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CHAPTER 1

Introduction

In this dissertation we investigate bootstrap and likelihood based methods

for constructing confidence intervals in some non-standard problems. The

non-standard problems studied include problems with non root-n convergence

(e.g., cube-root convergence,
√

n
log n

-rate of convergence), estimation problems

where the parameter is at the boundary, and study of non-smooth/abrupt-

change models.

An integral part of the statistical methodology investigated in the thesis

involves inference on non-parametric function estimation that obey shape re-

strictions, like monotonicity/convexity. Although the estimation of such shape

restricted functions has a long history in statistics, inference on these estimated

functions has been theoretically and practically a challenging exercise. The

pointwise limit distribution of the properly normalized (Wald-type) estimators

involve non-standard asymptotics and complex limits with nuisance parame-

ters that are difficult to estimate, thereby hindering the usefulness of these

estimators. We explore two natural alternatives for inference in this situation

– the use of likelihood ratio-type test statistics that give a nuisance parameter

free limit and the use of bootstrap methods. Most of the methodological and

theoretical contributions of the thesis has been motivated by applications in

1
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astronomy, high energy physics and epidemiology. We first give a brief preview

of the motivating applications.

1.1 A preview of some of the applications

Setting confidence bounds is an essential part of the reporting of experimen-

tal results. Current physics experiments are often done to measure bounded

parameters (that might be at the boundary), e.g., nonnegative parameters

that are small and may be zero, and to search for small signals in the presence

of backgrounds. Sometimes in such situations data is known a priori to be rel-

atively improbable for all parameter values under consideration, and classical

statistical procedures suggests a parameter estimate beyond the bound. We

consider some of the typical examples that arise in high energy physics and

propose methods of constructing confidence intervals for a finite-dimensional

parameter of interest in presence of nuisance parameters that have the correct

coverage and better finite sample properties.

In epidemiology, one often encounters data on time to infection/illness (e.g.,

HIV infection) gathered from a number of individuals over a period of time.

Each individual is followed up at the clinic for a random number of times

and the times of inspection are noted. The two successive observation times

within which the individual succumbed to infection/illness is recorded. We

are interested in estimating the distribution of the time to infection, which has

important medical consequences. We advocate the use of a pseudo-likelihood

ratio based method for constructing pointwise confidence bands around the

distribution function of the time to infection with such interval censored data.

Our method is computationally simple and avoids the need for estimating

nuisance parameters, a major problem which earlier methods had failed to
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resolve satisfactorily.

A major part of the thesis has been motivated by an astronomical applica-

tion - estimation of dark matter distribution in dwarf galaxies. An essential

component of the application involves estimation and inference on functions

that obey shape restrictions, like monotonicity/convexity. Bootstrap is prob-

ably the most commonly used inferential procedure in complex problems. We

study the performance of different bootstrap methods for inference in non-

parametric estimation of a monotone function.

Another feature of the astronomy application is that although our inter-

est lies in the three-dimensional distribution of position of stars in a galaxy,

we can only observe their two-dimensional projections. This gives rise to a

problem in stereology – the study of three-dimensional properties of objects

or matter usually observed two-dimensionally. We develop functions that cap-

ture the three-dimensional features of position under assumptions of spherical

symmetry, and estimate them by utilizing natural shape constraints. We find

the limit behavior of the estimators and study the consistency of bootstrap

methods for constructing pointwise confidence bands.

Whether a dwarf spheroidal galaxy is in equilibrium or being tidally dis-

rupted by the Milky Way is an important question for the study of its dark

matter content and distribution. There is conjecture that in some galaxies, like

Leo I, the stars in the outer halo experience streaming motion. This raises sev-

eral interesting statistical questions. Is streaming motion evident in Leo I? If

so, how can it be described and estimated? To what extent can it be described

by a threshold model, in which streaming motion is only present for stars a

sufficient distance from the center? We address these questions by modeling

the effect of streaming motion using isotonic methods and change-point type
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models.

1.2 Summary of the thesis: a statistical perspective

On the Unified method with nuisance parameter Construction of con-

fidence interval for a finite-dimensional parameter of interest in presence of

nuisance parameters is an old problem in statistics. But the classical methods

do not work well – the confidence intervals are drastically short – when the

parameter of interest is bounded and the data observed is a priori known to

be relatively improbable for all parameter values. Such situations occur quite

often in high energy physics. Feldman and Cousins (1998), in an influential

paper, showed how to construct confidence regions consisting of parameter

values with high relative likelihood with exact coverage probabilities in prob-

lems with moderate sample sizes and boundary effects, like a positive normal

mean or a Poisson rate that is known to exceed a background value, that are

of interest in high energy physics. In Chapter 2 we discuss a generalization of

the unified method by Feldman and Cousins (1998) with nuisance parameters.

We demonstrate our method with several examples that arise quite frequently

in high energy physics and astronomy. We also discuss the hybrid resampling

method of Chuang and Lai (1998, 2000) and implement it in some of the prob-

lems.

A pseudo-likelihood method for analyzing interval censored data In-

terval censoring is a type of censoring that has become increasingly common in

the areas that produce failure time data. In a mixed case model, an individual

is observed a random number of times, and at each time it is recorded whether

an “event” has happened or not. One seeks to estimate the distribution of time
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to event. Chapter 3 introduces a method based on a pseudo-likelihood ratio

for estimating the distribution function of the survival time in a mixed-case

interval censoring model. We use a Poisson process as the basis of a likelihood

function to construct a pseudo-likelihood ratio statistic for testing the value of

the distribution function at a fixed point. We show that the pseudo-likelihood

ratio statistic converges in distribution under the null hypothesis to a nuisance

parameter free limit. This family of hypotheses can be easily inverted to give

pointwise confidence intervals for the failure time distribution function. The

computation of the confidence sets is simple, requiring the use of the pool

adjacent violators algorithm, or a standard isotonic regression algorithm. We

also illustrate the superiority of the proposed method over competitors based

on resampling techniques or on the limit distribution of the maximum pseudo-

likelihood estimator, through simulation studies, and illustrate the different

methods on a data set involving time to HIV seroconversion in a group of

haemophiliacs.

Inconsistency of Bootstrap: the Grenander estimator A common method

of constructing confidence intervals in complex scenarios is to resort to boot-

strapping. In Chapter 4, we investigate the behavior of different bootstrap

methods with the Grenander estimator, the nonparametric maximum likeli-

hood estimator of a decreasing density on [0,∞), a prototypical example of

a shape restricted estimator that exhibits cube-root asymptotics. The non-

standard rate of convergence to a non-normal limit distribution makes the

conventional bootstrap methods a suspect in this situation. Our main re-

sults show the inconsistency of the conventional bootstrap methods; in fact,

we claim that the bootstrap estimate of the sampling distribution does not
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have any weak limit conditionally (given the data), in probability. We derived

sufficient conditions under which different bootstrap procedures will be consis-

tent. Our results have direct implications to estimators that exhibit cube-root

asymptotics – something we plan to explore in more detail in the future.

Bootstrap in the Wicksell’s problem We consider a stereological problem

like that of Wicksell (1925), that arises in astronomy in connection to dark

matter estimation. Let X = (X1, X2, X3) be a spherically symmetric random

vector of which only (X1, X2) can be observed. We focus attention on esti-

mating F , the distribution function of the squared radius Z := X2
1 +X2

2 +X2
3 ,

from a random sample of (X1, X2). The quantity of interest can be related

to functions that obey shape constraints. Using the assumption of spherical

symmetry, Chapter 5 defines natural estimators of the quantity of interest –

the distribution of the three-dimensional radius. We find limit distributions of

the estimators, that exhibit
√

n
log n

-rate of convergence to a normal distribu-

tion with unknown variance. We propose bootstrap based confidence intervals

for the estimators and prove the consistency of the procedure. Although the

asymptotics involved are non-standard, but the convergence to a normal dis-

tribution plays an important role in the consistency of bootstrap methods.

Streaming motion in Leo I galaxy There is preliminary evidence that in

some galaxies, like Leo I, the stars in the outer halo experience streaming

motion. The main goal of Chapter 6 is to model the effect of such a streaming

motion and make inference on the parameters that describe the model. We

focus our attention to understanding streaming motion in Leo I. We model

the effect of streaming motion, test hypothesis for significance, quantify the
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effect by estimating the parameters and give confidence intervals. We find

that although there is evidence of streaming, the significance is not conclusive.

We try to fit threshold models, in which streaming motion is only present for

stars at a sufficient distance from the center, and compute the estimates of

the threshold parameter and derive their limit distributions, under model mis-

specification. M-estimation techniques and estimation of monotone function

arise naturally in this context. Key results from the empirical process literature

are crucially used in deriving the limit distributions of the estimates of the

change points.



CHAPTER 2

On the Unified method with nuisance parameter

In this chapter we consider the problem of constructing confidence interval

for a finite-dimensional parameter of interest in presence of nuisance param-

eters. We discuss a generalization of the unified method by Feldman and

Cousins (1998) with nuisance parameters. We demonstrate our method with

several examples that arise quite frequently in high energy physics and astron-

omy. We also discuss the hybrid resampling method of Chuang and Lai (1998,

2000) and implement it in some of the problems.

2.1 Introduction

Confidence regions consisting of parameter values with high relative likeli-

hood have a long tradition with Statistics and have generated a large literature,

much of which emphasizes asymptotic calculations. See Reid (2003) for a re-

cent survey article and Reid and Fraser (2003) for a relevant application. In

an influential paper Feldman and Cousins (1998) showed how to implement

this construction with exact coverage probabilities in problems with moderate

sample sizes and boundary effects, like a positive normal mean or a Poisson

rate that is known to exceed a background value, that are of interest in high

energy physics. They called the construction the unified method because it

8
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makes a natural transition from an one-sided confidence bound to a two-sided

confidence interval. Only problems without nuisance parameters were consid-

ered in Feldman and Cousins (1998). Here we retain the interest in problems

with boundary effects and moderate sample sizes but focus on problems with

nuisance parameters in addition to the parameter of primary interest. We start

with describing the unified method of Feldman and Cousins (1998) applied to

the signal plus noise model arising in high energy physics.

2.1.1 The Signal plus Noise problem without nuisance parameters

The KARMEN group has been searching for a neutrino oscillation signal

reported by a Liquid Scintillating Neutrino Detector (LSDN) experiment. As

of Summer 1998, they had expected to see 2.88 ± 0.13 background (noise)

events and 1.0 − 1.5 signal events, if the LSND results were real, but they

have seen no events. From their analysis, they claimed to almost exclude the

effect claimed by the LSND experiment, a claim that was later criticized by

Roe and Woodroofe (1999, 2000). Attention here focusses on constructing a

confidence interval for the rate of signal event, adjusting for the uncertainty

in the background rate.

The background radiation is added to a signal producing a total observed

count N ; we assume N ∼ Poisson(b + θ). Here the background and signal

are assumed to be independent Poisson random variables, with mean b ≥ 0

(assumed to be known for the time being) and θ ≥ 0 respectively. Feldman

and Cousins (1998) proposed the unified approach which uses the likelihood

ratio statistic (LRS) as the ordering principle (to order the probable data val-

ues) and then computes a (1 − α) confidence region for θ based on the exact

distribution of the LRS. Mandelkern (2002) addressed the general question on
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setting confidence intervals for bounded parameters in the a review article,

which subsequently received much attention in the statistics community. Fur-

ther discussions on the unified approach and its drawbacks can be found in

Roe and Woodroofe (1999). Roe and Woodroofe (2000) used bayesian methods

with uniform priors in this problem, and investigated the frequentist properties

of the procedures.

2.1.2 The unified method with nuisance parameters

To describe the unified method and understand the issues, suppose that

a data vector X has a probability density (or mass function, in the discrete

case) fθ,η where θ is the parameter of interest and η is a nuisance parameter.

For example, if a mass θ is measured with normally distributed error with an

unknown standard deviation, then θ is of primary interest and the standard

deviation of the measurement is a nuisance. Let L denote the likelihood func-

tion, i.e., L(θ, η|x) = fθ,η(x); further, let η̂θ = η̂θ(x) be the value of η that

maximizes L(θ, η|x) for a fixed θ; let θ̂ = θ̂(x) and η̂ = η̂(x) be the values of θ

and η that maximize L(θ, η|x) over all allowable values; and let

(2.1) Λθ(x) =
L(θ, η̂θ(x)|x)

L(θ̂(x), η̂(x)|x)
.

Then unified confidence intervals consist of θ for which Λθ(x) ≥ cθ, where cθ

is a value whose computation is discussed below.

For a desired level of coverage 1 − α, a literal (and correct) interpretation

of “confidence” requires that Pθ,η[Λθ(X) ≥ cθ] ≥ 1 − α for all θ and η, where

Pθ,η denotes probability computed under the assumption that the parameter

values are θ and η. Equivalently it requires minη Pθ,η[Λθ(X) ≥ cθ] ≥ 1− α for
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each θ. Thus, cθ should be the largest value of c for which

(2.2) min
η

Pθ,η

[
Λθ(X) ≥ c

] ≥ 1− α.

For a fixed x, the confidence interval is then C(x) = {θ : Λθ(x) ≥ cθ}, and its

coverage probability

(2.3) Pθ,η

[
θ ∈ C(X)

]
= Pθ,η

[
Λθ(X) ≥ cθ

] ≥ 1− α,

by construction. Being likelihood based, unified confidence intervals are gen-

erally reliable, even optimal, in large samples, but not necessarily so in small

samples, and unified confidence intervals have been criticized in that context

– e.g., Roe and Woodroofe (1999, 2000).

In some simple cases, it is possible to compute cθ analytically. This is

illustrated in Section 2.2. In other cases, one can in principle proceed by

numerical calculation. This requires computing Pθ,η[Λθ(X) ≥ c] over a grid

of (θ, η, c) values, either by Monte-Carlo or numerical integration, and then

finding the cθ by inspection, replacing the minimum in (2.2) by the minimum

over the grid. This is feasible if η is known or absent and was done by Feldman

and Cousins in two important examples. But if η is present and unknown, then

numerical calculations become unwieldy, especially if η is a vector.

2.1.3 The Hybrid resampling method

One way to circumvent the unwieldy numerical problems, when η is present,

is to use the chi-squared approximation to the distribution of Λθ, as in Rolke,

W., López, A. and Conrad, J. (2005), or a chi-squared approximation sup-

plemented by a Bartlett correction. Another is to use the hybrid resam-

pling method of Chuang and Lai (1998, 2000). We generate random vari-

able X∗ from Pθ,η̂θ
and let c+

θ = c+
θ (x) be the largest value of c for which
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Pθ,η̂θ
[Λθ(X

∗) ≥ c] ≥ 1 − α. Then the hybrid confidence intervals consist of θ

for which Λθ(x) ≥ c+
θ . This requires computation over a grid of θ values, but

not over η for fixed θ. Unfortunately, relation (2.3) cannot be asserted for the

hybrid intervals, but Chuang and Lai argue both theoretically and by example

that it should be approximately true. In some cases the calculations can be

done by numerical integration, but they can always be done by simulation.

For a given x, generate independent X∗
1 , · · · , X∗

N (pseudo) random observa-

tions from the density fθ,η̂θ
; compute Λθ(X

∗
k) from (2.1) with x replaced by

X∗
k ; and let c∗θ be the largest value of c for which

(2.4)
#{k ≤ N : Λθ(X

∗
k) ≥ c}

N
≥ 1− α.

Here the left side of (2.4) provides a Monte Carlo estimate for Pθ,η̂θ
[Λθ(X

∗) ≥

c], and c∗θ provides an estimate of c+
θ .

The hybrid method resembles Efron’s bootstrap resampling method, but

differs in one important respect. For computing (2.2) for fixed θ, θ and η are

replaced by θ and η̂θ, as opposed to θ̂ and η̂. This is the origin of the term

“hybrid”. Evidence that the hybrid method is reliable – that is, that (2.3) is

approximately true comes from two sources, asymptotic approximations and

simulations. These are reported in Chuang and Lai (1998, 2000) and include

some dramatic successes. Here the method is applied to three examples of in-

terest to astronomers and physicists. The hybrid method has (independently)

been suggested in the physics literature by Feldman (2000).

2.2 Some Examples

In this section we describe the analytic computation of cθ based on Equa-

tion (2.2) in some problems of interest to high energy physics and astronomy.
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We start with constructing a confidence interval in a normal model for mean

θ ≥ 0 and unknown variance σ2 (where σ2 is the nuisance parameter). In

Sub-section 2.2.2 we work out the details of the method when the parameter

of interest is the angle between the mean vector of a bivariate normal popu-

lation. This example has applications in astronomy. The third example we

look at is a version of the “signal plus noise” problem that arises often in

high energy physics. We observe N ∼ Poisson(b + θ) and independently M ∼

Poisson(γb), where γ is a known constant, θ is the signal rate (the parameter

of interest) and b is the background rate (a nuisance parameter). The aim is

to construct a 1− α confidence interval for θ. We are not able to analytically

compute cθ for this example. The details are provided in Section 2.2.3. An

extension of this problem is treated in Section 2.2.4 with an application to

astronomy. With every “event” we also observe a random variable with distri-

bution depending on the type of “event” (signal event or background event).

We use the EM algorithm to maximize the likelihood of this mixture model.

We construct a 1 − α confidence interval for θ using the hybrid resampling

method. This generalization also arises in high energy physics.

2.2.1 The Normal Case

Suppose that X = (Y,W ), where Y and W are independent, Y is normally

distributed with mean θ ≥ 0 and variance σ2, and W/σ2 has a chi-squared

distribution with r degrees of freedom. For example, if data originally consists

of a sample Yi = θ+εi, i = 1, · · · , n, where εi’s are independent and identically

distributed N(0, σ2), then one can let Y = Ȳ and W = (n − 1)V 2/n where

Ȳ and V 2 denote the sample mean and variance of Y1, · · · , Yn. The unknown
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parameters here are θ ≥ 0 and σ2 > 0. Thus, the likelihood function is

L(θ, σ2|y, w) =
1√

2r+1πΓ(r/2)

w
1
2
r−1

σr+1
exp

{
− 1

2σ2
[(y − θ)2 + w]

}
.

For a given θ, L is maximized by

σ̂2
θ =

1

r + 1

[
w + (y − θ)2

]
;

and L is maximized with respect to θ and σ2 jointly by θ̂ = max[0, y] = y+,

say, and

σ̂2 =
1

r + 1

[
w + (y−)2

]
,

where y− = −min[0, y]. After some simple algebra,

log[Λθ] = −1

2
(r + 1) log(

σ̂2
θ

σ̂2
) = −1

2
(r + 1) log

[
W + (Y − θ)2

W + (Y−)2

]
.

Let

U =
W

σ2
and Z =

Y − θ

σ
.

Then U and Z are independent random variables for which U ∼ χ2
r and

Z ∼ Normal(0, 1), and

log[Λθ] = −1

2
(r + 1) log

[
U + Z2

U + [(Z + θ/σ)−]2

]
.

This is an increasing function of σ for each θ > 0. So, since the joint distribu-

tion of U and Z does not depend on parameters,

min
σ>0

Pθ,σ

[
Λθ ≥ c

]
= lim

σ→0
Pθ,σ

[
Λθ ≥ c

]
= P

[
−1

2
(r + 1) log

(
1 +

T 2

r

) ≥ log(c)

]
,

where T = Z√
U/r

has t-distribution with r degrees of freedom. Thus the desired

c is

c = exp
{
− 1

2
(r + 1) log

[
1 +

t2
r,1− 1

2
α

r

]}
,

where tr,1− 1
2
α is the 1 − 1

2
α percentile of the latter distribution and is inde-

pendent of θ. To find the confidence intervals, one must solve the inequality
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Figure 2.1: Confidence limits for θ/s as a function of y/s when r = 10 and α = 0.1. Observe

that the upper limit starts to increase as y decreases for y < 0.

Λθ ≥ c for θ. Letting s2 = W/r, this may be written

1 + (y − θ)2/(rs2)

1 + y2−/(rs2)
≤ 1 +

t2
r,1− 1

2
α

r
,

or

(2.5) [y − bs]+ ≤ θ ≤ y + bs,

where

(2.6) b =

√√√√t2
r,1− 1

2
α

+
y2−
s2

(
1 +

t2
r,1− 1

2
α

r

)
.

Thus, if y > 0, then the unified intervals are just the usual t-intervals, trun-

cated to non-negative values; and if y > bs, then they are symmetric about

y. This differs from the case of known σ, where the intervals are (slightly)

asymmetric, even for large y. There is a more dramatic difference with the

case of known σ for y < 0. Observe that for y < 0,

y + bs ≥ s

√√√√y2

s2

(
1 +

t2
r,1− 1

2
α

r

)
− |y|

s
= |y|





√

1 +
t2
r,1− 1

2
α

r
− 1



 .
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So the upper confidence limit approaches +∞ as y → −∞, unlike the case of

known σ where it approaches 0. Mandelkern (2002) found the latter behavior

non-intuitive. If we let r → ∞ and s2 → σ2, then we do not recover the

intervals of Feldman and Cousins with known σ2. Rather, we get the interval

(2.5) with the t-percentile replaced by the corresponding normal percentile.

Observe that the confidence limits for θ may be written as [y/s − b]+ ≤
θ/s ≤ y/s + b. Figure 2.1 shows these upper and lower confidence limits

for θ/s as a function of y/s for r = 10 and α = .10. For a specific ex-

ample, suppose that r = 10, s = 1, y = −.30 and α = .10. Then b =

√
(1.812)2 + (.3)2{1 + (1.812)2/10} = 1.84, and the interval is 0 ≤ θ ≤ 1.54.

The hybrid method yields 0 ≤ θ ≤ 1.14 in this example. The details are omit-

ted here, but an example using the hybrid method is included in Section 4.

2.2.2 Angles

In Astronomy, “proper motion” refers to the angular velocity of an object

in the plane perpendicular to the line of sight. An object’s proper motion is

given by X = (X1, X2), where X1 and X2 are orthogonal components and

are measured independently. In certain applications astronomers are more

concerned with the direction than the magnitude of the proper motion vec-

tor. An example is the motion of a satellite galaxy whose stellar orbits may

be disrupted by the tidal influence exerted by a larger parent system. Due to

outward streaming of its stars, a disrupting satellite will elongate spatially and

exhibit a radial velocity gradient along the direction of elongation. N-body

simulations indicate that the orientations of both the elongation and velocity

gradient correlate with the direction of the satellite’s proper motion vector
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(e.g., Oh et al., 1995; Piatek & Pryor, 1995). Constraining the direction of the

satellite’s proper motion can therefore help determine whether or not a satel-

lite is undergoing disruption, which in turn places constraints on applicable

dynamical models.

Suppose X1 and X2 are normally distributed random variables with un-

known means µ1 and µ2 and known variance σ2. Write µ1 and µ2 in polar

coordinates, µ1 = ρ cos(θ) and µ2 = ρ sin(θ), where −π < θ ≤ π. We consider

confidence intervals for θ when ρ is the nuisance parameter.

In this example, the likelihood function,

L(θ, ρ|x) =
1

2πσ2
exp

{
− 1

2σ2

[
(x1 − ρ cos(θ))2 + (x2 − ρ sin(θ))2

]}
,

is maximized for a fixed θ by ρ̂θ = max[0, x1 cos(θ) + x2 sin(θ)] and un-

conditionally by ρ̂ and θ̂, where x1 = ρ̂ cos(θ̂) and x2 = ρ̂ sin(θ̂). Then

L(θ̂, ρ̂|x) = 1/(2πσ2), and

Λθ = exp
[− 1

2σ2
(ρ̂2 − ρ̂2

θ)
]
.

Let

Z1 =
1

σ

[
cos(θ)X1 + sin(θ)X2 − ρ

]
,

Z2 =
1

σ

[
sin(θ)X1 − cos(θ)X2

]
.

Then Z1 and Z2 are independent normal variables (both) with the same mean

0 and unit variance, and

Λθ = exp
{− 1

2
[(Z1 + ρ)2

− + Z2
2 ]

}
,

where (recall) z− = −min[0, z], after some simple algebra. Thus, Λθ is an

increasing function of ρ for fixed Z1, Z2, and θ. So, since the joint distribution
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of Z1 and Z1 do not depend on parameters

min
ρ

Pθ,ρ

[
Λθ ≥ c

]
= lim

ρ→0
Pθ,ρ

[
Λθ ≥ c

]
.

Letting b = −2 log(c), this is just

P
[
Z2

1,− + Z2
2 ≤ b

]
= P

[
Z1 ≤ 0, Z2

1 + Z2
2 ≤ b

]
+ P

[
Z1 > 0, Z2

2 ≤ b
]

=
1

2
P [χ2

1 ≤ b] +
1

2
P [χ2

2 ≤ b].

So, c = e−b/2, where b solves 1
2
P [χ2

1 ≤ b] + 1
2
P [χ2

2 ≤ b] = 1− α. For example,

when α = .90, b = 3.808.

Unified confidence intervals for θ then consist of θ for which ρ̂2 − ρ̂2
θ ≤ bσ2,

or equivalently ρ̂2
θ ≥ ρ̂2 − bσ2. Thus, if ρ̂2 ≤ bσ2, then the interval consists of

all values −π < θ ≤ π. On one hand, this simply reflects the (obvious) fact

that if ρ̂ is small, then there is no reliable information for estimating θ, but it

also admits the following amusing paraphrase: One is 100(1 − α)% confident

of something that is certain. If ρ̂2 > bσ2, then the intervals consist of θ for

which ρ̂ cos(θ − θ̂) ≥
√

ρ̂2 − bσ2; that is

θ̂ − arccos(

√
1− bσ2

ρ̂2
) ≤ θ ≤ θ̂ + arccos(

√
1− bσ2

ρ̂2
),

where arccos(y) is the unique ω for which 0 ≤ ω ≤ π and cos(ω) = y and

addition is understood modulo π. Thus, there is a discontinuity in the length

of the intervals as ρ̂ passes through bσ2: It decreases from 2π to something

less than π.

Piatek et al. (2002) measured the Galactic rest-frame proper motion of

the Fornax galaxy to be (X1, X2) = (32, 33) with σ = 13 (units are in milli-

arcseconds per century). Later on Dinescu et al. (2004) made a similar mea-

surement but observed (X1, X2) = (−13, 34) with σ = 16. We use our method

to construct a 90% confidence interval for the direction θ in the two cases.
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The intervals obtained are (0.2219, 1.4119) for the Piatek et al. angle and

(0.9051, 2.9669) for the Dinescu et al. angle (where θ is measured in radians).

Note that the Piatek et al. measurement places a tighter constraint on the

proper motion direction, and that there is some overlap with the Dinescu et

al. result.

2.2.3 Counts with Background

Suppose that X = (N, M) where N and M are independent, M has the

Poisson distribution with mean γb, and N has the Poisson distribution with

mean b + θ. It is useful to write N = B + S where B and S are independent

Poisson random variables with means b and θ, representing the number of

background and signal events. Here b and θ are unknown; γ is assumed known

and large values of γ are of interest. In this case, the likelihood function and

score functions are

L(θ, b|n,m) = fθ,b(n,m) =
(γb)m

m!
e−γb × (θ + b)n

n!
e−(θ+b),

∂ log(L)

∂θ
=

n

b + θ
− 1,

and

∂ log(L)

∂b
=

m

b
+

n

θ + b
− (γ + 1).

Consider b̂θ for a fixed θ. If m = 0, then L is maximized when b = [n/(γ +

1)−θ]+; and if m > 0 it is maximized at the (positive) solution to ∂ log(L)/∂b =

0, i.e.,

(2.7) b̂θ =
[(m + n)− (γ + 1)θ] +

√
[(γ + 1)θ − (m + n)]2 + 4(γ + 1)mθ

2(γ + 1)
;

and fortuitously, (2.7) also gives the correct answer when m = 0. The uncon-

strained maximum likelihood estimators may then be found as θ̂ and b̂ = b̂θ̂,
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Figure 2.2: Plot of Λθ (smooth line) and cθ (jagged line) against θ when γ = 6,m = 23,

n = 0 and α = 0.10.

where θ̂ maximizes the profile likelihood function L(θ, b̂θ|n,m). Considering

the cases n ≤ m/γ and n > m/γ separately, shows that

θ̂ =
(
n− m

γ

)
+

and

b̂ =
m + n− θ̂

γ + 1
.

So,

Λθ(n,m) = (
b̂θ

b̂
)m(

θ + b̂θ

θ̂ + b̂
)n exp

[
(n + m)− (γ + 1)b̂θ − θ

]
,

after some simple algebra.

We have been unable to find the minimizing value in (2.2) and, so, will

use the Hybrid Resampling Method. This is best illustrated by an example.

Figure 2.2 below shows Λθ and cθ for an example in which γ = 6,m = 23, n = 0

and α = 0.10. This is patterned after the original KARMEN report Eitel, K.

and Zeitnitz, B. (1998), but with a larger value of b̂ and more variability in
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b̂. The c∗θ was computed by Monte Carlo on the grid θ = 0, 0.01, 0.02, . . . , 2.50

using N = 10, 000 in (2.4). The right end-point of the interval is 0.82.

By construction, the hybrid-unified method always delivers non-degenerate

subinterval of [0,∞), even when n = 0, and, thus, avoids the types of problems

reported in Rolke, W., López, A. and Conrad, J. (2005). It does not avoid the

problems inherent in the use of the unified method without nuisance parame-

ters, however – for example, dependence of the interval on b̂ when n = 0. We

believe that the interval [0, 2.31] is a more reasonable statement of the uncer-

tainty in this example. Briefly, [0, 2.31] would be the uniformly most accurate

90% confidence interval if S = 0 were observed; and if N = 0, then B = S = 0.

2.2.4 The star contamination problem

In studying external (to the Milky Way) galaxies, one can measure only

two of the three (those orthogonal to the line of sight) components of stellar

position and one (along the line of sight, from redshift of spectral features)

of the three components of stellar velocity. Because the line of sight neces-

sarily originates within the Milky Way, velocity samples for distant galaxies

frequently suffer from contamination by foreground Milky Way stars. It is

important to accurately identify and remove sample contamination. The most

common procedure for membership determination involves fitting a normal

distribution to the marginal velocity distribution of all observed stars, then

iteratively rejecting outliers beyond a specified (∼ 3σ) threshold. However,

this is of limited utility when the velocity distributions of target galaxy and

contaminant stars overlap. Also, the trimming of outliers from an imposed

distribution introduces a degree of circularity to the analysis, as it is the tar-
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Figure 2.3: Left: Heliocentric radial velocities (RV) vs. angular distance from the Sextans

center. Dotted, short-dashed, and long-dashed lines mark boundaries of 276, 294

and 303 member samples, respectively. Right: Histogram of the radial velocity

of the stars.

get galaxy’s velocity distribution that is under investigation. We consider

results from a velocity survey of the Sextans dwarf spheroidal galaxy (see

Walker et al. 2006). The unfiltered marginal velocity distribution of the 528

observed stars displays evidence of significant contamination by Milky Way

foreground stars (see Figure 2.3). For the i’th star we consider the measure-

ments (X1i, X2i, U3i, σi), where (X1i, X2i) is the projected position of the star,

U3i is the observed line-of-sight velocity, and σi is the error associated with the

measurement of U3i. In this section we develop a method of addressing sample

contamination that incorporates a model of the contaminant distribution. We

would like to estimate the number of “signal” (Sextans) stars and construct

a 1 − α confidence interval. Our algorithm also outputs, for each observed

star, an estimate of the probability that the star belongs to the contaminant

population. These probability estimates can be used as weights in subsequent

analysis. See Walker et al. (2008) for applications of this algorithm on data

from other dwarf galaxies.
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The Statistical Model

We assign parametric distributions to the positions and velocities of the

stars; the parametric models are derived from the underlying physics in most

cases. The EM algorithm is then employed to find MLE’s estimates of the

unknown parameters. The method is described in the context of available

data, but can be generalized to incorporate membership constraints provided

by additional data (such as multi-color photometry data).

Suppose N ∼ Poi(b+θ) is the number of stars observed using the telescope

in a given amount of time. In our case we observe N = 528. Here θ denotes

the rate for observing a signal star, i.e., a Sextans star. We assume that the

foreground rate is b. We are interested in constructing a 1 − α CI for θ. The

actual line of sight velocity for the i’th star will be denoted by V3i. Let U3i

be the observed velocity; the true velocity plus a normally-distributed error.

We assume that U3i = V3i + εi, where the εi ∼ N(0, σ2
i ) and εi’s are assumed

independent. Let Yi be the indicator of a foreground star, i.e., Yi = 1 if the

i’th star is a foreground star, and Yi = 0 otherwise. Of course, we do not

observe Yi. We need to make assumptions on the form of the joint density of

Wi = (X1i, X2i, U3i).

For the foreground stars (i.e., Yi = 1) it might be reasonable to assume that

the position (X1i, X2i) and velocity U3i are independent. Then the joint density

of Wi simplifies to hb(w) = f (b)(x1, x2)g
(b)(u3), where we take the position

of the star as uniformly distributed in the field of view, i.e., f (b)(x1, x2) =

1
πM2 , and M is the radius of field of view (in our data set it is 35 arc min).

Note that U3i ∼ g(b)(·), where g(b) is a completely known density obtained

from the Besancon Milky Way model (Robin et al. 2003), which specifies
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spatial and velocity distributions of Milky Way stars along a given line of sight.

