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A SIMPLE MULTI-STAGE MODEL OF URINARY TRACT INFECTION
OCCURRENCE AFTER COITARCHE

Barbara Rocci, Stephen M. Pollock, Betsy Foxman

About half of all women will experience a urinary tract infection (UTI) by age 30;
approximately 20 - 25% of these will develop a second infection within 6 months of the first one;
nearly 5% of women will experience multiple recurring infections. The etiology of UTI’s is not well-
understood, and there is evidence that at least some may be sexually transmitted. Mathematical models
can provide insight into the transmission dynamics of these infections, as well as help to evaluate the
possible effects of prevention strategies. One such model is presented here.

MODEL DESCRIPTION

In the basic model, a woman is tracked at the start of sexual activity (coitarche) and can
progress through a number of possible stages, as shown in Figure 1. Thus the model assumes a
woman can be in any one of the following states at any given time:

a) State S,,¢t=1,2, ..., 14, where ¢ = years after coitarche with no UTI
b) State M;,j=1,2, ..., 6, where j = months after first UTI with no second UTI

c¢) State “UTI1” = occurrence of first UTI

d) State “UTI2” = occurrence of second UTI

e) State “No UTI 1in 14 yrs” = no first UTI within 14 years of coitarche

f) State “No UTI 2 in 6 mos” = no second UTI within 6 months of first UTI

From state S, there is a probability A(z) per month of moving into state “UTI1”. From state M; there

is a probability m(j) per month of moving into state “UTI2”. Let T = year (after coitarche) of first
UTIL, J = month after first UTI of second UTI. Then these probabilities are, by definition, the
“hazards”:

h(t)=P(T =T >t-1) t=1,2,.., 14
m(j)=P(J=jl]>j-1)  j=1,2..,6

The model also includes an aging process. For each month i in year ¢ after coitarche,

0 i=12,..,11

pi(t)= P(Sr —> 8,41y in month i) = {1 =12

The transition to year ¢+ occurs at the end of month 12 in year ¢. This is illustrated in the detailed
view of state S5 in Figure 1.

Parameter Estimation - First UTI

We can estimate h(t) using data from Foxman, et al. (unpublished), in which the time from
coitarche to first UTI was recorded for 210 women. Since all the women in this study developed a
UT]I, A(t) cannot be estimated directly. The longest time from coitarche to first UTT in the study was
14 years. Thus we first estimate the probability g(¢)= P(T =tlt—1< T <£14), then remove the

condition that T < 14 to obtain an estimate of h(z). Kaplan-Meier estimates of g(¢) were first
calculated. This non-parametric technique involves recording the number of women at risk of UTI and
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the number developing a UTI during each year, then estimating the overall probability of surviving up
to t. From the data, we have, for ¢t = 1,2,...,14:

n, = number of women for whom T >t -1
d, = number of women for whom T =¢

Detailed calculations are given in Appendix A. The resulting estimates are shown by the squares in
Figure 2. These results suggest that g(¢) might reasonably take the form

<b
g0)={32 ;Zb (0

Using this representation, maximum likelihood parameters a and b were calculated (see Appendix
B), yielding @ =0.18 and b =4 years. The solid line in Figure 2 shows the resulting g(¢).

estimated g(t)
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Figure 2: Conditional probability per year after coitarche of developing first UTI
(* = K-M estimate, — = parametric estimate using equation (1))

The parametric estimate

. |ar t<b
ﬂ0={“ . )
ab t>b
is used in the model. As defined above, g(#) is an estimate of the conditional probability of
developing the first UTI in year ¢ given that a UTI will occur by year 14 after coitarche. Since a
woman will not necessarily experience a UTI within 14 years after initiating sexual activity, it is
necessary to calculate the unconditional estimate for use as A(¢) in the model. Again, letting T be the
year of first UTI, we have:



g)=P(T=t1t-1<T<14)
_P(T<14, T=t1T>t-1)
- P(T<14)
P(T<141T =1)P(T =1T >t-1)
P(T<14)

Clearly, P(T <14 | T =t) =1 for t<14. Thus equation (3) becomes:

)

P(T=1T>t-1)
P(T<14)

§t)=P(T=t1t-1<T<14)=

Thus an estimate of h(t) is given by:
h(t)= P(T=AT >t-1)=P(T=t1t-1< T<14)P(T <14) = §(t)P(T < 14) 4)

Studies suggest that about half of all women experience a UTI by age 30. Assuming that the average
age of coitarche is 16, P(T £14) = 0.5. Thus equation (4) becomes:

A

h(r)=(0.5)8(1) (5)

Equation (5) is used to calculate A() , using the parametric estimate 2(¢) of equation (2).

