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ABSTRACT 

Narrowing the gap between theoretical and actual capacity in key Li-based battery 

systems can be achieved through improvements in both electronic and ionic 

conductivities of materials, via addition of conductive species. Additives do, however, 

penalize both volumetric and gravimetric properties, and also limit liquid transport and 

high rate performance. In this work, we developed techniques to design and optimize 

cathode system, based directly on the relationships among ionic and electronic 

conductivities, and specific energy for a range of commercially viable cathode 

electrochemistries, and additives. We also investigated formation mechanisms, and 

resulting geometric characteristics in nanoparticle agglomerates, to systematically study 

percolation and conductivity in self-assembled structures.  

In our study of selection of conductive additives, architectures of model 

composite cathodes, comprised of active material, graphite, carbon black, and PVDF, 

were generated using our prior approach in simulating polydisperse arrangements. 

Several realizations of materials were used to predict conductivity. A key finding of this 

portion of the work, was that the conductive coatings strongly influence conductivity, via 

reduction of contact resistance. Percolation was detected at ≥30% in the cathode 

materials simulated cases, which was slightly larger than the percolation threshold (29%) 

for a 3D spherical particulate system. Thus, from this work, we conclude that neither 

surface nor bulk modifications of active material particles conductivities seem to be 

desirable targets for improvement of laminate conductivity, for the ranges of materials 

studied.  
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In the cathode optimization study, our results quantified trade-offs among ionic 

and electronic conductivity, and conductivity and specific energy. We also provided 

quantitative relationships for improved utilization and specific power, with higher 

specific energy. Finally, we provided quantitative guidance for design of high energy 

density Li(Ni1/3Co1/3Mn1/3)O2 cells using conductive additives, and also provided 

guidelines for design of cathode systems, based directly on solid and liquid phase 

transport limitations. Future work will focus on higher rates of performance, and will be 

based on analyses here. 

The grail, of course, in creating very highly conductive materials would be the 

achievement of ordered, self-assembled conductive particle chains which would be both 

highly connected, and manufacturable at low-cost. Thus, in our last effort, we studied 

particle made via combustion synthesis as a model system, both for the geometry of the 

particles involved, and also for the specific environmental importance of understanding 

their formation. In the agglomeration and aggregation study, 3D, branchlike nanoparticle 

agglomerates were systematically studied via use of new algorithms in generation of such 

structures. Though 2D TEM images provide insufficient geometric information for full, 

3D reconstruction of such structures, they nonetheless provided ranges of structures from 

which we worked. Our findings in this portion of the study included the conclusion that 

Coulomb forces concentrated on the tip are likely root causes of the long chain-like 

shapes of observed clusters, creating branch-like soot agglomerates; particles tend to 

form a more compact and smaller cluster with van der Waals force. Under a certain 

combination of forces, including Coulomb and van der Waals forces, nanoparticles form 

self-similar structures with a specific fractal dimension. 



 1 

CHAPTER I 

INTRODUCTION 

 

Li-ion batteries are the presently the leading potential energy storage technology 

for electric vehicles (EV) and hybrid electric vehicles (HEV) due to the high energy and 

power density through development of electrochemistries. However, a major obstacle to 

the development of lithium systems is the lack of systematically designed cathodes, the 

rate-limiting electrode in Li-batteries. Table 1.1 shows the energy storage system 

performance goals for EV and HEV [1-3]. The dramatic increase in required specific 

energy from power-assist EV to pure EV illustrates the importance of capacity 

improvement. Moreover, in spite of the emergence of a generation of cathode materials 

with higher energy densities, the gap between theoretical and actual capacity in these 

materials (e.g. LiFePO4, Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2) remains very 

high, i.e. ~ 30%, as shown in Table 1.2 [4-10]. Low conductivity, both electronic and 

ionic, is the key culprit in the failure to realized close-to-theoretical values.  

Conductive additives are presently used to create conductive networks, to increase 

electronic conductivity of these cathodes. Selection of optimal combinations of 

conductive additives, however, remains challenging, as choices of materials, and 

architectures, have grown dramatically. Monotonically increasing additives not only 

penalizes both volumetric and gravimetric properties, such as energy and power, but also 
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limits liquid phase transport and lower ionic conductivity, impeding high rate 

performance. Optimization of conductivities by selecting shapes, sizes and densities of 

both additives and active particles is thus critical. 

Reaching sufficient conductivity first requires achievement of percolation in the 

conductive phase [11-13]. This problem has been studied extensively for anode materials 

[14-17], and more generically for a variety of shapes of particles, but less so for specific 

cathode materials and particular loading schema. In the cathode system, gains have been 

achieved using multiple schema for loading with conductive additives, including nano-

scale particles such as carbon black and micro-scale particles such as graphite. To 

optimize the fractions of two different scales of conductive particles by type and method 

beyond the percolation point, requires understanding of particle packing and/or 

agglomeration, along with validated models for determination of conductivity. 

Alterations in loading method strongly affect percolation onset in single-phase 

systems [14], and thus resulting conductivities. Methods are thus needed to incorporate 

polydisperse, multiphase materials, in order to reduce costly experimentation. In this 

work, we have developed random packing algorithms and a voxelated finite element 

conduction model to predict the conductivity of cathodes with different amounts, types 

and architectures of conductive additives and active materials. We further identified the 

optimal blends of active materials, conductive additives, and binder to achieve the highest 

conductivities, for a range of materials available at present (Chapter II). 



 5 

The cathode system does benefit in increasing effective conductivity from 

selection of optimal active materials and additives; however, the best overall performance  

may not result simply from the cathode electrode with best electronic conductivity, due to 

resulting reduced ionic conductivity in the liquid phase. Thus, to rationally design 

cathode systems in Li-batteries, optimizing the composition of conductive additives, 

active particles, porosity, and electrode thicknesses must be based on considerations of 

both solid and liquid phase transport properties. Optimization of battery design will 

undoubtedly replace sequential testing of various cathodic electrochemistries. In Chapter 

III, the relationship between the ionic and electronic conductivities with additives is 

mapped, and correlated to battery performance. Quantitative guidance for design of high 

power and energy density cells in better matching theoretical and actual capacity is also 

provided. 

Recently, there has been a claim that self-assembled structures of mixtures of 

acetylene black and PVDF as additives dramatically reduces resistance [18] in cathode 

systems. A very low percolation threshold of acetylene black particles, for example, can 

be achieved due to elongated particle agglomerates. However, the key energetic drivers 

for the self-assembling processes and detailed characterizations of agglomerates have not 

been systematically studied. To understand agglomeration and aggregation phenomena in 

nanoparticles, we have used experiments and simulations to systematically study particle 

agglomerates forming mechanism and identify the geometric characteristics. Chapter IV 

details the formation of clusters by semi-stochastic placement and analysis of the 

morphology, which provides the baseline in conductivity and percolation study of self-

assembled structure as future work.  
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Chapter V, to conclude, summarizes the major findings and future directions of 

our research. 
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CHAPTER II 

SELECTION OF CONDUCTIVE ADDITIVES IN LI-ION BATTERY 
CATHODES: A NUMERICAL STUDY1 

 

INTRODUCTION 

The lithium-ion cell has been successively improved incrementally with adoption 

of new cathode electrochemistries, from LiCoO2 [1], to higher-capacity LiNi1-xCoxO2 

[2,3,4], to lower cost LiNi1-xCoxO2 [5,6]. However, capacity fade and/or uncontrolled 

generation of flammable gasses during operation remain persistent problems. The 

addition of conductive additives to cathode materials has been demonstrated to improve 

capacity, via reduction of internal resistance, and cyclability. Typical materials (Table 

2.1) [7,8,9,10,11,12,13,14] include carbon black (as an additive or a coating on cathode 

particles or current collectors), and graphite nonaqueous ultrafine carbon (UFC) 

suspensions. Selection of optimal combinations of conductive additives, though, remains 

challenging, as choices of materials, and architectures, have grown dramatically. 

Gains have been achieved using multiple schema for loading with conductive 

additives, as summarized by Fig. 2.1 [15]. Performance has been improved by several 

measures, in different systems. But the relative gains in addition of additives, including

                                                
1 Material in this chapter is a published paper: Y. -H. Chen, C. -W. Wang, G. Liu, X.-Y. Song, V. S. 
Battaglia, and A. M. Sastry, Selection of conductive additives in Li-ion battery cathodes: a numerical study, 
Journal of the Electrochemical Society 154 (10), A978-A986 (2007). 
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Figure 2.1: The possible ways to incorporate conductive additives: (a)
 addition of large (graphite) and small particles (carbon blacks), (b) current

 collector coating, and (c) coating of the cathode particles [15]. 

(a) 

(b) 

(c) 
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methods by which they can be added, have not been studied, though measurement of 

conduction has improved [16]. 

Four systems have emerged as important cathodes in recent studies Table 2.2: 1) 

the spinel LiMn2O4 [17,18], 2) LiFePO4 [19,20], 3) the “Gen 2” material, 

Li(Ni0.8Co0.15Al0.05)O2 put forward by the Department of Energy’s ATD (Advanced 

Technology Development) program based at Argonne National Laboratories [21,22], and 

4) the “1/3, 1/3, 1/3” system, Li(Ni1/3Co1/3Mn1/3)O2 [23,24]. The strengths of these 

systems, include, respectively, low cost, high rate (LiMn2O4, per [17, 18]); low cost, high 

energy density LiFePO4 [19,20,25]; high energy, high power (Li(Ni0.8Co0.15Al0.05)O2, per 

[21, 22]); and high energy, high capacity, and good cycle performance 

(Li(Ni1/3Co1/3Mn1/3)O2, per [23, 24]).  

Achievement of sufficient conductivity first requires attainment of percolation in 

a conductive phase [26,27,28], a problem studied extensively for anode materials, and 

generically for a variety of shapes of particles [29,30,31,32]. There have also been 

published studies for specific cathode materials and loading schema [12,33].  Both 

particle shape and loading type are required in order to both identify percolation onset, 

and optimize addition of conductive particles by type and method beyond the percolation 

point. Even percolation onset is strongly affected by relatively minor changes in particles 

shape; for example, the percolation threshold is reduced from 30% to 10% as particle 

aspect ratio (L/D) increases from 1 to 6 [29]. It can thus be presumed that alterations in 

loading method have similarly strong effect on percolation onset, and overall 

conductivity. However, the conductance of gap regions, as opposed to simple bulk 

conduction, must also be modeled and mapped to experimental findings; additionally, 
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 14 

methods are needed to incorporate the polydisperse, multiphase materials already in use, 

in order to reduce costly experimentation. 