The density estimate g(b)(·) was constructed using kernel density estimation

techniques.

For the Sextans stars, there is a well known model in Astronomy for the dis-

tribution of the projected position of stars. The model assumes f (s)(x1, x2) =

K(h)e−s/h, 0 ≤ s2 = x2
1 + x2

2 ≤ M2, where K(h)−1 = 2πh2{1− (M/h)e−M/h −
e−M/h} is the normalizing constant (M is the radius of field of view). The

distribution of U3i given the position is assumed to be normal with mean µ

and variance σ2 + σ2
i and its density is denoted by g(s)(·). Thus, the joint

density of Wi given that it is a signal star is hs,i(w) = f (s)(x1, x2)g
(s)(u3).

CI for θ: the number of “signal” stars

The likelihood for the observed data is

(2.8) L(θ, η) = e−(b+θ) (b + θ)N

N !

N∏
i=1

(
bhb(Wi) + θhs,i(Wi)

b + θ

)

which is a essentially a mixture density problem. A simple application of the

EM algorithm (details are provided in the appendix) yields the MLE’s in this

scenario. The hybrid resampling method can be used to construct a confidence

region for θ.

The likelihood ratio statistic is defined as in (2.1) and can be computed

for each θ. The hybrid resampling method was employed to find the c+
θ as

described in the introduction. Varying θ, we get a confidence interval for θ. In

our example, the 90% confidence interval turns out to be (260.3, 318.4). Note

that if b was known and with θ̂ ≈ 290 (the maximum likelihood estimate of θ),

a 90% CI using frequentist method (obtained by intersecting uniformly most

accurate 95% confidence lower and upper bounds) would be (261.7, 318.4).
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This shows that the hybrid method works almost as well as the most optimal

frequentist confidence region, even when b is unknown.

2.3 Appendix

We outline the implementation of the EM-algorithm described in the last

section, to find the the unconstrained maximum of the observed (incomplete)

data. The constrained maximization is very similar (in fact, a bit simpler).

Recall our notation,

Yi =





1 if the i’th star is a foreground star

0 o.w.
, ∀i = 1, 2, . . . , N

Note that Yi’s are i.i.d. Bernoulli ( b
b+θ

). Let Z = (X1,X2,U,Y, N) be the

complete data matrix. The likelihood for the complete data can be written as

L̃(θ, η|Z) = e−(b+θ) (b + θ)N

N !

{
N∏

i=1

(
b

b + θ
)Yi(

θ

b + θ
)1−Yihb(Wi)

Yihs,i(Wi)
1−Yi

}
.

The log-likelihood (up to a constant term) can be written as

l̃(θ, η|Z) = −(b + θ) +
N∑

i=1

{Yi log(bhb(Wi)) + (1− Yi) log(θhs,i(Wi))} .

Letting θn and ηn denote the parameter values obtained in the n’th step of the

iteration, the E-step in the unconstrained maximization process evaluates

Eθ̂n,η̂n

(
l̃(η|Z)|W

)
=

N∑
i=1

Pθ̂n,η̂n
(Yi = 1|W) log[bhb(Wi)]

+
N∑

i=1

Pθ̂n,η̂n
(Yi = 0|W) log[θhs,i(Wi)]− (b + θ)(2.9)

where Pθ̂n,η̂n
(Yi = 1|W) = b̂nhb(Wi)

b̂nhb(Wi)+θ̂nhs,i(Wi)
is the probability of a foreground

star given the data under the current estimates of θ and η, i.e., θn and ηn. The
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M-step maximizes (2.9), which leads to the following estimating equations:

1

b

N∑
i=1

Pθ̂n,η̂n
(Yi = 1|W)− 1 = 0,

1

θ

N∑
i=1

Pθ̂n,η̂n
(Yi = 0|W)− 1 = 0,

N∑
i=1

Pθ̂n,η̂n
(Yi = 0|W)

{
1

σ2 + σ2
i

(U3i − µ)

}
= 0,

N∑
i=1

Pθ̂n,η̂n
(Yi = 0|W)

{
(U3i − µ)2

2(σ2 + σ2
i )

2
− 1

2(σ2 + σ2
i )

}
= 0.

The first two equations can be solved easily to give estimates b̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi =

1|W) and θ̂n+1 =
∑N

i=1 Pθ̂n,η̂n
(Yi = 0|W). The last two equations can be

slightly modified to give the following (closed form) estimates of µ and σ2:

µ̂n+1 =

∑N
i=1

Pθ̂n,η̂n
(Yi=0|W)

1+σ2
i /σ̂2

(n)

U3i

∑N
i=1

Pθ̂n,η̂n
(Yi=0|W)

1+σ2
i /σ̂2

(n)

and σ̂2
(n+1) =

∑N
i=1

Pθ̂n,η̂n
(Yi=0|W)

(1+σ2
i /σ̂2

(n)
)2

(U3i − µ̂n+1)
2

∑N
i=1

Pθ̂n,η̂n
(Yi=0|W)

1+σ2
i /σ̂2

(n)

where σ̂2
(n) is the n’th step estimate of σ2. These estimates (η̂n) stabilize after a

few iterations yielding the MLE’s of η with the incomplete data. An interesting

feature of this solution is that at the end of the algorithm we get estimated

probabilities that the i’th star is a signal star, namely, Pθ̂n,η̂n
(Yi = 1|W).



CHAPTER 3

A pseudo-likelihood method for analyzing interval

censored data

We introduce a method based on a pseudo-likelihood ratio for estimating

the distribution function of the survival time in a mixed-case interval censoring

model. In a mixed case model, an individual is observed a random number

of times, and at each time it is recorded whether an event has happened

or not. One seeks to estimate the distribution of time to event. We use a

Poisson process as the basis of a likelihood function to construct a pseudo-

likelihood ratio statistic for testing the value of the distribution function at

a fixed point, and show that this converges under the null hypothesis to a

known limit distribution, that can be expressed as a functional of different

convex minorants of a two-sided Brownian motion process with parabolic drift.

Construction of confidence sets then proceeds by standard inversion. The

computation of the confidence sets is simple, requiring the use of the pool

adjacent violators algorithm, or a standard isotonic regression algorithm. We

also illustrate the superiority of the proposed method over competitors based

on resampling techniques or on the limit distribution of the maximum pseudo-

likelihood estimator, through simulation studies, and illustrate the different

27
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methods on a data set involving time to HIV seroconversion in a group of

haemophiliacs.

3.1 Introduction

For an interval censored observation, one only knows a window, that is, an

interval, within which the survival event (time to infection/illness) occurred.

Interval-censored failure time data occur in many areas including demography,

epidemiology, financial, medical and sociological studies. In the mixed–case in-

terval censoring model each individual is followed up at the clinic for a number

of times, where this number and the times of inspection themselves can vary

from individual to individual. It is determined between which two successive

observation times the individual succumbed to infection/illness. It is of course

possible that infection/illness may not occur by the last follow up time. The

term “mixed–case” is used to indicate that the number of inspection times

is patient specific, and was first used by Schick and Yu (2000). Our interest

lies in constructing confidence sets for F , the distribution function of time to

infection/illness (failure time).

3.1.1 Current status data

The simplest form of mixed–case censoring is current status data, where the

number of observation times for each patient is exactly one; see for example,

Groeneboom and Wellner (1992), Jewell and van der Laan (1995), Shiboski

(1998), Banerjee and Wellner (2001, 2005) and Jewell et. al. (2003). In this

model, the distribution of the indicator of time to infection/illness (failure

time) S, conditional on the single inspection time U , is a Bernoulli random

variable. Our data consists of the pair (δ, U), where δ = 1{S ≤ U} is the
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indicator whether the “event” occurred before or after U . Note that this is

different from the right-censorship model, as we are never able to observe the

exact value of the survival time. Suppose that we have data available on n in-

dependent subjects {(δi, Ui)}n
i=1. Let Si’s denote the unobserved survival times

of interest with distribution function F and assume that Ui is independent of

Si. Then the likelihood function has the form

L(F ) =
n∏

i=1

F (Ui)
δi{1− F (Ui)}1−δi .

The above likelihood can be maximized over all distribution functions F (iden-

tified only at the Ui’s) to give the nonparametric maximum likelihood estimate

(NPMLE) F̂n. The NPMLE is readily computable using appropriately modi-

fied versions of the pool adjacent violators algorithm (Robertson et. al., 1988).

It can be shown that pointwise F̂n is a strongly consistent estimator of F and

that F̂n − F converges to a non-normal distribution (scaled Chernoff’s distri-

bution) at rate n1/3.

3.1.2 Mixed case interval censoring

In mixed case interval censoring, the i’th individual with failure time Si is

observed at the random (ordered) time points 0 < Yi,1 < Yi,2 < . . . < Yi,ni
, and

it is recorded in which interval the individual succumbed to illness/infection.

Under the assumption of independence between the observation times and the

failure time, a similar likelihood analysis can be carried out to obtain the

NPMLE of F , the distribution function of time to infection/illness.

In the current status model, the computations are based on explicit rep-

resentations of the maximum likelihood estimates in terms of the given data

and do not involve iterative schemes. However, maximization of the likelihood
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function in the mixed–case setting is much more complex and requires sophis-

ticated optimization techniques. The EM can be employed but is extremely

slow (Jongbloed, 1998); a faster algorithm is the modified iterative convex mi-

norant algorithm of Jongbloed (1998), based on the Kuhn–Tucker conditions

associated with the maximization problem. However, both methods involve

iterating till convergence, and can therefore be quite slow. Alternative meth-

ods for computing nonparametric maximum likelihood estimators for interval

censored data have been developed by Vandal et. al. (2005) using graph the-

oretic representations of the unconstrained and constrained estimators. These

involve reduction techniques as well as versions of the EM algorithm and the

Vertex Exchange Method. It is not known how these methods compare to the

modified iterative convex minorant algorithm in terms of speed.

Banerjee and Wellner (2001) showed that in the current status model the

likelihood ratio statistic for testing a pointwise hypothesis of the type H0 :

F (t0) = θ0 for some pre-specified point t0, is asymptotically pivotal under H0.

This immediately provides a way of constructing pointwise confidence bands

for F by standard inversion of the likelihood ratio statistic, with the critical

values determined by the quantiles of the limiting pivotal distribution. While

this result is, in principle, generalizable to mixed–case interval censoring, deal-

ing with the likelihood function in the mixed–case model is considerably more

difficult, at both a theoretical and a computational level. Only partial results,

in fairly restrictive settings, exist thus far, about the limiting behavior of the

nonparametric maximum likelihood estimator; consequently, the limiting be-

havior of the likelihood ratio statistic for testing a pointwise null hypothesis is

not tractable either; see for example Groeneboom (1996), where the asymp-

totics of the behavior of the nonparametric maximum likelihood estimator of
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F in a particular version of the Case 2 censoring model is established, and

Song (2004), where estimation procedures for mixed–case censoring models

and associated issues are presented.

3.1.3 Our approach

We think of mixed-case interval censored data as data on a one-jump count-

ing process with counts available only at the inspection times and to use a

pseudo-likelihood function based on the marginal likelihood of a Poisson pro-

cess to construct a pseudo-likelihood ratio statistic for testing null hypotheses

of the form H0 : F (t0) = θ0. We show that under such a null hypothesis

the statistic converges to a pivotal quantity. This result can now be used to

construct confidence intervals for F (t0). The pseudo–likelihood method that

we adopt is based on an estimator originally proposed by Sun and Kalbfleisch

(1995) whose asymptotic properties, under appropriate regularity conditions,

were studied in Wellner and Zhang (2000). Indeed, our key result in Sec-

tion 3.2 draws freely on the work of Wellner and Zhang (2000) and our point

of view here, the fact that the interval censoring situation can be thought

of as a one-jump counting process to which, consequently, the results on the

pseudo-likelihood based estimators can be applied, is motivated by their work.

That said, our likelihood-ratio approach for computing confidence intervals

has major advantages over the Wald type intervals that can be derived from

their work.
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3.2 A pseudo-likelihood method for analyzing mixed–case interval

censored data

3.2.1 Notation

We now introduce the stochastic processes and derived functionals that are

needed to describe the asymptotic distributions. For a real–valued function f

defined on R, let slogcm(f, I) denote the left–hand slope of the greatest convex

minorant of the restriction of f to the interval I. We abbreviate slogcm(f,R)

to slogcm(f). Also define

slogcm0(f) = {slogcm (f, (−∞, 0])∧ 0} 1(−∞,0] +[slogcm {f, (0,∞)}∨ 0]1(0,∞) .

For positive constants c and d define the process Xc,d(z) = cW (z) + d z2,

where W (z) is standard two-sided Brownian motion starting from 0. Set

gc,d = slogcm(Xc,d) and g0
c,d = slogcm0 (Xc,d). It is known that gc,d is a

piecewise-constant increasing function, with finitely many jumps in any com-

pact interval. The function g0
c,d, has the same characteristics and differs, almost

surely, from gc,d on a finite interval containing 0. In fact, with probability 1,

g0
c,d is identically 0 in some random neighborhood of 0, whereas gc,d is almost

surely nonzero in some random neighborhood of 0. Also, the length of the in-

terval Dc,d on which gc,d and g0
c,d differ is Op(1). For more detailed descriptions

of the processes gc,d and g0
c,d, see Banerjee and Wellner (2001), Wellner (2003),

and Banerjee (2000). Thus, g1,1 and g0
1,1 are the unconstrained and constrained

versions of the slope processes associated with the canonical process X1,1(z).

By Brownian scaling, the slope processes gc,d and g0
c,d can be related in distri-

bution to the canonical slope processes g1,1 and g0
1,1. This leads to the following

lemma.
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Lemma 3.1. For positive a and b, set

Da,b =

∫ [{ga,b(u)}2 − {g0
a,b(u)}2

]
du

and abbreviate D1,1 to D. Then Da,b has the same distribution as a2D.

This is proved in Chapter 3 of Banerjee (2000); alternatively, see Banerjee

and Wellner (2001).

3.2.2 The pseudo-likelihood estimator

We describe our method more broadly in the context of a counting process

and then specialize to the interval censoring situation. Suppose that N =

{N(t) : t ≥ 0} is a counting process with mean function E N(t) = Λ(t), K is

an integer-valued random variable and T = {Tk,j, j = 1, . . . , k, k = 1, 2, . . .} is

a triangular array of potential observation times. It is assumed that N and

(K, T ) are independent, that K and T are independent and Tk,j−1 ≤ Tk,j for

j = 1, . . . , k, for every k; we interpret Tk,0 as 0. Let X = (NK , TK , K) be

the observed random vector for an individual. Here K is the number of times

that the individual was observed during a study, TK,1 ≤ TK,2 ≤ . . . ≤ TK,K

are the times when they were observed and NK = {NK,j ≡ N(TK,j)}K
j=1 are

the observed counts at those times. The above scenario specializes easily to

the mixed–case interval censoring model, when the counting process is N(t) =

1(S ≤ t), S being a positive random variable with distribution function F and

independent of (T, K).

Suppose that we have data on n individuals; thus, we observe n indepen-

dent and identically distributed copies of X, say X = (X1, X2, . . . , Xn) where

Xi = (N
(i)
Ki

, T
(i)
Ki

, Ki), i = 1, . . . , n. Here (N (i), T (i), Ki), i = 1, 2, . . . , are the

underlying independent and identically distributed copies of (N, T, K). We
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are interested in estimating the mean function Λ(t) at a pre-specified point of

interest t0. Based on our data, we can construct a pseudo-likelihood estimator,

in the following manner. Pretend that the process N(t) is a nonhomogeneous

Poisson process. Then the marginal distribution of N(t) is

pr {N(t) = k} = exp {−Λ(t)} Λk(t)

k!
, k = 0, 1, 2, . . . , .

Note that, under the Poisson process assumption, the successive counts on an

individual (NK,1, NK,2, . . .), conditional on the TK,j’s, are actually dependent.

However we choose to ignore the dependence in writing down a likelihood

function for the data, conditional on the T (i)’s and the Ki’s. These do not

involve Λ and hence will not contribute to the estimation procedure. Our

likelihood function is

Lps

n (Λ | X) =
n∏

i=1

Ki∏
j=1

exp{−Λ(T
(i)
Ki,j

)} Λ(T
(i)
Ki,j

)N
(i)
Ki,j

N
(i)
Ki,j

!
.

Thus, the log-likelihood function, up to an additive constant not depending

upon the parameter, is given by

lps

n (Λ | X) =
n∑

i=1

Ki∑
j=1

{
N

(i)
Ki,j

log Λ(T
(i)
Ki,j

)− Λ(T
(i)
Ki,j

)
}

.

The above log-likelihood can be written in a slightly neater way, as follows:

Let T(1) < T(2) < . . . < T(M) denote the ordered distinct observation times in

the set of all observation time points {T (i)
Ki,j

, j = 1, . . . , Ki, i = 1, . . . , n}. For

1 ≤ l ≤ M , define

wl =
n∑

i=1

Ki∑
j=1

1 {T (i)
Ki,j

= T(l)} , N l =
1

wl

n∑
i=1

Ki∑
j=1

N
(i)
Ki,j

1 {T (i)
Ki,j

= T(l)} .

Thus wl is the frequency of the l’th largest observation time in the sample

and wl N l is the total number of events that happened by the lth largest time.
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Writing Λ(T(l)) as Λl, for convenience, we can represent the log-likelihood as

(3.1) lps

n (Λ | X) =
M∑

l=1

(
wl N l log Λl − wl Λl

)
.

We define the nonparametric estimator Λ̂n of Λ to be the unique nondecreasing

right–continuous step-function with possible jumps only occurring at the T(i)’s,

such that the above expression is maximized. Of course, only Λ1, . . . , ΛM are

identifiable; the choice of Λ̂n made above is arbitrary. Other conventions are

possible, but will make no difference to the asymptotics. Thus, Λ̂n, which we

will subsequently refer to as Λ̂ for convenience, is the unconstrained maximum

pseudo-likelihood estimator. The constrained estimator Λ̂
(0)
n , to be referred to

subsequently as Λ̂(0), is defined to be the unique nondecreasing step-function

with possible jumps only at the T(i)’s and at t0, that maximizes (3.1) subject

to the additional constraint that Λ(t0) = θ0. Using the theory of generalized

isotonic regression (Robertson et. al., 1988, Section 1.5), or by appealing to

the Kuhn-Tucker theorem (Robertson et. al., 1988, Section 6.4), we can show

that Λ̂(T(i)) is f̂i, where (f̂1, . . . , f̂M) minimizes
∑M

i=1 wi (gi − fi)
2 over all

f1 ≤ . . . ≤ fM , with gi ≡ N i and wi as defined above. Also, Λ̂(0)(T(i)) is f̂
(0)
i ,

where (f̂
(0)
1 , f̂

(0)
2 , . . . , f̂

(0)
M ) solves the constrained isotonic least squares problem

of minimizing
∑M

i=1 wi (gi − fi)
2 over all f1 ≤ . . . ≤ fm ≤ θ0 ≤ fm+1 ≤ . . . ≤

fM , with T(m) < t0 < T(m+1). The fact that none of the T(i)’s can actually be

equal to t0, with probability 1, is guaranteed by the regularity conditions under

which the asymptotic results for this model will be established; in particular,

see assumptions 6 and 7 in the Appendix.

For points {(x0, y0), (x1, y1), . . . , (xk, yk)} where x0 = y0 = 0 and x0 < x1 <

. . . < xk, consider the left-continuous function P (x) such that P (xi) = yi and

such that P (x) is constant on (xi−1, xi). We will denote the vector of slopes,
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i.e., left–derivatives, of the greatest convex minorant of P (x) computed at the

points (x1, x2, . . . , xk) by slogcm {(xi, yi)}k
i=0.

It is not difficult to see that

(3.2) {Λ̂i}M
i=1 = slogcm

{
i∑

j=1

wj,

i∑
j=1

wj N j

}M

i=0

,

where summation over an empty set is interpreted as 0. Also,

(3.3) {Λ̂(0)
i }m

i=1 = θ0 ∧ slogcm

{
i∑

j=1

wj,

i∑
j=1

wj N j

}m

i=0

,

where the minimum is interpreted as being taken componentwise, while

(3.4) {Λ̂(0)
i }M

i=m+1 = θ0 ∨ slogcm

{
i∑

j=m+1

wj,

i∑
j=m+1

wj N j

}M

i=m

,

where the maximum is once again interpreted as being taken componentwise.

3.2.3 Asymptotic results

Define the pseudo-likelihood ratio statistic as

2 log λn = 2
{

lps

n (Λ̂ | X)− lps

n (Λ̂(0) | X)
}

.

The limit distribution of 2 log λn will be established under a number of regu-

larity conditions. These are minor modifications of conditions given in Wellner

and Zhang (2000), but for the sake of completeness, we state them in the Ap-

pendix and there discuss the implications of these conditions in the interval

censoring framework.

Under Assumptions A1 – A4, there exist a0 < t0 < b0 such that

supx∈[a0,b0] | Λ̂n(x)− Λ(x) |→ 0 almost surely .

Also, if the null hypothesis holds,

supx∈[a,b] | Λ̂(0)
n (x)− Λ(x) |→ 0 almost surely .
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This consistency result will not be established here.

We now state the main result of this chapter, which concerns the limiting

behavior of 2 log λn.

Theorem 1. Under Assumptions A1 – A9, the pseudo-likelihood ratio statis-

tic,

2 log λn ≡ 2
{

lps

n (Λ̂n | X)− lps

n (Λ̂(0)
n | X)

}
d→ σ2(t0)

Λ(t0)
D ,

when H0 : Λ(t0) = θ0 holds.

A sketch proof of this theorem is given in the Appendix and uses the follow-

ing theorem on the limit distribution of the nonparametric maximum likelihood

estimators of Λ. Define

Xn(z) = n1/3
{

Λ̂n(t0 + z n−1/3)− θ0

}
and Yn(z) = n1/3

{
Λ̂(0)

n (t0 + z n−1/3)− θ0

}
.

Theorem 2. Suppose that Assumptions A1 – A9 hold and set

a =

(
σ2(t0)

G′(t0)

)1/2

, b =
1

2
Λ
′
(t0) .

Then, under H0,

(Xn(z), Yn(z))
d→ (

ga,b(z), g0
a,b(z)

)
,

finite–dimensionally and also in the space L × L, where L is the space of

functions from R→ R that are bounded on every compact set, equipped with

the topology of L2-convergence with respect to Lebesgue measure on compact

sets.

3.2.4 Construction of Confidence sets

Theorem 1 gives an easy way of constructing a likelihood-ratio based confi-

dence set for F (t0) in the mixed–case interval censoring model. This is based on
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the observation that under the mixed–case interval censoring framework, where

the counting process N(t) is 1(S ≤ t) with S following distribution F indepen-

dently of (K,T ), the pseudo-likelihood ratio statistic in Theorem 1 converges

to (1 − θ0)D under the null hypothesis F (t0) = θ0. Thus, (1 − θ0)
−1 2 log λn

converges in distribution to D, so that an asymptotic level-(1− α) confidence

set for F (t0) is given by

{θ : (1− θ)−1 2 log λn(θ) ≤ q(D, 1− α)}

, where q(D, 1−α) is the (1−α)’th quantile of D and 2 log λn(θ) is the pseudo-

likelihood ratio statistic computed under the null hypothesis H0,θ : F (t0) = θ.

Thus, finding the confidence set amounts to computing the likelihood ratio

under a family of null hypotheses. The computation is a simple affair and can

be done through using elementary pool adjacent violators algorithm. Quantiles

of D are tabulated in Banerjee and Wellner (2001).

Theorem 4.3 of Wellner and Zhang (2000) can also be derived as a special

case of Theorem 2 by setting z = 0. Specialized to the mixed–case censoring

scenario, it provides an alternative route to constructing confidence sets for

F (t0). Denoting by F̂n the pseudo-likelihood estimate of F , from Theorem 4.3

of Wellner and Zhang (2000), we obtain

(3.5) n1/3 {F̂n(t0)− F (t0)} d→
{

θ0 (1− θ0) f(t0)

2 G′(t0)

}1/3

2Z ,

where Z = argminh {W (h) + h2} and f(t) is the derivative of F (t). An ap-

proximate level-(1− α) confidence interval for F (t0) is

[
F̂n(t0)− 2 Cn q(Z, 1− α/2) , F̂n(t0) + 2 Cn q(Z, 1− α/2)

]

where q(Z, 1− α/2) is the (1− α/2)’th quantile of Z and

Cn = n−1/3

[
F̂n(t0) {1− F̂n(t0)} f̂(t0)

2 Ĝ′(t0)

]1/3

,
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with f̂ and Ĝ′ denoting estimators of f and G′ respectively. Quantiles of Z

are tabulated in Groeneboom and Wellner (2001). Estimating G′ involves esti-

mating first the probability density of K and then the marginal densities of the

Tk,j’s; this can be done using kernel density methods with some optimal band-

width selection procedure like least-squares cross-validation (Loader, 1999).

However, it is not difficult to see that, if K assumes a large number of values

and the sample size n is moderate, there may not be sufficiently many obser-

vations to estimate the density of each Tk,j reliably. Finally there is also the

problem of estimating f , which is a trickier affair, since observations from the

distribution F are not available. A discussion of the issues involved in a simi-

lar situation can be found in Banerjee and Wellner (2005). In Section 3.3, we

estimate f by kernel smoothing the maximum pseudo-likelihood estimator F̂n,

as in Banerjee and Wellner (2005), using a likelihood-based cross-validation

criterion. The procedure followed is analogous to the one described in Sec-

tion 3.1 of that paper, the only difference being that the likelihood used for

cross-validation here is the pseudo-likelihood, as opposed to the current status

likelihood used in that paper.

Thus, the estimation of nuisance parameters turns out to be the major

concern in the Wald-based approach: the variability introduced through nui-

sance parameter estimation will tend to make the confidence intervals much

more unreliable, especially at smaller sample sizes. The likelihood ratio based

method, on the other hand, does not involve nuisance parameter estimation

and provides an extremely clear–cut way of constructing confidence inter-

vals for F (t0). This makes it a much more attractive option. Yet another

method of obtaining confidence sets is via the use of subsampling techniques.

In view of the nonstandard asymptotics involved, as manifested in the cube-
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root convergence of the pseudo-likelihood estimator to a non-Gaussian limit,

the usual bootstrap is suspect, but subsampling without replacement works.

Subsampling was implemented by drawing a large number of subsamples of

size b from the original sample, without replacement, and estimating the lim-

iting quantiles of |n1/3{F̂n(t0) − F (t0)}|, using the empirical distribution of

|b1/3 {F̂ ∗
n(t) − F̂n(t)}|; here F̂ ∗

n(t) denotes the value of the maximum pseudo-

likelihood estimator, based on the subsample. For consistent estimation of the

quantiles, b/n should converge to 0 as n increases. In the literature, b is re-

ferred to as the block–size. For details, see the book Politis, Romano and Wolf

(1999, Chapter 2). The choice of b can affect the precision of the confidence

intervals in finite samples. A data-driven choice of b is often resorted to but

can be computationally very intensive. For a discussion of subsampling in the

context of an interval censored model, see Sections 2 and 3 of Banerjee and

Wellner (2005). Since the issues in the present case are similar, we do not go

into an exhaustive discussion here.

We note in closing that the pseudo-likelihood based method for constructing

confidence sets at a single point can be extended to finitely many points of

interest; here the relevant limit distribution is the maximum of k independent

copies of D, where k is the number of points. However, the construction of

likelihood based simultaneous confidence bands for F is still an open problem.

3.3 Simulation Studies and Data Analysis

3.3.1 Simulation Studies

We present simulations from a mixed–case censoring model, in which the

survival time distribution X was taken to follow the Exponential(1) distri-

bution. The random number K of observation times for an individual was
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generated from the uniform distribution on the integers {1, 2, 3, 4} and given

K = k, the observation times {Tk,i}k
i=1 were chosen as k order statistics from

the uniform distribution on (0,3). We generated 1000 replicates for each sam-

ple size displayed in Table 3.1, and 95% confidence intervals for F (log 2) = 0.5

were computed by the three different methods: (i) pseudo-likelihood ratio,

(ii) limit distribution of the maximum pseudo-likelihood estimator with kernel

based estimation of nuisance parameters, (iii) subsampling with appropriate

block–size. Kernel based estimation was done in the way described in con-

nection with the construction of confidence sets for F (t0) in Section 3.2. For

the subsampling based intervals, we did not resort to a data–driven block–size

selection algorithm, since this would have increased computational complexity

by orders of magnitude. Since the data generating process here is known, we

generated separate data sets (1000 replicates) from the mixed–case model for

each sample size, and computed subsampling based intervals for F (t0) = 0.5

using a selection of block–sizes. We then computed the empirical coverage

of the 1000 confidence intervals produced for each block–size, and chose the

optimal block–size for the simulations presented here, as the one for which the

empirical coverage was closest to 0.95. Thus, block–size selection was done

via pilot simulations. Of course, this is not doable in a real life setting, since

the data generating process is unknown. A natural way to circumvent this

problem for real data sets is using the bootstrap to generate ‘pilot data’ from

the empirical measure of the observed data and choose the block size based

on the bootstrapped samples. This idea from Delgado et.al. (2003) is used in

the next subsection, where the methods are illustrated on a real data set. The

results are reported in Table 3.1.

From Table 3.1 we see that the pseudo-likelihood method produces the
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Table 3.1: Simulation study for mixed–case interval censoring model: Average length (AL)

and empirical coverage (C) of asymptotic 95% confidence intervals using pseudo-

likelihood ratio (PL), maximum pseudo-likelihood (PMLE) and subsampling

based (SB) methods.

PL PMLE SB

n AL C AL C AL C

50 0.410 0.904 0.441 0.867 0.538 0.971

100 0.327 0.920 0.353 0.896 0.469 0.972

200 0.261 0.924 0.282 0.899 0.308 0.958

500 0.198 0.949 0.210 0.923 0.242 0.958

1000 0.157 0.938 0.167 0.914 0.174 0.945

1500 0.136 0.936 0.144 0.933 0.158 0.962

2000 0.124 0.943 0.131 0.921 0.144 0.965

narrowest confidence intervals on an average. While they tend to be anti-

conservative, the coverage nevertheless is quite satisfactory, being greater

than or close to 94%, provided the sample size is moderately large. The

subsampling-based intervals are the widest, and not surprisingly conservative

in general. The kernel based intervals perform quite poorly at lower sample

sizes, being extremely anti-conservative but also giving wider confidence inter-

vals than the likelihood ratio, and they remain anti-conservative at higher

sample sizes as well. The overall picture indicates the superiority of our

pseudo-likelihood–ratio method. This, added to the relative computational

simplicity of our method in comparison to its competitor, where once needs to

content with the choice of a smoothing parameter or block–size, makes it an

attractive choice.

3.3.2 Illustration on a real data set

De Gruttola and Lagakos (1989) present an interval censored data set of

the time to HIV infection in a group of haemophiliacs. Since 1978, 262 people
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with Type A or B haemophilia had been treated at Hôpital Kremlin Bicêtre

and Hôpital Coeur des Yvelines in France. Twenty-five of them were found to

be infected on their first test for infection. By August 1988, 197 had become

infected and 43 of these had developed some clinical symptoms relating to their

HIV infection. All the infected persons are believed to have become infected

by contaminated blood factor that they received for their haemophilia.

For each patient, the only information available is that X ∈ [XL, XR], where

X denotes the time to infection. Here time is measured in 6-month intervals,

with X = 1 denoting July 1, 1978. An individual was assigned XL = 1 if

they were found to be infected with HIV on their first test for infection. As

mentioned above, there were 25 such individuals. For details see Section 6 of

De Gruttola and Lagakos (1989), and their Table 1, where the (XL, XR) values

for each patient are provided. We are interested in estimating the distribution

of X, the time to infection, based on the (XL, XR) pairs. We do the analysis

separately for the two different groups into which the patients fell: the heavily–

treated group of 105 patients received at least 1000 µg/kg of blood factor for

at least one year between 1982 and 1985, and the lightly–treated group of 157

patients received less than 1000 µg/kg of blood factor per year.

We model the data as Case 2 censored data. The two censoring times U

and V , with U < V are defined as follows. If 1 = XL < XR < ∞, we set

U = XR and V to be the time till the end of the study. If 1 < XL < XR < ∞,

we set U = XL and V = XR. If 1 < XL < XR = ∞, we set U = 1 and

V = XL. If (∆1, ∆2, ∆3) denotes the vector of indicators, with ∆1 = 1(X ≤
U), ∆2 = 1(U < X ≤ V ), ∆3 = 1(V ≤ X), then for the first case this vector is

(1, 0, 0), for the second case it is (0, 1, 0) and in the third case it is (0, 0, 1). The

given data set is really an example of mixed–case censoring in which only the
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relevant inspection times have been noted. The formulation of the problem as

a Case 2 model is a simplification that we adopt for the purpose of illustrating

our method; because of lack of information about the other inspection times,

the full mixed–case model cannot be fitted to the data.

