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ABSTRACT

This study investigated the terminating admittance and spatial field variations of
a symmetrically excited spherical dipole in an inhomogeneous, compressible plasma
using the macroscopic approach. Four coupled, first order, ordinary differential
equations were obtained for each mode by employing modal decomposition. Numer-
ical integration was performed on a digital computer with a sheath model in which

the static electron density varied as the distance from the outer sheath edge.

Admittance plots are presented as a function of the sheath potential distribution,
plasma frequency, electron temperature, radiator size, and for several alternative
radiator boundary conditions: elastic electron reflection, zero perturbed electron
density, and a bilinear admittance relation. The main effect of plasma compressi-
bility was found to be an additional resonance caused by cancellation of reactive elec-
tromagnetic and electroacoustic energies. This manifests itself in a Smith Chart
presentation as a loop or multiple loops when the plasma frequency, operating fre-
quency, or electron thermal velocity are varied. The sheath was found to diminish
the effects found with a homogeneous plasma and caused the susceptance to be in-

creased significantly; each of the alternative boundary conditions gave similar results.

It is concluded that the sheath has been unjustifiably neglected in previous analyses
and that the plasma compressibility has therefore been overemphasized. It is sug-
gested that future experimental evidence of excitation of an electroacoustic wave be
obtained with a moveable radial surface probe as well as by measurements of the ad-

mittance.
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A STUDY OF AN INHOMOGENEOUSLY SHEATHED SPHERICAL-
DIPOLE ANTENNA IN A COMPRESSIBLE PLASMA

INTRODIIJCTION
1.1. STATEMENT OF PROBLEM
The basic problem discussed in this study is:

What is the influence of a finite electron temperature on the terminating ad-

mittance of a plasma-imbedded spherical dipole?
It will be shown that previous analyses have oversimplified the problem and predicted influences
much larger than those obtained with the more realistic model used in this study. A more
specific statement of the problem considered is therefore:

What is the influence of boundary conditions, realistic density inhomogeneities

and d-c electric fields on the terminating admittance of a spherical dipole in a

"warm' plasma?

A schematic illustration of the spherical dipole and typical plasma parameters that are
considered is shown in figure 1. Previous analyses are modified in the light of the results

obtained, and comparisons made where possible to the cylindrical dipole.

1.2. SURVEY OF PREVIOUS PLASMA-IMBEDDED DIPOLE ANALYSES

The term '"'dipole'" is used to denote those antennas consisting of two separate conductors.
The term is usually associated with thin cylindrical shapes with a pair of input terminals
separating equal halves. Although this shape is most common for reasons of simplicity, the
definition also includes conical, spheroidal and spherical shapes, not necessarily with symmet-
rical excitation, all of which have the virtue of being amenable to exact analysis, while the

cylindrical dipole is not.

The theory of dipoles in homogeneous, isotropic, non-dissipative media is well established,
with excellent agreement between theory and experiment. The theory for the cylindrical dipole
antenna has been largely brought to its present state by King [1] based on the early work of
Hallén who first analyzed the cylindrical dipole using an integral equation now bearing his name.

The theory of conical dipoles was developed by Schelkunoff [2], that for spheroidal and spherical
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FIGURE 1. GEOMETRY AND NOMENCLATURE

dipoles by Chu and Stratton [3] (discussed also by Schelkunoff [2]). All but the first were de-
veloped by ""modal'' analysis—a method in which the wave equation is solved as a sum of

""modes'"; this method is described at length in the following sections.

When these dipoles are imbedded in a collisionless plasma and the plasma is considered
as a dielectric, minor modifications appear in the various theories. These methods cannot be
used as successfully with dissipative media (the simplest model of a plasma including collisions
describes it as a dissipative medium) because of the lack of tabulations of the necessary func-
tions for complex variables, although in principle the techniques remain the same. The problem
is especially complicated for the cylindrical dipole, although King has successfully analyzed
short and half-wave cylindrical dipoles with the Hallén integral equation approach [4, 5, 6]. It
has also been shown by Deschamps [7] that the input impedance of dipoles in homogeneous
dissipative media can be obtained from the non-dissipative medium results by analytic continua-
tion into the complex frequency plane. The technique is not particularly convenient, since an
accurate specification of the behavior in a dissipationless medium is needed first, but for
complicated shapes on which experimental data is available, Deschamp's method would have an
application. The present status of work on dipoles in homogeneous lossy media (which includes
plasmas with finite collision frequency) has been given by Tai and Wait in recent survey articles
[8, 9]. Experimental results in conducting fluids and plasmas seem to be in good qualitative

agreement with the available theory [10, 11].

Subsequent to the King theoretical studies of plasma-imbedded cylindrical dipoles, Naval
Research Laboratory reports were issued on the results of ionospheric probing using dipole

impedance measurements [12, 13]. These discussed a sheath effect; but, more interestingly,



they attributed several of their results to the influence of the "electroacoustic" wave discussed
in the next section. Shortly afterward, an analysis by Cohen [14] appeared on the excitation of
these electroacoustic waves using a modification of the Poynting vector method (assumed current
distribution). Similar Poynting vector method analyses have since been published by Chen [15],

Wait [16], and Balmain [10]. These theories all predict a large effect.

A different type of analysis was performed by Hessel and Shmoys [17] for the spherical
dipole. They also used an assumed current, but the ideas of modal analysis were inherent in
their work. This has been extended by Wait [18] who included a complete modal analysis. How-
ever, Wait obtained only the input resistance by evaluating the Poynting vector in the far field

rather than evaluating the surface fields as in the modal analyses of Chu and Stratton.

Another interesting aspect of previous electroacoustic wave investigations is that of propa-
gation in an inhomogeneous plasma. The earliest inhomogeneous "warm' plasma study was
that of Field [19], who obtained two coupled wave equations describing the behavior of waves
propagating in an electric fieldfree, inhomogeneous warm plasma. Since then, similar equations
have been given in the book by Ginzburg [20]. Because of the complexity, neither of these
analyses were carried through for a particular inhomogeneity. Fortunately, a modal solution
is possible for spherical inhomogeneities, even with the inclusion of the electroacoustic wave;

several methods of solution are discussed in the next chapter.

There have been numerous other studies of electroacoustic wave influence on the radiation
characteristics of slot as well as dipole antennas, but always in homogeneous compressible
plasmas. Without exception these have predicted large effects; modifications of these analyses

will be discussed in appendix V.

1.3. BRIEF DESCRIPTION OF A COMPRESSIBLE PLASMA

The earliest studies of plasmas largely ignored the influence of electron thermal motion
on electromagnetic wave propagation. It is only recently that the influence of the electron kinetic
energy has been included in predictions of electromagnetic wave phenomena. In these analyses,
the terms '"compressible," "thermal," and "warm' are used interchangeably to signify the
inclusion of the effects of an electron velocity distribution. As for a non-ionized gas, it is
found that a pressure or acoustic (longitudinal) wave can be transmitted with corresponding

density variations.

There is no standard designation for these longitudinal waves. It is proposed that through-
out this discussion, the longitudinal wave shall be termed the "electroacoustic' wave, shortened
to "EA" wave in accordance with common usage in shortening electromagnetic to EM. The term
"electroacoustic' is both descriptive and historical. The same waves are often termed plasma

waves and even space charge waves; the term EA shall identify those waves whose essential



feature is propagation through an electron density gradient. It is an especially appropriate name
since there is no magnetic field and the propagation is in some respects similar to that of sound
waves. A term which may be valuable in denoting these waves, and also including those in media
with zero temperature (but non-zero perturbed density), was suggested by Hok [21]: it is "elec-
trokinetic' or "EK," which signifies energy propagation involving only electric and kinetic, but
not magnetic, energy. These terms are still nonstandard, but since "electroacoustic' is the most
widely used term in radiation analyses, it seems preferable to retain this terminology. A de-
scription of the differences between sound waves and EA waves has been given by Denisse and

Delcroix [22] who refer to EA waves as ''plasma waves."

There are two approaches that have been used in studying the EA wave: the kinetic, or
microscopic, and hydrodynamic, or macroscopic. The former is most general and would
probably be used exclusively were it not for its complexity in all but the simplest problems.
Thus virtually all analyses have employed the hydrodynamic approach. The equivalence between

the methods for propagation in infinite homogeneous media has been shown by Oster [23].

The basic equations in the hydrodynamic approach are the Maxwell (curl) equations, the
equation for charge continuity, and the equation for force on an electron. The latter two can be
derived as moment equations of the Boltzmann equation, which is the fundamental equation of the
kinetic approach. Higher order moments are dropped by arbitrarily setting the heat flux tensor
equal to zero. Since these moment equations are not the matter of prime interest, the derivation

and further discussion of the nature of the EA wave is given in appendix II.

A few further general remarks are necessary, however. In the equations which follow in
the next section, the perturbed electron charge density rather than pressure perturbation is
used as the fundamental parameter. Thus, it follows from the adiabatic change-of-state relation,
that

-ep = kT _p (1)

where p is the pressure, Te the electron temperature, p the perturbed electron charge density
and y is the ratio of specific heats. The rms thermal velocity is obtained from the equipartition
law

9 T

e
Vo =3k (2)

where k is the Boltzmann constant. A further discussion of these relations is contained in

appendix II and section 3, where the use of y =3 is justified. Consequently, we can write

-ep = mvgp (3)



The conditions which must be imposed on the plasma to allow a description in this form are
fairly severe [22]. First, "the wavelength must be considerably larger than the interparticle
distance, n61/3.” Second, "the speed of the particle must be so low that the mean distances
between most of the interacting particles do not change appreciably during the period of oscilla-
tions." Further characteristics and assumptions are best discussed in the context of the Boltz-

mann equation given in appendix II.

1.4. JUSTIFICATION AND DESCRIPTION OF THE PROPOSED METHOD OF ANALYSIS
Experimental cylindrical dipole results in an early phase of this study never indicated any
evidence of an EA wave, in contradiction with the large results predicted by Cohen [14] and
others. Moreover, a comparison of the NRL results [12, 13] with the King material [4, 6]
indicated that the NRL experimental results could be caused by collision frequency rather than
by EA wave effects. Because of the possibility of mode conversion between EM and EA waves
in an inhomogeneous medium, it was obviously important to retain the influence of the physical
"sheath" region that surrounds objects in a plasma, which had not been previously discussed.
For these reasons, it became evident that there was a definite need to critically examine the
excitation of electroacoustic waves. Because of its simplicity and prior experimental work,

the dipole was chosen for this study.

Various methods of analysis have been used in the past to analyze dipole antennas. An
account of the different types of analyses is given by Krause [24], it is only necessary here to
relate these methods to the problem of dipoles in inhomogeneous and compressible plasmas.

The methods as listed by Krause for the electric dipole are:

(1) The boundary-value problem approach
(2) The transmission-line method

(3) The Poynting vector method

The boundary-value problem approach is the most rigorous, but in its simplest form is
limited in applicability to antenna shapes such as the sphere and spheroid. For the EA wave
there is the complication of additional boundary conditions. Practical electric dipolé's are
nearly always cylindrical and analyzed by using the Hallén integral equation. The extension of
this integral equation approach to include compressible plasmas may be possible, but its use
does not seem justified at this point in the developing theory of EA wave excitation. Its use is
not possible for inhomogeneous media, due to the nonavailability of Green's functions. Surpris-
ingly, the use of any of these techniques when the compressible plasma is assumed homogeneous

is not necessary, with certain plausible boundary conditions. This is discussed in appendix VL

The transmission-line method "lends itself most appropriately to the biconical antenna . . .

It may also be called a boundary-value method . . . [24]." This method is not discussed herein



because the wave equation cannot be separated in spherical coordinates with the angular
inhomogeneity necessary to approximate a sheath surrounding a biconical antenna. For that

reason the method is not of interest in this discussion.

The general approach of the third method, the Poynting vector method, "is to integrate the
Poynting vector over a surface enclosing the antenna or to perform an equivalent calculation.
Two limiting cases of this method have been discussed: (1) where the surface of integration
coincides with the surface of the antenna and (2) where the surface of integration is a sphere at
a large distance from the antenna [24]." This method has been applied to the compressible
plasma by numerous authors and is discussed in detail in appendix VI. Its use is questionable
even for EM waves since a current must be assumed; the method is mainly justified by its
success. With EA waves an assumption of the form of the current is even less tenable since
there is no prior experience to justify a choice. The study of sheath influence cannot be handled
in this way without prior knowledge of the influence of the sheath on the current distribution.

In appendix VI the validity of this method is questioned both in terms of the reasonableness of

the results and of the basic equations.

It is now obvious that in order to accurately model the complicated region surrounding a
plasma-imbedded radiator only the first method is suitable. Because most practical dipoles
are cylindrical, it would be of definitely greater engineering importance to study the spheroid
rather than the sphere. However, as for the biconical antenna, the wave equation expressed in

spheroidal coordinates is not separable when the medium is inhomogeneous.

Having thus limited the study to a spherical configuration does not, however, mean that the
results are of value only for the spherical dipole. Since the free-space characteristics of
many different shapes of dipoles are similar, the present results should be of decided advantage
in interpreting experimental results for less restricted shapes. Extensions will be made where

possible.

The physical model which is to be studied is shown in figure 1. The antenna consists of
two hemispheres separated by a narrow gap of width A§. Internally there is presumed to exist

a generator which supplies an antisymmetric excitation to the two hemispheres. This manifests

itself as an applied electric field across the gap of magnitude This study will concern

rlAG'
itself mainly with the evaluation of the terminating admittance seen at the gap. This is the ratio
of current to voltage in the equivalent circuit for the TEM wave by itself. In using these admit-
tance data for experimental verification, the gap angle, Ag, and the exact nature of the input
region are of great importance. This aspect of the problem has been thoroughly explored by
others [2], therefore the present study is restricted to calculation of the terminating admittance

seen at the sphere edge.



Figure 1 indicates schematically two regions which lie external to the sphere: (1) a non-
uniform plasma region known as the sheath and (2) a uniform region beyond radius r, known as
the homogeneous region. The plasma is presumed to not exist in the biconical region (perhaps
prevented by a thin dielectric). In the sheath region, the electrons experience a repulsive force
from the indicated potential ¢(r). A perturbing body, such as the spherical dipole, must have
zero random current arrival-—that is, equal numbers of incoming electrons and ions. The
lighter mass electrons therefore accumulate on the perturbing body (the sphere) until the static
potential is sufficiently negative to equate the incoming electron and ion currents. Although
each electron experiences a repulsive force, there are a sufficient number of high energy
electrons to give a net drift velocity inward and thereby balance the accelerated ion flow. This
electron drift velocity has been ignored in previous analyses but is initially retained here in
order to demonstrate the problems involved in including it in the analysis and to allow for its
development in future work. The influence of the gap on the d-c drift velocity is assumed to be
small (i.e., L_fo = uo(r )f'\). In the external homogeneous region the d-c drift velocity, potential,

and electric field are assumed to be zero.

Further discussion of the sheath parameters and justifications for the models used in the
numerical analysis are presented in section 3 where it is shown that the assumed electron
density and potential profiles are reasonable approximations to more complete theoretical

results.

1.5. OUTLINE OF THE ANALYSIS

The approach to be followed in the remainder of this study is:

(1
¢
(3
(
(

Presentation and simplification of the most basic equations

Solutions, as possible, for successively simpler physical models

4
5

)

)

) Specification of the parameters

) Discussion of the boundary conditions

) Discussion of the method of solution and modifications to the usual mode
theory of spherical dipoles

(6) Presentation of numerical results for terminating admittance

(7) Spatial variations

(8) Discussion of results

The first two topics comprise the second section; the remaining topics are contained in the

sections with corresponding numbers.

Some of the important material has been placed in separate appendixes because its inclusion
in the main body would slow down the reader who is already familiar with this field. Appendix I

covers mathematical relations; appendix II, hydrodynamic equations; appendix III, boundary



conditions; appendix IV, limiting value of input susceptance; appendix V, influence of collision

frequency; and appendix VI, modification of previous EA wave excitation analyses.

2
MATHEMATICAL FORMULATION
2.1. SIMPLIFICATION OF THE MOST GENERAL BASIC EQUATIONS
As described in the first section, compressible plasma studies fall into two categories:
the kinetic (microscopic) and hydrodynamic (macroscopic). The derivation of the hydrodynamic
equations from the kinetic formulation has been given many times, but is repeated in appendix II
in a form that includes inhomogeneities and explains the assumptions necessary in this applica-

tion. The hydrodynamic equations given below do not include source terms which are, however

’

used in the Poynting vector method described in appendix VI.

In this free electron description, Maxwell's equations and the electron moment equations

(continuity and force) are

+ -t aET (4)
= - T 4
VX Hyp = ppVop + PV - €950 = O
aﬁT
X =
v .ET * Bg 5 0 (5)
ap
- T
—_— 6
VppV + =0 (6)
<avT ) - -
YT - = 7
pT[m Tl (vT V)VT + eET:, eVpT 0

The field variables are defined in (8); the symbolism is fairly standard. It is also summarized
in the list of symbols. Similar moment equations could be given for the ions, but their influence

is ignored in this analysis.

The basic equations above may be simplified by assuming that separation into d-c (sub-
zero) and RF (no subscript) quantities is permissible:

-iwt
e

=of}

magnetic field: ﬁT =0+

electric field: E_ = E (r)

A = -iwt
T 0

+Ee
iwt, - -en
y pO 0

-iwt

electron density: p, = pO(r) +pe

electron velocity: VT =u (r)? +ve

0
+
ion density: p,; = po(r)

i locity: V.. —u+(r)
lon velocity: v, =u,

pressure: -epp =zMVyp, + mvyP



where e = |el , SO pO is negative, pg is positive. This pressure definition and thermal velocity,

vy are discussed in appendix II and section 3.

This technique allows the development of separate d-c and linear RF equations when
products of RF quantities are ignored. With the help of vector identities and differentiations

given in appendix I, the zeroth order (d-c) equations are

=0
Pt = Po% ~
2
duO mv, dp0
Po\%o™ar "B T3 @ O ®)

i( + o +) =0
dr\Po " Po%) ~
The development of functions which satisfy these d-c relations is postponed to the next

chapter in order to facilitate the development of the first order equations which are of imme-

diate interest.

These first order equations are easily shown to be
= ng A 3E

V><H=p0v+u0pr+eoa—t (10)
oH
XE = -
vxE Kot (11)
ap _
Ve (pov + uopr) *a0 =0 (12)
v A -
Y% Vu. - :
mpo[ + uOer tv, uo] +mpu Uy - Mppu,T X (VXVv)
+ e§+ eE?+mv2V =0
Py peE oVP (13)

These four equations give ten linear relations between the ten variables: H, E, v, p. Four of
the relations involve only four variables if the assumption is made that all variables are in-
dependent of ¢<i.e., a—i = 0) . Using the relations of appendix I (when ait é-iw) gives for these

four relations comprising the transverse electric (TE) mode (variables: H H E¢, v¢)

1 0, . . _

(curl E)r T Sin gé(sm 9E¢) - 1w;.LOHr =0
(curl E) 1 i(rE ) -iwp H =0

0 r or 06

8H (14)
190 1
(curl H)¢ ;5——(rH ) - ~a~6—-p0v¢+1w€ E¢ 0
Po™% 3

(force)¢ + 1wmp0v¢ - E(rvd’) - ep0E¢ =0



The remaining six equations define the (TM) mode (variables: H & Er, E g VoV & p).
The fact that equation (14) can be separated from the others is most important: there is no
coupling between TE and TM modes due to the compressibility of the plasma if the mode fields

do not depend on ¢ (and only if EO

boundary conditions (given in section 4) preclude the existence of E at the radiator, the entire

¢

TE mode (given in (14)) will remain unexcited and can be dropped from further discussion.

is assumed to be independent of 8 as herein). Since the

The six relations defining the TM mode are presented in table I. The format used there
is intended to illustrate the influence of the various parameters and models on the number and
type of terms that must be included. For the free space radiation problem, only three variables
and the top three equations of column I are necessary. A cold stationary plasma {(column II)

requires only the addition of simple equations although this is usually handled by defining

2
ep w
€ =1+ 0 5 = 1- —12) The inclusion of thermal velocities (column III) is seen to require

r
meé€ _w w
0

another equation as well as added force terms. The inclusion of field-free inhomogeneities
(column IV) only adds a single term in the continuity equation, while the inclusion of electric
fields (column V) affects only the radial force equation. Finally, the inclusion of a (varying)

drift velocity is seen to add seven terms in the last four equations, as shown in column VI.

This set of six scalar equations seems to be the only approach to solving the problem when

the drift velocity is included; no other study is known which includes the drift velocity. The

TABLE I. BASIC EQUATIONS

v
I I pusg v Electric Vi
Equation Free Space Terms Cold Plasma Warm Plasma Inhomogeneities Field Drift Velocity
JE
13 1 r
. 1a 1 r -0
(curlE)¢ lwpgH, rar(rE9)+r 50
(curl H) —li(r}l ) + iwe E -p.v =0
2 ror ¢ 076 06
(curl H) - -;i(sin 6H ) - iwe E +p .V u.p =0
T r sin 6 98 ¢ 0r Or 0
214 mu
i @ - P —— =0
(force), “ePqfg HembgY “™orae P )
29 avr
(force)r -epOEr Hompgv Smvgas —eEOp - pyMuGZ—
o[2),
“Pe™ar /Vr
(ﬂ) o
- MUo\gr /P
inui ————~p0 —a—(i & +Hw -—l——d r2 v 9
(continuity) i pdesin 0y) p zlar\" Po)|'r “Yoar
r
v, 1 .d(rzu > -0
e - rZ dr o/ P -

10



arbitrary exclusion of the drift velocity does, however, allow considerable simplification, which
is presented in the next section. It should also be noted that the usual [14, 17] decomposition
into separate electromagnetic and electroacoustic modes is neither necessary nor profitable,
even with a homogeneous plasma. Such a decomposition is noted briefly in appendix VI. Thus,

the difficulty of the basic equations is believed to preclude any other attack.

To proceed further with the six partial differential equations of table I requires the assump-
tion that the fields have the same angular variation that they would have in a homogeneous
plasma. This allows a separation of variables in order to obtain ordinary differential equations.
The assumption can, of course, be correct only if the solutions satisfy all six equations. Com-

pleteness and uniqueness follow as for homogeneous media.

The solutions are therefore assumed to take the form

H, = ZTln(r)Prll(cos 0 =5 (r, )
n

%
P :ZTzn(r)Pn(cos ) = Sz(r, )]
n

iwe rE =ZT3n(r)Pr11(cos 6) = S3(r, 6)
" (15)

TV, =ZT4n(r)Pn(cos 0) = S4(r, 6)
n
p.rv, =Y T (r)Pl(cos 8) =8 _(r, 6)
06 Z 5n""""n 57’
n

1w€0rEr =ZT6n(r)Pn(cos 6) = SG(r, 6)

n

where Pn(cos ) and Prll(cos ) are respectively the Legendre function of degree n and associ-

ated Legendre function of degree n and order one. The normalization and ordering of the

variables given above allows considerable simplification in the equations. In accordance with

the discussion given in section 4, n is required to be an integer, and the Legendre functions of

the second kind, (Qn(cos 6) and erl(cos 9)), are excluded to maintain finiteness in the fields at
[o0]

6 =0, 7. The summation convention is thatZ = Z .

n n=-o0

11



In order to verify this choice of field representation, two identities involving Legendre

functions are necessary:

a%(Pn(cos 6)) = -Prll(cos 6)

1
sin 0

(sin 6 Prll(cos 9)) =n(n + 1)Pn(cos 9)

Sis

Application of these identities in the equations of table I shows that the first, third, and fourth
rows involve only summations of Prll(cos ), while the second, fifth, and sixth involve only sum-
mations of Pn(cos 6). Since both functions are orthogonal functions (that is, multiplication by
Pll{(cos 9) or Pk(cos 6) and integrations over 0 = 6 < 7 give a contribution only for n = k), the
equations must be satisfied for each n separately, giving (note the change of order)

Jldo 1o
(curl H)g' ?drrTl = r(T3 T5)

de d T4 d‘uo @
(force)r: iwm 7= + pymu = }EE = _eEO - mu o ?Tz
0

+ 1i - m iu_o_rr_4___?f2_’r
Hmwo pOdr p,r  iw€.r 6

0 0
T T
1d 3 1 6
(curl E),: ———(. >—1wu T, - &+
¢ rdr 1w€0 01 r2 1w€0
dT T
inuity): u. @2, 8 4} ([, _1df2 }}iw
(continuity): Y3 ar * Po dr(p r)- +<1w "3 E (r u0)> 2T2 am
v 0 r \4
0 0
1 d(z ) 4 nn+1)
SRS PO . T
2ar\" Po/pgr 2 5
1 475 Ty P Ts
(force)g: POMYG T T —[% = flwm el inOrTB +lom—=
T T
- am+1. Y% 4 8
(curlH)r. 0=- - T1+ 5 T2+r___r_
Yo

12



Note that the subscript "n'"' has been suppressed in these equations. These equations may be

rewritten in a normalized form by defining

This gives

4
f—Eip
5 pOdXO
dT1
X =TTy T
2
de dT4 wp
X&-‘IUK=-fZT2+(1+lf3)T4-;—2T6
dT
3 2
X—d—;(——-XT]._TG
dT dT
U 2% 4 1(2 .
1_EX —d?‘FXE——-—z(X +1f4>T2-T4-LT5
\% A%
2
dT5 wp

iu
0= -LT1 +?xT2 + T4 - T6

(18)

13



These equations are considerably simpler than the partial differential equations given in
table I. It is apparent that T6 can be easily eliminated since no derivatives of T6 appear and
thus the system reduces to five equations. It is also advantageous to manipulate the second

and fourth equations of (19) so that the left-hand sides contain only one derivative; the resultant

set can be put in the matrix form

de
XF = DJka(],k = 1, e ey 5) (20)

The elements of the Djk matrix are given in table II. In this form the coupled equations are

compactly presented, but nevertheless sufficiently complicated to preclude attempts at further

analytical development.

