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ABSTRACT 
 
 
Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a 

global warming potential (GWP) ~23 times higher than that of carbon dioxide (CO2). 

Although some effective strategies have been formulated to prevent methane emissions 

from large landfills, many landfills allow methane to be freely emitted to the atmosphere.  

In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria 

that consume methane, in the cover soil to prevent fugitive methane emissions. Several 

factors, however, must be addressed to make such a biogenic removal mechanism 

effective. First, methanotrophic activity can be inhibited by nonmethane organic 

compounds (NMOCs) that are commonly found in landfill soil gas. Second, although 

methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, 

biogenic production of nitrous oxide with a GWP ~296 times higher than that of carbon 

dioxide, is also stimulated. To consider these issues, two general areas of research were 

performed. First, a dimensionless number was developed based on Michaelis-Menten 

kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic 

growth and survival. This model was validated via experimental measurements of 

methanotrophic growth in the presence of varying amounts of NMOCs. Second, the 

effects of nutrient amendments on methane oxidation and nitrous oxide production were 

examined by constructing soil microcosms using landfill cover soils. Here, it was shown 

that the addition of ammonium in the presence of phenylacetylene stimulated methane 



 xiii

oxidation but inhibited nitrous oxide production. Furthermore, to understand the 

methanotrophic community structure and activity in response to these amendments, DNA 

microarray and transcript analyses were performed. The results indicated the 

predominance of Type II methanotrophs but that Type I methanotrophs responded more 

significantly to these amendments. Also, substantial activity of pMMO-expressing 

methanotrophs was observed, suggesting that these methanotrophs were responsible for 

nitrous oxide production. Collectively, these data demonstrate that methanotrophic 

activity and community structure can be differentially affected by both landfill gas 

composition and amendments, thus providing insights as how best to manipulate 

methanotrophic processes to better mitigate greenhouse gas emissions. 



 

1 

CHAPTER 1. Introduction 
 
 

1.1. Production of methane in landfills 
 

Methane, a major greenhouse gases that contributes to global warming, has a  

global warming potential (GWP) ~23 times higher than that of CO2 (93). Specifically, 

GWP is an index that provides the relative impact a specific gas could have on the global 

climate over a defined time scale. However, because CH4 has a short life (~8 years) 

relative to other greenhouse gases such as CO2 (50-200 years) and N2O (120 years) (93, 

116), controlling the emission of CH4 seems likely to be favorable in terms of short-term 

control of global warming.   

Methane is produced through the decomposition of organic wastes in landfills 

along with CO2. Typically, CH4 and CO2 comprise the majority of landfill gas (143), as 

shown in Table 1-1.  

Table 1-1. Typical constituents in municipal solid waste landfill gas (143) 

Component % 
CH4 45-58 
CO2  35-45 
N2 < 1-20 
O2  < 1-5 
H2 < 1-5 

H2O 1-5 
Trace constituents  

(e.g., nonmethane organic 
compounds, H2S) 

< 1-3 
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In 2005, it was estimated that US emitted 132 Tg CO2 equivalent of CH4 from landfills 

(municipal solid waste and industrial landfills combined) (62). This amount of CH4 

accounts for 25 % of the anthropogenic CH4 emission in the US, putting landfills as one 

of the major anthropogenic sources of CH4 along with natural gas systems and enteric 

fermentation (62). Global estimates of CH4 emissions show that CH4 emissions from 

landfills are 35-40 Tg CH4·yr-1, which is 6-8 % of the total emission of CH4 including 

both natural and anthropogenic sources (68, 77, 115). A detailed list of sources of 

anthropogenic CH4 is shown in Table 1-2 (62).  

Table 1-2. Recent trends of CH4 emissions in the US (62). Numbers in parentheses represent the 
proportion to total (%) 

1990 1995 2000 2005  
Tg CO2 Eq. Tg CO2 Eq. Tg CO2 Eq. Tg CO2 Eq. 

Landfills 161.0 (26.4) 157.1 (26.2) 131.9 (23.4) 132.0 (24.5) 
Natural Gas Systems 124.5 (20.4) 128.1 (21.4) 126.6 (22.5) 111.1 (20.6) 
Enteric Fermentation 115.7 (19.0) 120.6 (20.1) 113.5 (20.1) 112.1 (20.8) 
Coal Mining 81.9 (13.5) 66.5 (11.1) 55.9 (9.9) 52.4 (9.7) 
Manure Management 30.9 (5.1) 35.1 (5.9) 38.7 (6.9) 41.3 (7.7) 
Petroleum Systems 34.4 (5.7) 31.1 (5.2) 27.8 (4.9) 28.5 (5.3) 
Wastewater 
Treatment 24.8 (4.1) 25.1 (4.2) 26.4 (4.7) 25.4 (4.7) 

Stationary Sources 8.0 (1.3) 7.8 (1.3) 7.4 (1.3) 6.9 (1.3) 
Rice Cultivation 7.1 (1.2) 7.6 (1.3) 7.5 (1.3) 6.9 (1.3) 
Abandoned Coal 
Mines 6.0 (1.0) 8.2 (1.4) 7.3 (1.3) 5.5 (1.0) 

Others 14.8 (2.4) 11.5 (1.9) 20.7 (3.7) 17.2 (3.2) 
Total  
(Tg CO2 Eq.) 609.1 598.7 563.7 539.3 

 

 Methane emission from landfills, however, has decreased from 161.0 Tg CO2 

equivalent in 1990 to 131.9 Tg CO2 equivalent in 2000. This decrease has been attributed 

to the installation of gas collection systems in landfills (62). Specifically, as shown in 

Table 1-3, although the amount of CH4 generated from landfills has increased between 
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1990 and 2005 from 188.7 to 249.6 Tg CO2 equivalent, the amount of CH4 captured for 

energy generation or flaring also increased such that the overall emission of CH4 

decreased between 1990 and 2005.  

Table 1-3. Historical emission of CH4 from landfills (Tg CO2 equivalent) (62) 

 1990 1995 2000 2005 
Landfills  201.6 217.6 232.7 265.7 
Recovered     
      Gas-to-energy 17.6 22.3 49.0 58.6 
      Flared 5.0 21.8 37.1 60.4 
Oxidized 17.9 17.5 14.7 14.7 
Total Emitted 161.0 157.1 131.9 132.0 
 

1.2. Methane capture strategies in landfills 
 

 Capturing CH4 for energy generation was first put into full-scale use at the Palos 

Verdes sanitary landfill in California in 1975 (174). However, at that time, installing 

landfill gas collection systems were not required. In 1991, Subtitle D of Resource 

Conservation and Recovery Act (RCRA) (40 CFR Part 258) went into effect. Subtitle D 

of RCRA requires that: i) landfill gas be controlled such that CH4 concentrations do not 

exceed 25 % of the Lower Explosive Limit (LEL) in the facilities’ structures (for CH4 

LEL is 5% by volume), and ii) the concentration of CH4 should not exceed the LEL at the 

boundary of the facilities.  

There are two general types of systems to collect gas from landfills in order to 

meet these regulations: i) passive, and; ii) active gas collection systems (143). The 

general concept of a passive gas collection system is to provide avenues for soil gases to 

be emitted into the atmosphere without the use of mechanical equipment as shown in 

Figure 1-1. Therefore, passive gas collection systems are relatively inexpensive but as it 

vents soil gas directly into the atmosphere, it can pose some environmental risk.  
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Figure 1-1. Passive gas collection system for release of landfill gas into the atmosphere (5) 

 

Alternatively, active gas collection systems utilize mechanical equipment such as 

blowers and pumps to enhance the gas collection rate. Such gas collection systems are 

now enforced by the Landfill Rule (New Source Performance Standards and Emissions 

Guidelines) promulgated under the Clean Air Act in March 1996 and amended in June 

1998 (63, 64). These rules require landfill gases to be collected and either flared or 

utilized at landfills that: i) have a design capacity larger than 2.5 million metric tons and 

2.5 million cubic meters, and; ii) emit more than 50 metric tons of nonmethane organic 

compounds. Because of the Landfill Rule, landfills that must meet its criteria have either 

flaring or CH4 recovery systems following the active gas collection system. A schematic 

diagram of a typical active gas collection system is provided in Figure 1-2.  
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Figure 1-2. Active gas collection system for treatment of gas, e.g. energy generation, incineration (5) 

 

Landfills that are large enough to be in compliance with the Landfill Rule can 

thus pose less environmental risks, compared to landfills with smaller capacity, via active 

gas collection systems whether the collected CH4 is either flared or used for energy. The 

US EPA, however, recognizes that even with the Landfill Rule, in 2020, the projected 

CH4 emissions from landfills will still be greater than 40 million metric tons of carbon 

equivalent (65).  

It is estimated that as of 2004, more than 100,000 closed landfills exist in the US 

(163), as well as 1654 active landfills (156). However, not all landfills are required to 

either have gas collection systems installed and or possess gas generation properties 

suitable for energy production/flaring due to their age and/or the materials landfilled (69, 

162). Therefore, it is important to develop methodologies that will reduce the emission of 
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CH4 from landfills where installation of active gas collection systems is either not cost-

effective or where such systems do not prevent all fugitive emissions of CH4.  

1.3. Sinks of CH4 
 

Natural sinks of CH4 consist of reaction with OH radicals in the troposphere, OH, 

Cl, and O(1D) radicals in the stratosphere, and soil microbes (116). The major sink of 

atmospheric CH4 is the reaction of CH4 with OH● in the troposphere. In the troposphere 

CH4 initially reacts with OH●  to produce CH3● (145). CH3● then further undergoes 

chemical reaction and produces CO, CO2, and H2O among other compounds (145). The 

OH● sink in the troposphere is reported to be responsible for ~510 Tg(CH4)·yr-1 (93, 116). 

In the stratosphere, CH4 reacts with compounds such as OH, Cl, and O(1D) radicals, but 

this process plays a minor role in removing CH4, being responsible for ~40 Tg(CH4)·yr-1 

(116).   

Yet another sink of CH4 is via soil microbial activity. In soils, CH4 can be 

oxidized into other forms of carbon via microorganisms, i.e., methanotrophs. 

Methanotrophs are a group of bacteria that utilize CH4 as its sole carbon and energy 

source in the presence of O2. It has been estimated that anywhere from 10 to 100 % of the 

CH4 generated in landfills is oxidized by these bacteria (24, 37, 38, 44, 118, 178). 

Interestingly, there have been reports where landfills have acted as sinks of CH4 rather 

than as sources (21, 22). Therefore, stimulating the activities of such bacteria in landfill 

cover soils could possibly reduce emission of CH4 from landfills, especially in landfills 

where active gas collection is not required. In attempts to stimulate methanotrophic 

activities, the addition of nitrogen-based fertilizers have been shown to be promising in 

terms of stimulating CH4 oxidation in soils (14, 48, 129) as the nitrogenous fertilizers are 
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used as nitrogen sources by the soil microorganisms. However, addition of nitrogen-

based fertilizers to soils generally results in stimulation of production of yet another 

greenhouse gas, N2O, which has a GWP ~300 times greater than that of CO2 (93). Thus, a 

strategy to mitigate one greenhouse gas, CH4, could result in the production of a 

relatively more potent greenhouse gas, N2O.  

1.4. Biogenic N2O production 
 

Nitrous oxide, can be produced through both biological and abiotic processes. 

Many groups of microorganisms have the ability to produce N2O but bacterial-mediated 

nitrification and denitrification appear to be the predominant sources of N2O production 

(67). Microbial production of nitrous oxide can be achieved through three different 

processes; (i) a by-product of nitrification, (ii) nitrifier denitrification, and/or (iii) 

denitrification. The first process is via autotrophic ammonia oxidizing bacteria, or 

nitrifiers, which are a group of bacteria that oxidize NH3/NH4
+ to generate energy and 

CO2 as the main carbon source (106). Oxidation of NH3/NH4
+ to NO2

- via hydroxylamine 

is shown in Figure 1-3 (4). It has been shown that ammonia oxidizing bacteria can 

produce N2O as a by-product of oxidation of hydroxylamine to NO2
- (87). A study using 

highly purified hydroxylamine oxidoreductase from Nitrosomonas europaea showed that 

NO2
- and NO3

- composed 87% of the product of hydroxylamine while the remaining 13% 

were N2O and NO with N2O comprising the majority (87).  

Recently, the archaeal counterpart of the autotrophic ammonia-oxidizing bacteria 

has been gaining interest as it appears that their abundance could exceed that of 

ammonia-oxidizing bacteria in soils (114). However, the ability/inability of ammonia-

oxidizing archaea to produce N2O is not known, nor is their general activity in situ.   
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Figure 1-3. Ammonia oxidizing pathway (4) 
AMO: ammonia monooxygenase, HAO: hydroxylamine oxidoreductase, NIR: nitrite reductase, 

NOR: nitric oxide reductase 

 

The second process, nitrifier denitrification is another process that produces N2O 

which can be attributed to autotrophic ammonia oxidizing bacteria. Specifically, 

ammonia oxidizing bacteria have been shown to be able to reduce NO2
-, the product of 

NH3/NH4
+ oxidation, to N2O (95, 142, 155). Studies using Nitrosomonas and 

Nitrosospira species have shown that ammonia-oxidizing bacteria are capable of 

reducing NO2
- and produce N2O while doing so. Initially, it was thought that nitrifier 

denitrification occurs in O2-limiting environments (71, 142) but recently it has been 

shown that it can occur at atmospheric levels of O2 (i.e., ~ 20% (v/v)) (155). However, 

the mechanism for production of N2O via nitrifier denitrification is still unclear. At first, 

it was speculated that nitrite reductase reduced NO2
- to produce N2O in ammonia-

oxidizing bacteria. Homologues of genes encoding copper-containing nitrite reductase 

(nirK) were found in the genome of Nitrosomonas europaea (34). However, disruption of 

the gene nirK in Nitrosomonas europaea actually resulted in larger production of N2O 

suggested that nitrite reductase had a minimal role in producing N2O from NO2
- (11). It 

was further suggested that HAO could have a role in producing N2O from NO2
- (11, 86).     
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A third process that can produce N2O is through anaerobic denitrification i.e., use 

of nitrate (NO3
-) as terminal electron acceptor as shown in Figure 1-4. Denitrifying 

abilities are wide spread among a number of taxonomic and physiological groups of 

bacteria (67).  

 

Figure 1-4. Reduction of nitrate to nitrogen gas in denitrifiers (140) 
NAR: Nitrate reductase, NIR: Nitrite reductase, NOR: Nitric oxide reductase,                               

NOS: Nitrous oxide reductase 

 

For denitrification to occur there are several conditions that are necessary; i) 

presence of bacteria capable of denitrification, ii) availability of a suitable reductant such 

as organic carbon, iii) restriction of O2 availability, and iv) availability of nitrogen oxides, 

e.g., NO3
-, NO2

-, and/or NO (67). As an intermediate of reduction of NO3
- to N2, N2O is 

formed. Thus, when nitrogen-based fertilizer (e.g., NH4
+ or NO3

-) is added to soils, it is 

not surprising to see increased production of N2O. Indeed, nitrogen-based fertilizers are 

commonly applied to agricultural soils, making these systems one of the major sources of 

N2O (62).  

Interestingly, methanotrophs have been reported to be capable of producing N2O 

(125, 165, 182). In one study, Methlyosinus trichosporim OB3b was shown to be able to 

produce N2O but it was concluded that methanotrophs do not play a significant role in 

N2O production in the environment because the production of N2O by this particular 

strain was only 1.6% of that of Nitrosomonas europaea (182). In another study using 

landfill cover soils, however, methanotrophs were suggested to be directly linked to N2O 

production via nitrification (125). Methanotrophs can also be involved in N2O production 
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via cross-feeding of denitrifying through metabolite excretion (2). In these studies 

methanotrophs in high CH4 and low O2 conditions were associated with a 

Hyphomicrobium-like bacterium which can denitrify using methanol (2). Therefore, 

understanding the processes involved in CH4 oxidation and N2O production individually 

and holistically is important in the mitigation of greenhouse gases from landfill cover 

soils.  

1.5. Nonmethane organic compounds  
 

As shown in Table 1-1, nonmethane organic compounds (NMOC) are also 

emitted from landfill cover soils. These NMOC include compounds such as alkanes, 

alkenes, halogenated hydrocarbons, aromatic hydrocarbons, and also sulphur compounds. 

NMOCs are reported to pose risk on human health as some of these compounds are 

considered carcinogenic/mutagenic (29). Another important issue is that some of the 

compounds categorized as NMOC can inhibit CH4 oxidation since methanotrophs are 

capable of co-metabolizing compounds such as vinyl chloride, dichloroethylene, and 

trichloroethylene (74, 76, 122). Thus, understanding the effects of NMOC on 

methanotrophs will be crucial in mitigation of both CH4 and NMOC.  

1.6. Physiology and phylogeny of methanotrophs 
 

Methanotrophs are a group of bacteria that utilize CH4 as their sole carbon and 

energy source. These microorganisms oxidize CH4 to CO2 via methanol, formaldehyde, 

and formate. While doing so, a portion of the carbon from CH4 is utilized to produce cell 

materials as can be seen in Figure 1-5. It has been shown that 30-50 % of the carbon in 
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CH4 can be incorporated into biomass by methanotrophs depending on the source of 

nitrogen, i.e., NH4
+ or NO3

- (112). 

 

 

Figure 1-5. Metabolic pathway of methanotrophs (55) 
pMMO: particulate methane monooxygenase, sMMO: soluble methane monooxygenase, MDH: 
methanol dehydrogenase, FalDH: formaldehyde dehydrogenase, FDH: formate dehydrogenase 

 

Traditionally, methanotrophs were classified into two general groups (Type I and 

II) based on several characteristics such as cell morphology, membrane arrangement, 

carbon assimilation pathway, and predominant phospholipid fatty acids (PLFA) (76). 

Recently, however, acidophilic bacteria belonging to the phylum Verrucomicrobia 

exhibiting CH4 oxidation capabilities have been isolated (60, 94, 141) while the 

traditional Type I and Type II methanotrophs belong to Proteobacteria. Some of the 

characteristics of Type I and II methanotrophs and methanotrophic Verrucomicrobia are 

summarized in Table 1-4.  
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Table 1-4. Characteristics of Type I and II methanotrophs and methanotrophic Verrucomicrobia (18, 
28, 49-52, 59, 60, 76, 82, 94, 141, 170, 181) 

 Characteristic Type I Type II Verrucomicrobia
Cell morphology Short rods, usually 

occur singly; some 
cocci, ellipsoids, 
or pleomorphic 

Crescent-shaped 
rods, rods, pear-
shaped cells, 
ovoids, sometimes 
occur in rosettes or 
cocci 

Rods 

G+C content of 
DNA (mol%) 

43-65 60-67 Not determined 

Membrane 
arrangement 

   

Bundles of 
vesicular disks 

Yes No No 

Paired 
membranes 
aligned to 
periphery of cells 

No Most except 
Methylocella and 

Methylocapsa 

No 

Vesicular 
membranes or 
polyhedral 
organelles 

No  Only in 
Methylocella 

Yes 

Membranes 
aligned to one 
side of cells 

No Only in 
Methylocapsa 

No 

Nitrogen fixation Some strains Yes No 
Resting stages 
formed 

   

Exospores No Some strains Unknown 
Cysts Some strains Some strains Unknown 

RuMP pathway Yes No No 
Serine pathway Sometimes in 

Methylococcus 
and 

Methylocaldum 

Yes Yes 

Calvin-Benson 
pathway 

Partially in 
Methylococcus 

and 
Methylocaldum 

No Yes 

Major PLFAs 14:0, 16:0, 
16:1ω8c, 16:1ω7c, 
16:1ω6c 16:1ω5t, 
18:1ω9c, 18:1ω7 

16:1ω8c,18:1ω8c, 
18:1ω7 

18:0, 16:0, aC15:0, 
14:0 

Bacterial affiliation γ-Proteobacteria α-Proteobacteria Verrucomicrobia 
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Type I methanotrophs, which belong to γ-Proteobacteria, are comprised of 

Methlyomonas, Methylococcus, Methylomicrobium, Methylosarcina, Methylosphaera, 

Methylothermus, Methylosoma, Methylohalobius, Methylocaldum, and Methylobacter (56, 

76, 144). Type I methanotrophs can further be divided into two different groups, Type Ia 

and Ib, where Type Ib methanotrophs are comprised of Methylococcus, Methylocaldum 

and Methylothermus whereas the remaining genera are classified as Type Ia 

methanotrophs. Genera that are members of Type II methanotrophs, which belong to α-

Proteobacteria, include Methylosinus, Methylocella, Methylocapsa, and Methylocystis (51, 

52, 76). Additional to the traditionally accepted Type I methanotrophs that belong to γ-

Proteobacteria, filamentous microorganisms Crenothrix polyspora and Clonothrix fusca 

have been reported to be CH4 oxidizing γ-Proteobacteria (160, 175). Phylogenetic 

analysis based on 16s rRNA sequences of selected methanotrophs are shown in Figure 

1-6.  

 

Figure 1-6. Phylogenetic tree constructed from 16s rRNA gene sequences using MEGA4 (166). The 
tree was constructed using the Neighbor-Joining method (148) with 1304 positions of 16s rRNA. The 
bootstrap consensus tree was inferred from 500 replicates (66). Evolutionary distances were 
computed using the Maximum Composite Likelihood method (167) with the scales indicating 0.02 
base substitutions per site (153).   
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The most significant difference found among Type I and II methanotrophs and 

methanotrophic Verrucomicrobia was the structure of intracytoplasmic membranes 

(ICM). All the Type I methanotrophs that have been characterized possess type I ICM, 

stacks of vesicular disks. Meanwhile, most of the Type II methanotrophs possess type II 

ICM, paired membranes aligned to the periphery of the cells. However, recently 

characterized methanotrophs that belong to the genera Methylocella and Methylocapsa 

was identified to have different ICM systems compared to both type I and II ICM. 

Methylocella did not possess the type II ICM found in other Type II methanotrophs. 

Rather, Methylocella appeared to have vesicular membrane system connected to the 

cytoplasmic membrane, found on the periphery of the cytoplasm (50, 52, 59). Also, 

Methylocapsa contained packed vesicular membranes aligned to only one side of the cell 

(51). The methanotrophs belonging to the phylum Verrucomicrobia had yet another 

different membrane system, i.e., vesicular/tubular membranes or filled with polyhedral 

organelles (60, 94, 141). The identity of the unique membrane system of methanotrophic 

Verrucomicrobia has yet to be elucidated. However, it was speculated to be either similar 

to the vesicles found in Methylocella (141) or carboxysomes which are normally found in 

cyanobacteria and chemoautotrophs (94).  

