Three Essays on Semiparametric Methods
for the Evaluation of Social Programs

by

Matias Busso

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Economics)
in The University of Michigan
2008

Doctoral Committee:

Professor Jeffrey A. Smith, Chair

Professor John E. DiNardo

Professor Serena Ng

Professor Jan Svejnar

Assistant Professor Justin R. McCrary, University of California, Berkeley



(© Matias Busso

All Rights Reserved
2008



To Mariana

ii



Acknowledgements

The chapters in this dissertation benefited greatly from multiple conversations with
faculty and students at the University of Michigan. I owe an enormous intellectual debt to
many people. Jeff Smith inspired me to only work on questions I cared about. I thank him
for his feedback, advice, encouragement, and humor. Justin McCrary and John DiNardo
are outstanding teachers, mentors and faithful coauthors. They played a fundamental role
in shaping my vocation and understanding of applied microeconometrics, and were always
very generous with their time and ideas. I spent many hours working alongside Justin
whose patience, energy and generosity are, I believe, limitless. John’s unorthodox office
hours always turned up being a fruitful exchange of ideas of all sorts. I thank him for his
encouragement and advice, and for teaching that amazing class when I was in my second
year. I am also very grateful to Serena Ng. First, for teaching me econometrics. Second,
for her support, care and willingness to make of me a better scholar. I also thank Jan
Svejnar and Lutz Kilian for their backing and support over all these years. John Bound
and Charlie Brown provided comments that greatly improved the second chapter of this
dissertation. I am also indebted to fellow graduate student, friend and coauthor Patrick
Kline. I was very lucky to have crossed paths with Pat at Michigan. I learned a lot by

working with him. Not only is he an excellent economist, he is also unstoppable.

Leonardo Gasparini, Huberto Ennis, Guido Porto, Walter Sosa-Escudero and Jose
Wynne at the Universidad Nacional de La Plata in Argentina, were very influential and
helpful with my plans to pursue a graduate education in the US. Federico Cerimedo, long-
time friend and colleague, helped me to become a much better economist when we were

both giving the first steps in the profession.

My family, many old friends in Argentina, and many new friends in Ann Arbor provided
unconditional support during all these years. My greatest debt is to my wife, Mariana,
who put up patiently with the many late nights and weekends of my work, and whose love
and care at home allowed me to finish this project, and made our life in Ann Arbor much

happier.

iii



Table of Contents

Dedicationl. . . . . . . o o o vt ii
[Acknowledgements| . . . . . . . . . ... iii
Listof Tablesl . . . . . . . . o o vi
[List of Figures| . . . . . . . . . . . . ... viii
Chapter
(1. Introduction| . .. . . .. . . . . . . e 1
2. Do Local Economic Development Programs Work?Evidence from the |
[Federal Empowerment Zone Program| . . . . . ... .. ... ... ....... 3
{L A Crash Course in Empowerment| . . . . . . .. ... ... ... .. 6
[[I'  Expected Impact| . . ... ... .. ... 0. 10
O Datal . . . . o o oo e e e 12
IV Methodology| . . . . . . . . ... 12
N Resultd . . . o o oot e e 20
[VI  Tmpact Analysis| . . . . .. . ... o 27
VIT Conclusionl . . . . . . . o o oo 29
|Appendix I: Data Description and Details) . . ... ... ... ... ... 50
[Appendix II: Alternative Derivation of Propensity Score Modell . . . . . 51
|Appendix III: Proofs| . . . . .. .. .. .. ... ... ... ... ... . 53
|Appendix IV: Inference Procedures| . . . . . ... .. ... ... ..... 53
[Appendix V: Specification of Reweighting and Blinder-Oaxaca Estimators| 55
[Appendix VI: Construction of Composition Constant Change| . . . . . . 56
Bibliography| . . . . . . . . ... 57
[3. Finite Sample Properties of Semiparametric Estimators of Average Treat- |
ment Effects . . . . . .. . .. . .. 62
{L Notation and Background|. . . . . . .. ... ... ... ... ... 66
I Data Generating Process| . . . . . . . .. ... ... ... ...... 76
[II Results: Benchmark Casel . . . . . . ... ... 0000 . 78
IV~ Problems with Propensity Scores Near Boundaries| . . . . . . . . .. 82
|V Results: Boundary Problems| . . . . . .. ... ... ... ...... 87
VI__Reconciliation with Previous Literaturel . . . . . . ... ... .. .. 90
VIT Conclusionl . . . . . . o o v oo e e e 93

iv



|Appendix I: Derivation of IPW3 for TOT|. . . . . . ... ... ... ... 113

[Appendix II: Derivation ot SEB for proposed DGPs| . . . . . . .. .. .. 116
Bibliography| . . . . . . . . . . 125
[4. A Sequential Method of Moments Variance Estimatorof Weighting Esti-
[mators of Average Treatment Effects|. . . . . . . ... ... ... .. ...... 126
[ Notation and Identification] . . . . . . . . ... ... ... ... ... 129
[II' Inverse Probability Weighting Estimators| . . . . . . .. .. ... .. 130
[[IT " Sequential Method of Moments Variance Estimator| . . . . . . . .. 133
IV Monte Carlo Simulation Resultsl . . . . . .. ... ... ... .. 134
IV _Conclusionl . . . . . . . . . . 141
Bibliography| . . . . . . . . . . 154
B. Conclusionl . . . . .. . . . . e 155
Bibliographyl . . . . . . . .. . 160



List of Tables

Table
[2.1 1990 Characteristics of First Round Empowerment Zones| . . . . . . . .. . .. 31
[2.2 Total Spending, by category | . . . . . . . . ... ... o L. 32
[2.3 Sample Characteristics (1990) [ . . . . . . . . . . . .. ... 33
[2.4 Balance of Control Samples| . . . . . ... ... ... ... ... .. ... ... 34
[2.5 Tmpact of EZ Designation| . . . . . . .. .. ... o oo 35

2.6 False Experiment I (Lagged Model) |. . . . .. ... .. ...... ... .... 36
2.7 False Experiment 11 (Placebo Zones) | ....................... 37

12.8 Impact of EZ Designation on Percentile Rank Outcomes| . . . . . . ... ... 38
[2.9 Composition-Constant Impact of EZ Designation| . . . . . .. ... ... ... 39
[2.10 Impact Calculations|. . . . . . . . . . . . .. . . 40
[2.A1 Treatment by city |. . . . . . . . . . ... 41
[2.A2 Logit Model Selection| . . . . ... ... ... ... 42
....................................... 43
[2.A4 Specification Checks| . . . . . ... . ... o o 45
2.A5 Impact of EZ Designation (Robustness Checks) | . . . .. ... .. ... ... 46
3.1 Bias and Variance of the Estimated Treatment Effect on the Treated (TOT)- |
Normal-Cauchy | . . . . ... ... . 96
[3.2 Bias and Variance of the Estimated Treatment Effect on the Treated (TOT) |
under Misspecification |. . . . . . . ... ..o Lo 97
[3.3 Bias and Variance of the Estimated Treatment Effect on the Treated (TOT)- |
Normal-Normal | . . . .. .. ... o 98
[3.4 Simulated Root Mean Squared Bias (x 1000) of the Estimated Treatment Effect |
on the Treated (TOT) |. . . . . . . . . . . . .. ... ... 99
[3.5 Simulated Average Variance (x 1000) of the Estimated Treatment Effect on |
the Treated (TOT) | . . . . . . . . . .. 100
[3.A1 Bias and Variance of the Estimated Treatment Effect on the Treated (ATE)- |
Normal-Cauchy | . . . . .. ... . o 101
[3.A2 Bias and Variance of the Estimated Treatment Effect on the Treated (ATE) |
under Misspecification |. . . . . . . ... o o oo 102
[3.A3 Bias and Variance of the Estimated Treatment Effect on the Treated (ATE)- |
Normal-Normal | . . . . .. ... o 103
[3.A4 Simulated Root Mean Squared Bias (x 1000) of the Estimated Treatment |
Effect on the Treated (ATE)|. . . . . . . . . ... ... ... ... ..... 104
[3.A5 Simulated Average Variance (x 1000) of the Estimated Treatment Effect on |
the Treated (ATE) |. . . . . . . . . . . . .. . 105
13.A6 Cramer-Rao and Semiparametric Efficiency Bounds|. . . . . . . ... .. .. 106
[4.1 Finite Sample Size (TOT) | . . . . . . ... ... ... 142

vi



|4.2 Finite sample size and power of joint test of no TOT |
[4.A1 Finite Sample Size (ATE)| . . ... ... ... ...

|4.A2 Finite sample size and power of joint test of no ATE | . . . . ... ... ...

vii



List of Figures

Figure
[2.1 Chicago Empowerment Zone |. . . . . . . . . . . . ... ... L. 47
2.2 Time Series Characteristics| . . . . . . . . ... .. .. .. ... 48
[2.3 Chicago: Empowerment Zone and Placebo Tracts|. . . . . ... ... ... .. 49
[3.1 Overlap Plots, by design | . . . . . . . ... ... ... . ... ... ..., 107
[3.2 Overlap Plots, by design (Normal-Normal model) | . . . . ... ... ... ... 108
13.3 Breakdown ot Standard Asymptotics as k grows|. . . . . . ... ... ... .. 109
BADBlas of TPW2T . . . . oot 110
13.5 Overlap Plots in Related Literature|. . . . . . . ... ... ... ... ..... 111
[3.6 s.d. of OLS, IPW2 and DR| . . .. ... ... ... ... ... .. ....... 112
4.1 Size of test in DGPs with different sample sizes (TOT) |. . . . ... ... ... 146
4.2 Size of test in DGPs with different N1/NO ratios (TOT)| . . . . ... ... .. 147
4.3 Size of test in DGPs with different maxp(X;)|7; =0 . . . . . ... ... ... 148
|4.4 Size of test in DGPs with different degrees of violation of overlap| . . . . . .. 149
|4.5 Power of t-test for Hy : T'TOT = 0 against A, : TOT #0| . ... .. ... ... 150

viii



Chapter 1

Introduction

This dissertation studies semiparametric methods for the evaluation of social programs.
The first essay, with Patrick Kline, evaluates Round I of the federal urban Empowerment
Zone (EZ) program, which constitutes one of the largest standardized federal interventions
in impoverished urban American neighborhoods since President Johnson’s Model Cities
program. The EZ program is a series of spatially targeted tax incentives and block grants
designed to encourage economic, physical, and social investment in the neediest urban
and rural areas in the United States. We use four decades of Census data on urban
neighborhoods in conjunction with information on the proposed boundaries of rejected EZs
to assess the impact of Round I EZ designation on local labor and housing market outcomes
over the period 1994-2000. Utilizing a semiparametric difference-in-differences estimator
we find that neighborhoods receiving EZ designation experienced substantial improvements
in labor market conditions and moderate increases in rents relative to rejected and future
Empowerment Zones. These effects were accompanied by small changes in the demographic
composition of the neighborhoods, though evidence from disaggregate Census tabulations
suggests that these changes account for little of the observed improvements. No evidence
exists of large scale gentrification, indicating that many of the benefits (and costs) of the

program have been captured by pre-existing residents.

The second essay, with John DiNardo and Justin McCrary, explores the finite sam-
ple properties of several semiparametric estimators of average treatment effects, including
propensity score inverse probability weighting (IPW), matching, and double robust esti-
mators. When there is good overlap in the distribution of propensity scores for treatment
and control units, IPW estimators are preferred on bias grounds and attain the semipara-
metric efficiency bound even for samples of size n = 100. Pair matching exhibits similarly
good performance in terms of bias, but has notably higher variance. Local linear and ridge
matching are competitive with reweighting in terms of bias and variance, but only once
n = 500. Nearest-neighbor, kernel, and blocking matching are not competitive. When over-
lap is close to failing, none of the estimators examined perform well and y/n -asymptotics

may be a poor guide to finite sample performance. Trimming rules, commonly used in the



face of problems with overlap, are effective only in settings with homogeneous treatment

effects.

In the third essay I propose a sequential method of moments variance estimator of IPW
estimators of average treatment effects. IPW estimators are becoming increasingly popular
to compute average treatment effects. Obtaining valid standard errors for these estimators,
however, can be difficult because of the 2-step nature of the estimation procedure. In this
essay, I note that IPW is a sequential method of moments (SQMM) estimator which, in
cases in which a parametric propensity score model is assumed, has a simple expression of
the asymptotic variance. This variance estimator can be used to test not only hypotheses
about treatment effects for a given outcome but also hypotheses involving multiple out-
comes and/or different estimands. Using Monte Carlo simulations I find that tests based
on the proposed SQMM variance estimator have good finite sample size and power com-
pared to competing inference strategies. Tests that ignore the fact that the weights are
estimated tend to severely overreject. Tests based on the percentile-t bootstrap method
using a bootstrap SQMM variance have very similar size and power properties as the ones
obtained using the asymptotic SQMM variance. I interpret this as evidence that the boot-
strap percentile-t method is not providing any refinement to the asymptotic variance, which
indicates that the SQMM variance estimator is a good enough approximation to the true

variance of the treatment effect estimator.



Chapter 2

Do Local Economic Development Programs Work?
Evidence from the Federal Empowerment Zone Program('|

Local economic development programs are an important, yet understudied, feature of
the U.S. tax and expenditure system. Timothy Bartik (2002) estimates that state and
local governments spend $20-30 billion per year on economic development programs with
an additional $6 billion per annum coming from the federal government. However, little
academic work has been done examining the impact of these expenditures on local com-
munities, largely because of the small scale and general diversity of most such programsE]
This paper evaluates the federal urban Empowerment Zone (EZ) program, which consti-
tutes one of the largest standardized federal interventions in impoverished urban American

neighborhoods since President Johnson’s Model Cities program.

With a mandate to revitalize distressed urban communities, the EZ program represents
a nexus between social welfare policy and economic development efforts. Unlike conven-
tional anti-poverty programs, Empowerment Zones aim to help the poor by subsidizing
demand for their services at local firms, which has made them one of the few social welfare
programs popular on both sides of the congressional aisle. In an era where non-entitlement
spending on social welfare programs has been scaled back dramatically, the federal Em-
powerment Zone program has enjoyed rapid growth. After the initial funding of six first
round EZs and two “supplemental” EZs in 1994, fifteen more cities were awarded zones in
1999, followed by another eight in 2001. An additional forty-nine urban areas were con-
currently granted smaller Enterprise Communities (ECs) which entailed a reduced package

of benefits. The enthusiasm for spatially targeted tax credits has led to the birth of a

!This paper was written with Patrick Kline.

The authors would like to thank Soren Anderson, Timothy Bartik, John Bound, Charlie Brown, Kerwin
Charles, John DiNardo, Taryn Dinkelman, Jesse Gregory, Jim Hines, Ben Keys, Justin McCrary, Gary
Solon, Joel Slemrod, and Jeff Smith for encouragement and advice on this project. We would also like to
thank participants of the University of Michigan Labor Seminar, the Michigan Public Finance Brownbag
Lunch, and the Upjohn Institute Seminar for useful comments.

2See Bartik (1991) and the volume by Nolan and Wong (2004) for a review.



variety of new zones, each modifying the original EZ concept in different waysE| Most
recently, the justification for tax abatement zones has been expanded to include disaster
relief. For example, in the wake of the September 11th attacks, parts of New York city
were designated “Liberty Zones” and granted a variety of localized tax credits; while, in
2006, Congress passed legislation authorizing a set of “Gulf Opportunity Zones” for areas

stricken by Hurricane Katrina.

These recent forays of the IRS into the business of local economic development should
merit the attention of economists. The GAO (1999) estimates that the first round Em-
powerment Zones will cost $2.5 billion over the course of the ten year program. Given
that EZ neighborhoods have a total population of under a million people, subsidies of
this magnitude, when directed to such relatively small urban areas, might be expected to
have important effects upon the behavior of firms and workers. Measuring the nature and
magnitude of these behavioral responses is crucial for understanding the equity-efficiency

tradeoffs inherent in geographically targeted transfersﬁ

The EZ program was pre-dated by a series of state initiated “enterprise zones” which
varied dramatically in scale, purpose, and implementationﬂ A modest literature evaluat-
ing the state level programs reaches mixed conclusions reflecting, in part, the enormous
diversity of the programs under examinationﬁ Some programs only provide for investment
subsidies while others include employment tax credits; some state zones cover hundreds of
square miles, while others are focused on particular neighborhoods within a few cities. Be-
sides differences in the structure of the programs themselves, a number of methodological
problems hinder clear interpretation of the enterprise zone literature. Many of the early
studies faced difficulties obtaining data corresponding to the boundaries of the state zones,
relying instead upon evaluations at higher levels of aggregation such as the zip code or city
which likely reduced the statistical power of the estimates. Furthermore, most studies rely
upon simple variants of the differences in differences research design without examining
in any detail the suitability of the control groups being used to proxy the counterfactual
behavior of the zones (a notable exception being Boarnet and Bogart (1996)). Finally,
all of the studies of which we are aware save for Papke (1994) calculate standard errors
ignoring issues of spatial and temporal dependence in the data making it difficult to assess
exactly how precise previous studies have been and whether the differences in results are

attributable to chance.

3In addition to urban EZs and ECs, there are a series of rural EZs and ECs, Enhanced Enterprise
Communities (EECs), and 28 urban and 12 rural “Renewal Communities” entitled to benefits similar in
magnitude to EZs.

“See Nichols and Zeckhauser (1982) for an introduction to the economics of targeting.

®See Papke (1993) and Hebert et al. (2001) for a history of the Empowerment and Enterprise Zone
ideas.

5See Papke (1993, 1994), Boarnet and Bogart (1996), Bondonio (2003), Bondonio and Engberg (2000),
Elvery (2003), and Engberg and Greenbaum (1999). Peters and Peters and Fisher (2002) provide a review.



The federal EZ program is much larger in scope and scale than its state level precursors
and involves a standardized package of fiscal benefits applied to neighborhoods defined in
terms of 1990 census tracts. Unlike most state level zones, the EZ program ties business
tax credits to the employment of local residents and includes a series of large block grants
aimed at reducing poverty and improving local infrastructure. The only large scale study
of the impact of EZ designation is an interim evaluation (Hebert et al., 2001) performed
for HUD by Abt Associates in conjunction with the Urban Institute, which finds that EZs

had large effects on job creation, with increases in local payrolls on the order of 10%.

The Abt study suffers from a number of important weaknesses. First, it relies upon
within city comparisons of census tracts which are likely to overstate the effect of the
program if EZ designation merely reallocates jobs between neighborhoods. Second, the
matching algorithm used to find controls for the EZ tracts is poorly documented and
standard errors are not provided making it difficult to draw strong conclusions regarding
the results. Moreover, important questions exist about the quality and representativeness
of the Dunn and Bradstreet data used in the analysism Third, since local governments
designed Empowerment Zone boundaries, it is possible that census tracts awarded EZs
would have improved relative to other tracts in the same city even in the absence of EZ
designation if the boundaries were drawn based upon trends emerging at the beginning of
the 1990s. Finally, the study provides no guidance as to whether the jobs being created in
EZs were staffed by local residents, whether the neighborhood composition of EZ residents
changed, and whether poverty, unemployment, or the local housing market responded to

the treatment—questions that are key to evaluating the success or failure of the program.

This paper uses four decades of census data on local neighborhoods in conjunction with
proprietary EZ application data obtained from HUD to assess the impact of Round I EZ
designation on residential sorting behavior and local labor and housing market outcomes
over the period 1994—2000E| Unlike previous studies we use census tracts in rejected and
future Empowerment Zones as controls for first round EZs. Since these tracts were nom-
inated for EZ designation by their local governments, they are likely to share unobserved
traits and trends in common with first round EZs which also underwent a local nomina-
tion phase. We present an extensive body of evidence indicating that these controls serve
as good proxies for the counterfactual behavior of EZ tracts over the 1990s. Moreover,
because most of our control tracts are in different cities than those winning EZs, they are
substantially less susceptible to contamination by spillover or general equilibrium effects

than those of previous studies. We use a variety of semiparametric methods to adjust for

"See Heeringa and Haeussler (1993) and Appendix A of the Abt report.

8The outcomes are: poverty, employment, unemployment, owner occupied housing values, rents, mean
earnings, population, the fraction of houses that are vacant, the fraction of the neighborhood that is black,
the fraction of residents who live in the same house as five years ago, and the fraction of residents who hold
a college degree.



the small observable differences that do exist between our control tracts and EZs and to

increase the statistical power of our analysis.

We find that neighborhoods receiving EZ designation experienced substantial improve-
ments in the labor market outcomes of zone residents and moderate increases in housing
values and rents relative to observationally equivalent tracts in rejected and future zones.
These effects were accompanied by small changes in the demographic composition of the
neighborhoods. We provide evidence from disaggregate census tabulations that the ob-
served improvements in the local labor market conditions of EZ neighborhoods are unlikely
to have resulted from these demographic changes alone. Employment rates, for example,
seem to have increased even among young high school dropouts. However, given the high
rates of turnover in EZ neighborhoods we cannot determine whether the benefits of EZ des-
ignation were captured by pre-existing residents or new arrivals with similar demographic

characteristics.

An impact analysis is performed indicating that the EZ program created approximately
$1 billion of additional wage and salary earnings in EZ neighborhoods and another $1 billion
in property wealth. A comparison of IRS data with our impact estimates suggests that
the tax credits associated with EZ designation are unlikely to have been the only source
of the observed employment gains. Rather, we conclude that the block grants and outside
funds leveraged by EZ designation, perhaps in conjunction with changes in expectations
associated with EZ status, are likely to have contributed substantially to the changes in

the local labor market.

The remainder of the paper is structured as follows: Section I provides background on
the EZ program, Section II discusses the expected impact of EZ benefits, and Section ITI
describes the data used. Section IV introduces the identification strategy and details the
methodology used, Section V discusses results and tests for violations of the assumptions
underlying our identification strategy. Section VI provides an impact analysis and Section
VII concludes.

I A Crash Course in Empowerment

The federal Empowerment Zone program is a series of spatially targeted tax incentives
and block grants designed to encourage economic, physical, and social investment in the
neediest urban and rural areas in the United States. Talk of a federal program caught
on early in President Clinton’s first term following the 1992 Los Angeles riots. In 1993,
Congress authorized the creation of a series of Empowerment Zones and smaller Enterprise
Communities (ECs) that were to be administered by the Department of Housing and Urban

Development (HUD) and awarded via a competitive application process.



Communities were invited to create their own plans for an EZ and submit them to HUD
for consideration. Plans included the boundaries of the proposed zone, how community
development funds would be used, and how state and local governments and community
organizations would take actions to complement the federal assistance. In addition to
providing a guidebook to communities hoping to apply, HUD held a series of regional
workshops to explain the EZ initiative and the requisite application process. Nominating
local governments were required to draw up EZ boundaries in terms of census tracts, list
key demographic characteristics of each proposed tract including the 1990 poverty rate
as measured in the Decennial Census, and specify whether the tracts were contiguous or

located in the central business district ]

HUD initially awarded EZs to six urban communities: Atlanta, Baltimore, Chicago,
Detroit, New York City, and Philadelphia/Camden. Two additional cities, Los Angeles
and Cleveland, received “supplemental” EZ (SEZ) designation but were awarded full EZ
designation two years later. Forty-nine rejected cities were awarded ECs. Table 2.1 shows
summary statistics of EZ neighborhoods by city. The average Round I EZ spanned 10.6
square miles, contained 117,399 people, and had a 1990 poverty rate of 45%. Most zones
are contiguous groupings of census tracts, although some EZs, such as the one in Chicago

pictured in Figure 2.1, cover multiple disjoint groupings of tracts.

EZ designation brought with it a host of fiscal and procedural benefits, which we briefly

summarize here@

1. Employment Tax Credits —Starting in 1994, firms operating in the six original EZs
became eligible for a credit of up to 20 percent of the first $15,000 in wages earned in
that year by each employee who lived and worked in the communityﬂ Tax credits
for each such employee were available to a business for as long as ten years, with
the maximum annual credit per employee declining over time. This was a substantial
subsidy given that, in 1990, the average EZ worker only earned approximately $16,000
in wage and salary income.

2. Title XX Social Services Block Grant (SSBG) Funds —Each EZ became eligible for
$100 million in SSBG funds, while each SEZ was eligible for $3 million in SSBG
funds. These funds could be used for such purposes as: training programs, youth
services, promotion of home ownership, and emergency housing assistance.

3. Section 108 Loan Guarantees/Economic Development Initiative (EDI) Grants —EDI
funds are large flexible grants which are meant to be used in conjunction with other
sources of HUD funding to facilitate large scale physical development projects. The

9For example, the application asked “Does any tract that includes the central business district have a
poverty rate of less than 35%7” and “Do all census tracts of the nominated zone have 20% or more poverty
rate?”

10See TRS (2004) for more details.
"Eirms located in the two supplemental Empowerment Zones did not become eligible for the tax credit
until 1999.



two SEZ’s, Los Angeles and Cleveland, received EDI grants of $125 and $87 million
respectively. The six original EZs were not eligible for these grants. Section 108
Loan Guarantees allow local governments to obtain loans for economic development
projects. Los Angeles received $325 million in 108 loan guarantees and Cleveland
received $87 million.

4. Enterprise Zone Facility Bonds —State and local governments can issue tax-exempt
bonds to provide loans to qualified businesses to finance certain property. A business
cannot receive more than $3 million in bond financing per zone or $20 million across
all zones nationwide.

5. Increased Section 179 Expensing —Section 179 of the Internal Revenue Code provides
write-offs for depreciable, tangible property owned by businesses in designated zones.
Qualified target area business taxpayers could write off $20,000 more than the usual
first-year maximum (which in 1994 was $18,000).

6. Regulatory Waivers/Priority in Other Federal Programs —Qualified EZ/EC areas
were given priority in other Federal assistance programs. Furthermore, as part of their
applications, EZ/EC applicants were encouraged to request any waivers in Federal
program requirements or restrictions that were felt to be necessary for the successful
implementation of their local revitalization strategy.

The subsidies available to zone businesses increased substantially over the first four
years of the program with the surprise introduction of two additional wage credits (the
Work Opportunity Tax credit and the Welfare to Work Tax Credit)B an expansion of the
EZ Facility Bonds program, and changes in the treatment of capital gains realized from
the sale of EZ assets. By all accounts, the degree of potential fiscal intervention in EZ

neighborhoods was substantialE

Nevertheless, it is difficult to assess exactly how extensive participation in the program
has been. GAO (1999) estimated that the EZ program would cost $2.5 billion over its
ten year life with 95 percent of the costs coming from the employment credit@ IRS data
show that, in the year 2000, close to five hundred corporations, and over five thousand
individuals, claimed EZ Employment Credits worth a total of approximately $23.5 and $22
million, respectivelyE Roughly $200 million in employment credits were claimed over the

period 1994 to 2000, with the amount claimed each year trending up steadily over time.

12WWork Opportunity Tax Credits enabled businesses to claim up to $2,400 per worker in tax credits for
first year wages paid to qualifying employees such as ex-felons, and youth ages 18-24 who are zone residents.
Welfare to Work Tax Credits allow businesses to claim credits for up to $3,500 of first year and $5,000 of
second year wages paid to workers who are long-term recipients of family assistance.

13While the SSBG and EDI funds were fungible, the wage credits and capital write offs were relatively
narrowly targeted. Wages paid to workers employed for less than ninety days or relatives were not eligible
for the wage credits nor were payments to unofficial workers not on the payroll. Similarly, for a business
to be eligible for the tax exempt bond financing or the increased Section 179 expensing it must be able to
demonstrate that the majority of its income is earned within the zone and that 35% of its employees are
zone residents.

14The EZ program has subsequently been extended to expire in 2009.

Y These figures come from GAO (2004).



So despite the slow ratcheting up of participation, reasonably large tax subsidies have been
dispensed to EZ neighborhoods in the form of wage subsidies. In contrast, only 17 EZ
facility bonds were issued before 2000 totalling approximately $50 million, so the impact

of the tax exempt bond financing is probably minimal.

Survey data provide information about who participated in the tax incentives and why.
A 1997 survey of zone businesses conducted by HUD found that most firms were unaware of
the existence of the EZ program, that only 11% claimed to be using the wage tax credit, and
only 4% claimed to be using the Section 179 deductionsE Such figures mask heterogeneity
in participation rates by firm size. The HUD survey found that large firms used the tax
credits more intensively with 63% and 30% utilization rates for the wage subsidies and
capital write-offs respectivelym Another survey conducted by the GAO (1999) found that
55% of large urban businesses using the employment credits were manufacturing firms.
The most commonly cited reasons for not using the wage credits were that firms were
either unaware of the benefits or did not qualify for them because their employees lived
outside of the zone. However, even among large firms, 27% responded that they were not
aware of the credit. The low rates of participation in the Section 179 write-off program
were most often attributed to lack of knowledge about the program and ineligibility due
to lack of profits or qualifying investments. Since tax credits can only be claimed against
a company’s taxable profits, many small firms (15%), appear to have been unable to take

advantage of the program due to insufficient taxable income.

Although the tax benefits accompanying EZ designation were somewhat underutilized
by firms, the General Accounting Office (2004) estimates that state agencies had drawn
down approximately 60% of Round I SSBG funds by 2003 and were on target to fully expend
their allocations by the expiration of the program in 2010. More difficult to measure is the
degree of outside investment leveraged by EZ designation. While the first round EZs were
allocated roughly $800 million dollars in SSBG and EDI funds, the annual reports of the
various EZs suggest that massive amounts of outside capital have accompanied the grant
spending. HUD (2003) claims that $12 billion in public and private investment have been
raised from Federal “seed” money accompanying the broader EZ/EC program. Our own
analysis of HUD data suggests that the amount spent on first round EZs over the period
1994-2000 is substantially less than this, but still much greater than the initial amount of
block grant funding allocated.

Table 2.2 summarizes information from HUD’s internal performance monitoring system

on the amount of money spent on various program activities by source. Audits by HUD’s

16These figures come from Hebert et al. (2001).
17See tables 3-13, 3-14 and 3-15 in Hebert et al. (2001). The sample sizes used in the survey are not
large enough to make strong inferences regarding the relationship between size and participation.



Office of Inspector Genera]lﬂ and the GAO (2006)|E| have called the accuracy of these
data into question, so the figures reported should be interpreted with caution. The six
original EZs reported spending roughly $2 billion by 2000, with more than four dollars of
outside money accompanying every dollar of SSBG funds. The most commonly reported
use of funds was enhancing access to capital. One-stop capital shops providing loans to
EZ businesses and entrepreneurs were a component of the plans of most EZs. In Detroit, a
consortium of lenders provided $1.2 billion to be used in a local loan pool. Although these
funds are listed as being spent, it is difficult to know what fraction were actually loaned
out. Analysis of the HUD data in Hebert et al. (2001) indicates that the total size of all
loan pools across the six original EZs was only $79 million. The second most common use
of the funds was business development which included technical and financial assistance.
Third and fourth most common respectively were expenditures on housing development

and public safety.

Compiling the tax and expenditure information together and allowing for biases in
the reporting behavior of EZs, we estimate that the EZ program resulted in expenditures
over the period 1994-2000 of between one and three billion dollars. While this amount of
expenditure is below what was originally envisaged at the inception of the program, it is
still quite substantial considering that together the EZs constitute a 92 square mile area

containing less than a million residents.

IT Expected Impact

The benefits accompanying EZ designation might be expected to impact a number of
features of local Communities@ Here we consider the aggregate variables most likely to

respond to the treatment and the economic interpretation of those responses.

The wage subsidies should have two effects on local labor markets, both militating
towards increased employment of zone residents. First, there should be a scale effect in that
the average cost of labor should fall and production should expand. Second, there should
be a substitution effect as outside workers are replaced by cheaper zone workers. If outside
workers are relatively unwilling to relocate to EZ neighborhoods and zone residents vary
substantially in their disutility of work, then we might expect any employment increases

to be accompanied by corresponding increases in local wages.