The pseudo-likelihood estimate of F , the distribution function of X, was

computed for each of the two groups, and confidence intervals for the values

of F at several different points were obtained using the three different meth-

ods illustrated in the simulation studies. The subsampling-based confidence

intervals at any given point was computed by first determining the block–size

b using the bootstrap-based block selection algorithm referred to in the previ-

ous subsection; see Banerjee and Wellner (2005) for a brief description and an

application of this algorithm to current status data. Five hundred bootstrap

samples were used for block-size selection, and once the optimal block size had

been ascertained 1000 subsamples of that size were used to determine the con-

fidence interval. As far as the estimation of nuisance parameters for the con-

struction of the Wald–type confidence interval was concerned, f(t0) at a point

of interest t0 was computed by smoothing the maximum pseudo-likelihood es-

timator using bandwidth determined by likelihood–based cross-validation, as

for the simulation experiments. However, least–squares cross-validation, for

choosing the optimal bandwidths to estimate G′(t0), did not perform well,

and therefore G′ was estimated by differentiating the piecewise-linear modifi-

cation of the empirical distribution functions of U and V .

The estimated distribution functions of the time to infection are plotted

for the two different groups in Figure 3.1. The distribution function for the

heavily–treated group dominates that for the lightly–treated group in the inter-

val [6, 14); between 14 and 16, the distribution function for the lightly–treated
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Figure 3.1: HIV infection data. The estimated distribution functions of time to HIV in-

fection in the two different groups; heavily treated, solid line; lightly treated,

dashed line.

group is higher; at 16, the two distributions coincide at the value 1. Indi-

viduals in the heavily–treated group received higher amounts of blood factor

for at least a year between 1982 and 1985; the higher the amount of blood

transfusion, the greater is the chance of infection through contaminated blood

factor. The date of July 1, 1982 corresponds to t = 9, and t = 16, where the

two distribution functions coincide, corresponds to January 1, 1986. In the

range 9 − 16, the distribution function for the heavily treated group is either

equal to or almost equal to that for the lightly treated group or dominates it,

except in the range [14, 15); this corresponds to the year 1985.

Tables 3.2 and 3.3 give confidence intervals at different time points ob-

tained by the three different methods. For each table, the second column
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gives the value of the maximum pseudo-likelihood estimator, the third gives

the confidence intervals using the the pseudo-likelihood ratio, the fourth the

Wald-type intervals and the fifth, the subsampling–based intervals. Note that

the left extremities of the confidence intervals for the distribution function in

the heavily–treated group are generally shifted to the right of those for the cor-

responding time points in the lightly–treated group, with violations towards

the end of the table. The general shift of the left extremities to the right is

predictable. The violation of this property towards the end of the table is not

surprising, since there we are dealing with the time range in which the two dis-

tribution functions are essentially ‘catching up’ with each other, as is evident

from Fig. 3.1. Also note that the likelihood ratio based confidence intervals are

somewhat less erratic than the two other intervals; they exhibit monotonic-

ity of left as well as right endpoints with increasing t. Since F is monotone

in t, this is a rather nice property. On the other hand, the Wald–type or the

subsampling–based intervals tend to exhibit violations of this property, though

there is an overall monotonic trend.

3.4 Appendix: Technical details

We first formally state the required assumptions.

Assumption A1. The observation times Tk,j, for j = 1, . . . , k and k =

1, 2, . . ., are random variables taking values in the bounded set [0, τ ], where

0 < τ < ∞ and E(K) < ∞.

Assumption A2. The mean function Λ satisfies Λ(τ) ≤ M for some 0 <

M < ∞.

Assumption A3. The random variable M0 defined as M0 =
∑K

j=1 NK,j log NK,j

satisfies E(M0) < ∞. Here, interpret 0 log 0 as 0.
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Table 3.2: Confidence intervals (C.I.) of three kinds for the distribution of time to HIV

infection in lightly treated group at different times: likelihood ratio based (lrt),

Wald type (Wald) and subsampling based (subsampling).

t F̂ (t) C.I.(lrt) C.I. (Wald) C.I.(subsampling)

6.0 .160 0.068-0.285 0.000-0.354 0.068-0.252

7.0 .160 0.068-0.285 0.000-0.409 0.046-0.274

8.0 .160 0.068-0.298 0.000-0.410 0.042-0.278

9.0 .160 0.069-0.321 0.000-0.379 0.026-0.294

10.0 .250 0.069-0.458 0.000-0.463 0.048-0.451

11.0 .357 0.099-0.546 0.000-0.623 0.174-0.540

12.0 .556 0.187-0.660 0.381-0.730 0.396-0.716

13.0 .556 0.402-0.700 0.277-0.834 0.361-0.750

14.0 .792 0.439-0.888 0.553-1.000 0.660-0.923

15.0 . 891 0.637-0.943 0.712-1.000 0.786-0.996

Table 3.3: Confidence intervals (C.I.) of three kinds for the distribution of time to HIV

infection in heavily treated group at different times: likelihood ratio based (lrt),

Wald type (Wald) and subsampling based (subsampling).

t F̂ (t) C.I.(lrt) C.I. (Wald) C.I.(subsampling)

6.0 .340 0.000-0.442 0.067-0.613 0.087-0.593

7.0 .340 0.092-0.442 0.171-0.509 0.220- 0.459

8.0 .340 0.240-0.442 0.113-0.567 0.184-0.496

9.0 .340 0.240-0.442 0.179-0.501 0.213-0.467

10.0 .340 0.240-0.451 0.206-0.474 0.213-0.467

11.0 .588 0.242-0.665 0.437-.739 0.459-0.717

12.0 .588 0.472-0.665 0.451-0.725 0.490-0.686

13.0 .588 0.484-0.673 0.462-0.715 0.496-0.680

14.0 .588 0.504-0.676 0.450-0.727 0.478-0.699

15.0 . 852 0.504-0.927 0.751-0.953 0.740-0.964
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For Borel subsets B of [0, τ ], define the measure µ as

µ(B) = E

{
K∑

j=1

1 (TK,j ∈ B)

}
.

Let G(t) ≡ µ((0, t]) be the distribution function corresponding to the measure

µ. For each k, j, denote the distribution function of the random variable Tk,j

by Gk,j. Then

G(t) = E

(
K∑

j=1

1 {TK,j ≤ t}
)

=
∞∑

k=1

pr (K = k)
k∑

j=1

pr (Tk,j ≤ t|K = k )

(A1) =
∞∑

k=1

pr (K = k)
k∑

j=1

Gk,j(t) .

Call x a support point of µ if, for every ε > 0, it is the case that µ(x−ε, x+ε) >

0. Let Sµ denote the set of all support points of µ.

Assumption A4. The point t0 lies in the interior of Sµ.

Assumption A5(a). The variable K has a finite moment of order greater

than 2.

Assumption A5(b). There exist α > 0 and M1 > 0 such that E{N2+α(t)} ≤

M1 for all t ∈ Sµ.

Assumption A6. There is a neighborhood U of t0 ∈ Sµ such that the

distribution functions Gk,j have positive continuous derivatives on U , which

are bounded by a common constant B for all k, j.

Assumption A7. There is a neighborhood V of (t0, t0) ∈ R2 such that, for

all k = 1, 2, . . . and 1 ≤ i ≤ j ≤ k, Gk,i,j(s, t) =pr(Tk,i ≤ s, Tk,j ≤ t) is

differentiable with respect to (s, t) and gk,i,j(s, t) = ∂2 Gk,i,j(s, t)/∂s ∂t exists.

Furthermore, the functions gk,i,j are bounded on V , by a common constant C,

for all (k, i, j).
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Assumption A8. The mean function Λ has a continuous bounded derivative

on U .

Assumption A9. The function σ2(t) ≡ var{N(t)} is continuous in a neigh-

borhood of t0.

We discuss the implications of our assumptions in the interval censoring

framework. Assumption A2 is trivially satisfied in the interval censoring sit-

uation, since 0 ≤ F (t) = Λ(t) ≤ 1. Assumption A3 is also easy to check;

in the interval censored situation, Nk,j is either 1 or 0, so that M0 = 0. In

so far as estimation at the point t0 is concerned, it suffices to have a posi-

tive Lebesgue density for one of the Tk,j’s in a neighborhood of the point t0,

along with pr(K = k) > 0, for Assumption A4 to be satisfied. Assumption

A5 is guaranteed for a K that is finitely supported, which is typically the

case in applications, and for the interval censoring situation, since N(t) ≤ 1.

Assumption A8, in the interval censoring scenario, translates to F (t) being

continuously differentiable in a neighborhood of t0 with f(t0) 6= 0. Finally,

Assumption A9 is easily satisfied, since σ2(t) = F (t) (1− F (t)).

We first define the following processes:

Vn(t) = Pn

(
K∑

j=1

NK,j 1 {TK,j ≤ t}
)

=
1

n

n∑
i=1

Ki∑
j=1

N
(i)
Ki,j

1
{

T
(i)
Ki,j

≤ t
}

,

Gn(t) = Pn

(
K∑

j=1

1 {TK,j ≤ t}
)

=
1

n

n∑
i=1

Ki∑
j=1

1
{

T
(i)
Ki,j

≤ t
}

.

Thus, both Vn and Gn are piecewise constant right-continuous processes, with

possible jumps only at the distinct observation times; the jump of Gn at the

point T(l) is simply wl/n, whereas the jump of Vn at the same point is wl N l/n.
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Also, set

ξ1(X, t) =
K∑

j=1

NK,j 1 {TK,j ≤ t} and ξ0(X, t) =
K∑

j=1

1 {TK,j ≤ t} .

Note that G(t) = E{ξ0(X, t)}. Also, define V (t) = E{ξ1(X, t)}. From (A1)

obtain that G
′
(t) =

∑∞
k=1 P (K = k)

∑k
j=1 G

′
k,j(t) . Also,

V (t) = E

(
K∑

j=1

NK,j 1 {TK,j ≤ t}
)

=
∞∑

k=1

P (K = k)
k∑

j=1

E [Nk,j 1{Tk,j ≤ t}]

=
∞∑

k=1

P (K = k)
k∑

j=1

∫ t

0

Λ(x) dGk,j(x)

=

∫ t

0

Λ(x)

( ∞∑

k=1

P (K = k)
k∑

j=1

G
′
k,j(x)

)
dx

=

∫ t

0

Λ(x) G′(x) dx ,

whence

(A2) V
′
(t) = Λ(t) G

′
(t) .

Proof of Theorem 1. In the following derivation, we denote by Λ̂l the value of

the unconstrained estimator Λ̂n at the point T(l), and by Λ̂
(0)
l the value of Λ̂

(0)
n

at the point T(l). The likelihood ratio statistic is then given by

2 log λn = 2
M∑

l=1

wl (N l log Λ̂l − Λ̂l)− 2
M∑

l=1

wl (N l log Λ̂
(0)
l − Λ̂

(0)
l )

= 2
M∑

l=1

wl N l (log Λ̂l − log Λ̂
(0)
l )− 2

M∑

l=1

wl (Λ̂l − Λ̂
(0)
l ) .

In what follows, we assume that the null hypothesis holds, so that Λ(t0) ≡ θ0.

We will also denote the set of indices for which Λ̂l differs from Λ̂
(0)
l by D. On
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Taylor expansion of log Λ̂l and log Λ̂
(0)
l around θ0, we obtain 2 log λn

= 2
∑

l∈D

wl N l

{
log θ0 +

1

θ0

(Λ̂l − θ0)− 1

2 θ2
0

(Λ̂l − θ0)
2 +

1

3 Λ3
l,∗

(Λ̂l − θ0)
3 − log θ0

− 1

θ0

(Λ̂
(0)
l − θ0) +

1

2 θ2
0

(Λ̂
(0)
l − θ0)

2 − 1

3 Λ3
l,∗ ∗

(Λ̂l − θ0)
3

}
− 2

∑

l∈D

wl (Λ̂l − Λ̂
(0)
l ) .

Here Λ̂l,∗ is a point intermediate between Λ̂l and θ0, and Λ̂l,∗∗ is a point inter-

mediate between Λ̂
(0)
l and θ0. The above expression simplifies to 2 log λn

= 2
∑

l∈D

wl N l
1

θ0

{
(Λ̂l − θ0)− (Λ̂

(0)
l − θ0)

}
− 2

∑

l∈D

wl

{
(Λ̂l − θ0)− (Λ̂

(0)
l − θ0)

}

− 1

θ2
0

∑

l∈D

{
(Λ̂l − θ0)

2 − (Λ̂
(0)
l − θ0)

2
}

wl N l + rn,

where

rn =
2

3

∑

l∈D

(
(Λ̂l − θ0)

3

Λ3
l,∗

− (Λ̂
(0)
l − θ0)

3

Λ3
l,∗∗

)
wl N l.

It is not difficult to show that rn, the remainder term arising from the third

derivative of the Taylor expansion of the likelihood ratio statistic, is op(1).

Thus,

2 log λn = T1 − T2 + op(1) ,

with T1

= 2
∑

l∈D

wl N l
1

θ0

{
(Λ̂l − θ0)− (Λ̂

(0)
l − θ0)

}
− 2

∑

l∈D

wl

{
(Λ̂l − θ0)− (Λ̂

(0)
l − θ0)

}
,

and T2 =
1

θ2
0

∑

l∈D

[
(Λ̂l − θ0)

2 − (Λ̂
(0)
l − θ0)

2
]

wl N l.

Consider T2. Noting that n−1 wl N l is the jump of the right-continuous process

Vn at the point T(l), letting Dn denote the set on which Λ̂n and Λ̂
(0)
n differ and

setting D̃n to be the set n1/3 (Dn − t0), which is an interval and can be easily

shown to be Op(1), we can write

T2 =
1

θ2
0

n

∫

Dn

{
(Λ̂n(t)− θ0)

2 − (Λ̂(0)
n (t)− θ0)

2
}

d Vn(t)
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(A3) =
1

θ2
0

n

∫

Dn

{
(Λ̂n(t)− θ0)

2 − (Λ̂(0)
n (t)− θ0)

2
}

d V (t) + op(1)

=
1

θ2
0

∫

D̃n

{
n2/3 (Λ̂n(t0 + n−1/3 z)− θ0)

2

−n2/3 (Λ̂(0)
n (t0 + n−1/3 z)− θ0)

2
}

V
′
(t0 + n−1/3 z) dz + op(1)

=
V
′
(t0)

θ2
0

∫

D̃n

{
X2

n(z)− Y 2
n (z)

}
dz + op(1) ,

where (A3) follows from the step above it, with Vn replaced by V , by a standard

empirical process argument. Now, consider T1; if we use the definitions of the

processes Vn and Gn, it is straightforward to see that

(A4) T1 =
2

θ0

n

∫

Dn

{
(Λ̂n(t)− θ0)− (Λ̂(0)

n (t)− θ0)
}

d (Vn(t)− θ0 Gn(t))

(A5) =
2

θ0

n

∫

Dn

{
(Λ̂n(t)− θ0)

2 − (Λ̂(0)
n (t)− θ0)

2
}

dGn(t))

(A6) =
2

θ0

n

∫

Dn

{
(Λ̂n(t)− θ0)

2 − (Λ̂(0)
n (t)− θ0)

2
}

G
′
(t) dt + op(1)

(A7) =
2

θ0

∫

D̃n

{
X2

n(z)− Y 2
n (z)

}
G
′
(t0 + n−1/3 z) dz + op(1)

=
2 G

′
(t0)

θ0

∫

D̃n

{
X2

n(z)− Y 2
n (z)

}
dz + op(1) ,

where (A5) follows from the characterization of the nonparametric maximum

likelihood estimators in terms of the processes Gn and Vn and will be justified

at the end, (A6) follows from (A5) with dGn(t) replaced by dG(t) ≡ G
′
(t) dt

using standard empirical process arguments and (A7) follows if we transform

to the local variable z and use the definitions of the processes Xn and Yn.

Thus, 2 log λn

=
2 G

′
(t0)

θ0

∫

D̃n

{
X2

n(z)− Y 2
n (z)

}
dz−V

′
(t0)

θ2
0

∫

D̃n

{
X2

n(z)− Y 2
n (z)

}
dz+op(1) .
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Recalling that, a2 = σ2(t0)/G
′
(t0) from the statement of Theorem 2 and that

V
′
(t0) = Λ(t0) G

′
(t0) from equation (A2), so that

V
′
(t0)

θ2
0

=
G
′
(t0)

θ0

,

we have,

2 log λn =
G
′
(t0)

θ0

∫

D̃n

{
X2

n(z)− Y 2
n (z)

}
dz

=
σ2(t0)

Λ(t0)
a−2

∫

D̃n

{
X2

n(z)− Y 2
n (z)

}
dz

(A8)
d→ σ2(t0)

Λ(t0)
a−2

∫ [
{ga,b(z)}2 − {

g0
a,b(z)

}2
]

dz.

Here (A8) follows from the previous step by applying Theorem 2 in conjunction

with the continuous mapping theorem for distributional convergence and the

fact that (f, g) 7→ ∫
(f 2− g2) d λ, with λ denoting Lebesgue measure, is a con-

tinuous function from L×L to R. However, {σ2(t0)/Λ(t0)} a−2
∫

[{ga,b(z)}2−
{g0

a,b(z)}2] dz has the same distribution as {σ2(t0)/Λ(t0)}D, by Lemma 1. If,

in particular, N(t) is indeed a Poisson process, nonhomogeneous or otherwise,

σ2(t0) = Λ(t0) and the limiting distribution is exactly D.

It only remains to justify going from (A4) to (A5). It suffices to show that

d1 ≡
∫

Dn

{Λ̂n(t)− θ0} d{Vn(t)− θ0 Gn(t)} =

∫

Dn

{Λ̂n(t)− θ0}2 dGn(t),

d2 ≡
∫

Dn

{Λ̂0
n(t)− θ0} d{Vn(t)− θ0 Gn(t)} =

∫

Dn

{Λ̂0
n(t)− θ0}2 dGn(t) .

We will only show the latter. Let Jn denote the set of indices i such that T(i)

belongs to Dn, ordered from smallest to largest. Partition Jn into consecutive

blocks of indices B1, B2, . . . , Bk such that, on each Bj, we have that Λ̂
(0)
n (T(i))

is constant for all i ∈ Bj. Denote the constant value on Bj by vj. There is
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potentially one block Bl on which Λ̂
(0)
n is equal to θ0. On every other Bj, we

have

vj =
n−1

∑
m∈Bj

wm Nm

n−1
∑

m∈Bj
wm

≡
∑

m∈Bj
wm Nm∑

m∈Bj
wm

.

This is an easy consequence of the characterization of the constrained solution.

We can now write

d2 =
∑

j 6=l

∑
i∈Bj

{Λ̂(0)
n (T(i))− θ0} (n−1 wi N i − θ0 n−1 wi)

=
∑

j 6=l

(vj − θ0)


∑

i∈Bj

n−1 wi N i − θ0

∑
i∈Bj

n−1 wi




=
∑

j 6=l

(vj − θ0)


∑

i∈Bj

n−1 wi




(∑
i∈Bj

wi Ni∑
i∈Bj

wi

− θ0

)

=
∑

j 6=l

(vj − θ0)
2

∑
i∈Bj

n−1 wi

=
∑

j 6=l

∑
i∈Bj

{Λ̂(0)
n (T(i))− θ0}2 n−1 wi

=

∫

Dn

{Λ̂0
n(t)− θ0}2 dGn(t) . ¤



CHAPTER 4

Inconsistency of Bootstrap: the Grenander estimator

In this chapter we investigate the (in)-consistency of different bootstrap

methods for constructing confidence bands in the class of estimators that con-

verge at rate cube-root n. The Grenander estimator (see Grenander (1956)),

the nonparametric maximum likelihood estimator of an unknown non-increasing

density function f on [0,∞), is a prototypical example. We focus on this ex-

ample and illustrate different approaches of constructing confidence intervals

for f(t0), where t0 is an interior point, i.e., 0 < t0 < ∞. It is claimed that the

bootstrap statistic, when generating bootstrap samples from the empirical dis-

tribution function Fn, does not have any weak limit, conditional on the data,

in probability. A similar phenomenon is shown to hold when bootstrapping

from F̃n, the least concave majorant of Fn. We provide a set of sufficient con-

ditions for the consistency of bootstrap methods in this example. A suitable

version of smoothed bootstrap is proposed and shown to be strongly consis-

tent. The m out of n bootstrap method is also proved to be consistent while

generating samples from Fn and F̃n. Although we work out the main results

for the Grenander estimator, very similar techniques can be employed to draw

analogous conclusions for other estimators with cube-root convergence.

55
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4.1 Introduction

Suppose that we observe i.i.d. random variables X1, X2, . . . , Xn from a

continuous distribution function F with non-increasing density f on [0,∞).

Let Fn denote the empirical distribution function (e.d.f.) of the data. Grenan-

der (1956) showed that the non-parametric maximum likelihood estimator

(NPMLE) f̃n of f exists (obtained by maximizing the likelihood
∏n

i=1 f(Xi)

over all non-increasing densities) and is given by the left-derivative of F̃n,

the least concave majorant (LCM) of Fn (see Robertson, Wright and Dykstra

(1988) for a derivation of this result). The main result on the distributional

convergence of f̃n(t0), for t0 ∈ (0,∞), was given by Prakasa Rao (1969): If

f ′(t0) 6= 0, then

n1/3
{

f̃n(t0)− f(t0)
}
⇒ κZ(4.1)

where κ = 2
∣∣1
2
f(t0)f

′(t0)
∣∣1/3

, Z = arg maxs∈R{W(s) − s2}, and W is a two-

sided standard Brownian motion on R withW(0) = 0. There are other estima-

tors that exhibit similar asymptotic properties; for example, Chernoff’s (1964)

estimator of the mode, the monotone regression estimator (Brunk (1970)),

Rousseeuw’s (1984) least median of squares, and the estimator of the shorth

(Andrews et al. (1972) and Shorack and Wellner (1986)). The seminal paper

by Kim and Pollard (1990) unifies the n1/3-rate of convergence problems in a

more general M-estimation framework and provides limiting distributions of

the estimators. There are further examples of shape restricted nonparametric

maximum likelihood density estimators available in the literature – see, for

example, estimation of convex densities (Groeneboom, Jongbloed and Wellner

(2001)), estimation of k-monotone densities (Balabdaoui and Wellner (2007))

and estimation of decreasing densities that are concave in a neighborhood
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(Meyer and Woodroofe (2004)) – but in this chapter we focus our attention to

the Grenander estimator.

The presence of nuisance parameters in the limit distribution of the estima-

tors complicates the construction of confidence intervals. Bootstrap intervals

avoid this problem and are generally reliable and accurate in problems with

√
n convergence rate (see Bickel and Freedman (1981), Singh (1981), Shao

and Tu (1995) and its references). Our aim in this chapter is to study the

consistency of bootstrap methods for the Grenander estimator with the goal

of constructing point-wise confidence bands around f̃n. The monotone density

estimation problem sheds light on the behavior of bootstrap methods in other

similar cube-root convergence problems discussed above.

Recently there has been considerable interest in using resampling based

methods in similar n1/3-rate convergence problems. Subsampling based con-

fidence intervals (see Romano, Politis and Wolf (1999)) are consistent in this

scenario. But subsampling requires a choice of block-size, which is quite tricky

and computationally intensive. The resulting confidence intervals are also

not always very accurate and can vary substantially with changing block-size.

Abrevaya and Huang (2005) obtained the unconditional limit distribution for

the bootstrap version of the normalized estimator in the setup of Kim and

Pollard (1990) and proposed a method for constructing confidence intervals in

such non-standard problems by correcting the usual bootstrap method. But

as we will show in this chapter, such methods of correcting the usual bootstrap

method are unlikely to work since there is extremely strong evidence to suggest

that the bootstrap statistic does not have any weak limit in probability, con-

ditional on the data. Kosorok (2007) also shows that bootstrapping from the

e.d.f. is not consistent in the monotone density estimation problem. Lee and
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Pun (2006) explore m out of n bootstrapping from the empirical distribution

function in similar non-standard problems and prove the consistency of the

method. Léger and MacGibbon (2006) describe conditions for a resampling

procedure to be consistent under cube root asymptotics and assert that these

conditions are generally not met while bootstrapping from the e.d.f. They

propose a smoothed version of bootstrap and show its consistency for Cher-

noff’s estimator of the mode. The authors carry out an extensive simulation

study which reveals a disparity in the coverage probability of the percentile

and basic bootstrap confidence intervals, also shedding doubt on the existence

of a fixed conditional limit distribution for the bootstrap statistic.

In Section 4.2 we introduce notation, describe the stochastic processes of

interest, and prove a uniform version of Equation (4.1) that is used later on to

study the consistency of different bootstrap methods. Section 4.3 starts with

a brief introduction to bootstrap procedures and formalizes the notion of con-

sistency. We show that if the bootstrap methods (while generating bootstrap

samples from either the e.d.f. Fn or its LCM F̃n) were consistent, then two

random variables would be independent, and then show by simulation that

these two random variables are not independent. In fact, we show that in

these two situations the bootstrap distribution of the statistic of interest does

not even have any conditional weak limit, in probability. We state sufficient

conditions for the consistency of any bootstrap method and propose a version

of smoothed bootstrap in Section 4.4 that can be used to construct asymptot-

ically correct confidence intervals for f(t0). Section 4.5 investigates the m out

of n bootstrapping procedure, when generating bootstrap samples from Fn and

F̃n, and shows that both the methods are consistent. In Section 4.6 we discuss

our findings, especially the failure of the conditional convergence of the boot-
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strap established in Section 4.3, which we view as one of the key contributions

of our current research as it has strong implications for the behavior of the

bootstrap in the broader class of cube–root estimation problems. Section 4.7,

the appendix, provides the details of some arguments used in proving the main

results.

4.2 Preliminaries

We begin with a uniform version of the Prakasa Rao (1969) result which

will be useful later on. For the rest of the chapter we will assume that F

is a distribution function with continuous non-increasing density f on [0,∞)

which is continuously differentiable near t0 ∈ (0,∞) with nonzero derivative.

Suppose that Xn,1, Xn,2, . . . , Xn,mn are i.i.d. random variables having distri-

bution function Fn, where mn ≤ n (of special interest is the case mn = n).

The quantity of interest to us is

∆n := m1/3
n {f̃n,mn(t0)− fn(t0)}

where f̃n,mn(t0) is the Grenander estimator based on the data Xn,1, Xn,2, . . . ,

Xn,mn and fn(t0) can be taken as the density of Fn at t0 (later on we allow fn

to be more flexible, and Fn need not have a density). Let Fn,mn be the e.d.f.

of the data. We study the limiting distribution of the process

(4.2) Zn(h) := m2/3
n

{
Fn,mn(t0 + hm−1/3

n )− Fn,mn(t0)− fn(t0)hm−1/3
n

}

for h ∈ Imn := [−t0m
1/3
n ,∞) and use continuous mapping arguments to deduce

the limiting distribution of ∆n, which can be expressed as the left-hand slope

at 0 of the LCM of Zn, i.e., ∆n = CMImn
(Zn)′(0), where CMI is the operator

that maps a function g : R → R into the LCM of g on the interval I ⊂ R
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and ′ corresponds to the left derivative. We consider all stochastic processes

as random elements in D(R), the space of cadlag function (right continuous

having left limits) on R, and equip it with the projection σ-field and the metric

of uniform convergence on compacta, i.e.,

ρ(x, y) =
∞∑

k=1

2−kmin[1, ρk(x, y)]

where ρk(x, y) = sup|t|≤k |x(t) − y(t)| and x and y are elements in D(R). We

say that a sequence {ξn} of random elements in D(R) converges in distribu-

tion to a random element ξ, written ξn ⇒ ξ, if Eg(ξn) → Eg(ξ) for every

bounded, continuous, measurable real-valued function g. With this notion of

weak convergence, the continuous mapping theorem holds (see Pollard (1984),

Chapters IV and V for more details).

We decompose Zn into Zn,1 and Zn,2 where

Zn,1(h) := m2/3
n

{
(Fn,mn − Fn)(t0 + hm−1/3

n )− (Fn,mn − Fn)(t0)
}

Zn,2(h) := m2/3
n

{
Fn(t0 + hm−1/3

n )− Fn(t0)− fn(t0)hm−1/3
n

}
(4.3)

Now we state some conditions on the behavior of Fn and fn (which need

not be the density of Fn) to be utilized in proving the uniform version of

Equation (4.1).

(a) Fn(x) → F (x) uniformly for all x in a neighborhood of t0.

(b) m
1/3
n

{
Fn(t0 + hm

−1/3
n )− Fn(t0)

}
→ hf(t0) as n →∞ uniformly on com-

pacta.

(c) Zn,2(h) → 1
2
h2f ′(t0) as n →∞ uniformly on compacta.

(d) For each ε > 0,

∣∣∣∣Fn(t0 + β)− Fn(t0)− βfn(t0)− 1

2
β2f ′(t0)

∣∣∣∣ ≤ εβ2 + o(β2) + O(m−2/3
n )
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for large n, uniformly in β varying over a neighborhood of zero (both n

and the neighborhood can depend on ε).

(e) There exist a neighborhood of 0 and a constant C > 0 such that for all n

sufficiently large,

|Fn(t0 + β)− Fn(t0)| ≤ |β|C + O(m−1/3
n )

uniformly for β in the neighborhood of 0.

Letting W1 be a standard two-sided Brownian motion on R with W1(0) = 0,

we define the following stochastic processes

Z1(h) = W1(f(t0)h) and Z(h) = Z1(h) +
1

2
h2f ′(t0), for h ∈ R.

Proposition 1. If (b) holds then Zn,1 ⇒ Z1. Further, if (c) holds then

Zn ⇒ Z.

Proof. To find the limit distribution of the process Zn, we make crucial use

of the Hungarian embedding of Kómlos, Major and Tusnády (1975). We

may suppose that Xn,i = F#
n (Ui), where F#

n (u) = inf{x : Fn(x) ≥ u} and

U1, U2, . . . are i.i.d. Uniform(0, 1) random variables. Let Un denote the em-

pirical distribution function of U1 , . . . , Umn , En(t) =
√

mn(Un(t) − t), and

Vn =
√

mn(Fn,mn − Fn). Then Vn = En ◦ Fn. We may also suppose that

the probability space supports a sequence of independent Brownian Bridges

{B0
n}n≥1 for which

sup
0≤t≤1

|En(t)− B0
n(t)| = O(m−1/2

n log mn) a.s.

Let {ηn}n≥1 be a sequence of N(0, 1) random variables independent of {B0
n}n≥1.

Define a version Bn of Brownian motion by Bn(t) = B0
n(t) + ηnt, for t ∈ [0, 1].
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Using the Hungarian construction we express Zn,1 as

Zn,1(h) = m1/6
n {Vn(t0 + hm−1/3

n )− Vn(t0)}

= m1/6
n

{
En(Fn(t0 + hm−1/3

n ))− En(Fn(t0))
}

= m1/6
n

{
B0

n(Fn(t0 + hm−1/3
n ))− B0

n(Fn(t0))
}

+ Rn,1(h)

= m1/6
n

{
Bn(Fn(t0 + hm−1/3

n )− Bn(Fn(t0)
}

+ Rn(h)(4.4)

where Rn = Rn,1+Rn,2, |Rn,1(h)| ≤ 2m
1/6
n sup0≤t≤1 |En(t)−B0

n(t)| = O(m
−1/3
n log mn)

a.s., and |Rn,2(h)| ≤ m
1/6
n |ηn||Fn(t0 + hm

−1/3
n ) − Fn(t0)| → 0, w.p.1 by con-

dition (b). Therefore, Rn(h) → 0 w.p.1 as n → ∞ uniformly on compacta.

Letting Xn(h) := m
1/6
n {Bn(Fn(t0 +hm

−1/3
n ))−Bn(Fn(t0))}, we observe that Xn

is a mean zero Gaussian process defined on Imn with independent increments

and covariance kernel

Kn(h1, h2) = m1/3
n {Fn(t0 + (h1 ∧ h2)m

−1/3
n )− Fn(t0)}1{sign(h1h2) > 0}.

Theorem V.19 in Pollard (1984) gives sufficient conditions for convergence of

the process Xn(h) toW1(f(t0)h) in D([−c, c]) for any c that are readily verified

using condition (b) in the proposition. The second part follows immediately.

¤

We may obtain the asymptotic distribution of ∆n from the following corol-

lary, which is stated in a more general setup.

Corollary 1. Suppose that conditions (a), (d) and (e) hold. Let Z be a

stochastic process on R such that,

(1) lim|h|→∞
Z(h)
|h| = −∞ a.e.,

(2) Z is a.s. bounded above, and

(3) CM[−k,k](Z), for k = 1, 2, . . ., and CMR(Z) are differentiable at 0 a.s.
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If Zn ⇒ Z then ∆n ⇒ CMR(Z)′(0).

We use the continuous mapping principle and a localization argument sim-

ilar to that in Kim and Pollard (1990). The details are provided in the Ap-

pendix.

4.3 Inconsistency of the bootstrap

In this section, we show that the usual bootstrap method, generating boot-

strap samples from the e.d.f. Fn, leads to an inconsistent procedure. Not only

does the bootstrap estimate fail to converge weakly to the right distribution,

but there is strong evidence that it does not have any conditional limit dis-

tribution, in probability. We also consider bootstrapping from F̃n, the least

concave majorant of Fn, and this procedure shows similar asymptotic behavior.

We begin with a brief discussion on bootstrap.

