Chiral Nucleophilic Catalysts: Applications in the Synthesis of 3,3-Disubstituted Oxindoles and Parallel Kinetic Resolution

by

Trisha Ann Duffey

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in The University of Michigan 2008

Doctoral Committee:
Professor Edwin Vedejs, Chair
Professor James K. Coward
Professor John Montgomery
Associate Professor John P. Wolfe
© Trisha Ann Duffey 2008

Psalm 29:2

Ascribe to the Lord the glory due his name;
Worship the Lord in the splendor of his holiness.

ACKNOWLEDGEMENTS

I'd like to thank my advisor, Ed Vedejs, for his patience over the years as he has taught me so much about the pursuit of science. Thanks for allowing me the space to grow as a scientist but knowing when a push in the right direction was needed. Your enthusiasm for science is infectious and has created a wonderful laboratory environment in which to work. It has been a privilege to work with you over the past few years.

I also owe my undergraduate advisor, James Vyvyan, a debt of gratitude for my start in the field of organic chemistry. Thanks for beginning my training and sparking my interest in organic chemistry research. Your continued advice and support over the years has been a tremendous blessing.

The Vedejs laboratory has always been a great place to work. Thanks to all my coworkers, past and present, for many stimulating and not so stimulating conversations! Specifically, I would like to thank my immediate predecessors on the nucleophilic catalysis project, James and Scott, for beginning these projects and helping me get started in the research. In addition, I would like to thank Tim for making the move to 3706 to be my labmate, getting me addicted to Doctor Who and the Office and keeping me sane, most of the time. I couldn't have asked for a better coworker. Thanks to Susan for being a great friend, labmate, and roommate throughout the years, although I may not forgive you for getting married and leaving me! Thanks to Val for "dragging" me out to experience more of the Ann Arbor life and being a great labmate. I have also had the privilege of working with two undergraduate students, Chris and Eoghan. Thanks for teaching me as much as I hope I taught you! Chemistry at Michigan is a wonderful place because of the people outside of the Vedejs laboratories as well. Specifically thanks for Tara for making Friday lunches something to look forward to during the week. In addition, thanks
to Alison for being a great friend and roommate. Thanks to Jeremy, Steve and Jen for many discussions and car rides to church.

Outside of the chemistry world, I would like to thank the Adventureland staff and volunteers at Oak Pointe Church for their encouragement and support over the years. Also thanks to the many people in my Bible studies and in Elevate for their friendships and providing a social outlet that didn't involve chemistry.

Finally, thanks to my family for the love, prayers, support and encouragement over the years. Mom and Dad: you are amazing, it's that simple. I thank God for blessing me with you. Thanks to the best brother and sister a girl could have, Eric and Tina. Additionally, thanks to the entire Krueger and Duffey clans for their love and support. I'm so glad I am coming back to you now!

TABLE OF CONTENTS

Dedication ii
Acknowledgements iii
List of Figures vii
List of Schemes viii
List of Tables xi
List of Appendices xiii
Abstract xiv
Chapter 1. Chiral Nucleophilic Acyl Transfer Catalysts 1
I. Introduction 1
II. Nucleophilic Catalysis 1
III. Kinetic Resolutions 7
IV. Asymmetric Nucleophilic Catalyzed Acyl Transfer Reactions 9
V. Chiral Nucleophilic Catalysts Developed in the Vedejs Group 20
VI. References for Chapter 1 27
Chapter 2. Acetyl and Alkoxycarbonyl Rearrangement Reactions: The Catalytic Enantioselective
Synthesis of 3,3-Disubstituted Oxindoles. 34
I. Introduction 34
II. Results 43
III. Experimental 84
IV. References for Chapter 2 134
Chapter 3. Dual Catalytic Parallel Kinetic Resolution under Homogeneous Reaction Conditions....141
I. Introduction 141
II. Results 150
III. Experimental 163
IV. References for Chapter 3 173
Appendices 177

List of Figures

Figure
1-1. General Base Catalysis by Acetate in DMAP-Catalyzed Acylation Reactions 7
1-2. General Kinetic Resolution Scheme 8
1-3. Harper's Chiral DMAP Catalysts 22
1-4. Amino Alcohol-Derived Catalyst Side-Chain Conformations 26
2-1. Quaternary-Carbon Containing Alkaloid Natural Products 35
2-2. The pK_{a} of oxindoles in DMSO 43
2-3. X-Ray Crystal Structure of 3-Acetyl-5-Bromo-1-Diphenylacetyl-3-Methyloxindole 23E 60
2-4. Proposed Model for Stereoinduction 61
2-5. Commercially Available Planar-Chiral Catalysts. 62
2-6. 3-Hydroxy-3-Alkyl Oxindole Derived Natural Products 64
2-7. Recovered Catalyst's Structure and NOE Data 66
2-8. Comparison of Decomposition of Amide Protected Catalysts 70
2-9. Tosyl-Protected Catalyst Decomposition 71
2-10. X-Ray Crystal Structure of oxindole e13A 79
2-11. Proposed Model of Stereoinduction for Carboxyl Migration 80
2-12. Frozen Solutions of DMAP plus Enol Acetate 20Ca and Enol Carbonate 26Aa 82
2-13. Possible Ion Pair Intermediate 83
3-1. Dynamic Kinetic Resolution 143
3-2. Parallel Kinetic Resolution 143
3-3. Divergent Reactions of a Racemic Mixture: One Reagent/Catalyst Approach 144
3-4. Catalytic PKR Scheme 150
3-5. Proposed Intermediates in Phosphine Catalyzed Acyl Transfer Reactions 161
3-6. Proposed Intermediates in DMAP Catalyzed Acyl Transfer Reactions 162

List of Schemes

Scheme

1-1. Hydrolysis of Acetic Anhydride Catalyzed by Pyridine 2
1-2. Hydrolysis of Acetic Anhydride Catalyzed by Dimethylaminopyridine (DMAP) 5
1-3. Relative Rates of Catalysis of 4-Aminopyridine Derivatives 6
1-4. Kinetic Resolution of Benzylic Alcohols with Chiral DMAP analog 4A 10
1-5. Kinetic Resolutions Catalyzed by Planar-Chiral Pyridines 11
1-6. Planar-Chiral Nucleophile Catalyzed Rearrangement of O-Carboxylated Heterocycles 12
1-7. Planar-Chiral Nucleophile Catalyzed Acylation of Enol Silanes 13
1-8. Fuji's "Induced Fit" Catalyst. 14
1-9. Oriyama's Diamine Catalysts 15
1-10. Miller Peptide Catalysts. 17
1-11. Spivey’s Atropisomeric Catalysts 18
1-12. Birman's Amidine-Derived Catalysts 19
1-13. Chiral Phosphine Catalysts 20
1-14. Phosphabicyclooctane Catalyst Applications 21
1-15. Synthesis of TADMAP (15C) 23
1-16. Applications of TADMAP (15C) 24
1-17. Synthesis of Amino Alcohol Derived Catalysts 25
2-1. Pyridine Catalyzed Rearrangements of O-Acylated Azlactones 36
2-2. Mechanism of Steglich Rearrangement 37
2-3. Rearrangement of Azlactone-Derived Enol Carbonates with Planar Chiral 3C 38
2-4. Nucleophile Catalyzed Benzofuranone Enol Carbonate Rearrangement 38
2-5. Racemic Rearrangement of Oxindole-Derived Enol Carbonates 39
2-6. Planar-Chiral Pyridine Catalyzed Rearrangement of Oxindole-Derived Substrates 40
2-7. Rearrangement of 3-Alkyl Substituted Oxindole Substrates with TADMAP (7C) 42
2-8. TADMAP Catalyzed Rearrangements of C-Phenyl Substituted Oxindole Substrate 42
2-9. Acetylation of 3-Methyloxindole (5C). 44
2-10. DMAP Catalyzed Rearrangement of Unprotected Enol Acetate 9A 46
2-11. Protection of 2-Acetoxyindole 9A 47
2-12. Synthesis of Differentially Protected Oxindole-Derived Enol Acetates. 48
2-13. Effect of Protecting Group on Rate of DMAP Catalyzed Rearrangement. 50
2-14. Enantioselective Rearrangement of Enol Acetate 9Ba 51
2-15. AcOLeDMAP-Catalyzed Rearrangement of Differentially Protected Enol Acetates 52
2-16. Mechanism of Nucleophile-Catalyzed Rearrangement 53
2-17. Solvent Effect on Enantioselectivity of AcOLeDMAP-Catalyzed Rearrangement 54
2-18. Attempted Synthesis of Different 3-Alkyl Substituted Oxindole Substrates 55
2-19. Optimization of the Synthesis of N-Diphenylacetyl Oxindole Enol Acetates 56
2-20. Optimized Synthesis of N-Diphenylacetyl Protected Oxindole Enol Acetates 57
2-21. Optimized AcOLeDMAP-Catalyzed Rearrangement of Enol Acetates. 58
2-22. Conditions for Large-Scale Applications 59
2-23. Synthesis of a Brominated 3,3-Disubstituted Oxindole 59
2-24. Deprotection of Rearranged Oxindole Product. 63
2-25. Synthesis and Rearrangement of N-Acetyl Oxindole-Derived Enol Carbonates 65
2-26. Catalyst Decomposition as a Function of Oxindole Structure 67
2-27. Monitoring Catalyst Decomposition over Time 68
2-28. Catalyst Decomposition over Time with Benzyloxycarbonyl Migrating Group 69
2-29. Interchange of Acetyl and Carboxyl Pyridinium Salts. 69
2-30. Synthesis of Chiral Catalysts Without a Free N-H 72
2-31. Chiral Catalysts with a Free Alcohol or Benzoate Ester 73
2-32. Synthesis of Ether-Protected Amino Alcohol Derived Catalysts. 74
2-33. Rearrangement of N-Acetyl Oxindole Enol Carbonates with Catalyst 32D 75
2-35. Rearrangement of N-Diphenylacetyl Oxindole Enol Carbonates with Catalyst 32D. 77
2-36. Synthesis and Rearrangement of Optimized Enol Carbonates with Catalyst 32D. 78
3-1. Dual Reagent Acyl Transfer PKR 146
3-2. Dual Catalytic Acyl Transfer PKR 149
3-3. Synthesis of New TADMAP Derivatives 152
3-4. Synthesis of (R, R)-AcOLeDMAP 156

List of Tables

Table
1-1. Rate Constants for the Hydrolysis of $\mathrm{Ac}_{2} \mathrm{O}$ Catalyzed by Substituted Pyridines 3
1-2. Relative Rates of Acylations Catalyzed by Substituted Pyridines 4
1-3. Relative Rates of Catalysis of 4-Aminopyridine Derivatives 6
2-6. Planar-Chiral Pyridine Catalyzed Rearrangement of Oxindole-Derived Substrates 41
2-7. Rearrangement of 3-Alkyl Substituted Oxindole Substrates with TADMAP (7C) 42
2-9. Acetylation of 3-Methyloxindole (5C). 44
2-10. DMAP Catalyzed Rearrangement of Unprotected Enol Acetate 9A. 46
2-11. Protection of 2-Acetoxyindole 9A 48
2-13. Effect of Protecting Group on Rate of DMAP Catalyzed Rearrangement 50
2-14. Enantioselective Rearrangement of Enol Acetate 9Ba 51
2-15. AcOLeDMAP-Catalyzed Rearrangement of Differentially Protected Enol Acetates 52
2-17. Solvent Effect on Enantioselectivity of AcOLeDMAP-Catalyzed Rearrangement. 54
2-19. Optimization of the Synthesis of N-Diphenylacetyl Oxindole Enol Acetates 56
2-20. Optimized Synthesis of N-Diphenylacetyl Protected Oxindole Enol Acetates. 57
2-21. Optimized AcOLeDMAP-Catalyzed Rearrangement of Enol Acetates 58
2-24. Deprotection of Rearranged Oxindole Product 63
2-25. Synthesis and Rearrangement of N-Acetyl Oxindole-Derived Enol Carbonates 65
2-26. Catalyst Decomposition as a Function of Oxindole Structure 67
2-27. Catalyst Decomposition over Time with Phenoxycarbonyl Migrating Group. 68
2-28. Catalyst Decomposition over Time with Benzyloxycarbonyl Migrating Group 69
2-33. Rearrangement of N-Acetyl Oxindole Enol Carbonates with Catalyst 32D. 74
2-34. Solvent Effect on the Rearrangement of Enol Carbonate 26A with Catalyst 32D 76
2-35. Rearrangement of N-Diphenylacetyl Oxindole Enol Carbonates with Catalyst 32D 77
2-36. Synthesis and Rearrangement of Optimized Enol Carbonates with Catalyst 32D 78
2-37. Temperature Effect on the Formation of Pyridinium Salt e13A 82
3-1. Product \% ee as a Function of Conversion C and Enantioselectivity s 142
3-2. Kinetic Resolution of Alcohol 5a with TADMAP Derivatives. 152
3-3. Anhydride Competition Experiments 153
3-4. Kinetic Resolutions of Alcohols Using Chiral Catalysts by J. A. MacKay 154
3-5. Parallel Kinetic Resolutions of Alcohols by J. A. MacKay 154
3-6. Kinetic Resolutions of Alcohols with Amino Acid Derived Catalysts 155
3-7. Parallel Kinetic Resolutions of Alcohols with Amino Acid Derived Catalysts. 158
3-8. Additional anhydride competition experiments 160

List of Appendices

Appendix

A. X-Ray Crystallography Data... 177
B. NMR Spectra... 193

Abstract

The enantioselective nucleophile-catalyzed rearrangements of oxindole-derived enol acetates and enol carbonates to quaternary carbon containing 3,3 -disubstituted oxindoles have been developed. A strong dependence of the reaction rate on the oxindole protecting group was demonstrated. Using achiral DMAP, oxindole-derived enol acetates and enol carbonates protected with amides or sulfonamides rearrange to the 3,3 -disubstitituted oxindoles within 20 min with low catalyst loading. In contrast, only partial conversion is observed for alkyl and carbamate protected oxindoles in 5 h . Taking advantage of this enhanced reactivity allowed for the highly enantioselective ($>85 \%$ ee) rearrangement of enol acetates derived from amide protected oxindoles within a few hours with the readily available chiral amino alcohol-derived catalyst (AcOLeDMAP). The enol carbonates of amide protected oxindoles were also very reactive, but the chiral catalyst AcOLeDMAP decomposed over the course of the reaction. Replacement of the acetyl protecting group at oxygen on the catalyst by benzyl circumvented this problem, thereby allowing the development of highly enantioselective rearrangements of enol carbonates as well (>90\% ee). The acetyl and carboxyl rearrangement reactions displayed complementary enantiofacial preference, so both enantiomers of the 3,3-disubstituted oxindoles can be obtained using a single enantiomer of the catalysts.

A dual catalytic homogeneous parallel kinetic resolution (PKR) of racemic alcohols with achiral acyl donors and two chiral catalysts has been developed. A complementary anhydride selectivity of phosphine and DMAP catalysts was found. Using a mixture of aromatic and aliphatic anhydrides, phosphine catalysts selectively promoted the formation of aromatic esters while DMAP catalysts selectively promoted the formation of aliphatic esters. The use of two chiral catalysts, AcOLeDMAP and chiral phosphine P-aryl-2-phophabicyclo[3.3.0]octane

(PhPBO), in parallel lead to the resolution of racemic alcohols to form two distinct enantioenriched esters (75% ee and 88% ee).

Chapter 1

Chiral Nucleophilic Acyl Transfer Catalysts

I. Introduction.

In the following literature review, topics relevant to chiral nucleophilic catalysts will be discussed. The concept of nucleophilic mechanisms related to catalytic acylation reactions will be introduced. This will be followed by a description of kinetic resolutions for the synthesis of enantiomerically enriched organic molecules. Next, an evalution of the current status of the field of chiral nucleophilic catalysts will be presented concluding with the chiral nucleophilic catalysts developed in the Vedejs group.

II. Nucleophilic catalysis.

Bases catalyze organic reactions by three types of mechanisms: specific base, general base and nucleophilic catalysis. In specific-base-catalyzed reactions, the catalyst is the anion of the solvent and is involved in a pre-equilibrium step prior to the rate determining step. General-base-catalyzed reactions involve abstraction of a proton during the rate-determining step. Any base present in the system can function as a general base, not just the solvent anion. In contrast to specific or general bases, nucleophilic catalysts do not abstract protons. Instead, a nucleophilic catalyst enhances the reactivity of a reactant by donating its electron pair to an electrophile other than a proton. Since the electrophile in a nucleophilic catalysis mechanism is larger than a proton, the catalyst nucleophilicity is sensitive to the steric bulk and the polarizability of the nucleophilic atom. ${ }^{1}$

The acceleration effect of pyridine in acylation reactions has been known for over a century ${ }^{2}$ and acetic anhydride in pyridine has been a common synthetic procedure for the acylation of alcohols since the early 1900's. The role of the pyridine in the acylation was believed to be general-base catalysis, but it was not until the 1950's that investigations into the mechanism of this acylation were conducted. In 1953, Gold and coworkers published a series of papers on the kinetics and mechanism of the pyridine catalyzed hydrolysis of acetic anhydride. ${ }^{3}$ In the initial report, pyridine was found to catalyze the hydrolysis 30,000 times faster than acetate anion even though pyridine and acetate have similar pK_{a} values. In addition, the more basic 2-picoline and 2,6-lutidine are both catalytically inactive. The independence of the catalytic ability on basicity and the sensitivity towards steric hinderance around the pyridine nitrogen support a nucleophilic mechanism over a general base mechanism. The authors propose that the mechanism occurs with nucleophilic displacement of acetate from acetic anhydride to form acetylpyridinium acetate (1A) followed by hydrolysis of this intermediate to form acetic acid and regenerate the pyridine catalyst. A common ion affect in the presence of added acetate anion in addition to a KIE of 5 for the solvent $\mathrm{H}_{2} \mathrm{O}$ led the authors to suggest that formation of intermediate 1 A is reversible, followed by slow decomposition of 1A to products. Unfortunately, all attempts to detect the proposed intermediate were unsuccessful, which the authors attribute to a low equilibrium concentration of the intermediate. A similar intermediate was proposed by Koshland in the hydrolysis of acyl phosphates, ${ }^{4}$ but later isotopic labeling experiments indicated that the hydrolysis occurrs by P-O bond cleavage and not C-O bond cleavage as was originally thought, so the acylated pyrdinium is not an intermediate. ${ }^{5}$

Scheme 1-1. Hydrolysis of Acetic Anhydride Catalyzed by Pyridine.

The elusive acylpyridinium intermediate was later detected by Fersht and Jencks in 1969. ${ }^{6}$ Using a stop-flow technique, acetic anhydride and pyridine were mixed, and two absorbance maxima at $\lambda_{\max }=275 \mathrm{~nm}\left(\varepsilon=4.3 \times 10^{3}\right)$ and $225 \mathrm{~nm}\left(\varepsilon=3.9 \times 10^{3}\right)$ corresponding to acyl pyridinium acetate 1A were observed. The appearance and disappearance of the intermediate was followed spectrophotometrically to determine the rate constants for the hydrolysis: $\mathrm{k}_{1}=84 \mathrm{M}^{-1} \mathrm{sec}^{-1} ; \mathrm{k}_{-1}=910 \mathrm{M}^{-1} \mathrm{~s}^{-1} ; \mathrm{k}_{2}=6.9 \mathrm{~s}^{-1}$ where k_{2} is the hydrolysis of the acyl pyridinium cation by water (Scheme 1-1). The intermediate 1A is short-lived with the measured $\mathrm{t}_{1 / 2}$ of $<100 \mathrm{msec}$. Addition of substituted anilines to these acylation conditions readily affords the acylated anilines with rate constants of 82 and $86 \mathrm{M}^{-1} \mathrm{sec}^{-1}$ for toluidine and anisidine, respectively. These rate constants are identical to the value of k_{1} indicating that the rate determining step of the acylation of anilines with pyridine is formation of the intermediate 1A. On the other hand, the rate determining step for the pyridine-catalyzed hydrolysis of acetic anhydride with water is the second step. The rate constants for the $\mathrm{Ac}_{2} \mathrm{O}$ hydrolysis catalyzed by several 3 and 4 substituted pyridines were also determined (Table 1-1). The $\mathrm{K}_{\text {eq }}$ increased as the pyridines became more basic and the formation of the intermediate $\left(\mathrm{k}_{1}\right)$ became favored over the reverse reaction (k_{-1}). The increase in K_{eq} is significantly greater than the decrease in k_{2}, so the more basic pyridines are more efficient catalysts for the hydrolysis of $\mathrm{Ac}_{2} \mathrm{O}$.

Table 1-1. Rate Constants for the Hydrolysis of $\mathrm{Ac}_{2} \mathrm{O}$ Catalyzed by Substituted Pyridines.

Catalyst	pK_{a}	k_{1}	k_{-1}	$\mathrm{~K}_{\text {eq }}$	k_{2}
Pyridine	5.51	84	910	0.092	6.9
4-Picoline	6.33	490	262	1.86	2.3
3,4-Lutidine	6.79	1160	120	9.67	1.5
4-Methoxypyridine	6.82	935	30	31.2	0.4

$$
\begin{array}{cc}
\text { Catalyst: pyridine } & >5 \% \\
\text { DMAP (4 mol\%) } & 86 \%
\end{array}
$$

Both Litvinenko and Steglich independently reported a dramatic increase in the rate of pyridine catalyzed acylation reactions using 4-dimethylaminopyridine (DMAP) in the late 1960's. ${ }^{7}$ In 1969, Steglich reported the ability of DMAP to catalyze difficult acylations. ${ }^{8}$ Hindered tertiary
alcohols, such as methylcyclohexanol are not acylated with acetic anhydride in the presence of stoichiometric pyridine (equation 1). In contrast, treatment of methylcyclohexanol with just 4 mol\% DMAP and 1 equivalent of triethylamine resulted in 86% acyation after 16 h (equation 1). The stoichiometric triethylamine is required to prevent catalyst deactivation by the acid byproduct. Prior to this work by Steglich, Litvinenko published a systematic study on the effect of pyridine substitutents on the rate of the benzoylation of anilines and, subsequently, the same effect on the benzoylation of alcohols (equations 2 and 3). ${ }^{9}$ As shown earlier by Gold, substitution at the 2-position of the pyridine dramatically decreases the rate of catalysis (Table 12, entries 3 and 7). In addition, electron withdrawing substituents decrease the rate of catalysis (entry 2) while electron donating substituents increase the rate (entries 6,8 , and 9). This effect is most dramatically demonstrated with DMAP which catalyzes the benzoylations 3-4 orders of magnitude faster than does pyridine (entry 11). The dramatic increase in rate is not directly correlated to the increase in basicity since triethylamine is essentially catalytically inactive in the benzoylations despite being more basic than DMAP (entry 12). However, an increase in basicity of unhindered pyridines does correlate to an increase in reaction rate.

Table 1-2. Relative Rates of Acylations Catalyzed by Substituted Pyridines.

entry	catalyst	pK_{a}	m-chloroaniline	benzyl alcohol
1	none	--	1	1
2	3-cyanopyridine	1.39	14	12
3	quinoline	4.87	138	545
4	pyridine	5.23	568	9.29×10^{3}
5	isoquinoline	5.40	2.62×10^{3}	3.39×10^{3}
6	3-methylpyridine	5.63	1.12×10^{3}	2.29×10^{4}
7	2-methylpyridine	5.96	29	435
8	4-methylpyridine	6.02	2.96×10^{3}	3.98×10^{4}
9	4-phenoxypyridine	6.25	4.80×10^{3}	7.98×10^{4}
10	2,6-lutidine	6.72	8	115
11	4-dimethylaminopyridine	9.70	3.14×10^{6}	3.45×10^{8}
12	triethylamine	10.65	21	--

The remarkable catalytic activity of DMAP over pyridine is attributed to the resonance effect of the dialkylamino group. ${ }^{7 a}$ This resonance increases the nucleophilicity of the pyridine nitrogen and therefore the rate of k_{1} is increased. In addition, the resonance stabilizes the intermediate ion pair $\mathbf{2 A}$. The more stable ion pair $\mathbf{2 A}$ is less reactive than intermediate $\mathbf{1 A}$, so the increase in relative rate of DMAP over pyridine is due to the increase in concentration of the intermediate 2A ($\sim 5-10 \%$) compared to the negligible concentration of 1A in non-polar solvents. Computational calculations by Zipse show that an increase in the stability of the acyl pyridinium salt leads to an increase in the rate of catalyzed acylations as expected. However, this effect levels off with much more stable acyl pyridinium cations due to an increase in the energy required for the subsequent rate-determining step. ${ }^{10}$

The search for more reactive pyridines has only revealed a few structures with higher catalytic activity than DMAP. These pyridines contain 4 -amino substituents with increased resonance donation into the pyridine ring (Scheme 1-3). Pyrrolopyridine (PPY) is ~ 2.4 times more reactive than DMAP due to the increased electron availability of the pyrrolidine lone pair (Table 1-3, entry 2). ${ }^{7 \mathrm{a}}$ Similarly, conformationally restricted pyridines $\mathbf{3 A}$ and $\mathbf{3 B}$ are more reactive than DMAP because the amino substituent is held in a conformation favorable for resonance with the pyridine ring (entries 3 and 4). ${ }^{11}$ Recently, 3C was reported to have similar reactivity to PPY, but it requires a 5 step synthesis. ${ }^{12}$ Although these derivatives are more reactive, DMAP remains the catalyst of choice for standard acylations due to its ready availability.

Scheme 1-2. Hydrolysis of Acetic Anhydride Catalyzed by Dimethylaminopyridine (DMAP).

Scheme 1-3. Relative Rates of Catalysis of 4-Aminopyridine Derivatives.

PPY

3A

3B

3C

Table 1-3. Relative Rates of Catalysis of 4-Aminopyridine Derivatives.

entry	catalyst	relative rate
1	DMAP	1
2	PPY	2.4
3	$3 A$	2
4	3B	6

The nature of the acyl donor also has a significant effect on the rate of DMAP-catalyzed acylations. ${ }^{7 a}$ Acetyl chloride and DMAP quantitatively form an ion pair analogous to 2 A in nonpolar solvents, while acetic anhydride and DMAP only form $5-10 \%$ of ion pair 2A. However, this increase in concentration does not lead to a corresponding increase in the rate of acylations. Despite the large differences in concentration of ion pair 2A, the DMAP catalyzed acylation of ethynylcyclohexanol with $\mathrm{Ac}_{2} \mathrm{O}$ is three fold faster than with AcCl . The increased reactivity with $\mathrm{Ac}_{2} \mathrm{O}$, is attributed to general base catalysis by the anion of the ion pair in the rate-determining decomposition to form acylated products (Figure 1-1). The more basic acetate anion is a better general base than the chloride anion, and therefore increases the rate of acylation by deprotonating the incoming nucleophile in the rate determining step. This conclusion is also supported by the fact that DMAP catalyzed acylations occur more rapidly in non-polar solvents than in polar solvents despite the lower concentration of the intermediate 2A because the tighter ion pair in non-polar solvents facilitates this general base catalysis. Recent computational calculations and kinetics experiments by Zipse show that the reaction is first order in DMAP, alcohol and anhydride and zero order in the auxillary base, triethylamine. These results confirm
that neither the triethylamine nor a second equivalent of DMAP are not involved in the ratedetermining acylation step, and therefore, the acetate is the most likely base. ${ }^{13}$

Figure 1-1. General Base Catalysis by Acetate in DMAP-Catalyzed Acylation Reactions.

f1A
In addition to DMAP, several other nucleophilic organic molecules are used for acyl transfer reactions. Other nucleophilic amines have been used such as N-methylimidazole (NMI) ${ }^{14}$ and diazabicyclo[2.2.2]octane (DABCO). ${ }^{15}$ In addition to nucleophilic amines, nucleophilic phosphines such as $\mathrm{Bu}_{3} \mathrm{P}^{16}$ and $\mathrm{P}\left(\mathrm{MeNCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{17}$ are also effective acylation catalysts. Recently, N-heterocyclic carbenes have been shown to be effective for trans-esterifications. ${ }^{18}$ Many of these nucleophilic moieties have been incorporated in chiral catalysts developed for acylation reactions (vide infra).

III. Kinetic Resolutions.

Since kinetic resolutions are one of the most common applications of chiral nucleophilic catalysts, an explanation of the principles involved will be presented here. Kinetic resolutions are the oldest synthetic method for the isolation of highly enantiomerically enriched substrates. ${ }^{19}$ In 1996, IUPAC defined kinetic resolution as "the achievement of partial or complete resolution by virtue of unequal rates of reaction of the enantiomers in a racemate with a chiral agent (reagent, catalyst, solvent, etc.)."20 This scenario is depicted graphically in Figure 1-2: a racemic mixture of (R) - A and (S) - A is treated with chiral agent M and $(R)-\mathrm{A}$ and (S) - A are converted to products at different rates $\mathrm{k}_{R}\left(\mathrm{k}_{\text {fast }}\right)$ and $\mathrm{k}_{\mathrm{S}}\left(\mathrm{k}_{\text {slow }}\right)$. The unequal rates of reaction are a result of the different energies of the two diastereomeric transition states formed between the chiral agent and the two enantiomers. When $\mathrm{k}_{\text {fast }} \ggg \mathrm{k}_{\text {slow }}$, only the (R) enantiomer reacts, and the resolution stops at 50%
conversion when all of $(R)-\mathrm{A}$ is converted to $(R)-\mathrm{X}$. Although some enzymes reach this level of selectivity, most synthetic chiral agents do not. Instead, at partial conversion of a typical resolution, the product X is obtained enriched in the (R) enantiomer while the starting material is recovered enriched in the (S) enantiomer. Over the course of the resolution, the enantiomeric excess of the starting material increases as the more reactive enantiomer (R) is converted to product. When all of the more reactive enantiomer is converted to product, the remaining starting material is recovered in $>99.9 \%$ ee, but a sacrifice is made in terms of the yield. This high enantiopurity of the recovered starting material is one of the benefits of kinetic resolutions over most asymmetric syntheses which rarely reach the level of enantioselectivity required to produce material in $>99.9 \%$ ee.

Figure 1-2. General Kinetic Resolution Scheme.

$$
\begin{gathered}
(R)-\mathrm{A}+(S)-\mathrm{A} \xrightarrow{\mathrm{M}}(R)-\mathrm{X}+(S)-\mathrm{A} \\
(R)-\mathrm{A} \xrightarrow{\mathrm{k}_{R}=\mathrm{k}_{\text {fast }}}(R)-\mathrm{X} \\
(S)-\mathrm{A} \xrightarrow{\mathrm{k}_{S}=\mathrm{k}_{\text {slow }}}(S)-\mathrm{X}
\end{gathered}
$$

The comparison of the enantioselectivity of kinetic resolutions is made difficult by the changing enantiomeric excesses of the starting material and product over the course of the reaction, so Kagan developed an expression for comparing the effectiveness of kinetic resolutions: $\mathbf{s}=$ selectivity factor. ${ }^{16 \mathrm{a}}$ The selectivity factor is defined as $\mathbf{s}=\mathrm{k}_{\text {fast }} / \mathrm{k}_{\text {slow }}$ for kinetic resolutions that are first-order in substrate, have no non-linear effects, and are homogeneous. Defining $\mathrm{k}_{\text {fast }}$ and $\mathrm{k}_{\text {slow }}$ in terms of the conversion (C) and enantiomeric excess of the starting material (ee) and product (ee') allows the selectivity factor to be expressed in terms that can be measured in the laboratory (equations 4 and 5). Further expansion of these equations by Ismagilov to account for resolutions using a chiral agent of $<99 \%$ ee are shown equations 6 and 7 where $e_{R}=$ enantiomeric excess of the chiral agent. ${ }^{21}$

$$
\begin{align*}
& \mathbf{s}=\frac{\ln ([1-\mathrm{C}][1-\mathrm{ee}])}{\ln ([1-\mathrm{C}][1+\mathrm{ee}])} \tag{4}\\
& \mathbf{s}=\frac{\ln \left([1-\mathrm{C}]\left[1+\mathrm{ee}^{\prime}\right]\right)}{\ln \left([1-\mathrm{C}]\left[1-\mathrm{ee}^{\prime}\right]\right)} \tag{5}\\
& \mathbf{s}=\frac{\left(1+e e_{R}\right) \ln ([1-\mathrm{C}][1-\mathrm{ee}])-\left(1-e_{R}\right) \ln ([1-\mathrm{C}][1+\mathrm{ee}])}{\left(1+\mathrm{e} e_{R}\right) \ln ([1-\mathrm{C}][1+e e])-(1-\mathrm{ee} R) \ln ([1-\mathrm{C}][1-\mathrm{ee}])} \tag{6}\\
& \mathbf{s}=\frac{\left(1+\mathrm{ee}_{\mathrm{R}}\right) \ln \left([1-\mathrm{C}]\left[1+\mathrm{ee}^{\prime}\right]\right)-\left(1-\mathrm{ee}_{\mathrm{R}}\right) \ln ([1-\mathrm{C}][1-\mathrm{ee} '])}{\left(1+e e_{\mathrm{R}}\right) \ln ([1-\mathrm{C}][1-\mathrm{ee}])-\left(1-\mathrm{e}_{\mathrm{R}}\right) \ln \left([1-\mathrm{C}]\left[1+e e^{\prime}\right]\right)} \tag{7}
\end{align*}
$$

IV. Asymmetric Nucleophile Catalyzed Acyl Transfer Reactions.

The enantioselective small organic molecule catalyzed acyl transfer reactions were first reported in the 1930's. In a series of papers by Wegler, racemic alcohols were treated with brucine, strychnine and other chiral tertiary amines in the presence of acyl donors such as $\mathrm{Ac}_{2} \mathrm{O}$ and BzCl . ${ }^{22}$ At partial conversion, the products and recovered starting materials were both found to be optically active. Although the optical purities of these products were not determined at the time, subsequent analysis of the results by Spivey indicated that at least one of the resolutions occurred with $\mathbf{s} \sim 3.5 .{ }^{25 a}$ Over the next 70 years, studies using other naturally occurring chiral amine nucleophiles were met with modest success. ${ }^{23}$

The field of asymmetric acyl transfer reactions flourished with the introduction of specifically designed chiral nucleophiles. The first highly enantioselective entry into this field was reported in 1996 by Vedejs and Chen. ${ }^{24}$ Based on the high catalytic activity of DMAP, it was envisioned that a chiral DMAP derivative would be an effective acylation agent. Therefore, 2substituted DMAP 4A was synthesized enantioselectively in 3 steps from DMAP. Unfortunately, 4A does not turn over in the acylation, so acyl pyridinium $4 B$ has to be pre-formed and used stoichiometrically. In addition, acyl transfer from 4B to alcohols only occurs in the presence of triethylamine and a Lewis acid. Despite these requirements, DMAP 4B demonstrates high levels of enantioselectivity in the kinetic resolution of benzylic alcohols 4C. This example highlights one
of the challenges involved in designing a chiral DMAP catalyst. Although substitution at the 2position of DMAP brings the chirality close to the active site in the acyl transfer reactions, it decreases the nucleophilicity and impedes catalytic turnover.

Scheme 1-4. Kinetic Resolution of Benzylic Alcohols with Chiral DMAP analog 4A.

The rapid growth of the field of asymmetric acyl transfer reactions over the last decade has resulted in well over 100 publications and many reviews. ${ }^{25}$ Therefore, what is presented here is an overview of the field focusing on the most effective catalysts and those catalysts with interesting design strategies. The development of chiral nucleophilic catalysts in the Vedejs group will be reserved for the following section.

A series of pyridine-derived planar-chiral catalysts developed by Fu and co-workers were first reported in 1996. ${ }^{26}$ In contrast to the work by Vedejs and Chen, 2-substituted dimethylaminopyridines 5A and 5B are catalytically active. The increased reactivity of these pyridines is due to 1) the compact 2-substituent and 2) the electron-rich FeCp^{*} fragment enhancing the nucleophilicity of the catalyst. However for several applications (vide infra), the dimethylaminopyridine-based catalysts 5A and 5B are still not nucleophilic enough. So, several new catalysts based on the more nucleophilic pyrrolidinopyridine were developed (5C-5E). Originally, catalysts 5A - 5E were synthesized in 2-3\% yield by a 7-step synthesis followed by resolution of the enantiomers by HPLC on chiral support. Recently, a new 7-step synthesis was reported in which the catalysts 5B and 5C were both obtained in $25-30 \%$ overall yield, and the final enantiomers were resolved by classical resolution. ${ }^{27}$ Catalysts 5B and 5C are now commercially-available from Strem for $\$ 35 / 100 \mathrm{mg}$ (pricing as of June 2007).

These catalysts were used in the kinetic resolution of several classes of alcohols and amines. The more hindered pentaphenyl DMAP catalyst 5B is the most effective catalyst of this
series for the resolutions of benzylic alcohols $5 \mathrm{~F},{ }^{28}$ propargylic alcohols $5 \mathbf{G},{ }^{29}$ and allylic alcohols $5 \mathbf{H}^{30}$ with good to excellent selectivity factors although the reaction times are long. The kinetic resolution of amines stands as an even greater challenge for asymmetric nucleophilic catalysis due to the significant background reaction of amines with the acyl donor. In order to prevent this background reaction, Fu and coworkers employed hindered O-acylated azlactones 5K and 5L as acyl donors since they only react with the pyridine catalysts and not the amines. ${ }^{31}$ The use of the less reactive azlactones 5K and 5L as acyl donors requires the more reactive pyrrolidinopyridine derived catalyst 5C-5E. Catalyst 5C resolves benzylic amines 5I with good enantioselectivity at low temperature, but minimal selectivity is observed for the resolution of indolines 5J. The penta-aryl catalysts 5D and 5E are more selective with the more hindered penta(dimethylphenyl) catalyst 5E proving to be the most selective, but again the reaction times were long.

Scheme 1-5. Kinetic Resolutions Catalyzed by Planar-Chiral Pyridines.

5A, $R=M e$
$5 B, R=P h$

5F
$\mathbf{s}=32-95$ at $0^{\circ} \mathrm{C}$ catalyst: 5B (1 mol\%) time $=1-5 \mathrm{~d}$ acyl donor: $\mathrm{Ac}_{2} \mathrm{O}$

5C, $\mathrm{R}=\mathrm{Me}$
5D, R = Ph
5E, $R=3,5-\mathrm{Me}_{2} \mathrm{Ph}$

5G
$\mathbf{s}=8-20$ at $0^{\circ} \mathrm{C}$ catalyst: 5B ($1 \mathrm{~mol} \%$) time $=1-20 \mathrm{~d}$ acyl donor: $\mathrm{Ac}_{2} \mathrm{O}$

5K: $\mathrm{R}^{5}=2$-Naphthyl, $\mathrm{R}^{6}=\mathrm{OMe}$
$5 \mathrm{~L}: \mathrm{R}^{5}=\mathrm{Ph}, \mathrm{R}^{6}=\mathrm{Me}$

5H
$\mathbf{s}=4.7-80$ at $0^{\circ} \mathrm{C}$
catalyst: 5B ($1 \mathrm{~mol} \%$)
time $=2 \mathrm{~d}$
acyl donor: $\mathrm{Ac}_{2} \mathrm{O}$

5I
$\mathbf{s}=11-27$ at $-50^{\circ} \mathrm{C}$
catalyst: 5C (10 mol\%) time $=1 \mathrm{~d}$ acyl donor: 5K

5J
$\mathbf{s}=9.5-31$ at $0{ }^{\circ} \mathrm{C}$
catalyst: 5E ($5 \mathrm{~mol} \%$)
$\mathrm{t}=2.5-23 \mathrm{~d}$
acyl donor: 5L

The planar-chiral pyridine catalysts have also been applied to the asymmetric synthesis of all-carbon quaternary centers. Planar-chiral pyridine 5C catalyzes the rearrangement of benzyl enol carbonates 6A to C-carboxylated azlactones 6B in high yields and enantioselectivities when R^{2} is an α-unbranched alkyl substituent (Scheme 1-6). ${ }^{32}$ In this rearrangement, the hindered pentaphenyl ferrocene derived catalyst $5 \mathbf{B}$ is substantially less reactive and enantioselective than either 5A or 5C. In addition, while both pentamethylferrocene-derived catalysts 5A and 5C afford rearranged products with similar enantioselectivities, 5 C is approximately 4 times as reactive as 5A. This type of rearrangement is also possible in benzofuranone-derived enol carbonates 6C. ${ }^{33}$ In this system, the rearrangement requires the bulky 2,2,2-trichlorodimethylethoxy migrating group as well as the hindered pentaphenyl catalyst 5D to achieve high enantioselectivity. However, the rearrangement appears to be slow based on the reported reaction temperature, time and catalyst loading. A discussion of the mechanism of this rearrangement and extension to oxindole-derived substrates is reserved for Chapter 2. Enantioenriched quaternary centers are also synthesized from the acylation of enol silanes. ${ }^{34}$ Enol silanes 7A and 7C are treated with $\mathrm{Ac}_{2} \mathrm{O}$ and planar chiral catalyst 5D to afford 1,3-dicarbonyls products 7B and 7D in 68-97\% ee (Scheme 1-7).

Scheme 1-6. Planar-Chiral Nucleophile Catalyzed Rearrangement of O-Carboxylated Heterocycles.

6 A

6B
93-95\%
88-92\% ee

Scheme 1-7. Planar-Chiral Nucleophile Catalyzed Acylation of Enol Silanes.

7A

5 mol 5D

rt, 24 h

7B 73-92\% $76-99 \%$ ee

7D
54-96\%
69-97\% ee

Planar-chiral catalysts 5A-5E have also been used for dynamic kinetic resolutions of azlactones, ${ }^{35}[2+2]$ cycloadditions of ketenes and imines ${ }^{36}$ or aldehydes, ${ }^{37}[3+2]$-cycloadditions of α, β-unsaturated acid fluorides and alkenes, ${ }^{38}$ additions of phenols ${ }^{39}$ and amines ${ }^{40}$ to ketenes, and the α-chlorination of ketenes. ${ }^{41}$ Despite the variety of uses reported for the planar-chiral catalysts, they have not yet been widely adopted in literature. ${ }^{42}$ The limited availability of the catalysts 5A, 5D and 5E may be hindering their wide-spread use.

Also in 1997, Fuji developed a new pyrrolidinopyridine derived chiral catalyst 8A. ${ }^{43}$ Catalyst 8A resolved racemic alcohols 8C with modest to good selectivity at rt. Although not outstanding, these selectivities are impressive considering the distance between the chiral centers and the active site of the catalysts. The authors propose that a change in the conformation of the catalyst upon acylation brings the naphthyl ring closer to the pyridine active site. NMR studies on the free catalyst 8 A and ion pair 8 B provide evidence for this conformational change. The free catalyst exists in an "open" conformation with free rotation of both the pyridine and the naphthyl groups. In contrast, the ion pair 8B exhibits differentiated pyridine protons and strong NOE correlations between the naphthyl and pyridine protons, indicating a conformational change that brings the naphthyl and pyridine rings into close proximity. Closed conformation $\mathbf{8 B}$ is proposed to be the active form of the catalyst in the acylation reaction. This catalyst has not yet been used by other chemists, perhaps due to the lengthy synthesis (18% yield over 7 steps) and limited use demonstrated so far.

Scheme 1-8. Fuji's "Induced Fit" Catalyst.

A class of 1,2-diamines derived from proline are also effective acyl transfer catalysts. Diamine catalysts 9A and 9B, developed by Oriyama, are readily synthesized in 2 steps from N-tert-butoxycarbonylproline and catalyze the benzoylation of alcohols in low catalyst loadings ($<1 \mathrm{~mol} \%$) at $-78{ }^{\circ} \mathrm{C}$ within $3 \mathrm{~h} .{ }^{44}$ Diamine 9B catalyzes the desymmetrization of meso-diols 9D in good yield and enantioselectivity. The more rigid diamine 9A is more enantioselective than diamine 9B for the kinetic resolution of racemic secondary alcohols 9E and 9F, with impressive levels of enantioselection achieved for cyclic secondary alcohols 9F. Racemic primary alcohols with an α-chiral center are also resolved using catalyst 9B with modest selectivity factors. These benzoylations are proposed to occur by the formation of a rigid bicyclic complex 9C, although the exact reaction mechanism is not yet clear. The mechanism was recently called into question by Denmark due to the lack of evidence for the intermediate, and he suggested the benzoylation may occur by general base catalysis. ${ }^{45}$ Regardless of the mechanism, these asymmetric benzoylation protocols are starting to be used in the chemical community ${ }^{46}$ because of the short synthesis and high selectivity factors for the kinetic resolution of alcohols.

Scheme 1-9. Oriyama's Diamine Catalysts.

9A

9D
catalyst: 9B ($0.5 \mathrm{~mol} \%$)

9E

(\pm-9F

9G catalyst: 9A ($0.3 \mathrm{~mol} \%$)
a: $\mathrm{R}^{1}=\mathrm{Ph}: \mathbf{s}=37-160$
b: $\mathrm{R}^{1}=\mathrm{Br}: \mathbf{s}=130-170$ c: $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{R}: \mathbf{s}=27$ $-78^{\circ} \mathrm{C}, 3 \mathrm{~h}$

Inspired by nature's acyl transfer catalysts, the class of enzymes called lipases, Miller sought the minimal peptide sequence required for enantioselective acylations. In this quest, Miller designed tripeptide 10A which incorporated a nucleophilic N -alkyl imidazole. ${ }^{47}$ Tripeptide 10A is predisposed for a β-turn in order to bring the two ends of the peptide in close proximity and create the chiral environment around the nucleophilic imidazole. Using catalyst 10A, moderate levels of enantioselectivy are obtained for the resolution of amino alcohol 10D. The enantioselectivity is highly dependent on hydrogen-bonding within catalyst 10A since experiments conducted in $\mathrm{CHCl}_{3} / t-\mathrm{BuOH}$ are unselective supporting the hypothesis that the selectivity arises from an organized peptide conformation. In addition, the resolutions of racemic secondary alcohols lacking a β-amino functionality are unselective with peptide 10A, suggesting additional hydrogen bonding interactions between catalyst 10A and the amino alcohol 10D is necessary for enantioselection. Subseqent library screening of peptide chains led to increased enantioselectivities observed for the resolution of alcohol 10D using tetrapeptide $10 \mathrm{~B}^{48}$ and octapeptide 10C. ${ }^{49}$ Octapeptide 10C exhibits remarkable levels of selectivity with alcohol 10D and catalyzes the acyl transfer significantly faster than do peptides 10A and 10D or N -methyl imidazole. This rate acceleration is attributed to a beneficial hydrogen-bonding interaction between the catalyst and fast reacting enantiomer, although the exact nature of this interaction is
not known. Based on the rate acceleration with the more selective peptide catalysts, a fluorescence based screening technique was developed to facilitate library screening. ${ }^{50}$ Using this screening method, octapeptide 10E was found to be highly selective for the kinetic resolutions of racemic secondary alcohols 10G, ${ }^{51}$ and pentapeptide 10F was discovered as an effective catalyst for the kinetic resolutions of racemic tertiary alcohols $\mathbf{1 0 H} .{ }^{52}$ Additional peptides have been found for the asymmetric phosphorylations and sufinylations of alcohols through library screens. ${ }^{53}$ Automated peptide syntheses allow for the ready synthesis of new peptide libraries, and the fluorescence screening technique facilitates the discovery of new catalysts. Like most of the previous catalysts, these peptides have not yet been used in the literature, which may be due to the library screening required to find a catalyst with high selectivity for each new substrate.

Scheme 1-10. Miller Peptide Catalysts.

(\pm)-10D

A series of atropisomeric pyridine derivatives was developed by Spivey. ${ }^{54}$ Spivey reasoned that the 3 -substitution would not interfere with the nucleophilicity of the pyridines, as the 2-substituents do, while still allowing the chirality to be transferred to the active site. The sterically bulky 3-aryl substitutents of 11A - 11D were chosen to increase the rotational barrier between the atropisomers, allowing for separation of the enantiomers. The catalyst 11A is unselective for the resolution of secondary alcohols 5F, but an increase in selectivity was observed with the simplified catalyst 11B. ${ }^{55}$ The higher selectivity was attributed to an increase in differentiation of the 3 and 5 positions of the pyridine ring. Catalyst 11B is also moderately selective for the resolution of a series of cyclic racemic alcohols 9F. ${ }^{56}$ An increase in the steric bulk of either the dialkylamino (11B) or the biphenyl substituent (11D) led to an increase in selectivity for the resolution of secondary alcohols 5F. ${ }^{57}$ Unfortunately, all of these resolutions must be conducted at $-78{ }^{\circ} \mathrm{C}^{58}$ to achieve good enantioselectivity, and catalysts 11A-11D have not been used yet by other chemists.

Scheme 1-11. Spivey's Atropisomeric Catalysts.

11D

5F
catalyst: 11A: s = 1.3-1.5
catalyst: 11B: s=8-24
catalyst: 11C: s=13-36

1-5 mol\% catalyst
$-78^{\circ} \mathrm{C}, 8-12 \mathrm{~h}$

(\pm)-9F
Raly 11B
a: $R^{1}=P h: s=9$
b: $\mathrm{R}^{1}=\mathrm{Br}: \mathbf{s}=5.9$

c: $R^{1}=$ OPG: $\mathbf{s}=6-20$
1 mol\% catalyst
$-78^{\circ} \mathrm{C}, 9 \mathrm{~h}$

Recently, several chiral nucleophilic catalysts with a nucleophilic amidine core have been developed by Birman. ${ }^{59}$ In contrast to the previously studied pyridine and imidazole nucleophiles,
these amidines (12A - 12D) contain a tetrahedral center adjacent to the nucleophilic nitrogen. The proximity of the stereogenic center and the nucleophilic nitrogen allows for more effective transmittance of the chirality in the enantiodetermining step. Indeed, good to exceptional selectivities are obtained for the resolution of racemic alcohols $5 \mathrm{~F}, 12 \mathrm{E}, 5 \mathrm{G}$ and 9 F and oxazolidines 12F with low catalysts loadings (2-10 mol\%). Notably, benzotetramazole catalyst 12C resolves secondary benzylic alcohols 5F and oxazolidines 12F with exceedingly high levels of enantioselection at rt! Such high levels of selectivity for an acyl transfer resolution have only been observed with enzymes and the chiral phosphine catalysts developed by Daugulis (vide infra). The ring expanded catalyst 12D has recently been reported to be more reactive, but the catalyst synthesis is much longer and lower yielding. ${ }^{60}$ These promising catalysts have not yet been adopted in the literature, but the high selectivity and reactivity in addition to the short syntheses leads one to believe they will be used in the future.

Scheme 1-12. Birman's Amidine-Derived Catalysts.

12A
2 steps, 40\% yield

12B
2 steps, 79\% yield

12C
2 steps, 81\% yield

12D
7 steps, 4\% yield

5F
catalyst: 12A, s=20-85
catalyst: 12B, s=35-117
catalyst: 12C, s=104-355
4 mol\% catalyst
$0^{\circ} \mathrm{C}, 8-52 \mathrm{~h}$
catalyst: 12B, s=16-110 catalyst: 12C, s=50-450

12F
$4 \mathrm{~mol} \%$ catalyst 5-24 h

12E
catalyst: 12B (2 mol\%)
$\mathbf{s}=17-57$
$0^{\circ} \mathrm{C}, 8 \mathrm{~h}$

5G
catalyst: 12C (4-10 mol\%)
$\mathrm{s}=5.4-32$
$0^{\circ} \mathrm{C}, 2-24 \mathrm{~h}$

(土)-9F
catalyst: 12D (4-10 mol\%)
$\mathbf{s}=28-107$
$-40^{\circ} \mathrm{C}, 5-12 \mathrm{~h}$

Many additional chiral nucleophilic catalysts have been reported over the last decade. ${ }^{25}$ Unfortunately, most of these catalysts display modest levels of enantioselection at best. Overall significant advances have been made in the field of asymmetric nucleophilic catalysis. However, the challenge remains of finding a readily available catalyst that is highly enantioselective for a broad range of substrates and processes.

V. Chiral Nucleophilic Catalysts Developed in the Vedejs Group.

The development of chiral nucleophilic catalysts has been an ongoing effort in the Vedejs group for over a decade. In addition to the chiral 2-substituted DMAP analogs developed by Chen in 1996, the potential of tertiary phosphines as chiral nucleophiles was explored. ${ }^{61}$ Several known chiral phosphines were screened for enantioselectivity in the kinetic resolutions of alcohols 13G and 13H as well as the desymmetrization of meso-diols 13I. Chiral phosphines 13A-13C proved either unreactive or unselective in these acyl transfer reactions. The Burk phosphines were modestly more enantioselective, and the unhindered 13D was the most reactive and selective. Phosphine 13D catalyzed the resolution of alcohol 13H with a selectivity factor of $\mathbf{s}=$ 13, which was the highest achieved with a non-enzymatic acyl transfer catalyst at the time. Unfortunately, this resolution was very slow (16% catalyst loading: 25% conversion over 2 weeks).

Scheme 1-13. Chiral Phosphine Catalysts.

13A

13B

13G ($\mathrm{R}=\mathrm{Me}$)
13H ($\mathrm{R}=t-\mathrm{Bu}$)

13C

131

13D ($\mathrm{R}=\mathrm{Me}$)
13E ($R=E t$)
13F ($\mathrm{R}=\mathrm{i}-\mathrm{Pr}$)

After optimization of the catalyst structure, a new bicyclic phosphine 14A was found to be both highly reactive and enantioselective. ${ }^{62}$ Highly enantiomerically enriched phoshine 14A (P -aryl-2-phophabicyclo[3.3.0]octane, PBO) was synthesized from (S)-ethyl lactate in 5 steps. Originally, the air-sensitive phosphine 14A was protected as the borane complex and released in small batches prior to each use. Subsequently, MacKay found that the phosphine could be protected as the HBF_{4} salt 14B and released in situ by triethylamine. ${ }^{63}$ This advance facilitates the handling of the phosphine and allows for more precise catalyst loadings. PBO catalyst 14A resolves both benzylic (5F) and allylic (5H) alcohols with high selectivity factors. In fact, PBO 14A catalyzes the resolution of hindered alcohol 14C with a selectivity factor of $s=369-390$. This impressive level of selectivity was only seen with enzymatic acyl transfer resolutions at that time. Since then only Birman's amidine catalyst has reached a similar level of enantioselectivity. PBO 14A also catalyzes the rearrangement of O-acylated azlactones to afford quaternary carbon containing azlactones 6B in 89-92\% ee. ${ }^{64}$

Scheme 1-14. Phosphabicyclooctane Catalyst Applications.

In addition to chiral phosphine catalysts, the Vedejs group has developed chiral DMAP catalysts. Due to the lack of catalytic activity of the 2-substituted DMAP analogs synthesized by Chen, the new catalyst design incorporated the chirality at the 3-position of the pyridine ring. The challenge then became inducing chirality at the active site over this distance. In order to desymmetrize the planar pyridine (f3A), the strategy was to block either one face of the pyridine ring or one face and one side of the ring. DMAP f3A was designed to block one face of the pyridine ring while DMAP f3B was designed to block both a side and a face of the DMAP ring. These two 3-substituted DMAP derivatives were enantioselectively synthesized by Harper. ${ }^{65}$ Although both f3B and f3C are catalytically active, the kinetic resolutions of alcohols were minimally selective ($\mathbf{s}<2$).

Figure 1-3. Harper's Chiral DMAP Catalysts.

f3A

f3B

f3C

Using this same design strategy of blocking a face and a side, a new DMAP catalyst was developed by Shaw and Vedejs. ${ }^{64}$ In this catalyst, the chiral center is located adjacent to the pyridine ring. The favored conformation of this chiral center should place the small hydrogen syn to the dimethylamino group thereby projecting the two substitutents to the opposite faces of the pyridine. In order to differentiate the faces of DMAP 15C, a sterically bulky trityl group was chosen as one of these substituents. A smaller acetate substituent was chosen to differentiate the two sides of the DMAP catalyst. The synthesis of catalyst 15C ("TADMAP"; for 2,2,2-Triphenyl-1-Acetoxyethyl-DMAP) starts from the reduction and oxidation of triphenylacetic acid to yield aldehyde 15A. Then 3-lithiated DMAP was generated from 3-bromoDMAP 15B and added to the aldehyde 15A. The resulting lithiated alkoxide was quenched with acetic anhydride to afford TADMAP 15C. The racemic catalyst 15C was then resolved by a classical resolution with (+)-CSA to $>99 \%$ ee. Gram quantities of TADMAP (15C) were synthesized by this short route.

Scheme 1-15. Synthesis of TADMAP (15C).

Although kinetic resolutions with TADMAP are unselective, the catalyst is highly effective for the synthesis of all-carbon quaternary centers. ${ }^{64}$ The rearrangement of 16A occurs readily in the presence of 1 mol\% TADMAP (15C). The rearranged product 16B is isolated in high yield and enantiomeric excess ($91-95 \%$ ee). During the evaluation of the substrate scope, it was found that azlactones with α-unbranched alkyl side chains (16A) rearrange readily in 12 h , but an azlactone containing an α-branched alkyl side chain (16A, $\mathrm{R}^{2}=i-\operatorname{Pr}$) does not react at all on the same time scale. Furthermore, phenyl substituted azlactone $16 A\left(R^{1}=P h\right)$ rearranged readily, but the rearranged product was obtained in low enantiomeric excess. Benzofuranone-derived enol carbonates 16C also rearrange in high yield and enantioselectivity ($92-93 \%$ ee) when treated with 1 mol\% TADMAP (15C) at rt. The phenyl-substituted benzofuranone 16E is less selective at rt, but after significant substrate and solvent screening, optimized conditions were found that afford rearranged product 16F in 86% ee with 20 mol\% TADMAP (15C). TADMAP (15C) also catalyzes the rearrangement of enol carbonates derived from furanones. In this case, the nature of the aryl substituent determined the regioselectivity of the rearrangement. If the aryl substituent is electron donating (16Fb), the major regioisomer is furanone 16G. In contrast, if the aryl substitutent is electron withdrawing ($\mathbf{1 6 F c}$), then the major regioisomer is furanone $\mathbf{1 6 H}$. Both rearranged products $\mathbf{1 6 G b}$ and $\mathbf{1 6 H c}$ are obtained in high enantiomeric excess. A discussion of the application of TADMAP 15C to the rearrangement of oxindole derived enol carbonates is reserved for Chapter 2.

