derived methods were accurate under the null

hypothesis. It performed well both in the constant variance case and in the random

variance case. The effective degrees of freedom increased as smoothness parameter of

the sample variance images and increased the detection sensitivity. We could also find

the optimal smoothing kernel size for the sample variance image that avoids too much

bias. However, it was hard to find the optimal smoothness parameter for the sample

variance images when the true variance image was constant. The ideal method is to use

the pooled variance image.

We assumed that the correlation between any two voxels are expressed by a Gaussian

correlation function for data and the true variance image. We also assume that all images

are stationary and continuous. However, we did not know the degrees of freedom of the

χ2 distribution and the smoothness parameter of the true variance images. We only used

2D data (64 × 64) because if excess memory requirements needed in the simulation. In
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addition, we considered a hot spot case in the derivation. However, this case was not

included in the simulation.

We only used sphere-shaped signals with uniform intensity in the simulation in eval-

uating the characteristics in this dissertation. Therefore, we are unable to validate the

methods with different shaped signals. In addition, we assumed the images were sta-

tionary based on RFT. Currently, there is no method to examine whether an image is

stationary or not. It is intuitive that a nonparametric method is applied avoid station-

arity assumptions in developing inference methods.

Although we developed a method for optimizing the smoothing kernel size for the

sample variance image, it was hard to find the degrees of freedom of the true variance

image. It was also hard to find the smoothing kernel size for the true variance image. We

proposed to use Satterthwaite method to the sample variance to estimate the degrees

of freedom of the true variance image. We also proposed to use smoothness estimation

for the component field to approximate the smoothness kernel size for the true variance

image. However, more accurate estimation for these two parameters is needed in the

future.
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Appendix A

Derivation for the parametric cluster mass

distribution

A.1 Cluster P values

We use nonparametric permutation to obtain uncorrected and FWE corrected cluster

mass P-values on real data to provide a comparison for our proposed parametric mass

statistic. As most neuroimaging permutation literature focuses on voxel-wise inference,

we briefly review nonparametric cluster inference.

A nonparametric uncorrected P-value for a single voxel is trivial, as it is just the

direct application of a univariate permutation test. Defining an uncorrected P-value

for clusters, however, is difficult as there is no unique way to define equivalent clusters

after permutation of the data. If there are L cluster in the original statistic image, in

a permuted-data statistic image there will rarely be L clusters and there will almost

never be a cluster in exactly the same location. Instead of matching clusters between

permutations, an assumption of stationarity is made. The distribution of cluster statis-

tics (e.g. size, mass, local peak height, etc) does not vary across space. With such a

stationarity assumption, cluster statistics can be pooled over space, and a pooled per-

mutation distribution created. While permutation distributions typically containing K

elements, where K is the number of permutations, the uncorrected cluster permutation

distribution will contain
∑K

k=1 Lk elements, where Lk is the number of clusters found in
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permuting k’s statistic image. The uncorrected P-value is the proportion of the
∑K

k=1 Lk

elements that are as large or larger than the observed cluster statistic.

FWE corrected cluster P-values are more straightforward, and only require creating

the maximal cluster statistic distribution. Because the search over the image is for the

maximal statistic, no assumption of stationarity is required. Even when some regions

of the image that are smoother (or, by chance, give rise to larger cluster statistics)

the maximum operator naturally accounts for such variation. (Nonstationarity is a

problem for parametric cluster inference, though see [Hayasaka et al., 2004]). For each

permutation the maximal cluster statistic is recorded, and the corrected P-value is the

proportion of the K maximal elements that are as large or larger than the observed

cluster statistic.

Lastly, we note that if cluster statistics are marked as significant only when FWE-

significant at 0.05, there is then 95% confidence of no false positive clusters anywhere in

the image. For more on FWE see the paper of Nichols and Hayasaka (2003) [Nichols &

Hayasaka, 2003].

A.2 Derivation of Null Distribution of Cluster Mass

Our derivation of the distribution of cluster mass follows that of Poline et al. [Poline

et al., 1997] (PWEF) with several departures. A rough outline of the derivation is as

follows:

1. A second order Taylor series approximates the statistic image at a local maximum

as a paraboloid, determined by peak height and curvature about the maximum.

2. The geometry of a paraboloid gives cluster extent and mass as a function of peak

height and the curvature (Jacobian determinant).

3. Distribution of the curvature, conditional on peak height, is found using an as-

sumption of a Gaussian autocorrelation function.
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4. Combining the two previous results relates extent and mass, conditional on peak

height, to a χ2 distribution. A bias correction is made using the expected Euler

characteristic.

5. At this point PWEF used a small excursion assumption; we produce a pair of

results, with and without this assumption.

6. The joint distribution of mass and height are found and marginalized to produce

final mass result.

A.2.1 Notation & Preliminaries

Let Z(x) be a D-dimensional Gaussian image, with

E(Z(x)) = 0,

Cov(Z(x)) = 1,

Cov(∇Z(x)) = Λ

for all x ∈ Ω ⊂ ℜD in the image volume, where ∇ is the gradient operator and Λ is

the D × D matrix which parameterizes roughness. We assume the process is smooth,

in that ∇2ρ(0) exists, where ρ(·) is the autocorrelation function and ∇2 is the Hessian

operator.

Without loss of generality, suppose there exists a local maximum at x = 0, and

consider the approximating paraboloid from a second order Taylor series about x = 0

W(x) = Z(0) + xT(∇2Z(0))x/2

Suppressing the spatial index, let Z ≡ Z(0), and denote J = | − ∇2Z(0)| the negative

Jacobian determinant.

For a cluster-defining threshold uc, let H = Z −uc be the suprathreshold magnitude

(note that we suppress the ℓ subscript used in the body of this chapter). Then the
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geometry of the approximating paraboloid gives cluster extent as

(A.1) S = a2D/2HD/2J−1/2

where a = πD/2/Γ(D/2 + 1) is the volume of the unit sphere, and mass as

(A.2) M = 2SH/(D + 2).

A.2.2 Distribution of S|H

Conditional on H , PWEF showed that another Taylor series yields

(A.3) ln J |H ≈ ln |Λ|+ D ln(H + uc) + η,

where η is mean zero Gaussian with variance1

Cov(η|H) =
[
tr
(
(Λ−1 ⊗ Λ−1)ρ(4)(0)

)
−D2

]
/(H + uc).

While this expression is quite involved, if we assume that ρ is proportional to a Gaussian

probability density function (PDF), it simplifies to Cov(η|Z) = 2D/(H + uc)
2. Subse-

quently we will need J−1/2, and so write the exponentiated and powered equation (A.3)

as J−1/2 ≈ |Λ|−1/2(H + uc)
−D/2 exp(η/2)−1. However, as in PWEF, we find that numer-

ical evaluations of the final result are poor when η is assumed to be Gaussian (results

not shown). We instead linearize the exponential,

J−1/2|H ≈ |Λ|−1/2(H + uc)
−D/2(1 + η/2)−1(A.4)

and approximate 1+η/2 with η′, where νη′ is χ2
ν variate. Matching the second moments

of 1 + η/2 and η′ gives ν = 4(H + uc)
2/D. Combining with Equations (A.4) and (A.1)

yields

(A.5) S|H ≈ a2D/2|Λ|−1/2(H + uc)
−D/2HD/2η′−1.

1Note there is a typo in the PWEF paper’s equation (8), where 2Z should in fact be just Z, or
H + uc as we have written.
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A.2.3 U Result for M

PWEF proceeded by using a small excursion approximation, that H is small relative

to uc, replacing H+uc with uc. With this change, and marginalizing out H , the expected

cluster extent can be found as

(A.6) EU(S) = (2π)D/2 |Λ|−1/2 u−D
c .