Another significant difference was found in what type of carbon assimilation 

pathway was present among these cells. In Type I methanotrophs, the ribulose 

monophosphate (RuMP) pathway is used while in Methylococcus and Methylocaldum, 

the serine pathway  is found in some strains (18, 76). All known Type II methanotrophs 

possess only the serine pathway. Interestingly, in  methanotrophic Verrucomicrobia, 

possibly a variation of the serine pathway was present supported by identifying some 



 

15 

genes that encode enzymes part of the serine pathway (60, 141). Additionally, in these 

studies, all the genes to form a complete Calvin-Benson cycle were identified (60) or 

genes for Ribulose-1,5-bisphosphate carboxylase/oxylase (RuBisCO) was detected (141). 

Unlike the RuMP and serine pathway where formaldehyde, a product of the oxidation of 

methanol shown in Figure 1-5, is utilized to produce cell materials, the Calvin-Benson 

cycle utilizes CO2. It has been shown that certain methanotrophs, specifically cells 

belonging to the genera Methylococcus and Methylocaldum, also possess genes encoding 

RuBisCO, which is part of the Calvin-Benson cycle (10). The study reported that 

Methylococcus capsulatus (Bath) was only able to grow autotrophically, i.e., utilize CO2, 

only on solid medium when H2 was present and not in liquid medium (10). It will be 

interesting to see what the role of the complete Calvin-Benson cycle or RuBisCO genes 

would be in the methanotrophic Verrucomicrobia especially considering the speculation 

on the possible function of the polyhedral organelles found in a methanotrophic 

Verrucomicrobia species. In the study, it was suggested that the identity of the polyhedral 

organelles could be a carboxysome, which are known to contain RuBisCO in autotrophic 

microorganisms (94).  

 Abundant PLFA are also different among methanotrophs. Type I methanotrophs 

are abundant in 14:0, 16:0, 16:1ω8c, 16:1ω7c, 16:1ω6c 16:1ω5t, 18:1ω9c, 18:1ω7 while 

16:1ω8c, 18:1ω8c, 18:1ω7 are generally found in large portions among Type II 

methanotrophs. Fatty acid 18:1ω7 was considered a marker for Type I methanotrophs but 

recently a Type II methanotroph, Methylocystis heyeri was found to have 18:1ω7 (49). 

Methanotrophic Verrucomicrobia were identified to have 18:0, 16:0, aC15:0, 14:0 (60). 

However, PLFA information of methanotrophic Verrucomicrobia is limited to just one 
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strain at this time since PLFA analysis was not performed on the other two strains that 

have been studied.   

The first step of CH4 oxidation is carried out by methane monooxygenase (MMO). 

The MMO can be found in two different forms. The particulate methane monooxygenase 

(pMMO) is found in the membrane whereas the soluble methane monooxygenase 

(sMMO) resides in the cytoplasm. Most methanotrophs are known to express the pMMO 

whereas only a few methanotrophs have the ability to also express sMMO. For 

methanotrophs that are capable of expressing both forms of MMO, the copper to biomass 

ratio strongly regulates which form of MMO is expressed. High copper to biomass ratios 

trigger the expression of pMMO whereas low copper to biomass induces the expression 

of sMMO. It appears that no other metal ions regulate the expression of MMOs in 

methanotrophs (133).  

1.7. Molecular biology of MMO 
 

Genes that encode for pMMO are clustered on the chromosome and are normally 

found in the order of pmoCAB as shown in Figure 1-7. Similar to ammonia 

monooxygenase genes in Nitrosomonas europaea (34), some methanotrophs have been 

found to have multiple copies of pMMO genes (176).  

 

Figure 1-7. Gene cluster of pMMO (132) 
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Genes that encode for sMMO are also clustered in the chromosome of 

methanotrophs (132) as shown in Figure 1-8. Genes mmoX, mmoY, and mmoZ encode the 

α, β, and γ subunit of the hydroxylase subunit while mmoB and mmoC encode a small 

regulatory protein protein B and the reductase component, respectively. orfY which 

encodes protein MMOD, may possibly be involved in the assembly of hydroxylase diiron 

center (128), but its function is still unclear.  

 

Figure 1-8. Gene cluster of sMMO (132) 

 

1.8. Kinetics of MMO 
 

The kinetics of CH4 oxidation by both MMOs have been reported as shown in 

Table 1-5. Cells expressing pMMO had higher affinities for CH4 than cells expressing 

sMMO (i.e., lower Ks values). Conversely, in Methylosinus trichoporium OB3b, the 

maximal uptake rate of CH4 was higher when cells were expressing sMMO. Therefore, it 

is important to know which MMO the methanotrophs are expressing in situ to effectively 

utilize these cells for mitigation of CH4 from landfills.  
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Table 1-5. Whole cell kinetics of CH4 by a Type I (Methylomicrobium album BG8) and  
a Type II (Methylosinus trichosporium OB3b) expressing either soluble MMO or particulate MMO 

Strain Enzyme Cu2+ 
(μM) 

Vmax 
(nmol·(min·mg protein)-1) 

Ks 
(μM) 

Vmax/Ks 
(ml·(min·mg protein)-1) 

Methylomicrobium 
album BG8 pMMOa 10 453 19 25 

sMMOb 0 726* 92 7.9 Methylosinus 
trichosporium 

OB3b pMMOc 10 110 14 7.9 
*Assumed 50% of cells in mass were protein; a (74); b (138); c (122) 
 

 

The form of MMO methanotrophic communities are expressing in situ could be 

especially important if chlorinated solvents such as trichloroethylene (TCE), trans-

dichloroethylene (t-DCE), or vinyl chloride (VC) are also present in the system. Although, 

both forms of MMO are capable of co-metabolizing a broad range of compounds 

including these chlorinated solvents (74, 122), sMMO-expressing cells have been 

reported to have a faster initial degradation rates for chlorinated solvents compared to 

pMMO-expressing cells (119, 138). Pseudo-first-order rate constants of MMO mediated 

degradation of different chlorinated solvents are shown in Table 1-6.  

Table 1-6. Pseudo-first-order rate constants of methanotrophic cells, Methylosinus trichosporium 
OB3b and Methylomicrobium album BG8, expressing either pMMO or sMMO 

 Pseudo-first-order rate constant (ml·min-1·mg protein-1) 
Compound sMMO-expressing 

M. trichosporium 
OB3b* (172) 

pMMO-expressing 
M. trichosporium 
OB3b* (172) 

pMMO-expressing 
M. album BG8 (74) 

Dichloromethane 16 1.4 0.45 
Vinyl chloride 15.2 3.8 0.23 
trans-
dichloroethylene 

6.6 1.8 0.72 

cis-dichloroethylene 9.8 0.12 0.15 
1,1-dichloroethylene 6.4 <0.06 0.092 
Trichloroethylene 6.2 <0.06 0.072 
* Assumed 50% of cell mass is protein 
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Methane and co-substrates such as chlorinated solvents may be co-mingled in situ, 

leading to difficulties in modeling methanotrophic growth and substrate turnover due to 

competitive binding by MMOs, possible substrates and product toxicity, as well as long-

term reductant limitation. Indeed, chlorinated ethylenes have been reported to be emitted 

from landfills along with CH4 (8, 61). Therefore, it is important to understand what the 

effects of co-metabolites on the methanotrophs, i.e., growth, expressing either form of 

MMO.  

Although chlorinated solvents are hazardous chemicals posing risks to 

groundwater, in terms of global warming, CH4 could also be considered a hazardous 

compound. If there exists any differential effects due to the presence of NMOC, namely 

chlorinated solvents which can be co-metabolized by methanotrophs expressing either 

form of MMO, it is important to know what the effects could be on both CH4 

consumption and NMOC removal when expressing either form of MMO. If indeed there 

are such differential effects, what form of MMO methanotrophs are expressing in situ 

would provide great value in determining what strategy to apply in order to stimulate CH4 

consumption and NMOC removal.  

1.9. Ecology of methanotrophs 
 

Methanotrophs are ubiquitous in the environment. These cells have been found in 

environments that are rich in CH4 such as landfills (25, 40) and rice paddies (78, 123), as 

well as those poor in CH4 such as upland forest soils (103, 111) . They have also been 

found in alkaline environments (117) and even at extremely acidic environments (53, 60, 

94, 141). The traditional Type I and II methanotrophs are ubiquitous and can be found 

frequently in the previously mentioned environments such as landfills, rice paddies, and 
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upland soils, while the newly discovered methanotrophs that belong to phylum 

Verrucomicrobia and the filamentous methanotrophs have yet to been found only in 

specified environments. Although the traditional Type I and II methanotrophs are often 

found in the same environment, it appears that some environmental conditions favor one 

type over the other. Specifically, in CH4-rich and O2-limiting environments, Type II 

methanotrophs seemed to outcompete Type I methanotrophs while the inverse has been 

observed in CH4-limiting and O2-rich environments (3, 31). In nitrogen- and/or nutrient- 

limiting environments, it appears that Type II methanotrophs have an advantage over 

Type I methanotrophs while in nitrogen-rich environments Type I methanotrophs appear 

to predominate (17, 72, 129, 180). Therefore, biogeochemical parameters can regulate 

methanotrophic distribution and possibly activity.  

Beside the traditional Type I and II methanotrophs that belong to the phylum 

Proteobacteria, newly isolated three methanotrophic strains that belong to the phylum 

Verrucomicrobia have been discovered in extremely acidic locations (pH=1-2.5) and at 

high temperatures above 50 ˚C (60, 94, 141). Filamentous sheathed methanotrophs, 

Crenothrix polyspora and Clonothrix fusca have been found in filters of pumping wells 

and sand filtration systems in a groundwater treatment plant (160, 175).  

Studies have investigated the vertical distribution of methanotrophs in various 

locations such as landfill cover soils (96, 97, 161), rice paddies (79, 123),  wetlands (16, 

54), deep-sea hydrothermal plumes (110) and forest soils (81, 103, 114). In these findings, 

methanotrophs were found in relatively large numbers in the vicinity where the counter 

gradients of CH4 and O2 met.  
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1.10. Objectives 
 
 

The objective of this work was to understand what affects CH4 consumption by 

methanotrophs. First, the effects of nonmethane organic compounds (NMOCs) that are 

commonly found in landfill gas on methanotrophic growth were examined. As 

methanotrophs co-metabolize such NMOCs via MMO activity without any benefit, it was 

hypothesized that the presence of NMOCs would inhibit the methanotrophic growth. 

Another important factor in understanding the effects of NMOCs on methanotrophic 

growth is the form of MMO the methanotrophs express as MMOs have different 

characteristics. In order to examine the effects of nonmethane organic compounds on 

methanotrophic growth, growth studies of methanotrophs with various amounts of 

NMOCs were performed using custom-made vials. Additionally, a dimensionless number 

was developed to investigate its use as a predictive tool in assessing the effects of 

NMOCs on methanotrophic growth.  

Secondly, the effects of amendments on CH4 oxidation and N2O production in 

landfill cover soils were examined by constructing soil microcosm studies using landfill 

cover soils. As amendments that affect CH4 oxidation can also affect N2O production, 

soil microcosm studies were carried out to assess the effects of single amendments, that 

included moisture content, different forms of nitrogen, copper, organic carbon, and 

selective inhibitors chlorate and phenylacetylene, on CH4 oxidation and N2O production. 

Based on the results obtained from single amendment tests, the amendments were 

combined to investigate if there were any synergistic effects on CH4 oxidation and N2O 

production. Additionally, DNA microarray and transcript analyses were performed to 
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understand the composition of methanotrophic community and activity in response to the 

amendments that showed stimulation of CH4 oxidation and inhibition of N2O production.  
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CHAPTER 2. Methods and Materials 
 

2.1. Effect of nonmethane organic compounds on 
methanotrophs 

 
Culture conditions  Methylosinus trichosporium OB3b was grown on nitrate mineral salt 

(NMS) medium (179) at 30 ºC in Erlenmeyer side arm flasks shaken at 260 rpm in a CH4 

to air ratio of 1:2 at 1 atm of pressure. The culture medium was 30 % of the total flask 

volume. For pMMO-expressing conditions, 20 μM copper was added aseptically in the 

form of CuCl2 after autoclaving and was equilibrated for at least 1 day before the media 

were inoculated. This concentration was used to prevent any limitations of copper during 

the entire growth period and also as it has been shown that pMMO-expressing cells 

degraded TCE at this concentration of copper (122). For sMMO expressing conditions, 

no copper was added.  

 

Chemicals  Highest purity CH4 (>99.99 %) and acetylene (99.6 %) were obtained from 

Matheson Gas Company, Newark, NJ. Trichloroethylene, TCE, (>99.9 % GC grade) and 

methanol (Biotech grade) was purchased from Fisher Scientific Company, Fair Lawn, NJ.  

Trans-dichloroethylene, t-DCE (99 % GC grade) was purchased from Aldrich, 

Milwaukee, WI. Vinyl chloride, VC, (>99.5 % GC grade) was purchased from Fluka, 

Ronkonkoma, NY.  Distilled deionized water from a Corning Millipore D2 system was 

used for all experiments.  All glassware was washed with detergent and then acid washed 
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in 2 N HNO3 for 24 hours to remove trace metals, including copper. Nitric acid was 

removed by repetitive rinses with distilled-deionized water.  

For chlorinated solvents liquid at room temperature, i.e. TCE and t-DCE, 

saturated stock solutions were prepared by the method of Chang and Alvarez-Cohen (35). 

Water saturated with either TCE or t-DCE was added to sample vials by using Hamilton 

1700 series gas-tight syringes (Hamilton Company, Reno, NV), with care to exclude any 

non-aqueous-phase liquids.  For compounds gaseous at room temperature, i.e., CH4, 

acetylene and VC, samples were added to vials using Precision Lok® gas-tight syringes 

(Precision Sampling Corp. Baton Rouge, LA). Formate was added in the form of sodium 

formate to an initial concentration of 20 mM from a stock solution of 500 mM. The 

appropriate amount of chlorinated solvents to add was calculated using following 

dimensionless Henry’s constants: VC, 1.262 (130), t-DCE, 0.474, and; TCE, 0.458 (169). 

For CH4 and acetylene, a dimensionless Henry’s constant of 27.02 and 0.87, respectively, 

was used (89, 130). 

 

Measurement of Michaelis-Menten Parameters of vinyl chloride and trans-

dichloroethylene degradation  The procedure described previously (21) was used to 

measure Vmax and Ks for the degradation of vinyl chloride and t-DCE by M. 

trichosporium OB3b expressing pMMO and vinyl chloride by M. trichosporium OB3b 

expressing sMMO. Specifically, M. trichosporium OB3b was grown to mid-exponential 

phase (OD600=0.75-0.8) and then diluted to OD600 ~0.25 with pre-warmed NMS medium 

with the same amount of copper as the initial growth medium.The cells were then 

allowed to grow to an OD600=0.3. To normalize rates to biomass, the protein 
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concentrations were measured using the Bio-Rad protein assay kit with bovine serum 

albumin as a standard. After CH4 was removed from the growth flasks by evacuating and 

re-equilibrating the flasks with air at least 10 times, 3 ml aliquots were then transferred to 

20 ml serum vials and 20 mM formate added as sodium formate.  The vials were then 

capped with teflon-coated rubber butyl stoppers (National Scientific Co., Duluth, GA) 

and crimp sealed with aluminum caps. Triplicate samples were prepared for all 

degradation assays. For analysis of t-DCE degradation, aqueous concentrations from 28 

to 222 µM were used for both pMMO- and sMMO-expressing cells. For the analysis of 

VC degradation aqueous concentrations from 8 -153 µM and 8- 383 µM were used for 

pMMO- and sMMO-expressing cells, respectively. After adding either VC or t-DCE, the 

vials were incubated at 30 °C with shaking at 270 rpm. The initial rates of degradation 

were determined from using a time interval from t = 0 to t = 3 minutes for VC 

degradation by M. trichosporium OB3b expressing sMMO, and from t = 0 to t = 40 

minutes for VC degradation by M. trichosporium OB3b expressing pMMO. Furthermore, 

a 30 minute time frame from t = 0 to t = 30 minutes was used to measure the initial rates 

of t-DCE degradation by M. trichosporium OB3b expressing pMMO. An automated 

headspace sampler (Tekmar 7000, Tekmak Co., Cincinnati, OH) was used to inject 

samples onto an HP 5890 Series II gas chromatograph with a flame ionization detector 

(FID) and a 75 m DB-624 0.53 mm I.D. (J&W Scientific Co.). The temperatures of the 

injector, oven, and detector were 160, 210 and 250 ºC, respectively with a N2 carrier gas 

rate of 39 ml·min-1.  Nonlinear regression analysis of whole cell kinetics was performed 

using KaleidaGraph® v.4.0 (Synergy Software) 
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Effect of chlorinated solvents on cell growth  M. trichosporium OB3b was grown to the 

late exponential growth phase (OD600 ~ 0.8 as measured using a Spec20 (Milton Roy, Co., 

Ivyland, PA) and then diluted to an OD600 of 0.04-0.05 with the appropriate pre-warmed 

fresh medium (i.e., either not amended with copper or with 20 μM copper as CuCl2). The 

cells were then allowed to grow to an OD600 of 0.06 to ensure active growth before 

adding chlorinated ethenes. Methane was then removed from the flasks by evacuating the 

flasks ten times and allowing air to re-equilibrate after each evacuation.  5 mL aliquots 

were then aseptically transferred to specially constructed 32.5 mL serum vials created by 

attaching a 12 mL Pyrex test tube to a 20 mL GC headspace analysis serum vials. The 

design enabled continuous non-invasive measurement of growth using a Spec20 as well 

as ensured gas-tight systems for the measurement of CH4 and chlorinated solvents when 

capped with teflon-coated butyl-rubber stoppers (National Scientific Co., Duluth, GA). 

Formate as sodium formate was then added to achieve an initial concentration of 20 mM, 

and the vials capped with Teflon-coated butyl-rubber stoppers and crimp sealed.  Using a 

gas-tight Dynatech A-2 syringe, 5 mL of the headspace was then removed and replaced 

with 5 mL of CH4 to achieve an initial concentration of 270 μM in solution.  Varying 

amounts of VC, t-DCE, and TCE were then added to achieve aqueous concentrations 

ranging from 10 to 100 μM.   

 

Experimental Measurement of CH4 and Chlorinated Ethene Concentrations  

Immediately after addition of chlorinated ethenes, 100 μL headspace samples were taken 

using Precision Lok® gas-tight syringes for confirmation of initial concentration of all 

substrates using the following GC configuration: HP 5890 series II gas chromatograph 
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with a flame ionization detector (FID) with a 75 m DB-624 0.53 mm I.D. column  and 

injector, oven, and detector temperatures set at 160, 80, and 250 °C, respectively and a N2 

carrier gas rate of 39 ml·min-1. The vials were then incubated at 30 ºC with shaking (260 

rpm) until the stationary growth phase was reached as measured using a Spec20.  

Methane and chlorinated ethene concentrations in the sample vials were then determined 

by again taking 100 μL headspace samples using Precision Lok® gas-tight syringes and 

analyzed as described above using a HP 5890 gas chromatograph. Before and after each 

experiment, the naphthalene assay specific for sMMO activity (30) was performed on all 

samples to verify what form of MMO was active.  

 

Analysis of substrate and product toxicity associated with VC, t-DCE, and TCE  To 

determine if substrate and/or product toxicity occurred during the incubation with 

mixtures of VC, t-DCE, and TCE, 5 mM methanol was used as a growth substrate to 

avoid competition for binding to pMMO and sMMO. 5 mL aliquots of cells prepared in 

the same methods as in growth experiments and 20 mM formate was added. The vials 

were then capped with teflon-coated butyl-rubber stoppers and crimp sealed and 100 μM 

each of the chlorinated solvents added. In some vials, 100 μM acetylene was also added 

as a general inactivator of MMO to monitor the possibility of substrate toxicity associated 

with these concentrations of chlorinated ethenes. 100 μM acetylene was chosen as 

complete inactivation of both sMMO and pMMO expressed by M. trichosporium OB3b 

was observed at this level in previous studies (119).Growth was monitored via OD600 

measurements as described earlier for 30 hours. 
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2.2. Landfill soil microcosm experiments 
 

Soil Collection, preparation, and analyses  Landfill cover soil at a depth between 40-60 

cm below land surface was collected from King Highway Landfill (Kalamazoo, MI) in 28 

February 2006 on the southwestern corner of the landfill as indicated on Figure 2-1.  

 

 

Figure 2-1. Location of King Highway Landfill and sampling site (90) 

 

The soil was air-dried, sieved to exclude soil particles less than <2mm, homogenized, and 

stored at 4 ˚C in the dark until further use for up to 2 years. The pH of the soil was 

measured after mixing 5 g of air-dried soil with 10 ml 0.01 M CaCl2 and shaking at 220 

rpm for 30 min. Moisture content of the soil was measured gravimetrically by measuring 
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the weight before and after placing the soil in 120 ˚C oven overnight. Inorganic N, i.e.,  

NH4
+-N and (NO3

-+NO2
-)-N was extracted using 30 g of air dried soil mixed with 60 mL 

of 2 M KCl. The solution was shaken on an orbital shaker (220 rpm) for 20 min and then 

passed through Whatman #42 filter paper. The filtrate was collected for measurement of 

inorganic N. NH4
+ and NO3

-+NO2
- were measured colorimetrically from the filtrate using 

a rapid flow analyzer (OI Analytical, College Station, TX). Bioavailable copper was 

measured by using a “hot extract” method developed elsewhere (126). Briefly, 5 g of air 

dried soil was mixed with 12.5 mL of 0.01 M CaCl2. The solution was then heated at 90 

˚C for 30 min. The resulting solutions were filtered through #42 Whatman filter paper 

and 10 μl nitric acid (Fisher Scientific Co., Fair Lawn, NJ, Trace metal grade) added. To 

measure the total copper associated with the soils, 0.5 g air dried soils were digested in 12 

ml Aqua regia (1:3 ratio of 70 % nitric acid (trace metal grade) and 35 % hydrochloric 

acid (trace metal grade)) at 110 ˚C for 3 hours. The resulting solution was heated at 60 ˚C 

for ~3 hours. Nitric acid (2% vol·vol-1) was then added to adjust the total volume  to 20 

ml and filtered using  #42 Whatman filter paper (39). Copper was then measured using 

inductively coupled plasma mass spectrometry (ELAN DRC-e, PerkinElmer Sciex). 63Cu 

was used for measurement of copper. 71Ga was added as an internal standard. 