Parameter Estimation - Second UTI

The model assumes that an infection is treated and cured within one month, and then allows the
development of a second UTI within six months after the first one. In particular, for month j,
Jj=1,...,6 after the first UTI, there is a conditional probability m(j) of developing a second UTI, given
no second UTI through month j-1. Kaplan-Meier estimates of m(j), j=1,...,6 were calculated using
data from Foxman, et al (unpublished). A total of 263 women were followed from their first UTI for
six months or until they developed a second UTI, whichever came first. Figure 3 shows the resulting
Kaplan-Meier estimates. These non-parametric estimates are used in the model.
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Figure 3: Conditional probability per month after first UTI of developing a second UTI



RESULTS

The model, using 2(¢) of equation (2) and 7(j),was solved using STELLA 1I, a differential
equation solver. The resulting cumulative probability of experiencing a first UTI as a function of time
since coitarche is shown in Figure 4. The cumulative probability of having a second UTI was also
found using the model, and is shown in Figure 5.
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Figure 4: Cumulative probability of experiencing a first UTI
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Figure 5: Cumulative probability of experiencing a second UTI



In Figure 4, we see that by 2 years after coitarche, approximately 40% of women will have
experienced a first UTI. Figure 5 shows that approximately 7% of women will have had at least two
UTT’s within 2 years of coitarche. Clearly, women will experience a second UTI only after having
had a first one, thus the curve in Figure 5 lags behind that in Figure 4 by a few months. Also, the two
figures are displayed on very different scales, indicating the different magnitude of probabilities of first
and second UTT’s.

Potential Use of the Model

The model can readily provide information on how intervention strategies might change the
probability of developing a first or second UTI. A simple example serves to illustrate how we can
evaluate possible public health strategies. Suppose an intervention strategy were available that would

lower all A(t) by 20%; the results are shown in Figures 6 and 7. Lowering A(t) by 20% does not
appear to have a significant effect on the asymptotic values of P(UTI1 < t) or P(UTI2 < t), but
shifts both curves to the right somewhat, indicating that for time ¢, the probability of having developed
a UTI before ¢ is lower after the intervention. The shift is greater for second UTI than first UTL.
Information such as this could help public health officials determine whether intervention strategies are
justified. Other examples of the model’s usefulness in evaluating alternatives include:

a) Different Strains of Bacteria
Approximately 50% of second UTI’s are caused by the same strain of bacteria that caused
the first UTI. The model can be modified to allow for the possibility of second infection by
the same or a different strain, by adding more states. Thus instead of a single “UTI 2”
state, there would be two: one for re-infection with the same strain, and one for infection
with a different strain. Intervention strategies might affect the probabilities per month of
developing a second infection with the same or a different strain as the first. Similarly, the
model can be used to study the difference between being infected with E. Coli versus non-
E. Coli bacteria for the first UTL. There may be different recurrence rates for these two
types; thus the model could be used to study possible interventions based on behavior
profiles or symptom profiles.

b) Condom Use
There is evidence that condom use is protective against a second infection but may be
associated with higher probabilities of first infection. These elements could be accounted
for in the model by raising or lowering the appropriate probabilities of infection to see how
the final probabilities of having an infection. To simulate the protective effect of condoms,

h(t) or #(j) could be raised and lowered, respectively, and the results examined to
determine the effect on the probability of developing an infection by a given time.

In all of these examples, the model can also provide insight on how sensitive the final distributions are

to changes in parameters. For example, figures 6 and 7 show that ﬁ(t) would have to be lowered by
more than 20% to have an impact on the asymptotic cumulative probabilities.

The responses of 2000 women to an extensive questionnaire are currently being analyzed. The
questions cover various areas that could be related to the etiology of UTI, including number of sexual
partners, type of contraceptive used, and estrogen therapy. We anticipate that these data will provide
many avenues of research for which the model described here might be useful, such as an examination
of the effects of estrogen therapy or sexual behaviors on the probability of developing UTL
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Figure 6: Cumulative probability of experiencing a first UTI
(--- original h(t), — h(t) decreased by 20%)
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Figure 7: Cumulative probability of experiencing a second UTI
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APPENDIX A
Kaplan-Meier Estimation