83ee Chouteau (1999) and Wolfe (2003).

19While the GAO could not find suitable documentation corroborating the dollar amount spent on each
program, they were able to verify HUD data on the number of activities undertaken. Their analysis of
this data indicated that “community development” projects which include “workforce development, human
services, education, and assistance to businesses” accounted for more than 50 percent of the activities
implemented in the 6 original urban EZs.

20See Papke (1993) for a general equilibrium model of the effects of localized tax incentives.
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If firms are only willing to hire the most qualified workers from a neighborhood, then
employment gains need not be accompanied by reductions in poverty as the relatively high
skilled workers will merely shift from one job to another. Likewise, if EZ neighborhoods
lack residents with the sorts of skills desired by firms then the wage subsidies may not be
successful in increasing neighborhood employment as firms will not find it profitable to hire

unproductive workers even at a substantial discount.

To the extent that block grants and other subsidies increase the profitability of local
businesses, such as by alleviating capital constraints, providing technical assistance, or
reducing crime, a scale effect should ensue, leading to an increase in the number of jobs
inside EZSB Moreover, if, as suggested by HUD’s administrative data, a substantial
portion of funds are being invested in workforce development and the matching of workers
to local employers, we should expect local employment of zone residents to increase. Funds
spent on improvement of infrastructure and physical redevelopment might also be expected

to temporarily increase local employment in the form of construction jobs.

Housing markets should respond in tandem with zone labor markets. Firms and res-
idential developerﬁ may bid up the price of zone land in pursuit of EZ benefits if those
benefits are deemed valuable. Likewise, block grants and outside investments in physical
development and community safety are likely to improve the amenities associated with
EZs, possibly stimulating residential demand in the area@ The asset values of land and
owner occupied housing may rise quickly if expectations of future market conditions are
influenced by EZ designation and there are obstacles in the short run to increasing housing
supply. Rental rates, by contrast, will reflect supply and demand conditions in the spot
market for housing. However if zone amenities improve, or if outside workers seek to mi-
grate to the zone in anticipation of future neighborhood improvements, quality adjusted
rents will rise@ Over longer time horizons the supply of housing may increase or the

quality of the housing stock may adjust, both of which should moderate any price effects.

Since most zone residents are renters, large increases in rents may lead to gentrification
and neighborhood churning as more affluent newcomers displace prior zone residents. To
the extent that gentrification does occur, it should be reflected in changes in the demo-

graphic composition of zone neighborhoods. Increases in the price of land might also be

21Reductions in the price of capital should also bring with them a substitution effect as capital is substi-
tuted for labor. In theory this effect could outweigh the scale effect and yield negative employment effects
if capital and low skilled labor are gross substitutes. We consider such extreme cases implausible. However,
the substitutability of capital and low-skill labor may be expected to result in fairly small net impacts on
employment.

22EDI and SSBG funds are targeted towards the development of affordable housing and the promotion
of home ownership. In practice, these funds, in conjunction with the Low-Income Housing Tax Credit, are
often spent in public-private physical development projects.

23 According to Hebert et al. (2001) the majority of EZ businesses reported in 2000 that neighborhood
conditions were “much improved” or “somewhat improved” since 1997.

24In some of the zone cities rents are regulated meaning that housing will be rationed.
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expected to bring with them reductions in the fraction of units in a neighborhood that are
vacant. However, local landlords may postpone the sale of vacant units to developers if
property values are expected to rise faster than the interest rate. Therefore the expected

impact of EZ designation on the fraction of units vacant is ambiguous.

IIT Data

To perform the analysis we constructed a detailed panel dataset combining informa-
tion from the Decennial Census, the County/City Databook, and HUD. The primary data
source utilized is the Neighborhood Change Database (NCDB) which is a panel of census
tracts spanning the period 1970-2000 constructed by Geolytics and the Urban Institute.
Appendix I provides more detailed information about this dataset and how it was con-
structed. Tract level Decennial Census information from the NCDB was merged with
relevant editions of the County/City Databook to yield a hierarchical longitudinal dataset

with four decades worth of information on cities and tracts@

In order to construct a suitable control group for EZs, we obtained 73 of the 78 first
round EZ applications submitted to HUD by nominating jurisdictions via a Freedom of
Information Act request@ These applications contain the tract composition of rejected
zones, along with information regarding the number of political stakeholders involved in
each proposed zone@ We merged this information with data from HUD’s web site detailing
the tract composition of future zones to create a composite set of rejected and future zones
to serve as controls for EZs in our empirical work. Appendix Table 2.A1 details the
composition of the cities in our evaluation sample, whether they applied for a Round I EZ,

and the treatments (if any) they received.

IV Methodology

A Identification Strategy

The credibility of any non-experimental evaluation hinges critically upon the nature of
the treatment assignment mechanism. In order to receive EZ designation, tracts had to
pass two stages of selection. First, they had to be nominated by local officials for inclusion
in an EZ. Second, the EZ proposal of which they were a part had to be chosen by HUD.
While little is known about the initial nomination process, HUD’s decision making process

has been fairly well documented. EZ applications were ranked and scored according to

25Tracts that crossed city boundaries were assigned to the city containing the highest fraction of their
population.

26The scoring information is not in the public domain and was not released to us by HUD.

2"Since the applications proposed EZs in terms of 1990 census tracts and the NCDB uses 2000 census
tract definitions we use the Census Tract Relationship Files of the U.S. Census Bureau to map the former
into the latter.
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their ability to meet four criteria: economic opportunity, community-based partnership,
sustainable community development, and a strategic vision for change. Explicit eligibility
criteria specified minimum rates of poverty and unemployment and maximum population
thresholds for groups of proposed census tracts as measured in the 1990 Census@ The au-
thorizing legislation also reserved designations for nominees with certain characteristics@
Scores were assigned to each application by an interagency review team consisting of ap-
proximately 90 individuals. HUD’s Department of Community Planning and Development
oversaw the review team. After the HUD committee submitted its scores and recommen-
dations the selection decisions were made by HUD Secretary Cisneros in consultation with
a 26 member oversight organization known as the Community Empowerment Board. The
CEB was chaired by Vice President Gore and staffed by cabinet secretaries and other high
ranking officials. After designations were made the CEB was used to coordinate support

for EZs and ECs from other agencies.

Following allegations of impropriety in the popular press an investigation was conducted
by the HUD inspector general finding some irregularities in the scoring process including
that some of the lower ranked EC applications were considered for awardsﬂ However, the
audit indicated that all six of the first round EZs were chosen from a list of 22 applications
designated as “strong” by the HUD selection committee. Wallace (2003) analyzes the
assignment process, finding that political variables are poor predictors of EZ designation.
Rather, variables such as community participation, size of the empowerment zone, and

poverty were the best predictors of receipt of treatment.

We will compare the experience over the 1990s of Round I EZs to tracts in rejected and
later round zones with similar historical Census characteristicsPI Since much of the data
used by HUD to select zones came from the 1990 Census it seems reasonable to believe that
rejected and future zones with similar census covariates can serve as suitable controls for
winning zones. We present a variety of evidence including a series of “false experiments”
suggesting that this is indeed the case. Because some of the control zones used in this

approach received treatment in the form of ECs, we expect that the resulting estimates of

28 All zone tracts were required to have poverty rates above twenty percent. Moreover, ninety percent
of zone tracts were required to have poverty rates of at least twenty-five percent and fifty percent were
required to have poverty rates of at least thirty-five percent. Tract unemployment rates were required to
exceed 6.3%. The maximum population allowed within a zone was 200,000 or the greater of 50,000 or ten
percent of the population of the most populous city within the nominated area.

29For example one urban EZ had to be located in an area where the most populous city contained 500,000
or fewer people. Another EZ was required to be in an area that included two states and had a combined
population of 50,000 or less.

30See Greer (1995). Secretary Cisneros informed the inspector general’s office that “he used the [HUD]
staff’s general input, as well as his personal knowledge and perspectives on individual community needs,
commitment and leadership, in making the final designations and award decisions.”

31Use of rejected applicants as controls as a means of mitigating selection biases has a long history in the
literature on econometric evaluation of employment and training programs. See the monograph by Bell et
al. (1995) for a review.
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the impact of EZ designation will be biased towards zero, making our estimates relatively

conservative@

Since the majority of rejected and future zones are located in different cities than
treated zones, we are able to assess the sensitivity of our estimates to geographic spillover
effects. This is an important advantage of our work over the Abt study (and many of the
studies of state level enterprise zones) which relied entirely upon within city comparisons.
Two sorts of local spillovers are plausible. First, some of the “leveraged” outside funds
flowing to EZs may have been diverted from other impoverished neighborhoods in the same
cities or metropolitan areas. Such reallocations would serve to exaggerate the impact of
EZ designation found by a within-city estimator since the control tracts would actually
be receiving a negative treatment. Second, any true impact of EZ designation on labor or
housing market conditions in EZ neighborhoods may spillover into adjacent neighborhoods.
This could bias a within city estimator in the opposite direction, though the expected sign
depends upon the outcome in question and the underlying economic parameters governing
the process@ Without prior information on the size of these two spillover effects, one

cannot know which effect will dominate or the composite direction of bias.

Though the use of rejected tracts as controls has many advantages, one may still be
concerned that the cities that won first round EZs are fundamentally different from losing
cities. A cursory inspection of Table 2.1 indicates that the three largest US cities all
won EZs, while the remaining winners are large manufacturing intensive cities. If large
cities experienced fundamentally different conditions over the 1990s than small cities, the
comparison of observationally equivalent census tracts in winning and losing zones will be
biased. To further explore this possibility we construct a set of “placebo zones” in each
city receiving an EZ. Each placebo zone contains the same number of census tracts as the
actual EZ in that city and possesses similar demographic characteristics. We compare the
experience of these placebo zones over the 1990s to that of the rejected and later round
zones and find no appreciable differences, bolstering our confidence in the credibility of our

findings.

32ECs did not receive wage tax benefits but were allocated $3 million in SSBG funds and made eligible
for tax exempt bond financing. As mentioned earlier, the bond financing does not appear to have been
heavily utilized.

33Though one would normally expect improvements in the amenity value of one neighborhood to yield
housing price increases in both that neighborhood and adjacent neighborhoods, it is possible, if neighbor-
hoods are gross substitutes, for the prices of adjacent neighborhoods to be negatively correlated. Similarly,
it is possible for job growth inside of EZs to occur at the expense of neighborhoods outside of EZs if firms
merely relocate between neighborhoods without expanding total employment.
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B Econometric Model

Let outcomes in application tract ¢ in city ¢ in decade t be represented by Yict@

Suppose that these outcomes are generated by a model of the form:
(2.1) Yiet = pit (Dict, Yiet—1, Xict—1, Zet—1, Net, Eiet) + 0s,

where g (.) is some function indexed by time, Dy is a treatment dummy, Y;,—1 is the
tract outcome lagged, X;.—1 is a vector of predetermined tract characteristics, Z._1 is a
vector of predetermined city wide characteristics, 6; is a tract fixed effect, 1. is a random
city specific year shock, and g;. is a serially correlated tract specific error term which is

assumed to be independent of all other right-hand-side variables.

The class of stochastic processes encompassed by is capable of capturing many of
the key features one would expect to see in a panel of census tracts. It allows for mean
reverting tract and city specific shocks and for conditional correlation of outcomes across
tracts within a city and within tracts across time. Moreover, substantial heterogeneity
across tracts is permitted, both in their mean outcomes and in their potential responses to

EZ designation.

It will be convenient to reexpress the dependence of the function p (Djet, .) on EZ desig-
nation by writing gy (Djet,.) = Dictpti (1) + (1 — Diet) pi? (1). The (contemporaneous) effect
of EZ designation on outcomes in a given tract may now be defined as 3; = u} (.) — u? (.).
Note that this effect is a potentially nonlinear function of the predetermined covariates
Yiet—1, Xiet—1, and Z—1. This reflects the notion that neighborhoods with different degrees

of pre-existing economic distress are likely to exhibit different responses to EZ designation.

In order to eliminate the tract fixed effect 0;, let us rewrite (2.1 in first differences
using the potential outcomes notation of Neyman (1923) and Rubin (1974):

(2.2) AY, = Bi+h (Qu, Uier)
AYY, = h (i, Uier)

where hy () = pf ()= pd_1 (), Qut = Yiet—1, Xict—15 Zet—1, Yict—2: Xict—2, Zer—2), and U =
(Nets Eicts Net—1, €ict—1).  Superscripts index potential outcomes under different treatment
states. Because we have only one post-treatment decade in the data we only consider static
treatment schemes (i.e. we do not consider potential outcomes associated with two decades
of EZ designation or one decade of designation followed by a decade of non-designation).
Thus, AYiit represents the change in Yj a tract would have experienced over the 1990s had

it been awarded an EZ at the beginning of the decade, while AY.Y, represents the change

34 From this point on we use the phrase “application tract” interchangeably with “proposed tract” to
refer to application and future EZ tracts.
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that would have occurred over the 1990s without an EZ. Because we only observe one of
these potential outcomes per tract we may write AY; = AY;tDict + AYi(C)t (1 = Djer).

Suppose that application tracts were awarded Empowerment Zone status by HUD based
upon the history of their Census covariates available in 1990 and other random factors.
We model this selection mechanism as D;; = 1 if DX, > 0 and 0 otherwise Wherelﬂ

ict

(2.3) Diey = At + Vict,

ict —

A is a coefficient vector and v;e is a random error assumed to be independent of €2;; and

U;.+—an assumption we display here for future reference:
(2.4) Viet L (Qt, Uiet) -

In words, this means that conditional on covariates, EZ designation is independent of
the experience a proposed census tract would have had over the 1990s in the absence of
treatment. This assumption directly implies that the distribution of untreated potential
tract outcomes f (AYi(c)t|Dict, Qit) is independent of whether or not a tract actually received
treatment so that f (AYigt|Dict, Qit) =f (AY&\Q“). Rosenbaum and Rubin (1983) term
this the Conditional Independence Assumption (CIA) and it forms the cornerstone of
our difference-in differences identification strategy. The CIA has the following important

implication:
(2.5) E[AY2|Q4, Dict = 0] = E [AY;2)|Qs, Diey = 1],

which states that, conditional on covariates, EZ and non-EZ tracts would, on average, be
expected to experience the same changes in outcomes during the 1990s in the absence of

treatment.

Recall that the tract specific impact of EZ designation j3; is itself a function of the
covariates. A standard parameter of interest in the program evaluation literature is the
mean effect of treatment on the treated (Heckman and Robb, 1985), which may be defined
as:

TT = E [AY;y — AY,|Dig = 1] = E [Bi|Dies = 1].

As the name suggests, this concept measures the average impact of the program on those
who take it up, or in this case, those tracts awarded EZ designation. Since EZ tracts have
roughly similar numbers of people, weighting the effect on each tract equally approximates

the national impact on EZ residents.

35This abstracts from the two step nature of the selection process inherent in EZ assignment. See
Appendix IT for a justification of the approach taken here.
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Estimating TT requires identifying two moments. The first E [AYiit\Dict = 1] is triv-
ially identified by the unweighted sample mean of treated observations on AY;.. The
second moment, F [AYigt|D,~ct = 1] , is the counterfactual mean of the treated observations

had they not been treated—a quantity with no directly observable sample analogue. We

use two approaches to estimating F [AYi(c)t|DiCt = 1].

The first approach suggested by condition is to approximate the function E[AYZ»?:AQ#,
Dj. = 0] using a parametric model and then to use that model to compute an estimate
of E[AYY|Diey = 1] = [ E [AY2|Qt, Dict = 0] dF (Qi¢|Dier = 1). We do this by fitting
a flexible regression model to the untreated tracts and using the estimated regression
coefficients to impute the counterfactual mean outcomes of each treated tract. The aver-
age difference between imputed counterfactual outcomes and actual values among treated
tracts is then computed as an estimator of 7. This procedure, which can be thought
of as a variant of the classic Blinder (1973) and Oaxaca (1973) approach to decomposing
wage distributions, can be shown to consistently estimate TT" given a sufficiently flexi-
ble model for E [AY2,|Q] (see Imbens, Newey, and Ridder, 2007). Thus for each tract
(Q4t) where

we have an estimate of the tract specific treatment effect 3; = AY!, — A}A/igt

A)A/igt Q) = E [AYigt]Qit] is the prediction from a parametric linear regression function.
We then estimate 7T using:
_ 1 .
B-O = o > B
i€{D=1}

The second approach is to estimate the counterfactual mean E [AY%|D;y = 1] via
propensity score reweighting@ The basic idea of the propensity score approach is to
reweight the data in a manner that balances the distribution of covariates across treated
and untreated tracts. This is accomplished by upweighting untreated tracts that “look like”
treated tracts based upon their observed variables. Once the distribution of covariates is
balanced across treatment and control groups a simple comparison of weighted means will,
under the assumptions made thus far, identify TT. Moreover, the performance of the
reweighting estimator in balancing the distribution of observed variables across groups can

easily be assessed directly by comparing reweighted covariate moments.

A key assumption necessary for propensity score based approaches to identify T'T is,
(2.6) P (Djet = 11Q4) < 1.

This assumption, which is often referred to as the “common support” condition, states that

no value of the covariates can deterministically predict receipt of treatment. The failure of

36Propensity score reweighting was proposed in the survey statistics literature by Horvitz and Thompson
(1952) and adapted to causal inference by Rosenbaum (1987). In the economics literature such estimators
have been used in a cross-sectional context by DiNardo et al. (1996) and extended to the panel setting by
Abadie (2005). Recent work by Hirano, Imbens, and Ridder (2003) demonstrates that properly implemented
reweighting estimators are asymptotically efficient in the class of semiparametric estimators.
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this condition would present the possibility that some tracts with particular configurations
of covariates would only be capable of being observed in the treated state, thereby prevent-
ing the construction of valid controls. As suggested by Heckman et al. (1998b) and Crump
et al. (2006) we present results where observations with very high estimated propensity
scores are dropped from the sample. This approach safeguards against violations of the
overlap condition in finite samples and can substantially reduce the sampling variance of
the estimator P"]

Conditions (2.4) and (2.6 in conjunction with the results of Rosenbaum (1987) imply
thatPs]

(2.7) E[AY2|Djer = 1] = E [w (Qut) AY|Diey = 0] ,

where w (Q) = %1_7”, p(Qt) = P(Diet = 1|1Q4), and m = P (Dje = 1). Thus the

covariate distribution of untreated tracts can be made to mimic that of treated tracts by
p(Qit)

weighting observations by their conditional odds of treatment times the inverse

T—p(Q

of their unconditional odds 1_7” Equation simplifies estimazjc(iori) considerably since
rather than estimating a very high dimensional conditional expectation, for which different
tuning parameters might be required for different outcomes, one need only estimate a single
propensity score p (i) = P (Diet = 1|Qi) (Rosenbaum and Rubin, 1983)@ In practice we

estimate p (2;;) via a logit and 7 by NlN

+1N0 the fraction of treated tracts in the estimation

sample.
A wuseful corollary of (2.7)) is that:
(2.8) Ew (Qit) |Diet = 0] = 1.

Which merely states that the mean weight among the controls should equal one. We impose
the sample analogue of this adding up condition when calculating our estimates in order
to reflect the theoretical condition in 1)

Given estimates p (i) and 7 we estimate E [w () AY,2,|Djes = 0] with its sample

3" Trimming slightly modifies the estimand to E [AYiit — AY2|ADjet = 1, P (ADiet = 1|1Q4) < k] where
k is a scalar constant. As suggested by Crump et al. (2006) we choose k = 0.9 throughout the paper. In
most specifications this results in the trimming of a very small fraction (approximately 1%) of the sample.

38Proofs of conditions and are provided in Appendix III.

39 As pointed out by Heckman et al. (1998a), propensity score approaches do not escape the curse
of dimensionality since the function p(€Q;:) is unknown. The effects on asymptotic bias and variance of
adjusting for the propensity score instead of the underlying covariates of which it is a function are ambiguous
(see section 7 of that paper).

40Equation actually provides us with an overidentifying restriction that can be used as a specification
test on our model. Very large deviations from 1 of the mean estimated weight among untreated tracts are
a sign of misspecification. In Appendix Table 2.A4 we conduct formal tests of this restriction.
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analogue

1 p(Qy) 1—-7 0
N ~ ~ AYzc .
Ny 1—-p(Qy) 7 t

We then estimate T'T by computing the weighted difference-in-difference (W DD):

=7 _ | 1 p(Q) 1-7
WDD = — AY;L, — — - _—AY)
Ny 2 ' No 2 1-p(Qy) = !
ie{D=1} 1e{D=0}

Consistency follows subject to the usual regularity conditions by an appropriate law of

large numbers.

Throughout the paper we show results from both the Blinder-Oaxaca (B-O) and reweight-
ing approaches@ We prefer the reweighting based estimates on the grounds that they allow
us to directly assess the suitability of our specification of the propensity score via visual
inspection of covariate balance and simple diagnostics for the logit which are not out-
come specific. It is also easier to check whether the overlap condition is satisfied with the
reweighting approach than the B-O approach. On the other hand, a strength of the para-
metric B-O approach is that it can reliably estimate treatment effects even in the absence

of overlap if the parametric model upon which it relies is approximately correct@

C Inference Procedures

Confidence intervals and p-values for all estimators are obtained via a pairwise block
bootstrapping algorithm described in Appendix IV. This procedure, which is analogous
to cluster robust inference, resamples cities rather than tracts in order to preserve the
within city dependence in the data. Because we are interested in evaluating the effect of
EZ designation on a variety of outcomes, we use a sequential multiple testing procedure
suggested by Benjamini and Hochberg (1995) to control the False Discovery Rate (FDR)
of our inferences. The False Discovery Rate is defined as the expected fraction of rejections
that are false and is closely related to the probability of a type I error. Details of the
multiple testing procedure, which is a function of the single hypothesis p-values, are given
in Appendix IV. For convenience we also report single hypothesis confidence intervals and
p-values. From this point on, we shall refer to outcomes as “significant” at a given level
of confidence if the estimated p-value ensures control of the FDR to the specified level.
In general, the multiple testing procedure requires substantially lower p-values for a given
level of significance than an equivalent single equation test. Failure to reject a single

hypothesis in this multiple testing framework is equivalent to a failure to reject the joint

41See DiNardo (2002) for a discussion of the reweighting interpretation of Blinder-Oaxaca and Imbens,
Newey, and Ridder (2007) for a demonstration of the first order equivalence of the two approaches.

42 Another advantage implied by the results of Chen, Hong, and Tarozzi (2004) is that the B-O approach,
which is a variant of their CEP-GMM estimator, reaches the semiparametric efficiency bound under weaker
regularity conditions than propensity score reweighting.
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null hypothesis that all of the treatment effects are zero.

V Results

A Characteristics of EZs and Controls

Table 2.3 shows average characteristics of winning and losing proposed zones before
and after reweighting@ For our baseline specification we restrict the sample to zones in
cities with population greater than 100,000. While the residents of rejected and future
zones are poor and have high rates of unemployment we see from columns one and four of
Table 2.3 that they are not quite as poor or detached from the labor force as residents of
EZ areas. After reweighting, however, the mean characteristics of the two groups become

substantially more comparable.

Figure 2.2 shows the time series behavior of the EZ and control tracts with and without
reweighting. When reweighting methods are applied to the pooled set of controls their
history over the past two decades mirrors that of actual Empowerment Zones remarkably
well. There is no dip in outcomes prior to EZ designation of the sort found by Ashenfelter
(1978) in studying training programs and for some outcomes the time series behavior of
the treatment and control groups over the three decades prior to treatment is almost
indistinguishable. One can actually see most of our results from these graphs themselves.
The key labor market variables (employment, unemployment, and poverty) all seem to
have improved in EZ neighborhoods relative to reweighted controls over the 1990s. A
few demographic variables such as the fraction of the population with college degrees also

appear to have been impacted by the program.

Columns two and three of Table 2.3 indicate that control tracts in treated cities have
somewhat different characteristics from those in untreated cities. Moreover, our earlier
discussion of spillover effects suggested that the use of controls in treated cities has the
potential to confound a differences in differences estimator. Table 2.4 investigates whether
pooling control tracts in treated cities with those in rejected cities is likely to introduce
important biases into our analysis. This is accomplished by applying our difference in
differences estimators to the sample of controls, coding tracts in future EZs in treated
cities as the treated group and all other control tracts as untreated. The first column gives
the results of a ‘“naive” difference-in-differences analysis without covariate adjustments,

the second column presents the results of our preferred reweighted difference-in-differences

43The variables included in the reweighting logits are reported in Appendix V. Our baseline specification
minimizes the Akaike Information Criteria (see Appendix Table 2.A2). City population could not be
included in the conditioning set because it came too close to perfectly predicting EZ receipt. That we
cannot mimic the city population distribution of EZs via reweighting should be apparent from the list
of winning cities in Table 2.1. To examine whether imbalance in city-wide population affects our DD
results we try adding a third order polynomial in 1990 city population to our Blinder-Oaxaca estimator
and experiment with a variety of different sample restrictions, each with a different distribution of city size.
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estimator, the third column shows the results of the regression based Blinder-Oaxaca es-
timator, and the fourth column adds a third order polynomial in city population to the

Blinder-Oaxaca model.

From the first column of Table 2.4 we see that over the 1990s, control tracts in treated
cities experienced smaller increases in the share of residents with college degrees, slightly
lower increases in rents, and a greater increase in the fraction of vacant houses than other
controls. After conditioning on pre-treatment characteristics all of these relationships dis-
appear. In fact, the magnitude of the differential experience of the two sets of controls over
the 1990s tends to be very close to zero, though the reweighting estimator finds a rather
large difference in the behavior of mean earnings. This aberrant earnings result disappears
in the Blinder-Oaxaca based estimates. We take this as evidence that the two sets of con-
trol tracts are roughly exchangeable conditional on predetermined characteristics. In our
subsequent analysis we pool together the two sets of controls in order to gain power and

to improve the degree of covariate overlap with the EZ tracts@

B Baseline Results

Table 2.5 presents numerical estimates of the impact of EZ designation on EZ neigh-
borhoods. The naive DD estimator finds a large (29.7%) increase in the value of owner
occupied housing, a 4 percentage point increase in the fraction of the neighborhood that
is employed, a 4.1 percentage point decrease in the fraction of the neighborhood that is
unemployed, and a 4.9 percentage point decrease in poverty. Reweighting the DD esti-
mator for covariate imbalance changes the magnitude (though not the sign) of many of
the point estimates. The estimated impact on housing values falls to 22.4 percent, while
the impact on rents rises dramatically to 7.7% and becomes statistically significant. The
reweighting estimator also finds a significant 2.3 percentage point increase in the fraction
of residents with a college degree and a 2.6 percentage point decrease in the fraction of res-
idents that are black. The estimated impacts on the labor market variables (employment,

unemployment, earnings, and poverty) remain essentially unchanged.

For comparison we also report regression based Blinder-Oaxaca estimates in Column 3.
The Blinder-Oaxaca method yields point estimates similar to those found by the reweight-
ing estimator though the statistical precision of the estimates sometimes differs. It finds
smaller (though still significant) effects of EZ designation on housing values, rents, poverty,
unemployment, and employment. However, the estimated effects on the demographic com-

position of EZ neighborhoods are small and indistinguishable from zero.

44Gee Appendix Table 2.A5 for baseline results using the rejected tracts only. Dropping control tracts in
treated cities reduces the power of the analysis but does not substantially affect the point estimates.
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Taken together the WDD and B-O estimates suggest that EZs were effective in in-
creasing the demand for the services of local residents. Employment rates rose, while un-
employment and poverty rates fell. Housing markets also seem to have adjusted. Housing
values increased as did, to a lesser extent, rents. Though the population of EZ neighbor-
hoods does not appear to have changed substantially, the fraction college educated may
have increased by as much as a third over 1990 levels, indicating that some changes in
neighborhood composition took place. The magnitude and sign of the estimated impact

on percent black is also consistent with this interpretation.

The general similarity between the reweighted and naive DD estimates reinforces our
presumption that rejected and future EZ tracts are suitable controls for EZ tracts. To
the extent that unadjusted comparisons are inaccurate, they seem to yield biases in the
estimated impact on housing market and demographic outcomes. The difference between
the reweighted and naive estimates suggest that Empowerment Zones were awarded to
areas that would have experienced increases in percent black and decreases in rents and
the fraction college educated relative to rejected tracts in the absence of treatment. It is
also estimated that EZ housing values would have risen relative to rejected tracts without
EZ designation, perhaps because of regional differences in the timing of the housing market
boom of the late 1990s.

Column four assesses the importance of leaving city size out of the propensity score (see
footnote by adding a third order polynomial in city size to the regression model for the
Blinder-Oaxaca specification. This parametrically corrects the estimator for any smooth
relationship between changes in the outcomes and city population but substantially reduces
the power of the analysis due to collinearity between city population and the other city
level covariatesﬁ We see from Column 4 that this estimator yields essentially the same
results as the original W DD estimator that ignores city size but the estimates are less
precise. Appendix Table 2.A5 presents further robustness checks, exploring the sensitivity
of the estimates to changes in the sample of cities included in the treatment and control
groups, and again finds that the conclusions reached by our preferred W DD estimator are

essentially unchanged.

C Tests of the Conditional Independence Assumption

Despite the robustness of the results to modifications of the estimation sample and
estimation technique, one may still question the conditional independence assumption ([2.4))
underlying our identification strategy. If unmeasured factors correlated with the future

performance of neighborhoods influenced the process by which zones were awarded the

45This collinearity is especially pernicious in our setup as we have only 74 control cities. Our baseline
B-O specification includes two lags of four city level covariates. Adding a third order polynomial in 1990
city population yields 11 city level parameters to be estimated from 74 aggregate observations.
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treatment our estimates will be biased. To address such concerns, we now perform tests of
the assumptions underlying our research design, starting with a series of “false experiments”
involving the application of our estimator to samples in which none of the “treated” units
received treatment. These experiments may be thought of as tests of the overidentifying

restrictions provided by our statistical model.

The first such experiment involves applying our reweighting estimator to outcomes in
1990 before the EZs were assigned. Finding a non-zero “effect” in this time period would
be an indication that either our conditioning set is insufficiently rich to characterize the
dynamics of sample census tracts in the absence of treatment, or, that there is selection
on the 1990 error components 7.9 and 52-090@ The latter alternative is consistent with
the notion that EZs were assigned based upon 1990 census characteristics (which include
the innovations 7,99 and €;.90) but would require that the 1990 innovation variance be
a large fraction of the total cross sectional variance of outcomes over that period, an
alternative we consider implausible given the frequency of our data. Thus, we interpret this
false experiment as primarily a test of the specification of our conditioning set. Omitting
important variables will make treated and untreated units uncomparable in the absence
of treatment, yielding spurious estimated “treatment effects” over the 1980’s. Table 2.6,
however, shows that none of the estimators find any statistically significant effects in 1990
and that most of the point estimates are quite small. The preferred W DD estimator in
column three fails to reject any of the hypotheses at even the 10% FDR level. Thus, it
seems that the experience of the treated and untreated tracts with similar covariates was
nearly identical over the 1980’s, lending credence to the notion that they are comparable
over the 1990’s.

One may, however, feel uncomfortable with the supposition that the 1990s were simply
more of the same. Indeed, Glaeser and Shapiro (2003) provide evidence that national
trends in the performance of cities over the 1990s differed from those in the previous

decade. Returning to our basic model which can be rewritten compactly as,

(2.9) AYiet = BiDict + bt (Qt, Uiet)

one may suspect that city specific trends An.; were correlated with treatment status over
the 1990s but not the 1980s, perhaps because HUD officials were able to perceive such trends
as they emerged near the inception of the program. Hence, the latent index determining

EZ assignment might be better represented by an equation of the form:

46 As described in Appendix IV, the variables used in the reweighting procedure are from 1970 and 1980,
so there is no mechanical reason to expect that the 1990 outcomes would be identical across treatment and
control groups.
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(2.10) Diy = At + pAner + vict.