 

Soil Microcosms  For microcosm studies, 160 ml serum bottles were soaked in 2N nitric 

acid bath for at least 2 days, rinsed with MilliQ water at least 5 times and autoclaved 

prior to use.  Soils were stored at 25 ˚C for 24 hours immediately prior to soil microcosm 

study, and then 5 g of air dried soil added to individual serum bottles along with various 

amendments.  Amendments tested to investigate the effects on CH4 oxidation and N2O 



 

30 

production were: (1) moisture content (added as MilliQ water with resistivity above 18 

mΩ) to provide values between 5-30 %; (2) copper (added as CuSO4·5H2O (JT Baker 

Chemcial Co., Phillipsburg, NJ, Baker Analyzed)) to increase copper content to 5-500 mg 

Cu·(kg soil)-1 above background levels; (3) NH4
+ (added as NH4Cl (Sigma-Aldrich, St. 

Louis, MO, cell culture tested)) to increase NH4
+ associated nitrogen levels 25-100 mg-N 

NH4
+·(kg soil)-1 above background levels, and; (4) NO3

- (added as KNO3 (Fisher 

Scientific Co., Fair Lawn, NJ, ACS grade)) to increase NO3
- associated nitrogen levels 

25-100 mg-N NO3
-·(kg soil)-1 above background levels.   

To examine the possibility of selectively inhibiting N2O production by either 

nitrifers or denitrifiers, phenylacetylene and chlorate were added respectively to some 

microcosms.  Briefly, phenylacetylene (Sigma-Aldrich, St.Louis, MO, 98%) was 

dissolved in dimethylsulfoxide (Fisher Scientific Co., Fair Lawn, NJ, 99.7%) and then 

added to give final concentrations of 0.01-0.5 mg phenylacetylene·(kg soil)-1. Chlorate 

was added as KClO3 (Sigma-Aldrich, St.Louis, MO, ACS reagent) to give final 

concentrations of 1-10 mg chlorate·(kg soil)-1.  After amendments were added, the vials 

were then capped with Teflon coated butyl rubber septum (National Scientific, 

Rockwood, TN) and crimp sealed with aluminum caps. 

To ensure consistent initial amounts of CH4 and O2 in all microcosms, 

predetermined amounts of CH4 and O2 was added via a custom made apparatus to flush 

the sealed bottles in order to achieve the desired concentrations of CH4 and O2.  Briefly, 

pre-determined mixing ratios of air (Metro Welding Supply Corp., Detroit, MI, Dry 

grade), CH4 (Airgas, Inc., Radnor, PA, >99.999%), and N2 (Metro Welding Supply Corp., 

Detroit, MI, Pre-Purified) were generated by mixing using a series of three way valves to 
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control the flow of the air, CH4, and N2. A schematic diagram of the gassing system is 

shown in Figure 2-2. The entire vial headspace was flushed for 3 min at a flow rate of 

approximately 300 ml·min-1 to achieve the desired headspace composition.  

 

Figure 2-2. Schematic diagram of the gassing system to introduce desired concentration of CH4 and 
O2 using CH4, air, and N2 

 

For initial soil microcosm experiments, the impact of individual geochemical 

parameters on CH4 consumption and N2O production was examined.  For these soil 

microcosms, 15 % moisture content and 20 % CH4, and 10 % O2 were used as baseline 

conditions.  For subsequent soil microcosm experiments, possible synergistic or 

antagonistic effects of multiple geochemical parameters were considered, using 5 % 

CH4  Air   N2 

Gas Outlet 
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moisture content and 20 % CH4, and 10 % O2 as baseline conditions.  The vials were then 

stored at 25 °C in the dark during the course of each microcosm experiment, which lasted 

approximately 120-150 hours depending on the amendments applied. All conditions were 

prepared in triplicates.     

 

Analytical Methods  Methane was measured using an HP 6890 series equipped with a 

GS-Molesieve column (0.53 mm I.D. x 30 m) and a flame ionization detector. 100 µl of 

vial headspace were manually injected using a PressureLok® gas-tight syringe (Baton 

Rouge, LA). Temperature settings were: oven 75 °C; inlet temperature 185 °C, and 

detector temperature 250 °C with gas flow rate of 25 ml·min-1. H2 was used as carrier gas 

while air and H2 was introduced into the detector. Nitrous oxide was measured using an 

HP 5890 series II equipped with a Poraplot-Q column (0.53 mm I.D. x 25 m) and an 

electron capture detector. 400 µl of headspace were manually injected using a 

PressureLok® gas-tight syringe (Baton Rouge, LA). Temperature settings were: oven -

10 °C, inlet temperature 125 °C; and detector temperature 275 °C with gas flow rate of 56 

ml·min-1. Nitrogen gas was used as both carrier and makeup gas. The oven temperature 

was maintained below room temperature by injecting liquid nitrogen into the oven 

chamber using an automated cryogenic valve.   

2.3. Nucleic acid extraction 
 
DNA extraction  For molecular studies, DNA was extracted from i) soil microcosm 

studies, and; ii) soils collected as core samples from King Highway Landfill on May 

2007. DNA extraction from these samples was performed using UltraClean Soil DNA kit 

(MoBio Inc., Solana, CA) following the manufacturer’s instructions. 
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mRNA extraction  RNA from the soils were extracted following previously developed 

methods with minor modifications (75). Briefly, 0.5 g of soil (wet weight) was added to 

1.0 ml extraction buffer containing 0.2% cetyl trimethyl ammonium bromide (CTAB), 

1 mM 1,4-dithio-DL-threitol (DTT), 0.2 M sodium phosphate buffer (pH 8.0), 0.1 M 

NaCl, 50 mM EDTA (40), with 1 g of 0.1 mm silica glass beads and 1 % β-

mercaptoethanol into the 2 ml screw cap microcentrifuge tubes. Six 30s bead beating 

procedure was performed to lyse the cells using Mini-BeadbeaterTM (BioSpec Products, 

Bartlesville, OK) while put on ice for 1 min in between. The bottom of the 

microcentrifuge tubes was then pierced using a sterile 22 gauge needle and a sterile 

collection tube was placed on the bottom of the microcentrifuge tube. Tubes were then 

centrifuged at 2500 rpm for 5 min using a swinging bucket centrifuge IEC Centra CL2 

(International Equipment Co., Needham Heights, MA). The flow-through was then mixed 

with 1 volume of 70 % ethanol. The resulting mixture was then passed through an 

RNeasy column (Qiagen, Valencia, CA) via centrifugation at 4000 rpm for 1 min using a 

Eppendorf benchtop centrifuge (Brinkman Instruments, Westbury, NY). Afterwards, 700 

μl “RW1” and then 500 μl “RPE” solutions, where both RW1 and RPE solutions were 

part of the RNeasy Mini Kit (Qiagen, Valencia, CA), were added to the RNeasy column 

and was centrifuged at 4000 rpm for 1 min each. RNA was eluted using 100 μl DEPC 

treated water and was treated with RNase-free DNase I (Promega, Madison, WI) to 

remove any DNA contamination. DNase treated RNA was then purified using the 

RNeasy Mini Kit following the manufacturer’s instructions (Qiagen, Vanlencia, CA). To 

check for any DNA contamination, PCR was performed with the extracted RNA as a 

template. After confirming the complete removal of DNA from RNA samples, RNA was 
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then reverse-transcribed to obtain cDNA by using Superscript II Reverse Transcriptase 

(Invitrogen, Carlsbad, CA) following the manufacturer’s instructions and stored at -20 ˚C 

until further PCR amplification.  

Expression of functional genes    To target pmoA, mmoX, and amoA, primer sets 

pmoA189-mb661 (43), mmoX206f-mmoX886r (92), and amoA1F-amoA2R (147) were 

used. PCR conditions were as follows. PCR was carried out with 1x PCR buffer, 1.5 mM 

MgCl2, 20 μg of bovine serum album (107), 15 pmole of each primer, 200 μM dNTPs, 

2.5 U Taq DNA polymerase, and 20 ng of cDNA. PCR conditions were 95 ˚C for 5 min 

for initial denaturation, 34 cycles consisting of 95 ˚C for 1 min, annealing temperature at 

58 ˚C for 1 min, 72 ˚C for 1 min, with final elongation at 72 ˚C for 10 min. Products were 

ran by electrophoresis on 1 % (w/v) agarose gel stained with ethidium bromide.  

 

2.4. Microarray analysis 
 
 
Microarray sample preparation  The concentration and purity levels of the collected 

nucleic acids were measured using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies, Rockland, DE). Samples for microarray analysis were prepared following 

previously described methods (161). Briefly, DNA collected from soils was amplified 

using either primer sets targeting pmoA using pmoA189-mb661 with the T7 promoter site 

attached to the 5’ end of primers mb661. The T7 promoter site allowed the in vitro 

transcription of the PCR products via T7 RNA polymerase. Detailed information on 

primers pmoA189, mb661, and T7 promoter site is shown in Table 2-1. Each PCR 

reaction was carried out in triplicates with 25 μl of 2X MasterAmp PCR Premixture F 
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(EpiCentre Technologies, Madison, WI), 15 pmol of each primers either pmoA189-

mb661, 1 ng environmental DNA, and 1 U Taq polymerase (Invitrogen, Carlsbad, CA). 

PCR conditions were 95 ˚C for 5 min before the addition of template, 32 cycles 

consisting of 95 ˚C for 1 min, annealing temperature at 58 ˚C for 1 min, 72 ˚C for 1 min, 

with final elongation at 72 ˚C for 10 min. Triplicates of PCR reactions were then pooled 

and purified using Qiagen PCR Purification Kit (Qiagen, Valencia, CA). Methods used 

for in vitro transcription and hybridization as described previously were used (19, 161). 

Briefly, in vitro transcription was carried out under RNase-free conditions, with either 

Cy3 or Cy5-labelled UTP. The Cy3 or Cy5-labelled product of in vitro transcription was 

then purified and chemically fragmented. The fragments were then used for hybridization, 

which was carried out on a commercial aluminum block overnight.  

Table 2-1. Primers used for amplification of pmoA 

 Name (5’ → 3’) Reference 
Forward pmoA189 GGBGACTGGGACTTCTGG (84) 
Reverse mb661 CCGGMGCAACGTCYTTACC (43) 

5’ end of reverse primer T7 promoter site TAATACGACTCACTATAG (19) 
B=C,G,T; M=A,C; Y=C,T; S=C,G; N=A,C,G,T  

 

Description of probes  A brief summary of the probes used for microarray analysis is 

shown in Table 2-2. A detailed list of the sequences each probes are designed to target 

can be found in Table A-1 (in the appendix) along with its characteristics. Briefly, the 

probes can be categorized into 12 groups, “Type Ia”, “Type Ib”, “Type Ic”, “Type II”, 

“Second copy of pmoA in Type II”, “RA14”, “Watershed 1 & 2”, “Methylocapsa related”, 

“Universal methanotrophs”, “Ammonia oxidizers”, “Possible novel methanotrophs”, and 

“Unknown identity” which contain possible homologues of pmoA. Probes of “Type Ia” 

are intended to cover pmoA sequences that belong to Type I methanotrophs other than 
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Methylococcus and Methylocaldum, i.e., Methlyomonas, Methylomicrobium, 

Methylosarcina, Methylobacter, and probably Methylosoma. Group “Type Ib” also target 

Type I methanotrophs but is limited to the genera Methylothermus, Methylococcus, 

Methylocaldum, and probably Methylohalobius. Group “Type Ic” targets sequences 

retrieved from the environment such as deep sea and upland soil (88, 102, 135). Group 

“Type II” and “Second copy of pmoA in Type II” target the first and second copy of 

pmoA in Type II methanotrophs. “RA14” and “Watershed 1 & 2” target environmental 

sequences that are distantly related to Type II methanotrophs that are presumably 

utilizing atmospheric methane and sequences retrieved from a specific watershed and 

flooded upland soils, respectively (85, 137).  “Methylocapsa related” and “Universal 

methanotrophs” target specifically Methylocapsa related sequences and all known 

sequences that can be amplified, respectively. “Ammonia oxidizers” target sequences that 

are related to ammonia oxidizers that can be amplified. Groups “Possible novel 

methanotrophs” and “Unknown identity” hybridize sequences of no further knowledge.  

Table 2-2. Summary of probes used for microarray analysis 

Probes Group Target 
1-35 Type Ia Methylomicrobium, Methylobacter, 

Methylosarcina, Methylomonas, and probably 
Methylosoma 

36-60 Type Ib Methylococcus, Methylocaldum, Methylothermus, 
and probably Methylohalobius 

61-68 Type Ic Environmental sequences from deep sea and 
upland soil 

69-91 Type II Methylosinus and Methylocystis 
92-98 Type II 2nd 2nd copy 
99-100 RA14 Environmental sequences from upland soil 
101-103 Watershed 1 & 2 Environmental sequences from watersheds 
104-107 Methylocapsa related Methylocapsa 
112-116 Universal All methanotrophs 
117-122 Ammonia oxidizers Ammonia oxidizing bacteria 
123-128 Possible novel methanotrophs Environmental sequences 
129-137 Unknown identity Environmental sequences 
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Analysis of methanotrophic diversity  Visualization of microarray results was 

performed using GeneSpring GX 7.3.1 (Agilent Technologies, Palo Alto, CA). Analysis 

of methanotrophic diversity using indices of diversity, richness, evenness, and dominance 

was performed following previously described methods (70). Briefly, the number of 

species was replaced with the number of probes with positive signals (signals retrieved 

were equal to or greater than 5 % of the maximum signals achievable), and the number of 

abundance of each species was replaced with the relative signals of each probes. 

Information from generalist probes were discarded for analysis of diversity as generalist 

probes overlap with other probes in terms of coverage. The indices used are as follows; 

 Simpson index of diversity (1/D)  

i

S

i
i ppD ∑

=

×=
1

 

where pi: the proportion of individuals in the ith species. 

For pi, the proportion of relative signals retrieved in each signals compared to the sum of 

all relative signals was used. Simpson index of diversity, used as the reciprocal of the 

calculated value D, increases as diversity increases.  

 Menhinick index of richness (DMn) 

N
SDMn =  

where S: total number of objects, 
N:  total number of individuals. 

 

For S, total number of probes that resulted in positive signals was used and for N, the 

sum of all relative signals from probes that resulted in positive signals was used. 

Increasing values of DMn indicates increasing richness.  
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 Simpson index of evenness (E) 

S
DE /1

=  

where 1/D: Simpson index of diversity 
S: total number of objects 

 

 Berger-Parker index of dominance (d) 

N
N

d max=  

where Nmax: the number of individuals in the most abundance species 

N: total number of individuals 

For Nmax, the highest relative signal retrieved among the probes was used. The increase in 

d indicates the decrease in diversity and increase of dominance (124).  
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CHAPTER 3. Effect of presence of nonmethane organic 
compounds on methanotrophs 

 

3.1. Introduction 
 

Nonmethane organic compounds (NMOCs), which include trace organic compounds 

such as chlorinated ethylenes, have been reported to be emitted from landfills (1, 61, 152). 

Nonmethane organic compounds are formed through either the anaerobic decomposition 

of wastes originating from human activities or volatilization of the NMOC containing 

wastes (29). Nonmethane organic compounds have been reported be of a threat to human 

health as well as have corrosive effects on gas collection systems when it is installed (29). 

Therefore, it is important to prevent NMOCs from exiting landfill cover soils along with 

CH4, a greenhouse gas. 

Compounds such as vinyl chloride, dichloroethylene, and trichloroethylene, 

which are known NMOCs that can be found in landfill gas, can be co-oxidized by 

methanotrophs via both MMO enzymes, i.e., pMMO and sMMO (74, 122). However, 

when the primary substrate for the MMO, i.e., CH4, coexists with the previously 

mentioned chlorinated ethylenes, competition for binding sites in the MMO could cause 

problems in both CH4 oxidation and removal of the chlorinated ethylenes (74, 121). As 

both MMOs play an important role in mitigation of CH4 in landfill cover soils, 

understanding how the methanotrophs react when chlorinated ethylenes coexist with CH4
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could assist in making predictions on how the landfill cover soils will perform in similar 

situations where CH4 and various NMOC are found together in landfill gas.  

Another problem associated is that MMO comes in two forms that have shown 

two different co-oxidizing patterns. One form of MMO, sMMO, has been reported to 

have a broad range of substrates compared to the other form of MMO, pMMO (76). Also, 

sMMO-expressing cells have been shown to have faster initial rates of chlorinated 

ethylene degradation compared to pMMO-expressing cells (138). However, because most 

methanotrophs are capable of expressing pMMO while only a selected few are known to 

express sMMO, the form of MMO the cells are expressing is also of importance in 

understanding CH4 oxidation and degradation of chlorinated ethylenes.  

In this chapter, the effect of coexistence of CH4 and varying concentrations of 

chlorinated ethylenes, i.e., vinyl chloride, trans-dichloroethylene, and trichloroethylene, 

on methanotrophic growth and degradation of chlorinated ethylenes was investigated 

using Methylosinus trichosporium OB3b expressing either pMMO or sMMO in order to 

examine if methanotrophic growth will be affected with increasing concentrations of 

NMOCs and consequently the overall degradation of the pollutants. As the growth-

substrate CH4 will be competing for binding sites on MMO against the non-growth-

substrates NMOCs, it was hypothesized that when concentrations of NMOCs increase 

with fixed amount of CH4, methanotrophic growth will be inhibited. However, as pMMO 

and sMMO have different specificity towards NMOCs, i.e., sMMO can more effectively 

bind NMOCs compared to pMMO, sMMO-expressing cells were hypothesized to be 

more affected by the presence of NMOCs relative to pMMO-expressing cells. The 
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understanding on the effects of NMOCs on methanotrophic growth will be important in 

what to expect in landfills where high NMOC emissions are observed.  

Additionally, a dimensionless number based on substrate specificity was 

developed that could possibly be used to predict which form of the enzyme could be 

more effective in degradation of mixtures of chlorinated ethylenes. This dimensionless 

number, Ω, was initially developed based on specificity of CO2 and O2 on ribulose 

bisphophate carboxylase, or known as RuBisCO (109). From the dimensionless number 

Ω, similar dimensionless numbers were developed that could effectively describe the 

methanotrophic growth in the presence of mixtures of chlorinated ethylenes using kinetic 

information of chlorinated ethylenes for pMMO and sMMO (122, 138). Such 

dimensionless number could be useful in predicting the outcome of enzymatic processes 

that can bind substrates that are either beneficiary or inhibitory to cellular activities. The 

data presented in this chapter have been previously published elsewhere (113).  
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3.2. Results  
 

3.2.1. Development of dimensionless numbers. 
 

In the study of RuBisCO it is common to characterize the ratio of CO2 and O2 

turnover by different forms of RuBisCO with the substrate specificity factor, or Ω, 

specifically:  
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and  V CO2

max
 and V O2

max
 represent the maximum velocity of CO2 and O2 turnover, 

respectively, and K CO
S

2 and K O
S

2 being the half-saturation constants for binding of CO2 

and O2 by RuBisCO respectively. Equation 1 is useful when one can consider pseudo-

first order rates to be applicable (i.e., both CO2 and O2 concentrations are much less than 

the K CO
S

2 and K O
S

2 , respectively). 

This can be extended to situations where pollutants compete for binding with an 

obligate growth substrate during bioremediation.  In the case of a single pollutant or non-

growth substrate, equation 1 can be simply re-written as: 
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Where V G

max
 and V P

max
 are the maximum velocities of growth substrate and pollutant 

transformation, respectively, and K G
S  and K P

S  are the half saturation constants for 

binding of growth and pollutant.  This equation can also be easily broadened to consider 

mixtures of n pollutants all bound by the same enzyme in the presence of the growth 

substrate as follows: 
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This concept of specificity for pollutant degradation can be very useful as it is a simple 

methodology that can provide some useful preliminary information as to how specific 

different enzymatic systems might behave/respond in any given polluted situation.   

The concept of Ω and Ω’, although useful, do not explicitly consider the growth 

of cells during long time periods that is imperative for continued pollutant degradation.  

Such growth will depend on the relative rate of growth substrate vs. pollutant turnover, 

which will be a function of the relative concentration of growth substrates and pollutants.  

One method to do this would be to consider the relative ratio of growth vs. pollutant 

transformation, as is implied in equation 1 for RuBisCO. This equation, however, is 

limited to low substrate concentrations. A broader model would be based on simple 

Michaelis-Menten kinetics, i.e., 
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Here the dimensionless values of Φ can range from near zero (in the near absence of 

growth substrate) to near infinity (in the near absence of pollutant).   Finally, a third 

model giving a dimensionless number potentially useful as a predictive tool can be 

constructed that considers the net rate of growth substrate turnover in the presence of 

pollutants competing for binding as follows:   
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The values of Δ can vary from 1 (i.e., no pollutants present) to values less than zero (i.e., 

the rates of pollutant turnover are greater than that of growth substrate turnover).  
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3.2.2. Calculation of Ω’, Φ, and Δ for mixtures of chlorinated solvents 
for Methylosinus trichosporium OB3b expressing either sMMO 
or pMMO.   

 
To determine the effects of mixtures of chlorinated ethylene on methanotrophic 

growth, the kinetic parameters shown in Table 3-1 were used for M. trichosporium OB3b 

expressing either pMMO or sMMO. These values were determined in the presence of 

formate, as it is well-known that reductant limitation can affect chlorinated ethylene 

degradation by methanotrophs expressing either form of MMO. Using these values, if 

one assumes that M. trichosporium OB3b is exposed to a mixture of CH4, vinyl chloride 

(VC), trans-dichloroethylene (t-DCE), and trichloroethylene (TCE), an Ω’ value of 32 is 

calculated for these cells expressing pMMO and 5.3 when expressing sMMO. Such a 

large difference suggests that M. trichosporium OB3b expressing pMMO would be able 

to withstand and grow better in the presence of these solvents than when expressing 

sMMO due to a higher affinity for CH4.  

Table 3-1. Michaelis-Menten kinetics of chlorinated ethylene degradation by M. trichosporium OB3b 
expressing either pMMO or sMMO. 