Our present study was focused upon the four electrochemistries mentioned earlier: 

LiFePO4 (Hydro- Quebec, Inc., Quebec, Canada), LiMn2O4 (Toda Co. Ltd., Japan), 

Li(Ni1/3Co1/3Mn1/3)O2 (Seimi Chemical Co. Ltd., Kanagawa, Japan), and 

Li(Ni0.8Co0.15Al0.05)O2 (Fuji Chemical Industry Co., Ltd., Japan). The carbon black 

(Shawinigan) or graphite (SFG-6) was used as conductive additive. Poly(vinylidene 

fluoride) (PVDF, Kureha) was used as binder.  The particle size and mass density of each 

material are listed in Table 2.3 [34,35,36]. We set two main objectives, with the present 

work: 

1) To predict the conductivity of cathodes with different amounts, types and 

architectures of conductive additives and active materials; and  

2) To identify the best blends of active materials, conductive additives, and binder 

to achieve the highest conductivity among combinations studied.  

 

METHODS 

Conduction experiments in our prior work [31] and others [36], have established 

baseline conductivities of materials. For packed particle arrangements, our prior model 

for packing [32] was used to construct the polydisperse structures of the model cathode 

systems, following classic and more recent work on numerical simulation of complex 

structures [32,37,38,39,40,41]. A voxelated finite element method was used to determine 

the effective conductivity of the multiphases networks, in order to meet our second 

objective of determining best blends of conductive additives, among those studied. 
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EXPERIMENTS 

MEASUREMENT OF CONDUCTIVITY 

Electronic properties of cathode materials are not widely reported. Importantly, it 

has been established in the presently-studied cathode materials, that manufacturing 

methods affect conductive properties [42,43]. The materials studied were prepared and 

tested for their conductive properties via a single approach, designed to reduce variability 

and allow application of classic theory in conduction to determine conductivity of the 

bulk phase. 

Powders of active materials were placed into a round die of inner diameter 12.72 

mm, and compressed with a force of 9.8 to 29.4 kN at 25°C for 5min to achieve various 

densities, using Carver Laboratory Press Model 2699. Pellet densification reduces 

particle separation distance and gap resistance [44], and generally is used to improve the 

accuracy of measured bulk conductivity.  

 
The conductivity of a pellet was measured using an inline four-point-probe 

technique [31]; a schematic of the experiment is shown as Fig. 2.2. A current was 

delivered and withdrawn from the outer two probes; the voltage difference was measured 

from the inner two probes. The current source was a 1.2V AAA NiMH battery (Radio 

Shack) in series with resistance of 11MΩ.  A Keithley 6517A Electrometer, and an HP 

34401A multimeter were used to measure the current and the voltage respectively. The 

conductivity of the pellet was calculated [45] as 

 σ e =
I

4.532tV
, (1) 
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where  σe is the conductivity of the pellet in S/mm, t is the thickness of the pellet in mm, I 

is the current measured in Amp, and V is the voltage measured in V. Equation (1) is valid 

for a single layer specimen.  

For porous materials, Bruggeman [46] classically found that the effective 

conductivity, σe, is related to the bulk conductivity, σ0, and the volume fraction of the 

solid phase, ε, as  

 σ e = σ 0ε
α ,       where α=1.5 , (2) 

where α is the Bruggeman exponent, a curve fitting parameter for experimental results. 

Volume fraction ε is calculated from 

 ε =
Dp

DB

, (3) 

where DP and DB are the density of pellet and density of bulk material respectively, 

whereupon bulk conductivity is determined directly. 

 

MEASUREMENT OF PARTICLE SIZE AND SHAPE 

Particle size distributions (PSD) were quantified using a Beckman Coulter LS230 

Laser Diffraction Particle Size Analyzer, with a measurement range of between ~0.04 µm 

to 2000 µm. Sample powders of 0.05 ~ 0.10 g were mixed with 100 ml distilled water 

beaker where 5 drops Darvan C were used as a dispersant; uniformity was achieved with 

approximately 15 minutes of ultrasonic mixing. 



Figure 2.2: Schematic illustration of the configuration in conductivity
 measurement. 

18 



 19 

SIMULATIONS 

PACKING ALGORITHM 

The architecture of the composite cathode, comprised of active material, graphite, 

carbon black, and PVDF, was generated using our prior approach [32]. The general 

procedure is summarized briefly as follows: sizes and numbers of particles in each phase, 

as determined by the PSD and designated volume fraction, were initially placed randomly 

in a representative volume. Particles were simulated as spheres, ellipsoids, or coated 

objects. Repulsive forces between particles were applied to correct initial overlaps. 

During the Li-ion cell preparation, all constituents are fully mixed, leaving, 

presumably, active material particles coated with composites of PVDF and carbon black. 

Carbon black particles are typically 10-90 nm [47] in diameter; the typical aggregate size 

of carbon black is 100-300 nm [47], though the primary aggregate may fracture during 

mixing [47]. Thus, a mixture of carbon black and polymer binder was approximated as a 

coating surrounded other particles, as shown in Fig. 2.3. This also allowed creation of 

simulations that were identical to experimental volume fractions.  

Periodic boundary conditions and the collision algorithm were applied to achieve 

computational efficiency and fidelity to experimental conditions. The representative 

volume in this study was set to 1×1×2 unit3. Periodic boundary conditions were assigned 

in the x- and y- directions, to reduce the size of the simulation domain.  The length of the 

representative volume in z- direction was set at a minimum of twice the length of each of 

the other two directions, because of the lack of a periodic boundary in that direction. The 

collision process was terminated when the total volume fraction of the unit volume in the 



Figure 2.3: Schematic diagram of coating of carbon black/PVDF. 
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middle portion of the representative volume in z-direction was equal to the assigned 

volume fraction. 

Relative sizes of materials are illustrated in Table 2.3.  The radius of active 

materials was set to 0.15 of the representative volume; the semi-axes of graphite were 

dependent upon the size of active materials. The graphite was represented as a disk-like 

ellipsoid with aspect ratios a/b, a/c and b/c (a, b, and c are the lengths of three semi-axes) 

set to 1, 7.4 and 7.4, respectively. The mixture of the carbon black and PVDF was 

simulated as a coating around the active material and graphite particles. Table 2.4 lists 

factors (volume fraction of active material, porosity, graphite, and ratio of PVDF and 

carbon black) and levels of each. The volume fraction of carbon black and PVDF could 

be determined if porosity, the amount of active material, and the ratio of carbon black and 

PVDF were determined. Three simulation realizations were generated for each 

permutation of conditions studied. 

 

CONDUCTIVITY MODELING 

The active material and conductive additives particle aggregates are separated by 

an interfacial polymer layer. This feature is generally attributed to the occurrence of a 

tunneling effect through the insulating polymer. Combined with the conduction 

percolation through the aggregates, this phenomenon is known as “tunneling-percolation” 

[47]. The tunneling effect between paired particles can be simulated with assignment of a 

gap resistance. The value of this gap resistance depends on contact pressure, distance, and 

material properties of the contacting particles and polymer interface [44]. In the cases 

studied here, the gap resistance was assumed to be zero, since cathodes were usually 



Table 2.4: List of simulation cases for each active material. 
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prepared with application of high compression pressure to reduce the distance among the 

packed particles, and the mixture of carbon black and PVDF served as coating around the 

particles binding particles directly. The current between contact surfaces is defined by 

 Va −Vb( ) = i ⋅ R , (4) 

where i is current in amps, Va and Vb are the electrical potentials on the points of both 

side of the contact surfaces in V, and R is the gap resistance in Ω. 

Bulk conductivities of different active materials measured from experiments were 

assigned to corresponding phases. Figure 2.4 shows the conductivities of mixtures of 

carbon black and PVDF. In simulations, the conductivities of PVDF and carbon black 

were assigned three levels, as shown in Table 2.4, depending upon the ratio of PVDF and 

carbon black.  

 

MODEL GENERATION AND ANALYSIS 

Finite element meshing was performed using a voxelation method, to prevent 

mesh-induced singularities. The representative volume was set to 1×1×2 unit3. Voxels of 

100×100×100 were assigned to a unit volume, which was the middle portion of the 

representative volume in the z-direction. Assuming the representative volume in z-

direction ranged from 0 to 2 units, the middle section was between 0.5 and 1.5 units, in 

the z-direction. A cubic element of length of 0.01 units enclosing the voxel was 

generated, with an assigned electronic conductivity. 

 

 

 



Figure 2.4: Conductivities of different combinations of carbon black and
 PVDF. 
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 J = −σ1∇V , (6) 

 F = −σ 2∇T , (7) 

where σ1 is electronic conductivity in S/m, J is the current density in A/m2, V is the 

electrical potential drop in V along its length, σ2 is thermal conductivity in W/m⋅K, F is 

the heat flux in W/m2, and T is the temperature drop in K. Wall boundary conditions were 

set as 0K and 1K respectively, at x=0 and x=1. The total heat flux in the x- direction was 

calculated, whereupon effective conductivity of the cubic unit volume was determined 

via equation (7). 

 

RESULTS 

Table 2.3 contains materials properties, particle sizes, densities, and bulk 

conductivities used in simulations. Figure 2.4 reports the bulk conductivity of the carbon 

black and PVDF mixture. Increasing the carbon black content by 30 v.f.% resulted in 16-

fold increase in conductivity. The only exception to this trend was for a 1:1 ratio of 

PVDF to carbon, where measured conductivity dropped to 420 S/m, i.e. the same value as 

for the 2.2:1 ratio. 