In order to estimate h(t) = P(T =T >t —1), we first need to estimate the conditional hazard,

g(t)=P(T =t t-1< T £14),from the available data. The condition T > ¢ -1 is implicitly assumed to

be present in the work that follows.
Let n, be the number of women who have not yet had a UTI by the start of year ¢, and d, be

the number of women who develop a UTI in year . The hazard is defined as:

s(n=LY M

where f(¢) is the probability mass function of T (the time of first UTT), and S(¢), the “survival”
function, is P(T 2t). Both f(t) and S(¢) can be estimated from the data. The number of women
who do not develop a UTI during year ¢ is given by (n, - d,). An estimate of f(¢) is thus obtained by

dividing the number of women developing a UTI during year ¢ by the total number of women at risk.
Thus for each year ¢, we have:

A n
f) =t 2
)= ®
where 210 is the total number of women in the data set.
The estimation of S(¢) is slightly more involved. Let p, = P(no UTI in year t | no UTT up to £ —1).
Then S(¢t)= p,p,...p,. Anestimate of p, is:
-d
p=tzd) ) d )
nl nl
We can now use (3) to provide the Kaplan-Meier estimates S(¢):
S(1)= H(l - i) =8(t- 1)(1 - ﬁl&) 4)
t n, n,

Finally, using (2) and (3) in equation (1) produces an estimate of the conditional hazard, g(¢). The
results are shown in Table A.1 and Figure 2.

The same procedure was used to estimate m(j)= P(J = jlJ > j—1). The results are shown in
Table A.2 and Figure 3.



APPENDIX A, cont’d

Year di Iy $(2) (1) h(r)
0 0 210 1 0 0
1 24 210 0.886 0.114 0.129
2 33 186 0.729 0.157 0.216
3 30 153 0.586 0.143 0.244
4 38 123 0.405 0.181 0.447
5 25 85 0.286 0.119 0.417
6 20 60 0.190 0.095 0.500
7 18 40 0.105 0.086 0.818
8 9 22 0.062 0.043 0.692
9 5 13 0.038 0.024 0.625
10 2 8 0.029 0.010 0.333
11 2 6 0.019 0.010 0.500
12 1 4 0.014 0.005 0.333
13 1 3 0.010 0.005 0.500

14 * 1 2 0.005 0.005 1.000

* Note that only one person developed a UTI during year 14, while two were at risk. The estimation
method gives an estimate of zero for the hazard function for all subsequent years until the last person
developed a UT], at which point the estimate of the hazard is undefined. Thus estimates were carried
out only until year 14.

Table A.1: Kaplan-Meier Estimation of Yearly Hazard to First UTI

Month

d; ny 3(j) () (j)
0 0 263 1 0 0
1 8 263 0.970 0.030 0.031
2 17 255 0.905 0.065 0.071
3 4 238 0.890 0.015 0.017
4 7 234 0.863 0.027 0.031
5 7 227 0.837 0.027 0.032
6 3 220 0.825 0.011 0.014

Table A.2: Kaplan-Meier Estimation of Monthly Hazard to Second UTI



APPENDIX B
Maximum Likelihood Estimation

As an alternative to using the Kaplan-Meier (non-parametric) estimates of g(t), a parametric
model can be used. The following functional form is assumed for the hazard:

()= at t<b

89 \ab 120

For convenience, this formulation assumes that # is continuous. From equation (1), the probability
density function for T (the time of first UTI) is:

ate ™ t<b

abe ™) t>p

£(6)= glt)e- Lot = {

Given the data ¢, = time of the i*? UTI developed and letting m(b) indicate the last UTI developed
before time b, the likelihood function L(a,b) is:

L(a,b) = ["1 £(t)
Hate—ar 212 Hab —ab(t;-b)

{l 1;<b} {izt; >b}

A ~ab ¥ (1i-b)
- am(b)( Ht-) B 2{%’»} g~ O)r-m),, (i:t,'z>b}

{i:t;<b

The maximum likelihood estimates & and b are the values that maximize L(a,b). To maximize
L(a,b), we take the logarithm of each side to get the log-likelihood function, I(a,b).

l(a,b)= (b)lna+ln( ]'[t)—— Y2 +[n—m(b)|lna+[n-m(b)|]lnb-ab ¥ (,-b)

{insby ) 2 {ir<b) {i;>b)

Values of a and b that maximize L(a,b) will also maximize /(a,b). Each side of equation (4) can be
differentiated with respect to a, and set equal to zero (a necessary condition for maximization, since
I(a,b) is a concave function of a):

a m(b)_{i:r.zstfi=+” (b)—bZ( b)

R 2 a {i;>b}

0

Equation (5) can be solved to get 4 in terms of b:

({Hsb /2)+b{llz>b )

A crude search technique was used, in which candidate integer values of b were selected,

corresponding a values found from equation (6), then l(&,B) evaluated to find the maximum. Final

estimates were 4 = 0.18 and b = 4
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