In the case where p # 0, the CIA condition is violated and the W DD estimator will not,

in general, be consistent.

To test for such a problem we create a series of placebo zones in each treated city and
compare their performance over the 1990s to that of future and rejected tracts using the
W DD estimator. A finding of nonzero “treatment effects” would indicate a problem with
the CIA assumption underlying our analysis. In order to construct the placebo zones we
estimated a pooled propensity score model for all tracts in treated cities (see Appendix
V for details) and then performed nearest neighbor propensity score matching without
replacement in each city, choosing exactly one control tract for each treated EZ tract. This
yields a set of placebo zones of the same size and with approximately the same census

characteristics as each real EZ.

Figure 2.3 shows the EZ and placebo EZ tracts in Chicago. Tracts shaded black are the
actual EZs designated by HUD, while those shaded grey are placebo zones. The placebo
tracts tend to be geographically clustered in much the same way as actual EZs, reflecting
the underlying spatial correlation of many of the covariates used in the analysis. One
potentially troublesome feature of the placebo zones is that they tend to be located near
actual EZ tracts. As discussed in Section 1V, if EZ designation did in fact have an impact,
the effects may have spilled over into adjacent communities. For this reason we also create
two additional sets of placebo zones with the restriction that they be outside or inside of

a one square mile radius of an EZ tract.

Table 2.7 shows the results of applying the W DD and B-O estimators to each set
of placebo tracts@ The first column presents results for the pooled set of placebo tracts.
None of the outcomes register statistically significant differences across placebo and control
zones. Even if one were to ignore the multiple testing procedure, the only outcome close
to registering a statistically significant effect is housing rents which despite the large point
estimate possesses a single equation 95% confidence interval that includes zero. The second
column shows the results of repeating the exercise with placebo tracts less than a mile from
an EZ tract. Again, none of the differences are statistically significant. Finally, the third
column examines the “impact” of the program on tracts a mile or more away from EZ
tracts, yielding nearly identical results. The Blinder-Oaxaca estimates in columns four

through six yield the same conclusions.

4"In order to avoid complications we discard later round zones in the same city as first round EZs from
the set of control zones. This results in a modest reduction in the total number of observations used in this
part of the analysis.
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The general agreement in Table 2.7 between the estimated impacts on closeby and
faraway placebo tracts reassures us that any spillover effects that might have accompanied
EZ designation are either offsetting or imperceptibly small. Moreover, the general failure
to find any significant differences between the treatment and control groups across all three

specifications bolsters our confidence in the assumptions underlying our research design.

As a final check on our research design we try converting the outcome variables to
scaled within city ranks@ If our results are merely picking up city specific shocks then
the rank of an average EZ tract in its city wide distribution of poverty rates, for example,
should not change over the 1990s relative to the rank of a similar rejected tract in its
city-wide distribution. We scale our ranks by the number of tracts in each city so that the
transformed outcomes can be thought of as percentiles which are comparable across cities
of different absolute size [

Table 2.8 shows the results of applying the W DD and B-O estimators to the trans-
formed outcomes. The point estimates represent the average impact of EZ designation on
the percentile rank of EZ neighborhoods. For example, Column 1 indicates that EZ desig-
nation led EZ neighborhoods to fall 5.5 percentiles in the within city distribution of tract
poverty rates. The results are in close agreement with the findings of Table 2.5, the only
substantive difference being that the estimated effect on housing values falls to the point
of statistical insignificance. Since housing values also exhibited large (though insignificant)
point estimates in the false experiment in Table 2.6, we take this as evidence that the
estimated impacts on housing values may not be robust. Column 2 of Table 2.8 shows that
the Blinder-Oaxaca estimator with population controls yields point estimates similar to
the reweighting estimator though the precision of the estimates is reduced. The remaining
columns show that application of the reweighting and Blinder-Oaxaca estimators to the
percentile outcomes over the 1980s and in the set of placebo tracts yields very small and

statistically insignificant point estimates.

In conclusion, we interpret the results of the exercises considered in this section as
demonstrating that the estimates provided in Table 2.5 are unlikely to have been generated
by spurious correlation with city wide trends or by misspecification of the multivariate

stochastic process generating tract level outcomes.

“8In a previous version of this paper we experimented with a difference-in-differences-in-differences (DDD)
estimator that sought to find within city controls for both actual and rejected EZ tracts. This estimator
performed quite poorly severely failing our false experiment tests. This poor performance was caused by
difficulties in finding suitable control tracts in rejected cities which are usually quite small. We believe the
following percentile rank approach to be a much more transparent and robust approach to making within
city comparisons.

OTn other words, for any outcome Y;c; we form a new outcome Picy = rankey (Yiet) /Ne where ranke, is
the rank of Y. in the city wide distribution of the variable in that year and N, is the number of tracts in
the relevant city.
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D Composition Constant Effects

An obvious concern with our difference in difference results is that some of the estimated
labor market effects may be due to compositional changes in the residential population
of EZs. Inspection of Table 2.3 indicates that residential mobility is quite high in EZ
neighborhoods with only 56% of 1990 residents in the same house as in 1985. Although
we have no statistics regarding mobility into and out of the Empowerment Zones, we
think it likely that substantial neighborhood churning occurs between decades even if the
demographic characteristics of EZ neighborhoods tend to remain relatively stable. For this
reason we consider it impossible to determine with available data whether prior residents
or new arrivals gained most from the EZ program. What can be done, however, is to
assess whether the demographic groups that tended to live in EZs prior to EZ designation
benefitted from the program. In this section we use tract level tabulations of labor market
outcomes within detailed demographic cells to evaluate whether changes in demographic
composition are driving our results. This is done by estimating within cell impacts and

then averaging them using 1990 cell frequencies (see Appendix VI for details).

Table 2.9 displays racial composition constant effects on employment, unemployment,
and poverty calculated from race specific employment rates. Estimates are calculated by
using as the outcome variable the change in each tract’s race specific labor market rate
weighted by the 1990 racial shares. This adjustment does little to change our earlier
conclusions from Table 2.5. Although the point estimates are slightly smaller, we still find
substantial and statistically significant effects on employment, unemployment, and poverty.
We also find that the fraction of residents with a college degree increased holding racial
composition constant, suggesting that much of the estimated influx of the college educated

to EZ neighborhoods occurred among blacks.

In order to determine whether the estimated labor market effects are due to changes
in the age or educational composition of residents we also examine the impact of EZ
designation on the racial composition constant employment rates of 16-19 year old high
school graduates and dropouts. Surprisingly, we find very large and statistically significant
employment effects on high school dropouts, most of whom, by virtue of our fixed weighting
scheme, are black. Similar sized effects are present for high school graduates. We find
no effect on students currently enrolled in high school which is unremarkable given that
baseline employment rates of such youth are very low. In sum, EZs seem to have resulted
in improvements in employment among young people who have either just graduated high
school or dropped out — the two groups most likely to be actively seeking work. These
youth, especially the dropouts, are unlikely to represent gentrifying families of the sort

that one would think could confound interpretation of the previous results.

Our reading of this evidence is that changes in the demographic composition of the
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neighborhood are unlikely to have generated the large effects on labor market outcomes
documented in Tables 5 and 8. This conclusion is broadly consistent with the anecdotal
accounts of EZ stakeholders summarized in GAO (2006). The GAO assembled focus groups
composed of EZ administrators, state and local officials, and EZ subgrantees and solicited
testimonials regarding the impact of EZ designation in each city. The typical response was
that EZs positively impacted labor and housing market outcomes, but that some of the

observed improvements were the result of neighborhood turnover.

VI Impact Analysis

Our comparison of EZ neighborhoods to rejected and future EZ tracts in other cities
strongly suggests that EZ designation substantially affected local labor and housing market
conditions. EZs led to increases in local rates of employment on the order of four percentage
points and roughly similar sized decreases in unemployment and poverty rates. The price
of renting in EZs increased by around seven percent, while the value of owner occupied
housing appears to have increased by nearly triple this amount (though the results of our

robustness checks cast some doubt upon the validity of the latter estimates).

When compared with baseline employment, unemployment, and poverty rates of thirty
six, fourteen, and forty six percent respectively, the estimated labor market impacts of EZ
designation are quite substantial. Table 2.10 provides calculations converting the estimated
treatment effects from Table 2.5 into effects on totals. The calculations yield an estimated
increase in EZ employment of roughly 30,000 individuals, a decrease in unemployment
of approximately 13,000 individuals, and a decrease in the poverty headcount of around
50,000 people. It is worth reiterating here that these estimates may well understate the
true effect of EZ designation on residential neighborhoods since many of the control zones

in our study received some smaller consolation treatment.

Combining the tax credits with the block grants and outside funds, we estimate that
the amount of money actually spent in EZ neighborhoods over the course of our sample
period is between one and three billion dollars. If we assume that the workers employed
because of the EZ program earn the mean annual earnings of EZ residents, and that a
third of the employment relationships created will be terminated each year with no effect
on future employment probabilities, using a social discount factor of .9, we get a discounted

present value of roughly $1.1 billion in extra outputﬂ

A different approach is to use the housing market to value the impact of the program.
EZ designation is estimated to have increased total annual rents paid by $78 million while

the total value of owner-occupied housing is estimated to have increased by $470 million.

59The formula used here is PV = % where E is earnings, 8 = .95, and § = 1/3. The metric used
for E is 1990 dollars.
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If we use a 10% discount rate to convert the rent flow into an asset value and add it to the
increase in total housing value we get a total increase in wealth of $1.2 billion. Even if we
discard the estimated impact on housing values, which we have reason to suspect, we still
get an estimated increase in wealth of $780 million which is fairly close to our estimates
based upon the labor market. While these calculations are clearly flawed measures of the
value of EZ designation, we believe they provide a reasonable illustration of the scale of

the benefits generated by the program.

A key question raised by the estimates in this paper is why the EZs were able to have
such a large impact on the EZ labor market. It is difficult with existing data to disentangle
the relative contribution of grants and tax incentives in improving EZ neighborhoods. A
lower bound estimate of the number of EZ employees for which firms claimed EZ wage
credits can be obtained by dividing the total expenditure on credits in 2000 by the maxi-
mum credit of $3,000. This yields 15,000 employees. IRS analysis of 1996 tax return data
suggests that this bound is quite loose as over a quarter of corporations claimed total cred-
its less than the maximum for a single employee. If we instead divide the total expenditure
by $2,000 we get roughly 23,000 employees claimed by firms. While this latter number is
close to the estimated increase in employment, it seems likely that most of the credits were
claimed on inframarginal hires or pre-existing workers. In fact, only 45% of firms surveyed
by HUD who reported using the wage credits responded that the credits were “important”
or “very important” for hiring decisionsﬂ Thus we find the notion that the tax incentives

are wholly responsible for the observed employment increases to be implausible.

The possibility that block grants and outside funding played an important role in
redeveloping EZ neighborhoods is important for understanding the likely effects of the later
round EZs and various disaster oriented zones, both of which rely almost entirely upon tax
subsidies. The experience of the Round I EZs suggests that government entities may be able
to play an important role in coordinating expectations among a wide group of non-profit,
public, and private entities interested in investing in disadvantaged neighborhoods. The
role of public seed money in leveraging outside investments in local economic development
has been understudied@ Relatively small grants, in conjunction with sustained political
support at the federal level, seem to have been successful in leveraging substantial outside
investments in Round I EZ neighborhoods. These investments may have been responsible
for stimulating the demand for EZ labor, perhaps through a series of local multiplier effects
of the sort contemplated by regional planners (e.g. Treyz et al, 1992) or a form of local

increasing returns as considered by Rauch (1993).

51'Hebert et al. (2001) Exhibit 3-18.

52 Andreoni (1998) has modeled the role of seed money in determining charitable contributions. To our
knowledge the role of seed money in spurring economic development has not been explored in the academic
literature.
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While it is difficult to directly assess the impact of the non-tax expenditures on the
physical and economic environment of EZ neighborhoods, there is some evidence that zone
amenities improved over the 1990s. The 1997 wave of the HUD survey found that 45%
of zone businesses perceived the neighborhood as an “improved” or “somewhat improved”
place to do business since 1994/1995, while the 2000 wave of the survey found that 53%
of businesses perceived such improvements since 1997, a statistically significant difference.
The most common cited impediment to doing business in zones was crime and public safety
in both surveys though concerns over crime seem to have been somewhat less prevalent
in 2000. Without equivalent survey data in rejected areas we cannot disentangle these
reporting patterns from general trends in the US economy over the 1990s, however, we
think it reasonable to suspect that the billions of dollars spent in these neighborhoods might
have resulted in substantial improvements to their public safety, physical appearance, and

local infrastructure.

VII Conclusion

Our comparison of EZ neighborhoods to rejected and future EZ tracts in other cities
strongly suggests that EZ designation substantially improved local labor and housing mar-
ket conditions in EZ neighborhoods. The implications of these findings for the study of
local economic development policies are manifold. First, it appears that the combination
of tax credits and grants can be effective at stimulating local labor demand in areas with
very low labor force participation rates. That this can occur without large changes in
average earnings suggests either that labor force participation in such neighborhoods is
very responsive to wages or that job proximity itself affects participation perhaps due to
reductions in the cost of learning about vacancies or the cost of commuting to WOI‘kE
Second, in the case of the EZs, the impact of these demand subsidies does not seem to
have been captured by the relatively well off; economic development and poverty reduction
seem to have accompanied one another in the manner originally hoped for by proponents
of the program. Indeed, our use of disaggregate Census tabulations suggests that even
young high school dropouts experienced improved labor market prospects as a result of the
program. Third, while the treated communities appear to have avoided large scale gen-
trification over the period examined in this study, policymakers should consider carefully
the potential impact of demand side interventions on the local cost of living. Given that
the vast majority of EZ residents rent their homes, small changes in the cost of zone living
can be expected to impose large burdens on the roughly two thirds of the EZ population
who do not work. Tradeoffs of this sort should be taken into account when attempting to
determine the incidence of the EZ subsidies. If authorities wish to use EZs as anti-poverty

programs they may wish to consider combining housing assistance or incentives for the

53This latter alternative is often associated with Kain’s (1968) “Spatial Mismatch Hypothesis”.
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development of mixed income housing as complements to demand side subsidies.

Though our results appear to corroborate the findings of the Abt study, we cannot,
with our data, ascertain whether the employment gains of local residents are the result of
job growth or the substitution of local workers for outside workers. A detailed analysis of
matched employer-employee data might yield insights into whether the scale or substitution
effects are responsible for generating the local employment gains observed. More research
is also needed to determine whether any job creation that is occurring is due to existing

firms expanding, new firms being born, or outside firms relocating.

Finally, this evaluation has only examined the first six years of the EZ program. Very
little is known about the dynamics of neighborhood interventions. The decisions of resi-
dents, developers, and landlords that lead to neighborhood gentrification and turnover may
respond to changes in housing values and rents with a lag. Moreover, as the program comes
to a close, firms may move out of zones or close up altogether, reversing any employment
gains in the process. Understanding these issues is key to determining the long run winners

and losers of EZ designation.
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Table 2.2: Total Spending, by category

SSBG

Outside Money

Total

Total

Excpenditure by cateoory

Access to Capital
Business Assistance
Workforce Development
Social Improvement
Public Safety

Physical Development
Housing

Capacity Improvement

Average annual expenditure

Access to Capital per firm

Business Assistance per firm

Workforce Development per unemployed person
Social Improvement per housing unit

Public Safety per person

Physical Development per poor person

Housing per housing unit

Capacity Improvement per EZ

$386,105,051

$82,614,577
$56,263,375
$48,040,383
$76,367,835
$17,625,210
$14,266,234
$71,064,126
$19,863,311

$2,847,510,204

$1,483,436,971
$481,612,338
$49,081,906
$163,449,118
$254,618,150
$82,484,595
$325,951,575
$6,875,551

$3,233,615,255

$1,566,051,548
$537,875,713
$97,122,289
$239,816,953
$272,243,360
$96,750,829
$397,015,701
$26,738,862

$20,881
$7,172
$261
$138
$56

$44
$229
$891,295

Source: HUD PERMS data, Brashates (2000), and Decennial Census
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Table 2.3: Sample Characteristics (1990)

EZ's Rejected/  Rejected/  Rejected/  Rejected/ Unproposed
Future Zones Future Zones Future Zones Future Zones  tracts in
(outside EZ  (inside EZ Reweighted treated cities
cities) cities)
&) [2] 3] [4] (5] [6]

Mean (census tracts)
% Black 0.686 0.540 0.717 0.570 0.677 0.298
Employment Rate 0.379 0.466 0.438 0.461 0.380 0.559
Log(pop) 7.747 7.931 8.068 7.954 7.863 7.954
Log(Rent) 5.857 5.838 5.988 5.863 5.907 6.272
Log(House Value) 10.701 10.829 10.654 10.800 10.593 11.760
Log(Mean Earnings) 9.637 9.591 9.684 9.606 9.627 10.013
Poverty Rate 0.460 0.395 0.388 0.393 0.446 0.188
% Vacant Houses 0.147 0.141 0.121 0.138 0.135 0.069
Unemployment Rate 0.231 0.160 0.206 0.167 0.232 0.100
% In same house 0.560 0.494 0.570 0.506 0.555 0.579
Y% Travel less 20 min 0.473 0.668 0.447 0.632 0.466 0.429
Prop. age 65+ 0.312 0.299 0.325 0.304 0.316 0.232
Prop. female-headed HH 0.623 0.555 0.593 0.562 0.631 0.326
Prop. Latino population 0.220 0.176 0.177 0.176 0.246 0.199
Prop. age <18 0.118 0.121 0.103 0.118 0.103 0.127
% College 0.056 0.090 0.060 0.085 0.053 0.196
% High school dropouts 0.311 0.260 0.291 0.265 0.319 0.191
Prop. of HHs with public assistance 0.353 0.241 0.293 0.250 0.362 0.135
Mean (city)
Avg. across tracts % black 0.438 0.307 0.480 0.335 0.447 0.333
Total crime / population*® 100 0.081 0.105 0.093 0.103 0.083 0.081
% College degree 0.175 0.143 0.168 0.147 0.173 0.148
% of workers in city government 0.049 0.047 0.043 0.046 0.047 0.079
Observations (number of census tracts) 257 1364 271 1635 1635 4495
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Table 2.4: Balance of Control Samples

Difference-in-Differences Estimates

Model Naive Reweighted Blinder-Oaxaca B.O. City Pop.
[ 2] 31 [4]
Log(pop) Coeff. -0.022 -0.027 0.014 -0.057
CI [-0.071,0.018] [-0.141,0.099] [-0.083,0.113] [-0.293,0.373 ]
p-val 0.283 0.559 0.753 0.574
% In same house Coeff. 0.005 -0.005 -0.007 -0.021
CI [-0.013,0.030] [-0.073,0.046 ] [-0.046,0.038 ] [-0.140,0.062 ]
p-val 0.692 0.747 0.898 0.541
% Black Coeff. 0.002 -0.016 -0.003 -0.020
CI [-0.032,0.037 ] [-0.065,0.017 ] [-0.030,0.028 ] [-0.113,0.112]
p-val 0.797 0.270 0.990 0.583
% College Coeff. -0.010%¢* 0.008* 0.000 0.009
CI [-0.016,-0.005] [0.004,0.043] [-0.020,0.017] [-0.092,0.067 ]
p-val 0.000 0.014 0.998 0.758
Employment Rate Coeff. -0.010 0.017 0.017 0.038
CI [-0.043,0.030] [-0.008,0.075] [-0.007,0.052] [-0.065,0.142]
p-val 0.695 0.118 0.152 0.227
Unemployment Rate Coeff. -0.011 -0.002 -0.005 -0.004
CI [-0.034,0.019] [-0.047,0.033 ] [-0.038,0.020 ] [-0.117,0.056 ]
p-val 0.427 0.886 0.635 0.829
Log(Mean Earnings) Coeff. 0.003 0.111* 0.028 0.064
CI [-0.055,0.049 ] [0.072,0.297 ] [-0.078,0.097 ] [-0.204,0.243 ]
p-val 0.972 0.006 0.624 0.464
Poverty Rate Coeff. 0.016 -0.010 -0.013 -0.064
CI [-0.014,0.042] [-0.060, 0.045 ] [-0.056,0.026 ] [-0.166,0.159 ]
p-val 0.331 0.533 0.406 0.325
Log(House Value) Coeff. 0.118 0.095 -0.009 0.149
CI [-0.023,0.309 [-0.027,0.470 ] [-0.203,0.223 ] [-0.727,0.522]
pval 0.092 0.092 0.958 0.561
Log(Rent) Coeff. -0.063* 0.029 0.030 0.121
CI [-0.110,-0.009 ] [-0.061,0.099 ] [-0.021,0.101] [-0.100, 0.380 ]
pval 0.022 0414 0.196 0.180
% Vacant Houses Coeff. 0.029* 0.015 -0.005 0.009
CI [ 0.006 , 0.056 ] [-0.019,0.043] [-0.045,0.028 ] [-0.098 , 0.090 ]
p-val 0.014 0.288 0.662 0.817
Number of Tracts 1635 1502 1625 1625
Number of Cities 79 79 79 79

Estimators: All columns show difference-in-difference estimates in which the change in outcomes over the period 1990-2000 among
control tracts in cities winning an EZ is compared with the change in outcomes among control tracts in rejected and future zones in other
cities. [1] Naive trefers to difference in difference estimates without covariate adjustments. [2] Rewejghted refers to propensity score
reweighted estimates in which the propensity score was calculated using 1990 and 1980 tract and city level charactetistics. [3] Blinder-Oaxaca
computes counterfactual means of control tracts in treated cities via regression methods. [4] B.O. City Pop. is the Blinder-Oaxaca estimator

augmented to include a 3rd order polynomial in 1990 city population. (See Sections IV-B, V-A and Appendix V for details).

Inference: 95% Confidence intervals (CI) and p-values were obtained via a pairwise block bootstrap that resampled zones in order to preserve
the within zone dependence of the data. See Appendix IV for details. Significance levels. A multiple testing procedure described in the
Appendix was used to control the False Discovery Rate (FDR) to prespecified levels. The procedure yields lower threshold p-values for
fixed level tests than in the single equation case. Stars indicate that a hypothesis can be rejected while controlling the FDR to specified

levels: * rejected at 10% FDR, ** rejected at 5% FDR and *** rejected at 1% FDR.
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Table 2.5: Impact of EZ Designation

Difference-in-Differences Estimates

Model Naive Reweighted Blinder-Oaxaca B.O. City Pop.
] 2] 31 41
Log(pop) Coeff. -0.035 0.005 0.024 0.049
CI [-0.109, 0.056 ] [-0.085,0.105] [-0.040,0.096 ] [-0.024,0.187]
p-val 0.427 0.839 0.472 0.167
% In same house Coeff. -0.009 -0.014 0.001 0.003
CI [-0.036,0.013] [-0.052,0.006 ] [-0.022,0.021] [-0.023,0.032]
p-val 0.476 0.092 0.972 0.879
% Black Coeff. -0.037 -0.026%+* -0.012 -0.020
CI [-0.074,0.011] [-0.069 , -0.005] [-0.036,0.014] [-0.048,0.011]
pval 0.131 0.026 0.346 0.164
% College Coeff. 0.010 0.023** 0.012 0.014
CI [-0.005, 0.025] [0.010,0.047] [-0.004,0.024 ] [-0.006,0.027 ]
p-val 0.180 0.011 0.157 0.163
Employment Rate Coeff. 0.040%* 0.038#+* 0.020* 0.023
CI [0.010,0.074] [0.025,0.084 ] [0.003,0.041] [0.002,0.050 ]
p-val 0.009 0.000 0.022 0.039
Unemployment Rate Coeff. -0.041%* -0.040%* -0.031%* -0.034*
CI [-0.072,-0.013] [-0.079,-0.019] [-0.053,-0.013] [-0.057,-0.012]
p-val 0.005 0.012 0.003 0.007
Log(Mean Earnings) Coeff. 0.012 0.017 0.028 0.029
CI [-0.068 , 0.100 | [-0.050,0.114] [-0.044,0.093 ] [-0.049,0.102 ]
p-val 0.759 0.543 0425 0.348
Poverty Rate Coeff. -0.049%%* -0.050%** -0.038** -0.044
CI [-0.091,-0.016 ] [-0.103,-0.028 | [-0.058 ,-0.013 ] [-0.067 ,-0.007 ]
p-val 0.000 0.000 0.008 0.030
Log(House Value) Coeff. 0.297#* 0.224%* 0.158 0.183
CI [0.093,0.538 ] [0.078,0.506 | [0.006,0.332] [0.005,0.367 |
pval 0.001 0.020 0.040 0.044
Log(Rent) Coeff. 0.005 0.077#%* 0.044 0.054
CI [-0.061,0.070 ] [0.053,0.155] [-0.001,0.099 ] [-0.003,0.130 ]
pval 0.896 0.001 0.056 0.061
% Vacant Houses Coeff. 0.023 -0.001 0.014 0.006
CI [-0.006, 0.048 | [-0.036,0.025 ] [-0.007,0.037 ] [-0.031,0.027 ]
p-val 0.128 0.681 0.177 0.790
Number of Tracts 1892 1869 1892 1892
Number of Cities 82 82 82 82

Estimators: All columns show difference-in-difference estimates in which the change in outcomes over the period 1990-2000 among EZ

tracts is compared with the change in outcomes among tracts in tejected and future zones. [1] Naive refers to difference in difference

estimates without covariate adjustment. [2] Reweighted refers to propensity score reweighted estimates in which the propensity score was

calculated using 1990 and 1980 tract and city level characteristics. [3] Blinder-Oaxaca computes counterfactual means of EZ tracts via

regression methods. [4] B.O. City Pop. is the Blinder-Oaxaca estimator augmented to include a 3rd order polynomial in 1990 city
population. (See Section IV-B and Appendix V for details).

Inference: 95% Confidence intervals (CI) and p-values were obtained via a pairwise block bootstrap that resampled zones in order to preserve
the within zone dependence of the data. See Appendix IV for details. Significance levels. A multiple testing procedure desctibed in the
Appendix was used to control the False Discovery Rate (FDR) to prespecified levels. The procedure yields lower threshold p-values for fixed
level tests than in the single equation case. Stars indicate that a hypothesis can be rejected while controlling the FDR to specified levels: *
rejected at 10% FDR, ** rejected at 5% FDR and *##* rejected at 1% FDR.
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Table 2.6: False Experiment I (Lagged Model)

Difference-in-Differences Estimates

Model Naive Reweighted Blinder-Oaxaca B.O. City Pop.
(1] 2] [3] [4]
Log(pop) Coeff. -0.055 0.018 0.016 0.020
CI [-0.235,0.079 ] [-0.081,0.122] [-0.069,0.126 ] [-0.069,0.114 ]
p-val 0.589 0.621 0.597 0.533
% In same house Coeff. 0.010 0.001 0.012 0.012
CI [-0.012,0.041 ] [-0.033,0.029 ] [-0.027 , 0.045 ] [-0.030, 0.046 ]
p-val 0.404 0.794 0.567 0.609
% Black Coeff. -0.050 -0.024 -0.018 -0.017
CI [-0.109, 0.036 ] [-0.068 ,0.011 ] [-0.066,0.022] [-0.061,0.010]
p-val 0.228 0.170 0.385 0.185
% College Coeff. 0.003 0.001 0.004 0.009
CI [-0.007,0.011 ] [-0.012,0.009 ] [-0.010,0.013] [-0.009,0.018 ]
p-val 0.460 0.681 0.643 0.258
Employment Rate Coeff. 0.015 -0.016 -0.017 -0.012
CI [-0.015,0.039 ] [-0.058,-0.001 ] [-0.042,0.015] [-0.041,0.021]
p-val 0.338 0.046 0.248 0410
Unemployment Rate ~ Coeff. 0.010 0.012 0.004 -0.006
CI [-0.009,0.035 ] [0.001,0.054] [-0.020,0.035] [-0.031,0.026 ]
pval 0.314 0.045 0.633 0.758
Log(Mean Earnings)  Coeff. 0.007 -0.013 0.019 0.037
CI [-0.076, 0.064 ] [-0.109,0.049 ] [-0.068 ,0.085] [-0.060,0.115]
p-val 0.836 0.578 0.687 0.364
Poverty Rate Coeff. -0.022 0.034* 0.020 0.010
CI [-0.050,0.011 ] [0.021, 0.087 ] [-0.019,0.059] [-0.028,0.050 ]
p-val 0.206 0.005 0.238 0.448
Log(House Value) Coeff. 0.091 -0.050 -0.087 -0.100
CI [-0.124 ,0.284 ] [-0.282,0.134] [-0.292,0.170] [-0.300, 0.148 ]
p-val 0.400 0.515 0.442 0.391
Log(Rent) Coeff. 0.036 -0.041 -0.006 -0.011
CI [-0.078 ,0.129 ] [-0.139,0.005 ] [-0.085,0.102] [-0.084,0.092]
p-val 0.502 0.063 0.931 0.817
% Vacant Houses Coeff. -0.002 0.015 -0.002 -0.004
CI [-0.029,0.027 ] [-0.011,0.041] [-0.032,0.017] [-0.031,0.018]
p-val 0.992 0.247 0.710 0.593
Number of Tracts 1891 1882 1891 1891
Number of Cities 82 82 82 82

Estimators: All columns show difference-in-difference estimates in which the change in outcomes over the period 1980-1990
among EZ tracts is compared with the change in outcomes among tracts in tejected and future zones. [1] Naive refers to difference
in difference estimates without covariate adjustment. [2] Reweighted refers to propensity score reweighted estimates in which the
propensity score was calculated using 1980 and 1970 tract and city level characteristics. [3] Blinder-Oaxaca computes counterfactual
means of EZ tracts via regression methods. [4] B.O. City Pop. is the Blinder-Oaxaca estimator augmented to include a 3rd order
polynomial in 1980 city population. (See Sections IV-B, V-C and Appendix V for details).