-1
2
TABLE Il. MATRIX ELEMENTS Dy, where = <1 U—)

2
A2
K
RN 2 3 4 5
1 -1 0 1 0 -1
2
U reE0 wp
2 ST w eL-—5
iuﬂ V Umc W
2 szL wz 0
U p L2 df U UL
-1§’~—2 1 + =5 /X +ilx Podx 5 i€ -
A% w PoX
3 L-x —i—Uz—x 0 1 0
\%
2
2 2w
X U p 2
S\t 33 PUX 4 /u
1 Viw Cl-1+ ==
2 dx\p.x
2 \% 0
Uw ¢ UZ reE0
4 it—-B1x 2 = 0 -L¢
2 2 212 2 2
V w V |V \Umec cup U
+ d_U__d_(ZU) —11-52—C—V§x
*ax | T ax
2 xde
1 .lwp P, dx
5 0 lﬁX —II.—I-_Z-X 0 O
w 1
+i=Xx
U
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Numerical integration of this set of equations is necessary because of the complicated
nature of the d-c sheath parameters EO(r), uO(r) and po(r). Further discussion of the solution
to the set of equations in (20) must, however, be postponed until these parameters are specified

(section 3) and the boundary conditions justified (section 4).

However, an appreciation of the influence of the sheath inhomogeneity can be obtained by
dropping the d-c velocity terms in (20). A special case is then found to be amenable to analytic
solution. The further development of the simplified defining equations is, therefore, presented

below in section 2.2.

2.2. BASIC EQUATIONS IGNORING D-C VELOCITY
When the effect of the d-c velocity is ignored a priori (while retaining the d-c electric field

term), the equations in (20) take on a much simpler form. After multiplication by u, and letting

0
u, 80 to zero, the last of the equations in (20) takes on a much simpler form, allowing the

variable T to be eliminated from the equations through

5
2
“p
Ts=-Ty + =T, (1)
w
Substitution of (21) into (20) gives the set
2
dT1 wp
- S 22
X T1+T2+1 2T3 (22)
w
dT wlz) 1 reE0 wi
—— T — - —— - — 2
X L — /T, 5 2T2+1 5 /Ty (23)
w V \mec w
dT
3 2 924
& - LT - Ty 24
2
dT w
4 _ 1 2 p 95
X‘ax——<L-—‘2—X>T2-L 2T3-T4 ( )
\% w
where, as before,
X = kor
v
v=2
c
L=nn+1)
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and Tl’ T2’ T3, T , denote the nth mode radial variations of variables related to H¢, o} Eg, and

4
V. respectively.

To effect a further simplification, it can be noted that the variables T3 and T4 may be

eliminated from (24) and (25) by use of (22) and (23). If we introduce a change of variables

y ={n <x£>’ X=X eJ (26)
1
where x1 = kOrl’ SO0
d d
d—y = X& (27)
and further define
rekE
1 0
-Fy =5 — (28)
V. mec
2
w
€= 1- % (29)
w

and denote y derivatives by primed quantities, equations (24) and (25) can be put in a form

suitable for numerical (especially analog) computations:

2
" ] [ 2 2y) 1 E B 4 30
T1 +T1(1 - (n er))+T1 €r<-L+x1 e’ ) - (ﬂner) - sz —TZ[FZ - (fn er)] (30)
2
" ' . ' 0 ' ' Xl 2y
T2+T2(-F2+1-(n€r))+T2 _(1_(n€r))F2—(F2) + € 'L+-\['2e

w2

bl ' (31)
- sz = -TlL(ﬂn er)

When the medium is homogeneous, these equations are satisfied by spherical Bessel func-
tions. However, the effect of the inhomogeneous medium is to couple the two wave equations
and thereby modify the propagation and character of both the electromagnetic (Tl) and electro-
acoustic (Tz) waves. The calculations which follow will illuminate the nature of this

modification.

An alternative derivation of (30) and (31) is helpful in understanding the role of the density

inhomogeneity. By manipulating the fundamental equations (10) and (13) when uy = 0
.2

—~ 1 Yo iep . A
iw€ E = ——————<SVXH+—Vp + LR 2 (32)
0 2 w mw 0

1- (wp/w)
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meo“’2 ~ 1 = i“"’(2) iewp . A
v = VXH+—Vp+ﬂEr (33)
e 2 270
1-|{w /w w mw
p p p

(Separate equations for E and v are not obtainable when the d-c velocity is retained. Insertion

of (32) and (33) into (11) and (12) gives

2 2= = s o =
(V" +k )H+G><(V><H=-1—w-(G+FO)><Vp (34)
2 -— -— — —— — —
(V +k )p- (G - FO)-Vp+(V-F0- GFO)p=-1—q)2—G(V><H) (35)
v
0
where
G=2uK’ = 1 ve (36)
€ r
k r
eE £ F
i 0 2 A
FO = - 2 :-r—r (37)
Yo
2 2
kK =w ”0€0€r (38)
2
wp
€r =1 - —2 (39)
w
2
K=k S (40)
P "
0

The first terms in each equation are those for homogeneous plasmas; they have been
derived by numerous authors [14, 17], and are invariably obtained after an unnecessary separa-
tion of the fields into EM and EA components. A comparison of (34) and (35) with (30) and (31)
is somewhat difficult, but can be accomplished. To prove the necessary agreement, it is most
straightforward to drop the d-c electric field. This is undertaken not only to simplify the
problem, but also to obtain a closed form solution which can be used as an independent mea-
sure of the accuracy of the numerical computations presented in later sections when FO is in-
cluded. Although the coupling of the EM and EA waves can be studied, there does not seem to

be any means of obtaining a closed form solution when FO is included.
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2.3. PARTICULAR SOLUTION FOR DENSITY INHOMOGENEITY ONLY

As mentioned in the preceding section, an analytical solution to the four coupled first order
equations (22) through (25) is not, in general, possible, even with the exclusion of the electric
field, EO' In fact, in this form it is not apparent even what special cases might simplify the
problem. For this reason, and in order to appreciate the modifications in the usual wave equa-
tion analysis, the alternative approach begun in the last section (but now letting FO = 0) will now
be developed further. Using the differential operators from appendix I, the coupled wave equa-
tions (34) and (35) take the form

2
oH dH H v
1 o(2 ¢}, 1 (. , &) __ & 2y 1lg 2 1.0, 3,
26r<r 8r)+ 7 ae(smgae)' 5 g *KHy -1 G FHrH) + 210G 5=0 (41)
r r sin 8 r sin 6
and
iwG
1o 2\, 1 af. o) 20 e, Tr 8 au
28r<r ar>+ 5 a6<s1n986)+kpp-Grar+ 5 (sm9H¢)—0 (42)
by r sin @ vorsme

Assume, as in section 2.1, that separation of variables is possible:

(43)
) 2
plr, ) = plr, 6) = (10/¥] Ry (x)0,(0)
so that (41) and (42) become (after inserting (43) and dividing through by H¢/r2 and p/r2
respectively)
FRIECT R R T I
R1 dr dr 91 sin 4 d6 dé sin29
G rR,G d©
2 2
- [ﬁErd—i(rRl)} - l:R o "&b—} =0 44
1 11
2
_1_2_ 2.(m—2 +k22 + ._____.__1 _q_.singd_@_z - ir.rdRz
R, dr ' Tar p’ ©, sin 0 do a6 R, dr
(45)

er Gr d
" R2®2 sin ed—e(sm9®1) =0

The assumption of separation of variables for a single wave equation is usually followed
by noting that specific combinations of the terms are functions of only one variable and, there-

fore, must be constants. In the present example, for homogeneous media, Gr =0, the last two
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bracketed terms of (44) and (45) are zero. Then setting each second term equal to -n(n + 1)
gives spherical Bessel's equation for the radial variation and Legendre's equation for the

angular variation, with well-known solutions (see appendix I for details).

When Gr # 0, the last bracketed term of (44) and (45) is apparently a function of both r and
6. However, the combination of 6 terms is such that if the second term in each equation is still
considered as a constant the ¢ variations in the last bracketed term vanish. Thus, the second

10 a(ng + 1)
In order to maintain finiteness at 8 = 0 and 7 for both H, and p, it is necessary that both n, and

¢ 1

n, be integers and, therefore, n, =ny =n. The following solutions are, therefore, obtained (see

term of (44) is set equal to -n_(n, + 1) and the second term of (45) is set equal to -n,(n

appendix I for details) for the angular variations:

0,(6) = prl1 (cos )

(46)
92(6) = Pn (cos 6)
In the last bracketed terms of (44) and (45), use of the identities
dPn(cos 6)
G~ Pn (cos 6)
and
i(s' 6P a)) =n(n + 1) sin 6P (cos 6) 47
q\Sin 0P (cos =n(n sin 6P (cos 47
gives
dR
1 d/2%M 2 n(@m+1) G d G
*z‘a;(r E‘) * <k 2 )Rl “T @Ry = -TRy (48)
r r
dR dR
1 .df2%% 2 n(+1) 2
2 ‘(E(I' Tr—) + <kp - p) )Rz - G_CTI—‘- = - n(n + 1)R1 (49)
r r
By letting
r)©
H . NG ZTln r)P (9)
n
9 (50)
v

—Op Ry ZT r)P_(6)

as before, it is apparent that the nth component of T1n and T2n must satisfy (48) and (49). The

total field is determined from that combination of the components which satisfies the boundary

ll "

conditions; the subscript will be suppressed whenever possible.
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In an attempt to obtain an analytic solution for "exact' numerical computations, many

L 2
variations of k” and G(r) have been studied. One (and perhaps there is only one) variation has
proven fruitful:

I_2
2 2°0
R (51)
r
from which
meé w
) 2,2
pote) = —2—(1 - o) 52)
and
Edsz 2
G="—--2 (53)
kz r

Although equations (30) and (31) are not of quite the same form as (48) and (49), equivalence is

exact since

xam(e) ra(d)
(fne)' = = =rG = -2 (54)
r € 2
r k
Withthe substitutions
k.r
0
y=4In—= ﬁn< >
1 kory
~ 3/2
Wy = (kor) Ty, (55)
_ 3/2
Won = (gr)" Ty

the two representations of the coupled wave equations become

dzwm 2
_In - 56
2~ 71%1n " *Von (56)
dy
dZWZn 2
dy2 + y2W2n =2n(n + 1)W1n (57)
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where

(58)

The advantage of assuming the density variation above is now obvious —constant coefficients

are obtained. A single fourth-order equation is possible, and the solution can be seen to be

4 K Y
Wln B Z Amn © (59)
m=1
4 A Ky
- mn/ 2 2 m
Won™ )2 <Km ) ”1> e (60)
m=

where

K —i\/l(2-2>i 2+2>2+16(+1)
m_ TV 22 " Y9 T nin

and m = 1, 2, 3, 4 signify the signs chosen in the order ++, -+, +-, --.
In summary, for the special case when Py varies so as to make kzr2 constant, it has been

found that the fields are given by

v 4 K, n (k r) 1
H, =Z Z Amn i P_(cos 6) (61)
n=1 m=1
» o 4 2 ) 7’3 eKmfln(kor)
0 n=1 m=1 0

The remaining field variables are obtained from equations (32) and (33). In particular

K In(k,r)

1 & 4 o 0 1
lw€0rE9 = €_Z Z Amn(FZm - Flm) WPH(COS 9) (63)
=1 m=1 0
o 4 wIZ) eKm ﬁn(kor)
PTY,. = E_Z Z Amn -n(n + 1) —5+ Flm(FZm -1 —Wz—Pn(cos ) (64)
r&— — w (k.r)
n=1 m=1 0
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where

K2 2
F __m "
1m 2
(65)
_ 1
FZm “m T3

Extensive study of this solution will be postponed until after discussion of the d-c param-
eters, boundary conditions, and method of solution in the next three sections. However, it can
be seen that the four exponential solutions do not possess a wave character; in fact, only two
have an imaginary part. Furthermore, in this solution, the "propagation constants" (Km) are
dimensionless; wavelengths, phase and group velocities, etc., are unobtainable. Nevertheless,
as in coupled oscillator problems, the propagation constants remain close to the uncoupled
values. For electromagnetic wave propagation, in an incompressible plasma with this same
assumed density variation, the magnetic field has been given by Tai [2 5](correcting an obvious

error in the definition of ), or can be seen from (56) to be given by

Ink r -y, dnk r
0 1 0 )Pl(cos 6) (66)

_ 1 "1
H¢ _Z 3/2 <A1n € * A2n € n
(k.r)
n 0
2. . . 1

where vy is given by (58). The lack of wave character is obvious when kor <n+ 3

Two of the propagation constants in the present problem generally remain close to the
value ;tyl. The influence of thevarious components, however, is dependent on the boundary
conditions and can only be determined by calculation. This will be further developed in sec-

tions 5 and 6.

2.4. HOMOGENEOUS PLASMAS
The field variables for homogeneous plasmas are easily obtained from equations (44) and

(45) when Gr = 0. Using the material in appendix I, general solutions are

[Athr(ll)(kr) + A7nh£2)(kr)]Prll(cos 6) (87)
0

o]
H =
¢
n=

v2 0
0

_ (1) (2)
9, [A6nhn (,0) + Agyht (kpr)JPn(cos 6) (68)

n=0

The constants are labeled A5n’ c ey A8n in order to avoid confusion with the constant

Amn’ m = 4 used in the previous section. The propagation constants k and kp are defined in

equations (38) and (40). For radiation in an infinite homogeneous medium, the radiation condi-
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tion precludes the existence of the Hankel function of the second kind. Hereafter, the constants

A7r1 and A8r1 will, therefore, be set equal to zero, and the superscripton hﬁll) deleted whenever

possible.

From the basic equations (32) and (33), it is a straightforward matter to show

0
iwe rE = —%Z [Asn a%(rhn(kr)) - AGnhn(kpr)] Prll(cos 6) (69)
n=0
2
;@ wp d ‘]
PTV, = _§Z Asn(n)(n +1) ?hn(kr) - AGan(hn(kpr))JPn(cos 0) (70)
n=0
2
S 1S a TP - A b (k) [Plcos 6 71)
pOrVB_GZ 5 2dr " “enn"p | n O (
re w
13 d
iu.)éorEr = E;Z [A5nn(n + 1)hn(kr) - AGHrE(hn(kpr))} Pn(cos ) (72)
n=0

Some readers might wish now to transfer to section 6 where the numerical integration of
equations (22) through (25) is discussed. This integration is performed for a model which is
discussed in the next section and which can be visualized in figure 2. The method of solution
used to satisfy the boundary conditions is covered in section 4. Section 5 discusses the definition
and problems associated with calculating the terminating admittance. The material in each of
these sections is summarized in section 6 and the reader familiar with this material may wish

to omit some of it.

3
SPECIFICATION OF PARAMETERS

3.1. INTRODUCTION
This section is concerned with the specification of the steady-state parameters to be used

in the differential equations given in the preceding section. These parameters are:
1) electron density, po(r)

0

)
2) electron rms thermal velocity, v
3) electric field, Eo(r)

)

(
(
(
(4) drift velocity, uo(r)
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A brief description of these variables was given in section 1.4; figure 1 indicated their
general character. It now remains to justify the variations used in the numerical computations

which are given in the sixth and seventh sections.

The specification of the steady-state parameters is itself a major undertaking and an exact
specification is beyond the scope of this study. The objective of this study is to obtain a sub-
stantive appreciation of the influence of the sheath on the input admittance through the numeri-
cal values for this approximate sheath description. The difficulty in this radiation analysis is
that the radiated fields must at some radius be matched to the fields which propagate in the uni-
form region exterior to the sheath. For an actual sheath region the d-c fields disappear rapidly
away from the perturbing body; however, an approximation which makes this region finite must

be made to make the computations feasible.

The next section discusses the steady-state parameters po(rz) and Vo which are the only
variables needed to describe the steady-state characteristics of the homogeneous region outside
the radius Ty The model used in the sheath is then discussed in section 3.3; this is compared in

section 6.3.1 with the model analyzed in section 2.3 which permitted an analytical solution.

3.2, UNIFORM PLASMA REGION

A laboratory plasma is never uniform because the production of the plasma necessitates
methods of both containment and generation, with consequent d-c flow of both ions and electrons.
Even for ionospheric plasmas, homogeneity is unlikely. For analytical purposes, however, these
other nonuniformities will be assumed to be negligible and the plasma will be assumed to be
homogeneous beyond some distance from the dipole. In this uniform region the plasma is
assumed to be electrically neutral with no steady-state forces on either electrons or ions. The
electron density n, and electron temperature Te are therefore the only two parameters needed
to specify this region. In the equations of section 2, these appear as charge rather than number

density and as thermal velocity (of the perturbed electrons) rather than temperature:

= - 73
po = -1, (73)
lmv2 = ng (Equipartition law) (74)
270 2 e
These are further modified to give
w -ep
p__ 0 (75)
W  meyw
2 v(z) 3kTe
V = —2- = D) (76)
c mc
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Numerical values can be obtained by using

-23 watt sec

k = 1.38047 x 10 OR

e=1.602 x 101 coulombs

m = 9.1066 x 10™°1 kg

¢ -885ax10 12 F
0 m

c =2.998 x 105 ™
sec

Thus it is possible to show that

w
I
fp =5 8980 n €pPs (77)
(when n is expressed in cm_3)
and
Yo 5 —
V=—=225%10 VTe (78)

12
Since electron densities in laboratory plasmas are typically less than 10 /cm3, and the
electron temperature is in the range from 103 to 106 degrees Kelvin, then fp is less than 1010

cps, and V is in the range from 107 to 3 x 1072,

Since the electron temperature is also often expressed as ¢>e (in electron volts), it is con-

venient to note that

T
kg e
%e = e le = 11,6000/ev

Another parameter for a homogeneous plasma which is often used is the shielding, or Debye,

length AD (often denoted by he or l/kD) which is given by

(79)

(80)
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4
Typical values for this ratio in the laboratory and ionosphere are in the range of 1.0 to 10"

The extent of the inhomogeneous region surrounding the spherical dipole is contained in Sec-
tion 3.3.

3.3. SHEATH REGION

The word "sheath' refers to the electron-deficient plasma boundary region. The forma-
tion of a sheath is necessary to balance electron and ion currents. The lighter weight electrons
have much larger thermal velocity than the ions; consequently, electron accumulation on the

boundary surface creates a "'wall" potential. This attracts ions and repels electrons in amounts

sufficient to balance their currents.

A complete description of the potential profile surrounding a perturbing sphere does not
seem to have been given. This is partially because of the complexity of the problem, but also
because the profile need not be known in order to calculate current collection as the probe po-
tential is externally varied (e.g. Langmuir [26, 27].. From such '""Langmuir probe" diagnostics,

both the temperature and electron density in the homogeneous region can be obtained.

The technique for obtaining a complete potential profile is necessarily numerical, and has
been carried out with certain geometries and assumptions. The basic equation to be solved is

the Poisson equation

2 1 +
w90 = (0 - 75) (81)
0
The assumption is made that
Po(T) = polr = ) ex) (82)
where
ed (1)
n(r) = —7 (83)

that is, that the distribution is Maxwellian. The ion density, pg, is usually related to the poten-
tial through an orbit analysis. For large potentials, the electron density can be ignored and a
sheath solution obtained. Similarly, in the region where the potential is not rapidly varying, the
plasma solution is obtained by making the so-called quasi-neutral approximation (dropping the
left-hand side of (81). In analytical studies, these solutions can be fitted together at the "'sheath

edge." The potential in this analysis is taken as zero atr = cc.

In his work, Langmuir [26, 27]discussed solutions in spherical coordinates for various
assumptions about the right hand side of equation 81, such as zero space charge density, con-
stant density, and constant current density (so p+ =J/u 0) with one or two kinds of carriers, but
neglected the generation of ions in the sheath. Bohm [ 28] also analyzed the spherical collector

in greater detail using the Langmuir approach (two carriers, constant current density), but in-
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cluded the effects of field penetration into the plasma region as well as ion temperature. Some-
what later, Allen, Boyd and Reynolds [29] analyzed the spherical collector in the manner of Bohm,
but studied the sheath potential profile which Bohm had not done. Their work contains a descrip-
tion of the literature prior to 1957. Bernstein and Rabinowitz [30] also considered this same
problem using an entirely numerical integration of (81). Laframboise [31] has apparently used

a similar numerical integration but retained a Boltzmann distribution for the ions. Bernstein

and Rabinowitz have assumed monoenergetic ions in order to make the problem more tractable.
Lam [32] has discussed these various analyses (excluding Laframboise); however, since he pre-
ferred to avoid numerical integration, no numerical potential profile data is available from his

work.

In addition to these studies of the spherical collector, there is a large body of literature for
planar and cylindrical Langmuir probes. In particular, Self [33, 34] and Caruso and Cavaliere
[35] show potential profile data for planar geometries obtained in much the same way. Collisions
are neglected in most of these analyses, although Self does discuss ion generation in the sheath.
Self's analysis has been used by Parker [36] and Nickel [37, 38], in their plasma (EA) wave
analyses in nonuniform plasma columns. Their work is somewhat similar to the present study,
but they dropped the magnetic field and therefore the EM wave in the interior plasma region.
Consequently, mode coupling in the sheath region and the metallic radiator problem are not con-

tained in their work.

The problem in utilizing the material described above is that all of the work was performed
for relatively ""small" collectors; a typical parameter is rl/xD equal to ten. Much of the data
presented in the sixth and seventh sections are for somewhat larger values of rl/)\D. Conse-
quently the desired sheath potential profile was exirapolated from each of the published curves;
a typical comparison is shown in figure 2 as case A (Allen, Boyd, and Reynolds) extrapolated
from data for r1/7xD = 14.7 when n = -3.5; case B (Bernstein and Rabinowitz) extrapolated from
data for r1/7\D =13.0 when n=-3.5 and Tl/Te = 0.1; and case L (Laframboise) extrapolated
from data for rl/)xD = 10 when n = -3.5.

In addition, case C,which is shown, is an example of the computational model used in sec-
tions 6 and 7 which is described below. In each case, the curves have been plotted to correspond
to a normalized wall potential of Ny = -3.5 when rl/AD =19.6. This value of normalized sphere

size is obtained from equation 80 with parameters of wp/w = 0.707, vo/c =1/32 and kor = 0.5.

There are obvious similarities between each of the cases shown in figure 2. The differences
are a result of the assumptions employed and the method of computation as well as the problems
involved in extrapolating data from published graphs. In some parts of the computation, thinner
sheaths are considered in deference to the statement by Spitzer [39] that sheath thicknesses of

one Debye length are to be expected. Actually, it can be seen that most of the potential rise does
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FIGURE 2, COMPARISON OF SHEATH
POTENTIAL AND DENSITY PROFILES

occur within several Debye lengths although the density profile rises less sharply thanthe poten-

tial profile.

Before describing the sheath representation that has been chosen for study, some comment
is appropriate on the magnitude of the drift velocity since the inclusion of a drift velocity will
affect the model. It was originally intended that the drift velocity would be included in this anal-
ysis. However, the difficulty of establishing the added boundary condition (see sec. 4), the much
more involved (if even possible) numerical computations, the complexity of the analysis even

without u ., and the absence of definite experimental evidence of the detectability of the EA wave

O’
by any plasma-imbedded dipole lead to the exclusion of the drift velocity from this study. It has
been retained in the previous section in order to demonstrate that its influence should not be

large. Thus, it is now pertinent to determine the magnitude of the drift velocity.

Although a large majority of the electrons are reflected in the sheath, the average velocity of
those that continue on must necessarily increase. The maximum value can be obtained from a

calculation of the random current at the dipole (given by Lam [32]or Self [33]).
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. kTe)I/ 2
w 2Tm

I = Porug(ry) =py e (84)
Since
N
Vo2 N m (85)
then
uy(r,) = %vo = 0.23v, (86)

The drift velocity decreases to zero at the sheath edge; the actual variation is determined
by the details of ion generation. However, even with the maximum value at the radiator, it can

be seen that many of the terms in table I involving u, are of small magnitude As an example,
mu

times as large as the neglected term P TV in the

0

the term iwmp_.v is never less than Lx
00 o
component of the force equation. However, because of the complexity of the equations it is not

1

possible to show that all of the terms will always have negligible influence. In fact, because
many of the added terms are imaginary, even small terms might be influential in affecting the

admittance. Nevertheless, even though all terms containing u, are not demonstrably of small

0
order, they must be dropped for the reasons given previously.

With the exclusion of the drift velocity the d-c static equation which must be satisfied be-

comes quite simple. From equation 9

de
perO + kTeF = 0, (87)
since E0 = -d¢0/dr, then
e¢ ()
d-%0"’) _1d 4
cﬂ‘(kTe > N poﬁpo T dr {n Po (88)
and so (since it is assumed that ¢0 =0atr-= r2)
po(¥) = py(ry) exp (€6 ((x,)/KT ) (89)

or ed(r)  pyr)

nr) = 416 = (0 py(Ty)

(90)

2 .
In the defining differential equations (22-25), the term reEO/mv0 appears, which can there-

fore be replaced, using (74)

_reE0_+lLdp0_ . o1
27 "3p, dx "2 (91)
mv0 0
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Since only the d-c potential (or electric field) and d-c electron density appear as static
variables in the simplified defining differential equations (22-25) a specification of either quan-
tity and use of either (89) or (90) completely defines the static variables. The only restriction
is that the electron density gradient (and therefore the potential)be zero at the outer sheath edge.
This condition is necessary in order to simplify the boundary conditions; of course, a potential
discontinuity would not be physically meaningful anyway. A number of choices were attempted
and compared to the sheath models shown in figure 2. The most satisfactory alternative was to

approximate the d-c electron density as

no(r2) - no(r) _ [Ty T 2 (92)
no(rz) - no(rl) r, - Ty

or in terms of the variable y = ¢n r/r1 used hereafter

2
2 2 2 2 y
w0 Wiy (wp(yz) wp<y1>> (Y2 ) o

2 - 2 2 2 2
w w w

T

2
where the three parameters rz/r1 (or Vo = £n rz/rl), wi(yz)/wz, and wp(yl)/w2 must be in-
dependently specified. The d-c electric field is related to this specified d-c electron density

through (91). With this model and using the normalized distance y this gives

@y, ()

- y 2)
llde w2 wz 2e2ey—ey
F2=§p_—d_y= 5 - 5 (94)
0 Vg w (y)
3le " -1 p2
w

with 0 £ y £ ¢n rz/rl,

The only remaining parameter to be discussed is the d-c radiator potential. In Langmuir
probe studies and hereafter this is termed the wall potential. This quantity is actually used to
specify the parameter wlz)(rl)/w2 through (89). Langmuir [26, 27] was the first to give an anal-
ysis of this quantity, showing that the wall potential can be obtained if the electron current
given by (84) is equated to the ion current

1/2
Ji = (%) nOeI(n) (95)
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1 ds

where I(r) = j exp (-ym') () an (96)

0

In this equation y is a parameter describing ion generation in the sheath (y = 0 for uni-
form generation, y = 1 for generation proportional to electron density) and s = ar where r is

the actual distance from the center of symmetry and ¢ is a characteristic inverse distance
scale.