Scheme 1-16. Applications of TADMAP (15C).

controlled addition of 3-lithiated DMAP to aldehyde 171 followed by acylation of the resulting alcohol readily yields chiral DMAP 17F. Structural modifications of these catalysts are easily made by starting with different amino alcohols and nitrogen protecting groups as seen from the other derivatives prepared $(17 A-17 G)$. Conformational analysis of catalyst 17B indicates a strong preference for the two hydrogens to be syn thereby placing the bulky DMAP and $i-\operatorname{Pr}$ substituents anti to one another (Figure 1-4, see next page). An initial screening of the catalysts for the kinetic resolution of 1-naphthyl-1-ethanol gave promising results, with catalyst 17F proving to be the most enantioselective ($s=8.9, r t$, toluene). On the other hand, only moderate enantioselectivities were found in the rearrangement of O-carboxylated azlactones, benzofuranones, and oxindoles using catalysts 17A - 17G despite significant substrate and solvent optimization screens. Given the short, enantioselective synthesis of catalysts 17A - 17G, we chose to pursue additional applications of these catalysts, as discussed in the chapters that follow.

Scheme 1-16. Synthesis of Amino Alcohol Derived Catalysts.

$R=B O C$ (17A)
Bz (17B) (S,S)-AcOVaDMAP 9-AnthCO (17C) $3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}$ (17D) $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}$ (17E)

Figure 1-4. Amino Alcohol-Derived Catalyst Side-Chain Conformations.

References for Chapter 1:

1 For discussions of basic and nucleophilic catalysis mechanisms: a) Fersht, A. In Structure and Mechanism in Protein Science, Freeman, New York, NY, 1999; pp 54-102. b) Anslyn, E. V.; Dougherty, D. A. In Modern Physical Organic Chemistry, University Science Books, Sausalito, CA, 2006; pp 502-523.

2 "Ueber quantitative esterbildung und bestimmung von alkoholen resp. phenolen," Verley, A.; Bölsing, F. Ber. 1901, 34, 3354.
${ }^{3}$ a) "The hydrolysis of acetic anhydride. Part II. Catalysis by pyridine," Bafna, S. L.; Gold, V. J. Chem. Soc. 1953, 1406. b) "The hydrolysis of acetic anhydride. Part III. The catalytic efficiency of a series of tertiary amines," Bafna, S. L.; Gold, V. J. Chem. Soc. 1953, 1409. c) "The hydrolysis of acetic anhydride. Part VII. Catalysis by pyridine and methyl pyridines in acetate buffer," Butler, A. R.; Gold. V. J. Chem. Soc. 1961, 4362.

4 "Effect of catalysts on the hydrolysis of acetyl phosphate. Nucleophilic displacement mechanisms in enzymatic reactions," Koshland, Jr., D. E. J. Am. Chem. Soc. 1952, 74, 2286.

5 "The hydrolytic activity of glyceraldehydes-3-phosphate dehydrogenase," Park, J. H.; Koshland, Jr., D. E.; J. Biol. Chem. 1959, 986.
${ }^{6}$ a) "The acetylpyridinium ion intermediate in pyridine-catalyzed acyl transfer," Fersht, A. R.; Jencks, W. P. J. Am. Chem. Soc. 1969, 91, 2125. b) "The acetylpyridinium ion intermediate in pyridine-catalyzed hydrolysis and acyl transfer reactions of acetic anhydride. Observation, kinetics, structure-reactivity correlations, and effects of concentrated salt solutions," Fersht, A. R.; Jencks, W. P. J. Am. Chem. Soc. 1970, 92, 5432. c) "Reactions of nucleophilic reagents with acylating agents of extreme reactivity and unreactivity. Correlation of β-values for attacking and leaving group variation," Fersht, A. R.; Jencks, W. P. J. Am. Chem. Soc. 1970, 92, 5442.

7 For reviews on DMAP catalysis see: For reviews: a) "4-Dialkylaminopyridines as highly active acylation catalysts," Hofle, G.; Steglich, W.; Vorbruggen, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 569. b) "4-Dialkylaminopyridines: Super acylation and alkylation catalysts," Scriven, E. F. V. Chem. Soc. Rev. 1983, 12, 129 c) "Applications of dialkylaminopyridine (DMAP) catalysts in organic synthesis," Murugan, R.; Scriven, E. F. V. Aldrichimica Acta 2003, 36, 21 d) "Nucleophilic catalysis by 4-(dialkylamino)pyridines revisited - The search for optimal reactivity and selectivity," Spivey, A. C.; Arseniyadis, S. Angew. Chem., Int. Ed. Engl. 2004, 43, 5436.

8 " N, N-Dimethyl-4-pyridinamine, a very effective acylation catalyst," Steglich, W.; Hofle, G. Angew. Chem., Int. Ed. Engl. 1969, 8, 981.

9 a) "Role of basicity and steric factors in nucleophilic catalysis by tertiary amines," Litvinenko, L. M.; Kirichenko, A. I. Dokl. Akad. Nauk. SSSR 1967, 176, 763. b) "Basic and nucleophilic catalysis with tertiary amines in the amide formation reactions," Kirichenko, A. I.; Litvinenko, L. M.; Dotsenko, I. N.; Kotenko, N. G.; Nikkel'sen, E.; Berestetskaya, V. D. Dokl. Akad. Nauk. SSSR 1979, 244, 65. c) "The role of the structure of pyridine catalysts in the benzoylation of alcohols," Bondarenko, A. I.; Kirichenko, A. I.; Litvinenko, L. M.; Dmitrenko, L. N.; Kobets, V. D. J. Org. Chem. USSR 1981, 2310.

10 "The stability of acylpyridinium cations and their relation to the catalytic activity of pyridine bases," Held, I.; Villinger, A.; Zipse, H. Synthesis, 2005, 9, 1425.
"Enhancing the catalytic activity of 4-(alkylamino)pyridines by conformational fixation," Heinrich, M. R.; Klisa, H. S.; Mayr, H.; Steglich, W.; Zipse, H. Angew. Chem., Int. Ed. Engl. 2003, 42, 4826.
${ }^{12}$ "Development of more motent 4-dimethylaminopyridine analogues," Singh, S.; Das, G.; Singh, O. V.; Han, H. Org. Lett. 2007, 9, 401.

13 "The DMAP-catalyzed acetylation of alcohols-a mechanistic study (DMAP $=4-$ (dimethylaminopyridine)," Xu, S.; Held, I.; Kempf, B.; Mayr, H.; Steglich, W.; Zipse, H. Chem. Eur. J. 2005, 11, 4751.
a) "Acylated derivatives of N -methylimidazole .3. Acylation and alkoxylcarbonylation of amino compounds in homogeneous aqueous media," Guibejam, E. G.; Bram, G.; Vilkas, M. Bull. Soc. Claim. Fr. 1973, 1021. b) " N-Methylimidazole as a catalyst for analytical acetylations of hydroxyl compounds," Connors, K. A.; Pandit, N. K. Anal. Chem. 1978, 50, 1542
"Study of base-catalyzed + salt-catalyzed acetylation of hydroxyl groups," Schenk, G. H.; Wines, P.; Mojzis, C. Anal. Chem. 1964, 36, 914.
a) "Tributylphosphine: A remarkable acylation catalyst," Vedejs, E.; Diver, S. T. J. Am. Chem. Soc. 1993, 115, 3358. b) "Tributylphosphine-catalyzed acylations of alcohols: Scope and related reactions," Vedejs, E.; Bennett, N. S.; Conn, L. M.; Diver, S. T.; Gingras, M.; Lin, S.; Oliver, P. A.; Peterson, M. J. J. Org. Chem. 1993, 58, 7286.

17 a) "Superbase-promoted acylation of hindered alcohols," D'Sa, B. A.; Verkade, J. G. J. Org. Chem. 1996, 61, 2963. b) " $\mathrm{P}\left(\mathrm{RNCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$: efficient catalysts for transesterifications, acylations, and deacylations," llankumaran, P.; Verkade, J. G. J. Org. Chem. 1999, 64, 3086.
"Efficient transesterification/acylation reactions mediated by N -heterocyclic carbene catalysts," Grasa, G. A.; Güveli, T.; Singh, R.; Nolan, S. P. J. Org. Chem. 2003, 68, 2812.
${ }^{19}$ For recent reviews regarding this topic: a) Kagan, H. B.; Fiaud, J. C. In Top. Stereochem. 1988, 18, 249. b) "Practical considerations in kinetic resolution reactions," Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5. c) "Efficiency in non-enzymatic kinetic resolution," Vedejs, E.; Jure, M. Angew. Chem., Int. Ed. Engl. 2005, 44, 3974.
"Basic terminology of stereochemistry," Moss, G. P. Pure Appl. Chem. 1996, 68, 2193.
"Mathematical description of kinetic resolution with an enantiomerically impure catalyst and non-racemic substrate," Ismagilov, R. F. J. Org. Chem. 1998, 63, 3772.
a) "Über die mit verschiedener reacktionsgeschwindigkeit erfolgende veresterung der optischen antipoden eines racemates durch opt. akt. katalysatoren," Wegler, R. Liebigs Ann. Chem. 1932, 498, 62. b) "Konfigurationsspezifische veresterung sekundärer alkohole in gegenwart von brucin oder strychnine," Wegler, R. Liebigs Ann. Chem. 1933, 506, 77. c) "Asymmetrische synthesen III," Wegler, R. Liebigs Ann. Chem. 1934, 510, 72. d) "Asymmetrische reaktionen, IV. Mitteil.: Uraschen der optischen auslese bei reaktionen mit optisch aktiven katalysatoren," Wegler, W.; Rüber, A. Chem. Ber. 1935, 68, 1055.
${ }^{23}$ a) "Asymmetric control in esterification reactions," Bird, C. W. Tetrahedron 1962, 18, 1. b) "Synthese optisch aktiver 3-phenyl-2H-azirine," Stegmann, W.; Uebelhart, P.; Heimgartner, H.;

Schmid, H. Tetrahedron Lett. 1978, 19, 3091. c) "Optical yield and stereoselectivity in kinetic resolution reactions," Potapov, V. M.; Dem'yanovich, V. M.; Khlebnikov, V. A.; Korovina, T. G. Zh. Org. Khim. 1988, 24, 759 and references therein. d) "Kinetische racematspaltungen ausgehend von rac-alkoholen oder rac-carbonsäurehalogeniden unter mitwirkung optisch aktiver induktorbasen," Weidert, P. J.; Geyer, E.; Horner, L. Liebigs Ann. Chem. 1989, 533.
"Kinetic resolution of secondary alcohols. Enantioselective acylation mediated by a chiral (Dimethylamino)pyridine derivative," Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809.
a) "Asymmetric catalysis of acyl transfer by Lewis acids and nucleophiles: a review," Spivey, A. C.; Maddaford, A. Org. Prep. Proced. Int. 2000, 32, 333. b) "Applications of dialkylaminopyridine (DMAP) catalysts in organic synthesis," Murugan, R.; Scriven, E. F. V. Aldrichimica Acta 2003, 36, 21. c) "Nucleophilic chiral amines as catalysts in asymmetric synthesis," France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. Chem. Rev. 2003, 103, 2985. d) "Asymmetric acylations," E.R. Jarvo and S.J. Miller, In Comprehensive Asymmetric Catalysis, Supplement 1; Jacobsen, E.N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, Heidelberg, 2004; Chapter 43,189. e) "Catalytic asymmetric acyl-transfer mediated by chiral pyridine derivatives," Connon, S. J. Lett. Org. Chem. 2006, 3, 333. f) "Chiral dialkylaminopyridine catalyst in asymmetric synthesis," Wurz, R. P. Chem. Rev. 2007, 107, 5570.
a) For design rationale: "Enantioselective nucleophilic catalysis with "planar-chiral" heterocycles," Fu, G. C. Acc. Chem. Res. 2000, 33, 412. b) "Chiral π-complexes of heterocycles with transition metals: A versatile new family of nucleophilic catalysts," Ruble, J. C.; Fu, G. C. J. Org. Chem. 1996, 61, 7230. c) "Nucleophilic catalysis with π-bound nitrogen heterocycles: Synthesis of the first ruthenium catalysts and comparison of the reactivity and the enantioselectivity of ruthenium and iron complexes," Garrett, C. E.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 7479.
a) "Effective kinetic resolution of secondary alcohols with a planar-chiral analog of 4(dimethylamino)pyridine. Use of the $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{Ph}_{5}\right)$ group in asymmetric catalysis," Ruble, J. C.; Latham, H. A.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 1492. b) "Kinetic resolution of aryl alkylcarbinols catalyzed by a planar-chiral derivative of DMAP: A new benchmark for nonenzymatic acylation," Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794.
29 "Nonenzymatic kinetic resolution of propargylic alcohols by a planar-chiral DMAP derivative: Crystallographic characterization of the acylated catalyst," Tao, B.; Ruble, J. C.; Hoic, D. A.; Fu, G. C. J. Am. Chem. Soc. 1999, 121, 5091.

30 "The kinetic resolution of allylic alcohols by a non-enzymatic acylation catalyst; application to natural product synthesis," Bellemin-Laponnaz, S.; Tweddell, J.; Ruble, J. C.; Breitling, F. M.; Fu, G. C. Chem. Commun. 2000, 1009.
a) "Kinetic resolution of amines by a nonenzymatic acylation catalyst," Arai, S.; BelleminLaponnaz, S.; Fu, G. C. Angew. Chem., Int. Ed. Engl. 2001, 40, 234. b) "Kinetic resolutions of indolines by a nonenzymatic acylation catalyst," Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 14264.

32 "Enantioselective construction of quaternary stereocenters: Rearrangement of O-acylated azlactones catalyzed by a planar-chiral derivative of 4-(pyrrolidino)pyridine," Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532.
${ }^{33}$ "Catalytic enantioselective synthesis of oxindoles and benzofuranones that bear a quaternary stereocenter," Hills, I. D.; Fu, G. C. Angew. Chem., Int. Ed. Engl. 2003, 42, 3921.
${ }^{34}$ a) "Catalytic enantioselective synthesis of quaternary stereocenters via intermolecular Cacylation of silyl ketene acetals: Dual activation of the electrophile and nucleophile," Mermerian, A.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 4050. b) "Catalytic enantioselective construction of all-carbon quaternary stereocenters: synthetic and mechanistic studies of the C-acylation of silyl keten acetals," Mermerian, A. H.; Fu, G. C.J. Am. Chem. Soc. 2005, 127, 5604.

35 "Dynamic kinetic resolutions catalyzed by a planar-chiral derivative of DMAP: Enantioselective synthesis of protected α-amino acids from racemic azlactones," Liang, J.; Ruble, J. C.; Fu, G. C. J. Org. Chem. 1998, 63, 3154.
"Asymmetric [3+2] annulations catalyzed by a planar-chiral derivative of DMAP," Bappert, E.; Muller, P.; Fu, G. C. Chem. Commun. 2006, 2604.
"Catalytic Asymmetric Synthesis of Esters from Ketenes," Wiskur, S. L.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 6176.

40 "Enantioselective addition of amines to ketenes catalyzed by a planar-chiral derivative of PPY: Possible intervention of chiral Brønsted-acid catalysis," Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 10006.
${ }^{41}$ "Catalytic Asymmetric Synthesis of Tertiary Alkyl Chlorides," Lee, E. C.; McCauley, K. M.; Fu, G. C. Angew. Chem. Int. Ed. 2007, 46, 977.
a) "Chiral (salen)Co"I catalysts for the synthesis of cyclic carbonates," Paddock, R. L.; Nguyen, S. T. Chem. Commun, 2004, 1622. b) "Catalytic and stoichiometric approaches to the desymmetrisation of centrosymmetric piperazines by enantioselective acylation: a total synthesis of Dragmacidin A," Anstiss, M.; Nelson, A. Org. Biomol. Chem. 2006, 4, 4135. c) "Central-to-axial chirality transfer in the benzannulation reaction of optically pure Fischer carbine complexes in the synthesis of allocolchicinoids," Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. Tetrahedron, 2008, 64, 949. d) "Diastereoselective carboxyl migrations of 3arylbenzofuranones," Peris, G.; Vedejs, E. J. Org. Chem. 2008, 73, 1158.
a) "Nonenzymatic kinetic resolution of racemic alcohols through an "Induced Fit" process," Kawabata, T.; Nagato, M.; Takasu, K.; Fuji, K. J. Am. Chem. Soc. 1997, 119, 3169. b) "Kinetic resolution of amino alcohol derivatives with a chiral nucleophilic catalyst: access to
enantiopure cyclic cis-aminoalcohols," Kawabata, T.; Yamamoto, K.; Momose, Y.; Yoshida, H.; Nagaoka, Y.; Fuji, K. Chem. Commun. 2001, 2700.

Diamine" Oriyama, T. Imai, K. T. Tan T. Trahedr Diamine," Oriyama, T.; Imai, K.; Hosoya, T.; Sano, T. Tetrahedron Lett. 1998, 39, 397. b) Highly Efficient Catalyst Asymmetric Acylation of meso-1,2-Diols with Benzoyl Chloride in the Presence of a Chiral Diamine Combined with $\mathrm{Et}_{3} \mathrm{~N}$," Oriyama, T.; Imai, K.; Sano, T.; Hosoya, T. Tetrahedron Lett. 1998, 39, 3529. c) "Catalytic asymmetric acylation of racemic secondary alcohols with benzoyl chloride in the presence of a chiral diamine," Sano, T.; Imai, K.; Ohashi, K.; Oriyama, T. Chem. Lett. 1999, 265. d) "Highly efficient kinetic resolution of β-halohydrins catalyzed by a chiral 1,2-diamine," Sano, T.; Miyata, H.; Oriyama, T. Enantiomer 2000, 5, 119. e) "Organocatalytic Kinetic Resolution of Racemic Primary Alcohols using a Chiral 1,2Diamine Derived from (S)-Proline," Terakado, D.; Koutaka, H.; Oriyama, T. Tetrahedron: Asymmetry, 2005, 16, 1157. f) "Catalytic Asymmetric Acylation of Alcohols using a Chiral 1,2Diamine Derived from (S)-Proline: (1S,2S)-trans-1-Benzoyloxy-2-Bromocyclohexane)," Terakado, D.; Oriyama, T. Org. Synth. 2006, 83, 70.
"Lewis base catalysis in organic synthesis," Denmark, S. E.; Beutner, G. L. Angew, Chem, Int. Ed. 2008, 47, 1560.
a) "Asymmetric synthesis of sceletium alkaloids: (-)-mesembrine, (+)-sceletium A-4, (+)tortuosamine and (+)-N-formyltortuosamine," Yamada, O.; Ogasawara, K. Tetrahedron Lett. 1998, 39, 7747. b) "Regioselective benzoylation of 6-O-protected and 4,6-O-diprotected hexopyranosides as promoted by chiral and achiral ditertiary 1,2-diamines," Hu, G.; Vasella, A. Helv. Chim. Acta 2003, 86, 4369. c) "Enantioselective synthesis of chiral sulfinates using chiral diamines," Nakamura, S.; Tateyama, M.; Sugimoto, H.; Nakagawa, M.; Watanabe, Y.; Shibata, N.; Toru, T. Chirality, 2005, 17, 85. d) "Rediscovery, isolation, and asymmetric reduction of 1,2,3,4-tetrahydronaphthalene-1,4-dione and studies of its $\left[\mathrm{Cr}(\mathrm{CO})_{3}\right]$ complex," Kündig, E. P.; Garcia, A. E.; Lomberget, T.; Bernardinelli, G. Angew. Chem. Int. Ed. 2006, 45, 98.
"A chemosensor-based approach to catalyst discovery in solution and on solid support," Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 4306.

51 "Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: An approach to kinetic resolution of secondary alcohols of broad structural scope," Copeland, G. T.; Miller, S. J. J. Am. Chem. Soc. 2001, 123, 6496.

52 "Fluorescence-based screening of asymmetric acylation catalysts through parallel enantiomer analysis. Identification of a catalyst for tertiary alcohol resolution," Jarvo, E. R.; Evans, C. A.; Copeland, G. T.; Miller, S. J. J. Org. Chem. 2001, 66, 5522.
a) "Discovery of a catalytic asymmetric phosphorylation through selection of a minimal kinase mimic: A concise total synthesis of D-myo-inositol-1-phosphate," Sculimbrene, B. R.; Miller, S. J. J. Am. Chem. Soc. 2001, 123, 10125. b) "Enantiodivergence in small-molecule catalysis of asymmetric phosphorylation: Concise total synthesis of the enantiomeric D-myo-inositol-1phosphate and D-myo-inositol-3-phosphate," Sculimbrene, B. R.; Morgan, A. J.; Miller, S. J. J. Am. Chem. Soc. 2002, 124, 11653. c) "Nonenzymatic Peptide-Based Catalytic Asymmetric Phosphorylation of Inositol Derivatives," Sculimbrene, B. R.; Morgan, A. J.; Miller, S. J. Chem. Commun. 2003, 1781. d) "Asymmetric Synthesis of Phosphatidylinositol-3-Phosphates with Saturated and Unsaturated Side Chains through Catalytic Asymmetric Phosphorylation," Sculimbrene, B. R.; Xu, Y.; Miller, S. J. J. Am. Chem. Soc. 2004, 126, 13182. e) "Catalytic enantioselective synthesis of sulfinate esters through the dynamic kinetic resolution of tertbutanesulfinyl chloride," Evans, J. W.; Fierman, M. B.; Miller, S. J.; Ellman, J. A. J. Am. Chem. Soc. 2004, 126, 8134.

54 a) "Synthesis of Atropisomeric Analogues of DMAP," Spivey, A. C.; Fekner, T.; Adams, H. Tetrahedron Lett. 1998, 39, 8919. b) "Conformationally Stable Biaryl Analogues of 4(Dimethylamino)pyridine: A Novel Class of Chiral Nucleophilic Catalysts," Spivey, A. C.; Fekner, T.; Spey, S. E.; Adams, H. J. Org. Chem. 1999, 64, 9430. c) "Atropisomeric alphaMethyl Substituted Analogues of 4-(Dimethylamino)pyridine: Synthesis and Evaluation as Acyl Transfer Catalysts," Spivey, A. C.; Maddaford, A.; Leese, D. P.; Redgrave, A. J. J. Chem. Soc., Perkin Trans. 1, 2001, 1785. d) "Energy Barriers to Rotation in Axially Chiral Analogues of 4-(Dimethylamino)pyridine," Spivey, A. C.; Charbonneau, P.; Fekner, T.; Hochmuth, D. H.; Maddaford, A.; Malardier-Jugroot, C.; Redgrave, A. J.; Whitehead, M. A. J. Org. Chem. 2001, 66, 7394. e) "Study of the influence of the non-pyridyl nitrogen hydridisation on the stability of axially chiral analogues of 4-(dimethylamino)pyridine (DMAP)," Malardier-Jugroot, C.; Spivey, A. C.; Whitehead, M. A. J. Mol. Struct. 2003, 623, 263.

55 "Axially chiral analogues of 4-(dimethylamino)pyridine: Novel catalysts for nonenzymatic enantioselective acylations," Spivey, A. C.; Fekner, T.; Spey, S. E J. Org. Chem. 2000, 65, 3154.
"Concise synthesis, preparative resolution, absolute configuration determination, and application of an atropisomeric biaryl catalyst for asymmetric acylation," Spivey, A. C.; Zhu, F.; Mitchell, M. B.; Davey, S. G.; Jarvest, R. L. J. Org. Chem. 2003, 68, 7379.
${ }^{57}$ "New atropisomeric biaryl derivatives of 4-aminopyridine - Identification of an improved nucleophilic catalyst for asymmetric acylation of sec-alcohols," Spivey, A. C.; Leese, D. P.; Zhu, F.; Davey, S. G.; Jarvest, R. L. Tetrahedron 2004, 60, 4513.

58
"Rapid, room-temperature acylative kinetic resolution of sec-alcohols using atropisomeric 4aminopyridine/triphenylphosphine catalysis," Spivey, A. C.; Arseniyadis, S.; Fekner, T.; Maddaford, A.; Leese, D. P. Tetrahedron 2006, 62295.

59
a) "2,3-Dihydroimidazo[1,2-a]pyridines: A new class of enantioselective acyl transfer catalysts and their use in kinetic resolution of alcohols," Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226. b) "Kinetic Resolution of Alcohols Using a 1,2-Dihydroimidazo[1,2-a]quinoline Enantioselective Acylation Catalyst," Birman, V. B.; Jiang, H. Org. Lett. 2005, 7, 3445. c) "Benzotetramisole: A Remarkably Enantioselecitve Acyl Transfer Catalyst," Birman, V. B.; Li, X. Org. Lett. 2006, 8, 1351. d) "Influence of Electronic and Steric Factors on 2,3-dihydroimidazo[1,2-a]pyridine-based Enantioselective Acylation Catalysts," Birman, V. B.; Li, X.; Jiang, H.; Uffman, E. W. Tetrahedron, 2006, 62, 285. e) "Kinetic Resolution of 2-Oxazolidinones via Catalytic, Enantioselective N-Acylation," Birman, V. B.; Jiang, H.; Li, X.; Guo, L.; Uffman, E. W. J. Am. Chem. Soc. 2006, 128, 6536. f) "Kinetic

Resolution of Propargylic Alcohols Catalyzed by Benzotetramisole," Birman, V. B.; Guo, L. Org. Lett. 2006, 8, 4859. g) "Nonaromatic Amidine Derivatives as Acylation Catalysts," Birman, V. B.; Li, X.; Han, Z. Org. Lett. 2007, 9, 37. h) "Enantioselective synthesis of lobeline via nonenzymatic desymmetrization," Birman, V. B.; Jiang, H.; Li, X. Org. Lett., 2007, 9, 3237.
a) "Development of chiral nucleophilic pyridine catalysts: Applications in Asymmetric quaternary carbon synthesis," Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368. b) "Enantioselective TADMAP-catalyzed carboxyl migration reactions for the synthesis of stereogenic quaternary carbon," Shaw, S. A.; Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925.

Shaw, S. A. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 2005.

Chapter 2

Acetyl and Alkoxycarbonyl Rearrangement Reactions: The Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles.

I. Introduction.

The development of new catalytic methods for the synthesis of enantioenriched chiral centers has been an area of significant research effort and progress in organic synthesis. ${ }^{1}$ Many methods are now available for asymmetric reductions and oxidations to generate enantioenriched tertiary centers, and the development of these methods has even led to a Nobel Prize in Chemistry for William S. Knowles, Ryoji Noyori, and K. Barry Sharpless in 2001. ${ }^{2}$ In contrast, the catalytic asymmetric synthesis of all-carbon quaternary centers remains a difficult challenge. ${ }^{3}$ Carbon-carbon bond formation to generate quaternary centers is disfavored due to the steric repulsion between the carbons of the reaction center. In addition, the stereodifferentiation of the three carbon substituents necessary to form an enantioenriched quaternary carbon is challenging.

Many alkaloid natural products contain a quaternary carbon at $C-3$ of an oxindole or indole as exemplified by Malagashanine, ${ }^{4}$ Horsfiline ${ }^{5}$ and Diazonamide A^{6} (Figure 2-1). The interesting structural motifs and promising biological activities of these alkaloids have inspired the development of asymmetric routes to such quaternary-carbon bearing oxindoles and indoles. In a catalytic manifold, only a single phase-transfer catalyzed alkynylation of an oxindole ${ }^{7}$ and few metal-catalyzed syntheses ${ }^{8,9,10,11}$ of 3,3 -disubstituted oxindoles are known. The chiral-
nucleophile-catalyzed rearrangement of O-acetyl or O-carboxyl oxindole-derived enolates to C acetyl or C-carboxyl oxindoles would be a powerful route to these quaternary carbon containing alkaloids in an enantioenriched fashion (equation 1).

Figure 2-1. Quaternary-Carbon Containing Alkaloid Natural Products.

Carboxyl and Acetyl Rearrangement Background.

Nucleophile-catalyzed rearrangements of O-acetylated or O-carboxylated enolates to 1,3dicarbonyl compounds originated in the studies by Steglich and Höfle into the mechanism of the Dakin-West reaction in 1968. ${ }^{12}$ The Dakin-West reaction, ${ }^{13}$ the conversion of an amino acid (e2A) to an amino ketone (e2B) (equation 2), is proposed to proceed via azlactones such as 1A. While testing the viability of acylating 1A, Steglich and Höfle found that the proposed intermediate azlactone 1A is kinetically acylated to afford O-acetylated $\left(R^{3}=M e\right)$ and O-carboxylated $\left(R^{3}=\right.$ OMe) azlactones 1B. Subsequent heating of O-acylated azlactones 1B in pyridine yields the thermodynamically more stable C-acylated products 1C (Scheme 2-1). Under the thermodynamic Dakin-West reaction conditions, these C-acylated products are then ring-opened by the carboxylate anion and hydrolyzed to the amino ketones e2B. In the absence of carboxylate anions, these quaternary-carbon containing C-acylated azlactones 1C do not ring
open and can be isolated in good yields. The more nucleophilic dimethylaminopyridine (DMAP) or 4-pyrrolodinopyridine (PPY) catalyze the same rearrangement without heating, and complete conversion occurs within minutes at rt to provide C-acylated azlactones $1 \mathbf{C}$ in good yields. ${ }^{14}$ An unexpected dependence on the electronic nature of R^{1} was observed in the regioselectivity of the rearrangement where electron-withdrawing substituents favor the formation of C - 2 functionalized azlactone 1D relative to the $C-4$ acylated azlactones 1C afforded when R^{1} is electron donating.

Scheme 2-1. Pyridine Catalyzed Rearrangements of O-Acylated Azlactones.

The mechanism for this rearrangement is proposed based on the propensity of pyridine derivatives to act as nucleophiles (Scheme 2-2). Hence, the nucleophilic addition of the pyridine derivative into the carbonyl of 1B followed by loss of the highly stabilized, aromatic azlactone anion generates ion pair 2 A in analogy to the known acylated pyridinium chlorides. ${ }^{12 \mathrm{~b}, 15}$ The multidentate azlactone enolate then inserts into the acylated pyridinium salt via either the oxygen anion or the carbon anions, $C-4$ or $C-2$, acting as the nucleophile to give 1B, 1C or 1D, respectively. Support for this mechanism is derived from the isolation a small amount of dihydropyridine 2B formed upon addition of the azlactone enolate into the 4-position of the acylated pyridinium salt when unsubstituted pyridine was the nucleophile. ${ }^{12 b}$

Scheme 2-2. Mechanism of Steglich Rearrangement.

As described in Chapter 1, Fu described the first enantioselective variant of the O - to C carboxyl rearrangement with azlactones using planar chiral DMAP catalyst 3C in 1998. ${ }^{16}$ Benzyl enol carbonates 3A rearrange to C-carboxylated azlactones 3B in high yields and enantioselectivities with a variety of α-unbranched alkyl substituents (R^{2}, Scheme 2-3). Further mechanistic insights into this variation of the Steglich rearrangement are revealed in the supporting studies. The reaction is zero-order in substrate and first-order in catalyst, and the authors concluded that the resting state of the catalyst is the ion pair (2A) proposed by Steglich. In addition, scrambling of the carboxyl migrating groups in both starting material and products occurs when a mixture of two different enol carbonates is used, and the isolation of scrambled starting materials led the authors to propose a reversible first step in the Steglich mechanism. The $\mathrm{C}-\mathrm{C}$ bond forming step is proposed to be irreversible due to the high enantiomeric excesses of the final products.

Scheme 2-3. Rearrangement of Azlactone-Derived Enol Carbonates with Planar Chiral 3C.

Scheme 2-4. Nucleophile Catalyzed Benzofuranone Enol Carbonate Rearrangement.

4E

In 1986, Black reported the extension of this type of oxygen-to-carbon alkoxycarbonyl rearrangement reaction to benzofuranone systems. ${ }^{17}$ Similar to the azlactone series, under kinetic acylation conditions the benzofuranones 4A are selectively O-carboxylated. Treatment of the O-carboxylated benzofuranone 4 B with DMAP ($\sim 10 \mathrm{~mol} \%$) causes rapid conversion to the C carboxylated benzofuranone 4C within 2 minutes at rt (Scheme 2-4). A deep blue/purple color is observed during the reaction that fades upon completion of the rearrangement. Interestingly, the highly colored substance forms an air-sensitive crystalline precipitate in hexanes. Although this precipitate could not be characterized, upon dissolution in chloroform the color fades and the only products are the C-carboxylated benzofuranone $4 C$ and DMAP suggesting that the precipitate is
an ion pair analogous to the speculated intermediate 2A. The precipitate forms in 94% yield based on the molecular weight of the speculated ion pair, indicating that the resting state of the catalyst is the ion pair in this system as well. During later studies by Fu using a planar-chiral pyridine 4D described in Chapter 1, a similar purple precipitate was isolated, and this time the precipitate could be analyzed by low-resolution X-ray crystallography to assign the structure of the long hypothesized ion pair intermediate (4E). ${ }^{18}$

A few scattered reports of the desired oxindole-derived enol carbonate rearrangements have also appeared in the literature. In an initial example by Marchesini, the enol carbonate 5A, which is formed under kinetic carboxylation conditions, rearranged to the quaternary-carbon containing oxindole 5B when treated with $25 \mathrm{~mol} \%$ of DMAP in 2 h (Scheme 2-5). ${ }^{19}$ Cohen later reported a related synthesis of C, N-dicarboxylated oxindole 5D. ${ }^{20}$ Treating 3-methyloxindole (5C) with 2.1 equivalents of benzylchloroformate and 2 equivalents of DMAP afforded $C, N-$ dicarboxylated oxindole 5D in 43\% yield. This reaction presumably proceeds via an enol carbonate similar to 5A which then rearranges to C-carboxylated oxindole 5D.

Scheme 2-5. Racemic Rearrangement of Oxindole-Derived Enol Carbonates.

5C

BnOCOCl (2.2 eq) DMAP (2 eq) THF, rt, 10h

The rearrangement of oxindole-derived enol carbonates is much slower compared to the corresponding azlactone- and benzofuranone-derived enol carbonates. Whereas in the catalyzed rearrangement of azlactone- and benzofuranone-derived enol carbonates the resting state of the catalyst is the ion pair, the resting state of the nucleophile-catalyzed rearrangement of oxindolederived enol carbonates is the free catalyst. This difference is explained by the difference in the stability of the corresponding ion pairs. The more acidic ester-stabilized aromatic enolates (benzofuranone $\mathrm{pK}_{\mathrm{a}}=13.5$ in DMSO$)^{21 \mathrm{a}}$ are less basic than the DMAP catalyst (DMAP: $\mathrm{pK}_{\mathrm{a}}=$ 10.1 in $\mathrm{MeOH}, \mathrm{pK}_{\mathrm{a}}=17.3$ in MeNO_{2},,${ }^{21 \mathrm{~b}, \mathrm{c}}$ so the equilibrium of the starting materials and the intermediate lies towards the ion pair (2A). In contrast, the increased pK_{a} of the amide stabilized enolate (oxindole $\mathrm{pK}_{\mathrm{a}}=18.5$ in DMSO$)^{21 \mathrm{a}}$ results in a shift of this equilibrium away from the ion pair. Although the ion pair in the oxindole-derived substrate is more reactive due to the increased basicity of the enolate, the decreased concentration decreases the overall rate of rearrangement.

This reduced reactivity is evident when chiral catalysts are applied to the rearrangement of oxindole-derived enol carbonates. The planar chiral pyrrolidinopyridine 4D catalyzes the rearrangement of enol carbonates 6A with high enantioselectivity and yield. ${ }^{18}$ However, the rearrangements need 2 days in warm dichloromethane with $5-10$ mol\% catalyst loading even with the enhanced nucleophilicity of the pyrrolidino substituted pyridine 4D. In addition, to obtain the high stereoselectivity both the sterically bulky 2,2,2-trichloro-1,1-dimethylethyl enol carbonate and pentaphenyl ferrocene-derived catalyst are necessary. Unlike two of Fu's catalysts (3C and the dimethylaminopyridine derivative of 4D), the key catalyst 4D is not yet commercially available. Furthermore, the published synthesis requires 7 steps and resolution of the product racemate by HPLC on chiral support. ${ }^{22}$

Scheme 2-6. Planar-Chiral Pyridine Catalyzed Rearrangement of Oxindole-Derived Substrates.

Table 2-6. Planar-Chiral Pyridine Catalyzed Rearrangement of Oxindole-Derived Substrates.

Entry	Substrate	R^{1}	R^{2}	Catalyst loading	ee (\%)	Yield (\%)
1	6Aa	Ph	Me	$5 \mathrm{~mol} \%$	99	91
2	6Ab	2-thienyl	Me	$5 \mathrm{~mol} \%$	95	81
3	6Ac	Bn	Me	$10 \mathrm{~mol} \%$	94	82
4	6Ad	Me	Me	$10 \mathrm{~mol} \%$	93	72
5	6Ae	Ph	Bn	$5 \mathrm{~mol} \%$	98	88

The decreased reactivity of the oxindole-derived enol carbonates has also been problematic in work done in the Vedejs group by Shaw. ${ }^{23}$ With the less reactive dimethylaminopyridine derived TADMAP (2,2,2-triphenyl-1-acetoxyethyl DMAP, 7C), extraordinarily long reaction times are required for the rearrangement of N, O-dicarboxylated oxindoles 7Aa and 7Ab producing C-carboxylated 7Ba and 7Bb with modest enantioselectivity (Scheme 2-7, Table 2-7). Changing the protecting group on nitrogen to the strongly electron donating para-methoxyphenyl (7Ac) similarly results in a slow reaction and modest enantioselectivity. The reaction times are shorter with allyl (7Ad) and benzyl (7Ae) protected oxindole substrates, but the stereoselectivities are low. The less bulky methyl protected oxindole substrate used by Fu (6Ad) allows for rearrangement within 24 hours with $10 \mathrm{~mol} \%$ catalyst loading, but gives the product in only 39\% ee. Introducing an electron-withdrawing nitro group in the oxindole (7Af) increases the rate of rearrangement, allowing the reaction to occur at lower temperature at a synthetically useful rate, further increasing the selectivity. However, this structural change limits the scope of the reaction and therefore is not a general solution to the reactivity problem. Modestly improved reactivity was also found with the 3-phenyl substituted oxindole 8A, resulting from the additional enolate stabilization. Thus, TADMAP (7C) catalysis gives full conversion to the rearranged product $8 \mathbf{B}$ within 3 days at room temperature (Scheme 28, compare to Table 2-7, entry 2). The reaction proceeds without a substantial decrease in enantioselectivity at $40{ }^{\circ} \mathrm{C}$ allowing for complete rearrangement within 18 h to give 8 B with 86\% ee.

Scheme 2-7. Rearrangement of 3-Alkyl Substituted Oxindole Substrates with TADMAP (7C).

Table 2-7. Rearrangement of 3-Alkyl Substituted Oxindole Substrates with TADMAP (7C).

Entry	Substrate	R^{1}	R^{2}	X	Time	ee (\%)
1	7 Aa	$\mathrm{C}(\mathrm{Me})_{2} \mathrm{CCl}_{3}$	$\mathrm{CO}_{2} \mathrm{C}(\mathrm{Me})_{2} \mathrm{CCl}_{3}$	H	35 d	57
2	7 Ab	Ph	$\mathrm{CO}_{2} \mathrm{Ph}$	H	35 d	23
3	7 Ac	Ph	PMP	H	28 d	48
4	7 Ad	Ph	Allyl	H	8 d	37
5	6Ad	Ph	Bn	H	8 d	7
6	7 Ae	$\mathrm{C}(\mathrm{Me})_{2} \mathrm{CCl}_{3}$	Me	H	1 d	39
7	7 Af	$\mathrm{C}(\mathrm{Me})_{2} \mathrm{CCl}_{3}$	Me	NO_{2}	5 h	$65\left(75 @ 0^{\circ} \mathrm{C}\right)$

Scheme 2-8. TADMAP Catalyzed Rearrangements of C-Phenyl Substituted Oxindole Substrate.

As shown by these examples, the chiral nucleophile-catalyzed rearrangement of the less reactive oxindole substrates requires extended reaction times and occurs with modest enantioselectivity in the 3-methyl series. Therefore, a general synthesis of the 3,3-disubstituted oxindoles in reasonable time frames using a readily available chiral nucleophilic catalyst still remains a problem to be solved. The above results also show that rearrangement rates are problematic. Accordingly, a more reactive oxindole derived substrate was sought before further screening of conditions and catalysts.

II. Results

Search for a more reactive oxindole-derived enol carbonate.

In order to increase the rate of rearrangement of the oxindole-derived substrates, the previously unstudied enol acetates were targeted in hopes that the higher carbonyl electrophilicity would result in higher reactivity. Ideally, the rearrangement of the oxindole-derived substrates would be carried out without protecting the oxindole nitrogen. Therefore, a route to mono-Oacetyl oxindoles was needed. Regioselective functionalization of oxindoles is a challenging task due to the similar pK_{a} values of the nitrogen and carbon protons determined by Bordwell (Figure $2-2) .{ }^{21}$ The identical pK_{a} values of $\mathbf{f} 2 \mathrm{~B}$ and $\mathbf{f} 2 \mathrm{C}$ oxindoles indicate that the ionization of oxindoles in organic solvents such as DMSO occurs readily at both nitrogen and carbon, suggesting potentially similar reactivity of nitrogen, oxygen, and carbon in the parent oxindole $\mathbf{f} \mathbf{2 A}$.

Figure 2-2. The pK_{a} of oxindoles in DMSO.

f2A
$\mathrm{pK}_{\mathrm{a}}=18.2$

f2B
$\mathrm{pK}_{\mathrm{a}}=18.5$

f2C
$\mathrm{pK}_{\mathrm{a}}=18.5$

A survey of the literature revealed a limited number of methods for the generation of the desired oxindole-derived enol esters. Yamada reported in 2002 the selective pivaloylation of oxindole 5C using PivCl to yield enol ester e3A (equation 3). ${ }^{24}$ On exposure to triethylamine, acetyl chloride decomposes, so none of the desired acetylated oxindole was obtained. Therefore, the more stable acetic anhydride was used to gain access to the acetylated products. Unfortunately, the lower reactivity of the acetic anhydride resulted in unselective nitrogen, oxygen, and carbon acetylation (Table 2-9, entry 1). A small amount of N, O-diacetylated oxindole

9B was isolated after chromotagraphy, but none of the desired monoacetylated 9A was observed in the crude NMR spectrum. It has been shown that acetic anhydride disproportionates in the presence of magnesium bromide to magnesium acetate and acetyl bromide, ${ }^{25}$ but when magnesium bromide was added to the acetylation of 3-methyloxindole 5C with acetic anhydride the amount of carbon and nitrogen acetylated products increased at the expense of oxygen acetylation (Table 2-9, entry 2). Since the reaction with acetic anhydride was not selective for mono-O-acetylation, alternative reaction conditions were examined. If an acid chloride is necessary for selective O-acylation of oxindoles as suggested by the example by Yamada, then the selective O-acetylation requires acetyl chloride. Inoue has reported the selective O-acetylation of the highly functionalized oxindole e4A using 30 equivalents of acetyl chloride in pyridine (equation 4), but the acetylation of 5C under these conditions yielded only starting Scheme 2-9. Acetylation of 3-Methyloxindole (5C).

Table 2-9. Acetylation of 3-Methyloxindole (5C).

Entry	Acyl donor	Base	Temp.	Time	Product Ratio ${ }^{\text {a }}$				
					5 C	9A	9B	9 C	9D
1	$\mathrm{Ac}_{2} \mathrm{O}$	$\mathrm{Et}_{3} \mathrm{~N}$	rt	3 h	15	--	$\begin{gathered} 43 \\ \left(19 \%^{\mathrm{b}}\right) \end{gathered}$	19	22
2	$\mathrm{Ac}_{2} \mathrm{O}$, MgBr_{2}	$\mathrm{Et}_{3} \mathrm{~N}$	$0^{\circ} \mathrm{C}$	2 h	20	--	(27	53
3	$\mathrm{AcCl}^{\text {c }}$	pyridine	$-10^{\circ} \mathrm{C}$	20 min	>95	--	--	--	--
4	AcCl	2,6-lutidine	$0^{\circ} \mathrm{C}$	24 h	--	$\begin{gathered} >95 \\ \left(81 \%^{b}\right) \end{gathered}$	--	--	--

[^0]material (Table 2-9, entry 3). ${ }^{26}$ Since pyridine is known to form an ion pair with acetyl chloride that is less reactive than the starting acetyl chloride, a hindered weak base which could not form this ion pair should allow for higher reactivity. Indeed using only 2 equivalents of acetyl chloride and 2 equivalents of 2,6-lutidine afforded O-acetylated oxindole 9A as the only product observable by NMR spectroscopy, and 9A could be isolated in 81% yield. The selective O acetylation under these conditions is likely due to oxindole being acetylated prior to deprotonation since neutral amides are known to be nucleophilic at oxygen. Thus, the key to the selectivity in the acetylation is to use highly reactive acyl donors with hindered weak bases to remove the acid generated in the reaction.

The isolated enol esters e3A and 9A were subjected to DMAP catalysis. Upon treatment of e3A with DMAP, no reaction occurred even with $50 \mathrm{~mol} \%$ catalyst, presumably due to the steric hindrance of the pivaloyl group. DMAP did catalyze the rearrangement of the less hindered enol acetate 9A (Table 2-10). After 30 minutes, partial conversion to the desired C-acetylated 10A was observed along with significant amounts of N, C-diacetylated 9D and deacetylated 5C. The formation of these latter two products suggests that the intermediate ion pair is capable of dissociating and scrambling as seen with azlactone-derived enol carbonates. Only trace amounts of the starting material remained after 2 h , but oxindoles $10 \mathrm{~A}, 9 \mathrm{C}$, and 9 D were formed unselectively. Doubling the reaction time did not significantly affect the ratio of the products formed, but after extended time periods (24 h) the amount of C-acetylated product 9A decreased and N-acetylated product 9C became the major product. This indicates that the reaction may be
reversible, but the reverse reaction does not appear to occur in the time frame of the rearrangement. Unfortunately, the scrambling of the acetyl group between molecules of oxindoles under DMAP catalysis precludes the use of nitrogen-unprotected oxindoles.

e3A
Scheme 2-10. DMAP Catalyzed Rearrangement of Unprotected Enol Acetate 9A.

Table 2-10. DMAP Catalyzed Rearrangement of Unprotected Enol Acetate 9A.

		Product Ratio $^{\text {a }}$				
Entry	Time	$\mathbf{9 A}$	$\mathbf{1 0 A}$	$\mathbf{9 C}$	9D	5C
1	30 min	36	27	1	17	19
2	1 h	13	31	2	26	29
3	2 h	2	34	3	30	31
4	4.5 h	--	32	3	32	33
5	24 h	--	9	40	23	27

${ }^{\text {a }}$ Percentages by ${ }^{1} \mathrm{H}$ NMR spectroscopy
In previous work by Scott Shaw, ${ }^{23}$ it was found that the protecting group on the oxindole nitrogen could greatly affect the rate of rearrangement, so methods were examined to find a general preparation of a variety of N-substituted derivatives of enol acetate 9A. Acetyl chloride and triethylamine did not react with the oxindole due to the decomposition of acetyl chloride by triethylamine as seen previously (Table 2-11, entry 1). With acetic anhydride as the acetyl donor,
a small amount of the desired product 9 B was formed but the major product was N-acetyl oxindole $9 \mathrm{C}^{21}$ that had lost the O -acetyl group (Table 2-11, entry 2). A more reactive nucleophile was then generated by deprotonating the nitrogen of indole 9A. A hindered base was necessary to prevent addition into the electrophilic acetyl group, so indole 9A was treated with NaHMDS at low temperature. When the resulting anion was quenched with acetyl chloride, the desired $\mathrm{N}, \mathrm{O}-$ diacetylated product was the major product but significant amounts of byproducts 5C, 9C, and 9D were also observed (Table 2-11, entry 3). Generating a more dissociated anion by changing the counterion from sodium to potassium, resulted in an increased selectivity of the reaction yielding N,O-diacetylated oxindole 9B in a 4:1 ratio to C, O-diacetylated oxindole 9D (Table 2-11, entry 4). ${ }^{27}$ When a less reactive electrophile such as acetic anhydride was used, the selectivity again decreased, so very reactive electrophiles are necessary (Table 2-11, entry 5). However this method was suitable for the synthesis of amide-, sulfonamide- and carbamate-protected oxindolederived enol acetates, and chloroformates in sufficient quantities for testing the rearrangement reactions (Scheme 2-12). Unfortunately, the less reactive alkyl halides were unselective in the alkylation of indole 9A, so an alternate route was necessary.

Scheme 2-11. Protection of 2-Acetoxyindole 9A.

Table 2-11. Protection of 2-acetoxyindole 9A.

				Product Ratio $^{\text {a }}$			
Entry	Acyl Donor	Base	Solvent, Temp	5C	9B	9C	9D
1	AcCl	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{DCM}, 0{ }^{\circ} \mathrm{C}$		no reaction		
2	$\mathrm{Ac}_{2} \mathrm{O}$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{DCM}, 0{ }^{\circ} \mathrm{C}$	-	25	--	75
3	AcCl°	NaHMDS	$\mathrm{THF},-78{ }^{\circ} \mathrm{C}$	13	47	13	26
4	AcCl°	KHMDS	$\mathrm{THF},-78{ }^{\circ} \mathrm{C}$	--	81	--	19
5	$\mathrm{Ac}_{2} \mathrm{O}$	KHMDS	$\mathrm{THF},-78{ }^{\circ} \mathrm{C}$	--	40	20	40
Percentages by NMR spectroscopy							

Scheme 2-12. Synthesis of Differentially Protected Oxindole-Derived Enol Acetates.

a: PG = Ac (31\%)
b: $\mathrm{PG}=\mathrm{CO}_{2} \mathrm{Me}$ (38\%)
g: PG = o-Ns (28\%)
c: PG = CBz (36\%)
h: $\mathrm{PG}=\mathrm{PhCH}_{2} \mathrm{CO}$ (27\%)
d: PG = BOC (62\%)
i: $\mathrm{PG}=\mathrm{Ph}_{2} \mathrm{CHCO}(39 \%)$
e: $\mathrm{PG}=\mathrm{Ts}(42 \%)$
j: PG = i-PrCO (47\%)
k: PG = Piv (22\%)
f: $\mathrm{PG}=p-\mathrm{Ns}$ (32\%)
$\mathrm{I}: \mathrm{PG}=\mathrm{Bz}(55 \%)$

The known N-alkyl oxindoles $\mathbf{e} 6 \mathrm{~A}^{28}$ and $\mathbf{e} 6 \mathbf{B}^{29}$ could be selectively O-acetylated under the same conditions as the free $\mathrm{N}-\mathrm{H}$ oxindoles, albeit with lower reactivity. Although the conversions were low even after 2 days, only O-acetylated products and recovered starting materials were observed in the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The desired enol acetates 9Bm and 9Bn could be readily isolated from the recovered starting material.

With a variety of protected enol acetates in hand, their reactivity in the DMAP-catalyzed rearrangement was measured. Using 3 mol\% DMAP, enol acetates with alkyl- or carbamateprotected nitrogen rearranged slowly (incomplete conversions after 5 hours, Table 2-13, entries 1-5). In the carbamate series, the rate of rearrangement depended on the bulk of the protecting group. The smaller methyl carbamate-protected oxindole 9Bb gave 78\% conversion to 9Db after

5 hours while only 29% conversion was seen over the same time with the more hindered t butoxycarbonyl (BOC)-protected oxindole 9Dd.

Moving away from alkyl and carbamate protecting groups that had been studied previously by Shaw, the sulfonamide- and amide-protected oxindoles were examined. Sulfonamide-protected oxindole 9Be rearranged completely within 50 min under the same reaction conditions (Table 2-13, entry 6). The even more electron-deficient nitro substituted sulfonamides 9Bf and 9 Bg were still more reactive yielding rearranged oxindoles 9Df and 9 Dg within 20 min (Table 2-13, entries 7-8). DMAP-catalyzed rearrangement of acetyl protected oxindole 9Ba was also very fast giving oxindole 9Da within 20 min . This increased reactivity of the amide-protected oxindoles was seen even with branched amides 9Bh-j. The reactivity dropped off slightly with pivaloyl-protected oxindole 9Bk although the rate was significantly higher than in the case of carbamates $9 \mathbf{B b}-\mathbf{d}$. On the other hand, the benzoyl protected oxindole 9BI was less reactive than the other N-acyl analogues.

Scheme 2-13. Effect of Protecting Group on Rate of DMAP Catalyzed Rearrangement.

Table 2-13. Effect of Protecting Group on Rate of DMAP Catalyzed Rearrangement.

Entry	PG	Time	Result $^{\text {a }}$
1	$\mathrm{Allyl}(\mathbf{n})$	5 h	73%
2	$\mathrm{Bn}(\mathbf{m})$	5 h	89%
3	$\mathrm{CO}_{2} \mathrm{Me}(\mathbf{b})$	5 h	78%
4	$\mathrm{CBz}(\mathbf{c})$	5 h	68%
5	$\mathrm{Boc}(\mathbf{d})$	5 h	29%
6	$\mathrm{Ts}(\mathbf{e})$	50 min	$>95 \%$
7	$p-\mathrm{NO}_{2} \mathrm{PhSO}_{2}(\mathbf{f})$	20 min	$>95 \%$
8	$o-\mathrm{NO}_{2} \mathrm{PhSO}_{2}(\mathbf{g})$	20 min	$>95 \%$
9	$\mathrm{Ac}(\mathbf{a})^{20 \mathrm{~min}}$	$>95 \%$	
10	$\mathrm{PhCH}_{2} \mathrm{CO}(\mathbf{h})$	20 min	$>95 \%$
11	$\mathrm{Ph}_{2} \mathrm{CHCO}(\mathbf{(i)}$	20 min	$>95 \%$
12	$i-\mathrm{PrCO}(\mathbf{j})$	20 min	$>95 \%$
13	$\mathrm{Piv}(\mathbf{k})$	20 min	84%
14	$\mathrm{Bz}(\mathbf{l})$	20 min	57%

${ }^{\text {a }}$ Percent conversion by NMR spectroscopy
The increased reactivity of the amide- and sulfonamide-protected oxindoles is due to the stabilization of the oxindole enolate by electron withdrawal. Although the carbamate protecting group (9Ab-d) is also capable of electron withdrawal, the amide resonance contribution would be reduced due to an opposing effect by delocalization involving the carbonyl group and the unshared electrons of the alkoxy substituent. The benzoyl protected oxindole 9BI also experiences opposing effects due to electron withdrawal and delocalization, but to a lesser extent in view of the smaller difference in rates of rearrangement ($>50 \%$ conversion: $9 \mathrm{Bb}-5 \mathrm{~h}, 9 \mathrm{BI}-20$ $\min)$. The difference in the conjugation of the carbonyl group is evident in the $I R$ stretching frequencies of 9B. In acetyl-protected 9Ba the stretch for the amide carbonyl is 1698, but the $\mathrm{C}=\mathrm{O}$ stretching frequency of carbamate $\mathbf{9 B b}$ is significantly higher (1737). The amide carbonyl
stretching frequency of benzoyl-protected $9 \mathbf{~ B I}$ of 1684 lies between the typical stretch for a benzoyl ketone and a benzoyl amide.

Chiral-nucleophile catalyzed rearrangements of oxindole-derived enol acetates.
With highly reactive oxindole-derived enol acetates in hand, chiral catalysts were screened for their ability to induce the rearrangement enantioselectively. With TADMAP (7C), the enantioselectivity of the rearrangment was poor (Table 2-14, entry 1). The readily available BocVADMAP (14A) ${ }^{30}$ was also poorly selective. However promising selectivities and increased reactivities were seen with benzoyl protected amino alcohol-derived catalysts BzVADMAP (14B) ${ }^{30}$ and AcOLeDMAP (14C). ${ }^{30}$ Unfortunately, lowering the reaction temperature to $0^{\circ} \mathrm{C}$ only slightly improved the enantioselectivity (Table 2-14, entry 5).

Scheme 2-14. Enantioselective Rearrangement of Enol Acetate 9Ba.

Table 2-14. Enantioselective Rearrangement of Enol Acetate 9Ba.

Entry	catalyst (10 mol\%)	Solvent	Temp	Time	Yield (\%)	ee (\%)
1	TADMAP (7C)	DCM	rt	3 h	nd^{a}	19
2	14A	THF	rt	8 h	97	27
3	(S, S)-AcOVaDMAP (14B)	THF	rt	4 h	93	55
4	(S, S)-AcOLeDMAP (14C)	THF	rt	3.25 h	94	61
5	$"$	THF	$0^{\circ} \mathrm{C}$	4 h	77	68
Not determined						

Since the diacetylated oxindole 9Ba was highly reactive yet only moderately suited for enantioselective acyl migration, other protecting groups were tested with the more selective chiral
catalyst AcOLeDMAP (Table 2-15). The enol acetates with sulfonamide protecting groups (9Beg) were also highly reactive, but the enantioselectivies were moderate (entries 2-4). The branched isobutyroyl protected oxindole 9Bj showed an improved enantioselectivity (77\% ee) and better reactivity relative to acetyl-protected oxindole 9Ba (entry 5). Increasing a-substitution of the protecting group (pivaloyl-protected oxindole 9Bk) did not enhance the enantioselectivity, but it significantly reduced the reactivity (entry 6). Therefore, amides with steric bulk further away from the reaction center were investigated. With phenylacetyl-protected oxindole 9Bh similar enantioselectivities and reaction rates to isobutyroyl protected oxindole $9 \mathbf{B j}$ were seen (entry 7). Fortunately, the addition of a second phenyl on the acetyl protecting group (9Bi) increased the enantioselectivity to 86% ee without decreasing the reaction rate so this protecting group was used in further optimizations (entry 8).