Enzyme Substrate Vmax (nmol•min-1•mg protein-1) Ks (μM) Reference 
CH4 82 8.3 (122) 
VC 42 26 This study 
t-DCE 61 42 This study 

pMMO 

TCE 4.1 7.9 (122) 
CH4 726* 92 (138) 
VC 2100 160 This study 
t-DCE 662* 148 (138) 

sMMO 

TCE 580* 145 (138) 
*Converted from reported units of nmol•min-1•mg cell-1 assuming cell dry weight is 50% protein. 

 

To consider the effect of chlorinated ethylene concentration on the specificity of 

M. trichosporium OB3b to bind CH4, one can calculate values of either Φ and/or Δ.   If 

one assumes the maximal rate of CH4 oxidation (i.e., very high concentrations of CH4) 
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with varying equimolar amounts of VC, t-DCE, and TCE ranging from 0 to 100 μM, the 

trends in Figure 3-1A and B can be generated for Φ and Δ, respectively. As can be seen 

in Figure 3-1, a greater difference is seen between sMMO and pMMO-expressing cells 

when Δ is calculated.  For this reason, further discussion will focus on this model to 

compare the ability of M. trichosporium OB3b to grow in the presence of varying 

amounts of VC, t-DCE, and TCE, as well as how much of these compounds are degraded 

during active growth.    
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Figure 3-1. Selectivity of M.trichosporium OB3b cells expressing either pMMO and sMMO for CH4 
in the presence of various equimolar amounts of vinyl chloride, trans-dichloroethylene, and 
trichloroethylene. (A) Predicted specificity for cells expressing either pMMO (solid lines) or sMMO 
(dashed lines) using the Φ model (i.e., the raio of the predicted CH4 oxidation rate and the sum of 
chlorinated ethane oxidation rates). (B) Predicted specificity for cells expressing either pMMO (solid 
lines) or sMMO (dashed lines) using the Δ model (i.e., the rate of predicted CH4 oxidation less the 
sum of chlorinated ethane oxidation rates normalized to the rate of CH4 oxidation). 
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3.2.3. Growth of M. trichosporium OB3b in the presence of 
chlorinated solvents.  

 
Growth of M. trichosporium OB3b when expressing either MMO in the presence 

of various concentrations of chlorinated solvents, VC, t-DCE, and TCE are shown in 

Figure 3-2A and B and summarized in Table 3-2. For initial development and validation 

of the Δ model proposed here, equimolar amounts of VC, t-DCE, and TCE were used 

although the Δ model allows one to use any combination of growth substrate and co-

metabolic pollutant concentrations.  In these experiments, formate was also added at an 

initial level of 20 mM to prevent any limitation of reducing equivalents from affecting the 

turnover of VC, t-DCE, and TCE. From these experiments, it is apparent, and expected 

that the growth of both pMMO- and sMMO-expressing cells decreased with increased 

concentrations of each chlorinated solvent. It should be stressed that the relative growth 

rates, defined as μ/μ0 where μ is the specific growth rate measured during active growth 

observed in Figure 3-2, and μ0 is the specific growth rate in the absence of solvents, were 

always higher for M. trichosporium OB3b expressing pMMO regardless of the amount of 

solvents added. It is also interesting to note that in the presence of either 10 or 30 μM VC, 

t-DCE and TCE, the maximal cell density was equivalent for both sMMO and pMMO-

expressing cells, although at higher concentrations, cells expressing sMMO grew to 

significantly lower densities.   
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Table 3-2. Growth and extent of NMOC degradation by M. trichosporium OB3b cells expressing 
either pMMO or sMMO in the presence of various amounts of VC, t-DCE, and TCE. 

Enzyme Substrate(s) μa (h-1) μ/μ0
a Max OD600 

CH4 0.052 (0.005) 1.0 0.51 
CH4 + 10 μM each VC, t-DCE, and TCE 0.030 (0.002) 0.58 (0.07) 0.43 
CH4 + 30 μM each VC, t-DCE, and TCE 0.036 (0.001) 0.69 (0.07) 0.50 
CH4 + 50 μM each VC, t-DCE, and TCE 0.018 (0.0005) 0.35 (0.04) 0.42 

pMMO 

CH4 + 100 μM each VC, t-DCE, and TCE 0.014 (0.0005) 0.27 (0.03) 0.27 
CH4 0.064 (0.004) 1.0 0.49 
CH4 + 10 μM each VC, t-DCE, and TCE 0.025 (0.001) 0.39 (0.03) 0.40 
CH4 + 30 μM each VC, t-DCE, and TCE 0.031 (0.001) 0.48 (0.03) 0.42 
CH4 + 50 μM each VC, t-DCE, and TCE 0.016 (0.001) 0.25 (0.02) 0.20 

sMMO 

CH4 + 100 μM each VC, t-DCE, and TCE 0.007 (0.001) 0.11 (0.02) 0.14 
aNumbers in parentheses represent the standard deviation of collected samples. 
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Figure 3-2. Growth of M.trichosporium OB3b cells expressing either (A) pMMO or (B) sMMO in the 
presence of various equimolar amounts of VC, t-DCE, and TCE. Symbols:  X – CH4 only (positive 
control); ▲ – 10 μM each of VC, t-DCE, and TCE; ♦ – 30 μM each of VC, t-DCE, and TCE; ■ – 50 
μM each of VC, t-DCE, and TCE; ● – 100 μM each of VC, t-DCE, and TCE.  Error bars represent 
the range of duplicate samples.  Where error bars are not visible, the symbol size is greater than the 
measured range. 
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3.2.4. Degradation of VC, t-DCE, and TCE during growth of M. 
trichosporium OB3b.  

 
The slower growth rates exhibited by sMMO-expressing cells are likely due to the 

faster oxidation rates for VC, t-DCE, and VC by these cells during growth.  As shown in 

3-3, each of these compounds was completely degraded by sMMO-expressing cells when 

initial concentrations were either 10 or 30 μM.  At these concentrations, pMMO-

expressing cells degraded only VC and t-DCE completely, with a significant amount of 

TCE remaining (60-70%).   The broader substrate range and reduced competition with 

CH4 apparently enabled sMMO expressing cells to degrade a larger fraction of the added 

solvents than pMMO-expressing cells at these initial values.  

Table 3-3. Extent of NMOC degradation by M. trichosporium OB3b cells expressing either pMMO or 
sMMO in the presence of various amounts of VC, t-DCE, and TCE during active growth 

% NMOC degraded (range) Enzyme Substrate(s) 
VC t-DCE TCE 

Degradation 
time (hr) 

CH4     
CH4 + 10 μM each VC, t-DCE, and TCE 100 (0) 100 (0) 31 (3) 65 
CH4 + 30 μM each VC, t-DCE, and TCE 100 (0) 100 (0) 39 (1) 60 
CH4 + 50 μM each VC, t-DCE, and TCE 97 (1) 98 (1) 35 (9) 110 

pMMO 

CH4 + 100 μM each VC, t-DCE, and TCE 79 (1) 74 (1) 33 (4) 100 
CH4     
CH4 + 10 μM each VC, t-DCE, and TCE 100 (0) 100 (0) 100 (0) 80 
CH4 + 30 μM each VC, t-DCE, and TCE 100 (0) 100 (0) 100 (0) 80 
CH4 + 50 μM each VC, t-DCE, and TCE 97 (0) 97 (0) 74 (1) 100 

sMMO 

CH4 + 100 μM each VC, t-DCE, and TCE 60 (4) 63 (4) 39 (6) 150 
aNumbers in parentheses represent the range from duplicate samples 
 

At initial concentrations of either 50 or 100 μM of these chlorinated ethylenes, 

neither pMMO nor sMMO-expressing cells completely degraded these compounds 

during active growth.   In the presence of 100 μM of VC, t-DCE, and TCE, pMMO-

expressing actually degraded more of the compounds than sMMO-expressing cells, and 

did so over a shorter time frame.  It appears that the greater specificity of pMMO-
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expressing cells for CH4 allowed a faster growth rate which over time resulted in more 

degradation of chlorinated ethylenes.  

3.2.5. Substrate and product toxicity.   
 

To determine if either substrate or product toxicity associated with chlorinated 

ethylenes may have been affecting the growth of pMMO- and sMMO-expressing cells of 

M. trichosporium OB3b, a series of experiments were performed to monitor the growth 

of such cells in the presence and absence of acetylene, a known potent inhibitor of MMO 

activity.  In these experiments, methanol was added instead of CH4 as the growth 

substrate to prevent any competitive binding to either pMMO or sMMO that could 

obfuscate the findings.  Furthermore, formate was added to prevent any limitation of 

reducing equivalents occurring during the oxidation of the chlorinated ethylenes.  

As can be seen in Figure 3-3, in the presence of 100 μM each of VC, t-DCE, and 

TCE, no growth over 30 hours was observed in cells with active pMMO (i.e., not 

acetylene-treated).  If these cells were treated with acetylene, however, they did grow in 

the presence of these chlorinated ethylenes, but to lesser degree than if the cells were 

grown in the presence of methanol and acetylene only (significant at a 95% level using a 

Students t-test). Collectively these results indicate that the growth of M. trichosporium 

OB3b expressing pMMO in the presence of these chlorinated ethylenes was significantly 

reduced from toxic products generated from the oxidation of these compounds although 

that the compounds were also toxic at these concentrations.   
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Figure 3-3. Analysis of product vs. substrate toxicity effects on growth of M. trichosporium OB3b 
expressing either pMMO or sMMO while exposed to 100 μM each of vinyl chloride (VC), trans-
dichloroethylene (t-DCE), and trichloroethylene (TCE).  5 mM methanol was added as the growth 
substrate to avoid competition for binding to either MMO as well as 20 mM formate to prevent 
reductant limitation affecting turnover rates of chlorinated ethenes.  100 μM acetylene was added to 
some cases to inactivate the MMOs. Growth was measured after 30 hours.    = initial OD600;   = 
methanol only;    = methanol + acetylene, ░ = methanol + VC, t-DCE, and TCE, █ = methanol + VC, 
t-DCE, TCE, and acetylene. Error bars represent the range of duplicate samples. 

 

For sMMO-expressing cells of M. trichosporium OB3b, again it is clear that 

product toxicity was a major factor in limiting growth in the presence of 100 μM each of 

VC, t-DCE, and TCE.  Specifically, as shown in Figure 3-3, no growth was seen after 30 

hours in the presence of these compounds in the absence of acetylene. Growth was 

observed, however, following the addition of acetylene to inactivate sMMO. Also, as 

found for pMMO-expressing cells, substrate toxicity was observed as growth in the 

presence of these solvents and acetylene was less than in the presence of methanol and 

acetylene (significant at a 95% level using a Students t-test). It is also interesting to note 

that the addition of acetylene to sMMO-expressing cells without chlorinated solvents 

enhanced growth on methanol. This indicates that the sMMO can effectively bind 

methanol and oxidize it as previously observed (42), possibly to formaldehyde that 

inhibits cell growth.  
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3.3. Discussion 
  

From the broad range of substrates oxidized by methanotrophs expressing sMMO 

and the relatively fast kinetics of chlorinated ethylene degradation (Table 3-1), it may 

appear that methanotrophic-mediated removal of NMOC, specifically chlorinated 

ethylenes and/or other compounds that could be co-oxidized via MMO, make sMMO an 

ideal enzyme to utilize when the primary objective is to remove NMOC. Although a great 

deal of research has examined how cells, when grown under sMMO-expressing 

conditions (i.e., no added copper) degrade a wide range of halogenated hydrocarbons, 

both separately and in mixtures (6, 35, 36, 138, 139), there have been no empirical data 

showing how methanotrophs, when expressing either sMMO or pMMO, grow in the 

presence of mixtures of chlorinated solvents, and if degradation of such compounds is 

limited over time due to poor growth. From the growth and degradation studies presented 

here, it is clear that pMMO-expressing cells can actually grow faster, rapid consumption 

of CH4, in the presence of high concentrations of chlorinated ethylenes, and degrade 

more of these compounds than cells expressing sMMO, most likely due to such greater 

growth. Such inhibition of growth is due to the greater ability of sMMO-expressing cells 

to bind and transform co-metabolic substrates that not only is of no benefit to the cells, 

but also results in the consumption of reducing equivalents and formation of toxic 

products.  

Collectively these data suggest that in landfill cover soils where primary substrate 

CH4 and co-metabolites in the form of NMOC are present in mixtures, those cells 

expressing pMMO may actually be predominant as they are better able to tolerate the 

presence of co-metabolites, and may play a significant role in consuming CH4 and 
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preventing NMOCs from exiting the system, particularly if the initial concentrations of 

co-metabolic substrates are high. At high concentrations of chlorinated ethylenes, it 

appears that pMMO-expressing cells could utilize CH4 for growth while degrading 

chlorinated ethylenes relatively effectively compared to sMMO-expressing cells. Thus, in 

landfill cover soils where naturally occurring CH4 and chlorinated ethylenes coexist, 

although CH4 consumption will be inhibited by the presence of chlorinated ethylenes,  

pMMO-expressing methanotrophic community could be relatively effective in CH4 

consumption compared to sMMO-expressing methanotrophic community while reducing 

the concentrations of chlorinated ethylenes. This behavior where the presence of single 

chlorinated ethylene inhibited CH4 consumption in landfill cover soils has been reported 

in other studies although what type of MMO was being expressed was not investigated 

using molecular techniques (149, 150). Thus, in order to degrade chlorinated ethylenes 

while actively consuming CH4 when landfill gas comprises of CH4 and mixtures of 

NMOC, understanding the type of MMO expressed will be important. This hypothesis, if 

true, would also imply that strategies for sites with high NMOC concentrations should 

purposefully stimulate pMMO expression until the NMOC concentrations are reduced to 

the point whereby sMMO-expressing cells can effectively bind CH4 to support their 

growth.  

The question then arises, how can one determine which form of MMO should the 

methanotrophs be expressing in order to efficiently prevent both CH4 and chlorinated 

ethylene from being emitted from landfill cover soils? A methodology based on Δ 

analysis can provide at least a preliminary assessment. As discussed earlier and described 

in Figure 3-1B, when one considers the net rate of growth substrate turnover in the 
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presence of chlorinated ethylenes, different enzymatic systems will have different 

profiles, and at some point, negative values are predicted depending on the amount of co-

metabolic substances present. For the analysis shown in Figure 3-1B, this occurs when M. 

trichosporium OB3b expressing sMMO or pMMO is exposed to either 30 or 97 μM each 

of VC, t-DCE, and TCE, respectively. As shown in Figure 3-2 and Table 3-2 and 3-3, 

although growth of M. trichosporium OB3b expressing sMMO was significantly reduced 

in the presence of as little as 10 μM each of VC, t-DCE, and TCE, these compounds were 

completely degraded when as much as 30 μM of each were provided. If the initial 

concentration of each was increased to 50 μM, however, not only was growth affected, 

but so was the degradation of the co-metabolites. Growth of M. trichosporium OB3b 

expressing pMMO was also significantly impacted by the presence of as little as 10 μM 

each of VC, t-DCE, and TCE, but the degradation of these compounds during growth was 

not significantly affected until at least 100 μM of each was added. Thus, it appears a 

simple analysis based on Michaelis-Menten kinetics can provide useful information as to 

what microbial process can be expected to be more effective for CH4 consumption and 

NMOC removal in specific situations.  

Since soils comprise of diverse microorganisms, it is always possible to have non-

methanotrophic microorganisms capable of degrading NMOCs present. In order to 

uncouple CH4 consumption and degradation of NMOCs, stimulating microorganisms that 

can rapidly degrade NMOCs that cause the inhibition of CH4 consumption could be 

another strategy. As lowering the concentrations of chlorinated ethylenes resulted in less 

inhibition of methanotrophic growth, if another microbial process degrades such NMOCs, 

it can be expected to be beneficial in terms of CH4 consumption. On the other hand, one 
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should consider the consequence of the method applying to the system to stimulate such 

microorganisms as it can result in other unintended results e.g., stimulation of N2O 

production.  

3.4. Conclusions 
 

Because of the ability of MMO to bind non-growth-substrates NMOCs as well as 

the growth-substrate CH4, it was first hypothesized that methanotrophic growth will be 

inhibited by the increasing amounts of NMOCs in the presence of CH4. Also, as sMMO 

can more effectively bind NMOCs compared to pMMO, growth of sMMO-expressing 

cells were expected to be more affected than that of pMMO-expressing cells. This 

chapter showed what the possible outcome on growth of methanotroph expressing either 

form of MMO, i.e., pMMO or sMMO, could be when growth-substrate CH4 was present 

along with co-metabolite NMOCs, i.e., vinyl chloride, trans-dichloroethylene, and 

trichloroethylene. Here, it was shown that even at low concentrations of NMOCs, growth 

of both pMMO-expressing and sMMO-expressing cells were inhibited by NMOCs. At 

high concentrations of NMOCs, due to the different substrate range of MMOs, pMMO-

expressing cells were less affected by the presence of NMOCs compared to sMMO-

expressing cells. As pMMO has lower pseudo-first-order rates (Vmax/Ks) for chlorinated 

solvents compared to sMMO, sMMO-expressing cells were expected to bind and degrade 

chlorinated solvents more efficiently than pMMO-expressing cells. Consequently, 

sMMO-expressing cells were less efficient in binding and utilizing its growth-substrate 

CH4 than pMMO-expressing cells especially when the concentrations of chlorinated 

solvents were increased evidenced by the growth rates. Also, at low concentrations of 

NMOCs, sMMO-expressing cells were more efficient in degrading NMOCs relative to 
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pMMO-expressing cells due to the broad substrate range of sMMO. However, when 

concentrations of NMOCs were increased, pMMO-expressing cells were more efficient 

in degrading NMOCs compared to sMMO-expressing cells. Because sMMO can bind 

NMOCs more rapidly compared to pMMO, if elevated levels of NMOCs were present 

along with CH4, the negative impact on growth probably resulted in less degradation of 

the NMOCs.  

When these observations are extrapolated into landfill cover soils where emissions 

of CH4 and NMOCs are observed, it can be expected that CH4 consumption can be 

affected by the presence of NMOCs and the type of MMO the methanotrophic 

community is expressing. Therefore, it is important to understand the composition of 

landfill gases emitted in landfills and the type of MMO being expressed in situ.   

A simple model, based on Michaelis-Menten kinetic results, that can make 

predictions on how a system could function in terms of CH4 consumption and NMOC 

degradation was developed and validated using M .trichosporium OB3b expressing either 

pMMO or sMMO in the presence of growth substrate CH4 and co-metabolites vinyl 

chloride, trans-dichloroethylene, and trichloroethylene. Based on the observations, the 

dimensionless number Δ can provide preliminary assessment on how the methanotrophic 

system would behave when growth-substrate CH4 was present with co-metabolites 

NMOCs. As both CH4 and NMOCs are important compounds that could either affect 

global warming or human health, a predictive tool such as the dimensionless number Δ 

can assist in determining what form of the enzyme the system should be expressing in 

order to mitigate both CH4 and NMOCs. 
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CHAPTER 4. Effect of amendments on CH4 oxidation 
and N2O production 

 

4.1. Introduction 
 

 
Methane is a potent greenhouse gas and landfills are one of the major 

anthropogenic sources of CH4 in the US. Based on the capacity and the composition of 

landfill gas, some landfills are required to install gas collection systems. However, as not 

all landfills fall into this category, there are landfills which freely release CH4 into the 

atmosphere posing great risk to global warming. Therefore, in the landfills where it is not 

required to capture the landfill gas, stimulation of microbial consumption of CH4 can be 

an alternative solution in mitigating greenhouse emissions in landfill cover soils as 

microorganisms responsible for consuming CH4, methanotrophs, oxidize CH4 to produce 

either cell material or CO2, a less potent greenhouse gas. Microbial CH4 consumption in 

landfill cover soils can be affected by various geochemical parameters, e.g., moisture 

content or nutrient limitation. However, the geochemical parameters that can affect 

methanotrophic activity can also have impacts on other microorganisms in situ, 

specifically microorganisms that can produce N2O, another potent greenhouse gas. 

Therefore, the objective of this chapter was to investigate the effects of selected 

geochemical parameters on CH4 oxidation and N2O production. Also, the applicability of 

selective inhibitors that could selectively inhibit N2O production while not affecting CH4 
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oxidation was examined. Finally, the methanotrophic community composition was 

investigated in conjunction with the studies looking at the effects of geochemical 

parameters on CH4 oxidation and N2O production.  

Different geochemical parameters can have different effects on both CH4 

oxidation and N2O production. Most studies so far have, however, focused on the effect 

of such parameters on either CH4 oxidation or N2O production. Thus, although particular 

conditions have been shown to favor CH4 oxidation in certain soil system and repress 

N2O production in another, such conditions may not be appropriate for the same 

community in the same soil. Numerous factors have been evaluated to assess its effect on 

CH4 oxidation and N2O production. In this chapter, soil microcosms were constructed 

using landfill cover soil and provided varying amount of nitrogen, copper, moisture 

content, organic carbon in the form of humic acids, and specific inhibitors of N2O 

producers. A complete list of the parameters that was tested in these microcosm studies is 

shown in Table 4-1.  

Table 4-1. List of geochemical parameters tested or to be tested for microcosm studies 

Parameter Range Significance 

Moisture content 
 

5-30 % 
 

• Variable mass transfer of CH4 and O2?   
• Variable osmotic stress on microbial community? 

 
Copper 

 

 
0-500 mg·kg-1 

 

• Effect on pMMO/sMMO expression and activity? 
• Stimulation of nitrous oxide reductase and/or 

AMO? 
Ammonium 0-100 mg-N·kg-1 • Nitrogen limitation relief? 

Nitrate 0-100 mg-N·kg-1 • Nitrogen limitation relief? 
• Stimulation of denitrifiers? 

Urea 0-100 mg-N·kg-1 • Competitive inhibition of MMO? 
• Nitrogen limitation relief? 

Organic carbon 20-200 mg·kg-1 • Stimulation of denitrifiers due to availability of 
alternative carbon sources? 

Phenylacetylene 0-10 mg·kg-1 • Selectively inhibit AMO? 
Chlorate 0-250 mg·kg-1 • Selectively inhibit denitrifiers? 
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Methanotrophs are capable of utilizing both NH4
+ and NO3

- as a nitrogen source 

(179). Interestingly, MMO is capable of oxidizing NH4
+/NH3 to NO2

- (45) resulting in 

inhibition of CH4 oxidation in conditions where CH4 and NH4
+ are both present. The 

effect of NH4
+ on CH4 oxidation has been well studied but so far has given variable 

results. In some cases, NH4
+ had inhibitory effects on CH4 oxidation (58, 99, 173) 

whereas in other cases, NH4
+ stimulated CH4 oxidation (12, 17, 47). Although the 

mechanism for inhibition of CH4 oxidation by NH4
+ is attributed to competitive inhibition 

(58, 100, 101), it can also be due to the toxic effects of the end product, i.e., NO2
-, of 

NH4
+ oxidation by MMO. Since methanotrophs are capable of oxidizing NH4

+ to NO2
- 

via hydroxylamine (45), when active methanotrophs are exposed to NH4
+, it can result in 

accumulation of NO2
- which can affect the activity of methanotrophs (58, 101, 151). 