Figure 2.5 shows examples of various microstructures (comprised of spherical 

active materials, graphite particles, and coated mixture of carbon black and PVDF) 

generated from collision modeling. Figure 2.5(a) illustrates an example of the 

microstructure of percolated network studied in the present work. Figure 2.5(b) and (c) 

illustrate the significant microstructural differences in materials of identical volume 

fraction, but different particle shapes and sizes.  
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The voxelated finite element model of Fig. 2.6(a) and (b) is an example of a 

multiphase analysis used to avoid mesh singularities around the contact region. Figure 

2.6(a) shows the temperature distribution of core material, for a structure comprised of 

30% active material, 7.5% graphite, and 40% porosity. Fig. 2.6(b) shows the temperature 

distribution of coatings for a volume composition of 10.15% carbon black and 12.35% 

PVDF. 

Simulation results of normalized conductivities of LiMn2O4 system for various 

combinations of active materials, graphite, carbon black, and PVDF are reported in Fig. 

2.7. Averaged data were plotted in the figures, with error bars of ±1σ  (standard 

deviation). Figures of results of other systems are omitted for brevity, since trends were 

similar; numerical results are reported in Tables 2.5 to 2.8. 

Averaged normalized simulation results of conductivity with 40% and 50% 

porosity are presented in Tables 2.5 to 2.8. These tables report averaged, normalized 

conductivities for specific combinations of active material, graphite, and ratios of PVDF 

to carbon black. The two-way statistical analyses (by SPSS 12.0 [49]) of the simulation 

data are also given in Tables 2.5 to 2.8. The statistical analyses in term of p values allow 

determination of the significance of the effects of additives. Factors are considered 

significant if p is smaller than 0.05. The p values in rows denote the effect of increase in 

the ratio of PVDF to carbon black, on normalized conductivity. The p values in columns 

denote the effect of increase in the volume fraction of graphite on the normalized 

conductivity. 

 



(a) (b) (c) 

Figure 2.5: Packing simulations with different constituents, (a) 60% volume
 fraction mixture of spheres and platelets, representing cathode active

 material and graphite, (b) 40% volume fraction mixture of two different
 sizes, representing cathode active materials and carbon black, (c) 40%

 volume fraction mixture of ellipsoids and spheres, representing spherical
 cathode active materials, and ellipsoidal graphite fiber. 

27 



(a) 

(b) 

Figure 2.6: Temperature distribution from finite element analyses, structure
 of 40% porosity; 30% active material, 7.5% graphite, 10.15% carbon black,

 and 12.35% PVDF showing in (a) core material (active material and
 graphite) and (b) coatings (carbon black and PVDF). 

28 



Figure 2.7(a): Conductivity of composite LiMn2O4 with 40% porosity and
 30% active material. 

29 



Figure 2.7(b): Conductivity of composite LiMn2O4 with 40% porosity of
 40% active material. 

30 



Figure 2.7(c): Conductivity of composite LiMn2O4 with 40% porosity and
 50% active material. 

31 



Figure 2.7(d): Conductivity of composite LiMn2O4 with 50% porosity and
 30% active material. 

32 



Figure 2.7(e): Conductivity of composite LiMn2O4 with 50% porosity and
 40% active material. 

33 
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The statistical analysis results in Tables 2.5 to 2.8 show that volume fraction of 

graphite is significant for conductivity in some cases with 30% active material. For 

example, in Table 2.7(a), with 40% porosity, 30% active material, and PVDF/C of 1.21, 

the p value of 0.001 denotes the significant effect of increase in the volume fraction of 

graphite on the normalized conductivity. For this composition, the normalized 

conductivity increases from 4.03x10-3 to 1.21x10-2 with an increase in graphite from 0 to 

7.5%.  

The statistical analysis results in Tables 2.5 to 2.8 show that the ratio of PVDF to 

carbon black is the most significant factor affecting conductivity. Values of p <0.05 can 

be seen in almost every row in Tables 2.5 to 2.8. For example, in Table 2.6(a), with 40% 

porosity, 30% active material, and 2.5% graphite, the p value of 0.005 indicates the 

significant effect of increase in the volume ratio of PVDF to carbon black on the 

normalized conductivity. In this composition, the normalized conductivity increases from 

1.74x10-4 to 2.28x10-3 with a reduction in volume ratio from 5.48 to 1.21. 

Indeed, addition of graphite actually reduces conductivity, when the PVDF 

coating is penalized for the addition of graphite. For example, in Table 2.7(a), with 40% 

porosity, 50% active material, and PVDF/C of 1.21, a p<10-4 denotes the significant 

effect of increase in the volume fraction of graphite on the normalized conductivity. In 

this composition, the normalized conductivity decreases from 1.24x10-3 to 1.18x10-4 with 

increase in graphite from 0 to 5%; meanwhile, because of increase in graphite, carbon 

black decreases from 4.51% to 2.26%, and PVDF decreases from 5.49% to 2.74%. The 

effect of reduction of conductivity can be found in cases with 40% porosity, 50% active 

material shown in Table 2.5(a), Table 2.6(a), and Table 2.7(a).  
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DISCUSSION 

Simulations of the computational intensity described here must necessarily 

represent rather small volumes; thus, examination of size effect is critical. Prior studies of 

overlapping [29] and nonoverlapping [50] spherical particles have shown that the error 

due to size effect of the domain is negligible for the ratio L/d (domain length to particle 

diameter) > 2.5. The error in determination of effective properties was specifically found 

to be <1.8% for a periodic elastic composite with a disordered unit cell of a random 

dispersion of nonoverlapping identical spheres [50], a similar system to simulations 

presented here. In all simulations here, the ratio of L/d>3.3 was used, to prevent any 

introduction of error. 

Differences in arrangements of statistically similar structures, along with contrast 

ratios of properties in phases, result in variances in predicted, effective properties in 

heterogeneous materials. These increased variances can be explained in terms of 

percolation of phases in each case. Because achievement of percolation is probabilistic in 

finite volumes, resulting conductivity is typically highly variable, close to the percolation 

point. Here, results showed highest variability at the closest value to the percolation point 

studied for graphite (7.5% for the present study; as compared to 10% being the 

theoretical percolation point for particles with an aspect ratio of 7.4 [29]).  

Increasing the volume fraction of carbon black and PVDF appears to be the best 

strategy in improving overall conductivity, for the materials and ranges of volume 

fractions studied. Active material particles, made conductive with a coating of carbon 

black and PVDF, achieved percolation because the volume fraction in studied cases 

(≥30%) was larger than the percolation threshold (29%) for a 3D spherical particulate 
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system [29]. This loading scheme can be thought of as achieving percolation in a system 

of hollow, conductive spheres, with the path of least resistance of electrons through the 

coating.  

Clearly, there is an important tradeoff in considering the type of additive to use. It 

is advantageous to use highly conductive surface coatings, versus using larger particle 

conductive additives dispersed among active material particles, in many ranges studied. 

As demonstrated by calculated p values in Tables 2.5 to 2.8, increasing the thickness of 

coatings improves conductivity for all cases studied, with the exception of cases with 

40% porosity, 50% active material, and 5% graphite, as shown in Table 2.5(a), Table 

2.7(a), and Table 2.8(a).  In these cases, the coating thickness amounted to only 0.082  

µm, 0.091 µm, and 0.097 µm respectively, or 0.92%, 0.89%, and 0.87% respectively of 

the diameter of a typical active material particle. It seems likely that imperfections in 

coatings for these thin layers would substantially reduce the conductivity of the surface, 

and therefore fail to create a percolated network of spheres. Improvements from addition 

of larger particle conductive additives is only obvious in cases with 40% porosity and 

30% active material for the four active material systems, and cases with 50% porosity 

and 30% active material for Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2 systems.  

In Table 2.9, we compared the effective conductivity of two different loading 

schemes around active material particle. In both loading schemes, the PVDF/carbon 

black composite coating was included. From this table, we see that addition of a carbon 

nanofilm coating around active material particles does not significantly improve laminate 

conductivity. Moreover, binder is required to maintain structural integrity of the 

composite electrode, regardless of other additives or treatments. Because of the relatively 



Table 2.9: Comparison between LiFePO4 with and without nanofilm
 coating; cathode system with 30% active material, 40% porosity,

 7.5% graphite, 10.15% carbon black, and 12.35% PVDF. 
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low conductivity of the binder, carbon black addition seems a reasonable way of 

improving conduction.  
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CHAPTER III 

POROUS CATHODE OPTIMIZATION FOR LITHIUM CELLS: 
IONIC AND ELECTRONIC CONDUCTIVITY, CAPACITY, AND 

SELECTION OF MATERIALS1 
 

INTRODUCTION 

A key culprit in limiting performance of Li-ion cells is inadequate conductivity, 

both electronic and ionic. Presently, the gap between actual and theoretical capacities in 

leading Li-based technologies are 32.3%, 31.9% and 38.1% in LiFePO4, Li(Ni-

Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2 respectively [1,2,3]. The relationship between 

electronic and ionic conductivity is also problematic, absent mathematical optimization, 

because an increase in one generally penalizes the other. Porous electrodes, used in 

numerous industrial applications due to high achievable reaction rates, including Li 

batteries [4], must balance these needs. 

Individually, various parameters have been examined for improving cell 

performance. Adjustments in form factor [5,6,7], cathode particle size [8,9,10,11,12], 

porosity and thickness of the cathode electrode and separator [13], electrolyte 

concentration [13], loading schema for conductive additives [14,15,16,17,18,19], and 

cathode particle arrangement [20] have all been shown to improve performance. Among 

                                                 
1 Material in this chapter is a unpublished paper in progress: Y. -H. Chen, C. -W. Wang, X. Zhang, and A. 
M. Sastry, Cathode optimization for lithium cells: ionic and electronic conductivity, capacity, and selection 
of materials, Journal of the Electrochemical Society (2008). 
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these, improvements in transport properties, ionic and electronic conductivity, have been 

empirically shown to have the greatest effect.  To date, however, no comprehensive 

numerical study has been reported which studies the optimization of these parameters via 

addition of conductive materials. 

Continuum, porous electrode models [13,21,22,23], equivalent circuit models [24, 

25,26], atomistic [27,28], and molecular dynamics models [29,30], have been widely 

used to model cells. However, these scales of simulations do not directly inform 

engineering of cathode architecture designs via selection of additives. Few consider ion 

and electron transport [13,22], and none correlate conductivities to battery performance. 

Cathode design requires mesoscale simulations with various loading schema, but to date, 

there is little work in this area [20].  