Suppose we have i.i.d. random variables X1, X2, . . . , Xn having an unknown

distribution function F defined on a probability space (Ω,A,P ) and we seek to

estimate the sampling distribution of the random variable Rn(Xn, F ), based

on the observed data Xn = (X1, X2, . . . , Xn). Let Hn be the distribution

function of Rn(Xn, F ). The bootstrap methodology can be broken into three

simple steps:

Step 1: Construct an estimate F̂n of F based on the data (for example, the e.d.f.

Fn).

Step 2: With F̂n fixed, we draw a random sample of size mn from F̂n, say X∗
n =

(X∗
1 , X

∗
2 , . . . , X

∗
mn

) (identically distributed and conditionally independent

given Xn). This is called the bootstrap sample.

Step 3: We approximate the sampling distribution of Rn(Xn, F ) by the sampling
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distribution of R∗
n = Rn(X∗

n, F̂n). The sampling distribution of R∗
n can

be simulated on the computer by drawing a large number of bootstrap

samples and computing R∗
n for each sample.

Thus the bootstrap estimator of the sampling distribution function of Rn(Xn, F )

is given by

H∗
n(x) = P ∗{R∗

n ≤ x},

where P ∗{·} is the conditional probability given the data Xn. Let L denote the

Levy metric or any other metric metrizing weak convergence of distribution

functions. We say that H∗
n is (weakly) consistent if L(Hn, H∗

n)
P→ 0. Similarly,

H∗
n is strongly consistent if L(Hn, H

∗
n) → 0 a.s. If Hn has a weak limit H, for

the bootstrap procedure to be consistent, H∗
n must converge weakly to H, in

probability. In addition, if H is continuous, we must have

sup
x∈R

|H∗
n(x)−H(x)| P→ 0 as n →∞.

By saying that H∗
n converges in probability to a possibly random G, in prob-

ability, we shall mean

(i) that there exists a stochastic transition function G : R× Ω → [0, 1] such

that G(·, ω) is a distribution function for all ω ∈ Ω, and G(x; ·) is a

measurable function for every x ∈ R, and

(ii) L(H∗
n, G)

P→ 0.

In fact, if F̂n depends only on the order statistics of X1, X2, . . . , Xn, the limiting

G cannot depend on ω, if it exists. For if h is a bounded measurable function

on R, then any limit in probability of
∫
R h(x)H∗

n(dx; ω) must be invariant under

permutations of X1, X2, . . . , Xn up to equivalence, and thus, must be almost
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surely constant by the Hewitt-Savage zero-one law (see Breiman (1968)). Let

Ḡ(x) =

∫

Ω

G(x; ω)P (dω),

then Ḡ is a distribution function and
∫
R h(x)G(dx; ω) =

∫
R h(x)Ḡ(dx) a.s. for

each bounded continuous h. It follows that G(x; ω) = Ḡ(x) a.e. ω for each x

by letting h approach an indicator.

We are interested in exploring the (in)-consistency of different bootstrap

procedures for the Grenander estimator. Specifically, we are interested in

studying the limit behavior of

∆∗
n = m1/3

n

{
f̂ ∗n,mn

(t0)− f̂n(t0)
}

(4.5)

where f̂n(t0) is an estimate of f(t0) (f̂n(t0) can be f̃n(t0)); f̂ ∗n,mn
(t0) is the

corresponding bootstrap estimate based on a bootstrap sample of size mn.

Remark: For the rest of the chapter we make crucial use of Proposition 1

and Corollary 1. In situations where the bootstrap works, the results will be

applied conditionally on the sequence X1, X2, . . . with Fn = F̂n and Fn,mn = F∗n

(the e.d.f. of the bootstrap sample generated from F̂n). For scenarios where the

bootstrap is inconsistent, techniques similar to that of the proof of Corollary 1

are used unconditionally to derive the unconditional limit distribution of ∆∗
n.

4.3.1 Bootstrapping from the e.d.f. Fn

Consider now the case in which mn = n and F̂n = Fn. The quantity

of interest is ∆∗
n := n1/3{f̃ ∗n(t0) − f̃n(t0)}, the bootstrap analogue of ∆n :=

n1/3{f̃n(t0)−f(t0)}. Letting X = (X1, X2, . . .), we define Gn(x; ω) = P{∆∗
n ≤

x|X}(ω) = P ∗{∆∗
n ≤ x}(ω) as the conditional distribution function of ∆∗

n

given X. We claim that Gn does not converge in P -probability.
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Let us define the process

Zn(h) := n2/3
{
F∗n(t0 + hn−1/3)− F∗n(t0)− f̃n(t0)hn−1/3

}

for h ∈ In = [−t0n
1/3,∞). Then Zn = Zn,1 + Zn,2, where

Zn,1(h) = n2/3{F∗n(t0 + hn−1/3)− F∗n(t0)− Fn(t0 + hn−1/3) + Fn(t0)}

and

Zn,2(h) = n2/3{Fn(t0 + hn−1/3)− Fn(t0)− f̃n(t0)hn−1/3}.

Let W1 and W2 be two independent two-sided standard Brownian motions

on R with W1(0) = W2(0) = 0 and let

Z1(h) := W1(f(t0)h),

Z0
2(h) := W2(f(t0)h) +

1

2
f ′(t0)h2,

Z2 := CMR[Z0
2]
′(0),

Z2(h) := Z0
2(h)− hZ2,

Z := Z1 + Z2 and

Z1 := CMR[Z1 + Z0
2]
′(0).(4.6)

Note that ∆∗
n equals the left derivative at h = 0 of the LCM of Zn. We

study the behavior of the process Zn and then use a continuous mapping type

argument to derive the behavior of ∆∗
n. It will be shown that Zn does not

have any weak limit conditional on X in P -probability. But unconditionally,

Zn has a limit distribution, which gives us the unconditional limit distribution

of ∆∗
n that is different from the limit distribution of ∆n.

We first state two lemmas without proof, applicable in more general sce-

narios, that will be used later in the chapter.
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Lemma 4.1. Let Wn and W ∗
n be random vectors in Rl and Rk respectively; let

Q and Q∗ be distributions on the Borel sets of Rl and Rk; and let Fn be sigma-

fields for which Wn is Fn-measurable. If the distribution of Wn converges to

Q and the conditional distribution of W ∗
n given Fn converges in probability to

Q∗, then the joint distribution of (Wn,W ∗
n) converges to the product measure

Q×Q∗.

Remark: The above lemma can be proved easily using characteristic func-

tions.

Lemma 4.2. Let X∗
n be a bootstrap sample generated from the data Xn. Let

Yn := ψn(Xn) and Zn := φn(Xn,X
∗
n) where ψn and φn are measurable func-

tions; and let Gn and Hn be the conditional distribution functions of Yn + Zn

and Zn respectively. If there are distribution functions G and H for which H

is non-degenerate, L(Gn, G)
P→ 0 and L(Hn, H)

P→ 0 then there is a random

variable Y for which Yn
P→ Y .

Remark: One proof of this lemma rests on the following idea. If {nk}

is any subsequence for which L(Gnk
, G)→0 and L(Hnk

, H)→0 w.p.1, then

Y := limn→∞ Ynk
exists by the Convergence of Types Theorems (see Loeve

(1962), page 203) and Y does not depend on nk since two subsequences can

be joined. The lemma follows easily.

Proposition 2. The conditional distribution of Zn,1 given X = (X1, X2 , . . .)

converges a.s. to the distribution of Z1. The unconditional distribution of Zn,2

converges to that of Z2 and the unconditional distribution of Zn converges to

that of Z.

Proof. The conditional convergence of Zn,1 follows by applying Proposition 1

with mn = n, Fn = Fn, Fn,mn = F∗n. Note that as we are conditioning on X,
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Fn, and f̃n are fixed and we can apply the proposition. Condition (b) in the

Proposition is satisfied as n1/3{Fn(t0 + hn−1/3)− Fn(t0)} can be written as

n1/3{F (t0 + hn−1/3)− F (t0)} + n1/3{(Fn − F )(t0 + hn−1/3)− (Fn − F )(t0)}

= hf(αn(h)) + rn(h),(4.7)

where |rn(h)| ≤ 2n1/3 sups∈R |Fn(s) − F (s)| → 0 w.p.1 (P ) by the law of

iterated logarithm (see Theorem 5.1.1 of Csörgő, M., and Révész, P. (1981)),

and αn(h) is between t0 + hn−1/3 and t0. Thus the conditional distribution of

Zn,1 given X converges to that of Z1 a.s. As a consequence, the unconditional

limit distribution of Zn,1 is the same as that of Z1.

To find the unconditional limit distribution of the process Zn,2 notice that

Zn,2 is a function of the process

Z0
n,2(h) = n2/3{Fn(t0 + hn−1/3)− Fn(t0)− f(t0)hn−1/3},

which is quite well studied in the literature (see Kim and Pollard (1990) for

more details). For I ⊂ R, define the operator GI : f(h) 7→ f(h)−h·(CMIf)′(0)

for h ∈ I, f : R→ R. Observe that Zn,2 is the image of Z0
n,2 under the mapping

GIn .

We apply Lemma 5.1 with Xn,c = G[−c,c][Z0
n,2], Yn = GIn [Z0

n,2], Wc =

G[−c,c][Z0
2] and Y = GR[Z0

2]. For I compact, it is easy to see that GI : D(I) →

D(I) is a continuous map at all points f for which (CMIf) is differentiable

at 0, i.e., both left and right derivatives exist and are equal. This shows that

condition (iii) of the lemma is satisfied. Condition (ii) follows from known

facts about the process Z0
2. Note that for any δ > 0, there exists K > 0 such

that for c > K,

P{ρ(Xn,c,Wc) > δ} ≤ P

{∣∣CM[−c,c][Z0
n,2]

′(0)− CMIn [Z0
n,2]

′(0)
∣∣ >

δ

2K

}
.
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The Assertion in page 217 of Kim and Pollard (1990) can now be used directly

to verify condition (i) of Lemma 5.1. Thus we conclude that Zn,2 = Yn =

GIn [Z0
n,2] ⇒ GR[Z0

2] = Y = Z2.

Next we show that Zn,1 and Z0
n,2 are asymptotically independent, i.e., the

joint limit distribution of Zn,1 and Z0
n,2 is the product of their marginal limit

distributions. For this it suffices to show that (Zn,1(t1), . . . ,Zn,1(tk)) and

(Z0
n,2(s1), . . . ,Z0

n,2(sl)) are asymptotically independent, for all choices −∞ <

t1 < . . . < tk < ∞ and −∞ < s1 < . . . < sl < ∞. This is an easy consequence

of the Lemma 4.1.

The joint unconditional distribution of (Zn,1,Zn,2) can be expressed as

(4.8)



Zn,1(h)

Zn,2(h)


 =




Zn,1(h)

GIn [Z0
n,2](h)


 ⇒



W1(f(t0)h)

Z0
2(h)− hZ2


 .

As Zn,1 and Z0
n,2 are asymptotically independent, the process Zn converges

weakly to Z. ¤

Corollary 2. The unconditional distribution of ∆∗
n converges to that of CMR[Z]′(0).

As in the proof of Corollary 1, we use the continuous mapping principle

with a localization argument. The details are provided in the Appendix.

Proposition 3. Conditional on X, the distribution of Zn does not have a

weak limit in P -probability.

Proof. We use the method of contradiction. Let Zn := Zn,1(h0) and Yn :=

Zn,2(h0) for some fixed h0 > 0 (say h0 = 1) and suppose that the conditional

distribution of Zn + Yn = Zn(h0) converges in probability to the distribution

function G. Observe that the distribution of Zn converges in P -probability to a

normal distribution by Proposition 1 which is obviously nondegenerate. Thus
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Figure 4.1: Scatter plot of 10000 random draws of (Z2, Z1−Z2) when f(t0) = 1 and f ′(t0) =

−2.

the assumptions of Lemma 4.2 are satisfied and we conclude that Yn
P→ Y ,

for some random variable Y . It then follows from the Hewitt-Savage zero-one

law that Y is a constant, say Y = c0 w.p.1. The contradiction arises since Yn

converges in distribution to Z0
2(h0)− h0Z2 which is not a constant a.s. ¤

Proposition 4. If the conditional distribution function of ∆∗
n converges in

P -probability, then CMR[Z]′(0) = Z1 − Z2 must be independent of both Z2

and Z2.

Proof. Note that ∆∗
n and Z0

n,2 are asymptotically independent by an applica-

tion of Lemma 4.1 with Wn = (Z0
n,2(t1),Z0

n,2(t2), . . . ,Z0
n,2(tl)), for (t1, t2, . . . , tl) ∈

Rl, W ∗
n = ∆∗

n and Fn = σ(X1, X2, . . . , Xn). As Z2 and Z2 are both functions

of Z0
2, the result follows. ¤

When combined with simulations, Proposition 4 strongly suggests that the

conditional distribution of ∆∗
n does not converge in probability. The simula-

tions clearly indicate that Z1 − Z2 and Z2 are not independent. We have not

been able to find a mathematical proof of this.
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Figure 4.1 shows the scatter plot of Z1 − Z2 versus Z2 obtained from a

simulation study with 10000 samples. We took f(t0) = 1 and f ′(t0) = −2.

The correlation coefficient obtained is −0.2114 and is highly significant. This

indicates that Z2 and Z1 − Z2 are not independent.

4.3.2 Bootstrapping from F̃n

One obvious problem with drawing the bootstrap samples from the e.d.f. Fn

is that Fn does not have a density. In this subsection we consider bootstrapping

from F̃n, the LCM of Fn, which does have a non-increasing density f̃n.

Let X∗
n,1, X

∗
n,2, . . . , X

∗
n,n be a bootstrap sample generated from F̃n. As be-

fore, we study the process Zn(h) = n2/3{F∗n(t0+hn−1/3)−F∗n(t0)−f̃n(t0)hn−1/3}.
We claim that ∆∗

n = n1/3{f̃ ∗n(t0) − f̃n(t0)}, the left derivative at h = 0 of the

LCM of Zn, does not have any weak limit, conditional on X. We show that Zn

does not have any limit distribution conditional on the data. But uncondition-

ally, Zn has a limit distribution which gives the unconditional limit distribution

of ∆∗
n that is different from the weak limit of ∆n, thereby illustrating that the

bootstrap procedure is not consistent. We borrow the notation introduced in

Equation (4.6) except that now

Z2(h) := CMR[Z0
2](h)− CMR[Z0

2](0)− h · CMR[Z0
2]
′(0).

Theorem 3. The following hold.

(i) The conditional distribution of Zn,1, given X, converges almost surely to

the distribution of Z1; the unconditional distribution of Zn,2 converges to

that of Z2; and the unconditional distribution of Zn converges to that of

Z.

(ii) The unconditional distribution of ∆∗
n converges to that of CMR[Z]′(0).
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(iii) Conditional on X, Zn does not have a weak limit in P -probability.

(iv) If ∆∗
n has a weak limit, conditional on X, in P -probability, then Z1 − Z2

must be independent of the process Z2 and the random variable Z2.

Proof. The proof of the result runs along similar lines as that of the propo-

sitions and corollaries in the last subsection. Using ideas similar to that in

Equation (4.4) and the following discussion, the process

Zn,1(h) := n2/3{F∗n(t0 + hn−1/3)− F∗n(t0)− F̃n(t0 + hn−1/3) + F̃n(t0)}

converges in distribution to Z1(h) = W1(f(t0)h) conditional on X, a.s. We

express Zn,2 as a function of the process Z0
n,2 and apply a continuous mapping

type argument to find its limiting distribution. Note that Zn,2(h) can be

expressed as

n2/3
{

F̃n(t0 + hn−1/3)− F̃n(t0)
}
− f̃n(t0)hn1/3

= n2/3
{

F̃n(t0 + hn−1/3)− Fn(t0)− f(t0)hn−1/3
}

− n2/3
{

F̃n(t0)− Fn(t0)
}
− n1/3h

{
f̃n(t0)− f(t0)

}

= CMIn [Z0
n,2](h)− CMIn [Z0

n,2](0)− h · CMIn [Z0
n,2]

′(0)

An application of the continuous mapping principle (with a localization argu-

ment) yields the unconditional convergence of Zn,2 ⇒ Z2. The proof of part

(ii) uses similar techniques as that in the proof of Corollary 2 and is given in

the appendix. Using Proposition 3 we can argue that Zn does not converge

to any weak limit, conditional on X, in P -probability. Proposition 4 can be

employed to complete the proof of (iv) of the theorem. ¤

As before, extensive simulations show that Z1 − Z2 and Z2 are not inde-

pendent, which suggests that ∆∗
n does not have a conditional weak limit in

probability.
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4.4 Bootstrapping from a smoothed version of F̃n

One of the major reasons for the inconsistency of bootstrap methods dis-

cussed in the previous section is the lack of smoothness of the distribution

from which the bootstrap samples are generated. The e.d.f. Fn does not have

a density, and F̃n does not have a differentiable density, whereas F is assumed

to have a nonzero differentiable density at t0. The results from Section 4.2

are directly applied to derive sufficient conditions on the smoothness of the

distribution from which the bootstrap samples are generated.

Theorem 4. Suppose that we generate a bootstrap sample X∗
n,1, X

∗
n,2, . . . ,

X∗
n,mn

from a distribution function F̂n constructed from the data X1, X2, . . . ,

Xn. Let f̂n be an estimate of the density of F̂n. Let f̃ ∗n be the NPMLE

based on the bootstrap sample. Also suppose that conditions (a)-(e) used

in Proposition 1 hold a.s. with Fn = F̂n and fn = f̂n. Then the bootstrap

distribution is strongly consistent, i.e., for almost all X, the conditional limit

distribution of ∆∗
n = m

1/3
n

{
f̃ ∗n(t0)− f̂n(t0)

}
is the same the unconditional

limit distribution of ∆n = n1/3
{

f̃n(t0)− f(t0)
}

. Equivalently,

sup
x∈R

|P ∗ {∆∗
n ≤ x} − P {∆n ≤ x}| a.s.−→ 0(4.9)

Proof. Conditional on X, F̂n and f̂n are fixed, and we can apply Proposition 1

with Fn = F̂n and fn = f̂n to obtain the limit distribution of the process Zn

(defined in Equation (4.2)). Equation (4.9) follows directly from an application

of Corollary 1 (as the conditions (1)-(3) on the limit process Z are satisfied)

and Polya’s theorem, noticing that the conditional limit distribution of ∆∗
n is

continuous. ¤

As an example, we construct a kernel smoothed version of F̃n and show
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that it leads to a consistent bootstrap procedure. The usual kernel smoothing

of the Grenander estimator would give rise to a boundary effect at 0, as f is

supported on [0,∞), and might violate the assumption of monotonicity. To

avoid these difficulties, we transform the observations by taking logarithms,

kernel smooth the transformed data points, which are now supported on R,

and back transform the smoothed density to obtain an estimate of f . The

result is

f̌n(x) :=
1

xhn

∫ ∞

0

K

(
log u− log x

hn

)
f̃n(u)du

=
1

hn

∫ ∞

0

K

(
log v

hn

)
f̃n(vx)dv

for x ∈ [0,∞), where hn is the smoothing bandwidth, and K(·) is a symmetric

(around 0) density function on R satisfying the following conditions:

(i) K ′ exists and is bounded on R.

(ii) K ′′ exists and is continuous on R.

(iii)
∫∞
−∞ |K(i)(u)|max{1, euε}du < ∞ for some ε > 0, and i = 0, 1, 2.

It is easy to see that f̌n is a non-increasing density function supported on

[0,∞). We generate bootstrap samples from F̌n, the distribution function

having density f̌n. To simplify notation, let Khn(u, x) := 1
xhn

K
(

log u−log x
hn

)
.

The following display gives an alternative expression for f̌n which directly

follows from integration by parts and noticing that limu→∞ Kh(u, x) = 0 for

every x ∈ (0,∞), hn > 0,

f̌n(x) =

∫ ∞

0

Khn(u, x)f̃n(u)du = −
∫ ∞

0

∂

∂u
[Khn(u, x)] F̃n(u)du.

The next theorem shows the consistency of the bootstrap procedure when

generating n data points X∗
n,1, X

∗
n,2, . . . , X

∗
n,n from F̌n.
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Theorem 5. Assume that hn → 0 and h2
n(n/ log log n)1/2 → ∞ as n → ∞.

Then the bootstrap method is strongly consistent, i.e., Equation (4.9) holds

with ∆∗
n = n1/3

{
f̃ ∗n(t0)− f̌n(t0)

}
.

Proof. Let F∗n be the e.d.f. of X∗
n,1, X

∗
n,2, . . . , X

∗
n,n. We define Zn(z) := n2/3{F∗n(t0+

zn−1/3)− F∗n(t0)− f̌n(t0)zn
−1/3} for z ∈ [−t0n

1/3,∞]. We show that the con-

ditions (a)-(e) hold a.s. and use Theorem 4 to get the desired result.

As before, let Zn(z) = Zn,1(z) + Zn,2(z), where Zn,1(z) = n2/3[{F∗n(t0 +

zn−1/3) − F∗n(t0)} − {F̌n(t0 + zn−1/3) − F̌n(t0)}], and Zn,2(z) = n2/3[{F̌n(t0 +

zn−1/3)− F̌n(t0)} − f̌n(t0)zn
−1/3].

As a first step, we establish (c), i.e., Zn,2(z)
a.s.→ z2

2
f ′(t0) uniformly on com-

pacta. Fix a compact set [−M, M ] ⊂ R. As F̌n is twice continuously differ-

entiable, we can use Taylor expansion to simplify Zn,2(z) to z2

2
f̌ ′n(tn(z)) where

tn(z) is an intermediate point between t0 and t0 + zn−1/3. We now show that

f̌ ′n(tn(z))
a.s.→ f ′(t0) uniformly for z ∈ [−M, M ]. Towards this end, let us define

f̄n(x) =

∫ ∞

0

Khn(u, x)f(u)du = −
∫ ∞

0

∂

∂u
[Khn(u, x)] F (u)du;(4.10)

f̄n is just a smoothed version of the original density function f . We first

show that f̌ ′n(t) − f̄ ′n(t)
a.s.→ 0 uniformly on [t0 − δ, t0 + δ] where δ > 0 is

such that t0 − δ > 0 and f is continuously differentiable in the interval. For

t ∈ [t0 − δ, t0 + δ],

|f̌ ′n(t)− f̄ ′n(t)| =

∣∣∣∣
∫ ∞

0

∂2

∂t∂u
[Khn(u, t)]

{
F̃n(u)− F (u)

}∣∣∣∣ du

≤
∫ ∞

0

∣∣∣∣
∂2

∂t∂u
[Khn(u, t)]

∣∣∣∣
∣∣∣F̃n(u)− F (u)

∣∣∣ du

≤ Dn

∫ ∞

0

∣∣∣∣
∂2

∂t∂u
[Khn(u, t)]

∣∣∣∣ du where Dn = ‖F̃n − F‖∞

=
Dn

h2
n

{
h2

n

∫ ∞

0

∣∣∣∣
∂2

∂t∂u
[Khn(u, t)]

∣∣∣∣ du

}
a.s.→ 0(4.11)
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uniformly as h2
n(n/ log log n)1/2 → ∞ ((n/ log log n)1/2Dn = O(1) w.p.1 from

Theorem 7.2.1 in Robertson, Wright and Dykstra (1988)) and the fact that

h2
n

∫∞
0
| ∂2

∂t∂u
[Khn(u, t)]|du is uniformly bounded (as a consequence of assump-

tion (iii) about the kernel K). To show that f̄ ′n(t) → f(t) uniformly on

I := [t0 − δ/2, t0 + δ/2], we express

f̄n(t) =

∫

Cn

K(v)f(tevhn)evhndv +

∫

Ic

Khn(u, t)f(u)du

where Cn :=
[

log (t0−δ/2)−log t
hn

, log (t0+δ/2)−log t
hn

]
. On differentiating and some sim-

plification we have

|f̄ ′n(t)− f ′(t)| ≤
∫

Cn

K(v)e2vhn
∣∣f ′(tevhn)− f ′(t)

∣∣ dv +

∫

Ic

∣∣∣∣
∂

∂t
Khn(u, t)

∣∣∣∣ f(u)du + |f ′(t)|
∣∣∣∣
∫

Cn

K(v)e2vhndv − 1

∣∣∣∣ .(4.12)

By uniform continuity of f ′ on [t0 − δ, t0 + δ], the first term can be made uni-

formly small. It is easy to see that the third term goes to zero. The second

term can be shown to vanish by using properties (i) and (iii) about the ker-

nel and an application of Cauchy-Schwarz inequality. From Equations (4.11)

and (4.12) we see that Z2,n(z)
a.s.→ z2

2
f ′(t0) uniformly on [−M, M ]. Notice that,

∫ ∞

0

|f̌n(t)− f̄n(t)|dt ≤
∫ ∞

0

∫ ∞

0

Khn(u, t)|f̃n(u)− f(u)|du dt

=

∫ ∞

0

|f̃n(u)− f(u)|
∫ ∞

0

Khn(u, t)dt du =

∫ ∞

0

|f̃n(u)− f(u)|du → 0 a.s.

by interchanging the order of integration (and noticing that the inner integral

evaluates to 1) and using Theorem 8.3 of Devroye (1987). Also note that

f̄n(t) → f(t) for all t > 0, by an application of the dominated convergence

theorem. By Scheffé’s theorem,
∫∞
0
|f̄n(t) − f(t)|dt → 0. Thus, we conclude

that ∫ ∞

0

|f̌n(t)− f(t)|dt → 0 a.s.
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Therefore, F̌n converges uniformly on (0,∞) to F a.s., which shows that (a)

holds. Also as F has a continuous density f , f̌n(t) → f(t) a.s. for every t > 0

by the lemma in page 330 of Robertson, Wright and Dykstra (1988). As f̌n’s

are monotonically decreasing functions converging pointwise to a continuous

f , the convergence is uniform on the compact neighborhood [t0 − δ, t0 + δ].

Now, to show that condition (b) holds, for z ∈ [−M, M ], we use a one term

Taylor series expansion to bound

|n1/3{F̌n(t0 + zn−1/3)− F̌n(t0)} − zf(t0)|

≤ M

{
max

|s|≤Mn−1/3
|f̌n(t0 + s)− f(t0 + s)|+ max

|s|≤Mn−1/3
|f(t0 + s)− f(t0)|

}

which converges to 0 a.s. by the above discussion and the continuity of f . A

similar argument also shows that (e) holds, with the O(m
−1/3
n ) term identically

0.

To prove condition (d), let ε > 0 be given. We use a two term Taylor

expansion to bound the right-hand side of (d) as

|F̌n(t0 + β)− F̌n(t0)− f̌n(t0)β − 1

2
β2f ′(t0)|

≤ 1

2
β2 max

|s|≤|β|
|f̌ ′n(t0 + s)− f ′(t0)|

≤ 1

2
β2

{
max
|s|≤|β|

|f̌ ′n(t0 + s)− f ′(t0 + s)|+ max
|s|≤|β|

|f ′(t0 + s)− f ′(t0)|
}

≤ εβ2 + o(β2).

The last inequality follows from the uniform convergence of f̌ ′n(s) to f ′(s) in

a neighborhood of t0 (which is proved in Equations (4.11) and (4.12)) and the

continuity of f ′ at t0, by choosing a sufficiently large n and a sufficiently small

neighborhood for β around 0. ¤
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4.5 m out of n Bootstrap

In Section 4.3 we showed that the two most intuitive methods of bootstrap-

ping are inconsistent. In this section we show that the corresponding m out of

n bootstrap procedures are weakly consistent. The following theorem consid-

ers generating bootstrap samples X∗
n,1, X

∗
n,2, . . . , X

∗
n,mn

from Fn, where mn is

strictly less than n. The quantity of interest is ∆∗
n = m

1/3
n

{
f̃ ∗mn

(t0)− f̃n(t0)
}

.

Theorem 6. If mn = o(n) then the bootstrap procedure is weakly consistent,

i.e.,

sup
x∈R

|P ∗ {∆∗
n ≤ x} − P {∆n ≤ x}| P−→ 0.(4.13)

Proof. We verify conditions (a)-(e) (with some modification) as in Theorem 4

with Fn = Fn and fn = f̃n to establish the desired result. Conditions (a), (b)

and (e) hold a.s. and are easy to establish.

Fix a compact set [−M,M ] ⊂ R. We show that (c) holds in probability,

i.e., Zn,2(z)
P→ z2

2
f ′(t0) uniformly on [−M,M ]. Towards this end, we simplify

Zn,2(z), for z ∈ [−M,M ], in the following way

m2/3
n

{
Fn(t0 + zm−1/3

n )− Fn(t0)
}−m1/3

n zf̃n(t0)

= m2/3
n

{
(Fn − F )(t0 + zm−1/3

n )− (Fn − F )(t0)
}

+

{
m1/3

n zf(t0) +
z2

2
f ′(t0 + αn(z))

}
−m1/3

n zf̃n(t0)

where αn(z) is between t0 and t0 + zm−1/3
n

= oP (1)−m1/3
n z

{
f̃n(t0)− f(t0)

}
+

z2

2
f ′(t0 + αn(z))

P→ z2

2
f ′(t0) as n →∞(4.14)

as supz∈[−M,M ]

∣∣∣(Fn − F )(t0 + zm
−1/3
n )− (Fn − F )(t0)

∣∣∣ = OP (n−1/2m
−1/6
n ) =

oP (m
−2/3
n ) .
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To verify condition (d), let ε > 0 be given. By Equation (4.21) we can choose

a small enough neighborhood of 0 for β and n large so that the righthand-side

of (d) can be bounded by oP (m
−2/3
n ) + εβ2 + o(β2).

Given any subsequence {nk} ⊂ N, there exists a further subsequence {nkl
}

such that conditions (c) and (d) hold a.s. and Theorem 4 is applicable. Thus

Equation (4.9) holds for the subsequence {nkl
} which proves Equation (4.13).

¤

The next theorem shows that the m out of n bootstrap method is also

weakly consistent when we generate bootstrap samples from F̃n. We will

assume slightly stronger conditions on F , namely, conditions (a)-(d) mentioned

in Theorem 7.2.3 of Robertson, Wright and Dykstra (1988).

Theorem 7. If mn = O(n(log n)−3/2) then Equation (4.13) holds.

Proof. The proof is similar to that of Theorem 6. We only show that con-

dition (c) holds. Letting z ∈ [−M,M ] ⊂ R, we add and subtract the term

m
2/3
n

{
Fn(t0 + zm

−1/3
n )− Fn(t0)

}
from

Zn,2(z) = m2/3
n

{
F̃n(t0 + zm−1/3

n )− F̃n(t0)
}
−m1/3

n zf̃n(t0)

and then use the following result due to Kiefer and Wolfowitz (1976)

∣∣∣
{

F̃n(t0 + zm−1/3
n )− F̃n(t0)

}
− {

Fn(t0 + zm−1/3
n )− Fn(t0)

}∣∣∣

≤ 2‖F̃n − Fn‖ = oP (n−2/3 log n) = oP (m2/3
n ).

This, coupled with the convergence of

m2/3
n

{
Fn(t0 + zm−1/3

n )− Fn(t0)
}− zm1/3

n f̃n(t0)
P→ z2

2
f ′(t0)

uniformly on [−M,M ] (see Equation (4.14)) establishes (c). ¤
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4.6 Discussion

We worked with the Grenander estimator as a prototypical example of

cube-root asymptotics, but believe that our results have broader implications

for the (in)-consistency of the bootstrap methods in problems with an n1/3

convergence rate. We consider in this connection the work of Abrevaya and

Huang (2005).

The setup is similar to that of Kim and Pollard (1990), where a general

M-estimation framework is considered. For mathematical simplicity, we use

the same notation as in Abrevaya and Huang (2005). Let Wn := rn(θn − θ0)

and Ŵn := rn(θ̂n − θn) be the sample and bootstrap statistic of interest. In

our case rn = n1/3, θ0 = f(t0), θn = f̃n(t0) and θ̂n = f̃ ∗n(t0). Theorem 2 of

Abrevaya and Huang (2005) claims that

Ŵn ⇒ arg max Ẑ(t)− arg max Z(t)

conditional on the original sample, in P∞-probability, where Z(t) = −1
2
t′V t+

W (t) and Ẑ(t) = −1
2
t′V t + W (t) + Ŵ (t), W and Ŵ are two independent

Gaussian processes, both with continuous sample paths and mean zero (see

Abrevaya and Huang (2005) for more details). We also know that Wn ⇒
arg max Z(t). An application of Lemma 4.1 with Wn and Ŵn, shows that

arg max Z(t) and arg max Ẑ(t) − arg max Z(t) should be independent. Now,

if we specialize to cube-root asymptotics, we can take Z(t) = W (t) − t2 and

Ẑ(t) = W (t) + Ŵ (t) − t2, where W (t) and Ŵ (t) are two independent two

sided standard Brownian motions on R with W (0) = Ŵ (0) = 0. There is

abundant numerical evidence to suggest that arg max Z(t) and arg max Ẑ(t)−

arg max Z(t) are not independent in this situation, contradicting Abrevaya and

Huang’s claim.



81

Section 4 of Abrevaya and Huang (2005) gives a method for correcting the

bootstrap confidence interval. In light of the above discussion the construction

of asymptotically correct bootstrap confidence intervals in this situation is

suspect.