Additionally, hydroxylamine, the intermediate product of oxidation of NH4
+ by MMO 

has been shown to be an inhibitor of CH4 metabolism (91).  

Stimulation of CH4 oxidation due to ammonium is generally attributed to nitrogen 

relief. Although some methanotrophs can fix N2 when nitrogen is depleted, such a 

process is energy intensive. Thus, when a methanotrophic community is deprived of 

inorganic nitrogen and are forced to utilize N2, addition of nitrogenous fertilizers could 

indeed relieve the methanotrophs of nitrogen limitation (14).  In some cases where both 

stimulation and inhibition of CH4 oxidation due to addition of NH4
+ was observed, it was 

attributed to the CH4/NH4
+ ratio (27). It was suggested that when this ratio was high, 

stimulation could occur, whereas when this ratio was low inhibition could take place.  

In general, when NO3
- is applied to soils, inhibitory effects only occur when the 

concentration of NO3
- is high, i.e., at concentrations when other salts such as NaCl have 
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similar inhibitory effects (58, 136). At such concentrations, the inhibitory effects are 

likely due to  a decrease in pH (58) and/or osmotic effects (15). Stimulation (47) and no 

effect at low NO3
- concentrations (58, 136) on CH4 oxidation have been also observed. 

Furthermore, it has been reported that methanotrophs can be selectively enriched by 

varying the concentration of NO3
- (72). Specifically, this study showed that Methylosinus 

trichosporium OB3b, a type II methanotroph, can outcompete Methylomicrobium album 

BG8, a type I methanotroph, in NO3
- limiting environments.  

In another study, enrichment of landfill soil using varying concentrations of 

nitrate minimal salt (NMS) media for isolation of methanotrophs lead to selective 

enrichment of methanotrophs. At 1x NMS, only Type I methanotrophs were enriched 

whereas at 0.2x NMS, Type II methanotrophs were predominant (180). Although these 

results could be due to the different concentration of other nutrients in the media, when 

juxtaposed to the former study, NO3
- appears be an important controlling factor in 

methanotrophic community structure and activity.  

The concentration of CH4 and possibly O2 play a role in dictating the rate of CH4 

oxidation. In general, MMO activity or CH4 oxidation rate can be modeled using simple 

Michaelis-Menten kinetics, i.e.,   

sKS
SV

oxidationCHofRate
+
×

=
][

][max
4   

Vmax: Maximum velocity 
S: Concentration of substrate, CH4 
Ks: Concentration of substrate at half of Vmax,  

i.e., Michaelis-Menten constant  
 

In a system where diverse methanotrophs exist, different concentrations of CH4 

may favor certain groups of methanotrophs. For example, as shown in Table 1-5 (p.18), 
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for methanotrophs expressing pMMO, the kinetics for CH4 oxidation differs for 

Methylomicrobium album BG8 and Methylosinus trichosporium OB3b with M.album 

BG8 having significantly higher pseudo-first order rates, suggesting that M. album BG8 

would predominate under pMMO-expressing conditions. One should note, however, that 

methanotrophs are obligate aerobes. Since oxidation of CH4 is dependent on both CH4 

and O2, the overall rate of CH4 oxidation can be affected by O2 levels as follows (134). 

 

2,2

2

4,4

4
max4

OsO

O

CHsCH

CH

KS
S

KS
S

VoxidationCHofRate
+

×
+

×=   

Vmax: Maximum velocity 
S: Concentration of substrate, CH4 or O2 
Ks: Michaelis-Menten constants for CH4 or O2 

 

According to this equation, the rate of CH4 oxidation is controlled by both CH4 

and O2 concentrations. Thus, until both CH4 and O2 concentrations have reached a point 

where CH4 oxidation is at maximum, increasing concentrations of CH4 and/or O2 may 

enhance CH4 oxidation.  

Moisture content is another parameter that can affect CH4 oxidation and N2O 

production in soils since moisture content in soils can either limit or enhance microbial 

activities. Generally, when microorganisms experience low moisture content, their 

activities can be inhibited by the decrease of intracellular water potential which leads to 

the hydration reduction and inhibition of enzymatic activity (158). Also, low moisture 

contents can limit diffusional transfer of substrates from soil particles. Conversely, when 

microorganisms experience high moisture contents, activities can also decrease because 

transfer of gaseous substrates in the atmosphere, i.e., CH4 and O2, into the soil system can 
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be limited. As diffusion of O2 into the soil system becomes limited, anoxic areas will 

increase (154) and affect aerobic CH4 oxidation. Therefore, it was hypothesized that at 

low moisture content, CH4 oxidation could be stimulated due the increased diffusion of 

gases, CH4 and O2.  

As previously mentioned, copper is known to regulate the expression of MMOs in 

methanotrophs that can express either form of MMO, pMMO and sMMO (132). Also, 

copper is necessary to express pMMO for methanotrophs that can only express pMMO. 

Thus, availability of copper can affect the expression of which form of MMO will be 

expressed in single cells and possibly the entire community. Depending on which form of 

MMO is expressed different kinetics can be expected. M. trichosporium OB3b which is 

capable of expressing either form of MMO has been shown to possess different 

Michaelis-Menten kinetics for pMMO and sMMO as shown in Table 4-2.  

Table 4-2. Michaelis-Menten kinetics for CH4 oxdiation of M. trichosporium OB3b expressing either 
sMMO or pMMO  

 Copper 
(μM) 

Vmax 
(nmol·min-1·mg protein-1) 

Ks 
(μM) 

Vmax/Ks 
(ml·(min·mg protein)-1) 

Reference 

sMMO 0 726* 92 7.9 (138) 
2.5 300 62 4.9 
5 177 28 6.3 

10 110 14 7.9 

 
pMMO 

20 82 8.3 9.9 

 
(122) 

* Assumed 50% of cells were protein    
 

As shown in Table 4-2, as the concentration of copper increased, the affinity of 

CH4 also increased (122). Thus, copper can be important when trying to stimulate CH4 

oxidation in soils. Some studies have tried adding copper into soils with the intention of 

stimulating CH4 consumption. These studies resulted in either no effect (46) or 

stimulation at low concentrations and inhibition at higher concentrations (12, 150).   
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Humic acids are heterogeneous high-molecular-weight organic materials that may 

affect speciation and distribution of metals. Specifically, it has been shown that whole-

cell sMMO activity of M. trichosporium OB3b in the presence of humic-chelated copper 

decreased with increasing copper to biomass ratios indicating that humic compounds 

reduced bioavailability of copper (131). It was hypothesized that as humic acid 

concentrations increased, copper was bound onto the functional groups on the humic acid 

reducing copper bioavailability. Therefore, addition of humic acids could be effective in 

terms of making copper or other metals that could be at levels where it poses toxic effects 

to methanotrophs less bioavailable. 

Finally, amendments that stimulated CH4 oxidation while decreasing N2O 

production compared to conditions where no amendments were applied were selected for 

further investigation of the methanotrophic community structure. Understanding whether 

changes in CH4 oxidation are due to shifts in the methanotrophic community structure or 

change in number of active methanotrophs will provide important information on how to 

manage a methanotrophic community in landfill cover soils.  
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4.2. Results 
 

4.2.1. Basic landfill cover soil properties  
 

The composition of the landfill cover soil was determined to be 93 % sand with 

the remainder being a mixture of silt and clay, and was classified as sand based on 

standard USDA soil texture classification analyses (157). Soil pH was found to be 7.1 (± 

0.1) and moisture content of the soil at the time of sampling was 9.3 ± 0.5 %. Inorganic N, 

i.e., NH4
+ and NO3

-+NO2
- was 16.0 ± 0.2 and 7.5 ± 0.1 mg-N·(kg soil)-1, respectively.  

Bioavailable and total copper was measured to be 1.3 ± 0.01 and 23 ± 0.2 mg copper·(kg 

soil)-1, respectively. 

  
 

4.2.2. Soil microcosms incubated at 20 % CH4, 10 % O2, and 15 % H2O 
 

In order to understand CH4 consumption and N2O production behaviors, 

microcosms were constructed using soils collected from King Highway Landfill were 

used. The soil microcosms were incubated under 20 % CH4 and 10 % O2 and 15 % 

moisture content unless otherwise stated.  

As can be seen in Figure 4-1, addition of at least 50 mg-N NO3
-·(kg soil)-1 was 

found to be necessary to significantly enhance CH4 oxidation rates above baseline 

conditions (i.e., increase from 82 ± 14 to 120 ± 13 μg·hr-1, significant at a 95% 

confidence level).  At least 100 mg-N NH4
+·(kg soil)-1 was necessary to substantially 

increase CH4 oxidation rates (to 130 ± 21 from 82 ± 14 μg·hr-1, significant at a 90% 

confidence level).  Nitrous oxide production, however, was significantly stimulated by 

the addition of as little as 25 mg-N·(kg soil)-1 of either NH4
+ or NO3

-.  Specifically, the 
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rates of N2O production in the presence of 25 mg-N·(kg soil)-1, 0.57 ± 0.12 and 0.34 ± 

0.04 μg·hr-1 for NH4
+ and NO3

- additions, respectively, were both significantly different 

at a 95 % confidence level from the rate measured in the absence of any amendment 

(0.10 ± 0.01 μg·hr-1).  If 100 mg-N·(kg soil)-1 was added, N2O production rates increased  

even  more to 1.7 ± 0.1 and  0.6 ± 0.1μg·hr-1, for NH4
+ and NO3

- respectively (such 

increases were found to be significantly different at 99 and 95% confidence intervals, 

respectively). 
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Figure 4-1. Effect of inorganic nitrogen on CH4 oxidation and N2O production under 20 % CH4, 
10 % O2, and 15 % moisture content. ■: effect of NH4

+ on CH4 consumption, ●: effect of NO3
- on CH4 

consumption, □: effect of NH4
+ on N2O production, ○: effect of NO3

- on N2O production 

 As shown in Figure 4-2, addition of organic nitrogen, urea, resulted in  

stimulatory effect on CH4 oxidation up to 50 mg-N·(kg soil)-1 by increasing CH4 

oxidation rates from 57 ± 3 to 84 ± 7 and 76 ± 5 μg·hr-1 when 25 and 50 mg-N urea·(kg 

soil)-1 was added, respectively. The increase in CH4 oxidations due to the addition of 25 

and 50 mg-N urea·(kg soil)-1 were both significant at 99 %. However, excessive amounts 

of urea appeared to have inhibitory effects on CH4 consumption evidenced by a decrease 

in CH4 oxidation rates from 57 ± 3 μg·hr-1, the CH4 oxidation rate when no urea was 
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added, to 11 ± 2 μg·hr-1, when 100 mg-N urea·(kg soil)-1 was applied, significant at 99 %. 

Nitrous oxide production was also enhanced by the addition of urea, even as small as 25 

mg-N urea·(kg soil)-1, an increase from 0.64 ± 0.02 to 2.1 ± 0.3 μg·hr-1 which was 

significant at 99 % confidence level.  
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Figure 4-2. Effect of urea on CH4 oxidation and N2O production production under 20 % CH4, 10 % 
O2, and 15 % moisture content. ■: effect of urea on CH4 consumption, □: effect of urea on N2O 
production. 

 

As shown in Figure 4-3, the highest CH4 oxidation rates were observed at 5 % 

moisture content, with CH4 oxidation rates decreasing as moisture content increased. At 

5 % moisture content, CH4 oxidation rates were 99 ± 9 μg·hr-1 while at 30 % moisture 

content, CH4 oxidation rates were 51 ± 5 μg·hr-1. Compared to the CH4 oxidation rate 

observed at 15 % moisture content, (82 ± 8 μg·hr-1), i.e., the baseline condition, CH4 

oxidation rates at 5 and 30 % moisture content were significantly different at 90 % and 

99 % confidence levels, respectively. Interestingly, N2O production rates increased with 

increasing moisture content up to 20 % but then decreased slightly when the moisture 
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content was increased to 30%. The N2O production rate at 5 % moisture content ((9.0  ± 

0.3) ×  10-3 μg·hr-1) was significantly lower than that measured at 15 % moisture content 

(0.14 ± 0.01μg·hr-1) at a 99 % confidence level.  The rate of N2O production at 30 % 

moisture content was 0.096 ± 0.012 μg·hr-1, significantly lower than the rate at 15 % 

moisture content at a 90 % confidence level.  
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Figure 4-3. Effect of moisture content on CH4 oxidation and N2O production under 20 % CH4, 10 % 
O2, and varying moisture content. ■: effect of moisture content on CH4 consumption, □: effect of 
moisture content on N2O production. 

 

As shown in Figure 4-4, addition of copper appeared to have little effect on CH4 

oxidation when soils were amended with as much as 100 mg copper·(kg soil)-1. When 

250 mg·(kg soil)-1 of copper was added, however, CH4 oxidation rates were ~70 % of the 

rate observed when soils were amended with no copper (i.e., a decrease from 55 ± 3 to 37 

± 7 μg·hr-1), and this difference was significantly different at a 95% confidence interval. 

Increasing the amount of added copper did not result in any further decrease of measured 

CH4 oxidation rates.  N2O production rates, however, were not affected when as much as 

250 mg copper·(kg soil)-1 was added. At 500 mg copper·(kg soil)-1 N2O production rates 
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did decrease to ~60 % of the rates observed when no copper was added (i.e., a drop to 

0.08 ± 0.004 from 0.13 ± 0.04 μg·hr-1), and this was significantly different at a 95 % 

confidence interval.     
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Figure 4-4. Effect of copper on CH4 oxidation and N2O production under 20 % CH4, 10 % O2, and 
15 % moisture content. ■: effect of copper on CH4 consumption, □: effect of copper on N2O 
production. 

 
 As shown in Figure 4-5, addition of organic carbon in the form of humic acid did 

not have any discernible effect on CH4 oxidation in the amounts tested 20-200 mg·(kg 

soil)-1. Nitrous oxide production, however, was stimulated with increased amounts of 

organic carbon beyond 50 mg·(kg soil)-1 from 0.14 ± 0.01 μg·hr-1, N2O production rate 

when soil was amended with no organic carbon, to 0.40 ± 0.13 μg·hr-1, N2O production 

rate when 50 mg·(kg soil)-1 of organic carbon was introduced to the soil, which was 

significant at 90 % confidence level.  
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Figure 4-5. Effect of organic carbon on CH4 oxidation and N2O production under 20 % CH4, 10 % 
O2, and 15 % moisture content. ■: effect of organic carbon on CH4 consumption, □: effect of organic 
carbon on N2O production. 

 

4.2.3. Effect of specific inhibitors on CH4 consumption and N2O 
production 
 

Phenylacetylene, a specific inhibitor of MMO and AMO was provided in a subset 

of microcosms to investigate its usefulness to selectively inhibit N2O production. It has 

been shown that AMO expressing ammonia-oxidizing bacteria are completely inhibited 

at concentrations of phenylacetylene two orders of magnitude than methanotrophs 

expressing either sMMO or pMMO (120). Thus, the effect of phenylacetylene was 

determined in soils incubated under 20 % CH4, 10 % O2, 15 % moisture content, and 25 

mg-N·(kg soil)-1.  
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Figure 4-6. Effect of phenylacetylene on CH4 oxidation and N2O production under 20 % CH4, 10 % 
O2, 15 % moisture content, and 25 mg-N NH4

+·(kg soil)-1. ■: effect of phenylacetylene on CH4 
consumption, □: effect of phenylacetylene on N2O production. 

 
As can be seen in Figure 4-6, 0.01-0.1 mg phenylacetylene ·(kg soil)-1 did not 

inhibit CH4 oxidation. At 0.5 mg·(kg soil)-1 of phenylacetylene, however, CH4 oxidation 

rates decreased by approximately half compared to CH4 oxidation rates observed in the 

absence of phenylacetylene (i.e., 30 ± 7 and 62 ± 4 μg·hr-1, respectively), significant at a 

95 % confidence level. Nitrous oxide production rates were reduced, however, with the 

addition of as little as 0.01 mg phenylacetylene ·(kg soil)-1, and rates decreased with 

increasing addition of phenylacetylene. If  0.1 mg phenylacetylene·(kg soil)-1 was added, 

the rate of N2O production decreased ~70%, to 0.5 ± 0.1 μg·hr-1 as compared to rate 

measured  in the absence of phenylacetylene (1.7 ± 0.1 μg·hr-1).  This difference, 

significant at a 99 % confidence level, was presumably through selective inhibition of 

ammonia-oxidizing bacteria.  

The applicability of a different specific inhibitor, i.e., chlorate, for N2O producers 

through denitrification was also investigated (108). Chlorate was added in the range of 1-

10 mg·(kg soil)-1 along with 25 mg-N NO3
-·(kg soil)-1 under 20 % CH4, 10 % O2, and 
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15 % moisture content. As shown in Figure 4-7, addition of chlorate in the range tested 

did not have any discernible effect on CH4 oxidation. Adding as little as 1 mg ClO3
-·(kg 

soil)-1, however, stimulated N2O production. Specifically, the N2O production rate at 1 

mg ClO3
-·(kg soil)-1 slightly increased from 0.39 ± 0.01 to 0.51 ± 0.03 μg·hr-1  found in 

the absence of any added chlorate. This difference, although minimal, was significant at a 

95 % confidence level. 
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Figure 4-7. Effect of chlorate on CH4 oxidation and N2O production under 20 % CH4, 10 % O2, 15 % 
moisture content, and 25 mg-N NO3

-·(kg soil)-1. ■: effect of chlorate on CH4 consumption, □: effect of 
chlorate on N2O production. 

 

4.2.4. Soil microcosms incubated at 20 % CH4, 10 % O2, and 15 % H2O 
with 0.1 mg·(kg soil)-1 phenylacetylene 

 
As 0.1 mg·(kg soil)-1 of phenylacetylene was deemed effective in selectively 

inhibiting N2O production while not affecting CH4 oxidation (Figure 4-6), 0.1 mg·(kg 

soil)-1 of phenylacetylene was used along with other geochemical parameters tested, i.e., 

varying amounts of ammonium, nitrate, urea, moisture content, copper, and organic 
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carbon. Chlorate was not tested further due to the stimulation of N2O production as 

shown in the previously.  

To further consider the impact of phenylacetylene, a fixed amount of 0.1 mg 

phenylacetylene·(kg soil)-1 was added while NH4
+ was amended up to 100 mg-N 

NH4
+·(kg soil)-1. As shown in Figure 4-8, both CH4 oxidation and N2O production rates 

increased with NH4
+ concentrations up to 50 mg-N NH4

+·(kg soil)-1. At 50 mg-N 

NH4
+·(kg soil)-1, the rate of CH4 oxidation increased from 61 ± 9 μg·hr-1 in the absence of 

any added NH4
+ to 120 ± 12 μg·hr-1 (significant at a 95 % confidence level). Furthermore, 

at this NH4
+ level, N2O production rate increased to 1.6 ± 0.3 μg·hr-1 from 0.072 ± 0.033 

μg·hr-1 when no NH4
+ was added (significant at a 95 % confidence level). Above 50 mg-

N NH4
+·(kg soil)-1, however, the rate of CH4 oxidation was observed to decrease from the 

maximum observed at 50 mg-N NH4
+·(kg soil)-1, and such a difference was significant at 

a 95 % confidence level. The rate of N2O production increased slightly as NH4
+ 

concentrations were increased to 100 mg-N NH4
+·(kg soil)-1, although this increase was 

not significantly different from that measured in the presence of 50 mg-N NH4
+·(kg soil)-1.  
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Figure 4-8. Effect of inorganic nitrogen on CH4 oxidation and N2O production under 20 % CH4, 
10 % O2, 15 % moisture content, and 0.1 mg·(kg soil)-1 phenylacetylene. ■: effect of NH4

+ on CH4 
consumption, ●: effect of NO3

- on CH4 consumption, □: effect of NH4
+ on N2O production, ○: effect of 

NO3
- on N2O production. 

The addition of NO3
- elevated CH4 oxidation rates even with the smallest amount 

tested. In the absence of NO3
-, the measured CH4 oxidation rate was 61 ± 9 μg·hr-1, but 

this increased with 25 mg-N NO3
-·(kg soil)-1 to 77 ± 10 μg·hr-1 (significant at a 95 % 

confidence level). However, additional amounts of NO3
- did not further stimulate CH4 

oxidation. The addition of NO3
- also increased N2O production rates. Nitrous oxide 

production rates increased from 0.072 ± 0.033 μg·hr-1, in the absence of additional NO3
-, 

to 0.64 ± 0.03 μg·hr-1 with the addition of 25 mg-N NO3
-·(kg soil)-1 which was the 

smallest amount of NO3
- tested. The increase was significant at 95 % confidence level.  

As shown in Figure 4-9, the addition of urea elevated CH4 oxidation when 50-75 

mg-N urea·(kg soil)-1 while inhibition of CH4 consumption occurred when 100 mg-N 

urea·(kg soil)-1 was applied. The addition of urea resulted in increase in N2O production 

rate with increasing amounts of urea up to 50 mg-N urea·(kg soil)-1.  
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Figure 4-9. Effect of urea on CH4 oxidation and N2O production under 20 % CH4, 10 % O2, 15 % 
moisture content, and 0.1 mg·(kg soil)-1 phenylacetylene. ■: effect of urea on CH4 consumption, □: 

effect of urea on N2O production. 

 

An increase of N2O production rates from 0.29 ± 0.05 to 2.0 ± 0.5 μg·hr-1 was observed 

when 0 and 50 mg-N urea·(kg soil)-1 was applied, respectively (significant at 99 % 

confidence interval). However, excessive amounts of urea above 75 mg-N urea·(kg soil)-1 

resulted in a decrease in N2O production rates with increasing amounts of urea.  