Scheme 2-15. AcOLeDMAP-Catalyzed Rearrangement of Differentially Protected Enol Acetates.

Table 2-15. AcOLeDMAP-Catalyzed Rearrangement of Differentially Protected Enol Acetates.

Entry	PG	Time	Yield (\%)	ee (\%)
1	Ac (a)	3.5 h	94	61
2	Ts (e)	20 h	$n d^{\text {a }}$	46
3	$p-\mathrm{Ns}$ (f)	2 h	81	57
4	o-Ns (g)	2 h	83	58
5	$i-\operatorname{PrCO}(\mathrm{j})$	2 h	92	77
6	Piv (k)	24 h	67	77
7	$\mathrm{PhCH}_{2} \mathrm{CO}(\mathrm{h})$	2.5 h	96	75
8	$\mathrm{Ph}_{2} \mathrm{CHCO}(\mathrm{i})$	2.5 h	89	86

The effect of the N-acyl substituent steric bulk on the rate of reaction is worth noting. When the carbamate protected oxindoles were treated with DMAP, the more hindered BOCprotected substrate 9Bd rearranged at a much slower rate than methyl carbamate 9Bb (Table 213) suggesting that increased steric hindrance around the enol acetate reduced reactivity. Although reactivity differences between N -acyl substrates were not apparent using the DMAP
catalyst, with the more hindered, and therefore less reactive, chiral AcOLeDMAP these differences were noticeable. Based on the proposed mechanism of the nucleophile-catalyzed rearrangement an increase in steric bulk of the protecting group could increase the hindrance around the acetyl migrating group and thereby decrease the rate of formation of ion pair 16A (Scheme 2-16). On the other hand, once the ion pair forms, the rate of the unproductive recombination via C-O bonding (oxygen attack at the N-acyl pyridinium ion) would decrease as the steric bulk of the protecting group increases. The intermediate ion pair would then favor recombination with carbon acting as the nucleophile to give rearranged product 9D. With branched amide protecting groups, the latter effect appears to dominate over the steric hindrance of the enol acetate starting material 9B, but for the very bulky pivaloyl-protected 9Bk the initial attack of the catalyst is slowed, like with bulky carbamates.

Scheme 2-16. Mechanism of Nucleophile-Catalyzed Rearrangement.

The enantioselectivity of the rearrangement in different solvents was examined next (Table 2-17). The AcOLeDMAP-catalyzed rearrangement of 9Bi was less enantioselective in both very polar and very nonpolar solvents, but the solvent effect was small. The optimal enantioselectivity was obtained in moderately polar aprotic solvents such as tetrahydrofuran and ethyl acetate. Although the temperature effect was also modest, lowering the temperature to $0^{\circ} \mathrm{C}$ of the rearrangement in ethyl acetate gave the rearranged product 16Ai in 92 \%ee.

Scheme 2-17. Solvent Effect on Enantioselectivity of AcOLeDMAP-Catalyzed Rearrangement.

Table 2-17. Solvent Effect on Enantioselectivity of AcOLeDMAP-Catalyzed Rearrangement.

Entry	Solvent	Temp	ee (\%)
1	t-amyl alcohol	rt	62
2	toluene	rt	61
3	DMF	rt	77
4	DCM	rt	79
5	MeCN	rt	80
6	Et 2	rt	81
7	Acetone	rt	86
8	THF	rt	89
9	EtOAc	rt	88
10	EtOAc	$0^{\circ} \mathrm{C}$	92

Since a highly enantioselective rearrangement of enol acetate 9 Bi was at hand, additional 3 -substituted oxindole substrates were needed to explore the scope of the rearrangement. The formation of enol acetates 18 C and 18D, from oxindoles 18 A and $18 \mathrm{~B},{ }^{31}$ proceeded as expected, but the protection of these enol acetates was difficult. The deprotonated indole can either add to the acid chloride or deprotonate the acidic proton of the hindered $\mathrm{Ph}_{2} \mathrm{CHCOCl}$ generating the relatively stable diphenylketene. The latter possibility is implied as little, if any, of the desired product was formed using the conditions optimized for acetyl protection. Alternate diphenylacetyl protections of the enol acetate indole 9A by heating with diphenylacetyl chloride and either triethylamine, or camphorsulfonic acid, gave none of the desired product, so a new route was needed. In addition, while the unprotected enol acetates 9A, 18C, and 18D could be isolated, they were unstable and decomposed in the $-20^{\circ} \mathrm{C}$ freezer within two weeks.

Scheme 2-18. Attempted Synthesis of Different 3-Alkyl Substituted Oxindole Substrates.

The desired enol acetates could be synthesized by switching the order of functionalization of the oxindoles. The nitrogen of oxindoles can protected by heating in an acid chloride or anhydride in the absence of base. ${ }^{32}$ Thus oxindole 5C was cleanly N-protected by heating a neat mixture of 5 C and $\mathrm{Ph}_{2} \mathrm{CHCOCl}$ for several hours (Scheme 2-19). The selective acetylation of oxygen was then attempted. Deprotonation of oxindole 19A followed by quenching with acetic anhydride afforded C-acetylated 9Di as the predominant product (Table 2-19, entry 1). However switching to the more reactive acetyl chloride reversed the selectivity, giving O acetylated 9 Bi as the predominant product (entry 2). This selectivity was again reversed when the solvent was changed from DMF to the less polar THF indicating that the dissociated anion favored selective O-acetylation (entry 3). In a separate attempt to synthesize the O-acetylated oxindoles, mildly basic conditions were screened and a similar trend with the acetyl donor was observed (Table 2-19, entries 4-6). Hence, with acetic anhydride the mixtures of O-acetylated 9Bi and C-acetylated 9Di favored the latter (entry 4). On the other hand, when the reaction was conducted with the more electrophilic acetyl chloride, O -acetylated oxindole 9 Bi was the major product and could be isolated in 80% yield (Table 2-19, entry 5). In contrast to the strongly basic conditions, changing the solvent to the more polar THF from $\mathrm{Et}_{2} \mathrm{O}$, when using triethylamine as the base, greatly diminished this selectivity.

Scheme 2-19. Optimization of the Synthesis of N-Diphenylacetyl Oxindole Enol Acetates.

Table 2-19. Optimization of the Synthesis of N-Diphenylacetyl Oxindole Enol Acetates.

Entry	Conditions	Product Ratios ${ }^{\text {a }}$		
		19A	9Bi	9Di
1	$\mathrm{NaH} ; \mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMF}$	4	1	15
2	$\mathrm{NaH} ; \mathrm{AcCl}, \mathrm{DMF}$	1	8	1
3	NaH ; AcCl, THF	1	1	8
4	$\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}$	4	1	2
5	$\mathrm{AcCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}$	--	$19^{\text {b }}$	1
6	$\mathrm{AcCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{THF}$	1	3	1

${ }^{2}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy ${ }^{\mathrm{b}} 80 \%$ isolated yield
Due to the higher selectivity and ease of conducting the reaction using the mildly basic triethylamine, these conditions were extended to a variety of 3 -substituted oxindole substrates. ${ }^{31}$ The desired enol acetates were readily synthesized (Scheme 2-20). In order to prevent desilylation of the protected alcohol in oxindole 20Bd by the stoichiometric HCl generated during the reaction, the protection of the nitrogen was carried out with diphenylacetic anhydride ${ }^{33}$ which gave a less reactive byproduct diphenylacetic acid. However the byproduct was sometimes difficult to remove so the acid chloride was used for the other substrates. An added benefit of the diphenylacetyl protecting group is the crystallinity of the oxindole products, which facilitated purification.

Scheme 2-20. Optimized Synthesis of N-Diphenylacetyl Protected Oxindole Enol Acetates.

Table 2-20. Optimized Synthesis of N-Diphenylacetyl Protected Oxindole Enol Acetates.

Entry	R	A	B
1	$\mathrm{Me}(\mathrm{a})$	85\%	80\%
2	Et (b)	84\%	75\%
3	$\mathrm{Bn}(\mathrm{c})$	83\%	70\%
4	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OTBDPS}(\mathbf{d})$	$72 \%{ }^{\text {a }}$	68\%
5	Allyl (e)	74\%	67\%
6	$i \operatorname{Pr}(\mathrm{f})$	83\%	43\%
7	$\mathrm{Ph}(\mathrm{g})$	58\%	86\%

The new substrates were then subjected to AcOLeDMAP catalysis. The rearrangement occurred readily in substrates with unbranched alkyl chains giving products with $86-94 \%$ ee within 3 hours at $0{ }^{\circ} \mathrm{C}$ (Scheme 2-21). Isopropyl substituted oxindole 20Cf was significantly less reactive than the unbranched substrates, but the product was obtained in good yield and excellent enantioselectivity, albeit after 2 days at $0^{\circ} \mathrm{C}$. Notably, this is the first reported instance of the enantioselective rearrangement of any substrate containing a branched alkyl group at $C(3)$. The phenyl substituted oxindole $\mathbf{2 0 C g}$ also rearranged readily, although the product was obtained in moderate enantioselectivity. After the 3-phenyl substituted rearranged oxindole 21Ag was resubjected to the reaction conditions, the product was reisolated with 66% ee, indicating that the modest enantiomeric excess is not due to a reversible acetyl rearrangement. Although purification of these C-acetylated products was hampered by a retro-Claisen deacylation on silica gel, the use of recrystallized substrates and anhydrous conditions provided C-acetylated oxindoles 21A cleanly, allowing purification by quick filtration over a silica plug.

Scheme 2-21. Optimized AcOLeDMAP-Catalyzed Rearrangement of Enol Acetates.

Table 2-21. Optimized AcOLeDMAP-Catalyzed Rearrangement of Enol Acetates.

Entry	R^{4}	time	yield	ee
1	Me (a)	2 h	94%	92%
2	Et (b)	2.5 h	98%	91%
3	Bn (c)	3 h	96%	94%
4	$\left(\mathrm{CH}_{2}\right)_{2}$ OTBDPS (d)	3 h	94%	91%
5	Allyl (e)	2.5 h	98%	86%
6	$i-\operatorname{Pr}(\mathbf{f})$	41.5 h	82%	94%
7	$\operatorname{Ph}(\mathbf{g})$	2 h	98%	66%

For preparative application of the rearrangements, lower catalyst loading was evaluated. Thus, $1 \mathrm{~mol} \%$ of catalyst 14 C effected the rearrangement of 20 Ca on gram-scale within 24 h without loss of enantioselectivity. Additionally, the oxindole product 21Aa was upgraded to 99% ee by recrystallization after collecting a first crop enriched in the less soluble racemic contaminant. At this point the valine-derived catalyst 14B (AcOVaDMAP) also was tested for the rearrangement of 21Ca and proved to be highly enantioselective (88% yield, 90% ee). Because the enantioselectivity is nearly as high as with catalyst 14C, AcOVaDMAP may be more practical than AcOLeDMAP for large scale applications because the cost of the valinol starting material in the catalyst synthesis is significantly less than tert-leucinol (S-valinol: $1 \mathrm{~g} / \$ 35,5 \mathrm{~g} / \$ 122$; S-tertleucinol: $1 \mathrm{~g} / \$ 74,5 \mathrm{~g} / \$ 199)$. This cost differential is especially important for the "unnatural" enantiomers of the amino alcohols required to make the enantiomeric catalysts (R-valinol: $1 \mathrm{~mL} /$ \$40, $5 \mathrm{~mL} / \$ 139 ;$-tert-leucinol $100 \mathrm{mg} / \$ 107$, Aldrich pricing 4/20/08).

Scheme 2-22. Conditions for Large-Scale Applications.

Scheme 2-23. Synthesis of a Brominated 3,3-Disubstituted Oxindole.

A halogen was introduced to allow determination of absolute configuration by X-ray crystallographic techniques. Bromination of oxindole 21Aa gave bromoacetyl 23A, but this product did not crystallize and was unstable. Therefore 5 -bromo-3-methyloxindole (23B) $)^{34}$ was carried through the standard protection and acetylation steps to obtain enol acetate 23D. This
enol acetate was then treated with AcOLeDMAP and rearrangement occurred within 20 minutes to yield bromine-containing oxindole 23E in good enantioselectivity. Since oxindole 23E crystallized as a scalemic mixture, the enantiomers were separated by HPLC on chiral support, and crystals were grown of the major enantiomer of oxindole 23E. X-Ray crystallographic analysis of 23E revealed the stereocenter to be of (S) configuration by anomalous dispersion (Figure 2-3). Assuming that all the oxindole products have the same sense of optical rotation, the other oxindoles (21A) were assigned the (S)-configuration by analogy based on the similar sign $(-)$ of rotation observed for the major enantiomers in HPLC studies using the polarimeter detector.

Figure 2-3. X-Ray Crystal Structure of 3-Acetyl-5-Bromo-1-Diphenylacetyl-3-Methyloxindole 23E.

Using the known configurations of (S, S)-AcOLeDMAP (14C) and the 3-acetylated oxindole products 21A and 23E, a model for the stereoinduction was developed. The approach of the enolate of the ion pair intermediate to the N-acetyl pyridinium will occur from the less hindered face of the pyridinium, and the possible conformations of this approach are shown in Figure 2-4. Conformations shown in $\mathbf{f 4 A}, \mathbf{f 4 B}, \mathbf{f 4 D}$, and $\mathbf{f 4 E}$ all encounter steric repulsion between the substrate and the benzylic acetate of the catalyst so these will be disfavored. Both f4C and f4F minimize this steric replusion and therefore are the likely conformations leading to the products. The approach shown in f4C should be favored over f4F as it minimizes the interaction between the bulky diphenylacetyl protecting group and the catalyst. The higher enantioselectivies observed with larger, extended nitrogen protecting groups results from an
increased steric repulsion between the catalyst and the protecting group, and this trend lends support for this model.

Figure 2-4. Proposed Model of Stereoinduction for Acetyl Migration.
Conformations leading to (S)- C -acetylated oxindoles (major):

f4A

f4B

f4C

Conformations leading to (R)-C-acetylated oxindoles (minor):

f4D

f4E

f4F

The commerically-available planar-chiral catalysts $\mathbf{f 3} \mathrm{A}$ and $\mathbf{3 C}^{16}$ were also evaluated for the rearrangement of the enol acetates (Figure 2-5). Dimethylaminopyridine derivative f5A was completely unreactive in the case of enol acetate 20Ca in EtOAc at rt with only starting material apparent by TLC after 24 hours. Apparently, the reactivity of this catalyst for the rearrangement of oxindole-derived substrates is significantly less compared to the 3-substituted DMAP catalysts developed in our laboratories. This decrease in reactivity may be due to the substitution at the 2 position of the pyridine ring which has been shown to decrease the nucleophilicity of pyridine derivative or to excessive steric hindrance from the pentaphenylferrocenyl moiety. On the other
hand, pyrrolidinopyridine derivative 3C allowed complete rearrangement within 45 minutes (EtOAc, rt), but the product 21Aa was obtained in only 16% ee. This low enantioselectivity is not entirely surprising since each chiral catalyst has its own mode of stereoinduction and the optimized substrate and reaction conditions for one catalyst are not necessarily optimal for other catalysts. No attempt was made to optimize the migrating group or the conditions using 3C. Unfortunately, we did not have access to the catalyst used by Fu in the previous studies on oxindole enol carbonates (4D) to conduct a direct comparison.

Figure 2-5. Commercially Available Planar-Chiral Catalysts.

f5A

$3 C$

Along with the greatly enhanced rate of reaction, the amide protected oxindole provided the opportunity for a more easily deprotected product than the N-methyl oxindoles examined by Fu. The substrate 21Aa proved unreactive to acidic ${ }^{35}$ and photochemical conditions, ${ }^{36}$ so basic conditions were tested. Treatment of oxindole 21Aa with methoxide resulted in extensive decomposition after one hour. ${ }^{37}$ Even when the reaction was stopped after 1 minute, the major product was the deprotected and deacetylated oxindole 5C. Neutral isopropanol was not nucleophilic enough to add into the amide carbonyl under mildly acidic or basic conditions. In contrast, isopropylamine was too nucleophilic and reacted unselectively with both the C-acetyl and N-diphenylacetyl groups at room temperature. The secondary diisopropyl amine was too hindered and gave slow conversion to the deprotected product, but diethylamine selectively cleaved the diphenylacetyl group to give oxindole 10A in 75% yield under optimized conditions. Similarly, oxindole 21Ac could be deprotected to yield e7A in 65% yield (equation 7).

Scheme 2-24. Deprotection of Rearranged Oxindole Product.

Table 2-24. Deprotection of Rearranged Oxindole Product.

Entry	Nucleophile	Solvent	Temp	Time	Product Ratio ${ }^{\text {a }}$			
					21Aa	10A	20Ba	5C
1	$\mathrm{NaOH} / \mathrm{MeOH}$	THF	rt	1 h		decomp	sition	
2	$\mathrm{NaOH} / \mathrm{MeOH}$	THF	rt	1 min	--	--	1	9
3	i-PrOH, TsOH	toluene	reflux	20 h	9	--	1	--
4	$i-\mathrm{PrOH}, \mathrm{Et}_{3} \mathrm{~N}$	toluene	reflux	20 h	16	3	1	--
5	$i-\mathrm{PrNH} 2, \mathrm{Et}_{3} \mathrm{~N}$	toluene	rt	2 h	--	5	5	1
6	$i-\mathrm{Pr}_{2} \mathrm{NH}, \mathrm{Et}_{3} \mathrm{~N}$	toluene	reflux	20 h	9	1	--	--
7	$\mathrm{Et}_{2} \mathrm{NH}, \mathrm{Et}_{3} \mathrm{~N}$	toluene	reflux	20 h	--	16	1	3
8	$\mathrm{Et}_{2} \mathrm{NH}$	MeCN	$60^{\circ} \mathrm{C}$	8 h		$(75 \%)^{\text {b }}$		

In addition to providing access to all-carbon quaternary oxindoles, the 3-acetyloxindoles potentially provide a route to 3 -hydroxy-3-alkyl oxindole natural products such as the recently isolated arundaphine (f6A), ${ }^{38} 7$-hydroxymitragynine (f6B), ${ }^{39}$ and paratunamide D (f6C). ${ }^{40}$ BaeyerVilliger oxidation ${ }^{41}$ of C-acetyl oxindole 21Aa to C-acetoxyl oxindole e8A provides a route to enantiomerically enriched 3 -hydroxy- 3 -alkyloxindoles. The m-CPBA oxidation of the hindered ketone 21Aa proceeded selectively to form ester e8A, but the reaction was slow. Addition of triflic acid ${ }^{42}$ slowed the rate of oxidation, but under buffered conditions (bicarbonate added) ${ }^{43}$ the rate of oxidation was accelerated and upon refluxing the reaction, good conversion to ester e8A occurred in 8 h (equation 8). The product of this oxidation showed no loss in enantiomeric excess as expected from the stereospecific oxidation. Because the Bayer-Villiger oxidation is not
possible with a C-carboxylated oxindole, the C-acetylated oxindole expands the scope of enantiocontrolled quaternary carbon synthesis.

Figure 2-6. 3-Hydroxy-3-Alkyl Oxindole Derived Natural Products.

Arundaphine
f6A

7-Hydroxymitragynine
f6B

Paratunamide D f6C

Chiral-nucleophile catalyzed rearrangements of oxindole-derived enol carbonates.
In the previous work with chiral catalysts by Fu^{18} and Scott Shaw ${ }^{23}$ the migrating group has been alkoxycarbonyl, so it remained to be seen whether the enhancement of reactivity of the oxindole-derived enol acetates was due only to the amide protecting group or to a combination of the protecting group and the acetyl migrating group. Therefore several acetyl protected enol carbonates were synthesized from N -acetyl-3-methyloxindole (9C). ${ }^{21}$ Interestingly, the formation of enol carbonates is much more selective for the desired O-functionalization than is the formation of the analogous enol acetates with only O-carboxylation occurring in THF (compared to $3: 1$ ratio of O - to C-acetylated oxindoles, Table 2-19, entry 6). Solvoylsis of acetyl chloride in alcoholic solvents has been shown to occur via ionization to an acylium ion whereas chloroformates undergo solvolysis via an addition-elimination mechanism. ${ }^{44}$ The lower selectivity in the acetylation of oxindoles compared to the carboxylation may be due to the ionization of
acetyl chloride resulting in more C-acetylation. Once the enol carbonates were obtained, the DMAP-catalyzed rearrangements were tested. Under the same reaction conditions used for the acetyl rearrangements with DMAP, the alkoxycarbonyl rearrangements occurred readily to give rearranged products with a variety of substituted carboxylates (Table 2-25). The reaction slowed when the alkoxycarbonyl group was α-branched (25Ae), but significant reactivity was still observed. In light of the slow rearrangement of carbamate-protected 9Bb-d (Table 2-13), it is apparent that the enhanced reactivity of the amide-protected indolyl enol carbonates 9Ba,h-I and 25A as compared to N, O-di-alkoxycarbonyl oxindoles studied by Shaw ${ }^{23}$ is primarily due to the amide protecting group and not the migrating group.

Scheme 2-25. Synthesis and Rearrangement of N-Acetyl Oxindole-Derived Enol Carbonates.

Table 2-25. Synthesis and Rearrangement of N-Acetyl Oxindole-Derived Enol Carbonates.

Entry	R	Time	Result ${ }^{\text {a }}$
,	Ph (a)	10 min	>95\%
2	Me (b)	20 min	>95\%
3	Et (c)	20 min	>95\%
4	$\mathrm{Bn}(\mathrm{d})$	30 min	>95\%
5	$i-\operatorname{Pr}(\mathbf{e})$	20 min	69\%

The enantioselective rearrangement occurred readily when enol carbonate 25Aa was exposed to AcOLeDMAP. Thus, substrate 25Aa gave product C-carboxyl oxindole 25Ba in low enantiomeric excess contaminated with decarboxylated oxindole 9C (equation 9). Surprisingly, analysis of catalyst recovered from the reaction using ${ }^{1} \mathrm{H}$ NMR revealed small signals for AcOLeDMAP, but the major signals in the spectrum belonged to a new DMAP derivative missing the signals for the acetate and the amide protons while the benzylic proton had shifted upfield ~ 1
ppm. In addition, the molecular ion in the mass spectrum corresponded to the loss of HOAc from AcOLeDMAP. Later isolation of this decomposition product allowed characterization and structural assignment as the oxazoline f7A based on comparison of chemical shifts with similar oxazoline structures in the literature (Figure 2-7). ${ }^{45}$ A significant NOE between the benzylic hydrogen and the tert-butyl group and the absence of a strong NOE between H_{a} and H_{b} support the formation of the trans-oxazoline as drawn. Oxazoline formation had not been observed in any of the acetyl rearrangements, so this process is associated with the change from an acyl to a carboxyl migrating group.

Figure 2-7. Recovered Catalyst's Structure and NOE Data.

14C
(S,S)-AcOLeDMAP
$\mathrm{H}_{\mathrm{a}}=6.56 \mathrm{ppm}$
$\mathrm{H}_{\mathrm{b}}=4.33 \mathrm{ppm}$
$J_{\mathrm{ab}}=0 \mathrm{~Hz}$

Catalyst recovered after rearrangement!

$$
\begin{aligned}
\mathrm{H}_{\mathrm{a}} & =5.67 \mathrm{ppm} \\
\mathrm{H}_{\mathrm{b}} & =4.10 \mathrm{ppm} \\
\mathrm{~J}_{\mathrm{ab}} & =6.8 \mathrm{~Hz}
\end{aligned}
$$

In attempts to prevent the catalyst decomposition, several O-carboxylated substrates were tested under various reaction conditions. The less reactive enol carbonates derived from aliphatic chloroformates ($25 \mathrm{Ab}-\mathrm{e}$) all gave complete catalyst decomposition within the time scale of the rearrangement (Table 2-26, entries 1-4). Interestingly, a small amount of N, C-diacetylated oxindole 9Da was also formed during these rearrangements apparently derived from incorporation of the acetyl group of the catalyst ($\sim 90 \%$ based on catalyst loading). With the more reactive phenyl enol carbonate 25Aa, the rearrangement was significantly faster and the catalyst
recovered was not completely decomposed (entry 5). The temperature of the rearrangement was lowered to determine whether the catalyst decomposition could be suppressed without hindering the rearrangement. The decomposition did slow at $-10^{\circ} \mathrm{C}$, but so did the rate of rearrangement (entries 6 and 7). At $-40^{\circ} \mathrm{C}$ the percentage of decomposition was much lower relative to the percentage of rearranged product, but at all temperatures tested the catalyst decomposition could not be entirely suppressed (entries 8 and 9). Since the diphenylacetyl protecting group accelerated the rate of rearrangement in the acetyl series, the benzyl enol carbonate of the diphenylacetyl protected oxindole 26A was synthesized (equation 10) and tested. Although the rate of rearrangement was slightly increased, the catalyst decomposition was still competitive (entry 10).

Scheme 2-26. Catalyst Decomposition as a Function of Oxindole Structure.

Table 2-26. Catalyst Decomposition as a Function of Oxindole Structure.

				Result $^{\mathrm{a}}$				
Entry	R	R	Solvent, Temp	Time	25A	25B	9C	9D
				26A	26B	20Ba catalyst	decomposition	

[^1]

When the reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, it was observed that the rearrangement and catalyst decomposition occurred at similar rates in the phenoxycarbonyl migration. After only 10 minutes, 50% of the rearranged oxindole 25Ba was observed. Simultaneously, $\sim 35 \%$ of the catalyst had decomposed and the decarboxylated oxindole 9 C was also observed ($\sim 100 \%$ based on catalyst loading).

Scheme 2-27. Monitoring Catalyst Decomposition over Time.

Table 2-27. Catalyst Decomposition over Time with Phenoxycarbonyl Migrating Group.

		Result $^{\text {a }}$			
Entry	Time (\min)	25Aa	25Ba	9C	catalyst decomposition
1	10	45	51	4	35%
2	30	14	80	6	58%
3	60	4	89	7	68%
\% by ${ }^{1}$ H NMR spectroscopy					

A similar analysis of the rearrangement of enol carbonate 25Ad was conducted. The rearrangement of the benzyloxycarbonyl migrating group is much slower than the phenoxycarbonyl migrating group, but the decomposition of the catalyst 14C occurred at a similar rate in both cases (Table 2-27, entry 2 and Table 2-28, entry 1). As seen with enol carbonate 25Aa, the decarboxylated product 9C formed at a similar rate compared to the decomposition of the catalyst. The additional C-acetylated product 9Da was not detected until after the catalyst had completely decomposed. Therefore, the C -acetylated oxindole 9Da does not form from direct attack of the enolate 29B of the ion pair $(29 A+B)$ at the acetate carbonyl group of the
catalyst 29A (Scheme 2-29). The formation of 9Da could occur by the addition of acetate anion to the acyl pyridinium cation of 29C to produce mixed anhydride 29D. Nucleophilic attack by the catalyst at the acetyl carbonyl of this mixed anhydride would then form an acetylated pyridinium (29E) that could react with an oxindole to form 9Da.

Scheme 2-28. Catalyst Decomposition over Time with Benzyloxycarbonyl Migrating Group.

Table 2-28. Catalyst Decomposition over Time with Benzyloxycarbonyl Migrating Group.

		Result $^{\text {a }}$				
Entry	Time	25Ad	25Bd	9C	9Da	catalyst decomposition
1	35 min	78	16	6	--	74%
2	1 h 30 min	67	27	6	--	94%
3	3 h 40 min	50	41	7	3	$>95 \%$
${ }^{\text {a }}$ \% by ${ }^{1}$ H NMR spectroscopy						

Scheme 2-29. Interchange of Acetyl and Carboxyl Pyridinium Salts.

29B

Since modifications on the oxindole substrate could not prevent catalyst decomposition, the catalyst itself was modified. As shown earlier, when AcOLeDMAP (14C) was used to catalyze the rearrangement of benzyloxy enol carbonate $26 \mathrm{~A}, 32 \%$ conversion to the C -
carboxylated product 26B was observed and 46% of the catalyst had decomposed within 30 minutes. Protonated oxindole, 20Ba, was also observed by NMR, suggesting that the enolate of the ion pair may be deprotonating the acidic amide proton of the catalyst 14 C . It was hypothesized that a more hindered amide on the catalyst could minimize access to the acidic amide proton, so the anthracenyl catalyst f8A (previously synthesized by Scott Shaw) ${ }^{30}$ was tested. Unfortunately the increased steric hindrance around the amide did not prevent decomposition of the catalyst to an oxazoline, and it severely slowed the rate of rearrangement with only 24% conversion after 2.5 h .

Figure 2-8. Comparison of Decomposition of Amide Protected Catalysts.

14C
30 min
32\% conversion 46\% catalyst decomposition

f8A
2 h 35 min
24\% conversion 24\% catalyst decomposition

Several new catalysts with different side-chain amino functionalities were synthesized in attempts to prevent the oxazoline formation. Sulfonamide-derived catalyst e12B was synthesized by the addition of 3 -lithio-DMAP to the tosyl protected amino aldehyde ${ }^{46}$ e12A followed by acetylation (equation 12). When this new catalyst (e12B) was tested in the rearrangement, it catalyzed the rearrangement of 26 A at a slower rate (only 9% conversion after 20 min) than AcOLeDMAP (14C), and e12B readily decomposed during the rearrangement. In this case, the nitrogen atom of the sulfonamide directly displaced the acetoxy group to form cis-aziridine f9A. This structural assignment was supported by the loss of acetate and sulfonamide proton signals and the $\sim 2.2 \mathrm{ppm}$ upfield shift of the benzylic proton in the ${ }^{1} \mathrm{H}$ NMR spectrum of the reisolated
catalyst. A significant NOE between H_{a} and H_{b} and the small J_{ab} coupling constant led to the assignment of the cis configuration of the aziridine (Figure 2-9).

Figure 2-9. Tosyl-Protected Catalyst Decomposition.

$$
\begin{gathered}
\mathrm{H}_{\mathrm{a}}=6.26 \mathrm{ppm} \\
\mathrm{H}_{\mathrm{b}}=3.67 \mathrm{ppm} \\
J_{\mathrm{ab}}=4.7 \mathrm{~Hz}
\end{gathered}
$$

f9A

$$
\begin{gathered}
\mathrm{H}_{\mathrm{a}}=4.08 \mathrm{ppm} \\
\mathrm{H}_{\mathrm{b}}=2.90 \mathrm{ppm} \\
\mathrm{~J}_{\mathrm{ab}}=2.8 \mathrm{~Hz}
\end{gathered}
$$

When used as catalyst in equation 8 : 20 min
9% conversion 20% catalyst decomposition to f9A

Catalysts containing fully substituted amine side chains were targeted in order to prevent these unwanted cyclizations (Scheme 2-30). The synthesis of a phthalimide-protected catalyst commenced with the protection of amino alcohol 30A followed by oxidation to give aldehyde 30C. Addition of 3-lithio-DMAP into the aldehyde followed by quenching the alkoxide with acetic anhydride afforded phthalimide-protected catalyst 30D, which lacked an acidic amide proton. However when 30D was used to catalyze the rearrangement of the enol carbonate 26A, the catalyst signals partially disappeared from the NMR spectrum and the mass spectrum showed a molecular ion of significantly higher molecular weight. No attempt was made to identify this undesired decomposition pathway. In an alternative approach, non-chelation controlled addition of 3 -lithio-DMAP to dibenzyl-protected amino aldehyde 30E yielded catalyst 30F, tentatively assigned the anti-configuration. ${ }^{47}$ This catalyst did not decompose during the rearrangement of 26A, but the rearrangement was slower and product 26B was obtained in low enantiomeric
excess. Other catalysts with tertiary amide side chains could not be readily prepared by amide alkylation of AcOLeDMAP (14C), so attention was turned to the protecting group at the benzylic alcohol oxygen.

Scheme 2-30. Synthesis of Chiral Catalysts Without a Free N-H.

Following the original synthesis of AcOLeDMAP, the free alcohol 31B was isolated as a single diastereomer in 70\% yield (Scheme 2-31). While catalyzing the rearrangement of 26A, the free alcohol 31B not only decomposed during the reaction but an additional new DMAPcontaining byproduct was formed, likely from carboxylation of the free alcohol, but it was not isolated. If the decomposition of the original catalyst 14C occurred by addition of a nucleophile to the acetate carbonyl of the catalyst, then a more hindered ester might minimize this pathway. So, alcohol 31B was then protected as a benzoate ester under standard benzoylation conditions to give catalyst 31C (Scheme 2-31). Unfortunately, the benzoate ester reduced the reactivity of the catalyst without preventing decomposition to the oxazoline f7A during the rearrangement of 26A.

Scheme 2-31. Chiral Catalysts with a Free Alcohol or Benzoate Ester.

When used to catalyze the rearrangement of enol carbonate 26A:

31B
30 min
35% conversion
17\% catalyst decomposition
$+33 \%$ of a new DMAPcontaining molecule

31C
30 min
17\% conversion
31\% catalyst decomposition

A potentially less labile ether-protected catalyst was then synthesized and tested. Special care was needed for selective O-alkylation of the alcohol 31B since the nucleophilic pyridine subunit can also be alkylated. Therefore, the pyridine subunit was temporarily protected by in situ protonation (32A) with tosic acid in dimethoxymethane (Scheme 2-32). The hindered alcohol was not alkylated under these MOM ether-forming conditions, ${ }^{48}$ but MOM ether-protected catalyst 32B formed upon addition of phosphorous pentaoxide albeit in low yield. ${ }^{49}$ No decomposition of the MOM-protected catalyst (32B) was observed during the rearrangement of enol carbonate 26A, and the rearranged product 26B was obtained cleanly in 66% ee in 2 h at rt .

Scheme 2-32. Synthesis of Ether-Protected Amino Alcohol Derived Catalysts.

In light of the low yield of ether-protected catalyst 32B, an alternative ether-protected catalyst was explored. Deprotonation of both the amide and the alcohol of 31B might be expected to increase their relative nucleophilicity over that of the pyridine nitrogen. Indeed, the dianion 32C was generated upon treatment with 2.1 equivalents of NaHMDS (Scheme 2-32). Selective trapping with 1 equivalent of benzyl bromide produced the benzyl protected catalyst 32D is 70% yield. The benzyl-protected catalyst 32D catalyzed the rearrangement of enol carbonate 26A without decomposing, as also seen with the MOM-protected catalyst 32B, and the product enol carbonate 26B was obtained cleanly in 61% ee in 3 h at rt. The nature of the etherprotecting group in this limited sampling (32B versus 32D) had little effect on either the rate of the enol carbonate rearrangement or the enantioselectivity, so the more readily available benzylprotected catalyst 32D was used for further optimization of this rearrangement. The rearrangement of enol acetate 20Ca with catalyst 32D produced the rearranged 21Aa in 77\% ee (EtOAc, $0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$) as shown by Eoghan McGreevy. Although this new catalyst is less enantioselective than is AcOLeDMAP (14C) in the corresponding rearrangement, the change has not dramatically affected the chirotopic environment of the catalyst as both give the same major enantiomer of the product.

Several of the N-acetyl-protected oxindole-derived enol carbonates were screened for enantioselectivity with the new benzyl ether catalyst (32D). Oxindole-derived phenyl enol
carbonate 25Aa rearranged with minimal enantioselectivity (Table 2-33, entry 1). Slightly higher enantiomeric excesses were obtained with the alkoxycarbonyl migrating groups of 25Ab and 25Ad, but little difference was seen in the \% ee between the two different migrating groups tested (33 and 40% ee, Table 2-33, entries 2 and 3). Unfortunately the modest enantiomeric excess obtained with substrate 25Ad was not significantly improved in any other solvent tested.

Scheme 2-33. Rearrangement of N-Acetyl Oxindole Enol Carbonates with Catalyst 32D.

Table 2-33. Rearrangement of N-Acetyl Oxindole Enol Carbonates with Catalyst 32D.

Entry	Solvent	Substrate	R	\%ee
1	EtOAc	25Aa	Ph	5
2	EtOAc	25Ab	Me	33
3	EtOAc	25Ad	Bn	40
4	Toluene	25Ad	Bn	40
5	$\mathrm{Et}_{2} \mathrm{O}$	25Ad	Bn	48
6	THF	25Ad	Bn	42
7	DCM	25Ad	Bn	35

Since all the rearrangements of acetyl-protected enol carbonates were less enantioselective than the rearrangement of diphenylacetyl-protected enol carbonate 26A, further studies focused on the diphenylacetyl-protected enol carbonates. In this system, the enantioselectivity of the rearrangement had a much greater dependence on the solvent. The rearrangement occurred with poor enantioselectivity in either nonpolar solvents, such as toluene and ether, or in polar aprotic oxygenated solvents (Table 2-34, entries 1-4). In halogenated solvents, the rearrangement was more selective with chloroform giving the superior selectivity. This selectivity could be increased by lowering the temperature, but the rate of the reaction decreased. The hindered tert-amyl alcohol also gave rearrangement with moderate selectivity. However, the highly crystalline enol carbonate 26A was poorly soluble in the alcohol, reducing the rate of rearrangement.

Table 2-34. Solvent Effect on the Rearrangement of Enol Carbonate 26A with Catalyst 32D.

Entry	Solvent	Time	\% ee
1	toluene	6 h	5
2	$\mathrm{Et}_{2} \mathrm{O}$	3 h	8
3	THF	3 h	14
4	EtOAc	3 h	25
5	DCM	3 h	35
6	t-amyl alcohol	6 h	60
7	CHCl_{3}	3 h	61
8	$\mathrm{CHCl}_{3}\left(-20^{\circ} \mathrm{C}\right)$	24 h	74

While changing the solvent and temperature of the reaction did increase the enantioselectivity to 74% ee, this was the best result observed with the benzyloxycarbonyl migrating group. Therefore the effect of the migrating group was examined. Methyl enol carbonate 35Aa rearranged with poor enantioselectivity (Table 2-35, entry 1) which was surprising since the very similar acetyl substrate 20Ca was much more enantioselective (77% ee). The rearrangement of the bulky trichloro-tert-butyl enol carbonate 35Ab and the phenyl enol carbonate 35Ac were similarly unselective (entries 2-3). On the other hand, extending the steric bulk of the migrating group further away from the carbonate increased the stereoselectivity of the rearrangement (35Ad-f, entries 4-7). The rearrangement of the benzyl enol carbonate 26A was still the most enantioselective, so substituted benzyloxycarbonyl migrating groups were examined. The electron-deficient para-nitrobenzyloxycarbonyl migrating group (35Ah) rearranged in a shorter time-frame but with slightly lower enantiomeric excess. This more reactive enol carbonate allowed the rearrangement to occur within 16 h at $-40^{\circ} \mathrm{C}$ but the enantiomeric excess did not increase significantly. Fortunately, the rearrangement of the larger (1-naphthyl)methyl enol carbonate (35Ai) was more enantioselective (71% ee, entry 12). This enantioselectivity could be further increased to 90% ee by lowering the temperature to $-20^{\circ} \mathrm{C}$.

Scheme 2-35. Rearrangement of N-Diphenylacetyl Oxindole Enol Carbonates with Catalyst 32D.

Yields for formation of 35A
a: $\mathrm{R}=\mathrm{Me}(75 \%)$
f: R = Et (73\%)
b: $\mathrm{R}=\mathrm{Cl}_{3} \mathrm{C}(\mathrm{Me})_{2} \mathrm{C}(32 \%)$
g: R = Allyl (78\%)
c: $\mathrm{R}=\mathrm{Ph}(88 \%)$
h: $\mathrm{R}=p-\mathrm{NO}_{2} \mathrm{Bn}$ (65\%)
d: $\mathrm{R}=i-\mathrm{Bu}(82 \%)$
i: $\mathrm{R}=(1-\mathrm{Naphthyl}) \mathrm{CH}_{2}$ (68\%)
e: $\mathrm{R}=\mathrm{Cl}_{3} \mathrm{CCH}_{2}(58 \%)$

Table 2-35. Rearrangement of N -Diphenylacetyl Oxindole Enol Carbonates with Catalyst 32D.

Entry	R	Solvent	Time	\% ee
1	Me	CHCl_{3}	4 h	12
2	$\mathrm{Cl}_{3} \mathrm{C}(\mathrm{Me})_{2} \mathrm{C}$	CHCl_{3}	6 h	18
3	Ph	CHCl_{3}	2 h	32
4	i-Bu	CHCl_{3}	4 h	41
5	$\mathrm{Cl}_{3} \mathrm{CCH}_{2}$	CHCl_{3}	2 h	45
6	Et	CHCl_{3}	4 h	48
7	Allyl	CHCl_{3}	4 h	52
8	Bn	CHCl_{3}	3 h	61
9	Bn	$\mathrm{CHCl}_{3}\left(-20^{\circ} \mathrm{C}\right)$	24 h	74
10	$p-\mathrm{NO}_{2} \mathrm{Bn}$	CHCl_{3}	2 h	55
11	$p-\mathrm{NO}_{2} \mathrm{Bn}$	$\mathrm{CHCl}_{3}\left(-40{ }^{\circ} \mathrm{C}\right)$	16 h	67
12	(1-Naphthyl) CH_{2}	CHCl_{3}	4 h	71
13	(1-Naphthyl) CH_{2}	$\mathrm{CHCl}_{3}\left(-20^{\circ} \mathrm{C}\right)$	24 h	90

After optimizing solvent and temperature for the enol carbonate rearrangement reactions, several different 3 -substituted oxindole-derived enol carbonates 36A-36D were prepared and tested (Scheme 2-36). As seen before in the acetyl rearrangements, the carboxyl rearrangements were readily extended to other C-3 alkyl substrates 36 A and $\mathbf{3 6 B}$ to afford 3,3 disubstituted oxindoles 36E and 36F with high enantiomeric excess. The $C-3$ phenyl substrate 36C, which in the acetyl rearrangements gave product in only 66% ee, rearranged with 90% ee within 2 h . The increased reactivity of this oxindole was attributed to the additional stabilization of the enolate intermediate by the phenyl substituent. A similar rate enhancement was seen in the ring-brominated substrate 36D which rearranged in 4 h to oxindole $\mathbf{3 6 H}$ with 90% ee. In this
case, the enhanced reactivity is probably due to the electron-withdrawing effect of bromine on enolate stability.

Scheme 2-36. Synthesis and Rearrangement of Optimized Enol Carbonates with Catalyst 32D.

Table 2-36. Synthesis and Rearrangement of Optimized Enol Carbonates with Catalyst 32D.

Entry	Substrate	R^{1}	X	Time	Yield (\%)	\%ee
1	35Ai	Me	H	22.5 h	91	90
2	36A	Bn	H	22.5 h	98	92
3	36B	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OTBDPS}$	H	22.5 h	99	94
4	36C	Ph	H	2 h	98	91
5	36D	Me	Br	5 h	92	90

The brominated oxindole $\mathbf{3 6 H}$ was used to determine the absolute stereochemistry of the carboxyl rearranged products. X-Ray quality crystals of oxindole $\mathbf{3 6 H}$ could not be grown, so the nitrogen was deprotected using the optimized deprotection conditions from the C-acetylated oxindoles. Thus, treating oxindole $\mathbf{3 6 H}$ with a warm solution of diethylamine in acetonitrile afforded the deprotected oxindole e13A in 94% yield (equation 13). A single recrystallization of oxindole e13A upgraded the enantiomeric excess form 90% ee to 99% ee, and crystals were grown from the upgraded material. X-Ray crystallographic analysis revealed the absolute configuration of oxindole e13A to be (S) by anamolous dispersion (Figure 2-11). Given the same sign of optical rotation (+) for all of the C-carboxylated oxindoles, the absolute configuration of the other carboxyl migration products was assigned to be (S) by analogy.

Figure 2-10. X-Ray Crystal Structure of oxindole e13A.

Given the opposite signs of optical rotation and the crystal structures of C-acetylated oxindole 23E (Figure 2-3, pg 60) and C-carboxylated oxindole e13A (Figure 2-10), the carbonyl groups have been delivered to opposite faces of the oxindole enolate. Using the chiral catalysts 14C and 32D, the acetyl group is delivered to the re face of the oxindole enolate to form the (S)-C-acetylated product 21A. In contrast, chiral catalyst 32D delivers the carboxyl group to the si face of the enolate to form the (S)-C-carboxylated oxindoles $36 \mathrm{E}-\mathrm{H}$. The absolute configuration of both products is (S) due to a change in priority of the substituents in the carboxyl migration products.

Analysis of the possible conformations leading to the carboxyl migration product required consideration of the rotamers around the pyridinium-carbonate bond (Figure 2-11). The rotamer with the (1-naphthyl)methoxycarbonyl group directed towards the catalyst sidechain (f11B) is disfavored compared to the rotamer with the bulky alkoxy group directed away from the catalyst sidechain (f11A) due to a steric repulsion between the napthyl and the benzamide subunits of the pyridinium ion, so rotamer f11A was used for further evaluations. The two enolate approach conformations, $\mathbf{f 4 C}$ and $\mathbf{f 4 F}$ (pg. 61, also in Figure 2-11), which minimize catalyst/enolate steric
repulsions in the acetyl migration series were also considered for the carboxyl migrations. Although f4C is the favored approach for the oxindole in the acetyl migrations, the similar approach, f11C, for the carboxyl migration series results in a destabilizing steric repulsion between the diphenylacetyl group on the oxindole nitrogen and the naphthyl subunit of the carboxyl migrating group. In contrast, the approach depicted in f11D minimizes the steric repulsion between the diphenylacetyl and the napthyl groups and therefore becomes the favored approach.

Figure 2-11. Proposed Model of Stereoinduction for Carboxyl Migration.

f11A

f11B

f4C

f4F

f11C
Conformation leading to (R)-C-carboxylated oxindoles (minor)

f11D
Conformation leading to (S)-C-carboxylated oxindoles (major)

In an attempt to determine why AcOLeDMAP 14C decomposes during the rearrangement of enol carbonates but not enol acetates, low temperature NMR spectra of enol acetate 20Ca and enol carbonate 26Aa on exposure to DMAP were recorded (equations 14 and 15). Although DMAP and 4-pyrrolidinopyridine do not form appreciable amounts of pyridinium salts with acetic anhydride at room temperature, Steglich and Holfe reported that acylated pyridinium salt e14A could be observed by NMR at low temperatures (equation 14). ${ }^{50}$ As the temperature decreased, the equilibrium began to shift toward the enthalpically favored pyridinium salt e14A (estimated to be $25 \mathrm{~kJ} / \mathrm{mol}$ more stable than the starting materials). No evidence of ion pair formation was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy for either 20 Ca or $35 \mathrm{Aa}+\mathrm{DMAP}$ at $-50{ }^{\circ} \mathrm{C}$ even though significant conversion to the C-functionallized products had occurred. However, upon freezing the chloroform solutions at $-78{ }^{\circ} \mathrm{C}$, in an attempt to halt the course of the rearrangement, a deep purple color developed from the enol carbonate 35Aa + DMAP frozen solution (Figure 2-12b) while the enol acetate 20Ca + DMAP frozen solution (Figure 2-12a) was white. Upon thawing the solution, the color disappeared and the NMR spectra revealed only rearranged products and DMAP. In the related DMAP catalyzed rearrangements of benzofuranone-derived enol carbonates a purple color was associated with the formation of the ion pair intermediate. Although the formation of the purple color in the frozen enol carbonate rearrangement is not concrete evidence for the existence of the ion pair, these experiments may provide clues to the difference between the enol carbonate and enol acetate systems. If the color does in fact represent the ion pair f13A, the formation of this color in the presence of enol carbonate but not enol acetate suggests that this ion pair is more stable than the corresponding enol acetate ion pair. This may lead to a longer lifetime of the intermediate f13A (although the concentration may be too dilute to be observed by NMR) allowing for catalyst decomposition pathways to occur.

Table 2-37. Temperature Effect on the Formation of Pyridinium Salt e13A.

Entry	Temperature	\% e13A by NMR
1	rt	$5-10 \%$ (extrapolated)
2	$-70^{\circ} \mathrm{C}$	50
3	$-100^{\circ} \mathrm{C}$	80

Figure 2-12. Frozen Solutions of DMAP plus Enol Acetate 20Ca and Enol Carbonate 35Aa.

10A. 20Ca + DMAP, 10B. 35Aa + DMAP

Figure 2-13. Possible Ion Pair Intermediate.

f13A
In conclusion, the nucleophile-catalyzed rearrangements of enol acetates and enol carbonates derived from oxindoles have been successfully developed. A strong dependence of the reaction rate on the oxindole protecting group was demonstrated. Amide and sulfonamide protecting groups at the nitrogen of the oxindole greatly enhance the rate of rearrangement relative to the alkyl and carbamate protecting groups. Taking advantage of this enhanced reactivity allowed for a highly enantioselective rearrangement of enol acetates within a few hours with the readily available AcOLeDMAP catalyst. Enol carbonates of amide protected oxindoles were also very reactive, but the chiral catalyst AcOLeDMAP decomposed over the course of the reaction. Replacement of the acetyl protecting group at oxygen on the catalyst by benzyl circumvented this problem, thereby allowing the development of highly enantioselective rearrangements of enol carbonates as well.

III. Experimental.

General Experimental

$\mathrm{Et}_{2} \mathrm{O}$, THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by passing through a column of activated alumina. Ethyl acetate and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled over CaH_{2} prior to use. $\mathrm{Et}_{2} \mathrm{NH}$ was distilled over KOH prior to use. t-Amyl alcohol was carefully distilled over molten sodium. Organolithium reagents were titrated with diphenylacetic acid in THF prior to use. All other reagents were used as received from the manufacturer. Analytical thin layer chromatography (tlc) was accomplished using Whatman 0.25 mm K6F Silica Gel $60 \AA$ plates, and visualized with the aid of UV light or iodine vapor. Flash chromatography was accomplished according to the Still procedure ${ }^{10}$ using Whatman Silica Gel: Puracil $60 \AA(230-400$ mesh). All reactions were performed under an atmosphere of nitrogen in oven-dried glassware.

Synthesis of 2-acetoxy-3-methylindole (9A). To a solution of 3-methyloxindole (1.48 g, 10.0 mmol) in $\mathrm{DCM}(20 \mathrm{~mL})$ was added 2,6-lutidine ($2.3 \mathrm{~mL}, 19.7 \mathrm{mmol}, 2.0$ equiv) and the solution was cooled in an ice bath. $\mathrm{AcCl}(1.4 \mathrm{~mL}, 19.7 \mathrm{mmol}, 2.0$ equiv) was added dropwise and the solution was stirred overnight. The reaction was poured over ice and brine (20 mL) after 16 h and the layers were separated. The aqueous layer was extracted with DCM (3x, 20 mL$)$, and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was purified by filtration through a plug of silica ($3: 1 \mathrm{Hex}_{\mathrm{He}}^{2} \mathrm{O}$) to yield $9 \mathrm{~A}(1.55 \mathrm{~g}, 81 \%)$ as a white powder. The product decomposed at rt, so it was kept under nitrogen in a $-20^{\circ} \mathrm{C}$ freezer and was stable for up to 2 weeks. Molecular ion calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$: 189.0790; [M+], EIMS found $m / z=$ 189.0789; IR (neat, cm ${ }^{-1}$) 3386 (br), 1762; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.46(1 \mathrm{H}, \mathrm{br}$ s) 7.49 $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.0 \mathrm{~Hz}) 7.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.0)$ $2.35(3 \mathrm{H}, \mathrm{s}) 2.17(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.6,139.6,131.3,127.2,121.7$, 119.8, 118.5, 110.7, 95.7, 20.9, 7.0.

Rearrangement of 2-acetoxy-3-methylindole (9A). Enol ester 9A (19 mg, 0.10 mmol) was treated with DMAP (1.0, 0.02M in DCM) and stirred at $r t$ for the times indicated in Table 2-10.

After the allotted time, the solution was filter through a silica plug ($0.5 \mathrm{~cm} \times 3 \mathrm{~cm}$) with $\mathrm{Et}_{2} \mathrm{O}$ and the solvent evaporated. The residue was assayed by NMR for product ratios.

General Procedure for the synthesis of N-protected enol acetates: 2-Acetoxy-1-methoxycarbonyl-3-methylindole (9Bb). To a solution of KHMDS ($446 \mathrm{mg}, 2.2 \mathrm{mmol}, 1.1$ equiv) in THF (10 mL) at $-78^{\circ} \mathrm{C}$ was added dropwise a solution of 2-acetoxy-3-methylindole (9A, $378 \mathrm{mg}, 2.0 \mathrm{mmol})$ in THF (10 mL) at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred for 5 min and then added dropwise to a solution of $\mathrm{MeO}_{2} \mathrm{CCl}(1.5 \mathrm{~mL}, 19.4 \mathrm{mmol}, 10$ equiv) in THF (10 mL) at $78{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then allowed to warm to rt and poured over ice and brine (25 mL). The layers were separated and the aqueous layer was extracted with DCM ($3 \times 25 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. Purification by flash chromatography ($\left.8: 1: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}: \mathrm{DCM}\right)$ yielded $\mathbf{9 B b}$ as a white solid (188 mg, 38\%) Molecular ion calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: 270.0742; [$\mathrm{M}+\mathrm{Na}$], ESMS found $\mathrm{m} / \mathrm{z}=$ 270.0752; IR (neat, cm^{-1}) 1783, 1737; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ठ $8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}$) $7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) 7.32-7.23(2 \mathrm{H}, \mathrm{m}) 3.99(3 \mathrm{H}, \mathrm{s}) 2.38(3 \mathrm{H}, \mathrm{s}) 2.11(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.9,150.8,137.5,132.1,128.2,124.3,123.1,118.6,115.3,105.2,53.6$, 20.4, 6.9.

2-Acetoxy-1-acetyl-3-methylindole (9Ba). Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A (188 mg, 1.0 mmol), KHMDS (218 $\mathrm{mg}, 1.1 \mathrm{mmol}, 1.1$ equiv), and acetyl chloride ($0.7 \mathrm{~mL}, 9.8 \mathrm{mmol}, 10$ equiv), acetyl protected indole 9Ba was isolated as a white solid ($70 \mathrm{mg}, 31 \%$). Molecular ion calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$: 254.0793; [M+Na], ESMS found $m / z=254.0801$; IR (neat, cm^{-1}) 1781, 1698; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.45(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,1.6 \mathrm{~Hz}) 7.32$ (1H, ddd, J= 7.4, 7.4, 1.6 $\mathrm{Hz}) 7.28(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.4,7.4,1.2 \mathrm{~Hz}) 2.57(3 \mathrm{H}, \mathrm{s}) 2.41(3 \mathrm{H}, \mathrm{s}) 2.07(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.9,167.7,137.0,132.6,128.3,124.9,123.6,118.4,116.2,105.5,25.9,20.7$, 7.4.

2-Acetoxy-1-benzyloxycarbonyl-3-methylindole (9Bc). Following the general procedure for the synthesis of N -protected enol acetates starting from indole 9A ($188 \mathrm{mg}, 1.0$
mmol), KHMDS ($5 \mathrm{~mL}, 0.24 \mathrm{M}$ in THF, $1.2 \mathrm{mmol}, 1.2$ equiv), and benzylchloroformate ($1.10 \mathrm{~g}, 1.4$ mmol, 1.4 equiv), benzyloxycarbonyl indole 9Bc was isolated as a clear oil ($117 \mathrm{mg}, 36 \%$). IR (neat, cm^{-1}) 1783, 1733, 1646; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.5 \mathrm{~Hz})$ 7.49-7.39 (6H, m) 7.31-7.25 (2H, m) $5.39(2 \mathrm{H}, \mathrm{s}) 2.10(3 \mathrm{H}, \mathrm{s}) 2.03(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.8,150.1,137.3,134.7,132.4,128.9,128.9,128.8,128.3,124.4,123.2,118.6$, 116.4, 105.2, 68.9, 20.0, 6.9.

2-Acetoxy-1-tert-butoxycarbonyl-3-methylindole (9Bd). Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A (190 mg, 1.0 mmol), KHMDS ($5 \mathrm{~mL}, 0.24 \mathrm{M}$ in THF, $1.2 \mathrm{mmol}, 1.2$ equiv), and di-tert-butyl dicarbonate (329 g , $1.5 \mathrm{mmol}, 1.5$ equiv), tert-butoxycarbonyl protected indole 9Bd was isolated as a clear oil (179 $\mathrm{mg}, 62 \%)$. Molecular ion calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4}: 312.12 .12$; $[\mathrm{M}+\mathrm{Na}$], ESMS found $m / z=312.1208$; IR (neat, cm^{-1}) 1785, 1731, 1640; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.00(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.2 \mathrm{~Hz})$ $7.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,1.2 \mathrm{~Hz}) 7.31-7.20(2 \mathrm{H}, \mathrm{m}) 2.38(3 \mathrm{H}, \mathrm{s}) 2.10(3 \mathrm{H}, \mathrm{s}) 1.64(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.7,148.9,137.8,132.3,128.0,122.7,118.5,115.3,104.3,83.9$. 28.2, 20.6, 6.9.