However, accurate results using the expected Euler Characteristic [Adler, 1981] give

(A.7) EEC(S) = (2π)D/2 |Λ|−1/2 u−(D−1)
c (1− Φ(uc))/φ(uc)

where Φ is the standard Gaussian CDF and φ is the standard Gaussian PDF. Hence,

the approximation for S|H is scaled by

(A.8) cU =
EEC(S)

EU(S)
= uc(1− Φ(uc))/φ(uc).

As a side note, this is Mill’s ratio [Gordon, 1941] scaled by uc, which will have cU

converging to 1 from below for large uc.

The bias-adjusted result is

(A.9) M |H ≈ acU2D/2+1(D + 2)−1 |Λ|−1/2 u−D/2
c HD/2+1 η′−1,

which is a scaled inverse χ2 random variable with νU = 4u2
c/D degrees of freedom and

scale parameter

qU(H) = acU2D/2+1(D + 2)−1 |Λ|−1/2 u−D/2
c HD/2+1

The marginal distribution of H is approximately exponential with mean 1/uc [Adler,

1981], and thus the joint PDF of M and H is

(A.10) fU(M, H) ≈ (qU(H)νU/2)νU/2

Γ(ν/2)

exp [(qU(H)νU/2)/M ]

MνU/2+1
exp[−ucH ]uc

for M, H > 0. The uncorrected P-value for cluster mass is then found with

PU(M > m) ≈
∫ ∞

m

∫ ∞

0

fU(M, H) dH dM

using numerical integration over a fine grid.
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A.2.4 Z Result for M

We repeat the preceding without the small excursion approximation. We call this

the Z result, since Z = H + uc is left as is. Returning to (A.5) and marginalizing out

H we get

(A.11) EZ(S) = a2D/2 |Λ|−1/2 E{[H/(H + uc)]
D/2}

where the final term must be found numerically for a particular uc. This provides the

bias adjustment term

(A.12) cZ = EEC(S)/EZ(S).

This provides an approximation for M |H as a scaled inverse χ2 random variable with ν

degrees of freedom and scale parameter

qZ(H) = acZ2D/2+1(D + 2)−1 |Λ|−1/2 (H + uc)
−D/2 HD/2+1

and joint PDF of M and H of

(A.13) fZ(M, H) ≈ (qZ(H)ν/2)ν/2

Γ(ν/2)

exp [(qZ(H)ν/2)/M ]

Mν/2+1
exp[−ucH ]uc.

As before, the uncorrected P-value for cluster mass is then found with

PZ(M > m) ≈
∫ ∞

m

∫ ∞

0

fZ(M, H) dH dM

using numerical integration over a fine grid.

A.2.5 Corrected P-values

The uncorrected P-values can be transformed into family-wise error (FWE) corrected

P-values with either a Bonferroni correction for the expected number of clusters or the

Poisson clumping heuristic [Adler, 1981; Cao & Worsley, 2001; Hayasaka & Nichols,

2003]. We opt for the later, as it provides a continuous transformation between uncor-

rected and corrected P-values.
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A FWE corrected P-value accounts for the chance of the maximal statistic exceeding

that actually observed. Assuming the clusters arise as a Poisson process, this P-value is

found as

(A.14) P(maxℓMℓ > m) ≈ 1− exp{−E(L) · P(Mℓ > m)},

where E(L) is the expected number of clusters in the image. For moderate thresholds

uc the Euler characteristic will count the number of clusters, and hence we approximate

E(L) by EEC(L). The most accurate results for EEC(L) depends on the dimension

and the topology of the search region [Worsley et al., 1996]. For a 3D, approximately

spherical search region

(A.15) EEC(L) = λ(Ω)|Λ|1/2(2π)−2(u2
c − 1) exp[−u2

c/2];

where λ(Ω) is the volume of the search region. In addition, for a high threshold uc, the

number of clusters above the threshold will be approximated by [Adler, 1981; Poline

et al., 1997]

E(L) = λ(Ω)|Λ|1/2(2π)−2u2
c exp[−u2

c/2]

A.2.6 Smoothness Estimation & Λ

The preceding results depend on the roughness of the component random fields, as

parameterized by |Λ|. Worsley et al. [Worsley et al., 1992] proposed re-expressing this

as the FWHM Gaussian kernel required to smooth an independent random field into

one with roughness Λ. Assuming the smoothing is aligned with the major axes of the

image, this relationship is

|Λ|1/2 =
(4 ln 2)D/2

∏
d FWHMd

where FWHMd is the smoothness in the d-th dimension. If the smoothness is not known,

|Λ|1/2 can be estimated from the residual images of a general linear model [Kiebel et al.,

1999]
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A.2.7 Student’s t-image

Worsley et al. and Holmes [Kiebel et al., 1999] showed that if the roughness of the

Gaussian component fields is Λ, the roughness for a Student’s t-statistic image can be

approximated by ΛT = λnΛ, where n > 4 is the number of scans used to generate the

t image and λn is the correction factor [Holmes, 1994; Worsley et al., 1992]. When

applying our method to Gaussianized data we adjust Λ accordingly.
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Appendix B

Derivation for effective degrees of freedom

B.1 Spatially homogeneous variance images

For the spatial homogeneous variance image case, we assume the true variance image

Σ is constant and fixed, i.e. σ2
j = σ2

0 , and independent across the entire image, where

j = 1, · · · , Np is the index of the jth voxel, Np is the number of voxels, and Σ =

(σ2
1, σ

2
2 , · · ·σ2

Np
). At the jth voxel, conditional on σ2

0 , we denote data by X and assume,

Xji|σ2
0 ∼ N(µj, σ

2
0)

where,

j = 1, 2, · · · , Np indexes voxels of an image

i = 1, 2, · · · , η indexes subjects in an experiment

Under the null hypothesis, µj = 0, the data conditional on σ2
0 are also considered

as white noise convolved with a Gaussian kernel f(u) with mean zero and variance

s2
d = F 2

D/(8 log 2), FD is the Full Width Half Maximum of smoothing kernel from the

data, or the smoothness of the standardized subject-level conditional on Σ i.e.

f(u) = φ(u; s2
d)

where,

φ(u; s2
d) = (2πs2

d)
−D/2e−‖u‖2/(2s2

d
)
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is a Gaussian density function with mean zero and variance s2
d in D dimension.