Optimization of battery design will undoubtedly replace sequential testing of 

various cathodic electrochemistries (i.e. those in Table 1.2). This is the preferred path in 

better matching theoretical and actual capacity, by selecting combinations of high power 

and energy density materials. In this study, a numerical, finite element model at the 

particle scale was applied to simulate porous effective ionic and electronic conductivities 

in cathodes with additives.  Those effective properties were introduced to porous 

electrode model to simulate the battery performance. Optimization approach, similar to 

[13], was applied to simplify numerical computation and to make analysis and 

optimization feasible. Our objectives of this study are as follows: 

1) To demonstrate predictive methods of both ionic and electronic conductivity, 

and to validate predictions of electronic conductivity. 
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2) To map relationship between the ionic and electronic conductivities with 

additives. 

3) To correlate conductivities to battery performance. 

4) To identify optimal schema for high energy Li(Ni1/3Co1/3Mn1/3)O2 cells. 

 

METHODS 

In prior work [19], we established methods for measurement of conductivity, 

particle packing algorithms, and finite element analyses for prediction of effective 

conductivity of cathodes. Here, we investigated both cathode (electronic) and electrolytic 

(ionic) conductivities; Table 3.1 lists the material properties of electrodes and electrolyte 

[19,35,36,37] studied. In this research, Li(Ni1/3Co1/3Mn1/3)O2 was selected as the active 

material with PVDF as binder. Graphite and carbon black were used as conductive 

additives. The mixture of PVDF and carbon black (PVDF/C) was simulated as a coating 

around the active material and graphite particles, as in prior work [19]. Open spaces were 

presumed to be filled with electrolyte, i.e. LiPF6 in ethylene carbonate-diethyl carbonate 

(EC/DEC 1:1 v/v). Cathode compression experiments were used to validate the 

conduction modeling; validated conductivities were then used in battery performance 

simulations. After these simulations, optimization approach was used to further analyze 

and optimize combinations of materials. 

 

EXPERIMENTS 

MATERIALS AND COMPRESSION OF CATHODE SYSTEM 

Cathode electrode was constructed by combining 81.6 wt % Li(Ni1/3Co1/3Mn1/3)O2
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 (Seimi Chemical), 4 wt % SFG-6 graphite (Timcal), 6.4 wt % acetylene black (Denkon), 

and 8 wt % PVDF binder (Kureha); fabrication was accomplished in several steps, 

including a compression and drying sequence. They were fabricated at Lawrence 

Berkeley National Laboratory by Drs. Battaglia and Gao. Table 3.2 shows cathode 

thicknesses and the volume fractions of each constituent phase during compression. To 

construct the cathode, a conductive glue was first made via mixture of acetylene black 

and PVDF, with a weight ratio of 4:5. The mixture was agitated for 30 minutes at 70% 

power using a Branson 450 Sonicator, to improve carbon black dispersion.  The 

conductive glue was blended with Li(Ni1/3Co1/3Mn1/3)O2 and graphite using Polytron 

PT10-3S Homogenizer at 3000 to 5000 RPM for 5 minutes. The slurry was poured 

against a Mitutoyo doctor blade holder, and spread evenly across the blade. The blade 

was set at a height of 250 µm for casting. Trace NMP solvent was spread on the 

perforated glass table top of the casting machine; then, an Al foil was overlaid on the 

material, to serve as a current collector. The Al foil was then held to the glass by vacuum 

and the trace NMP. The ratio of the height of the blade and the final electrode thickness 

was set to approximately 3:1 of the final target thickness. The laminate was then dried at 

120°C for 12 hours under high vacuum. The cathode was then compressed by rolling and 

cathode electrodes with assigned porosity were obtained by controlling final cathode 

thickness. 

 

MEASUREMENT OF ELECTRONIC CONDUCTIVITY 

The conductivity of prepared cathode electrode was measured using an inline 

four-point-probe technique [34]. The same procedure indicated in [34] was adopted here. 
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In summary, the constant current source was provided from the outer two probes by a 

Maccor battery test system Series 4000; the voltage difference was measured from the 

inner two probes by an HP 34401A multimeter; and two different probe spacing distances 

were used. In each sample, five random points were picked for conductivity 

measurement. 

 

MICROSTRUCTURE OF CATHODE SYSTEM 

FEI Quanta 3D scanning electron microscopy (SEM) was used to observe the 

microstructure of cathode system. SEM pictures were taken in two different directions of 

view angles as Fig. 3.1 shows. Specimens for side view were frozen in liquid nitrogen 

and razor blade was then used to provide a clean cut surface for which to examine the 

internal microstructure of the material, with minimal shearing.  

  

SIMULATIONS 

PACKING ARCHITECTUREA AND CONDUCTION MODELING 

The simulations were performed as detail described in [19]. The simulations were 

used to estimate effective conductivity, effective ionic conductivity, and effective 

diffusion coefficient. Briefly, the architecture of the composite cathode, comprised of 

active material, graphite, carbon black, and PVDF, was generated via elastic collision 

modeling. Periodic boundary conditions were assigned to x-, y-, and z- directions to 

achieve computational efficiency. The radius of active materials was set to 0.15 of the 

representative volume; the semi-axes of graphite were dependent upon the size of active 

materials. The graphite was assumed as a disk-like ellipsoid with aspect ratios a/b, a/c 



Figure 3.1: Schematic illustration of direction of view angle for SEM. 
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and b/c (a, b, and c are the length of three semi-axes) set to 1, 7.4 and 7.4, respectively. 

Finite element meshing was performed using a voxelation method, to prevent mesh-

induced singularities. Voxels of 100×100×100 were assigned to the representative  

volume. A cubic element with each side of 1 unit length enclosing the voxel was 

generated, with an assigned material property. ABAQUS/STANDARD [35] was used for 

steady state conduction and diffusion analysis. Effective properties of conduction and 

diffusion of the representative volume were then calculated by applying potential 

difference in z- direction. Porous regions were assumed to be fully occupied by the 

electrolyte phase. Simulation results of solid phase later were compared with 

experimental results to validate the conductivity simulations. Five simulation realizations 

were generated for each permutation of conditions studied.  

 

BATTERY PERFORMANCE MODELING 

A model Li | Li(Ni1/3Co1/3Mn1/3)O2 system with electrolyte EC/DEC (1:1 v/v) and 

LiPF6 salt was used to evaluate battery performance for various cathode designs. Li-metal 

was selected as anode electrode to eliminate limited reaction rate in anode. The anode 

thickness was calculated based on the theoretical capacity provided by cathode, and the 

capacity ratio of the anode-to-cathode is one. Separator was selected as electrolyte only 

with 50 µm of thickness. Electrode area was 2.4×10-3 m2. 3C discharge rate was used to 

meet the plug-in HEV battery goals from United States Council for Automotive Research 

[36]. 

This model was modified from 1D porous electrode model coupled with 2D 

spherical particle diffusion modeling [22, 37]. Effective material properties calculated 
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from the previous section were introduced in this model. The model includes solid phase 

electrical conduction using current balance based on Ohm’s law, ionic conduction in 

electrolyte phase, ionic diffusion in electrolyte phase in 1D domain, and ionic diffusion in 

cathode spherical particles in 2D domain. The governing equations of each region are 

summarized in Table 3.3, where subscript 1 denotes the solid phase, subscript 2 denotes 

the electrolyte phase, subscript eff denotes the effective material property, subscript neg 

denotes the material properties of negative electrode, κ is conductivity, φ is potential, Sa 

is the specific surface area, jloc is the local current density, R is the gas constant, T is the 

temperature, F is Faraday’s constant, f is the ionic activity factor, D is the diffusion 

coefficient, t+ is the cationic transport number, c is the cationic concentration , and r is the 

radius of the particle. 0.4 is used for cationic transport number in the simulation. 

The initial conditions and the boundary conditions are shown in Table 3.4 and 

Table 3.5 respectively, where i_app is the assigned current density. Bulter-Volmer 

electrode kinetics were applied at the interfaces of electrode and electrolyte: 

jloc = i0 exp ηF
RT






− exp −ηF

RT














                                                 (19) 

with 

η = φ1 −φ2 − Eref (c1,surf )                                                        (20) 

and 

i0 = k0 c2 (c1,max − c1,surf )c1,surf                                                   (21) 

where i0 is the exchange current density, Eref is the open-circuit potential of the electrode 

particle, which is a function of c1 at the surface (c1,surf), k0 is the reaction-rate constant, 
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and c1,max is the maximum surface concentration. The function of Eref is estimated from 

discharge-capability plot at 0.09C [37]. 

 

OPTIMIZATION OF CONDUCTIVITIES AND BATTERY 

PERFORMANCE 

An optimization approach was introduced to design the cathode system. The 

cathode thickness was excluded in the variables for conduction modeling because the 

conduction model only simulates the unit cell of cathode system, which is independent of 

cathode thickness. Numerical simulations (conduction modeling and battery performance 

modeling) were conducted at selected points. Electronic and ionic conductivities of 

cathode electrode, specific energy, specific power, and utilization of simulated battery 

were included in the objective functions.  

 

RESULTS 

Figure 3.2 reports the conductivity measurement and simulation results at 

different porosity. Experimental results show that a cathode laminate with 50% porosity 

has a conductivity of 77 S/m. The value decreases slightly to 71 S/m with 40% porosity 

and increases to 105 S/m with 50% porosity. Simulation results demonstrate the 

increasing trend of conductivity with cathode compression. The value starts from 59 S/m 

with 50% porosity increases to 150 S/m with 30% porosity. Fig. 3.3 presents SEM 

pictures of cathode electrode in side view and top view where active material are light 

color particles with darker PVDF/C phase. A decrease in porosity can be observed from 

side view pictures. Besides, distribution of PVDF/C becomes less uniform with decrease



Figure 3.2: Effective electronic conductivity of cathode electrode at different
 porosity from compression experiments and simulations. 
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Figure 3.3: SEM pictures of cathode electrodes at (a) 50% porosity side view, (b)
 50% porosity top view, (c) 40% porosity side view, (d) 40% porosity top view, (e)

 30% porosity side view, (f) 30% porosity top view. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 3.4: Illustration of composition of cathode electrode: complementary solid
 phase and electrolyte phase. 
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Figure 3.5: Simulated random structure of cathode material particles at different
 porosities: (a) 50%, (b) 40%, (c) 30%.  