2-Acetoxy-3-methyl-1-toluenesulfonylindole (9Be): Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A ($151 \mathrm{mg}, 0.80 \mathrm{mmol}$), KHMDS (183 mg, $0.97 \mathrm{mmol}, 1.2$ equiv), and p-toluenesulfonyl chloride ($307.1 \mathrm{~g}, 1.9 \mathrm{mmol}, 2.4$ equiv), p-toluenesulfonyl protected indole 9 Be was isolated as a clear oil ($115 \mathrm{mg}, 42 \%$) after flash chromatography (8:1:1 Hex: $\mathrm{Et}_{2} \mathrm{O}: D C M$). Molecular ion calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{4}$: 366.0776; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=366.0764$; IR (neat, cm^{-1}) 1791, 1646, 1451, 1366, 1177; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.37(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.5$ $\mathrm{Hz}) 7.29(1 \mathrm{H}$, ddd, $J=8.3 .7 .3,1.5 \mathrm{~Hz}) 7.23(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.3,1.5 \mathrm{~Hz}) 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz})$ $2.45(3 \mathrm{H}, \mathrm{s}) 2.33(3 \mathrm{H}, \mathrm{s}) 2.03(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.1,144.9,137.4$, $135.5,132.6,129.7,128.9,126.8,124.5,123.6,118.9,114.4,106.5,21.6,20.5,7.2$.

2-Acetoxy-3-methyl-1-p-nitrophenylsulfonylindole (9Bf). Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A ($474 \mathrm{mg}, 2.5$ mmol), KHMDS (545 mg, $2.7 \mathrm{mmol}, 1.1$ equiv), and p-nosyl chloride ($1.10 \mathrm{~g}, 5.0 \mathrm{mmol}, 2$ equiv),
p-nosyl protected indole 9Bf was isolated as a bright yellow solid ($295 \mathrm{mg}, 32 \%$). Molecular ion calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: 397.0470; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=397.0455$; IR (neat, cm^{-1}) 1791 ; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}) 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}) 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4$ $\mathrm{Hz})$ 7.35-7.25 (3H, m) $2.47(3 \mathrm{H}, \mathrm{s}) 2.04(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.0,150.6$, 143.3, 137.1, 132.4, 129.2, 128.1, 125.2, 124.5, 124.4, 119.3, 114.3, 108.1, 20.5, 7.3 .

2-Acetoxy-3-methyl-1-o-nitrophenylsulfonylindole (9Bg): Following the general procedure for the synthesis of N -protected enol acetates starting from indole 9A ($434 \mathrm{mg}, 2.3$ mmol), KHMDS ($540 \mathrm{mg}, 2.7 \mathrm{mmol}, 1.2$ equiv), and o-nitrobenzenesulfonyl chloride ($1.03 \mathrm{~g}, 4.6$ mmol, 2 equiv), o-nitrobenzenesulfonyl protected indole 9 Bg was isolated as a light brown solid after recrystallization from ethanol/water ($239 \mathrm{mg}, 28 \%$). Molecular ion calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$: 397.0470; [M+Na], ESMS found $m / z=397.0468$; IR (neat, cm^{-1}) 1791, 1648, 1544, 1368, 1150; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.88-7.84(1 \mathrm{H}, \mathrm{m}) 7.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2 .1 .2 \mathrm{~Hz}) 7.67$ (1 H , ddd, $J=7.8,7.4,1.2 \mathrm{~Hz}) 7.52(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.4,1.2 \mathrm{~Hz}) 7.50-7.46(1 \mathrm{H}, \mathrm{m}) 7.39(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2 .1 .2$ $\mathrm{Hz})$ 7.34-7.28 $(2 \mathrm{H}, \mathrm{m}) 2.34(3 \mathrm{H}, \mathrm{m}) 2.10(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.0$, 147.9, 137.6, 134.4, 133.0, 132.8, 132.3, 128.7, 128.3, 125.1, 124.7, 127.2, 119.2, 114.3, 106.9, 20.3, 7.3.

2-Acetoxy-3-methyl-1-phenylacetylindole (9Bh): Following the general procedure for the synthesis of N-protected enol acetates starting from indole $9 \mathrm{~A}(433 \mathrm{mg}, 2.29 \mathrm{mmol}$), KHMDS ($546 \mathrm{mg}, 2.74 \mathrm{mmol}, 1.2$ equiv), and phenylacetyl chloride ($1.5 \mathrm{~mL}, 11.3 \mathrm{mmol}, 5.0$ equiv), phenylacetyl protected indole 9Bh was isolated as white crystals after recrystallization from ethanol/water ($187 \mathrm{mg}, 27 \%$). Molecular ion calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}: 330.1106$; [M+Na], ESMS found $m / z=330.1102$; IR (neat, cm^{-1}) 1785, 1704, 1638, 1164; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.32-$ $8.29(1 \mathrm{H}, \mathrm{m}) 7.47-7.43(1 \mathrm{H}, \mathrm{m}) 7.38-7.23(7 \mathrm{H}, \mathrm{m}) 4.21(2 \mathrm{H}, \mathrm{s}) 2.27(3 \mathrm{H}, \mathrm{s}) 2.06(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 169.0, 167.5, 136.8, 133.6, 132.8, 129.3, 128.7, 128.4, 127.3, 125.0, 123.7, 118.4, 116.3, 105.8, 44.1, 20.5, 7.5 .

2-Acetoxy-1-diphenylacetyl-3-methylindole (9Bi). Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A ($446 \mathrm{mg}, 2.4 \mathrm{mmol}$), KHMDS ($546 \mathrm{mg}, 2.7 \mathrm{mmol}, 1.2$ equiv), and diphenylacetyl chloride ($1.21 \mathrm{~g}, 90 \%, 4.7 \mathrm{mmol}, 2$ equiv),
diphenylacetyl protected indole 9Bi was isolated as a white solid after recrystallization from ethanol/hexanes (356 mg, 39\%). Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.4$. Molecular ion calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{3}$: 406.1419; [M+Na], ESMS found $m / z=406.1420$; IR (neat, cm^{-1}) 1785, 1694; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 8.34-8.29 (1H, m) 7.46-7.42 (1H, m) 7.34-7.22 (12H, m) 5.92 (1H, s) $2.01(3 \mathrm{H}, \mathrm{s}) 1.95(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.5,167.0,139.3,136.7$, 133.1, 129.2, 128.7, 128.4, 127.4, 125.0, 123.8, 118.4, 116.3, 106.2, 58.5, 20.1, 7.7.

2-Acetoxy-1-isobutyryl-3-methylindole (9Bj). Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A ($460 \mathrm{mg}, 2.4 \mathrm{mmol}$), KHMDS (540 $\mathrm{mg}, 2.7 \mathrm{mmol}, 1.1$ equiv), and isobutyryl chloride ($1.3 \mathrm{~mL}, 12.4 \mathrm{mmol}, 5$ equiv), isobutyryl protected indole 9Bj was isolated as a colorless oil ($295 \mathrm{mg}, 47 \%$). Molecular ion calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$: 282.1106; [M+Na], ESMS found $m / z=282.1098$; IR (neat, cm^{-1}) 1785, 1704; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.31(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.4$, $7.4,1.6 \mathrm{~Hz}) 7.27(1 \mathrm{H}$, ddd, $J=7.4,7.4,1.2 \mathrm{~Hz}) 3.35(1 \mathrm{H}$, septet, $J=6.6 \mathrm{~Hz}) 2.41(3 \mathrm{H}, \mathrm{s}) 2.07(3 \mathrm{H}$, s) $1.30(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 176.0,167.5,137.0,132.7,128.4$, 124.7, 123.4, 118.4, 116.0, 105.4, 35.3, 20.6, 19.5, 7.5.

2-Acetoxy-3-methyl-1-pivaloylindole (9Bk). Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A ($444 \mathrm{mg}, 2.4 \mathrm{mmol}$), KHMDS (544 $\mathrm{mg}, 2.7 \mathrm{mmol}, 1.2$ equiv), and pivaloyl chloride ($1.5 \mathrm{~mL}, 12.2 \mathrm{mmol}, 5$ equiv), pivaloyl protected indole 9Bk was isolated as a white solid (140.8 mg, 22%). Molecular ion calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$: 296.1263; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=296.1257$; IR (neat, cm^{-1}) 1789 , 1702; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) 7.25(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.4,7.0,1.6 \mathrm{~Hz})$ $7.20(1 \mathrm{H}$, ddd, $J=7.4,7.4,1.2 \mathrm{~Hz}) 2.36(3 \mathrm{H}, \mathrm{s}) 2.09(3 \mathrm{H}, \mathrm{s}) 1.41(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 181.2,167.2,137.0,132.5,127.8,123.6,121.9,118.6,113.3,102.8,43.3,27.8$, 20.7, 7.7.

2-Acetoxy-1-benzoyl-3-methylindole (9BI): Following the general procedure for the synthesis of N-protected enol acetates starting from indole 9A ($433 \mathrm{mg}, 2.29 \mathrm{mmol}$), KHMDS ($546 \mathrm{mg}, 2.74 \mathrm{mmol}, 1.2$ equiv), and benzoyl chloride ($1.5 \mathrm{~mL}, 11.3 \mathrm{mmol}, 5.0$ equiv), benzoyl protected indole 9BI was isolated as an impure oil (162 mg, 55\%) after flash chromatography
($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes). IR (neat, cm^{-1}) 1781, 1684, $1640 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 7.72-7.45 (7H, m) 7.30-7.20 (2H, m) $2.10(3 \mathrm{H}, \mathrm{s}) 1.73(3 \mathrm{H}, \mathrm{s})$.

Synthesis of 2-acetoxy-1-benzyl-3-methylindole (9Bm). A solution of 1-benzyl-3methyloxindole ${ }^{51}(216 \mathrm{mg}, 0.91 \mathrm{mmol})$ in DCM $(3.6 \mathrm{~mL})$ was treated with 2,6-lutidine $(1.1 \mathrm{~mL}, 9.4$ mmol, 10 equiv) and $\mathrm{AcCl}(0.66 \mathrm{~mL}, 9.3 \mathrm{mmol}, 10$ equiv) and stirred for 3 days. The solution was poured over a cold brine solution $(10 \mathrm{~mL})$ and extracted with DCM $(3 \times 10 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4}, filtered and evaporated. Crude NMR revealed 45% conversion to product. Product was purified by flash chromatography (5% acetone in hexanes) to yield a white solid (107 mg, 42\%). Molecular ion calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}: 302.1157$; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=$ 302.1144; IR (neat, cm ${ }^{-1}$) 1775; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.54(1 \mathrm{H}, \mathrm{m}) 7.29-7.19$ (3 H , m) 7.16-7.08 (5H, m) $5.17(2 \mathrm{H}, \mathrm{s}) 2.24(3 \mathrm{H}, \mathrm{s}) 2.16(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 167.8, 138.9, 137.3, 132.4, 128.7, 127.5, 126.8, 126.5, 121.5, 119.6, 118.7, 109.3, 97.2, 45.9, 20.2, 7.6.

Synthesis of 2-acetoxy-1-allyl-3-methylindole (9Bn). A solution of 1-allyl-3methyloxindole ${ }^{52}(378 \mathrm{mg}, 2.0 \mathrm{mmol})$ in DCM $(8 \mathrm{~mL})$ was treated with 2,6-lutidine $(0.46 \mathrm{~mL}, 4.0$ mmol, 2 equiv) and $\mathrm{AcCl}(0.28 \mathrm{~mL}, 3.9 \mathrm{mmol}, 2$ equiv) and stirred for 3 days. The solution was poured over a cold brine solution (10 mL) and extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. Combined organic layers were dried over MgSO_{4}, filtered and evaporated. Crude NMR revealed 34% conversion to product. Product was purified by flash chromatography (5\% acetone in hexanes) to yield a white solid ($93 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.52(1 \mathrm{H}, \mathrm{m}) 7.23-7.09(3 \mathrm{H}, \mathrm{m})$ 5.93-5.82 $(1 \mathrm{H}, \mathrm{m}) 5.15-5.01(2 \mathrm{H}, \mathrm{m}) 4.55(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.1,2.0,1.6 \mathrm{~Hz}) 2.36(3 \mathrm{H}, \mathrm{s}) 2.14(3 \mathrm{H}, \mathrm{s})$.

General Procedure of DMAP-Catalyzed Rearrangements: rac-3-Acetyl-1-benzyl-3methyloxindole (9Dm). Enol acetate $9 \mathrm{Bm}(27 \mathrm{mg}, 0.1 \mathrm{mmol})$ was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 5 h at rt , DMAP was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (27 mg). NMR analysis of the residue revealed 89% conversion to C -acylated oxindole 9Dm. Molecular ion calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{2}$: 302.1157; [M+Na],

ESMS found $m / z=302.1160$; $\operatorname{RR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1723,1704 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.35-$ $7.27(5 \mathrm{H}, \mathrm{m}) 7.24(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.8,1.0 \mathrm{~Hz}) 7.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,1.0 \mathrm{~Hz}) 7.05(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $7.8,7.3,1.0 \mathrm{~Hz}) 6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 5.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.1 \mathrm{~Hz}) 4.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.1 \mathrm{~Hz}) 1.99$ $(3 \mathrm{H}, \mathrm{s}) 1.63(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 200.9,176.0,142.8,135.6,129.4$, 129.0, 128.9, 127.9, 127.4, 123.6, 123.2, 109.6, 61.9, 44.1, 26.1, 19.2.
rac-3-Acetyl-1-allyl-3-methyloxindole (9Dn). Enol acetate 9Bn (22 mg, 0.1 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 5 h at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with 3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (20 mg). NMR analysis of the residue revealed 73% conversion to C -acylated oxindole 9D. Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.15$. Molecular ion calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2}$: 252.1000; [$\mathrm{M}+\mathrm{Na}$], ESMS found $\mathrm{m} / \mathrm{z}=$ 252.1008; IR (neat, cm ${ }^{-1}$) 1723, 1704, 1609, 1353; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.32(1 \mathrm{H}$, ddd, J= 7.8, 7.8, 1.5 Hz) 7.16 (1H, dd, J= 7.8, 1.0 Hz) 7.08 (1H, ddd, J= 7.8, 7.8, 1.0 Hz) 6.92 (1H, d, J= 7.8, 1.5 Hz) 5.87 (1H, dddd, J= 17.1, 10.3, $5.4,5.4 \mathrm{~Hz}$) 5.30-5.25 (2H, m) 4.47 (1 H , dddd, J= 16.1, $5.4,1.9,1.5 \mathrm{~Hz}) 4.36(1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=16.1,5.4,1.9,1.5 \mathrm{~Hz}) 1.99(3 \mathrm{H}, \mathrm{s}) 1.59(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta ~ 200.9, ~ 175.6, ~ 142.9,131.0,129.4,129.0,123.6,123.2$, 118.1, 109.5, 61.9, 42.6, 25.9, 19.1.
rac-3-Acetyl-1-methoxycarbonyl-3-methyloxindole (9Db). Enol acetate 9Bb (13 mg , 0.05 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.25 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 5 h at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (12 mg). NMR analysis of the residue revealed 78% conversion to C-acylated oxindole 9Db and 8\% 1-methoxycarbonyl-3-methyloxindole (A). Attempted purification resulted in increased conversion to $\mathrm{A} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3,7.8,1.5$ Hz) 7.23 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.3,1.0 \mathrm{~Hz}$) $7.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,1.0 \mathrm{~Hz}) 4.06(3 \mathrm{H}, \mathrm{s}) 2.05(3 \mathrm{H}, \mathrm{s}) 1.65$ $(3 \mathrm{H}, \mathrm{s})$. In addition, signals were observed at $4.02(3 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}), 1.54(3 \mathrm{H}, \mathrm{d}$, $J=7.4 \mathrm{~Hz}$) tentatively attributed to \mathbf{A}.
rac-3-Acetyl-1-benzoxycarbonyl-3-methyloxindole (9Dc). A solution of enol acetate 9Bc ($16 \mathrm{mg}, 0.05 \mathrm{mmol}$) in THF (0.13 mL) was treated with a solution of DMAP in THF (12 mM, $0.12 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 5 h at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (13 mg). NMR analysis of the residue revealed 68% conversion to C-acylated oxindole 9Dc.
rac-3-Acetyl-1-tert-butoxycarbonyl-3-methyloxindole (9Dd). A solution of enol acetate 9Bd (29 mg, 0.1 mmol$)$ in THF (0.13 mL) was treated with a solution of DMAP in THF (12 mM, $0.12 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 5 h at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil $(27 \mathrm{mg})$. NMR analysis of the residue revealed 30% conversion to C-acylated oxindole 9Dd.
rac-3-Acetyl-3-methyl-1-p-toluenesulfonyloxindole (9De): A solution of enol acetate 9Be ($0.15 \mathrm{~mL}, 0.33 \mathrm{M}$ in THF, 0.05 mmol) was treated with a solution of DMAP in THF (15 mM , $0.10 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 50 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{-\mathrm{Et}_{2} \mathrm{O} \text {, and the eluent evaporated to yield }}$ a colorless oil $(27 \mathrm{mg})$. NMR analysis of the residue revealed $>95 \%$ conversion to C-acylated oxindole 9De. Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.22$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 8.02-7.97 (3H, m) $7.41(1 \mathrm{H}$, ddd, $J=7.8,7.4,1.6 \mathrm{~Hz}) 7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.20(1 \mathrm{H}$, ddd, $\mathrm{J}=$ $7.8,7.4,0.8 \mathrm{~Hz}) 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}) 2.43(3 \mathrm{H}, \mathrm{s}) 1.72(3 \mathrm{H}, \mathrm{s}) 1.50(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 198.8,174.1,146.1,139.1,134.7,129.9,129.8,128.3,128.0,127.9$, 125.5, 123.7, 114.2, 62.1, 25.9, 21.7, 19.5.
rac-3-Acetyl-3-methyl-1-p-nitrophenylsulfonyloxindole (9Df). Enol acetate 9Bf (19 $\mathrm{mg}, 0.05 \mathrm{mmol}$) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.25 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}_{\mathrm{Et}}^{2} \mathrm{O}$, and the eluent evaporated to yield a white solid (18 mg). NMR analysis of the residue revealed full conversion to C-acylated oxindole 9Df. Molecular ion calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: 397.0470$; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=397.0470$; IR (neat, cm^{-1}) 1754,

1727; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}) 8.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.3 \mathrm{~Hz}) 7.99$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.45(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3,7.8,1.5 \mathrm{~Hz}) 7.26(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.8,1.0 \mathrm{~Hz}) 7.17(1 \mathrm{H}$, dd, J=7.8, 1.5 Hz$) 1.86(3 \mathrm{H}, \mathrm{s}) 1.52(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 198.3,174.2$, 151.2, 142.8, 138.4, 130.1, 129.5, 128.2, 126.1, 124.4, 124.1, 114.0, 62.0, 26.0, 19.7.
rac-3-Acetyl-3-methyl-1-o-nitrophenylsulfonyloxindole (9Dg): Enol acetate 9Bg (37 $\mathrm{mg}, 0.1 \mathrm{mmol}$) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with 3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a white solid (30 mg). NMR analysis of the residue revealed full conversion to C-acylated oxindole 9Dg. Molecular ion calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}: 397.0470$; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $\mathrm{m} / \mathrm{z}=397.0470$; IR (neat, cm^{-1}) 1750, 1723, 1542, 1380, 1360, 1185; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) б $8.61-8.55(1 \mathrm{H}, \mathrm{m}) 7.90-7.81(4 \mathrm{H}, \mathrm{s})$ $7.45(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.2,7.4,1.6 \mathrm{~Hz}) 7.26(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.4,0.8 \mathrm{~Hz}) 7.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.6$ $\mathrm{Hz}) 1.87(3 \mathrm{H}, \mathrm{s}) 1.57(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 198.5,174.3,148.0,139.3$, 135.7, 134.9, 132.3, 130.9, 129.9, 127.8, 125.7, 124.8, 123.5, 115.1, 62.0, 26.1, 19.4.
rac-1,3-Diacetyl-3-methyloxindole (9Da). Enol acetate 9Ba ($11 \mathrm{mg}, 0.05 \mathrm{mmol}$) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.25 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with 3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (10 mg). NMR analysis of the residue revealed full conversion to C -acylated oxindole 9Da. Molecular ion calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{3}$: 254.0793; [M+Na], ESMS found $m / z=254.0805$; IR (neat, cm^{-1}) 1748, 1719, 1704; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3,8.0,1.5 \mathrm{~Hz}) 7.25(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $8.0,7.8,1.4 \mathrm{~Hz}) 7.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.4 \mathrm{~Hz}) 2.73(3 \mathrm{H}, \mathrm{s}) 2.04(3 \mathrm{H}, \mathrm{s}) 1.66(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 199.4,176.6,170.7,140.0,129.5,128.5,125.8,123.1,117.0,62.6$, 26.7, 26.1, 20.0.
rac-3-Acetyl-3-methyl-1-phenylacetyloxindole (9Dh). Enol acetate 9Bh (30 mg, 0.1 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with 3:1 Hex:Et2O, and the eluent evaporated to yield a colorless oil (25 mg). NMR
analysis of the residue revealed full conversion to C-acylated oxindole 9Dh. Molecular ion calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3}$: 330.1106; [M+Na], ESMS found $m / z=330.1100$; IR (neat, cm^{-1}) 1754, 1719; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.40-7.20(7 \mathrm{H}, \mathrm{m}) 7.16-7.13(1 \mathrm{H}, \mathrm{m}) 4.55$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.1 \mathrm{~Hz}) 4.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.1 \mathrm{~Hz}) 1.82(3 \mathrm{H}, \mathrm{s}) 1.62(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$, ppm) ठ 199.3, 176.3, 171.8, 140.2, 133.4, 129.6, 129.5, 128.6, 128.5, 127.3, 125.9, 123.1, 116.9, 62.6, 44.6, 25.8, 19.9.
rac-3-Acetyl-1-diphenylacetyl-3-methyloxindole (9Di). Enol acetate 9Bi (38 mg, 0.1 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (36 mg). NMR analysis of the residue revealed full conversion to C-acylated oxindole 9Di. Analytical tlc, 25\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.5$. Molecular ion calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{3}$: 406.1419; [M+Na], ESMS found $m / z=406.1420 ; \mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1753,1719 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8$ $\mathrm{Hz}) 7.40-7.22(11 \mathrm{H}, \mathrm{m}) 7.21(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.4,7.1,1.2 \mathrm{~Hz}) 7.10(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.1,1.6 \mathrm{~Hz}) 6.59(1 \mathrm{H}$, s) $1.53(3 \mathrm{H}, \mathrm{s}) 1.49(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 199.1,175.9,173.1,140.4$, $137.8,137.6,129.6,129.3,129.3,128.8,128.5,128.5,127.5,127.4,125.9,123.1,116.7,62.5$, 58.0, 25.4, 19.7.
rac-3-Acetyl-1-isobutyryl-3-methyloxindole (9Dj). Enol acetate 9Bj (25 mg, 0.1 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (23 mg). NMR analysis of the residue revealed full conversion to C-acylated oxindole 9Dj. Molecular ion calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$: 282.1106; [M+Na], ESMS found $m / z=282.1112$; IR (neat, cm^{-1}) 1750, 1715; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.39(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.4,7.4,1.6 \mathrm{~Hz}) 7.23(1 \mathrm{H}$, ddd, J= 7.4, 7.0, 1.2 Hz) $7.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,1.6 \mathrm{~Hz}) 3.90(1 \mathrm{H}$, septet, J= 6.6 Hz$) 2.03(3 \mathrm{H}, \mathrm{s})$ $1.65(3 \mathrm{H}, \mathrm{s}) 1.29(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) 1.27(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ $199.6,178.4,176.2,140.5,129.5,128.6,125.7,123.0,117.1,62.8,35.3,26.1,20.0,18.9,18.8$.
rac-3-Acetyl-3-methyl-1-pivaloyloxindole (9Dk). Enol acetate 9Bk (27 mg, 0.1 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with 3:1 $\mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (25 mg). NMR analysis of the residue revealed 84% conversion to C-acylated oxindole 9Dk. Molecular ion calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}: 296.1263$; [M+Na], ESMS found $m / z=296.1262$; IR (neat, cm^{-1}) 1746,$1713 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.35(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.3,6.8,2.0 \mathrm{~Hz}) 7.20-7.13$ $(2 \mathrm{H}, \mathrm{m}) 2.36(3 \mathrm{H}, \mathrm{s}) 2.09(3 \mathrm{H}, \mathrm{s}) 1.41(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 199.8,182.3$, $175.1,141.0,129.3,129.3,124.9,123.4,114.6,62.6,43.6,26.7,26.2,19.8$.
rac-3-Acetyl-3-methyl-1-benzoyloxindole (9DI). Enol acetate 9BI (29 mg, 0.1 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with 3:1 $\mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (25 mg). NMR analysis of the residue revealed 57% conversion to C-acylated oxindole 9DI.

Representative example for the chiral nucleophile catalyzed rearrangement of enol acetate 9Ba: TADMAP (7C) catalyzed rearrangement of enol acetate 9Ba to 1,3-diacetyl-3methyloxindole (9Da). Enol acetate 9Ba (23 mg, 0.1 mmol) and TADMAP (7C) (4.4 mg, 0.01 mmol, $10 \mathrm{~mol} \%$) were stirred in $\mathrm{DCM}(1.0 \mathrm{~mL})$ at rt . After 3 h , the catalyst was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $\mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a white solid ($22 \mathrm{mg}, 20 \%$ ee). NMR analysis of the residue revealed full conversion to C-acylated oxindole 9Da. HPLC (Regis (R, R)-Whelk-O, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$, 99:1 hexanes/isopropanol, $0.5 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=24.3 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=27.0 \mathrm{~min}$ (minor).

Chiral DMAP 14A catalyzed rearrangement of enol acetate 9Ba to 1,3-diacetyl-3methyloxindole (9Da). Following the representative prodecure for the chiral nucleophile catalyzed rearrangement of enol acetate 9Ba ($23 \mathrm{mg}, 0.10 \mathrm{mmol}$), chiral DMAP 14A (3.6 mg , $0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF (0.5 mL) afforded full conversion to C-acylated oxindole 9Da (22 $\mathrm{mg}, 97 \%, 27 \% \mathrm{ee}$) in 4 h.

AcOVaDMAP 14B catalyzed rearrangement of enol acetate 9Ba to 1,3-diacetyl-3methyloxindole (9Da). Following the representative prodecure for the chiral nucleophile catalyzed rearrangement of enol acetate 9Ba (24 mg, 0.10 mmol), AcOVaDMAP 14B (3.6 mg, $0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF (0.5 mL) afforded full conversion to C-acylated oxindole 9Da (23 $\mathrm{mg}, 97 \%, 55 \%$ ee) in 4 h .

AcOLeDMAP catalyzed rearrangement of protected enol acetates. 1,3-Diacetyl-3methyloxindole (9Da). Enol acetate 9Ba (21 mg, 0.1 mmol) and AcOLeDMAP ($3.7 \mathrm{mg}, 0.01$ mmol, $10 \mathrm{~mol} \%$) were stirred in THF (0.5 mL) at rt. After 3.5 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel ($5 \mathrm{~cm} \times 1 \mathrm{~cm}$) and flushed with 3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure white solid 9Da was isolated (21 $\mathrm{mg}, 99 \%, 61 \%$ ee). HPLC (Regis (R, R)-Whelk-O, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 99: 1$ hexanes/isopropanol, $0.5 \mathrm{~mL} / \mathrm{min}) \mathrm{T}_{\mathrm{R}}=24.3 \mathrm{~min}($ major $), \mathrm{T}_{\mathrm{R}}=27.0 \mathrm{~min}($ minor $)$.

AcOLeDMAP (14C) catalyzed rearrangement of protected enol acetates. 3-Acetyl-3-methyl-1-p-toluenesulfonyloxindole (9De). Enol acetate 9Be (15 mg, 0.05 mmol) and AcOLeDMAP (14C) (1.7 mg, $0.005 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were stirred in THF (0.25 mL) at rt. After 20 h, the catalyst was quenched with $\mathrm{Mel}(0.1 \mathrm{~mL})$ and solution was applied to a plug of silica gel (5 $\mathrm{cm} \times 1 \mathrm{~cm})$ and flushed with $3: 1 \mathrm{Hex}_{\mathrm{Et}} \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure clear oil 9De was isolated (46% ee). HPLC (Chiracel AD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 90: 10$ hexanes/isopropanol, 0.5 $\mathrm{mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=13.5 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=15.7 \mathrm{~min}$ (minor).

AcOLeDMAP (14C) catalyzed rearrangement of protected enol acetates. 3-Acetyl-3-methyl-1-p-nitrophenylsulfonyloxindole (9Df). Enol acetate 9Bf ($37 \mathrm{mg}, 0.1 \mathrm{mmol}$) and AcOLeDMAP (14C) ($4.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were stirred in THF (0.5 mL) at rt. After 2 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel ($5 \mathrm{~cm} \times 1 \mathrm{~cm}$) and flushed with $3: 1 \mathrm{Hex}_{\mathrm{H}} \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure white solid 9Df was isolated ($30 \mathrm{mg}, 81 \%, 57 \%$ ee). HPLC (Chiracel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 90: 10$ hexanes/isopropanol, $0.5 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=28.4 \mathrm{~min}($ minor $), \mathrm{T}_{\mathrm{R}}=48.0 \mathrm{~min}$ (major).

AcOLeDMAP (14C) catalyzed rearrangement of protected enol acetates. 3-Acetyl-3-methyl-1-o-nitrophenylsulfonyloxindole (9Dg). Enol acetate $9 \mathrm{Bg}(38 \mathrm{mg}, 0.1 \mathrm{mmol})$ was
treated with a solution of AcOLeDMAP in THF ($0.02 \mathrm{M}, 0.5 \mathrm{~mL}, 10 \mathrm{~mol} \%$). After 2 h at rt , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel ($5 \mathrm{~cm} \times 1 \mathrm{~cm}$) and flushed with $3: 1 \mathrm{Hex}_{\mathrm{Et}}^{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure light yellow solid 9Dg was isolated ($31 \mathrm{mg}, 83 \%, 58 \%$ ee). HPLC (Chiracel AS, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$, 90:10 hexanes/isopropanol, $0.5 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=27.0 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=40.5 \mathrm{~min}$ (minor).

AcOLeDMAP (14C) catalyzed rearrangement of protected enol acetates. 3-Acetyl-1-isobutyryl-3-methyloxindole (9Dj). Enol acetate 9Bj (25 mg, 0.1 mmol) and AcOLeDMAP (4.0 $\mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were stirred in THF (0.5 mL) at rt . After 2 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel ($5 \mathrm{~cm} \times 1 \mathrm{~cm}$) and flushed with $3: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure clear oil 9Dj was isolated ($23 \mathrm{mg}, 92 \%, 77 \%$ ee). HPLC (Chiracel OB, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$, hexanes, $1 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=22.5 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=33.3 \mathrm{~min}$ (major).

AcOLeDMAP catalyzed rearrangement of protected enol acetates. 3-Acetyl-3-methyl-1-pivaloyloxindole (9Dk). Enol acetate 9Bk ($27 \mathrm{mg}, 0.1 \mathrm{mmol}$) was treated with a solution of AcOLeDMAP in THF ($0.02 \mathrm{M}, 0.5 \mathrm{~mL}, 10 \mathrm{~mol} \%$). After 24 h at rt , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel $(5 \mathrm{~cm}$ $x 1 \mathrm{~cm})$ and flushed with $3: 1 \mathrm{Hex}_{\mathrm{E}} \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure clear oil 9Dk was isolated (26 mg, 98\%). Oxindole 9Dk could not be resolved by chiral phase HPLC, however upon standing at room temperature for a week in hexanes and isopropanol, deprotected 3-acetyl-3methyloxindole (10A) was obtained and the enantiomeric excess was determined (77% ee). HPLC for 10A (Chiralcel AS, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 90: 10$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=21.4$ $\min ($ minor $), T_{R}=30.0 \min$ (major).

AcOLeDMAP catalyzed rearrangement of protected enol acetates. 3-Acetyl-3-methyl-1-phenylacetyloxindole (9Di). Enol acetate 9Bi ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$) was treated with a solution of AcOLeDMAP in THF ($0.02 \mathrm{M}, 0.5 \mathrm{~mL}, 10 \mathrm{~mol} \%$) at rt. After 2.5 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel $(5 \mathrm{~cm}$ $x 1 \mathrm{~cm})$ and flushed with $3: 1 \mathrm{Hex}_{\mathrm{E}} \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure clear oil 9Di was
isolated ($30 \mathrm{mg}, 96 \%, 75 \%$ ee). HPLC (Chiracel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 90: 10$ hexanes/isopropanol, $1 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=7.7 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=9.3 \mathrm{~min}$ (major).

AcOLeDMAP catalyzed rearrangement of protected enol acetates. 3-Acetyl-1-diphenylacetyl-3-methyloxindole $\mathbf{(5 g})$. Enol acetate $\mathbf{4 g}(38 \mathrm{mg}, 0.1 \mathrm{mmol})$ was treated with a solution of AcOLeDMAP in THF ($0.02 \mathrm{M}, 0.5 \mathrm{~mL}, 10 \mathrm{~mol} \%$). After 24 h at rt , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel (5 cm $x 1 \mathrm{~cm})$ and flushed with $3: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure clear oil $\mathbf{5 g}$ was isolated ($34 \mathrm{mg}, 89 \%, 86 \%$ ee). HPLC (Chiralcel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 99: 1$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=9.6 \mathrm{~min}($ minor $), \mathrm{T}_{\mathrm{R}}=12.7 \mathrm{~min}$ (major).

Representative Procedure for Synthesis of 1-Diphenylacetyloxindoles: 1-Diphenylacetyl-3-Methyloxindole (20Ba). 3-Methyloxindole (4.00 g, 27.2 mmol) and diphenylacetyl chloride ($7.50 \mathrm{~g}, 32.5 \mathrm{mmol}, 1.2$ equiv) were heated to $150^{\circ} \mathrm{C}$ with stirring. The reaction was monitored by taking a drop and diluting with CDCl_{3} and following by NMR. After 4 h , the reaction was quenched with water (2 mL). After allowing to cool for five minutes, EtOH was added (50 mL) and the solution was allowed to cool to rt . The resulting precipitate was filtered and washed with ethanol (20 mL) and water (20 mL) to yield 20Ba as a cream-colored powder ($7.38 \mathrm{~g}, 80 \%$). A second precipitate was filtered from the mother liquor containing 20Ba and diphenylacetic acid. Recrystallization of the second precipitate from EtOH yielded an additional $470 \mathrm{mg}(5 \%)$. Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.54$. Molecular ion calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}_{2}$: 364.1308; [M+Na], ESMS found $m / z=364.1310$; IR (neat, cm^{-1}) 1754, 1704; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.35-7.16(13 \mathrm{H}, \mathrm{m}) 6.62(1 \mathrm{H}, \mathrm{s}) 3.54(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz})$ $1.44(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 178.5,173.1,140.4,138.5,138.4$, 129.6, 129.3, 129.2, 128.6, 128.5, 128.3, 127.3, 127.2, 125.2, 123.2, 116.7, 108.1, 57.4, 41.3, 15.9.

1-Diphenylacetyl-3-Ethyloxindole (20Bb). Following the general procedure for the synthesis of 1-diphenylacetyloxindoles, 3-ethyloxindole ($1.024 \mathrm{~g}, 6.4 \mathrm{mmol}$) and diphenylacetyl chloride ($2.87 \mathrm{~g}, 12.4 \mathrm{mmol}, 2.0$ equiv) were heated. When NMR analysis revealed full
conversion (2.5 h), the reaction was quenched, diluted with EtOH and allowed to cool and filtered to yield 20Bb as a cream-colored powder (1.89 g, 84\%). Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=$ 0.56. Molecular ion calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{2}: 378.1470$; $[\mathrm{M}+\mathrm{Na}$], ESMS found $\mathrm{m} / \mathrm{z}=378.1467$; IR (neat, cm^{-1}) 1750, 1706; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.34-7.17$ $(13 \mathrm{H}, \mathrm{m}) 6.63(1 \mathrm{H}, \mathrm{s}) 3.54(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}) 2.05-1.86(2 \mathrm{H}, \mathrm{m}) 0.65(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 177.8,173.1,141.1,138.4,138.4,129.3,129.3,128.5,128.5,128.2$, 127.9, 127.2, 127.2, 125.1, 123.4, 116.5, 57.6, 47.2, 24.4, 9.3.

3-Benzyl-1-diphenylacetyloxindole (20Bc). Following the general procedure for the synthesis of 1-diphenylacetyloxindoles, 3-benzyloxindole ($1.61 \mathrm{~g}, 7.21 \mathrm{mmol}$) and diphenylacetyl chloride ($2.01 \mathrm{~g}, 8.7 \mathrm{mmol}, 1.2$ equiv) were heated. When NMR analysis revealed full conversion (3 h), the reaction was quenched and allowed to cool. Residue was purified by flash chromatography (silica gel, 5% acetone in hexanes) to yield 20Bc as a clear oil ($2.49 \mathrm{~g}, 83 \%$). Analytical tlc, 5% acetone in hexanes, $\mathrm{Rf}=0.19$. Molecular ion calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{NO}_{2}: 440.1626$; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=440.1633$; IR (neat, cm^{-1}) 1750, 1706; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) ठ $8.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.34-7.11(10 \mathrm{H}, \mathrm{m}) 7.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}) 6.96-6.93(2 \mathrm{H}, \mathrm{m})$ $6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 6.59(1 \mathrm{H}, \mathrm{s}) 3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,5.0 \mathrm{~Hz}) 3.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13,7,5.0 \mathrm{~Hz})$ $2.97(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.7,7.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 177.0,172.9,140.7,138.5$, $138.3,136.5,129.3,129.2,129.2,128.5,128.5,128.4,128.3,127.3,127.2,127.2,126.8,124.8$, 124.0, 116.6, 57.4, 47.7, 37.4.

3-(2-(tert-Butyldiphenylsilanyloxy)ethyl)-1-diphenylacetyloxindole (20Bd). To a solution of 3-(2-hydroxyethyl)oxindole ($1.52 \mathrm{~g}, 8.56 \mathrm{mmol}$) in DMF (44) was added imidazole (729 $\mathrm{mg}, 10.7 \mathrm{mmol}, 1.25$ equiv), then tert-butyldiphenylsilyl chloride ($2.5 \mathrm{~mL}, 9.6 \mathrm{mmol}, 1.1$ equiv). After 1 h , the solution extracted from $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ with ether ($3 x 50 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ and dried over MgSO_{4}. After concentration, the yellow oil was purified by crystallization from ethanol/water to yield 3-(2-(tertbutyldiphenylsilanyloxy)ethyl)oxindole (B) as white crystals ($2.15 \mathrm{~g}, 5.17 \mathrm{mmol}, 60 \%$). The mother liquor was purified by flash chromatography (10\% acetone in hexanes) to yield additional B as a white crystalline solid ($305 \mathrm{mg}, 0.734 \mathrm{mmol}, 9 \%$). Analytical tlc, $50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=$
0.3. Molecular ion calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{Si}$: 438.1865; [M+Na], ESMS found $m / z=438.1848$; IR (neat, cm^{-1}) 1706; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}) 7.66(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz})$ $7.51(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.6 \mathrm{~Hz}) 7.44-7.30(16 \mathrm{H}, \mathrm{m}) 7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,7.4 \mathrm{~Hz}) 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0$ $\mathrm{Hz}) 6.99(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.4,7.4,0.8 \mathrm{~Hz}) 6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 3.89-3.73(2 \mathrm{H}, \mathrm{m}) 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $6.6,6.3 \mathrm{~Hz}) 2.32-2.10(2 \mathrm{H}, \mathrm{m}) 1.01(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 180.6,141.7$, $135.6,135.5,133.5,133.4,129.6,129.5,129.3,127.8,127.7,127.6,124.4,122.1,109.7,60.4$, 42.9, 32.7 26.7, 19.1.

Following the general procedure for the synthesis of 1-diphenylacetyloxindoles, B (175 $\mathrm{mg}, 0.42 \mathrm{mmol}$) and diphenylacetyl anhydride ($259 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.5$ equiv) were heated. When NMR analysis revealed full conversion (3 h), the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{~mL})$ and allowed to cool. Recrystallization of the residue from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ yielded 20 Bd as white crystals (185 mg, 72\%). Analytical tlc, 5\% acetone in hexanes, $\mathrm{Rf}=0.14$. Molecular ion calcd for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}: 632.2597$; $\left[\mathrm{M}+\mathrm{Na}\right.$], ESMS found $\mathrm{m} / \mathrm{z}=632.2601$; IR (neat, cm^{-1}) 1754,$1706 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $\left.{ }_{3}, \mathrm{ppm}\right) \delta 8.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.63(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 7.47-7.09(21 \mathrm{H}$, m) $6.61(1 \mathrm{H}, \mathrm{s}) 3.76-3.63(3 \mathrm{H}, \mathrm{m}) 2.13(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}) 0.97(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 177.9,173.0,140.9,138.6,138.5,135.5,135.5,133.3,133.2,129.7,129.6,129.4$, $129.2,128.6,128.3,128.2,127.7,127.7,127.7,127.2,127.1,125.0,123.7,116.7,60.0,57.5$, 43.0, 33.2, 26.7, 19.0.

3-Allyl-1-diphenylacetyloxindole (20Be). According to the method developed by Wenkert ${ }^{11}$, methyl magnesium bromide ($1.7 \mathrm{~mL}, 3.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 5.7 \mathrm{mmol}$) was added dropwise over 5 min to a solution of 3-allylindole ($787 \mathrm{mg}, 5.0 \mathrm{mmol}$) in THF (36 mL). After 30 min tosyl chloride was added in portions over 5 min and solution was stirred for 2 h . The mixture was poured into NaHCO_{3} (sat., 100 mL) and diluted with DCM (100 mL). Layers were separated and organic layer was dried over MgSO_{4}, filtered and evaporated. The dark orange residue was purified by flash chromatography (silica gel, $50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to yield 3-Allyloxindole (C) as an orange solid (554 mg, 64\%). Analytical tlc, $50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.12$. Molecular ion calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}: 196.0738$; $\left[\mathrm{M}+\mathrm{Na}\right.$], ESMS found $\mathrm{m} / \mathrm{z}=196.0743$; IR (neat, cm^{-1}) $1689 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.10(1 \mathrm{H}, \mathrm{br} s) 7.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.20(1 \mathrm{H}$, ddd, $\mathrm{J}=7.4,7.4$,
$0.8 \mathrm{~Hz}) 7.01(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.4,0.8 \mathrm{~Hz}) 6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 5.78(1 \mathrm{H}$, dddd, $J=16.8,10.2$, $7.8,6.3 \mathrm{~Hz}) 5.12(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=16.8,3.1,1.6 \mathrm{~Hz}) 5.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.2,1.6 \mathrm{~Hz}) 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 7.8, 5.1 Hz) 2.88-2.80 ($1 \mathrm{H}, \mathrm{m}$) 2.64-2.56 (1H, m). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 180.1, 141.6, 133.9, 129.2, 127.9, 124.4, 122.2, 118.1, 109.8, 45.8, 34.7.

Following the general procedure for the synthesis of 1-diphenylacetyloxindoles, 3allyloxindole (C, $520 \mathrm{mg}, 3.0 \mathrm{mmol}$) and diphenylacetyl chloride ($1.04 \mathrm{~g}, 4.5 \mathrm{mmol}, 1.5$ equiv) were heated. When NMR analysis revealed full conversion (2.5 h), the reaction was quenched and allowed to cool. Residue was purified by flash chromatography (silica gel, $5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to yield 20 Be as a clear oil ($817 \mathrm{mg}, 74 \%$). Analytical $\mathrm{tlc}, 25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=$ 0.57. Molecular ion calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{NO}_{2}$: 390.1470; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=390.1458$; IR (neat, cm^{-1}) 1750, 1704; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}) 7.34-7.19$ $(11 \mathrm{H}, \mathrm{m}) 7.14(1 \mathrm{H}$, ddd, $J=7.3,7.3,1.0 \mathrm{~Hz}) 6.62(1 \mathrm{H}, \mathrm{s}) 5.41(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.1,10.3,7.8,6.3$ $\mathrm{Hz}) 4.92(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.1,2.9,1.5 \mathrm{~Hz}) 4.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.3,1.5 \mathrm{~Hz}) 3.56(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.3,5.4$ $\mathrm{Hz})$ 2.70-2.64 (1H, m) 2.59-2.53 (1H, m). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ठ 177.0, 173.0, 140.8, 138.4, 138.3, 132.4, 129.2, 128.5, 128.4, 128.3, 127.5, 127.2, 127.1, 125.0, 123.6, 118.7, 116.4, 57.4, 46.0, 35.4 .

1-Diphenylacetyl-3-isopropyloxindole (20Bf). Following the general procedure for the synthesis of 1-diphenylacetyloxindoles, 3-isopropyloxindole ($855 \mathrm{mg}, 4.9 \mathrm{mmol}$) and diphenylacetyl chloride ($2.29 \mathrm{~g}, 9.9 \mathrm{mmol}, 2.0$ equiv) were heated. When NMR analysis revealed full conversion (3 h), the reaction was quenched, diluted with EtOH, allowed to cool, and filtered to yield 20Bf as off-white crystals ($1.50 \mathrm{~g}, 83 \%$). Analytical tlc, 5% acetone in hexanes, $\mathrm{Rf}=0.28$. Molecular ion calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{NO}_{2}$: 392.1626; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=392.1629$; IR (neat, cm^{-} ${ }^{1}$) 1750, 1704; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.32-7.15(13 \mathrm{H}, \mathrm{m}) 6.64$ $(1 \mathrm{H}, \mathrm{s}) 3.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}) 2.36(1 \mathrm{H}, q q d, J=7.3,6.8,4.3 \mathrm{~Hz}) 0.85(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}) 0.75$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta 177.3,173.1,141.3,138.4,138.4,129.3$, 129.3, 128.5, 128.5, 128.2, 127.2, 127.2, 127.1, 124.9, 123.8, 116.4, 57.6, 52.1, 32.2, 18.9, 18.1.

1-Diphenylacetyl-3-phenyloxindole (20Bg). Following the general procedure for the synthesis of 1-diphenylacetyloxindoles, 3-phenyloxindole ($805 \mathrm{mg}, 3.9 \mathrm{mmol}$) and diphenylacetyl
chloride ($1.34 \mathrm{~g}, 5.8 \mathrm{mmol}, 1.5$ equiv) were heated. When NMR analysis revealed full conversion (3.5 h), the reaction was quenched and allowed to cool. Residue was purified by flash chromatography (silica gel, $5 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) to yield $\mathbf{2 0 B g}$ as a white solid ($876 \mathrm{mg}, 56 \%$). Analytical tlc, 25\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.48$. Molecular ion calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{NO}_{2}: 426.1470$; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=426.1472$; IR (neat, cm^{-1}) 1752, 1708; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}, ppm) б $8.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.39-7.17(17 \mathrm{H}, \mathrm{m}) 7.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.02-6.97(2 \mathrm{H}, \mathrm{m}) 6.57$ $(1 \mathrm{H}, \mathrm{s}) 4.70(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.8,173.2,141.0,138.3,138.1,136.2$, 129.3, 129.2, 129.0, 128.8, 128.6, 128.5, 128.3, 128.0, 127.3, 127.2, 125.5, 124.7, 116.6, 57.5, 52.8.

5-Bromo-1-diphenylacetyl-3-methyloxindole (23C). Following the general procedure for the synthesis of 1-diphenylacetyloxindoles, 5 -bromo-3-methyloxindole ($314 \mathrm{mg}, 1.4 \mathrm{mmol}$) and diphenylacetyl chloride ($424 \mathrm{mg}, 1.8 \mathrm{mmol}, 1.3$ equiv) were heated. When NMR analysis revealed full conversion (4 h), the reaction was quenched, diluted with EtOH, allowed to cool, and filtered to yield 23C as an off-white powder (361 mg, 61\%). Analytical tlc, 25\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.5$. Molecular ion calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{BrNO}_{2}: 419.0521$; [M+], El+ found $\mathrm{m} / \mathrm{z}=419.0513$; IR (neat, cm^{-1}) 1756, 1706; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.44(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,1.2 \mathrm{~Hz}) 7.38-7.22(11 \mathrm{H}, \mathrm{m}) 6.57(1 \mathrm{H}, \mathrm{s}) 3.55(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}) 1.44(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 177.5,173.0,139.3,128.3 .138 .1,131.7,131.3,129.3,129.2$, 128.6, 128.5, 127.4, 127.3, 126.4, 118.3, 118.2, 57.4, 41.1, 15.8.

Representative Procedure for Synthesis of Enol Acetates: 2-Acetoxy-1-diphenylacetyl-3-methylindole (20Ca). To a slurry of $20 \mathrm{Ba}(5.01 \mathrm{~g}, 14.7 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(72 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}$ ($10 \mathrm{~mL}, 136 \mathrm{mmol}, 10$ equiv) and the solution was agitated with a mechanical stirrer and placed in a water bath at rt . $\mathrm{AcCl}(5 \mathrm{~mL}, 70.3 \mathrm{mmol}, 5$ equiv) was added dropwise over 5 min (caution: exotherm). After 1 h , solution was poured over water (100 mL) and extracted with DCM (200 mL). Organic layer was washed with NaHCO_{3} (sat., 75 mL), and brine (75 mL) and dried over MgSO_{4}, filtered and concentrated. Recrystallization from ethyl acetate yielded
enol acetate 20Ca as clear white crystals (4.50 g from 3 crops, 80%). Spectral data matched characterization for 2-acetoxy-1-diphenylacetyl-3-methylindole obtained via protection of indole 7.

2-Acetoxy-1-diphenylacetyl-3-ethylindole (20Cb). Following the general procedure for the synthesis of enol acetates, 20Bb ($989 \mathrm{mg}, 2.8 \mathrm{mmol}$) was treated with $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14.3$ mmol, 5 equiv) and $\mathrm{AcCl}(1.0 \mathrm{~mL}, 14.1 \mathrm{mmol}, 5$ equiv). After workup, recrystallization of the residue from EtOH yielded 20 Cb as off-white needles ($825 \mathrm{mg}, 75 \%$). Analytical $\mathrm{tlc}, 25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.45$. Molecular ion calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{3}$: 420.1576; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $\mathrm{m} / \mathrm{z}=$ 420.1575; IR (neat, cm^{-1}) 1791, 1702; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.31-8.26(1 \mathrm{H}, \mathrm{m}) 7.52-$ $7.48(1 \mathrm{H}, \mathrm{m}) 7.34-7.22(12 \mathrm{H}, \mathrm{m}) 5.90(1 \mathrm{H}, \mathrm{s}) 2.49(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}) 1.95(3 \mathrm{H}, \mathrm{s}) 1.21(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 7.4 Hz). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.6,167.7,139.3,136.1,133.3,129.2,128.7$, 127.6, 127.4, 124.9, 123.7, 118.7, 116.3, 111.8, 58.5, 20.1, 16.4, 12.9.

2-Acetoxy-3-benzyl-1-diphenylacetylindole (20Cc). Following the general procedure for the synthesis of enol acetates, 20Bc ($207 \mathrm{mg}, 0.5 \mathrm{mmol}$) was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.34 \mathrm{~mL}, 2.4$ mmol, 5 equiv) and $\mathrm{AcCl}(0.18 \mathrm{~mL}, 2.5 \mathrm{mmol}, 5$ equiv). After workup, recrystallization of the residue from EtOH yielded 20Cc as white needles (136 mg, 60\%). Additional material was isolated from the mother liquor by preparatory thin layer chromatography (5\% acetone in hexanes) to give $15 \mathrm{c}(23 \mathrm{mg}, 10 \%)$. Analytical tlc, 5% acetone in hexanes, $\mathrm{Rf}=0.13$. Molecular ion calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{3}$: 482.1732; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=482.1728$; IR (neat, cm^{-1}) 1791, 1704; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.34-7.16(18 \mathrm{H}, \mathrm{m}) 5.90(1 \mathrm{H}, \mathrm{s})$ $3.84(2 \mathrm{H}, \mathrm{s}) 1.81(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.7,167.5,139.1,138.2,137.4$, $133.2,129.1,128.7,128.6,128.5,127.7,127.4,126.4,125.0,123.8,119.1,116.1,108.7,58.7$, 29.3, 20.0.

2-Acetoxy-3-(2-(tert-Butyldiphenylsilanyloxy)ethyl)-1-diphenylacetylindole (20Cd).

Following the general procedure for the synthesis of enol acetates, 20Bd ($184 \mathrm{mg}, 0.3 \mathrm{mmol}$) was treated with $\mathrm{Et}_{3} \mathrm{~N}$ ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}, 5$ equiv) and $\mathrm{AcCl}(0.11 \mathrm{~mL}, 1.5 \mathrm{mmol}, 5$ equiv). After workup, recrystallization of the residue from EtOH yielded 15d as white needles (104 $\mathrm{mg}, 53 \%$). Additional material was isolated from the mother liquor by preparatory thin layer chromatography (5\% acetone in hexanes) to give 20Cd (29 mg, 15\%). Analytical tlc, 5\% acetone in hexanes, $\mathrm{Rf}=$
0.08. Molecular ion calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}: 674.2703$; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=674.2705$; IR (neat, cm^{-1}) 1791, 1706; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.61-7.60(4 \mathrm{H}$, m) 7.41-7.37 (2H, m) 7.33-7.13 (17H, m) $5.83(1 \mathrm{H}, \mathrm{s}) 3.83(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}) 2.73(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}) 1.83(3 \mathrm{H}, \mathrm{s}) 1.04(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 170.6,167.6,139.2,137.4$, $135.5,133.6,133.0,129.6,129.1,128.7,127.7,127.7,127.4,124.9,123.7,118.8,116.1,107.1$, 62.3, 58.6, 26.8, 26.7, 20.0, 19.2.

2-Acetoxy-3-allyl-1-diphenylacetylindole (20Ce). Following the general procedure for the synthesis of enol acetates, 20be ($305 \mathrm{mg}, 0.83 \mathrm{mmol}$) was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.59 \mathrm{~mL}, 4.2$ mmol, 5 equiv) and $\mathrm{AcCl}(0.29 \mathrm{~mL}, 4.1 \mathrm{mmol}, 5$ equiv). After workup, recrystallization of the residue from EtOH yielded $\mathbf{2 0 C e}$ as white needles ($227 \mathrm{mg}, 67 \%$). Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.51$. Molecular ion calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{3}$: 432.1576; [$\mathrm{M}+\mathrm{Na}$], ESMS found $\mathrm{m} / \mathrm{z}=$ 432.1566; IR (neat, cm^{-1}) 1789, 1704; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ठ 8.31-8.27 (1H, m) 7.50$7.46(1 \mathrm{H}, \mathrm{m}) 7.34-7.22(12 \mathrm{H}, \mathrm{m}) 5.91(1 \mathrm{H}, \mathrm{s}) 5.88$ (1H, ddt, J= 17.2, 10.2, 6.3 Hz$) 5.14$ (1H, ddd, $J=17.2,1.6,1.6 \mathrm{~Hz}) 5.08(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.2,1.6,1.6 \mathrm{~Hz}) 3.24(2 \mathrm{H}, \mathrm{dt}, J=6.3,1.6 \mathrm{~Hz}) 1.92(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 170.6, 167.4, 139.2, 136.9, 134.4, 133.1, 129.1, 128.7, 127.7, 127.4 125.0, 123.8, 118.9, 116.4, 116.2, 107.8, 58.6, 27.6, 20.1.

2-Acetoxy-1-diphenylacetyl-3-isopropylindole (20Cf). Following the general procedure for the synthesis of enol acetates, $20 \mathrm{Bf}(752 \mathrm{mg}, 2.0 \mathrm{mmol})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(1.4$ $\mathrm{mL}, 10 \mathrm{mmol}, 5$ equiv) and $\mathrm{AcCl}(0.18 \mathrm{~mL}, 9.8 \mathrm{mmol}, 5$ equiv). After workup, product was purified by flash chromatography (silica gel, 5\% acetone in hexanes) and then recrystallization from EtOH yielded $\mathbf{2 0 C f}$ as white needles ($357 \mathrm{mg}, 43 \%$). Analytical tlc, 5% acetone in hexanes, $\mathrm{Rf}=0.17$. Molecular ion calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3}$: 434.1732; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=434.1738$; IR (neat, cm^{-} ${ }^{1}$) 1791, 1702; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.26(1 \mathrm{H}, \mathrm{m}) 7.61(1 \mathrm{H}, \mathrm{m}) 7.34-7.23(12 \mathrm{H}, \mathrm{m})$ $5.89(1 \mathrm{H}, \mathrm{s}) 2.86(1 \mathrm{H}$, septet, $\mathrm{J}=7.0 \mathrm{~Hz}) 1.91(3 \mathrm{H}, \mathrm{s}) 1.34(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 170.7, 168.1, 139.3, 135.4, 133.4, 129.2, 128.7, 127.4, 126.7, 124.6, 123.4, 119.8, 116.3, 115.3, 58.6, 25.0, 21.2, 20.1.

2-Acetoxy-1-diphenylacetyl-3-phenylindole (20Cg). Following the general procedure for the synthesis of enol acetates, $\mathbf{2 0 B g}(201 \mathrm{mg}, 0.5 \mathrm{mmol})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL}, 2.5$
mmol, 5 equiv) and $\mathrm{AcCl}(0.18 \mathrm{~mL}, 2.5 \mathrm{mmol}, 5$ equiv). After workup, recrystallization of the residue from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes yielded $\mathbf{2 0 C g}$ as white needles ($191 \mathrm{mg}, 86 \%$). Analytical tlc, 25% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.45$. Molecular ion calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{3}$: 468.1576; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=468.1570 ; \mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1794,1706 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7$ $\mathrm{Hz}) 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) 7.52-7.49(2 \mathrm{H}, \mathrm{m}) 7.46-7.43(2 \mathrm{H}, \mathrm{m}) 7.36-7.27(13 \mathrm{H}, \mathrm{m}) 5.98(1 \mathrm{H}, \mathrm{s})$ $1.76(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 170.9,167.3,139.1,136.5,133.2,131.1,129.1$, 128.8, 128.8, 128.7, 127.6, 127.5, 127.0, 125.3, 124.2, 119.4, 116.3, 111.8, 58.8, 20.2.