Inference: 95% Confidence intervals (CI) and p-values wete obtained via a pairwise block bootstrap that resampled zones in order to
preserve the within zone dependence of the data. See Appendix IV for details. Significance levels. A multiple testing procedure
described in the Appendix was used to control the False Discovery Rate (FDR) to prespecified levels. The procedure yields lower
threshold p-values for fixed level tests than in the single equation case. Stars indicate that a hypothesis can be rejected while
controlling the FDR to specified levels: * rejected at 10% FDR, ** rejected at 5% FDR and *** rejected at 1% FDR.
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Table 2.7: False Experiment II (Placebo Zones)
Difference-in-Differences Estimates

Model Reweighted Blinder-Oaxaca City Pop.
Close Faraway Close Faraway
Sample All Tracts Tracts All Tracts Tracts
K 2] B3l 4 [l (6]
Log(pop) Coeff. 0.018 0.046 0.049 0.052 0.071 0.024
CI [-0.130,0.459] [-0.087,0.481] [-0.093,0.509 ] [-0.024,0.166] [-0.004,0.203] [-0.049,0.143]
pval 0.894 0.523 0.565 0.149 0.062 0415
% In same house Coeff. -0.005 -0.007 -0.002 0.010 0.013 0.006
CI [-0.098,0.034] [-0.099,0.036] [-0.093,0.037] [-0.013,0.040] [-0.006,0.048] [-0.022,0.039]
pval 0.677 0.586 0.830 0.333 0.158 0.616
% Black Coeff. 0.015 0.016 0.030 -0.010 -0.006 -0.015
CI [-0.163,0.077] [-0.159,0.083] [-0.150,0.090] [-0.037,0.020] [-0.035,0.028] [-0.048,0.020 ]
pval 0.639 0.633 0.441 0.367 0.612 0.343
% College Coeff. 0.014 0.011 0.028 0.011 0.008 0.024
CI [-0.012,0.086] [-0.010,0.079] [-0.009,0.109 ] [-0.018,0.035] [-0.018,0.033] [-0.018,0.061]
p-val 0.255 0.245 0.142 0472 0.561 0.275
Employment Rate Coeff. 0.002 -0.004 -0.003 0.001 -0.005 0.016
CI [-0.023,0.061] [-0.031,0.052] [-0.029,0.053] [-0.026,0.033] [-0.029,0.021] [-0.015,0.051]
p-val 0.544 0.828 0.786 0.904 0.645 0.294
Unemployment Rate  Coeff. -0.018 -0.005 -0.023 -0.009 -0.001 -0.018
CI [-0.082,0.118] [-0.068,0.128] [-0.080,0.120] [-0.028,0.012] [-0.016,0.018] [-0.039,0.006 ]
pval 0.349 0.545 0.311 0.384 0.942 0.152
Log(Mean Earnings)  Coeff. 0.005 -0.006 0.010 0.040 0.045 0.019
CI [-0.128,0.130] [-0.148,0.116] [-0.127,0.153] [-0.020,0.111] [-0.032,0.129] [-0.051,0.106]
p-val 0.952 0.873 0.897 0.144 0.194 0.557
Poverty Rate Coeff. -0.013 0.002 0.002 -0.022 -0.021 -0.022
CI [-0.092,0.041] [-0.072,0.052] [-0.071,0.050] [-0.052,0.015] [-0.055,0.023] [-0.054,0.016]
p-val 0.657 0.928 0.980 0.202 0.243 0.235
Log(House Value) Coeff. 0.058 0.058 0.005 0.152 0.143 0.135
CI [-0.160,1.556] [-0.181,1.584] [-0.217,1.484] [-0.008,0.309] [-0.060,0.341] [-0.028,0.287]
p-val 0.741 0.736 0.955 0.057 0.103 0.081
Log(Rent) Coeff. 0.055 0.047 0.073 0.042 0.032 0.051
CI [-0.024,0.143] [-0.024,0.125] [-0.006, 0.166 ] [-0.009,0.117] [-0.020,0.112] [-0.008,0.138]
pval 0.114 0.148 0.066 0.107 0.193 0.092
% Vacant Houses Coeff. 0.006 0.009 -0.006 -0.003 -0.002 -0.007
CI [-0.109,0.038] [-0.107,0.042] [-0.123,0.026] [-0.043,0.017] [-0.044,0.019] [-0.047,0.012]
pval 0.840 0.744 0.676 0.613 0.652 0.405
Number of Tracts 1892 1867 1892 1892 1867 1892
Number of Cities 82 82 82 82 82 82

Estimators: All columns show difference-in-difference estimates in which the change in outcomes over the period 1990-2000 among EZ tracts is compared with
the change in outcomes among tracts in rejected and future zones. [1] Naive refers to difference in difference estimates without covariate adjustment. [2]
Reweighted refers to propensity score reweighted estimates in which the propensity score was calculated using 1990 and 1980 tract and city level characteristics.

[3] Blinder-Oaxaca computes counterfactual means of EZ tracts via regression methods. [4] B.O. City Pop. is the Blinder-Oaxaca estimator augmented to include
a 3rd order polynomial in 1990 city population. (See Sections IV-B, V-C and Appendix V for details) .

Definition of placebo zones. All: tracts inside treated EZ cities but outside the EZ that are a nearest neighbor match for an EZ tract based upon the estimated
pscore. Close/Faraway: Tracts inside treated EZ cities but outside the EZ and less/more than a mile away from it, that are a nearest neighbor match for an EZ
tract based upon the estimated pscore.

Inference: 95% Confidence intetvals (CI) and p-values were obtained via a pairwise block bootstrap that resampled zones in order to preserve the within zone
dependence of the data. See Appendix IV for details. Significance levels . A multiple testing procedure described in the Appendix was used to control the False
Discovery Rate (FDR) to prespecified levels. The procedure yields lower threshold pvalues for fixed level tests than in the single equation case. Stars indicate that a
hypothesis can be rejected while controlling the FDR to specified levels: * rejected at 10% FDR, ** rejected at 5% FDR and *#* rejected at 1% FDR.
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Table 2.8: Impact of EZ Designation on Percentile Rank Outcomes

Difference-in-Differences Estimates

Real Experiment False Experiment Placebo Experiment
Model Reweighted B.O. City Pop. Reweighted B.O. City Pop. Reweighted B.O. City Pop.
[ 2] 13] 14 8] 6]
Log(pop) Coeff. -0.001 0.000 0.010 0.014 -0.009 0.010
CI [-0.036, 0.037 ] [-0.036,0.074 ] [-0.032,0.051 ] [-0.025,0.048 ] [-0.073,0.248 ] [-0.021,0.074 ]
p-val 0.984 0.979 0.545 0.340 0.601 0.553
% In same house Coeff. -0.018 0.034 0.012 0.026 -0.012 0.037
CI [-0.125,0.021 ] [-0.021,0.085] [-0.073, 0.086 ] [-0.070,0.107 ] [-0.293,0.074 ] [-0.027,0.103 ]
p-val 0.144 0.182 0.984 0.593 0.594 0.193
% Black Coeff. -0.031 -0.031 -0.003 0.020 0.006 -0.016
CI [-0.072, 0.005] [-0.059 , 0.009 ] [-0.024 , 0.026 ] [-0.007 ,0.048 ] [-0.090, 0.068 ] [-0.045,0.018]
p-val 0.076 0.106 0.929 0.110 0.669 0.287
% College Coeff. 0.055* 0.034 -0.009 0.031 -0.002 0.012
ClI [0.003,0.115] [-0.024,0.079 ] [-0.063,0.018 ] [-0.014,0.062 ] [-0.091,0.176 ] [-0.065, 0.075]
p-val 0.036 0.262 0.266 0.157 0.987 0.761
Employment Rate Coeff. 0.049%* 0.028 -0.019 -0.015 -0.013 -0.010
CI [0.016,0.107 ] [-0.016,0.095] [-0.074 , 0.003 ] [-0.058,0.049 ] [-0.059,0.117] [-0.065, 0.080 ]
pval 0.005 0.216 0.066 0.607 0.707 0.655
Unemployment Rate Coeff. -0.060 -0.064 0.006 -0.034 -0.011 -0.023
CI [-0.125,0.007 [-0.119,-0.003 | [-0.019,0.076 ] [-0.113,0.004 ] [-0.095, 0.166 | [-0.080, 0.033 ]
p-val 0.072 0.041 0.207 0.067 0.777 0451
Log(Mean Earnings) Coeff. 0.053 0.059 0.019 0.027 0.025 0.033
CI [-0.004 ,0.143 ] [-0.003,0.122] [-0.029,0.105] [-0.044,0.083] [-0.180,0.126 ] [-0.016,0.103 ]
p-val 0.067 0.057 0.256 0.320 0.521 0.167
Poverty Rate Coeff. -0.055%* -0.053 0.010 0.000 -0.004 -0.019
CI [-0.106 ,-0.015] [-0.079,-0.019 ] [-0.014 , 0.047 [-0.030, 0.020 ] [-0.189,0.072] [-0.066 , 0.024 ]
p-val 0.010 0.014 0.271 0.799 0.969 0418
Log(House Value) Coeff. 0.082 0.057 0.002 -0.005 -0.005 0.010
CI [-0.009 , 0.184 ] [-0.044,0.148 ] [-0.051, 0.056 ] [-0.091,0.077] [-0.115,0.449 ] [-0.072,0.097 ]
p-val 0.070 0.239 0.804 0.943 0.851 0.798
Log(Rent) Coeff. 0.069%* 0.050 -0.011 0.017 0.050 0.040
CI [0.038,0.142] [-0.003,0.178 ] [-0.067 , 0.037 ] [-0.024,0.074 ] [-0.027 ,0.164 ] [-0.036,0.185]
p-val 0.004 0.062 0.394 0.402 0.219 0.330
Y% Vacant Houses Coeff. 0.004 0.015 -0.040 -0.064 0.027 -0.011
CI [-0.140, 0.092 ] [-0.079,0.103 ] [-0.135,0.039 ] [-0.182,0.041] [-0.601,0.152] [-0.089, 0.055]
p-val 0.813 0.782 0.275 0.208 0.749 0.657
Number of Tracts 1869 1882 1882 1882 1892 1892
Number of Cities 82 82 82 82 82 82

Note. For details regarding estimation and experiments see Sections IV-B, V-C and Appendix V as well as notes to Tables 4-7 Inference: 95% Confidence intervals (CI) and p-values were

obtained via a pairwise block bootstrap. Stars indicate that a hypothesis can be rejected while controlling the FDR to specified levels: * rejected at 10% FDR, ** rejected at 5% FDR and ***

rejected at 1% FDR.
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Table 2.9: Composition-Constant Impact of EZ Designation
Difference-in-Differences Estimates

Real Experiment Placebo Experiment
Model Reweighted B.O. City Pop. Reweighted B.O. City Pop.
[1] 2] 3] 4]
Employment Rate Coeff. 0.033%#* 0.024 -0.002 0.004
CI [0.019,0.079] [0.000, 0.054 ] [-0.031,0.061] [-0.025,0.040 ]
p-val 0.001 0.053 0.867 0.760
Unemployment Rate Coeff. -0.029%* -0.023 -0.014 -0.003
CI [-0.066 , -0.003 ] [-0.044 , 0.000] [-0.078,0.141] [-0.020,0.016]
p-val 0.035 0.047 0.442 0.797
Poverty Rate Coeff. -0.04 5%+ -0.036 -0.012 -0.022
CI [-0.097 ,-0.025] [-0.061, 0.001 ] [-0.109, 0.043 ] [-0.057,0.016]
p-val 0.000 0.055 0.653 0.198
Employment Rate 16-19 in HS Coeff. -0.003 -0.008 0.022 0.009
CI [-0.059,0.061] [-0.105,0.029] [-0.042,0.164] [-0.069,0.055]
p-val 0.804 0.507 0.277 0.855
Employment Rate 16-19 HS drop. Coeff. 0.103** 0.101 0.040 0.062
CI [0.039,0.193] [-0.072,0.188 ] [-0.117,0.165 ] [-0.104,0.163 ]
p-val 0.008 0.143 0.570 0.337
Employment Rate 16-19 HS grad. Coeff. 0.129%* 0.096 0.032 0.062
CI [0.046,0.369 | [-0.040, 0.300 | [-0.132,0.360 | [-0.064,0.199 ]
p-val 0.012 0.141 0.529 0.318
% College Coeff. 0.012 -0.018 0.010 0.029
CI [-0.022,0.040 ] [-0.083,0.084 ] [-0.030, 0.054 ] [-0.042,0.092 ]
p-val 0.443 0.472 0.621 0.306
Number of Tracts 1869 1869 1892 1892
Number of Cities 82 82 82 82
Note: Racic it stant fix the racial composition of a census tract to that observed in 1990. For details see Sections IV-B, V-D and

Appendix V as well as notes to Tables 4-7. Inference: 95% Confidence intervals (CI) and p-values were obtained via a pairwise block bootstrap. Stars
indicate that a hypothesis can be rejected while controlling the FDR to specified levels: * rejected at 10% FDR, ** rejected at 5% FDR and ***

rejected at 1% FDR.

39



'G 9[qET, JO g UWN[O7) WOIJ POUTEIO 9FoM (Son[ea
Sursnoy 103) 70 pue (Quax 303) /7070 (@1ex 3uswkordwo 305) g¢o pue ‘(9381 £139a0d 303) 05070 ‘(reF IWdWAO[dWIUN J0J) () SIVSIDHIFO0D YT, 190N

SIUOPTSaF 7 SUNouaq

oN[EA UT 9SLIIOU] + ON[EA JOSSE JUIT UT 958IIOU] ceeldvscl Siun SuISnoy 7 JO ANJEA JO 3SLAIUL [EIO,
sasnoy paydnooo ‘LGP npea 3ursno dnooo-roumo €IIOUT [B10
JOUMO JO # X aN[BA IPIN-10¥F) UT 98uryDd 95esoAy PO LoV VLY 7 opisut ohpes suisnoq por TIOURO UL SSTIRUL MO
77 OPISUI an[eA SUISNOY UBIPIN 4 $72°0 L0L6 anfea Sursnoy pardnodo JaUMOo IpIm-1087 UT 23ULYD LIy
1°0 / S3u9y [enuLy [e0], 8TT'S11°08L IN[EA FUS3I]
$9SNOY pIuUDI o N
JO # X ] X IUDJ A[IUOW U 9SEIIOUT 95LI0AY €cs1108L 7' SPISUL STU91 [FNUUT UL 9SEoidUE [ROL,
S7777] OPISUI 1UDJ [enUUE UBIPIN 4 L20°0 319 1UDF OPIMIOET) [ENUUE UT 95ULYD 250I0AY JATTN] SUBTIOE]
(301083 *2sIp Te1208) ('0=¢ pue (91ex e
wonesedss) ¢ /1=p i [(p-1)g-1] /onpea oBem 680804011 Pa121d sqol JO anjeA paIuUNOISIP 1UISAEJ
o8em [enuuy Ay X (+971 vonemdod X 6¢0°0) +COPEY 141 P21ea12 sqol Jo Joquinu Y Jo anfea IFe X\
+971 vonemdod X 6¢0°0 62T 0002 PU® G661 UaM19q 2seazou] Juawdoduryg
uvonemdod [e107, X 60°0 c6Est 0002 PUE G661 U22M19q 1unodpeay A139a0d Ut 9589199
92303 J0qe[ UT SUOSIdJ X () S1Tc1 0002 PUE G661 Uom1aq patorduraun o) UT 9589109(J JIYADTN 40qU" T
wexdord sauorz judwraomodury 3y JO S103JJ9 PIIEWNSH (g) 1Pueg
78191 (STe[[OP 66T UL 9Fem [enuue 95eIoAy SOUTITT]
€LE0¢¢ 9230J JOqE[ UT STOSIdJ
1L2°6S¢ pafordwrg
A +91 vonedod w0,
1$8°£96 vopemdod [w10], HoeIdsd

S9ION]

(0661 Souoy usmianodu T apisuz) eyep sSNSUID TTUUIII

(V) Pueq

suopernore)) 1wedwy 017 d[9e.L

40



Table 2.A1: Treatment by city

EZ

EZ (Round Application Round1 Round 2 Round 3 (Round I) Application Round1 Round 2 Round 3
City I) (1994) (1994) (1994)  (2000)  (2002) ([City (1994) (1994) (1994) (2000)  (2002)
Akron X EC-1 Memphis X RC
Albany X EC-1 Miami X EC-1 EZ-2
Albuquerque X EC-1 Milwaukee X RC
Anniston X Minneapolis X EC-1 EZ-2
Atlanta X X Mobile X RC
Austin X Monroe X RC
Baltimore X X Muskegon X EC-1
Benton Harbor X Nashville-Davidsc X EC-1
Birmingham X EC-1 New Haven X EC-1 EZ-2
Boston X EEC-1 BEZ-2 New Orleans X RC
Bridgeport X EC-1 New York X X
Buffalo RC Newburgh X EC-1
Chatleston X RC Niagara Falls RC
Chatlotte X EC-1 Norfolk X EC-1 EZ-2
Chattanooga RC Oakland X EEC-1
Chester X Ogden X EC-1
Chicago X X RC Oklahoma X EC-1 EZ-3
Cincinnati BEZ-2 Omaha X EC-1
Cleveland X X Orange X
Columbia EZ-2 Peortia X
Columbus BEZ-2 Philadelphia X X RC
Corpus Christi RC Phoenix X EC-1
Cumbetland BEZ-2 Pine Bluff X
Dallas X EC-1 Pittsburgh X EC-1
Denver X EC-1 Port Arthur X
Des Moines X EC-1 Portland X EC-1
Detroit X X RC Providence X EC-1
El Paso X EC-1 EZ-2 Richmond X
Fairbanks X Rochester X RC
Flint X RC Sacramento X
Fort Lauderdale X San Antonio X EC-1 EZ-3
Fort Worth X San Diego X RC
Fresno X EZ-3 |[San Francisco RC
Gary X EZ-2 Santa Ana EZ-2
Greeley X Savannah X
Hamilton RC Schenectady RC
Harrisburg X EC-1 Seattle X EC-1
Hartford X Shreveport X
Houston X EEC-1 Sioux X
Huntington EZ-2 Springfield X EC-1
Indianapolis X EC-1 St. Louis X EC-1 EZ-2
Jackson X EC-1 St. Paul X EC-1
Jacksonville X EZ-3 ||Steubenville X
Kansas X EEC-1 Syracuse BEZ-3
Knoxville X BEZ-2 Tacoma X RC
Lake Charles X Tampa X EC-1
Las Vegas X EC-1 Tucson X BEZ-3
Lawrence RC Waco X EC-1
Little Rock X EC-1 EZ-3 ||Washington X EC-1 UEnZ
Los Angeles X X RC Wilmington X EC-1
Louisville X EC-1 Yakima RC
Lowell RC Yonkers BEZ-3
Manchester X EC-1 Youngstown

Note: EC-1 refers to Enterprise Community awarded in Round I (1994), EEC-1 refers to Enhanced Enterprise Community awarded in Round 1 (1994), EZ-
2 refers to Empowrment Zone awarded in Round II (2000), RC refers to Renewal Community awarded in Round III (2002), EZ-3 refers to Empowrment
Zone awarded in Round IIT (2002) and UEnZ Urban Enterprise Zone awarded in Round IIT (2002)
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Table 2.A5: Impact of EZ Designation (Robustness Checks)

Difference-in-Differences Estimates

No NY or LA No Cleveland or LA Rejected All
[1] 2] [3] [4]
Log(pop) Coeff. -0.056%* -0.026 -0.071 -0.009
CI [-0.207 ,-0.024 ] [-0.159,0.012] [-0.217,0.084 ] [-0.096,0.073]
pval 0.022 0.083 0.231 0.765
% In same house Coeff. 0.002 -0.007 0.002 -0.013*
CI [-0.021,0.072] [-0.041,0.055] [-0.060, 0.061 ] [-0.050,0.001 ]
p-val 0.541 0.773 0.960 0.055
% Black Coeff. -0.005 -0.024% -0.037 -0.025*
CI [-0.038,0.031 ] [-0.075,-0.004 ] [-0.124,0.012] [-0.069, 0.000 ]
p-val 0.994 0.030 0.103 0.046
% College Coeff. 0.027** 0.025%%* 0.024 0.024*
CI [0.011,0.062] [0.017,0.060 ] [-0.018,0.067 | [0.009,0.047 ]
p-val 0.012 0.000 0.204 0.012
Employment Rate Coeff. 0.046%+* 0.042%+* 0.036 0.043%+*
CI [0.028,0.103 ] [0.038,0.100 | [-0.003,0.092] [0.030, 0.090 ]
p-val 0.000 0.000 0.061 0.000
Unemployment Rate ~ Coeff. -0.056%** -0.042%+% -0.028 -0.042+*
CI [-0.106 ,-0.042 ] [-0.078 ,-0.035] [-0.075,0.055] [-0.078,-0.019 ]
p-val 0.001 0.000 0.364 0.006
Log(Mean Earnings)  Coeff. 0.002 0.027 0.017 0.018
CI [-0.088,0.113] [-0.058,0.182] [-0.134,0.140] [-0.044,0.113]
p-val 0.871 0.400 0.792 0.514
Poverty Rate Coeff. -0.055%** -0.064%5* -0.054 -0.052%%*
CI [-0.125,-0.036 ] [-0.151,-0.051] [-0.121,-0.016 ] [-0.105,-0.031 ]
p-val 0.000 0.000 0.014 0.000
Log(House Value) Coeff. 0.115 0.234 0.117 0.2171**
CI [-0.288 ,0.287 ] [-0.049,0.502] [-0.015,0.686 ] [0.051,0.471]
p-val 0.922 0.094 0.070 0.017
Log(Rent) Coeff. 0.064** 0.081%*** 0.069 0.064**
CI [0.027,0.154 ] [0.064,0.195] [-0.035,0.168 ] [0.029,0.129 ]
p-val 0.006 0.001 0.134 0.003
% Vacant Houses Coeff. 0.015* 0.006 0.034 -0.002
I [-0.001 ,0.065] [-0.012, 0.050 ] [-0.020,0.085]  [-0.035,0.021 ]
p-val 0.059 0.248 0.163 0.579
Number of Tracts 1742 1736 1480 2042
Number of Cities 80 80 82 104

Estimators: All columns show reweighted difference-in-difference estimates in which the change in outcomes over the period 1990-

2000 among tracts in EZs is compared with the change in outcomes among tracts in rejected and future zones. [1] No NY or LA

presents results on a sample that excludes New York City and Los Angeles. [2] No Cleveland or 1.4 presents results on a sample that

excludes the SEZs Cleveland and Los Angeles. [3] Rejected uses as controls only census tracts nominated for round I EZs that were
rejected by HUD. [4] All presents results on the complete sample of accepted and rejected/future zones (i.e. no constraint on

population or number of tracts). (See Section IV-B, V-B and Appendix V for details).

Inference: 95% Confidence intervals (CI) and p-values wete obtained via a pairwise block bootstrap that resampled zones in order to

preserve the within zone dependence of the data. See Appendix IV for details. Significance levels. A multiple testing procedure described
in the Appendix was used to control the False Discovery Rate (FDR) to prespecified levels. The procedure yields lower threshold p-

values for fixed level tests than in the single equation case. Stars indicate that a hypothesis can be rejected while controlling the FDR to
specified levels: * rejected at 10% FDR, ** rejected at 5% FDR and *** rejected at 1% FDR.
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Figure 2.1: Chicago Empowerment Zone
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Appendix I: Data Description and Details

NCDB. The NCDB remaps data from 1970, 1980, and 1990 tracts to 2000 tract bound-
aries. Coverage in 1970 and 1980 is limited as the US was not entirely divided into tracts at
that time, although most areas that were not covered were rural. By 1990 the US was fully
divided into census tracts. The remapping process involves mapping tracts in each decade
using a GIS program and determining when tract boundaries changed. In the event of a
change weights were assigned to tracts from earlier periods based upon population overlap
in order to ensure accurate computation of count totals, means, and fractions. Details of

the process are given in Appendix J of NCDB Users Guide Provided by Geolytics.

County/City Databook.  We extract from the County/City Databook (CCD) vari-
ables that are not part of the Decennial Census of population (and therefore are not in
the NCDB) such as crime rate, percentage of workers in the manufacturing sector and
percentage of workers working in the government. When possible, city level variables
were constructed by aggregating the NCDB tract information by city using Geocorr corre-
spondences between tracts and cities. Cross referencing the constructed variables to their

analogues in the CCD yielded virtually identical figures.

HUD. We have information on 73 of the 78 applications sent to HUD. We have repeat-
edly requested the 5 missing applications to no avail. Our dataset also includes all census
tracts that belong to any urban EZ, EC, EEC, RC, or UEZ of all the first three rounds.
(See Table 2.A1 for more details).

Geocorr. The MABLE/Geocorr engine generates files showing the correspondence
between a wide variety of Census and cartographic geographies in the United States. We
use Geocorr 2000 to match each census tract to one or more places (cities, townships,
villages, etc.). Each census tract that crosses city boundaries was allocated to the city

where the majority of the tract’s population is located.

Missing Data  Some variables used in the estimation procedure exhibited mild missing
data problems. Approximately 8.6% of the tracts in our estimation sample had missing
mean 1990 housing values and 1.4% had missing mean 1990 rents. Overall we lost approx-
imately 13% of the sample in our baseline specification because of missing values of the
control variables. All tables in the paper restrict the estimation sample to the set of tracts
(both treated and untreated) with complete covariate information. In results not shown
we tried imputing the missing values via sequential regression methods and performed a
full case analysis. This procedure yielded very similar results for all outcomes except for

housing values which exhibited moderately smaller point estimates.
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Appendix II: Alternative Derivation of Propensity Score Model

The assignment model in ignores the two step nature of EZ treatment assignment.
Here we demonstrate that the hierarchical nature of the assignment process does not present
any additional complications to our analysis. Let P;. be an indicator for whether a tract is
proposed, W, an indicator for whether a city wins an EZ, and D;. an indicator for whether
a tract gets EZ designation. For a tract to receive EZ designation it must be proposed and

its city-wide proposal must be accepted by HUD, so that:
Dic = ]Dic X Wc~

Suppose that tract proposal is a function of covariates €2;., unobserved trends &;., and a

random error &;. so that

e AQic + peic + ics
P. = I[PL>0].

Note that when p # 0 there is selection on unobserved variables in the proposal process. In
contrast assume that HUD’s decision to award zones is based solely upon the distribution
of covariates in a city and random factors independent of the future performance of the

proposed neighborhoods, so that

We = T(Fe()+ ¢,
W, = I[W*>0],

where F, () is the Empirical Distribution Function (EDF) of covariates in city ¢, T'(.) is

some functional of the EDF, and (. is a random error in the assignment process.
The above equations in conjunction with (2.2)) imply that

(A.1.) AYL, AYY | Di|Qe, P = 1.

In words, proposed tracts are comparable conditional on their individual level covariates.
This follows because Ujct L (., T (Fr (£2)) for any functional 7" (.) — i.e. because conditional
on a tract’s own covariate levels, its outcomes don’t depend on the citywide distribution of
covariates or the random assignment error. These are the key assumptions implicit in .
In results not shown, we have tested the assumption that tract outcomes do not depend
on the citywide distribution of covariates by including the characteristics of neighboring
tracts in regressions and in our reweighting logits. We find virtually identical results. We

take this as evidence that cross-tract dependence in the evolution of outcomes is minimal.
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By the Rosenbaum & Rubin (1983) theorem (|A.1.) implies
AY*@%)&? A}/zgt 1 DiC|P (Dic = HQic; P = 1) .

Now note that

(AQ) P(Dict = 1‘Qi67PiC = 1) - P(WC = 1|QiC’PiC - 1)
=h (Q’LC) 3

where h(.) is some function. Thus P (D;. = 1|Q;., Pic = 1) varies across tracts within
a given city. This may seem puzzling given that conditional on being proposed en-
tire cities must either win or lose EZ designation. However, we are not considering
P(W,=1T(F.(®)), P, =1) but rather P(W, = 1|Q;., Pic =1). The former quantity
only varies across cities and is what we are thinking about when we say “the probability
of winning.” The latter quantity is the probability of a tract being in a winning city given
its characteristics and is what the Rosenbaum and Rubin theorem requires we condition
on when making inferences. This quantity is consistently estimated via a flexible logit of

tract assignment on tract level covariates.

Note also that (A.2.) can be rewritten in a latent variable framework as

D;. = h(Qic) + Yic,
D,, = I[D;C > 0],

where ¥;c L Qie, Uie| Pie = 1 which is equivalent to the expression in (2.3)) .
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Appendix III: Proofs

Proof of (2.7) A similar proof was first derived by Dehejia and Wahba (1997).

E[AY|Diev =1 = E[E[AY|Dict =1,Q] [Diet = 1]
= E[E[AY|Dict = 0,9Qu] [Diet = 1]
= /E [AY2,|Dict = 0,Q4] dF (Qit| Dy = 1)

it| Dict = 1)
it|Dict = 0)

dF ()
= /EWAK%Dm:ﬂxmng&Z dF (it| Dict = 0)

= /E [AY2,|Dict = 0, Q1] w (Qir) dF (Qit|Dice = 0)
E [w Qi) E [AY;;?;t|Dict =0, Qit] |Dict = 0}

= Ew(Qy)AYY

C

t‘DiCt = 0] )

by Bayes rule,

@ = @D =1) _ _PDia=12 1-PDix=1) _ _p(®) -7
YO T F QD =0) 1-P[Diw =19 P(Diw=1  1-p(Q) =«

Proof of (2.8)

Bl () |Dior = 0 = [ () dF (@l Dies =0) = [ dF (@l Diei =1) = 1.

Appendix IV: Inference Procedures
Bootstrap Procedures

We use a nonparametric block bootstrap procedure to assess the sampling variability

of the W DD estimator. The steps used are as follows:

1. Sample 8 treated cities and 74 untreated cities with replacement from the original

sample.
2. Estimate the propensity score.
3. Compute the statistic of interest Tbk.

4. Go to step 1 if number of reps is less than 9999, otherwise stop.
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We used the empirical bootstrap distribution of Tlf to calculate single equation p-values
and confidence intervals. Asymmetric bootstrap confidence intervals and p-values were
constructed using the method described by Davidson and Mackinnon (2004, pp.187-188).
P-values and confidence intervals for Naive and OLS models used a studentized boot-
strap procedure in order to obtain an asymptotic refinement. None of the tests involving

reweighted estimators were studentized.

Benjamini and Hochberg Multiple Testing Procedure

It is well known that conducting multiple tests with a fixed rejection probability does
not control the probability of making at least one Type I error across all tests. Standard
solutions to the multiple testing problem such as the use of Bonferonni bounds are overly
conservative when the tests are correlated or when some of the nulls are false. Benjamini
and Hochberg (1995) propose a procedure that controls what they term the False Discovery
Rate. Define F' as the number of falsely rejected nulls, C' as the number of correctly
rejected nulls and R = F + C' as the total number of rejected hypotheses. The fraction
of rejections that are false is a random variable Q = F/R. If we define @ = 0 in the
case where R = 0, then the false discovery rate can be written FDR = E[Q]. Note that
ElQ] = P(R>1)E[Q|R > 1] and so the FDR can be thought of as the probability of
rejecting a null times the expected fraction of rejections that are false given that at least
one rejection has occurred. In the case where all nulls are true, the false discovery rate
equals the probability of a Type I error (also known as the Family Wide Error Rate) since
when all rejections are false FDR = P(R > 1) = P (F > 1). When some nulls are false
however, the F'DR differs from the probability of making a Type I error. It can be shown
that in general FDR < P (F > 1). As the fraction of nulls that are false increases, the
two concepts diverge and the greater will be the gain in power from controlling the FDR
instead of P (F > 1).

From a practical perspective, control of the FDR may better approximate the nature of
confidence that researchers desire when attempting to make multiple inferences since the
seriousness of a false rejection presumably declines in proportion to the total number of
rejections made. Control of the FDR provides an average level of confidence in the decisions
made rather than a level of confidence in the entire joint decision. However, control of the
FDR also provides a proper test of the joint null that all hypotheses are true, for under
such a null, the FDR is equivalent to the Family Wide Error Rate and rejection of a single
hypothesis constitutes a rejection of the joint null at the specified level. Failure to reject
a single hypothesis in the FDR multiple testing framework constitutes a failure to reject
the joint null. Because the FDR approach does not rely upon normality, we have a rather
robust replacement for conventional x? tests of joint nulls which are known to have poor

finite sample performance.
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The Benjamini and Hochberg procedure is conducted by listing the p-values p1, pa, ..., pm
of the individual tests in increasing order. The level « test procedure rejects all null hy-
potheses with p; < pr where k is the largest ¢ for which p; < %a. For convenience we
conduct the procedure at three different levels of a. Benjamini and Hochberg’s procedure
is robust to arbitrary correlation between the tests and maintains control of the FDR

regardless of the fraction of nulls which are false.

Appendix V: Specification of Reweighting and Blinder-Oaxaca Estimators

The covariates used in the study are given in Table 2.A3. For the W DD estimator
applied to outcomes over the period 1990-2000 we used a linear logit specification with two
lags (i.e. 1990 and 1980 values) of all time varying tract and city level variables. For the
W DD false experiment which was computed on outcomes over the period 1980-1990, we
used two lags (i.e. 1980 and 1970 values) of all time varying tract and city level variables
except the following for which we only included one lag due to the presence of frequent
missing values in 1970: log rents, log housing values, % travel less than 20 minutes, citywide
% employment in manufacturing, citywide % employment in government, and citywide
crime rate.The Blinder-Oaxaca models use the same set of covariates as the reweighting
logits but also include squares of all tract level variables and interaction terms between

tract level poverty, unemployment, population, and housing values.