Hence the spatial correlation is

c(u) =
(f ⊗ f)(u)

(f ⊗ f)(0)
= e−‖u‖2/(4s2

d
) = (2π2s2

d)
D/2φ(u; 2s2

d)

We can also write correlation function between the kth and lth voxels as

ρkl = g(ukl, s
2
d) = exp{−‖ukl‖22/(4s2

d)} = exp{−‖Pk −Pl‖22/4s2
d}1

Pk = (xk, yk, zk)
t denotes the coordinate of the kth voxel,

Hence,

Cov(Xkm, Xln|σ2
0) = ρklσ

2
0δm−n

δm−n =






1 m = n , same subject

0 otherwise

The sample variance for the jth voxel is

Vj =
1

η

η∑

i=1

(Xji)
2

Then,

E(Vj|σ2
0) = E(

1

η

η∑

i=1

(Xji)
2|σ2

0)

=
1

η

η∑

i=1

E
[
X2

ji|σ2
0

]

=
1

η

η∑

i=1

σ2
0

= σ2
0

1‖X‖2 = ‖X‖ is l2 norm, and ‖X‖2
2

denotes the distance between two voxels
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Var(Vj |σ2
0) = E(V 2

j |σ2
0)−

[
E(Vj|σ2

0)
]2

=
1

η2
E

(
η∑

m=1

X2
jm

η∑

n=1

X2
jn | σ2

0

)
− (σ2

0)
2

=
1

η2
{

η∑

m=1

E[X4
jm|σ2

0] +

η∑

m6=n;m,n=1

E[X2
jmX2

jn|σ2
0]} − (σ2

0)
2

=
1

η2
(η · 3σ4

0 + η(η − 1)σ4
0)− σ4

0

=
2σ4

0

η

Cov(Vk, Vl|σ2
0) =

1

η2

η∑

m=1

η∑

n=1

Cov(X2
km , X2

ln|σ2
0)

=
1

η2

η∑

m=1

[E(X2
kmX2

lm|σ2
0)− σ4

0]

Because

Xkm|σ2
0 ∼ N(0, σ2

0)

Xlm|σ2
0 ∼ N(0, σ2

0)

and Xkm|σ2
0 , Xlm|σ2

0 follow bivariate normal distribution, which means,

Xkm|Xlm ∼ N(ρklXlm, σ2
0(1− ρ2

kl))

Hence,

Cov(Vk, Vl|σ2
0) =

1

η2

η∑

m=1

(E{E[X2
kmX2

lm|Xlm]|σ2
0} − σ4

0)

=
1

η2

η∑

m=1

{E[ρ2
klX

4
lm + σ2

0(1− ρ2
kl)X

2
lm|σ2

0]− σ4
0}

=
1

η2

η∑

m=1

[3σ4
0ρ

2
kl + (1− ρ2

kl)σ
4
0)− σ4

0]

=
2σ4

0ρ
2
kl

η

Therefore,

E(Vj) = E(E(Vj|σ2
0)) = σ2

0
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Var(Vj) = E(Var(Vj|σ2
0)) + Var(E(Vj |σ2

0))

= E

[
2σ4

0

η

]
+ Var(σ2

0)

=
2σ4

0

η

Cov(Vk, Vl) =
1

η2

η∑

m=1

η∑

n=1

Cov[X2
km, X2

lm]

=
1

η2

η∑

m=1

η∑

n=1

{E[X2
kmX2

ln]− (E(Xkm))2(E(Xln))2}

=
2σ4

0ρ
2
kl

η

B.1.1 Smoothed variance images

General method

The degrees of freedom can be derived as follows.

For a specific jth voxel Vj , the corresponding smoothed variance at the jth voxel is,

V̂j =

Np∑

k=1

wjkVk , and

Np∑

k=1

wjk = 1.

Then,

E(V̂j |σ2
0) = σ2

0

Var(V̂j |σ2
0) =

Np∑

k=1

Np∑

l=1

wjkwjlCov(Vk, Vl|σ2
0)

=

Np∑

k=1

Np∑

l=1

wjkwjl
2σ4

0ρ
2
kl

η

=
2σ4

0

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
kl.

Since V̂j is a linear function of those elements from the sample variance image V

(Worsley, 1996), it is rational to assume that

Qj =
dV̂j

τ 2
∼ χ2

d
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where, d is the degrees of freedom for the smoothed variance image V̂ , and τ 2 is the true

variance of V̂j . Then, according to the Satterthwaite approximation (Worsley, 2002),

EDF ≈ d =
2E(V̂j)

2

Var(V̂j)
=

2σ4
0

2σ4

0

η

∑Np

k=1

∑Np

l=1 wjkwjlρ2
kl

=
η

∑Np

k=1

∑Np

l=1 wjkwjlρ2
kl

.

Convolution method

We also view the smoothed variance as,

V̂ = f ⊗ V = wV,

where f is the smoothing kernel used for the variance images.

Also

w =





w11 w12 . . . w1Np

w21 w22 . . . w2Np

. . . . . . . . . . . .

wNp1 wNp2 . . . wNpNp





,

V =





V1

V2

. . .

VNp





,

and
Np∑

k=1

wjk = 1 (j = 1, 2, . . . , Np).

Then,

E(V̂ |σ2
0) = wE(V |σ2

0) =





w11 w12 . . . w1Np

w21 w22 . . . w2Np

. . . . . . . . . . . .

wNp1 wNp2 . . . wNpNp









σ2
0

σ2
0

. . .

σ2
0





=





σ2
0

σ2
0

. . .

σ2
0





.
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E(V̂j|σ2
0) = σ2

0,

Var(V̂ |σ2
0) = wVar(V |σ2

0)w
T =

2σ4
0

η
· w





1 ρ2
12 . . . ρ2

1Np

ρ2
21 1 . . . ρ2

2Np

. . . . . . . . . . . .

ρ2
Np1 ρ2

Np2 . . . 1





wT ,

Var(V̂j |σ2
0) =

2σ4
0

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
kl.

If we assume that the covariance smoothing kernel is a Gaussian function, f(u), with

mean zero and variance v2 = F 2
V /(8ln2),

f(u) = (2π v2)−D/2 exp{−‖u‖2/(2v2)} = φ(u, v2).

Then, if Np −→∞

Var(V̂j |σ2
0) =

2σ4
0

η

∫ ∫
(2π v2)−D exp{− t2

2v2
} exp{− s2

2v2
} exp{−(t− s)2

2s2
d

}dtds

=
2σ4

0

η

(
F 2

D

F 2
D + 2F 2

V

)D/2

=
2σ4

0

η

[
1 + 2

(
FV

FD

)2
]−D/2

.

Similarly, according to the Satterthwaite approximation we have

EDF ≈ 2E(V̂j|σ2
0)

2

Var(V̂j|σ2
0)

= η ·
(

F 2
D + 2F 2

V

F 2
D

)D/2

= η ·
[
1 + 2

(
FV

FD

)2
]D/2

.
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B.1.2 Bias estimation

Since

MSE(V̂j) = biasj
2 + Var(V̂j), and σ2

0 is a constant,

(biasj |σ2
0)

2 = MSE(V̂j|σ2
0)−Var(V̂j|σ2

0)

= (E(V̂j|σ2
0)− σ2

0)
2

= 0.

Therefore, MSE(V̂j) = Var(V̂j) =
2σ4

0

η

[

1 + 2

(
FV

FD

)2
]−D/2

.

B.1.3 Summary

In summary, when the true variance image Σ is spatially homogeneous, the EDF,

MSE and Variance (VAR) of the smoothed variance image for each voxel are

EDF = η ·
[

1 + 2

(
FV

FD

)2
]D/2

,

VAR =
2σ4

0

η

[
1 + 2

(
FV

FD

)2
]−D/2

,

MSE = VAR =
2σ4

0

η

[
1 + 2

(
FV

FD

)2
]−D/2

,

where, FV , smoothness parameter (FWHM) for variance smoothing and FD, smoothness

parameter (FWHM) for data smoothing.
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B.2 Spatially heterogeneous but fixed variance images

In this section, we assume that the variance image Σ is nonconstant but fixed. We

want to know the degrees of freedom of the smoothed variance. Assume

σ2
j 6= σ2

l ,

where, σ2
j , σ2

l are constant.

Xjm|σ2
j ∼ N(µj , σ

2
j ),

Cov(Xkm, Xln|σ2
j , σ

2
l ) = ρklσkσlδm−n,

where j k, l = 1, 2, · · · , Np index voxels of an image, and m , n = 1, 2, · · · , η index sub-

jects in an experiment.