2-Acetoxy-5-bromo-1-diphenylacetyl-3-methylindole (23D). Following the general procedure for the synthesis of enol acetates, $\mathbf{2 3 C}(466 \mathrm{mg}, 1.1 \mathrm{mmol})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(0.77$ $\mathrm{mL}, 5.5 \mathrm{mmol}, 5$ equiv) and $\mathrm{AcCl}(0.39 \mathrm{~mL}, 5.5 \mathrm{mmol}, 5$ equiv). After workup, recrystallization of the residue from EtOH yielded 23D as white needles ($228 \mathrm{mg}, 44 \%$). Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.37$. Molecular ion calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrNO}_{3}: 484.0524$; $[\mathrm{M}+\mathrm{Na}$], ESMS found $\mathrm{m} / \mathrm{z}=$ 484.0514; IR (neat, cm^{-1}) 1789, 1698; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$ $7.56(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}) 7.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,2.0 \mathrm{~Hz}) 7.35-7.19(10 \mathrm{H}, \mathrm{m}) 5.88(1 \mathrm{H}, \mathrm{s}) 1.97(3 \mathrm{H}, \mathrm{s})$ 1.95 (3H, s). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 170.5,166.6,139.0,137.4,131.7,130.2,129.1$, 128.8, 127.8, 127.5, 121.2, 117.9, 117.2, 105.5, 58.6, 20.0, 7.6.

Representative Procedure for the AcOLeDMAP-Catalyzed Rearrangement of Enol

Acetates: 3-Acetyl-1-diphenylacetyl-3-methyloxindole (21Aa). To a solution of enol acetate 20Ca ($1.00 \mathrm{~g}, 2.61 \mathrm{mmol}$) in EtOAc (10 mL) at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C, $10.0 \mathrm{mg}, 0.026 \mathrm{mmol}, 1 \mathrm{~mol} \%$) in EtOAc (3 mL). After 24 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and solution was applied to a plug of silica (5 cm x 1 cm) and flushed with 3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}$. After concentration, the pure white crystalline product 21Aa was isolated ($999 \mathrm{mg}, 99 \%, 92 \%$ ee). Enantioenriched product was obtained by crystallization from ether/hexanes by slow diffusion to give 593 mg white crystals enriched in racemate and the mother liquor was concentrated to give 395 mg of 99% ee crystals. Spectral data matched characterization for 3-acetyl-1-diphenylacetyl-3-methyloxindole obtained via DMAP catalysis; mp $=120-122^{\circ} \mathrm{C}(98 \%$ ee $) .[\alpha]_{\mathrm{D}}=-214$ (c= 0.0071, 98\% ee, DCM). HPLC (Chiralcel OD, $4.6 \mathrm{~mm} x$
$25 \mathrm{~cm}, 99: 1$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=9.6 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=12.7 \mathrm{~min}$ (major, (S) according to the negative optical rotation response by the in-line polarimetry detector).

3-Acetyl-1-diphenylacetyl-3-ethyloxindole (21Ab). To a solution of enol acetate $\mathbf{2 0 C b}$ $(40 \mathrm{mg}, 0.1 \mathrm{mmol})$ in EtOAc $(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C) in EtOAc ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}, 10 \mathrm{~mol} \%$). After 2.5 h , the catalyst was quenched with TsOH (10 $\mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel $(5 \mathrm{~cm} \times 1 \mathrm{~cm})$ and flushed with 3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure colorless oil product 21Ab was isolated (39 $\mathrm{mg}, 98 \%, 91 \% \mathrm{ee}$). Analytical $\mathrm{tlc}, 25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.45$. HPLC (Chiralcel OD, 4.6 mm $\times 25 \mathrm{~cm}, 99.95: 0.05$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=32.0 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=41.9 \mathrm{~min}$ (major, (S) according to the negative optical rotation response by the in-line polarimetry detector). Molecular ion calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{3}$: 420.1576; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=420.1584$; IR (neat, cm^{-} ${ }^{1}$) 1750,$1715 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.38(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3$, $7.8,1.5 \mathrm{~Hz}) 7.35-7.21(11 \mathrm{H}, \mathrm{m}) 6.61(1 \mathrm{H}, \mathrm{s}) 2.17(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=13.9,7.3 \mathrm{~Hz}) 2.10(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=13.9$, $7.3 \mathrm{~Hz}) 1.62(3 \mathrm{H}, \mathrm{s}) 0.41(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 199.6,175.3$, 173.0, 141.2, 137.7, 129.5, 129.3, 128.7, 128.5, 127.5, 127.4, 126.4, 125.8, 123.3, 116.5, 67.8, 58.1, 27.4, 26.3, 7.7.

3-Acetyl-3-benzyl-1-diphenylacetyloxindole (21Ac). To a solution of enol acetate 20Cc ($46 \mathrm{mg}, 0.1 \mathrm{mmol}$) in EtOAc (0.4 mL) at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C) in EtOAc ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}, 10 \mathrm{~mol} \%$). After 3 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel $(5 \mathrm{~cm} \times 1 \mathrm{~cm})$ and flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure white solid product 21Ac was isolated ($44 \mathrm{mg}, 96 \%$). The enantiomeric excess of product was determined on the deprotected oxindole 19c. Analytical tlc, 5% acetone in hexanes, $\mathrm{Rf}=0.17$. Molecular ion calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{3}$: 482.1732; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=482.1748$; IR (neat, cm^{-1}) 1748,$1713 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.33-7.20(11 \mathrm{H}, \mathrm{m}) 7.17-7.14(2 \mathrm{H}, \mathrm{m})$ $7.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}) 6.91(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,7.0 \mathrm{~Hz}) 6.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) 6.48(1 \mathrm{H}, \mathrm{s})$ $3.44(2 \mathrm{H}, \mathrm{s}) 1.66(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 199.1,174.8,172.5,141.0,138.0$,
$137.8,134.1,129.7,129.6,129.3,128.7,128.5,128.0,127.4,127.3,127.0,126.0,125.6,123.7$, 116.9, 68.6, 57.6, 39.8, 26.5.

1-Acetyl-3-(2-(tert-Butyldiphenylsilanyloxy)ethyl)-1-diphenylacetyloxindole (21Ad). To a solution of enol acetate 20Cd ($65 \mathrm{mg}, 0.1 \mathrm{mmol}$) in EtOAc (0.4 mL) at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C) in EtOAc ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}, 10 \mathrm{~mol} \%$). After 3 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel ($5 \mathrm{~cm} \times 1 \mathrm{~cm}$) and flushed with $3: 1 \mathrm{Hex}_{\mathrm{H}} \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure white crystalline product 21Ad was isolated ($62 \mathrm{mg}, 94 \%, 91 \%$ ee). Analytical tlc, 5% acetone in hexanes, $\mathrm{Rf}=0.08$. HPLC (Chiralcel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 99.9: 0.1$ hexanes/isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=14.9 \mathrm{~min}(\operatorname{minor}), \mathrm{T}_{\mathrm{R}}=19.4 \min$ (major, (S) according to the negative optical rotation response by the in-line polarimetry detector). Molecular ion calcd for $\mathrm{C}_{42} \mathrm{H}_{41} \mathrm{NO}_{4} \mathrm{Si}$: 674.2703; [M+Na], ESMS found $m / z=674.2712$; IR (neat, cm^{-1}) 1758 , 1715; ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.58-7.55(2 \mathrm{H}, \mathrm{m}) 7.45(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.3,7.8,1.5 \mathrm{~Hz}) 7.42-$ $7.14(18 \mathrm{H}, \mathrm{m}) 7.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,1.0 \mathrm{~Hz}) 6.94(1 \mathrm{H}, \mathrm{s}) 3.44(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=10.7,5.7,3.4 \mathrm{~Hz}) 3.26$ (1H, ddd, J= 11.2, 10.7, 3.4 Hz) 2.62 (1H, ddd, J= 14.6, 11.2, 5.7 Hz) $2.43(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=14.6,3.4$ $\mathrm{Hz}) 1.26(3 \mathrm{H}, \mathrm{s}) 0.89(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 198.8,175.3,172.8,141.5$, $137.9,137.6,135.5135 .2,132.8,132.7,129.7,129.6,129.5,129.5,129.4,128.9,128.2,127.7$, $127.6,127.5,127.2,125.6,125.5,123.8,117.0,65.6,59.8,58.1,34.9,26.6,25.0,18.8$.

3-Acetyl-3-allyl-1-diphenylacetyloxindole (21Ae). To a solution of enol acetate 20Cd (42 mg, 0.1 mmol) in EtOAc $(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C) in EtOAc ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}, 10 \mathrm{~mol} \%$). After 2.5 h , the catalyst was quenched with TsOH (10 $\mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel $(5 \mathrm{~cm} \times 1 \mathrm{~cm})$ and flushed with 3:1 Hex: $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure white crystalline product 21Ae was isolated (41 mg, $98 \%, 85 \%$ ee). Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.55$. HPLC (Chiracel OD, 4.6 $\mathrm{mm} \times 25 \mathrm{~cm}, 99.5: 0.5$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{T}_{\mathrm{R}}=12.7 \mathrm{~min}(\operatorname{minor}), \mathrm{T}_{\mathrm{R}}=15.1 \mathrm{~min}$ (major, (S) according to the negative optical rotation response by the in-line polarimetry detector). Molecular ion calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{3}$: 432.1576; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=432.1569$; IR (neat, cm^{-} ${ }^{1}$) 1750, 1717; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}) 7.41-7.20(11 \mathrm{H}, \mathrm{m}) 7.13$
$(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,0.8 \mathrm{~Hz}) 6.58(1 \mathrm{H}, \mathrm{s}) 5.48(1 \mathrm{H}, \mathrm{dddd}, \mathrm{J}=17.2,10.2,7.8,7.0 \mathrm{~Hz}) 4.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $17.2,1.6 \mathrm{~Hz}) 4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.3 \mathrm{~Hz}) 2.86(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0,7.0 \mathrm{~Hz}) 2.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=14.0,7.8$ $\mathrm{Hz}) 1.67(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 198.9,174.7,172.9,141.0,137.8,137.7$, $130.3,129.7,129.4,129.3,128.7,128.5,127.5,127.4,126.1,125.8,123.4,120.2,116.7,67.0$, 58.0, 38.3, 26.2.

3-Acetyl-1-diphenylacetyl-3-isopropyloxindole (21Af). To a solution of enol acetate 20Cf ($41 \mathrm{mg}, 0.1 \mathrm{mmol}$) in EtOAc $(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C) in EtOAc ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}, 10 \mathrm{~mol} \%$). After 41.5 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel $(5 \mathrm{~cm} \times 1 \mathrm{~cm})$ and flushed with $3: 1{\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL}) \text {. The residue was purified by preparatory thin layer }}^{2}$ chromatography (2.5 \% acetone in hexanes) run twice to yield 21Af as a colorless oil (34 mg , $82 \%, 94 \%$ ee $)$. Analytical tlc, 5% acetone in hexanes, $\mathrm{Rf}=0.19$. HPLC (Regis (R, R)-Whelk-O, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 99: 1$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=16.1 \mathrm{~min}$ (major, (S) according to the negative optical rotation response by the in-line polarimetry detector), $T_{R}=21.7 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3}: 434.1732$; $\left[\mathrm{M}+\mathrm{Na}\right.$], ESMS found $\mathrm{m} / \mathrm{z}=434.1732$; IR (neat, cm^{-} ${ }^{1}$) 1748,$1713 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.28(1 \mathrm{H}$, ddd, $\mathrm{J}=8.2,0.8,0.8 \mathrm{~Hz}) 7.39-7.19$ $(13 \mathrm{H}, \mathrm{m}) 6.61(1 \mathrm{H}, \mathrm{s}) 2.73(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.0,6.6 \mathrm{~Hz}) 1.81(3 \mathrm{H}, \mathrm{s}) 0.81(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) 0.57(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 200.6,174.7,173.0,140.8,137.9,137.8$, 129.4, 129.3, 129.2, 128.6, 128.6, 127.4, 127.4, 126.3, 125.5, 124.1, 116.2, 70.3, 58.1, 35.6, 27.7, 17.0.

3-Acetyl-1-diphenylacetyl-3-phenyloxindole (21Ag). To a solution of enol acetate $\mathbf{2 0 C g}(47 \mathrm{mg}, 0.1 \mathrm{mmol})$ in EtOAc $(0.4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C) in EtOAc ($0.1 \mathrm{~mL}, 0.1 \mathrm{M}, 10 \mathrm{~mol} \%$). After 2 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel $(5 \mathrm{~cm} \times 1 \mathrm{~cm})$ and flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure white crystalline product 21Ag was isolated ($46 \mathrm{mg}, 98 \%$, 66% ee). Analytical $\mathrm{tlc}, 25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.42$. HPLC (Chiralcel AD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 99: 1$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=21.1 \mathrm{~min}$ (major, (S) according to the negative optical rotation response by the in-line polarimetry detector), $\mathrm{T}_{\mathrm{R}}=27.7$
min (minor). Molecular ion calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{3}$: 468.1576; [M+Na], ESMS found $m / z=468.1571$; IR (neat, cm^{-1}) 1752, 1713; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.44(1 \mathrm{H}$, ddd, $J=7.3,6.8,2.0 \mathrm{~Hz}) 7.36-7.20(15 \mathrm{H}, \mathrm{m}) 7.08-7.05(2 \mathrm{H}, \mathrm{m}) 6.54(1 \mathrm{H}, \mathrm{s}) 1.88(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 199.7,173.6,173.1,140.9,137.8,137.8,135.6,129.9,129.3$, $129.3,128.9,128.7,128.5,128.5,128.1,127.4,127.3,125.7,125.7,125.6,116.9,71.7,58.1$, 26.7.

3-Acetyl-5-bromo-1-diphenylacetyl-3-methyloxindole (23E). To a solution of enol acetate 23D ($92 \mathrm{mg}, 0.2 \mathrm{mmol}$) in EtOAc $(0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added a precooled solution of AcOLeDMAP (14C) in EtOAc ($0.2 \mathrm{~mL}, 0.1 \mathrm{M}, 10 \mathrm{~mol} \%$). After 20 min , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and solution was applied to a plug of silica gel ($5 \mathrm{~cm} \times 1 \mathrm{~cm}$) and flushed with $3: 1 \mathrm{Hex}_{\mathrm{Het}}^{2} \mathrm{O}(50 \mathrm{~mL})$. After concentration, the pure white crystalline product 23E was isolated ($88 \mathrm{mg}, 95 \%$, 86% ee). Analytical $\mathrm{tlc}, 25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.5$. HPLC (Chiralcel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$, $95: 5$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=10.2 \mathrm{~min}(\mathrm{minor}), \mathrm{T}_{\mathrm{R}}$ $=17.6 \mathrm{~min}$ (major, (S) according to the negative optical rotation response by the in-line polarimetry detector). Molecular ion calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrNO}_{3}$: 484.0524; [M+Na], ESMS found $m / z=484.0518 ; \operatorname{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1756,1715 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0$ $\mathrm{Hz}) 7.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.6,2.3 \mathrm{~Hz}) 7.36-7.23(11 \mathrm{H}, \mathrm{m}) 6.54(1 \mathrm{H}, \mathrm{s}) 1.52(3 \mathrm{H}, \mathrm{s}) 1.52(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 198.4,175.1,172.9,139.2,137.5,137.4,132.5,130.3,129.3$, 129.2, 128.8, 128.5, 127.6, 127.5, 126.3, 118.9, 118.2, 62.2, 58.1, 25.5, 19.8.

3-Acetyl-3-methyloxindole (24A). To a solution of oxindole 21Aa (200 mg, 0.522 mmol) in $\mathrm{MeCN}(2.2 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{NH}(1.1 \mathrm{~mL}, 10.6 \mathrm{mmol}, 20$ equiv). The solution was heated to $60{ }^{\circ} \mathrm{C}$. After 2 h , the solution was cooled, diluted with chloroform (10 mL) and concentrated. Purification by flash chromatography (20% acetone in hexanes) followed by recrystallization from $\mathrm{Et}_{2} \mathrm{O} /$ hexanes yielded 24 A as a colorless crystalline solid ($75 \mathrm{mg}, 75 \%$). Analytical tlc, $50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.21$. HPLC (Chiralcel AS, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 90: 10$ hexanes/isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=21.4 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=30.0 \mathrm{~min}$ (major). Molecular ion calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{NO}_{2}$: 212.0687; [M+Na], ESMS found $m / z=212.0697$; IR (neat, cm^{-1}) 3265, 1723, 1698; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 9.20(1 \mathrm{H}, \mathrm{br} \mathrm{s}) 7.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,7.4 \mathrm{~Hz}) 7.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.08$
$(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}) 7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 2.06(3 \mathrm{H}, \mathrm{s}) 1.62(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 200.7, 178.5, 141.0, 130.1, 129.2, 123.8, 123.3, 110.5, 62.6, 26.0, 18.9.

3-Acetyl-3-benzyloxindole (e7A). To a solution of oxindole 21Ac ($319 \mathrm{mg}, 0.69 \mathrm{mmol}$) in $\mathrm{MeCN}(3.5 \mathrm{~mL})$ was added $\mathrm{Et}_{2} \mathrm{NH}(1.4 \mathrm{~mL}, 13.5 \mathrm{mmol}, 20$ equiv). The solution was heated to $50^{\circ} \mathrm{C}$. After 4 h , the solution was cooled, diluted with chloroform (10 mL) and concentrated. Purification by flash chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes) yielded e 7 A as a clear, colorless oil ($120 \mathrm{mg}, 65 \%, 94 \% \mathrm{ee}$). Analytical $\mathrm{tlc}, 50 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.31$. HPLC (Chiralcel AD, 4.6 $\mathrm{mm} \times 25 \mathrm{~cm}, 90: 10$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=7.6 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=10.0 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2}$: 288.1000; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=288.1005$; IR (neat, cm^{-1}) 3251, 1721, 1704, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 7.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}) 7.26-7.19(2 \mathrm{H}$, m) 7.11-7.00 (3H, m) $6.86(2 H, d, J=6.6 \mathrm{~Hz}) 6.73(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 3.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}) 3.46$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}$) $2.08(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta ~ 200.5,176.0,141.2,135.0$, 129.9, 129.3, 127.7, 127.3, 126.7, 124.7, 122.9, 109.9, 68.4, 38.7, 26.8.

3-Acetoxy-1-diphenylacetyl-3-methyloxindole (e8A). A solution of oxindole 21Aa (38 $\mathrm{mg}, 0.10 \mathrm{mmol})$ in DCM $(1 \mathrm{~mL})$ was treated with $\mathrm{NaHCO}_{3}(20 \mathrm{mg}, 0.24 \mathrm{mmol}, 2.4$ equiv) and m CPBA ($49 \mathrm{mg}, 0.20 \mathrm{mmol}, 2$ equiv). The solution was heated to reflux. The reaction was monitored by TLC and allowed to cool after consumption of the starting material (8 h). The excess peracid was quenched with NaHSO_{3} (sat., 1 mL) and stirred for 10 min . The solution was diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{DCM}(10 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{DCM}(2 x, 10 \mathrm{~mL})$ and combined organic layers were washed with NaHCO_{3} (sat., 10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and condensed. The crude oil was purified by preparatory TLC ($25 \% \mathrm{Et}_{2} \mathrm{O}$ in Hexanes) to afford e8A as a white solid ($29.2 \mathrm{mg}, 73 \%, 87 \%$ ee) HPLC (Chiralcel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$, 98:2 hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=8.2 \mathrm{~min}$ (major), T_{R} $=10.3 \mathrm{~min}$ (minor). Analytical tlc, 25\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.31$. $\mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1767,1744$, 1710; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ठ $8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.37-7.16(13 \mathrm{H}, \mathrm{m}) 6.54(1 \mathrm{H}, \mathrm{s})$ $2.02(3 \mathrm{H}, \mathrm{s}) 1.40(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 175.0,172.9,169.0,139.8,138.5$, $138.2,130.1,129.3,129.3,128.6,128.5,128.4,127.3,127.1,125.5,121.6,116.9,77.1,57.5$, 23.7, 20.3.

Representative Procedure for the Synthesis of N -Acetyl-Protected Oxindole Enol Carbonates 25A: 1-Acetyl-2-phenoxycarbonoxy-3-methylindole (25Aa). A solution of 1-acetyl-3-methyloxindole (9C, $373 \mathrm{mg}, 1.97 \mathrm{mmol}$) in THF (8 mL) was treated with triethylamine $\left(0.27 \mathrm{~mL}, 1.94 \mathrm{mmol}, 1.0\right.$ equiv) and cooled to $0^{\circ} \mathrm{C}$. Phenyl chloroformate $(0.27 \mathrm{~mL}, 2.2 \mathrm{mmol}$, 1.1 equiv) was added dropwise. The solution was allowed to warm to rt and after 30 min the solvent was removed with a stream of nitrogen. The residue was taken up in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, stirred for 2 h at $0^{\circ} \mathrm{C}$ and the white precipitate was filtered and recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ to yield enol carbonate 25Aa as a white crystalline solid ($373 \mathrm{mg}, 81 \%$). Molecular ion calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{4}$: 332.0899; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=332.0894$; IR (neat, cm^{-1}) 1787, 1704, 1646, 1194; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}) 7.51-7.43(3 \mathrm{H}, \mathrm{m}) 7.38-7.29(5 \mathrm{H}$, m) $2.71(3 \mathrm{H}, \mathrm{s}) 2.21(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.0,150.8,150.6,137.2$, 132.3, 129.8, 128.0, 126.8, 125.2, 123.7, 120.6, 118.8, 115.9, 105.8, 25.1, 7.2.

1-Acetyl-2-methoxycarbonoxy-3-methylindole (25Ab). A solution of 1-acetyl-3methyloxindole (9C, $375 \mathrm{mg}, 1.98 \mathrm{mmol}$) in THF (10 mL) was treated with triethylamine (0.31 mL , $2.2 \mathrm{mmol}, 1.1$ equiv) and cooled to $0^{\circ} \mathrm{C}$. Methyl chloroformate ($0.18 \mathrm{~mL}, 2.3 \mathrm{mmol}, 1.2$ equiv) was added dropwise. The solution was allowed to warm to rt and after 30 min the solvent was removed with a stream of nitrogen. The residue was taken up in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, stirred for 2 h at 0 ${ }^{\circ} \mathrm{C}$ and the white precipitate was filtered and recrystallized from EtOH to yield 25Ab as a colorless crystalline solid ($147 \mathrm{mg}, 30 \%$). Analytical $\mathrm{tlc}, 20 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.41$. Molecular ion calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}: 270.0742$; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=270.0737$; IR (neat, cm^{-1}) 1777, 1704; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.2 \mathrm{~Hz}) 7.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}) 7.34$ (1H, ddd, J= 8.2, 7.4, 1.6 Hz) $7.29(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.4,1.2 \mathrm{~Hz}) 3.99(3 \mathrm{H}, \mathrm{s}) 2.58(3 \mathrm{H}, \mathrm{s}) 2.13$ (3H, s). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.0,152.6,137.2,132.3,128.0,125.1,123.7$, 118.6, 116.2, 105.5, 56.5, 25.9, 7.1.

1-Acetyl-2-ethoxycarbonoxy-3-methylindole (25Ac). Using the general procedure outlined above for the synthesis of enol carbonates, oxindole 9C ($387 \mathrm{mg}, 2.05 \mathrm{mmol}$) yielded enol carbonate 25Ac after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid (392 mg ,
73%). IR (neat, cm^{-1}) 1773, 1706, 1646, 1219; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.30(1 \mathrm{H}, \mathrm{dd}$, $J=7.4,1.2 \mathrm{~Hz}) 7.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,1.9 \mathrm{~Hz}) 7.34(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.4,1.9 \mathrm{~Hz}) 7.29(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.4,1.2$ Hz) $4.41(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}) 2.59(3 \mathrm{H}, \mathrm{s}) 2.13(3 \mathrm{H}, \mathrm{s}) 1.43(3 \mathrm{H}, \mathrm{s})$.

1-Acetyl-2-benzoxycarbonoxy-3-methylindole 25Ad. Using the general procedure outlined above for the synthesis of enol carbonates, oxindole 9C ($369 \mathrm{mg}, 1.95 \mathrm{mmol}$) yielded enol carbonate 25Ad after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid (376 mg , $59 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 7.46-7.37(6 \mathrm{H}, \mathrm{m}) 7.35-7.23$ $(2 \mathrm{H}, \mathrm{m}) 5.33(2 \mathrm{H}, \mathrm{s}) 2.47(3 \mathrm{H}, \mathrm{s}) 2.09(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $\left.\mathrm{Cl}_{3}, \mathrm{ppm}\right) \delta$ 168.0, 152.0, $137.1,134.1,132.4,129.2,128.8,128.7,128.0,125.2,123.7,118.5,116.3,105.5,71.6,25.7$, 7.1.

1-Acetyl-2-iso-propoxycarbonoxy-3-methylindole (25Ae). Using the general procedure outlined above for the synthesis of enol carbonates, oxindole 9C ($378 \mathrm{mg}, 2.00 \mathrm{mmol}$) yielded enol carbonate 25Ae after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid (292 mg, 53\%). IR (neat, cm^{-1}) 1766, 1704, 1648, 1237; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta 8.31$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,1.2 \mathrm{~Hz}) 7.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,1.6 \mathrm{~Hz}) 7.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,7.8,1.6 \mathrm{~Hz}) 7.29(1 \mathrm{H}$, dd, $J=7.8,7.0,1.2 \mathrm{~Hz}) 5.05(1 \mathrm{H}$, septet, $J=6.3 \mathrm{~Hz}) 2.58(3 \mathrm{H}, \mathrm{s}) 2.13(3 \mathrm{H}, \mathrm{s}) 1.42(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3$ $\mathrm{Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 168.0,151.4,137.3,132.4,128.1,125.1,123.6,118.5$, $116.3,105.4,74.9,25.8,21.6,7.1$.

1-Acetyl-3-methyl-3-phenoxycarbonyloxindole (25Ba). Enol carbonate 25Aa (31 mg, $0.1 \mathrm{mmol})$ was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 10 min at rt , DMAP was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a white solid (27 mg). NMR analysis of the residue revealed full conversion to C-carboxylated oxindole 25Ba. IR (neat, cm^{-1}) 1787, 1704, 1646, 1194; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.44-7.38$ $(2 \mathrm{H}, \mathrm{m}) 7.35-7.30(2 \mathrm{H}, \mathrm{m}) 7.28(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.3,1.0 \mathrm{~Hz}) 7.23-7.19(1 \mathrm{H}, \mathrm{m}) 6.95-6.92(1 \mathrm{H}, \mathrm{m})$ $2.74(3 \mathrm{H}, \mathrm{s}) 1.84(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.4,170.8,167.6,150.2,140.1$, $129.7,129.5,128.6,126.4,125.7,122.6,121.0,117.1,56.0,26.7,20.7$.
rac-1-Acetyl-3-methoxycarbonyl-3-methyloxindole (25Bb). Enol carbonate 25Ab (12 $\mathrm{mg}, 0.05 \mathrm{mmol})$ was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.25 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}_{\mathrm{Et}}^{2} \mathrm{O}$, and the eluent evaporated to yield a white solid (11 mg). NMR analysis of the residue revealed full conversion to C-carboxylated oxindole 25 Bb . Analytical tlc, 20\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.33$. Molecular ion calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{4}$: 270.0742; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=270.0739$; IR (neat, cm^{-1}) 1744,$1713 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) ठ $8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.37(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.2,7.4,1.6 \mathrm{~Hz}) 7.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,1.6 \mathrm{~Hz})$ $7.22(1 \mathrm{H}$, ddd, $J=7.4,7.4,1.2 \mathrm{~Hz}) 3.69(3 \mathrm{H}, \mathrm{s}) 2.71(3 \mathrm{H}, \mathrm{s}) 1.74(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 199.4,176.6,170.7,140.0,129.5,128.5,125.8,123.1,117.0,62.6,26.7,26.1$, 20.0.

1-Acetyl-3-ethoxycarbonyl-3-methyloxindole (25Bc). Enol carbonate 25Ac (26 mg, 0.1 mmol) was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at r, DMAP was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}$, and the eluent evaporated to yield a white solid (23 mg). NMR analysis of the residue revealed 97% conversion to C-carboxylated oxindole 25Bc. IR (neat, cm^{-} ${ }^{1}$) 1760, 1740, 1715; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.37(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $8.2,7.4,1.6 \mathrm{~Hz}) 7.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}) 7.22(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.4,0.8 \mathrm{~Hz}) 4.18(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=$ $10.9,7.0 \mathrm{~Hz}) 4.12(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.9,7.0 \mathrm{~Hz}) 2.71(3 \mathrm{H}, \mathrm{s}) 1.73(3 \mathrm{H}, \mathrm{s}) 1.16(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.0,7.0$ $\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.9,170.8,168.9,139.9,129.3,129.1,125.5,122.6$, 116.8, 62.3, 55.8, 26.6, 20.7, 13.8.

1-Acetyl-3-benzoxycarbonyl-3-methyloxindole (25Bd). A solution of enol carbonate 25Ad ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$) in THF (0.25 mL) was treated with a solution of DMAP in THF (12 mM , $0.25 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 30 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}$, and the eluent evaporated to yield a white solid (24 mg). NMR analysis of the residue revealed full conversion to C-carboxylated oxindole 25Bd. IR (neat, $\left.\mathrm{cm}^{-1}\right) 1760,1744,1713 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.25(1 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}) 7.36(2 \mathrm{H}$, ddd, $J=8.2,7.4,1.6 \mathrm{~Hz}) 7.30-7.22(4 \mathrm{H}, \mathrm{m}) 7.19(2 \mathrm{H}$, ddd, $J=7.4,7.4,0.8$
$\mathrm{Hz}) 7.13-7.10(2 \mathrm{H}, \mathrm{m}) 5.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 2.67(3 \mathrm{H}, \mathrm{s}) 1.75(3 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.7,170.8 .168 .7,139.9,135.0,129.4,128.8,128.5,128.3$, 127.4, 125.5, 122.7, 116.9, 67.6, 55.9, 26.6, 20.5.

1-Acetyl-3-methyl-3-iso-propoxycarbonyloxindole (25Be). Enol carbonate 25Ae (27 $\mathrm{mg}, 0.1 \mathrm{mmol})$ was treated with a solution of DMAP in THF ($6 \mathrm{mM}, 0.5 \mathrm{~mL}, 3 \mathrm{~mol} \%$). After 20 min at rt , DMAP was quenched with methyl iodide (0.1 mL) and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a white solid (23 mg). NMR analysis of the residue revealed 69% conversion to C-carboxylated oxindole $25 \mathrm{Be} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.36(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.2,7.8,1.6 \mathrm{~Hz}) 7.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $7.8,1.6 \mathrm{~Hz}) 7.21(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=7.8,7.8,1.2 \mathrm{~Hz}) 4.99(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=6.3,5.9 \mathrm{~Hz}) 2.70(3 \mathrm{H}, \mathrm{s}) 1.72$ $(3 \mathrm{H}, \mathrm{s}) 1.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}) 1.08(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ $176.0,170.9,168.4,139.9,129.3,129.2,125.5,122.5,116.8,70.1,56.0,26.6,21.4,21.2,20.5$.

Representative procedure for Table 2-26: AcOLeDMAP (14C) catalyzed rearrangement of enol carbonate 25Aa to form 4-tert-Butyl-5-(4-dimethylaminopyridin-3-yl)-2-phenyloxazoline (f7A). A solution of enol carbonate 25Aa (31 mg, 0.1 mmol) in THF (0.5 mL) was treated with AcOLeDMAP (14C, $3.6 \mathrm{mg}, 10 \mathrm{~mol} \%$) and the reaction turned purple. After 1 h at rt , catalyst was quenched with methyl iodide $(0.1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with 3:1 $\mathrm{Hex}^{2} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a colorless oil (22 mg). NMR analysis of the residue revealed C-carboxylated oxindole 25Ba (93\%, 29% ee), along with 1-acetyl-3-methyloxindole (9C, 7\%). HPLC conditions for 25Ba (Chiralcel AD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$, 95:5 hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=7.8 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=9.9 \mathrm{~min}$ (minor). Flushing the silica plug with EtOAc yielded a purple oil containing AcOLeDMAP (14C, $\sim 16 \%$ by NMR), oxazoline f7A and an unidentified purple impurity (1.5 mg). Spectral data for f 7 A : Molecular ion calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}: 324.2076$; $[\mathrm{M}+1]$, ESMS found $m / z=324.2064$; IR (neat, cm^{-1}) 1711, 1640; ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $\left.3, \mathrm{ppm}\right) \delta 8.45(1 \mathrm{H}, \mathrm{s}) 8.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}) 7.99(2 \mathrm{H}, \mathrm{m}) 7.48(1 \mathrm{H}, \mathrm{td}$, $J=7.3,1.5 \mathrm{~Hz}) 7.41(2 \mathrm{H}, \mathrm{m}) 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}) 5.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}) 4.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8$
$\mathrm{Hz}) 2.93(6 \mathrm{H}, \mathrm{s}) 2.16(3 \mathrm{H}, \mathrm{s}) 0.95(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 162.3,158.8$, 151.1, 150.1, 131.3, 129.0, 128.4, 128.3, 127.9, 112.9, 84.8, 76.7, 44.2, 34.8, 25.9.

2-Benzoxycarbonoxy-1-diphenylacetyl-3-methylindole (26A). A solution of oxindole 20Ba ($683 \mathrm{mg}, 1.98 \mathrm{mmol}$) in THF (10 mL) was treated with triethylamine $(0.42 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv) and cooled to $0^{\circ} \mathrm{C}$. Benzyl chloroformate ($0.46 \mathrm{~mL}, 3.1 \mathrm{mmol}, 1.5$ equiv) was added dropwise. The solution was allowed to warm to rt and after 30 min the solution was diluted with EtOAc (20 mL) and washed with water (15 mL). The aqueous layer was extracted with EtOAc ($1 \mathrm{x}, 10 \mathrm{~mL}$) and combined organic layers were washed with NaHCO_{3} (sat., 10 mL) and brine (10 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was recrystallized from EtOH to yield 26A as a colorless crystalline solid ($711 \mathrm{mg}, 74 \%, 2$ batches). Molecular ion calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{4}$: 476.1862; $[\mathrm{M}+\mathrm{H}]$, ESMS found $\mathrm{m} / \mathrm{z}=476.1862$; IR (neat, cm^{-1}) 1779, 1702, 1644; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}) 7.44-7.20(18 \mathrm{H}, \mathrm{m}) 5.94(1 \mathrm{H}, \mathrm{s}) 4.97(2 \mathrm{H}, \mathrm{s}) 2.00$ (3H, s). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 170.4,151.1,138.8,136.9,134.0,133.0,129.1$, 129.1, 128.8, 128.6, 128.5, 128.2, 127.3, 125.3, 123.9, 118.5, 116.7, 105.9, 71.4, 58.3, 7.4 .

Monitoring AcOLeDMAP (14C) decomposition over time in the rearrangement of enol carbonate 25Aa. A solution of enol carbonate 25Aa ($31 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL}$) in an NMR tube was treated with AcOLeDMAP (14C, $3.8 \mathrm{mg}, 10 \mathrm{~mol} \%$) at rt and the solution turned purple. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy every 5 min , and the results are tabulated in Table 2-27.

Monitoring AcOLeDMAP (14C) decomposition over time in the rearrangement of enol carbonate 25Aa. A solution of enol carbonate 25Ad ($32 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL}$) in an NMR tube was treated with AcOLeDMAP (14C, $3.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) at rt and the solution turned purple. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy at the intervals specified in Table 2-28.

Representative procedures for screening catalysts for decomposition in the rearrangement of enol carbonate 26A. A solution of enol carbonate 26A ($48 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$ in an NMR tube was treated with AcOLeDMAP (14C, $3.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) at rt and
the solution turned purple. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy every 5-10 minutes.

Acetic acid 1-(4-dimethylaminopyridin-3-yl)-3-methyl-2-toluenesulfonylaminobutyl ester (e12B). To a solution of tBuLi in hexane ($8.0 \mathrm{~mL}, 1.7 \mathrm{M}, 13.6 \mathrm{mmol}$, Acros) at $-78{ }^{\circ} \mathrm{C}$ was added a solution of 3-bromo-4-dimethylaminopyridine ($1.38 \mathrm{~g}, 6.85 \mathrm{mmol}$) in THF (65 mL) dropwise. The resulting solution was added dropwise to a solution of N - p-toluenesulfonyl-valinal e12A $(0.791 \mathrm{~g}, 3.10 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The solution was warmed to rt , and extracted from brine with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x, 50 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated (aspirator). The residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ and treated with $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}$ (1.6 mL, 14 mmol , Fluka). After stirring overnight at rt , the solution was poured into 2 M $\mathrm{NaOH}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x, 10 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}, filtered and evaporated yielding a yellow oil that was purified by flash chromatography to remove excess DMAP (silica gel; $5 \times 15 \mathrm{~cm}$ column) using 20% acetone in hexanes as the eluent, yielding $\mathbf{e} 12 \mathrm{~B}$ as a yellow solid. This material was recrystallized from EtOAc yielding e12B as a white powder ($0.364 \mathrm{~g}, 28 \%$, $>98: 2 \mathrm{dr}$). Additional product was found in the mother liquor but not recovered. Molecular ion calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}: 420.1957$; $[\mathrm{M}+\mathrm{H}]$, ESMS found $m / z=420.1954$; IR (neat, cm^{-1}) 3379 (br), 1737, 1594, 1229, 1152; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.29(1 \mathrm{H}, \mathrm{s}) 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 7.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}) 7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}) 6.78(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 6.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}) 4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.8 \mathrm{~Hz}) 3.67(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $9.8,5.1,4.6 \mathrm{~Hz}) 2.74(6 \mathrm{H}, \mathrm{s}) 2.39(1 \mathrm{H}, \mathrm{s}) 2.04(1 \mathrm{H}, \mathrm{s}) 1.73(1 \mathrm{H}, \mathrm{qqd}, \mathrm{J}=6.6,6.6,5.1 \mathrm{~Hz}) 0.92$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) 0.86(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.5,158.5$, $150.3,149.1,142.7,138.5,129.5,127.2,126.7,114.1,70.1,62.3,43.8,30.7,21.5,21.0,19.4$, 18.3.

3-((2R,3S)-3-Isopropyl-1-p-tosylaziridin-2-yl)-4-dimethylaminopyridine (f9A): A solution of oxindole $26 \mathrm{~A}(48 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$ was treated with N-tosyl catalyst e12B ($4.2 \mathrm{mg}, 0.010 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The reaction was monitored by NMR. After 2 d , the DMAP catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the solution was applied to
 mL) yielded a clear oil containing aziridine f9A (4.0 mg). Molecular ion calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: 360.1746; [M+H], ESMS found $m / z=360.1745$; IR (neat, cm^{-1}) $1588,1326,1158 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}) 8.22(1 \mathrm{H}, \mathrm{s}) 7.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}) 7.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.0 \mathrm{~Hz}) 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}) 4.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}) 2.94(6 \mathrm{H}, \mathrm{s}) 2.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.0,6.8 \mathrm{~Hz})$ $2.43(3 \mathrm{H}, \mathrm{s}) 1.49(1 \mathrm{H}, \mathrm{qqd}, \mathrm{J}=10.0,7.2,6.4 \mathrm{~Hz}) 0.84(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}) 0.81(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz})$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 158.0,150.2,149.7,144.6,135.2,129.7,128.0,118.0,111.0$, $52.8,43.8,42.7,25.5,21.7,21.0,19.2$.

Acetic acid 2-phthaloylamino-1-(4-dimethylaminopyridin-3-yl)-3,3-dimethylbutyl ester (30D). A solution of tert-leucinol (344 mg, 2.9 mmol) in THF (35 mL) and water (10 mL) was treated with N-carbethoxyphthalimide ($653 \mathrm{mg}, 3.0 \mathrm{mmol}$). After stirring overnight at rt, $\mathrm{NaHCO}_{3}(366 \mathrm{mg}, 4.4 \mathrm{mmol})$ was added. After an additional 2 h , the THF was evaporated and the aqueous solution extracted with $\mathrm{Et}_{2} \mathrm{O}(3 x, 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue contained (S)-N-phthalimide tert-leucinol (30B) and ethyl carbamate by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The ethyl carbamate was removed under high vacuum to afford 30B as a white solid ($439 \mathrm{mg}, 60 \%$) which was taken on without further purification.
(S)-N-Phthalimide tert-leucinol (30B, $439 \mathrm{mg}, 1.77 \mathrm{mmol}$) was taken up in DCM (3.5 mL) and treated with $\mathrm{Et}_{3} \mathrm{~N}$ ($1.2 \mathrm{~mL}, 8.60 \mathrm{mmol}$). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{SO}_{3} \cdot$ pyridine ($1.41 \mathrm{~g}, 8.87 \mathrm{mmol}$) in DMSO (5 mL) was added dropwise over 10 min . After 1 h , the solution was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organics were washed with 0.1 M HCl and brine, dried over MgSO_{4}, filtered and concentrated (aspirator). The residue was purified by flash chromatography (silica; $3 \times 15 \mathrm{~cm}$) with $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes as the eluent yielding (S)- N-phthalimide-tert-leucinal as a white solid (30C, $351 \mathrm{mg}, 81 \%$) was isolated. In order to avoid possible racemization, this material was used promptly upon purification.

To a solution of $t B u L i$ in hexane $\left(0.8 \mathrm{~mL}, 1.1 \mathrm{M}, 0.88 \mathrm{mmol}\right.$, Acros) at $-78^{\circ} \mathrm{C}$ was added a solution of 3-bromo-4-dimethylaminopyridine ($92 \mathrm{mg}, 0.46 \mathrm{mmol}$) in THF (2 mL) dropwise. The resulting solution was added dropwise to a solution of $(S)-N$-phthalimide-tert-leucinal (49 mg, 0.20
$\mathrm{mmol})$ in THF (5 mL) at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then quenched with $\mathrm{Ac}_{2} \mathrm{O}(1 \mathrm{~mL})$. The solution was warmed to rt , and the solution was poured into $2 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x, 10 \mathrm{~mL})$, and the combined organic layers were dried over MgSO_{4}, filtered and evaporated yielding a yellow oil that was purified by flash chromatography to remove excess DMAP (silica gel; $5 \times 15 \mathrm{~cm}$ column) using $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc as the eluent, yielding 30D as a yellow solid. This material was recrystallized from toluene/hexanes yielding 30D as a white powder ($8.9 \mathrm{mg}, 11 \%$, >98:2 dr).

2-Dibenzylamino-1-(4-dimethylaminopyridin-3-yl)-3-methylbutanol (30F). To a solution of tBuLi in hexane ($2.8 \mathrm{~mL}, 1.6 \mathrm{M}, 4.9 \mathrm{mmol}$, Acros) at $-78^{\circ} \mathrm{C}$ was added a solution of 3-bromo-4-dimethylaminopyridine ($453 \mathrm{mg}, 2.25 \mathrm{mmol}$) in THF (25 mL) dropwise. The resulting solution was added dropwise to a solution of N, N-dibenzylvalinal (30E, $429 \mathrm{mg}, 1.50 \mathrm{mmol}$) in THF (15 mL) at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then quenched with $\mathrm{Ac}_{2} \mathrm{O}(1.4$ mL). The solution was warmed to rt , and extracted from 2 M NaOH with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}, 50 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated (aspirator). Purification by flash chromatography (30% acetone in hexanes) afforded $\mathbf{3 0 F}$ as a clear oil ($53 \mathrm{mg}, 8 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}) 8.37(1 \mathrm{H}, \mathrm{s}) 7.28-7.18(10 \mathrm{H}, \mathrm{m}) 6.87(1 \mathrm{H}$, d, J= 5.9 Hz$) 6.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}) 3.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}) 3.58(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}) 2.86(1 \mathrm{H}$, dd, J= 5.4, 2.9 Hz$) 2.78(6 \mathrm{H}, \mathrm{s}) 2.67(6 \mathrm{H}, \mathrm{s}) 2.18-2.11(1 \mathrm{H}, \mathrm{m}) 2.12(3 \mathrm{H}, \mathrm{s}) 1.12(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz})$ $0.74(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz})$.

2-Benzoylamino-1-(4-dimethylaminopyridin-3-yl)-3,3-dimethylbutanol (31B). To a solution of tBuLi in hexane ($3.8 \mathrm{~mL}, 0.6 \mathrm{M}, 2.3 \mathrm{mmol}$, Acros) at $-78^{\circ} \mathrm{C}$ was added a solution of 3-bromo-4-dimethylaminopyridine ($232 \mathrm{mg}, 1.15 \mathrm{mmol}$) in THF (11 mL) dropwise. The resulting solution was added dropwise to a solution of N - benzoyl-tert-leucinal ($110 \mathrm{mg}, 0.50 \mathrm{mmol}$) in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The solution was warmed to rt , and extracted from brine with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}, 50 \mathrm{~mL})$. The combined organics were dried over MgSO_{4}, filtered and concentrated (aspirator). The residue was purified by flash chromatrography (40% acetone in hexanes) to yield alcohol 31B as a white solid (120 $\mathrm{mg}, 70 \%$, $\mathrm{dr}>98: 2$). Analytical tlc, $40 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.06$. Molecular ion calcd for
$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}$: 342.2182; $[\mathrm{M}+\mathrm{H}]$, ESMS found $m / z=342.2175$; IR (neat, cm^{-1}) 3303, 1646, 1592, 1513, 1486; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.51(1 \mathrm{H}, \mathrm{s}) 8.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 7.68-7.65$ $(2 \mathrm{H}, \mathrm{m}) 7.46-7.34(3 \mathrm{H}, \mathrm{m}) 6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 6.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}) 5.48(1 \mathrm{H}, \mathrm{s}) 5.40(1 \mathrm{H}$, s) $4.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}) 2.67(6 \mathrm{H}, \mathrm{s}) 1.09(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.4$, $158.5,149.1,148.5,135.0,132.0,131.1,128.5,126.8,114.7,67.1,59.7,44.235 .8,27.5$.

Benzoic acid 2-benzoylamino-1-(4-dimethylaminopyridin-3-yl)-3,3-dimethylbutyl ester (31C). A solution of alcohol 31B ($46 \mathrm{mg}, 0.13 \mathrm{mmol}$) in DCM (0.75 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}$ ($0.05 \mathrm{~mL}, 0.4 \mathrm{mmol}$) and benzoic anhydride ($69 \mathrm{mg}, 0.30 \mathrm{mmol}$). After stirring for 20 h at rt , the solution was poured over NaHCO_{3} (sat., 5 mL) and extracted with DCM ($2 \mathrm{x}, 5 \mathrm{~mL}$). The combined organic layers were washed with NaHCO_{3} (sat., 5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and condensed. The residue contained product and BzOH by NMR and was taken up in $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{NaOH}(2 \mathrm{M}, 10 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}, 10 \mathrm{~mL})$ and combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and condensed to afford the benzoate ester 31C. The ester was purified by recrystallization from ether/hexanes to afford white crystals (35 $\mathrm{mg}, 58 \%$). Analytical tlc, $5 \% \mathrm{MeOH}$ in $\mathrm{DCM}, \mathrm{Rf}=0.41$ Molecular ion calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3}$: 446.2444; [M+H], ESMS found $m / z=446.2446$; IR (neat, cm^{-1}) 3282 (br), 1717, 1661, 1590, 1264, 712; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.52(1 \mathrm{H}, \mathrm{s}) 8.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 8.01-8.06(2 \mathrm{H}, \mathrm{m})$ 7.66-7.61 (3H, m) 7.53-7.40 (5H, m) $6.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}) 6.50(1 \mathrm{H}, \mathrm{d}$, $J=10.6 \mathrm{~Hz}) 4.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,1.5 \mathrm{~Hz}) 2.94(6 \mathrm{H}, \mathrm{s}) 1.11(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$, ppm) $\delta 167.3,165.4,158.3,150.3,147.5,134.9,133.6,131.4,129.5,128.8,128.7,128.5,126.6$, $114.4,70.8,59.0,43.9,35.3,27.3$.

2-Benzoylamino-1-(4-dimethylaminopyridin-3-yl)-3,3-dimethylbutyl methoxymethyl ether (32B). A solution of alcohol 31B (34.1 mg, 0.10 mmol$)$ in $(\mathrm{MeO})_{2} \mathrm{CH}_{2}(1 \mathrm{~mL})$ was added $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(38.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ and a precipitate formed. DCM $(0.5 \mathrm{~mL})$ was added to dissolve the ppt and $\mathrm{LiBr}(3.0 \mathrm{mg})$ was added followed by $\mathrm{P}_{2} \mathrm{O}_{5}(\sim 100 \mathrm{mg})$. After 2 h at rt , an additional batch of $\mathrm{P}_{2} \mathrm{O}_{5}(\sim 100 \mathrm{mg})$ was added. After an additional 30 min , the reaction was quenched slowly with cold NaHCO_{3} (sat., 1 mL). After ensuring the solution was basic by litmus paper, it was extracted with DCM ($2 x, 10 \mathrm{~mL}$) and combined organic layers were washed with cold
NaHCO_{3} (sat., $1 \mathrm{x}, 10 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and condensed. The residue was purified by preparatory TLC (250 micron plate, 25% acetone, $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in hex, developed twice) to afford MOM ether 32B as a clear oil (12 mg, 32\%) Analytical tlc, 25\% acetone, $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in hexanes, $\mathrm{Rf}=$ 0.25. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.33(1 \mathrm{H}, \mathrm{s}) 8.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 7.70-7.68(2 \mathrm{H}, \mathrm{m})$ 7.50-7.39 (3H, m) $6.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 6.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}) 5.60(1 \mathrm{H}, \mathrm{s}) 4.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9$ $\mathrm{Hz}) 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}) 4.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}) 3.44(1 \mathrm{H}, \mathrm{s}) 2.82(6 \mathrm{H}, \mathrm{s}) 1.14(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 167.2, 159.2, 149.6, 148.4, 135.0, 131.2, 128.7, 128.6, 126.7, 114.3, 95.2, 71.3, 59.9, 57.3, 44.1, 35.6, 27.4.

2-Benzoylamino-1-(4-dimethylaminopyridin-3-yl)-3,3-dimethylbutyl benzyl ether (32D). A solution of alcohol 31B ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (1.0 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ and added to sodium hexamethyldisilazide ($65 \mathrm{mg}, 0.35 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ and the solution turned yellow. The alcohol flask was rinsed with THF (0.5 mL) and this solution was added to the NaHMDS solution. After 15 min , a cooled solution of benzyl bromide ($0.20 \mathrm{~mL}, 0.75 \mathrm{M}$ in THF) was added. The solution was allowed to warm gradually over 1.5 h , and then tetrabutylammonium iodide $(5.5 \mathrm{mg}, 0.015 \mathrm{mmol})$ was added. After 7 h , the reaction was poured over brine $(10 \mathrm{~mL})$ and extracted with $\mathrm{DCM}(3 x, 10 \mathrm{~mL})$. Combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and condensed. The residue was purified by flash chromatography (25\% acetone in hexanes) to afford benzyl ether 32D as a white solid ($45 \mathrm{mg}, 71 \%$). The catalyst could be recrystallized from hot hexanes as fine needles. Analytical tlc, 25\% acetone in hexanes, $\mathrm{Rf}=$ 0.14. $\mathrm{mp}=132-135^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}=+22.8(\mathrm{c}=0.0076, \mathrm{DCM})$. Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.14$. Molecular ion calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}: 432.2651$; $[\mathrm{M}+\mathrm{H}]$, ESMS found $m / z=432.2640$; IR (neat, cm^{-1}) 1667, 1586, 1509, 1484; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.49(1 \mathrm{H}, \mathrm{s}) 8.35(1 \mathrm{H}, \mathrm{d}$, $J=5.5 \mathrm{~Hz}) 7.62(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) 7.47-7.31(8 \mathrm{H}, \mathrm{m}) 6.96(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}) 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2$ $\mathrm{Hz}) 5.29(1 \mathrm{H}, \mathrm{s}) 4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}) 4.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}) 4.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10.2 \mathrm{~Hz}) 2.80$ $(6 \mathrm{H}, \mathrm{s}) 1.09(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 167.3,159.6,149.7,148.6,137.2,135.0$, 131.1, 128.8, 128.6, 128.5, 128.1, 126.7, 114.7, 74.0, 71.0, 59.9, 44.3, 35.7, 27.6.

MOM ether catalyst 32B catalyzed rearrangement of enol carbonate 26A. A solution of enol carbonate 26A ($50 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$ in an NMR tube was treated with

MOM ether catalyst 32B ($4.0 \mathrm{mg}, 10 \mathrm{~mol} \%$) at rt and the solution remained colorless. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy every $5-10$ minutes. After 2 h , catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield C -carboxylated oxindole 25 Ba as colorless oil (45 mg, 90\%, 66\% ee). Flushing the silica plug with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc recovered a light yellow oil containing MOM ether 32B unchanged. 3-Benzoxycarbonyl-1-diphenylacetyl-3methyloxindole 26B: HPLC (Chiralcel AD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=13.3 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=15.8 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{4}$: 498.1681; [M+Na], ESMS found $m / z=498.1689$; IR (neat, cm^{-1}) 1762, 1744, 1713; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.38-7.15(16 \mathrm{H}, \mathrm{m})$ 6.99-6.96 (2H, m) $6.56(1 \mathrm{H}, \mathrm{s})$ $4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 4.91(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 1.62(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ ठ 175.0, 173.0, 168.5, 140.2, 138.2, 128.1, 125.0, 129.5, 129.3, 129.1, 128.8, 128.5, 128.5, 128.4, 128.1, 127.3, 127.2, 127.2, 125.6, 122.7, 116.8, 67.4, 57.6, 55.9, 20.3.

Benzyl ether catalyst 32D catalyzed rearrangement of enol carbonate 26A. A solution of enol carbonate $26 \mathrm{~A}(47 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(0.7 \mathrm{~mL})$ was treated with benzyl ether catalyst 32D ($3.9 \mathrm{mg}, 10 \mathrm{~mol} \%$) at rt and the solution remained colorless. After 3 h , catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}$, and the eluent evaporated to yield C -carboxylated oxindole 25Ba as colorless oil ($46 \mathrm{mg}, 97 \%, 61 \%$ ee). Flushing the silica plug with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc recovered a light yellow oil containing benzyl ether 32D unchanged.

Representative procedure for the benzyl ether catalyst 32D catalyzed rearrangement of N-acetyl protected enol carbonates 25A. 1-Acetyl-3-methyl-3phenoxycarbonyloxindole (25Ba). A solution of enol carbonate 25Aa (31 mg, 0.1 mmol) in EtOAc (0.4 mL) was treated with a solution of benzyl ether catalyst 32D in EtOAc $(0.1 \mathrm{~mL}, 0.1 \mathrm{M}$, $10 \mathrm{~mol} \%$) at rt and the solution remained colorless. After 1 h , catalyst was quenched with TsOH $(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}$, and the eluent evaporated to yield C-carboxylated oxindole 25Ba as colorless oil (30 mg, 97\%,
5% ee). Flushing the silica plug with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc recovered a light yellow oil containing benzyl ether 32D unchanged (4.5 mg).

1-Acetyl-3-methoxycarbonyl-3-methyloxindole (25Bb). Following the representative procedure outlined above, enol carbonate $25 A b(24 \mathrm{mg}, 0.1 \mathrm{mmol})$ yielded C-carboxylated oxindole 25 Bb as a clear oil after $5 \mathrm{~h}(23 \mathrm{mg}, 93 \%, 33 \%$ ee). HPLC (Chiralcel OJ, $4.6 \mathrm{~mm} \times 25$ $\mathrm{cm}, 98: 2$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=14.0 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=17.4 \mathrm{~min}$ (major).

1-Acetyl-3-benzyoxycarbonyl-3-methyloxindole (25Bd). Following the representative procedure outlined above, enol carbonate $25 \mathrm{Ad}(32 \mathrm{mg}, 0.1 \mathrm{mmol})$ yielded C-carboxylated oxindole 25Bb as a clear oil after $5 \mathrm{~h}(31 \mathrm{mg}, 95 \%, 40 \%$ ee $)$. HPLC (Regis (R, R)-Whelk-O, 4.6 $\mathrm{mm} \times 25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=13.5 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=15.4 \mathrm{~min}$ (minor).

Representative procedure for the synthesis of N -diphenylacetyl enol carbonates 35A: 1-Diphenylacetyl-2-methoxycarbonoxy-3-methylindole (35Aa). A solution of oxindole 20Ba ($512 \mathrm{mg}, 1.50 \mathrm{mmol}$) in THF $(7.5 \mathrm{~mL})$ was treated with triethylamine $(0.23 \mathrm{~mL}, 1.65 \mathrm{mmol}$, 1.1 equiv) and cooled to $0^{\circ} \mathrm{C}$. Methyl chloroformate ($0.13 \mathrm{~mL}, 1.68 \mathrm{mmol}, 1.1$ equiv) was added dropwise. The solution was allowed to warm to rt and after 30 min the solution was diluted with EtOAc $(20 \mathrm{~mL})$ and washed with water $(15 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc $(1 x, 10 \mathrm{~mL})$ and combined organic layers were washed with NaHCO_{3} (sat., 10 mL) and brine (10 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was recrystallized from EtOH to yield 35Aa as a colorless crystalline solid ($441 \mathrm{mg}, 75 \%, 2$ batches). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right)$ δ 8.44-8.40 (1H, m) 7.46-7.43 (1H, m) 7.35-7.23 (12H, m) $5.99(1 \mathrm{H}, \mathrm{s}) 3.61(3 \mathrm{H}, \mathrm{s}) 2.06(3 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.4,151.7,138.8,136.9,132.9,129.2,128.6,128.2,127.3$, 125.3, 123.9, 118.5, 116.7, 105.9, 58.3, 56.2, 7.4.