As shown in Figure 4-10, increased moisture content, i.e., 20-30 % moisture 

content, resulted in decrease in CH4 oxidation. Methane oxidation rates decreased from 

54 ± 7 to 20 ± 2 μg·hr-1 when moisture content was increased from 15 % to 30 %, 

respectively (significant at 99 % confidence interval). Meanwhile, N2O production rates 

were increased at higher moisture content, i.e., 20-30 % moisture content. Nitrous oxide 

production rates were 0.29 ± 0.002 μg·hr-1, an increase from 0.072 ± 0.033 μg·hr-1, when 

moisture content was 30 and 15 %, respectively (significant at 99 % confidence interval).  
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Figure 4-10. Effect of moisture content on CH4 oxidation and N2O production under 20 % CH4, 10 % 
O2, varying moisture content, and 0.1 mg·(kg soil)-1 phenylacetylene. ■: effect of moisture content on 

CH4 consumption, □: effect of moisture content on N2O production. 

 

As shown in Figure 4-11, addition of copper did not have significant effect on 

CH4 oxidation. Also, copper did not affect N2O production even at 500 mg·(kg soil)-1.  
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Figure 4-11. Effect of copper on CH4 oxidation and N2O production under 20 % CH4, 10 % O2, 15 % 
moisture content, and 0.1 mg·(kg soil)-1 phenylacetylene. ■: effect of copper on CH4 consumption, □: 

effect of copper on N2O production. 
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As shown in Figure 4-12, addition of organic carbon had interesting effects on 

CH4 oxidation. The presence of additional organic carbon elevated the CH4 oxidation 

rates from 61 ± 9 to 81-90 μg·hr-1 when 20-150 mg·(kg soil)-1 of organic carbon was 

added (significant at 99 %).  
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Figure 4-12. Effect of organic carbon on CH4 oxidation and N2O production under 20 % CH4, 10 % 
O2, 15 % moisture content, and 0.1 mg·(kg soil)-1 phenylacetylene. ■: effect of copper on CH4 

consumption, □: effect of copper on N2O production. 

 

Nitrous oxide production rates increased with increasing amounts of organic carbon. 

Even with the addition of 20 mg·(kg soil)-1 of organic carbon, N2O production rates were 

increased from 0.072 ± 0.033 to 0.18 ± 0.03 μg·hr-1 (significant at 99 %).  

 

4.2.5. Soil microcosms incubated at 20 % CH4, 10 % O2, and 5 % H2O-
effects of multiple geochemical parameters 

 
To examine the collective effect of multiple amendments, conditions that 

stimulated methane oxidation, i.e., 5 % moisture content, addition of varying amounts of 

copper, and either ammonium or nitrate, were combined. Copper was tested to further 

examine possible weak positive effects on methane oxidation.  
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As shown in Figure 4-13, addition of 15 mg-N NO3
-·(kg soil)-1 with 5% moisture 

content stimulated methane oxidation  from 71 ± 4 μg·hr-1 found in the absence of any 

amendments at 5% moisture content to 100 ± 2 μg·hr-1 (significant at a 99% confidence 

interval).   
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Figure 4-13. Effect of NO3
- on CH4 oxidation and N2O production under 20 % CH4, 10 % O2, and 

5 % moisture content. ■: effect of NO3
- on CH4 consumption, □: effect of NO3

- on N2O production. 

Increasing the amount of nitrate to 25 mg-N·(kg soil)-1 was not observed to result in any 

significant difference in methane oxidation rates from that measured with 15 mg-N·(kg 

soil)-1.  A slight increase in nitrous oxide production was observed with the addition of 15 

mg-N NO3
-·(kg soil)-1 (0.077 ± 0.021 μg·hr-1) as compared to when without nitrate 

addition at 5% moisture content (0.023 ± 0.010 μg·hr-1), different at a 90 % confidence 

interval. When 25 mg-N NO3
-·(kg soil)-1 was added, although the average rate of nitrous 

oxide production increased to 0.11 ± 0.05 μg·hr-1 from 0.077 ± 0.021 μg·hr-1 measured in 

the presence of 15 mg-N NO3
-·(kg soil)-1, variability in measurements made this 

difference statistically insignificant.  
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When either 15 or 25 mg-N NO3
-·(kg soil)-1, was added along with 5-25 mg 

copper·(kg soil)-1 with 5 % moisture content (Figure 4-14), the results were similar to 

what was observed when these amendments were examined independently, i.e., no 

synergistic effects on methane oxidation between the combination of nitrate, copper, and 

low moisture content were observed.  
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Figure 4-14. Effect of NO3
- and copper on CH4 oxidation and N2O production under 20 % CH4, 10 % 

O2, and 5 % moisture content. Effect of NO3
- and copper on CH4 oxidation (■,●) and N2O production 

(□,○). Squares represent 15 mg-N NO3
-·(kg soil)-1, circles represent 25 mg-N NO3

-·(kg soil)-1.   

A slight increase in nitrous oxide production was observed when nitrate levels were 

increased from 15 to 25 mg-N·(kg soil)-1, although this was not significantly different 

when these levels of nitrate were added in the absence of copper with 5 % moisture 

content (Figure 4-13).  

Similar experiments were performed with the addition of ammonium in soil 

microcosms with 5% moisture content, but with the addition of 0.1 mg 

phenylacetylene·(kg soil)-1 in one series to examine the impact of this inhibitor on the 

rates of methane consumption and N2O production (Figure 4-15). When phenylacetylene 

was not added, the rates of both methane oxidation and N2O production increased with 
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increasing amounts of ammonium.  Specifically, when either 10, 15, or 25 mg-N 

NH4
+·(kg soil)-1 were added in the presence of 5% moisture, methane oxidation rates 

increased from 57 ± 2 to 65 ± 3, 74 ± 4, and 87 ± 4 μg·hr-1, respectively (significantly 

different at 95, 99, and 99.9 % confidence levels).  Similarly, N2O production rates 

increased with increasing amounts of ammonium in the absence of phenylacetylene.  The 

addition of as little as 5 mg-N NH4
+·(kg soil)-1 without phenylacetylene significantly 

increased nitrous oxide production rates as compared to that observed in microcosms 

with 5% moisture content and no added ammonium (i.e., an increase from 0.045 ± 0.004 

μg·hr-1 to 0.087 ± 0.005 μg·hr-1, significant at a 95 % confidence level).  
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Figure 4-15. Effect of NH4
+ with and without phenylacetylene on CH4 oxidation and N2O production 

under 20 % CH4, 10 % O2, and 5 % moisture content. Effect of ammonium and 5% moisture content 
with (■,●) and without (□,○) 0.1 mg phenylacetylene·(kg soil)-1 on CH4 oxidation,(squares) and N2O 

production (circles). 

 

When 0.1 mg phenylacetylene·(kg soil)-1 was added simultaneously with varying 

amounts of ammonium, methane oxidation rates increased slightly when  up to 15 mg-N 

NH4
+·(kg soil)-1 was added (significant at a 95% confidence level),  but the rates were not 
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significantly different from those measured with equal amounts of ammonium in the 

absence of phenylacetylene at 5 % moisture content (Figure 4-15). At higher levels of 

ammonium (25 mg-N NH4
+·(kg soil)-1) with phenylacetylene and relatively dry soils, 

methane oxidation rates were observed to decrease and were indistinguishable from that 

found in the presence of 5 mg-N NH4
+·(kg soil)-1. Furthermore, this was ~70% of the rate 

of methane oxidation measured in the absence of phenylacetylene with an equal amount 

of ammonium at 5 % moisture content (significant at 99.9 % confidence level).  Nitrous 

oxide production was relatively stable with amounts of ammonium up to 15 mg-N 

NH4
+·(kg soil)-1 in the presence of phenylacetylene.  In the presence of 25 mg-N 

NH4
+·(kg soil)-1, however, N2O production rates increased from that observed in the 

presence of 15 mg-N NH4
+·(kg soil)-1, and such an increase was significant at a 90 % 

confidence level. Nitrous oxide production rates at all amounts of ammonium in the 

presence of  0.1 mg phenylacetylene·(kg soil)-1 were  ~60-70 % lower than the rates 

measured in microcosms with equal amounts of ammonium but in the absence of 

phenylacetylene, and such differences were significant at least a 95% confidence level.  

To further examine the effects of phenylacetylene on the rates of methane 

oxidation and N2O production, copper was combined with ammonium in the presence of 

0.1 mg phenylacetylene·(kg soil)-1. When 10 or 25 mg copper·(kg soil)-1 was combined 

with either 10 or 15 mg-N NH4
+·(kg soil)-1, little effect was observed on methane 

oxidation rates as shown in Figure 4-16.  
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Figure 4-16. Effect of NH4
+ and copper with 0.1 mg·(kg soil)-1 on CH4 oxidation and N2O production 

under 20 % CH4, 10 % O2, and 5 % moisture content. Effect of NH4
+ and copper on CH4 oxidation 

(■,●) and N2O production (□,○). Squares represent 10 mg-N NH4
+·(kg soil)-1, circles represent 15 mg-

N NH4
+·(kg soil)-1.   

 

Nitrous oxide production rates were also not significantly affected by the addition of 10 

mg copper·(kg soil)-1 with either 10 or 15 mg-N NH4
+·(kg soil)-1 in the presence of 0.1 

mg phenylacetylene·(kg soil)-1. However, when 25 mg copper·(kg soil)-1 was added along 

with 15 mg-N NH4
+·(kg soil)-1, the N2O production rate, 0.17 ± 0.05 μg·hr-1, increased 

significantly compared to the production rate observed when 10 mg copper·(kg soil)-1 

was combined with 15 mg-N NH4
+·(kg soil)-1 , 0.080 ± 0.02 μg·hr-1, as well as the rate 

measured when  25 mg copper·(kg soil)-1 was combined with 10 mg-N NH4
+·(kg soil)-1 , 

0.09 ± 0.01   μg·hr-1. These increases were found to be significant at 95 and 99 % 

confidence levels, respectively. 

 

4.2.6. Discussion of microcosm studies 
 

Methanotrophic activity can be affected by various geochemical parameters such 

as availability of different sources of nitrogen, e.g., NH4
+, NO3

-, or urea, moisture content, 
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organic carbon, and copper. However, when such geochemical parameters are applied to 

soils in order to stimulate methanotrophic activity, it can also affect the activities of other 

members of the soil microbial community, e.g., ammonia-oxidizing bacteria or 

denitrifiers. The addition of inorganic nitrogen, i.e., NH4
+ and NO3

-, stimulated CH4 

oxidation when incubated under 20 % CH4 and 10 % O2, possibly due to relief of 

nitrogen sources (Figure 4-1). However, such amendments also stimulated the activity of 

N2O producers resulting in increases in N2O production rates.  

Generally, inhibition of CH4 oxidation due to NH4
+ is attributed to competitive 

binding of NH4
+ to MMO, the enzyme that carries out the first step of CH4 oxidation in 

methanotrophs (58, 100, 101). Alternatively, since methanotrophs can oxidize NH4
+ to 

NO2
-, inhibition due to the produced NO2

- may occur (99). However, it appears that the 

addition of NH4
+ did not result in any significant inhibitory effects in CH4 oxidation. 

Based on this observation, the CH4 mixing ratio, 20 %, could have been high enough to 

outcompete NH4
+/NH3 in binding to MMOs. If so, it could have at least reduced the 

effects of competitive inhibition of MMOs by NH4
+/NH3. Consequently, production of 

NO2
-, a possible inhibitory anion to methanotrophs, via MMO activity could have also 

been reduced. 

As NH4
+ exists in an ionic form, when soils are amended with NH4

+, counter-ions 

are introduced along with NH4
+. Some studies have suggested the possible inhibitory 

effect of a counter-ion, Cl- on CH4 oxidation (48, 73). In this study, as NH4
+ was added in 

the form of NH4Cl, the proposed inhibition of methanotrophic activity by Cl- could have 

occurred. Another mechanism that was proposed was the differential effects of added 

anions on desorption of NH4
+ in soils increasing the amount of NH4

+ in the aqueous phase 
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(101). Although the effects of Cl- cannot be discarded, based on the stimulatory effects of 

the addition of NH4
+ on CH4 oxidation, it appears that such effects were minimal.  

Nitrous oxide production, however, was also stimulated by the addition of NH4
+ 

possibly due to the stimulation of ammonia-oxidizing bacteria. Although the production 

NO2
- via MMO activity could have reduced by the high CH4 mixing ratio, 20 %, it does 

not necessarily result in reduced activities of AMO. Therefore, if the added NH4
+ were 

oxidized by MMO, it could explain the stimulation of N2O production due to the addition 

of NH4
+. Nitrous oxide production via denitrification could also have been triggered by 

the addition of NH4
+. As NH4

+ is subsequently oxidized to NO2
- and NO3

- by ammonia 

oxidizing bacteria and nitrite oxidizing bacteria, the final product of nitrification, NO3
- 

could have been utilized by the denitrifying community.   

Interestingly, effects of NO3
- on CH4 oxidation were similar to the effects 

observed with the addition of NH4
+. The addition of NO3

- also resulted in stimulation of 

CH4 oxidation at 20 % CH4 and 10 % O2 (Figure 4-1). In previous studies, it was shown 

that approximately 100 mg-N NO3
-·(kg soil)-1 had no inhibitory effect on CH4 oxidation 

(20, 136). In another study, 22 mg-N NO3
-·(kg soil)-1 resulted in stimulation of CH4 

oxidation relative to CH4 oxidation observed when soils were amended with equivalent 

amounts of KCl to consider the effects of counter-ions (83). Based on these studies, it 

appears that the concentration range tested in this study should stimulate CH4 oxidation at 

low NO3
- and have no effects at high NO3

-. In this study, the addition of NO3
- stimulated 

CH4 oxidation over the entire range tested. Similar to the effects of added NH4
+ on CH4 

oxidation, it appears that NO3
- relieved methanotrophs of N-limitation. The addition of 
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NO3
- also stimulated N2O production probably because the added NO3

- was utilized by 

the denitrifying community.  

The addition of urea had stimulatory effects on CH4 oxidation but also on N2O 

production (Figure 4-2). However, unlike NH4
+ and NO3

-, when amount of urea added to 

the soils increased to 100 mg-N·(kg soil)-1, urea inhibited CH4 oxidation.  

 Moisture content was an important parameter in both CH4 oxidation and N2O 

production. By controlling gas diffusivity, moisture content plays an important role in 

CH4 consumption and N2O production. Here in drier soils, i.e., 5-15 % moisture content, 

CH4 oxidation rates were higher and N2O production rates lower compared to that 

observed in wetter soils, i.e., 20-30 %. As methanotrophs rely on the availability of both 

CH4 and O2, lower moisture contents allow for greater diffusion of these substrates such 

that higher CH4 oxidation rates can be expected in drier soils. The low N2O production 

rates observed at drier soils could be attributed to the greater availability of O2. However, 

it is expected that if the soils are extremely dry, < 5 % for this particular soil, the dryness 

of the soils could stress the microbial community in general.  

The addition of copper and organic carbon did not have significant impact on CH4 

oxidation. As copper is known to regulate the expression of MMO in methanotrophs that 

are capable of expressing either form of MMO (132), it was hypothesized that addition of 

copper could shift the expression of MMO, i.e., if there exist sMMO expressing 

methanotrophs in the soil, addition of copper would change the form of MMO that is 

being expressed to pMMO, thus resulting in changes in CH4 oxidation rates. However, 

addition of copper did not have any effect on CH4 oxidation below 100 mg Cu·(kg soil)-1  

(Figure 4-4). This could be because that the majority if not all of the methanotrophs in the 
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soil were expressing pMMO and the amount of copper in the background was already 

sufficient to achieve maximum CH4 oxidation rates by such cells. 

To investigate the possibility of selectively inhibiting N2O production either 

through nitrification or denitrification, phenylacetylene and chlorate were tested. 

Phenylacetylene appeared to be able to selectively inhibit ammonia-oxidizing bacteria 

leading to a decrease in N2O production while CH4 oxidation was not affected when 0.1 

mg·(kg soil)-1 of phenylacetylene was added (Figure 4-6). However, addition chlorate 

was not effective in inhibiting N2O production. Rather, stimulation of N2O production 

was observed after soils were amended with chlorate (Figure 4-7).     

The effect of varying amendments, i.e., inorganic nitrogen, urea, moisture content, 

copper, and organic carbon, in the presence of 0.1 mg·(kg soil)-1 of phenylacetylene was 

also examined. Overall, the effect of all the amendments that were tested was similar to 

what was observed in the absence of phenylacetylene. Thus, it appears that the role of 

nitrification in the production of N2O induced by the changes in NO3
-, moisture content, 

copper, and organic carbon could be minor. Interestingly, even with 0.1 mg·(kg soil)-1 of 

phenylacetylene, the addition of NH4
+ had a stimulatory effect on both CH4 oxidation and 

N2O production (Figure 4-8). This could presumably be because either the excessive 

amount of added NH4
+ allowed for greater binding to AMO, reducing phenylacetylene 

inhibition and/or the increase in amount of NH4
+ resulted in giving NH4

+ competitiveness 

to bind to MMOs. Therefore, when applying NH4
+ along with phenylacetylene to 

stimulate CH4 oxidation while inhibiting N2O production, the amount of NH4
+ added 

should be limited to enable effective inhibition of ammonia-oxidizing bacteria and 

stimulation of methanotrophs.  
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Nitrous oxide production in soils has been attributed to both nitrification and 

denitrification depending on the environmental conditions, e.g., availability of O2. 

Generally, in conditions where O2 is readily available, nitrification has been noted to be 

the primary producer of N2O, while where O2 is not readily available, denitrification (9, 

23, 98). However, these studies did not attempt to discriminate between nitrification via 

ammonia-oxidizing bacteria and methanotrophs. Thus, the contribution of methanotrophs 

on N2O production via nitrification was not assessed. Interestingly, there have been 

reports that nitrification in rice plant rhizosphere and humisols were carried out primarily 

by methanotrophs rather than ammonia-oxidizing bacteria (13, 127). If King Highway 

Landfill cover soils showed similar behaviors, i.e., nitrification being primarily due to 

methanotrophs, then the N2O production via nitrification could be attributed to the 

methanotrophs.  

As expected when NO3
- was added along with phenylacetylene, the effects on 

CH4 oxidation and N2O production did not change compared to what was observed in the 

absence of phenylacetylene. The addition of urea along with 0.1 mg·(kg soil)-1 of 

phenylacetylene also did not have differential effects on CH4 oxidation and N2O 

production rates compared to the effects observed without the addition of 

phenylacetylene. Here, increasing amounts of urea probably lead to increased production 

of NH3, a product of urea hydrolysis, which subsequently resulted in stimulation of N2O 

production. As seen with the addition of NH4
+, by increasing the amounts of urea, it 

probably overwhelmed the amounts of phenylacetylene added such that N2O production 

initiated by nitrification occurred.   
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The effect of moisture content in the presence of 0.1 mg·(kg soil)-1 of 

phenylacetylene on CH4 oxidation and N2O production did not differ from the effects in 

the absence of phenylacetylene. Drier soils, i.e., 5-15 % moisture contents, consumed 

more CH4 while producing N2O at a slower rate compared to wetter soils. The addition of 

copper and organic carbon in the presence of phenylacetylene resulted in similar effects 

on CH4 oxidation and N2O production compared to conditions in the absence of 

phenylacetylene.   

To investigate if synergistic effects could occur when multiple geochemical 

parameters were applied, combinations of 5 % moisture content, varying amounts of 

copper, and varying amounts of either NH4
+ (with and without phenylacetylene) or NO3

- 

was considered. It was found that providing relatively dry soils (5% moisture content) 

along with either 15 mg NO3
-·(kg soil)-1 or 15 mg NH4

+ ·(kg soil)-1 and 0.1 mg 

phenylacetylene·(kg soil)-1 provided the greatest stimulation of CH4 oxidation while 

minimizing any effect on N2O production.  Specifically, addition of 15 mg NO3
-·(kg soil)-

1 in soils with 5% moisture content increased CH4 oxidation rates by 48% as compared to 

no addition of nitrate with 5% moisture. Nitrous oxide production rates, however, 

increased by over 2-fold, offsetting the reduction of global warming potential associated 

with reduced CH4 emissions.  If 15 mg NH4
+ ·(kg soil)-1 and 0.1 mg phenylacetylene·(kg 

soil)-1were added, CH4 oxidation rates increased by ~28% as compared to microcosms 

with no added ammonium or phenylacetylene and 5% moisture, yet N2O production rates 

were not affected. As such, these conditions were the most appropriate of the 

combinations tested for manipulation of the microbial community present in the landfill 

cover soils at this site for mitigation of greenhouse gas emissions. Specifically, these 
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finding suggest that methanotrophic activity is limited by nitrogen at this site. Studies 

have been performed to indentify who is responsible for the N2O produced in soils. Some 

have suggested that methanotrophs produce N2O (125) with ammonia-oxidizing bacteria 

having less significant role (182). Here, based on the findings, it appears that 

microorganisms which were stimulated by the addition of NH4
+ but were inhibited by 

phenylacetylene were the primary producers of N2O, while in soils amended with NO3
-, 

the denitrifiers were the primary producers of N2O. As not all MMOs behave the same, 

N2O production after the addition of NH4
+ could be either by methanotrophs or ammonia-

oxidizing bacteria that are sensitive to phenylacetylene.  

In order to develop a method that could provide a more quantitative suggestion on 

the effects of amendments on CH4 oxidation and N2O production, relative changes in 

CH4 oxidation rates and N2O production was examined. A summary of the effects of 

amendments without phenylacetylene on CH4 oxidation and N2O production can be seen 

in Table 4-3. As a way to assess the effects, the ratios of the CH4 oxidation rates and N2O 

production rates under various conditions relative to those observed at 20 % CH4, 10 % 

O2, and 15 % moisture content, were calculated based on the average rates observed, as 

shown below. Here, the rates at baseline are that observed at 20 % CH4, 10 % O2, and 

15 % moisture content. Values reported in Table 4-3 are % changes relative to the 

baseline conditions.  
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)(
)(

2

2
2 baselinerateproductionON

amendmentswithrateproductionON
productionONonEffect =  



 

89 

Although CH4 production rates and N2O production rates observed in microcosms 

might not be representative of what may occur in situ, e.g., fluxes of CH4 and N2O, the 

rates were used to better predict what could happen in situ. In general, the addition of 

nitrogen, NH4
+, NO3

-, and urea all enhanced CH4 oxidation but also lead to enhanced 

N2O production. Therefore, the soils used could have been N-limited which could be 

relieved by the addition of nitrogen in order to stimulate CH4 oxidation.  