With the "plasma approximation' these integrations can be performed in terms of an inte-

gration parameter, jO’ giving

2kTe 1/2
IW=%W= o ngely (97)
. p
so that
mp 1/2 o
n. =4{n||— o 98
w m, ) 2w/l ©9)
and for hydrogen
1
7. =4n{12.1— (99)
w ig

Langmuir discussed numerous geometries and cases, but did not obtain wall potentials for the
spherical collector. However, Bohm [28] showed that jO was a function of ion temperature and
obtained values from 0.38 to 0.50 depending on the assumptions involved. For the planar case,
Self [33, 34] obtained jO = 0.3444. These values give normalized wall potentials from -3.18 to
-3.63 for hydrogen; values for mercury would be near -6. In most of the numerical computations,
a value of Ny = -3.5 was arbitrarily chosen, which gives an electron density at the wall that is
three percent as large as in the homogeneous region (using (82)). However, normalized wall

potential variations from -2 to -10.0 are discussed in sections 6.3.3 and 6.3.4.

In conclusion, this section has presented data to show that the sheath model offers a reason-
able approximation to what is now known about the sheath region surrounding a spherical collec-
tor. The relatively small influence of the model on the calculations justifies the use of this

approximate form.
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4
BOUNDARY CONDITIONS

4.1. INTRODUCTION

In the second section, a system of four ordinary differential equations was obtained from a
set of ten partial differential equations. These equations interrelated the ten variables re-
quired to specify the field radiated from a spherical dipole in a compressible, drifting, inhomo-
geneous plasma medium. One restriction that was necessary in the simplification of the equa-
tions was the assumption of no angular variation around the spherical axis of symmetry for
both d-c and perturbed variables. The solutions in each case were obtained by what is known
as ""modal analysis." Separation of variables was shown to be possible, and the complete solu-

tion was found as a summation over an infinity of "modes," as in equations 15 ff., i.e.,

0
_ 1
H¢ = E Tln(r)Pn(cos 9)
n=0

When the medium is homogeneous and stationary, each field variable can be obtained ex-

plicitly as given in section 2.4, i.e., equation 67

T, =A nhr(ll)(kr) + A nhr(12)(kr)

1n 5 7

When a particular inhomogeneity was retained, but d-c electric fields and drift velocities ig-

nored, the solution was given in section 2.3, i.e., equation 61

Kk Ink.r
4 o m 0
Tln B Z Amn (k r)3/2
m=1 0

In the more general inhomogeneous medium cases it is necessary to resort to numerical solu-
tions, but a complete solution can be obtained from a set of arbitrary solutions when the dif-

ferential equations are linear, as in this problem.

From the above discussion it can be seen that the solution is not complete until the con-
stants are specified. In the first spherical dipole analysis by Chu and Stratton [3] the determi-
nation of the constants was accomplished by specifying one condition at the radiator and one at
infinity. The condition at infinity is known as the radiation condition; it requires that all fields
behave as outgoing spherical waves. The condition at the radiator is that the tangential electric
field be zero except at the gap, where a driving voltage exists. For a homogeneous dielectric
these two conditions then allow the complete determination of all fields and the terminating ad-
mittance. The conditions at these two boundaries will be described at greater length in the

following sections.
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In an extension of this type of analysis to a nonuniform medium, two possible methods of
representation exist: (1) the medium gradually becomes uniform as the distance from the
sphere approaches infinity and (2) a jump discontinuity in the representation of the nonuniform
medium or its gradient exists beyond which the medium is homogeneous. In both cases, the
radiation and radiator tangential electric field conditions still apply. For the first case,
numerical solutions can be obtained such that beyond some radius the solution is arbitrarily

close to that in a uniform medium. In the second case, separate solutions are obtained in the

two regions. Two new constants are involved which can be readily calculated since the tangen-
tial electric and magnetic fields must be continuous across the discontinuity. A discussion and
derivation of these conditions is given in appendix III. The first type of representation is not
often used because of the sparsity of analytical solutions. The only two spherical radiator

problems using the first method of which the author is aware are by Fikioris [40], who studied
r+r
the case €(r) = €

2 for various combinations of T, and I and C. T. Tai [41], who gave
b
solutions for this and several other stratifications.

or tr

It can be seen that in principle there is no major problem in studying the propagation of
electromagnetic waves alone in a homogeneous medium. This is not true in the present analysis,
in which electroacoustic waves are also presumed to exist. It is the purpose of the following
sections to justify the conditions used in this study. This will be done for the second approach
described above. However, as shown in appendix IV, in order to match all of the fields to the
usual Hankel function representation it is necessary that the density gradient (and therefore
the static electric field and electron drift velocity) be zero at the outer sheath edge. With this
approach, it is well known that the radiation condition is satisfied by excluding the second kind

of Hankel function (if e_]wt time convention is used) in the external homogeneous region.

Mode conversion with an inhomogeneous sheath is inherent in the differential equations
used in the sheath region. However, because the present improved sheath model is still a far
from perfect approximation of the microscopic physical processes that occur at the radiator,
it does not indicate a single set of criteria for a choice of continuity relations at the radiator
boundary. A number of such relations although imperfect may be considered equally acceptable

for approximate solutions.

The boundary conditions at the outer sheath edge are discussed in section 4.2; those at the
radiator in section 4.3. The general solution obtained from these boundary conditions is given
in section 4.4 and several special solutions are in section 4.5. A major conclusion of this study
is that previous analyses have predicted an excessively large EA mode contribution. There-
fore, the set of boundary conditions used in these analyses is critically reviewed in
appendix V and an alternative set is presented. Figure 1 indicates the nomenclature being

used in the following discussion.
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4.2. OUTER SHEATH EDGE CONDITIONS

In this section, boundary conditions will be obtained from the various field components
when the sheath edge is as nearly perfect as possible, possessing neither density discontinuities
nor density gradient discontinuities. The expected result is that there is no mode conversion,
so that all field components are continuous. Only four need be specified and the usual set of

nonredundant conditions is

A - q -—
R (H, - H) =0 (100)
pl - p2 =0 (101)
fix (&, - Ey)=0 (102)
N = ing -
n-(v1 - v2) =0 (103)

The derivation of these conditions is presented in appendix III in the belief that most readers
will find them intuitively acceptable, because the derivations are so lengthy and because all
that is being varied at this boundary is the representation of the medium, not the medium itself.
For numerical computations, however, it is desirable to reformulate these boundary relations
so that neither the field solutions nor the arbitrary constants in the homogeneous medium need

be calculated explicitly.

This will be done by eliminating the arbitrary constants of the homogeneous medium which
are implied in equations 100-103. First, it can be noted that these boundary relations are
satisfied for each order n separately (this is both necessary and sufficient because of the orthog-
onality of the Legendre functions). Then, using the definitions of (15), (100-103) can be written

in the simpler form

interior exterior

Tjn (rz) =Tjn (rz) (104)

The fields in both the sheath and homogeneous plasma regions can be expressed in terms
of "known'" solutions and arbitrary constants. In order to emphasize the two regions, the in-

terior (sheath) fields will be written in terms of the independent variable, y = {n kor/korl,

2
while the exterior fields will be written in terms of kr =%’ Vl - (wp/w) r and

kr= @ 1- (w /w)2 r, which at the sheath edge will be termed z, and z,,.
bV p 1 2
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In this approach, it is known that the sheath fields at any position, y, can be written in

terms of independent solutions, i.e.

Tln(y) - Alnt(lln)(Y) * AZnt(lzn)(Y) " A3nt(1?;1)(Y) * A4nt§31)(y)
Top®) = At ) + g 10)0) + Ay KD + Ay 1)
(105)
T3n(y) - Alntgln)(y) * AZnt(32n)(y) * A3 1(3 )(y) tA t§34)(y)
1, 0 =4 106+ 4, 1P 4, D5 s, (D
or, more concisely, as
ro-Sa Wy -
i -ZAkntjn ) i=1,2,34 (106)

(k)

The functions tjn (y) can be any set of four independent solutions, but for clarity lower case

"t" is used to denote "preliminary' values obtained when only one of the four independent vari-
ables has a value of unity at the radiator and the others have the value zero. For example,

), , . . ; - - - =
t.’(y) is the variable Tln(Y) obtained when T2n(y1) =1.0 and Tln(yl) = T3n(y1) = T4n(y1) =0

1n
In the external homogeneous region, the solution is specified as

T, () = A h(l)(kr)+A h(z)( kr) (107)

5n Tn

T, (1) = Aﬁnhil)(kpr) ¥ A8nhl(12)(kpr) (108)

The eight (for each n) arbitrary constants Aln’ Ce A8n must be obtained by satisfying

eight boundary conditions. In addition to the four relations given by (100-103), two relations
are specified at the radiator (discussed in section 4.3) and two more are obtained from the

radiation conditions. These last two are satisfied by setting A7r1 = A8r1 = 0 as discussed in

section 4.1. The four boundary relations of equation 104 which involve the six constants

A ., A can thus be written

in’ ° 6n

tgln)(yz)Alrl + t(lzn)(YZ)Azn + t(I?I’l)(y2)A3n + tﬁ)(yZ)A% h (z)A; =0 (109)

tgl) (o), * tgzn)(yz)Az g(yz)As ¥ té?(yz)Aam - h (29)Ag =0
tg))(yz)Al * tgzn) (y2)A2n * tg?;l) (YZ)A3r1 * t;‘;) (YZ)A4n

(equation continued)
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1 d 1 )
'e“rﬁl[(ﬁhn(zl)]Asn < h (2g)Ag, =0

(1 () (3) 4)
t4r1 (yz)Am * t4n (y2)A2n * t4n (y2)A3n * t4n (YZ)A
w2
1 p 1 d _
+ e—r-n(n + l)yhn(zl)Asn € 2 de ( )AG =0

As stated earlier, it is advantageous to eliminate the arbitrary constants of the homogeneous
region to obtain two relations involving only the four arbitrary constants of the sheath region.
By solving the first two of the set in equation 109 for A, and A, respectively and inserting

5n 6n
them into the last two equations of (109), one obtains

gy YA qﬁzn)(yz)Azn * q(li)(YZ)A3n * qgi)(yz)‘%n =0
(110)
qgl)(yz)‘% (2)(y2)A2n * qg?(yz)A:an qgi)(yz)A -
where
z ih (z,)
a™iry) = iy + 5 + (1- 25 ey, - | Lo By ) o)
n
and (111)
d
%y @, 'n'%)
agnry) = ntn + 0wy M) + (1- D ? e, - — ™ y,)
By comparison with equations 22 and 23 and using the fact that the d-c electric field is
zero at the sheath edge, it can be seen that these can be put into the form
0™y, =[] - 7y ™5, (112
where
d
z—nh (z)
Hy(a) =~ (113)
n

1t is thus seen that, after application of the radiation conditions and elimination of the

arbitrary constants of the exterior homogeneous region, two simple relations can be obtained
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involving only the constants of the sheath region

4 (m)
qun (y)a =0 j=1,2 (114)
m=1

with q],(rrln)(yz) defined by (112).

4.3. RADIATOR CONDITIONS

In the next section arguments will be presented to justify the approximate radiator

condition
\'A T Af
Ee(rl)‘rlAe’ |9'§ =3
(115)
_ Talg_ T|z40
=0 320323

Chu and Stratton [3] gave a derivation of this condition that ignored the problem of applying a
generator to the gap. The Schelkunoff derivation [2], which assumes a biconical transmission
line feeding the gap, is modified in the next chapter to include the effects of the inhomogeneous,
compressible plasma. For the purposes of this section it is only necessary to note that because

(115) is a function only of angular position 6, E (rl) can be expressed as a series containing the

6
associated Legendre functions

inOEG(rl) =ZT3n(r1)Prll(cos 6)

(116)
= ZCnPrll(cos 6)

The Cn's will be defined in section 5. Because certain of the results resemble Schelkunoff's

when Crl is taken as unity, the boundary condition that will be employed is

20

3p () = Agp =1

The superscript (0) is used to signify these normalized solutions. The actual sheath fields are

then simply modified by the Cn’s, ie.
- 70
Tjn(r) = CnTjn (r)

At this point in the solution of the original set of equations, seven boundary conditions have

been proposed and only one more need be found to completely specify the fields in both regions.
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These seven conditions consist of two at a large radius (radiation conditions), four at the outer
sheath edge (sec. 4.2),andthe above condition on the tangential electric field. Unfortunately,
there is no unequivocal, proven boundary condition that can be employed to complete the set of
eight conditions. This is so largely because of the assumptions that had to be made in order to
make the problem tractable. Therefore it is necessary to study the results obtained with

several conditions. The ones used in the remainder of this study are

Vr(rl) =0 %))
or
p(ry) =0 (118)
or
Ny =v AE P
n-v yanE +yb<-e> (119)

where the geometry and nomenclature is that shown in figure 1. The reader should be warned
that condition in (118) is one that does not seem to have been employed in any previous analysis.

The condition in (119) is Cohen's [14] bilinear admittance relation; it is discussed below.

In past radiation analyses only equation 117 has been used; it is known as the elastic reflec-
tion condition and guarantees that there shall be no perturbed motion of particles at the radiator.
It will be termed the "hard" boundary condition in accordance with terminology in acoustics.

It usually is used without justification and without derivation. One justification that has been
offered is that this boundary condition prevents separation of the medium from the boundary
[42], although the ideas concerning a surface charge given in appendix V also satisfy this crite-
rion. It is a boundary condition that cannot be imposed for a cold plasma, since all fields would

then be zero if condition (115) were also employed (the problem would be overspecified).

Equation 118 likewise cannot be rigorously derived, but it also has some merits; it will be
termed the "soft" boundary condition. If used with the homogeneous plasma, only the electro-
acoustic fields are zero so that it is consistent with the cold plasma model. It can be simply
justified heuristically by observing that the electroacoustic wave effects (the perturbed charge

density) should disappear as the d-c electron density which supports these EA waves disappears.

In the following numerical studies, the results obtained with the use of condition in (117)
will be compared with those derived from the condition in (118). It will be shown that when the
d-c density at the radiator is small the difference in results is not marked. The condition in

(118) is discussed further in appendix VI.

Equation 119 canbe studied in accordance withthe suggestion of Cohen [14] that the velocity at

a metal surface might be expressed as a '"bilinear admittance' relation. In the present nomen-
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clature, this becomes an expression relating T n to T n and T n through normalized admittance

4 1 2
parameters YA and YB which are defined further below:
T4n = YATln + YBTZn (120)

It is an incomplete specification since there is no known basis for choosing the parameters YA

and YB. However, the following brief treatment gives an indication of their form. If equa-

tions 22 and 23 are solved for T, and T4n’ respectively, which are then inserted into (25), an

3n
Ty, Ty, Ty,
equation is obtained relating T to only Tln’ TR Tzn(y), and 7}}—:
2/ 2
dT Lo jw dT dT L-F 2
4n p In 1 2n 2n X 121)
ay 2 dy 2 dy =3 Ton (
1-(w /w) 1-(w /w) 1-(w /w)” VvV
p p p
or
aT Lo? /wz - L2 2
—dn d| " p T, |+ 3 2n | _ |4 p T
dy dy 1- (0 /w)2 In| dy 1- ( /w)z dy 1-( /w)Z in
p b b
+ b F2 _-ﬁ.{_ i 1 T
1- (C‘)p/w)2 vl <1 - (wp/w)2 2n
(122)
Performing an integration of this equation across the radiator boundary gives
9 /9 +A/2
pr/" 1
T, +———rT, +——m—=T = lim
4n 1- ( /w)2 1n 1- (0 /w)Z 2n A=0
(123)
2 /2
- 2
d pr/w . L F2 X, a/ 1 o s
dy T 2°d 2n
Indy\; _ (wp/w)z 1- (wp/w)z v W1 /)
Dropping the right hand side (for the moment) and assuming all interior fields are Zero,
gives
sz/wz 1
T, =-—FB 7 . =Y, T, +Y.T (124)

—_—75T
e 1 e )
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It can be noted here that if T N is zero, the result

2
-sz /wz
- p T

T =
1 - (wp/w)2

i (125)

1n’

is in accord with usual EM Theory for a homogeneous plasma. (A 90° phase difference actually

exists but is hidden because of the normalization given by (15).)

Returning to the question of contributions from the right hand side of (123), it must be
remembered that this is an ordinary integration rather than surface or volumetric, so that
limiting values of surface charge or current cannot be obtained. Thus, although the right hand
side is probably not zero, it seems most probable that only a small contribution will be forth-
coming, and then only from terms containing T2n’ which, as previously discussed, should be
small. The use of this bilinear admittance condition is discussed in section 5 and results are

presented in section 6.5.

Cohen states [14] in his formulation that his admittance parameters v, and v, (not the
normalized parameters Y A and YB) should be negative real numbers, but fails to make it clear
whether he is restricting that fact to zero frequency. This statement can be investigated by

combining the last equation of (17) (with u_ = 0},

0
n(n + 1)Tln = T4n - T6n (126)
with equation 124, obtaining
2
“p
Tynlry) = yTen(rl) - Toplry) (127)

By reintroducing the Legendre functions, the definitions from (15) and summing over n,

one obtains
: .2
—1eEr(r1) iv,
mw PeT¥

—_— - A--.
v.(ry) = p(ry) =y, 0°E +yp (128)
It is obvious from (128) that Cohen's Yy and Yy should be imaginary rather than the negative
real numbers for non-zero frequencies which he implied. This correction of Cohen's implica-

tion is emphasized because of its importance in the numerical computations given in section 6.

The Cohen condition above will be retained in section 4.4, because the hard and soft condi-

tions can be obtained directly. By setting both YA and YB equal to zero, the hard condition

(Vr(rl) = 0) can be obtained from (120). Similarly, the soft condition (o(r

with YA=Oand YB = 0.

1) = 0) can be obtained
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In conclusion, this section has discussed the various radiator boundary conditions that can

be employed. These can be summarized (using the relations (105)) as

(0)

T3n

(ry) =4, =1

(129)
7©

4n Y AL +Y_ A

(rl) =A4n= A'ln B 2n

In section 4.4, these are combined with the results of the previous section to obtain the arbitrary

constants explicitly.

4.4. SOLUTIONS FOR ARBITRARY CONSTANTS
Equations 114 and 129 can be combined to solve for the four arbitrary constants of the
sheath region, since the two constants of the exterior region have already been eliminated. The

boundary relations are thus

A3n=1

Yphin * Ypho, ~ A4, =0

(130)
(1 ) (3 4)
q1r1 (yz)Am * qln (YZ)AZn * qln (YZ)A3n * q1r1 (YZ)A4r1 =0

(1) (2) (3) (4) -
9 (y2)A1n * an (y2)A2n " an (y2)A3n * q2n (y2)A4n =0
By using the first two equations to eliminate A3n and A4n from the last two equations, the solu-

tions for A N and A , can be readily obtained:

1 2
P - (151)
In o Cpp # YpCyy * ¥ Cygy
N C13+ YaCy3 (132)
20 Cip T YgCiy P YaCy
where
_ . (k) @ (k)
with q(lr::)(yz) and qY:)(yz) defined by (112). Because of the definition of the preliminary solu-

tions that was given by (105) the fields at the radiator assume the simple form

0. - (134)
Tln(yl) Aln
T(O)( )= A (equati tinued
an Y1 In quation continued)
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(0) -
Ty 0p) = Ag =1

(0) N _
Tyn ) = Ay = YpAp + Yy
0

jn)(Y) could be obtained from these Amn and the previously

t.(m)(

calculated preliminary solutions, in

The general sheath solutions T

y). Thus the quantities Aln’ ce, A4n can be considered
as factors that modify the preliminary solutions. However, it is more practical to reintegrate

the defining equations for those few cases (in section 7) where the radial variation is desired.

4.5. SPECIAL SIMPLE CASES

The values of the radiator fields defined by equations 131-134 are in a simple form for
numerical computations. However, when the plasma is assumed to be homogeneous, general
solutions can be given explicitly as in section 2.4. It is then more straightforward to obtain the

arbitrary constants directly.

The conditions at the boundary between two homogeneous regions are discussed in
appendix VI and are not necessarily the same as those discussed in section 4.2. Because these
conditions are not well defined, this section will concern itself only with the no-sheath model for

which the conditions of section 4.3 can be used:

70

3, Fp) =1
(135)
Oy =v,1 @)+ v,T, @)
Using the radiation condition, the results of section 2.4 take the form
( )iy -
D) =a, b ()
©), \_
Ton (rl) - A6nhn(zl)
r 1 d 1
Ty = Ag e Ez—l(zlhn(zl)] - Asn[———er(rl)hn(zz):, (136)
B wz(r ) z
B nn+1) p1 2
T4n(r1) - A5n € (rl) 2 h (@) A6n[€ (r )dz (ZZ)}
L
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The solutions to (135) using (136) are then

HZn(ZZ) * YB

A =€ 22 2 D
5n r Dnhn(zl)
(137)
n(n + 1)(...)2/(.u2 -Y
A =€ b A
6n r Dnhn(zz)
where
2
wp
Dn =[1+ HZH(ZI)][HZH(ZZ) + YB] - {n(n + 1);5 - YA (138)

The only solutions considered in section 6 are for what have been termed the soft and hard

boundary conditions. In these cases, the results simplify to

(1) Soft Boundary (YA =0, YB = )
€
A _ r
5n " h ()1 +H, ()]
(139)
A6n =0
(2) Hard Boundary (YA =0, YB =0):
€ n(n + l)wz/oz
A, = d £
5n 2 /2
n(n + I)wp w
hn(zl) 1+ H2n(zl) - HZn(ZZ)
(140)
€ nin + l)wz%)z
A r
6n 2

n(n + l)wz/u

h (zg)Hy (29)| 1+ Hy (z,) - i, (z,)

The results for the soft boundary case can also be used directly for the free space case by
letting €r =1, since the soft boundary condition precludes the existence of the EA wave (with
this model). In conclusion, in the following sections, the main interest for this model is on the
value

70

1n (rl) - A5nhn(zl) (141)

with A5n given by (139) or (140).
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METHOD OF COMPUTINSG INPUT ADMITTANCES
5.1. BASIC SPECIFICATION OF TERMINATING ADMITTANCE
The preceding sections have laid the groundwork for the calculation of the terminating ad-
mittance of a spherical dipole in an inhomogeneous compressible plasma. In this section, these
results are combined to show how the terminating admittance can be calculated for those cases
when numerical methods are necessary. The numerical methods themselves are considered in

the following section.

The basic "'modal” method of calculating the terminating admittance of the spherical dipole
was apparently first discussed by Chu and Stratton [3]. The method presented here will begin,
however, with the more complete derivation of Schelkunoff [2]. The Schelkunoff method and
nomenclature will be modified in this section to include the effects of inhomogeneities, the EA
wave, and the numerical methods of calculating the fields. In order to obtain results that are
in agreement with Schelkunoff's results and standard engineering practice it is necessary to
adopt the usual circuit theory time convention of e+jwt. This is accomplished simply by letting
-i be replaced by +j in the results of previous chapters. The e_iu"t convention was employed

because virtually all previous electroacoustic wave analyses have used it.

Schelkunoff's derivation of the terminating admittance of the spherical dipole is based on
limiting values of his results for a biconical antenna of wide angle (or small gap width). His
analysis begins by defining the fields in the interior biconical region in terms of the dominant
TEM mode as well as higher order modes; the magnetic field at all angular positions 6 at the

sphere radius r, can be expressed in terms of these interior fields as

1

Lir) g
= - + —M _(cos 6) (142)
217r1 sin 6@ 211r1 no(n0 +1) de n,

)

H¢(r1’ 9)

and one then replaces IO(rI) by YtV'(rl) where Yt is defined as the terminating admittance seen
by the TEM wave at the output boundary, V'(rl) is the voltage difference across the gap, the
constants ano are to be determined from the boundary conditions, the quantity Mno(cos #) is an

odd Legendre function

M _(cos 8) = 1 [P (cos 8) - P_ (-cos 9)] (143)
n 2! n n
0 0 0
and the summation is over all the zeros, D of Mno(cos ¥), where V¥ is the biconical angle
g - %Q The derivation of this form is not repeated here since it is given by Schelkunoff.
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In the exterior region (and also on the sphere) the fields are similarly expressed as an
infinite series. Using the nomenclature of section 2, which replaces Schelkunoff's series in-

volving Hankel functions, this series is

H¢(r1, 6) =ZT1n(r1)Plll(cos 6) (144)

n

By equating the interior and exterior region representations (142) and (144) and integrating from

6 =¥ to 7 - ¥, all the terms on the right of (142) disappear except the first, so that

2r, /1o /%y

Yt = —-W ( )P (cos ¥) (145)
n
where
\/u /€ Y NG
K= (; Of .de 1200 In cot v (146)
T sin 0 s 2
¥
and

1™V 4
EJ Pn(cos 9)de = Pn(cos Y) (147)
v

Although the higher order mode constants, ano, in (142) will always disappear with this
integration, in general they will affect the calculation of the fields in the external region. This

is because the electric field in the interior biconical region and on the boundary,

. a 2

A R I e e

0 anlK sin 6 27rr1 4 nO(no +1) dg
0

M_ (cos 6) (148)
0

must be matched to that valid in the external region and on the boundary,

(JJGI‘

) ZJ?’“ "y ncos 0) (149)

Following Schelkunoff's equations 73 and 74, multiplication of (149) by sin 8 Pl(cos 8) and

k
integration from 0 to 7 gives, because of orthogonality,

of1 ™V d
T () Z_N;fdx E,(r,, 6) sin 0 P, (cos 6)dd (150)

+Hwe

45



where N, is defined as

k
T 2 +1 2
T _ 3 1 2k(k + 1)
N, _fo [Pk(cos e)J sin 6 dg = f-1 [Pk(x)J dx = 25 (151)
Inserting (148) into (150) gives
-jwe #O/EOV'(PI) )
Talry) = XN P, (cos ¥) +Z a Z v =C (152)
1 0 070
o

where a definition similar to Schelkunoff's equation 74 defines the quantities Vkn, a8 functions

of k, n, and ¥, and k is an odd integer for which Pk(cos Y) = -Pk(-cos V), since for even degree

Pk(cos Y) = Pk(-cos V). Hereafter summation over the odd integers will be denoted byZ'.

n

Schelkunoff shows in his equations 78-83 [2, pp. 50, 51] that the zeros of M, .(cos ) occur at

21 o
0= ag™ m(m =1, 2, 3, ...). He concludes that the last term in (152) can be ig-
nored for all practical purposes so long as the gap is small. This reasoning involves only the

approximately n

parameters of the interior, biconical region which is assumed to be plasma-free, perhaps
implemented by a thin dielectric whose influence is otherwise ignored. Therefore, Schelkunoff's

analysis also applies in the present problem and need not be repeated here.