Similar to B.1

ρkl = g(ukl, s
2
d) = exp{−‖ukl‖22/(4s2

d)} = exp{−‖Pk − Pl‖22/(4s2
d)}, s2

d = F 2
D/8 ln 2,

here, FD is the FWHM from the data conditional on Σ, Pk = (xk, yk, zk)
t denotes the

coordinate of the kth voxel, and δm−n = 1 if m = n, 0 otherwise.

Under null hypothesis, µj = 0.

The sample variance for the jth voxel is

Vj =
1

η

η∑

i=1

X2
ji.

Then,

E(Vj|σ2
j ) = E(

1

η

η∑

i=1

X2
ji|σ2

j )

=
1

η

η∑

i=1

E
[
X2

ji|σ2
j

]

=
1

η

η∑

i=1

σ2
j

= σ2
j ,
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Var(Vj|σ2
j ) = E(V 2

j |σ2
j )−

[
E(Vj |σ2

j )
]2

=
1

η2
E

(
η∑

m=1

X2
jm

η∑

n=1

X2
jn | σ2

j

)
− σ4

j

=
1

η2
{

η∑

m=1

E
[
X4

jm|σ2
j

]
+

η∑

m6=n;m,n=1

E
[
X2

jmX2
jn|σ2

j

]
} − σ4

j

=
1

η2
(η · 3σ4

j + η(η − 1)σ4
j )− σ4

j

=
2σ4

j

η
,

Cov(Vk, Vl|σ2
k, σ

2
l ) =

1

η2

η∑

m=1

η∑

n=1

Cov(X2
km , X2

ln|σ2
k, σ

2
l )

=
1

η2

η∑

m=1

{E
(
X2

kmX2
lm|σ2

k, σ
2
l

)
− E[Xkm|σ2

k]E[Xln|σ2
l ]}.

Because

Xkm|σ2
k ∼ N(0, σ2

k),

Xlm|σ2
l ∼ N(0, σ2

l )

and Xkm|σ2
k, Xlm|σ2

l follow bivariate normal distribution, it follows that,

Xkm|Xlm ∼ N(ρklXlmσk/σl, σ
2
k(1− ρ2

kl)).

Hence,

Cov(Vk, Vl|σ2
k , σ2

l ) =
1

η2

η∑

m=1

(E{E[X2
kmX2

lm|Xlm]|σ2
k , σ2

l } − σ2
kσ

2
l )

=
1

η2

η∑

m=1

{E[ρ2
klσ

2
kX

4
lm/σ2

l + σ2
k(1− ρ2

kl)X
2
lm|σ2

k , σ2
l ]− σ2

kσ
2
l }

=
1

η2

η∑

m=1

[3σ2
kσ

2
l ρ

2
kl + (1− ρ2

kl)σ
2
kσ

2
l )− σ2

kσ
2
l ]

=
2σ2

kσ
2
l ρ

2
kl

η
.
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Therefore, the unconditional mean and variance in this case are

E(Vj) = E(E(Vj |σ2
j )) = σ2

j ,

Var(Vj) = E(Var(Vj|σ2
j )) + Var(E(Vj |σ2

j ))

= E

(
2σ4

j

η

)
+ Var(σ2

j )

=
2σ4

j

η
,

Cov(Vk, Vl) =
1

η2

η∑

m=1

η∑

n=1

Cov[X2
km, X2

lm]

=
1

η2

η∑

m=1

η∑

n=1

{E[X2
kmX2

ln]− E(Xkm)2E(Xln)2}

=
2σ2

kσ
2
l ρ

2
kl

η
.

B.2.1 Smoothed variance images

General method

For a specific jth voxel Vj, the corresponding smoothed variance at the jth voxel is,

V̂j =

Np∑

k=1

wjkVk , and

Np∑

k=1

wjk = 1.

Then, conditional mean, variance for the smoothed variance are,

E(V̂j|σ2
1 , . . . , σ

2
Np

) =

Np∑

k=1

wjkσ
2
k,

Var(V̂j|σ2
1, . . . , σ

2
Np

) =

Np∑

k=1

Np∑

l=1

wjkwjlCov(Vk, Vl|σ2
k, σ

2
l )

=

Np∑

k=1

Np∑

l=1

wjkwjl
2σ4

0ρ
2
kl

η

=
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klσ

2
kσ

2
l .
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Since V̂j is a linear function of those elements from the sample variance imge V

(Worsley, 1996), it is rational to assume that

Qj =
dV̂j

τ 2
∼ χ2

d,

where, d is the degrees of freedom for the smoothed variance image V̂ , and τ 2 is the true

variance of V̂j . Then, according to the Satterthwaite approximation (Worsley, 2002),

(B.1) EDF ≈ d =
2E(V̂j|σ2

1, . . . , σ
2
Np

)2

Var(V̂j|σ2
1, . . . , σ

2
Np

)
=

(
∑Np

k=1 wjkσ
2
k)

2

1
η

∑Np

k=1

∑Np

l=1 wjkwjlρ
2
klσ

2
kσ

2
l

.

Convolution method

We also view the smoothed variance as

V̂ = f ⊗ V = wV,

where f is the smoothing kernel used for the variance images.

Also,

w =





w11 w12 . . . w1Np

w21 w22 . . . w2Np

. . . . . . . . . . . .

wNp1 wNp2 . . . wNpNp





,

V =





V1

V2

. . .

VNp





,

and
Np∑

k=1

wjk = 1 (j = 1, 2, . . . , Np).
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Then,

E(V̂ |σ2
1, . . . , σ

2
Np

) = wE(V |σ2
1, . . . , σ

2
Np

)

=





w11 w12 . . . w1Np

w21 w22 . . . w2Np

. . . . . . . . . . . .

wNp1 wNp2 . . . wNpNp









σ2
1

σ2
2

. . .

σ2
Np





=





∑Np

k=1 w1kσ
2
k

∑Np

k=1 w2kσ
2
k

. . .

∑Np

k=1 wNpkσ
2
k





,

E(V̂j|σ2
1 , . . . , σ

2
Np

) =

Np∑

k=1

wjkσ
2
k,

Var(V̂ |σ2
1, . . . , σ

2
Np

) = wVar(V |σ2
1 , . . . , σ

2
Np

)wT

=
2

η
· w





σ4
1 σ2

1σ
2
2ρ

2
12 . . . σ2

1σ
2
Np

ρ2
1Np

σ2
2σ

2
1ρ

2
21 σ4

2 . . . σ2
2σ

2
Np

ρ2
2Np

. . . . . . . . . . . .

σ2
Np

σ2
1ρ

2
Np1 σ2

Np
σ2

2ρ
2
Np2 . . . σ4

Np





wT ,

Var(V̂j|σ2
1, . . . , σ

2
Np

) =
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klσ

2
kσ

2
l .

We have a similar form as Eq. (B.1) for the smoothed variance degrees of freedom with

the convolution method. However, since the true variance Σ is fixed, we do not have a

clear form for this case.
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B.2.2 Bias estimation

Since MSE(V̂j |σ2
1, . . . , σ

2
Np

) = (biasj |σ2
1, . . . , σ

2
Np

)2 + Var(V̂j|σ2
1, . . . , σ

2
Np

), we have

(biasj|σ2
1, . . . , σ

2
Np

)2 = MSE(V̂j|σ2
1, . . . , σ

2
Np

)−Var(V̂j|σ2
1 , . . . , σ

2
Np

)

= (E(V̂j|σ2
1, . . . , σ

2
Np

)− σ2
j )

2

= (

Np∑

k=1

wjkσ
2
k − σ2

j )
2.