1-Diphenylacetyl-3-methyl-2-(2,2,2-trichloro-1,1-dimethylethoxy)carbonoxyindole

(35Ab). Using the general procedure outlined above for the synthesis of N-diphenylacetyl enol carbonates, oxindole 20Ba (259 mg, 0.76 mmol) yielded enol carbonate 35Ab after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid (134 mg, 32\%). IR (neat, cm^{-1}) 1785, 1706, 1644; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 7.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz})$
7.36-7.23 (12H, m) $5.99(1 \mathrm{H}, \mathrm{s}) 2.09(2 \mathrm{H}, \mathrm{s}) 1.83(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ $170.5,148.3,138.7,136.8,133.0,129.1,128.7,128.1,127.4,125.4,123.9,118.5,116.6,105.9$, 104.6, 92.1, 77.2, 58.1, 20.9, 7.5.

1-Diphenylacetyl-3-methyl-2-phenoxycarbonoxyindole (35Ac). Using the general procedure outlined above for the synthesis of N-diphenylacetyl enol carbonates, oxindole 20Ba $(512 \mathrm{mg}, 1.50 \mathrm{mmol})$ yielded enol carbonate 35Ac after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid ($606 \mathrm{mg}, 88 \%$). Molecular ion calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{NO}_{4}$: 484.1525; [$\mathrm{M}+\mathrm{Na}$], ESMS found $m / z=484.1520$; IR (neat, cm^{-1}) $1785,1702,1644,1201 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) $\delta 8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.40-7.23(15 \mathrm{H}, \mathrm{m}) 7.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz})$ $6.09(1 \mathrm{H}, \mathrm{s}) 2.15(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.5,150.7,149.6,138.8,136.8$, $132.8,129.5,129.1,128.7,128.2,127.4,126.6,125.4,124.0,120.4,118.7,116.5,106.1,58.4$, 7.6.

2-iso-Butoxycarbonoxy-1-diphenylacetyl-3-methylindole (35Ag). Using the general procedure outlined above for the synthesis of N-diphenylacetyl enol carbonates, oxindole 20Ba ($514 \mathrm{mg}, 1.51 \mathrm{mmol}$) yielded enol carbonate 35 Ag after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid (548 mg, 82\%). IR (neat, cm^{-1}) 1781, 1702, 1644; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 8.45-8.41(1H, m) 7.46-7.42 (1H, m) 7.35-7.23(12H, m) $6.00(1 \mathrm{H}, \mathrm{s}) 3.75(2 \mathrm{H}, \mathrm{d}$, $J=6.7,6.7 \mathrm{~Hz}) 2.06(3 \mathrm{H}, \mathrm{s}) 1.94\left(1 \mathrm{H}\right.$, dseptet, $J=0.94(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.5,151.2,138.8,137.0,133.0,129.2,128.6,128.3,127.3,125.3,123.9,118.4$, 116.7, 105.7, 75.8, 58.2, 27.6, 18.8 7.4.

1-Diphenylacetyl-3-methyl-2-(2,2,2-trichloroethoxy)carbonoxyindole (35Ab). Using the general procedure outlined above for the synthesis of N-diphenylacetyl enol carbonates, oxindole 20Ba ($255 \mathrm{mg}, 0.75 \mathrm{mmol}$) yielded enol carbonate 35Ab after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid (225 mg, 58\%). IR (neat, cm^{-1}) 1793, 1706, 1644; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 7.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) 7.37-7.24(12 \mathrm{H}, \mathrm{m}) 5.97$ $(1 \mathrm{H}, \mathrm{s}) 4.23(2 \mathrm{H}, \mathrm{s}) 2.08(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.2,150.2,138.7,136.4$, 132.9, 129.2, 128.6, 128.0, 127.4, 125.6, 124.1, 118.7, 116.8, 106.3, 93.6, 77.4, 58.5, 7.4.

1-Diphenylacetyl-2-ethoxycarbonoxy-3-methylindole (35Af). Using the general procedure outlined above for the synthesis of N -diphenylacetyl enol carbonates, oxindole 20Ba ($514 \mathrm{mg}, 1.51 \mathrm{mmol}$) yielded enol carbonate 35Af after recrystallization from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ as a white crystalline solid ($454 \mathrm{mg}, 73 \%$). IR (neat, cm^{-1}) 1779, 1702, 1644; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.46-7.42(1 \mathrm{H}, \mathrm{m}) 7.35-7.23(12 \mathrm{H}, \mathrm{m}) 6.00(1 \mathrm{H}, \mathrm{s}) 3.99$ $(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}) 2.06(3 \mathrm{H}, \mathrm{s}) 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.5$, 151.0, 138.9, 137.0, 132.9, 129.1, 128.5, 128.3, 127.3, 125.3, 123.9, 118.5, 116.7, 105.8, 66.0, 58.2, 13.9, 7.4.

2-Allyloxycarbonoxy-1-diphenylacetyl-3-methylindole (35Ag). Using the general procedure outlined above for the synthesis of N-diphenylacetyl enol carbonates, oxindole 20Ba ($512 \mathrm{mg}, 1.50 \mathrm{mmol}$) yielded enol carbonate $\mathbf{3 5 A g}$ after recrystallization from hexanes $/ \mathrm{Et}_{2} \mathrm{O}$ as a white crystalline solid ($498 \mathrm{mg}, 78 \%$). IR (neat, cm^{-1}) 1781, 1702, 1644; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}) 7.46-7.42(1 \mathrm{H}, \mathrm{m}) 7.35-7.23(13 \mathrm{H}, \mathrm{m}) 5.99(1 \mathrm{H}, \mathrm{s}) 5.89$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.2,10.2,5.9 \mathrm{~Hz}) 5.38(1 \mathrm{H}, \mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}) 5.32(1 \mathrm{H}, \mathrm{dd}, J=10.2,1.2 \mathrm{~Hz}) 4.41$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.9,1.6,1.2 \mathrm{~Hz}$) $2.06(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 170.5,150.9$, 138.8, 136.9, 132.9, 130.3, 129.2, 128.6, 128.2, 127.3, 125.3, 123.9, 120.1, 118.5, 116.7, 105.9, 70.127, 58.3, 7.4.

1-Diphenylacetyl-3-methyl-2-p-nitrobenzoxycarbonoxyindole (35Ah). Using the general procedure outlined above for the synthesis of N-diphenylacetyl enol carbonates, oxindole 20Ba ($256 \mathrm{mg}, 0.75 \mathrm{mmol}$) yielded enol carbonate 35Ah after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as a white crystalline solid ($254 \mathrm{mg}, 65 \%$). IR (neat, cm^{-1}) 1783, 1702, 1644, 1212; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 8.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.45$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.6,2.0 \mathrm{~Hz}) 7.35-7.21(13 \mathrm{H}, \mathrm{m}) 5.95(1 \mathrm{H}, \mathrm{s}) 5.01(2 \mathrm{H}, \mathrm{s}) 2.04(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.3,151.1,148.1,141.0,138.7,136.8,132.8,129.1,128.6,128.4,128.1$, 127.4, 125.5, 124.0, 123.9, 118.7, 116.5, 106.1, 69.4, 58.4, 7.3.

1-Diphenylacetyl-3-methyl-2-(1-naphthyl)methoxycarbonoxyindole (35Ai). A solution of oxindole 20Ba ($468 \mathrm{mg}, 1.40 \mathrm{mmol}$) in THF (7 mL) was treated with triethylamine $(0.3 \mathrm{~mL}, 2.0$ mmol, 1.4 equiv) and cooled to $0^{\circ} \mathrm{C}$. 1-Naphthylmethyl chloroformate ($455 \mathrm{mg}, 1.8 \mathrm{mmol}, \sim 85 \%$,
1.3 equiv) was added. The solution was allowed to warm to rt and after 1 h the solution was diluted with EtOAc (20 mL) and washed with water $(15 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc (1x, 10 mL) and combined organic layers were washed with NaHCO_{3} (sat., 10 mL) and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ to yield enol carbonate 35Ai as a white crystalline solid ($486 \mathrm{mg}, 68 \%$). Analytical tlc, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.26$. Molecular ion calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{NO}_{4}$: 548.1891; [$\mathrm{M}+\mathrm{Na}$], ESMS found $m / z=548.1853$; IR (neat, cm^{-1}) 1777, 1702, 1644; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.42$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}) 8.00-7.95(1 \mathrm{H}, \mathrm{m}) 7.93-7.83(2 \mathrm{H}, \mathrm{m}) 7.57-7.50(3 \mathrm{H}, \mathrm{m}) 7.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.1$, $6.7 \mathrm{~Hz}) 7.43-7.40(1 \mathrm{H}, \mathrm{m}) 7.34-7.41(13 \mathrm{H}, \mathrm{m}) 5.87(1 \mathrm{H}, \mathrm{s}) 5.49(2 \mathrm{H}, \mathrm{s}) 1.94(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.4,151.2,138.7,136.9,133.7,132.9,131.4,130.1,129.5,129.1$, $128.9,128.5,128.2,128.1,127.2,126.9,126.2,125.3,125.2,123.9,123.2,118.5,116.7,105.9$, 69.7, 58.3, 7.3.

Representative procedure for the rearrangement of \boldsymbol{N}-diphenylacetyl enol carbonates 35A using benzyl ether 32D: 1-Diphenylacetyl-3-methoxycarbonyl-3methyloxindole (35Ba). A solution of enol carbonate 35Aa ($39 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$ was treated with benzyl ether catalyst 32D ($4.3 \mathrm{mg}, 10 \mathrm{~mol} \%$). After 4 h at rt , catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield C -carboxylated oxindole 35 Ba as a white solid (33 mg, 84\%, 12\% ee). The catalyst could be recovered by flushing the silica plug with 5\% $\mathrm{Et}_{3} \mathrm{~N}$ in EtOAc (20 mL). HPLC (Chiralcel AS, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}) \mathrm{T}_{\mathrm{R}}=6.9 \mathrm{~min}($ minor $), \mathrm{T}_{\mathrm{R}}=9.3 \mathrm{~min}\left(\right.$ major). $\mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 1762,1739,1702 ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.38-7.18(13 \mathrm{H}, \mathrm{m}) 6.58(1 \mathrm{H}, \mathrm{s}) 3.45(3 \mathrm{H}, \mathrm{s})$ $1.61(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.1,173.1,169.2,140.2,138.1,138.0,129.5$, $129.3,129.3,128.9,128.6,128.5,127.3,127.2,125.6,122.7,116.8,57.7,55.6,53.1,20.4$.

1-Diphenylacetyl-3-methyl-3-(2,2,2-trichloro-1,1-dimethylethoxy)carbonyloxindole

(35Bb). Following the representative procedure outlined above for rearrangement of N diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35Ab (54 mg, 0.1 mmol) yielded C-carboxylated oxindole 35 Bb as a clear oil after $6 \mathrm{~h}(54 \mathrm{mg}, 99 \%, 18 \% \mathrm{ee})$.

HPLC (Chiralcel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 99.5: 0.5$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=8.2 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=10.3 \mathrm{~min}$ (minor). $\quad \mathrm{IR}$ (neat, cm^{-1}) 1766, 1748, 1713; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm) б $8.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.38-7.17(13 \mathrm{H}, \mathrm{m}) 6.54(1 \mathrm{H}, \mathrm{s}) 1.81(3 \mathrm{H}, \mathrm{s}) 1.67(3 \mathrm{H}, \mathrm{s}) 1.61(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 174.5,172.8,166.4,140.6,138.3,138.3,129.5,129.4$, $129.1,128.8,128.6,128.5,127.3,127.3,125.6,122.3,117.2,105.1,90.1,57.4,57.0,21.2,20.7$, 19.6.

1-Diphenylacetyl-3-methyl-3-phenoxycarbonyloxindole (35Bc). Following the representative procedure outlined above for rearrangement of N-diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35Ac ($46 \mathrm{mg}, 0.1 \mathrm{mmol}$) yielded C-carboxylated oxindole 35Bc as a white solid after $2 \mathrm{~h}(44 \mathrm{mg}, 96 \%, 32 \%$ ee). HPLC (Chiralcel AS, $4.6 \mathrm{~mm} \times 25$ $\mathrm{cm}, 99: 1$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=10.0 \mathrm{~min}$ (minor), $\mathrm{T}_{\mathrm{R}}=11.4 \mathrm{~min}$ (major). IR (neat, cm^{-1}) 1766, 1752, 1717; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.40$ (1H, ddd, J= 8.2, 7.4, 1.6 Hz$) 7.37-7.10(16 \mathrm{H}, \mathrm{m}) 6.71-6.68(2 \mathrm{H}, \mathrm{m}) 6.62(1 \mathrm{H}, \mathrm{s}) 5.49(2 \mathrm{H}, \mathrm{s}) 1.70$ $(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 174.7,173.1,167.3,150.0,140.4,138.2,137.9$, $129.8,129.4,129.2,129.1,128.7,128.6,128.5,127.4,127.2,126.2,125.8,122.6,121.0,117.1$, 57.8, 56.0, 20.3.

3-iso-Butoxycarbonyl-1-diphenylacetyl-3-methyloxindole (35Bd). Following the representative procedure outlined above for rearrangement of N-diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35Ad ($40 \mathrm{mg}, 0.1 \mathrm{mmol}$) yielded C-carboxylated oxindole 35Bd as a white solid after $4 \mathrm{~h}(39 \mathrm{mg}, 98 \%, 41 \%$ ee). HPLC (Chiralcel OD, $4.6 \mathrm{~mm} x$ $25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=17.3 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=20.2 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{4}$: 464.1838; [M+Na], ESMS found $m / z=464.1830$; IR (neat, cm^{-} ${ }^{1}$) 1762, 1740, 1713; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.37-7.17(13 \mathrm{H}$, m) $6.61(1 \mathrm{H}, \mathrm{s}) 5.49(2 \mathrm{H}, \mathrm{s}) 3.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,6.6 \mathrm{~Hz}) 3.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.6,6.6 \mathrm{~Hz}) 1.62$ (1H, ddqq, J= 6.6, 6.6, 6.6, 6.6 Hz$) 1.63(3 \mathrm{H}, \mathrm{s}) 0.66(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.2,173.0,168.7,140.2,138.3,138.2,129.4,129.3,129.2,128.6,128.5$, $127.3,127.2,125.6,122.6,116.9,71.8,57.5,56.0,27.5,20.3,18.6$.

1-Diphenylacetyl-3-methyl-3-(2,2,2-trichloroethoxy)carbonyloxindole
(35Be).
Following the representative procedure outlined above for rearrangement of N-diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35Ae ($53 \mathrm{mg}, 0.1 \mathrm{mmol}$) yielded C carboxylated oxindole 35Be as a white solid after HPLC (Chiralcel OD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$, 99.5:0.5 hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=12.2 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=14.3 \mathrm{~min}$ (minor). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.39-7.18(13 \mathrm{H}, \mathrm{m}) 6.58(1 \mathrm{H}, \mathrm{s}) 4.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.0$ $\mathrm{Hz}) 4.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0 \mathrm{~Hz}) 1.69(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 174.2,172.8$, $167.1,140.4,138.1,129.8,129.2,129.2,128.6,128.1,127.3,127.3,125.6,122.9,117.0,94.0$, 74.1, 57.5, 55.8, 20.0.

1-Diphenylacetyl-3-ethoxycarbonyl-3-methyloxindole (35Bf). Following the representative procedure outlined above for rearrangement of N-diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35Af (42 mg, 0.1 mmol) yielded C-carboxylated oxindole 35Bf as a white solid after 4 h ($40 \mathrm{mg}, 95 \%, 48 \%$ ee). HPLC (Chiralcel OD, $4.6 \mathrm{~mm} \times 25$ cm, 99.8:0.2 hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=34.5 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=45.3 \mathrm{~min}$ (minor). IR (neat, cm^{-1}) 1760, 1739, 1711; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.38-$ $7.18(13 \mathrm{H}, \mathrm{m}) 6.60(1 \mathrm{H}, \mathrm{s}) 4.00(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,7.4 \mathrm{~Hz}) 3.92(1 \mathrm{H}, \mathrm{dq}, \mathrm{J}=10.5,7.0 \mathrm{~Hz}) 1.61(3 \mathrm{H}$, s) $0.96(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.0) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.2,173.1,168.7,140.2$, $138.2,138.2,129.4,129.3,129.2,129.1,128.5,128.5,127.3,127.3,125.6,122.6,116.6,62.2$, 57.6, 55.8, 20.5, 13.7.

3-Allyloxycarbonyl-1-diphenylacetyl-3-methyloxindole (35Bg). Following the representative procedure outlined above for rearrangement of N-diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35 Ag ($43 \mathrm{mg}, 0.1 \mathrm{mmol}$) yielded C-carboxylated oxindole 35 Bg as a white solid after $4 \mathrm{~h}(39 \mathrm{mg}, 91 \%, 52 \%$ ee). HPLC (Chiralcel OD, $4.6 \mathrm{~mm} x$ 25 cm , 99.8:0.2 hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=39.3 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=53.7 \mathrm{~min}$ (minor). IR (neat, cm^{-1}) 1762, 1742, 1711, 1127; (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.38-$ $7.18(13 \mathrm{H}, \mathrm{m}) 6.59(1 \mathrm{H}, \mathrm{s}) 5.57(1 \mathrm{H}$, dddd, $J=17.2,10.5,5.5,5.1 \mathrm{~Hz}) 5.07(1 \mathrm{H}$, ddd, $J=10.5,1.6$, $1.2 \mathrm{~Hz}) 4.99(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=17.2,1.6,1.2 \mathrm{~Hz}) 4.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1,1.6,1.2 \mathrm{~Hz}) 4.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $5.4,1.6,1.2 \mathrm{~Hz}) 1.62(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 175.0,173.1,168.4,140.2$,
138.2, 138.1, 130.9, 129.5, 129.3, 129.2, 129.0, 128.6, 127.3, 127.2, 125.6, 122.7, 118.,2, 116.9, 66.2, 57.6, 55.8, 20.4.

1-Diphenylacetyl-3-methyl-3-p-nitrobenzoxycarbonyloxindole (35Bh). Following the representative procedure outlined above for rearrangement of N-diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35Ah ($53 \mathrm{mg}, 0.1 \mathrm{mmol}$) yielded C-carboxylated oxindole 35Bh as a white solid after $4 \mathrm{~h}(49 \mathrm{mg}, 92 \%, 55 \% \mathrm{ee})$. HPLC (Chiralcel AD, $4.6 \mathrm{~mm} \times 25$ $\mathrm{cm}, 90: 10$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=14.8 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=18.3 \mathrm{~min}$ (minor). $\quad \operatorname{IR}$ (neat, cm^{-1}) 1760, 1744, 1711; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.32(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,0.8 \mathrm{~Hz})$ $8.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}) 7.40(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=8.2,6.6,2.3 \mathrm{~Hz}) 7.36-7.16(13 \mathrm{H}, \mathrm{m}) 7.03(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8$ $\mathrm{Hz}) 6.59(1 \mathrm{H}, \mathrm{s}) 5.49(2 \mathrm{H}, \mathrm{s}) 1.65(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 1174.8,173.0$, 168.3, 147.6, 142.2, 140.3, 138.1, 130.0, 129.8, 129.3, 129.1, 128.6, 128.5, 128.5, 127.4, 127.4, $127.3,125.8,123.7,122.6,117.0,65.7,57.6,55.9,20.2$.

1-Diphenylacetyl-3-methyl-3-(1-naphthyl)methoxycarbonyloxindole (35Bi). Following the representative procedure outlined above for rearrangement of N -diphenylacetyl enol carbonates 35A using benzyl ether 32D, enol carbonate 35Ai ($53 \mathrm{mg}, 0.1 \mathrm{mmol}$) yielded C carboxylated oxindole 35Bi as a viscous oil after 4 h ($53 \mathrm{mg}, 99 \%, 71 \%$ ee). Analytical tlc, 10\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.22$. HPLC (Chiralcel AD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, 1.0 $\mathrm{mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=15.4 \mathrm{~min}$ (major), $\mathrm{T}_{\mathrm{R}}=19.7 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{NO}_{4}$: 548.1891; [M+Na], ESMS found $m / z=548.1859$; IR (neat, cm^{-1}) 1760, 1740, 1711; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.57-$ $7.39(3 \mathrm{H}, \mathrm{m}) 7.38-7.04(15 \mathrm{H}, \mathrm{m}) 6.44(1 \mathrm{H}, \mathrm{s}) 5.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}) 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz})$ 1.61 ($1 \mathrm{H}, \mathrm{s}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 174.9,173.0,168.5,138.22,138.0,133.5$, 131.1, 130.2, 129.4, 129.3, 129.0, 128.7, 128.5, 128.4, 127.3, 127.1, 126.9, 126.5, 125.9, 125.5, 125.1, 123.1, 122.6, 116.8, 66.4, 57.5, 56.0, 20.1.

3-Benzyl-1-diphenylacetyl-2-(1-naphthyl)methoxycarbonoxyindole (36A). A solution of oxindole 20Bc ($263 \mathrm{mg}, 0.63 \mathrm{mmol}$) in THF (3.2 mL) was treated with triethylamine $(0.18 \mathrm{~mL}$, $1.3 \mathrm{mmol}, 2.1$ equiv) and cooled to $0{ }^{\circ} \mathrm{C}$. 1-Naphthylmethyl chloroformate ($205 \mathrm{mg}, 0.79 \mathrm{mmol}$, $\sim 85 \%, 1.3$ equiv) was added. The solution was allowed to warm to rt and after 1 h the solution
was diluted with EtOAc (20 mL) and washed with water (15 mL). The aqueous layer was extracted with EtOAc (1x, 10 mL) and combined organic layers were washed with NaHCO_{3} (sat., 10 mL) and brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was recrystallized from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ to yield enol carbonate 36 A as small white needles ($267 \mathrm{mg}, 70 \%$). Analytical tlc, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.19$. Molecular ion calcd for $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{NO}_{4}$: 624.2151; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=624.2154$; IR (neat, $\left.\mathrm{cm}^{-1}\right) 1779,1706,1636,1200 ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}) 7.93-7.86(3 \mathrm{H}, \mathrm{m}) 7.53-7.41(4 \mathrm{H}, \mathrm{m}) 7.30-7.05(18 \mathrm{H}, \mathrm{m})$ $5.85(1 \mathrm{H}, \mathrm{s}) 5.40(2 \mathrm{H}, \mathrm{s}) 3.79(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.6,151.4,138.6$, $138.1,137.5,133.7,133.1,131.4,130.1,129.4,129.1,128.8,128.5,128.5,128.4,128.2,127.5$, $127.3,126.9,126.3,126.2,125.3,125.2,123.9,123.2,119.2,116.5,108.7,69.8,58.4,29.0$.

3-(2-(tert-Butyldiphenylsilanyloxy)ethyl)-1-diphenylacetyl-2-(1-naphthyl)methoxy

carbonoxyindole (36B). A solution of oxindole 20Bd ($608 \mathrm{mg}, 1.00 \mathrm{mmol}$) in THF (5 mL) was treated with triethylamine ($0.21 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.5$ equiv) and cooled to $0{ }^{\circ} \mathrm{C}$. 1-Naphthylmethyl chloroformate ($336 \mathrm{mg}, 1.3 \mathrm{mmol}, \sim 85 \%, 1.3$ equiv) was added. The solution was allowed to warm to rt and after 1 h the solution was diluted with EtOAc (20 mL) and washed with water (15 $\mathrm{mL})$. The aqueous layer was extracted with EtOAc (1x, 10 mL) and combined organic layers were washed with NaHCO_{3} (sat., 10 mL) and brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was purified by flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hex) to yield enol carbonate 36B as a viscous oil that solidified on standing ($569 \mathrm{mg}, 72 \%$). Analytical tlc, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.22$. Molecular ion calcd for $\mathrm{C}_{52} \mathrm{H}_{47} \mathrm{NO}_{5} \mathrm{Si}$: 816.3121; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=$ 816.3148; IR (neat, cm^{-1}) 1779, 1706, 1638; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.2 \mathrm{~Hz}) 7.95-7.86(3 \mathrm{H}, \mathrm{m}) 7.59-7.06(27 \mathrm{H}, \mathrm{m}) 5.81(1 \mathrm{H}, \mathrm{s}) 5.42(2 \mathrm{H}, \mathrm{s}) 3.77(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz})$ $2.70(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) 1.00(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 170.5,151.6,138.6$, $137.5,135.5,133.7,133.6,132.9,131.3,130.0,129.6,129.5,129.0,128.8,128.5,127.9,127.6$, 127.6, 127.2, 126.9, 126.2, 125.2, 125.1, 123.8, 123.1, 119.0, 116.5, 107.0, 69.7, 62.3, 58.3, $26.8,26.5,19.1$.

1-Diphenylacetyl-2-(1-naphthyl)methoxycarbonoxy-3-phenylindole (36C). A solution of oxindole $20 \mathrm{Bg}(101 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF $(1.3 \mathrm{~mL})$ was treated with triethylamine $(0.05 \mathrm{~mL}$,
$0.36 \mathrm{mmol}, 1.4$ equiv) and cooled to $0^{\circ} \mathrm{C}$. 1-Naphthylmethyl chloroformate ($123 \mathrm{mg}, 0.47 \mathrm{mmol}$, $\sim 85 \%, 1.9$ equiv) was added. The solution was allowed to warm to rt and after 1 h the solution was diluted with EtOAc (10 mL) and washed with water (10 mL). The aqueous layer was extracted with $\operatorname{EtOAc}(1 x, 10 \mathrm{~mL})$ and combined organic layers were washed with NaHCO_{3} (sat., 10 mL) and brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated. The residue was purified by flash chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O}$ in hex) to yield enol carbonate 36 C as a viscous oil that solidified on standing ($120 \mathrm{mg}, 81 \%$). Analytical $\mathrm{tlc}, 10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.38$. Molecular ion calcd for $\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{NO}_{4}$: 610.1994; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=610.1984$; IR (neat, cm^{-1}) 1781, 1706, 1644, 1196; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$ $\mathrm{Hz}) 7.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}) 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 7.55-7.19(21 \mathrm{H}, \mathrm{m})$ $5.97(1 \mathrm{H}, \mathrm{s}) 5.19(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 170.8,150.7,138.6,136.5,133.7$, 133.1, 131.3, 130.5, 130.0, 129.2, 129.1, 128.8, 128.7, 128.6, 128.6, 128.5, 128.1, 127.6, 127.3, 126.9, 126.7, 126.1, 125.6, 125.1, 124.3, 123.1, 119.4, 116.8, 111.2, 77.2, 69.6, 58.7.

5-Bromo-1-diphenylacetyl-3-methyl-2-(1-naphthyl)methoxycarbonoxyindole (36D). Using the general procedure outlined above for the synthesis of N-diphenylacetyl enol carbonates, oxindole 23B ($105 \mathrm{mg}, 0.25 \mathrm{mmol}$) yielded enol carbonate 36D after recrystallization from $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ as small white needles ($105 \mathrm{mg}, 70 \%$). Analytical tlc, $15 \% \mathrm{DCM}$ in hexanes, $\mathrm{Rf}=$ 0.25. Molecular ion calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{BrNO}_{4}$: 626.0943; [$\mathrm{M}+\mathrm{Na}$], ESMS found $m / z=626.0941$; IR (neat, cm^{-1}) 1781, 1706, 1642, 1198; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 8.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}$) $7.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.9,3.5 \mathrm{~Hz}) 7.94-7.88(1 \mathrm{H}, \mathrm{m}) 7.57-7.51(4 \mathrm{H}, \mathrm{m}) 7.47(1 \mathrm{H}, \mathrm{dd}, J=7.8,7.0 \mathrm{~Hz})$ $7.40(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,2.0 \mathrm{~Hz}) 7.27-7.20(7 \mathrm{H}, \mathrm{m}) 7.15-7.10(4 \mathrm{H}, \mathrm{m}) 5.82(1 \mathrm{H}, \mathrm{s}) 5.50(2 \mathrm{H}, \mathrm{s}) 1.92$ $(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 170.4,151.0,138.4,137.5,133.8,131.6,131.4$, $130.3,130.0,129.4,129.0,128.9,128.6,128.2,128.1,127.4,127.0,126.3,125.2,123.1,121.3$, 118.3, 117.2, 105.2, 69.9, 58.3, 7.3.

Representative procedure for the optimized benzyl ether catalyst 32D promoted rearrangement of enol carbonates 26Ai and 36A-36D: 1-Diphenylacetyl-3-methyl-3-(1naphthyl)methoxycarbonyloxindole (35Bi). Enol carbonate 35Ai ($105 \mathrm{mg}, 0.20 \mathrm{mmol}$) and benzyl ether catalyst 32D ($8 \mathrm{mg}, 0.019 \mathrm{M}, 9 \mathrm{~mol} \%$) were dissolved in a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of
$\mathrm{CHCl}_{3}(0.25 \mathrm{~mL})$. The solution was stirred at $-20^{\circ} \mathrm{C}$ in a Cryocool. After 22.5 h , the catalyst was quenched with $\mathrm{TsOH}(20 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with 3:1 Hex:Et ${ }_{2} \mathrm{O}$, and the eluent evaporated to yield C -carboxylated oxindole $\mathbf{3 5 B i}$ as a viscous oil ($96 \mathrm{mg}, 91 \%, 90 \% \mathrm{ee}$). The catalyst could be recovered by flushing the silica plug with 5% $E t_{3} \mathrm{~N}$ in EtOAc (20 mL). [$\left.\alpha\right]_{\mathrm{D}}=+11.7$ (c=0.0069, 90\% ee, DCM). HPLC (Chiralcel AD, 4.6 mm x $25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=15.4 \mathrm{~min}$ (major, (S) according to the positive optical rotation response by the in-line polarimetry detector), $\mathrm{T}_{\mathrm{R}}=19.7 \mathrm{~min}$ (minor).

3-Benzyl-1-diphenylacetyl-3-(1-naphthyl)methoxycarbonyloxindole (36E). Enol carbonate 36A ($116 \mathrm{mg}, 0.19 \mathrm{mmol}$) and benzyl ether catalyst 32D ($9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were dissolved in a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{CHCl}_{3}(0.25 \mathrm{~mL})$. The solution was stirred at -20 ${ }^{\circ} \mathrm{C}$ in a Cryocool. After 22.5 h , the catalyst was quenched with $\mathrm{TsOH}(20 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}$, and the eluent evaporated to yield C-carboxylated oxindole 36E as a viscous oil ($114 \mathrm{mg}, 98 \%, 92 \% \mathrm{ee}$). The catalyst could be recovered by flushing the silica plug with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{EtOAc}(20 \mathrm{~mL})$. Analytical tlc, $25 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.37$. HPLC (Regis (R, R)-Whelk-O, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 90: 10$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}) \mathrm{T}_{\mathrm{R}}=13.7 \mathrm{~min}$ (major, (S) according to the positive optical rotation response by the in-line polarimetry detector), $\mathrm{T}_{\mathrm{R}}=19.5 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{NO}_{4}: 624.2151$; $\left[\mathrm{M}+\mathrm{Na}\right.$], ESMS found $\mathrm{m} / \mathrm{z}=624.2143$; IR (neat, cm^{-1}) 1760, 1740, 1713; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz}) 7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}) 7.64(1 \mathrm{H}, \mathrm{d}$, $J=8.2 \mathrm{~Hz}) 7.47-7.04(17 \mathrm{H}, \mathrm{m}) 6.96(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,7.4 \mathrm{~Hz}) 6.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 6.80(1 \mathrm{H}, \mathrm{d}$, $J=7.4 \mathrm{~Hz}) 6.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) 6.39(1 \mathrm{H}, \mathrm{s}) 5.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 5.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz})$ $3.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}) 3.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 173.7$, 172.5, 168.2, 140.8, 138.3, 138.0, 133.6, 133.5, 131.2, 130.2, 129.7, 129.5, 129.4, 129.2, 129.2, 128.6, 128.6, 128.4, 128.0, 127.2, 127.1, 127.0, 126.6, 126.2, 126.0, 125.2, 125.1, 123.4, 123.2, 116.9, 66.6, 61.9, 57.3, 40.1.

3-(2-(tert-Butyldiphenylsilanyloxy)ethyl)-1-diphenylacetyl-3-(1-naphthyl)methoxy

 carbonyloxindole (36F). Enol carbonate 36B ($155 \mathrm{mg}, 0.20 \mathrm{mmol}$) and benzyl ether catalyst 32D ($9 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were dissolved in a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of $\mathrm{CHCl}_{3}(0.25$mL). The solution was stirred at $-20^{\circ} \mathrm{C}$ in a Cryocool. After 22.5 h , the catalyst was quenched with $\mathrm{TsOH}(20 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1$ Hex: $\mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield C-carboxylated oxindole 36F as a viscous oil (154 $\mathrm{mg}, 99 \%, 94 \% \mathrm{ee})$. The catalyst could be recovered by flushing the silica plug with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc (20 mL). Analytical tlc, 5\% acetone in hexanes, Rf= 0.21. HPLC (Chiralcel AD, $4.6 \mathrm{~mm} x$ $25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=10.2 \mathrm{~min}(\operatorname{minor}), \mathrm{T}_{\mathrm{R}}=17.0 \mathrm{~min}$ (major, (S) according to the positive optical rotation response by the in-line polarimetry detector). Molecular ion calcd for $\mathrm{C}_{52} \mathrm{H}_{47} \mathrm{NO}_{5} \mathrm{Si}$: 816.3121; [M+Na], ESMS found $m / z=816.3152$; IR (neat, cm^{-1}) 1764 , 1740, 1710; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.32(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.0 \mathrm{~Hz})$ $7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}) 7.53-7.49(2 \mathrm{H}, \mathrm{m}) 7.46-7.16(22 \mathrm{H}, \mathrm{m}) 7.12-7.00(5 \mathrm{H}, \mathrm{m}) 6.94(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $7.8,1.1 \mathrm{~Hz}) 6.52(1 \mathrm{H}, \mathrm{s}) 5.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 5.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 3.40-3.26(2 \mathrm{H}, \mathrm{m}) 2.74$ (1H, ddd, J= 14.5, 9.4, 5.9 Hz$) 2.47(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=14.5,4.7,3.9 \mathrm{~Hz}) 0.82(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 174.2,172.8,168.1,141.3,138.2,135.5,135.5,135.3,135.3,133.4,132.9$, $132.8,130.9,130.3,129.7,129.5,129.5,129.3,129.0,129.0,128.9,128.5,128.5,128.3,128.1$, 127.7, 127.6, 127.5, 127.1, 127.0, 126.4, 126.2, 126.1, 125.9, 125.8, 125.1, 125.0, 123.2, 122.9, 117.0, 66.1, 59.4, 58.8, 57.5, 44.7, 35.1, 26.6, 26.5, 18.8, 8.7.

1-Diphenylacetyl-3-(1-naphthyl)methoxycarbonyl-3-phenyloxindole (36G). Enol carbonate $36 \mathrm{C}(59 \mathrm{mg}, 0.1 \mathrm{mmol})$ was treated with a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of benzyl ether catalyst 32D in $\mathrm{CHCl}_{3}(0.5 \mathrm{~mL}, 0.02 \mathrm{M}, 10 \mathrm{~mol} \%)$. The solution was stirred at $-20{ }^{\circ} \mathrm{C}$ in a Cryocool. After 2 h , the catalyst was quenched with $\mathrm{TsOH}(10 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}_{\mathrm{E}} \mathrm{Et}_{2} \mathrm{O}$, and the eluent evaporated to yield a viscous oil. The residue was purified by preparatory tlc (10\% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes) to afford C carboxylated oxindole $36 \mathrm{G}(57 \mathrm{mg}, 97 \%$, 92% ee). The catalyst could be recovered by flushing the silica plug with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{EtOAc}(20 \mathrm{~mL})$. Analytical tlc, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in hexanes, $\mathrm{Rf}=0.28$. HPLC (Chiralcel AD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=32.8 \mathrm{~min}$ (major, (S) according to the positive optical rotation response by the in-line polarimetry detector), $\mathrm{T}_{\mathrm{R}}=41.3 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{40} \mathrm{H}_{29} \mathrm{NO}_{4}: 610.1994$; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $\mathrm{m} / \mathrm{z}=$ 610.1990; IR (neat, cm^{-1}) 1764, 1744, 1711; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2$
$\mathrm{Hz}) 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}) 7.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.44(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz})$ 7.36-7.06 (22H, m) $6.45(1 \mathrm{H}, \mathrm{s}) 5.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 5.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 173.1,172.4,168.1,141.0,138.1,137.9,135.0,133.5,131.2,130.1,129.9$, $129.4,129.2,129.1,128.6,128.5,128.5,128.5,128.4,128.1,127.3,127.2126 .5,126.0,125.9$. $125.5,125.3,125.1,123.2,116.8,77.2,66.7,65.0,57.5$.

5-Bromo-1-diphenylacetyl-3-methyl-3-(1-naphthyl)methoxycarbonyloxindole (36H). Enol carbonate 36D ($242 \mathrm{mg}, 0.4 \mathrm{mmol}$) was treated with a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of benzyl ether catalyst 32D in $\mathrm{CHCl}_{3}(2 \mathrm{~mL}, 0.02 \mathrm{M}, 10 \mathrm{~mol} \%)$. The solution was stirred at $-20{ }^{\circ} \mathrm{C}$ in a Cryocool. After 5 h , the catalyst was quenched with $\mathrm{TsOH}(40 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{~mL})$ and the solution was applied to a silica plug, flushed with $3: 1 \mathrm{Hex}^{\mathrm{Et}} \mathrm{t}_{2} \mathrm{O}$, and the eluent evaporated to yield a viscous oil. The oil was purified by flash chromatography (15\% DCM in hexanes) to afford the pure oxindole 36 H as a viscous oil ($222 \mathrm{mg}, 92 \%, 90 \%$ ee). The catalyst could be recovered by flushing the silica plug with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in EtOAc (20 mL). Analytical tlc, 15\% DCM in hexanes, $\mathrm{Rf}=$ 0.16. HPLC (Chiralcel AD, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 98: 2$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=14.9 \mathrm{~min}$ (major, (S) according to the positive optical rotation response by the in-line polarimetry detector), $\mathrm{T}_{\mathrm{R}}=21.1 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{35} \mathrm{H}_{26} \mathrm{BrNO}_{4}$: 626.093; [M+Na], ESMS found $\mathrm{m} / \mathrm{z}=$ 626.0949; IR (neat, cm^{-1}) 1764, 1744, 1713, 1111; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) ठ $8.05(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}) 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.6 \mathrm{~Hz}) 7.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}) 7.45(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,7.0 \mathrm{~Hz}) 7.40-7.08(15 \mathrm{H}, \mathrm{m}) 6.41(1 \mathrm{H}, \mathrm{s}) 5.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz}) 5.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.3 \mathrm{~Hz})$ $1.58(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 174.1,173.8,167.9,139.1,138.0,137.8,133.6$, $132.4,131.1,130.6,129.9,129.6,129.2,129.1,128.6,128.6,128.5,127.4,127.3,126.6,126.0$, 125.7, 125.0, 122.9, 118.5, 118.3, 77.2, 66.8, 57.5, 55.9, 20.0.

5-Bromo-3-methyl-3-(1-naphthyl)methoxycarbonyloxindole (e13A). To a solution of oxindole 36 H in $\mathrm{MeCN}(0.75 \mathrm{~mL}, 0.2 \mathrm{M}, 0.15 \mathrm{mmol})$ was added $\mathrm{Et}_{2} \mathrm{NH}(0.31 \mathrm{~mL}, 3.0 \mathrm{mmol}, 20$ equiv). The solution was heated to $50{ }^{\circ} \mathrm{C}$. After 30 min , the solution was cooled, diluted with chloroform (10 mL) and concentrated. Purification by flash chromatography (15\% acetone in hexanes) yielded e13A as a white crystalline solid ($58 \mathrm{mg}, 94 \%$). Taking the solid up in ether (10 $\mathrm{mL})$ and hexanes (10 mL) and allowing slow evaporation of the solvent over 3 days resulted in
the formation of fine needles ($30 \mathrm{mg}, 99 \%$ ee). Analytical tlc, 15% acetone in hexanes, $\mathrm{Rf}=0.17$. $m p=120-122{ }^{\circ} \mathrm{C}\left(99 \%\right.$ ee material, grown from benzene/hexanes). $[\alpha]_{D}=-43.3(c=0.007,99 \%$ ee, DCM). HPLC (Chiralcel AS, $4.6 \mathrm{~mm} \times 25 \mathrm{~cm}, 80: 20$ hexanes/isopropanol, $1.0 \mathrm{~mL} / \mathrm{min}$) $\mathrm{T}_{\mathrm{R}}=$ 14.7 min (major, giving a negative optical rotation response by the in-line polarimetry detector), $\mathrm{T}_{\mathrm{R}}=24.3 \mathrm{~min}$ (minor). Molecular ion calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrNO}_{3}: 432.0211$; $[\mathrm{M}+\mathrm{Na}]$, ESMS found $m / z=432.0221$; $\mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right) 3228,1739,1715,{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.15(1 \mathrm{H}, \mathrm{br}$ s) 7.84-7.78 $(2 \mathrm{H}, \mathrm{m}) 7.70-7.67(1 \mathrm{H}, \mathrm{m}) 7.46-7.35(4 \mathrm{H}, \mathrm{m}) 7.31(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,2.0 \mathrm{~Hz}) 7.23(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}) 6.68(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 5.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 5.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.5 \mathrm{~Hz}) 1.68(3 \mathrm{H}$, s). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) ~ \delta 177.2,168.7,139.9,133.6,132.2,131.9,131.3,130.4$, $129.5,128.6,127.3,126.5,125.9,125.0,123.2,115.3,111.9,66.5,55.9,19.8$.

Probing the temperature effect on the formation of pyridinium salt f13A. A frozen solution of enol acetate (20Ca, $38 \mathrm{mg}, 0.1 \mathrm{mmol}$) or enol carbonate (35Aa, $40 \mathrm{mg}, 0.1 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(0.4 \mathrm{~mL})$ was treated with a cooled solution of DMAP in $\mathrm{CHCl}_{3}(0.2 \mathrm{~mL}, 0.05 \mathrm{M}, 10 \mathrm{~mol} \%)$. The NMR instrument was cooled to $-50{ }^{\circ} \mathrm{C}$ and the reaction was thawed and inserted into the instrument. The ${ }^{1} \mathrm{H}$ NMR spectrum only revealed starting material, product and DMAP. Upon refreezing the solution the enol carbonate reaction turned a deep purple color while the enol acetate reaction remained white. The purple color faded over time in the frozen solution or if the solution was thawed. The ${ }^{1} \mathrm{H}$ NMR spectrum of the re-thawed solution showed rearranged oxindole and DMAP.

References for Chapter 2:

1 For a review of catalytic asymmetric strategies: a) Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer-Verlag Telos, 1999; vol 1-3. b) Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer-Verlag Telos, 2004; Supplemental vol 1. c) Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer-Verlag Telos, 2004; Supplemental vol 2.

2 a) "Asymmetric hydrogenation," Knowles, W. S. Angew. Chem., Int. Ed. Engl. 2002, 41, 1999. b) "Asymmetric catalysis: Science and opportunities," Noyori, R. Angew. Chem., Int. Ed. Engl. 2002, 41, 2008. c) "Searching for new reactivity," Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 2002, 41, 2024. enantioselective construction of molecules with quaternary carbon stereocenters," Corey, E. J.; Guzman-Peres, A. Angew. Chem., Int. Ed. Engl. 1998, 37, 389. b) "Enantioselective construction of quaternary stereocenters," Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. Engl. 2001, 40, 4591. c) "Stereoselective formation of quaternary carbon centers and related functions," Denissova, I.; Barriault, L. Tetrahedron 2003, 59, 10105. d) "Catalytic asymmetric synthesis of all-carbon quaternary stereocenters," Douglas, C. J.; Overman, L. E. Proc. Natl. Avad. Sci. U.S.A. 2004, 101, 5363. e) "Catalytic enantioselective construction of all-carbon quaternary stereocenters," Trost, B. M.; Jiang, C. Synthesis 2006, 369.
a) "Structure of malagashanine, a new alkaloid with chloroquine-potentiating action," Caira, M. R.; Rasoanaivo, P. J. Chem. Crystallogr. 1995, 25, 725. b) "Revised structure of malagahanine: A new series of $\mathrm{N}-\mathrm{b}, \mathrm{C}(21)$-secocuran alkaloids in Strychnos myrtoides," Rasoanaivo, P.; Galeffi, C.; Palazzino, G.; Nicoletti, M. Gazz. Chim. Ital. 1996, 126, 517.

5 A.; Sévenet, T.; Bobo, B. J. Org. Chem. 1991, 56, 6527.

For the report of the corrected structure of Diazonoamide A see: "Total synthesis of nominal diazonamides-part 2: on the true structure and origin of natural isolates," Li, J.; Burgett, A. W. G.; Esser, L.; Amezcua, C.; Harran, P. G. Angew. Chem. Int. Ed. 2001, 40, 4770.
"Organocatalytic asymmetric direct α-alkynylation of cyclic β-ketoesters," Poulsen, T. B.; Bernardi, L.; Alemán, J.; Overgaard, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 441. intramolecular Heck reactions of (E) - α, β-unsaturated 2-haloanilides and analogues to form enantioenriched spirocyclic products," Ashimori, A.; Bachand, B.; Overman. L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6477. b) "Catalytic asymmetric synthesis of quaternary carbons bearing two aryl substituents. Enantioselective synthesis of 3 -alkyl-3-aryl oxindoles by catalytic asymmetric intramolecular Heck reactions," Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss, M. M. J. Am. Chem. Soc. 2003, 125, 6261.
"Improved catalysts for the palladium-catalyzed synthesis of oxindoles by amide α-arylations.
Rate acceleration, use of aryl chloride substrates, and a new carbine ligand for asymmetric transformations," Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402.
a) "Palladium-catalyzed asymmetric allylation of prochiral nucleophiles: synthesis of 3-allyl-3aryl oxindoles," Trost, B. M.; Frederiksen, M. U. Angew. Chem. Int. Ed. 2005, 44, 308. b) "Molybdenum-catalyzed asymmetric allylation of 3-alkyloxindoles: application to the formal total synthesis of (-)-Physostigmine," Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2006, 128, 4590. c) "Enantioselective construction of spirocyclic oxindolic cyclopentanes by palladiumcatalyzed trimethylenemethane-[3+2]-cycloaddition," Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396. d) "Mo-catalyzed regio-, diastereo-, and
enantioselective allylic alkylation of 3-aryloxindoles," Trost, B. M.; Zhang, Y. J. Am. Chem. Soc. 2007, 129, 14548.
"Palladium-catalyzed enantioselective cyclization of silyloxy-1,6-enynes," Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2764.
${ }^{12}$ a) "5-Acyloxyoxazoles and their rearrangement to 4-acyloxazol-5-ones," Steglich, W.; Höfle, G. Angew. Chem., Int. Ed. Engl. 1968, 7, 61. b) "Zum mechanism der Dakin-West reaction," Steglich, W.; Höfle, G. Tetrahedron Lett. 1968, 9, 1619.
a) "Some aromatic derivatives of substituted acetylaminoacetones," Dakin, H. D.; West, R. J. Biol. Chem. 1928, 78, 757. For a review of the Dakin-West reaction see: b) "The Dakin-West reaction," Buchanan, G. L. Chem. Soc. Rev. 1988, 17, 91.
"Über eine einfache darstellung von acyl-oxazolinonen-(5) aus 5-acyloxy-oxazolen II. Mitteilung über hypernucleophile acylierungskatalysatoren," Steglich, W.; Höfle, G. Tetradedron Lett. 1970, 11, 4727.

For early examples see: a) "Diacylation of water and of hydrogen sulfide with acyl chloridepyridine compounds," Adkins, H.; Thompson, Q. E. J. Am. Chem. Soc. 1949, 71, 2242. b) "The infrared spectra of N-acyltrialkylammonium halides, in relation to those of amide salts," Cook., D. Can. J. Chem. 1962, 40, 2362. c) "The nature of 1 -acylpyridinium chlorides," Sheinkman, A. K.; Portnoua, S. L.; Sheinker, Yu. N.; Kost, A. N. Dokl. Akad. Nauk SSSR, Ser. Khim. 1964, 157, 1416.
"Enantioselective construction of quaternary stereocenters: Rearrangement of O-acylated azlactones catalyzed by a planar-chiral derivative of 4-(pyrrolidino)pyridine," Ruble, J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532.
${ }^{17}$ "4-(Dimethylamino)pyridine as a catalyst for carbon acylation. 2. Control of carbon vs. oxygen acylation in benzofuranones," Black, T. H.; Arrivo, S. M.; Schumm, J. S.; Knobeloch, J. M. J. Org. Chem. 1987, 52, 5425.
a) "Heterocyclic aromatic anions with $4 n+2 \pi$-electrons," Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1991, 56, 4218. b) "Acid-base equilibria of substituted pyridines in nitromethane," Augustin-Nowacka, D.; Chmurzynski, L. J. Solution Chem. 2000, 29, 837. c) "Acid-base equilibria in systems involving substituted pyridines in polar aprotic media and in the amphiprotic methanol," Augustin-Nowacka, D.; Makowski, M.; Chmurzynski, L. Anal. Chim. Acta 2000, 418, 233.

Crystallographic characterization of the acylated catalyst," Tao, B.; Ruble, J. C.; Hoic, D. A.; Fu, G. C. J. Am. Chem. Soc. 1999, 121, 5091. 125, 13368. b) "Enantioselective TADMAP-catalyzed carboxyl migration reactions for the synthesis of stereogenic quaternary carbon," Shaw, S. A.; Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925. Yamada, S.; Yaguchi, S.; Matsuda, K. Tetrahedron Lett. 2002, 43, 647.
"Total synthesis of Neosurugatoxin," Inoue, S.; Okada, K.; Tanino, H.; Kakoi, H. Tetrahedron, 1994, 50, 2753.
"Total synthesis of dl-21-oxogelsemine," Kuzmich, D.; Wu, S. C.; Ha, D.-C.; Lee, C. S.;
Ramesh, S.; Atarashi, S.; Choi, J.-K.; Hart, D. J. J. Am. Chem. Soc. 1994, 116, 6943.
${ }^{36}$ "Synthesis of indole derivatives by [2+2] photocycloaddition of indoline-2-thiones with alkenes and photodesulfurization of indoline-2-thiones," Nishio, T.; Oka, M. Helv. Chim. Acta 1997, 80, 388. 1517.
"100 years of Baeyer-Villiger oxidations," Renz, M.; Meunier, B. Eur. J. Org. Chem. 1999, 737. "Sc(OTf) $)_{3}$ - and TfOH-catalyzed Baeyer-Villiger oxidation of carbonyl compounds with mchloroperbenzoic acid," Kotsuki, H.; Arimura, K.; Araki, T.; Shinohara, T. Synlett 1999, 462. "An enantioselective ring expansion route leading to furanose and pyranose nucleosides featuring spirodiketopiperazines at the anomeric position," J. Org. Chem. 1999, 64, 2010.
a) "Correlation of the rates of solvolysis of methyl chloroformate with solvent properties," Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res., Synop. 1999, 150. b) "Correlation of the rates of solvolysis of acetyl chloride and α-substituted derivatives," D'Souza, M. J.; Ryu, Z. H.; Park, B.-C.; Kevill, D. N. Can. J. Chem. 2008, 86, 359.
a) "Stereoselective synthesis of 2-oxazoline-4-carboxylates through Lewis acid-catalyzed formal [3+2] cycloadditions of 5-alkoxyoxazoles with aldehydes: catalytic effect of methylaluminum β-binaphthoxide on cis-selectivity," Suga, H.; Shi, X.; Ibata, T. J. Org. Chem. 1993, 58, 7397. b) "Asymmetric N1 unit transfer to olefins with a chiral nitridomanganese
complex: novel stereoselective pathways to aziridines or oxazolines," Nishimura, M.;
Minakata, S.; Takahashi, T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2002, 67, 2101.
"Synthesis of functionalized pyrrolidines by a highly stereoselective [3+2]-annulation reaction of N-tosyl-a-amino aldehydes and 1,3-bis(silyl)propenes," Restrop, P.; Dressel, M.; Somfai, P. Synthesis, 2007, 1576.

47
"Preparation of aminoalkyl chlorohydrins hydrochlorides: key building blocks for hydroxyethylamin-based HIV protease inhibitors," Beaulieu, P. L.; Wernic, D. J. Org. Chem. 1996, 61, 3635.
"Lithium bromide-assisted protection of primary and secondary alcohols as methoxymethyl ethers using dimethoxymethane," Gras, J.-L.; Chang, Y.-Y. K. W.; Guerin, A. Synthesis, 1985, 74.
"An improved method for methoxymethylation of alcohols under mild acidic conditions," Fuji, K.; Nakano, S.; Fujita, E. Synthesis, 1975, 276.
"4-Dialkylaminopyridines as highly active acylation catalysts," Höfle, G.; Steglich, W.; Vorbrüggen, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 569.

Chapter 3

Dual Catalytic Parallel Kinetic Resolution under Homogeneous Reaction Conditions

I. Introduction.

As described in Chapter 1, the kinetic resolution of racemic mixtures is a classic and powerful method for obtaining enantioenriched organic molecules. ${ }^{1}$ In a highly selective kinetic resolution (s >200), both the starting material and product can be recovered in $>95 \%$ ee in 50% yield (maximum theoretical yield). Unfortunately, this level of selectivity is beyond the capabilities of most synthetic catalysts. ${ }^{2}$ For a less selective kinetic resolution (s<200), highly enantioenriched starting material can be recovered at higher conversion albeit in low yield, or highly enantioenriched products can be obtained at low conversion. During these less selective kinetic resolutions, the enantiomeric excess of the product starts high but decreases significantly as conversion increases (Table 3-1). The higher enantiomeric excess of the product at low conversions is a result of the inherent relative reactivity of the two enantiomers. At higher conversions the relative concentration of the less reactive enantiomer increases as the more reactive enantiomer is converted to product. Consequently, the rate of conversion of the less reactive enantiomer increases and the product enantiomeric excess decreases.

Table 3-1. Product \% ee as a Function of Conversion C and Enantioselectivity s. ${ }^{\text {a }}$

s	$\mathrm{C=1} \mathrm{\%}$	$\mathrm{C=10} \mathrm{\%}$	$\mathrm{C=20} \mathrm{\%}$	$\mathrm{C=30} \mathrm{\%}$	$\mathrm{C=40} \mathrm{\%}$	$\mathrm{C=50} \mathrm{\%}$
2	33.2	31.8	30.1	28.2	26.1	23.6
5	66.5	64.7	62.3	59.4	55.7	50.9
10	81.7	80.3	78.5	75.9	72.4	67.1
20	90.4	89.6	88.3	86.6	83.9	78.7
50	96.0	95.5	95.1	94.2	92.7	88.7
100	98.0	97.8	97.5	97.0	96.2	93.3
200	99.0	98.9	98.7	98.5	98.1	96.1
500	99.6	99.6	99.5	99.4	99.2	98.1
adapted from reference 1c						

Two strategies have been developed to obtain highly enantiomerically enriched products from moderately selective kinetic resolutions by maintaining the $1: 1$ ratio of enantiomers throughout the reaction. The first strategy, dynamic kinetic resolution (DKR), involves a rapid equilibration of the enantiomers during the resolution (Figure 3-1). ${ }^{3}$ As the fast reacting enantiomer $(R)-\mathrm{A}$ is converted to product $(R)-\mathrm{X}$ by resolving agent M , the $1: 1$ ratio of the enantiomers of A is maintained by this equilibration. In this manner, both enantiomers of the reactant can be converted to a single enantioenriched product $((R)-X)$. However, this strategy is limited to enantiomers that can equilibrate under conditions compatible with the kinetic resolution. Parallel kinetic resolution (PKR) is the second strategy used to maintain a $1: 1$ ratio of the enantiomers of the starting material. ${ }^{4}$ In PKR, a second kinetic resolution, by resolving agent N , is performed simultaneously to convert the less reactive enantiomer (S)-A to a distinct product (S)-Y (Figure 3-2). If the two kinetic resolutions convert the two reactant enantiomers to products at the same rate, then the starting material will remain racemic throughout the reaction. A successful PKR requires that the two resolutions be mutually non-interfering, occur with similar rates and enantioselectivities, and afford readily separated products.

Figure 3-1. Dynamic Kinetic Resolution

$$
\begin{aligned}
& (R)-\mathrm{A}+(S)-\mathrm{A} \xrightarrow{\mathrm{M}}(\mathrm{R})-\mathrm{X}
\end{aligned}
$$

Figure 3-2. Parallel Kinetic Resolution

PKR is one of two types of reactions that convert racemic mixtures into two stereoenriched products coined "divergent reactions of a racemic mixture" (RRM) by Kagan. ${ }^{5}$ The other type involves a single reagent or catalyst that converts the enantiomers into two distinct stereoenriched products (Figure 3-3). The stereoenrichment of the products obtained from divergent RRM is dependent on the inherent selectivity of each enantiomer with the chiral reagent or catalyst (i.e. $\mathrm{k}_{R}{ }^{\mathrm{X}}>\mathrm{k}_{\mathrm{s}}{ }^{\mathrm{X}}$ and $\mathrm{k}_{R}{ }^{\mathrm{Y}}>\mathrm{k}_{\mathrm{S}}{ }^{\mathrm{Y}}$) and not on the relative concentrations of the reactant enantiomers. The term PKR is commonly used in the literature to describe these single reagent/catalyst systems, but this usage is inaccurate because the stereoenrichment of the products does not depend on a kinetic resolution. Therefore we will reserve the term parallel kinetic resolution (PKR) for the two reagent/catalyst systems.