It was noted in section 4 that it was convenient to always perform the numerical integra-

tions of equations 22-25 with Tsn(rl) =1.0. The corresponding Tjn(rl) were denoted with a

(0)

superscript zero, i.e. T1n

(rl). Because of the linearity of the defining equations, then

T, )= T )C (153)

ln( 1

Substituting the simplified form of (152) into (153) gives

-jwéyYrg/€QV ()

(0)
Tln(rl) KNn Pn(cos IP)Tln (rl) (154)
so that (145) gives
2 \/ /e
Y, = KZ Z‘—n— [P (cos W)] (155)
where
Y; = -Jw€0 1 (1 )(r ) (156)
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This form is chosen to emphasize the similarity to Schelkunoff's equation 77, where by

definition
1
. H¢’n(r1, ) i Tln(rl)Pn(cos ) . (0)
Y = = = -jwe, r. T '(r,) (157)
n E_(r,, 9 1 1 0’1" 1in+1
g,n 1 ————T, (r,)P (cos 6)
-]w60r1 3n"1""n

This last form is the main justification for introducing the normalized solutions T;g)(rl).
5.2. MODIFICATIONS TO ACHIEVE RAPID CONVERGENCE

Unfortunately, (155) is a slowly convergent series (approximately as 1/n) as will be dis-
cussed in sections 6 and 7. Schelkunoff was able to overcome this problem in the free space

case, by transforming to a different series which converged much more rapidly. This series

is obtained by observing that in the limit of x = 0 or n ~ » (as discussed in appendix I)

lim Hzn(xl) =-(n+1) (158)

Then from (139) and (141), when Er =1,

0, 1 1
lim Tln(rl) = lim I‘TH;X—D - n (159)

n

Putting this into (156) gives

jwe. r
limy =—21 (160)
n n

so that the terminating admittance approaches the admittance of the capacitor formed by the
hemispheres

Yt(w -0)= ijt (161)
where

2¢ v u /€ [P (cos 4’]2
C = 0°170" 0" n (162)
t nKZ - nNrl

Schelkunoff goes on to show how this simpler quantity may be evaluated for various values of
¥ (his equations 85-98, pp. 51-53). A modification of this technique (suggested following his
(98)) is given in appendix IV which improves the accuracy of his result considerably. This shows

that a good approximation is

Ct = Zeorl(-ﬁn Af +2.0) (163)
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By adding and subtracting ]wC from the series given in (155) a difference series is ob-
tained in the free space case that converges approximately as l/n (as shown in section 6)
which is much more rapidly than the original series. Schelkunoff's next step is to note that
further simplification for the difference series is possible as Af approaches zero. This re-

sults, because for small gap angles

_ T_Af) ). T\ _A6 d
Pk(cos Y) = Pk [cos (2 -3 )] z Pk<cos 2) S Pk(cos ¥) (164)
Y=r/2
and
Af
VoS v VEo/So 1T _VEo/% as
K=——-+——{ncotz= In = (165)
b 2 A T 2
1-2%
4
Since
P (cos = )=0, and Pl(cos 9) = -EP (cos 6)
k 2 k dé "k
then
[Pk(cos lp)}z vzeo 1 9
| == [Pk(o)] (166)

0

This simplification allows the variation in admittance due to the gap width to be included only
in the term ijt. Thus, Schelkunoff obtains his equation 101, [2, p. 54] which in the present

nomenclature could be written

[v 0]
Y, = joC, +Z (AB) (167)
where
(AB)n =Y - By (168)
2TWE .1
_ 01| 1 (0)
Y - -J—Nn——[ (0)] i) (169)
2TWE .1 2
01 1
BOn=JT[ (oﬂ L (170)

The term Yn is introduced to emphasize the similarity between the Schelkunoff and Chu-

m
[0
Stratton formulations. Chu and Stratton calculated the Y s; Schelkunoff calculated - ;,
0
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(0)

which is equivalent to JxlTln

(yl) as seen in (156). Hereafter, Yn will be termed a modal

admittance.

The Schelkunoff method is directly applicable in this study only for the soft boundary condi-

tion with the homogeneous plasma model. Because of the boundary condition, p(rl) = 0, the

perturbed electron density is then zero everywhere, and the result is therefore identical to
that obtained for the cold plasma. With this model of the plasma, the only change in the equa-

tion above is that € is replaced by € € =¢€ (1 - wz/w2> in the definition of C, and B, and
0 (0) Or 0 p t On

(139) is used in defining T1n (rl) in the definition of Yn:

) “r

m®) =T7E

(171)
an?1)

For the hard boundary and the homogeneous compressible plasma model, the Schelkunoff

method must be further modified. This is because the definition of T(O)(rl) obtained from (140)

1n
is now
0) ¢
Ty, (Fy) = L 5 (172)
n(n + 1)(wp/w)
1+H, (z,) -
2n'1 Hzn(zz)
Using equation 158, it is found that as n -
1- wz/wz
lim 7O ) = P -1 (173)
In*"1 2 n
n-~o0 n(n + 1)(wp/w)
1- (n + 1) - “——_(‘n__‘_l_)——

exactly as is found in the free space case given by (159). It is shown in the next section that

the rate of convergence of the same difference series as used in the free-space case is again
. 4
approximately as 1/n"” for

w 2
> - _—— -
n>z, kpr2 = \/1 (wp/w) r,

0
For the sheath model, these accurate representations were not possible. However, sur-
prisingly, it was found that with the hard boundary conditions, the rate of convergence was still

approximately 1/n4 when the free space B n were used. With the soft boundary condition, the

rate of convergence was sometimes this 1£rge but was often much less, being only slightly
greater than 1/n. Because no better method seemed available for this soft boundary case, the
final answer was obtained by using the smaller rate of convergence for terms through n = 50
and a rate of convergence of l/n4 for larger values of n. Reduced accuracy is indicated in the
tables with an asterisk, but as is shown in the figures, the general trends of the Yt results are

still readily discernible.
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It should be emphasized that the answers could be made somewhat more accurate by using
a finite gap angle when calculating low order series terms (n < z2) while still employing the
Schelkunoff subtraction techniques for the higher order calculations (n > zz). The reason for
this modification may be seen in figure 3, which gives the ratio
; P (cos ¥) 2

fn cot—zll-/ Pn(cos V)

f(n, ¥) = (174)

(k=]

forn=1,3,..., 31 and for ¥ = 88.5°, 89.0° and 89.5° (A8 = 3°, 2°, 10). This is the ratio of
the terms in the sum defined by (155) and those defined by (169) as a function of n and ¥. It is
seen that, for these low orders and small gap angles, the ratio of the terms diminishes rather
slowly, but will definitely affect the accuracy of the calculations. However, the accuracy of the
final answers is not determined by this ratio alone. Only the difference series (consisting of
small terms in general) should be multiplied by this factor above and for most of the cases
considered, the effect would be barely noticeable in a graphical form. Of course, the error in
this study is greater than for Schelkunoff's free space spherical dipole study since convergence

now starts only for n > 2 which in this study was near n = 15.

1 3 5 7 9 11 13 15 11 19 21 23 25 27 29 31

1.0 =y == ' 3 1 T T
B g Aoy iy ol gl ——F 33—, __1__ T |
- —'\\,_.\\ e - nd "‘s--o—__.___‘ o
. ~—— T Tm e ¥=89.5
- I T————
F -~ . T~
N e =~y =89°
= - S
= C RN
L ~o
L ~
— ~
L ~
-
0.8 — \\\
E Y = 88.5°
F
f(n, ¥)
Y=n=1 3 5 7 9 11 13 15 17 19 21 23 25 217 29 31

89.50 0.9999 0.9997 0.9992 0.9986 0.9977 0.9967 0.9954 0.9939 0.9923 0.9904 0.9883 0.9861 0.9836 0.9810 0.9781 0.9751
89.0° 0.9998 0.9988 0.9970 0.9944 0.9909 0.9867 0.9817 0.9759 0.9693 0.9620 0.9540 0.9452 0.9357 0.9256 0.9147 0.9032
88.50 0.9996 0.9973 0.9932 0.9872 0.9796 0.9702 0.9591 0.9464 0.9320 0.9162 0.8988 0.8801 0.8600 0.8388 0.8164 0.7929

FIGURE 3. EFFECT OF FINITE GAP ANGLE, PLOT OF {(n, ¢) DEFINED BY EQUATION 174
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For those interested in a particular gap angle this computation can be performed quite
readily with the aid of the data in figure 3 (calculated on a computer). However, in order to
present the data in a form that is independent of gap angle, the somewhat less accurate form
given by equations 167-170 will be retained. This simplification can be further justified by
recalling that the sheath profiles have been approximated, that several complicating features
(drift velocity and pressure tensor) have been ignored and that a well justified boundary condi-
tion is simply not available. Thus, this method, which allows direct comparison with both the

Chu and Stratton [3] and Schelkunoff [2] results, is deemed to be sufficiently accurate.

NUMERICA6L RESULTS

6.1. INTRODUCTION

The purpose of this section is to present numerical results for the modal and terminating
admittances of a spherical dipole in an inhomogeneous, compressible plasma. These admit-
tances are obviously a function of the electrical size of the radiator, the unperturbed electron
density and the thermal velocity. In addition, they are a function of three other parameters of
the model; the assumed form for the density (or potential) profile, the sheath thickness, and
the wall potential. Finally, it is necessary to study the effect of several different boundary

conditions.

To study the influence of these parameters on the modal and terminating admittances, each
of the above seven parameters will be varied separately. In order to illustrate fully the method
of solution, one set of these parameters will be considered in detail. Where pertinent, the
homogeneous plasma model will be discussed concurrently. Not only is each homogeneous
medium case calculated much more rapidly and exactly, but the influence of some of the param-

eters are more clearly indicated.

6.2. DETAILS OF NUMERICAL SOLUTION

Many modifications have been made in the numerical techniques since the first results
were obtained. The solution presented below has been chosen because it was the most inten-
sively studied when these techniques were being perfected and it contains parameters suitable
for comparison with the special model discussed in section 2.3. This "typical” case is char-

acterized by

2 2

2 2 Ty )2
wp(r) = wp(rz) - <wp(r2) - o.)p(r1 )(r—l - ;I> (175)

with the parameters given in table III. The homogeneous medium model, which is considered

briefly, is defined by the right hand set of parameters (with 1'2/r1 =1.0). A graphical presen-
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tation of the static electron density and potential profiles in the sheath for these parameters

is given in figure 9a as a curve labeled ""Standard Model, equation 175."

TABLE III. PARAMETERS FOR EXAMPLE SHOWN IN FIGURES 4-8

Ir
—2_ 13784 wz'(rz)/w?‘ - 0.50
r1 p
< . ) vO/c =1/32
n, =-2.3\e Vo1
kor1 = 0.5

2 / 2
wp(rl)w = 0.05

It was found that computational problems arose in obtaining accurate preliminary solutions
(defined by equation 107), maintaining sufficient accuracy in the evaluation of the sheath edge
quantities q§m)(y2) defined by equation 112, and obtaining a convergent summation of the in-
dividual modal contributions. This section will illustrate the solutions to these problems.
Estimates of overall accuracy are best discussed in the context of the special model considered

in the next section, which was investigated using both numerical and analytical techniques.

It was shown in section 4 that the solution to a set of differential equations which must
satisfy complicated boundary conditions at two different values of the independent variable can
be obtained from the proper combination of preliminary solutions. These preliminary solu-
tions could be any complete set of independent solutions, but in the usual set, which is used
here, one dependent variable has an initial value of unity and the remaining dependent variables
have initial values of zero. The nomenclature used for these preliminary results is described
in section 4. Lower case t;.{(y) denotes the variable Tj (y) when the variable Tk(y) has an initial
value of unity and all others are zero. In the present problem with the four differential equa-
tions (22-25), any of the sets of boundary conditions discussed in section 4 can be satisfied
with no more than four (and possibly three) sets of solutions. A portion of these four sets is
shown in figure 4 where only two (n = 1 and n = 21) of the modes needed to satisfy the boundary

conditions are displayed.

The data in figure 4 are presented in the form used to compute the results: equal incre-
ments of the normalized radial distance (y = !Zn% . This form was used since it greatly simpli-
fies the computations by transforming the equations to the standard first order form discussed
in section 2, equation 20. The important thing to note from these figures is that the logarithm
of each dependent variable rapidly becomes proportional to y and that the slope of this pro-

portionality increases with the order, n. This exponential growth is similar to that found
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FIGURE 4. VARIATIONS OF PRELIMINARY SOLUTIONS WITH RADIUS. (Preliminary solutions defined
by equation 107), Sheath, plasma, and sphere parameters are given in table III,
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in the "special" solution (given in sec. 2.3) which will be further discussed in the next section..
It is important to emphasize again that the normalization employed transformed the differential
equations into real (rather than complex) equations, thereby allowing a decided simplification
in the numerical integration of the equations, but also eliminating evidence of wave character.
Obviously, no wave character is seen in these preliminary solutions; one function of the bound-

ary conditions is to introduce the proper wave behavior.

The technique used to obtain these solutions is important since early trials showed that
extreme care was needed in starting the solution. The technique finally employed was to obtain
the first point by using the first four terms in the MacLaurin series expansion of the four

dependent variables around the origin y = vy = 0. That is
T,(69) = T,0) + (E9)TI0) + 1/2(6y)2TJZ'(0) . 1/6(5y)3TJf"(0)

In most of the calculations to be presented, this point was at a distance by = Y /20, although in
some cases it was found necessary to use a smaller 8y such as y2/100. The next four equally
spaced sets of values were calculated using a Runge-Kutta integration subroutine. These
values were used to start a more accurate Milne error correcting subroutine, which was used
in the remainder of the integration. The importance of the first four terms in the MacLaurin
series arises because, for certain of the preliminary solutions, not only is the value of the
dependent variable zero, but the first and second derivatives are also zero. As an example it

can be seen from equations 22-25 that when T4(y1) =1 and Tl(yl) = Tz(yl) = T3(y1) =0, then

4) 2
dt, ' (y) w
1 _ . 4) 4 P4,
2 4 4 2 4
20y o «Po [ W2l
= - + +11-—=5
dyz dy dy w2 dy
wz w2 wz
@, a[7p]|_ P P
g Olggl g/t ) 1) =0
w w w
but
d3t(4) w2 w2
._.1_.._ - F 1 - __p + _d_ _B
dy3 2 wZ dy w2
Hence,
wz w2
4) 50y ~ 153 _bJ, d/’p
t1 (6y) = 6((Sy) F2 1- wz +dy wz
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in this case. Thus, it was found that integration schemes that began with less than the first
three derivatives gave final answers in appreciable error. The composite method of integra-
tion gave excellent accuracy as will be described in the next section.

The true initial conditions can now be obtained by using only the outer sheath edge value

and slope of the variables tgk) (y2) and ték)

(yz). Numerical values for this typical case are
given in table IV for the preliminary solutions. The results are shown only for n £ 21, though
in most cases a few more orders were included. It can be seen that a definite pattern exists
for each quantity with most quantities being positive and increasing with n; for n 2 15 all
quantities are positive. It is important to note from figure 4 that the variation in each variable
through the sheath is an important function of the assumed initial conditions as well as the

(1) (4)

differential equations. For example, for n = 15,t1 (yz) = 54.6, but t1 (yz) = 0.221 in this case.

TABLE IV. TERMINAL VALUES AND SLOPES AS A FUNCTION OF N

Variable n=1 3 5 7 It 13 Bt 17 19 21
Dy, 0.794 1.217 2.17 4.08 778 14.89 28.5 54.6 1043 199.5 381.0
By 88.1 1.050 1401 2.03 3.10 4.93 8.05 13.46 227 38.8 66.9
By, 01844  0.220 0203  0.424 0.651 1.038 1702 2.65 4.84 8.32 14.45
@y, 0.0222  0.025¢ 00319  0.0431  0.0615  0.0917 01408 0221  0.355 0.517 0.950

aDiyy)ay, 0358 2.17 916  26.4 67.0 159.2 363.0 807.0  1755.0 3510 7946.0

a®y,ay, 1483 2.98 6.40  13.31 26.8 52.9 103.0 199.0  383.0  733.0  1401.0

at Dy ey, 0 0.679 1384  2.18 5.62 11.09 217 42.0 81.3 156.6 301.0

dt (;’)(yz)/dyz 0.0608  0.0935 01646  0.300 0.549 1.002 1.823 3.32 6.03 10.98 19.98
iy -0.01740  -0.0597 01111  1.207 5.12 16.53 46.6 1201 2980  703.0  1613.0
@y, A58 -1791 2.0 -2.11 -1.200 2.26 11.88 35.3 88.5 2040 449.0
Py, 0.00282  0.0206  0.0703 01935  0.481 1.122 2.51 545  11.58 24.2 49.8
iy, -01013  -0.103  -0.1040 -0.0935  -0.0532  0.0564  0.315 0.8679  2.06 4.55 9.19

at Dy /ey, -0460  -318 949 -1975  -26.4 .05 204.0 924.0  3133.0  9289.0 25400

at By )y, 441 401 31.8 18.44 1935  -6.12 33.1 2270 846.0  2535.0  6774.0

oDy )ay, 0049 0265  -0619  -0.900  -0.408 2.87 14.19 464 1294 332.0 805.0

at ; (vp)/dy, 0553 0.374 0.0418  -0436  -0.964  -1.202  -0.203 439 18.05 52.9 135.4
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With the results presented in table IV,the quantities qj(k)(yz) were obtained from equa-
tion 112:

(k)

_d (k)
qj (Yz) = a;

1 .
] j

(vy) - HZn(zj)t (vy)

forj=1,2and k=1, 2, 3, 4. These are complex because Hzn(zj) is complex. The calculated
values of H2n(zj) are givig)in appendix I for this typical case. The next step is to obtain the
complex initial values Tjn (yl) which satisfy the specified boundary conditions by using equa-
tions 131-134.

Having found these proper initial conditions, it is not necessary to re-enter the integration
routine but this was usually done for n =1 and n = Nmax as a check on the results. This can
be done separately for the real and imaginary parts because the differential equations are
themselves entirely real with the normalization employed. A sample plot of the quantity T(O) (y)

21
is shown in figure 5 for two assumed conditions: the hard and soft boundaries.
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FIGURE 5. POLAR REPRESENTATION OF Tg)l) (v) VARIATION
THROUGH SHEATH. Sheath, plasma, and sphere parameters are
given in table III,

It is also possible to check the accuracy of the integration techniques by calculating the

quantities
(0) (0)
dT. ’(y,) dT,_'(y,)
1n "2’ /.(0) 2n V2’ /_(0)
_—ayy—z—” T1n 0o and“d_yz‘" Tyn 0g)
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to ensure that the boundary conditions are satisfied. From figure 5

21
dy

dT(O)(yz)

T 0.1225 +10.2979) / (0.01859 + i0.009087)

(v,) = (
. 21Y2

=-1.004 +i15.53

This calculated value is in excellent agreement with the value of H21(z2) given in appendix I.
A corresponding agreement was found in all cases tested, indicating the success of the integra-
tion technique. The phase variation through the sheath was about the same for the variable

7© ©) ) ana 1

4n (y) but was very small for Tln 3n

(y) which remained essentially real, as did

ngl)(y) and Tl(&) (y) for large orders. The total field variations through the sheath are discussed

in section 7.

However, the main interest in this study is in the calculations of the input admittance,
rather than just the field variation through the sheath. The formulas relating input admittance
to the surface fields were developed in section 5, showing that one needs only to modify slightly

the calculated variables T(I?I) (yl) to obtain the modal admittances Yn through equation 169.

All of the calculated variables Tﬁ), and consequently the modal admittances, are strongly in-
fluenced by the assumed boundary conditions. These Yn values for the hard and soft boundary
assumptions are given in table V and then plotted in figure 6b. A discussion of these values

of Yn will be postponed in order to demonstrate more fully the influence of the EA wave. This

demonstration can be accomplished by first giving a brief description of results obtained for

TABLE V. MODAL ADMITTANCES FOR FIVE CASES
Sheath, plasma and sphere parameters are given in table III.

Limiting Homogeneous Plasma Model Sheath Model
Free
Order Space Soft Boundary Hard Boundary Soft Boundary Hard Boundary
n B G B G B G B G B
o On n n n n n n n n
1 6.250 0.1551  3.509 0.5034 3.474 0.2997 4.107 0.2901 4.020
3 1.823 - 0.919 0.1707 0.904 0.0551  1.249 0.0782 1.197
5 1.074 -—- 0.539 0.1577  0.509 0.0458 0.802 0.0841 0.755
7 0.763 - 0.382 0.1628 0.332 0.0392 0.607 0.0921 0.564
9 0.592 ——- 0.296 0.1835 0.208 0.0327  0.494 0.1011 0.459
11 0.484 -—- 0.242 0.2497 0.054 0.0265 0.419 0.1096 0.397
13 0.409 --- 0.204 1.0540 -0.414 0.0231 0.369 0.1341 0.344
15 0.354 - 0.177 0.0235 0.795 0.0026 0.329 0.0636 0.524
17 0.312 - 0.156 2.1(-4) 0.475 3.1(-5) 0.285 2.5(-4) 0.356
19 0.280 - 0.140 1.8(-6) 0.369 3.1(-7) 0.255 1.8(-6) 0.300
21 0.253 - 0.126 1.1(-8) 0.310 2.2(-9) 0.213 1.0(-8) 0.265
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Sheath and Soft Boundary
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parameters are given in table IIL,



a much simpler case. This case assumes that the plasma is everywhere homogeneous and
that the proper boundary condition is one of elastic reflection (the hard boundary). The field
variations for this case were given in section 2.4, the arbitrary constants in section 4.5 and the

value of Tﬁ)(yl) (to find‘Yn using (169))in (172).

Thus it is found that Yn is given explicitly by

N Zﬂwéorl 1 2 1- wi/wz
Y, 7l—x [Pn(o)} 32
n n(n + l)wp/w
R A AN

(176)

The advantage of this homogeneous medium model is that the contributions of the EM and
EA components can be readily separated by first looking at modal impedances <Zn = %—) as
seen in figure 6a. Two separate impedance components are obtained from the two partr; of the
denominator of (176). The interesting feature is that although both jn(z) and nn(z) are oscillating
functions, the real part of Hzn(z) is always negative and the imaginary part is positive or nega-
tive according to the assumed time convention, leading to the equivalent circuits shown in
figure 6a. The line connecting the modal admittance plots are intended to assist in a visualiza-
tion of the results; only the discrete odd-integer values have physical significance. On these
Smith Chart graphs, the proper scales are indicated by the superimposed factors, in this case

10° and 1073 respectively.

In this Smith Chart impedance plot, it is seen that for each mode the EM component is
essentially capacitive at the chosen frequency with the dominant resistive component coming
from the first mode. Each EA component is largely resistive for mode numbers less than the
normalized EA size of the sphere; for higher orders each component is essentially inductive.
The sum of these two impedance components for each mode is also shown in figure 6a, where
it can be seen that the fifteenth mode is inductive and that, surprisingly, for high orders the re-

sults approach free space values. The mathematics of this last result were given in (173).

An inversion of the modal impedances (Yn = 1/Zn) gives the modal admittances as shown
by the large loop in figure 6a. The admittance form is necessary of course to obtain the total
input admittance by summation. Wait [18] has used the same set of equations, boundary condi-
tions, and range of variables, but calculated only the radiation resistance for each of these com-
ponents. His technique is the familiar Poynting vector method which, although somewhat simpler,
cannot give the reactive component as found above. However, a comparison of results gives
excellent agreement for the real part of the admittance in those cases that can be compared.
This brief description of the homogeneous model will be supplemented in section 6.4 with modal

and terminating admittance data as the plasma frequency and thermal velocity are varied.
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The admittance results for the homogeneous medium model can now be compared with re-
sults obtained for the more realistic inhomogeneous sheath model, which is the major interest
of this study. Separation into EM and EA components is not possible but the form of the modal
admittance plots for the sheath model are, nevertheless, surprisingly similar to the results for
the homogeneous medium model, as seen in figure 6a. The main difference between all these
cases is the size of the loop. In the context of the impedance plot of figure 6b, it is readily seen
that the size of the loop is a measure of the magnitude of the EA resistance component. The
soft boundary condition predicts an appreciably smaller loop than the hard boundary condition
for the inhomogeneous medium model, and both loops are in turn smaller than the loop for the
homogeneous medium model. The smaller result obtained for the soft boundary condition is to
be expected because that condition precludes any EA wave excitation at all with the homogeneous
medium model. The large results for the homogeneous medium model are attributed directly to
the hard boundary condition; the smaller results of the inhomogeneous medium models are due
to the decreased electron density at the radiator. Perhaps the most surprising feature is that
such a large influence is seen for the soft boundary condition with the inhomogeneous medium
model. This shows that the EA wave excitation with this model is largely due to the inhomoge-
neous medium and the associated static electric field. In section 6.3, these various parameters

will be examined in more detail.

The final topic in this discussion of a typical solution is that of obtaining a total terminating
susceptance. The problem (discussed in section 5.2) is that with a gap of narrow width it is well
known [2, 3] that the series solution converges only slightly faster than % Rather than restrict
this study to a single finite gap width and thereby obtain a convergent solution with the use of
many terms, use was made of the fact, noted in section 5.2, that the modal admittances approach

free space values for orders greater than kprz.

A convergent solution for the total input susceptance was obtained by subtracting each cal-
culated modal value from the low-frequency free-space value using equation 168. The difference
terms for the typical cases under consideration are shown in figure 7. These difference values
can be obtained directly from table V by subtracting each value of Bn from the listed value of
B. . Also shown are the difference terms for the soft boundary case which were obtained by

On

subtracting Bn from ErB o 28 in the sentences preceding (171). These values were then com-

bined with a free-space t?)tal susceptance of 13 X 10_3 mhos using equation 167. The derivation
of this quantity (and the correction term needed to include the contribution of terms from n =
Nmax to o) is given in appendix IV. The final total admittance values for these four cases are
then shown in the table and Smith Chart plot of figure 8. Also shown is the calculated point for

the spherical dipole in free space.
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From the Smith Chart plot of terminating admittance, two major conclusions can be drawn

that will apply in most of the cases to be discussed in the remainder of this section. First, the
total conductances for the inhomogeneous medium model fall between the extremes obtained
with the homogeneous medium model; the hard boundary condition in each case leads to a larger
conductance than does the soft. Secondly, the susceptances for the two boundary conditions in
the inhomogeneous medium model are surprisingly similar. The susceptances with the homo-
geneous medium model are somewhat dissimilar; the hard boundary condition predicts a larger
susceptance than does the soft boundary condition due of course to the EA wave. The large
susceptance difference between the sheath and homogeneous plasma models shown in figure 8
should not be attributed to the EA wave, since it is largely due to the influence of the sheath on
the EM wave. This explanation of the susceptance difference can be appreciated by noting that
a dipole in a plasma looks electromagnetically smaller than when in free space. The sheath re-
duces this effect; the apparent EM propagation constant, the apparent EM electric size,and

therefore the susceptance are thus caused to increase because of the presence of the sheath.