There is no clear form for bias2 in this case.
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B.3 Spatially heterogeneous and random variance images

In this section, we assume that the true variance image Σ is a random field, which

means the true variance image is not independent. We want to derive the degrees of

freedom of the smoothed variance.

B.3.1 Correlation of any two voxels in a random field variance image

We assume a Gaussian random field Z has the following properties,

1. Z(i)|σ2
i ∼ N(0, σ2

i ), where, i indexes for voxels and i = 1, . . . , Np.

2.

r(i, j) =






rij correlation between the ith and jth voxels within a subject

in Gaussian random field Z

0 correlation between subjects

3. the corresponding χ2 random field is generated by ν independent and identically

distributed Gaussian random field.

4.
ν·σ2

i

σ2

0

∼ χ2
ν , we consider ν as ν subjects, and σ2

0 is a constant.

The true variance image comes from several Gaussian noise images and each Gaussian

noise image is convolved with a Gaussian kernel h(u) with mean zero and variance

s2
v = F 2

σ2/(8 log 2), Fσ2 is the FWHM of smoothing kernel for those Gaussian noise

images which are used to generate the true variance image, i.e.

h(u) = φ(u; s2
v).

Hence, the spatial correlation of each Gaussian random field is

cc(u) = e−‖u‖2/(4s2
v) = (2π2s2

v)
D/2φ(u; 2s2

v).
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We can also write the correlation function between the kth and lth voxel in one Gaussian

image as

rkl = g(ukl, s
2
v) = exp{−‖ukl‖22/(4s2

v)} = exp{−‖Pk −Pl‖22/(4s2
v)}.

The assumption turns to be the following:

1. Z1(i), Z2(i), . . . , Zn(i) are i.i.d N(0, σ2
i ).

2. in each Gaussian image,the correlation r(u) = exp{−‖ukl‖22/(4s2
v)} .

3. Ui|σ2
i =

ν∑

k=1

(
Zk(i)

σi

)2

∼ χ2
ν .

We want to find the correlation between Ui and Uj in the χ2 random field

Cov(Ui, Uj) = Cov

[
ν∑

k=1

(
Zk(i)

σi

)2

,
ν∑

l=1

(
Zl(j)

σj

)2
]

=

ν∑

k=1

ν∑

l=1

Cov

[(
Zk(i)

σi

)2

,

(
Zl(j)

σj

)2
]

=

ν∑

k=1

Cov

[(
Zk(i)

σi

)2

,

(
Zk(j)

σj

)2
]

=
ν∑

k=1

[
E

(
Z2

k(i)

σ2
i

Z2
k(j)

σ2
j

)
− E

(
Z2

k(i)

σ2
i

)
E

(
Z2

k(j)

σ2
j

)]
.

Since

Zk(i)

σi

|Zk(j)

σj

∼ N(rij
Zk(j)

σj

, 1− r2
ij),

then

Cov(Ui, Uj) =
ν∑

k=1

{
E

[
Z2

k(j)

σ2
j

E

(
Z2

k(i)

σ2
i

|Z
2
k(j)

σ2
j

)]
− 1

}

=

ν∑

k=1

(1 + 2r2
ij − 1)

= 2ν · r2
ij .

Let Rij denote the correlation of Ui and Uj in a χ2 random field. Then

Rij =
Cov(Ui, Uj)√

Var(Ui)
√

Var(Uj)
=

2ν · r2
ij√

2ν
√

2ν
= r2

ij .
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Therefore, if the correlation between the ith and jth voxel is rij in a Gaussian random

field, in the corresponding χ2 random field, which is generated with ν i.i.d Gaussian

random fields, the correlation between the ith and jth voxel is r2
ij.

B.3.2 Preparation before smoothing a true variance image Σ

Assume
νσ2

j

σ2
0

∼ χ2
ν ,

and

Corr

(
νσ2

i

σ2
0

,
νσ2

j

σ2
0

)
= Rij = r2

ij,

where σ2
0 is a constant. Also,

Xjm|σ2
j ∼ N(µj , σ

2
j ),

Cov(Xkm, Xln|σ2
j , σ

2
l ) = ρklσkσlδm−n,

where j k, l = 1, 2, · · · , Np index voxels of an image, m , n = 1, 2, · · · , η index subjects in

an experiment. Similar to B.1 assumption, ρkl = g(ukl, s
2
d) = exp{−‖ukl‖22/(4s2

d)} =

exp{−‖Pk − Pl‖22/(4s2
d)}, s2

d = F 2
D/(8 ln 2), here, FD is the FWHM from the data

conditional on σ2
0
2, Pk = (xk, yk, zk)

t denotes the coordinate of the kth voxel, and

δm−n = 1 if m = n, 0 otherwise.

Under the null hypothesis, we have µj = 0.

The sample variance for the jth voxel is

Vj =
1

η

η∑

i=1

X2
ji.

2‖X‖2 = ‖X‖ is l2 norm, and ‖X‖2
2

denotes the distance between two voxels



104

Conditional mean, variance and covariance of variance images

E(Vj |σ2
j ) = E

(
1

η

η∑

i=1

X2
ji|σ2

j

)
=

1

η

η∑

i=1

E(X2
ji|σ2

j )

=
1

η

η∑

i=1

σ2
j = σ2

j .

Var(Vj |σ2
j ) = E(V 2

j |σ2
j )−

[
E(Vj|σ2

j )
]2

=
1

η2
E

(
η∑

m=1

X2
jm

η∑

n=1

X2
jn | σ2

j

)

− σ4
j

=
1

η2
{

η∑

m=1

E(X4
jm|σ2

j ) +

η∑

m6=n;m,n=1

E(X2
jmX2

jn|σ2
j )} − σ4

j

=
1

η2
(η · 3σ4

j + η(η − 1)σ4
j )− σ4

j

=
2σ4

j

η
.

Cov(Vk, Vl|σ2
k, σ

2
l ) =

1

η2

η∑

m=1

η∑

n=1

Cov(X2
km , X2

ln|σ2
k, σ

2
l )

=
1

η2

η∑

m=1

{E(X2
kmX2

lm|σ2
k, σ

2
l )−E(Xkm|σ2

k)E(Xln|σ2
l )}.

Because

Xkm|σ2
k ∼ N(0, σ2

k),

Xlm|σ2
l ∼ N(0, σ2

l ),

and Xkm|σ2
k, Xlm|σ2

l follow bivariate normal distribution, which means,

Xkm|Xlm ∼ N(ρklXlmσk/σl, σ
2
k(1− ρ2

kl)).
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Hence,

Cov(Vk, Vl|σ2
k , σ2

l ) =
1

η2

η∑

m=1

{E[E(X2
kmX2

lm|Xlm)|σ2
k , σ2

l ]− σ2
kσ

2
l }

=
1

η2

η∑

m=1

{E[ρ2
klσ

2
kX

4
lm/σ2

l + σ2
k(1− ρ2

kl)X
2
lm|σ2

k , σ2
l ]− σ2

kσ
2
l }

=
1

η2

η∑

m=1

[3σ2
kσ

2
l ρ

2
kl + (1− ρ2

kl)σ
2
kσ

2
l )− σ2

kσ
2
l ]

=
2σ2

kσ
2
l ρ

2
kl

η
.

Unconditional mean, variance and covariance of variance images

E(Vj) = E(E(Vj |σ2
j )) = E(σ2

j ) = σ2
0.