Figure 3.6: Simulated random structure of PVDF/C at different porosities: (a)
 50%, (b) 40%, (c) 30%. 

Figure 3.7: Simulated random structure of graphite at different porosities: (a) 50%,
 (b) 40%, (c) 30%. 

Figure 3.8: Simulated random structure of electrolyte at different porosities: (a) 50%,
 (b) 40%, (c) 30%. 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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Figure 3.9: Optimization results of specific energy as a function of utilization at
 different cathode thickness. 
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Figure 3.10: Discharge curve generated from battery performance simulation of
 cathode electrode with 0% graphite, 10% PVDF/C and (a) 30% active material
 and 50 µm thickness, (b) 30% active material and 400 µm thickness, (c) 45%
 active material and 50 µm thickness, and (d) 45% active material and 400 µm

 thickness. 
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 in porosity. Also, with decrease in porosity, it can be seen that more active material 

particles near top surface are compressed and embedded into PVDF/C phase. 

Figure 3.4 illustrates the structural composition of simulated structure of 

complementary solid phase and electrolyte phase from voxelated finite element 

conduction model. Solid phase is composed of cathode material, graphite, and  

PVDF/carbon black coating. Porosity is filled with electrolyte, which completes the 

representative volume with solid phase. Fig. 3.5-3.8 show the simulated structure of 

active material, PVDF/carbon coating, graphite, and electrolyte phase respectively at 

different porosity. Compact structure of solid phase was obtained with decrease in 

porosity; meanwhile, structure of liquid phase was becoming less dense. 

Figure 3.9 shows specific energy as a function of utilization at different cathode 

thickness range. With cathode thickness larger than 100 µm, specific energy increases 

from 10 to 320 Wh/kg with increase in utilization from 0.3 to 0.9. For cathode thickness 

ranging from 50 to 100 µm, specific energy and utilization are also positively related but 

the result points form another group with lower specific energy and higher utilization. 

Utilization increases from 0.83 to maximum 0.90 with increase in cathode thickness from 

50 to 134 µm, and then decreases to 0.31 with decrease in thickness to 400 µm. Fig. 3.10 

illustrates some cases of discharge voltage vs. utilization.  

 

DISCUSSION 

Electronic conductivity increases with compression of cathode electrode, though 

there is a discrepancy between experimental and simulation results. Experimental results 

with larger standard deviations than simulations might arise from the non-uniformity of 
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structures introduced by nonuniform mixing process and non-affine compression. This 

also influences four-point-probe conductivity measurements, which assume homogeneity 

in each layer. On the other hand, simulated structures based on well-randomized collision 

realizations, with perfectly coated particles, produced smaller deviations in predicted 

conductivies.  

There is a trade-off between ionic and electronic conductivity; neither best ionic 

nor best electronic conductivity ensures the highest specific energy. Simulated structural 

results demonstrate the complementarity of solid and liquid phases. With reductions in 

porosity, more active material or conductive additives can be added in the solid phase, 

which result in higher electronic conductivity. However, cathodes with less porosity have 

intrinsically slower ion transport, which limits the reaction and lowers specific energy.  

It is sufficient to use highly conductive surface coatings only, versus using both 

larger graphite particle and coating, to obtain high specific energy. In the studied variable 

ranges, cathode systems with 36.2% active material, 0% graphite, 10% PVDF/C and 

192.5 µm thickness results in the highest specific energy of 323.5 Wh/kg. As our 

previous study shows [22], PVDF/C coating phase achieve percolation base on percolated 

active material spherical particulate system, which has advantage to boost effective 

conductivity easily. It is not necessary to use graphite to further increase conductivity, 

which does not contribute to higher specific energy. 

Clearly, optimal design is needed for cathode thickness and volume fraction of 

active material. Ion transport, cathode capacity, and mass balance effect of active 

material are important factors on utilization. For thicker cathode electrode (250 to 400 

µm), long ion transporting distance limits reaction rate, resulting in lower utilization. In 
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order to improve utilization in thicker electrode, selection of low volume fraction active 

material to obtain more porosity is a better strategy. On the other hand, cathode capacity 

and mass balance effect of active material explain lower utilization in thinner electrode 

(50 to 100 µm). Fig. 3.11 shows the upper bound and lower bound of weight ratio of 

active material to whole battery, where the weight ratio decreases with decrease in 

cathode electrode length. Therefore, even though ion has shorter transporting distance in 

thinner cathode, relatively lower capacity due to mass balance effect of active material 

also results in lower utilization. In thinner electrodes, more active material is required, 

rather than porosity, to improve specific energy since liquid limitation is not the dominant 

issue.  

 

APPENDIX 

The diffusion coefficient of Li in Lix(Ni1/3Co1/3Mn1/3)O2 was averaged value from 

the diffusion coefficient of Lix(Co0.5(NiMn)0.25)O2 and Lix(Li0.08Co0.16(NiMn)0.38)O2  and 

the curve is shown in Fig. 3.12 [38]. 

Open-circuit potential vs. state of charge of Li(Ni1/3Co1/3Mn1/3)O2 was estimated 

from discharge-capability plot at 0.09C. The curve is shown in Fig. 3.13 [37].



Figure 3.11: Upper bound and lower bound of weight ratio of active material to
 whole battery in studied cases. 
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Figure 3.12: The diffusion coefficient of Li in Lix(Ni1/3Co1/3Mn1/3)O2. 
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Figure 3.13: The open-circuit potential of Li(Ni1/3Co1/3Mn1/3)O2 as a function of
 state of charge.  
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CHAPTER IV 

IMAGE ANALYSIS AND COMUPTER SIMULATION OF 
AGGLOMERATION AND AGGREGATION PHENOMENA OF 

NANOPARTICLE CLUSTER1 
 

INTRODUCTION 

Megatons of particulates are produced annually by combustion methods including 

desirable nanomaterials [1,2] and toxic byproducts [3].  Yet accurate prediction of 

particulate emissions from combustion systems remains a daunting challenge.  The 

chemical and physical processes involved span scales from the atomistic level of 

elementary chemical reactions to interparticle collision of highly three-dimensional 

micron-sized fractal structures.  Advances in experimental and computational methods 

have demonstrated how the complex nature of combustion-generated materials (including 

the composition, polydispersity, and morphology of the nanoparticles) impacts the fate 

and transport of the nanoparticles [2, 4, 5, 6, 7, 8].  Accurate understanding of the 

physical and chemical characteristics of soot are particularly important in light of the 

adverse affects of carbonaceous soot on human health and the environment.  The optical, 

electronic and catalytic properties of nanoparticles, critical for the design of advanced 

flame-generated materials, are also strong functions of the nanoparticle composition and 

                                                 
1 Material in this chapter is a unpublished paper in progress: Y. -H. Chen, S. D. Bakrania, M. S. 
Wooldridge, and A. M. Sastry, Image analysis and computer simulation of agglomeration and aggregation 
phenomena of nanoparticle clusters, Journal of Materials Science, (2008). 
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architecture [ 9, 10, 11, 12, 13].  Improved methods to analyze and predict the complex 

physical properties of particulate emissions from combustion systems are vital to reduce 

pollutant particulate emissions and accelerate design of advanced materials.   

Soot particles emitted from combustion processes are generally fractal structures 

that consist of primary particles on the order of 10-20 nm in diameter, where the primary 

particles are approximately spherical in shape (see Fig. 4.1).  The fractal structures are 

created by agglomeration and aggregation, where an aggregate is a cluster of primary 

particles that are joined by inter-particle necks (which form due to locally high 

temperatures), and an agglomerate is a cluster of primary particles sticking to each other 

due to different and random attractive forces that occur between particles [14, 15].  

Surface reactions, including oxidation, can also affect the composition and structure of 

soot emissions.  The fractal geometries of soot particles are determined by competition 

between the nucleation rate of the primary particles, the interparticle collision rate, and 

the coalescence or sintering rate [16].  The morphology or geometry of the soot 

particulates is therefore determined by how primary particles form, collide and bond 

together.  A quantitative understanding of the final morphology of soot emissions is 

critical to understanding fate, transport, reactivity and functionality of clusters of 

nanoparticles [2,5,6,10,11] and in particular, recent work has demonstrated the 

importance of understanding the fractal nature of soot particles [7,8, 17].   

There have been many studies to understand the forces important during collision 

between nanoparticles.  Table I highlights several methods, including experimental, 

molecular dynamics and mathematical modeling, used to study agglomerates and 

aggregates of nanoparticles and used to verify the different forces leading to different
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Figure 4.1: Transmission electron micrograph image of flame-generated tin
 dioxide nanoparticle cluster.  
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 structures.  Agglomeration has been extensively studied using experimentation.  For 

example, in the study by Onischuk et al. [18] time-resolved imaging captured the process 

of adhesion between agglomerates, and the authors demonstrated that Coulomb forces 

were significant during the sticking process.  In the work by Froeschke et al. [19], impact 

fragmentation of nanoparticle agglomerates was used to calculate the bond strength 

between primary particles and to verify the existence of van der Waals interactions.   

In addition to experiments, computer simulations, such as molecular dynamics, 

are a useful and common way to simulate collisions and coalescence between particles. 

Molecular dynamics has often been applied to simulate the formation of primary particles 

(see for example Lümmen and Kraska [20] and Zachariah and Carrier [21]), and to study 

attractive forces and collisions between particles (see for example Hawa and Zachariah 

[22] and Qin and Fichthorn [23]).  Mathematical modeling of agglomeration has also 

been carried out using finite element [24], moment [25], Monte Carlo [26] and stochastic 

methods [27].  These studies and others confirm that van der Waals interactions, static 

electricity, and solid-state necking (particularly at high temperatures) are the most 

important processes to represent coagulation between nanoparticles. 

The experimentally observed morphology of nanostructured soot agglomerates 

has been most extensively studied using image analysis.  Transmission electron 

microscopy (TEM) is the most common technique used for this purpose.  TEM is 

typically used to acquire two-dimensional (2D) images of the agglomerates, which can be 

analyzed to extract information such as the average size of the primary particles, the 

number of primary particles in the agglomerate or aggregate, etc.  Such 2D projections 
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provides little information on the three-dimensional (3D) structure of the agglomerates; 

however, recent advances in TEM methods, such as electron tomography [17, 28, 29, 30, 

31] and relative optical density [32, 33]. have extended the capabilities of TEM imaging 

to evaluate the 3D morphology of nanostructures.   