Figure 3-3. Divergent Reactions of a Racemic Mixture: One Reagent/Catalyst Approach.

(S)-A
 $\xrightarrow{\mathrm{k}_{S}{ }^{\mathrm{Y}}}$ $(S)-Y$

A report by Guetté and Horeau in 1967 is significant among the early examples of divergent RRM because it describes the conceptual principles behind these reactions. ${ }^{6}$ In this report, reduction of racemic camphor (e1A) with $\mathrm{LiAlH}_{4} /(-)$-quinine affords isoborneol (e1B) as the major product with 2.5% ee (equation 1). In addition, a second isomeric alcohol (e1C) was isolated in low yield, but 21% ee. The authors derived a mathematical expression that relates the molar fraction of each product $\left(X_{2}\right.$ and $\left.X_{3}\right)$ to the observed enantiomeric excesses $\left(e_{2}\right.$ and e_{3}, equation 2). The two enantiomeric excess values, ee_{2} and ee_{3}, are assigned opposite signs, based on the sign of optical rotation of the predominant enantiomer of that product. Therefore, at full conversion of a racemic mixture $\left(X_{2}+X_{3}=1\right)$ the sum of the terms $X_{2} e_{2}$ and $X_{3} e_{3}$ is zero. A further expansion of this equation was reported by Kagan for divergent RRM that are not taken to completion. In this case, X_{1} and ee_{1} represent the molar fraction and enantiomeric excess of the recovered starting material, respectively. ${ }^{7}$ As can be seen from these equations, if the two products are obtained in equal ratios, then the enantiomeric excesses should be equal. Conversely, when the two products are not obtained in equal ratios, the major product will have a lower enantiomeric excess than the minor product as seen in the reduction of (\pm)-camphor. Equations 2 and 3 can be applied to all divergent RRM, since they rely on both the material balance and the definition of ee, and therefore are independent of the reaction mechanism.

The first known example of what has come to be known as PKR was reported in 1987 when Brooks published the "dual kinetic resolution of a racemic pair." ${ }^{8}$ Treatment of racemic ketone e4A with baker's yeast afforded the expected reduced product e4B in 43% yield and $>99 \%$ ee. However, instead of recovering starting material from the resolution, achiral ketone e4C was recovered in 45% yield. The authors hypothesized that this product results from a second resolution by an enzymatic saponification of ester e4A followed by decarboxylation. When the resolution was stopped at partial conversion, the starting ketone e4A was enriched in the $(+)$ enantiomer indicating that the rates of these two resolutions are unequal. Despite the inequality of the rates, alcohol e4B is obtained in very high \% ee, suggesting that the enzymatic reduction is sufficiently stereoselective in a kinetic resolution to not need the added benefit of a PKR. However, the authors recognized that "dual kinetic resolution" could have potential benefits in other systems.

The first explicitly designed PKR experiment reported in the literature was described by Vedejs and Chen in 1997. ${ }^{\text {. }}$ Quasienantiomeric pyridines 1 and 2 were treated with different
chloroformates to form pyridinium salts 3 and 4. Treatment of alcohol 5 with equimolar amounts of these two pyridinium salts in the presence of MgBr_{2} and $\mathrm{Et}_{3} \mathrm{~N}$ afforded two mixed carbonates 6 and 7 in high yields and enantiomeric excesses. Recovery of carbonate 6 in 49\% yield and 95\% de corresponds to $\mathbf{s}=125$ in a standard kinetic resolution. This selectivity is remarkable considering that both the individual kinetic resolutions of alcohol 5 with these pyridinium salt reagents have $\mathbf{s}=41-42$. The lower than optimal enantiomeric excess of carbonate 7 was attributed to some crossover between the two resolutions, but for the most part, the pre-formation of the pyridinium salt reagents allowed the resolutions to occur simultaneously without mutual interference.

Scheme 3-1. Dual Reagent Acyl Transfer PKR.

Subsequent reports of PKR have also focused on the use of quasienantiomeric reagents to separate racemic mixtures including nitrone cycloaddition, ${ }^{10}$ Horner-Wadsworth-Emmons (HWE) olefination, ${ }^{11}$ Michael addition, ${ }^{12}$ reactions of lithiated oxazolidinones, ${ }^{13,14}$ and transesterification. ${ }^{15}$ The general concepts of PKR will be explained with the HWE olefination example. ${ }^{11}$ Unlike the study by Chen and Vedejs, the PKR experiments listed above all incorporate the source of chirality into the products forming two quasidiastereomers. For example, HWE reagents e5B and e5C react with aldehydes to form olefins with the chiral ester incorporated into the product. In a standard kinetic resolution of aldehyde e5A using the electron poor Z-selective HWE reagent e5B, a 4:1 ratio of Z-olefin e5D and E-olefin e5E is obtained along with trace amounts of the diastereomers of each olefin. If the E-selective HWE reagent e5C is used instead, E-olefin e5E is formed almost exclusively, but a significant amount of the diastereomer is also formed. When the two resolutions are run in parallel, both of the olefin isomers are obtained in good diastereoselectivity, as the PKR enhanced the resolution of the racemic aldehyde to afford products in much higher yields and diastereoselectivities than could be obtained in the standard kinetic resolutions. The yield of the Z-olefin in the PKR experiment is higher than in the individual resolution with just e5B. In addition, the diastereoselectivity of the Eolefin is increased in the PKR experiment. The incorporation of the chirality into the product olefins deserves further mention. If this source of chirality is later cleaved, then the same objective could be accomplished by reaction of the racemic mixture with a single enantiomeric reagent followed by separation of the diastereomers, such as e5D and its diastereomer. On the other hand, since alkenes e5D and e5E are diastereomeric with respect to the two chiral centers as well as the olefin geometry, the separation of the products from the PKR experiment should be more facile than the simple diastereomers.

All of the preceeding examples of PKR involve stoichiometric chiral reagents. An analogous non-enzymatic catalytic example of PKR would be more practical, but so far, only one example is known, as reported by Vedejs and Rozners in 2001. ${ }^{16}$ It was envisioned that chiral P -aryl-2-phophabicyclo[3.3.0]octane (PBO) 8a might catalyze a resolution of benzylic alcohols via acyl transfer that would be complementary to a lipase-catalyzed resolution. However, a successful PKR requires that the two resolutions are mutually non-interfering, so the achiral stoichiometric acyl donors have to be carefully chosen. The insoluble lipase $\mathbf{9}$ is capable of acylating alcohols with vinyl pivalate ($\mathbf{s}=83$), an acyl donor that is unreactive with the chiral nucleophilic catalyst PBO 8a. On the other hand, the typical anhydride acyl donors used with PBO 8a are also activated by lipases. In order to prevent activation of the anhydride by the enzyme, an insoluble mixed anhydride 10 was chosen as the second acyl donor for PBO catalysis ($\mathbf{s}=34$). Mixed anhydride 10 is derived from polymer-bound cyclohexanecarboxylic acid and mesitoic acid. PBO 8a only activates the less hindered cyclohexanecarbonyl for acyl transfer. This three-phase PKR experiment yields the two enantioenriched product esters 14 and 15. Since ester 14 is bound to the polymer, the esters are readily separated by filtration. The esters are then saponified to afford the highly enantioenriched alcohols in good yields. Even though the selectivities of the two kinetic resolutions are not matched, the conditions for a successful PKR are met.

Scheme 3-2. Dual Catalytic Acyl Transfer PKR.

A catalytic acyl transfer PKR does not have to be performed in a heterogeneous solution. In fact, if the esters are the desired products, then the necessity of cleaving the alcohol from the solid support and re-acylating would be counterproductive. In addition, achieving exact loadings of the catalysts and acyl donors would be easier in a homogeneous solution. For the homogeneous PKR experiment, catalyst \mathbf{M} would only activate achiral acyl donor \mathbf{X} to convert $(R)-\mathrm{A}$ to $(R)-\mathrm{P}$ while catalyst \mathbf{N} would only activate achiral acyl donor \mathbf{Y} to convert (S)-A to (S)-Q (Figure 3-4). The challenge is to find a pair of complementary, mutually non-interfering kinetic resolutions that could be carried out under homogeneous conditions.

Figure 3-4. Catalytic PKR Scheme.

II. Results

As a part of the investigations into the application of chiral nucleophilic phosphine catalysts (8) in the Vedejs laboratories, it was recognized that phosphines catalyze the benzoylation of alcohols significantly faster than isobutyroylation. This effect was quantified by Harper in the kinetic analysis of PBO 8b, and the benzoylation was found to occur approximately an order of magnitude faster than isobutyroylation. ${ }^{17}$ A competition experiment between benzoic anhydride and isobutyric anhydride by MacKay demonstrated that this difference in reactivity results in the preferential benzoylation of alcohol 5 a catalyzed by PBO 8c (3:1 selectivity, equation 6). ${ }^{18}$ To take advantage of this inherent selectivity of the phosphine catalysts in PKR, a catalyst with complementary selectivity was needed. The chiral DMAP nucleophilic catalysts recently developed in the Vedejs laboratories ${ }^{19}$ and elsewhere, ${ }^{20}$ led MacKay to explore the selectivity of benzoylation versus isobutyroylation of alcohols catalyzed by DMAP. In a similar anhydride competition experiment with DMAP the sole product observed was the isobutyrate ester 17a (equation 6). So, chiral DMAP-based catalysts should prove to be complementary to the chiral phosphine catalysts.

Therefore, we sought a chiral DMAP catalyst that was enantioselective in the kinetic resolution of alcohols to be used for the PKR experiment. Unfortunately, the resolution of alcohol 5a with TADMAP (2,2,2-triphenyl-1-acetoxyethyl DMAP, 18a), recently developed by Shaw, is poorly enantioselective (s=1.4, Table 3-2, entry 1). In an effort to improve the kinetic resolution selectivity, the chirotopic environment of the catalyst was modified. The acetate of enantioenriched TADMAP could be cleaved under reductive conditions to afford the free alcohol 18b. Since this hindered alcohol was unreactive to acylation by anhydrides in the presence of triethyl amine, more strongly basic conditions were investigated. Although, the lithium alkoxide of 18b decomposed by C-C bond cleavage to afford 3 -formyl DMAP and trityl anion, ${ }^{196}$ the magnesium alkoxide, generated by treating alcohol 18b with EtMgBr , did not undergo this decomposition. Quenching the magnesium alkoxide with anhydrides afforded new enantioenriched TADMAP derivatives (18c-e). These catalysts were then screened for the kinetic resolution of alcohol 5 . The more hindered benzoate catalyst 18c (TBDMAP) was more enantioselective (s=3.4, Table 3-2, entry 2) than TADMAP, but the acylation was also slower. The enantioselectivity increased further when the solvent was switched to t-amyl alcohol (entry 3), with a slight increase in reaction rate. Lowering the temperature also increased the enantioselectivity (entry 4). Isobutyrate catalyst (18d) and formyl catalyst (18e) were less enantioselective than TBDMAP (18c), so attention was focused on TBDMAP. Due to the freezing point of t-amyl alcohol, the temperature could not be lowered further than $0^{\circ} \mathrm{C}$, but addition of a co-solvent allowed MacKay to run the resolution at $-25^{\circ} \mathrm{C}$ and the enantioselectivity increased to $\mathbf{s}=6.1$ (entry 7). This increase was not due to the co-solvent itself, since DCM was a poor solvent for the resolution (entry 8).

Scheme 3-3. Synthesis of New TADMAP Derivatives

Table 3-2. Kinetic Resolution of Alcohol 5a with TADMAP Derivatives.

Entry	Cat. (\%)	Solvent	temp	time	\% conv	S
1	18a (1\%)	toluene	${ }^{\text {r }}$	7 h	40\%	$1.4{ }^{\text {b }}$
2	18c (1\%)	toluene	rt	92 h	35\%	3.4
3	18c (1\%)	t-amyl alcohol	rt	48 h	40\%	5.1
4	18c (1\%)	t-amyl alcohol	$0^{\circ} \mathrm{C}$	48 h	41\%	5.3
5	18d (1\%)	t-amyl alcohol	$0^{\circ} \mathrm{C}$	24 h	52\%	3.5
6	18e (1\%)	t-amyl alcohol	$0^{\circ} \mathrm{C}$	16 h	50\%	2.3
7	18c (2\%)	3:1 t-amyl alcohol:DCM	$-25^{\circ} \mathrm{C}$	16 h	27\%	$6.1^{\text {c }}$
8	18c (4\%)	DCM	$-25^{\circ} \mathrm{C}$	28 h	21\%	$3.2{ }^{\text {c }}$

Although catalysts $\mathbf{8 c}$ and $\mathbf{1 8 c}$ both catalyzed the acylation with opposite anhydride selectivity $\left.\left(\mathrm{Bz}_{2} \mathrm{O} \text { vs (} i-\mathrm{PrCO}\right)_{2} \mathrm{O}\right)$, the moderate anhydride selectivity of the PBO catalyst $\mathbf{8 c}(3: 1)$ was non-ideal for a PKR experiment. Therefore, we sought a pair of anhydrides that might be activated more selectively by both ArPBO (8c) and TBDMAP (18c). Competition experiments between isobutyric anhydride and substituted benzoic anhydrides were conducted with both catalysts $\mathbf{8 c}$ and 18c for the acylation of alcohol $\mathbf{5 a}$ (Table 3-3). Both TBDMAP (18c) and ArPBO $(8 \mathrm{c})$ favored the formation of the isobutyrate ester 17a in competition experiments between isobutyric anhydride and p-methoxybenzoic anhydride (entry 2). On the other hand, in competition experiments with m-methoxybenzoic anhydride and 3,5-dimethoxybenzoic anhydride, PBO slightly favored formation of the aromatic ester 16a, while TBDMAP (18c) still afforded isobutyrate 17a exclusively (entry 3). The TBDMAP (18c) selectivity for isobutyrate 17a formation decreased to $6: 1$ with the more electron-poor m-chlorobenzoic anhydride, but the PBO (8c) selectivity for aromatic ester formation increased dramatically (entry 5). A similar 6:1 selectivity was observed with nicotinic anhydride ($\mathrm{Nic}_{2} \mathrm{O}$) for TBDMAP catalysis, but PBO (8c) was
unselective affording a 1.6:1 ratio of esters 16a and 17a (entry 6). However, under conditions optimized for kinetic resolutions with TBDMAP (18c), PBO (8c) afforded only the nicotinic ester. Apparently, the selectivity of anhydride activation is sensitive to conditions, but this variable was not explored further.

Table 3-3. Anhydride Competition Experiments.

With a pair of complementary catalytic esterifications in hand (PBO 8c with $\mathrm{Nic}_{2} \mathrm{O}$ and TBDMAP 18c with ($i-\mathrm{PrCO})_{2} \mathrm{O}$), attention was turned to the enantioselectivity of the individual kinetic resolutions. Under optimized conditions MacKay found moderate enantioselectivity factors with both catalysts for the resolution of benzylic alcohols 5a-c (Table 3-4). Phenyl substituted catalyst PhPBO (8d) proved to be more enantioselective than the more hindered (MeOdi-t-BuPh) PBO catalyst (8c) under the optimized conditions for TBDMAP (18c), so further experiments were carried out with this catalyst.

Table 3-4. Kinetic Resolutions of Alcohols Using Chiral Catalysts by J. A. MacKay. ${ }^{\text {a }}$

Entry	Alcohol	R	Ar	Cat. (mol\%)	Anhydride	time	\% conv.	s
1	5a	Me	1-nap	8c (2\%)	nicotinic	3 h	79	7.5
2	5a	Me	1-nap	8d (4\%)	nicotinic	3 h	68	11
3	5 a	Me	1-nap	18c (4\%)	isobutyric	16 h	27	6.1
4	5b	Me	2-MeC ${ }_{6} \mathrm{H}_{4}$	8d (2\%)	nicotinic ${ }^{\text {b }}$	20 h	37	17
5	5b	Me	$2-\mathrm{MeC}_{6} \mathrm{H}_{4}$	18c (2\%)	isobutyric ${ }^{\text {c }}$	96 h	50	14
6	5 c	t-Bu	Ph	8d (2\%)	nicotinic ${ }^{\text {b }}$	20 h	34	57
7	5c	t-Bu	Ph	18c (2\%)	isobutyric ${ }^{\text {c }}$	96 h	43	9.9

${ }^{\text {a }}$ Experiments by J. A. MacKay. All reactions were conducted at $-25^{\circ} \mathrm{C}$ using 1 equiv 5a, 1 equiv anhydride, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 2-4 \mathrm{~mol} \%$ catalyst, and were diluted to 0.1 M substrate in $3: 1$ t-amyl alcohol:DCM unless otherwise noted. ${ }^{\text {b }} 0.6$ equiv anhydride. ${ }^{\mathrm{c}} 2.5$ equiv anhydride.

Table 3-5. Parallel Kinetic Resolutions of Alcohols by J. A. MacKay. ${ }^{\text {a }}$

				cat. (mol\%)			ratio	19		17	
entry	alcohol	R	Ar	8d	$\mathbf{1 8 c}$	$\mathbf{1 9 : 1 7}$	Yield	ee	yield	ee	
1	$\mathbf{5 a}$	Me	1-nap	4.5	6.7	$1.6: 1.0$	62%	62%	38%	-92%	
2	$\mathbf{5 a}$	Me	1-nap	1.3	6.7	$1.1: 1.0$	51%	65%	46%	-73%	
3	$\mathbf{5 a}$	Me	1-nap	1.3	6.7	$1.0: 1.1$	$44 \%^{\mathrm{b}}$	68%	46%	-63%	
4	$\mathbf{5 b}$	Me	2-MeC $\mathrm{H}_{4} \mathrm{H}_{4}$	6.0	3.0	$1.2: 1.0$	52%	68%	44%	-82%	
6	$\mathbf{5 c}$	t-Bu	Ph	4.0°	4.0	$1.0: 2.5$	33%	84%	$>39 \%$	-38%	
7	$\mathbf{5 c}$	t-Bu	Ph	6.0	5.0	$1.0: 1.9$	33%	79%	60%	-41%	

${ }^{\text {a }}$ Experiments by J. A. MacKay. All reactions used 1 equiv 5a, 1 equiv of each anhydride, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 1.3-7 \mathrm{~mol} \%$ of each catalyst, and were diluted to 0.1 M substrate in $3: 1 t$-amyl alcohol:DCM unless noted. ${ }^{\text {b }} 0.75$ equiv nicotinic anhydride. ${ }^{\text {c }}$ Used the HBF_{4} salt of $\mathbf{8 d}$ as a precatalyst.

With the two complementary kinetic resolutions in hand, MacKay conducted the key PKR experiments with PhPBO (8d) and TBDMAP (18c). In these PKR experiments, PhPBO does selectively convert the (R)-5 to nicotinic ester 19, while TBDMAP converts the (S)-alcohol to isobutyrate 17 (Table 3-5). The phosphine catalyst is significantly more reactive than TBDMAP so the optimum $1: 1$ ratio of products 19 a and 17 a was achieved when a $1: 5.2$ ratio of the catalysts was used. As expected from the Horeau equation, when the products are obtained in nearly equal ratios, the enantiomeric excesses of the products are almost equal. In contrast, when one product is obtained in higher ratios, the \%ee decreased. Thus, the enantiomeric excess decreased when the yield increased. Unfortunately, none of the enantiomeric excesses reached the theoretical limit of a PKR experiment even when the $1: 1$ ratio of products was obtained (optimal \%ee: for 19a: 83% ee; for 17a: 71% ee). A possible explanation for these results will be discussed later.

$\mathrm{R}^{\prime}=i-\mathrm{Pr}(S, S)-A c O V a D M A P$ (ent-20a)
$\mathrm{R}^{\prime}=t-\mathrm{Bu}(\mathrm{S}, \mathrm{S})-\mathrm{AcOLeDMAP}$ (ent-20b)
$\mathrm{R}^{\prime}=t$ - $\mathrm{Bu}(R, R)$-AcOLeDMAP (20b)

5

Table 3-6. Kinetic Resolutions of Alcohols with Amino Acid Derived Catalysts. ${ }^{\text {a }}$

entry	alcohol	R	Ar	catalyst	solvent	temp	\mathbf{s}
1	$\mathbf{5 a}$	Me	1-nap	ent-20a	t-amyl alcohol	rt	2.7
2	$\mathbf{5 a}$	Me	1-nap	ent-20a	toluene	rt	6.8^{b}
3	$\mathbf{5 a}$	Me	1-nap	ent-20b	toluene	rt	8.9^{b}
4	$\mathbf{5 a}$	Me	1-nap	ent-20b	toluene	$-40^{\circ} \mathrm{C}$	20.5
5	$\mathbf{5 a}$	Me	1-nap	ent-20b	toluene	$-70^{\circ} \mathrm{C}$	29
6	$\mathbf{5 b}$	Me	Ph	ent-20b	toluene	$-40{ }^{\circ} \mathrm{C}$	10.7
7	$\mathbf{5 c}$	$t-\mathrm{Bu}$	Ph	ent-20b	toluene	$-40{ }^{\circ} \mathrm{C}$	1.8
8	$\mathbf{5 d}$	Me	2- $\mathrm{MeC}_{6} \mathrm{H}_{4}$	ent-20b	toluene	$-40^{\circ} \mathrm{C}$	9.5

${ }^{a}$ All reactions were conducted using 1 equiv 5 a , 1 equiv anhydride, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 1 \mathrm{~mol} \%$ catalyst, and were diluted to 0.06 M substrate. ${ }^{\text {b }}$ Experiment by S . A. Shaw.

At this point, the next generation amino acid-derived DMAP catalysts were developed by Shaw, ${ }^{21}$ and proved to be much more enantioselective for the kinetic resolutions of benzylic alcohols. In contrast to TBDMAP, kinetic resolution of alcohol 5a with valine-derived catalyst

AcOVaDMAP (ent-20a) and isobutyric anhydride was more enantioselective in toluene (s=6.8) than t-amyl alcohol $(s=2.7)$ at rt (Table $3-6$, entries 1 and 2$)$. The more hindered tert-leucine derived catalyst AcOLeDMAP (ent-20b) proved even more enantioselective (s=8.9, entry 3). At lower temperatures the selectivity increased to synthetically useful levels (s=20.5-29, entries 4 and 5). However, at $-70^{\circ} \mathrm{C}$ the rate of acylation decreased dramatically, so further experiments were conducted at $-40{ }^{\circ} \mathrm{C}$. Unhindered alcohols 5b and 5d were also resolved with good enantioselectivity, but the kinetic resolution of t-butyl substituted alcohol 5 c failed (entries 6-8). In addition to increased enantioselectivity with the amino acid-derived catalysts ent-20a and ent20b, the anhydride selectivity between isobutyric anhydride versus m-chlorobenzoic anhydride or nicotinic anhydride increased to 16:1 and 11:1, respectively (toluene, rt).

Since the kinetic resolution of alcohols using AcOLeDMAP (20b) was enantioselective under different conditions than TBDMAP 18c, the PhPBO (8d) catalyzed kinetic resolution needed to be run under the optimized conditions. Fortuitously, the kinetic resolution of alcohol 5a with PhPBO (8d) using m-chlorobenzoic anhydride was even more enantioselective under these conditions than those used above ($\mathbf{s}=19.8$, toluene, $-40^{\circ} \mathrm{C}$). Unfortunately, both $\mathbf{8 d}$ and ent-20b preferentially acylated the (R)-enantiomer of the alcohol. To achieve the desired complementarity, the enantiomeric catalyst (R, R)-AcOLeDMAP (20b) was synthesized from (R)-tert-leucinol according to the route developed by Shaw ${ }^{21}$ (Scheme 3-4).

Scheme 3-4. Synthesis of (R, R)-AcOLeDMAP.

The similar and complementary enantioselectivities of PhPBO 8d and AcOLeDMAP 20b, in addition to high selectivities for activation of just one of the two anhydrides, met the enantioselectivity and mutual non-interference criteria for a PKR experiment. Thus the new catalyst combination was tested in the PKR of alcohol 5a under the optimized kinetic resolution conditions. In contrast to TBDMAP, AcOLeDMAP (20b) proved to be more reactive than PhPBO $\mathbf{8 d}$. Therefore a $2.2: 1$ ratio of catalysts $\mathbf{8 d}$ and $\mathbf{2 0 b}$ was used to afford a 1:1.2 ratio of aromatic ester 24 and isobutyrate 17a at approximately 92% conversion after 3 h (Table 3-7, entry 1). After isolation and saponification of the esters, the alcohols were assayed by HPLC on chiral support. The alcohol derived from m-chlorobenzoate $\mathbf{2 4}$ was obtained in 88% ee and the alcohol from isobutyrate 17a in 75\% ee. Increasing the catalyst loading of PhPBO 8d in order to obtain a 1:1 ratio of the alcohols by NMR did not significantly affect the enantiomeric excesses of the products, but the recovered starting material was essentially racemic as desired for a PKR experiment (entry 2). Doubling the catalyst loading resulted in a slight increase in the enantiomeric excess of isobutyrate 17 at the expense of the \% ee of aromatic ester 24 (entry 3). All of these PKR experiments use the HBF_{4} salt of $\mathbf{8 d}$ as a precatalyst for better control of catalyst loading. ${ }^{22}$

Table 3-7. Parallel Kinetic Resolutions of Alcohols with Amino Acid Derived Catalysts.

entry	8d $(\mathrm{mol} \%)$	20b $(\mathrm{mol} \%)$	Time	NMR Ratio $(\mathbf{2 4 : 1 7 a}: 5 a)$	$\mathbf{2 4}$ $\% \mathrm{ee}$	$\mathbf{1 7 a}$ $\% \mathrm{ee}$	5a $\% \mathrm{ee}$
1	2.2	1	3 h	$1.0: 1.2: 0.18$	88	-75	27
2	2.6	1	3 h	$1.0: 1.0: 0.5$	87 $(44 \%$ yield $)$	-76 $(33 \%$ yield $)$	-8
3	5.2	2	2 h	$1.0: 1.2: 0.53$	86	-78	19

${ }^{a}$ All reactions used 1 equiv 5a, 1 equiv of each anhydride, 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}, 1-5.2$ mol\% of each catalyst, and were diluted to 0.06 M substrate in toluene.

Under ideal PKR conditions, the product of a resolution with $\mathbf{s}=20$ would have 90% ee (defined as \% ee at 1% conversion), so the recovery of aromatic ester 24 in $86-88 \%$ ee is nearly ideal. In addition, at 50% conversion, the product of a standard KR with $\mathbf{s}=20$ would be recovered in 79% ee (Table 3-1), so the PKR has significantly enhanced the efficiency of the resolution. However, the conditions for an ideal PKR were not fully satisfied because the enantiomeric excess of isobutyrate 17 was lower than the expected 90% ee (actual: $75-75 \%$ ee).

From the lower than expected enantiomeric excesses of the isobutyrate product, it is clear that the conditions for an ideal PKR have not been met. The criteria laid out earlier for an ideal PKR are: (1) mutual non-interference of the two competing KR's, (2) similar reaction rate, (3) similar enantioselectivity, and (4) formation of two distinct isolable products. In these experiments we have formed two distinct isolable products so that criterion (4) was met. The requirement for similar enantioselectivity of the two KR processes (3) was also met in the PKR
experiments using AcOLeDMAP. The two remaining criteria are similar reaction rate and mutual non-interference. Although we tried to match the catalyst loadings to achieve a $1: 1$ ratio of the products, it is possible that rates of the catalyzed reactions were not equal over the course of the reaction. In the three phase PKR experiment, Rozners noted that the enantiomeric excess of the recovered starting material did not remain constant over the course of the reaction, and the phosphine catalyzed resolution became slower at higher conversion. ${ }^{16}$ This could arise from inactivation of the PBO catalyst by phosphine oxidation or by-product inhibition. Regardless of the cause, the phosphine catalyzed process may dominate at low conversions but as the catalyst is inhibited the other kinetic resolution becomes dominant. If this is the case, the starting material does not remain racemic throughout the course of the PKR.

The last criterion for an ideal PKR, is that the two resolutions must be mutually noninterfering (1). In the PKR experiments by MacKay, the anhydride selectivity of TBDMAP was only $6: 1$. Therefore, 15% of the time TBDMAP will be activating the wrong anhydride for acylation. The activation of the undesired anhydride would result in conversion of the wrong enantiomer to the aromatic ester. This problem was alleviated by switching to AcOLeDMAP which has increased anhydride selectivity. In the new PKR experiments, the aromatic ester was obtained in nearly ideal enantiomeric excess, indicating that the formation of the aromatic ester occurred almost exclusively by PhPBO catalysis.

This explanation does not address the lower enantiomeric excess of the aliphatic esters obtained in both sets of PKR data, since the anhydride selectivity of PhPBO was shown to be high for each of the electron poor aromatic anhydrides in competition studies. In an NMR study, MacKay found that DMAP and PhPBO each promoted the scrambling of a $1: 1$ mixture of benzoic and isobutyric anhydrides to form a statistical mixture of a new mixed anhydride and the symmetrical anhydrides. Several mixed anhydrides were independently synthesized to evaluate the effect of scrambling on the acyl activation process by each catalyst. DMAP catalysts remained selective for isobutyroylation regardless of which anhydrides were present (Table 3-8, entries 1, 2, 8 and 9). On the other hand, ArPBO was very sensitive to the nature of the anhydride. As shown previously, ArPBO preferentially forms the aromatic ester in the presence
of the two symmetrical anhydrides (entry 3). In contrast, the selectivity of ArPBO reverses with the mixed anhydrides, and isobutyrate (17a) becomes the major product (entries 4 and 5). To ensure that this change in anhydride selectivity was not due to a contaminant in the mixed anhydride, the highly crystalline biphenyl cyclohexyl mixed anhydride 25 was synthesized and thoroughly purified prior to the competition experiment. Even with this pure mixed anhydride, PhPBO selectively formed the aliphatic ester over the aromatic ester (entry 7), while a $1: 1$ ratio of the aliphatic and aromatic esters is formed from a mixture of the two symmetrical anhydrides (entry 6). If a mixed anhydride is formed during the course of the PKR experiment as indicated by the NMR experiments, then the PhPBO catalyst could begin forming the isobutyrate product. This would be detrimental to the enantiomeric excess of the isobutyrate 17a since PhPBO would selectively form the undesired enantiomer. The decreased enantiomeric excess of isobutyrate 17a in the PKR experiments with AcOLeDMAP (20b) corresponds to approximately 8% of the isobutyrate ester arising from PhPBO catalysis.

Table 3-8. Additional anhydride competition experiments.

${ }^{\text {a }}$ All reactions used 1 equiv 5a, 1-2 eq. of each anhydride (1:1 ratio), 1.5 equiv $\mathrm{Et}_{3} \mathrm{~N}$, and were diluted to 0.2 M substrate in toluene. ${ }^{\text {b }}$ Experiment by J . A . MacKay. ${ }^{c}$ ca. 0.1 equiv $\mathrm{Et}_{3} \mathrm{~N}$.

The complementary anhydride selectivity of each of the catalysts deserves consideration. Nucleophiles catalyze acylations by forming an ion pair such as A (Figure 3-5). The rate of
nucleophile-catalyzed acylations depends on both the extent of formation of the ion pair and the reactivity of the ion pair. For phosphine catalysts, the anhydride selectivity is dependent on the extent of formation of the ion pair (Figure 3-5). In the competition experiments to determine anhydride selectivity for phosphine catalysts, the formation of ion pair \mathbf{B} is favored over the formation of ion pair \mathbf{A} for most aromatic anhydrides. The selectivity tends to increase as the carboxylate leaving group f5C or f5F becomes less basic, indicating that the formation of ion pair B becomes more favorable than ion pair \mathbf{A} (Table 3-3). This trend is due to the mildly basic phosphine catalysts $\left(\mathrm{Et}_{3} \mathrm{P}^{+} \mathrm{H}: \mathrm{pK}_{\mathrm{a}}=5.6 \text { in } \mathrm{MeOH}, \mathrm{pK}_{\mathrm{a}}=8.7 \text { in } \mathrm{MeNO}_{2}\right)^{23}$ more readily displacing the better leaving groups f5F, resulting in formation of a higher concentration of ion pair B. The increase in the phosphine catalyzed formation of aliphatic esters using the mixed anhydride $\mathbf{f 5 H}$ support this conclusion. The addition of the phosphine to the mixed anhydride f5H can form two ion pairs \mathbf{C} and \mathbf{D}, and the selective formation of the aliphatic ester suggests that ion pair \mathbf{C} is favored over ion pair \mathbf{D}. Comparing the favored ion pair \mathbf{C} from the mixed anhydride with the favored ion pair B from the two symmetrical anhydrides, the common element is the carboxylate leaving group f5F.

Figure 3-5. Proposed Intermediates in Phosphine Catalyzed Acyl Transfer Reactions.

A similar analysis of the DMAP catalyzed acyl transfer reactions leads to a different conclusion (Figure 3-6). Since DMAP selectively catalyzes the isobutyroylation of alcohols
regardless of the anhydride donor, ion pairs \mathbf{E} and \mathbf{H} are the active acylating agents. The common element between ion pairs E and \mathbf{H} is the acylated pyridinium ion $f 6 A$. Since DMAP catalysts are more basic than the phosphine catalysts (DMAP: $\mathrm{pK}_{\mathrm{a}}=10.1 \mathrm{in} \mathrm{MeOH}, \mathrm{pK}_{\mathrm{a}}=17.3$ in $\left.\mathrm{MeNO}_{2}\right)^{24}$ all four ion pairs $\mathbf{E}-\mathbf{H}$ are readily formed, so the selectivity arises from the reactivity of the intermediate acyl pyridinium salt. The additional resonance forms available with the arene ring stabilize the aromatic N-benzoyl pyridinium ion f6B over the corresponding aliphatic acyl pyridinium ion f6A. This additional stability decreases the reactivity of the pyridinium salt with the alcohol. The decrease in anhydride selectivity with electron poor aromatic anhydrides correlates to a decrease in this stabilization effect.

Figure 3-6. Proposed Intermediates in DMAP Catalyzed Acyl Transfer Reactions.

In conclusion, a dual catalytic homogeneous PKR with achiral acyl donors has been developed, and two distinct enantioenriched esters were isolated. The enantioenrichment of these products is solely due to the two chiral catalysts. This PKR was made possible by the complementary anhydride selectivity of phosphine and DMAP catalysts. Although the ideal enantiomeric excess of one of the products was not quite reached, this represents the first example of a catalytic PKR using non-enzymatic catalysts. Future work should focus on preventing the formation of the mixed anhydride ($\mathbf{f 5 H}$), thereby limiting activation at the undesired acyl group by the PBO catalyst 8d.

III. Experimental

General Experimental

$\mathrm{Et}_{2} \mathrm{O}$, THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by passing through a column of activated alumina. Ethyl acetate and $\mathrm{Et}_{3} \mathrm{~N}$ were distilled over CaH_{2} prior to use. $\mathrm{Et}_{2} \mathrm{NH}$ was distilled over KOH prior to use. t-Amyl alcohol was carefully distilled over molten sodium. Organolithium reagents were titrated with diphenylacetic acid in THF prior to use. All other reagents were used as received from the manufacturer. Analytical thin layer chromatography (tlc) was accomplished using Whatman 0.25 mm K6F Silica Gel $60 \AA$ plates, and visualized with the aid of UV light or iodine vapor, or 10\% PMA stain. Flash chromatography was accomplished according to the Still procedure ${ }^{10}$ using Whatman Silica Gel: Puracil $60 \AA$ (230-400 mesh). All reactions were performed under an atmosphere of nitrogen in oven-dried glassware.

1-(4-Dimethylaminopyridin-3-yl)-2,2,2-triphenylethanol (18b). (Preparation first reported in Ref 18.) To a solution of (-)-TADMAP (18a) ${ }^{19}$ ($175 \mathrm{mg}, 0.41 \mathrm{mmol}, 96.4 \% \mathrm{ee}$) in toluene (4.1 mL) cooled to $0^{\circ} \mathrm{C}$ was added DIBAL ($0.89 \mathrm{~mL}, 1 \mathrm{M}$ solution in toluene) via syringe. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , and then quenched with aqueous sodium potassium tartrate (sat., 4 mL) and stirred vigorously for 2 h to break up the emulsion. An additional 2 mL of saturated aqueous sodium potassium tartrate was added along with EtOAc (10 mL) and $10 \% \mathrm{HCl}$ $(0.5 \mathrm{~mL})$. The layers were separated and the aqueous layer was extracted with EtOAc (3×10 $\mathrm{mL})$. The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and the aqueous later was extracted with EtOAc (10 mL). All aqueous layers were combined and extracted with DCM ($2 \times 10 \mathrm{~mL}$). The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated (aspirator) to give 123 mg (78%) of a white solid (18b) that was used in the subsequent reaction without further purification. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]$, ESMS m/z= 395.2123; found $\mathrm{m} / \mathrm{z}=395.2127$; IR (neat, cm^{-1}) 3417 (br); 1594; 700; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ppm) ס $8.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}) 7.56(1 \mathrm{H}, \mathrm{s}) 7.38-7.33(6 \mathrm{H}, \mathrm{m}) 7.27-7.16(9 \mathrm{H}, \mathrm{m}) 6.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $5.4 \mathrm{~Hz}) 6.75(1 \mathrm{H}, \mathrm{s}) 5.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}) 2.55(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 160.4,151.1$, 149.3, 144.5, 130.6, 129.9, 127.7, 126.4, 115.0, 73.1, 64.8, 44.5 .

Representative Procedure for the synthesis of TADMAP derivatives: Benzoic acid

 1-(4-dimethylaminopyridin-3-yl)-2,2,2-triphenylethyl ester (18c). (First reported in Ref 18.) Alcohol 18b ($121 \mathrm{mg}, 0.31 \mathrm{mmol}$) was dissolved in DCM (1.5 mL). The solution was cooled to 0 ${ }^{\circ} \mathrm{C}$, and $\mathrm{EtMgBr}\left(0.85 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}, 0.54 \mathrm{~mL}, 0.46 \mathrm{mmol}\right)$ was added via syringe. The cooling bath was removed and the mixture was stirred for 1 h at rt . The mixture was re-cooled to $0{ }^{\circ} \mathrm{C}$ and benzoic anhydride ($208 \mathrm{mg}, 0.92 \mathrm{mmol}$) was added as a solution in DCM $(0.4 \mathrm{~mL})$ via syringe. The solution immediately turned yellow, was stirred for 5 min , and warmed to room temperature. Then the mixture was stirred an additional 2.5 h and the solution turned orange. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ followed by the addition of NaHCO_{3} (sat., 10 mL) and extracted with $\mathrm{DCM}(4 \times 10 \mathrm{~mL})$. The combined organic layers were washed with NaHCO_{3} (sat., 10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated (aspirator). The crude product was purified by flash chromatography ($3 \times 14 \mathrm{~cm}$) using $4: 1 \mathrm{EtOAc} /$ hexanes with a $1 \% \mathrm{Et}_{3} \mathrm{~N}$ buffer as eluent and collecting 9 mL fractions. Impurities eluted in fractions 6-9. Fractions 10-17 were combined to yield 97 mg (63\%) of 18c, a pale yellow foam. HPLC assay was carried out on a Chiralpak AD analytical column, 5% isopropanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$ flow rate. Retention times of enantiomers: $11.1 \mathrm{~min}(R), 20.0 \mathrm{~min}(S), 95 \%$ ee. HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$, ESMS m/z=499.2386; found $m / z=499.2363 ; \mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right)$ 1715; 1585; 1265; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.17$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.9 \mathrm{~Hz}) 8.01(1 \mathrm{H}, \mathrm{s}) 7.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}) 7.51(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}) 7.40-7.34(9 \mathrm{H}, \mathrm{m})$ 7.26-7.16 (9H, m) $6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}) 2.79(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta$ 166.2, 159.5, 152.7, 149.9, 143.5, 133.4, 131.1, 130.3, 129.9, 128.7, 126.8, 126.5, 114.3, 73.1, 64.8, 43.8, 27.5.Isobutyric acid 1-(4-dimethylaminopyridin-3-yl)-2,2,2-triphenylethyl ester (18e). Following the representative procedure for the synthesis of TADMAP derivatives, alcohol 18b (26 $\mathrm{mg}, 0.066 \mathrm{mmol}$) was protected as the formate ester $18 \mathrm{e}(8 \mathrm{mg}, 29 \%)$ at 55% conversion using isobutyric anhydride ($31 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$). HRMS calcd for $\mathrm{C}_{31} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$, ESMS m/z= 465.2542; found $m / z=465.2542$; $\operatorname{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right)$ 1731; 1586; 1148, 702; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}) 7.70(1 \mathrm{H}, \mathrm{s}) 7.34(1 \mathrm{H}, \mathrm{s}) 7.30-7.27(6 \mathrm{H}, \mathrm{m}) 7.23-7.17(9 \mathrm{H}$, m) $6.71(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}) 2.74(6 \mathrm{H}, \mathrm{s}) 2.45(1 \mathrm{H}, \mathrm{qq}, \mathrm{J}=7.3,6.8 \mathrm{~Hz}) 0.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}) 0.96$
(1H, d, J= 7.3 Hz). ${ }^{13} \mathrm{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) $\delta 176.1,159.3,151.5,148.8,143.2$, 130.8, 127.3, 126.6, 113.8, 72.4, 64.4, 43.5, 34.3, 18.6, 18.6.

Formic acid 1-(4-dimethylaminopyridin-3-yl)-2,2,2-triphenylethyl ester (18d). Following the representative procedure for the synthesis of TADMAP derivatives, alcohol 18b ($\mathbf{2 4}$ $\mathrm{mg}, 0.062 \mathrm{mmol}$) was protected as the isobutryate ester 18 d ($13 \mathrm{mg}, 45 \%$) at 56% conversion using formyl pivaloyl mixed anhydride ($17 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$). HRMS calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]$, ESMS $m / z=423.2073$; found $m / z=423.2063$; IR (neat, cm^{-1}) 1723; 1588; 1162, $704 ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $3, \mathrm{ppm}$) $\delta 8.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}) 8.01(1 \mathrm{H}, \mathrm{s}) 7.84(1 \mathrm{H}, \mathrm{s}) 7.47(1 \mathrm{H}, \mathrm{s}) 7.31-7.27$ (6H, m) 7.24-7.19 (9H, m) $6.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}) 2.68(6 \mathrm{H}, \mathrm{s})$.

General procedure for kinetic resolutions using DMAP derivatives (A): Kinetic Resolution of 5 a Using 18c. A solution of alcohol $5 \mathbf{5 a}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, DMAP 18 c (0.5 mg , $0.001 \mathrm{mmol}, 91 \% \mathrm{ee})$, and $\mathrm{Et}_{3} \mathrm{~N}(15 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$ in toluene (0.8 mL) was treated with isobutyric anhydride ($17 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$). The reaction was monitored by TLC to an estimated 50% conversion, and then was quenched by addition of $i-\mathrm{PrNH}_{2}(0.1 \mathrm{~mL})$. The mixture was concentrated (aspirator), and purified by flash chromatography. Ester fractions were concentrated, and $5 \% \mathrm{NaOH} / \mathrm{MeOH}(1 \mathrm{~mL})$ was added to saponify the ester prior to assay. The solution was warmed gently for 5 min and then left at room temperature for 2 h . Methanol was evaporated, and the residue was filtered through an $8 \mathrm{~cm} \times 1.2 \mathrm{~cm}$ pad of silica gel in DCM. After solvent removal (aspirator), HPLC assay was carried out on a chiral support. Conversion and selectivity of the kinetic resolution were calculated by a best fit method using both the ee of the recovered alcohol and ee of the hydrolyzed ester, correcting for the ee of the catalyst. ${ }^{25}$

Table 3-2, entry 2: Isobutyroylation of 5a with 18c. Following the general procedure A, racemic 5 ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$), isobutyric anhydride ($17 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$) and catalyst $18 \mathrm{c}(0.5$ $\mathrm{mg}, 0.001 \mathrm{mmol}, 91 \% \mathrm{ee}$) in toluene were stirred at rt for 20 h to afford unreacted alcohol R-5a 22.3% ee, and isobutyrate $S-17 a 40.7 \%$ ee (after hydrolysis); $\boldsymbol{s}=3.4^{25}$ and $c=35 \%$. HPLC analysis: CHIRALCEL OD analytical column, 10% 2-propanol/hexanes, $1 \mathrm{~mL} / \mathrm{min}$ flow rate. Retention times $9.8 \mathrm{~min}(S)$, according to (-) sign of opt. rotation , ${ }^{26} 15.0 \mathrm{~min}(R)$.

Table 3-2, entry 3: Isobutyroylation of 5a with 18c. Following the general procedure A, racemic $5 \mathbf{a}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, isobutyric anhydride ($12 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$) and catalyst $\mathbf{1 8 c}(0.5$ $\mathrm{mg}, 0.001 \mathrm{mmol}, 91 \% \mathrm{ee})$ in t-amyl alcohol were stirred at rt for 48 h to afford unreacted alcohol R-5a 34.0\% ee, and isobutyrate S-17a 49.8\% ee (after hydrolysis); $\mathbf{s}=5.1^{25}$ and $\mathrm{c}=41 \%$.

Table 3-2, entry 4: Isobutyroylation of 5a with 18c. Following the general procedure A, racemic 5 a (17 mg, 0.1 mmol), isobutyric anhydride ($17 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), and catalyst $\mathbf{1 8 c}$ (0.5 $\mathrm{mg}, 0.001 \mathrm{mmol}, 91 \%$ ee) in t-amyl alcohol were stirred at $0{ }^{\circ} \mathrm{C}$ for 48 h to afford unreacted alcohol R-5a 33.4\% ee, and isobutyrate S-17a 51.1% ee (after hydrolysis); $\mathbf{s}=5.3^{25}$ and $\mathrm{c}=40 \%$.

Table 3-2, entry 5: Isobutyroylation of 5a with 18d. Following the general procedure A, racemic $5 \mathrm{a}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, isobutyric anhydride ($12 \mu \mathrm{~L}, 0.06 \mathrm{mmol}$), and catalyst $\mathbf{1 8 d}(0.5$ $\mathrm{mg}, 0.001 \mathrm{mmol}, 93 \%$ ee) in t-amyl alcohol were stirred at $0{ }^{\circ} \mathrm{C}$ for 24 h to afford unreacted alcohol $R-5 \mathrm{a} 40.0 \%$ ee, and isobutyrate S-17a 36.8% ee (after hydrolysis); $\mathbf{s}=3.5^{25}$ and $\mathrm{c}=52 \%$.

Table 3-2, entry 6: Isobutyroylation of 5 a with 18 e . Following the general procedure, racemic $5 \mathrm{a}(18 \mathrm{mg}, 0.1 \mathrm{mmol})$, isobutyric anhydride $(17 \mu \mathrm{~L}, 0.1 \mathrm{mmol})$, and catalyst $18 \mathrm{e}(0.1 \mathrm{~mL}$, 0.01 M in t-amyl alcohol, $0.001 \mathrm{mmol}, 95.5 \% \mathrm{ee}$) in t-amyl alcohol were stirred at $0{ }^{\circ} \mathrm{C}$ for 16 h to afford unreacted alcohol R-5a 27.0\% ee, and isobutyrate S-17a 26.7% ee (after hydrolysis); s = 2.3^{25} and $c=50 \%$.

Table 3-6, entry 1: Isobutyroylation of 5a with ent-20a. Following the general procedure \mathbf{A}, racemic $5 \mathbf{a}$ ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$), isobutyric anhydride ($8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$), and catalyst ent-20a ($0.05 \mathrm{~mL}, 0.02 \mathrm{M}$ in t-amyl alcohol, 0.001 mmol) in t-amyl alcohol were stirred at rt for 4 h to afford unreacted alcohol S-5a 10.9% ee, and isobutyrate R-17a 41.8\% ee (after hydrolysis); s $=2.7$ and $c=21 \%$.

Table 3-6, entry 4: Isobutyroylation of 5a with ent-20b. Following the general procedure A , racemic $5 \mathrm{a}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, isobutyric anhydride ($17 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), and catalyst ent-20b ($0.05 \mathrm{~mL}, 0.02 \mathrm{M}$ in toluene, 0.001 mmol) in toluene were stirred at $-40{ }^{\circ} \mathrm{C}$ for 4 h to afford unreacted alcohol S-5a 19.2\% ee, and isobutyrate R-17a 83.5\% ee (after hydrolysis); $\mathbf{s}=$ 13.4 and $c=19 \%$.

Table 3-6, entry 4: Isobutyroylation of 5 a with ent-20b. Following the general procedure \mathbf{A}, racemic $5 \mathbf{a}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, isobutyric anhydride ($17 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), and catalyst ent-20b ($0.4 \mathrm{mg}, 0.001 \mathrm{mmol}$) in toluene were stirred at $-40^{\circ} \mathrm{C}$ for 4 h to afford unreacted alcohol S-5a 47.5% ee, and isobutyrate $R-17 a 85.5 \%$ ee (after hydrolysis); $\mathbf{s}=20.5$ and $c=36 \%$.

Table 3-6, entry 5: Isobutyroylation of 5 a with ent-20b. Following the general procedure \mathbf{A}, racemic $5 \mathbf{a}$ ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$), isobutyric anhydride ($8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$), and catalyst ent-20b ($0.05 \mathrm{~mL}, 0.02 \mathrm{M}$ in toluene, 0.001 mmol) in toluene were stirred at $-70{ }^{\circ} \mathrm{C}$ for 8 h to afford unreacted alcohol S-5a 7.0% ee, and isobutyrate R-17a 92.9\% ee (after hydrolysis); s=29 and $\mathrm{c}=7 \%$.

Table 3-6, entry 6: Isobutyroylation of 5b with ent-20b. Following the general procedure \mathbf{A}, racemic $5 \mathbf{b}$ (0.1 mmol), isobutyric anhydride ($8 \mu \mathrm{~L}, 0.05 \mathrm{mmol}$), and catalyst ent20b ($0.05 \mathrm{~mL}, 0.02 \mathrm{M}$ in toluene, 0.001 mmol) in toluene were stirred at $-40{ }^{\circ} \mathrm{C}$ for 4 h to afford unreacted alcohol S-5b 55.7\% ee, and isobutyrate R-17b 72.2\% ee (after hydrolysis); s $=10.7$ and $c=44 \%$. HPLC analysis: CHIRALCEL OD analytical column, 3\% 2-propanol/hexanes, 1 $\mathrm{mL} / \mathrm{min}$ flow rate. Retention times $13.2 \mathrm{~min}(R)$, according to $(-)$ sign of opt. rotation, 16.3 min $(S) .{ }^{27}$

Table 3-6, entry 7: Isobutyroylation of 5c with ent-20b. Following the general procedure A, racemic $5 \mathbf{c}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, isobutyric anhydride ($21 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), and catalyst ent-20b ($0.05 \mathrm{~mL}, 0.02 \mathrm{M}$ in toluene, 0.001 mmol) in toluene were stirred at $-40{ }^{\circ} \mathrm{C}$ for 4 h to afford unreacted alcohol S-5c 10.1\% ee, and isobutyrate R-17c 25.2\% ee (after hydrolysis); s = 1.8 and $c=29 \%$. HPLC analysis: CHIRALCEL OD analytical column, 3\% 2-propanol/hexanes, 1 $\mathrm{mL} / \mathrm{min}$ flow rate. Retention times $11.8 \mathrm{~min}(\mathrm{~S})$ according to (-) sign of opt. rotation, 18.4 min (R). ${ }^{27}$

Table 3-6, entry 8: Isobutyroylation of 5d with ent-20b. Following the general procedure A , racemic $5 \mathrm{~d}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, isobutyric anhydride ($21 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), and catalyst ent-20b ($0.05 \mathrm{~mL}, 0.02 \mathrm{M}$ in toluene, 0.001 mmol) in toluene were stirred at $-40{ }^{\circ} \mathrm{C}$ for 4 h to afford unreacted alcohol S-5d 36.2\% ee, and isobutyrate R-17d 74.0\% ee (after hydrolysis); s = 9.5 and $c=33 \%$. HPLC analysis: CHIRALCEL OB analytical column, 3\% 2-propanol/hexanes, 1
$\mathrm{mL} / \mathrm{min}$ flow rate. Retention times $13.4 \mathrm{~min}(\mathrm{~S})$, according to $(-)$ sign of opt. rotation, 21.4 min $(R) .{ }^{27}$
m-Chlorobenzoylation of 5a with PhPBO 8d. Following the general procedure A, racemic 5 ($22 \mathrm{mg}, 0.12 \mathrm{mmol}$), m-chlorobenzoic anhydride ($29 \mathrm{mg}, 0.1 \mathrm{mmol}$), and catalyst $\mathbf{8 d}$ ($0.05 \mathrm{~mL}, 0.04 \mathrm{M}$ in toluene, 0.002 mmol) in toluene were stirred at $-40^{\circ} \mathrm{C}$ for 6 h to afford unreacted alcohol S-5a 97.5% ee, and isobutyrate R-24 65.3\% ee (after hydrolysis); s = 19.8 and $\mathrm{c}=60 \%$.
(R)-N-Benzoyl-tert-leucinal (22). Following the procedure developed by Shaw ${ }^{21}:(R)-$ tert-Leucinol ($214 \mathrm{mg}, 1.82 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.25 \mathrm{~mL}, 1.82 \mathrm{mmol})$ were dissolved in DCM (10 $\mathrm{mL})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with benzoyl chloride ($0.23 \mathrm{~mL}, 2.01 \mathrm{mmol}$). The solution was stirred for 1 h , concentrated (aspirator) and the residue taken up in EtOAc. The solution was washed with 0.1 M HCl , then brine, dried over MgSO_{4}, filtered and concentrated (aspirator) yielding (R)-N-benzoyl-tert-leucinol as a white solid (309 mg, 77\%). The material was used without additional purification.

Crude (R)-N-benzoyl-tert-leucinol ($309 \mathrm{mg}, 1.40 \mathrm{mmol}$) was taken up in DCM (1 mL) and DMSO (1 mL) and treated with $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 5 \mathrm{mmol})$. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{SO}_{3} \bullet$ pyridine $(1.11 \mathrm{~g}, 7.0 \mathrm{mmol}$, Aldrich) in DMSO (2 mL) was added dropwise over 10 min. After 1 h , the solution was poured into $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$. The combined organics were washed with 0.1 M HCl and brine, dried over MgSO_{4}, filtered and concentrated (aspirator). The residue was purified by flash chromatography (silica gel; $3 \times 15 \mathrm{~cm}$) with $40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes as the eluent yielding (R)- N -benzoyl-tert-leucinal as a white solid (22, $199 \mathrm{mg}, 65 \%$) was isolated. In order to avoid racemization, this material was used promptly upon purification.

Acetic acid 2-benzoylamino-1-(4-dimethylaminopyridin-3-yl)-3,3-dimethyl-butyl ester (20b, AcOLeDMAP). To a solution of tBuLi ($2.9 \mathrm{~mL}, 1.45 \mathrm{M}, 4.0 \mathrm{mmol}$ in hexane) at $-78^{\circ} \mathrm{C}$ was added a solution of 3-bromo-4-dimethylaminopyridine 6C ($436 \mathrm{mg}, 2.2 \mathrm{mmol}$) in THF (19 mL) dropwise. To the resulting solution was added dropwise a solution of $(R)-N$-benzoyl-tert-leucinal (22, $199 \mathrm{mg}, 0.90 \mathrm{mmol}$) in THF (12.5 mL) at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30
min, then quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The solution was warmed to rt , and the aqueous layer was extracted with DCM $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated (aspirator). The residue was taken up in DCM (10 mL) and treated with $\mathrm{Et}_{3} \mathrm{~N}(0.7 \mathrm{~mL}, 5 \mathrm{mmol})$ and $\mathrm{Ac}_{2} \mathrm{O}(0.45 \mathrm{~mL}, 4.8 \mathrm{mmol})$. After stirring for 20 h at rt , the solution was poured into 2 M NaOH and extracted with DCM $3 \times 10 \mathrm{~mL}$), and the combined organic layers were dried over MgSO_{4}, filtered and concentrated (aspirator) yielding a yellow oil that was purified by column chromatography (silica gel; $5 \times 15 \mathrm{~cm}$) using 95:5 $\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}$ to provide 12a as a pale yellow solid (>98:2 dr). This material was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ /hexanes to afford 23A as a white powder ($157 \mathrm{mg}, 45 \%$, diastereomerically pure). Spectral data matched the known compound.

A Representative Example of Competition Experiments: Table 3-3, entry 5. A solution 1-naphthyl methyl carbinol $\mathbf{5 a}$ ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$), m-chlorobenzoic anhydride ($30 \mathrm{mg}, 0.1$ mmol), isobutyric anhydride ($17 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, degassed), and $\mathrm{ArPBO}^{2} \cdot \mathrm{HBF}_{4}\left(8 \mathrm{c} \cdot \mathrm{HBF}_{4}, 1.5 \mathrm{mg}\right.$, $0.004 \mathrm{mmol})$ in toluene (0.7 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}(21 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$. After stirring for 5 h , addition of $i-\mathrm{PrNH}_{2}(0.1 \mathrm{~mL})$ quenched the reaction, and the solvent was evaporated $\left(\mathrm{N}_{2}\right.$ stream $)$. NMR assay of the crude reaction mixture revealed $>18: 1$ of the m-chlorobenzoate/isobutyrate. These reactions were not worked up further.