Var(Vj) = E(V 2
j )− (E(Vj))

2 = E[E(V 2
j |σ2

j )]− σ4
0

= E

(
η2 + 2η

η2
σ4

j

)
− σ4

0

=
η2 + 2η

η2
E(σ4

j )− σ4
0

=
η + 2

η
· 2ν + ν2

ν2
σ4

0 − σ4
0

=

(
η + 2

η
· ν + 2

ν
− 1

)
σ4

0 .

Cov(Vk, Vl) = E(VkVl)− E(Vk)E(Vl)

= E

(
1

η2

η∑

m=1

X2
km

η∑

n=1

X2
ln

)

− σ4
0

=
η + 2ρ2

kl

η
E(σ2

kσ
2
l )− σ4

0

=
η + 2ρ2

kl

η
· σ

4
0

ν2

[
Cov(

νσ2
k

σ2
0

,
νσ2

l

σ2
0

) + E

(
νσ2

k

σ2
0

)
E

(
νσ2

l

σ2
0

)]
− σ4

0

=
η + 2ρ2

kl

η
· ν + 2r2

kl·
ν

σ4
0 − σ4

0

=

(
η + 2ρ2

kl

η
· ν + 2r2

kl·
ν

− 1

)
σ4

0.
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B.3.3 Smoothed variance

For a specific jth voxel Vj, the corresponding smoothed variance at the jth voxel is,

V̂j =

Np∑

k=1

wjkVk , and

Np∑

k=1

wjk = 1.

Conditional mean and variance for the smoothed variance images

E(V̂j|σ2
1 , σ

2
2, . . . , σ

2
Np

) =

Np∑

k=1

wjkσ
2
k.

Var(V̂j|σ2
1 , σ

2
2, . . . , σ

2
Np

)

=

Np∑

k=1

Var(wjkVk|σ2
1, σ

2
2, . . . , σ

2
Np

)

+2

Np∑

k 6=l,k,n=1

Cov(wjkVk, wjlVl|σ2
1, σ

2
2, . . . , σ

2
Np

)

=

Np∑

k=1

w2
jk

2σ4
k

η
+ 2

Np∑

k 6=l,k,n=1

wjkwjl
2σ2

kσ
2
l ρ

2
kl

η

=
2

η
(

Np∑

k=1

w2
jkσ

4
k +

Np∑

k 6=l,k,n=1

wjkwjlσ
2
kσ

2
l ρ

2
kl)

=
2

η

Np∑

k=1

Np∑

l=1

wjkwjlσ
2
kσ

2
l ρ

2
kl.

Expectation of mean and variance of the smoothed variance images

(B.2) E[E(V̂j|σ2
1, σ

2
2, . . . , σ

2
Np

)|σ2
0] = E(

Np∑

k=1

wjkσ
2
k|σ2

0) = σ2
0
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and

E[Var(V̂j |σ2
1, σ

2
2, . . . , σ

2
Np

)|σ2
0]

= E[
2

η

Np∑

k=1

Np∑

l=1

wjkwjlσ
2
kσ

2
l ρ

2
kl|σ2

0]

=
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klE[σ2

kσ
2
l |σ2

0]

=
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
kl(1 + 2

r2
kl

ν
)σ4

0

=
2σ4

0

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
kl +

4σ4
0

ην

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klr

2
kl.(B.3)

Unconditional mean and variance for the smoothed variance images

E(V̂j|σ2
0) = σ2

0.

Var(V̂j |σ2
0) =

Np∑

k=1

Np∑

l=1

wjkwjlCov(Vk, Vl|σ2
0)

=

Np∑

k=1

Np∑

l=1

wjkwjl

(
η + 2ρ2

kl

η
· ν + 2r2

kl

ν
− 1

)
σ4

0

=
σ4

0

η · ν

Np∑

k=1

Np∑

l=1

wjkwjl[(η + 2ρ2
kl)(2r

2
kl + ν)− ην]

=
2σ4

0

ην

Np∑

k=1

Np∑

l=1

wjkwjl(ηr2
kl + νρ2

kl + 2ρ2
klr

2
kl).

Degrees of freedom for the smoothed variance

Since V̂j is a linear function of those elements from the sample variance imge V

(Worsley, 1996), it is rational to assume that

Qj =
dV̂j

τ 2
∼ χ2

d,
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where d is the degrees of freedom for the smoothed variance image V̂ , and τ 2 is the true

variance of V̂j . Then, according to the Satterthwaite approximation (Worsley, 2002),

EDF ≈ d ≈
2E[E(V̂j |σ2

1, σ
2
2, . . . , σ

2
Np

)|σ2
0]

2

E[Var(V̂j |σ2
1, σ

2
2, . . . , σ

2
Np

)|σ2
0]

=
2(σ2

0)
2

2σ4

0

η

∑Np

k=1

∑Np

l=1 wjkwjlρ2
kl +

4σ4

0

ην

∑Np

k=1

∑Np

l=1 wjkwjlρ2
klr

2
kl

.

Using convolution methods

We also view the smoothed variance as,

V̂ = f ⊗ V = wV

where f is the smoothing kernel used for the variance images.

Also,

w =





w11 w12 . . . w1Np

w21 w22 . . . w2Np

. . . . . . . . . . . .

wNp1 wNp2 . . . wNpNp





,

V =





V1

V2

. . .

VNp





,

and
Np∑

k=1

wjk = 1 (j = 1, 2, . . . , Np).
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Then,

E(V̂ |σ2
1, . . . , σ

2
Np

) = wE(V |σ2
1, . . . , σ

2
Np

)

=





w11 w12 . . . w1Np

w21 w22 . . . w2Np

. . . . . . . . . . . .

wNp1 wNp2 . . . wNpNp









σ2
1

σ2
2

. . .

σ2
Np





=





∑Np

k=1 w1kσ
2
k

∑Np

k=1 w2kσ
2
k

. . .

∑Np

k=1 wNpkσ
2
k





,

E(V̂j|σ2
1 , . . . , σ

2
Np

) =

Np∑

k=1

wjkσ
2
k,

Var(V̂ |σ2
1, . . . , σ

2
Np

) = wVar(V |σ2
1 , . . . , σ

2
Np

)wT

=
2

η
· w





σ4
1 σ2

1σ
2
2ρ

2
12 . . . σ2

1σ
2
Np

ρ2
1Np

σ2
2σ

2
1ρ

2
21 σ4

2 . . . σ2
2σ

2
Np

ρ2
2Np

. . . . . . . . . . . .

σ2
Np

σ2
1ρ

2
Np1 σ2

Np
σ2

2ρ
2
Np2 . . . σ4

Np





wT ,

Var(V̂j|σ2
1, . . . , σ

2
Np

) =
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klσ

2
kσ

2
l .

Therefore,

E(V̂j|σ2
0) = E[E(V̂j |σ2

1, . . . , σ
2
Np

)|σ2
0] = E(

Np∑

k=1

wjkσ
2
k|σ2

0) = σ2
0,
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and

E[Var(V̂j|σ2
1, . . . , σ

2
Np

)|σ2
0] = E[

2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klσ

2
kσ

2
l |σ2

0]

=
2σ4

0

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
kl +

4σ4
0

ην

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klr

2
kl,

and

Var(V̂j|σ2
0) = E(Var(V̂j|σ2

1, . . . , σ
2
Np

)|σ2
0) + Var(Var(V̂j |σ2

1, . . . , σ
2
Np

)|σ2
0)

= E(
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klσ

2
kσ

2
l |σ2

0) + Var(

Np∑

k=1

wjkσ
2
k|σ2

0)

=
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
klE(σ2

kσ
2
l |σ2

0)) +

Np∑

k=1

Np∑

l=1

Cov(wjkσ
2
k, wjlσ

2
l |σ2

0)

=
2

η

Np∑

k=1

Np∑

l=1

wjkwjlρ
2
kl(Cov(σ2

k, σ
2
l |σ2

0) + E(σ2
k|σ2

0)E(σ2
l |σ2

0))

+

Np∑

k=1

Np∑

l=1

wjkwjlr
2
kl · 2ν ·

σ4
0

ν2

=
2σ4

0

ην

Np∑

k=1

Np∑

l=1

wjkwjl(ηr2
kl + νρ2

kl + 2ρ2
klr

2
kl).