Table 4-3. Effects of amendments on CH4 oxidation rates and N2O production rates based on the 
average rates observed relative to rates observed at 20 % CH4, 10 % O2, and 15 % moisture content 
(baseline) (values are reported as % change).   

 
Amendments Concentration CH4 oxidation N2O production 

25 7 460 
50 18 1000 
75 22 1800 NH4

+ (mg-N·(kg soil)-1) 

100 56 1500 
25 14 230 
50 48 660 
75 48 510 NO3

- (mg-N·(kg soil)-1) 

100 43 450 
25 46 190 
50 33 460 
75 -11 580 Urea (mg-N·(kg soil)-1) 

100 -80 220 
5 21 -93 

10 11 -57 
20 -21 72 Moisture content (%) 

30 -38 -30 
5 -4 0 

10 13 33 
25 4 13 
50 0 15 

100 -1 -12 
250 -33 -9 

Copper (mg·(kg soil)-1) 

500 -32 -38 
20 -8 0 
50 -2 190 

100 -5 310 
150 -11 360 

Org. Carbon (mg·(kg soil)-1) 

200 -3 230 
 

A summary of the effects of amendments with phenylacetylene on CH4 oxidation 

and N2O production can be seen in Table 4-4. Similar to the aforementioned approach, 
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the ratios of CH4 production rates and N2O production rates relative to rates observed at 

baseline conditions, here it was 20 % CH4, 10 % O2, 0.1 mg C8H6·(kg soil)-1, and 15 % 

moisture content, were calculated based on the average rates observed.  

Table 4-4. Effects of amendments on CH4 oxidation rates and N2O production rates based on the 
average rates observed relative to rates observed at 20 % CH4, 10 % O2, 0.1 mg C8H6·(kg soil)-1 and 
15 % moisture content (baseline). (values are reported as % change).   

Amendments Concentration. CH4 oxidation N2O production 
25 39 760 
50 97 2100 
75 58 2100 NH4

+ (mg-N·(kg soil)-1) 

100 44 2500 
25 26 790 
50 34 1200 
75 36 2100 NO3

- (mg-N·(kg soil)-1) 

100 36 5600 
25 0 200 
50 62 590 
75 64 350 Urea (mg-N·(kg soil)-1) 

100 -72 100 
5 33 -32 

10 0 150 
20 -37 580 Moisture content (%) 

30 -63 300 
25 39 -30 
50 25 19 

100 27 19 
250 -14 56 

Copper (mg·(kg soil)-1) 

500 -23 -7 
20 33 150 
50 48 330 

100 33 340 
150 36 410 

Org. Carbon (mg·(kg soil)-1) 

200 11 510 
 

Similar to the effects of amendments on CH4 oxidation and N2O production in the 

absence of phenylacetylene, with the addition of phenylacetylene it appears that the 

addition of nitrogen could enhance CH4 oxidation. However, N2O production was also 

enhanced even with the addition of phenylacetylene.  

A summary of the effects of selected amendments when moisture content was 

reduced to 5 % on CH4 oxidation and N2O production can be seen in Table 4-5. Similar 
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to the approaches used previously, to assess the effects on CH4 oxidation and N2O 

production, ratios of CH4 production rates and N2O production rates observed under 

various amendments relative to rates observed at baseline conditions, i.e., 20 % CH4, 

10 % O2, and 5 % moisture content, were calculated based on the average rates observed.  

When moisture contents were decreased to 5 % and the amounts of added 

nitrogen, NH4
+ and NO3

-, were reduced to 5-25 mg-N·(kg soil)-1, the effects of 

phenylacetylene when added along with NH4
+ were clear. Specifically, when NH4

+ and 

phenylacetylene were added together, CH4 oxidation was enhanced and N2O production 

was unchanged from that without the addition of NH4
+. Therefore, based on this 

assessment, it appears that small amounts of NH4
+, 15 mg-N·(kg soil)-1 with 0.1 mg 

C8H6·(kg soil)-1 are the most effective amendments to reduce greenhouse gas net 

emission.  

Table 4-5. Effects of selected amendments at reduced moisture contents on CH4 oxidation rates and 
N2O production rates based on the average rates observed relative to rates observed at 20 % CH4, 
10 % O2, and 5 % moisture content (baseline).  (values are reported as % change) 

Amendments Concentration CH4 oxidation N2O production 
5 4 93 

10 15 200 
15 31 200 NH4

+ (mg-N·(kg soil)-1) 

25 53 410 
5 6 -20 

10 17 24 
15 28 2 

NH4
+ (mg-N·(kg soil)-1) 

0.1 mg C8H6·(kg soil)-1 
25 8 76 
5 8 100 

10 5 120 
15 48 230 NO3

- (mg-N·(kg soil)-1) 

25 46 390 
 

Here, the effects of each amendment on CH4 oxidation and N2O production were 

separately examined. i.e., both CH4 oxidation and N2O production were equally treated. 
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Based on this approach, the optimal amendments are 15 mg-N NH4
+·(kg soil)-1 along 

with 0.1 mg·(kg soil)-1 phenylacetylene.  

If CH4 oxidation and N2O production rates are weighted based on their GWP, 

CH4 oxidation rates and N2O production rates can be combined by referencing the rates 

on CO2 basis which enables the determine what the effects of amendments are as a whole 

on greenhouse gas mitigation. Based on this approach, as shown in Table 4-6, the optimal 

amendments are 25 mg-N NH4
+·(kg soil)-1, 15 and 25 mg-N NO3

-·(kg soil)-1.  

This approach is similar to that used in a previous study to assess the significance 

of N2O emission in a landfill site (146). Although NO3
- could potentially be an effective 

candidate, because it is vulnerable to leaching in pH neutral soils as a result of 

percolation, continuous application will be necessary making NH4
+-based fertilization a 

more attractive option. Although N2O has an order of magnitude higher GWP values 

compared to CH4, because the amount of CH4 being oxidized is much larger that the 

amount of N2O being produced, calculations based on CH4 oxidation rates and N2O 

production rates weighted by GWP indicate that in this particular system, stimulation of 

CH4 oxidation could be more important than trying to inhibit N2O production.   

Table 4-6. Effects of selected amendments at reduced moisture contents on CH4 oxidation rates and 
N2O production rates, collectively, based on the average rates observed relative to rates observed at 
20 % CH4, 10 % O2, and 5 % moisture content (baseline). The rates were weighted by their GWP.  

Amendments Concentration CH4 oxidation- N2O production 
5 3 

10 13 
15 29 NH4

+ (mg-N·(kg soil)-1) 

25 48 
5 7 

10 16 
15 28 

NH4
+ (mg-N·(kg soil)-1) 

0.1 mg C8H6·(kg soil)-1 
25 7 
5 7 

10 4 
15 47 NO3

- (mg-N·(kg soil)-1) 

25 44 
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4.2.7. Effect of amendments on methanotrophic community structure 
 

DNA microarray analyses were performed to investigate the effect of selected 

amendments on the methanotrophic community structure during soil microcosm studies. 

DNA was collected from 3 different soil microcosms, i.e., i) 20 % CH4, 10 % O2, 5 % 

moisture content, ii) 20 % CH4, 10 % O2, 5 % moisture content with 15 mg-N NH4
+·(kg 

soil)-1, and iii) 20 % CH4, 10 % O2, 5 % moisture content, 15 mg-N NH4
+·(kg soil)-1 with 

0.1 mg C8H6·(kg soil)-1. The rationale for choosing these conditions for microarray 

analysis was to have one serve as a baseline, and others to consider the effect of NH4
+ 

added individually and in combination with phenylacetylene as these were found to be 

the most promising amendments for reducing greenhouse gas emissions. Microarray 

results using DNA collected from soils are shown in Figure 4-17. A complete list of 

probes used for the DNA microarray and the information on the targets can be found in 

Appendix 1 (p.124). The probes used in this study was the third major updated version of 

the probes initially designed but yet to be published by the developers (19).  

As shown in Figure 4-17, in soils incubated with no amendments of nitrogen and 

phenylacetylene, Type II methanotrophs dominated the methanotrophic community, 

particularly the genera Methylocystis (Mcy233, Mcy522, Mcy264, Mcy270, and 

Mcy459). Relatively weak signals were detected from probes targeting genera 

Methylosinus (MsS314, Msi423, and Msi232). Probes targeting Type Ia methanotrophs 

produced positive signals from probes Mb_SL#3-300 (Methylobacter), Mb460 

(Methylobacter), Mm531 (Methylomonas) and Mm275 (Methylomonas) with probes 

targeting general Type Ia methanotrophs Ia193 and Ia575 yielding relatively strong 

signals compared to other probes that target Type Ia methanotrophs. Probes targeting 
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Type Ib methanotrophs (Methylococcus, Methylothermus, Methylocaldum, and related) 

showed no signals except from probe JRC2-447 (sequences closely related to Japanese 

Rice Cluster #2) and Ib453 (general Type Ib methanotrophs).  

With the addition of 15 mg-N NH4
+·(kg soil)-1, an increase in signals were 

observed from probes Mm275 (Methylomonas) and Mm451 (Methylomonas). Here, an 

increase/decrease in the relative abundance was determined as 50 % increase/decrease in 

the relative signals compared to the relative signals observed from pmoA amplified from 

soils with no amendments. Signals from Mb282 (Methylobacter), Mb271 

(Methylobacter) and Mm_M430 (Methylomonas), which were below detection limit 

(<0.05) in soils with no treatment, were positively detected in soils amended with 15 mg-

N NH4
+·(kg soil)-1. Signals from Mm531 (Methylomonas) and Ia193 (general Type I) and 

Msi423 (Methylosinus) showed a decrease in intensity. 

With the addition of 15 mg-N NH4
+·(kg soil)-1 and 0.1 mg C8H6·(kg soil)-1, 

increases in signals were detected from only two probes compared to signals from soils 

with no treatment,  JRC2-447 (Japanese rice cluster) and Mb271 (Methylobacter). The 

signal intensity from probes Mb_SL#3-300 (Methylobacter), Mm531 (Methylomonas) 

and Mm451 (Methylomonas) showed a decrease as compared to soils with no treatment. 
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Figure 4-17. pmoA based DNA microarray. Relative signal intensities are shown as color spectrum 
with 1 being the maximum achievable signal for each probe. Labels on the bottom indicate; None: 
20 % CH4, 10 % O2, 5 % moisture content, +NH4

+: 20 % CH4, 10 % O2, 5 % moisture content, 15 
mg-N NH4

+·(kg soil)-1, +NH4
++C8H6: 20 % CH4, 10 % O2, 5 % moisture content, 15 mg-N NH4

+·(kg 
soil)-1 with 0.1 mg C8H6·(kg soil)-1. 
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4.2.8. Expression of functional genes in soil microcosms 
 

To examine the expression of functional genes, mRNA was extracted from soils 

incubated under i) 20 % CH4, 10 % O2, and 5 % moisture content, ii) 20 % CH4, 10 % O2, 

5 % moisture content, and 15 mg-N NH4
+·(kg soil)-1, and iii) 20 % CH4, 10 % O2, 5 % 

moisture content, 15 mg-N NH4
+·(kg soil)-1, and 0.1 mg C8H6·(kg soil)-1 while CH4 was 

actively being consumed. Transcripts of pmoA were detected in all conditions and time 

points (Figure 4-18A) but not mmoX  (Figure 4-18B), indicating pMMO was the primary 

MMO being expressed in situ. Interestingly, amoA transcripts were not detected (Figure 

4-18C). 

 

 

 

 
Figure 4-18. PCR amplification of cDNA prepared from mRNA extracted from soils incubated under 
i) 20 % CH4, 10 % O2, and 5 % moisture content (lanes 1), ii) 20 % CH4, 10 % O2, 5 % moisture 
content, and 15 mg-N NH4

+·(kg soil)-1 (lanes 2), and iii) 20 % CH4, 10 % O2, 5 % moisture content, 15 
mg-N NH4

+·(kg soil)-1, and 0.1 mg C8H6·(kg soil)-1 (lanes 3) while CH4 was actively being consumed. 
A) pmoA, B) mmoX, and C) amoA. Lane 4s are positive controls using mRNA extracted from either 
pMMO- or sMMO-expressing Methylosinus trichosporium OB3b (A and B), and Nitrosomonas 
europaea (C). Lane 5s are negative controls with no nucleic acids added.  

  1        2        3        4        5    
A 

B 

C 

pmoA 

mmoX 

amoA 

 1        2       3       4       5     
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4.2.9. Discussion of microarray and reverse-transcription PCR 
 

Overall, the soils used for microcosm experiments were predominated by the 

genera Methylocystis, which has been found in relatively large numbers in other landfills 

(19, 32, 161). Generally, Type I methanotrophs are suggested to be more competitive in 

nutrient-rich environments (32). However, with the addition of 15 mg-N NH4
+·(kg soil)-1, 

both Type I and II methanotrophs were affected. Although an increase in relative signal 

intensities were observed in specific probes targeting Type I methanotrophs, i.e., 

Methylomonas and sequences related to environmental sequences. Also, some 

Methylobacter and Methylomonas species were positively detected which were below 

detection limit (<0.05) in soils with no amendments. As Methylobacter and 

Methylomonas are Type I methanotrophs, it indicates that Type I methanotrophs were 

able to gain advantage with the addition of NH4
+. Although signals from Ia193 (general 

Type I) decreased, it has been reported that the specific probe does not have full coverage 

of Methylobacter and Methylomonas. Therefore, the result obtained from Ia193 might not 

effectively reflect what occurred to Type I methanotrophs as a whole.  

With the addition of 15 mg-N NH4
+·(kg soil)-1 and 0.1 mg phenylacetylene·(kg 

soil)-1, signals for Methylobacter and Methylomonas decreased or were at the levels 

observed from soils with no treatment. As the microarray method used here can only 

provide information on relative abundance and not the actual quantity of specific taxa, the 

increases and decreases only reflect the changes in relative abundance. Therefore, the 

stimulation in CH4 oxidation due to the addition of either 15 mg-N NH4
+·(kg soil)-1 or 15 

mg-N NH4
+·(kg soil)-1 and 0.1 mg phenylacetylene·(kg soil)-1, could be due to an increase 

in relative abundances of certain methanotrophs but cannot eliminate the possibility of 
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increase in the total size of the methanotrophic community. If a change in community 

structure is responsible for the stimulation of CH4 oxidation, both Type I and Type II 

methanotrophs could have been responsible. Also, regarding the inhibition of N2O 

production due the addition of 0.1 mg phenylacetylene·(kg soil)-1, it appears that Type I 

methanotrophs, i.e., Methylobacter and Methylomonas related methanotrophs were 

responsible for producing N2O as the increase in signals were observed for probes 

targeting these genera with the addition of NH4
+ but were also affected by the 

simultaneous addition of C8H6.  

To better understand the activity of methanotrophs and ammonia-oxidizing 

bacteria in situ, PCR was performed using cDNA synthesized from mRNA collected 

from soils incubated under three different conditions, under i) 20 % CH4, 10 % O2, and 

5 % moisture content, ii) 20 % CH4, 10 % O2, 5 % moisture content, and 15 mg-N 

NH4
+·(kg soil)-1, and iii) 20 % CH4, 10 % O2, 5 % moisture content, 15 mg-N NH4

+·(kg 

soil)-1, and 0.1 mg C8H6·(kg soil)-1 while CH4 was actively being consumed. Here as 

shown in Figure 4-18, pmoA was being expressed in the soils and not mmoX for all three 

conditions indicating that only pMMO was being expressed with sMMO being expressed 

below detection limits if at all. In other previous studies where CH4 was being actively 

consumed, similar results were obtained, where only the transcripts of pmoA were 

detected and not mmoX (40, 41). This finding could explain why the addition of copper to 

the soils did not affect CH4 oxidation. Here, even without the addition of external copper, 

only the transcripts of pmoA were detected. Interestingly, the transcripts of amoA were 

not detected even with the addition of NH4
+ (Figure 4-18C). It was initially expected to 

see transcripts of amoA when NH4
+ was the sole amendment, as N2O production rates 
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were increased at the particular condition suggesting a minimal role of ammonia-

oxidizing bacteria in the production of N2O via oxidation of NH4
+. If pmoA and amoA 

transcripts are an indication of the size of methanotrophs and ammonia-oxidizing bacteria, 

respectively, although N2O production rates of ammonia-oxidizing bacteria can exceed 

that of methanotrophs (182), the size of the methanotrophic population could have been 

responsible for a large amount of N2O produced.  

4.3. Conclusions 
 

In this chapter, effects of various geochemical parameters, i.e., inorganic nitrogen, 

urea, moisture content, copper, organic carbon, and selective inhibitor, on CH4 oxidation 

and N2O production were examined. When amendments are sought to stimulate CH4 

oxidation in landfills or other sites that is to mitigate CH4 emissions, one should take into 

account the possible consequences of such amendments. As landfill cover soils could 

contain complex microbial communities, an amendment to solve one problem, i.e., 

stimulation of CH4 oxidation, could bring about another problem, i.e., stimulation of N2O 

production. Therefore, holistic approaches should always be taken in landfill gas 

management.  

Based on the findings, it appears that inorganic nitrogen and moisture content are 

all important variables that should be considered when managing landfills to mitigate 

greenhouse gas emissions. Although both forms of inorganic nitrogen, i.e., NH4
+ and 

NO3
-, could potentially be effective in mitigation of greenhouse gas emissions, because 

NO3
- could be lost in soils from leaching in pH-neutral soils, NH4

+ seems favorable. On 

the other hand, the mobility of NO3
- could benefit the methanotrophic communities in 

deeper regions if the amendments are applied to the surface. Therefore, a combination of 
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NH4
+ and NO3

-, along with selective inhibitor phenylacetylene, could also be considered 

to stimulate CH4 oxidation while inhibiting N2O production in situ.  
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CHAPTER 5. Vertical community composition of 
methanotrophs in situ 

 

5.1. Introduction 
 

Methane is the product of anaerobic decomposition, as mentioned in Chapter 1, 

such that it is more likely to find large amounts of CH4 in deeper parts of the landfill. As 

O2 penetrates the landfill cover soils counter gradients of CH4 and O2 are observed, i.e., 

low CH4 to O2 ratios near the surface and high CH4 to O2 ratios in deeper regions. 

Although the two generally accepted types of methanotrophs, Type I (or more 

specifically Type Ia) and Type II methanotrophs, have been found to be able to coexist, 

some studies have suggested that the two types of methanotrophs may have certain 

preferences toward substrate availability. In CH4-rich and O2-limiting environments, 

Type II methanotrophs seem to outcompete Type Ia methanotrophs while Type Ia seem 

to outcompete Type II methanotrophs in CH4-limiting and O2-rich environments (3, 31, 

80, 123, 161). In nitrogen and/or nutrient limiting environments, it appears that Type II 

methanotrophs have an advantage over Type Ia methanotrophs while in nitrogen rich 

environments Type Ia methanotrophs appear to predominate (17, 72, 129, 180). 

Therefore, even within methanotrophs, different geochemical parameters could exert a 

strong influence on the distribution and activity of methanotrophic community in situ. In 

this chapter, the vertical distribution of methanotrophic community composition was 

examined through the use of pmoA-based DNA microarray. It was expected to observe 
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Type I methanotrophs gain advantage where CH4/O2 is low (shallow regions) and Type II 

methanotrophs thrive where CH4/O2 is high (deeper regions).  

 Understanding the methanotrophic distribution in situ in landfill cover soils may 

enable one to better manage landfills to mitigate greenhouse gas emissions, e.g., should 

amendments such as NH4
+ or NO3

- be applied and if so, what depths should be targeted 

for application? As it has been suggested that Type Ia methanotrophs react quickly to 

changes in the surroundings (80), understanding where Type Ia methanotrophs exist and 

how they respond to amendments could be useful in mitigating CH4 emissions. In this 

part, vertical community composition of methanotrophs in King Highway Landfill cover 

soil was examined by microarray analysis. Although 16s rRNA has been traditionally 

used to identify the members of the microbial community in the environment, pmoA was 

used as almost all known methanotrophs possess this gene except for certain exceptions, 

e.g., some Methylocella species, which are acidophilic, and not believed to be numerous 

in landfills (53). 

5.2. Results 
 

5.2.1. Vertical geochemical properties of the soil.  
 
 Vertical soil gas properties of the soil are shown in Figure 5-1. At this particular 

site, O2 penetrated down to a depth of 90 cm although the amount of O2 declined with 

increasing depth. The amount of CH4 in the soil gas between depths of 60-100 cm was 

relatively stable around 50-60 % which then declined with shallower depths. At 20 cm, 

the shallowest depth where soil gas measurements were taken, CH4 was present at 2.3 %. 
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Meanwhile, CO2 in the soil gas was relatively stable between 20-29% in the depths of 50-

100 cm but also declined with shallower depths.  
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Figure 5-1. Vertical gas profile of King Highway Landfill measured in Feb 2007 (7) 

 

The soil pH varied between 7.3 and 7.5 over the entire depth, i.e., 0-95 cm. 

Inorganic nitrogen, ammonium and nitrate, associated with the soils from core sample 

was measured as shown in Figure 5-2. Inorganic ammonium ranged between 0.3 and 29.4 

mg-N·(kg soil)-1. The inorganic ammonium content was generally low, i.e., between 0.3 

and 2.1 mg-N·(kg soil)-1, in shallow regions, i.e., 0-20 cm while inorganic ammonium 

was slightly higher at 5.7-10.9 mg-N·(kg soil)-1 at depths of 20-50 cm. Higher amounts of 

inorganic ammonium, i.e., (>20 mg-N·(kg soil)-1), was present in deeper regions of the 
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soil, i.e., below 50 cm, but no evident trend was seen as the amount of inorganic 

ammonium fluctuated below depths of 50 cm with values as low as 5.6 mg-N·(kg soil)-1 

and as high as 29 mg-N·(kg soil)-1 was observed. Inorganic nitrate varied between 1.2 and 

20.2 mg-N·(kg soil)-1. The amount of nitrate was relatively stable at 22.5-62.5 cm depths 

between 1.6-6.4 mg-N·(kg soil)-1. However, at other depths, above 22.5 cm and below 

62.5 cm, the amount of nitrate fluctuated significantly, with as much as  20 mg-N·(kg 

soil)-1 found. 
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Figure 5-2. Vertical profile of inorganic ammonium and nitrate associated with King Highway 

Landfill core sample obtained in May 2007 

  

The bioavailable and total copper were also measured as shown in Figure 5-3. 