The EA wave similarly contributes to the susceptance but the influence is much less. Ap-

parently because of the large difference in electrical size (a factor ofc/vo = 32), the modal con-
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tributions due to the EA wave are found to contribute largely to radiated, or real, rather than
stored, or reactive, energy. This is seen in the plots of figure 6. The physical interpretation
is that the EA electron motion is caused to be largely in phase with the density perturbations
and this contributes to real power flow. This is maximized with the homogeneous medium
model and a large resistive component results. This is discussed further in the next two

sections.

As stated at the beginning of this section, the particular case presented here was chosen to
allow a comparison with the model discussed in the next section and not because of its physical
reality. The sheath is somewhat wider and the wall potential somewhat lower than in the cases
considered later. Further comparison between the different boundary conditions and the models

will therefore be considered throughout this section.

Homogeneous and Hard Boundary
Sheath and Hard Boundary

Sheath and Soft Boundary ,
Homogeneous and Soft Boundary

Free Space

....’H'.': ’,
TH HEHH ,, =..l..., [] 'i
i immencd i ganat o

-2

10

Model Gt By

Free Space 0.962 14.486
Homogeneous and Soft Boundary  0.155 6.894
Homogeneous and Hard Boundary 2.506 7.63
Sheath and Soft Boundary 0.525 9.3
Sheath and Hard Boundary 0.955 9.52

FIGURE 8. DIPOLE TERMINATING ADMITTANCE Yt (millimhos).
Sheath, plasma, and sphere parameters are given in table I,
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6.3. COMPARISON OF INHOMOGENEOUS PLASMA MODELS

6.3.1. INFLUENCE OF ASSUMED DENSITY VARIATIONS. Two models of the static sheath
have been employed in the numerical integrations performed in these studies; typical static
electron density and potential profiles for these two sheath models are shown in figure 9. The
parameters for both sets of curves are given in table VI. The model labeled "standard" is de-

fined by equation 175; the model labeled "special" is defined by

2 2
wp(r) » %o
2 7 2
) r
where
2
9 w (r,)
ry =[ - p21 r? (177)
w

The static potential and electric field for both models are obtained from equations 90 and 91
respectively. In the standard model the static electric field as well as the static potential are
found to be zero at the outer sheath edge; in the special model the electric field had to be set
equal to zero by subtracting the outer sheath edge value. This special model choice was dictated
by the desire to obtain an expression for the modal admittances which could be expressed in
closed form; only this choice was found to lead to coupled equations for which such a solution
is possible (as explained in section 2.3), although the d-c electric field had to be ignored.
Numerical calculations being necessary to include the effects of the electric field, the first
calculations were also performed with the special model. However, this form has very limited
usefulness because, in contrast to the actual behavior, the sheath thickness increases as the
plasma frequency increases. Nevertheless this early form was very useful in eliminating
errors in the computer program, obtaining an appreciation of the importance of EM and EA
wave coupling in an inhomogeneous plasma and simplifying the method of computation. The
entire range of these early numerical studies will not be presented since data for the standard
model discussed in the preceding section and in the remainder of this section is of greater

physical interest.

A comparison of modal admittances for the two models with the hard boundary condition is
shown in figure 9b; the data for these curves are given in table VI. The most interesting fea-
ture is the obvious similarity of the results for quite different sheath electron density profiles.
The differences that exist (loop size and location) are better explained in the context of the in-
vestigations to be reported in sections 6.3.2-6.3.4, in which the sheath thickness and wall poten-

tial are varied. The soft boundary condition results display a similar correspondence.
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TABLE VI. PARAMETERS AND ADMITTANCES FOR COMPARISON OF
STANDARD MODEL (EQUATION 175) AND SPECIAL MODEL (EQUATION 177)

(a) Sheath, Plasma and Sphere Parameters

_ B 2 2 2 2
rz/r1 =1,3784, ro/r1 = 0.95, wp(rz)/w = 0.5, wp(rl)/w = 0.05, My = -2.8, vo/c =1/32, kOr1
(b) Admittances
Special Model Standard Model Standard Model
(no electric field)
i Gn Bn Gn Bn Gn Bn
1 0.2418 4.298 0.2901 4.020 0.1903 4,130
3 0.0444 1.296 0.0782 1.197 0.0201 1.223
5 0.0545 0.814 0.0841 0.755 0.0328 0.761
7 0.0632 0.601 0.0921 0.564 0.0448 0.555
9 0.0725 0.481 0.1011 0.459 0.0576 0.435
11 0.0825 0.409 0.1096 0.397 0.0720 0.354
13 0.0903 0.357 0.1341 0.344 0.0977 0.263
15 0.2287 0.5026 0.0636 0.524 0.2089 0.804

An interesting result is obtained when the d-¢ electric field is neglected in the standard
model. This was accomplished in the computer program by simply setting the single term con-
taining the electric field in equation 23 equal to zero. In the inhomogeneous sheath surrounding
a physical dipole a d-c electric field must exist; however, density inhomogeneities can be sup-
ported by gravity or temperature gradients. The relative importance of electric field and
density gradient effects is therefore an interesting question. Modal admittances for the hard
and soft boundary conditions are compared in figure 10 for the standard model (parameters are
given in table III), with and without the d-c electric field. This type of plot has been used be-
cause the curves would be indistinguishable on a Smith Chart. It must be emphasized that the
conductance and susceptance scales differ by a factor of ten in this plot. For low orders, the
d-c electric field is seen to add considerably to the modal conductances. However, for the 15th
mode (with the hard boundary assumption), the d-c electric field apparently "inhibits'" radiation.
Since this mode obviously makes an important contribution to the total conductance, the total
conductance can be either increased or decreased with an electric field. In the present case
there is a decrease in G, from 0.95 x 103 to about 0.75 x 10™> without the electric field. Also
important in this comparison is the fact that the degree of excitation of various modes has been
altered; it might be anticipated therefore that the radiation pattern would be altered more than
the terminating admittance. Similar results have been obtained in other cases that have been
attempted, but the above example should suffice to demonstrate the necessity of including the
electric field. Since the homogeneous media analyses cannot include the influence of an electric
field, neither the radiation patterns nor the input admittance obtained with that model should be

expected to be in agreement with the inhomogeneous medium results.
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FIGURE 10, EFFECT OF STATIC ELECTRIC FIELD ON Yn. Sheath, plasma, and sphere parameters are
given in table VI, standard model.

It is also of interest to compare "analytical' and "numerical' results in order to obtain an
estimate of the accuracy of the numerical integration technique. One case is compared in
table VII. The analytical results were obtained using the analytical forms of section 2.3 and
the set of six boundary equations given in sections 4.2 and 4.3. The details of this will not be
given since the method is fairly standard. The numerical results were obtained for the same
simple analytical model, but using the integration techniques described in the previous section.
It should be noted that these data are obtained for the unrealistic case, vo/c = 0.1, and should

not be compared with the data given in section 6.2 or above.

Results for this simple case were also obtained on a desk calculator and integrated on an
analog computer (for only n = 1); these results were in excellent agreement with the data in
table VII. The discrepancy between the techniques is negligible; for smaller values of vO/c,
and larger orders of n, the agreement should not be expected to be as good. This expected de-
crease in accuracy for larger orders is due to the large magnitudes of the "trial" solutions, as
seen in table IV. Nevertheless, it is apparent that the method of integration is correct and only

minor errors should be expected due to the method of solution.
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TABLE VII. COMPARISON OF TECHNIQUES OF SOLUTIONS; SOFT
BOUNDARY CONDITION. VO/C = 0.1; wp(rz)/w = 0.707;

r0=rf(w§rpﬂv=0)

Analytical Results

Numerical Integration Results

G B G B
_n o _n _n
n=1  4.362454(-4)  4.617575(-3) 4.362453(-4)  4.617574(-3)
3 4.470334(-5)  1.455706(-3) 4.470329(-5)  1.455706(-3)
5  3.905162(-6)  9.238822(-4) 3.905152(-6)  9.238826(-4)
7 2.714829(-8)  6.765825(-4) 2.714823(-8)  6.765826(-4)

In conclusion, it has been found that the exact nature of the d-c¢ sheath electron density and
potential profiles is of secondary importance in determining the modal admittances. The dif-
ferences that do exist in the results are believed to be caused by the magnitude of the d-c

electric field. This effect is the subject of the next several sections.

6.3.2. EFFECTS OF VARYING THE ASSUMED SHEATH THICKNESS WITH A CONSTANT
WALL POTENTIAL. This section discusses the consequences of incorrectly specifying the
sheath thickness. This is not a study of the effects of physically varying the wall potential and
thereby changing the sheath size; discussion of that phenomenon is contained in section 6.3.4.
To study the effect of varying the sheath thickness, the case defined in table VIII will be con-
sidered. The case discussed in sections 6.2 and 6.3.1 differed from this one in having a smaller

wall potential and therefore a higher electron density at the radiator.

TABLE VIII. PARAMETERS FOR FIGURES 11 AND 12

2
r w (rz)
——varied as below P = 0.50
r 2
1 w
W 0 1
nw— -3.5\e = 0.03 —E—-——s-z—
wihl)
wz = 0.015 kOr1 = 0.50

r,ry 1.147 ,(1.295 , [ 1.589\, 1.884>
(Ar/)\]): 29 /J,\s1 /,\11.5 /,\11.3
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A plot of the electron density and potential variations for this case is given in figure 11a.
The plots of modal admittance data obtained using both the hard and soft boundary conditions
for these four sheath thicknesses are shown in figure 12a and b. It is seen that the assumed
sheath thickness is an important parameter for both of the assumed boundary conditions, the
size of the loop increases as the sheath becomes narrower. In addition, the modal conductances
increase with decreasing sheath thickness for both boundary conditions so that the total terminat-
ing admittances are strongly affected as seen in figure 11b. It is important to note that the
homogeneous medium result with the hard boundary (data given in fig. 8) appears as a logical
limiting value for the sheath cases as the sheath width is decreased. Similar results were
observed in a preliminary investigation with only low orders of n for a higher wall potential

and larger thermal velocity.

The conclusion to be drawn from these plots is that EA wave excitation is strongly influ-
enced by the degree (thickness) of the inhomogeneity. It must again be emphasized that
figures 11 and 12 represent an artificial situation in which the sheath thickness varies but wall

potential does not.

6.3.3. EFFECT OF VARYING THE WALL POTENTIAL WITH CONSTANT SHEATH
THICKNESS. In this section, results are presented for the variation in terminating admittance
as the normalized wall potential takes on the values -2.3, -3.0, -3.5, and -4.6, which is a suf-
ficient change to vary the density at the radiator from 0.1 to 0.01 of its value in the homoge-
neous region. The other parameters are given in table IX and are the same as in section
6.3.2. Again it must be emphasized that the sheath thickness is being kept constant (at Ar/r1 =
0.2946) here. Thus, this investigation cannot be interpreted as covering the variation that

would exist with changes in the dipole d-c potential, which is the subject of section 6.3.4.

A plot of the electron density and potential profiles that have been considered is shown in
figure 13a. The dominant feature of the d-c potential and electron density profiles seen in

figure 13a is that they are only slightly different. The modal admittance plots shown in fig-
ure 14a and b are also virtually the same with one exception. As can be seen in figure 14b, the

large potential case (77W = -4.6) with the soft boundary condition does have a markedly different
behavior from the other cases. This is interpreted as meaning that there is an electric field

above which the electroacoustic wave is more strongly excited when the soft boundary condition
is assumed. It is probable that the strong influence seen here would be partially counteracted,

in practice, by a change in sheath thickness; this is the subject of section 6.3.4.

For the hard boundary condition (fig. 14a),the points lie between those plotted and are
therefore essentially on the curve which is drawn; this curve is specifically for the 77W =-3.5
case. The total terminating admittance variation with wall potential is shown in figure 13b
where it is seen that relatively minor variations are predicted (noting again that the sheath

thickness is assumed constant.)
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(b) Soft boundary

and sphere parameters are given in table VIII,

TABLE IX. PARAMETERS FOR FIGURES 13 AND 14

r

_2_
Ty

1.295(Ar = 5.7 AD)

(rz)/u)2 = 0.50

2
p

w

-3.0, -3.5, -4.6

T)W = '2-3,

2
p

0.025, 0.015, 0.005

2

0.05

(r,)/w” =

W

\ )
Ko

NI vl i
N

% p).ooo.tiﬁh
N

’

(a) Hard boundary
FIGURE 12. Y, FOR VARIOUS SHEATH THICKNESSES (CONSTANT WALL POTENTIAL). Sheath, plasma,
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(a) Hard boundary (b) Soft boundary

FIGURE 14, Y, FOR VARIOUS WALL POTENTIALS (WITH CONSTANT SHEATH THICKNESS), Sheath,
plasma, and sphere parameters are given in table IX,

6.3.4. EFFECT OF VARYING BOTH WALL POTENTIAL AND SHEATH THICKNESS. This
section contains results obtained by varying both the wall potential and sheath thickness; in the
preceding two sections each of these parameters was varied while the other was held constant.
In order to illustrate a more realistic case, the thermal velocity was dropped by a factor of 10
from its previous value (from 0.03125¢ to 0.003125¢). I is then necessary to drop the electro-
magnetic size of the sphere (from kor1 = 0.5 to 0.05) in order to keep the maximum order which
needs to be calculated to a realistically small number. The results to be presented were ob-
tained for a normalized plasma frequency of v0.833. This value was chosen to illustrate the
point to be made here; the main influence of increasing the wall potential is to widen the sheath

and thereby decrease the efficacy of the plasma in reducing the apparent size of the radiator.

These other parameters are given in table X.

The range of assumed density and potential profiles that was considered is shown in
figure 15; the values of sheath thickness, although smaller than the theoretical values, conform
to the variations discussed in section 3. Because the chosen variation in sheath thickness was

only approximate, the results can only be considered as qualitative. Nevertheless, the termi-
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nating admittance results shown in figure 15b show several dominant and interesting features
(that could be deduced from the separate results in sections 6.3.2 and 6.3.3). First, the suscep-
tance markedly increases as the wall potential increases, much the same as was found for a
constant wall potential when increasing the sheath thickness. Secondly, the results for the two
assumed boundary conditions approach each other, which is similar to the results obtained for
a constant sheath thickness when varying the wall potential, but not for the case of constant

wall potential when varying the sheath thickness. Finally, there was a decidedly uniform be-
havior in the results for the hard boundary condition and a scattering of points for the soft

boundary condition. This behavior was also noted in the modal plots which are not presented
here. This is due to the somewhat arbitrary combinations of sheath thickness and wall poten-
tial that were chosen. It thus appears that the electric field strongly influences the generation
of the EA waves. The hard boundary condition guarantees the existence of the EA wave and the
terminating admittance is modified mainly by the increase in sheath size. However, the soft
boundary condition leads to results that are more critically dependent on the details of the

model and consistent results are obtained only in a general sense.

In conclusion, it is seen that in an experimental test of the influence of the EA wave, the
effect of increasing the radiator potential would be mainly observed as an increasing input
susceptance. Simultaneously, a decreasing conductance would be a good proof for the essential
correctness of the hard boundary condition. The converse could not necessarily be interpreted
as a verification of the correctness of the soft boundary condition; the radiation conductance in

a cold plasma increases as the sheath size increases.

TABLE X. PARAMETERS FOR FIGURE 15

2 2 _ _
wp(rz)/w = 0.833, vo/c = 1/320, kor1 =0.05

. =-2.0,-3.5 -5.0, -7.0, -10.0
w

ry/r, = 1.05, 1,08, 1.11,1.15, 1.20

wf)(rl)/wz - 8.33(-2), 2.5(-2), 5.7(-3), 7.5(-4), 3.8(-5)
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6.4. EFFECT OF VARYING THE HOMOGENEOUS MEDIUM PARAMETERS

6.4.1. EFFECT OF VARYING ELECTRON DENSITY. In the typical solution of section 6.2,
modal impedance results were discussed in the context of the homogeneous medium so that the
separation into EA and EM components could be more readily displayed. Similarly, in the
present section, the homogeneous medium result is discussed first because it gives an upper
limit to the conductance values as well as an indication of the region of "interesting” plasma
frequencies. Calculated modal and terminating admittances for this homogeneous medium case
are presented in figure 16 as functions of plasma frequency; vO/c = 0.03125 and kor1 =0.5.

The data for this figure are given in table XI. The loop in the terminating admittance plot is a
direct result of the individual loops in the modal admittance plots. As the plasma frequency is

increased, the dominant point (the thirteenth) moves counterclockwise on the modal admittance

loop. A maximum conductance is thus exhibited for wp/w= 0.77(00%?) = 1.69>.

X5
0%
e

0!
TR RS o
LRRR <>
% :""o’ 000

FIGURE 16. Y AND Y, FOR VARIOUS PLASMA FREQUENCIES (HOMOGENEOUS
MEDIUM). Parameters: vo/c = 0.03125, kgry = 0,5, Y; data given in table XI.

Returning to the inhomogeneous medium model, the modal plots for a range of different
plasma frequencies and the two assumed boundary conditions are displayed in figure 17a and b.
The parameters for these cases are given in table XII. The density and potential profiles
associated with these cases, and the terminating admittances, are shown in figure 18a and b.

The general similarity between the loops in the admittance results for the inhomogeneous and
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TABLE XI. Yt FOR VARIOUS PLASMA FREQUENCIES
(HOMOGENEOUS MODEL); Parameters: vg/c = 0.03125,

kOr1 = 0.5,Y¢ data is plotted in figure 16b.
2,2
w /wp Gt Bt
1.001 0.0251 -2.5181
1.002 0.0359 -2.3995
1.005 0.0598 -2.1398
1.01 0.0927 -1.7639
1.02 0.1477 -1,3043
1.05 0.2793 -0.5861
1.1 0.4574 -0.0969
1.2 0.7628 0.3110
1.3 1.0350 0.5292
1.4 1.2663 0.6043
1.5 1.6736 0.9257
1.6 3.8928 1.0859
1.8 3.9469 0.6299
2.0 2.5060 0.7633
2.3 2.0670 0.8926
3.0 1.9004 1.0467
4.0 1.7330 1.1420
5.0 1.5650 1.2312
10.0 1.2419 1.3167
20.0 1.0980 1.3860
50.0 1.0150 1.4234

homogeneous medium models is readily apparent. There is an increase in "modal" looping for
the soft boundary results at the larger plasma frequencies resulting in a greater similarity be-
tween the hard and soft boundary conditions. This is also evident in the terminating admittance
results shown in figure 18b. It is important to note again that the inhomogeneous medium leads
to a smaller electroacoustic wave influence than does the homogeneous medium model. The
existence of a terminating admittance loop is obviously important for diagnostics (both of elec-
tron density and temperature); further comment on this is deferred to the discussion of the
effect of thermal velocity in section 6.4.2. However, the loop in the terminating admittance
plot is again a consequence of the loop in the modal admittance plots. Physically, this means
that a resonance occurs in which the electroacoustic wave "fits” the sphere optimally and

maximum radiative transfer is able to take place. This is discussed further in section 6.4.2.

6.4.2, EFFECT OF VARYING THERMAL VELOCITY. Following the procedure used in
section 6.4.1, the homogeneous medium case will be discussed first. This is especially im-
portant because of the complexity of the variation of each modal admittance value as the thermal

velocity is changed. A different presentation of the modal admittance variation is given in
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(a) Hard Boundary (b) Soft Boundary

FIGURE 17, Yn FOR VARIOUS VALUES OF w_/w. Sheath, plasma, and sphere parameters are given in
table XII.

TABLE XII. PARAMETERS FOR FIGURES 17 and 18

) 2 ., 2 2\ 2 )
U -3.5, o.)p(rl)/w = 0.015 wp(rz)/w ,k.r. =0.50

0'1
2, 2
w /wi(r,)=1214,16,1.8,2.0
p 2
w,(rg)/w = 0.912, 0.844, 0.790, 0.745, 0.707

ro/r, = 1.228, 1.247, 1.264, 1.280, 1.295

figure 19a; in this plot (for wp/w =0.707 and l«:or1 = 0.5), each mode is shown on its own circu-
lar arc in the region where the mode has its maximum conductance value. With this modal
admittance plot, it is apparent that the terminating admittance should be a very rapidly varying
function of the thermal velocity; this terminating admittance variation is shown in figure 19b
with the data given in table XIII. An alternative description of this rapid variation is given in
figure 20 where the terminating conductance is plotted as a function of the thermal velocity.

This rapidly varying plot (and Yt in fig. 19b) was obtained from figure 19a by estimating the
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FIGURE 19. Yn AND Yt FOR VARIOUS THERMAL VELOCITIES (HOMOGENEOUS MODEL).
Parameters: wp/w = 0,707, kyry = 0.5, Y; data given in table XIIL

TABLE XIII. Yt DATA FOR VARIOUS THERMAL
VELOCITIES (HOMOGENEOUS MODEL)
Parameters: wyp/w = 0.707, kgry = 0.707. This
data is plotted in figure 19b.

VO/C G, B,
0.008 1.276 5.18
0.009 1.249 6.25
0.011 1.484 6.03
0.012 1.498 8.18
0.013 1.469 6.88
0.014 1.650 6.54
0.015 1.663 6.75
0.016 1.575 7.36
0.017 1.789 8.50
0.018 3.546 6.14
0.019 1.694 7.42
0.020 4.100 8.91
0.0225 2.262 9.01
0.025 3.123 9.23
0.0275 2.961 7.30
0.03 1.948 8.22
0.03125 2.506 7.83
0.0325 2.026 8.47
0.05 2,406 9.55

0.075 2,141 9.17
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FIGURE 20. TERMINATING CONDUCTANCE FOR VARIOUS THERMAL VEL-
OCITIES (HOMOGENEOUS MODEL). Parameters: wp/w = 0,707, korl = 0.5,
Gy data given in table XIIL

thermal velocity at which a particular modal admittance would make its maximum contribution.
By using an estimated maximum contribution, this approximate curve could be deduced from
the limited amount of data available. The data for the modal admittances show which mode is
contributing most heavily to the terminating admittance. As an example, it is found (see

fig. 19a) that when VO/C = 0.01 it is the 41st mode which is contributing while the 39th and 43rd
have conductances less than 1/10 as large. This resonance does not occur when the angular
periodicity of the fields corresponds to the electroacoustic wavelength. For VO/c = 0.01, with

the parameters given in figure 19, the circumference in plasma wavelengths is

kpa =+v1-1/20.5-100 = 35.35

For the order n = 35, it is found that the electroacoustic resistance (not conductance) is a max-
imum. Because of the EM modal capacitance, however, the total conductance maximizes when
the EM and EA reactive contributions cancel; in this case for n = 41. Because only odd integers
are involved in the summation, the conductance curve takes on this rapidly varying shape as

first one, and then another of the modes, assumes importance.
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Because of the large amount of time required to calculate the inhomogeneous medium re-
sults, it is not practical to investigate the large number of cases shown for the homogeneous
medium. As an alternative, table XIV and figure 21 give Yn values for three inhomogeneous
medium cases, that were calculated for thermal velocities of VO/e =0.030, 0.03125, and 0.0325
and the other parameters given in table XIV. Points on the modal loops are rotated counter-
clockwise on the Smith Chart as for the homogeneous medium cases (and the loop becomes
somewhat larger) as the thermal velocity decreases. The plot of the terminating admittances
would show, for both assumed boundary conditions, a small portion of a loop. From figures 19-
21 it is apparent that an experimental study of the location and behavior of these admittance

loops must include an accurate knowledge of the electron temperature.

TABLE XIV. MODAL ADMITTANCES FOR VARIOUS THERMAL VELOCITIES,
INHOMOGENEOUS MEDIUM

2 2
Parameters: wp(rz)/w = 0.50 vO/c = 0.03, 0.03125, 0.0325
77W = -3.5, kor1 = 0.50 rz/r1 =1,283, 1.295, 1.306
Soft Boundary
VO/C =0.03 vo/c = 0.03125 vo/c = 0.0325
n G B

n n Gn Bn G'n Bn
1 0.3892 3.988 0.3985 4,066 0.4079 4,023
3 0.0875 1.212 0.0904 1.222 0.0933 1.231
5 0.0666 0.784 0.0684 0.791 0.0700 0.798
7 0.0538 0.597 0.0548 0.603 0.0556 0.608
9 0.0441 0.489 0.0447 0.493 0.0452 0.497
11 0.0381 0.416 0.0392 0.420 0.0406 0.424
13 0.0404 0.370 0.0409 0.381 0.0343 0.394
15 7.4(-3)  0.345 2.6(-3)  0.339 9.2(-4)  0.336
17 1.1(-4) 0.293 3.5(-5) 0.292 1.1(-5) 0.292

Hard Boundary

vo/c = 0.03 Vo= 0.03125 vo/c = 0.0325

n Gn Bn Gn Bn Gn Bn
1 0.4095 3.850 0.4213 3.863 0.4331 3.875
3 0.1232 1.153 0.1289 1.160 0.1346 1.168
5 0.1113 0.738 0.1163 0.744 0.1212 0.750
7 0.1063 0.562 0.1108 0.568 0.1151 0.573
9 0.1018 0.464 0.1057 0.469 0.1096 0.474
11 0.0979 0.396 0.1028 0.399 0.1092 0.402
13 0.1155 0.331 0.1461 0.330 0.2046 0.349
15 0.1507 0.550 0.0296 0.448 7.2(-3) 0.441
17 6.6(-4) 0.361 1.8(-4) 0.350 5.2(-5) 0.342
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FIGURE 21. MODAL ADMITTANCE FOR VARIOUS THERMAL VELOCITIES (INHOMOGENEOUS MEDIUM),
Sheath, plasma, and sphere parameters and Y, data are given in table XIV.,

The conclusion to be reached here is that the thermal velocity is a very important param-
eter. In all of the data reported above, the gap angle would only slightly effect the terminating
conductance. For smaller vy /c, the terminating conductance is affected by the gap angle and

the looping features illustrated above would not occur. This is discussed in section 7.2 and

appendix IV.