Image processing is essential to extract quantitative information from 2D and 3D 

TEM imaging data.  Computer aided image analysis can easily handle a large number of 

particles and clusters, and it is much faster and less subjective than analysis conducted by 

individuals.  Image analysis is commonly used to obtain the size distribution of 

nanoparticles [34, 35] and fractal dimensions [36, 37] in 2D and 3D images.  Other 

parameters, such as radius of gyration, linearity coefficient, aspect ratio, and particle 

chain length are also used to characterize the geometry of fractal nanoparticle structures 

[26, 38].  

Although the morphology of soot agglomerates has been studied extensively 

using 2D TEM imaging and 2D simulations, there are few experimental or modeling data 

describing the 3D nanoarchitecture of soot particles which is so important to 

understanding the behavior of combustion generated particulates.  In order to address this 

need, the current work presents a novel approach which combines 3D modeling and 

experiments in order to determine the interactions between nanoparticles and to predict 

the morphology of particles generated from combustion systems.  The method includes 

3D TEM, image analysis, and computer simulation.  Semi-stochastic or probabilistic 

modeling is used as the basis for simulating the nanoparticle interactions.  Semi-

stochastic mathematics is a powerful and robust means to model nanoparticle 

agglomeration because such methods do not require extensive information on material 
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properties, environmental conditions, and reaction processes, which are often 

unavailable, particularly for nanoscale systems and combustion environments.  Computer 

simulations based on probabilities can model agglomeration in 3D to predict 3D soot 

morphology.  Such a technique can be combined with 3D imaging and analysis from 

experimental data to predict or analyze mechanisms of nanoparticle cluster formation.  

Based on the motivation to develop such analytical and predictive capabilities, the two 

objectives of this work are to develop the methods to simulate formation of nanoparticle 

clusters by semi-stochastic placement, and to apply this method to identify the forces 

important during nanoparticle clustering in a representative combustion system.  

 

METHODS 

EXPERIMENTAL METHODS 

Figure 4.2 shows the schematic of the combustion synthesis facility used to 

generate the combustion nanoparticulates analyzed in this work.  Tin dioxide (SnO2, 

cassiterite phase) particles were generated using a multi-element hydrogen-oxygen 

diffusion burner.  Tetramethyltin (TMT, Sn(CH3)4) was introduced into the flame as a 

precursor for tin dioxide using argon as a carrier gas, yielding argon flow saturated with 

approximately 21% TMT on mole basis.  TEM samples were acquired by thermophoretic 

deposition onto carbon-meshed copper grids at a height of 27 centimeters above the 

burner surface.  Additional details on the particle sampling, burner characteristics and 

operating conditions can be found in Miller et al. [39] and Bakrania et al. [40, 41].  



Figure 4.2: Schematic of the combustion synthesis facility used to create the
 tin dioxide nanoparticles. 
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TEM images were obtained using a JEOL 3011 High Resolution Electron Microscope. 

The specimen tilt capability was used to acquire 2D images at various planes of 

inclination with the tilt angle ranging from -55° to +55° in 2.5° increments.  The 2D 

images acquired were aligned using the image processing and modeling software IMOD 

[42, 43].  Image data were converted between Fourier and real spaces based on the 

electron tomographic technique [28] and tomographic images were obtained from data 

conversion.  The 3D cluster was then reconstructed and rendered by detecting the outline 

of the tomographic images using IMOD. 

 

COMPUTATIONAL METHODS 

A semi-stochastic method was used for the algorithm for generating the 

nanoparticle clusters.  The model is semi-stochastic because the presence of particles 

depends on assigned probabilities in order to simulate the effect of different interactions.  

The computer simulation was used to generate 3D clusters of nanoparticles.  The 

simulation was a 3D model with non-periodic boundaries.  Each length of the domain cell 

was set at 1000 times the particle diameter so the cluster created in the simulation could 

not contact the boundary.  During each simulation, a cluster consisting of N particles was 

formed, and 100 realizations of agglomerates for each value of N were computed and the 

results were averaged.  Values of N from 10 to 100 were simulated.  For each calculation, 

the initial primary particle was placed in the center of the cell.  The agglomeration of 

nanoparticles was represented as a series of steps of single particle addition, assuming a 

constant size for all particles.  The position of each new particle depended on the 

assigned probabilities.  Two particle bonding criteria for forming agglomerates were 
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considered.  Case (1) is the addition of the next particle sticking to other particles in the 

cluster.  Case (2) is the addition of the next particle sticking to the tip of a chain of 

particles in the cluster.   

Case (1) represents the short-range van der Waals forces that make particles stick 

together when two particles collide.  Figure 4.3 shows schematically how Case (1) is 

implemented in the simulations.  For each particle addition step, a particle within the 

existing cluster is randomly chosen as the binding site.  The position of the new particle 

is chosen using a random angle around the particle in the cluster.  If the new particle 

overlaps with other particles in the cluster, the new particle is not added to the cluster and 

the process is restarted. 

Case (2) represents the attractive forces due to dipoles or charges concentrated on 

the tip of a chain of particles and the repulsive forces of the inner part of a cluster.  These 

long-range forces cause bonding to occur at the tip of a chain of particles.  Figure 4.4 

shows schematically how Case (2) is implemented in the simulations.  For a cluster with 

two tip particles in the computational domain, one tip particle is randomly selected as the 

site for the addition of the new particle.  The position of the new particle is determined 

using a random angle around the hemisphere of the tip particle.  The assumption of the 

new particle sticking at an angle in the hemisphere of the tip particle is based on 

experimental observation [18].  As with Case (1), if the new particle overlaps with other 

particles in the cluster, the new particle is not added to the cluster, and the process is 

restarted. 

P1 is the probability of Case (1) occurring during agglomerate formation, and P2 

is the probability of Case (2).  The summation of P1 and P2 is 1 because there are only 



Figure 4.3: Schematic representing the Case 1 binding method.  The gray particles are
 particles existing within the computational boundary, and the black particle is the new
 particle searching for a binding site.  The gray particle circled in black is the randomly

 chosen particle for binding. 
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Figure 4.4: Schematic representing the Case 2 binding method.  The gray particles
 are particles existing within the computational boundary, and the black particle is the

 new particle searching for a binding site.  The gray particle circled in black is the
 randomly chosen tip particle for binding. 
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two bond criteria assigned in the simulation.  By varying the assigned probabilities of 

Case (1) and Case (2), the combination of forces during the formation of agglomerates 

can be simulated. 

 

IMAGE ANALYSIS 

Radius of gyration, aspect ratio, main chain length, and fractal dimension are used 

to characterize the geometric properties of the 3D nanoparticle clusters from experiments 

and simulations.  For a specific cluster, radius of gyration, Rg, is used to characterize the 

overall size of the cluster.  Aspect ratio is used to estimate the shape of the cluster in 

terms of the ratio of the three major axes of the fitted ellipsoid.  Main chain length, Lm, is 

used to determine the maximum chain length in the cluster.  Fractal dimension, Df, is 

used to characterize the compactness of the cluster.  Each geometric property was 

determined as follows. 

Radius of gyration, Rg, of a cluster is a measure of its overall size, which is 

expressed as 

€ 

Rg =
r2ρ(r)∫ dr
ρ(r)dr∫

                                                           (1) 

where r is the radial distance measured from the cluster center of mass, ρ(r) is the cluster 

mass density. The denominator is equal to the total cluster mass. It is assumed that the 

density of each particle is constant.  

From [38], the shape of any object can be characterized by the moment of inertia 

tensor, TI, with components 

                               

€ 

Tij = ρ(r)∫ qiq jdr    for i,j=1,…,d, i≠j 
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€ 

Tij = ρ(r)∫ qiq jdr   for i,j=1,…,d, , i=j                          (2)  

where qi=x, y, z for i = 1, 2, 3 respectively, and x, y, z are coordinate values. By 

diagonalizing and dividing by the total cluster mass, the squares of principal radii of 

gyration Ri
2, for i=1,…,d, can be obtained. Then the shape and overall size are related by 

  

€ 

Rg
2 =
1
2
[R1

2 + R2
2 + R3

2]                                                  (3)  

The relation of principal radii of gyration and axes lengths of a fitted 3D ellipsoid 

are 

  

€ 

Ri
2 =
2
5
[d j

2 + dk
2]                                                     (4)  

where di=a, b, c for i=1, 2, 3 respectively, and a, b, c are three main axes of the fitted 

ellipsoid. By solving for di 

€ 

di
2 = [2

5
((1− 2δi1)R1

2 + (1− 2δi2)R2
2 + (1− 2δi3)R3

2)]
1
2      (5)  

where δij is the Kronecker delta and di corresponds to axes a, b, c for i=1, 2, 3. Aspect 

radio ab (a/b) and aspect ratio ac (a/c) can then be obtained using the eq (5). 

Main chain length, Lm, is the length along the actual path between the two most 

distant particles in a cluster.  Lm is calculated using the Floyd-Warshall All-Pairs-

Shortest-Path algorithm [44].  Please note the main chain length and radius of gyration 

are reported as dimensionless values in this work by normalization using the radius of the 

particle, r. Lm is the length measuring from end point of a particle, through particle center 

to enter, to end point of another particle For example, if N is one, Lm/r is 2. 

The fractal dimension, Df, is determined using the following expression [45], 

€ 

N = A(Ri

r
)D f                               (6)  
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where r is the radius of primary particle and A is a dimensionless constant.  For the 

simulations, an average value for Df is determined by averaging over many agglomerates 

with the same N.  For compact agglomerates, Df is close to 3, and for chain-like 

structures, Df is close to 1. 

The computationally generated 3D agglomerates and the 3D reconstructions of 

the experimentally-observed agglomerates were analyzed using identical methods.  

Uniform 4x4x4 distributed grids were dispersed in each unit cubic to calculate Rg, ab, ac, 

and Lm.  Comparison of the simulation results and experimental data allows values for P1 

and P2 to be determined, and the forces important during agglomeration can thus be 

determined indirectly. 