If we assume the covariance smoothing kernel is a Gaussian, f(u), with mean zero and

variance v2 = F 2
V /(8 log 2),

f(u) = (2π v2)−D/2 exp{−‖u‖2/(2v2)} = φ(u, v2),

then

E[Var(V̂j|σ2
1, . . . , σ

2
Np

)|σ2
0]

=
2σ4

0

η

∫ ∫
(2π v2)−D exp{− t2

2v2
} exp{− s2

2v2
} exp{−(t− s)2

2s2
d

}dtds

+
4σ4

0

ην

∫ ∫
(2π v2)−D exp{− t2

2v2
} exp{− s2

2v2
} exp{−(t− s)2

2s2
v

} exp{−(t− s)2

2s2
d

}dtds

=
2σ4

0

η

(
F 2

D

F 2
D + 2F 2

V

)D/2

+
4σ4

0

ην

(
F 2

DF 2
σ2

F 2
DF 2

σ2 + 2F 2
DF 2

V + 2F 2
σ2F 2

V

)D/2

,
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and

Var(V̂j|σ2
0) =

2σ4
0

ην
[η

∫ ∫
(2π v2)−D exp{− t2

2v2
} exp{− s2

2v2
} exp{−(t− s)2

2s2
v

}dtds

+ν

∫ ∫
(2π v2)−D exp{− t2

2v2
} exp{− s2

2v2
} exp{−(t− s)2

2s2
d

}dtds

+2

∫ ∫
((2π v2)−D exp{− t2

2v2
} exp{− s2

2v2
} exp{−(t− s)2

2s2
v

}

exp{−(t− s)2

2s2
d

})dtds]

=
2σ4

0

ην
[η

(
F 2

σ2

F 2
σ2 + 2F 2

V

)D/2

+ ν

(
F 2

D

F 2
D + 2F 2

V

)D/2

+2

(
F 2

DF 2
σ2

F 2
DF 2

σ2 + 2F 2
DF 2

V + 2F 2
σ2F 2

V

)D/2

].

Similarly, we have

EDF ≈ d ≈
2E[E(V̂j|σ2

1, σ
2
2, . . . , σ

2
Np

)|σ2
0]

2

E[Var(V̂j|σ2
1, σ

2
2 , . . . , σ

2
Np

)|σ2
0]

=
2(σ2

0)
2

2σ4

0

η

∑Np

k=1

∑Np

l=1 wjkwjlρ
2
kl +

4σ4

0

ην

∑Np

k=1

∑Np

l=1 wjkwjlρ
2
klr

2
kl

=
2σ4

0

2σ4

0

η

(
F 2

D

F 2

D
+2F 2

V

)D/2

+
4σ4

0

ην

(
F 2

D
F 2

σ2

F 2

D
F 2

σ2
+2F 2

D
F 2

V
+2F 2

σ2
F 2

V

)D/2

=
ην

ν
(

F 2

D

F 2

D
+2F 2

V

)D/2

+ 2
(

F 2

D
F 2

σ2

F 2

D
F 2

σ2
+2F 2

D
F 2

V
+2F 2

V
F 2

σ2

)D/2
.

B.3.4 Bias estimation

Since MSE(V̂j |σ2
1, . . . , σ

2
Np

) = (bias2(V̂j |σ2
1, . . . , σ

2
Np

)) + Var(V̂j|σ2
1, . . . , σ

2
Np

),

bias2(V̂j|σ2
1, . . . , σ

2
Np

) = MSE(V̂j |σ2
1, . . . , σ

2
Np

)− Var(V̂j |σ2
1, . . . , σ

2
Np

)

= [E(V̂j |σ2
1, . . . , σ

2
Np

)− σ2
j ]

2

=

(
Np∑

k=1

wjkσ
2
k − σ2

j

)2

= (

Np∑

k=1

wjkσ
2
k − σ2

j )
2,(B.4)
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where

Np∑

k=1

wjk = 1 (j = 1, 2, . . . , Np).

The unconditional bias for the jth voxel is,

(biasj|σ2
0)

2 = (E(V̂j|σ2
0)− σ2

0)
2

= (σ2
0 − σ2

0)
2

= 0.

Let

σ2 = (σ2
1, σ

2
2, . . . , σ

2
Np

),

wj =





wj1

wj2

...

wjNp





,

and,

ej =





0

...

1(← j)

...

0





.

Then, Eq. (B.4) can be expressed as,

bias2(V̂j|σ2
1 , . . . , σ

2
Np

) = (σ2(wj − ej))
2 = (wj − ej)

t(σ2)t(σ2)(wj − ej).

Hence

E(bias2(V̂j|σ2
1, . . . , σ

2
Np

)|σ2
0) = (wj − ej)

tE((σ2)t(σ2)|σ2
0)(wj − ej),
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E((σ2)t(σ2)|σ2
0) = E









σ4
1 σ2

1σ
2
2 . . . σ2

1σ
2
Np

σ2
2σ

2
1 σ4

2 . . . σ2
2σ

2
Np

. . . . . .
. . . . . .

σ2
Np

σ2
1 σ2

Np
σ2

2 . . . σ4
Np





∣∣∣∣∣∣∣∣∣∣∣∣∣∣

σ2
0





=





σ4

0

n2 (n
2 + 2n)

σ4

0

n2 (n
2 + 2nr2

12) . . .
σ4

0

n2 (n
2 + 2nr2

1Np
)

σ4

0

n2 (n
2 + 2nr2

21)
σ4

0

n2 (n
2 + 2n) . . .

σ4

0

n2 (n
2 + 2nr2

2Np
)

. . . . . .
. . . . . .

σ4

0

n2 (n
2 + 2nr2

Np1)
σ4

0

n2 (n
2 + 2nr2

Np2) . . .
σ4

0

n2 (n
2 + 2n)





= σ4
0





1 1 . . . 1

1 1 . . . 1

. . . . . .
. . . . . .

1 1 . . . 1





+
2σ4

0

n





1 r2
12 . . . r2

1Np

r2
21 1 . . . r2

2Np

. . . . . .
. . . . . .

r2
Np1 r2

Np2 . . . 1





.

Here, we denote

R =





1 r2
12 . . . r2

1Np

r2
21 1 . . . r2

2Np

. . . . . .
. . . . . .

r2
Np1 r2

Np2 . . . 1





.
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In addition,

(wj − ej)
t





1 1 . . . 1

1 1 . . . 1

. . . . . .
. . . . . .

1 1 . . . 1





(wj − ej)

=

(
wj1 . . . wjj − 1 . . . wjNp

)





1 1 . . . 1

1 1 . . . 1

. . . . . .
. . . . . .

1 1 . . . 1





(wj − ej)

=

(
∑Np

k=1 wjk − 1
∑Np

k=1 wjk − 1 . . .
∑Np

k=1 wjk − 1

)
(wj − ej) = 0.