6.4.3. INFLUENCE OF RADIATOR SIZE. A good deal of data was obtained with different
radiator sizes, especially for the homogeneous medium model. This homogeneous medium data
need not be presented here, since the results are largely contained in the work of Wait [18] and
are not of a fundamentally new or illuminating nature. As would be expected, the conductances
and susceptances both decrease (as korl) as the radiator is made smaller. For the first mode
alone, the results follow those expected of the EM wave, but for all higher modes, the results

are dominated by the EA contribution. In the location of points on the modal admittance plots,

1- P but rather z, =

however, the dominant parameter is not kor1 or even z1 = kor1 wz, 9

l&
nalvs v

Since variations of z2 with vo/c and wi/wz have been demonstrated in sec-
w

tions 6.4.1 and 6.4.2, there is little need to indicate the type of variation found with korl.
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Similar EM and EA effects were indicated in the inhomogeneous medium results. The data
obtained in section 6.3.4 is a good example of this, where the free space radiator size and
thermal velocity were dropped by a factor of 10 in order to retain accuracy. The only notable
modification in the results was in the reduction of the modal admittance values by a factor of

ten (almost exactly).

6.5. INFLUENCE OF BOUNDARY CONDITIONS

The only variable remaining to be discussed is the boundary condition at the radiator.
Throughout the preceding presentation, only results for the hard and soft conditions have been
shown. When the electrondensity near the radiator is small, it has been shown that these two
conditions predict nearly identical input admittances. However, for larger electron densities
near the wall (lower wall potentials), the soft boundary condition leads to an appreciably smaller

input conductance.
An alternative formulation of the boundary condition suggested by Cohen [14] was discussed

in section 4; that is, at the radiator

T4 = YATl + YBY2

It was shown in section 4 that Y A and Y are real,negative numbers and that a possible choice

B
is
vy = n(n +1)
AT 2
“p
1-—3
w
1
Yg=- 2
“p
-
w

The terminology "bilinear admittance condition' to describe the relationship defined above
is especially appropriate since the modal admittances defined by (169) can be put in the form

(using (131))

2TWE T 2 032 + YBC34

2MWEGTy
Y =+ ——-——[p (0)}
n Ny L Gy + YRl + ¥uCy

This can be written in the well known "bilinear transformation' form
w = (az + b)/(cz +d)

where z takes on the value Y A OF YB (depending on which is being varied) and a, b, c, ddefine
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the transformation in terms of the calculated quantities Cab' In either case, it can be shown

A
mittance or w-domain. For the case where z is purely real, the radius of the circle is given

by [46]

that a variation along the real axis (real Y, or YB) in the z-domain leads to a circle in the ad-

R, = |(ad - be/2Im(ed) |

and the center by

Wq = i(ad - bc)/2Im(cd)

The purpose of this section is to illustrate an example of the type of circular domains that
are obtained as shown in figure 22a for the order n = 1. This data was obtained for arbitrary

values of Y A and YB as well as the "calculated value' of Y A and YB given above. The model

parameters are given in table XV. The center and radius for the case YA = 0.1 were also

calculated, using the above equations, and agreed with values obtained from figure 22a. For

this order the circles for various values of YA are well separated; for larger orders they

were virtually indistinguishable.

G
(millimhos)

0.23

0.225 L . L " L n "
4945 495 4.96 4.97 4.98 4.99 5.00 5.01

B (millimohs)

(a) Detail forn=1 (b) Smith chart representation

FIGURE 22, MODAL ADMITTANCES FOR VARIOUS BOUNDARY CONDITIONS (INHOMOGENEOUS MEDIUM).
Sheath, plasma, and sphere parameters and Y, data are given in table XV,
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TABLE XV. MODAL ADMITTANCES FOR VARIOUS BOUNDARY CONDITIONS,
INHOMOGENEOUS MEDIUM

2 2
Parameters: r =1.,884 =0, =-3.
ara s 2/r1 884, wp(rz)/w 0.5, My 3.5
wz(r )/w2 = 0,015, v./c=0.03125 k.r., =0.,5
p1 ’ 0 ’ 01
Soft Boundary Hard Boundary Calculated Y A (YB =-1.0152)
G
T U W W U W S B %
1 0.26980 4.9946 1.2554 0.27698 4.9544 1.2956 -0.03046 0.26638 4.9550 1.2950
3 0.00867 1,5221 0.3009 0.02113  1.4992 0.3237 -0.18273 0.01445 1.4984 0.3245
5 0.00759  0.9482 0.1260 0.02371  0.9267 0.1475 -0.45683 0.01703 0.9257 0.1485
7 0.00679 0.6937 0.0692 0.02726 0.6732 0.0897 -0.8528 0.02035 0.6719 0.0911
9 0.00596 0.5484 0.0435 0.3191 0.5295 0.0624 -1.3705 0.02459 0.5277 0.0642
11 0.00505 0.4543 0.0294 0.03816  0.4383 0.0454 -2.0101 0.03024 0.4356  0.0481
13 *0.00395 0.3883 0.0206 0.04847  0.3782 0.0308 -2.7715 0.03948 0.3740  0.0350
15 0.00226 0.3394 0.0148 0.06696 0.3563 -0.0021 -3.6547 0.05752 0.3468 0.0075
17 0.00027 0.3004 0.0121 0.00741 0.3502 -0.0378 -4.6597 0.00666 0.3403 -0.0278
19 1.4(-6) 0.2687  0.0107  1.6(-5) 0.2922  -0.0127 -5.7865 1.0(-5)  0.2857 -0.0062
21 9.9(-8) 0.2435 0.0094 4.7(-7) 0.2596 -0.0067 -7.0352 5.9(-7) 0.2544 -0.0016

The radii of the circles for larger orders can be deduced from the Smith Chart plot (for
YA = 0) as shown in figure 22b and given in table XV; their relative size (but not shape) is
distorted in this presentation. The eight circles shown (n £ 15) are of similar size but increase
for values of n greater than fifteen. However, for these large circles, the points for the hard
and soft boundary cases fall very close together and near the free-space values. Thus, for
all practical purposes, the boundary conditions do not seem to be influential upon orders

>>
n kpr 1

It has thus been shown in this section that the assumed boundary condition is an important
factor in determining the modal, and therefore the terminating, admittance values. No un-
equivocal choice of boundary condition has been demonstrated and the only possible conclusion

is that this remains an important area for future work.

6.6. SUMMARY OF TERMINATING ADMITTANCE RESULTS
In the preceding sections, admittance calculations were presented as a function of each of
the parameters of the analysis. From these calculations, the following conclusions can be

drawn about the influence of each parameter:

(1) The particular form of electron density (sec. 6.3.1): a measurable but not dominant

factor.

(2) Sheath thickness (sec. 6.3.2): very important in its influence on susceptance, somewhat

less so for conductance.

(3) Wall potential (sec. 6.3.3 and 6.3.4): when only the wall potential was varied, the differ-

ences were not too important, especially for low potentials. It was even found in section 6.3.1
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that ignoring the electric field altogether (but not the density gradient) led to modal admittances

that were markedly different only for orders near kprl'
were varied together, as would occur in an experiment, the dominant effect was on the input

When the wall potential and sheath size

susceptance which could be attributed to the change in sheath size alone. It is also important
to note that, for large negative wall potentials, the hard and soft boundary assumptions led to

essentially identical terminating admittances.

(4) Electron density in the homogeneous region (sec. 6.4.1): a critical density (or plasma
frequency) exists for which the terminating conductance is a maximum: otherwise the effect
is largely the usual alteration of the electrical size of the sphere. However, depending on the
boundary assumption and other parameters, a loop may be predicted on the Smith Chart plot as
the external (homogeneous) medium electron density is varied. It was also noted, reminiscent
of the multiple resonance phenomenon, that the susceptance goes to zero at a normalized plasma

frequency less than unity.

(5) Thermal velocity (sec. 6.4.2): a very important parameter, having an influence on
both susceptance and conductance. For "high' thermal velocities, rapid looping is found on a
Smith Chart plot as the thermal velocity is varied slightly. With "low" thermal velocities, the
influence of the EA wave is much diminished. The criterion for high and low is that the ter-
minating admittance will not be damped because of the decay of the higher orders due to the

finite width of the gap. That is, the influential orders are for n ~ kpr but these orders may

1,
not be influential for wide gaps as shown in figure 3.

(6) Radiator size (sec. 6.4.2): does not have any appreciable effect on the forms of the re-
sults other than that to be observed for the electromagnetic mode alone and the gap condition
discussed above. The important parameter is the ratio of the size of the radiator in EA wave-

lengths to the size in EM wavelengths, which is to say that the thermal velocity is most important.

(7) Assumed boundary condition (sec. 6.5 and throughout): a very important difference is
generally noted between the results for different assumed radiator conditions (hard and soft).
The results for the two conditions used become more similar for larger wall potentials (or with
the assumption of thinner sheaths). However, the influence of the EA wave is always calculable,
even for the least influential boundary conditions, as long as the electron thermal velocity is

high.

7
SPATIAL VARIATIONS

7.1. INTRODUCTION
The results of the input admittance computations contained in the preceding section an-

swered the basic question posed at the beginning of this study:
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What is the influence of a finite electron temperature on the ter-

minating admittance of a plasma-imbedded spherical dipole ?

The presentation of conclusions based on these results is deferred to the next section. A further
insight into the character of the EA wave and its influence on input admittance can be obtained
from a brief presentation of the angular and radial field variations near the sphere. These field
variations need not be calculated to obtain the input admittance, but are found by a straight-

forward extension of the techniques presented in the last section.

It is shown in appendix V that the influence of EA waves on input admittance is quite apt to
be masked by the influence of collision frequencies, so that the use of some other phenomena is
indicated if excitation of the EA wave is to be unequivocally detected. However, since diagnos-
tics is not the major concern of this study, more attention will be devoted to understanding how

these fields affect the input admittance and only secondarily with the possible detection of the

EA wave.

7.2. ANGULAR VARIATION OF SURFACE FIELDS

The technique for calculating the field magnitudes at the radiator were given in section 4.
The total surface fields (including the angular variation) can thus be obtained from (15); the
variables T5n and T6n can be obtained from (18) or (19). When the plasma is assumed homo-
geneous, the fields can be specified directly, as has been done in section 2.4, with the constants

obtained in section 4.4. In all models, the variable T n (proportional to tangential electric

3
field) is specified as being zero everywhere but at the gap. In general, the variable T4r1 at the

radiator can be specified as
Typlry) = YpTyp(ry) + YpTopley)
Elastic reflection (T4n(r1) = Q) is obtained by using YA = YB = 0; zero perturbed electron

density (T4n(r1) = 0) can be obtained by assuming YA =0, YB = . Thus, each of the variables

T].n(rl) are readily obtainable, and the total surface fields, as a function of angle, are repeated

()

for convenience from (15) as (replacing the suppressed subscript, i.e., T].n(rl) = T]

H¢(r1, 0) = Z:'Tln(rl)Prll (cos ) = Sl(rl’ 9) (178)
n
2
! )
-i—w—p(rl, 0) = Z Tzn(rl)Pn (cos ) = Sz(rl, 6)
n

. B ! 1 _
1CL’(:OrlEG(rl’ 6) = Z T3n(rl)Pn (cos 6) = S3(r1, ) (equation continued)
n
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Pt 1 Z T4n(r1 (cos 8) = S4(r1, 9)

iwe r E (v, 0)= Z T, ()P (cos 6) = Sg(r,, 6)
n

The only complication in performing these computations arises because of the large number of
terms needed to specify the tangential electric field. Fortunately this problem exists only at
the gap; a smaller number of terms suffices to specify the field at other angles. Because
tables of the Legendre functions are available only for n<50 and for angles that are multiples
of 2.5 degrees, the summations given above were performed on the digital computer. The Le-
gendre functions were obtained by using standard recursion formulas (appendix I) with double
precision techniques. Agreement with published tables was excellent. The homogeneous me-
dium computer analysis was modified to obtain the angular variation directly. A smaller num-
ber of terms was used with the inhomogeneous medium model, because of the excessive com-

puter time required for the calculations.

The results for the homogeneous medium model with a hard boundary are shown in fig-
ures 23-26, for kor1 =0.5, w /w =1/V2 and =1/32. In each case, Nmax was taken as ninety-
nine, so that fifty terms were used in equatlons 178. The fields were calculated at five degree
intervals for 8 between zero and eighty degrees and at one degree intervals from eighty-one to
ninety degrees. The equations used to obtain these results are (67) through (72) for the homo-
geneous plasma model. To facilitate comparison with the terminating admittances results
given in section 6, "admittance" units are used in plotting. These admittance units are denoted

with a prime.

The conversion factor is obtained from equation 169 as

wVHOEOrl 27 kor1

27weE . r, =27

01 E 1207
‘0
For kor1 = 0.5, we then have
8! =8./120
] J/
Figure 23 shows the real and imaginary parts of the four, non-zero, surface fields, Sl’
Sz, S_, S6’ for a four degree gap. The first point of interest is that the fields S1 (magnetic
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FIGURE 23. NORMALIZED REAL AND IMAGINARY COMPONENTS OF THE NON-ZERO SURFACE FIELDS
(HOMOGENEOUS MEDIUM, HARD BOUNDARY). Parameters: w%/w2 = 0.5, vp/c = 0,03125, kyry = 0.5,

field) and S5 (tangential velocity) are zero at the poles and maximum at the gap center, where-

as the variables S, (perturbed density) and S, (radial electric field) have opposite character-

2 6 (
istics: zero at the gap center and maximum at the poles. Secondly, there is a marked phase
difference between pole and gap for each variable; S1 and S5 have a phase angle of -45° at the
poles but an angle near -160° at the gap; S2 and S4 have a phase angle of -2259 at the poles but
near -315° (+45°) at the gap. This shift of -90° is especially apparent in the rapid variation of
the real components of 85 and SS near the gap. Thirdly, the rapidly varying fields seem to
have an appreciable magnitude as might be expected with this unrealistic homogeneous medium

model. The variable S, (related to magnetic field) is also, of course, related to the surface

(
1
current (see equation 241). The real part of the variable S1 (or the current) is not strongly

influenced by the varying term near the gap. It is this quantity which is used to obtain the in-
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put susceptance and which was previously noted to be only slightly influenced by the EA wave.

The

result noted for the input conductance which is obtained from this quantity. It is obvious from

imaginary component of S

1 at the gap is, however, strongly affected in agreement with the

these plots of angular variation that the looping on the Smith Chart discussed in section 6.2

results from changes in the "electroacoustic size' of the radiator. Thus, as w_/w or vo/c

change, the radiation properties do not depend only on the EA wave "fitting"’ the sphere exactly.

Rather, the EM capacitance must be cancelled by the EA inductance. Alternatively stated, the

EA modal resistance is largest for n = 11 (kpa =~ 11.3 in this case) but the overall modal con-

ductance is largest for n = 13. The interaction of these angular variations is clearly seen in

this and succeeding figures as a ''beating'' of the two strong harmonics.

sured: amplitude and phase. The magnetic field (Sl) and tangential velocity (S5) are shown to-
gether to emphasize their similarities; the same reason groups the perturbed density (SZ) and

the radial electric field (SG)' In all cases, there is a rapid change in amplitude of the oscilla-

Figure 24 displays the same information in a form in which the quantities might be mea-

tions near the poles, accompanied by a rapid change in phase. A similar amplitude and phase

variation is seen on a long radiating transmission line such as a slotted waveguide.

90

o ¢y
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FIGURE 25, MAGNITUDE OF THE NORMALIZED TANGENTIAL ELECTRIC AND MAGNETIC FIELDS AND
RADIAL VELOCITY FOR GAP ANGLES OF 4° AND 0° (HOMOGENEOUS MEDIUM). Parameters: wg/wfZ
= 0.5, vo/c = 0,0315, kor; = 0.5,

Figure 25 indicates the field variation for angles nearer to the gap by plotting the magni-
tudes of the normalized tangential electric field (S3), the magnetic field (Sl),and the radial
electric field (SG) for assumed gap angles of zero degrees and four degrees. Because the
imaginary components are always rapidly convergent for both gap angles, the differences in
magnitudes reflect differences in the real component, which does not converge rapidly. How-
ever, it can be seen that for angles somewhat removed from the gap, the differences are not
great. Although the series is only slowly convergent when the gap is assumed small, the first
hundred terms offer a good approximation. In fact, it can be shown that a proper number of
terms is on the order of 2/A8. The seriousness of excluding terms in the series for small gap
angles is therefore not great (at least for the purposes of understanding the angular field

variations).

Figure 26 presents the variation of the real and imaginary magnetic field (SI) components
for the sheath model (with both hard and soft boundary) as well as the homogeneous medium

model (hard boundary) discussed above. As mentioned earlier, sufficient accuracy could not
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FIGURE 26. REAL AND IMAGINARY COMPONENTS OF NORMALIZED MAGNETIC FIELD VS. ANGLE 6
(INHOMOGENEOUS MEDIUM). Parameters: Both models: wg(rz)/wZ = 0.5, vo/c = 0,03125, kyry = 0.5,

Sheath model: n_ = 3.5, wg(rl)/wz = 0.015, rir, = 1.884,

readily be retained with the numerical integration procedures to warrant calculating the re-
sults for the large orders used in the homogeneous medium analysis. The surface field results
of the inhomogeneous model were therefore computed using terms only up to Nmax =35, The
case used for this comparison is shown in figure 2 and also in figure 12 as the thickest sheath
model, (wi(rz)/wz =0.5, vO/c =1/32, n, = -3.5, 1-2/r1 = 1.884>. Even though only a small
number of terms were retained, the imaginary values were obtained with a high degree of ac-
curacy because of their rapid convergence. Using the results described above for the homo-
geneous medium model allowed a rather accurate estimate of the proper convergent answer
for the real component, especially for angles not too close to the poles or equator. It can be
seen that the homogeneous medium and sheath models exhibit different magnitudes of EA am-

plitude variations. The phase variation is largely dictated by this imaginary component for
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the inhomogeneous medium models since the real component is dominated by the non-oscillatory
EM component. However, it is seen in figure 26 that near the pole (6 = 0°) the phase variation
is considerably different for the two boundary conditions since the oscillatory, or EA, portion

of the real component of the current, or magnetic field, differs for the two assumed boundary
conditions. This observation might be useful as a technique for an experimental test of the
assumed boundary conditions; several current probes (loops) or a moveable probe could be

used near the poles to measure the angular phase variation if prior experimentation indicated

the presence of even a small EA component.

A further comparison of results for the inhomogeneous medium model is shown in fig-

ure 27, where the absolute values of the fields Sl’ S2, S5,and S, are compared with those for

6
the homogeneous medium model. The major differences for eachof these variables are:

1) S1 - magnetic field. The amplitude of the variations is much reduced for both boundary
conditions with the inhomogeneous medium model. The larger amplitude of the field at 4 = 90°
(near the gap) when the sheath is considered has been previously noted as a larger input sus-
ceptance corresponding to an "electrically larger" sphere. The hard and soft boundary condi-

tions give virtually identical results.

2) S2 - perturbed electron density. For the soft boundary condition, this field is zero. For
the hard boundary condition, the calculated values are also much smaller than for the homoge-
neous medium model; on the graph a scale change of ten was necessary to display both results.
In addition, the amplitude of the variations is somewhat reduced relative to the mean value al-
though for the inhomogeneous medium model the amplitude is found to be relatively larger near

the gap.

(3) 85 - tangential electron velocity. This is the variable for which the most striking differ-
ences between the three cases may be noted. The results for a cold plasma would be similar to
those for the soft condition: zeroeverywhere except at the gap. For the hard boundary condi-
tion, a much smaller velocity is noted for the sheath model (with ripples of smaller amplitude)

than with the homogeneous medium model.

(4) SG - radial electric field. This variable is much the same for all three cases. This
fact indicates that a radial probe (used for detection of radial electric fields) would not be help-
ful in testing the validity of the boundary conditions. However, the large amplitude ripples in
the radial electric field could be readily detected. This might prove most useful as a test of

the presence of an EA wave, since these ripples would not exist in a cold plasma.

S3 (tangential electric field) which should be zero except at the gap was also calculated
with Nmax = 35. It alternated in sign and was generally less than two percent as large as at the

gap (see also fig. 25). S4 (radial electron velocity) is only non-zero for the soft case. It was

93



found to be very small everywhere except near the poles where it had its largest calculated

value of S 4| = 0.63 X 10'3; it is therefore not shown.

In conclusion, it has been found that rapid angular variations of the fields is the dominant

feature of EA wave excitation. Certain of the fields are more strongly affected than others by

the two assumed boundary conditions. It also seems that EA wave excitation might best be tested

with a moveable radial probe.
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FIGURE 27. COMPARISON OF MAGNITUDE OF SURFACE FIELDS (INHOMOGENEOUS). Parameters:
Both models: (;.)12)(1'2)/@02 = 0.5, VO/C = 0,03125, kor1 = 0,5. Sheath model: Ny =
= 0.015, ry/r; = 1.884.
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7.3. CALCULATION OF RADIAL VARIATIONS

Angular variations of the fields at the radiator were presented for a "typical' case in the
preceding section 7.2. In this section for the same case, the radial variations are shown for
6 =00, 450, 90°. These are presented mainly to get an appreciation of the influence of inhomo-
geneities in exciting the EA wave and to compare the two assumed boundary conditions. How-
ever, there are a few features of the results that are to be presented that might also be useful

for diagnostic purposes. The potential and density profiles are shown in figures 2 and 12.

The following results were obtained by numerically integrating the defining equations for
each value of n, using the calculated initial conditions. An earlier example for only the mode
n =1 was shown in figure 5. In the present example, the total field was obtained by multiplying
each of the calculated radial modal values by the appropriate Legendre function; as indicated in
equation 178. As stated earlier, the real and imaginary contributions could be summed separately
because of the normalization employed. The imaginary values could be accurately summed since

they rapidly decrease for values of n greater than Zy = g—korz\ /1 - (wp/w)z. However, because
0

of the small number of orders that could be summed, interpolation was necessary to obtain the
plotted values of the real component, and the results are therefore accurate only to within sev-
eral percent. Fortunately, the higher order modes also decay rapidly as the distance from the
radiator increases, so that the accuracy of points near the outer sheath edge is reasonably good.

Comparisons with figures 26 and 27 may be made by dividing by 120.

The results of these calculations are shown in figures 28 and 29. In each case, the six

numbered points are separated by five equal logarithmic increments through the sheath. The
r
separation of points for this case is % ¢n }_% =0.127. So the six positions are ;r_ =1.0, 1.135,
1 1
1.289, 1.463, 1.660, and 1.884. The 1st and 6th points refer respectively to the radiator and
sheath edge. Both hard and soft assumed boundary conditions are shown in each case. Fig-
ure 28 shows the results at 0° and 90°; figure 29 shows only the variation of 45°. The data at

0° and 90° is abbreviated because the EM (S1 and S,) and EA (82 and S,) variables are respec-

3) 4)
tively zero at these angles for all radii. An examination of the figures reveals these facts:
(1) At both 90° and 45°, the magnetic fields (Sl) for each boundary condition are virtually

indistinguishable and therefore not suitable for diagnostics.

(2) The tangential electric fields (S,) are quite similar at 90° but are different at 45° be-

)
3
cause of the slow rate of increase of the imaginary component near the radiator with the soft
boundary condition. A probe such as a moveable, slender §-directed dipole might be able to

sense such a difference.

(3) The perturbed electron density at 6 = 0° is found to be much larger with the hard bound-

ary condition than with the soft. However, at 45° they are more nearly of equal size, even
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though the soft condition demands that the perturbed density start at zero. This difference could

only be used for diagnostics with a sensor for perturbed density; none seems to exist.

(4) The radial electron velocity at 0° and 45° exhibits much the same behavior as did the
perturbed electron density. Even though the radial velocity vanishes at 0° with the "hard"
boundary condition, it rapidly grows and is in fact larger than that predicted with the soft bound-
ary condition before progressing halfway through the sheath. The variations at 45° display a
greater similarity and would not seem to be distinguishable experimentally even were a velocity

detector available.

In summary, these radial variation plots clearly indicate the excitation of the EA wave and
even some hope for experimentally verifying the boundary conditions. They are presented, how-
ever, mainly to help in understanding the nature of the sheath mode conversion and the small

effect previously found in the input admittance.
m S2
m £0.03
Hard (09)

0.02 4

0.01
5 Soft (00)

5 Soft (90°) 6 /|
BR: -1 0.5 5
5 o 1.0 5 0 R (S) g J1 001 002 003 004 RS,

el
1 %——‘T’_?—m 04 02\ 0z oa k_/‘%
Hard (90°) 3

(A} -0.5 (8)

Hard {09)

0.5

P )

4 3 Hard (90°)
1.6 054 i5 & , RS
DI S T Ty N

° Soft (90°)

Im(s4)

1 2 3
01—><0.2 ’o/ 0.3 0.4
2 6

-0.2

-0.5

(o o3t

1.4 ()

FIGURE 28. RADIAL VARIATIONS OF TOTAL FIELDS AT 0° and 90°(INHOMO-
GENEOUS MEDIUM). Parameters: wg(rz)/wz = 0.5, vo/c = 0.03125,n = -3.5,
korl = 0.5.
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8
DISCUSSION
8.1. REVIEW OF APPROACH

The purpose of this study has been to answer the specific question posed in section 1.1:

What is the influence of boundary conditions, electron density inhomogenieties,and d-c

electric fields on the terminating admittance of a spherical dipole in a warm plasma?

To achieve this result, it was necessary to examine the basic equations and include terms
that are left out in the usual homogeneous medium analyses. It was found that the equations
decoupled into two sets with the assumption that the dipole excitation is symmetric (3/9¢ = 0).
The assumption of zero electron drift velocity (or zero d-c current) made the problem tractable
and a set of four coupled first order, ordinary differential equations was finally obtained. It

was possible to present explicit solutions in two special cases but in order to answer the ques-
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tion above for the general case, numerical integration of the four differential equations was
necessary. Section 3 specified a plasma sheath model which is based on Langmuir probe theory.
A discussion was given in section 4 and in appendixes III and VI of several alternative proposed
boundary conditions at the radiator and the shortcomings of the standard assumption of elastic
electron reflection. A technique was also presented there for obtaining the correct radiator
values of the four variables. By using these proper values as the starting values of the numer-
ical integration, the angular and radial field variations can be determined. However, the main
interest is in the terminating admittance as discussed in section 5. It was necessary to obtain

a difference series because of the poor rate of convergence of the original series (discussed in
appendix IV). Numerical results for the modal and terminating admittances with the numerous

parameters of the problem are covered in section 6.