 

RESULTS 

Figures 4.5 and 4.6 show TEM images of two distinct SnO2 agglomerates 

sampled from the combustion system.  The tilt angles used for the images were -55°, 0°, 

and +55°.  As seen in the images, considerably different 2D projections are observed 

from the same agglomerate for different tilt angles.  Figures 4.7 and 4.8 present 2D 

projections of the reconstructed 3D structures of the agglomerates from Figs. 4.5 and 4.6.  

The projected 2D images from the 3D reconstruction are presented for -55°, 0°, +55°, 

+110°, and +165° tilt angles.  Note the 2D projected images based on the 3D 

reconstructions correctly reproduce the TEM images of Figs. 4.5 and 4.6 for equivalent 

tilt angles. 

Figures 4.9 and 4.10 show the effects of the relative values of P1 and P2 on the 

average aspect ratios ab and ac, respectively, for values of N = 20, 40, 60, 80 and 100.
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Figure 4.9: Simulation results of ab as a function of P1 at different cluster size N. 
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Figure 4.10: Simulation results of ac as a function of P1 at different cluster size N. 
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Figure 4.11(a): Simulation results of notched box plots of the effect of P1 on aspect
 ratio ab when N is 20. 
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Figure 4.11(b): Simulation results of notched box plots of the effect of P1 on aspect
 ratio ab when N is 60. 
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Figure 4.11(c): Simulation results of notched box plots of the effect of P1 on aspect
 ratio ab when N is 100. 
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Figure 4.12(a): Simulation results of notched box plots of the effect of P1 on aspect
 ratio ac when N is 20. 
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Figure 4.12(b): Simulation results of notched box plots of the effect of P1 on aspect
 ratio ac when N is 60. 
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Figure 4.12(c): Simulation results of notched box plots of the effect of P1 on aspect
 ratio ac when N is 100. 
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Figure 4.13: Simulation results of the effect of P1 on average main chain length
 normalized by particle radius, Lm/r, for cluster sizes N = 20, 40, 60, 80 and 100. 
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Figure 4.14: Simulation results of the effect of P1 on normalized main chain length,
 Lm/(N r), for cluster sizes N = 20, 40, 60, 80 and 100. 
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  (Recall P2 = 1 – P1.) The values for ab are systematically lower than the values for ac for 

all values of P1.  Both aspect ratios decrease as the number of particles in the cluster 

increases, and both aspect ratios decrease as the probability of Case 1 bonding 

(representing van der Waals forces) increases.  Figures 4.11 and 4.12 are notched-box 

plots of the effects of P1 on the aspect ratios ab and ac respectively for N = 20, 60, and 

100.  Each notched box has lines at the lower quartile, median, and upper quartile values.  

Each notched box also has whiskers which are lines extending from each end of the box 

to show the extent of the rest of the data in 1.5 times the interquartile range.  Outliers 

(denoted as plus signs in the figures) are data with values beyond the ends of the 

whiskers.  If the notches in the box plot do not overlap, one can conclude with 95% 

confidence that the true medians differ [46].  For example, results from Fig. 4.11 shows 

that when P1 is larger than 0.6, there is no significant change in the median value of ab.  

Additionally, a wider range between whiskers, especially with larger values of P1, 

indicates larger variation in the data. Data distribution can also be observed in notched-

box plots. Fig. 4.11 and 4.12 show asymmetric data distribution. Extended data deviation 

in larger value in Fig. 4.11 and 4.12 results in the averaged values in Fig. 9 and 10 greater 

than median values in Fig. 4.11 and 4.12. 

Figures 4.13 and 4.14 show the effects of P1 on average main chain length Lm/r 

and normalized main chain length, Lm/(N⋅r), respectively, for values of N = 20, 40, 60, 

80, and 100.  Lm/r increases with decreasing values of P1 and increasing values of N.  

The normalized main chain length also increases with decreasing values of P1; however, 

Lm/(N⋅r) decreases with increasing values of N.  P1 = 0 is the special case where new 

particles always stick to the tip particles, and only one chain-like structure with Lm/(N⋅r) 
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= 2 is formed. Figure 4.15 shows the notched box plots of the effects of P1 on Lm/r for N 

= 20, 60, and 100.  The range between whiskers decreases with increases in P1 and N.  

However, unlike aspect ratio, notches in the box plots for Lm/r only overlap over a small 

range of values for P1. 

Figure 4.16 shows the effects of P1 on the average radius of gyration normalized 

by particle radius, Rg/r, for values of N = 20, 40, 60, 80, and 100.  Rg/r increases with 

decreasing values for P1 for all values of N.  Rg/r also increases with increasing cluster 

size.  Figure 4.17 shows the notched box plots of the effect of P1 on Rg/r when N is 20, 

60, and 100.  With increases in P1 and N, the range between whiskers decreases, similar 

to the results for main chain length. 

The simulation results were also examined to determine if the predicted structures 

were self-similar.  Figure 4.18 presents logN as a function of log(Rg/r) for several values 

of P1.  Each of the data sets is approximately linear on this scale, indicating the structures 

are self-similar.  From equation (6), the slope of the line of the log(Rg/r) versus logN plot 

is the fractal dimension, Df.  Using regression analysis, Df is determined for each value of 

P1, and the results are presented in Fig. 4.19.  The fractal dimension increases from Df = 

1.8 for P1 = 0 to Df = 3 for P1 = 1.   

Table 4.2 presents the results from the image analysis of the flame-generated soot 

agglomerates presented in Figs. 4.5-6.  The analysis yields N = 45 and r = 21.5 [pix] for 

agglomerate I and N = 16 and r = 20.5 [pix] for agglomerate II.  Figures 4.20 and 4.21 

show the simulation results for average Lm/r and Rg/r based on these values for the two 

agglomerates.  Note the remarkable difference in the scales of Figs 4.20 and 4.21, 

indicating the level of sensitivity that can be achieved using the integrated modeling



Figure 4.15(a): Simulation results of notched box plots of the effect of P1 on Lm
 when N is 20. 
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Figure 4.15(b): Simulation results of notched box plots of the effect of P1 on Lm when
 N is 60. 
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Figure 4.15(c): Simulation results of notched box plots of the effect of P1 on Lm when
 N is 100. 
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Figure 4.16: Simulation results for the effects of P1 on average radius of gyration,
 Rg/r, for cluster sizes N = 20, 40, 60, 80 and 100. 
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Figure 4.17(a): Simulation results of notched box plots of the effect of P1 on Rg/r
 when N is 20. 
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Figure 4.17(b): Simulation results of notched box plots of the effect of P1 on Rg/r
 when N is 60. 
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Figure 4.17(c): Simulation results of notched box plots of the effect of P1 on Rg/r
 when N is 100. 
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Figure 4.18: log(Rg /r) vs. logN at different P1. 
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Figure 4.19: Simulation results for the fractal dimension, Df, as a function of
 P1 derived from the results of Fig. 18.  
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Figure 4.20(a): Simulation results of notched box plots of the effect of P1 on Lm/r
 for agglomerate I (N=45). 
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Figure 4.20(b): Simulation results of notched box plots of the effect of P1 on Lm/r for
 agglomerate II (N=16). 
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Figure 4.21(a): Simulation results of notched box plots of the effect of P1 on Rg/r for
 agglomerate I (N=45). 
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Figure 4.21(b): Simulation results of notched box plots of the effect of P1 on Rg/r for
 agglomerate II (N=16). 
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approach.  Comparing the results from the experiments with the results from the 

simulations, if the values from the experimental imaging are located within the range of 

the boxes presented in Figs. 4.20 and 4.21, P1 can be determined.  Estimated ranges of P1 

for the two agglomerates are shown in Table 4.2.  The implication of these results are 

discussed below. 

 

DISCUSSION 

The experimental data (Figs. 4.5-6) and the image reconstruction results (Figs. 

4.7-8) both demonstrate the three dimensional nature of combustion-generated 

agglomerates.  The nanoparticle clusters yield different 2D projections based on the 

orientation of the image.  In traditional 2D TEM images, the view angle can falsely 

indicate overlapping particles or interconnections of particles.  Analysis of geometric 

properties based only on 2D images can lead to errors.  Therefore, conventional TEM 

images, which only show 2D projections, are not sufficient for characterization and 

analysis of morphology.  3D TEM provides further structural understanding in real space.  

The simulation results (Figs. 4.9-19) demonstrate that Coulomb forces (Case 2) 

are responsible for elongated agglomerates while van der Waals forces (Case 1) yield 

particles with more compact structure.  By varying the probabilities representing these 

forces, different combinations of P1 and P2 simulate different effects of van der Waals 

and Coulomb forces.  For the results for ab and ac shown in Figs. 4.9-10, agglomerates 

tend to have larger aspect ratios when P2 is higher and particles form clusters with 

smaller aspect ratios when P1 is higher.  This indicates that the attractive force 

concentrated on the tip particles is responsible for elongated shape cluster.  With less 
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attractive force on the tip, particles tend to form a more compact structure.  Also, with 

increasing N, new particles have more opportunities to stick to particles in the cluster 

which are farther from the major axes, so the aspect ratios, ab and ac, decrease.   

The box plots of ab and ac in Figs. 4.11-12 indicate the variety of shapes the 

agglomerates can form.  For lower values of P1, the whisker of the box is larger, which 

indicates that the shape of the clusters is more variable under the strong effects of 

Coulomb forces on the tip particles.  In Figs. 4.11-12, the boxes overlap over a wide 

range of P1, which can be seen especially at smaller values of N.  This overlap shows that 

aspect ratio is not a good parameter to uniquely characterize the forces important during 

the formation of agglomerates. 

As seen by the simulation results of main chain length (Fig. 4.13), agglomerates 

tend to have higher values for Lm/r when P2 is higher.  This means that with more 

attractive force concentrated on the tip particles, the clusters tend to form longer chain-

like structures.  Otherwise, without the strong forces at the tip, new particles bind to other 

parts of the cluster due to van der Waals forces and form more compact structures.  

Hence, Coulomb forces are responsible for agglomerates with long main chain length.   

In Fig. 4.14, normalized Lm decreases as N increases, but the rate of change on 

Lm/r also decreases with increasing N.  With increasing N, Lm/(N⋅r) is lower because 

particles have more chances to bind to other particles that are not part of the main chain.  