In case of the Grenander estimator, the LCM of the e.d.f. is another obvious

choice for generating the bootstrap samples, as it is a concave distribution

function. It is probably more natural to expect that bootstrapping from the

LCM of the e.d.f. would work, as it has a well-defined probability density,

while the e.d.f. does not have a density. But this bootstrap procedure is

also inconsistent, and we claim that the bootstrap statistic does not have any

conditional weak limit, in probability.

We have derived sufficient conditions for the consistency of bootstrap meth-

ods for this problem. Using these conditions we have shown the strong consis-

tency of a smoothed version of bootstrap, and weak consistency of the m out

of n bootstrap procedure when generating bootstrap samples from Fn and F̃n.

4.7 Appendix section

We will use the following lemma to prove Corollary 1.

Lemma 4.3. Let Ψ : R→ R be a function such that Ψ(h) ≤ M for all h ∈ R,

for some M > 0, and

lim
|h|→∞

Ψ(h)

|h| = −∞.(4.15)

Then there exists c0 > 0 such that for any c ≥ c0, CMR[Ψ](h) = CM[−c,c][Ψ](h)

for all |h| ≤ 1.

Proof. Note that for any c > 0, CMR[Ψ](h) ≥ CM[−c,c][Ψ](h) for all h ∈ [−c, c].

Let us define Φc : R → R such that Φc(h) = CM[−c,c][Ψ](h) for h ∈ [−1, 1],
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and Φc is the linear extension of CM[−c,c][Ψ]
∣∣
[−1,1] outside [−1, 1].

We will show that there exists c0 > 2 such that Φc0 ≥ Ψ. Then Φc0 will

be a concave function everywhere greater than Ψ, and thus Φc0 ≥ CMR[Ψ].

Hence, CMR[Ψ](h) ≤ Φc0(h) = CM[−c0,c0][Ψ](h) for h ∈ [−1, 1], yielding the

desired result.

For any c > 2, let Φc(h) = ac + Φ′
c(1)h for h ≥ 1. Using the min-max

formula, we can bound Φ′
c(1) as

Φ′
c(1) = min

−c≤s≤1
max
1≤t≤c

Ψ(t)−Ψ(s)

t− s
≥ min

−c≤s≤1

Ψ(2)−Ψ(s)

2− s

≥ min
−c≤s≤1

Ψ(2)−M

2− s
= Ψ(2)−M =: B0 ≤ 0.

We can also bound ac by using the inequality Ψ(1) ≤ Φc(1) = ac+Φ′
c(1). Thus

for h ≥ 1,

Φc(h) = ac + Φ′
c(1)h ≥ {Ψ(1)− Φ′

c(1)}+ Φ′
c(1)h

≥ Ψ(1) + (h− 1)B0 ≥ −K1h(4.16)

for some suitably chosen K1 > 0.

Similarly, for any c > 2, let Φc(h) = bc + Φ′
c(−1)h for h ≤ −1. We can

bound Φ′
c(−1) as

Φ′
c(−1) = min

−c≤s≤−1
max
−1≤t≤c

Ψ(t)−Ψ(s)

t− s
≤ max

−1≤t≤c

Ψ(t)−Ψ(−2)

t + 2

≤ max
−1≤t≤c

M −Ψ(−2)

t + 2
= M −Ψ(−2) =: B1 ≥ 0.

We can also bound bc by noticing that Ψ(−1) ≤ Φc(−1) = bc −Φ′
c(−1). Thus

for h ≤ −1,

Φc(h) = bc + Φ′
c(−1)h ≥ Ψ(−1) + Φ′

c(−1)(h + 1)

≥ {Ψ(−1) + B1}+ hB1 ≥ K2h = −K2|h|(4.17)
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for some suitably chosen K2 > 0. Note that K1 and K2 do not depend on

the choice of c. Given K = max{K1, K2}, there exists c0 > 2 such that

Ψ(h) ≤ −K|h| for all |h| ≥ c0 from Equation (4.15). But from Equations (4.16)

and (4.17) Φc0(h) ≥ −K|h| for all |h| ≥ 1. Combining, we get Ψ(h) ≤

−K|h| ≤ Φc0(h) for all |h| ≥ c0 > 1. Further, we know that Φc0(h) ≥

CM[−c0,c0][Ψ](h) ≥ Ψ(h) for |h| ≤ c0. Thus we have been able to show that

there exists c0 > 2 such that Φc0 ≥ Ψ. ¤

We will use the following easily verified fact (see Pollard (1984), page 70).

Lemma 4.4. If {Xn,c}, {Yn}, {Wc} and Y are sets of random elements taking

values in a metric space (X ,d), n = 0, 1, . . ., and c ∈ R such that for any

δ > 0,

(i) limc→∞ lim supn→∞ P{d(Xn,c, Yn) > δ} = 0,

(ii) limc→∞ P{d(Wc, Y ) > δ} = 0,

(iii) Xn,c ⇒ Wc as n →∞ for every c ∈ R.

Then Yn ⇒ Y as n →∞.

Proof of Corollary 1. For the proof of the corollary we appeal to

Lemma 5.1. We take Xn,c = m
1/3
n {f̃n,mn,c(t0) − fn(t0)} where f̃n,mn,c(t0) is

the slope at t0 of the LCM of Fn,mn restricted to [t0 − cm
−1/3
n , t0 + cm

−1/3
n ],

and Yn = m
1/3
n {f̃n,mn(t0) − fn(t0)}. Let us denote by Cn,c the LCM of the

restriction of Zn to [−c, c]. Also, we take Wc as the left-hand slope at 0 of Cc,

the LCM of the restriction of Z to [−c, c], and Y as the slope at 0 of C, the

LCM of Z.

Note that as Xn,c = C′n,c(0) = CM[−c,c][Z](0), an application of the usual

continuous mapping theorem (see lemma on page 330 of Robertson, Wright
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and Dykstra (1988)) and the uniform convergence of Zn to Z on [−c, c] with

condition (3) of the corollary yields Xn,c ⇒ Wc = C′c(0), for every c. This

shows that condition (iii) of the lemma holds.

To verify condition (ii) of the lemma we will make use of Lemma 4.3. For

a.e. ω, let c0(ω) be the smallest positive integer such that for any c ≥ c0,

CMR[Z](h) = CM[−c,c][Z](h) for all |h| ≤ 1. Note that such a c0 exists and is

finite w.p.1. Then the event {Wc 6= Y } ⊂ {co > c} and thus for any δ > 0,

P{d(Wc, Y ) > δ} ≤ P{co > c} → 0 as c →∞.

Next we show that condition (i) holds and apply Lemma 5.1 to conclude

that Yn converges to Y , thereby completing the proof of the corollary. The

following series of claims are adopted from the assertion in page 217 of Kim

and Pollard (1990).

Claim 1. Condition (i) of Lemma 5.1 follows if we can show the existence

of random variables {τn} and {σn} of order OP (1) such that τn < 0 ≤ σn and

Cn(τn) = Zn(τn) and Cn(σn) = Zn(σn).

Proof of Claim 1. Let ε > 0 be given. As {τn} and {σn} are of

order OP (1), we can get Mε > 0 such that lim supn→∞ P{Aε} < ε, where

Aε = {τn < −Mε, σn > Mε}. Take ω ∈ Ac
ε. Then −Mε ≤ τn(ω) < 0 and

0 ≤ σn(ω) ≤ Mε. Note that

Zn(τn(ω)) ≤ Cn,c(τn(ω)) ≤ Cn(τn(ω)) and

Zn(σn(ω)) ≤ Cn,c(σn(ω)) ≤ Cn(σn(ω))(4.18)

for c > Mε. From the given condition in the claim we have equality in Equa-

tion (4.18) and by using a property (noted as as remark below) of concave

majorants it follows that Cn,c(h)(ω) = Cn(h)(ω) for all h ∈ [τn, σn].
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Remark. Let [a, b] ⊂ B ⊂ R and suppose that CM[a,b](g)(x1) = CMB(g)(x1)

and CM[a,b](g)(x2) = CMB(g)(x2), for x1 < x2 in [a, b]. Then CM[a,b](g)(t) =

CMB(g)(t) for all t in [x1, x2].

Thus, Xn,c(ω) = Yn(ω). Therefore, Ac
ε ⊂ {Xn,c = Yn} which implies that

for any δ > 0, lim supn→∞ P{d(Xn,c, Yn) > δ} ≤ lim supn→∞ P{Aε} < ε, for

c > Mε. ¤

Therefore it suffices to show that we can construct random variables τn

and σn of order OP (1) so that Cn(τn) = Zn(τn) and Cn(σn) = Zn(σn) for

τn < 0 ≤ σn.

Claim 2. There exist random variables {τn} and {σn} of order OP (1) such

that τn < 0, σn ≥ 0 and Cn(τn) = Zn(τn) and Cn(σn) = Zn(σn).

Proof of Claim 2. Let Kn denote the LCM of Fn,mn . The line through

(t0, Kn(t0)) with slope f̃n,mn(t0) must lie above Fn,mn touching it at the two

points t0 − Ln and t0 + Rn, where Ln > 0 and Rn ≥ 0. Note that t0 − Ln

and t0 + Rn are the nearest points to t0 such that Kn and Fn,mn coincide.

The line segment from (t0 − Ln,Fn,mn(t0 − Ln)) to (t0 + Rn,Fn,mn(t0 + Rn))

makes up part of Kn. It will suffice to show that Ln = OP (m
−1/3
n ), as then

τn := −m
1/3
n Ln = OP (1). The argument depends on the inequality

Kn(t0) + f̃n,mn(t0)β ≥ Fn,mn(t0 + β) for all β,

with equality at β = −Ln and β = Rn.

Let Γn(β) = Fn,mn(t0 + β) − Fn,mn(t0) − βf̃n,mn(t0). Γn is the distance

between Fn,mn(t0+β) and Fn,mn(t0)+βf̃n,mn(t0). It follows that Γn(β) achieves

its maximum at β = −Ln and β = Rn and Γn(−Ln) = Γn(Rn). We can easily

show using condition (a) that Ln, Rn and γn := f̃n,mn(t0)− fn(t0) are of order
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oP (1). That lets us argue locally. Let

gn(y, β) := 1{y ≤ t0 + β} − 1{y ≤ t0} − fn(t0)β.

Claim 3. For any ε > 0, we have

1

mn

∣∣∣∣∣
mn∑
i=1

{gn(Xn,i, β)− Egn(Xn,i, β)}
∣∣∣∣∣ ≤ εβ2 + OP (m−2/3

n )

uniformly over β in a neighborhood of zero.

For the time being, we assume Claim 3, which is proved below. From

condition (d), |Egn(·, β)− 1
2
β2f ′(t0)| ≤ εβ2 + o(β2) + O(m

−2/3
n ) for sufficiently

large n. Thus

|Γn(β) + βγn − 1

2
β2f ′(t0)|

= |Fn,mn(t0 + β)− Fn,mn(t0)− βfn(t0)− 1

2
β2f ′(t0)|

≤ 2εβ2 + o(β2) + OP (m−2/3
n )(4.19)

uniformly for β in a neighborhood of 0 by Claim 3 and the triangle inequality.

As f ′(t0) < 0, for n → ∞, there exist constants c1, c2 > 0 such that, with

probability tending to 1, for β in a small neighborhood of 0,

−1

2
c2β

2 − βγn −OP (m−2/3
n ) ≤ Γn(β) ≤ −1

2
c1β

2 − βγn + OP (m−2/3
n ).

The quadratic −1
2
c1β

2 − βγn assumes its maximum of 1
2
γ2

n/c1 at −γn/c1, and

takes negative values for those β with the same sign of γn. It follows that with

probability tending to 1,

max
β

Γn(β) = min(Γn(−Ln), Γn(Rn)) ≤ OP (m−2/3
n ).

We also have max
β

Γn(β) ≥ Γn(−γn/c2) ≥ 1

2
γ2

n/c2 −OP (m−2/3
n ).

These two bounds imply that γn = OP (m
−1/3
n ). With this rate for convergence

for {γn} we can now deduce from the inequalities

0 = Γn(0) ≤ Γn(−Ln) ≤ 1

2
c1(Ln − γn/c1)

2 +
1

2
γ2

n/c1 + OP (m−2/3
n )
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that Ln = OP (m
−1/3
n ), as required. Similarly, we can show that Rn = OP (m

−1/3
n ).

Proof of Claim 3. Let us define Gn(β) as

1

mn

mn∑
i=1

{gn(Xn,i, β)− Egn(·, β)} = (Fn,mn − Fn)(t0 + β)− (Fn,mn − Fn)(t0).

We will show that |Gn(β)| ≤ εβ2 + m
−2/3
n M2

n uniformly over a neighborhood

of 0, for Mn of order OP (1). We fix a neighborhood [−b, b] for β obtained from

condition (e). We define Mn(ω) as the infimum (possibly +∞) of those values

for which the asserted uniform inequality holds. Let us define A(n, j) to be

the set of those β in [−b, b] for which (j − 1)m
−1/3
n ≤ |β| < jm

−1/3
n . Then for

m constant,

P{Mn > m} ≤ P{∃β ∈ [−b, b] : |Gn(β)| > εβ2 + m−2/3
n m2}

≤
∑

j:jm
−1/3
n ≤b

P{∃β ∈ A(n, j) : m2/3
n |Gn(β)| > ε(j − 1)2 + m2}

≤
∑

j:jm
−1/3
n ≤b

E
(
sup|β|<jm

−1/3
n

m
4/3
n |Gn(β)|2

)

{ε(j − 1)2 + m2}2

≤
∑

j:jm
−1/3
n ≤b

C ′j
{ε(j − 1)2 + m2}2

(4.20)

for mn sufficiently large. The last inequality follows from a maximal inequality

as in part (ii) of Result 3.1 of Kim and Pollard (1990) and using condition (e).

To be more precise, fix j ≥ 1 such that jm
−1/3
n ≤ b and let F := {hβ : |β| <

jm
−1/3
n } be a collection of functions where hβ(x) = 1{x ≤ t0 +β}−1{x ≤ t0}.

Note that F is a class of functions with envelope function H(x) = 1{x ≤

t0 + jm
−1/3
n } − 1{x ≤ t0 − jm

−1/3
n }. From the maximal inequality in 3.1 of

Kim and Pollard (1990) we can bound m
4/3
n E(supF |Gn(β)|2) by

J2(1)m1/3
n {Fn(t0 + jm−1/3

n )− Fn(t0 − jm−1/3
n )} ≤ C ′j
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for n sufficiently large, by adding and subtracting Fn(t0) and using condi-

tions (e), where J is a continuous and increasing function with J(0) = 0 and

J(1) < ∞, not depending on n and C is a constant. We can therefore ensure

that the sum in Equation (5.37) is suitably small for large mn by choosing m

large enough. This proves the claim. ¤

Proof of Corollary 2. To prove the corollary we appeal to Lemma 5.1

by establishing conditions (i)-(iii) (in the lemma) with Xn,c = CM[−c,c][Zn]′(0),

Yn = CMIn [Zn]′(0), Wc = CM[−c,c][Z]′(0) and Y = CMR[Z]′(0). Note that the

process Z satisfies conditions (1)-(3) of Corollary 1 and so condition (ii) of

the lemma holds. An application of the continuous mapping theorem and the

uniform convergence of Zn to Z on [−c, c] yields condition (iii).

If we can show that (τn, σn), defined as in the proof of Claim 2 of Corollary 1

with mn = n, Fn = Fn, and Fn,mn = F∗n, are of order OP (1), then using Claim

1 in the proof of Corollary 1 we can establish condition (i). But this step

requires a bit of work. Although the argument is similar to that of the proof

of Claim 2 of Corollary 1, there are some subtle differences. Note that here we

want to study the unconditional behavior of (τn, σn), and so Fn = Fn cannot

be treated as fixed.

As a first step we show that slightly modified versions of conditions (a), (d)

and (e), to be used later in the proof, are satisfied. Condition (a) trivially holds

a.s. Condition (e) also holds a.s. and can be verified using Equation (4.7).

Note that the neighborhood for β around 0 in condition (e) can be chosen

to be a fixed interval a.s. (not depending on X, but possibly on F ). Let

ε > 0 be given. We show that condition (d) holds with O(m
−2/3
n ) replaced by
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OP (n−2/3). The term of interest can be grouped as

∣∣∣∣Fn(t0 + β)− Fn(t0)− βf̃n(t0)− 1

2
β2f ′(t0)

∣∣∣∣
≤ |(Fn − F )(t0 + β)− (Fn − F )(t0)|+ |β|

∣∣∣f̃n(t0)− f(t0)
∣∣∣

+

∣∣∣∣F (t0 + β)− F (t0)− βf(t0)− 1

2
β2f ′(t0)

∣∣∣∣
≤ εβ2 + o(β2) + OP (n−2/3).(4.21)

The first term can be bounded by
{
OP (n−2/3) + 1

2
εβ2

}
uniformly for β in

a small neighborhood of 0, using Claim 3 in the proof of Corollary 1 with

Fn,mn = Fn and Fn = F . The second term |β|
∣∣∣f̃n(t0)− f(t0)

∣∣∣ can be bounded

by

1

2
εβ2 +

1

2ε

∣∣∣f̃n(t0)− f(t0)
∣∣∣
2

=
1

2
εβ2 + OP (n−2/3).(4.22)

By Taylor expansion it is easy to see that the third term is of order o(β2).

Next we define Ln, Rn and γn as in Claim 2. It is easy to show that

Ln, Rn and γn are of order oP (1), using condition (a). The main crux of the

argument in the proof of Claim 2 of Corollary 1 is establishing Equation (5.36)

uniformly for β in a neighborhood of 0. We show that Equation (5.36) still

holds unconditionally in our context, thereby yielding (τn, σn) = OP (1), from

the discussion succeeding the equation. Observe that,

∣∣∣∣Γn(β) + βγn − 1

2
β2f ′(t0)

∣∣∣∣ =

∣∣∣∣F∗n(t0 + β)− F∗n(t0)− βf̃n(t0)− 1

2
β2f ′(t0)

∣∣∣∣

can be bounded by the sum of
∣∣∣Fn(t0 + β)− Fn(t0)− βf̃n(t0)− 1

2
β2f ′(t0)

∣∣∣ and

|(F∗n − Fn)(t0 + β)− (F∗n − Fn)(t0)|. Equation (4.21) is employed to bound the

first term, whereas the following result

|(F∗n − Fn)(t0 + β)− (F∗n − Fn)(t0)| ≤ εβ2 + OP (n−2/3)
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bounds the second. Combining, we have

∣∣∣∣Γn(β) + βγn − 1

2
β2f ′(t0)

∣∣∣∣ ≤ 2εβ2 + o(β2) + OP (n−2/3)

for β in a neighborhood of 0. Note that an application of the maximal in-

equality as in the proof of Claim 3, conditional on X, gives us the bound

|(F∗n − Fn)(t0 + β)− (F∗n − Fn)(t0)| ≤ εβ2 + Tn

uniformly for β in a neighborhood of 0, not depending on X, where Tn =

OP ∗(n
−2/3) a.s. From the following series of inequalities it follows that Tn =

OP (n−2/3). Suppose that {Sn} is a sequence of random variables that are

OP ∗(1) a.s., i.e,

lim
T→∞

lim sup
n→∞

P ∗{|Sn| ≥ T} → 0 a.s., then

lim
T→∞

lim sup
n→∞

P{|Sn| ≥ T} = lim
T→∞

lim sup
n→∞

E[P ∗{|Sn| ≥ T}]

≤ lim
T→∞

E

[
lim sup

n→∞
P ∗{|Sn| ≥ T}

]
= E

[
lim

T→∞
lim sup

n→∞
P ∗{|Sn| ≥ T}

]
= 0

by an application of Fatou’s lemma and the dominated convergence theorem.

¤

Proof of Theorem 3 (iii). We use Lemma 5.1 to prove the result.

Note that here (τn, σn) are defined as in the proof of Claim 2 of Corollary 1

with mn = n, Fn = F̃n, and Fn,mn = F∗n. The proof is very similar to that of

Corollary 2. We only need to show that (τn, σn) are of order OP (1). Conditions

(a) and (e) hold a.s. It is enough to show that condition (d) holds with the

O(m
−2/3
n ) term replaced by OP (n−2/3), with probability increasing to 1; as

then Equation (5.36) holds, and from the discussion succeeding the equation

it follows that (τn, σn) are of order OP (1).
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Let ε > 0 be given. Without loss of generality we can assume that f ′(t0) <

−4ε. It is enough to show that

∣∣∣∣F̃n(t0 + β)− Fn(t0)− βf(t0)− 1

2
β2f ′(t0)

∣∣∣∣ ≤ 2εβ2 + OP (n−2/3)(4.23)

uniformly in a neighborhood of 0, as we can bound the left hand-side of (d)

by
∣∣∣F̃n(t0 + β)− Fn(t0)− βf(t0)− 1

2
β2f ′(t0)

∣∣∣ +
∣∣∣Fn(t0)− F̃n(t0)

∣∣∣ + |β||f̃n(t0)

−f(t0)|, where the second term is OP (n−2/3) (by Theorem 1 of Wang (1994))

and the third term can be bounded by εβ2 + OP (n−2/3) (see Equation (4.22)).

Given ε, there exists a neighborhood of 0 for β such that

∣∣∣∣F (t0 + β)− F (t0)− βf(t0)− 1

2
β2f ′(t0)

∣∣∣∣ ≤ εβ2

by the twice differentiability of F at t0. Thus, there exists δ > 0, such that

∣∣∣∣Fn(t0 + β)− Fn(t0)− βf(t0)− 1

2
β2f ′(t0)

∣∣∣∣ ≤ 2εβ2 + OP (n−2/3)(4.24)

uniformly for β ∈ [−2δ, 2δ], by the discussion following Equation (4.21).

Therefore, for β ∈ [−2δ, 2δ],

Fn(t0 + β)− Fn(t0) ≤ 2εβ2 + βf(t0) +
1

2
β2f ′(t0) + OP (n−2/3)(4.25)

Letting F̃ δ
n be the LCM of the restriction of Fn on [−2δ, 2δ], we have,

F̃ δ
n(t0 + β)− Fn(t0) ≤ 2εβ2 + βf(t0) +

β2

2
f ′(t0) + OP (n−2/3)

for β ∈ [−2δ, 2δ], by taking concave majorants on both sides of Equation (4.25)

and realizing that the OP (n−2/3) is uniform in β. Since F̃n ≥ Fn, it is imme-

diate from Equation (4.24) that

F̃n(t0 + β)− Fn(t0) ≥ −2εβ2 + βf(t0) +
β2

2
f ′(t0)−OP (n−2/3).

Letting

An :=
{

F̃ δ
n(t0 + β) = F̃n(t0 + β) for all β ∈ [−δ, δ]

}
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it is easy to show from the strict concavity of F around t0 that limn→∞ P{An} =

1 (for a complete proof of this see Proposition 6.1 of Wang and Woodroofe

(2007)). Thus Equation (4.23) holds with probability tending to 1 on [−δ, δ].

This completes the argument. ¤



CHAPTER 5

Bootstrap in the Wicksell’s problem

Let X = (X1, X2, X3) be a spherically symmetric random vector of which

only (X1, X2) can be observed. We focus attention on estimating F , the dis-

tribution function of the squared radius Z := X2
1 + X2

2 + X2
3 , from a random

sample of (X1, X2). We relate F to a function V which is decreasing and

can be estimated from observed data. We define three estimators of F and

derive their limit distributions. The non-standard asymptotics involved man-

ifests itself with a nonstandard rate of convergence
√

n
log n

. We show that the

isotonized estimator of V and F have exactly half the limiting variance when

compared to the naive estimators, which does not incorporate the shape con-

straint. We also state sufficient conditions for the consistency of any bootstrap

procedure in constructing confidence intervals for V and F and show that the

conditions are met by the conventional bootstrap method (while generating

samples from the empirical distribution function).

5.1 Introduction

Stereology is the study of three-dimensional properties of objects or matter

usually observed two-dimensionally. We consider such a problem, which arises

in Astronomy, where the quantity of interest can be related to functions that

93
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obey shape restrictions. Our treatment is similar in flavor to Groeneboom and

Jongbloed’s (1995) study of the Wicksell’s (1925) “Corpuscle problem”.

Let X = (X1, X2, X3) be a spherically symmetric random vector denoting

the three dimensional position of a star in a galaxy. But we can only ob-

serve the projected stellar positions, i.e., (X1, X2) (with a proper choice of

co-ordinates). We are interested in estimating F , the distribution function of

the squared radius Z := X2
1 + X2

2 + X2
3 from a random sample of (X1, X2).

Suppose that X has density ρ(z), z = x2
1 + x2

2 + x2
3 and Y := X2

1 + X2
2 has

density g. Then

g(y) = π

∫ ∞

y

ρ(z)√
z − y

dz.(5.1)

The reader may recognize Equation (5.1) as Abel’s transformation. This may

be inverted as follows. Let

V (y) :=

∫ ∞

y

g(u)√
u− y

du,

then we see that

V (y) = π

∫ ∞

y

∫ ∞

u

ρ(z) dz du√
z − u

√
u− y

= π2

∫ ∞

y

ρ(z) dz,(5.2)

which shows that V is a non-increasing function. A natural (unbiased) “naive”

estimator of V is

Vn(y) =

∫ ∞

y

dGn(u)√
u− y

where Gn is the e.d.f. of a sample of squared circle radii. This naive estimator

can be improved by imposing the shape constraint. If Vn were square inte-

grable, this could be accomplished by minimizing the integral of (W − Vn)2

over all non-increasing functions W, or equivalently, by minimizing

∫ ∞

0

W 2(y) dy − 2

∫ ∞

0

W (y)Vn(y) dy.(5.3)
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The function Vn is not square integrable, but it is integrable, so Equation (5.3)

is well defined. Let Ṽn be the non-increasing function W that minimizes Equa-

tion (5.3). Existence and uniqueness can be shown along the lines of Theorem

1.2.1 of Robertson, Wright, and Dykstra (1988), replacing the sums by inte-

grals.

Groeneboom and Jongbloed (1995) derived the limit distributions of Vn and

Ṽn: Let x0 > 0 and εn =
√

n−1 log n, then under appropriate conditions,

ε−1
n {Vn(x0)− V (x0)} ⇒ N (0, g(x0)) and(5.4)

ε−1
n {Ṽn(x0)− V (x0)} ⇒ N

(
0,

1

2
g(x0)

)
.(5.5)

The quantity of interest, F , can be related to V as

F (x) =

∫ x

0

2π
√

uρ(u) du = 1 +
2

π

∫ ∞

x

√
z dV (z)(5.6)

where the last equality follows from noting that 2π
∫∞
0

√
u ρ(u) du = 1. Using

Vn and Ṽn we can define two estimators of F as

Fn(x) = 1 +
2

π

∫ ∞

x

√
z dVn(z) and(5.7)

F̃n(x) = 1 +
2

π

∫ ∞

x

√
z dṼn(z).(5.8)

Note that Fn is not even non-decreasing. The restriction of F̃n to [0, 1], i.e.,

max{F̃n, 0} (as F̃n ≤ 1), is a valid distribution function and a much more

appealing estimator of F . Yet another estimator of F can be gotten by iso-

tonizing Fn over all non-decreasing functions. Let F̌n be the non-decreasing

function that is closest to Fn, in the sense that it minimizes Equation (5.3)

with Vn replaced by Fn. It is not difficult to see that then max{0, min(F̌n, 1)}
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is a valid distribution function. It will be shown later that for x0 > 0,

ε−1
n {Fn(x0)− F (x0)} ⇒ N

(
0,

4

π2
x0g(x0)

)
,(5.9)

ε−1
n {F̃n(x0)− F (x0)} ⇒ N

(
0,

2

π2
x0g(x0)

)
and(5.10)

ε−1
n {F̌n(x0)− F (x0)} ⇒ N

(
0,

2

π2
x0g(x0)

)
.(5.11)

Notice that the isotonized estimators have exactly half limiting variances when

compared to the corresponding naive estimators. Construction of confidence

intervals for F (x0) using these limiting distributions is still complicated as it

requires the estimation of the nuisance parameter g(x0). Bootstrap intervals

avoid this problem and are generally reliable and accurate in problems with
√

n

convergence rate (see Bickel and Freedman (1981), Singh (1981), Shao and Tu

(1995) and its references). In this chapter we also investigate the consistency

of bootstrap procedures for constructing pointwise confidence intervals around

these shape constrained functions.

In Section 5.2 we prove uniform versions of Equations (5.4), (5.5), (5.9), (5.10)

and (5.11) that are utilized in the later sections. Section 5.3 establishes the

consistency of bootstrap methods in approximating the sampling distribution

of the various estimators of V and F while generating samples from the e.d.f.

Section 5.4, the Appendix, gives the details of some of the arguments in the

proofs of the main results.

5.2 Preliminaries

Let Y be a random variable with c.d.f. G and density g where g is related

to ρ according to Equation (5.1). Assume that g is continuous on [0,∞). We
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also define the following functions

V (y) :=

∫ ∞

y

g(u)√
u− y

du and U(x) :=

∫ x

0

V (t) dt.

From Equation (5.2) we see that V is non-increasing. We can simplify U to

obtain

U(x) =

∫ ∞

0

∫ u∧x

0

dt√
u− t

g(u) du = 2

∫ ∞

0

{√u−
√

(u− x)+} g(u) du

where y+ = max{y, 0}. Letting J(t) =
∫∞

t

√
z − t dV (z), we express G as

G(t) =

∫ t

0

g(y) dy = π

∫ ∞

0

∫ t∧z

0

ρ(z)√
z − y

dy dz

= 2π

∫ ∞

0

{√z −
√

(z − t)+}ρ(z) dz = 1 +
2

π
J(t).(5.12)

Suppose that we have i.i.d. triangular data {Yn,i}n
i=1 having distribution func-

tion Gn. We consider a special construction of Yn,i, namely, let Yn,i = G−1
n (Ti),

where G−1
n (u) = inf{x : Gn(x) ≥ u} and T1, T2, . . . are i.i.d. Uniform(0, 1) ran-

dom variables. Let Vn and Un be defined as

Vn(y) :=

∫ ∞

y

dGn(u)√
u− y

and Un(x) :=

∫ x

0

Vn(y) dy.(5.13)

Let LCMI be the operator that maps a function h : R→ R into the least con-

cave majorant (LCM) of h on the interval I ⊂ R. Define Ṽn := LCM[0,∞)[Un]′

where ′ denotes the right derivative. Note that

V #
n (y) :=

∫ ∞

y

dGn(u)√
u− y

=
1

n

∑
i:Yn,i>y

1√
Yn,i − y

,

where Gn is the e.d.f. of Yn,1, Yn,2, . . . , Yn,n, is an unbiased estimate of Vn(y),

but not monotonic when viewed as a function of y; V #
n has an infinite jump at

each observation Yn,i. We will call V #
n as the naive estimator. This naive esti-

mator can be improved by imposing the shape constraint as in Equation (5.3)
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with Vn replaced by V #
n . Let Ṽ #

n be the non-increasing function W that min-

imizes Equation (5.3).

Observe that

U#
n (x) :=

2

n

n∑
i=1

{√
Yn,i −

√
(Yn,i − x)+

}

is an unbiased estimate of Un(x) for all x ∈ [0,∞); U#
n is a non-decreasing

function; V #
n is the derivative of U#

n a.e. Let Ũ#
n be the LCM of U#

n . Then

Ṽ #
n is the right-derivative of Ũ#

n . Let us also define Fn and F#
n as

Fn(z) := 1 +
2

π

∫ ∞

z

√
x dVn(x)

= 1 +
2

π

{
−√zVn(z)−

∫ ∞

z

Vn(u)

2
√

u
du

}
and

F#
n (z) := 1 +

2

π

∫ ∞

z

√
x dV #

n (x)

= 1 +
2

π

{
−√zV #

n (z)−
∫ ∞

z

V #
n (u)

2
√

u
du

}
.(5.14)

5.2.1 Uniform CLT for estimates of V

Fix x0 ∈ (0,∞). We consider two estimates of V , namely V #
n and Ṽ #

n . The

limit distribution of V #
n is easily obtainable from the following proposition.

Proposition 5. If g(x0) > 0, then ε−1
n {V #

n (x0)− Vn(x0)} ⇒ N (0, g(x0)).

Proof of Proposition 5. Applying the triangular central limit theorem

for sums of independent random variables with infinite variances (similar to

Theorem 4 of Chow and Teicher (1988), page 305) to the random variables

1{Yn,i>z}√
Yn,i−z

, we obtain the desired result. ¤

Next we study the limit distribution of

∆n := ε−1
n {Ṽ #

n (x0)− V̂n(x0)}
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where V̂n(x0) can be Vn(x0) or Ṽn(x0). Note that ∆n is the right-hand slope

at 0 of the LCM of the process

Zn(t) = ε−2
n {U#

n (x0 + εnt)− U#
n (x0)− V̂n(x0)εnt}

for t ∈ In := [−ε−1
n x0,∞). We will study the limiting behavior of the process

Zn and use continuous mapping arguments to derive the limiting distribution

of ∆n. We consider all stochastic processes as random elements in C(R), the

space of continuous functions on R, and equip it with the Borel σ-field and

the metric of uniform convergence on compacta.