General Procedure for Parallel Kinetic Resolution. A solution of $\mathbf{5 a}(0.1 \mathrm{mmol}), \mathrm{m}$ chlorobenzoic anhydride ($23 \mathrm{mg}, 0.1 \mathrm{mmol}$), isobutyric anhydride ($17 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$, degassed), and $\mathrm{Et}_{3} \mathrm{~N}(22 \mu \mathrm{~L}, 0.15 \mathrm{mmol})$ in toluene $(0.8 \mathrm{~mL})$ was cooled to $-40^{\circ} \mathrm{C}$ in a Cryocool. The catalysts were added as solutions: PhPBO 8c ($25 \mu \mathrm{~L}, 0.0022 \mathrm{mmol}, 0.088 \mathrm{M}$ in DCM) and AcOLeDMAP 20b ($25 \mu \mathrm{~L}, 0.001 \mathrm{mmol}, 0.04 \mathrm{M}$ in DCM). The reactions were stirred for 2-3 h and then quenched with $i-\operatorname{PrNH}_{2}(0.1 \mathrm{~mL})$. The mixture was concentrated (aspirator), and the ratio of products was determined by crude ${ }^{1} \mathrm{H}$ NMR spectroscopy. The products were purified by flash chromatography ($2: 1$ Hex: $\mathrm{Et}_{2} \mathrm{O}$). Analytical TLC ($2: 1 \mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}$): m-chlorobenzoate: $\mathrm{R}_{\mathrm{f}}=0.44$, isobutyrate: $R_{f}=0.32$, alcohol: $R_{f}=0.12$. Ester fractions were concentrated to afford 17a and 24 .

Next, $5 \% \mathrm{NaOH} / \mathrm{MeOH}(1 \mathrm{~mL})$ was added to saponify each ester prior to assay. The solution was warmed gently for 5 min and then left at room temperature for 2 h . Methanol was evaporated, and the residue was filtered through an $8 \times 1.2 \mathrm{~cm}$ pad of silica gel in DCM. After solvent removal (aspirator), HPLC assay for each product was carried out on a chiral support.

Parallel Kinetic Resolutions:

Table 3.7, entry 1. Following the general procedure, racemic 5 a ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$), PhPBO 8c (0.0022 mmol), and AcOLeDMAP 20b (0.001 mmol) were stirred for 3 h to afford R 24: 88\% ee (after hydrolysis), S-17a: 75\% ee (after hydrolysis) and recovered alcohol 5a: 27\% ee.

Table 3.7, entry 2. Following the general procedure, racemic 5 a ($17 \mathrm{mg}, 0.1 \mathrm{mmol}$), PhPBO 8c (0.0026 mmol), and AcOLeDMAP 20b (0.001 mmol) were stirred for 3 h to afford R 24: (14 mg, 44\%) 87\% ee (after hydrolysis), S-17a: (8 mg, 33\%) 76\% ee (after hydrolysis) and recovered alcohol 5a: 8\% ee.

Table 3.7, entry 3. Following the general procedure, racemic $5 \mathrm{a}(17 \mathrm{mg}, 0.1 \mathrm{mmol})$, PhPBO 8c (0.0052 mmol), and AcOLeDMAP 20b (0.002 mmol) were stirred for 2 h to afford R 24: 86\% ee (after hydrolysis), S-17a: 75\% ee (after hydrolysis) and recovered alcohol 5a: 19\% ee.

Preparation of mixed biphenyl cyclohexyl anhydride 25. A solution of 4-biphenyl carboxylic acid (999 $\mathrm{mg}, 5.0 \mathrm{mmol}$) in THF (15 mL) was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaH}(204 \mathrm{mg}, 5.1$ mmol) was added. After 30 min , the solution was allowed to warm to rt and stirred for an additional 1 h . The solution was re-cooled to $0^{\circ} \mathrm{C}$, and cyclohexyl carbonyl chloride (0.61 mL , $4.5 \mathrm{mmol})$ was added dropwise. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. The ice bath was removed and the mixture was stirred for an additional 40 min at rt . Activated carbon $(\sim 0.5 \mathrm{~g})$ and hexanes (10 mL) was added and the mixture was filtered through celite and concentrated to yield a white solid. The solid was taken up in hot hexanes, filtered (to remove the symmetrical biphenyl anhydride), and allowed to cool. Slow evaporation of the hexanes afforded 25 as a white crystalline solid (478 mg, 35\%). IR (neat, cm^{-1}) 1783; 1725; 1607, $994 ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta 8.10(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.69(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}) 7.62(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}) 7.50-7.39$ $(3 \mathrm{H}, \mathrm{m}) 2.61(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}=10.9,3.5 \mathrm{~Hz}) 2.14-2.06(2 \mathrm{H}, \mathrm{m}) 1.88-1.80(2 \mathrm{H}, \mathrm{m}) 1.72-1.56(3 \mathrm{H}, \mathrm{m})$ 1.42-1.23 (3H, m). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}$) δ 171.5, 147.0, 139.6, 130.9, 129.0, 128.5, 127.6, 127.4, 127.3, 44.2, 28.5, 25.6, 25.2.

References for Chapter 3:

1) For reviews on kinetic resolutions see: a) "Kinetic Resolution" Kagan, H. B.; Fiaud, J. C. Top. Stereochem. 1988, 18, 249. b) "Practical considerations in kinetic resolution reactions," Keith, J. M.; Larrow, J. F.; Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5. c) "Efficiency in nonenzymatic kinetic resolution," Vedejs, E.; Jure, M. Angew. Chem. Int. Ed. 2005, 44, 3974.
2) "Asymmetric Catalysis of Acyl Transfer by Lewis Acids and Nucleophiles. A Review." Spivey, A. C.; Maddaford, A.; Redgrave, A. J. Org. Prep. Proced. Int. 2000, 32, 331.
3) a) "Recent developments in dynamic kinetic resolution," Pellissier, H. Tetrahedron, 2008, 64, 1563. b) "Dynamic kinetic resolution" Pellissier, H. Tetrahedron 2003, 59, 8291-8327. c) "Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis" Huerta, F. F.; Minidis, A. B. E.; Backvall, J. E. Chem. Soc. Rev. 2001, 30, 321. d) "Synthetic applications of the ruthenium-catalyzed hydrogenation via dynamic kinetic resolution" Ratovelomanana-Vidal, V.; Genet, J. P. Can. J. Chem. 2000, 78, 846. e) "Dynamic kinetic resolution" El Gihani, M. T.; Williams, J. M. J. Curr. Opin. Chem. Biol. 1999, 3, 11. f) "Dynamic resolutions in asymmetric synthesis" Caddick, S.; Jenkins, K. Chem. Soc. Rev. 1996, 25, 447. g) "Stereoselective organic synthesis via dynamic kinetic resolution" Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc. Jpn. 1995, 68, 36. h) "Dynamic kinetic resolution" Ward, R. S. Tetrahedron: Asymmetry 1995, 6, 1475.
4) a) "Parallel kinetic resolution of racemic mixtures: a new strategy for the preparation of enantiopure compounds?" Dehli, J. R.; Gotor, V. Chem. Soc. Rev. 2002, 31, 365. b) "Parallel Kinetic resolutions" Eames, J. Angew. Chem., Int. Ed. Engl. 2000, 39, 885.
5) "Various aspects of the reaction of a chiral catalyst or reagent with a racemic or enantiopure substrate" Kagan, H. B. Tetrahedron 2001, 57, 2449.
6) a) "Asymmetric synthesis by action of an optically active reagent on a substrate having at least one asymmetric center relation between quantities of four enantiomers formed" Guette, J. P.; Horeau, A. Bull. Soc. Chim. Fr. 1967, 1747. b) "Stereochemical consequences of ketone reductions by diborane and substituted boranes" Brown, H. C.; Bigley, D. B. J. Am. Chem. Soc. 1961, 83, 3166. c) "Microbiological hydroxylation of norsteroids" Smith, L. L.; Greenspan, G.; Rees, R. W. US 3294646, 1966. d) "Microbiological hydroxylation of 1-benzoyl-trans-decahydroquinoline. Determination of structure, stereochemistry, and absolute configuration of the products" Johnson, R. A.; Murray, H. C.; Reineke, L. M.; Fonken, G. S. J. Org. Chem. 1968, 33, 3207.
7) a) "Partial resolution through chiral synthesis using a racemic mixture" Elbaba, S.; Poulin, J. C.; Kagan, H. B. Tetrahedron 1984, 40, 4275. b) "Transformation of a racemic mixture by a chiral reagent or catalyst to give regioisomeric products" Kagan, H. B. Croat. Chem. Acta 1996, 69, 669.
8) "Different enzymatic reactions of an enantiomeric pair - simultaneous dual kinetic resolution of a keto ester by bakers' yeast" Brooks, D. W.; Wilson, M.; Webb, M. J. Org. Chem. 1987, 52, 2244.
9) "Parallel kinetic resolution" Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997, 119, 2584-2585.
10) a) "Complete stereoselective synthesis of quasi-enantiomeric pseudo imino-c-disaccharides: parallel kinetic resolution of a racemic cis-dihydroxypyrroline n-oxide by 1,2 -glycals" Cardona, F.; Valenza, S.; Goti, A.; Brandi, A. Eur. J. Org. Chem. 1999, 1319. b) "Asymmetric and doubly asymmetric 1,3-dipolar cycloadditions in the synthesis of enantiopure organophosphorus compounds," Pietrusiewicz, K. M.; Holody, W.; Koprowski, M.; Cicchi, S.; Goti, A.; Brandi, A. Phosphorus, Sulfur, Silicon Relat. Elem. 1999, 146, 389. c) "Quasienantiomeric levoglucosenone and isolevoglucosenone allow the parallel kinetic resolution of a racemic nitrone," Cardona, F.; Lalli, D.; Faggi, C.; Goti, A.; Brandi, A. J. Org. Chem. 2008, 73, 1999.
11) a) "Parallel kinetic resolution of racemic aldehydes by use of Asymmetric Horner-Wadsworth-Emmons reactions" Pedersen, T. M.; Jensen, J. F.; Humble, R. E.; Rein, T.; Tanner, D.; Bodmann, K.; Reiser, O. Org. Lett. 2000, 2, 535. b) "Enantioconvergent synthesis by sequential asymmetric Horner-Wadsworth-Emmons and palladium-catalyzed allylic substitution reactions" Pedersen, T. M.; Hansen, E. L.; Kane, J.; Rein, T.; Helquist, P.; Norrby, P. O.; Tanner, D. J. Am. Chem. Soc. 2001, 123, 9738. c) "Total synthesis of pyranicin," Strand, D.; Rein, T. Org. Lett. 2005, 7, 199. d) "Divergence en route to nonclassical annonaceous acetogenins. Synthesis of pyranicin and pyragonicin," Strand, D.; Norrby, P.-O.; Rein, T. J. Org. Chem. 2006, 71, 1879.
12) "Preparation of methyl ($1 R, 2 S, 5 S$)- and ($1 \mathrm{~S}, 2 \mathrm{R}, 5 \mathrm{R}$)-2-amino-5-t-butyl-cyclopentane-Icarboxylates by parallel kinetic resolution of methyl ($R S$)-5-t-butyl-cyclopentene-Lcarboxylate" Davies, S. G.; Diez, D.; El Hammouni, M. M.; Garner, A. C.; Garrido, N. M.; Long, M. J. C.; Morrison, R. M.; Smith, A. D.; Sweet, M. J.; Witheya, J. C. M. Chem. Commun. 2003, 2410. b) "Parallel kinetic resolution of tert-butyl (RS)-3-alkyl-cyclopentene-1carboxylates for the asymmetric synthesis of 3 -alkyl-cispentacin derivatives," Davies, S. G.; Garner, A. C.; Long, M. J. C.; Smith, A. D.; Sweet, M. J.; Withey, J. M. Org. Biomol. Chem. 2004, 2, 3355. c) "Kinetic resolution and parallel kinetic resolution of methyl (\pm)-5-alkyl-cyclopentene-1-carboxylates for the asymmetric synthesis of 5-alkyl-cispentacin derivatives," Davies, S. G.; Garner, A. C.; Long, M. J. C.; Morrison, R. M.; Roberts, P. M.; Savory, E. D.; Smith, A. D.; Sweet, M. J.; Withey, J. M. Org. Biomol. Chem. 2005, 3, 2762. d) "Asymmetric synthesis of β-amino- γ-substituted- γ-butyrolactones: double diastereoselective conjugate addition of homochiral lithium amides to homochiral α, β-unsaturated esters," Cailleau, T.; Cooke, J. W. B.; Davies, S. G.; Ling, K. B.; Naylor, A.; Nicholson, R. L.; Price, P. D.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 3922. e) "Parallel kinetic resolution of tert-butyl (RS)-3-oxy-substituted cyclopent-1-enecarboxylates for the asymmetric synthesis of 3-oxy-substituted cispentacin and transpentacin derivatives," Aye, Y.; Davies, S. G.; Garner, A. C.; Roberts, P. M.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2008, 6, 2195.
13) "A reactivity/affinity switch for parallel kinetic resolution: α-amino acid quasienantiomers and the resolution of cyclopropene carboxylic acids" Liao, L.; Zhang, F.; Dmintrenko, O.; Bach, R. D.; Fox, J. M. J. Am. Chem. Soc. 2004, 126, 4490.
14) a) "Probing the resolution of 2-phenylpropanoyl chloride using quasi-enantiomeric Evans' oxazolidinones," Coumbarides, G. S.; Eames, J.; Flinn, A.; Northen, J.; Yohannes, Y. Tetrahedron Lett. 2005, 46, 849. b) "Efficient parallel resolution of an active ester of 2phenylpropionic acid using quasi-enantiomeric Evans' oxazolidinones," Coumbarides, G. S.; Dingjan, M.; Eames, J.; Flinn, A.; Northen, J.; Yohannes, Y. Tetrahedron Lett. 2005, 46, 2897. c) "Efficient parallel resolution of racemic Evans' oxazolidinones using quasienantiomeric profens," Coumbarides, G. S.; Dingjan, M.; Eames, J.; Flinn, A.; Motevalli, M.; Northen, J.; Yohannes, Y. Synlett 2006, 101. c) "Investigations into the parallel kinetic
resolution of 2-phenylpropanoyl chloride using quasi-enantiomeric oxazolidinones," Chavda, S.; Coulbeck, E.; Coumbarides, G. S.; Dingjan, M.; Eames, J.; Ghilagaber, S.; Yohannes, Y. Tetrahedron Asymmetry 2006, 17, 3386. d) "Synthesis, characterization and application of enantiomeric isotopomers for Evans' oxazolidinones," Boyd, E.; Chavda, S.; Coulbeck, E.; Coumbarides, G. S.; Dingjan, M.; Eames, J.; Flinn, A.; Krishnamurthy, A. K.; Namutebi, M.; Northen, J.; Yohannes, Y. Tetrahedron Asymmetry 2006, 17, 3406. e) "Mutual kinetic separation of isotopomers of pentafluorophenyl 2-phenyl propionate using quasienantiomeric oxazolidinones," Chavda, S.; Coumbarides, G. S.; Dingjan, M.; Eames, J.; Flinn, A.; Northen, J. Chirality 2007, 19, 313. f) "Parallel kinetic resolution of an oxazolidinone using a quasi-enantiomeric combination of [D,13C]-isotopomers of pentafluorophenyl 2-phenyl propionate," Coumbarides, G. S.; Dingjan, M.; Eames, J.; Flinn, A.; Northen, J. Chirality 2007, 19, 321. f) "Parallel kinetic resolution of 2-methoxy and 2-phenoxy-substituted carboxylic acids using a combination of quasi-enantiomeric oxazolidinones," Boyd, E.; Chavda, S.; Eames, J.; Yohannes, Y. Tetrahedron Asymmetry 2007, 18, 476. g) "Probing the parallel kinetic resolution of 1 -phenylehtanol using quasienantiomeric oxazolidinone adducts," Coulbeck, E.; Eames, M. Tetrahedron Asymmetry 2007, 18, 2313. h) "Parallel kinetic resolution of racemic oxazolidinones using quasienantiomeric active esters," Boyd, E.; Coulbeck, E.; Coumbarides, G. S.; Chavda, S.; Dingjan, M.; Eames, J.; Flinn, A.; Motevalli, M.; Northen, J.; Yohannes, Y. Tetrahedron Asymmetry 2007, 18, 2515.
15) "Parallel kinetic resolution of 1 -phenylethanol using quasi-enantiomeric active esters," Coulbeck, E.; Eames, J. Synlett 2008, 333.
16) "Parallel Kinetic Resolution Under Catalytic Conditions: A Three-Phase System Allows Selective Reagent Activation Using Two Catalysts" Vedejs, E.; Rozners, E. J. Am. Chem. Soc. 2001, 123, 2428.
17) Harper, L. A. Ph.D. Thesis, University of Wisconsin, Madison, WI, 2001.
18) MacKay, J. A. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 2004.
19) a) "Development of chiral nucleophilic pyridine catalysts: Applications in Asymmetric quaternary carbon synthesis," Shaw, S. A.; Aleman, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 13368. b) "Enantioselective TADMAP-catalyzed carboxyl migration reactions for the synthesis of stereogenic quaternary carbon," Shaw, S. A.; Aleman, P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006, 128, 925.
20) "Chiral dialkylaminopyridine catalysts in asymmetric synthesis," Wurz, R. P. Chem. Rev. 2007, 107, 5570.
21) Shaw, S. A. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 2005.
22) "Enantioselective acylation using a second-generation P-aryl-2-phosphabicyclo[3.3.0]octane catalyst," MacKay, J. A.; Vedejs, E. J. Org. Chem. 2004, 69, 6934.
23) a) "Determination of basicity of substituted phosphines by nonaqueous titrimetry," Streuli, C. A. Anal. Chem. 1960, 32, 985. b) "Phosphine basicities as determined by enthalpies of protonation," Bush, R. C.; Angelici, R. J. Inorg. Chem. 1988, 27, 681.
24) a) "Acid-base equilibria of substituted pyridines in nitromethane," Augustin-Nowacka, D.; Chmurzynski, L. J. Solution Chem. 2000, 29, 837. b) "Acid-base equilibria in systems
involving substituted pyridines in polar aprotic media and in the amphiprotic methanol," Augustin-Nowacka, D.; Makowski, M.; Chmurzynski, L. Anal. Chim. Acta 2000, 418, 233.
25) "Mathematical description of kinetic resolution with an enantiomerically impure catalyst and non-racemic substrate," Ismagilov, R. F. J. Org. Chem. 1998, 63, 3772.
26) "Kinetic Resolution of Arylalkylcarbinols Catalyzed by a Planar-Chiral Derivative of DMAP: A New Benchmark for Nonenzymatic Acylation" Ruble, J. C.; Tweddell, J.; Fu, G. C. J. Org. Chem. 1998, 63, 2794-2795.
27) "2-Aryl-4,4,8-trimethyl-2-phosphabicyclo[3.3.0]octanes: reactive chiral phosphine catalysts for enantioselective acylation," Vedejs, E.; Daugulis, O. J. Am. Chem. Soc. 1999, 121, 5813.

APPENDIX A:

X-ray Crystallography Data

Crystallographic analysis of 3-acetyl-5-bromo-1-diphenylacetyl-3-methyloxindole 23E.

Colorless needles of 23E were grown from a hexane/diethyl ether solution of the compound at 22 deg. C. A crystal of dimensions $0.40 \times 0.20 \times 0.20 \mathrm{~mm}$ was mounted on a standard Bruker SMART 1K CCD-based X-ray diffractometer equipped with a LT-2 low temperature device and normal focus Motarget X-ray tube ($\lambda=0.71073 \mathrm{~A}$) operated at 2000 W power ($50 \mathrm{kV}, 40 \mathrm{~mA}$). The X-ray intensities were measured at $123(2) \mathrm{K}$; the detector was placed at a distance 4.944 cm from the crystal. A total of 5190 frames were collected with a scan width of 0.5° in ω and 0.45 in phi with an exposure time of $20 \mathrm{~s} /$ frame. The integration of the data yielded a total of 44052 reflections to a maximum 2θ value of 56.84° of which 10446 were independent and 9314 were greater than $2 \sigma(\mathrm{I})$. The final cell constants (Table 1) were based on the xyz centroids of 9872 reflections above $10 \sigma(\mathrm{I})$. Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 6.12) software package, using the space group P1 with $\mathrm{Z}=2$ for the formula $\mathrm{C}_{2} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{Br}$. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. There are two crystallographically independent molecules in the crystal lattice. Full matrix least-squares refinement based on F^{2} converged at $\mathrm{R} 1=0.0279$ and $\mathrm{wR} 2=$ 0.0604 [based on $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$], $\mathrm{R} 1=0.0365$ and $\mathrm{wR} 2=0.0639$ for all data .

Sheldrick, G.M. SHELXTL, v. 6.12; Bruker Analytical X-ray, Madison, WI, 2001.
Sheldrick, G.M. SADABS, v. 2.10. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2003.
Saint Plus, v. 7.34, Bruker Analytical X-ray, Madison, WI, 2006.

Crystal data and structure refinement for $23 E$.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

```
Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
0 range for data collection
Limiting indices
Reflections collected / unique
Completeness to 0 = 28.43
```


23E

$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{BrNO}_{3}$
462.33

123(2) K
0.71073 Å

Triclinic, P1
$a=7.2377(18) \AA \quad \alpha=103.179^{\circ}$
$\mathrm{b}=10.127(3) \AA \quad \beta=96.629^{\circ}$
$c=15.948(4) \AA \quad \gamma=109.845^{\circ}$
1046.5(5) \AA^{3}

2, $1.467 \mathrm{Mg} / \mathrm{m}^{3}$
$1.991 \mathrm{~mm}^{-1}$
472
$0.40 \times 0.20 \times 0.20 \mathrm{~mm}$
2.23 to 28.43°
$-9<=h<=9, \quad-13<=k<=13, \quad-21<=l<=21$
44052 / 10446 [R(int) $=0.0391]$
99.4 \%

Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2 $\sigma(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

Semi-empirical from equivalents
Full-matrix least-squares on F^{2}
10446 / 3 / 545
1.024

R1 $=0.0279, w R 2=0.0604$
R1 $=0.0365, w R 2=0.0639$
-0.013(4)
0.385 and -0.220 e. A^{-3}

Atomic coordinates (x104) and equivalent isotropic displacement parameters $\left(A^{2} \times 10^{3}\right)$ for $23 E . U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	X	y	Z	$\mathrm{U}(\mathrm{eq})$
$\operatorname{Br}(1)$	10410(1)	8412 (1)	2495(1)	30(1)
$\operatorname{Br}(2)$	7161(1)	9574(1)	5119(1)	31(1)
N(1)	1447(3)	4992(2)	1578(1)	19(1)
N(2)	-861(3)	7083(2)	6106(1)	20(1)
O(1)	-724(2)	4514(2)	254(1)	31(1)
O(2)	3721(3)	5266(2)	-943(1)	45(1)
O(3)	546(2)	4702(2)	2853(1)	29(1)
O(4)	-1505(3)	7841(2)	7498(1)	31(1)
O(5)	3998(3)	10569(2)	8483(1)	41(1)
0(6)	-3093(2)	5674(2)	4833(1)	27 (1)
C(1)	7598(3)	7351(2)	2256(1)	23(1)
C(2)	6712(4)	6862(2)	2911(1)	22 (1)
C(3)	4663(3)	6077(2)	2754(1)	20(1)
C(4)	3528(3)	5829(2)	1932(1)	18(1)
C(5)	937(3)	5031(2)	708(1)	22 (1)
C(6)	2868(3)	5910(2)	450(1)	22 (1)
C(7)	4423(3)	6357(2)	1282(1)	21(1)
C(8)	6470(3)	7109(2)	1433(1)	22(1)
C(9)	3365(3)	4897(3)	-298(1)	27 (1)
C(10)	3410(5)	3512(3)	-155(2)	42(1)
C(11)	2598(4)	7196(3)	182(2)	31(1)
C(12)	119(3)	4264(2)	2067(1)	21(1)
C(13)	-1693(3)	2891(2)	1526(1)	20(1)
C(14)	-2938(3)	2214(2)	2136(1)	20(1)
C(15)	-3801(3)	3020(2)	2671(2)	27 (1)
C(16)	-4883(3)	2460(3)	3256(2)	29(1)
C(17)	-5129(3)	1074(3)	3316(2)	26(1)
C(18)	-4339(4)	243(3)	2771(2)	25(1)
C(19)	-3259(3)	799(3)	2178(2)	23(1)
C(20)	-994(3)	1836(2)	935(1)	22(1)
C(21)	661(3)	1553(2)	1259(2)	26(1)
C(22)	1245(4)	539(3)	734(2)	35(1)
C(23)	187(5)	-201(3)	-120(2)	41(1)
C(24)	-1472(5)	68(3)	-450(2)	40(1)
C(25)	-2060(4)	1083(3)	73(2)	30(1)
C(26)	4601(3)	8724(2)	5371(2)	24(1)
C(27)	2945(3)	7896(2)	4691(1)	22(1)
C(28)	1045(3)	7288(2)	4864(1)	20(1)

C(29)	$861(3)$	$7553(2)$	$5737(1)$	$18(1)$
C(30)	$-343(3)$	$7792(2)$	$7021(1)$	$22(1)$
C(31)	$1948(3)$	$8480(2)$	$7295(1)$	$22(1)$
C(32)	$2546(3)$	$8373(2)$	$6416(1)$	$21(1)$
C(33)	$4438(3)$	$8967(2)$	$6244(1)$	$23(1)$
C(34)	$2694(3)$	$10092(2)$	$7835(1)$	$25(1)$
C(35)	$1768(4)$	$11034(3)$	$7492(2)$	$36(1)$
C(36)	$2674(4)$	$7560(3)$	$7801(2)$	$32(1)$
C(37)	$-2732(3)$	$5977(2)$	$5622(1)$	$20(1)$
C(38)	$-4109(3)$	$5186(2)$	$6163(1)$	$20(1)$
C(39)	$-3008(3)$	$4598(2)$	$6759(1)$	$21(1)$
C(40)	$-1691(3)$	$3959(2)$	$6466(2)$	$26(1)$
C(41)	$-762(4)$	$3360(3)$	$7005(2)$	$34(1)$
C(42)	$-1186(4)$	$3394(3)$	$7834(2)$	$39(1)$
C(43)	$-2500(4)$	$4012(3)$	$8125(2)$	$37(1)$
C(44)	$-3403(3)$	$4619(3)$	$7593(2)$	$28(1)$
C(45)	$-6010(3)$	$4008(2)$	$5552(1)$	$20(1)$
C(46)	$-7379(3)$	$4430(3)$	$5098(2)$	$26(1)$
C(47)	$-9090(3)$	$3400(3)$	$4509(2)$	$32(1)$
C(48)	$-9477(3)$	$1928(3)$	$4374(2)$	$32(1)$
C(49)	$-8183(4)$	$1486(3)$	$4830(2)$	$28(1)$
C(50)	$-6442(3)$	$2524(2)$	$5423(2)$	$22(1)$

Bond lengths [A] and angles [º for 23E.

$\operatorname{Br}(1)-\mathrm{C}(1)$	1.895(2)
$\operatorname{Br}(2)-\mathrm{C}(26)$	1.892 (2)
$N(1)-C(5)$	1.407(3)
N(1)-C(4)	1.423(3)
$\mathrm{N}(1)-\mathrm{C}(12)$	1.424(3)
$\mathrm{N}(2)-\mathrm{C}(30)$	1.414(3)
$\mathrm{N}(2)-\mathrm{C}(37)$	1.421(3)
$\mathrm{N}(2)-\mathrm{C}(29)$	1.422(3)
O(1)-C(5)	1.201(3)
O(2)-C(9)	1.198(3)
0 (3) - C (12)	1.194(3)
O(4)-C(30)	1.202(3)
O(5)-C(34)	1.196(3)
0(6)-C(37)	1.200(3)
$C(1)-C(8)$	1.386(3)
$C(1)-C(2)$	1.387(3)
$C(2)-C(3)$	1.385(3)
C(3)-C(4)	1.385(3)
C(4)-C(7)	1.397(3)
$C(5)-C(6)$	1.539(3)
$C(6)-C(7)$	1.506(3)
C(6)-C(11)	1.524(3)
C(6)-C(9)	1.548(3)
C(7)-C(8)	1.379(3)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.482(4)
C(12)-C(13)	1.534(3)
C(13)-C(20)	1.517 (3)
C(13)-C(14)	1.522(3)

$C(14)-C(15)$	1.391(3)
C(14)-C(19)	1.391(3)
$C(15)-C(16)$	1.384(3)
$C(16)-C(17)$	1.380(3)
$C(17)-C(18)$	1.378(3)
C(18)-C(19)	1.392(3)
C(20)-C(21)	1.393(3)
$\mathrm{C}(20)-\mathrm{C}(25)$	1.396(3)
C(21)-C(22)	1.385(3)
C(22)-C(23)	1.381(4)
C(23)-C(24)	1.391(4)
C(24)-C(25)	1.386(4)
C(26)-C(33)	1.384(3)
C(26)-C(27)	1.385(3)
C(27)-C(28)	1.392(3)
C(28)-C(29)	1.388(3)
C(29)-C(32)	1.395(3)
C(30)-C(31)	1.528(3)
C(31)-C(32)	1.506(3)
C(31)-C(34)	1.533(3)
C(31)-C(36)	1.540(3)
C(32)-C(33)	1.384(3)
C(34)-C(35)	1.499(3)
C(37)-C(38)	1.533(3)
C(38)-C(39)	1.516(3)
C(38)-C(45)	1.521(3)
C(39)-C(40)	1.389(3)
C(39)-C(44)	1.390(3)
C(40)-C(41)	1.393(3)
C(41)-C(42)	1.388(4)
C(42)-C(43)	1.373(4)
C(43)-C(44)	1.381(3)
C(45)-C(50)	1.386(3)
C(45)-C(46)	1.398(3)
C(46)-C(47)	1.383(3)
C(47)-C(48)	1.379(4)
C(48)-C(49)	1.373(4)
C(49)-C(50)	1.400(3)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(4)$	110.17(17)
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(12)$	126.68(17)
$\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(12)$	123.15(16)
$\mathrm{C}(30)-\mathrm{N}(2)-\mathrm{C}(37)$	126.85(17)
$\mathrm{C}(30)-\mathrm{N}(2)-\mathrm{C}(29)$	109.21(17)
$\mathrm{C}(37)-\mathrm{N}(2)-\mathrm{C}(29)$	123.73(17)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	121.6(2)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{Br}(1)$	118.93(17)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{Br}(1)$	119.45(16)
$C(3)-C(2)-C(1)$	120.7(2)
$C(4)-C(3)-C(2)$	117.9(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	121.02(19)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	129.63(19)
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{N}(1)$	109.24(17)
O(1)-C(5)-N(1)	126.1(2)
O(1)-C(5)-C(6)	125.75(19)
$N(1)-C(5)-C(6)$	108.15(17)

$C(7)-C(6)-C(11)$	113.92(18)
$C(7)-C(6)-C(5)$	102.14(17)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(5)$	109.19(18)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)$	109.33(18)
$\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(9)$	111.82(18)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	109.99(17)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(4)$	121.01(19)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	128.72(19)
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(6)$	110.21(18)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	117.7(2)
$0(2)-C(9)-C(10)$	123.6(2)
O(2)-C(9)-C(6)	119.7(2)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(6)$	116.61(19)
O (3)-C(12)-N(1)	118.75(19)
O(3)-C(12)-C(13)	125.16(19)
$N(1)-C(12)-C(13)$	115.93(17)
C(20)-C(13)-C(14)	113.35(17)
C(20)-C(13)-C(12)	110.00(17)
C(14)-C(13)-C(12)	109.94(16)
C(15) - C(14)-C(19)	118.2(2)
C(15) - C(14)-C(13)	119.70(19)
C(19)-C(14)-C(13)	122.12(19)
C(16)-C(15)-C(14)	121.3(2)
C(17)-C(16)-C(15)	120.1(2)
C(18)-C(17)-C(16)	119.4(2)
C(17)-C(18)-C(19)	120.7(2)
C(14)-C(19)-C(18)	120.3(2)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	119.1(2)
C(21)-C(20)-C(13)	120.56(19)
C(25)-C(20)-C(13)	120.31(19)
C(22)-C(21)-C(20)	120.7(2)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	120.1(2)
C(22)-C(23)-C(24)	119.8(2)
C(25)-C(24)-C(23)	120.3(2)
C(24)-C(25)-C(20)	120.1(2)
C(33)-C(26)-C(27)	121.6(2)
$\mathrm{C}(33)-\mathrm{C}(26)-\mathrm{Br}(2)$	118.27(17)
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{Br}(2)$	120.16(17)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	120.9(2)
C(29)-C(28)-C(27)	117.9(2)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(32)$	120.6(2)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{N}(2)$	130.2(2)
$\mathrm{C}(32)-\mathrm{C}(29)-\mathrm{N}(2)$	109.14(18)
O(4)-C(30)-N(2)	125.9(2)
O(4)-C(30)-C(31)	126.21(19)
$N(2)-C(30)-C(31)$	107.90(17)
C(32)-C(31)-C(30)	101.74(17)
C(32)-C(31)-C(34)	109.79(17)
C(30)-C(31)-C(34)	111.83(18)
C(32)-C(31)-C(36)	112.30(19)
C(30)-C(31)-C(36)	108.81(18)
C(34)-C(31)-C(36)	111.95(18)
C(33)-C(32)-C(29)	121.5(2)
C(33)-C(32)-C(31)	128.39(19)
C(29)-C(32)-C(31)	110.11(19)
C(32)-C(33)-C(26)	117.5(2)

$O(5)-C(34)-C(35)$	$122.3(2)$
$0(5)-C(34)-C(31)$	$120.8(2)$
$C(35)-C(34)-C(31)$	$116.87(19)$
$O(6)-C(37)-N(2)$	$119.26(19)$
$O(6)-C(37)-C(38)$	$124.50(19)$
$N(2)-C(37)-C(38)$	$112.14(17)$
$C(39)-C(38)-C(45)$	$111.15(17)$
$C(39)-C(38)-C(37)$	$109.85(16)$
$C(45)-C(38)-C(37)$	$119.2(2)$
$C(40)-C(39)-C(44)$	$120.96(19)$
$C(40)-C(39)-C(38)$	$119.70(19)$
$C(44)-C(39)-C(38)$	$119.2(2)$
$C(39)-C(40)-C(41)$	$120.6(2)$
$C(42)-C(41)-C(40)$	$120.4(2)$
$C(43)-C(42)-C(41)$	$118.4(2)$
$C(42)-C(43)-C(44)$	$118.96(19)$
$C(43)-C(44)-C(39)$	$121.1(2)$
$C(50)-C(45)-C(46)$	$119.8(2)$
$C(50)-C(45)-C(38)$	$120.2(2)$
$C(46)-C(45)-C(38)$	$120.2(2)$
$C(47)-C(46)-C(45)$	

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters ($A^{2} \times 10^{3}$) for 23E. The anisotropic displacement factor exponent takes the form:
$-2 \pi^{2}\left[h^{2} a{ }^{* 2} U 11+\ldots+2 h k a^{*} b^{*} U 12\right]$

						U12
	U11	U22	U33	U23	U13	
Br(1)	$23(1)$	$31(1)$	$31(1)$	$8(1)$	$2(1)$	$5(1)$
$\operatorname{Br}(2)$	$24(1)$	$34(1)$	$30(1)$	$9(1)$	$11(1)$	$4(1)$
$N(1)$	$21(1)$	$20(1)$	$15(1)$	$5(1)$	$2(1)$	$7(1)$
$N(2)$	$20(1)$	$19(1)$	$18(1)$	$4(1)$	$5(1)$	$5(1)$
$0(1)$	$27(1)$	$38(1)$	$23(1)$	$14(1)$	$-1(1)$	$7(1)$
$0(2)$	$57(1)$	$60(1)$	$26(1)$	$15(1)$	$21(1)$	$27(1)$
$0(3)$	$32(1)$	$30(1)$	$17(1)$	$6(1)$	$5(1)$	$2(1)$
$0(4)$	$32(1)$	$26(1)$	$26(1)$	$0(1)$	$14(1)$	$2(1)$
$0(5)$	$46(1)$	$35(1)$	$29(1)$	$-5(1)$	$-9(1)$	$14(1)$
$0(6)$	$28(1)$	$28(1)$	$19(1)$	$7(1)$	$3(1)$	$2(1)$
$C(1)$	$22(1)$	$19(1)$	$25(1)$	$4(1)$	$2(1)$	$7(1)$
$C(2)$	$28(1)$	$20(1)$	$18(1)$	$3(1)$	$-1(1)$	$10(1)$
$C(3)$	$28(1)$	$18(1)$	$16(1)$	$5(1)$	$5(1)$	$11(1)$
$C(4)$	$23(1)$	$15(1)$	$18(1)$	$5(1)$	$4(1)$	$9(1)$
$C(5)$	$27(1)$	$22(1)$	$18(1)$	$7(1)$	$3(1)$	$10(1)$
$C(6)$	$25(1)$	$22(1)$	$17(1)$	$6(1)$	$4(1)$	$8(1)$
$C(7)$	$29(1)$	$17(1)$	$16(1)$	$3(1)$	$4(1)$	$10(1)$

C(8)	28(1)	17(1)	21(1)	5(1)	9(1)	8(1)
C(9)	24(1)	34(1)	17(1)	3(1)	2(1)	7(1)
C(10)	61(2)	31(1)	32(1)	0(1)	16(1)	20(1)
C(11)	36(1)	36(1)	27(1)	17(1)	7(1)	16(1)
C(12)	24(1)	21(1)	18(1)	8(1)	5(1)	9(1)
C(13)	21(1)	20(1)	19(1)	5(1)	2(1)	8(1)
C(14)	18(1)	19(1)	20(1)	3(1)	1(1)	6(1)
C(15)	25(1)	22(1)	35(1)	6(1)	7 (1)	$9(1)$
C(16)	22(1)	27 (1)	34(1)	2(1)	9(1)	8(1)
C(17)	18(1)	28(1)	27(1)	6(1)	5(1)	3(1)
C(18)	22(1)	21(1)	32(1)	9(1)	8(1)	5(1)
C(19)	21(1)	20(1)	28(1)	3(1)	7 (1)	9(1)
C(20)	23(1)	20(1)	21(1)	6(1)	5(1)	6(1)
C(21)	27 (1)	23(1)	27(1)	6(1)	6(1)	9(1)
C(22)	40(1)	30(1)	45(2)	17(1)	17(1)	19(1)
C(23)	63(2)	28(1)	42(2)	7 (1)	27(1)	24(1)
C(24)	56(2)	32(1)	26(1)	0(1)	10(1)	12(1)
C(25)	33(1)	29 (1)	23(1)	6(1)	4(1)	8(1)
C(26)	23(1)	22(1)	28(1)	10(1)	10(1)	7(1)
C(27)	27(1)	25(1)	17(1)	7 (1)	7 (1)	12(1)
C(28)	21(1)	22(1)	16(1)	6(1)	2(1)	9(1)
C(29)	22(1)	16(1)	20(1)	7 (1)	7 (1)	8(1)
C(30)	27(1)	18(1)	18(1)	3(1)	6(1)	6(1)
C(31)	25(1)	21(1)	18(1)	4(1)	5(1)	5(1)
C(32)	25(1)	18(1)	17(1)	3(1)	3(1)	7 (1)
C(33)	22(1)	21(1)	22(1)	5(1)	1(1)	6(1)
C(34)	24(1)	26(1)	21(1)	3(1)	6(1)	6(1)
C(35)	42(2)	26(1)	33(1)	2(1)	-2(1)	12(1)
C(36)	42(1)	30(1)	22(1)	10(1)	4(1)	12(1)
C(37)	21(1)	19(1)	21(1)	6(1)	4(1)	7 (1)
C(38)	21(1)	20(1)	19(1)	6(1)	6(1)	8(1)
C(39)	19(1)	20(1)	20(1)	5(1)	2(1)	3(1)
C(40)	24(1)	28(1)	27 (1)	9(1)	6(1)	10(1)
C(41)	28(1)	31(1)	43(1)	13(1)	2(1)	14(1)
C(42)	39(1)	$39(1)$	36(1)	17(1)	-7(1)	12(1)
C(43)	42(1)	44(2)	22(1)	15(1)	3(1)	11(1)
C(44)	26(1)	33(1)	21(1)	7 (1)	6(1)	9(1)
C(45)	17(1)	25(1)	19(1)	8(1)	8(1)	7 (1)
C(46)	25(1)	30(1)	30(1)	16(1)	8(1)	12(1)
C(47)	18(1)	52(2)	32(1)	25(1)	6(1)	10(1)
C(48)	20(1)	44(1)	22(1)	9(1)	5(1)	-1(1)
C(49)	22(1)	24(1)	29(1)	5(1)	$9(1)$	-2(1)
C(50)	19(1)	24(1)	22(1)	7 (1)	6(1)	7 (1)

Hydrogen coordinates ($\times 10^{4}$) and isotropic displacement parameters ($\mathrm{A}^{2} \mathrm{x}$ 10^{3}) for 23E.

	x	y	z	$U(e q)$
$H(2 A)$	7521	7068	3474	
$H(3 A)$	4054	5719	3196	27
$H(8 A)$	7086	7450	988	26

H(10A)	2034	2789	-280	62
H(10B)	4051	3695	458	62
H(10C)	4175	3136	-549	62
H(11A)	2297	7815	672	46
H(11B)	1486	6825	-331	46
H(11C)	3837	7773	32	46
H(13A)	-2552	3202	1139	24
H(15A)	-3644	3974	2633	33
H(16A)	-5457	3029	3617	35
H(17A)	-5838	697	3729	32
H(18A)	-4534	-720	2801	30
H(19A)	-2738	209	1801	28
H(21A)	1397	2061	1845	31
H(22A)	2373	353	962	42
H(23A)	592	-892	-482	50
H(24A)	-2206	-446	-1036	49
H(25A)	-3191	1266	-157	35
H(27A)	3109	7742	4099	27
H(28A)	-90	6711	4399	24
H(33A)	5583	9520	6708	28
H(35A)	521	10942	7701	54
H(35B)	1470	10718	6846	54
H(35C)	2707	12058	7704	54
H(36A)	2189	6544	7432	47
H(36B)	2150	7590	8342	47
H(36C)	4146	7961	7952	47
H(38A)	-4513	5923	6548	24
H(40A)	-1423	3930	5894	31
H(41A)	150	2933	6806	40
H(42A)	-560	2985	8205	46
H(43A)	-2788	4023	8692	44
H(44A)	-4301	5055	7799	33
H(46A)	-7129	5442	5195	32
H(47A)	-9996	3705	4198	39
H(48A)	-10643	1219	3964	38
H(49A)	-8470	471	4744	33
H(50A)	-5553	2212	5738	26

Crystallographic analysis of 5-Bromo-3-methyl-3-(1-naphthyl)methoxycarbonyloxindole e13A.

Colorless blocks of 23 were grown from benzene/hexanes by slow diffusion at $25{ }^{\circ} \mathrm{C}$. A crystal of dimensions $0.20 \times 0.17 \times 0.14 \mathrm{~mm}$ was mounted on a Bruker SMART APEX CCDbased X-ray diffractometer equipped with a low temperature device and fine focus Mo-target X-ray tube (λ $=0.71073 \mathrm{~A}$) operated at 1500 W power ($50 \mathrm{kV}, 30 \mathrm{~mA}$). The X-ray intensities were measured at 85(1) K; the detector was placed at a distance 5.055 cm from the crystal. A total of 3625 frames were collected with a scan width of 0.5° in ω and 0.45° in phi with an exposure time of $15 \mathrm{~s} /$ frame. The integration of the data yielded a total of 54434 reflections to a maximum 2θ value of 56.74° of which 4323 were independent and 4294 were greater than $2 \sigma(\mathrm{I})$. The final cell constants (Table 1) were based on the xyz centroids of 9373 reflections above $10 \sigma(\mathrm{I})$. Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/3) software package, using the space group P2(1)2(1)2(1) with $\mathrm{Z}=4$ for the formula $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{Br}$. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in a combination of idealized or refined positions. Full matrix least-squares refinement based on F^{2} converged at $\mathrm{R} 1=0.0217$ and $\mathrm{wR} 2=0.0543$ [based on $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$], $\mathrm{R} 1=0.0218$ and $\mathrm{wR} 2=$ 0.0544 for all data. Additional details are presented in Table 12 and are given as Supporting Information in a CIF file.

Sheldrick, G.M. SHELXTL, v. 2008/3; Bruker Analytical X-ray, Madison, WI, 2008.
Sheldrick, G.M. SADABS, v. 2008/1. Program for Empirical Absorption Correction of Area Detector Data, University of Gottingen: Gottingen, Germany, 2008.

Saint Plus, v. 7.54a, Bruker Analytical X-ray, Madison, WI, 2008.

Crystal data and structure refinement for e13A.

```
Identification code
e13A
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions
Volume
Z, Calculated density
```

e13A
$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{BrNO}_{3}$
410.26

85(2) K
0.71073 Å

Orthorhombic, P2(1)2(1)2(1)
$a=5.6298(4) \AA \quad$ alpha $=90$ deg.
$b=8.2145(6) \AA \quad$ beta $=90$ deg.
c $=37.372(3) \AA$ gamma $=90 \mathrm{deg}$.
1728.3(2) \AA^{3}

4, $1.577 \mathrm{Mg} / \mathrm{m}^{3}$

Absorption coefficient	$2.400 \mathrm{~mm}^{-1}$
F(000)	832
Crystal size	$0.20 \times 0.17 \times 0.14 \mathrm{~mm}$
Theta range for data collection	2.18 to 28.37 deg .
Limiting indices	$-7<=\mathrm{h}<=7,-10<=\mathrm{k}<=10,-49<=1<=49$
Reflections collected / unique	54434 / 4323 [R(int) $=0.0385$]
Completeness to theta $=28.37$	99.9 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7153 and 0.6325
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4323 / 0 / 240
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	1.070
Final R indices [I>2sigma(I)]	R1 = 0.0217, wR2 = 0.0543
R indices (all data)	R1 $=0.0218, ~ w R 2=0.0544$
Absolute structure parameter	0.006(6)
Largest diff. peak and hole	0.453 and -0.257 e. A^{-3}

Atomic coordinates ($x 10^{4}$) and equivalent isotropic displacement parameters ($A^{2} \times 10^{3}$) for e13A. $U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	Z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Br}(1)$	4712(1)	7680(1)	1181(1)	16(1)
C(1)	2076(3)	7554(2)	1498(1)	13(1)
C(2)	1183(4)	8967(2)	1648(1)	16(1)
C(3)	-759(4)	8866(2)	1881(1)	15(1)
C(4)	-1655(3)	7340(2)	1955(1)	13(1)
C(5)	-3867(3)	5307(2)	2207(1)	12(1)
C(6)	-2066(3)	4477(2)	1954(1)	11(1)
C(7)	-725(3)	5923(2)	1805(1)	11(1)
C(8)	1158(3)	6013(2)	1570(1)	12(1)
C(9)	-477(3)	3344(2)	2181(1)	14(1)
C(10)	-3275(3)	3438(2)	1668(1)	12(1)
C(11)	-2557(3)	2135(2)	1108(1)	17(1)
C(12)	-604(3)	2153(2)	835(1)	16(1)
C(13)	684(4)	764(2)	772(1)	20(1)
C(14)	2620(4)	758(3)	531(1)	22(1)
C(15)	3254(3)	2158(3)	358(1)	21(1)
C(16)	1957(4)	3615(3)	409(1)	17(1)
C(17)	2545(4)	5060(3)	222(1)	21(1)
C(18)	1226(4)	6444(3)	265(1)	23(1)
C(19)	-750(4)	6448(2)	497(1)	21(1)
C(20)	-1349(4)	5073(2)	684(1)	18(1)
C(21)	-26(3)	3617(2)	647(1)	15(1)
$0(1)$	-5264(3)	4637(2)	2408(1)	16(1)
O(2)	-5264(2)	2929(2)	1676(1)	20(1)
O(3)	-1713(2)	3125(2)	1407(1)	18(1)
N(1)	-3533(3)	6940(2)	2185(1)	14(1)

Bond lengths [A] and angles [deg] for e13A.

$\mathrm{Br}(1)-\mathrm{C}(1)$	1.9028(16)
$C(1)-C(2)$	1.384(3)
$C(1)-C(8)$	1.393(2)
$C(2)-C(3)$	1.400(3)
$C(3)-C(4)$	1.379 (2)
$C(4)-C(7)$	1.393(2)
$\mathrm{C}(4)-\mathrm{N}(1)$	1.402(2)
$C(5)-0(1)$	1.220(2)
$\mathrm{C}(5)-\mathrm{N}(1)$	1.357(2)
$C(5)-C(6)$	1.544(2)
$C(6)-C(7)$	1.513(2)
$\mathrm{C}(6)-\mathrm{C}(10)$	1.528(2)
$C(6)-C(9)$	1.546(2)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.381(3)
C(10)-0(2)	1.195(2)
C(10)-0(3)	1.339(2)
C(11)-0(3)	1.462 (2)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.498(2)
C(12)-C(13)	1.372(3)
C(12)-C(21)	1.431(2)
C(13)-C(14)	1.416(3)
C(14)-C(15)	1.366(3)
C(15)-C(16)	1.415(3)
C(16)-C(17)	1.417(3)
$C(16)-C(21)$	1.427(3)
C(17)-C(18)	1.367 (3)
C(18)-C(19)	1.411(3)
C(19)-C(20)	1.370(3)
$C(20)-C(21)$	1.416 (3)
$C(2)-C(1)-C(8)$	123.32(16)
$C(2)-C(1)-\operatorname{Br}(1)$	119.39(14)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{Br}(1)$	117.28(13)
$C(1)-C(2)-C(3)$	119.11(17)
$C(4)-C(3)-C(2)$	117.59(16)
$C(3)-C(4)-C(7)$	122.88(15)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(1)$	127.66(17)
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{N}(1)$	109.45(16)
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{N}(1)$	124.95(17)
O(1)-C(5)-C(6)	126.96(16)
N(1)-C(5)-C(6)	107.97(15)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(10)$	113.81(14)
$C(7)-C(6)-C(5)$	101.88(14)
$C(10)-C(6)-C(5)$	112.44(14)
$C(7)-C(6)-C(9)$	112.70(14)
$\mathrm{C}(10)-\mathrm{C}(6)-\mathrm{C}(9)$	107.79(14)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	108.08(14)
C(8)-C(7)-C(4)	119.94(16)
$C(8)-C(7)-C(6)$	131.30(16)
$C(4)-C(7)-C(6)$	108.74(15)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	117.14(16)
O(2)-C(10)-0(3)	124.51(17)

$O(2)-C(10)-C(6)$	$126.52(17)$
$0(3)-C(10)-C(6)$	$108.93(15)$
$0(3)-C(11)-C(12)$	$106.01(14)$
$C(13)-C(12)-C(21)$	$119.56(17)$
$C(13)-C(12)-C(11)$	$119.75(17)$
$C(21)-C(12)-C(11)$	$120.67(16)$
$C(12)-C(13)-C(14)$	$121.32(18)$
$C(15)-C(14)-C(13)$	$119.98(19)$
$C(14)-C(15)-C(16)$	$120.87(18)$
$C(15)-C(16)-C(17)$	$121.44(18)$
$C(15)-C(16)-C(21)$	$119.26(18)$
$C(17)-C(16)-C(21)$	$120.86(18)$
$C(18)-C(17)-C(16)$	$120.10(19)$
$C(17)-C(18)-C(19)$	$121.12(18)$
$C(20)-C(19)-C(18)$	$118.25(17)$
$C(19)-C(20)-C(21)$	$122.79(17)$
$C(20)-C(21)-C(16)$	$118.95(16)$
$C(20)-C(21)-C(12)$	$111.99(14)$
$C(16)-C(21)-C(12)$	

Symmetry transformations used to generate equivalent atoms:

Anisotropic displacement parameters ($A^{\wedge} 2 \times 10 \wedge 3$) for 23.
The anisotropic displacement factor exponent takes the form:
$-2 \mathrm{pi} \wedge 2\left[\mathrm{~h} \wedge 2 \mathrm{a} \wedge 2 \mathrm{U} 11+\ldots+2 \mathrm{~h} k \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U} 12\right.$]

						U12
	U11	U22	U33	U23		
						$-2(1)$
Br(1)	$14(1)$	$16(1)$	$18(1)$	$2(1)$	$5(1)$	$-2(1)$
$C(1)$	$13(1)$	$16(1)$	$11(1)$	$3(1)$	$2(1)$	$-4(1)$
$C(2)$	$20(1)$	$13(1)$	$14(1)$	$1(1)$	$-1(1)$	$0(1)$
$C(3)$	$19(1)$	$12(1)$	$13(1)$	$-2(1)$	$3(1)$	$-1(1)$
$C(4)$	$14(1)$	$16(1)$	$10(1)$	$1(1)$	$1(1)$	$1(1)$
$C(5)$	$12(1)$	$14(1)$	$9(1)$	$0(1)$	$0(1)$	$-2(1)$
$C(6)$	$11(1)$	$12(1)$	$10(1)$	$0(1)$	$1(1)$	$-2(1)$
$C(7)$	$13(1)$	$11(1)$	$10(1)$	$0(1)$	$-2(1)$	$1(1)$
$C(8)$	$12(1)$	$14(1)$	$12(1)$	$0(1)$	$-1(1)$	$1(1)$
$C(9)$	$14(1)$	$15(1)$	$14(1)$	$2(1)$	$-1(1)$	$-6(1)$
$C(10)$	$13(1)$	$12(1)$	$12(1)$	$2(1)$	$-1(1)$	$-2(1)$
$C(11)$	$21(1)$	$18(1)$	$12(1)$	$-5(1)$	$0(1)$	$0(1)$
$C(12)$	$20(1)$	$17(1)$	$12(1)$	$-3(1)$	$-2(1)$	$7(1)$
$C(13)$	$28(1)$	$17(1)$	$14(1)$	$-3(1)$	$-3(1)$	$5(1)$
$C(14)$	$25(1)$	$26(1)$	$16(1)$	$-7(1)$	$-3(1)$	$1(1)$
$C(15)$	$20(1)$	$31(1)$	$11(1)$	$-4(1)$	$-1(1)$	$-5(1)$
$C(16)$	$16(1)$	$25(1)$	$10(1)$	$-2(1)$	$-2(1)$	$-6(1)$
$C(17)$	$19(1)$	$30(1)$	$14(1)$	$1(1)$	$0(1)$	$0(1)$
$C(18)$	$30(1)$	$23(1)$	$15(1)$	$3(1)$	$-1(1)$	$-2(1)$

C(20)	$18(1)$	$20(1)$	$16(1)$	$-2(1)$	$1(1)$	$1(1)$
$\mathrm{C}(21)$	$16(1)$	$18(1)$	$11(1)$	$-2(1)$	$-1(1)$	$0(1)$
$0(1)$	$15(1)$	$17(1)$	$14(1)$	$1(1)$	$4(1)$	$-2(1)$
$0(2)$	$14(1)$	$24(1)$	$22(1)$	$-7(1)$	$2(1)$	$-4(1)$
$0(3)$	$18(1)$	$22(1)$	$13(1)$	$-7(1)$	$3(1)$	$-7(1)$
$N(1)$	$15(1)$	$13(1)$	$12(1)$	$-1(1)$	$4(1)$	$0(1)$

Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($A^{\wedge} 2 \times 10 \wedge 3$) for 23.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H(2A)	1880	9991	1595	19
H(3A)	-1436	9815	1985	18
H(8A)	1800	5065	1461	15
H(9A)	703	2819	2027	21
H(9B)	-1462	2509	2296	21
H(9C)	336	3983	2366	21
H(11A)	-4032	2601	1006	20
H(11B)	-2885	1008	1188	20
H(13A)	268	-212	893	24
H(14A)	3479	-219	489	27
H(15A)	4582	2153	201	25
H(17A)	3872	5068	65	25
H(18A)	1640	7405	138	27
H(19A)	-1670	7410	524	26
H(20A)	-2675	5097	841	21
H(1A)	-4150(40)	7600(30)	2324(6)	19(6)

Hydrogen bonds for e13A [A and deg.].

$D-H \ldots A$	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$N(1)-H(1 A) \ldots O(1) \# 1$	$0.83(2)$	$1.98(2)$	$2.7716(19)$	$160(2)$

Symmetry transformations used to generate equivalent atoms: \#1 $-x-1, y+1 / 2,-z+1 / 2$

APPENDIX B:

NMR Spectra

登
충
(2)
N
220
200
180
160
140
80
60
40
ppm

> 1.00 .990 .96 0.961.92.01

厤

Wh.
ppm

㖞品單

Bn

mexwww
$\stackrel{\sim}{\bullet}$

$\stackrel{N}{N}$

Wid

[^2]

N
N

N
O

$\left[\begin{array}{l}129.215 \\ \Gamma^{128.996} \\ { }^{128.776} \\ 128.593 \\ 128.468 \\ 128.329\end{array}\right.$
886
Ph

[^3]

[^4]

[^5]

80
60
40
20

199.661

$\stackrel{\sim}{\sim}$
10 1

N

N
0
0
200
180
160
140
120
100
80
60
40
20
ppm

س way whw

100
80
60
40
20
0 ppm

$\stackrel{\text { en }}{\infty}$

ppm

100
80
0 ppm

Wmaw

今二今心

$\angle 88^{\circ} \angle 9 \tau$
$Z \nabla 8 \cdot Z \angle \tau$
$8 \angle 0^{\circ} \cdot \angle \tau$

Whw wh whuph

160
140
120
100
80
60
40
20

196.6τ

[^0]: ${ }^{a}$ percentages by NMR spectroscopy, ${ }^{b}$ isolated yield, ${ }^{c}$ pyridine as solvent.

[^1]: ${ }^{a}$ Percent conversion by ${ }^{1} \mathrm{H}$ NMR spectroscopy

[^2]:

[^3]:

[^4]:

[^5]: $\stackrel{N}{N}$

 111
 100
 80
 0
 60
 40
 20
 0
 0 ppm