8.2. CONCLUSIONS

The most interesting effect of the electron thermal motion in the dipole analysis is seen in
a previously unreported type of resonance. This resonance occurs because of the possibility
of cancelling the capacitive electromagnetic energy storage with inductive electron motion
energy storage associated with the electroacoustic wave. Thus as operating frequency, plasma
frequency or thermal velocity are altered, the electroacoustic size of the sphere may become
optimally matched to the electromagnetic size so as to permit maximum power transfer into the

plasma (or maximum terminating conductance).

The condition for maximum terminating conductance is not that there be an integral number
of electroacoustic wavelengths around the sphere. It was found that the angular periodicity of
all the fields at resonance was more rapid than would be obtained for the electroacoustic wave-
length. Alternatively stated, the largest contribution to these fields occurs when the mode num-
ber is somewhat larger than, rather than equal to, the normalized electroacoustic size of the
sphere. A second consequence of the electron thermal motion is that the terminating susceptance
is zero when the operating frequency is greater than the plasma frequency, rather than when they

are equal as with a cold plasma.

The variation of the terminating admittance with all of the parameters of the problem ap-
pears as a loop or multiple loops in a Smith Chart presentation. The magnitude and location of
these loops can be easily established for a model that approximates the plasma as a homoge-
neous compressible medium and that assumes elastic electron reflection at the radiator. Al-
though this highly unrealistic homogeneous medium model has been used in this study to under-
stand the gross aspects of the problem, it should not be used for interpretation or prediction of
measured values. Equally important is the fact that an argument can be made against the as-
sumption that the electrons are elastically reflected at the radiator since the results do not re-

duce to the cold plasma results as the thermal velocity decreases.
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In this study an attempt has been made to avoid these difficulties by considering the effects
of a realistic inhomogeneous sheath on the terminating admittance and discussing several al-
ternative types of radiator boundary conditions (elastic electron reflection, zero perturbed
electron density,and Cohen's bilinear admittance relation). Relatively little is known about ac-
tual sheath profiles, so that the representation that has been chosen (that the static electron
density in the sheath varies as the square of the distance from the outer sheath edge) must still

be considered approximate.

It was found that the resonances cited above were a strong function of the electron thermal
velocity; slight changes were sufficient to cause multiple looping in the Smith Chart presenta-
tion. Changes in operating and plasma frequency or radiator radius also cause (slower) looping.
Any minor errors in the specification of the sheath do not seem to be serious; the most critical
parameter seems to be the assumed sheath thickness rather than the form of the density profile

or the wall potential.

The most important conclusion that can be reached about the effect of an actual sheath is
that the terminating susceptance will be increased significantly over that predicted by the homo-
geneous compressible plasma model. This can be readily visualized by thinking of the electron
deficient region as counteracting the efficacy of the plasma in reducing the electromagnetic size
of the radiator. As an example, a sheath resembling that given in figure 18 for wp/w =0.707
would lead to an admittance which, based on homogeneous medium theory, would be obtained for
wp/w = 0.57. Thus, plasma diagnostics relying on homogeneous medium theories can be ex-

pected to be appreciably in error.

The second major effect of the inhomogeneous sheath is to make the terminating admittance
results for the hard and soft boundary conditions more nearly similar. The effects are now
caused by mode conversion due to the inhomogeneity as well as by conversion necessary to
satisfy the hard boundary condition. As an example of this effect in one case, the ratio of ter-
minating conductances obtained for the hard and soft radiator boundary assumptions was found
to be 75 for the homogeneous medium model but only 2.5 for the sheath model. Although the
predicted effects are measurable, it must be remembered that the calculated conductances are
still comparable to the free space values. The calculated effects are in fact quite modest com-

pared to those predicted with linear dipoles by assuming certain current distributions.

In the seventh section, several interesting results were found from a study of the spatial
field variations. The most important result of the calculations as a function of the angle 6 was
finding large-amplitude variations (with angle) of the radial electric field regardless of model
or boundary condition; measurement of this field would seem to be the most promising means
of detecting the excitation of an EA wave. The radial calculations showed a very rapid phase

variation with distance of the fields most strongly influenced by the EA wave, perturbed electron
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density and radial electron velocity. The most promising method for experimentally distinguish-
ing between different boundary conditions seems to be in detecting the radial variation of the

tangential electric field near the radiator (fig. 29).

In addition, it is shown in appendix V that the effect of including collisions in the linear
dipole analysis also leads to increased conductance. Thus, in view of the relatively small
effects and the uncertainty in boundary conditions, the final conclusion must be that the
detection of the excitation of electroacoustic waves in laboratory plasmas through measurement

of the terminating admittance will probably be equivocal.

8.3. FUTURE WORK

The basic question to be answered in future EA wave excitation investigations must be that
of the proper model of the plasma sheath especially including the proper boundary condition at
the radiator. It is believed that the present work is the first antenna analysis to seriously in-
vestigate the standard assumption of the hard boundary condition. Since the main interest in
this analysis was on the influence of the inhomogeneous sheath on the terminating admittance,
no detailed determination of perturbed electron behavior at the radiator boundary was attempted.
It would seem that electron absorption should be studied, but there does not seem to be any
convenient way to concisely express this condition. Possibly a2 boundary condition can be ob-
tained from the kinetic approach and then transformed (using Cohen's bilinear admittance rela-

tion) into the hydrodynamic treatment.

Secondly, it might be hoped that someone would find a way to study the influence on the
fields and terminating admittance of the drift velocity and/or stress tensors in the inhomoge-
neous plasma since these are undoubtedly of some importance. However, it also seems that
the best hope for further advances must come from the kinetic treatment of wave propagation

through the sheath even if entirely numerical.

A final suggestion for further work is that future investigations obtain some experimental
data for the excitation of the EA wave. It would seem that moveable radial and tangential
probes and exceedingly small collision frequencies would be essential for the reasons given
above. It is strongly urged that this experimental investigation be performed with a sphere.
The important influence of the sheath cannot be conveniently included in the analysis for any

other finite shape.
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Appendix |
MATHEMATICAL RELATIONS

I.1. VECTOR IDENTITIES AND OPERATORS

The following vector identities were used to obtain the results in section 2 [47]:

o
—~ - T = = - -
pT(vT V)vT = —Z—V(vT vT) = PV X (V x VT) (179)
v x (v xH) = v(v-H) - v-VH (180)
Vx9Vp=0 (181)
V-VXA=0 (182)
For the special case when % = 0, the following vector operators in spherical coordinates
are useful:
_pdp, plap
Vp=r1 r+9r 5 (183)
- 1 3/(2 ) 1 9 .
Vv—r2 ar<r V. +rsin689(ve sin 6) (184)
A A
I S SR
V xH= r sin @ 66(H¢ sin 6) r ar(rHrb)
/9\ d 0
2 20m) - Ly | (185)
2y 1 220), L i %)
Vip= 28r<r o) T2 ae<5m9a6 (186)
r r sin @
oH oH H
2, A N1 3 277% 1 d ¢ )
v = —_— [—— — — i —_ ) L —
(H,9) "’K 3ar © ar) T ae<s”‘ FY. 3 2 (187)
r r sin 6 r sin 8

1.2. WAVE EQUATIONS AND SOLUTIONS
For the special case when the external medium is homogeneous, the wave equations 44 and

45 become

dR doe
1 d/2%1) 22 1 df. 1 1 |
l:_R _dr<r Tr) + K r] +!:———® T 9—d9<sm 6——d6> -—5 j\—O (188)
1 1 sin 6
dR do
1 d/2%2) 22 1 d/. 2|
[R—2a?<r Ta?)*kp"] +[W@(Sm0d—eﬂ_o (189)
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Because the bracketed terms in both equations are respectively independent of 4 and r, they
must each be equal to a constant. Standard forms are obtained if the second bracket is set equal

to -n(n + 1) so that the angular equations are

1 d diy) m?
sin 6 da smew +i{n{n +1) - 3 f2 =0 (190)

sin 6

where m =1 and 0, respectively for the 8, and 6, equation and f

1 2 2

An alternative standard form is obtained by letting 7 = cos 6, so that

symbolizes both 61 and 62.

2
d“t dt 2
(1-772)—~§2-277—2+[n(n+1)-—m—}f2=0 (191)
dn :

dn 1.1

The solution in either case is the Legendre function f2 = an (cos 6) = P;“(n). The independent
solutions erln (cos ) do not apply to physical fields in a complete spherical domain since they

become infinite at 7= +1.
The radial functions in both equations satisfy

df
1 df 2% nn+1)|, _
;z—az<z _dZ> + i:l - Zz Jfl =0 (192)

with the solution f1 (replacing R1 and Rz) as a linear combination of the spherical Bessel func-
tions jn(z) and nn(z) with z = kr or kpr, respectively. An alternative form of this solution often

appears in the literature as

1 T
b =75 Zne1 2@ OF \/%Zrﬁl /2@ (193)

where Zp(z) satisfies the cylindrical Bessel equation

d Zp 1 de < p2>
+= =Lt 4+ (1-%1Z =0 (194)
dzz z dz ZZ p
Schelkunoff [2] gives still another form
_RdO
H¢ = T+ 48 (195)

R(r) = Aann(kr) + BnNnn(kr), where R(r) satisfies the equation

2

d’R | kz_n(n+1)R=0 (196)
2 2

dr r
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His forms are related to the above by

In_(kr) = krj_(kr) = g\/ﬁqnﬂ Jpkr)

(197)

In the analysis of section 2 and thereafter, the spherical Hankel function forms are used, i.e.

W0

N z) = jn(Z) + inn(Z)

and the superscript (1) is suppressed when possible.

I.3. PROPERTIES OF THE ANGULAR FUNCTIONS

The Legendre functions were calculated using the recursion formula

(n + 1)Pn+1(cos 6) = 2n + 1) cos GPn(cos ) - nPn_l(cos 6)

with the starting values

PO(cos 6) =1

Pl(cos 6) =cos 8

The associated Legendre functions were then obtained from

Prll(cos 9) = 111 9{(n - 1) cos ePn(cos 6) - (n+ 1)Pn_1(cos 9)}

si
Also important was the value

1 0% + 20)!

0) =
1+24 01+ 0:

P

The definitions of the associated Legendre functions that are used in this analysis are

d—dB(Pn(cos 6)) = -Prll(cos )

4
sin 6 df

<sin epi(cos 6)> =n(n + l)Pn(cos 6)

(198)

(199)

(200)

(201)

(202)

(203)

It is important to note that the negative sign in (202) is not always used; the present choice is

consistent with Stratton [3, 47].

I.4. PROPERTIES OF THE RADIAL FUNCTIONS

The only combination of the spherical Hankel functions that is necessary for computations

is denoted

(204)
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In order to compute H2 accurately, it was necessary to develop a recursion formula as

follows: Two standard forms are [48]

zh (z) = -(n+ Dh (@) + 2 (2) (205)
zh () =nh (@) - z diz h_(2) (206)

By dropping the order of the second form and dividing by zzhn_l(z),

d
1 hn(z) _(n-1) aEhn-l(z) (207)
z hn-l(z) Z2 zhn_l(z)
Dividing the first form by hn(z) and inserting this last equation gives
Z d—c;hn(z) Z2
Hz(n) = hn(z) =-(n+1)+ PR Hz(n ) (208)

With this form, it is apparent that for n > zz, Hz(n) - -(n +1). Since only odd n are needed in

the final summation, it is convenient to drop the subscripts again to obtain Hz(n - 1) in terms

of Hz(n - 2) and thereby obtain
H.(n) = -(n+1) + 1 (209)
2 (2n - 1) R 1
ZZ Hz(n -2)-(n-2)
where the starting value for n =1 is easily shown to be
2, .3

H, (1) = 2&*2) tiz (210)

2 2

(1+2%)

This method was checked against an independent calculation using cylindrical Bessel function
forms given by Watson [49] for the case of equal order and argument. The Watson formula,
stated to be good to 7-digit accuracy for n > 50, gave a result that agreed within 10_5 percent
with the recursion formula result for n = 97, x = 97.5. Examples of calculated values of Hzn(2)
are given in table XVI. The arguments used here are for the homogeneous medium and sheath
models discussed in section 6.2. It should be noted how rapidly the imaginary contribution de-

creases for n > z, which is the term contributing to the modal conductances.
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TABLE XVI. VALUES OF Hzn(z) USED IN SECTION 6.2 The signs on the imaginary components

should be reversed for use with the eﬂwt time convention.

H2(0.3535) H2(11.314) H2(0.4873) H2(15.59)

n Re Im Re Im Re Im Re Im

1 -1.889 +1.0393 -1.008 +il11.23 -1.808 0.0935 -1.004 15.53
3 -3.975  +i2.99(-6) -1.050 +i10.78 -3.95 +i2.76(-5) -1.206 +il5.21
5 -5.986  +i1.191(-11) -1.146 +19.93 -5.97 +14.02(-10) -1.069 +i14.61
7 -7.990 +i9.14(-18) -1.351 +18.58 -7.98 +i1.116(-15) -1.146 +il13.70
9 -9,993  +i2.20(-24) -1.843 +16.55 -9.99 +i9.73(-22) -1.281 +il12.43
11 -11.994  +i2.16(-31) -3.21 +13.72 -11.99 +i3.46(-28) -1.537 +i10.67
13 -13.995 +il.024(-38) -6.41 +i1.011 -13.99 +15.91(-35) -2.09 +118.29
15 -15,996  +i--- -10.29 +10.0872 -15.99 ) -3.47 +15.13
17 -17.996  +i--- -13.42 +i2.86(-3) -17.99 +i--- -6.60 +i1.864
19 -19.997  +i--- -16.10 +i4.71(-5) -19.99 +i--- -10.92 +10.275
21 -21.997 +i--- -18.57 4,49(-7) -21.99 +i--- -14.60 +i0.01679

Appendix i
HYDRODYNAMIC EQUATIONS
The usual "hydrodynamic equations' were presented without derivation in the second chap-
ter as equations 6 and 7. A brief review of their derivation is necessary, however, since they
are generally used neither with an inhomogeneous medium nor with an electric field, nor a
drift velocity. The basic equation for this derivation is the Boltzmann equation; the following

discussion follows that of Spitzer [39].

The Boltzmann equation gives the time rate of change of the particle density as a function
of the particles' position, velocity,and encounters with other particles. The particle density
(electrons or ions), f(x_': _\;, t) dx dy dz dvX dvy de is the number of particles in the volume dx dy dz

centered at T and whose velocities lie in the intervals dvx, dvy, de centered at v. Thus,

i af at %% at Wy ot o1
at 5t/ 3 dt 7/ .3v. dt ~ \5t/collision
) i
dx]_ dvj
or since Vj = E and F] =m ‘(E-,
F
af af j of af>
) Vix ) moav (5{ collision (212)
i ]

i ]
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This equation would be exclusively used in studies of the EA wave were it not so difficult
to obtain solutions. The alternative is to use this equation to obtain hydrodynamic or "macro-
scopic ' equations from which solutions may be more readily obtained. Thus macroscopic

quantities (denoting all but the density n(r, t) by underlining) may be defined as

+00
n(r, t) = f f f -oof(r, v, t) dv_ dvy dv, (213)
+o0
v(r, t) = t)JJf vi(T, v, t) dv dv dv (214)
and in general any macroscopic quantity Q(f", t) is obtained from the arbitrary function QW)
1 O~
r, t) = T, V, d 215
QO 0 = = j f [ Q@R 7 vy av o, (215)

The macroscopic equations are obtained by multiplying both sides of equation 212 by Q(;)

dv dv dv and integrating over velocity space as in equations 213 through 215. Because Q(v )
is assumed independent of T and t, then the first two terms become

_ 20
J’J Q v)f r, v, t) dv clvy de = 5{0@)

(216)
3 ([ nmye = 3
a—x_JJ Q(V)ij(r, v, t) dvX dvy dvz = é;(nva) (217
j¥vY -0 i —
By integrating by parts and noting that £(v, r, t) is zero for v. = +w, the third term becomes
-— (r,v, t) 2 { -—}
JJJ ] FJ (r, QW) dv, dvy dvZ (218)

The integral of the collision term on the right hand side will be denoted as IQ' Thus (212) can
be integrated to give

d 9 n o
7 (nQ) +Z§X—j( E 5— (F, Q) =l (219)
7 R

The continuity equation is obtained as the simplest form of this equation when Q = 1. The

third term in (219) disappears with the restriction of the analysis to forces for which 9F, /v

this does not exclude magnetic forces. The right hand side, Q = Il’ must vanish since collisions
cannot change the particle density. Thus (219) gives

on
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The force equation (often called the equation of motion or momentum transfer) is obtained

by letting Q = mv, so (219) gives (using a—g—(Fjvj) = Fj>
j

—

9, - - = af
at(nm!) + V+(nmyv) - nF _ffmv(at)coll.dvx dvy dvZ (221)

The first term of (221) can be rewritten using (220):

-

2 () = L 4 0 3V o =
mat(ng) = mn=F o+ my o = mnaE - myV-nv (222)

By dividing the velocity into macroscopic and random parts
v=v+w, (hencew =0) (223)
The second term of (221) may be rewritten as
V-(nm?\z.) = V'(nm[__\;g+ \:J_].\-i]) = mEV-n_\—{+ mn_i-V_v_: + VY (224)

where ¥ = nmx}\i is defined as the stress tensor and will be further discussed below. The third

term of (221) may be replaced by

F=-eE + p-i x H) - qu)g (225)

where E and H are the electric and magnetic field strengths; ¢g is the gravitational potential
which will hereafter be ignored as will the magnetic forces. The right hand side of (221) would
be zero if all particles were identical, but a net momentum exchange could occur when colli-
sions with other particles are considered; this term will be dropped in this analysis with the

assumption that collision frequencies are very low. Combining (221) through (225) then gives

mn% + mnf-vg+ neE + V-¢y = 0 (226)
Other "hydrodynamic' equations could be obtained by using other functions of v for Q(v).
For the present purpose, this is not necessary with the assumption that the stress tensor ¥ has

only equal, diagonal elements. This is equivalent to assuming an isotropic, scalar pressure p,

so that
V¢ =Vp (2217)

The scalar pressure assumption cannot be rigorously defended; in fact, Tidman and Boyd [50]
have presented interface boundary conditions involving a tensor pressure. However, Parker,
Nickel, and Gould [51] have successfully used scalar pressures in predicting resonances in non-
uniform, cylindrical plasma columns. The main reason for using scalar pressures, though, is
the extreme difficulty, if not impossibility, of solving any radiation problem with the inclusion

of a stress tensor.
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This development essentially completes the derivation of the hydrodynamic equations.
Equations (220) and (226) can be put in the forms (6) and (7) by adding the subscript "T," delet-

ing the underlining (since all quantities are now averaged), and using pT = -en Thus we have

T
_ . 9P
v .
P l:m TR (vT -V)vT) + eET] - eVpT =0 (7)

It is possible to write a similar set of hydrodynamic equations for the ions; it is not neces-
sary to do so in this analysis since they are presumed to experience no RF perturbations. How-
ever, there are still more variables than equations. The remaining relationship comes from an
assumption about the "equation of state.”" Landau [52] was the first to show, using the kinetic
approach, that the longitudinal wave experiences small damping in the frequency region to which
we have restricted ourselves (A >> )\D). This thus justifies the standard assumption that the

compression is reversible (constant entropy) and one can use the adiabatic equation of state

P v
n
Pr _ <_z> 228)
Po \"
where y is the abiabatic constant. Thus,

Y
n Y
T n
= —_— = -_— = = v v
Vi, vp0<n0> VngkT_ (1 + n0> V(ngKT _ + ykT ) = KT Yn, + ykT Vn, (229)
using the perfect gas law (pO = nOkTe) and the small signal assumption (n << nO).
Using the well known [39] relation that ¥ = (2 + m)/m, where m is the number of degrees of
freedom, then y = 3 for the present case of one-dimensional compression. Hok [53] has also

obtained this result from the series of moment equations demanding constant entropy.

In the manipulations given in section 2, it is advantageous to put the results in terms of the

rms thermal velocity, v,. For a Maxwellian distribution, this gives

0

kTe (230)

o] o

sz"
O_

DO =

so that
1 2 2
VpT =gmv, VnO +mv, Vn (231)

An area of confusion that exists on this form was pointed out to the author by Professor

Hok. Although v  is termed the rms velocity above, other authors call this or similar symbols

0
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the "sound" or "acoustic" velocity. With this nomenclature, one can go between (229) and (231)
with the definition: mv, = ykTO. However this definition will not be correct when vy is termed
the rms velocity. Similar caution is indicated in the definition of Debye length given in section 3.

In both cases, the extension of these results to cases when y # 3, could cause serious confusion.

Appendix IlI
BOUNDARY CONDITIONS

III.1. INTRODUCTION

Boundary conditions at both inner and outer sheath edges were presented in section 4 with-
out derivation. The conditions at the outer sheath edge have been used by many authors for
much less restrictive models; their derivation in section III.2 shows the importance of the re-
strictions used in this study. One of the conditions at the inner sheath edge is much more du-
bious; in fact, three different suggested conditions are studied in sections 6 and 7. Justification
for these radiator conditions were given in section 4; possible approaches to a derivation are
given in section III.3. An extension of this material for the vacuum-plasma boundary is con-

tained in appendix VI.

I1I.2. BOUNDARY CONDITIONS AT THE OUTER SHEATH EDGE

This section is devoted to the case where the static or d-c electron density is continuous,
although the gradient of the density is not, at first, restricted. This is a model close to that
existing in an actual sheath as opposed to artificial step discontinuities used in all previous
radiation analyses and discussed in appendix VI. The boundary conditions given previously for

special cases by numerous authors [14, 54] are

A=
fix [H, - H]=0 (232)
Ax[E, -E,]=0 (233)
27 "1
P
n-[V2 - Vl] =0 (234)
Py -P; =0 (235)

Previous derivations of these boundary conditions have not included the d-c electric field or
drift velocity; it is therefore necessary to show how these might influence the boundary condi-
tions as well as to illustrate the limitations in their use. Since these conditions are often justi-
fied by heuristic arguments it is also important to appreciate the limitations and alternatives

to these arguments.
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The derivation of the first two boundary conditions above does not differ essentially from

that given by Stratton [47]. The derivation of (100) begins with equation 10:

-

- - = oE
V><H,T—pv-f-pu0+€0at

Since this equation holds on each side of the boundary shown in figure 30a, the equation may be
scalar multiplied by ﬁoda and integrated over the area shown. The first term is replaced by

using Stokes' Theorem; e.g.,Stratton [47, p. 6],

f (V x A)-f da= J Ads (236)
0
S C
0
where C0 is the closed path surrounding the rectangular area S0 shown in figure 30a. This

gives

H-ds = [p v+ pﬁ ]r’l\ da + € Eﬁ da (237
0 00 0 ot 0
CO S0 S0

This equation may be approximated by

= A
(H'r1

~ . == 3E] A
+ H-?z) As + contributions from ends = [pov + pu, + 60 at] I As AL (238)

By contracting the path to lie infinitesimally close to the boundary surface, the end contributions
become vanishingly small. The first term on the right may contribute to a surface current; in

the present example, these contributions to the current density are assumed finite and it can be

A
N, Boundary
* Plane

AS (Surface Area)
AV (Volume)

. INR’ So A ﬁ
Region 2 7
C T s

Region 1 / 0 '1

A
o Region 2
i A
Region 1 n
(@) For the tangential boundary conditions (b) For the normal boundary conditions

FIGURE 30. BOUNDARY CONDITION DIAGRAMS.
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seen that all terms on the right hand side vanish as A{ -~ 0 since all the terms and their deriva-

tives are bounded. Since

~>
]

=>
>

s>

(239)

then in the limit as A£ - 0,

A - -

nX (H, - H) =0 (240)
It can be noted for use in the next section that at a perfect conductor, the surface current JS
should be included in equation 10. In the limit of vanishing A{, one would then obtain

) ﬁl) =lim J AsAf =K (241)
Al~0 S

A x @
An entirely analogous integration of equation 5 leads to the familiar equation for continuity
of tangential electric fields.

Ax([E,-E

9 1) =0 (242)

It is important to note here that boundary conditions on the normal components of these
vectors would be somewhat redundant. Since the divergence of a curl of a vector is identically

zero, taking divergences of equations (10) and (11) give for the a-c components

- - 3E
V-(pov +pu0) +V€OH~0 (243)
oH _ ~
Since Gauss' Theorem states
f V-AdV = f A-nda (245)
v S

where V is the volume enclosed by the surface S shown in figure 30b, then a volume integration
of (243) gives

0

- - -
€03t SE-nda = -fVV-(pov + puO) av (246)

The term on the right may be replaced, using (12):

aQ

__% s
P TIRT: (247)

—

V(o v

(pv + pug)
where QS(¥ Qs) has been included to allow for possible surface charges. Dropping the time
derivatives, (246) may be approximated by

€ (Ef, +EA

0 1 2)AQ + contributions from the walls = (p + QS)AQ Aa (248)
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The first term on the right vanishes as Af - 0 since p is assumed finite. The term QSAI Aa

approaches ¢ Aa if surface charges exist. Consequently, since r/1\1 = —ﬁ\z =’1\1, then
AME,-E)=-Z (249)
0

In the nomenclature being used here, the electron charge is taken as -e, so that electron charge
densities are negative quantities (i.e.,p0 = - lelno). Similarly Qs and o are defined as negative

quantities for excess electron density.

The familiar boundary condition on normal magnetic flux density follows in a similar fashion
from (244):

B, -B

g =By =0 (250)

Equation 250 provides the same information for the purpose of evaluating constants as does
(242), as indeed it must with the same starting equation. Equation 249, however, provides
somewhat more information than (241) since another of the basic equations (continuity) was used

in its derivation. A similar volume integration of the continuity equation 274 gives

- - A 0 aQS
f(pv-pu )'nda=-f P, _Slay (251)
0 0 ot ot
S A%
or
A - - —- - oo
n-[(pov + puo)2 - (pyv + puo)l] == (252)

A combination of (249) and (252) gives a continuity of current condition

-

A~ - 3E - - dE
n-[(pov +pug + 60_8T>2 - (pav +pug + 605T>1] =0 (253)

This result is not in any sense new since it is obtainable directly from (243). It is obviously

redundant with (240), whereas either (249) or (252) provide new information.