To better understand the limiting behavior of Zn, we decompose Zn into

Zn,1 and Zn,2 where

Zn,1(t) = ε−2
n {(U#

n − Un)(x0 + εnt)− (U#
n − Un)(x0)} and

Zn,2(t) = ε−2
n {Un(x0 + εnt)− Un(x0)− V̂n(x0)εnt}(5.15)

Note that ∆n = LCMIn [Zn]′(0). We define the processes

Z1(t) = tW and Z(t) = Z1(t) +
1

2
t2V ′(x0),

for t ∈ R, where W is a normal random variable having mean 0 and variance

1
2
g(x0). We state some conditions on the behavior of Gn, V̂n and Un used to

obtain the limiting distribution of ∆n.

(a) Dn := ‖Gn −G‖ = O(εn).

(b) Zn,2(t) → 1
2
t2V ′(x0) as n →∞ uniformly on compacta.

(c) for each ε > 0,

∣∣∣∣Un(x0 + β)− Un(x0)− βV̂n(x0)− 1

2
β2V ′(x0)

∣∣∣∣ ≤ εβ2 + o(β2) + O(ε2
n)

for large n, uniformly in β varying over a neighborhood of zero.



100

Theorem 8. Under condition (a) the distribution of Zn,1 converges to that of

Z1. Further, if (b) holds, then the distribution of Zn converges to that of Z.

Proof of Theorem 8. Fix a compact set K = [−M,M ], M > 0. We will

show that Zn,1 converges weakly to Z1 in the metric of uniform convergence

on K. Note that Zn,1(t) has mean 0 for all t ∈ In. To compute the covariance

of Zn,1(s) and Zn,1(t), for s ≤ t ∈ K, we define the function

φ(y, η) =
√

(y − x0)+ −
√

(y − x0 − η)+

for y, η ∈ R. The two following properties of φ(y, η) will be used in the sequel.

(P1) |φ(·, η)| ≤
√
|η|.

(P2)
∫∞
0
|φ′(y, η)| dy = 2

√
|η|. The result follows as, for η > 0,

∫ ∞

0

|φ′(y, η)| dy =

∫ x0+η

x0

dy

2
√

y − x0

+

∫ ∞

x0+η

{
1

2
√

y − x0 − η
− 1

2
√

y − x0

}
dy

= {√η +
√

η} = 2
√

η.

Observe that

Zn,1(t) =
2

ε2
n

∫
φ(u, εnt) d(Gn −Gn)(u) and

Cov(Zn,1(s),Zn,1(t)) =
4

nε4
n

Cov(φ(Yn,1, εns), φ(Yn,1, εnt))

where Yn,1 ∼ Gn. Note that E[φ(Yn,1, εnt)] can be simplified as

Un(x0 + tεn)− Un(x0) = 2

∫ ∞

0

{√
(u− x0)+ −

√
(u− x0 − tεn)+

}
dGn(u)

= 2

∫
φ(u, εnt) d(Gn −G)(u) + {U(x0 + tεn)− U(x0)}.(5.16)

The first term can be bounded using integration by parts as

= 2

∣∣∣∣0−
∫ ∞

0

(Gn −G)(u)φ′(u, εnt)du

∣∣∣∣ ≤ 2Dn

∫ ∞

0

|φ′(u, εnt)| du

= 2O(εn)2
√
|εnt| = O(ε3/2

n ).
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The second term in Equation (5.16) can be shown to be of order O(εn) by

using a one term Taylor expansion. Thus, E[φ(Yn,1, εnt)] = O(εn) which shows

that the product of the expectations

E[φ(Yn,1, εns)]E[φ(Yn,1, εnt)] = O(ε2
n).

Decomposing E[φ(Yn,1, εns)φ(Yn,1, εnt)] as

∫
φ(u, εns)φ(u, εnt)d(Gn −G)(u) +

∫
φ(u, εns)φ(u, εnt)dG(u)

we know that

∫
φ(u, εns)φ(u, εnt)dG(u) = −1

4
g(x0)stε

2
n log εn + O(ε2

n)(5.17)

from the proof of Lemma 3 of Groeneboom and Jongbloed (1995), page 1539.

Using integration by parts we can write

∫
φ(u, εns)φ(u, εnt)d(Gn −G)(u)

= −
∫ ∞

0

{φ′(u, εns)φ(u, εnt) + φ(u, εns)φ
′(u, εnt)} (Gn −G)(u)du.(5.18)

Now,

∣∣∣∣
∫ ∞

0

{φ′(u, εns)φ(u, εnt)(Gn −G)(u) du

∣∣∣∣

≤ ‖Gn −G‖
∫ ∞

0

|φ′(u, εns)| |φ(u, εnt)| du

≤ Dn

√
|εnt| {2

√
|εns|} = O(ε2

n)(5.19)

using properties (P1) and (P2). Similarly the other term in Equation (5.18)

can be shown to be O(ε2
n), and thus,

Cov(Zn,1(s),Zn,1(t)) =
4

nε4
n

{
O(ε2

n)− 1

4
stg(x0)ε

2
n log εn + O(ε2

n) + O(ε2
n)

}

=
1

2
g(x0)st

{
1− log log n

log n

}
+ O

(
1

log n

)
.
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Using the Lindeberg-Feller central limit theorem for triangular arrays it is easy

to show that Zn,1(1) ⇒ N(0, 1
2
g(x0)). An application of Chebyshev’s inequality

implies that for all fixed s, t ∈ K, |sZn,1(t) − tZn,1(s)| = oP (1) as n → ∞.

Therefore the finite dimensional distributions of Zn,1 converges weakly to the

finite dimensional distributions of Z1. To verify the stochastic equicontinuity

condition we apply the maximal inequality given in Kim and Pollard (1990)

(Section 3.1, page 199) to the function class

FM
n,δ :=

{
ε−2
n

[√
(y − x0 − εnt)+ −

√
(y − x0 − εns)+

]
: |s− t| < δ, max(|s|, |t|) ≤ M

}

with the envelope FM
n = ε−2

n

[√
(y − x0 + εnM)+ −

√
(y − x0 − εnM)+

]
. Note

that FM
n,δ is a manageable class of functions and so the maximal inequality can

be applied. Appealing to Theorem 2.3 of Kim and Pollard (1990) we obtain

the convergence in distribution of Zn,1 to Z1. Using condition (b), it immedi-

ately follows that Zn converges in distribution to Z. ¤

A rigorous proof for the convergence of ∆n involves a little more than

an application of a continuous mapping theorem. The convergence Zn ⇒
Z is only in the sense of the metric of uniform convergence on compacta.

A concave majorant near the origin might be determined by values of the

process long way from the origin; the convergence Zn ⇒ Z by itself does

not imply the convergence LCMIn [Zn] ⇒ LCMR[Z]. We need to show that

LCMIn [Zn] is determined by values of Zn for t in an OP (1) neighborhood of

the origin. Corollary 3 shows the convergence of ∆n, and its proof is given in

the Appendix.

Corollary 3. Under conditions (a)-(c), the distribution of ∆n converges to

that of W
d
= LCMR[Z]′(0).
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5.2.2 Uniform CLT for estimates of F

We consider three estimates of F , namely F#
n , F̃#

n and F̌#
n where

F#
n (x0) = 1 +

2

π

∫ ∞

x0

√
z dV #

n (z)

F̃#
n (x0) = 1 +

2

π

∫ ∞

x0

√
z dṼ #

n (z)

and F̌#
n is the closest (in the sense of minimizing Equation (5.3) with Vn

replaced with F#
n ) non-decreasing function to F#

n . We start by deriving the

limit distribution of F#
n . Let σ2 := V ar

[
sin−1

√
1 ∧ x0

Y

]
where Y ∼ G.

Proposition 6. If g(x0) > 0 and ‖Gn −G‖ → 0 as n →∞, then

√
n

∫ ∞

x0

V #
n (u)− Vn(u)

2
√

u
dz ⇒ N(0, σ2)(5.20)

As a consequence,

ε−1
n {F#

n (x0)− Fn(x0)} ⇒ N

(
0,

4

π2
x0g(x0)

)
.(5.21)

Proof of Proposition 6. Using Equation (5.14), we have F#
n (x0)−Fn(x0)

= − 2

π

√
x0{V #

n (x0)− Vn(x0)} − 2

π

∫ ∞

x0

V #
n (u)− Vn(u)

2
√

u
du

Notice that,

∫ ∞

x0

V #
n (u)

2
√

u
du =

1

n

n∑
i=1

∫ ∞

x0

1{Yn,i > u}
2
√

u
√

Yn,i − u
du

=
π

2
− 1

n

n∑
i=1

sin−1

√
1 ∧ x0

Yn,i

after some simplification. Similarly,

∫ ∞

x0

Vn(u)

2
√

u
du =

∫ ∞

x0

∫ ∞

u

dGn(y)

2
√

u
√

y − u
du

=
π

2
−

∫ ∞

0

sin−1

√
1 ∧ x0

y
dGn(y).
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Equation (5.20) now follows from the Lindeberg-Feller CLT. From Proposi-

tion 5 we know that

ε−1
n {V #

n (x0)− Vn(x0)} ⇒ N(0, g(x0)).

Combining, ε−1
n {F#

n (x0)− Fn(x0)}

=
2
√

x0

π
ε−1
n {V #

n (x0)− Vn(x0)}+ oP (1) ⇒ N

(
0,

4

π2
x0g(x0)

)
.

This completes the proof. ¤

Applying the proposition with Gn = G verifies Equation (5.9). Next we

derive the limiting distribution of F̃#
n . Let F̃n be as in Equation (5.8).

Proposition 7. Suppose that (a)-(c) hold with V̂n = Ṽn, then,

ε−1
n {F̃#

n (x0)− F̃n(x0)} ⇒ N

(
0,

2

π2
x0g(x0)

)
.(5.22)

Proof of Proposition 7. We simplify F̃#
n (x0) − F̃n(x0) using integration

by parts (see Equation (5.14)) as

2

π

√
x0

{
Ṽn(x0)− Ṽ #

n (x0)
}

+
2

π

∫ ∞

x0

Ṽn(u)− Ṽ #
n (u)

2
√

u
du

From Corollary 3, we know that ε−1
n

{
Ṽn(x0)− Ṽ #

n (x0)
}
⇒ N

(
0, g(x0)

2

)
. We

bound
∣∣∣
∫∞

x0

Ṽn(u)−Ṽ #
n (u)

2
√

u
du

∣∣∣ using integration by parts as

0 +
|Ũn(x0)− Ũ#

n (x0)|
2
√

x0

+
1

4

∣∣∣∣∣
∫ ∞

x0

Ũn(u)− Ũ#
n (u)

u3/2
du

∣∣∣∣∣

≤ ‖Ũn − Ũ#
n ‖

2
√

x0

+ ‖Ũn − Ũ#
n ‖

1

2
√

x0

=
‖Ũn − Ũ#

n ‖√
x0

≤ ‖Un − U#
n ‖√

x0

= OP (n−1/2) = oP (εn)

by Marshall’s lemma and using maximal inequality 3.1 of Kim and Pollard

(1990) to bound ‖Un − U#
n ‖. Therefore, ε−1

n {F̃#
n (x0)− F̃n(x0)}

=
2
√

x0

π
ε−1
n {Ṽn(x0)− Ṽ #

n (x0)}+ oP (1) ⇒ N

(
0,

2

π2
x0g(x0)

)
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which completes the proof. ¤

Let Hn(x) :=
∫ x

0
Fn(z) dz and H#

n (x) :=
∫ x

0
F#

n (z) dz. Note that F#
n is

the derivative of H#
n a.e. Let Ȟ#

n be the greatest convex minorant (GCM)

of H#
n . Then F̌#

n is the right-derivative of Ȟ#
n . We want to study the limit

distribution of

Λn := ε−1
n {F̌#

n (x0)− F̂n(x0)}

where F̂n can be Fn or F̃n. Note that Λn is the right-hand slope at 0 of the

GCM of the process

Xn(t) := ε−2
n {H#

n (x0 + εnt)−H#
n (x0)− F̂n(x0)εnt},

for t ∈ In := [−ε−1
n x0,∞). As before, we will study the limiting behavior of

the process Xn and use continuous mapping arguments to derive the limiting

distribution of Λn. We decompose Xn into Xn,1 and Xn,2 where

Xn,1(t) := ε−2
n {(H#

n −Hn)(x0 + εnt)− (H#
n −Hn)(x0)} and

Xn,2(t) := ε−2
n {Hn(x0 + εnt)−Hn(x0)− F̂n(x0)εnt}(5.23)

Let GCMI be the operator that maps a function h : R → R into the GCM

of h on the interval I ⊂ R. Note that Λn = GCMIn [Xn]′(0). We define the

processes

X1(t) = tW and X(t) = X1(t) +
1

2
t2f(x0),

for t ∈ R, where W is a normal random variable having mean 0 and variance

2
π2 x0g(x0) and f is the density of Z = X2

1 + X2
2 + X2

3 , i.e., f = F ′. We state

some conditions on the behavior of Gn, F̂n and Hn used to obtain the limiting

distribution of Λn.

(a′) Dn := ‖Gn −G‖ = O(εn).
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(b′) Xn,2(t) → 1
2
t2f(x0) as n →∞ uniformly on compacta.

(c′) for each ε > 0,

∣∣∣∣Hn(x0 + β)−Hn(x0)− βF̂n(x0)− 1

2
β2f(x0)

∣∣∣∣ ≤ εβ2 + o(β2) + O(ε2
n)

for large n, uniformly in β varying over a neighborhood of zero.

Theorem 9. Under condition (a′) the distribution of Xn,1 converges to that

of X1. Further, if (b′) holds, then the distribution of Xn converges to that of

X.

Proof of Theorem 9. Using Equation (5.14) and the definition of Hn and

H#
n , we get H#

n (x)−Hn(x)

= − 2

π

[∫ x

0

√
z{V #

n (z)− Vn(z)} dz +

∫ x

0

∫ ∞

z

(V #
n − Vn)(u)

2
√

u
du dz

]

= − 2

π

[∫ ∞

0

∫ x∧y

0

√
z

y − z
dz d(Gn −Gn)(y) +

∫ x

0

∫ ∞

z

(V #
n − Vn)(u)

2
√

u
du dz

]

We can uniformly bound
∣∣∣
∫∞

z
(V #

n −Vn)(u)
2
√

u
du

∣∣∣ as

∣∣∣∣
∫ ∞

z

∫ y

z

du

2
√

y − u
√

u
d(Gn −Gn)(y)

∣∣∣∣

=

∣∣∣∣
∫ ∞

z

{
π

2
− sin−1

√
z

y

}
d(Gn −Gn)(y)

∣∣∣∣

= 0 +

∣∣∣∣
∫ ∞

z

d

dy

[
sin−1

√
z

y

]
(Gn −G)(y) dy

∣∣∣∣

≤ ‖Gn −G‖
∣∣∣∣
[
sin−1

√
z

y

]∞

z

∣∣∣∣ =
π

2
‖Gn −Gn‖ = o(εn) a.s.(5.24)

by using the law of iterated logarithms ‖Gn−Gn‖ = o(εn) a.s. Fix a compact

set K = [−M,M ]. We will show that Xn,1 converges weakly to X1 with the

metric of uniform convergence on K. Letting

θ(y, η) =

∫ (x0+η)∧y

0

√
z

y − z
dz −

∫ x0∧y

0

√
z

y − z
dz, η ∈ R,(5.25)
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we decompose Xn,1 further into Xn,3 and Xn,4 where

−πε2
n

2
Xn,3(t) =

∫ x0+tεn

x0

√
z{V #

n (z)− Vn(z)} dz(5.26)

=

∫ ∞

0

θ(y, tεn) d(Gn −Gn)(y), and

−πε2
n

2
Xn,4(t) =

∫ x0+tεn

x0

∫ ∞

z

(V #
n − Vn)(u)

2
√

u
du dz.

From the uniform bound on
∫∞

z
(V #

n −Vn)(u)
2
√

u
du in Equation (5.24) it is easy to

see that Xn,4(t) = o(1) a.s. uniformly on K. We proceed to prove the limit

distribution of Xn,3. Observe that for η ∈ R,

2
√

x0 − |η| φ(y, η) ≤ θ(y, η) ≤ 2
√

x0 + |η| φ(y, η).(5.27)

Therefore, ε−2
n

∫ ∞

0

θ(y, tεn) d(Gn −Gn)(y)

=
2
√

x0

ε2
n

∫ ∞

0

φ(y, tεn) d(Gn −Gn)(y) + Rn(t),

where |Rn(t)| is bounded by

≤ {
√

x0 + Mεn −√x0}2ε−2
n

∫ ∞

0

φ(y, tεn) d(Gn −Gn)(y)
P→ 0

uniformly for t ∈ K as the process Zn,1(t) = 2ε−2
n

∫∞
0

φ(y, tεn) d(Gn − Gn)(y)

converges weakly to a tight measure on C(K) by Theorem 8. Therefore,

Xn,1(t) = − 2

π

{
ε−2
n

∫ ∞

0

θ(y, tεn) d(Gn −Gn)(y) + o(1)

}
⇒ X1(t)

The other part of the theorem follows immediately. ¤

Corollary 4. Under conditions (a′)-(c′), the distribution of Λn converges to

that of W
d
= GCMR[X]′(0).

Proof of Corollary 4. The proof is very similar to that Corollary 3

with the LCMs changed to GCMs. We appeal to Lemma 5.1 with Xn,c =
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ε−1
n {F̌#

n,c(x0)− F̂n(x0)}, Yn = ε−1
n {F̌#

n (x0)− F̂n(x0)} where F̌#
n,c(x0) is the slope

at x0 of the GCM of H#
n restricted to [x0 − cε−1

n , x0 + cε−1
n ]. Let us denote by

Cn,c the GCM of Xn restricted to [−c, c]. Also, we take Wc as the right-hand

slope at 0 of Cc, the GCM of X restricted to [−c, c], and Y as the slope at 0 of

C, the GCM of X. Note that as X is itself convex, Cc = C = X, for all c > 0

and thus Wc = C′c = Y .

We have to show that a result similar to Claim 3 of Corollary 3 holds in

our case, i.e., for every ε > 0, we have

∣∣(H#
n −Hn)(x0 + β)− (H#

n −Hn)(x0)
∣∣ ≤ εβ2 + OP (ε2

n)(5.28)

uniformly over a neighborhood of zero. By Equation (5.26) and the following

discussion,

|(H#
n −Hn)(x0 + tεn)− (H#

n −Hn)(x0)|

≤ 2

π

{∣∣∣∣
∫ ∞

0

θ(y, β) d(Gn −Gn)(y)

∣∣∣∣ + |β|o(εn)

}
.(5.29)

For ε > 0, from Equation (5.27) we see that

∣∣∣∣
∫ ∞

0

θ(y, β) d(Gn −Gn)(y)

∣∣∣∣ ≤ 2(x0 + |β|)
∣∣∣∣
∫ ∞

0

φ(y, β) d(Gn −Gn)(y)

∣∣∣∣
≤ (x0 + |β|){εβ2 + OP (εn)}(5.30)

by Equation (5.35) (proved in the appendix). Noting that |β|o(εn) ≤ εβ2+o(ε2
n)

we can show that Equation (5.28) holds for suitably chosen ε.

5.3 Consistency of Bootstrap methods

5.3.1 Bootstrapping Ṽn

The results of Chapter 4 casts serious doubt of the use of bootstrap methods

in isotonic problems. Given data Y1, Y2, . . . , Yn ∼ G let Gn denote its e.d.f.
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Suppose that we draw conditionally independent and identically distributed

random variables Y ∗
n,1, Y

∗
n,2, . . . , Y

∗
n,n having distribution function Gn. Let G∗n

be the e.d.f. of the bootstrap sample. Letting

V ∗
n (y) :=

1

n

∑

i:Y ∗n,i>y

1√
Y ∗

n,i − y
=

∫
1[y,∞)√
u− y

dG∗n(u) and

U∗
n(x) :=

2

n

n∑
i=1

{√
Y ∗

n,i −
√

(Y ∗
n,i − x)+

}

= 2

∫
{√u−

√
(u− x)+} dG∗n(u),(5.31)

the isotonic estimate of V based on the bootstrap sample is Ṽ ∗
n := Ũ∗′

n =

LCM[0,∞)[U
∗
n]′.

The bootstrap estimate of ∆n = ε−1
n {Ṽn(x0)− V (x0)} is

∆∗
n := ε−1

n {Ṽ ∗
n (x0)− Ṽn(x0)}.

To find the limit distribution of ∆∗
n we define the process

Z∗n(t) = ε−2
n {U∗

n(x0 + εnt)− U∗
n(x0)− Ṽn(x0)εnt}, t ∈ In := [−ε−1

n x0,∞).

We decompose Z∗n into Z∗n,1 and Z∗n,2 where

Z∗n,1(t) = ε−2
n {(U∗

n − Un)(x0 + εnt)− (U∗
n − Un)(x0)}

Z∗n,2(t) = ε−2
n {Un(x0 + εnt)− Un(x0)− Ṽn(x0)εnt}(5.32)

Recall that Z1(t) = tW and Z(t) = Z1(t)+
1
2
t2V ′(x0) are two processes defined

for t ∈ R, where W is a normal random variable having mean 0 and variance

1
2
g(x0). Let Y = (Y1, Y2, . . .). The following theorem shows that bootstrapping

from the e.d.f. Gn is weakly consistent.

Theorem 10. Suppose that V is continuously differentiable around x0, and

g(x0) 6= 0. Then we have the following results:
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(i) The conditional distribution of the process Z∗n,1, given Y, converges to

that of Z1 a.s.

(ii) Unconditionally, Z∗n,2(t) converges in probability to 1
2
t2V ′(x0), uniformly

on compacta.

(iii) The conditional distribution of the process Z∗n, given Y, converges to that

of Z, in probability.

(iv) The bootstrap procedure is weakly consistent, i.e., the conditional distri-

bution of ∆∗
n, given Y, converges to that of W , in probability.

Proof of Theorem 10. To find the conditional distribution of Z∗n,1 given

Y we appeal to Theorem 8 with Gn = Gn, Gn = G∗n and P{·} = P ∗{·} =

P{·|Gn}. Note that condition (a) required for Theorem 8 holds a.s.

Let us define the process

Z0
n(t) = ε−2

n {Un(x0 + tεn)− Un(x0)− εntV (x0)}, t ∈ In.

Using Theorem 8 with Gn = G, Vn = V and Un = U for all n, we can show

that unconditionally Z0
n converges in distribution to Z. To prove (ii) note that

Z∗n,2(t) = Z0
n(t)− t · LCMIn [Z0

n]′(0).

Unconditionally, using the continuous mapping theorem along with a localiza-

tion argument as in Corollary 3, we obtain Z∗n,2(t) ⇒ Z(t)− t ·LCMR[Z]′(0) =

1
2
t2V ′(x0). As the limiting process is a constant, Z∗n,2(t)

P→ 1
2
t2V ′(x0).

Let {nk} be a subsequence of N. We will show that there exists a further

subsequence such that conditional on Y, Zn ⇒ Z a.s. along the subsequence.

Now, given {nk}, there exists a further subsequence {nkl
} such that Z∗nkl

,2(t) →
1
2
t2V ′(x0) uniformly on compacta a.s. Thus the conditional distribution of Z∗nkl

given Y, converges to that of Z, for a.e. Y. This completes the proof of (iii).
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To prove (iv) we use Corollary 3. Although conditions (a) and (b) hold in

probability, condition (c) holds with V̂n = Ṽn and the O(ε2
n) term replaced by

OP (ε2
n). Thus we cannot appeal directly to Corollary 3. Let ξ > 0 and η > 0

be given. We will show that there exists N ∈ N such that for all n ≥ N ,

P{L(H, H∗
n) > ξ} < η, where L is the Levy metric (see Chapter 4.3), H is the

distribution function of W ∼ N(0, 1
2
g(x0)) and H∗

n is the distribution function

of ∆∗
n, conditional on the data. For ε > 0, sufficiently small, let us define the

set

An :=

{∣∣∣∣Un(x0 + β)− Un(x0)− βṼn(x0)− 1

2
β2V ′(x0)

∣∣∣∣ < Cε2
n + εβ2

}

where C > 0 is chosen such that P{Ac
n} < η

2
. This can be done since (c)

holds with O(ε2
n) term replaced by OP (ε2

n). Further, let H0
n be the distribution

function of ∆∗
n under the probability measure P 0

n , where

P 0
n{E}(ω) =





P{E|Gn}(ω) = P ∗{E} if ω ∈ An,

P{E|G}(ω) if ω ∈ Ac
n.

(5.33)

Note that under P 0
n , L(H, H0

n)
P→ 0, as Corollary 3 can be applied. Therefore,

for all sufficiently large n, P{L(H,H∗
n) > ξ}

≤ P

{
L(H,H0

n) >
ξ

2

}
+ P

{
L(H0

n, H∗
n) >

ξ

2

}

≤ η

2
+ P

{
L(H0

n, H∗
n) >

ξ

2
, An

}
+ P

{
L(H0

n, H∗
n) >

ξ

2
, Ac

n

}

≤ η

2
+ 0 +

η

2

as when An occurs, L(H0
n, H∗

n) = 0. This completes the proof of (iv). ¤

Remark 1. Let Jn(t) =
∫∞

t

√
z − t dVn(z) for t ≥ 0. We could have

generated the bootstrap samples from Ĝn where

G#
n (t) = 1 +

2

π
Jn(t).
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It is interesting to note that a simplification yields G#
n = Gn, the e.d.f. of the

data. So, drawing bootstrap samples from the e.d.f. is equivalent to generating

samples from G#
n , a model based estimate of G.

5.3.2 Bootstrapping Fn, F̃n and F̌n

The three estimators of F under study based on the bootstrap sample are

F ∗
n , F̃ ∗

n and F̌ ∗
n defined analogously as in Section 5.2.2; e.g., F ∗

n(x) = 1 +

2
π

∫∞
x

√
z dV ∗

n (z). We approximate the sampling distribution of ε−1
n {Fn(x0) −

F (x0)} by the bootstrap distribution of ε−1
n {F ∗

n(x0) − Fn(x0)}. The boot-

strap samples are generated from Gn, the e.d.f. of the Yi’s. By appealing to

Proposition 6 with Gn = Gn, it is easy to see that the bootstrap method is

consistent.

The sampling distribution of ε−1
n {F̃n(x0)−F (x0)} is approximated by that

of ε−1
n {F̃ ∗

n(x0)−F̃n(x0)}. Using Proposition 7, we can establish the consistency

of the method. Note that the proof of Theorem 10 shows how conditions (a)-(c)

are satisfied with Gn = Gn, V̂n = Ṽn required to apply Proposition 7.

Recall that F̌ ∗
n is the non-increasing function closest to F ∗

n . Let Hn(x) :=

∫ x

0
Fn(z) dz and H∗

n(x) :=
∫ x

0
F ∗

n(z) dz. Next we show that approximating

the distribution of Λn = ε−1
n {F̌n(x0)−F (x0)} by the bootstrap distribution of

Λ∗n := ε−1
n {F̌ ∗

n(x0)− F̌n(x0)} is consistent. To find the limit distribution of Λ∗n

we define the process

X∗n(t) = ε−2
n {H∗

n(x0 + εnt)−H∗
n(x0)− F̌n(x0)εnt}, t ∈ In := [−ε−1

n x0,∞)

and decompose it into X∗n,1 and X∗n,2, where

X∗n,1(t) = ε−2
n {(H∗

n −Hn)(x0 + εnt)− (H∗
n −Hn)(x0)}

X∗n,2(t) = ε−2
n {Hn(x0 + εnt)−Hn(x0)− F̌n(x0)εnt}(5.34)
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Recall that X1(t) = tW and X(t) = X1(t)+ 1
2
t2f(x0) are two processes defined

for t ∈ R, where W is a normal random variable having mean 0 and variance

2
π2 x0g(x0).

Theorem 11. Suppose that F is continuously differentiable around x0, and

g(x0) 6= 0. Then we have the following results:

(i) The conditional distribution of the process X∗n,1, given Y, converges to

that of X1 a.s.

(ii) Unconditionally, X∗n,2(t) converges in probability to 1
2
t2f(x0), uniformly

on compacta.

(iii) The conditional distribution of the process X∗n, given Y, converges to that

of X, in probability.

(iv) The bootstrap procedure is weakly consistent, i.e., the conditional distri-

bution of Λ∗n, given Y, converges to that of W , in probability.

Proof of Theorem 11. The proof is very similar to that of Theorem 10.

To find the conditional distribution of X∗n,1 given Y we appeal to Theorem 9

with Gn = Gn, Gn = G∗n and P{·} = P ∗{·} = P{·|Gn}. Note that condition

(a′) required for Theorem 9 holds a.s.

We express X∗n,2(t) as X0
n(t)− t ·GCMIn [X0

n]′(0) where

X0
n(t) = ε−2

n {Hn(x0 + tεn)−Hn(x0)− F (x0)εnt}.

Note that unconditionally X0
n converges in distribution to X by an application

of Theorem 9 with Gn = G, F̂n = F and Hn = H for all n.

Unconditionally, using the continuous mapping theorem along with a local-

ization argument as in Corollary 3, we obtain X∗n,2(t) ⇒ X(t)−t·GCMR[X]′(0) =

1
2
t2f(x0). As the limiting process is a constant, X∗n,2(t)

P→ 1
2
t2f(x0).
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An argument using subsequences as in the proof of (iii) of Theorem 10

shows that the conditional distribution of the process X∗n, given Y, converges

to that of X, in probability. The last part of the theorem follows along similar

lines as in the proof of (iv) of Theorem 10.

5.4 Appendix

We will use the following lemma which can be proved easily (see Pollard

(1984), page 70).

Lemma 5.1. If {Xn,c}, {Yn}, {Wc}, Y are sets of random elements taking val-

ues in a metric space (X , d), n = 0, 1, . . . , and c ∈ R such that for any δ > 0,

(i) limc→∞ lim supn→∞ P{d(Xn,c, Yn) > δ} = 0,

(ii) limc→∞ P{d(Wc, Y ) > δ} = 0,

(iii) Xn,c ⇒ Wc as n →∞ for every c ∈ R.

Then Yn ⇒ Y as n →∞.

Proof of Corollary 3. For the proof of this corollary, we appeal to

Lemma 5.1 with Xn,c = ε−1
n {Ṽ #

n,c(x0)−V̂n(x0)} and Yn = ε−1
n {Ṽ #

n (x0)−V̂n(x0)}
where Ṽ #

n,c(x0) is the slope at x0 of the LCM of U#
n restricted to [x0−cε−1

n , x0+

cε−1
n ]. Let us denote by Cn,c the LCM of Zn restricted to [−c, c]. Also, we take

Wc as the right-hand slope at 0 of Cc, the LCM of Z restricted to [−c, c], and

Y as the slope at 0 of C, the LCM of Z. Note that as Z is itself concave,

Cc = C = Z, for all c > 0 and thus Wc = C′c = Y .

Note that as Xn,c = C′n,c(0), an application of the usual continuous mapping

theorem (see lemma on page 330 of Robertson, Wright and Dykstra (1988))

and the uniform convergence of Zn to Z on [−c, c] yields Xn,c ⇒ Wc = C′c(0),
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for every c. This shows that condition (iii) of the lemma holds. Condition (ii)

of lemma holds trivially as Z is itself concave. We will only need to show that

condition (i) holds to apply the lemma and conclude that Yn converges to Y ,

thereby completing the proof of the theorem. The following series of claims

are adopted from the assertion in page 217 of Kim and Pollard (1990).

Claim 1: Condition (i) of the lemma follows if we can show the existence

of random variables {τn} and {σn} of order OP (1) such that τn ≥ 0, σn > 0

and Cn(τn) = Zn(τn) and Cn(σn) = Zn(σn).

Proof of Claim 1: Let ε > 0 be given. As {τn} and {σn} are of order

OP (1), we can get Mε > 0 such that lim supn→∞ P{Aε} < ε, where Aε = {τn <

−Mε, σn > Mε}. Take ω ∈ Ac
ε. Then −Mε ≤ τn(ω) ≤ 0 and 0 < σn(ω) ≤ Mε.

Note that

Zn(τn(ω)) ≤ Cn,c(τn(ω)) ≤ Cn(τn(ω)) and Zn(σn(ω)) ≤ Cn,c(σn(ω)) ≤ Cn(σn(ω))

for c > Mε. From the hypothesis and using properties of concave majorants it

follows that Cn,c(h)(ω) = Cn(h)(ω) for all h ∈ [τn, σn]. Thus, Xn,c(ω) = Yn(ω).

Therefore, Ac
ε ⊂ {Xn,c = Yn} which implies lim supn→∞ P{(Xn,c, Yn) > δ} ≤

lim supn→∞ P{Aε} < ε, for c > Mε. ¤

Therefore it suffices to show that we can construct random variables τn

and σn of order OP (1) so that Cn(τn) = Zn(τn) and Cn(σn) = Zn(σn) for

τn ≤ 0 < σn.

Claim 2: There exist random variables {τn} and {σn} of order OP (1) such

that τn ≤ 0, σn > 0 and Cn(τn) = Zn(τn) and Cn(σn) = Zn(σn).