To construct placebo zones we performed nearest neighbor matching without replace-
ment on a propensity score estimated on all tracts in the eight cities receiving EZs. The
propensity score was estimated on the sample of all tracts in the eight treated cities, using
a logit of assignment status on two lags of all time varying tract and city level variables, a
set of city dummies, and the interaction of the lags of tract level poverty, unemployment,
and population with the city dummies. In calculating, the treatment effect on the placebo
zones we replaced the treated tracts by the placebo tracts and proceed to compute OB and

WDD (using the previously estimated weights).

We showed in Appendix III that E[w(24)|Die¢ = 0] = 1. This provides us with an
overidentifying restriction that can be used as a specification test. Large deviations of
the mean estimated weight among untreated observations from one are a sign of model
misspecification. Appendix Table 2.A4 presents the log of the mean weight, its confidence
interval and a pvalue of the null that the population mean weight equals one. Confidence
intervals and pvalues were calculated via the block bootstrap. In all models we fail to
reject the null that the sum of weights among the untreated is one at conventional levels
of significance. We also present two standard measures of goodness of fit: (1) The pseudo

r-squared which is defined as 1 — llgg fz where Ly is the likelihood function restricted to all

coefficients being zero and L,, is the unrestricted maximized likelihood and (2) The relative
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frequency of correct positive predictions of treatment. Finally, to get a sense of how much
overlap exists in the propensity score distribution across treatment and controls we show

the number of treated tracts per untreated tract by strata of the propensity score.

Appendix VI: Construction of Composition Constant Changes

Let p}, be the fraction of individuals in some universe u (e.g. 16-19 year old dropouts)
belonging to race r at time ¢ and h¥ the hazard of individuals in such categories experi-
encing one of the outcomes in Table 2.9 — e.g. employment, unemployment, poverty, or

college education. The mean hazard rates at time ¢ can be written
§ = Zp}fth}ft'
T

The “composition constant” rate in 2000 assigns 1990 weights to the 2000 hazards
Ry = prgohgoo-
T
So that the composition constant change in rates is

DY = Roo— R
= szfgo (hroo — hgo) -
-

The construction of the composition constant changes was hampered somewhat by the
fact that some tracts had no members of a particular racial group in some years preventing
estimation of the hazards. This did not present a problem in the case where one of the ply,
’s was missing for in such cases regardless of what is imputed for A}, the entire term will be
zero. But when p},, was missing and p}y, was not we faced a nontrivial censoring problem.
We solved this problem by imputing missing values of hl,, using a linear regression of the
observed hazards on all of the covariates used in our reweighting logits plus a dummy for
being in an EZ. Imputations were constructed as the sum of the predicted values from
the imputation regression plus a draw from a normal distribution with standard deviation
equal to the residual mean squared error of the imputation regression. With these imputed
hazards we proceeded to compute values of Dyg for all tracts capable of inclusion in the

universe (e.g. all tracts having 16-19 year old dropouts).
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Chapter 3

Finite Sample Properties of Semiparametric
Estimators of Average Treatment Effects [

This paper explores the finite sample properties of semiparametric estimators of aver-
age treatment effects. Such estimators are standard in the program evaluation literature
and have become increasingly popular in the applied microeconometric literature. These
estimators rely on two assumptions. The first assumption is that assignment to treat-
ment is randomized conditional on a set of observed covariates. The second assumption
is more technical and asserts that no value of the observed covariates assures treatment
assignmentE] Intuitively, these assumptions allow for treatment to covary with observed
characteristics, but require that there be some unexplained variation in treatment assign-
ment left over after conditioning and that the unexplained aspect of treatment resembles

an experimentE]

Estimation of program impacts under these assumptions could proceed using tradi-
tional parametric estimation methods such as maximum likelihood. However, an early
result of Rosenbaum and Rubin (1983) is that if treatment is randomized conditionally
on the observed covariates, then it is randomized conditional on the (scalar) propensity
score, the conditional probability of treatment given the observed covariates. Influenced
by this result, the subsequent econometric and statistical literatures have focused on semi-
parametric estimators that eschew parametric assumptions on the relationship between the
outcome and observed covariates. Empirical literatures, particularly in economics, but also
in medicine, sociology and other disciplines, feature an extraordinary number of program

impact estimates based on such semiparametric estimators.

!This paper was written with John DiNardo and Justin McCrary.

For comments that improved the paper, we thank Alberto Abadie, Matias Cattaneo, Marie Davidian,
Keisuke Hirano, Guido Imbens, Jack Porter and Jeff Smith. We would also like to thank Markus Frolich
for providing us copies of the code used to generate the results in his paper.

2Gelection on observed variables is defined in Section [I} as is the second assumption, which is typically
referred to as an overlap assumption. In Section [[I] we emphasize the correct interpretation of selection on
observed variables using a specific parametric model.

3In other words, there exists an instrument which is unobserved by the researcher.
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Perhaps surprisingly in light of their ubiquity in empirical work, formal large sample
results for these estimators have only recently been derived in the literature. Heckman,
Ichimura and Todd (1997) report large sample properties of estimators based on kernel
and local linear matching on the true and an estimated propensity score. Hirano, Imbens
and Ridder (2003) report large sample properties of a reweighting estimator that uses a
nonparametric estimate of the propensity score. This is essentially the same reweighting
estimator that was introduced to the economics literature by DiNardo, Fortin and Lemieux
(1996) and Dehejia and Wahba (1997), and it is related to an estimator due to Horvitz
and Thompson (1952). Importantly, Hirano et al. (2003) establish that their version of a
reweighting estimator achieves the semiparametric efficiency bound (SEB) established by
Hahn (1998) for this problem. Robins, Rotnitzky and Zhao (1994) and Robins and Rot-
nitzky (1995) establish large sample properties and the efficiency of a regression-adjusted
reweighting estimator that uses the estimated propensity score. Finally, Abadie and Im-
bens (2006) establish the large sample properties and near-efficiency of kth nearest-neighbor

matching using the true propensity scoreﬁ

To date, no formal finite sample properties have been established for any of the es-
timators discussed, and there is limited simulation evidence on their performance. It is
generally desirable to learn about the finite sample properties of estimators used in empir-
ical research, since not all data sets are big enough for asymptotic theory to be a useful
guide to estimator properties. It is particularly desirable to learn about the finite sample
properties of semiparametric estimators of average treatment effects, given the literature’s
substantive focus on treatment effect heterogeneityﬂ In the face of heterogeneity, treat-
ment effects must effectively be estimated for various subsamplesﬁ For many economic
data sets, these subsamples are modest in size, perhaps numbering in the hundreds or
even dozens, where asymptotic theory may be a particularly poor guide to finite sample

performance.

4Tt deserves mention that Chen, Hong and Tarozzi (2008) study the large sample properties and efficiency
of sieve estimators in this setting. We do not study the finite sample properties of these estimators due to
space constraints.

®Understanding the sources of treatment effect heterogeneity is critical if the analyst hopes to extrapolate
from the findings of a given study to broader forecasts of the likely impacts of policies not yet implemented.
These issues are a key focus of the program evaluation literature (see, for example, Heckman and Vytlacil
2005 and Heckman, Urzua and Vytlacil 2006).

SImportantly, the intrinsic dimensionality of treatment effect heterogeneity cannot be massaged by
appealing to the dimension reduction of the propensity score. The Rosenbaum and Rubin (1983) result
that a conditionally randomized treatment is randomized conditional on the scalar propensity score has been
interpreted as justification for matching on the propensity score rather than on the full set of covariates.
However, the Rosenbaum and Rubin result does not imply that units with the same value of the propensity
score have the same treatment effect. Examples of empirical investigation of treatment effect heterogeneity
along dimensions different from the propensity score include Card (1996), Katz, Kling and Liebman (2001),
Haviland and Nagin (2005) and Kent and Hayward (2008), for example.
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In this paper, we examine the relative performance of several leading semiparametric
estimators of average treatment effects in samples of size 100 and 500E| We focus on the
performance of propensity score reweighting and matching estimators for estimating the
average treatment effect (ATE) and the average effect of treatment on the treated (TOT).
We consider a range of matching strategies, including nearest neighbor, kernel, local linear,
and ridge matching, and blocking. We also consider several varieties of reweighting esti-
mators, the so-called double robust estimator (Robins et al. 1994), and a specific version
of Hahn’s (1998) general estimator, which we term a control function estimator. We con-
sider settings with good overlap in the distribution of propensity scores for treatment and
control units, as well as settings of poor overlap. In settings of poor overlap, we investigate
the performance of various trimming methods proposed and used in the literature. Finally,
we consider the implications for performance of misspecification of the propensity score,
both in terms of an incorrect parametric model for treatment as well as conditioning on

the wrong set of covariates.

A summary of our findings is as follows. First, reweighting is approximately unbiased
and semiparametrically efficient, even for sample sizes of 100. Our assessment is that
reweighting exhibits the best overall finite sample performance of any of the estimators
we consider. Second, pair matching shares the good bias performance of reweighting, but
has a variance that is roughly 30 percent greater than that of reweighting. Third, kth
nearest-neighbor matching, with k£ chosen by leave-one-out cross-validation, does reduce
the excessive variance of pair matching, but at the cost of substantially greater bias. Fourth,
kernel, local linear, and ridge matching perform similarly to k-th nearest neighbor matching
in exhibiting little variance but much bias when n = 100. Once n = 500, ridge and local
linear matching are both competitive with reweighting on bias and variance groundsﬁ
Fifth, both in terms of bias and variance, the popular blocking matching estimator performs
neither as badly as kth nearest-neighbor and kernel matching, nor as well as local linear
and ridge matching, and is generally dominated by reweighting. Sixth, the double robust
estimator is competitive with reweighting, but appears to be slightly more variable and
slightly more biased. Seventh, the control function estimator is approximately unbiased,
even for samples of size 100, and is approximately semiparametrically efficient once n = 500.
Eighth, when there is misspecification of the propensity score either due to parametric
assumptions or the lack of availability of important covariates, the relative performance of
the estimators is approximately as described above. However, in that context, if problems
with bias are suspected and variance is less important, pair matching is the preferred

estimator.

"This issue has been previously taken up by Lunceford and Davidian (2004), Frolich (2004), Zhao (2004),
Zhao (2008), and Freedman and Berk (n.d.).

8 All three of these kernel-based estimators use leave-one-out cross-validation to select a bandwidth, and
this model selection issue may be an important aspect of performance for smaller sample sizes.
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The above conclusions hold when the propensity score model is correctly specified and
when there is good overlap in the distribution of propensity scores for treatment and control
units. Our investigations highlight the problems with semiparametric estimators of average
treatment effects when overlap is poor. Khan and Tamer (2007) emphasize this point from
a theoretical perspective, noting that when overlap is poor the semiparametric efficient
bound derived by Hahn (1998) for this problem can be infinite, leading to a failure of
/n-consistency. Consistent with this conclusion, our results indicate that when overlap is
poor, none of the estimators studied work well. In cases where overlap is poor, although
technically sufficient to guarantee y/n-consistency, we document poor performance for n =
100, but adequate performance for n = 500. This suggests that larger sample sizes may be

needed for threshold cases.

A standard empirical approach to problems with overlap is to trim observations with
extreme values of the propensity score. We investigate four of the trimming strategies used
in the literature. Our simulations suggest that some of these procedures can be effective
but only in situations in which the treatment effect is similar for all the observations in
the sample. Finally, we provide evidence that as problems with overlap arise, the limiting

distribution of semiparametric estimators becomes nonstandard.

Our conclusions run contrary to those of the existing literature on the finite sam-
ple performance of reweighting and matching. Our simulations indicate that reweighting
is a generally robust estimator whose performance in small samples is as effective as in
large samples, where it has been shown to be optimal in a certain sense. The matching
methods we consider work poorly for samples of size 100, although some of the methods
become effective for samples of size 500. In contrast to these findings, the existing finite
sample literature is generally negative regarding reweighting and tends to conclude that
matching estimators are best. We review this literature. We show that nearly all of the
results from the existing finite sample literature are based on data generating processes
(DGPs) for which /n-consistent semiparametric estimators do not exist, or DGPs where
/n-consistency is close to failing. Our own investigations are unusual, in that we focus on
DGPs where semiparametric estimators are expected to perform well. We show that this

difference in DGPs accounts for our different conclusions ]

The remainder of the paper is organized as follows. Section [[] sets notation, defines
estimators, discusses estimands and efficiency bounds, and emphasizes the connections
among the many estimators we consider by casting them in the common framework of

weighted regression. In particular, this section provides a 3-step interpretation of matching

9To be clear, we do not advocate the use of reweighting estimators—or any of the estimators studied
here—in settings of failure and near failure of \/n-consistency of semiparametric estimators of average
treatment effects. At present, relatively little is known about appropriate estimation and testing procedures
in these settings.
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that clarifies the conceptual similarities and differences between the two approaches. In
Section [[T, we describe our benchmark DGP. This DGP is chosen so that semiparametric
estimates of average treatment effects are \/n-consistent. Results for the benchmark DGP
are presented in Section In Section we take up the issue of DGPs for which /n-
consistency may be compromised. Results for such DGPs are presented in Section

compares our results to those of the existing finite sample literature. Section [VIIconcludes.

I Notation and Background

Let Y;(1) denote the outcome for unit ¢ that would obtain under treatment and Y;(0)
the outcome that would obtain under control. Treatment is denoted by the binary vari-
able T;. We observe Y; = T;Y;(1) + (1 — T;)Y;(0), but never the pair (Y;(0),Y;(1)).
The data (X;,Y;, T;)", are taken to be independent across i, but are potentially het-
eroscedastic. Let the propensity score, the conditional probability of treatment, be denoted
p(z) = P(T; = 1|1 X; = x). Let the covariate-specific average treatment effect by denoted
(@) = EIYi(1) - Yi(0)|X; = al.

We focus on the relative performance of semiparametric estimators of population av-
erages of 7(x). Here, semiparametric means an estimator that models the relationship
between the probability of receiving treatment and the covariates X;, but remains agnos-
tic regarding the relationship between the counterfactual outcomes (Y;(0),Y;(1)) and the

covariates.

Semiparametric estimators of treatment effects are typically justified by an appeal to
(1) selection on observed variables and (2) sufficient overlap. Selection on observed variables
means that treatment is randomized given X;, or that (Y;(0),Y;(1), Z;) L T;|X;, where Z;
is any characteristic of the individual that is not affected by treatment assignment (e.g.
pre-program earnings)HThis assumption has traditionally been referred to as selection
on observed variables in the economics literature (e.g., Heckman and Robb 1985). In the
statistics and more recent econometrics literature this assumption is instead referred to as

ignorability or unconfoundedness (e.g., Rosenbaum and Rubin 1983, Imbens 2004)@

Selection on observed variables is not by itself sufficient to semiparametrically identify
average treatment effects. The DGPs we focus on in Section [[I]] are consistent with both
selection on observed variables and a strict overlap assumption: § < p(z) < 1 — ¢ for
almost every z in the support of X;, for some & > 0. This assumption is stronger than

the standard overlap assumption that 0 < p(z) < 1 for almost every x in the support of

0Notice that some pre-program covariates may be affected by anticipation of treatment.

1T echner (2005) shows that some control variables may be influenced by the treatment. However,
this endogeneity does not matter for consistency of the treatment effect estimator, as long as the usual
formulation of the conditional independence assumption holds.
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X; (e.g., Rosenbaum and Rubin 1983, Heckman et al. 1997, Hahn 1998, Wooldridge 2002,
Imbens 2004, Todd 2007), but is also common in the literature (e.g., Robins et al. 1994,
Abadie and Imbens 2006, 2008, Crump, Hotz, Imbens and Mitnik 2007a,b). Both the
standard overlap and the strict overlap assumptions are strong. Khan and Tamer (2007)
emphasize that something akin to the strict overlap assumption is needed to deliver /n-
consistency of semiparametric estimators in this context. We take up the issue of DGPs

that violate strict overlap, but satisfy standard overlap, in Sections [[V] and [V] below.

A Estimands and Estimators

As noted, we focus on the performance of estimators for target parameters that are
averages of 7(x). The specific averages we consider are the average treatment effect
a = E[T(X;)] and the average treatment effect on the treated § = E[7(X;)|T = 1]. We
refer to these estimands as ATE and TOT, respectively. Although we focus on the perfor-
mance of estimators for these estimands, we emphasize that ATE and TOT are not the only
estimands of interest. However, the performance of these estimators for ATE and TOT is
likely to be similar to the performance of these estimators when adapted to estimation of

other averages of 7(x).

We consider fourteen estimators: nine matching estimators, three reweighting esti-
mators (sometimes termed inverse propensity score weighting estimators, or IPW), one
control function estimator, and the so-called double robust estimator[l] Each of these es-
timators are two-step estimators relying on a first-step estimate of the propensity score.
The nine matching estimators include pair matching, kth nearest neighbor matching, ker-
nel matching, local linear matching, ridge regression matching, and blocking. Aside from
pair matching, each of these matching strategies employs a cross-validation method for
choosing a tuning parameter. Kernel, local linear, and ridge matching all further require
the choice of a kernel. Following Frolich (2004), we consider both the Epanechnikov kernel

and the Gaussian kernel.

The three reweighting estimators include a reweighting estimator in which the sum of
the weights is allowed to be stochastic (IPW1), a reweighting estimator in which the sum
of the weights is forced to be 1 (IPW2), and an asymptotically optimal combination of the
former two estimators (IPW3) that is due to Lunceford and Davidian (2004).

We also consider the so-called double robust estimator due to Robins and Rotnitzky
(1995), which has recently received a good deal of attention in the literature (e.g., Imbens

2004). This procedure can be thought of as a regression-adjusted version of reweighting.

12The breadth of coverage arises from an attempt to encompass many of the estimators used in the
literature as well as to be consistent with previous finite sample evidence on the topic. Nonetheless, there
are of course other potentially effective estimators whose performance is not covered by the analysis here.
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The regression adjustments are more similar in spirit to an older approach to the problem
of estimating treatment effects. We complete our analysis by studying the performance of
a control function estimator. This estimator is essentially the same as the double robust
estimator, but is unweighted. The version of the control function estimator we implement
models the regression function of the outcome given the covariates and treatment status
as a polynomial in the estimated propensity score, with additive and possibly interacted
terms for treatment status. This procedure is described in Wooldridge (2002) for the case of
ATE, and is in the spirit of Oaxaca (1973) and Blinder (1973) decompositions and Hahn’s
(1998) general estimator.

While it is true that at least some versions of reweighting and matching are believed to
be semiparametrically efficient in large samples, and while both approaches are based on
the same first-step propensity score estimate, it is far from clear that the two approaches
would perform similarly in finite samples. First, most matching estimators rely on tuning
parameters. It is possible that use of tuning parameters could improve finite sample per-
formance relative to reweighting. Second, the approaches take advantage of very different
properties of the propensity score. Matching requires of the estimated propensity score
only that it be a balancing score (Rosenbaum and Rubin 1983). In contrast, reweighting
requires that the propensity score be a conditional probability. For example, matching on
the square root of the propensity score should work just as well as matching on propensity

score; in contrast, reweighting with the square root of the propensity score should do badly.

B Weighted Least Squares as a Unifying Framework

Both matching and reweighting estimators of average treatment effects can be under-
stood as the coefficient on the treatment indicator in a weighted regression, with weighting
functions that differ by estimator. This common structure clarifies that the essential dif-

ference between the estimators is the weighting function implicitly used.

That reweighting estimators have this form is widely understood. A general notation
for reweighting estimators for the TOT and ATE is

N 1 1 — .

(3.1) 0 = — TYi——> (1-T)Y;u(),

i—1 053

1 & 1 ¢ .

ny ZTiYiwl(Z) o Z(l — T5)Yjwo(j)-
i—1 j=1

Q)
Il

(3.2)

The weights in equations (3.1]) and (3.2]) only add up to one for some versions of reweighting
estimators. When the TOT weights add up to one in the sense of - 3" | (1—-T;)w(j) = 1,
0 £~j

the TOT estimate can be obtained using standard statistical software from the coefficient
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on treatment in a regression of the outcome on a constant and a treatment indicator
using weights W = T + (1 — T)w(-). When the Weights do not add up to one, the TOT
estimate can be calculated directly using equation . When the ATE weights add
up to one in the sense that —Z? (1 = Tj)wo(j) = 1 and Z] 1 Tiwi(j) = 1, the
ATE estimate can be obtained from the same regression described, but with weights W =
Twi(-) + (1 — T)wp(-). The reweighting estimators we consider are characterized below by

enumerating the weighting functions used.

WEIGHTS USED FOR REWEIGHTING ESTIMATORS
Effect Treatment, ¢ Estimator Weighting Function w,(j)
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IPW3 correction factors that are small when the propensity score model is well specified.

The functional form given by IPW1 can be found in many treatments in the literature
(e.g., Dehejia and Wahba 1997, Wooldridge 2002, Hirano et al. 2003). IPW2 is advocated
by Johnston and DiNardo (1996) and Imbens (2004). Since most applied work is based on
regression software, which naturally rescales weights, most estimates in the empirical liter-
ature are probably IPW2. With a well-specified propensity score model, the weights used
in IPW1 should nearly add up to one and IPW1 and IPW2 should not differ dramatically.
This is because, ignoring estimation error in p(X;) and p, iterated expectations shows that
E[W;] =1 for both TOT and ATE. However, in finite samples for some DGPs, the sum
of the weights can depart substantially from 1. Unlike IPW2, IPW3 is not commonly im-
plemented in the empirical literature. This estimator, derived by Lunceford and Davidian
(2004) for the case of ATE, is the (large sample) variance-minimizing linear combination

of IPW1 and IPW2[5]

13The TOT version of IPW3 is new, but follows straightforwardly, if tediously, from the approach outlined
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While it is widely understood that reweighting estimators can be implemented as a
weighted regression, it is less widely understood that matching estimators share this prop-
erty@ We demonstrate that matching estimators are weighted regressions for the case of
TOTE A general notation for a matching estimator of the TOT is (cf., Smith and Todd
2005, eq. 10)

(3.3) ézlz Y= > w(i, j)Y; ¢,

where w(i, j) is the weight that the control observation j is assigned in the formation of an
estimated counterfactual for the treated observation ¢, I is the set of n; treated units and
Iy is the set of ng control units. The weights w(i, j) are in general a function of the distance
in the covariates. In the case of propensity score matching, that distance is measured by
the difference in the estimated propensity scores. We now describe the matching estimators

we consider by enumerating the TOT weighting functions w(i, j )E

WEIGHTS USED FOR MATCHING ESTIMATORS FOR TOT

Estimator Weighting Function w(i, j)

kth Nearest Neighbor F1(p(X;)€T(i))

Kernel Kz‘j/EjeIO K

Local Linear (KiiL? = KyAyLt) [ Ser, (Kil? = KiAyLl+ 1)
Ridge Kij [ jen, Kis + Dy [ jer, (KigB2 + rrhldy))
Blocking Soh UB(X:)E B L(B(X;)€Bm) | Sry 1(5(X;)€Bn)

All of the matching estimators enumerated can be understood as the coefficient on the

by those authors (see Appendix I for details).

““However, there are clear antecedents in the literature. For example equations (3) and (4) of Abadie
and Imbens (2006) clarify this common structure.

15The case of ATE then follows since a matching estimator for the ATE is a convex combination of the
average treatment effect for the treated and for the untreated, with convex parameter equal to the fraction
treated.

The notation is as follows: Jx (i) is the set of k estimated propensity scores among the control obser-
vations that are closest to p(X;), Ay = p(Xi) — p(X;), Kij = K(Ai]‘/h) for K(-) a kernel function and h
a bandwidth, Lf = Zjelo KijA%, for p=1,2, As; = p(X;) —p(Xs), p; = Zjeln ijij/ZjEI() K;j, rp is
an adjustment factor suggested by Fan (1993), rr is an adjustment factor suggested by Seifert and Gasser
(2000), B, is an interval such as [0, 0.2] that gives the mth block for the blocking estimator, and M is the
number of blocks used. For a Gaussian kernel, r;, = 0 and for an Epanechnikov kernel, r;, = 1/n2. For a
Gaussian kernel, rr = 0.35 and for an Epanechnikov kernel, rr = 0.31.
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treatment indicator in a weighted regression. To see this, rewrite

1 n n

0 = -2 T Y= D w1 -T)Y;
i=1 j=1
1 n n n
= D TYi= ) (-TYi > (i )T
=1 7j=1 i=1
1 ¢ 1 ¢
(3.4) = Ly nvi- Loa - v,
n1 no <
=1 7j=1
where w(j) = 10 37, w(i, j)T; is proportional to the average weight that a control observa-

tion is given, on average across all treatment observationsm Viewing matching estimators
as weighted least squares is useful as a means of understanding the relationships among the
various estimators used in the literature. For example, the weight used by kernel matching

can be written as

ZTU)Z] Zz ITKU/Zz 1 K 15
Zj 1 ( 1]/21 1 K

Ignoring estimation error in the propensity score, > ;" | T; K / Yo, Kij is a kernel regres-
sion estimate of P(7; = 1|p(X;) = p(Xj)), which is equivalent to p(Xj)H If the kernel
in question is symmetric, then 7 | (1 — T;)Ky;/ i, K;j is similarly a kernel regression
estimate of P(T; = O|p(X;) = p(Xj)), which is equivalent to 1 — p(X;). Thus, for kernel

matching with a symmetric kernel, we have

o pXy) p
W) ~ 1—p(Xj)/1—p

which is the same as the target parameter of the TOT weight used by reweighting.

This result provides a 3-step interpretation to symmetric kernel matching for the TOT:

1. Estimate the propensity score, p(X;)

1"The matching estimators proposed in the literature require no normalization on the weights involved in
the second sum in equation (3 This follows because the matching estimators that have been proposed
define the weighting functlons w(z j) in such a way that deIO 1,7)Y; is a legitimate average of the
controls, in that sense that for every treated unit 4, 3>, ., w(é,j) = 37, w(i,)(1 —T;) = 1. This has the
important implication that the weights in the second sum of equation (3.4) automatically add up to one:

ln . 1n 1 n 1 n
77];1’ Jw(j nZ{l } m;{TiZwZ])}—m;Ti—l.

Jj=1 Jj€lo
8Cenerally, if X and Y are random variables such that m(X) = E[Y|X] exists, then E[Y|m(X)] = m(X)
by iterated expectations.

n

e 2
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2. For each observation j in the control group, compute p(X;) = >0 T K;j/ >oiy Kij.
In words, this is the fraction treated among those with propensity scores near p(Xj).
Under smoothness assumptions on p(X;), this will be approximately p(X;).

3. Form the weight w(j) = (p(X;)/(1 - p(X;)) / (p/ (1 —p)) and run a weighted re-
gression of Y; on a constant and 7; with weight W; = T; + (1 — T;)w(i).

Reweighting differs from this procedure in that, in step 2, it directly sets p(X;) =

p(X;). The simulation suggests that this shortcut is effective at improving small sample

performance.

C Mixed Methods

We also consider the performance of an estimator known as “double robust” that is nei-
ther reweighting nor matching but is a hybrid procedure combining reweighting with more
traditional regression techniques. This procedure is discussed by Robins and Rotnitzky
(1995) in the related context of imputation for missing data. Imbens (2004) provides a

good introductory treatment.

To describe the intuition behind this estimator, we first return to a characterization of
reweighting. The essential idea behind reweighting is that in large samples, reweighting
ensures orthogonality between the treatment indicator and any possible function of the

covariates. That is, for any bounded continuous function g(-),

o L p(Xa) P |
Blg(X)ITi=1] = B [goml s olaer i o} ,
(3.5) E [g(Xl)p(Xi) T, = 1] = E [g(XZ)l e T 0] Eg(X))].

This implies that the joint distribution of X; is equal in weighted subsamples defined by
T; = 1 and T; = 0, using either TOT or ATE WeightsE This in turn implies that in the
reweighted sample, treatment is unconditionally randomized, and estimation can proceed
by computing the (reweighted) difference in means, as described in subsection B, above. A
standard procedure in estimating the effect of an unconditionally randomized treatment is
to include covariates in a regression of the outcome on a constant and a treatment indicator.
It is often argued that this procedure improves the precision of estimated treatment effects.
By analogy with this procedure, a reweighting estimator may enjoy improved precision if the
weighted regression of the outcome on a constant and a treatment indicator is augmented

by covariates.

The estimator just described is the double robust estimator. Reweighting computes

average treatment effects by running a weighted regression of the outcome on a constant

19Given the standard overlap assumption, this result follows from iterated expectations. A proof for the
case of TOT is given in McCrary (2007, fn. 35).
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and a treatment indicator. Double robust estimation computes average treatment effects
by running a weighted regression of the outcome on a constant, a treatment indicator, and

some function of the covariates such as the propensity score.

The gain in precision associated with moving from a reweighting estimator to a double
robust estimator is likely modest with economic data@ However, a potentially important
advantage is that the estimator is more likely to be consistent, in a particular sense. Sup-
pose that the model for the treatment equation is misspecified, but that the model for the
outcome equation is correctly specified. Then the double robust estimator would retain
consistency, despite the misspecification of the treatment equation model@ We implement
the double robust estimator by including the estimated propensity score linearly into the
regression model, for both ATE and TOTH

The double robust estimator is related to another popular estimator that we call a
control function estimator. For the case of ATE, the control function estimator is the
slope coefficient on a treatment indicator in a regression of the outcome on a constant, the
treatment indicator, and functions of the covariates X;. For the case of TOT, we obtain
the control function estimator by running a regression of the outcome on a constant and a
cubic in the propensity score, separately by treatment status@ For each model, we form
predicted values, and compute the average difference in predictions, among the treated
observations. This procedure is in the spirit of the older Oaxaca (1973) and Blinder (1973)
procedure and is related to the general estimator proposed by Hahn (1998).

D Tuning Parameter Selection

The more complicated matching estimators require choosing tuning parameters. Kernel-

based matching estimators require selection of a bandwidth, nearest-neighbor matching

29Guppose the goal is to obtain a percent reduction of ¢ in the standard error on the estimated treatment
effect. Approximate the standard error of the treatment effect by the spherical variance matrix least squares
formula. Then reducing the standard error of the estimated treatment effect by ¢ percent requires reducing
the regression root mean squared error by g percent, since the “matrix part” of the standard error is affected
only negligibly by the inclusion of covariates, due to the orthogonality noted in equation . This requires
reducing the regression mean squared error (MSE) by roughly 2g percent when ¢ is small. A 2q percent
reduction in the regression MSE requires that the F-statistic on the exclusion of the added covariates be a
very large 2gn/K, where n is the overall sample size and K is the number of added covariates. Consider
one of the strongest correlations observed in economic data, that between log-earnings and education. In a
typical U.S. Census file with 100,000 observations, the t-ratio on the education coefficient in a log-earnings
regression is about 100 (cf., Card 1999). The formula quoted suggests that including education as a covariate
with an outcome of log earnings would improve the standard error on a hypothetical treatment indicator
by only 5 percent.

2In the case described, the double robust estimator would be consistent, but inefficient relative to a
regression-based estimator with no weights, by the Gauss-Markov Theorem.

22We include the p(X;) rather than X; because the outcome equation in our DGPs is a function of p(X;).

23In simulations not shown, we computed the MSE for the control function estimator in which the
propensity score entered in a polynomial of order 1,...,5. The cubic polynomial had the lowest MSE on
average across contexts.
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requires choosing the number of neighbors, and blocking requires choosing the blocks.

In order to select both the bandwidth h to be used in the kernel-based matching es-
timators and the number of neighbors to be utilized in nearest neighbor matching, we

implement a simple leave-one-out cross-validation procedure that chooses h as

where m_; (p (X;)) is the predicted outcome for observation i, computed with observation
¢ removed from the sample, and m (-) is the non-parametric regression function implied
by each matching procedure. For kernel, local linear and ridge matching the bandwidth
search grid H is 0.01 x |k|1.297! for g = 1,2,...,29,00. For nearest-neighbor match-
ing the grid H is {1,2,...,20,21,25,29,...,53,00} for a sample size smaller than 500 and
{1,2,5,8,..,23,28, 33, ...,48, 60, 80, 100, co} for 500 or more observations@

For the blocking estimator, we first stratify the sample into M blocks defined by inter-
vals of the estimated propensity score. We continue to refine the blocks until within each
block we cannot reject the null that the expected propensity score among the treated is
equal to the expected propensity score among the controls (Rosenbaum and Rubin 1983,
Dehejia and Wahba 1999). In order to perform this test we used a simple ¢-test with a
99 percent confidence level. Once the sample is stratified, we can compute the average
difference between the outcome of treated and control units that belong to each block,
Tm. Finally, the blocking estimator computes the weighted average of 7,, across M blocks,
where the weights are the proportion of observations in each block, either overall (ATE)
or among the treated only (TOT).