Therefore

E(bias2(V̂j|σ2
1, . . . , σ

2
Np

)|σ2
0)

=
2σ4

0

ν
(wj − ej)

tR(wj − ej)

=
2σ4

0

ν
[

Np∑

l=1

Np∑

k=1

wjlwjkr
2
kl −

Np∑

k=1

wjkr
2
jk −

Np∑

l=1

wjkr
2
kj + 1]

=
2σ4

0

ν
[

Np∑

l=1

Np∑

k=1

wjlwjkr
2
kl − 2

Np∑

k=1

wjkr
2
jk + 1]

=
2σ4

0

ν

[(
F 2

σ2

F 2
σ2 + 2F 2

V

)D/2

− 2

(
F 2

σ2

F 2
σ2 + F 2

V

)D/2

+ 1

]

=
2σ4

0

ν






[

1 + 2

(
FV

Fσ2

)2
]−D/2

− 2

[

1 +

(
FV

Fσ2

)2
]−D/2

+ 1




 .

We show that bias2 is bounded. For simplicity, we assume that D=2, and let

RHS =

(
F 2

σ2

F 2
σ2 + 2F 2

V

)D/2

− 2

(
F 2

σ2

F 2
σ2 + F 2

V

)D/2

+ 1.
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Then we prove the RHS is bounded within [0,1).

RHS =

(
F 2

σ2

F 2
σ2 + 2F 2

V

)D/2

− 2

(
F 2

σ2

F 2
σ2 + F 2

V

)D/2

+ 1

=
F 2

σ2

F 2
σ2 + 2F 2

V

− 2
F 2

σ2

F 2
σ2 + F 2

V

+ 1

=
2F 4

V

(F 2
σ2 + 2F 2

V )(F 2
σ2 + F 2

V )

=
2F 4

σ2

F 4
V + 3F 2

σ2F 2
V + 2F 4

V

.

Hence when FV = 0, RHS = 0, and when FV ≫ Fσ2 , RHS → 1.

Then, for the entireimage

bias2 =
1

Np

Np∑

j=1

E[bias2(V̂j|σ2
1, . . . , , σNp

)|σ2
0]

=
2σ4

0

ν






[

1 + 2

(
FV

Fσ2

)2
]−D/2

− 2

[

1 +

(
FV

Fσ2

)2
]−D/2

+ 1




 ,

MSE =
1

Np

Np∑

j=1

[E(E(Var(V̂j|σ2
1 , . . . , σ

2
Np

)|σ2
0)) + E(bias2(V̂j|σ2

1, . . . , σ
2
Np

)|σ2
0)]

=
2σ4

0

ην
{ν
[
1 + 2

(
FV

FD

)2
]−D/2

+2

[

1 + 2

(
FV

Fσ2

)2

+ 2

(
FV

FD

)2
]−D/2

}

+
2σ4

0

ν






[

1 + 2

(
FV

Fσ2

)2
]−D/2

− 2

[

1 +

(
FV

Fσ2

)2
]−D/2

+ 1




 .

1. When FV = 0, i.e. no smoothing, MSE = Var(V̂ |σ2
0), and bias2 = 0.

2. When FV ց (decrease), VAR will increase and bias2 will be decrease.

3. WHen FV ր (increase), VAR will decrease and bias2 will be increase.
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B.3.5 Summary

In summary, when the true variance image Σ is spatially heterogeneous, EDF, MSE,

Bias2 and VAR are

EDF ≈ ην

ν
(

F 2

D

F 2

D
+2F 2

V

)D/2

+ 2
(

F 2

D
F 2

σ2

F 2

D
F 2

σ2
+2F 2

D
F 2

V
+2F 2

V
F 2

σ2

)D/2

=
ην

ν

[
1 + 2

(
FV

FD

)2
]−D/2

+ 2

[
1 + 2

(
FV

F
σ2

)2

+ 2
(

FV

FD

)2
]−D/2

.

Or

1/EDF ≈ 1

η

[
1 + 2

(
FV

FD

)2
]−D/2

+
2

ην

[
1 + 2

(
FV

Fσ2

)2

+ 2

(
FV

FD

)2
]−D/2

,

VAR =
2σ4

0

ην
{ν
[
1 + 2

(
FV

FD

)2
]−D/2

+2

[

1 + 2

(
FV

Fσ2

)2

+ 2

(
FV

FD

)2
]−D/2

},

bias2 =
2σ4

0

ν






[
1 + 2

(
FV

Fσ2

)2
]−D/2

− 2

[
1 +

(
FV

Fσ2

)2
]−D/2

+ 1




 ,

MSE =
2σ4

0

ην
{ν
[
1 + 2

(
FV

FD

)2
]−D/2

+2

[

1 + 2

(
FV

Fσ2

)2

+ 2

(
FV

FD

)2
]−D/2

}

+
2σ4

0

ν






[

1 + 2

(
FV

Fσ2

)2
]−D/2

− 2

[

1 +

(
FV

Fσ2

)2
]−D/2

+ 1




 .

Two specific cases, complete smoothing and no smoothing for random field
variance images

Case 1: wjk = 1
Np

, homogeneous smoothing (complete smoothing),

EDF ≈ d ≈ 2E(V̂j)
2

Var(V̂j)
=

ηνN2
p

ν
∑Np

k,l ρ2
kl + 2

∑Np

k,l ρ2
klr

2
kl

.
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If we assume

rkl = exp{−‖Pk −Pl‖22/(4s2
v)}, s2

v = F 2
σ2/(8 log 2),

then

EDF ≈
ηνN2

p

ν
(
2π

2F 2

D

16 log 2

)D/2

+ 2
(
2π

2F 2

D
F 2

σ2

16 log 2(F 2

D
+F 2

σ2
)

)D/2
,

where Np ≫ ν ≫ η, EDF −→ +∞,

Case 2: When wjj = 1, and wjk = 0 if j 6= k (no variance smoothing)

EDF ≈ d =
2E(V̂j)

2

Var(V̂j)
=

ην

ν + 2
,

VAR =
2σ4

0

ην
(ν + 2),

MSE = VAR =
2σ4

0

ην
(ν + 2),

Bias2 = 0.

When n ≫ η, SmVarDF −→ η, the degrees of freedom of the sample variance before

smoothing.

B.4 Hot spot with constant variance images

Assume the true variance image is constant (σ2
0), but there is a hot spot at a certain

voxel (j) with variance σ2
j (σ2

j ≫ σ2
0). We want to know the bias in V̂ at the jth voxel.

Vj =
1

η

η∑

i=1

X2
ji,

where i indexes subjects, j indexes voxel.

Then

E(Vj |σ2
j ) =

1

η

η∑

i=1

E(X2
ji|σ2

j ) = σ2
j .
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After the variance is smoothed, the smoothed variance at the jth voxel is

V̂j =

Np∑

k=1

wjkVk , and

Np∑

k=1

wjk = 1.

Then,

E(V̂j |σ2
0, σ

2
j ) =

Np∑

k=1

wjkE(Vk|σ2
0, σ

2
j ) =

Np∑

k=1

wjkσ
2
0 + wjj(σ

2
j − σ2

0) = σ2
0 + wjj(σ

2
j − σ2

0)

Therefore,

(biasj|σ2
0 , σ

2
j )

2 = MSE(V̂j|σ2
0, σ

2
j )−Var(V̂j|σ2

0, σ
2
j )

= (E(V̂j|σ2
j , σ

2
0)− σ2

j )
2

= (σ2
0 + wjj(σ

2
j − σ2

0)− σ2
j )

2

= (1− wjj)
2 · (σ2

j − σ2
0)

2.
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