Proof of Claim 2: Let Kn denote the LCM of U#
n . The line through

(x0, Kn(x0)) with slope Ṽn(x0) must lie above U#
n touching it at the two points

x0−Ln and x0 +Rn, where Ln ≤ 0 and Rn > 0. Note that x0−Ln and x0 +Rn
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are the nearest points to x0 such that Kn and U#
n coincide. The line segment

from (x0 −Ln, U#
n (x0 −Ln)) to (x0 + Rn, U

#
n (x0 + Rn)) makes up part of Kn.

It will suffice to show that Ln = OP (εn), as then τn := −ε−1
n Ln = OP (1). The

argument depends on the inequality

Kn(x0) + Ṽn(x0)β ≥ U#
n (x0 + β) for all β,

with equality at β = −Ln and β = Rn.

Let Γn(β) = U#
n (x0 + β)− U#

n (x0)− βṼ #
n (x0). Γn is the distance between

U#
n (x0+β) and U#

n (x0)+βṼ #
n (x0). It follows that Γn(β) achieves its maximum

at β = −Ln and β = Rn and Γn(−Ln) = Γn(Rn). We can easily show using

condition (a) that Ln, Rn and γn := Ṽ #
n (x0)− V̂n(x0) are of order oP (1). That

lets us argue locally. Let

gn(y, β) :=
√

(y − x0)+ −
√

(y − x0 − β)+ − βV̂n(x0).

Claim 3: Then for any ε > 0, we have

1

n

∣∣∣∣∣
n∑

i=1

{gn(Xn,i, β)− Egn(Xn,i, β)}
∣∣∣∣∣ ≤ εβ2 + OP (ε2

n)(5.35)

uniformly over a neighborhood of zero.

For the time being, we assume the claim, which is proved later in the

Appendix. From condition (d), we get
∣∣Egn(·, β)− 1

2
β2V ′(x0)

∣∣ ≤ εβ2+o(β2)+

O(ε2
n) for sufficiently large n. Thus

|Γn(β) + βγn − 1

2
β2V ′(x0)|

= |U#
n (x0 + β)− U#

n (x0)− βV̂n(x0)− 1

2
β2V ′(x0)|

≤ εβ2 + o(β2) + OP (ε2
n)(5.36)

uniformly for β over a neighborhood of 0. As V ′(x0) < 0, for n → ∞, there

exist constant c1, c2 > 0 such that with probability tending to 1 for β in a
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small neighborhood of 0,

−1

2
c2β

2 − βγn −OP (ε2
n) ≤ Γn(β) ≤ −1

2
c1β

2 − βγn + OP (ε2
n).

The quadratic −1
2
c1β

2−βγn has its maximum of 1
2
γ2

n/c1 at −γn/c1, and takes

negative values for those β with the same sign of γn. It follows that with

probability tending to 1,

max
β

Γn(β) = min(Γn(−Ln), Γn(Rn)) ≤ OP (εn).

We also have

max
β

Γn(β) ≥ Γn(−γn/c2) ≥ 1

2
γ2

n/c2 −OP (εn).

These two bounds imply that γn = OP (εn). With this rate for convergence for

{γn} we can now deduce from the inequalities

0 = Γn(0) ≤ Γ(−Ln) ≤ 1

2
c1(Ln − γn/c1)

2 +
1

2
γ2

n/c1 + OP (ε2
n)

that Ln = OP (εn), as required. Similarly, we can show that Rn = OP (εn). ¤

Proof of Claim 3: Note that 1
n

∑n
i=1{gn(Xn,i, β)−Egn(·, β)} = U#

n (x0 +

β) − U#
n (x0) − Un(x0 + β) + Un(x0) =: Hn(β). Let η > 0 be given. We

will show that |Hn(β)| ≤ ηβ2 + ε2
nM2

n uniformly over a neighborhood of 0,

for Mn of order OP (1). We introduce the function class H := {hβ : [0,∞) →
R|hβ(y) = 2

√
(y − x0)+−2

√
(y − x0 − β)+, β ∈ R} and for R > 0, its subclass

HR = {hβ ∈ H : |β| ≤ R}. It can be shown that there is a positive integer

R0 such that the envelope HR(y) = 2{
√

(y − x0 −R)+ −
√

(y − x0)+} of HR

satisfies ∫
H2

R(y)g(y)dy ≤ −2g(x0)R
2 log R,
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for all R ≤ R0 (see Lemma 3 and 4 of Groeneboom and Jongbloed (1995)).

Now define Mn(ω) as the infimum (possibly +∞) of those values for which

|Hn(β)| =
∣∣∣∣
∫

hβ(y)d(Gn −G)(y)

∣∣∣∣ ≤ ηβ2 + ε2
nM2

n

holds for all |β| ≤ R0. Let us also define A(n, j) to be the set of those β in R

for which (j − 1)εn ≤ |β| < jεn. Then for ν constant,

P{Mn > ν} ≤ P{∃β : |Hn(β)| > ηβ2 + ε2
nν

2}

≤
R0/εn∑
j=1

P{∃β ∈ A(n, j) : ε−2
n |Hn(β)| > η(j − 1)2 + ν2}

≤
R0/εn∑
j=1

E
(
sup|β|<jεn

ε−4
n |Hn(β)|2)

{η(j − 1)2 + ν2}2

≤
∞∑

j=1

Cj2

{η(j − 1)2 + ν2}2
(5.37)

for n sufficiently large. The last inequality follows from a maximal inequality

as in part (ii) of Result 3.1 of Kim and Pollard (1990). To be more precise,

fix j ≥ 1 and consider the class Hjεn with envelope function Hjεn . From the

maximal inequality in 3.1 of Kim and Pollard (1990), we have

ε−4
n E(sup

Hjεn

|Hn(β)|2) ≤ J2(1)
ε−4
n

n
EH2

jεn
≤ J2(1)Cj2

where J is a continuous and increasing function with J(0) = 0 and J(1) < ∞,

not depending on n and C is a constant. We can therefore ensure that the

sum is suitably small by choosing ν large enough. This proves the claim. ¤



CHAPTER 6

Streaming motion in Leo I galaxy

Whether a dwarf spheroidal galaxy is in equilibrium or being tidally dis-

rupted by the Milky Way is an important question for the study of its dark

matter content and distribution. This question is investigated using 328 recent

observations from the dwarf spheroidal Leo I [published in Mario, Olszewski,

and Walker (2008)]. For Leo I, tidal disruption is detected, at least for stars

sufficiently far from the center, but the effect appears to be quite modest.

Statistical tools include isotonic and split point estimators, asymptotic theory,

and resampling methods.

6.1 Introduction

The dwarf spheroidal galaxies near the Milky Way are among the least lu-

minous galaxies in the night sky. While they have stellar populations similar to

those of globular clusters, approximately 106−107 stars, they are considerably

larger systems, typically hundreds, even thousands of parsecs in size compared

to radii of tens of parsecs characteristic of clusters. They are excellent candi-

dates for the study of dark matter because they are nearby and they generally

have extremely low stellar densities. Moreover, due to their proximity to larger

galaxies such as the Milky Way, many of these dwarf galaxies are also poten-

119
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tially strongly affected by disruptive tidal effects. The mere existence of dwarf

spheroidal galaxies suggests these systems contain much dark matter since it

is unclear how they could have avoided the effects of tidal disruption without

the added gravitational force from a considerable reservoir of unseen matter

[see Muñoz, Majewski, and Johnston (2008) and Mario, Olszewski, and Walker

(2008)].

Detailed kinematic studies, Wang et al. (2005), Walker et al. (2006), and

Wang et al. (2008a), confirm the widespread belief that the dwarf spheroidal

galaxies are dominated by dark matter, in many cases finding that the dark

matter densities exceed that of visible matter by a few orders of magnitude.

These latest studies differed from their predecessors, for example Mario et

al. (1993), Mario (1998a), Mario et al. (1998b) (and references therein), and

Kleyna (2003), statistically by using a non-parametric analysis to estimate

the distribution of dark matter. While the non-parametric analysis did not

require a specific form for this distribution, it did assume that the galaxies

are in equilibrium and isotropic. The purpose of the present chapter is to

explore the gravitational effects of the Milky Way on the dwarf spheroidals and,

implicitly, to probe the underlying assumptions used in Wang et al. (2005),

Walker et al. (2006), and Wang et al. (2008a).

To this end, our approach is to address these issues using recent data,

Mateo, Olszewski and Walker (2008), for the dwarf spheroidal galaxy Leo I

from which we obtain kinematic observations of 328 stars. Among the Milky

Way’s dSph satellites, Leo I is perhaps the most distant, at 255 ± 3 kpc, and

is receding from the Milky Way at a relatively large velocity of 179.5 ± 0.5

km/s. The combination of the large distance and high velocity lead Byrd et.

al. (1994) to suggest that Leo I may not be bound to the Milky Way. Bound
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or unbound, the large outward velocity means that Leo I passed much closer

to the Galactic Center in the past. In the preferred model of Byrd et. al.

(1994), Leo I passed within 70 kpc of the Galactic Center, a distance similar

to the closest present day dwarf spheroidal galaxies. Recent papers [Sohn et

al. (2007), Mateo, Olszewski, and Walker (2008)] suggest more specific models

in which Leo I passed within 10-20 kpc from the center of the Milky Way some

1-2 Gyr ago.

So, the question becomes: What effect, if any, did this close encounter

have on Leo I? In some cases, a close encounter with the Galactic Center can

change the shape of a dwarf spheroidal by producing tidal arms, [Oh, Lin and

Aarseth (1995), Piatek and Pryor, C. (1995)]. Prominent tidal arms are not

observed in Leo I, but this may reflect our unfavorable viewing angle rather

than the actual lack of such features [Mateo, Olszewski and Walker (2008)]. A

more subtle but related effect is streaming motion. The practical observational

signal of this process arises from the fact that both leading and trailing stars

move away from the center of the main body of the perturbed systems in the

reference frame of that galaxy. The magnitude of the streaming motion is

likely to increase beyond a threshold radius in the perturbed galaxy and be

aligned with the apparent major axis of the system. A more detailed account

of streaming motion may be found in Section 4.3 of Mateo, Olszewski and

Walker (2008).

There are several interesting statistical questions here. Is streaming motion

evident in Leo I? If so, how can it be described and estimated? To what

extent can it be described by a threshold model, in which streaming motion

is only present for stars at a sufficient distance from the center? We answer

these questions within the context of a model, called the cosine model below,
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that incorporates the qualitative features of streaming motion described above

(increasing with distance from the center and largest along the major axis).

The answers may be summarized: The magnitude of streaming motion appears

to be modest, at most 6.19 km/s, but is (nearly) significant at the 5% level.

The streaming motion does appear to be consistent with a threshold model,

but it is difficult to constrain the threshold. This may reflect the inherent

“fuzziness” of such a threshold radius, plus the fact that, due to projection

effects, stars associated with streaming motions can be superposed on the sky

with regions of stars that do not show any streaming.

The data are described in Section 6.2. In Section 6.3, we review the bi-

sector test used in Mateo, Olszewski and Walker (2008). The cosine model is

introduced in Section 6.4 and used to estimate the magnitude of streaming mo-

tion and motivate a test for significance. Threshold models are considered in

Section 6.5. Section 6.6 contains remarks, outlining possible extensions. The

Appendix provides the technical arguments for proving some of the asymptotic

results used in the chapter.

6.2 The Data

The Data. The data used here consist of position and velocity measurements

for candidate member stars from Leo I. These were derived from observations

using the multi-fiber Hectochelle spectrograph on the MMT telescope at Las

Campanas Observatory during March and April of 2005, 2006, and 2007. The

raw spectra were converted to velocity measurements using fxcor in IRAF

(the Image Reconstruction and Analysis Facility), which returns a velocity

measurement and an estimate of the standard deviation of measurement error

for each star. A detailed description of the observation and reduction processes
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Figure 6.1: Histogram of velocities for Leo I before and after trimming (note the change in

range in the two plots)

is included in Mateo, Olszewski and Walker (2008). For each star the four

variables of primary interest here were line of sight velocity, position projected

on the plane orthogonal to the line of sight, and the standard deviation of

measurement error for the velocity. Velocities Y and the standard deviations

Σ are expressed in km/sec. Position is expressed in polar coordinates (R, Θ)

with R measured in arc seconds and Θ in degrees, so defined that Θ = 0 along

the major axis. For Leo I, 400 arc seconds are roughly 500 parsecs.

Trimming. A complicating feature of the data is that not all stars in the

sample are really members of the galaxy. Some are foreground stars, located

along our line of sight toward Leo I. Fortunately, due to Leo I’s large systemic

velocity, the radial velocities of non-members are quite distinct from those of

the galaxy itself. Velocities of the galaxy members are fairly tightly clustered

around a well-defined and, in this case, very large positive velocity, while

velocities of non-members have a much broader distribution centered much

closer to zero heliocentric velocity. See Figure 6.1. To eliminate the foreground

stars, we computed (an estimate of) the probability that each star is a galaxy

member, using the method of Sen, Walker and Woodroofe (2008). For the Leo
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Table 6.1: Descriptive statistics for Leo I

R Θ cos(Θ) Y Σ

min 2.3000 -256.3000 -1.0000 260.1000 1.6000

max 848.5000 99.8000 1.0000 311.1000 7.6000

med 259.8000 -74.2000 0.0932 282.6500 2.0000

mean 283.3213 -77.6591 0.0932 283.0927 2.1302

stdev 171.9573 100.4565 0.7619 9.4144 0.6470
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Figure 6.2: Scatterplot of (R, Θ, Y ) for the Leo I data from two different perspectives

I, these probabilities were either at least .99 or at most .01. We eliminated the

stars with low probabilities and kept 328 others. Some descriptive statistics

of the trimmed sample are presented in Table 1. Observe that the trimmed

sample consists of stars whose velocities are within three standard deviations

of their mean. Figure 6.2 shows a scatter plot of positions and velocities for

the trimmed sample.

Selection. The data are regarded as a random sample from Leo I, but not

a simple random sample, since some regions were sampled more extensively

than others. Thus, the joint density of (R, Θ) is of the form

f(r, θ) ∝ u(r, θ)g(r, θ),

where g is the density of R and Θ within the population and u is the selection

function. Figure 6.3 presents a scatter plot of (R, Θ) for the trimmed sample
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Figure 6.3: Scatterplot of (R, Θ) for the Leo I data

from which some effects of selection may be seen: Within the population of

Leo I stars, it is not unreasonable to assume that R and Θ are independent

and that Θ has a uniform distribution [Mateo, Olszewski and Walker (2008)].

The data in Figure 6.3 are clearly not consistent with this assumption, though

this was not intentional since candidate members were selected as uniformly

as feasible in Θ over the full range of R shown in Figure 6.3.

If we do suppose that R and Θ are independent and that Θ has a uniform

distribution, within the population, then it is possible to estimate the selection

function. The marginal density of R within the population of Leo I stars can

be estimated with some precision from the large sample of positions reported

in Irwin and Hatzidimitriou (1995). Thus the joint density g of R and Θ

can be estimated with some precision. It is also possible to estimate f from

our selected sample, using a kernel estimate, for example, and then u can be

recovered from (6.1). Calculations of this nature are reported in Wang et al.

(2005). We do not pursue this here because most of our analysis is conditional
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on position and, so, unaffected by the selection.

A Model. To describe the effects of streaming motion let V denote the line

of sight velocity of a star and suppose that within a galaxy: R and Θ have

a joint density g and V = ν(R, Θ) + ε, where ε is a random fluctuation with

mean 0 and variance σ2, and ε is independent of (R, Θ). Thus, ν(r, θ) is the

expected velocity, given R = r and Θ = θ. Velocity is measured with some

error. We observe (Y, Σ), where Y = V + δ and the conditional distribution

of δ given (R, Θ, ε, Σ) is normal with mean 0 and standard deviation Σ. Thus,

for the selected sample, (Ri, Θi, Yi, Σi), i = 1, · · · , n = 328, are independent

and identically distributed random vectors for which (Ri, Θi) have density f ,

Yi = ν(Ri, Θi) + εi + δi,

where (Ri, Θi), εi, and Σi are independent, and the conditional distribution

of δi given (Ri, Θi, εi, Σi) is normal with mean 0 and variance Σ2
i .

For the remainder of the chapter, let r1 ≤ r2 ≤ · · · ≤ rn denote the or-

dered values of R1, · · · , Rn, and let θ1, · · · , θn, σ1, · · · , σn, and y1, · · · , yn the

concomitant order statistics of Θi, Σi, and Yi. To avoid selection effects, we

condition on the position variables r1, · · · , rn, θ1, · · · , θn in subsequent analy-

sis. Probability and expectation mean conditional probability and expectation,

unless otherwise noted.

6.3 The Bisector Test

An intuitive test for the presence of streaming motion was developed in

Mario, Olszewski, and Walker (2008). To begin, stars distant from the center,

say r ≥ r0, were selected. There were two reasons for this selection: The

effect of streaming motion is expected to be small for stars close to the center
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and increase with distance from it, and the sample divides into two quite

distinct branches for stars at least 400 arc sec from the center. See Figure 6.3.

This resulted in reduced samples which were then divided into two groups by

passing bisectors through the data set, and the difference in average velocities

for stars in the two groups were computed. The bisectors were of the form

cos(θ − ω) = 0, where ω was allowed to vary.

In more detail, let

∆V (ω) =

∑
ri>r0,cos(θi−ω)>0 yi/σ

2
i∑

ri>r0,cos(θi−ω)>0 1/σ2
i

−
∑

ri>r0,cos(θi−ω)≤0 yi/σ
2
i∑

ri>r0,cos(θi−ω)≤0 1/σ2
i

,

and consider the test statistic B = maxω ∆V (ω). The attained significance

levels for the reduced samples r > 400, r > 455, r > 600, and r < 400, were

.030, .006, .014, and .101, using a permutation test.

The idea is sound, but there are details. Supposing that ν(r, θ) = ν is

constant, so that there is no streaming motion, let

ν̂0 =

∑n
i=1 yi/(σ̂

2
0 + σ2

i )∑n
i=1 1/(σ̂2

0 + σ2
i )

and σ̂2
0 =

1

n

n∑
i=1

[(yi − ν̂0)
2 − σ2

i ].

Then ν̂0 and σ̂2
0 are

√
n-consistent estimators of ν and σ2. Using the weights

1/(σ̂2
0 + σ2

i ) in place of 1/σ2
i in (6.1) and permuting (y1, σ1), · · · , (yn, σn) in the

permutation test, we obtained somewhat higher significance levels. Plots of

∆V (ω) for the reduced samples r < 400 and r > 500, are shown in Figure 6.4.

One expects the effect of streaming motion to be large along the major axis of

Leo I, and this is the case in Figure 6.4 and others like it (not included). Given

that the sample divides into two distinct branches, corresponding to stars on

the two sides of the galaxy along the major axis, the test that rejects for large

values of |∆V (0)| is also considered.

Table 2 shows (estimated) significance levels for B and |∆V (0)| for several

values of r0. While the significance levels are higher than reported in Mario,
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Figure 6.4: ∆V for r < 400 (solid) and r > 500 (dashed)

Table 6.2: Test statistics and significance levels

B pB ∆V (0) p0

r < 400 1.5264 .809 0.9485 .401

r > 400 5.9065 .210 4.2182 .108

r > 450 7.5152 .106 4.4935 .132

r > 500 10.0682 .032 6.2498 .070

r > 600 12.2756 .129 9.9049 .052

r > 700 15.0053 .080 11.2687 .064

r > 750 19.4157 .047 2.8974 .688

Olszewski, and Walker (2008), they still suggest that streaming motion in

present for stars sufficiently far from the center. The dependence on r0 is

troubling, however, and the results are far from conclusive. In the next section,

we present another test which avoids the arbitrary choice of r0, at the expense

of setting ω = 0.

The details of the permutation test are as follows. Consider a test statistic

T = T (r, θ,y, σ), where r = (r1, · · · , rn), θ = (θ1, · · · , θn), y = (y1, · · · , yn),

and σ = (σ1, · · · , σn). If there is no streaming motion, then (R, Θ) and (Y, Σ)
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are independent. In this case (y1, σ1), · · · , (yn, σn) are conditionally i.i.d. given

(r1, θ1), · · · , (rn, θn), and the conditional probability that T > t given (r, θ)

and the unordered values {(y1, σ1), · · · , (yn, σn)} is #{π : T (r, θ, πy, πσ) >

t}/n!, where π denotes a permutation of {1, · · · , n} and πy and πσ denote

permuted versions of (y1, · · · , yn) and (σ1, · · · , σn). Of course, it is not possible

to examine all n! permutations, but it is possible to estimate the conditional

probability by sampling permutations. The significance levels listed in Table

2, were obtained from 10, 000 permutations of the reduced samples. Observe

that we permute the pairs (yi, σi).

6.4 The Cosine Model

We now suppose that ν(r, θ) = E(Y |R = r, Θ = θ) is of the form

ν(r, θ) = ν + λ(r) cos(θ),

where ν is a constant and λ is a non-negative, non-decreasing function. Thus,

|ν(r, θ)− ν| is assumed to be non-decreasing in r and largest along the major

axis (θ = 0).

Estimation. Assuming σ2 to be known, the (weighted) conditional least

squares estimators ν̂ and λ̂, given (r, θ, σ), minimize

n∑
i=1

[yi − v − u(ri) cos(θi)]
2

σ2 + σ2
i

,

with respect to v ∈ IR and non-negative, non-decreasing functions u. Differ-

entiation then gives the following conditions for the least squares estimators

n∑
i=1

yi − ν̂ − λ̂(ri) cos(θi)

σ2 + σ2
i

= 0

and
n∑

i=1

cos(θi)

(
yi − ν̂ − λ̂(ri) cos(θi)

σ2 + σ2
i

)
ξi ≤ 0
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for all non-negative, non-decreasing 0 ≤ ξ1 ≤ · · · ≤ ξn. We will use these

conditions with σ2 replaced by

σ̂2 =
1

n

n∑
i=1

{
[yi − ν̂ − λ̂(ri) cos(θi)]

2 − σ2
i

}

Thus, letting ŵi = 1/(σ̂2 + σ2
i ) and and Ŵn = ŵ1 + · · ·+ ŵn,

ν̂ =
1

Ŵn

n∑
i=1

ŵi[yi − λ̂(ri) cos(θi)]

and

λ̂(rk) = max[0, λ̃(rk)]

where

λ̃(rk) = max
i≤k

min
j≥k

ŵi cos(θi)(yi − ν̂) + · · ·+ ŵj cos(θj)(yj − ν̂)

ŵi cos2(θi) + · · ·+ ŵj cos2(θj)
.

Alternatively, letting T̂k = ŵ1 cos2(θ1) + · · ·+ ŵk cos2(θk),

Λ#(t) =
∑

i:T̂i≤t

ŵi cos(θi)[yi − ν̂],

and Λ̃ = GCM(Λ#), the greatest convex minorant of Λ#, λ̃(rk) = Λ̃′(T̂k), the

left hand derivative. See Robertson, Wright and Dykstra (1988), Chapter 1

for background on isotonic estimation.

For Leo I, iterating (6.1), (6.1), and (6.1) leads to convergence to three

decimal places after four iterations. For this data set, σ̂ = 9.0107 and ν̂ =

283.1040. The function λ̂ is graphed in left panel of Figure 6.5. The large

value at the right end point is almost certainly due to the spiking problem

Woodroofe and Sun (1993). To eliminate spiking we replace λ̂(rn) by 6.193,

the average of the last thirteen values of λ̂(rk), adapting the suggestion of

Kulikov and Lopuhaä (2006) to our context where data are much sparser.
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Figure 6.5: Left: λ̂ before truncation. Right: λ̂ after truncation.

This limits the effect of the last observation in the subsequent calculations.

The truncated λ̂ appears in the right panel of Figure 6.5.

Confidence Intervals. The asymptotic distribution of λ̂(r) can be derived under

modest conditions. Suppose that λ′(r) > 0, and let C = E[1/(σ2 + Σ2)] and

γr = 2

∣∣∣∣
λ′(r)

2C
∫

f(r, θ) cos2(θ)dθ

∣∣∣∣
1
3

.

Then, a (fairly) straightforward application of the Argmax Theorem, van der

Vaart and Wellner (2000), shows that the asymptotic unconditional distribu-

tion of Cn = n
1
3 [λ̂(r) − λ(r)]/γr is Chernoff’s distribution, Groeneboom and

Wellner (2001), the distribution of arg mintW(t)+t2, whereW denotes a stan-

dard two sided Brownian motion. Thus, Cn is an asymptotic pivot, but it is

difficult to use this result to set confidence intervals for λ(r), because it is

difficult to estimate λ′(r) and hence the normalizing constant γr. Moreover,

even the condition λ′(r) > 0 is suspect on the interval where λ̂ = 0.

It is possible to avoid the problem of estimating γr, though not the condition

λ′(r) > 0, by adapting the likelihood based confidence intervals of Banerjee

and Wellner (2001) to the present problem. For fixed r0, ξ0 > 0, and σ > 0,
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Figure 6.6: ∆SSE(500, ξ) as ξ varies from 0 to 6, with the 90% cut-off mark

let

(6.1)

∆SSE(r0, ξ0) = min
u(r0)=ξ0

n∑
i=1

[yi − v − u(ri) cos(θi)]
2

σ2 + σ2
i

−min
n∑

i=1

[yi − v − u(ri) cos(θi)]
2

σ2 + σ2
i

,

where implicitly both minimizations are over v ∈ IR and non-negative, non-

decreasing functions u. If λ(r0) = ξ0 and λ′(r0) > 0, then ∆SSE(r0, ξ0) has

a limiting distribution that does not depend on any unknown parameters,

under regularity conditions; and the same asymptotic distribution is obtained

with σ replaced by σ̂. See the Appendix. A description of the asymptotic

distribution, including graphs and percentiles, may be found in Banerjee and

Wellner (2005). In particular, (Monte Carlo estimates of) the 90th and 95th

percentile are 1.61 and 2.29 and, for example, {ξ : ∆SSE(r0, ξ) ≤ 1.61} is an

approximate 90% confidence set for λ(r0). A plot of ∆SSE(500, ξ) is shown

in Figure 6.6, and selected confidence intervals are listed in Table 3.

Resampling provides still another way to set confidence intervals. Recent

results, Kosorok (2007), Lee and Pun (2006), Léger, C. and MacGibbon (2006),

Sen, Banerjee and Wellner (2008), some obtained for related problems, suggest

that direct use of the bootstrap will not provide consistent estimators of the
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Table 6.3: 90% and 95% confidence intervals for λ(r)

∆SSE Bootstrap

0.90 0.95 0.90 0.95

r0 L U CP L U CP L U L U λ̂

400 0 3.54 .901 0 3.86 .952 0 3.57 0 3.57 1.92

450 0 3.63 .887 0 4.01 .943 0 3.74 0 3.85 1.92

500 0.10 4.50 .882 0 5.02 .936 0 3.58 0 3.90 1.98

550 0.26 4.65 .852 0 5.19 .916 0 3.44 0 3.76 1.98

600 0.26 6.66 .827 0 7.30 .897 0 3.30 0 3.64 1.98

650 0.36 6.70 .865 0.05 7.39 .922 0 3.58 0 3.97 1.99

700 0.36 8.88 .913 0.05 9.56 .961 0 4.26 0 4.69 1.99

750 1.85 8.88 .906 1.37 9.56 .952 0.44 7.86 0 8.37 5.37

Notes: The leftmost column shows the radial distance. The next two columns are lower and

upper endpoints of an approximate 90% confidence interval computed from ∆SSE; fourth

column is a bootstrap estimate of the coverage probability; the fifth, sixth and seventh

columns provide the same information for 95% confidence intervals. The next four columns

are lower and upper endpoints of approximate 90% and 95% confidence intervals computed

from the bootstrap. The last column provides the value of λ̂.
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distribution of sampling error but that use of a smoothed bootstrap or m out

of n bootstrap will. Thus let

λ̂s(e
t) =

∫ ∞

−∞
λ̂(eu)

1

b
K

(
u− t

b

)
du,

where K is a kernel and b a bandwidth. We used the standard normal density

for K and chose the bandwidth b = .1 (subjectively) to compromise between

smoothness and fit. The result is shown in left panel of Figure 6.7. The right

panel shows the derivative of the smoothed estimator, illustrating the difficulty

in estimating λ′(r).

Now, let ei denote the residuals, ei = yi − ν̂ − λ̂s(ri) cos(θi), i = 1, · · · , n.

Let xi = (σi, ei), and let F# denote the empirical distribution of x1, · · · , xn.

Further, let (S1, Z1), · · · , (Sn, Zn) ∼ F# be conditionally independent given

(r, θ,y, σ); let

y∗i = ν̂ + λ̂s(ri) cos(θi) + Zi and σ∗i = Si;

and let λ̂∗ denote the (truncated) isotonic estimator (6.1) computed from

y∗1, · · · , y∗n and σ∗1, · · · , σ∗n with r1, · · · , rn and θ1, · · · , θn held fixed. To set

confidence intervals for λ(r0), we estimate the distribution of λ̂(r0) − λ(r0)

by the conditional distribution of λ̂∗(r0) − λ̂s(r0), which may be computed

from simulation. The left panel in Figure 6.8 shows a histogram of 10, 000

values of λ̂∗(500)− λ̂s(500). Bootstrap confidence intervals for selected r0 are

listed in Table 3. Similarly, to set confidence bands for λ, we approximate the

distribution of D = maxr |λ̂(r) − λ(r)| by that of D∗ = maxr |λ̂∗(r) − λ̂s(r)|.
The right panel in Figure 6.8 shows a histogram of 10, 000 values of D∗. The

90th and 95th percentiles of this distribution are 5.194 and 6.074. We have

not standardized these variables before bootstrapping, because it is difficult

to estimate λ′.
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Figure 6.7: Left: The smoothed (dashed) and unsmoothed (solid) estimators with b = 0.1.

Right: The derivative of the smoothed estimator.

Unfortunately, there are major differences between the two methods for

setting confidence intervals. To some extent these can be explained by the

constructions: The bootstrap intervals attempt to balance the error probabil-

ities equally, left and right; the intervals derived from ∆SSE make no such

attempt. There are more serious differences, however, between the asymptotic

values and the bootstrap estimates. The difference can be seen in the left

panel of Figure 6.8: The histogram is asymmetric, whereas Chernoff’s dis-

tribution is symmetric. The ∆SSE method depends on the approximations

P{∆SSE[r0, λ(r0)] ≤ 1.61} ≈ .90 and P{∆SSE[r0, λ(r0)] ≤ 2.29} ≈ .95

where now P denotes the unconditional probability. The bootstrap estimates

of these probabilities, P ∗{∆SSE∗[r0, λ̂s(r0)] ≤ 1.61} and P ∗{∆SSE∗[r0, λ̂s(r0)] ≤

2.29} are reported in columns three and six of Table 3. There is good agree-

ment for r0 ≤ 450 and r0 ≥ 700. This is important, because the positive lower

confidence bounds on the last two lines of Table 3 reinforce the conclusions

in Section 6.3 that there is streaming motion. But the bootstrap estimates

are substantially less than the nominal values for 550 ≤ r ≤ 650, an interval

that includes values for which λ̂′s(r0) is very small, and the positive lower con-

fidence limits in this region should not be trusted. The disagreement between
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Figure 6.8: Histograms of 10, 000 realizations of λ̂∗(500)− λ̂s(500) (left) and D∗ (right)

the bootstrap intervals and ones derived from asymptotic distributions is dif-

ficult to resolve, in part, because the justification for the bootstrap is itself

asymptotic and requires the condition λ′(r0) > 0.

Testing. Within the cosine model (6.1), testing for steaming motion means

testing the null hypothesis λ = 0. The positive lower confidence limits on the

last lines of Table 3 suggest that this hypothesis can be rejected. This point

can be made in another way that does not depend on asymptotics or even the

validity of (6.1). Consider the F-like statistic

F =
n∑

i=1

ŵi cos2(θi)λ̂
2(ri)

which suggests itself for this problem. If ν and σ2 were known, ε1, · · · , εn were

normal, ŵi were replaced by wi = 1/(σ2 + σ2
i ), and λ̂ were replaced by the

isotonic estimator for known ν and σ2, then −2F would be the log-likelihood

ratio statistic for testing λ = 0. See, Chapter 2 of Robertson, Wright and

Dykstra (1988).

For the Leo I data set, the observed value of F was 6.69. We again assess

significance from the permutation distribution of F , but computed from the

full sample (ri, θi, yi, σi), i = 1, · · · , n = 328. In a sample of 10, 000 permuta-

tions, the permuted value of F exceeded the observed value 553 times, roughly
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confirming the conclusion based on confidence intervals and asymptotic calcu-

lations. The effect of truncation on the test statistic is amusing. Without the

truncation the value of F would have been substantially larger 8.72, but the

significance level would have been essential unchanged .0543.

Observe that (6.1) was used only to motivate the form of the test statistic.

The F-like test statistic serves also as a test of the hypothesis ν(r, θ) = ν, in

(6.1).

6.5 Thresholds and the Break Point

By a threshold or breakpoint we mean a distance from the center of Leo

I below which there is no streaming motion, or very little, and above which

streaming motion is appreciable. We consider two approaches to defining and

estimating such a point, change point models and split points, as in Banerjee

and McKeague (2007).