E Efficiency Bounds

In analyzing the performance of the estimators we study, it useful to have an idea of a
lower bound on the variance of the various estimators for a given model. Estimators which

attain a variance lower bound are best, in a specific sense.

We consider two variants of efficiency bounds. The first of these is the Cramér-Rao
lower bound, which can be calculated given a fully parametric model. The semiparametric
models motivating the estimators under study in this paper do not provide sufficient detail
on the putative DGP to allow calculation of the Cramér-Rao bound. Nonetheless, since we
assign the DGP in this study, we can calculate the Cramér-Rao bound using this knowledge.
This forms a useful benchmark. For example, we will see that in some models, the variance

of a semiparametric estimator is only slightly greater than the Cramér-Rao bound. These

24For more details on this procedure see Stone (1974) and Black and Smith (2004) for an application.
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are then models in which there is little cost to discarding a fully parametric model in favor

of a semiparametric model.

The second efficiency bound we calculate is the semiparametric efficiency bound. These
bounds can be viewed as the smallest variance that can be obtained without imposing
parametric assumptions on the outcome equation. Alternatively, the SEB can be viewed
as the least upper bound of the Cramér-Rao bounds, among the set of DGPs consistent with
the parametric assumptions placed on the treatment equation. An introductory discussion
of the SEB concept is given in Newey (1990). Hahn (1998, Theorems 1, 2) shows that
under selection on observed variables and standard overlap, the SEB is given by

02 ; ; 02 ; i2 i

(3.7) SEBTOT — E_ 1(Xp)f(X ) p;éf{_)i (())(Q)) +2 g)(T(XZ) 9)2],
'0,2 . 02 \2 2

(38) SEBIOT = E_ 1(X;)f(XZ)+p§Ef{ 1_)2; (();gi)))+p (;%) (7(X5) 9)2],

where the subindex [ = k, v indicates whether the propensity score is known or unknown

and o?(X;) is the conditional variance of Y;(t) given X;.

Reweighting using a nonparametric estimate of the propensity score achieves the bounds
in equations and (3.7), as shown by Hirano et al. (2003) for both the ATE and TOT
case. Nearest neighbor matching on covariates using a Euclidean norm also achieves these
bounds when the number of matches is large. Abadie and Imbens (2006, Theorem 5)
demonstrate this for the case of ATE and the case of TOT follows from the machinery
they develop@ However, nearest neighbor matching is inconsistent when there is more

than one continuous covariate to be matched.

Efficiency results for other matching estimators are not yet available in the literature.
In Appendix IT we provide a derivation of the SEB for the models used in our simulations.
In Appendix Table 3.A6 we show the SEB and the CRLB for all of the data generating

processes used in this paper. We turn now to a description of these models.

25Using their equation (13) and the results of the unpublished proof of their Theorem 5, it is straight-
forward to derive the large sample variance of the kth nearest-neighbor matching estimator for the TOT
as

(3.9) SEB;°T + iE {”g(pXi) (1 —;(Xz-) - —p(Xi))>] k— oo SEBIOT
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II Data Generating Process

The DGPs we consider are all special cases of the latent index model

(3.10) TF = n+sX; —u,
(3.11) T, = 1(I7 >0),
(3.12) Y; = BT+ ym(p(Xy)) + dTim(p(Xs)) + &,

where u; and ¢; are independent of X; and of each other, m(-) is a curve to be discussed,
and p(X;) is the propensity score implied by the model, or the probability of treatment
given X;. The covariate X; is taken to be distributed standard normal. Our focus is on
cross-sectional settings, so ¢; is independent across ¢, but potentially heteroscedastic. This
is achieved by generating e; as an independent and identically distributed standard normal

sequence and then generating
(3.13) g = (ep(X;) +&1;) + (1 —1)e;.

We consider several different distributional assumptions for the treatment assignment
equation residual, u;. As we discuss in more detail in Sections [[V] and [V] below, the choice
of distribution for u; can be relevant to both the finite and large sample performance
of average treatment effect estimators. Let the distribution function for u; be denoted

generally by F'(-). Then the propensity score is given by
(3.14) p(Xi) = P(T} > 0) = F(n+ kX))

The model given in equations through nests a basic latent index regres-
sion model, in which treatment effects vary with X; but are homogeneous, residuals are
homoscedastic, and the conditional expectation of the outcome under control is white noise.
The model is flexible, however, and can also accommodate heterogeneous treatment effects,

heteroscedasticity, and nonlinear response functions.

Heterogeneity of treatment effects is controlled by the parameter § in equation .
When § = 0, the covariate-specific treatment effects are constant: 7(x) = [ for all x.
Thus under this restriction the average treatment effect (ATE) and the average effect of
treatment on the treated (TOT) both equal 3 in the population and in the sampleﬁ When
d # 0, the covariate-specific treatment effect, given by 7(z) = 8 + dm(p(x)), depends on
the covariate and ATE and TOT may differm Heteroscedasticity is controlled by the
parameter ¢ in equation . When ¢ = 0, we obtain homoscedasticity. When ¢ # 0,

25For a discussion of the distinction between sample and population estimands, see Imbens (2004), for
example.
2TFor a discussion of other estimands of interest, see Heckman and Vytlacil (2005), for example.
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the residual variance depends on treatment as well as on the propensity score. The function
m(-) and the parameter v manipulate the non-linearity of the outcome equation that is

common to both treated and non-treated observations@

We assess the relative performance of the estimators described in Section [[|in a total of
twenty-four different contexts. These different contexts are characterized by four different
settings, three different designs, and two different regression functions. We now describe

these contexts in greater detail.

The four settings we consider correspond to four different combinations of the param-
eters in equation : B, v, §, and 1. In each of these four settings, we set 6 = 1 and
~ = 1. However, we vary the values of the parameters § and v, leading to four combinations
of homogeneous and heterogeneous treatment effects and homoscedastic and heteroscedas-
tic error terms. The specific configurations of parameters used in these four settings are

summarized below:

Setting (6 v 6 9 Description
I 1 1 0 0 homogeneous treatment, homoscedastic
11 1 1 1 0 heterogeneous treatment, homoscedastic
IIT 1 1 0 2 homogeneous treatment, heteroscedastic
I\Y 1 1 1 2 heterogeneous treatment, heteroscedastic

The two regression functions we consider, m(-), correspond to the functional forms
used by Frolich (2004). The first curve considered is a simple linear function. The second
curve is nonlinear and rises from around 0.7 at ¢ = 0 to 0.8 near ¢ = 0.4, where the curve
attains its peak, before declining to 0.2 at ¢ = 1. The precise equations used for these two

regression functions are summarized below:

Curve Formula Description
1 mi(q) = 0.15+ 0.7¢q Linear
2 ma(q) = 0.2+ /T —q—0.6(0.9—¢)*> Nonlinear

Finally, the three designs we consider correspond to different combinations of the pa-
rameters in equation : n and k. These parameters control degrees of overlap between
the densities of the propensity score of treated and control observations as well as different
ratios of control to treated units. The specific configurations of parameter values for n and

k are different in Sections [[TI] and [V] and are enumerated in those sections.

2®Note that we only consider DGPs in which v # 0. When v = 0, all estimators of the TOT for which
the weighting function w(j) adds up to 1 can analytically be shown to be finite sample unbiased. When
~v # 0, no easy analytical finite sample results are available, and simulation evidence is much more relevant.
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IIT Results: Benchmark Case

We begin by focusing on the case of X; distributed standard normal and u; distributed
standard CauchyP”] As we discuss in more detail below, an initial focus on this DGP allows
us to sidestep some important technical issues that arise with poor overlap in propensity
score distributions between treatment and control units. We defer discussion of these
complications until Sections [[V]and [V} The specific configurations of the parameters n and

K used in these three designs are summarized below:

Design 17 k  Treated-to-Control Ratio

A 0 0.8 1:1
B 0.8 1 2:1
C -0.8 1 1:2

An important feature of these DGPs is the behavior of the conditional density functions of
the propensity score, p(X;), conditional on treatment. Figure 3.1A displays the conditional
density of the propensity score given treatment status. This figure features prominently in

our discussion, and we henceforth refer to such a figure as an overlap plot.

The figures point to several important features of our benchmark DGPs. First, for
all three designs considered, the strict overlap assumption is satisfied. As noted by Khan
and Tamer (2007), this is a sufficient assumption for \/n-consistency of semiparametric
treatment effects estimators. Second, the ratio of the treatment density height to that for
control gives the treatment-to-control sample size ratio. From this we infer that it is more
challenging to estimate the TOT in design C than in designs A or B. Third, design A is

symmetric and estimation of the ATE is no more difficult than estimation of the TOT.

We turn next to an analysis of the results of the simulation. In Section[[TIlA we assume
that the propensity score model is correctly specified, and estimation proceeds using a
maximum likelihood Cauchy binary choice model that includes X; as the sole covariate.
In Section [[T|B we study the impact of misspecification of the propensity score model on

performance.

In both sections[[IT] A and[[T]| B, and throughout the paper, we report separate estimates
of the bias and the variance of the estimators. In addition, for each estimator we test the
hypothesis that the bias is equal to zero, and we test the hypothesis that the variance is
equal to the SEB. These choices reflect our view that it is difficult to bound the bias a

researcher would face, across the possible DGPs the researcher might confront, unless the

29Tn principle, we could have let u; follow a normal distribution with parameters selected in a manner that
they allow for good overlap. In such a case, because in the normal case the parameters that manipulate
overlap also change the ratio of treated to control observations in the designs, we would not be able to
explore designs as the ones we can study when wu; is distributed Cauchy.
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estimator is unbiased or nearly so. Bounding the bias is desirable under an objective of

minimizing the worst case scenario performance of the estimator, across possible DGPs.

A Correct Parametric Specification of Treatment Assignment

Table 3.1 examines the performance of our 14 estimators in the Normal-Cauchy model
for n = 100 and n = 500. For ease of exposition, we do not show estimates of the
bias and variance for all twenty-four contextsm Instead, we summarize these estimates
by presenting the simulated root mean square bias (RMSB) and average variance, both
overall across the twenty-four contexts and separately for the settings described in Section

11°!| There are 14 columns, one for each estimator under consideration.

Estimates of the RMSB are presented in the first and second panels of Table 3.1 for
n = 100 and n = 500, respectively. As an aid to summarizing the results, we additionally
perform F-tests of the null hypothesis that the bias is zero jointly across the twenty-four
contexts and jointly across the designs and curves in any given setting@ The value of
the F-statistic for the joint test across twenty-four contexts is reported below the setting-
specific RMSB estimates, and p-values for these F-tests are reported in bracketsﬂ The
values of the F-statistics for the setting-specific tests are suppressed in the interest of space.
For these tests, we place an asterisk next to the RMSB when the hypothesis is rejected at

the 1% significance level.

Average variances are presented in the third and fourth panels of Table 3.1 for n = 100
and n = 500, respectively. We provide a reference point for these variances using the SEB@
Below the average variances we report the percentage difference between the estimated
variance and the SEB on average across all twenty-four contexts. We also perform a F-test

of the equality of the variance estimates and the SEB, jointly across all twenty-four contexts

39As described above, a context here means a bundle of setting, design, and curve. We consider four
settings, three designs and two curves.

31In the main text, we focus on TOT and report summary tables. A series of appendix tables present
summary tables for ATE. Detailed tables for both TOT and ATE, as well as Stata data sets containing all
of the replication results, are available at http://www.econ.berkeley.edu/~jmccrary.

32Practically, these tests are implemented as Wald tests using a feasible generalized least squares model
for the 240,000 replications less their (context-specific) target parameters. To keep the power of these tests
constant across sample sizes, we keep nR constant at one million, where R is the number of replications.
This implies 10,000 replications for n = 100 and 2,000 replications for n = 500. This also spares significant
computational expense.

33Logical equivalence of null hypotheses implies that these F-tests can be viewed as (i) testing that all
twenty-four biases are zero, (ii) testing that all four setting-specific RMSB are zero, or (iii) testing that the
overall RMSB is zero.

34Table 3.A6 presents the SEB for each of the twenty-four contexts in question and contrasts this semi-
parametric bound with the parametric Cramér-Rao bound. Details of these computations are provided in
Appendix II. Because the overlap is generally good in the Normal-Cauchy model, the SEB is only 8% higher
than the Cramér-Rao bound on average across contexts and never more than 28% higher. Note that the
variances reported in Table 3.1 for n = 100 are to be compared to 10x.SEB (10x SEB = 1000x (SEB/100))
and for n = 500 are to be compared to 2 x SEB.
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and separately for each settingﬁ The F-statistic for the joint test across all twenty-four
contexts is presented below the average percent discrepancy between the variances and the
SEBs. For the setting-specific test, we suppress the value of the statistic in the interest
of space. For these tests, we place an asterisk next to the average variance when the

hypothesis is rejected at the 1% significance level.

We turn now to a discussion of the results, beginning with the evidence on bias for
n = 100. The results suggest several important conclusions. First, the pair matching,
reweighting, double robust, and control function estimators are all approximately unbiased.
Of these, IPW1 and IPW2 are probably the least biased, performing even better than pair
matching. Double robust seems to acquire slightly greater bias in settings with treatment
effect heterogeneity, whereas the other unbiased estimators acquire slightly less. The F-
statistics reject the null of zero bias at the 5% level of significance for all estimators except
IPW1, IPW2, and control function. Second, all matching estimators that rely upon tuning
parameters are noticeably biased. We suspect that this is due to the difficulty of accurate
estimation of nonparametric tuning parameters@ Of these estimators, ridge matching

performs best, particularly when the Epanechnikov kernel is used.

For n = 500, pair matching, reweighting, double robust and control function remain
approximately unbiased. In terms of bias, these estimators perform remarkably similarly
for this sample size.  For the more complicated matching estimators, we see reduced
bias in all cases as expected, and local linear and ridge matching become competitive with
reweighting with the larger sample size. Although we can still reject the null of no bias,
blocking becomes much less biased. The bias of nearest-neighbor and kernel matching

remains high in all settings.

When analyzing the performance within settings (see appendix tables) we observe sim-
ilar patterns of relative performance. First, reweighting, double robust, and control func-
tion estimators are all unbiased regardless of the shape of the overlap plots and regardless
of the ratio of treated to control observations. Second, treatment effect heterogeneity,
homoscedasticity, and nonlinearity of the regression response function all affect relative

performance negligibly.

We next discuss the variance results, presented in the bottom half of Table 3.1. These

results reveal several important findings. First, pair matching presents the largest variance

35Practically, these tests are implemented as Wald tests using a generalized least squares model for
the twenty-four estimated variances less their (context-specific) SEB. The variance of the variance can be
approximated quite accurately under an auxiliary assumption that the estimates of the TOT are distributed
normally. In that case, the variance of the variance is approximately ZVQ/(R — 1), where V is the sample
variance itself and R is the number of replications. See Wishart (1928) and Muirhead (2005, Chapter 3).

36Loader (1999) reports that the rates of convergence of cross validation is O, (nil/lo) which could explain
the bad performance of these estimators in small samples. See also, Galdo and Black (2007) for further
discussion on alternative cross-validation methods.
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of all the estimators under consideration in all four settings, for both n = 100 and n = 500.
Second, for n = 100, IPW2, IPW3 and double robust have the lowest variance among
unbiased estimators. Once n = 500, the SEB is essentially attained by all of the unbiased
estimators except for pair matching. Compared to the SEB, IPW3 has on average a
variance for n = 100 that is 3.5% in excess, IPW2 a variance that is 4% in excess, and
double robust a variance that is 6.4% in excess. Once n = 500, these percentages decline
to 1%, 1.2%, and 1.4%, respectivelyP’| Third, among the biased estimators, those with
highest bias (nearest-neighbor and kernel matching) are the ones that present the lowest
variance. On average the variance of these estimators is below the SEB. This suggests that
if these estimators are asymptotically efficient, then they have a variance which approaches
the SEB from below. This conjecture is particularly plausible since local linear and ridge
matching, the least biased among the matching estimators, exhibit variance similar to that

of the reweighting estimators.

In sum, our analysis indicates that when good overlap is present and misspecification is
not a concern, there is little reason to use an estimator other than IPW2 or perhaps IPW3.
These estimators are trivial to program, typically requiring 3 lines of computer code, appear
to be subject to minimal bias, and are minimal variance among approximately unbiased

estimators.

B Incorrect Specification of Treatment Assignment

We investigate two different types of misspecification of the propensity score. First, we
assume that p (X;) = F (9 + £X;) when in fact the true DGP is p (X;) = F(n+ rX1; + Xo;
+X3;) where X; follows a standard normal distribution and F'(-) is a Cauchy distribution.
We call this a misspecification in terms of covariates, X;. This kind of misspecification
occurs when the researcher fails to include all confounding variables in the propensity
score model. Second, we proceed with estimation as if p (X;) = F (n + xX;) when in fact
the true DGP is p (X;) = F (n+ kX;). In particular, we keep F'(-) as the distribution
function for the standard Cauchy, but estimate the propensity score with a probit—that
is, we assume that p(X;) = ®(n + kX;). We call this a misspecification in terms of the

treatment equation residual, u;.

Results of these investigations are displayed in Table 3.2. The structure of this table
is similar to that of Table 3.1. Table 3.2 presents the RMSB and average variance for the

37 Although IPW1 does notably worse in terms of variance than IPW2, its performance is not as bad
as has been reported in other studies. For instance, Frolich (2004) reports that in a homoscedastic and
homogeneous setting IPW1 has an MSE that is between 150% and 1518% higher than that of pair-matching.
The good performance of IPW1 documented in Table 3.1 is due to the fact that, in the Normal-Cauchy
model, there is a vanishingly small probability of having an observation with a propensity score close to 1.
It is propensity scores near 1 that generate extreme weights, and it is extreme weights that lead to large
variance of weighted means.
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14 estimators in a sample size of 100 under the two types of misspecifications. Covariate
misspecification is treated in panels 1 and 3, and distributional misspecification is treated

in panels 2 and 4.

The first panel shows that covariate misspecification leads every estimator to become
biased in every setting. This is expected and emphasizes the central role of the assumption
of selection on observed variables. Unless the unexplained variation in treatment status
resembles experimental variation, treatment effects estimators cannot be expected to pro-
duce meaningful estimates. These estimators may continue to play a role as descriptive
tools, however. The third panel shows that the average variances are always below the SEB,
typically by 20% to 30%. Thus, the exclusion of relevant covariates from the propensity

score model may lead to precise estimates of the wrong parameter.

We turn next to the results on distributional misspecification, where the DGP continues
to have a Cauchy residual on the treatment assignment equation, but the researcher uses a
probit model for treatment. The second panel presents results for the bias in this case. In
this situation, only pair matching and control function remain unbiased. Double robust is
approximately unbiased only in settings of homogeneous treatment effects. The reweighting
estimators become biased but are always less biased than the matching estimators. The
fourth panel shows that none of the estimators achieve the SEB. Unfortunately, the most
robust estimators to misspecification of the propensity score, that is pair matching and
control function, are the ones with the largest variance. Ridge matching and IPW3 are
closest to the SEB, differing only by 4% to 6%.

IV  Problems with Propensity Scores Near Boundaries

The model given in equations (3.10]) to assumes selection on observed variables.
As has been noted by many authors, selection on observed variables is a strong assumption.
It is plausible in settings where treatment is randomized conditional on the function of the
X, given in . However, it may not be plausible otherwise@ We feel that practitioners

appreciate the importance of this assumption.

However, perhaps less widely appreciated than the importance of the selection on ob-
served variables assumption is the importance of overlap assumptions. As emphasized by
Khan and Tamer (2007), the model outlined in equations (3.10) to (3.12)—while quite
general and encompassing all of the existing simulation evidence on performance of es-

timators for ATE and TOT under unconfoundedness of treatment—does not necessarily

38We have emphasized the strength of this assumption by writing the selection on observed variables
assumption differently than is typical in the literature (see Section [} cf., Imbens (2004)).
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admit a /n-consistent semiparametric estimator for ATE or TOT. In particular, the stan-
dard overlap assumption that 0 < p(X;) < 1 is not sufficient to guarantee /n-consistency,
whereas the strict overlap assumption that £ < p(X;) < 1 — ¢ for some £ > 0 is. However,
the strict overlap assumption can be violated by the model in equations (3.10) to (3.12)).
For example, Khan and Tamer (2007) note that y/n-consistency is violated in the special
case of X; and w; both distributed standard normal, with n = 0 and x = 1. The following

proposition sharpens this important result.

Proposition 3.1. Under the model specified in equations to , with X; and
u; distributed standard normal, boundedness of the conditional variance of e; given X,
and boundedness of the function m(-), \/n-consistent semiparametric estimators for ATE
and TOT are available when —1 < k < 1. For |k| > 1, no \/n-consistent semiparametric

estimator can exist.

The proof of this result is tedious but elementary and uses bounds on the distribution
function of the standard normal distribution to bound the integral directly. We do not
include it here, because it is redundant with the integral bounds used to derive the SEB

when it is finite. These are given in Appendix II@

Intuitively, when s grows is magnitude an increasing mass of observations have propen-
sity scores near 0 and 1, leading to fewer and fewer comparable observations. This leads to
an effective sample size that is smaller than n, and the discrepancy between the effective
sample size and n grows smoothly with . This is important, because it implies potentially
poor finite sample properties of semiparametric estimators, in contexts where k is near 1.

This is confirmed by the simulation results presented in Section [V] below.

Assuming both X; and u; are distributed continuous, the extent to which the propensity
score fluctuates near 0 and 1 is given by the functional form of the density of the propensity

(3.15) fuxo@) = 159 ((F7@) =) /) /1070

where F(-) and f(-) are the distribution and density functions, respectively, for u;, and

g(+) is the density function for Xi@ For q near one (zero), F~1(q) is of extremely large

39Formally, the results of the Proposition follow because semiparametric estimators with y/n-consistency
are only available in situations in which the SEB is finite. The functional form of these bounds, given in
Section[[[E} involves terms akin to the expectation of the inverse of p(X;) (for ATE) and the expectation of
the inverse of 1 —p(X;) (for both ATE and TOT). For k = 1, the density of the propensity scores is uniform
on [0, 1], and for larger values of k, the density of the propensity scores becomes an upward-facing parabola.
The fact that the density has positive height at 0 and 1 implies immediately that the expectations of the
inverse of p(X;) and of 1 — p(X;) are infinite. The only difficult aspect of the proof of the Proposition is to
show that these expectations are in fact finite whenever the height of the density at 0 and 1 is zero.

40The equation in the display also holds when X; is a vector. In that case, the density of a linear
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magnitude and positive (negative) sign. Thus, the functional form given makes it clear that
when 1 and k take on modest values, the density of p(X;) is expected to be zero at one
(zero) when the positive (negative) tail of f(-), the density for the residual, is fatter than
that of g(-), the density for the covariate. When the tails of the density for the residual
are too thin relative to those of the covariate, the density of p(X;) near zero can take on
positive values, in which case the SEB is guaranteed to be infinite and \/n-consistency is

lost.

This is a useful insight, because the behavior of the propensity score density near the
boundary can be inferred from data. In fact, many economists already analyze density esti-
mates for the estimated propensity score, separately by treatment status (see, for example,
Figure 3.1 of Black and Smith (2004)). As discussed above, we refer to this graphical dis-
play as an overlap plot. The unconditional density function is simply a weighted average
of the two densities presented in an overlap plot. Thus, the behavior of the unconditional
density near the boundaries can be informally assessed using a graphical analysis that is
already standard in the empirical literatureﬂ When the overlap plot shows no mass near
the corners, semiparametric estimators enjoy /n-consistency. When the overlap plot shows
strictly positive height of the density functions at 0 (for ATE) or 1 (for ATE or TOT), no
\/n-consistent semiparametric estimator exists. In the intermediate case, where the overlap
plot shows some mass near the corners, but where the height of the density at 0 or 1 is

nonetheless zero, y/n-consistent estimators may or may not be available@

To appreciate the problems with applying standard asymptotics to the semiparametric
estimators studied here in situations with propensity scores near the boundaries, we turn
now to a sequence of DGPs indexed by x and inspired by the Proposition. Let the DGP
be given by equations to , with Xj;, e;, and wu; each distributed mutually
independent and standard normal, with v = § = ¢ = n = 0, with  ranging from 0.25 to
1.75. This DGP has homogeneous treatment effects, homoscedastic residuals of variance

1, and probability of treatment equal to 0.5.

For this DGP, v = 0 and IWP2 for TOT is finite sample unbiased, but inefficient.

The efficient estimator is the coefficient on treatment in a regression of the outcome on

combination of the vector X; plays the role of the scalar X; considered here. Suppose the linear combination
has distribution function G(-) and density function g(-). Then the density for the propensity score is as is
given in the display, with k = 1. Note as well that the density of the propensity score among the treated
and control is given by fy(x,)m=1(9) = L fp(x,)(q) and fy(x,)mi=0(q) = %fp(xi)(q), respectively.

41Because the behavior of the density at the boundaries is the object of primary interest, it is best to
avoid standard kernel density routines in favor of histograms or local linear density estimation (see McCrary
(2008) for references).

42 As the proposition above clarifies, /n-consistency is available, despite mass near the corners, when the
covariate and treatment equation residuals are distributed standard normal. It is not yet known whether
V/n-consistency is always attainable when there is mass near the corners, but zero height to the density
function of p(X;) in the corners.
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a constant and the treatment indicator. It is thus easy to show that the Cramér-Rao
bound is 4, regardless of the value of k. When the SEB is close to the Cramér-Rao
bound, there is little cost to using a semiparametric estimator. When there is quite good
overlap, such as k = 0.25, the SEB is in fact scarcely larger than 4 and there is little
cost associated with avoiding parametric assumptions on the outcome equation. However,
as problems with overlap worsen, the discrepancy between the SEB and the Cramér-Rao
bound diverges. The cost of avoiding parametric assumptions on the outcome equation

thus becomes prohibitive as x increases in magnitude.

To convey a sense of the way in which an infinite SEB would manifest itself in an
actual data set, Figure 3.2 shows the evolution of the overlap plot as s increases. When
k = 1, the conditional densities are straight lines akin to a supply-demand graph from an
undergraduate textbook. For k < 1, the values of the conditional densities at the corners
are zero. For k > 1, the values of the conditional densities at the corners are positive and

grow in height as k increases.

Applying standard asymptotics to this sequence of DGPs suggests that, for k < 1,

IPW2 and pair matching estimates of the TOT have normalized large sample variances of

11 p(X;)? ]
3.16 nVj = —+-F |: > 4,
S8 Wz =P - %)
(3.17) nVpy = nVIpW2+2 <1+pE |:1—p(Xi)]> >4+2.

The variance expressions are close to 4 and 4+3/2 for moderate values of £ but are much
larger for large values of n@ Indeed, the Proposition implies that both nVipy o and nVpys
diverge as x approaches 1@

We next examine the accuracy of these large sample predictions by estimating the
variance of IPW2 and pair matching for each value of I{,E Figure 3.3 presents the estimated
standard deviation of these estimators as a function of x and show that the quality of
the large sample predictions depends powerfully on the value of n@ For example, for
K below 0.7, the large sample predicted variances are generally accurate, particularly for
IPW2. However, for k = 0.9, the large sample predicted variances are markedly above the
empirical variances for both estimators and the discrepancy grows rapidly as k approaches
1, with the large sample variances diverging despite modest empirical variances. Roughly
speaking, viewed as a function of x, the standard deviations of IPW2 and pair matching

are both linear to the right of x = 0.7, with different slopes. The pattern of the variances

43The inequalities follow from Jensen’s inequality and from the fact that p = 0.5 for these DGPs.

44he percent increase of nVpas over nVipwa is between 37.5 percent (when x = 0) and 25 percent (when
x approaches 1) and declines monotonically in the magnitude of .

45We use 2,000 replications.

46Interestingly, large sample predictions appear much more accurate for IPW2 than for pair matching.
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is consistent with what would be expected if the variance of pair matching and IPW2 were
proportional to the inverse of n* 2% with possibly different coefficients ¢; and cp for the
two estimators. Under this functional form restriction on the variances, it is possible to
estimate ¢; and cy using regression. Define Y, as ln(f/loo / V500) / In(5) for g = 1 and as
ln(V500 / Vmgo) / In(2) for g = 2, where V,, is the estimated variance for sample size n. Then
note that under the functional form restriction on the variances, Yy, ~ ¢1 + cax. Thus, a
simple method for estimating ¢; and ¢y is a regression of Yy, on a constant and f@@ For
both IPW2 and pair matching, we have 26 observations on Y., 13 for ¢ = 1 and 13 for

= 2. For IPW2, the regression described has an R-squared of 0.93 and constant and
slope coefficients (standard errors) of 1.19 (0.02) and -0.39 (0.02), respectively. For pair
matching, the R-squared is 0.94 and the constant and slope coefficients (standard errors)
are 1.15 (0.02) and -0.33 (0.02), respectively. We report these results not because we believe
that the scaling on the variance is of the form n* 2% but to emphasize our sense that the

correct scaling is a smooth function of /@@

These results create a strong impression that the asymptotic sequences used in the large
sample literature may be accurate in settings of good overlap, but are likely inaccurate in
settings of poor overlap. The performance of these two estimators does not seem to degrade
discontinuously when k exceeds one, but rather seems to degrade smoothly as x approaches

one.

Failure to satisfy the strict overlap assumption can also lead to bias in semiparametric
estimators. The sign and magnitude of the bias will be difficult to infer in empirical work.
Consider again the model in equations (3.10]) to (3.12)), with n = 0, f =1, v = 0, and
m(q) = q. In this DGP, when § = 0, IPW2 for ATE is finite sample unbiased regardless of
the value of k. When § = 1, the treatment effect is positively correlated with the propensity
score and [IPW2 for ATE may be biased. Similarly, when § = —1, the treatment effect is
negatively correlated with the propensity score and IPW2 for ATE may be biased.

Figure 3.4 shows the bias of IPW2 for ATE as a function of k for § = 0, § = 1, and
6 = —1. The figure confirms that when § = 0, large values of x do not compromise the
unbiasedness of IPW2. However, when ¢ # 0, large values of k lead to bias. Importantly,

when overlap is good, IPW2 is unbiased regardless of the value of §.

4"Weights improve power since the outcome is more variable for ¢ = 2 than for g = 1. In particular,
the delta method and Wishart approximations suggest that the standard deviation of the outcome is
approximately /4/2000/ In(5) for g = 1 and /4/2000/ In(2) for g = 2.

“®However, it is interesting to note that these regressions can be viewed as minimum chi-square estimates
(Ruud 2000). This approach allows for a statistical test of the functional form restriction that the variances
are proportional to the inverse of n“1 72", The test takes the form of the minimized quadratic form, or
in this case the (weighted) sum of squared residuals. The test statistic is distributed chi-square with 24
degrees of freedom. For IPW2, this test statistic is 28.4 and for pair matching it is 20.5 (95 percent critical
value 36.4).
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V Results: Boundary Problems

In order to focus attention on how the estimators perform when the strict overlap
condition is close to being violated, we turn now to an analysis of a DGP that is a minor
modification of that described in Section[[TI] above. Instead of generating u; as independent
draws from the standard Cauchy distribution, we generate u; as independent draws from
the standard normal distribution. We manipulate the parameters n and « in the treatment
equation to mimic three designs from the influential study of Frélich (2004). These

parameters are summarized below:

Design 17 x  Treated-to-Control Ratio

A 0 0.95 1:1
B 03 -0.8 3:2
C -0.3 08 2:3

Figure 3.1B shows the overlap plot implied by these designs. Each of these designs is
consistent with standard overlap, but none are consistent with strict overlap. This figure
shows that having many control observations per treated observations does not imply the
validity of the strict overlap condition. For example, design A is closer to violating the
strict overlap assumption than design C is, even though the ratio of treated to control

observation is higher in the former than in the latter.