Before further comment on the nature of the surface density o, it is desirable to discuss

boundary conditions derivable from the remaining fundamental equation—the force equation 13:

ov A - A 2
57 v = X : E Vp =0
mpo[at * uOvvr t Vrvuo} + mpuo uO mpOuOr (Vxv) + poe + peEOr + mv0 D

It is obvious that all realistic models require continuity of the d-c parameters, Py EO, and Uy
In the present analysis it is necessary, in order to solve the problem, that the quantities EO’

g and Vu, vanish in the exterior regions and, therefore, also in the internal region at the

0
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boundary. With the models analyzed in this study, these assumptions about the boundary region

give (at the boundary) the simpler equation

v - 2
pom=E + pOeE + vaVp =0 (254)

If this equation is integrated along the line A{ shown in figure 30a, then

£ 2 [

2 v 2 = 2 2 A
pm—fdl + p.eE-ndl + mv J Vpndl =0 (255)
0 0 ot g 0 0
1 1 Ql

where Ql and 12 are points on Af close to and on opposite sides of the interface. The last term

can be rewritten as
2
dp ., _ -
J i d¢ —Jp dp = Py - Py (256)

As the length Al shrinks to zero, equation 255 may then be approximated as

-

A v v =\ 74! 2
nz-KpOmﬁ + pOeE>2 + <p0m§ + pOeE>1]—2— + mvo(p2 - pl) =0 (257)

Since this is a line rather than volume integration, the left hand terms do not lead to surface
density terms as in equations 249 and 252. As the length Af{ shrinks to zero, the first terms

disappear (since all quantities are presumed finite), giving

The condition in (258) is more often presented as a dynamic condition—namely, that the
boundary would move were the pressures (and therefore the densities) not made equal. From
the above derivation it is seen that it is necessary for the d-c electric fields and velocities to
vanish at the boundary to obtain this condition. Furthermore, it would seem that the heuristic
reasoning that forces be balanced should include electric as well as pressure forces. This line
of reasoning (notused, of course, in acoustics) would lead to an entirely different result if the

normal electric field were not continuous.

The boundary conditions derived above are believed to be exhaustive; no further conditions
seem possible. Nevertheless they are of little value with ¢ # 0 since there is no a priori meth-
od of specifying this quantity. However, when the medium is continuous as in the present ex-
ample, it is obvious that there is no mechanism for supporting a surface charge and the follow-

ing familiar boundary conditions are obtained:

A T 7 —
nx(z-Hl)—O (240)
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nx(z-‘E’l)=o (241)
ﬁ-(vz -7) =0 (see (252))

With the present assumption of continuous electron density and zero d-c electric fields and
drift velocity at the interface, these conditions are simple mathematical statements that all
fields are continuous across the interface. Alternatively stated, there is no coupling at the
interface between EM and EA modes with a realistic continuous electron density. A further

modification, appropriate to the spherical radiator study, is given in section 4.2.

III.3. RADIATOR CONDITIONS

In order to completely specify the solution to the radiator problem it is necessary to speci-
fy two conditions at the radiator. One obvious condition is that the tangential electric field
vanishes except at the gap; this is discussed in section 5.1. In pastanalyses [17, 18], it has
been assumed that elastic reflection of electrons is the second necessary condition. However,
this condition cannot be analytically defended, nor can any other be rigorously derived as in the

previous section.

The basic problem is that the continuity and force equations cannot be presumed valid in
the limit of an infinitely conducting metal. However, assuming that the infinitely conducting
metal can be approximated by the electron gas model used in the preceding appendix, and as-
suming zero field quantities in the infinitely conducting metal, then equation 252 would give for
the surface continuity equation

1y

/\ v 11 - —
n.[pov + puo]rl = (259)

Quite obviously, one cannot obtain -V = 0 from this relation. On the other hand, the derivation

leading to {258) would give the soft boundary condition

[p]. =0 (260)

The final alternative used in section 6 is the Cohen bilinear admittance relation, with a short

derivation there of a possible set of coefficients using this same analysis.

However, all of these derivations, or any similar one, rest on the decidedly non-physical
assumption that all of the fields are zero inside the infinitely conducting metallic radiator. In
fact, it is quite possible that the finite metallic conductivity and associated skin depth associated

with a physical radiator play an important role in the actual boundary conditions. For these
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reasons, further speculation on the actual boundary condition does not seem to be warranted
and all three cases are studied. Fortunately, it is found that with an inhomogeneous sheath
region, the calculated results are quite similar and the question is mainly of academic

importance.

Appendix IV
LIMITING VALUE OF INPUT SUSCEPTANCE

The method of calculation of the modal admittances was described in section 5 for both
the homogeneous and inhomogeneous medium models. These extensions of the techniques em-
ployed by Chu and Stratton [3] took into account both the electroacoustic wave and the sheath
inhomogeneity. For the homogeneous medium model similar results were obtained by Wait [18],
who restricted his attention, however, to the total input conductance. It was shown in section 6.2,
that this total input conductance (for both models) can be obtained from a series that converges
rapidly for orders larger than the normalized EA sheath size (i.e. n >kpr2). However, the total
input susceptance does not converge rapidly; in fact, the series does not converge at all for the
infinitesimal gap as pointed out by Chu and Stratton [3] in their original article. The techniques

used to obtain a convergent solution are the subject of this appendix.

There are two features of the problem that make it possible to obtain a convergent solution.
First, as shown in section 5.2, the individual modal contributions approach those for free space
when n > kprZ‘ Then, because the free space values can be summed for finite gap angles, the
total input susceptance can be obtained for any gap angle from the known modal values for the

infinitesimal gap.

Mathematically, the first feature can be stated as

N -2
D Ly m , X ,CA
Z B_ = -eC, +Z (B_+ By ) = -wC, + Z (AB) - Z = (261)
n=1 n=1 n=1 n=N

m

where BOn and wC t are respectively the low frequency free space modal and input susceptances,
(AB)n are the differences between the calculated susceptances and the free space values, Nm is
the largest order used in the calculations, and C A and p are calculated parameters approxi-
mating the series from N to infinity. Ct is discussed below; it remains only to show how CA

and p are obtained and then used to give a correction term.
In each set of calculations presented in section 6, the sequence log (AB)n was plotted vs. log

n. For values of n > kprz, a straight line was obtained whose slope is -p. For the homogeneous
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medium, p was 3; for the inhomogeneous medium cases, values between 1.5 and 3 were obtained.

The value C A is then simply the final calculated difference value times Nlr)n'

An upper bound to this correction term can be readily obtained, since (letting n = 2m + 1)

©, 0 4 0
Z 1 _1 Z 1 17 dax_ 1 - (262)
n? 2P 1P 2P N % N "
n=N_ N-l (m+§ m P - 1 __13)
m= 2m 2 2

Hence

< — = (263)

In all the calculations that were made, this correction term never was more than a few

N
m,

percent of the value Z (AB)n. A major contribution, however, comes from the low frequency
n=1

free space input capacitance C,. Although Chu and Stratton [3] mentioned that a finite gap width

t
would lead to a finite summation for Bin’ the only person who seems to have discussed the

problem is Schelkunoff [2].

Schelkunoff's approach was to note that, for low frequencies, the input admittance approaches
the admittance of the capacitor formed by the hemispheres with the result previously given in

equation 162:

2
2u,.r [P_(cos)]
01 n
C, = 2 : (264)
t nKz nNn

As ¥ approaches 7/2, K (defined by (146))approaches V“O/eogf)' By expressing the
Legendre function in an approximate trigonometric form and replacing the summation by an

integral, Schelkunoff obtained

Koty
th =507 (-4n A6 + 0.52) (265)

In accordance with Schelkunoff's suggestion that the first terms be evaluated separately and the

remainder expressed as an integral, a more accurate expression was obtained

Kotq

t~ 607

wC (-fn AQ + 2.0) (266)
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This last form was in much closer agreement with computer computations of (264) that re-
tained terms up to n = 200. Because th is not influenced by the EA wave or the sheath, the
representative value of 13.0 X 10_3 mhos (corresponding to about three degrees) was taken as

a standard value in all of the data presented in section 6.

Appendix V
INFLUENCE OF COLLISION FREQUENCY
In order to simplify the analysis, it has been assumed, in the main body of this study, that
the plasma is lossless. Although this is a standard assumption in EA wave analyses, it is not
usually valid in laboratory plasmas nor for most lower ionospheric experiments. Therefore,
it is important to understand the influence of collision frequencies, especially because the main
effect of including collision frequencies is much like that resulting from the inclusion of EA wave

effects: increased radiation resistance.

A discussion of the spherical dipole admittance analysis including collision effects, in con-
junction with the EA wave, has been given by Wait [18]. Since Wait's numerical results are to
be published soon, only a brief discussion of this problem need be given here. In figure 31, the
modal conductances are shown for a range of collision frequencies where the compressibility of
the plasma is ignored. These values were obtained at a desk calculator from equation 167 with
the definition of propagation constant given below. For this model, a fairly large collision fre-

quency is needed to materially affect the total conductance.

Rather than consider this further for the sphere, the same problem will be considered for
a thin dipole. This is preferred here since the only available experimental evidence for the EA
wave was obtained (Jackson, Kane and Whale [12]) in an ionospheric RF probe measurement
using a thin cylindrical dipole. In the light of the negative results obtained in the present study,
it is most important to determine whether the effects noted for the thin dipole in the Jackson,

Kane and Whale experiments could not be explained by collision effects.

The basis for these calculations, which do not seem to have been presented in this form
before, is the work of King, et al. [4]. By modifying their work slightly and using their nomen-

clatures, then the admittance of a short linear dipole may be expressed as

2 4 4 2 4
_ 271 (Bh) )2a 233( a) B8°h ( a a)
G(k) = - =1gh+=8 h'F(l -=|l+75—=I1-10—5+5=F (267)
CO"Ddl (ﬁoh) 8 3 [32 3(Q-3) 32 54
2 2 4 44
2r ph a 133 a o Bh «a 2 4
Bk)= 77— - Bh(l-——)+—8 h F<1 - 6-—+—>- (5 - 10k” + k) (268)
Cowdlﬁoh 32 3 BZ 34 3(2 - 3)B
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FIGURE 31. VARIATIONS IN MODAL CON-
DUCTANCE WITH VARIOUS COLLISION
FREQUENCIES
where King's approximation ¢ = ¢ / has not been employed, F=1+3 (n2-1/(- 3),

Q=2 ﬁna—, wdl =2 fn (h/a) - 2, §0 =Vu7 , Ce = Co/ﬁ, h and a are antenna length and radius,
respectively, G and B are antenna input conductance and susceptance, respectively, and k = 8- jo

defines the complex propagation constant where

Bzoxﬂxhx )/2 (269)

a=py (1Kl - KR)/2 (270)
) e
=1- , IKl= +
*r 1+ (v/w)? 1+ (y/w) R
and 30=w/c
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This formula was calculated for a wide range of parameters in order to obtain the influence
of collision frequency on the input conductance and resistance. The main parameters which are
of interest are antenna length (see fig. 32), high collision frequency (see fig. 33), and low collision
frequerzlcy (see figs. 34 and 35). In each case the variable is the normalized electron density or

2
(wp/w )

The longer the antenna (or the higher the frequency) the greater will be the range of vari-
ation of the admittance as the plasma frequency is increased (as shown in fig. 32). Even for this
relatively high collision frequency (v/w = 0.3), the antenna input susceptance is nearly zero at
wz/wz = 1 for all initial lengths, The value of input conductivity at this point is linearly related
to the initial length, 3 0h.

FIGURE 32. THEORETICAL MONOPOLE ANTENNA

ADMITTANCE VS. PLASMA FREQUENCY WITH AN-

TENNA LENGTH AS A PARAMETER. Collision fre-

quency is constant at v/w = 0.3; normalized electron

density (wg wz) is the variable from 0 to 4.0; initial

normalized antenna length Syh is the parameter from

0.1 to 0.5; ratio of antenna diameter to length is in
each case 1/10.
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FIGURE 33. THEORETICAL MONOPOLE ANTENNA

ADMITTANCE VS, PLASMA FREQUENCY WITH COL-

LISION FREQUENCY AS A PARAMETER. Normalized

electron density ( w2 wz) is the variable from 0 to 4.0

(dashed lines); normalized collision frequency is the

parameter from 0.01 to 10.0; the ratio of antenna di-
meter to length is in each case 1/10.

The antenna input admittance is not such a simple function of collision frequency (fig. 33).
For very high collision frequencies (v/w > 1), little variation is found with increasing plasma
frequency. Thus it can be seen that the variation in input susceptance is negligible for v/w = 10,
even for wf)/wz = 4.0. However, the input conductance is a nearly linear function of plasma fre-
quency for all of the collision frequencies shown in figure 33. A very interesting feature of the
conductance is that it is maximum at any plasma frequency for equal collision and operating
frequencies (v/w = 1.0). For collision frequencies considerably lower than the operating fre-
quency (v/w < 0.01), the variation in input conductance cannot be seen on the Smith Chart, al-
though lack of variation must not be assumed. The input susceptance is relatively unaffected by

v/w for very low values.

Figure 34 gives the low collision frequency behavior of the conductance, again as a function

of normalized electron density (wlz)/wz) The interesting feature of this plot is that the input
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v/w = 0.003
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FIGURE 34, THEORETICAL MONOPOLE ANTENNA CONDUCTANCE VS. PLASMA FRE-

QUENCY WITH COLLISION FREQUENCY AS A PARAMETER. Normalized initial antenna

length is constant at 3.0; normalized electron density ("-’g w?)is the variable from 0 to 1.8;

normalized collision frequency is the parameter from 0,001 to 0.03; ratio of antenna diam-
eter to length is in each case 1/10,

- —t [\ Do
= o o o

G, X 10° AND RESISTANCE, R
o
()]

ANTENNA INPUT CONDUCTANCE,

| | !
0 0.2 04 06 038 1.0 1.2 14 1.6 1.8

NORMALIZED ELECTRON DENSITY (wp/w)z

TFIGURE 35. THEORETICAL CONDUCTANCES AND RESISTANCES FOR ZERO AND

LOW COLLISION FREQUENCIES. (a) v/w = 0.001; same parameters as in figure 34.

(b) v/w = 0; same parameters as in figure 34. (c) v/w = 0; radiation resistance cal-
culations assuming same values at wg / w? =0,
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conductance increases with increasing plasma frequency when the collision frequency is high
enough. Equally significant is that, for a moderately low collision frequency such as v/w = 0.003,
the conductance is almost independent of plasma frequency over a wide range of plasma fre-

quencies.

The implications of this last result can be seen in figure 35, in which input resistances and
conductances are plotted for the various cases indicated (note the superiority of admittance
plots in this region). It can be seen that predictions of antenna input resistance based on zero
collision-frequency results are open to serious doubt when the plasma is not sufficiently loss-
less. The experimental results obtained by Jackson, Kane, and Whale have indicated input re-
sistances more nearly like the v/w = 0.001 case; that is, the input resistance was an increasing
function of wf)/wz, contrary to the prediction of the usual EM theory (assuming v/w = 0) that

radiation resistance should decrease.

Although unstated, these authors apparently discounted electron collision with N2 mole-
cules, since the number of such encounters would indeed be quite low (perhaps about ten per
second at altitudes near 250 km). They also evidently neglected collision frequencies with other
particles; however, Mitra [55] states that collision frequencies of electrons with atomic oxygen
particles of about 2 X 103/ second at an altitude of 250 km are predicted and have been experi-
mentally observed. Although this number is fairly low (v/w ~ 0.4 X 10_4), it is probably large
enough to cause an increasing radiation resistance even at 250 km. Values of v/w = 1.0 X 10'3

predict a large increase in radiation resistance; only a moderate increase was observed in the

Jackson, Kane, and Whale rocket experiment.

This calculation of the influence of collision effects on the input admittance and impedance
of linear dipoles shows the importance of even small values of collision frequency. More im-
portantly for the present study, it casts important doubts on the validity of the only experimental
evidence that has been offered for the excitation of the EA wave; therefore greater credence is
given to the theoretical predictions in this study for a small effect of the EA wave on antenna

input admittance.

Appendix VI
MODIFICATION OF PREVIOUS EA WAVE EXCITATION
VI.1. INTRODUCTION
In this study, a small influence has been predicted of the EA wave on the terminating ad-
mittance at the spherical dipole. For this reason it is important to review those previous
theories that have predicted a large influence. These theories are of two types: (1) modal anal-

yses assuming elastic reflection and (2) Poynting vector method (assumed current distribution).
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It is possible to make modifications in these theories that lead to a much reduced influence of

the EA wave. These modifications are covered in the next two sections.

VI1.2. MODAL ANALYSIS

All previous radiation analyses including a sheath and using a ""modal' analysis seem to
have employed models in which the electron density is zero inside the sheath and finite outside
the sheath; the sheath is usually of zero thickness. In this category are the works of Hessel
and Shmoys [17], Fejer [56] and Wait [18] for the spherical dipole, and Seshadri [57] for the
linear slot on an infinite ground plane. In addition, this model has been used by investigators
studying mode conversion at density discontinuities which is a subject that can be considered
as part of the radiation problem. In this latter category are Kritz and Mintzer [54] and Cohen
[14] who use one set of conditions and Tidman and Boyd [50, 58, 59] who use another set. When
one of the densities is zero, the work of Field [19] and Yildiz [42] can be added. In this section,

it is proposed to review this material briefly.

Needless to say, continuity of tangential magnetic and electric fields is common to most
analyses. With the exception of the material by Tidman and Boyd, all of these references have
another common characteristic—a boundary condition on the normal velocity. When neither
density is zero, the requirement is one of continuity of velocity; when one is zero, the require-
ment is stated as "elastic reflection'— zero velocity at the boundary. The other common char-
acteristic is that the electron pressure be continuous if neither density is zero, and that there
be no condition on pressure if one of the densities is zero. Only one investigation has made any
effort to include the actual sheath density variation— that is, the work of Tidman and Boyd. This
is the main objection that must be voiced with all of these analyses— the steady state situation
has not been fully included in the boundary conditions. As shown in appendix III, these variables
play an important role in the boundary conditions. More importantly, when the density is dis-
continuous, there does not seem to be any justification for demanding either continuity of radial

velocity or elastic reflection.

The justification that has been offered for the elastic reflection condition is its applicability
in the field of acoustics. This would seem to be an inappropriate reason, since the analogy with
acoustics should not be carried too far (at least a priori). Especially important is the concept
of surface charge, which is neither useful nor valid in the theofy of acoustics; more will be said

of this in the following.

The one investigation that has not suggested the use of elastic reflection is the work of Tid-
man and Boyd [50]. However, it is believed that another discrepancy exists in their work which

is equally important. In their series of three papers, a condition on continuity of normal current

replaces the velocity condition. In appendix III, this is shown to be derivable from the same
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equation that gives continuity of tangential magnetic field and should therefore be redundant with
that condition. This was not noted in [58] but was noted in [50], without comment about their
previous error. In this latter reference, a sufficient number of conditions were still available
since they required continuity of the two transverse components of the pressure tensor. Their
work will therefore be of value only in those cases where the pressure is considered as a tensor
in the homogeneous region—a condition not usually employed and not used in this analysis.
Without a pressure tensor, they do not have enough boundary conditions, because they have added

unknown variables. An alternative formulation is given below.

A case that apparently has not been considered before for vacuum-plasma boundaries with
EA waves gives a radically different answer from that given by other investigators. It is widely
and successfully used in electron beam analyses, having been first discussed by Hahn [60]: the
investigation reported here and in appendix III was suggested by G. Hok. In this approach, elec-
tron motion is permitted at the discontinuity. The main feature is that continuity of current is
assured by means of an equivalent surface charge. The dynamic and kinematic conditions are
automatically satisfied since the media and the average boundary interface are assumed to be
stable. Since electron motion is now to be permitted at the interface as well as in the main body
of the plasma, the electrons will experience small excursions into the region in which the time
average of the density is assumed zero. However, the boundary conditions cannot be specified
along this rippled boundary. Since the motion of the electrons leads to charge density perturba-
tions at the boundary, this motion is interpreted as leading to an equivalent surface charge. It
should also be noted that at the rippled boundary (r_lgt_ the average or unperturbed position) the

normal velocity condition is satisfied (ﬁ\-V = 0).

This approach would seem consistent with the Kritz and Mintzer approach [54] in which a
surface charge is allowed, as opposed to that of Field [19] and those others who used elastic re-
flection. However, there is a difference between the surface charge concepts when one of the
media is a vacuum and elastic reflection is still demanded. When the condition of continuity of
normal velocity is replaced by elastic reflection, there can be no surface charge since by def-
inition the electrons are presumed to experience no RF motion at the boundary. On the other
hand, the conditions given by Kritz and Mintzer can be reduced in another manner, by retaining
the concept of surface charge rather than continuity of velocity. Thus the condition in (103) is

replaced by

Ao =y 20
n'(pozvz)_ t (271)

or
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where

.

Perhaps the best justification of this approach, which differs so radically from that given
in previous work is that this is the result obtained for the cold plasma. In none of the previous
analyses has it been pointed out that continuity of velocity or "elastic reflection' are concepts

alien to the theory of cold plasmas.

The question must then be asked— is there another possible boundary condition? Introducing

the concept of surface charge did not provide a condition but rather a new variable. Continuity

of normal electric field, of course, also introduces surface charge, but this is a redundant con-
dition. This leaves only continuity of pressure which of course assures the nonexcitation of the
EA wave since the EA-wave magnitude in the vacuum region must vanish. This result will be
seen to be in accord with modifications of previous assumed current approaches discussed in

the next section. However, the result is not meant as proof of nonexcitation of the EA wave but
only to show that an equally realistic model can be presented in which the EA wave gives no con-
tribution. This is also considered to be evidence of the importance of retaining the actual d-c¢

sheath behavior.
The conclusions reached in this section are:

(1) Elastic reflection is not realistic.

(2) Introduction of a surface charge is a logical consequence of the integration of the con-
tinuity equation when a d-c discontinuity exists.

(3) The EA wave is not excited in this model and therefore has no influence on the input

admittance.

VI.3. "POYNTING" VECTOR METHOD

As stated earlier, the homogeneous plasma analyses are divided into two types: (1) those
assuming elastic reflection of electrons from the infinitely conducting radiating source and then
using a model analysis and (2) those assuming a known source current and charge distribution.
This section is concerned with the second approach. The preceding comments on the first ap-
proach are nevertheless pertinent since previous analyses using the second approach seem to
have used, without explanation, equations that rely for their validity either on an assumption of
elastic reflection or on some other unexplained mechanism for complete separation of charge

and source electrons.

M. H. Cohen [14] was apparently the first to obtain wave equations for the perturbed elec-

tron density using the second approach which showed strong excitation by source electrons.
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Others have been Hessel and Shmoys [17], Chen [15], and Wait [16]. In this type of analysis the

basic equations for the homogeneous compressible plasma are assumed to be (taking Uy = 0)

= oH
v X = -l —
E Hot (274)
g ] = oE
VXH=J" - en0V+ eO—t (275)
nv.v4+30_ (276)
0 ot ~
n m(a—v>= -n_eE - mVZVn (277)
0™ at) = "MoeE - MV
-s 0 s
v.J% 4 % = eQ (278)

Obviously the third and fifth equations are plasma and source components of the more basic

equation
=S = 0d /s
V(I + pOV) + ﬁ(p + p1> =0 (279)

where Py = -eny, p = -en, and e is the magnitude of the electron charge (e = le |).

Unfortunately, these equations are not as "basic’ as implied above. Although presented in
essentially this form by Cohen (though his applied force term has been dropped), the term'Q"
has not been retained by subsequent authors and was dropped by Cohen after assuming elastic
reflection. Cohen calls Q, "a fluid flux source'; it is employed here in a larger sense to include
one of two things: either charge interchange between source and plasma, or the existence of a
surface charge existing outside the antenna. To obtain the forms presented by Chen or Wait,

new variables can be defined:

le =n-Q (280)

S S
pQ=P - eQ (281)

These substitutions give the modified equations

on
s 1Q _
nOV-V+ T 0 (282)
ap,
V-.-f's+—atQ= 0 (283)
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In order to shorten this presentation, the reader is referred to Cohen [14]; his equation 8.9

shows that the solution of the complete set of equations (retaining Q) is

s ikpr
A,
n =g -91)7-—2— —dv (284)
(S o VO
where
v
Dp:—&)—o— (285)
p

The derivations of Chen [15] or Wait [16] can be similarly modified to obtain this result. The
previous analyses have assumed various forms for :f s and have been able to integrate (284)
after using (278) when @ = 0.

This step should be employed with the realization that Q = 0 is equivalent to v = 0 and as
Cohen points out: '"We have assumed that the condition .v = 0is not correct, but it may be an

adequate approximation in some circumstances [14]."

It is of interest to investigate Q for a cold plasma since for small thermal velocities this
value of Q should be a good approximation. Using formulas similar to Chen's [16] for the di-
vergence of the electric field: (from (275), (276), (278)),

s
-~ P *p
V-E ir— (286)
0
(from (276), (277), and (278)),
2_2 .
- 1 VOV pl + pl - JweQ
VE=— 5 (287)
0 w
p

In Chen's discussion of the simplification of similar equations when vg - 0, he retained Py
In the present case Py is associated only with regions external to the source and is zero, since

the EA wave cannot propagate in a cold plasma; thus from (286) and (287)

2
-w

R
Q= Twe P (288)
This result could of course also be obtained from equation (284), which is in fact obtainable
from (286) and (287).

Thus it is seen that for a cold plasma, a fluid flux source, in Cohen's nomenclature (or in

the present method of looking at the problem; a "charge interchange' or "surface charge'), ex-
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ists which is proportional to both the external plasma density and the source surface charge
density. The possibility that such a "source" exists for the warm plasma should not be dis-

carded a priori simply because "elastic reflection may be an adequate approximation in some

circumstances [14]."

Chen claims that the charge Q given in (288) is the limiting value of that radiated as an
electroacoustic wave for warm plasmas. This does not coincide with Cohen's statement about
the equivalence of letting Q = 0 and using elastic reflection, nor does it allow for the existence

of charge interchange with a warm plasma.

The conclusion to be derived from this section is not that there is no excitation of the elec-
troacoustic wave, but only that it is possible to modify existing analyses to account for a much
smaller excitation. In the light of the inhomogeneous medium results it now seems impossible
to obtain an accurate prediction without (1) knowledge of the proper boundary conditions, and

(2) inclusion of the inhomogeneous medium effects.
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