As seen in the box plots for Lm/r for N=20, 60, and 100 (Fig. 4.15), the range of the boxes 

decreases with increasing P1, especially at larger N.  Unlike the results for aspect ratio 

(Figs. 4.11-12), overlapping boxes are not seen for wide ranges of values for P1, which 

means Lm/r is a useful parameter to characterize the forces important during the 
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formation of agglomerates.  However, for small clusters such as agglomerates with 20 

particles, boxes still overlap in a range of P1.  These results indicate that for smaller 

agglomerates with known morphology information, comparison with data for Lm/r may 

identify non-unique combinations of van der Waals and Coulomb forces.  In other words, 

there may be difficulties identifying the specific force sources for smaller clusters.  

The Coulomb force is also responsible for agglomerates with large and loose 

structures with large radius of gyration, Rg, as seen in Fig. 4.16.  Rg is a measure of 

overall size of a specific cluster hence Rg increases with a larger number of particles.  For 

lower values of P1, particles tend to bind to the tip particles, increasing the length of 

some chains of the cluster and making the whole structure larger and less compact.  

Without this effect, the cluster becomes more compact and small and Rg decreases.   

The box plots for radius of gyration (Fig. 4.17) show similar results to mean chain 

length (Fig. 4.15), where a larger variety of shapes occurs with higher values of P2 and 

more uniform morphology is observed with higher values of P1.  Again, the range of the 

boxes decreases with increasing P1, especially at larger N, and overlapping boxes are not 

seen for large differences in P1 when N is large.  As a consequence, Rg is useful to 

characterize the formation of agglomerates for larger cluster sizes. 

As noted earlier, the simulation results for log(Rg/r) vs. logN (Fig. 4.18) indicate 

that the agglomerates are self-similar structures.  Additionally, the simulation results (Fig. 

4.19) show that agglomerates with a specific fractal dimension come from a specific 

combination of forces.  The fractal dimension is usually used to indicate the compactness 

of agglomerates.  For compact agglomerates in 3D, Df is close to 3, and for chain-like 

structures, Df is close to 1.  With increasing P1, Df increases close to 3 and this indicates 
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the compact agglomerates are formed due to van der Waals forces.  When only Coulomb 

forces are considered (P1 = 0), Df decreases to a value of 1.8  

The forces governing the formation of a specific cluster can be estimated by 

comparing experimental and modeling results for Lm/r and Rg/r.  Comparing the 

experimental results of Table 4.2 with the simulation results presented in Figs. 4.20-21, 

P1 for agglomerate I is estimated between 0 and 0.1 based on both Lm/r and Rg/r.  The 

results indicate that the Coulomb forces dominate during the formation of the particle 

cluster.  For agglomerate II, P1 is estimated between 0.2-0.3 based on the values for Lm/r, 

and P1 is estimated between 0-0.3 based on the values for Rg/r.   As noted earlier, for 

smaller agglomerates various combinations of P1 and P2 can result in similar 

morphologies, hence the larger range of probabilities assigned to this smaller 

agglomerate.   

The results for the forces governing the SnO2 nanoparticle cluster formation are 

consistent with other studies of agglomeration of combustion generated particulates.  For 

example, Onischuk et al. [18] studied agglomeration through experimental observation of 

particle/agglomerate interactions of carbonaceous soot aerosols and silicon aerosols 

generated through silane pyrolysis.  They found that “Coulomb interactions are 

significant during the sticking process and, in particular, they are responsible for the 

fractal dimension.”  The authors also found the type and extent of dipole charge varied 

between the two materials studied.   

The radii of gyration determined by the simulations and by the reconstruction of 

the TEM images are consistent with other measurements of flame generated particulates.  

For example, Sztucki et al. [47] studied clusters of carbon particles formed in an 
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acetylene flame using small-angle x-ray scattering (SAXS).  The authors found the soot 

particles formed fractal structures where Rg varied from 45 to 300 [nm] based on the 

residence time of the particles in the flame.  Their work showed that the longer the 

residence time, the larger the radius of gyration.  The measured values for Rg for 

agglomerates I (83 nm) and II (43 nm) (Table 4.2) and the computed range of values 

shown in Fig. 4.21 (normalized) are consistent with the SAXS data.  
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

 

SELECTION OF CONDUCTIVE ADDITIVES 

A method was presented to simulate the particulate system of conductive 

additives in Li-ion battery cathodes and quantify relationships among concentrations of 

specific additives, and conductivity. The error due to size effect of the domain was 

negligible for the selected ratio L/d > 2.5. Variances in the simulation results mainly 

arose from differences in arrangements of random structures. Our model is capable of 

generating realistic microstructures of cathode systems, and robustly predicting the 

effective conductivities of different types of conductive additives, e.g. conductive surface 

coatings and larger, disperse conductive additives.  

A key finding was that the conductive coatings strongly influence conductivity, 

because they substantially reduce contact resistance. Percolation was detected in these 

systems at a volume fraction of active material ≥30%,which is somewhat higher than the 

theoretical percolation threshold (29%) for 3D spherical particulate systems. Generally, 

using carbon black/PVDF composite coatings was found to be more advantageous than 

addition of conductors (e.g. graphite) to composite cathodes, for all baseline materials. 

Overall, the best conductivity in each system studied was achieved by combination of 
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30% active material, 40% porosity, 7.5% graphite, 10.15% carbon black, and 12.35% 

PVDF. 

Neither surface nor bulk modifications of active material particles conductivities 

seem desirable targets for improvement of laminate conductivity, for the ranges of 

materials studied. Our simulation results showed that the differences among the highest 

normalized conductivities of each system were within one order in magnitude, while the 

conductivities of four active materials, spanned four orders of magnitude (5.91×10-1 to 

5.56×10-4 S/m). Even with only  a 10% volume fraction of coating (4.51% carbon black, 

5.49% PVDF) in cases of 50% porosity and 40% active material, the overall conductivity 

was increased by at least 14.9 S/m, a value 25 times larger than the bulk conductivity of 

the active material. An improvement of approximately three orders of magnitude in 

conductivity (PVDF/C: 7.6x102 S/m vs. LiFePO4: 5.91x10-1 S/m), of the active material 

would be required to offer substantial improvement in overall conductivity. 

As part of future work, the trade-off between conductivity and capacity will be 

considered. Next steps will include study of the effect of improved conductivity in the 

simulations of battery performance, in order to further optimize cathode design. 

 

POROUS CATHODE OPTIMIZATION FOR LITHIUM CELLS 

A method was presented to investigate relationships between ionic and electronic 

conductivity in the Li-ion battery cathode systems, and correlate the conductivity to 

specific energy, to improve cathode design. Cathode electrodes were optimized for best 

specific conductivity at a 3C rate. The highest specific energy, 323.5 Wh/kg, was 
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obtained by selection of 36.2% active material, 0% graphite, 10% PVDF/C, and 192.5 

µm cathode thickness. 

One key finding is that there is a trade-off between ionic and electronic 

conductivity, and neither best electronic nor ionic conductivity results in the best overall 

specific energy. Monotonically increasing electronic conductivity by adding more 

conductive additive particles is unnecessary, and actually reduces specific properties, 

since highly conductive surface coatings better provide improved conductivity through 

reduction of contact resistance. Also, compression of cathode systems in order to obtain 

higher electronic conductivity and theoretical capacity density, appears undesirable, in 

terms of specific energy for the ranges of materials studied. 

Generally, design rules for cathode electrodes of higher specific energy, also 

apply for design for higher utilization and specific power. To improve performance, it is 

important to consider the effect of cathode thickness and volume fraction of active 

material with regard to the ion transport, cathode capacity, and total mass of active 

material. Even though specific energy was set as the only objective function for the 

present research, both high utilization (0.88), and high specific power (1614 W/kg) were 

also achieved. 

We demonstrated the importance of cathode design and provided a baseline to 

optimize cathode composition with additives to obtain best specific energy. Our next step 

is to incorporate this technique with different materials to design high rate cells. 

 

AGGLOMERATION AND AGGRATION 
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A method including 3D model reconstruction, image analysis, and computer 

simulation was developed to identify factors important in agglomeration and aggregation 

of nanoparticles.  Our approach used probabilistic techniques, along with image analysis, 

rather than first physiochemical principles, to predict and analyze mechanisms of cluster 

formation.  Application of the model over a range of probabilities representing varying 

levels of Coulomb and van der Waals forces showed that Coulomb forces concentrated 

on the tip of particle clusters inevitably lead to formation of long chain-like shapes, 

creating branchy agglomerates.  Coulomb forces were also found to be responsible for 

greater variability in the shapes of clusters.  Particles tended to form more compact and 

smaller clusters when van der Waals forces dominated.  Our simulation results suggest 

that radius of gyration and main chain length are better parameters than aspect ratio to 

characterize the forces governing 3D cluster formation.  The simulation results also 

indicated that the clusters form self-structures under certain combinations of interactions.   

Agglomerates generated by combustion systems are 3D branchy structures, as 

shown using reconstruction methods combined with 2D TEM imaging.  Analysis of 2D 

TEM images using a single projection angle does not contain sufficient information to 

reconstruct the 3D shape of the combustion nanoparticle agglomerate.  Additionally, 2D 

projected images can lead to incorrect assumptions regarding the real cluster geometry. 

3D reconstruction models can provide information on the actual particle morphology and 

make direct comparison with simulation possible.  Comparisons among representative 

soot agglomerates and simulation results allowed validation of the approach, in 

identifying mechanisms important for cluster formation.  Specifically, the branchy 
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structures observed for the soot particles were attributable to strong Coulomb forces, with 

minimal van der Waals interactions.   

The approach demonstrated in this work combines experimental data, image 

reconstruction and semi-stochastic modeling, and is a powerful means to analyze particle 

clusters, providing new insight without high computational costs.  For example, this 

approach can be applied to provide new understanding such as what are the forces 

controlling the formation of highly ordered structures in flames, such as rods and 

whiskers, as opposed to fractal agglomerates and aggregates.  With greater resolution, 

this method may provide even higher level of detail such as the charge state of the 

nanoparticle clusters. Additionally, such methods can be the basis for developing 

predictive models for particle formation that can bridge the gap between detailed 

chemical modeling and nanoparticle interactions.  Moreover, semi-stochastic modeling 

provides critical information on particle shape. 

 

 