Bioavailable copper was relatively higher at depths of 0-20 cm compared to deeper 

regions, ie., 80-230 μg·(kg soil)-1 and 14-92 μg·(kg soil)-1, respectively. The amount of 

total copper content fell in the range of 5-26 mg·(kg soil)-1.  
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Bioavailable and total iron were measured as shown in Figure 5-4. Bioavailable 

iron was relatively stable, varying between 3.4-6.0 mg·(kg soil)-1 while total iron content 

fluctuated between 2.3 and 14 g·(kg soil)-1.  
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Figure 5-3. Vertical profile of bioavailable and total copper. □: bioavailable copper, ■: total copper. 
Error bars indicate standard deviations from measurements of samples of triplicates.  
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Figure 5-4. Vertical profile of bioavailable and total iron. □: bioavailable iron, ■: total iron. Error 
bars indicate standard deviations from measurements of samples of triplicates. 
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5.2.2. Methanotrophic community structure 
 

The vertical community composition of methanotrophs in the landfill cover soil 

was assessed by diagnostic microarray targeting the functional gene pmoA (19, 161) as 

shown in Figure 5-5. A summary of the oligonucleotide probes used for microarray 

analysis is provided in Appendix 1 (p.124). In general, King Highway Landfill cover soil 

was predominated by Type II pmoA sequences, specifically pmoA sequences related to 

Methylocyctis genera, throughout the depth tested as evidenced by the high signal values 

obtained in probes Mcy233, Mcy413, Mcy522, Mcy264, Mcy270, and Mcy459. 

Although at lower intensities, probes specific to Methylocystis parvus, Methylocystis 

echinoides, and strain M (McyB304), and Methylocystis strain M and related (McyM309) 

further provided evidence that soils examined contained relatively abundant 

Methylocystis-related pmoA sequences. Sequences related to Methylosinus, another 

genera belonging to Type II methanotrophs, were mainly found from probes MsT343 and 

MM_MsT343, which are probes both intended to hybridize to Methylosinus 

trichosporium OB3b and related pmoA sequences. However, MsS314 was the only probe 

that target Methylosinus sporium that produced positive signals indicating that in these 

soils Methylosinus-related methanotrophs were mainly closely related to Methylosinus 

trichosporium OB3b.  

Signals retrieved from probes Mb460, Mm531, Mm275, and Mm451 indicated 

the presence of Type I methanotrophs, Methylobacter and Methylomonas related 

methanotrophs throughout. However, results from probes BB51-302, Mb292, Mb282, 

and MmM430 indicated certain Methylobacter and Methylomonas-related methanotrophs 

were found mainly above 27.5 cm and not deeper than 32.5 cm. Mb_URC278, Mb267, 
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MbA486, and Mb271 indicated that certain Methylobacter related methanotrophs could 

be found at depths of 32.5-35 cm but not at deeper regions. No signals were obtained 

from probes targeting the genera Methylomicrobium and Methylosarcina at any depths 

tested. Probes targeting Type Ia methanotrophs in general Ia193 and Ia575 both showed 

positive results.  

Based on the signals from probes,(JRC4-432, JRC2-447, USC3-305, LW21-374, 

JRC3-535 and MclS402) targeting specifically Type Ib related methanotrophs, i.e., 

Methylothermus, Methylococcus, and Methylocaldum related, these cells were not as 

abundant in King Highway Landfill soils as Type Ia methanotrophs, i.e., Methylobacter, 

Methylomicrobium, Methylosarcina, and Methylomonas related methanotrophs, or Type 

II methanotrophs, i.e., Methylocystis and Methylosinus related. Japanese rice cluster #2 

and #4 (probe JRC2-447 and JRC4-432, respectively) related sequences were also found 

throughout the depths tested. Weak signals, slightly above detection limit, were obtained 

from probes MclS402, 501-375, USC3-305, LW21-374, and JRC3-535, which were 

probes designed to target Methylocaldum szegediense, Methylococcus related, Upland 

Soil Cluster #3, LW21 group, and Japanese rice cluster #3, respectively. Although the 

signals were weak, they indicated that methanotrophs that possessed sequences related to 

such groups were only present down to 32.5-35 cm and not found at 42.5-45 cm.  
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Figure 5-5. DNA microarray using pmoA prepared by primer set pmoA189-mb661. Relative signal 
intensites are shown as color spectrum with 1 being the maximum achievable signal for each probe. 
DNA was extracted from four different depths, 15-17.5, 25-27.5, 32.5-35, and 42.5-45 cm. 
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5.3. Discussion 
 

Based on the vertical soil gas profile of King Highway Landfill cover soil (Figure 

5-1), it is apparent that the system was not limited in O2 for oxidation of CH4. Inorganic 

nitrogen, (ammonium and nitrate), were present along with trace nutrients of copper and 

iron that are important for methanotrophic growth. When considering the results from 

Chapter 4.2.2, i.e., soil microcosm studies done at 20 % CH4 and 10 % O2 resembling the 

conditions seen at depths of approximately 40 cm, the amount of inorganic nitrogen may 

not be sufficient in situ since in soil microcosm studies, the addition of inorganic nitrogen 

stimulated CH4 consumption. An alternative hypothesis is that the moisture content was 

not at optimum in situ as moisture content could have an impact on methanotrophic 

activity by affecting mass transfer of CH4 and/or O2.   

Overall, Type II methanotrophs predominated the soils over the entire depths that 

were examined (15-17.5, 25-27.5, 32.5-35, and 42.5-45 cm). Specifically, in the soils 

tested, members of Methylocystis genera were the predominant components of the 

methanotrophic community. It is not surprising to observe Methylocystis species 

predominating this particular environment as Methylocystis-related methanotrophs have 

been found to be abundant in other landfill cover soils (70, 161). When the vertical 

profile of soil gas at this site comes into consideration, as shown in Figure 5-1, the 

predominance of Methylocystis-related methanotrophs was to be expected as the high 

concentrations of CH4, as Type II methanotrophs, Methylocystis and Methylosinus genera 

are reported to have an advantage over the Type Ia methanotrophs, e.g., Methylobacter 

and Methylomonas, at high CH4 to O2 ratios (80, 161). However, as this analysis was 

based on the DNA extracted from the site, it cannot be used to infer that Methylocystis 
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were primarily responsible for CH4 consumption in this soil. In a previous study using 

mRNA and/or 13C-labelled CH4 probing of DNA, active methanotrophs did not 

necessarily result in active expression of pmoA/mmoX (40). In the study, transcripts of 

16S rRNA and mxaF, which encodes the subunit of methanol dehydrogenase, were found 

for Methylocystis but no transcripts of pmoA that belong to Methylocystis were detected. 

Therefore, although Methylocystis may have a major role in consuming CH4 in King 

Highway Landfill cover soil, it could also be possible that instead of consuming CH4, 

Methylocystis could be consuming methanol produced by other methanotrophs. Without 

further information on mRNA that is being expressed in situ or proteins being 

synthesized, it remains speculative on which groups of methanotrophs are doing what in 

situ.  

Type Ia methanotrophs were also found in this soil but results from certain probes, 

BB51-302, Mb292, Mb282, , Mb_URC278, Mb267, MbA486, Mb271 and MmM430 

showed that Type Ia methanotrophs were present down to as deep as 32.5-35 cm but not 

at 42.5-45 cm. These probes target Methylobacter and Methylomonas species. 

Interestingly, probes Mb460 (Methylobacter), Mm531, Mm275, and Mm451 

(Methylomonas) showed that methanotrophs that are targeted by these probes were found 

throughout. Type I methanotrophs have been reported to prefer low CH4 and high O2 

environments while Type II methanotrophs seemed to outcompete Type I methanotrophs 

in high CH4 and low O2 environments (3, 31, 80, 123). Here, it was shown that certain 

Type Ia methanotrophs were able to gain competitiveness against Type II methanotrophs 

at low CH4 to O2 ratios but there were yet other Type Ia methanotrophs that were able to 

exist at high CH4 to O2 ratios. Another variable that could have some effect in 
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determining which group of methanotrophs gain advantage over other methanotrophs is 

the amount of available nutrients. In several studies, it was reported that nutrient-rich 

environments favored Type I methanotrophs over Type II methanotrophs (26, 32, 33, 

180). In this study, in order to minimize the effect of amount of available nutrients in 

interpreting the results, DNA was extracted from soils samples that contained relatively 

equal amounts of inorganic nitrogen, i.e., NH4
+ and NO3

-. Therefore, although it cannot 

be entirely ruled out, the effect of nutrients on selection of methanotrophs at least by 

inorganic nitrogen appear minimal.   

When the DNA microarray results presented in this chapter are compared to those 

of Chapter 4.2.4, the abundance of Methylocystis-related methanotrophs was identical in 

both soils from microcosm studies and the soils obtained as a core from the site. However, 

the Type Ia methanotrophs, although not as abundant as Type II methanotrophs, were 

observed in the upper regions of the landfill cover soil while it was almost not detected in 

soils from microcosm studies. This is not so surprising since the soil used from 

microcosm studies were sampled from depths of 40-60 cm in the site. At such depths, 

based on the results for 42.5-45 cm, it appeared that Type Ia methanotrophs were in 

either very small numbers such that it was under the detection limit or might not have 

been present. The reason Type Ia methanotrophs were not detected in higher abundance 

in soil microcosm studies could be attributed to where the soil was sampled from.  

The predominance of Type II methanotrophs with Type I methanotrophs being 

present only minimally in the methanotrophic community structure in soils used for 

microcosm studies could be explained by the vertical composition of methanotrophic 

community. As the soils used for microcosm studies were collected from a depth of 40-



 

112 

60 cm, based on the vertical methanotrophic community structure where the majority of 

the pmoA-containing methanotrophs were affiliated with Type II methanotrophs (Figure 

5-5), Type II methanotrophs can be expected to predominate in soils collected for 

microcosm studies.  
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Figure 5-6.  Indices of diversity, richness, evenness, and dominance in methanotrophic community 
composition in King Highway Landfill cover soil.     

 

Indices for diversity, richness, evenness, and dominance in methanotrophic 

community composition in King Highway Landfill cover soil were calculated following 

the methods described earlier for DNA microanalysis performed using the same set of 

probes (70) as shown in Figure 5-6. The indices of diversity (1/D) and richness (DMn) 

reflect the loss of positive signals with increasing depth which was observed in the 

microarray analysis where loss of signals from probes targeting Type I methanotrophs 
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occurred. The indices for evenness (E) and dominance (d) were relative stable which can 

be attributed to the strong positive signals retrieved from probes targeting Type II 

methanotrophs. As Type II methanotrophs, specifically Methylocystis-related 

methanotrophs, dominated the soils at the depths examined, disappearance of Type I 

methanotrophs with increasing depths was not reflected in these indices, E and d.  

5.4. Conclusions 
 

In this chapter, DNA microarray was used to examine the vertical distribution of 

methanotrophic community composition. It was initially expected to see Type I 

methanotrophs gaining advantage where CH4/O2 was low (near surface) while Type II 

methanotrophs take advantage where CH4/O2 was high (deeper regions). Interestingly, 

the results showed that although Type I methanotrophs were more abundant where 

CH4/O2 was low, Type II methanotrophs, specifically Methylocystis-related 

methanotrophs, predominated the methanotrophic community at all depths examined. As 

Type I and II methanotrophs possess different pathways to assimilate carbon, such a 

difference could be the reason for giving an advantage to Type I methanotrophs where 

CH4 is limited. Also, based on the DNA microarray results, not all Type I methanotrophs 

lost competitiveness with increasing CH4/O2. Interestingly, among the probes targeting 

Type I methanotrophs that were positively hybridized throughout, probes Mm275 and 

Mm451 increased in signal intensities with the addition of NH4
+ in the microcosm studies 

(Chapter 4). If the Type I methanotrophs that are primarily responsible for the N2O 

production are ones that can be targeted by probes Mm275 and Mm451, then the problem 

becomes more complicated as such methanotrophs could exist even at high CH4/O2 ratios. 
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Therefore, understanding the conditions that specifically inhibit the activities of such 

methanotrophs will become important.   
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CHAPTER 6. Conclusions and Future work 
 
 

6.1. Conclusions 
 

The objective of this  study was to understand what factors affect CH4 oxidation by 

methanotrophs. First, the effects of NMOCs on methanotrophic growth were examined. 

As NMOCs which are commonly found in landfill gas can bind to MMOs without 

providing any benefits to the methanotrophs, it was hypothesized that the presence of 

NMOCs will inhibit the methanotrophic growth. Also, as MMOs can be found in two 

different forms, pMMO and sMMO, with sMMO having a relatively broad substrate 

range, it was hypothesized that sMMO-expressing methanotrophs would be affected 

more significantly by the presence of NMOCs than pMMO-expressing methanotrophs. 

Furthermore, a dimensionless number was developed which can predict the inhibitory 

effects of NMOCs on methanotrophic growth. In Chapter 3, the effects of the presence of 

NMOCs on growth of methanotrophs expressing either form of MMO were examined 

using custom-designed vials enabling both measurement of growth and degradation of 

NMOCs. Consistent with the aforementioned hypothesis, with increasing amounts of 

NMOCs, growth of methanotrophs expressing either form of MMO were both affected. 

Also, sMMO-expressing cells were affected more than the pMMO-expressing cells. 

Dimensionless number, Δ, was effective in predicting the inhibitory effects of increasing 

amounts of multiple NMOCs on methanotrophic growth.  
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Second, the effects of amendments on CH4 oxidation and N2O production were 

examined by constructing soil microcosms using landfill cover soils collected from King 

Highway Landfill. The amendments tested were moisture content, copper, different forms 

of nitrogen (NH4
+, NO3

-, and urea), organic carbon, and selective inhibitors 

phenylacetylene and chlorate. In Chapter 4, it was shown that the addition of inorganic 

nitrogen could stimulate CH4 oxidation but also N2O production. Moisture content, when 

lowered to 5-10 %, had a stimulatory effect on CH4 oxidation while inhibitory on N2O 

production. The addition of phenylacetylene showed inhibition of N2O production while 

not affecting CH4 oxidation. When soils were maintained at low moisture content, 5 %, 

and amended with 15 mg-N NH4
+·(kg soil)-1 in conjunction with 0.1 mg C8H6·(kg soil)-1, 

CH4 oxidation was stimulated but N2O production was inhibited. Methanotrophic 

community composition via DNA microarray analyses indicated that Type I 

methanotrophs increased in relative abundance with the addition of NH4
+ but decreased 

with the addition of phenylacetylene. This indicated that a shift in methanotrophic 

community composition was responsible for the stimulation of N2O production with the 

addition of NH4
+, but could be reduced with the addition of phenylacetylene. 

Additionally, transcripts of functional genes were amplified to examine what gene was 

being expressed when NH4
+ was added with and without phenylacetylene. Results 

showed that only pmoA was expressed, while mmoX and amoA were absent or below 

detection limits, indicating that the methanotrophs were mainly expressing pmoA and that 

pMMO-expressing methanotrophs and not ammonia-oxidizing bacteria were responsible 

for the production of N2O when NH4
+ was added.  
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In Chapter 5, the vertical distribution of the methanotrophic community composition 

was examined via DNA microarray analyses. Results showed that Type I methanotrophs 

were relatively more abundant in environments with low CH4/O2, in agreement with the 

literature, and Type II methanotrophs were abundant throughout. However, not all Type I 

methanotrophs were limited near the surface where CH4/O2 ratios were low. It was found 

that there were some methanotrophs within Type I methanotrophs that were able to exist 

where CH4/O2 ratios were high. Interestingly, ones that gained in relative abundance with 

the addition of NH4
+ in soil microcosm studies were found in such high CH4/O2 ratios.  

When managing landfills to mitigate greenhouse gas emissions, it will be important 

to come up with a strategy that can stimulate CH4 oxidation and inhibit N2O production. 

Based on the findings presented here, adding NH4
+ in conjunction with phenylacetylene 

at relatively dry soils can stimulate CH4 oxidation and inhibit N2O production. This can 

be achieved by applying NH4
+ and phenylacetylene to the soils while limiting any further 

addition of moisture content (H2O), e.g., rain. In the future, it will be important to create 

designs which allow efficient drainage in landfill cover soils. Additionally, in landfills 

where emission of NMOCs is observed along with CH4, understanding the availability of 

CH4 and NMOCs in situ will also  be important. Once such information is obtained, using 

the dimensionless number, Δ, developed here, the performance of methanotrophic 

activities can be predicted. In Chapter 4, it was shown that the addition of NH4
+ increased 

the relative abundance of Type I methanotrophs and in Chapter 5, low CH4/O2 was 

important for a diverse and rich methanotrophic community composition. Therefore, if a 

diverse methanotrophic community composition is desired for maximum CH4 oxidation, 

then addition of NH4
+ to deeper parts of the landfill cover soils may be required. 



 

118 

Alternatively, establishing vegetation that has roots that penetrate deeper into the soil 

column could be worthwhile due to root-transport of O2.  
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6.2. Future Work 
 

The work presented here was performed in batch scales that may not reflect to the 

actual landfill conditions. As the rate of CH4 migration upwards in situ and methanotroph 

population size is unknown at this time, it is difficult to determine what the ultimate 

capacity of CH4 oxidation would be in situ, i.e., how much of the CH4 generated in the 

soils would be prevented from being emitted to the atmosphere. Similarly, the extent of 

N2O that enters the atmosphere is unknown in situ. Therefore, it would be interesting to 

relate the actual transport phenomena of CH4 and N2O to CH4 oxidation rates and N2O 

production/consumption rates, as well as to quantify the number of methanotrophs as a 

function of depth. By doing so, information on where CH4 oxidation and N2O production 

occurs and to what extent can be gathered. Such information could be useful in 

management of landfills. Additionally, studies using soil columns fed with 13C-CH4 could 

provide very interesting results, as stable isotopes allow separation of labeled nucleic 

acids or PLFA from the non-labeled, which provides information on the organisms that 

assimilate the labeled substrates (57). Although stable-isotope-labeled substrates such as 

13C-CH4 and 15N-NH4
+ have not been used in column studies, it could enable molecular 

studies to understand the functionality of the active microbial community that is 

supported by CH4. Therefore, such studies could not only provide knowledge on what 

could happen, i.e., the kinetics of CH4 oxidation and N2O production, but also on the 

active microbial community structure. Although stable-isotope-based experiments have 

been extensively used to study active methanotrophs in soils, the mixing ratio of CH4 

used has been very low, < 1 % CH4 (33, 41), compared to what is observed in situ. As the 

amount of available CH4 and possibly O2 appears to have a significant role in controlling 
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the composition of methanotrophic community, the amounts of 13C-CH4 used for such 

experiments are not a realistic representation of what actually is occurring in situ. As a 

first step, labeled CH4 can be introduced in the soil microcosm by the gassing system 

(Chapter 4) to allow a higher mixing ratio of CH4.  

One question of interest would consider what conditions induce sMMO activity in 

situ. Even though some methanotrophs are capable of utilizing sMMO for CH4 oxidation 

in controlled laboratory condition, transcripts of mmoX have yet to be successfully 

amplified from soils that consume CH4, as shown here and elsewhere (41).  

Here, phenylacetylene and chlorate were examined for their applicability as 

selective inhibitors for either nitrifiers or denitrifiers. However, it appears that chlorate 

was not an effective inhibitor of denitrification. Among the possible candidates as a 

selective inhibitor of denitrifiers, hippuric acid and benzoic acid appear very interesting 

since these are naturally occurring compounds. Hippuric acid, which can be found in 

cattle urine, and benzoic acid, a breakdown compound of hippuric acid, have been shown 

to inhibit N2O production via denitrification (105, 171). At this time, however, the 

mechanism of such inhibition is unclear. Therefore, it would be interesting to elucidate 

the inhibition mechanism and its selectiveness, i.e., what is the effect of hippuric acid and 

benzoic acid on CH4 oxidation? This can be performed using the laboratory setup used 

for soil microcosm studies done in chapter 4. By doing so, CH4 and O2 mixing ratios 

found in situ could be achieved.  

Here, the microorganisms responsible for the production of N2O were determined by 

examining the changes in abundance and the transcripts of functional genes. As an 

addition to this molecular technique-based approach, use of N2O isotopomers could give 
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an independent perspective on this matter. There have been studies on N2O isotopomers 

in order to find distinctive patterns in N2O produced by the different pathways (164, 165, 

168). Isotopomers, or intramolecular distributions of 15N, can come in two forms for 

N2O; 15NNO and N15NO (159). Previous studies have shown that different metabolic 

pathways using pure cultures produce different fractions of isotopomers (164, 165, 168). 

Also, isotopomer studies have been utilized in soil samples to identify the sources of N2O, 

i.e., is the N2O produced via nitrification or denitrification (177)? The isotopomer studies 

could provide further knowledge on what is responsible for the production of N2O in 

different conditions and at what depths. Therefore, it could be a valuable resource in 

making decisions on what to do in order to reduce/eliminate N2O production in situ. This 

can be achieved through the use of custom-designed vials (chapter 3) and the gassing 

system (chapter 4) such that desired CH4/O2 mixing ratios can be prepared while 

examining the growth of cells. Initially, the work can start by examining the N2O 

isotopomers at different growth stages with model organisms to investigate if there are 

any differences in what stage of growth the cultures are in, and also the type of organism, 

e.g., Methylomonas vs Methylocystis. Once this is understood, experiments can be 

performed with multiple cultures to see if such N2O isotopomers can be differentiated, 

eventually moving forward to complex systems.  

 The role of ammonia-oxidizing archaea, if any, in N2O production should also be 

investigated. Here, the focus was on methanotrophs and ammonia-oxidizing bacteria. 

However, it has been reported that ammonia-oxidizing archaea may be more abundant 

than ammonia-oxidizing bacteria in soils (114). As only a limited number of cultures of 
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ammonia-oxidizing archaea have been isolated (104), it is still unknown what such 

microorganisms can do.  

Finally, this work was based on a model methanotroph, M. trichosporium OB3b, and 

soils collected from one landfill cover. It would be interesting to see how different 

landfill cover soils respond to the same amendments. This could inform whether 

generalization of amendments can be made for management of different landfill sites. 

And whatever the outcome is, i.e., different or same responses, further study on what, e.g., 

methanotrophic community composition or geochemical property of the soils, dictates 

such behavior on CH4 oxidation and N2O production would give more insight to the 

processes involved. This can be done through similar approaches taken in Chapter 4.  
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Appendix 1. List of oligonucleotide probe sets used. Melting temperatures were calculated using the 
nearest neighbour method. Updated from previous arrays (19, 161). 
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Appendix 1. (continued) 
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