Change Point Models. Let τ denote an upper limit for r. In the change

point model it is assumed that there is a ρ > 0 for which λ(r) = 0 for r ≤ ρ

and λ(r) > 0 for ρ < r ≤ τ , in which case we call ρ the threshold.

We may obtain an upper confidence bound by modifying the F-like statistic

(6.2). For a given ρ0 consider the hypothesis ρ ≥ ρ0. Let

F(ρ0) =
∑

i:ri≤ρ0

ŵi cos2(θi)λ̂
2(ri)

and let m be the largest integer for which rm ≤ ρ0. Then the conditional null

distribution of F(ρ0) is invariant under permutations of (y1, σ1), · · · , (ym, σm),

so that significance can again be assessed from a permutation distribution of

F(ρ0). Of course, the set of ρ0 for which the hypothesis is accepted at level α

is a level 1 − α confidence set for ρ. For the Leo I data set with 1 − α = .9,
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Figure 6.9: Graphs of SSEr − SSEρ̂ for ψ(x) = max(0, x) (left) and ψ(x) = 1(0,∞)(x)

(right)

this hypothesis is rejected when ρ0 = 720 which, therefore, serves as an upper

confidence bound. Again, the cosine model (6.1) was used only to motivate

the form of the test statistic. The test just described also serves as a test of

ν(r, θ) ≡ ν for all θ and all r ≤ ρ0.

Unsurprisingly, adopting an even more structured model suggests a lower

bound. Suppose that λ(r) = βψ(r−ρ), where β > 0 is an unknown parameter

and ψ is a known function for which ψ(x) = 0 for x < 0 and ψ(x) > 0 for

x > 0. Thus,

yi = ν + βψ(ri − ρ) cos(θi) + εi + δi

for i = 1, · · · , n. For a fixed ρ this is a simple linear regression model. Let

β̂r and ν̂r denote the weighted least squares estimators, using the weights

ŵi = 1/(σ̂2 +σ2
i ), derived from (6.2) assuming ρ = r, and let SSEr denote the

residual sum of squares,

SSEr =
n∑

i=1

ŵi[yi − ν̂r − β̂rψ(ri − r) cos(θi)]
2.

Then the LSE ρ̂ of ρ minimizes SSEr with respect to r. Figure 6.9 shows

graphs of SSEr − SSEρ̂ for two choices of ψ, ψ(x) = 1(0,∞)(x) and ψ(x) =



139

max(0, x). The latter choice leads to the the segmented regression model con-

sidered in Hinkley (1971), Feder (1975), and recently in Hušková (1998). For

this choice it may be shown that SSEρ − SSEρ̂ has a limiting χ2
1 distribu-

tion, assuming (6.2). So, {r : SSEr − SSEρ̂ ≤ c} is an asymptotic level

P [χ2
1 ≤ c] confidence set for ρ. For Leo I, the 90% asymptotic confidence

set [0, 654.5] ∪ [823.1, 848.5] so obtained is disconnected, but there are only

four stars for which 823.1 ≤ r ≤ 848.5, and this interval is of little inter-

est. Letting ψ(x) = 1(0,∞)(x) leads to (a minor variation on) the classical

change point problem. The asymptotic distribution of SSEρ − SSEρ̂ may be

obtained for this case too; but it is complicated and unnecessary in the sense

that SSEr − SSEρ̂ rises and falls so sharply near r = 333.5 and r = 702.7.

Split Points. It is possible to define and estimate a breakpoint without

assuming that λ(r) is actually equal to 0 for small r, by fitting a stump model

β1(γ,τ ] to λ, as in Banerjee and McKeague (2007). This is accomplished by

minimizing an expression of the form

κ(b, r) =

∫ r

0

λ2(s)h(s)dr +

∫ τ

r

[λ(s)− b]2h(s)ds,

with respect to b and r. Here h is a positive weight function. We used h = 1

in Figure 6.10. Another possibility is to let h be the marginal density of R,

which is known from Irwin and Hatzidimitriou (1995). The minimization with

respect to b, of course, is simple, and

κ0(r) := min
b

κ(b, r) =

∫ τ

0

λ2(s)ds− [Λ(τ)− Λ(r)]2

τ − r
,

where Λ(r) =
∫ r

0
λ(s)ds. We define the break point γ to be the minimizing

value of r, assuming that the minimum is attained at a unique point. If λ is
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Figure 6.10: Left: κ̂00(r). Right: Bootstrap estimate of the distribution of κ̂00(γ).

continuous and λ(0) < Λ(τ)/(2τ), then

λ(γ) =
[Λ(τ)− Λ(γ)]

2(τ − γ)
.

Observe that if there is a threshold ρ (for which λ(r) = 0 for r ≤ ρ), then

γ ≥ ρ, because Λ(r) is then constant for r ≤ γ.

The simplest way to estimate γ is to replace λ by λ̂ in the definition. The

left panel of Figure 6.10 shows a graph of κ̂00(r), where κ̂00 denotes κ0 with λ

replaced by λ̂ and rescaled to take values between 0 and 1. That is, letting κ̂0

denote κ0 with λ replaced by λ̂ and γ̂ a minimizing value of κ̂0(r),

κ̂00(r) =
κ̂0(r)− κ̂0(γ̂)

maxs κ̂0(s)− κ̂0(γ̂)
.

The estimated break point is 353.5 arc sec, but there is a near minimum at

about 700.

Asymptotic theory provides little useful guidance here. The asymptotic

unconditional distribution of γ̂ can be obtained along the lines outlined in

the Appendix, but depend on λ′(γ) and would have to be approximated by

simulation in any case. A bootstrap procedure does provide some guidance,

however. Define y∗i and σ∗i as in (6.2); let γ̂s denote the value of γ obtained

by replacing λ by λ̂s; and let γ̂∗ and κ̂∗00 denote the values of γ̂ and κ̂00
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respectively, computed from y∗1, · · · , y∗n, σ∗1, · · · , σ∗n, with r1, · · · , rn, θ1, · · · , θn

held fixed. Then the conditional distribution of κ̂∗00(γ̂s) provides an estimate of

the distribution of κ̂00(γ). A histogram of 10, 000 values of κ̂∗00(γ̂s) is shown in

the right panel of Figure 6.10. The 90th and 95th percentiles of this distribution

are .3694 and .4690. So, for example, the set of r for which κ̂00(r) ≤ .3694

is a bootstrap confidence set for γ. Unfortunately, this is a large interval,

[91.1, 734.3].

6.6 Some Remarks

1. The conclusions regarding the presence of streaming motion have to be

tentative, because of the large significance levels. One of the key factors

behind this is the comparatively small sample size (n = 328) and, in

particular, the very few observations far out from the center of the galaxy,

the region of interest. In fact, we just have 64 data points above 400 arc

seconds. We hope that with more data in the future our methods can

be used more effectively to draw stronger conclusions. We also expect to

obtain data on other dwarf spheroidal galaxies, e.g., Draco, Fornax, etc.

and will be applying variants of our methods to analyze the samples.

2. With more data we can resort to more flexible modeling. For example,

instead of simply using cos θ, we could model the effect of angle θ, by a

function h(cos θ) or h(cos(θ−ω)), where h is non–decreasing and ω is an

unknown parameter representing the direction of tidal streaming. The

velocity dispersion parameter, σ2, a quantity of independent interest to

astronomers, has been assumed to be constant in our approach. For Leo

I, there is evidence for such an assumption [see Mario, Olszewski, and
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Walker (2008)]. For other galaxies, it is conceivable that σ may depend

on r, the radial distance from the center of the galaxy, in which case we

ought to incorporate it in the analysis. Our methods should be adaptable

to this heteroscedasticity, but may require non–trivial extensions.

3. Monotone regression splines provide a method for combining monotonic-

ity constraint and smoothness. These were used effectively in Wang et al.

(2005), (2008a), (2008b) and could be investigated in the present context.

4. The smoothed bootstrap was invoked at several places in this chapter

for purposes of uncertainty assessment – for example, in constructing

pointwise and simultaneous confidence bands for λ, and confidence sets

for the split point γ. While there is evidence [see Kosorok (2007), Sen,

Banerjee and Wellner (2008) and Léger and McGibbon (2006)] that the

smoothed bootstrap provides consistent estimates of pointwise confidence

sets for λ, the use of this method for approximating the distribution of

D and that of κ̂00(γ) remains to be vindicated. In particular, nothing is

known about the limiting behavior of D or κ̂00(γ). An alternative to the

smoothed bootstrap would have been to use subsampling or the m out of

n bootstrap.

5. The asymptotic distribution of the least squares estimate of γ in the split

point model, derived in the Appendix, is curious in the sense that (a

multiple of) Chernoff’s distribution no longer arises and is replaced by

a non-standard limit. We know of no other situations in the published

literature where this limit distribution has been encountered. Further-

more, it does not seem possible to represent the limit as a multiple of a

universal distribution, which renders the computation of quantiles diffi-
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cult. We have also not been able to find a complete proof of the rate of

convergence of the least squares estimators.

6. An interesting but difficult problem is to estimate the threshold parameter

ρ nonparametrically, assuming only that λ(r) = 0 for r ≤ ρ, λ(r) > 0 for

r > ρ and that λ is increasing. We expect the rate at which ρ can be

estimated to depend crucially on the smoothness of the join between the

two segments of the function at ρ; the smoother the join, the slower the

convergence. The intuitive estimator inf{t : λ̂(t) > 0} under-estimates ρ

heavily. One suggested modification is to replace 0 by a positive threshold

that decreases to 0 at an appropriate rate. Yet another approach would

be to construct a penalized least squares estimate of λ under monotonicity

constraints, where one penalizes monotone functions with low values of

the threshold parameter.

7. Yet another way of estimating γ is to observe that γ = d0 where (v0, β0, d0) =

arg min(v,β,d)M(v, β, d) and

M(v, β, d) = E

[
{Yi − v − β1(R > d) cos Θ}2 1

φ(R, Θ, Σ)

]
,

with φ(R, Θ, Σ) = f(r, θ)(σ2 + Σ2)/h(r). We can approximate this crite-

rion function M, by the empirical expectation and construct an estimate

of γ as the threshold that minimizes the sample analogue. This method

avoids the estimation of λ. However, it needs knowledge of φ, which in

turn, involves estimation of f . This is not feasible with the currently

available sample size, so we have not explored this approach in the chap-

ter.

8. The derivations of unconditional asymptotic distributions of ∆SSE(r0, ξ0)
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and γ̂ are outlined in the Appendix. We believe that the conditional dis-

tributions given r and θ may have the same limits, but do not have a

complete proof.

Appendix

We start with deriving the limit distribution of ∆SSE(r0, ξ0) (see (6.1)) and

λ̂. The asymptotic distribution of γ̂, in the split point model, is derived in the

second part of the Appendix.

The residual sum of squares statistic. The main goal in this section is

to analyze the (unconditional) limit behavior of the residual sum of squares

statistic ∆SSE(r0, ξ0) introduced in (6.1) of Section 4. We study this quantity

but with two simplifications – we assume that σ and ν are known. This

simplification is justified because the estimates of ν and σ used in the chapter

converge at a faster (
√

n) rate than the isotonic estimators of λ which drive

the asymptotics of ∆SSE(r0, ξ0). See Huang (2002) for a discussion of this

issue in the context of a semi-linear monotone regression model.

Define Ṽi = (Yi−ν)/ cos(Θi) (scaled response) and Wi = cos2(Θi)/(σ
2+Σ2

i ).

The unconstrained and constrained estimators of λ, λ̂n and λ̂0
n are character-

ized as:

λ̂n = arg min
λ↑

n∑
i=1

[Ṽi − λ(Ri)]
2 Wi and λ̂0

n = arg min
λ↑; λ(r0)=ξ0

n∑
i=1

[Ṽi − λ(Ri)]
2 Wi.

The residual sum of squares is then given by:

∆SSE(r0, ξ0) =
n∑

i=1

[Ṽi − λ̂0
n(Ri)]

2 Wi −
n∑

i=1

[Ṽi − λ̂n(Ri)]
2 Wi .

Some notation is necessary. For a real–valued function f defined on R, let

slogcm(f, I) denote the left–hand slope of the greatest convex minorant (GCM)
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of the restriction of f to the interval I. We abbreviate slogcm(f,R) to slogcm(f).

Take

slogcm0(f) = (slogcm (f, (−∞, 0])∧ 0) 1(−∞,0] + (slogcm (f, (0,∞))∨ 0) 1(0,∞) .

For positive constants c and d define the process Xc,d(z) = cW (z) + d z2,

where W (z) is standard two-sided Brownian motion starting from 0. Set

gc,d = slogcm(Xc,d) and g0
c,d = slogcm0 (Xc,d). For details about the processes

gc,d and g0
c,d, see Banerjee and Wellner (2001) and Banerjee (2007). Thus, g1,1

and g0
1,1 are the unconstrained and constrained versions of the slope processes

associated with the ”canonical” process X1,1(z). By Brownian scaling, the

slope processes gc,d and g0
c,d can be related in distribution to the canonical

slope processes g1,1 and g0
1,1. Set Dc,d =

∫ {
(gc,d(u))2 − (g0

c,d(u))2
}

du and

abbreviate D1,1 to D. The following lemma holds [see, for example, Banerjee

and Wellner (2001)].

Lemma 1. The random variable Dc,d has the same distribution as c2D.

To describe the asymptotic properties of the least squares estimates λ̂n and

λ̂0
n, define processes Gn and Vn as:

Gn(t) = Pn [W (1(R ≤ t)] and Vn(t) = Pn [Ṽ W 1(R ≤ t)]

where Pn is the empirical distribution of Xi = (Ri, Θi, Yi, Σi), i = 1, · · · , n.

Then λ̂n(t) = slogcm[Vn ◦G−1
n ](Gn(t)), and λ̂0

n has a similar characterization

in terms of slopes of greatest convex minorants of the same processes restricted

to the intervals (−∞, r0] and [r0,∞). Set Vc
n(t) = Pn [(Ṽ −λ(r0))W 1(R ≤ t)].

Letting B := E[1/(σ2 + Σ2)]
∫

cos2(θ)f(r0, θ)dθ, define localized versions of
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the processes Vc
n and Gn respectively, as:

G̃n(z) = n1/3B−1[Gn(r0 + z n−1/3)−Gn(r0)] and

Ṽ c
n (z) = n2/3B−1[Vc

n(r0 + z n−1/3)− Vc
n(r0)].(6.2)

Define the localized LSE processes Xn and Yn as:

Xn(z) = n1/3{λ̂n(r0 + z n−1/3)− λ(r0)},

Yn(z) = n1/3{λ̂0
n(r0 + z n−1/3)− λ(r0)}.

Then,

(Xn(z), Yn(z)) = (slogcm[Ṽ c
n ◦ G̃−1

n ](G̃n(z)), slogcm0[Ṽ c
n ◦ G̃−1

n ](G̃n(z))).

Let a = B−1/2 and b = λ′(r0)/2. Then standard calculations show that the

process G̃n(z) converges in probability to the deterministic function z, uni-

formly on compacta, and the process Ṽ c
n converges weakly, under the topology

of uniform convergence on compacta to Xa,b(z). Invoking continuous mapping

arguments for slopes-of-greatest-convex-minorant estimators (see, for exam-

ple, the proof of Theorem 2.1 in Banerjee (2007) and the companion technical

report), we conclude that:

[A]: The processes (Xn(z), Yn(z)) converge to the processes (ga,b(z), g0
a,b(z))

finite-dimensionally, and also in the space L2[−K, K] × L2[−K,K], for every

K > 0. (The space L2[−K, K] is the space of real measurable functions de-

fined on [−K, K] equipped with the topology of L2 convergence with respect

to Lebesgue measure. The cartesian product carries the usual meaning, as in

product space.)

[B]: Let Dn denote the interval around r0 on which λ̂n and λ̂0
n differ. Then,

D̃n := n1/3(Dn − r0) can be eventually trapped inside a compact interval

around 0, with arbitrarily high probability.
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Let R(1) < R(2) < . . . < R(n) denote the ordered values of the radii and

Ṽ(i) and W(i), the scaled response and weight corresponding to the i’th largest

radius. Also, let Jn denote the set of indices such that λ̂n(R(i)) 6= λ̂0
n(R(i)).

Then, the following hold (as easy consequences of the characterization of iso-

tonic regression estimates as block-wise averages) with probability increasing

to 1:

[C]: The set of indices Jn can be split into a set of ordered blocks of in-

dices B1, B2, . . . , Bk, such that: for each Bj, λ̂n(R(i)) assumes the same value,

say vj, whenever i ∈ Bj, and this common value is characterized as vj =

∑
i∈Bj

Ṽ(i)W(i)/
∑

i∈Bj
W(i). Also, v1 < v2 < . . . < vk.

[D]: The set of indices Jn can also be split into a set of ordered blocks of indices

B0
1 , B

0
2 , . . . , B

0
l , such that: for each B0

j , λ̂0
n(R(i)) assumes the same value, say

v0
j , whenever i ∈ B0

j , and this common value, so long as it does not equal ξ0,

is characterized as v0
j =

∑
i∈B0

j
Ṽ(i)W(i)/

∑
i∈B0

j
W(i). Also, v0

1 < v0
2 < . . . < v0

l .

Some algebra shows that ∆SSE(r0, ξ0) = In − IIn, where

In =
∑
i∈Jn

{λ̂0
n(R(i))−λ(r0)}2W(i)−2

[∑
i∈Jn

{Ṽ(i) − λ(r0)}{λ̂0
n(R(i))− λ(r0)}W(i)

]

and IIn has the form as In but with λ̂0
n replaced by λ̂n. It is easy to see

that the first term in the display defining In equals the sum within the square

brackets in the second term, by breaking the latter into sums over the blocks
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B0
i and using [D]. The term IIn can be simplified similarly using [C], yielding:

∆SSE(r0, ξ0) =
∑
i∈Jn

{λ̂n(R(i))− λ(r0)}2W(i) −
∑
i∈Jn

{λ̂0
n(R(i))− λ(r0)}2W(i)

= nPn[{(λ̂n(R)− λ(r0))
2 − (λ̂0

n(R)− λ(r0))
2}W 1(R ∈ Dn)]

= n (Pn − P ) [{(λ̂n(R)− λ(r0))
2 − (λ̂0

n(R)− λ(r0))
2}W 1(R ∈ Dn)]

+nP [{(λ̂n(R)− λ(r0))
2 − (λ̂0

n(R)− λ(r0))
2}W 1(R ∈ Dn)]

≡ An + Bn.

Using arguments from empirical process theory in conjunction with [A] and [B],

it is readily deduced, as in [4], that An is oP (1). Setting I(r) := E(W |R = r),

we have,

∆SSE(r0, ξ0) = nP [{(λ̂n(R)− λ(r0))
2 − (λ̂0

n(R)− λ(r0))
2}W 1(R ∈ Dn)] + oP (1)

= n

∫

Dn

{(λ̂n(r)− λ(r0))
2 − (λ̂0

n(r)− λ(r0))
2} I(r)f(r)dr + oP (1)

=

∫

D̃n

{X2
n(z)− Y 2

n (z)}I(r0 + z n−1/3)f(r0 + z n−1/3)dz + oP (1)

d→ I(r0) f(r0)

∫
{(ga,b(z))2 − (g0

a,b(z))2}dz
d
= I(r0) f(r0) a2D = D,

using the fact that I(r0)f(r0) = a−2 (as can be verified directly) and Lemma 1

above. ¤

Remark: Setting z = 0 in [A], we obtain: n1/3 (λ̂n(r0) − λ(r0))
d→ ga,b(0).

Using Brownian scaling, which allows us to relate ga,b to g1,1 [see Banerjee

and Wellner (2001)], and the switching relationship on the process X1,1 which

shows that g1,1(0)
d
= 2C where C has Chernoff’s distribution, we can deduce

that n1/3 (λ̂n(r0) − λ(r0))
d→ (8a2b)1/3C, thus verifying the claim made in

Section 4 before the discussion on the residual sum of squares statistic. As can

be noted, the calculation of confidence intervals using this result is problematic

owing to the presence of several nuisance parameters.
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The split point estimation procedure. Recall, that in this procedure, the

goal is to find the stump model that best approximates λ; the main objective

being to estimate the point of discontinuity (of the best–fitting stump) which

defines the breakpoint. The approximation is defined in terms of the L2 metric

with respect to a measure induced by a weight function h. We make a slight

change of notation from the body of the chapter. We denote the fitted stump

by β 1(r ∈ (d, τ ]). The criterion to be optimized is given by:

κ(β, d) =

∫ d

0

λ2(r)h(r)dr +

∫ τ

d

[λ(r)− β]2h(r)dr,

with respect to β and d. It follows from simple algebra that the minimizer

(β0, d0) also minimizes

M(β, d) ≡ β2{H(τ)−H(d)} − 2β{Λ(τ)− Λ(d)},

Λ(u) =
∫ u

0
λ(s)h(s)ds and H(u) =

∫ u

0
h(s)ds. Setting the partial derivatives of

M to 0 gives us the normal equations that characterize the parameters (β0, d0).

We have

β0 = 2λ(d0) and β0 =
Λ(τ)− Λ(d0)

H(τ)−H(d0)
.

We point out that d0 is of primary interest and was referred to as γ in

Section 5. Consistent estimates (β̂n, d̂n) of (β0, d0) are obtained by minimizing

Mn(β, d) where

Mn(β, d) = β2{H(τ)−H(d)} − 2β{Λ̂n(τ)− Λ̂n(d)},

and Λ̂n is a consistent estimate of Λ and is defined as Λ̂n(u) =
∫ u

0
λ̂n(s)h(s)ds;

λ̂n being the isotonic regression estimate of λ considered in the previous sec-

tion.

The following assumptions are crucial to the subsequent development: [a]

The parameter (β0, d0) exists and is unique. [b] The function λ is continuously
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differentiable in a neighborhood of 0, with λ′(d0) 6= 0. [c] The estimate (β̂n, d̂n)

obtained by minimizing the criterion Mn(β, d) converges to the true value

(β0, d0) at rate n−1/3, i.e., n1/3(β̂n − β0, d̂n − d0) is OP (1). Here [c] is strongly

suggested by published work in closely related models but we do not yet have

a complete proof. We now derive the (unconditional) asymptotic distributions

of our estimates. Define a normalized version of the process Mn as:

Qn(t1, t2) = n2/3[Mn(β0 + t1n
−1/3, d0 + t2n

−1/3)−Mn(β0, d0)], t1, t2 ∈ R.

The minimizer (t̂1,n, t̂2,n) of Qn is precisely n1/3(β̂n − β0, d̂n − d0). We can

decompose Qn as Qn,1 +Qn,2, where

Qn,1(t1, t2) = n2/3[(Mn −M)(β0 + t1n
−1/3, d0 + t2n

−1/3)− (Mn −M)(β0, d0)],

and

Qn,2(t1, t2) = n2/3[M(β0 + t1n
−1/3, d0 + t2n

−1/3)−M(β0, d0)].

Routine calculus yields that Qn,2(t1, t2) converges uniformly on compact sets

to tT V t/2 where t = (t1, t2) and V is the Hessian of M at the point (β0, d0),

i.e.,

V =




2{H(τ)−H(d0)} −2Λ′(d0)

−2Λ′(d0) 4λ(d0)λ
′(d0)h(d0)


 .

Now, (Mn−M)(β, d) = −2β[{Λ̂n(τ)−Λ(τ)}−{Λ̂n(d)−Λ(d)}] and Qn,1(t1, t2)

simplifies to

2β0[n
2/3{Λ̂n(d0 + t2n

−1/3)− Λ̂n(d0)} − n2/3{Λ(d0 + t2n
−1/3)− Λ(d0)}]

+2t1n
1/3(Λ̂n − Λ)(d0 + t2n

−1/3)− 2t1n
1/3{Λ̂n(τ)− Λ(τ)}.(6.3)

The term in the second line is oP (1) using the fact that (a) sup
d∈nbhd(d0)

|Λ̂n(d)−

Λ(d)| and (b) |Λ̂n(τ)− Λ(τ)| are both oP (n−1/3), so that asymptotically only
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the first term, say In, contributes. Consider, In(t2) for 0 ≤ t2 ≤ K, for some

K > 0. We have:

In(t2) = 2β0

[
n2/3

∫ d0+t2n−1/3

d0

{λ̂n(u)− λ(u)}h(u)du

]

= 2β0

[
n1/3

∫ t2

0

{λ̂n(d0 + vn−1/3)− λ(d0 + vn−1/3)}h(d0 + vn−1/3)dv

]

= 2β0h(d0)

[∫ t2

0

Xn(v)dv −
∫ t2

0

n1/3{λ(d0 + vn−1/3)− λ(d0)}dv

]
+ oP (1).

The fact that h(d0 + vn−1/3) can be replaced by h(d0) at the expense of an

oP (1) term is not difficult to justify. Since Xn(z) converges in distribution to

ga,b(z) on the set [0, K] in the L2 sense (see [A] in the previous section), it

follows (using continuous mapping) that
∫ t2
0

Xn(v)dv converges in distribution

to
∫ t2

0
ga,b(v)dv = Ga,b(t2) − Ga,b(0) under the topology of uniform conver-

gence on [0, K] (here, Ga,b is the greatest convex minorant of Xa,b). The term

∫ t2
0

n1/3{λ(d0 + vn−1/3) − λ(d0)}dv converges to (1/2)λ′(d0)t
2
2, uniformly on

[0, K]. It follows that In(t2) converges in distribution, uniformly on [0, K]

to the process Ga,b(t2) − Ga,b(0) − (1/2)λ′(d0)t
2
2. This result can be readily

strengthened to convergence on [−K,K] by considering t2’s less than 0.

We conclude that the process Qn(t1, t2) converges in distribution, under the

topology of uniform convergence on compacts, to the process

Q(t1, t2) = 2β0h(d0)[Ga,b(t2)−Ga,b(0)− bt22] +
1

2
tT V t.

The limit process is a.s. in C(R2) with an a.s. unique minimizer. Con-

clude that (t̂1,n, t̂2,n) converges in distribution to (t1, t2), the almost surely

unique minimizer of Q. Note that (t1, t2) is also the minimizer of the process

Q̃(t1, t2) := 2β0h(d0)Pa,b(t2) + tT V t/2 where Pa,b(t2) = Ga,b(t2)− bt22.

The process Q̃(t1, t2) can be written out, in expanded form, as

Q̃(t1, t2) = 4λ(d0)h(d0)

[
Pa,b(t2) +

1

4

H(τ)−H(d0)

λ(d0)h(d0)
t21 +

1

2
λ′(d0)t

2
2 −

1

2
t1t2

]
.
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It follows that:

(t1, t2) = arg min
t1,t2

[
Pa,b(t2) +

1

4

H(τ)−H(d0)

λ(d0)h(d0)
t21 +

1

2
λ′(d0)t

2
2 −

1

2
t1t2

]
.

For fixed t2, the process inside square brackets in the above display is mini-

mized at a unique point, t1(t2), which is obtained by setting the partial deriva-

tive with respect to t1 to 0 (this, indeed, provides a minimum, since for fixed

t2, the process is a deterministic quadratic polynomial with the co-efficient of

the quadratic term being positive). We get:

t1(t2) =
Λ′(d0)

H(τ)−H(d0)
t2.

Plugging this back for t1 in the expression for the process inside square brack-

ets and simplifying, we obtain: t2 = arg mint2 [Pa,b(t2) + ct22], where c =

1
2

{
λ′(d0)− 1

2
λ(d0)h(d0)

(H(τ)−H(d0))

}
and this is greater than 0, by virtue of the fact

that V is p.d. ¤



CHAPTER 7

Future Directions

The dissertation explores a variety of statistical methodologies – paramet-

ric finite-dimensional models with likelihood based inference, likelihood based

methods in non-parametric scenarios, least squares estimators under shape

constraints, and different bootstrap methods and their consistency in non-

regular problems. Each of the diverse methodologies investigated in the chap-

ters has its own direction; each raise new and challenging questions and opens

up possibilities for further exploration and analysis. In the following we briefly

discuss some of these problems that we plan to explore in greater depth in fu-

ture.

Bootstrap in non-standard problems Chapters 4 and 5 are devoted to

understanding the behavior of bootstrap methods for constructing pointwise

confidence bands around the Grenander estimator and in Wicksell’s problem,

respectively. Both problems exhibit non-standard asymptotics and a non-

standard rate of convergence, namely, n1/3 and
√

n
log n

. But the usual bootstrap

method (generating samples with replacement from the empirical distribution

function) is inconsistent for the Grenander estimator, while it is consistent in

Wicksell’s problem. Both problems shed light on the behavior of bootstrap in

153
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shape restricted scenarios.

We claim that in the setting of cube-root asymptotics, the conventional

bootstrap estimate of the sampling distribution of the statistic of interest does

not have any limit, in probability. But, we have not been able to find a

complete proof of this result. One step in the sequence of arguments depends

on the fact that two specified functionals of Brownian motion with quadratic

drifts are dependent, a fact that is easily verified through simulation, but we

have not been able to prove it analytically. We plan to study the related

functionals in more detail in future, and if possible, find a formal proof of the

dependence.

We now present two related projects that have interesting theoretical and

applied implications.

• Bootstrap in convex function estimation: The Grenander estimator

is a prototypical example of a monotone non-parametric estimator. More

complicated shape restrictions like convexity/concavity also arise com-

monly in applications, e.g., in econometrics, epidemiology and astronomy.

Groeneboom, Jongbloed and Wellner (2001) studied the estimation and

asymptotic theory of the nonparametric least squares estimators of con-

vex regression and density functions. The asymptotic distribution theory

relies on the existence of an “invelope function” for integrated two-sided

Brownian motion plus a fourth power drift term (compare this with the

quadratic drift that arises in monotone function estimation). The esti-

mated convex function converges at n2/5-rate to a multiple of the second

derivative of the ‘invelope function” at 0 – a complicated distribution

with nuisance parameters. Thus, bootstrap methods arise naturally in
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the construction of confidence intervals using these shape-restricted esti-

mators. But the non-standard asymptotics involved with the slower rate

of convergence shed doubt on the consistency of bootstrap methods. We

plan to investigate the performance of bootstrap methods in this set-up.

• Smoothed-bootstrap in cube-root asymptotics: Our work on differ-

ent bootstrap procedures with the Grenander estimator has implications

in general cube-root convergence problems. Smoothed bootstrap meth-

ods (like kernel smoothing) generally yield valid bootstrap methods in this

situation, but with regression-type estimators – e.g., the maximum score

estimator of Manski, least median of squares estimator, maximum likeli-

hood estimator of failure time in current status model and so on – there

are different ways of smoothing giving rise to different procedures. A nat-

ural question that arises is: “what is the minimal amount of smoothing

required to make the bootstrap consistent?”. This is an important ques-

tion because with an increase in the dimension of data, the performance

and implementation of smoothing methods are drastically affected. We

want to address these issues with special attention to bootstrapping the

maximum score estimator.

Likelihood ratio based methods under monotonicity constraints To

find the distribution function of survival time in the mixed case interval cen-

soring method we worked with a pseudo-likelihood (see Chapter 3). Working

with the actual likelihood would yield more efficient estimators, but is difficult

to study, as the estimators no longer have closed form solutions. Although a

heuristic argument still suggests that the limit distribution of the likelihood

ratio statistic would be nuisance parameter free, some of the intermediate steps
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are technically challenging and require deeper analysis. Keeping the technical

issues aside, such a result on the convergence of the likelihood ratio statistic

would have immense practical implications; it would readily yield a convenient

method for constructing pointwise confidence bands around the survival func-

tion in the most general case of interval censoring with minimal assumptions.

Estimating the distribution function of survival time is a special case of esti-

mating the mean function of a counting process, namely, a one-jump counting

process. Another project that would be a direct fallout of our procedure is the

extension of our results to general counting processes with covariates. Consid-

ering that counting processes arise naturally in demographic studies, clinical

trials, etc., the extension of our method could prove important.

Abrupt change models for threshold detection In Chapter 6, we took

a more applied approach, analyzing data on stars from Leo I galaxy with

emphasis on detection of streaming motion. Due to time constraint and other

considerations, we also avoided providing complete proofs of the main results.

In the present analysis we assumed that streaming, if it exists, must have

its maximal effect along the position angle of the galaxy (known a priori),

i.e., ω (see Chapter 6) was held fixed and known. Although this assumption

can be argued for Leo I galaxy, in general ω may not be completely known.

Methods for estimating ω from the data are called for, and we plan to explore

this issue in future. We also plan to investigate more general models (beyond

the “cosine model”) to allow for flexible modeling of the variation in streaming

motion along different angular positions. With just 328 member stars we re-

frained from using more complicated models. As more measurements on stars

from Leo I and other galaxies expected to be taken in the near future, we plan



157

to continue exploring related statistical methodologies. We expect to fill in the

technical details in the forthcoming papers on this application. In Chapter 6.6

we discuss other possible extensions of our work on threshold models.

The signal plus noise model in high energy physics As discussed in

Chapter 2, the signal plus noise model arises quite often in particle physics.

An important question in this situation is to be able to test the presence of

any signal. A related question, probably more intuitive, is to ask whether we

have “seen a signal yet?”. We are working on a bayesian approach to derive

an upper bound for the probability that a signal event has been observed that

is independent of prior distribution within broad limits.
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