A Simulation Results with Boundary Problems

In Table 3.3 we explore estimator performance in DGPs that are close to violating the
strict overlap condition. The structure of the table is identical to that of Table 3.1, but the
DGPs correspond to the Normal-Normal model, rather than the Normal-Cauchy model.

The results in the table support several conclusions. First, when n = 100, nearly all
estimators are biased in all settings. The exceptions are the control function and double
robust estimators in homogeneous treatment effect settings. These two estimators impose
parametric assumptions on the outcome equation. This allows for extrapolation from
the region of common support to the region over which there are treated observations
but no controls. Second, although reweighting estimators are biased with n = 100, they
become unbiased when n = 500. This raises the possibility that, for a good finite sample
performance, a larger sample size is required for DGPs with poor overlap that is nonetheless
technically sufficient to guarantee \/n-consistency. Third, aside from pair matching, the
magnitude of the bias of matching estimators is between two and five times that of the
reweighting estimators, and they remain biased even for n = 500. Pair matching is biased
for n = 100 and nearly unbiased for n = 500@ The third and fourth panel show that

49The sign of the bias of the TOT depends on the shape of the outcome equation. An outcome equation
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the variance of all estimators is much higher than in the case in which we satisfy the
strict overlap assumption, even though none of the designs imply an infinite SEB. For all
estimators we reject the null that the variance equals the SEB in every setting. Contrary
to the case of strict overlap analyzed in the preceding section, this holds true for both

n = 100 and n = 500. The variance of all the estimators is on average below the SEB.

In sum, in settings of poor overlap, semiparametric estimators of average treatment
effects do not perform well for n = 100. Once n = 500, the pair matching, reweighting,
double robust, and control function estimators show acceptable bias, but only IPW1 has
bias small enough that we fail to reject the null of zero bias. The variance of semiparametric
estimators is hard to assess in settings of poor overlap, since neither the SEB nor other
large sample approximations form acceptable benchmarks. However, considering both bias
and variance and performance for n = 100 and n = 500, the best estimators in settings
with poor overlap appear to be IPW2, IPW3, and double robust.

B Trimming

In many empirical applications, researchers encounter a subset of observations whose
propensity scores do not have common support. Such a finding is expected when the strict
overlap condition is violated, although it can also occur in finite samples when strict over-
lap is satisfied in the population. Confronted by lack of common support, many researchers
resort to trimming rules. These sample selection rules involve dropping individuals from
the treatment group who have no counterparts in the control group with similar propensity
scores (for T OT)E Trimming aims at ensuring validity of the common support assump-
tion in the subset of observations that are not trimmed. See Heckman, Ichimura and Todd
(1998a), Smith and Todd (2005), and Crump, Hotz, Imbens and Mitnik (2007a) for dis-
cussion. There are several trimming methods that have been proposed in the literature.

Little is known about their effect on the performance of semiparametric estimators.

As noted by Heckman et al. (1998a), reweighting and matching at best correct for bias
for the subsample of individuals whose propensity scores have common support. For this
reason, trimming is only expected to work in situations of treatment effect homogeneity,
simply because the treatment effect can be estimated anywhere on the support of the
propensity score. Dropping observations will make the estimator more inefficient but the

bias is expected to decrease because we will be estimating the counterfactual mean only in

that is increasing (decreasing) in the propensity score like curve 1 (curve 2) implies that the bias will be
more positive (negative) the closer we are to violating the strict overlap condition because we have too
many treated observations and too few controls at the right end of the distribution of the propensity score
(see appendix). The bias is not related to the overall ratio of treated per controls units in the sample. The
bias of all the estimators tends to be of the same order of magnitude in the three designs.

59Trimming in the case of estimation of the ATE is similar, but individuals from both the treatment and
the control group are deleted.
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regions in which both treated and control units are available. However, if the treatment
effect is heterogeneous, and more importantly, if the heterogeneity occurs precisely in the
part of the support for which we do not have both treated and control observations, then
trimming will not be a solutionﬂ In those type of situations the researcher might need
to redefine the estimand (see Crump et al. 2006) paying a cost in terms of having a result
with less external validity or resort to fully parametric models—which will typically only

be effective if the full parametric model is correctly specified.

We analyze the effectiveness of the four trimming rules reviewed in Crump et al. (2006):

1. Let DATE — 1(a < p(X;) < b) and DTOT = 1(p(X;) < b) setting b to be the kth
largest propensity score in the control group and @ to be the kth smallest propensity
score in the treatment group. Then we compute the estimators on the subsample for
which D;FOT =1 (or DfTE = 1). This rule was proposed by Dehejia and Wahba
(1999).

2. Heckman et al. (1996, 1998) and Heckman, Ichimura, Smith and Todd (1998) propose
discarding observations for which the conditional density of the propensity score is
below some threshold. Let Dy; (¢) = l(fp(X )Ti=o < ¢) and Dy; (c) = 1(fp(X =1 <

¢ ) where ¢ is a tuning parameter, and fp( x;)|T;=1 and fp X;)|T;=0 are kernel density
estimates (with Silverman’s rule as a bandwidth selector). Then following Smith and
Todd (2005), fix a quantile ¢ = 0.02 and consider the J observations with positive
densities fp(X )|T,=1 and fp )|T,—0- Rank all the values of fp )\T=1 and fp DIT=0
and drop units with a densfcy less than or equal to cg, where cq is the largest real
number such that 55 7 [Doi (¢q) + Dui (¢cq)] < q for the ATE. For the TOT we can

proceed in a similar fashion but only using f5x,) =1

3. Ho, Imai, King and Stuart (2007) define the common support region as the convex
hull of the propensity scores used by pair matching.

4. Finally, Crump et al. (2007a) propose discarding all units with an estimated propen-
sity score outside the interval [0.1,0.9] for the ATE and [0, 0.9] for the TOT.

In Table 3.4 we study whether, in a DGP that is close to violating the strict overlap
assumption, trimming succeeds in reducing the bias. As expected, the double robust and
control function estimators stay unbiased in homogeneous settings, but trimming increases
the bias of those estimators in heterogeneous settings. Trimming rules 1 and 4 seem to lead
to unbiasedness of reweighting and pair matching in settings with a homogeneous treatment
effect. These rules also reduce the bias of all the matching estimators. Trimming rule 3
only works with pair matching and to a lesser extent with ridge matching. Trimming rule
2 does not seem to work with n = 100. This may not be surprising since this rule requires

estimating the conditional density of the propensity score with very few observations.

51 An alternative to trimming is to compute bounds for the treatment effects. This possibility was advo-
cated by Lechner (2001) in the context of matching estimators of treatment effects.
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In Table 3.5 we present the effect of trimming on the variance of the estimators. Rules
1 and 4 reduce the variance of IPW estimators and of local linear and ridge matching.
Surprisingly, the variance of the other matching estimators seem to be basically unaffected

by any of the trimming rules.

VI Reconciliation with Previous Literature

Previous literature has analyzed the finite sample properties of semiparametric estima-
tors of treatment effects in situations with homogeneous treatment effects and homoscedas-
tic outcome error terms. Frolich (2004) compares the finite sample performance of several
matching estimators based on the propensity score and the IPW1 estimator, in simula-
tion settings that highlight the interactions between the non-linearities of the outcome
equation and different degrees of overlapping density mass between treated and control
observations. Zhao (2004) contrasts the performance of propensity score matching and
covariate matching methods using a simulation study that varies the degree of selection
on observed variables and the correlation between covariates, the outcome and the treat-
ment indicator. Lunceford and Davidian (2004) compare reweighting, double robust and
blocking estimators via a simulation analysis that assesses the effect of different degrees of
correlation between regressors in the outcome and treatment equation, emphasizing situa-
tions in which there is misspecification of various types. Finally, Freedman and Berk (n.d.)
study the costs and benefits of using a semiparametric estimator such as double robust
rather than fully parametric estimators. Some of our conclusions are at odds with findings

in this previous literature.

Frolich (2004) is the most similar to the present work in terms of the estimators con-
sidered and the simulation studies performed. The study reaches the conclusion that ridge
matching is often the estimator with smallest MSE. As we showed in sections IV and VI,
ridge matching does relatively well, especially among the matching estimators, in terms of
variance but was only unbiased in a situation with good overlap and for a moderate sample
size of 500 observations. A surprising conclusion of Frolich is that reweighting estimators
perform very poorly, usually presenting a larger MSE than pair matching. Even more
surprising is that the relative MSE of reweighting does not decline with the sample size in
Frolich’s DGPs.

Several differences between Frolich and this study account for the discrepancies in the
conclusions. First, Frolich only considers the performance of IPW1. As noted above, in
many DGPs IPW1 is substantially more variable than IPW2 and IPW3. Second, Frélich
computes all estimators using the true propensity score instead of the estimated propensity
score. As noted by Hirano et al. (2003), reweighting performs better when the estimated

propensity score is used. Third, Frolich’s study evaluates estimators by how well they
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perform in estimation of a non—standard estimand: the counterfactual mean outcome for
the control group, as opposed to the TOT or the ATE, which would be more conventional
estimands of interest@ However, the most important difference between our study and
Frolich is that Frolich’s DGPs violate the strict overlap condition and are quite close to
exhibiting an infinite SEB. As we have shown, in such a setting nearly all semiparametric
estimators acquire difficulties with bias, and MSE may not be the best metric for perfor-
mance. In particular, our own simulation evidence suggests that in situations with poor
overlap, the most biased estimators are also the least variable. For example, in the Normal-
Normal model for both n = 100 and n = 500 and for all four settings, kth nearest-neighbor

matching exhibits both the worst bias and the best variance of any estimator (Table 3.3).

Figure 3.5 presents overlap plots for the finite sample papers reviewed above. The figure
is to be compared to Figure 3.2, which shows the evolution of the conditional densities of
the propensity score as we increase x in our Normal-Normal model. The design of Frolich
displayed in Figure 3.5 is quite similar to that of the Normal-Normal model when n = 0
and k = 0.9. As noted above, although the SEB is technically speaking finite, this is a
situation in which strict overlap is violated and asymptotic approximations may be poor.
This is confirmed by our own simulation results. For the Normal-Normal model, IPW1
and pair matching exhibit similar bias, but IPW1 has notably higher variance. In a MSE
metric, pair matching is superior to IPW1 for these DGPs, for both n = 100 and n = 500.

Failure of strict overlap is also characteristic of the DGPs studied by Zhao. Figure 3.5
displays the conditional densities of the propensity score for the first of the DGPs he uses
in his simulation study. Inspection of the figure indicates an extraordinarily serious failure
of strict overlap. In this DGP, it is further true that the SEB is infinite: Zhao’s DGP is
the same as our Normal-Normal model (discussed in Section with k£ = 2.8. That the
SEB is infinite thus follows from the Proposition of Section [[V]

We turn next to the analyses of Lunceford and Davidian (2004) and Freedman and Berk
(n.d.). Lunceford and Davidian focus on the performance of reweighting and double robust
estimators for ATE. One of their principal conclusions is that a double robust estimator
performs well in a broader class of DGPs than IPW estimators. Freedman and Berk
also consider a variant of the double robust estimator, but focus on the comparison with
parametric OLS models, which are of course best in the sense of being minimum variance
among unbiased estimators. Perhaps influenced by this hopeful benchmark, Freedman and
Berk express reservations about the utility of reweighting estimators of average treatment

effects.

Figure 3.5 displays a representative overlap plot for the DGPs used by Lunceford and
Davidian and Freedman and Berk. The figure reveals that the DGPs studied by Lunceford

2This tends to amplify MSE differences, since MSE(f) = MSE(E[Yi(0)|T; = 1]) + V(Y1).

91



and Davidian and Freedman and Berk are similar to those of Frolich and Zhao in that
they violate strict overlap. Indeed, the displayed DGP of Freedman and Berk is further
associated with an infinite SEB. We disagree with Freedman and Berk’s characterization
of this DGP as “favorable to weighting”. In DGPs of the type studied by Freedman and
Berk, none of the semiparametric estimators studied here will be effective. We find uncon-
troversial the overarching point of Freedman and Berk that (correctly specified) parametric

models outperform semiparametric estimators.

One further aspect deserves mention in understanding the findings here and in Lunce-
ford and Davidian (2004) and Freedman and Berk (n.d.). To fix ideas, consider DGPs
where the outcome equation is linear in the propensity score. In this case, the critique of
weighting in Freedman and Berk (n.d.) corresponds closely to what Deaton (1997) has re-
ferred to as “the econometric critique of weighting.” Deaton is interested in OLS estimation
of a parametric relationship between the outcome and a set of covariates, where there are
departures from pure random sampling, such as cluster sampling. Specifically he considers
the case where Y; = X;3 + ¢; under the usual ideal conditions that deliver consistency
of OLS. In the case of stratified or cluster sampling, simple OLS regression continues to
have desirable properties. Weighted OLS regression, where the weights reflect, say, the
probability of being included in the sample continue to yield consistent estimates of 3, but
are merely less efficient than the unweighted estimator, a conclusion consistent with the
conclusion in Freedman and Berk (n.d.) that “weighting is likely to increase random error

in the estimates.”

Now consider the case where there is some limited heterogeneity in (. In particular,
suppose that Y;; = X;s0s +€;5, where the effect of the covariate on the outcome is no longer
fixed but differs by stratum, s. OLS will no longer be consistent for the stratum weighted
average of (s regardless of whether or not weights are used in the regressionﬂ(}iven his
context, Deaton suggests that the weighted regression might be used in a formal or informal
specification test — the weighted and unweighted regression estimates should be “close”

under the null that § is the same for each strata.

These points can be seen most clearly in the following simple example. Let ¢;, v;, and
u; be standard normal. Define X; = x X u; and consider the following DGP, for a sample

size N = 100, which is a simplified version of the one we have studied above (equations

to E12)

TF=Xi4+v; T, =1(T>0); V=T, + X; +¢.

As before different values of 0 < k < 1 correspond to cases of strict overlap. In this

53A consistent estimator of the strata weighted coefficient can be obtained by performing separate re-
gressions for each stratum and then appropriately weighting the estimated coefficients.
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context, three estimators considered by Lunceford and Davidian (2004) and Freedman and
Berk (n.d.) are OLS (of the correctly) specified model, double robust, and IPW2 where: (i)
OLS is just the simple unweighted regression of the outcome on 7" and X; (ii) double robust
is a weighted regression of the outcome on 7" and X where 1/p and 1/(1—p) are the weights
for treated and untreated observations, respectively and p is the predicted probability of
treatment from a simple probit of 7' on X ﬂ(iii) and IPW2 is identical to double robust
except that it requires a different weighted regression, using the same outcome variable

and weights but dropping the covariate.

When strict overlap is satisfied and the treatment effect is homogenous, all three es-
timators are consistent for ATE and in each case the variance of the estimator depends
on the value of k. Figure 3.6 displays the standard deviation of the three estimators for
various values of x that resulted from a simulation of the above DGP with 20,000 replica-
tions. Consistent with the findings of Lunceford and Davidian (2004) and Freedman and
Berk (n.d.), the double robust estimator outperforms IPW2 and correctly specified OLS

outperforms both. We take away a couple of key points from this demonstration:

1. The extent of the superior performance of double robust relative to IPW depends
crucially on k. Higher values of k are associated with worse performance of all

estimators, with the degradation in IPW2 being the most severe.

2. Consistent with the analysis in Freedman and Berk (n.d.) and Lunceford and Da-
vidian (2004), however, it is also the case that weighting regressions merely “adds

noise” to the estimate when the parametric model is correctly specified.

3. It is important to stress that these results refer only to the variance of the estimator
and only when strict overlap is satisfied. All three estimators are consistent. For
values of kK > 1 the IPW2 estimator is not properly identified. When x = 2 for
example, the mean value of the IPW estimates in 20,000 simulations was fully 100%

large than its true value.

VII Conclusion

In this paper, we assess the finite sample properties of semiparametric estimators of
treatment effects using simulated cross-sectional data sets of size 100 and 500. The esti-
mators we consider are semiparametric in the sense that only the treatment assignment
process is parametrically modeled. This perspective on estimation encompasses several

popular approaches including reweighting, double robust, control function, and matching,

54Previously we implemented the double robust estimator by including the propensity score instead of
the covariate X. We do it this way here for ease of exposition.
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but rules out maximum likelihood estimation and estimators based on parametric assump-
tions on the relationship between the outcome of interest and predicting variables. The

semiparametric estimators we consider are popular in the empirical literature.

The simulation evidence suggests that when there is good overlap in the distribution
of propensity scores for treatment and control units, reweighting estimators are preferred
on bias grounds and attain the semiparametric efficiency bound, even for samples of size
100. The double robust estimator can be thought of as regression adjusted reweighting and
performs slightly worse than reweighting when there is good overlap, but slightly better
when there is poor overlap. Control function estimators perform well only for samples
of size 500. Matching estimators perform worse than reweighting if preferences over bias
and variance are lexicographic and if good performance for n = 100 is required. If there
is enough data, then local linear or ridge matching may be competitive with reweighting.
The difficulty of the more complicated matching estimators is potentially related to the

difficulty of accurate finite sample selection of tuning parametersﬂ

When overlap in the distribution of propensity scores for treatment and control units
is close to failing, the semiparametric estimators studied here do not perform well. This
difficulty can be inferred from the available large sample results in the literature (Hirano et
al. 2003, Abadie and Imbens 2006, Khan and Tamer 2007). We also show that the standard
asymptotic arguments used in the large sample literature provide poor approximations to
finite sample performance in cases of near failure of overlap. However, our qualitative
conclusion is the same as that reached by Khan and Tamer (2007), who note that the
semiparametric estimators considered here are on a sound footing only when there is strict

overlap in the distribution of propensity scores (see Section II).

In empirical applications, economists confronting problems with overlap often resort
to trimming schemes, in which some of the data are discarded after estimation of the
propensity score. We simulate the performance of the estimators studied in conjunction
with four trimming rules discussed in the literature. None of these procedures yield good
performance unless there is homogeneity in treatment effects along the dimension of the

propensity score.

What is then to be done in empirical work in which problems with overlap are sus-

pected? First, to assess the quality of overlap, we recommend a careful examination of

551f preferences over bias and variance are not lexicographic, then some of the biased matching estimators
may be preferred to reweighting. We caution, however, that the data generating processes we consider may
not represent those facing the economist in empirical applications. In empirical applications, the bias
could be of lesser, or greater, magnitude than suggested here, in which case the economist’s preference
ranking over estimators could be different than that suggested by a literal interpretation of the simulation
evidence. Our own preferences over bias and variance lean towards lexicographic because we have a taste
for estimators that minimize the maximum risk over possible data generating processes.

94



the overlap plot, possibly focused on histograms and possibly involving smoothing using
local linear density estimation. Second, if overlap indeed appears to be a problem, we rec-
ommend analysis of subsamples based on covariates to determine if there are subsamples
with good overlap. For example, in some settings, it could occur that problems with over-
lap stem from one particular subpopulation that is not of particular interest. Analyzing
subsamples based on covariates is likely to work better than analyzing subsamples based
on quantiles of an estimated propensity score. Third, if there is no obvious subpopulation
displaying good overlap, we recommend that the economist consider parametric assump-
tions on the outcome equation. Semiparametric estimators work well in this context when
there is good overlap. When overlap is poor, however, these estimators are highly variable,
biased, and subject to nonstandard asymptotics. In settings with poor overlap, the mo-
tivation for semiparametric estimation is poor and the most effective methods are likely
parametric approaches such as those commonly employed in the older Oaxaca (1973) and
Blinder (1973) (1973) literature.
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Appendix I. IPW3 for TOT

Lunceford and Davidian (2004) derive the IPW3 estimator for the case of ATE. Here
we show the derivation of an IPW3 estimator for the TOT. For simplicity of notation in

the displays, define 7 = p and p; = p(X;).

R 1 T} I e=pi(1-T)) 1 — R
0[PW1 = nZ;E_ZHWYi:Y(l)_VOﬂﬁWM

n <
n n -1 n
; B T; pi(1-Ti)1 p(1-T)1 .
Orpwe = ; ?Yi - (; 1_7@; ZZ_: T@;Yl =Y (1) — Doipuz-

We can combine these two estimators by optimally weighting D ;5,1 and D jpue as follows:

Step 1: Nest 2 rpw1 and g rpw2 in one moment condition and solve for 2g(no)
Step 2: Find 7§ that minimizes the large sample variance of (1)

Step 3: Find ﬁo[pwg = 9(178)

Step 1: First Moment Condition

The moment condition that yields 7y ;pw2 as a solution is

=0.

i 1p:(1—T;) (Yi — )
i1 1=pi
In order to nest 9 rpw1, introduce a fake parameter ng

z”:;ﬁi(l—m (Y; — v)

s l—ﬁi

—noB; =0,
i=1

and then find B; such that when 1y = v the solution of the moment condition is g ;py1-
That is

Z;p T,)Y; z":[lpz z)yﬁyoB] 0.

1*pz i—1

So we want
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or

1p;(1 =T, 1p;(1 =T,
0-T) g 1A(-T)
T 1—p; T 1—p;
Thus,
n
1p:(1-1;) (Y — o) ( 1]31'(1_Ti)>
3.18 — — — 1————1]=0
( ) ;w 1—1p; 0 T 1—1p;
solves for 7y rpw1 when 19 = 19 and it solves for Dy ;pw2 when 79 = 0. The solution to
B is:
519 noy = ST BTSN LAGSTY L0
. 1 = _ - ———].
0 (7o Lo 1— p; 2 |x 1—p; 7o T 1-p

Step 2: Find 7 that minimizes the variance of ([3.19))
Subtract vy from both sides to get:

e [iM — 10 (1 - “Mﬂ

T 1—]31'

N L 1p(1-T;
S0 — o :[Z:P(ﬁ)

i=1 i=1
1
B z”:yz(l—m — 1pi(1-T))
—~ 1—p; —~m 1—p;
1
~1
_ i 1a-T)| 1g [1@(1%)(% ) n0<11ﬁi(1 T))]
nem 1—p; ne|m 1—9p; T 1—9p;
Thus,
RN R P
V(g — ) = [nZCZ \/EHZ{Ai_UOBi}
=1 i=1
where,
1p:(1 =T, (Y; — 1p:(1—T, 1p:(1 =T,
A = —pl( ) (Al vo) ; B = 1—*LA1)3 Ci = *LAZ) and E'[B;] = 0; E[Cj] =1
m 1 —p T 1—p; T 1—p;

Using a LLN and continuity of probability limits, [% Sy Ci] ' 21 and since E [A; — noB;] =

0 using a CLT /ni "7 | {A; —noB;} 4N (0,V [A; — noBi]) . Consequently,

Vi (jio — o) % N (0,V [A; — 10B]) -

Minimizing the variance with respect to nis the same as finding the least squares
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estimator of 7y in a regression of A; on B;. That is,
7’]8 = COU [A,, Bz] (V [Bi])_l ,

where since E [B;] =0,

V[B] = E

Y

VRN DS
T 1—pi

Cov[As, By — E[<1ﬁdl—jﬂ(¥“—wﬂ>(1__1@(1—?9)]_

@ 1—pi T 1—p;

Thus,

1p;(1—T)\?
770:(E (1 L=
T 1—p;

which can be rewritten as

(AU-Dw) ((_1H0-T))

™ 1—p; T 1—p 0

) ) ()
(25 o

L 1e =T’
™ 1—]32

E

This suggests a second moment condition

o (80 (180

i=1

=0.

Step 3. Solve system ((3.18)) and ((3.20)

Using

o Bl ] e ()
Thus,

s[5 - B0 B0

B

=1

"1 pi(1—T) (Vi — o) 1pi(1—Ty)
= j [ A S —
COZ(T‘_ l—pz >< T 1—9p;

i=1

B iiimyl—m_ww)@_i@ﬁ}?>%'

=1
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Substituting in (3.18))

n

Zlﬁi(l—Ti) Yi—w) (1p:(1-T) (Y —w) 1_}1@‘(1—7}) o= 0

Z‘:171' 1*[31' Vs 1*]51' v 1*ﬁi 0 ’
§~ LAl = 1) (Y= ) <1 ) (1 _1n —AT») CO) .
im1 ’R’ 1 — Pi > 1 — Pi

Therefore

n ~1

. 1pi(1-T; Lpi(1-1T;

V0,IPW3 = lzp() <1— <1—p()> Co)] X
o 1—p; s

1 —=pi

X;;ﬁiul::gm (1_ <1_71Tm1—n)>00>.

1 —p
Appendix II. Derivation of SEB for proposed DGPs

This appendix derives the SEBs of Hahn (1998) for the DGPs we study. As noted in
the text, we assume that both X; and e; follow independent standard normal distributions.
For u;, we consider two possible distributions, standard Cauchy and standard normal. For

the standard Cauchy case, we have F(u) = Larctan(X;)3 and for the standard normal
case, we have F(u) = ®(u).

Theorems 1 and 2 of Hahn (1998) provide SEBs for ATE and TOT. We next compute
the terms of these bounds for the case of unknown propensity score for the DGPs specified
in equations (3.10) to The functional form of these bounds are given in the text in
equations (3.6]) to (3.7)).

Let 02 denote the variance of e;. Then we have

V' = B4 (y+0)mp(Xi) + (1+¢p(Xi)) e,
E[Y'|Xi] = B+ (y+06)mp(Xy)),
oi(Xi) = E [(Yil - E[VAX]) X = (1+vp(X:)? 0%,
Y = am(p(Xi)) + (1 =41 = p(Xy)))es,
E[YPXi] = ym(p(Xy)),

oB(X) = E[( - B[XIX])’[X] = (1 - e - p(X))? o,
T(X;) = B+om(p(X,)).

In order to compute the SEBs we need to find the expectation of the following functions:
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1. Expressions involving the variance of the treated (first term of the SEB):

o} (Xy)  (1+ Yp(Xi))® o? _ 1
o) - w7 <p<Xi> F (X")> ’

FXp(Xs) = (L+up(Xp)? 0% (X0) = 0 (02 (X0)* + 20p(Xe)? +p (X))

2. Expressions involving the variance of the controls (second term of the SEB)

a5 (Xi) _ 2 (1 -1 —p(X,))?
1 —p(X3) 1 —p(X3)
_ 2 1 201 _ (X))
= o (g A PO~ 26)
a5 (Xi)p(Xi)? _ 2 (1 =91 - p(X3)))* p(X,)*
1 —p(X;) 1 —p(X5)
- p(Xi)? , , .
= o ({062 - 20X,
3. Thus the first 2 terms of the ATE and the TOT are
U%(Xi) Ug(Xi) — g2 1 1 2
e = o ot e )
og(Xi)p(Xi)* p(X;)*
ot (Xi)p(Xi) + (Dl_pw = o’ (p (X3) + 7 (X)) +9%p (X)) -2>

4. Expressions capturing the heterogeneity of the treatment (third term of the SEB)

(X)) =)’ = (B—a)® + 6" [m(p (X)) +
+2(8—a)om (p(Xi)),

PX)(T(Xi) = 0)* = (B-0)"p(Xi) + 6> [m (p (X)) p(Xi) +
+2(8 = 0) dm (p(Xi)) p (Xi)

p(X)*(r(Xi) = 0> = (B-0)*p(Xs)* + 6 [m (p (X))* p (X:)* +
+2(8 = 0) 6m (p (Xi) p (Xi)*.

Therefore computation of the SEB involves computation of the integrals

1. For k=-1,1,2

M) =B px0] = [ B+ kX0 fx @) da
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2. For k= 0,2

,k o kX k
p(Xi) ]: / Fuln+n Xl

Az(k):Ell—p(Xi) 1— F,(n+ kX))

3. Forh=1,2; k=0,1,2; j=1,2

—00

Ag (k) = B |m; (p(X.))" p(X0)"]

= [ [ nx)] (Bl + s Xl fx @)

— 00

Aside from A;(—1) and A3(0), these integrals are readily computed using mathematical
software or simulation. In the case where wu; is distributed standard normal and & is close
to 1, the 2 integrals listed are highly difficult to compute with any accuracy. For this case,
we use an approach suggested to us by Matias Cattaneo. Consider A;(—1) and Az (0) in

the case with w; distributed standard normal. We have, for ¢ = 1/|k| > 1,

E[p(;(i): - /“m / i t_ ))dt+ /Ooo‘b( ((If(;) olelt—m)) .,
(3.21) _ / P(c t+77 dt+/ ¢ t—
EL_;(X) :/ %dz:c/o ¢( dH/ qb
52 - / ¢1f it +-c /OOOWdt.

The second integral in (3.21)) and (3.22)) is easy to simulate accurately because the numer-

ator has rapidly declining tails and the denominator is always between 0.5 and 1. The first

integral in both expressions is very difficult to simulate because the denominator is near
zero for much of the domain. To handle this problem, we break the first integral into 2

pieces

(3.23) / el Hb Helt+b)) 4 _ /‘Z’ Hb Vit 4 /wmdt,

for b € {—n,n} and a a moderate number such as 5. It is easy to simulate Oa ¢£(i($2?)))dt,

and we can directly bound f 1 (f;zf)))dt using the inequality

(3.24) o0 < 1 8(0) < S0(0),

which is valid for any ¢ > 0 and is highly accurate for any ¢ above 4.
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Applying the inequality, we have

(3.25) /a Hb Helt£0) oy /Oot¢c(t + b))

¢(t)
(3.26) > /Ootexp< At +b)? —t2)> dt = LB
Completing squares, we have

00 1 2b2 2b
(3.27) LB = /a texp [—2 (2-1) <t2 + (cg_ 0 + 2(020_ 1)t>] dt
(3.28) = /aootexp [—;(712 (t* — 2ut + p?) + K (g; M)] dt

(w(d+p)] [ 1/t—pu)\?

(3.29) = exp _M (202 ,u)_ /a t exp [—2 <0> dt
(3.30) = exp _“(g;“)_ V2ro? /Cloo(at+u)¢(t) dt
(3.31) = exp K (Z; 2 V2ro?o¢ (d) + p[l — @ (d)]],

where = —c?b/(c> —=1) , 02 =1/(c* = 1), and d = (a — ) /o.
For the upper bound, apply the inequality again to obtain

(3.32) /°° o(c(t + b))dt _ /OO 1+t2 ¢(c(t+b))dt

1—®(t) t ¢(t)
(3.33) < / 1¢(Cfb( d +/ G t + b))dt
(3.34) < = /oo Wdt Y LB=UB.

It is easy to show that

Fole(t+b) ,, _ [Tt tb) [T (12 2 _ 2
(3.35)/@ 500 dt _/a 0 dt /a p< 2( (t+b) t))dt

(3.36) = exp [“(g;“)] \/ﬁ/f exp [—1 <t;“>2] dt
(3.37) — e [“ (g; “)] Vara® (1— ® (d).

In summary, we have
(3.38) LB < /aoo Wdt <UB
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where,

b+
(3.39) LB = exp [M(%Qu)} V2ro?op(d) + p[l — @ (d)]],
b V2mo?
(3.40) UB = LB+exp [“(Zt“)] 7 (1 (d)),
o a
and
(3.41) N SRS N U et NP S S
N M_(Cz—l)’o- _(62—1)’ - o 76_/{7 mng -
For example, for n = —0.3,x = 0.8 and ¢ = 7 the lower bound for this integral is

0.0000515 and the upper bound is 0.0000526. For n = 0,x = 0.95 and @ = 7 the lower
bound is 0.656062 and the upper bound is 0.667721.

Appendix Figure 3.1 graphs the upper and lower bounds on the integral above, for
n =0, a =7, and K ranging from 0.9 to 0.999. This graph makes two points. First,
the bounds are extremely accurate globally in . Second, the integral in question is an

amagzingly convex function of k. Highly similar patterns hold for other values of 7.
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Chapter 4

A Sequential Method of Moments Variance Estimator
of Weighting Estimators of Average Treatment Effectd]

Inverse probability weighting estimation (IPW) has been widely used in economics to
generate counterfactual distributions (e.g. DiNardo et al. 1996, Biewen 2001, Barsky,
Bound, Charles and Lupton 2002, Bailey and Collins 2006, among others) and to estimate
average treatment effects (e.g. Dehejia and Wahba 1997, McCrary 2007, Busso and Kline
2008 and Levinsohn, McLaren and Zuma 2008, and others). Despite their popularity,
obtaining valid standard errors of IPW estimators of average treatment effects is compli-
cated because they belong to the family of two-step non-linear estimators. The first step
usually involves estimating a parametric binary choice model in order to estimate the con-
ditional probability of treatment, typically estimated by maximum likelihood. The second
step involves the estimation of the treatment effect using weights which are function of the
probability of treatment computed in the first stage. This second stage can be implemented

via a weighted least squares regression.

I show that IPW estimators of average treatment effects can be cast as a simple sequen-
tial method of moments (SQMM) estimator whose asymptotic distribution is derived in
Newey (1984) ] This result is not entirely new. Wooldridge (2007) studies IPW estimation
for general missing data problems, of which treatment effect estimation is a special case.
He provides a general expression for the asymptotic variance of this family of estimators.
Hirano and Imbens (2002) propose an estimator of the variance of IPW average treatment
effect estimators that is, in essence, very similar to the one proposed in this paper. Their
result, however, apply to cases in which the weights involved in the estimation do not add

up to one and it is only considers a logit first stage.

This paper has three contributions. First, I derive an SQMM variance estimator of

average treatment effect estimators using a general parametric first stage, and allowing

T would like to thank John DiNardo, Jesse Gregory, Patrick Kline, Justin McCrary, Serena Ng and Jeff
Smith for useful comments and corrections. Any errors are my own.
2More generally, the estimator will be of the class of two-step extremum estimators.

126



for the weights to add up to one, which is in practice the most usual implementation of
IPW estimation. It is therefore more general than Hirano and Imbens (2002), but a special
case of Wooldridge (2007). Second, I note that the SQMM variance estimator can be
used to test not only hypotheses about the treatment effects for a given outcome but also
hypotheses involving multiple outcomes and hypotheses about different estimands. Third,
I show using Monte Carlo simulations that tests that use the SQMM variance estimator

have good finite sample size and power compared to competing inference strategies.

Since the influential work by Rosenbaum and Rubin (1983) there has been substantial
interest in estimators of average treatment effects that use the propensity score, or con-
ditional probability of treatment, to construct a balanced sample of treated and control
units in order to estimate treatment effects. Examples of these estimators are matching,
blocking, and IPW estimators. The latter has three advantages over the first two. First,
IPW does not require the selection of tuning parameters (i.e. number of neighbors, band-
width, or block size selection). Secondly, Hirano et al. (2003) show that IPW estimators
that utilize a non-parametric estimate of the propensity score achieve the semiparametric
efficiency bound (SEB). E| Finally, Busso, McCrary and DiNardo (2008) find in a Monte
Carlo study that IPW estimators are unbiased in small samples and their variance is very
close to the semiparametric efficiency bound, whereas matching and blocking tend to be

biased in small samples.

In order to be consistent for an average treatment effect, IPW estimators require that
the propensity score converges in probability to the true conditional probability of treat-
ment. Typically researchers assume a flexible parametric functional form on the propen-
sity score model. Usually a probit, a logit or a linear probability model is assumed, and
polynomials and interaction terms of the covariates that determine treatment are used as

explanatory variablesﬁ

Estimation of the variance of IPW average treatment effects estimators is complicated
by the fact that we need to take into account that the propensity score, typically unknown,
has to be estimated. This implies that the weights involved in the computation of the IPW
estimator have sampling variability on their own. Some empirical applications have ignored
altogether the sampling variability of the propensity score (e.g. McCrary 2007, Levinsohn,
McLaren and Zuma 2008). Hirano et al. (2003) show that reweighting using the true

3There is no similar result for matching estimators. The only exception is the nearest-neighbor matching
estimator that Abadie and Imbens (2006) show does not achieve the SEB when the number of neighbors is
finite.

“Robins and Rotnitzky (1995) propose a doubly robust estimator that can mitigate the selection bias that
arises from a misspecified propensity score model. This method requires specification of two models. First,
the researcher needs to specify the propensity score equation that characterizes the selection mechanism.
Second, the outcome equation model, describing the population response to treatment, has to be specified.
The key feature of this estimator is that it remains consistent if one of the two models is correctly specified.
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propensity score does not achieve the SEB, so in principle a strategy that ignores the fact
that the propensity score is estimated should lead in large enough samples to conservative
inference. However, their result is only valid in large samples. No formal result exists to
guarantee conservative inference in finite samples so it remains an open question whether
or not we need to correct the estimator of the variance of IPW estimators. Acknowledging

that the propensity score is being estimated may lead to better inference.

Imbens (2004) discusses three alternatives to compute the variance of any semipara-
metric estimator of treatment effects that is based on the propensity score. One possibility
is to construct an estimate of the SEB using kernel methods or series. A second method is
to use bootstrapping as done in Busso and Kline (2008). A third possibility, only available
when the propensity score is estimated parametrically, is to calculate the contribution of
the sample variability of the propensity score to the variance of the average treatment

effects estimators.

This paper presents a simple approach for constructing an estimator of the variance of
reweighting estimators of average treatment effects using the fact that reweighting estima-
tors are two-step method of moments estimators for which a general simple form of the
asymptotic variance already exists (Newey 1984). This approach has several advantages.
First, it is easy to implement and therefore inference about the average treatment effects
on a given outcome becomes costless. Second, the approach allows the researcher to test
hypotheses that are usually ignored but potentially of interest. For example, it is simple
to test the equality of the treatment effects on multiple outcomes. It is also easy to test
the equality of the ATE and the TOT for a given outcome; a test that can be interpreted

as a test of the homogeneity of the treatment effect.

I perform a series of Monte Carlo simulations to study the finite sample properties of
these tests. I find that ignoring the fact that the weights are estimated can lead, in small
samples, to severe over-rejection of the null of no treatment effect. The SQMM variance
estimator solves this problem, a result that is robust in different data generating processes.
I also compare the size and power of tests using the SQMM variance to those obtained
when using other a priori valid inference procedures such as percentile and percentile-t
bootstrap. The percentile bootstrap does not perform well. Tests based on the percentile-t
bootstrap method using a bootstrap SQMM variance have very similar size and power
properties to the ones obtained using the asymptotic SQMM variance. I interpret this as
an indication that the bootstrap percentile-t method is not providing any refinement to the
asymptotic variance, which is indicative that the SQMM variance estimator is providing a
good enough approximation to the true variance of the treatment effect estimator, even in

samples of size 100.

The remainder of the paper is organized as follows. Section [[] introduces some basic
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notation and briefly discusses identification of average treatment effects. Section [[T] presents
inverse probability weighting estimators. In section [[TI] I derive a sequential method of
moments estimator of the variance of reweighting estimators of average treatment effects. In
section [TV]I first describe the data generating process used in the Monte Carlo simulations.
Then I discuss alternative inference procedures. Finally, I investigate the size and power
properties of different hypotheses tests using the SQMM variance estimator, comparing the
results to those obtained when the sample variability of the propensity score is ignored,

and with those obtained when a valid bootstrap method is used.

I Notation and Identification

Let Y;(1) be the outcome unit ¢ would obtain under treatment, Y;(0) the outcome that
it would obtain with no treatment and let T; denote the binary treatment variable. The
pair (Y;(0),Y;(1)) is never observed jointly; instead we observe Y; = T;Y;(1) + (1 — T;)Y;(0).
In other words, we observe Y;(1) for the treated units but ¥;(0) is missing for them and,
similarly, we observe only Y;(0) for the control units. For each individual, we observe a
vector of K covariates X; that are not influenced by treatment. There are a total of n
observations in the sample, where n; observations are treated and the remainder ng do
not receive treatment. The data (X;,Y;, T;)!_, are taken to be independent across i. We
are interested in estimating the average treatment effect 047 = E[Y, (1) —Y; (0) ] and the
average treatment effect on the treated ror = E[Y; (1) — Y; (0)|T; = 1]. Semiparametric

estimators of treatment effects require two assumptions for identification.

The first assumption is the conditional independence assumption (CIA) which requires
that there only exists selection on observed variables. This means that treatment is ran-
domized given X;, or that (Y;(0), Yz(l))iLTz]XZE The CIA is the cornerstone of estimation
of treatment effects because it allows the construction of counterfactual means for the

outcome of the treated units using information on the control observations.

If X; includes many covariates then the estimation of average treatment effects involves
estimating a very high dimensional conditional expectation for which different tuning pa-
rameters might be required for different outcomes. We can simplify estimation considerably
by conditioning on a scalar balancing score instead of conditioning on X;. Let the condi-
tional probability of treatment, or propensity score, be p(X,) = P(T; = 1|X;) and denote
the unconditional treatment probability by p. Theorem 3 of Rosenbaum and Rubin (1983)

>This assumption is also known as strong ignorability of treatment assignment, unconfoundedness, or
exogeneity. For further discussion see Heckman and Robb (1985), Rosenbaum and Rubin (1983), and
Imbens (2004).
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shows that if the CIA holds when conditioning on X; then it will also hold when condi-
tioning on p (X;); that is (¥;(0), Y;(1)) LT;|p (X:) [

The second assumption required for identification of Opopr and O47g is that of strict
overlap which assumes that there are no observations with very high/low values of the
propensity score; that is, £ < p(z) < 1 —¢ for almost every z in the support of X, for some
& > 0. The strict overlap assumption is stronger than the standard overlap assumption
that 0 < p(x) < 1 for almost every z in the support of X;. Standard overlap, which is
often referred to as the common-support condition, states that no value of the covariates
can deterministically predict receipt (absence) of treatment. The failure of this condition
would allow for the possibility that some observations with particular configurations of
covariates would only be capable of being observed in the treatment (no treatment) state,
therefore preventing the construction of valid controlsm Khan and Tamer (2007) notice that
strict overlap guarantees that there are enough valid controls for every treated observation,

therefore guaranteeing \/ﬁ—consistencyﬁ

Imbens (2004) presents a simple proof that these assumptions are sufficient to guaran-
tee identification of Oror and 847p. The CIA guarantees that we can estimate a coun-
terfactual mean for each outcome of interest, using the observed data: E[Y; (d)| X;] =
EY;]| X;,T; = d] for d =0, 1. The standard overlap assumption ensures that we can com-
pute the average of 6 (X;) = E[Y;| X;,T; = 1] — E[Y;| X;,T; = 0] over the appropriate
distribution of X;. Khan and Tamer (2007) add that strict overlap is sufficient for the
estimators based on 6 (X;) to be \/n—consistent.

II Inverse Probability Weighting Estimators

IPW estimators are based on the idea that we can recover expectations of (Y;(0),Y;(1))
by properly reweighting the data in a manner that balances the distribution of covariates
across treated and untreated units. This is accomplished by upweighting control (treated)
observations that look like treated (control) units, based upon their covariates which are
“summarized” in their probability of treatment p (X;). Once the distribution of covariates
is balanced across treatment and control groups a simple comparison of weighted means

will, under the two assumptions made thus far, identify 6707 and 6 ATEE'

SHeckman and Hotz (1989) point out that propensity score approaches do not completely bypass the
curse of dimensionality because the function p (X;) is typically unknown and has to be estimated.

"For a discussion of the meaning and implications of the overlap assumption see Imbens (2004).

8For further discussion of the implications of violating this assumption see Khan and Tamer (2007) and
Busso et al. (2008).

9This estimator was proposed in the statistic literature by Horvitz and Thompson (1952). It was
first used in economics by DiNardo et al. (1996) in a cross-sectional context to compute counterfactual
distributions; and later extended to panel settings by Abadie (2005).
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IPW estimators are motivated by the following three equalitiesm

IRG
ElY;(1)] = F ,
nw = 2[5
(1_Ti)Yi:|
ElY;(0)] = EF|————|,
i (0] [1—p(Xi)
p(Xi) 1—p }
ElY,(0)|T;=1] = Y;|T; =0},
moin-1 = |20
which imply that we can rewrite the estimands as:
0 [TzYl (1_Ti)Yi:|
A = - )
o p(Xi) 1-p(Xi)
p(Xi) 1-p }
fro :EYiTizl—E[ Y;|T; =0]|.
ror il | 1—p(Xi) p

If p(X;) and p are known, we can compute the estimators as the sample analogues of the

estimands

; 1~ [~ BV (1 -T)Y;
4.1 = = _
(4.1) Oare n;[cﬁp(&) Ol—p(Xi)]’

A 1 ¢ 1~ 1-T)p(Xi)1—p
4.2 0 = — 7Y, — — C Y;,
(4.2) ror n1 ; no ; 1—p(X;) P

where, for the moment, C = C; = Cy = 1. These estimators have the problem that,
in any given sample, the weights do not add up to one. We can force the weights to

1 -1
add up to one by letting C' = (nio et %%) , C1 = (% 2ic1 Z%) and

-1
Cy = <% S %) . T only consider these last IPW estimators because they tend to
show better finite sample properties.

In practice p (X;) is usually unknown and has to be estimated. Therefore, we proceed
in two steps. In the first step we obtain an estimate of the propensity score, p (X;). In a
second step, we use p (X;) to compute the estimators (4.1) and (4.2)).

The first step requires the estimation of a parametric model that will yield a consistent
estimator of p (X;) provided that we condition on a set of X; that guarantees satisfaction
of the CIA. Thus, researchers usually include in X; polynomials and interaction of the
covariates that make the model flexible enough to make feasible that the CIA holds true.
I will assume from now on that the parametric model is such that p (X;) is consistent for

p(Xi).

0These equalities can be shown using the CIA and the strict overlap assumptions in conjunction with
iterated expectations. See Appendix I.
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Consider a selection mechanism 7T;" = xX; +u; where x is a coefficient vector of dimen-
sion K, and the error term wu; is independent of X; and assumed to have a known symmetric
and twice-differentiable distribution F'(-). An individual receives treatment if 70* > 0 so
the treatment dummy is 7; = 1 (7" > 0). Therefore the probability of receiving treatment
is given by p (X;) = P(T; = 1| X;) = F (kX;). We can then estimate p (X;) by maximum
likelihood: typically a probit or a logit binary choice model is used. The ML estimator
% solves a sample moment condition that is the sample average of the K individual score
vectors; that is, & solves,

(4.3) B ) = LS T F (sX0)] X! = 0
- gl(ﬂ)—n;w[i— (kX)) X; =0,

where v] = F(HXS([fi(;)(nXi)] and f(-) is the density of w;. Using # we can predict the

probability of treatment for each observation, p (X;) = F (kX;).

Suppose for simplicity that we are interested in the effect of a treatment on one outcome
Y; only. The generalization to the case of L outcomes is straightforward. The second step of
the estimation procedure is to compute the estimators of the ATE and the TOT. Estimators
and can be computed by estimating the coefficient on the treatment indicator in
a weighted least squares regression of the outcome on a constant and a treatment indicator
using weights W} = Ty (i) + (1 — Ti)y (i), with t = ATE,TOT and the weights W}
defined as

—1 -1
vare _ o (15T 1 (i 1= !
(4.4) WATE = n(nzﬁ(m) s ta-T (nzl—A(Xi)> 1= p(X)

i=1

p
(4.5) WToT — 1 (711 Zﬂ) +(1-T) (7112 (ll—_T;)(l;(jﬁ)> - f(l))ig)(z)

=1

In other words, if we let 7; = [ay ;) for t = TOT, ATE and Z; = [1 T}], the estimator of
the treatment effects will solve the following sample moment condition:
1 n
g (k) ==Y (Yi = Z) Wi (k) Z] = 0 for t = ATE, TOT.
n
i=1

If we are interested in L outcomes then dim (gi) = 2L.

In order to compute the standard error of any of these treatment effect estimators, we
need to take into account that the second step uses weights that themselves have sam-
pling variability. It is easy to do this using a sequential method of moments framework.
Wooldridge (2007) derives the asymptotic distribution of a general inverse probability
weighted M-estimator for general missing data problems. The results that follow are a

special case of those presented in Wooldridge (2007).

132



IIT Sequential Method of Moments Variance Estimator

We can cast the previous model as an exactly identified sequential method of moments
estimation problem. Method of moments exploits population moment conditions of the
form E[g(X;, )] = 0 if and only if 8 = [p. This motivates sample moments g (3) =
%Z?ﬂ g (X;, ) = 0. Let the vector of parameters be § = [k Tarr Tror] and the moment
vectors be g (8) = [§1,§2TOT,§§4TE]. Newey (1984) noticed that if g(3) has a recursive

structure, we can solve for B sequentially First, partition the estimating equation

gl (Xla 'V”')
(4.6) 9(Xi,8) = | g2°T (X;, K, Tr0T)

5T (X, k, TaTE)

Notice that dim (8) = dim (g (8)) = K + 4L so the model is exactly identified and we can
find 3 that sets g (3) exactly equal to zero. We first solve g, (X;, &) = 0 to get an estimator
&. In the second step, we plug in & and p (X;) in g4 (X;,k,0;) =0 for t = ATE, TOT to
obtain estimates of the ATE and of the TOT.

The conditional independence assumption, strict overlap and the assumption of a well
specified propensity score model imply that F [g (X;, 8o)] = 0. We need to make three ad-
ditional assumptions to derive the stated distribution of the method of moments estimator.

First, assume that

9(X:,8)=g(X;,03) iff p=7".

Second, the (K +4L) x (K +4L) matrix Gy = E [aggﬂﬁ)

] exists, is finite and has
0

rank (K +4L). Finally, assume that
1 ¢ d
— Xi, N (0,9),
m(n;m ﬁ)) LN (@©,9)

where S = F [g (Xi, Bo) g(Xi,ﬁO)/] is finite. A necessary condition for these last two
assumptions to hold is that p (X;) is never equal to zero or to one (which is guaranteed by

strict overlap). Then under these regularity conditions it can be shown that
VN (B — ﬁ) 4N (0,G575GgY) .

It is important to recognize that estimation error in the first stage carries over to the

second stage in a very specific way. Because g1 (X;, ) only depends on k but not on 7,

A similar result was obtained by Murphy and Topel (1985) and Pagan (1986).
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the matrix G is lower triangular

Gl 0 0
G=|Gx"oT @g¥™T with G = E
Gz,ATE 0 G72_,ATE

oh

]  h = {,7TOT 7ATE}

The elements Gi’t and Gi’t capture the effect of the first stage estimation on the variance
of the parameters estimated in the second step. In Appendix II, I present the expressions
for G{L’t for the cases in which the selection equation error follows a normal, logistic, and a

Cauchy distribution and for a linear probability model.

This sequential method of moments (SQMM) variance estimator allows us to test several
null hypotheses of interest. Obviously, we can test for no average treatment effect on a
given outcome Y, Hy : 047r (Y) = 0 and a zero average treatment effect among those
treated Hy : Oror (Y) = 0. More interestingly, we can use it to test hypotheses that
are somewhat difficult to test using other variance estimators (e.g. bootstrap). First, we
can perform a test of homogeneity of the treatment effect for outcome Y, that is Hy :
Oror (Y) = Oarp (Y). Second, we can implement a test of equality of treatment effects
across outcomes; that is Hy : Oror (Y) = 0ror (Y') or Hy : arg (Y) = 6a7g (Y'). Finally,
we can also test for the complete absence of treatment effects by testing that the treatment

effect is zero across all outcomes Hy : Opor (Y1) = -+ = 0707 (Y1) = OH

IV  Monte Carlo Simulation Results

A Data Generating Process

I study the finite sample size and power properties in data generating processes (DGPs)
that are all special cases of the latent index model
TF = ko+ K1X1 + K2 X + k3 X3 + g,
T, = 117 >0),
}/i = QTZ + m(p(XZ)) + &4,

where u; and ¢; are independent of X;; and of each other, m(-) is a curve to be discussed
below, and p(X;) is the propensity score implied by the model. Covariates X; are taken
to be independently distributed standard normal. My focus is on cross-sectional contexts,

so ¢; is independent across i, but potentially heteroscedastic. In particular, let e; be an

12The code to implement the SQMM variance estimator in Stata using different choices of the parametric
first stage is available in http://sitemaker.umich.edu/matiasb/
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independent and identically distributed standard normal sequence and then define
(4.7) g =Y (eip(X;) + &Ti) + (1 — e

In these DGPs the ATE and the TOT both equal 6. Heteroscedasticity is controlled
by the parameter ¢ in equation . When ¢ = 0, we obtain homoscedasticity. When
1 #£ 0, the residual variance depends on treatment as well as on the propensity score.
The function m(-) manipulates the non-linearity of the outcome equation that is common
to both treated and non-treated observations. The precise equations used for these two

regression functions are summarized below@

Curve Formula Description
1 mi(q) = 0.15+ 0.7¢q Linear
2 ma(q) = 0.2+ /T —¢q—0.6(0.9—q)®> Nonlinear

As discussed in Busso et al. (2008) the choice of distribution for w; is relevant to
both the finite and large sample performance of average treatment effect estimators. In
particular, they show that for these DPGs not to violate the strict overlap assumption, it is
required that the tails of the distribution of u; are fatter than the tails of the distribution
of the index kXj;. I consider three different distributional assumptions for the treatment

assignment equation error, u;: Cauchy, standard normal and logisticE

The parameters x; for j = 0,1, 2,3 manipulate the different degrees of overlap between
the conditional densities of p (X;) , namely f,x)r=1 (¢) and fyx)7=0 (¢)- The larger x1, k2
and k3, the closer we are to violating strict overlap. The index kX is normal with mean kg
and variance k% + K3 + Hg. If u; follows a Cauchy distribution, strict overlap is guaranteed
to be satisfied for any value of x; since there is no normal distribution whose tails are
fatter than those of the Cauchy. If u; is logistic or normal, large values of x; will produce a
violation of strict overlap. The values of x; also manipulate the different ratios of treated
to control units ny/ng. For any given x; with j = 1,2, 3, if kg = 0 then the ratio ny /ng = 1,
if kg > 0 then the ratio ny/ng > 1 and if Ky < 0 the ratio n;/ng < 1. For any given kg
the larger x; (with j = 1,2,3) the larger will be the maximum propensity score observed

in the sample.

13The two regression functions we consider, m(-), correspond to the functional forms used by Frolich
(2004) and by Busso et al. (2008).

“The baseline case (fully described below) assumes u; follows a Cauchy distribution. In principle, I
could have let u; follow a normal distribution with parameters selected in a manner that they allow for
good overlap. In such a case, because in the normal case the parameters that manipulate overlap also
change the ratio of treated to control observations in the designs, I would not be able to explore designs as
the ones we can study when wu; is distributed Cauchy. However, it should be noted that when assuming a
normal or a logistic distribution with different ratios of treated to control units results were basically the
same as in the baseline case.
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To study the finite sample size and power properties of the estimators, I select a baseline
DGP and then change the parameters one at a time in order to assess the robustness of the
results. The baseline DGP assumes a homoscedastic outcome error (¢ = 0), no treatment
effect ( = 0), a ratio ni/ng > 1 (k; = 1 for j = 0,1,2,3); good overlap (u; follows a

Cauchy distribution), and a linear outcome equation (mq (q)). E|

B Competing Inference Procedures

I study the finite sample performance of the SQMM variance estimator when used in a
two-sided t—test to test the null hypothesis that Hy : 6; = 6 against the alternative that
Hy : 0, # 69, for t=ATE, TOT. I compare it to five alternative inference methods: (i) a
percentile-t bootstrap that uses the SQMM variance, (ii) a percentile bootstrap that does
not utilize any variance estimator, (iii) a t-test that uses a homoscedastic ordinary least
squares variance, (iv) a t—test that relies on the heteroscedastic robust (Eicker-White)
variance and (v) a t-test that uses the so called HC3 variance estimator. Strategies (i) and
(ii) acknowledge that the weights involved in the estimation of the TOT have sampling
variability. The last three methods will help us to assess the cost, in terms of size distortion,

of ignoring that the weights have been estimated.

I use the paired bootstrap to test the null that Hy : 8, = 6y against the alternative
that Hy : 0; # 0y for 0; for t = ATE,TOT. In order to fix the ratio of treated to
control observations, I resample with replacement {Y;, X;} separately from 7; = 1 and
from T; = OE In each bootstrap repetition the propensity score model is re-estimated,
then it is used to compute a new set of weights and to get estimates é;f, as well as an estimate
of the SQMM variance for both treatment effect estimators V;*. First consider a percentile-
t method that should provide an asymptotic refinement. Consider the test statistic ¢ =
‘ét — 6y /\/‘Z I perform B bootstrap replications that produce B test statistics t7,...,t}5

0r — ét‘ /7/ V. Then I compute a bootstrap p—value as % P (> ). I

we wanted to avoid altogether the calculation of the SQMM covariance matrix, then the

where t; =

only valid bootstrap method would be one that does not use any estimate of the variance

of the treatment effect at all. One possibility is to use the percentile bootstrap: for a level

5Busso et al. (2008) study the finite sample properties of IPW estimators in DGPs similar to the ones
assumed here. They compare IPW estimators to other available semiparametric estimators such as kernel,
local-linear, ridge, nearest-neighbor, and pair matching, double robust estimators, among others. They find
that IPW is approximately unbiased and semiparametrically efficient.

161t is worth noting that one potential problem of using the bootstrap in our context is that in any given
draw we could get all (or most of) the observations with 7" =1 or all observations with 7" = 0. In such a
situation the bootstrap draw will fail because we would be unable to compute the counterfactual mean for
one group. This is avoided if we resample separately from the treated and untreated groups.

In our baseline specification, which assumes a Cauchy error term for the selection equation and a relatively
large number of observations in both groups, resampling from {Y;, X;,T;} does not cause any bootstrap
replication to fail. The results it yields are the very similar to the ones shown in Table 4.1.
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a, we find the lower a;/2 and the upper a/2 quantiles of the bootstrap estimates é;‘l, e A:B
and reject the null if 6y falls outside that regionﬂ

Recall that the second step is a weighted regression of the outcome of interest Y; on the
treatment indicator T; and a constant term. An alternative strategy to produce inference
would be to proceed as if the weights involved in that second step have no sampling vari-
ability. The homoscedastic OLS variance would be inconsistent, even if the weights were
known, because by weighting the data according to and we are, by construc-
tion, introducing heteroscedasticity. A standard Eicker-White covariance matrix would be
more appropriate. MacKinnon and White (1985) show that the standard Eicker-White
covariance matrix tends to perform badly in small samples. Since we are interested in the
size and power properties in finite samples I also compare the performance of the HCg
covariance matrix that estimates t2he i-th element of the variance of the error term in the
outcome equation by é7/ (1 — iLZ) where é; is the WLS residual and h; is the leverage of

observation ZE

The number of Monte Carlo replications R is 100,000 for the t-tests based on the
SQMM, OLS, Eicker-White and HCs covariance matrices. Due to computational con-
straints, the number of replications for the bootstrap-based procedures is 4,000 and the
number of bootstrap replications is 1,000. I am interested in studying the size of the test
under alternative testing strategies. Let the true size of a given test be s. Each Monte
Carlo replication will generate a test statistic that either exceeds or does not exceed the
nominal critical value ¢, /5. These can be thought as Bernoulli trials so, using the normal
approximation to the Binomial, a 95% confidence interval must cover 2 x 1.96 standard
€ITors or 3.92\/m. If the size of the test is 0.05 and R = 100,000, the length
of the 95% confidence interval of the true size is 0.0028; if R = 4,000 the length of the

confidence interval is 0.0135.

"Notice that the bootstrap requires homoscedasticity. However, to estimate the ATE and the TOT we
are reweighting the data and therefore introducing heteroscedasticity. Thus, it is possible that the bootstrap
has bad size properties in this context.

8The Eicker-White heteroscedastic robust variance estimator (HC) utilizes an estimator of the variance
of the error term 2, that is given by é? in the diagonal and zeroes in the off-diagonal elements. The
HC estimator is consistent both under homoscedasticity and heteroscedasticity. However, this variance
estimator might not perform well in small samples. Recall that the squared of the OLS residual &7 is not un
unbiased estimate of the squared error term e?. To see this, consider a linear model with constant variance
o?. It is easy to show that E [éﬂ =0o?(1 - Bl) < 02, where 0 < h; < 1 is the i-th diagonal element of
Px = X(X'X)~'X'. Thus, in the linear case, we can divide é? by 1 — h; which would yield an unbiased
estimate of o2 if the error terms were actually homoscedastic. This motivates the HCs variance estimator
that uses é2/(1 — h;) as an estimator of the diagonal elements of 2. MacKinnon and White (1985) propose
to use the Jacknife. They show that the resulting i-th diagonal element of Q is very well approximated by
¢2/(1 — hs)?. Intuitively, when the error term is heteroscedastic, observations with large variances will tend
to influence the parameter estimates more than observations with small variances and will therefore tend
to have residuals that are too small.
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C Finite Sample Size and Power

Table 4.1 compares the size properties of a t-test of the null of ror = 0 against the
alternative that Oror # OH The rows present the simulated empirical size for the baseline
DGP, with samples sizes 50, 100 and 500, evaluating different nominal test sizes. The t-test
based on the SQMM variance estimator achieves a size that is close to the nominal size
even for samples with 50 and 100 observations. This test tends to slightly under-reject the
true null when the sample size is 500. The percentile-t bootstrap methods based on the
SQMM variance tends to also perform well, slightly overrejecting in smaller samples. The
percentile bootstrap rejects the true null too often in small samples. For a nominal size
of 0.05, the empirical size is 0.128 for a sample with 50 observations, and it is 0.075 for a

sample of 100 units.

Ignoring that the weights are estimated lead to very poor inference. As expected the t-
test that uses the homoscedastic least squares variance estimator has a large size distortion
that does not disappear as the sample size increases. This is partly caused by the fact
that the weights, even in a situation in which they are known, introduce heteroscedasticity
rendering the homoscedastic LS variance estimator inconsistent. A t-test based on the
Eicker-White variance estimator does not perform well in small samples either: for a sample
with 100 observations and a nominal size of 0.05, the size of such a t-test is 0.095. This size
distortion is not caused by the known bad finite-sample performance of the Eicker-White
covariance matrix since the the t-test that uses the HCg variance estimator has a similar
size distortion. This problem however, tends to disappear as the sample size increases and
the precision of the estimates of the propensity score (and thus the weights) improves.
Indeed, note that with a sample size of 500 both the test based on Eicker-White and the
one based on the HCjs estimator tend to only slightly over-reject the true null. Hirano et
al. (2003) show that using the known propensity score instead of the estimated one leads
to conservative inference. The simulation results suggest that, in finite samples, a variance
estimator that ignores the sampling variability of the weights might in fact be too small.

Figures 4.1-4.4 explore the effect that different features of the DGP have on the size
of the tests involving HTOT@ The figures plot the difference between the empirical size
and the target nominal size, for different values of the nominal size of the t-test. They
all compare a test that uses the SQMM variance estimator with one that uses the HCjy
variance estimator. In Figure 4.1 we can observe that, as expected, when the sample size
increases from 40 to 500 the empirical size of the tests tend to the nominal size. The size
distortion when using the SQMM estimator tend to be really small when compared to the

HC3 estimator, specially in small samples with n < 500.

19Results for the ATE are similar and can be found in the appendix tables.
20The results for the farr are very similar. Figures are available in an appendix not included in the
paper that can be found in http://sitemaker.umich.edu/matiasb/
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Figure 4.2 shows the effect of changing x, while keeping the value of kK1 = ke = k3 =1
as in the baseline DGP. Instead of plotting different values of kg on the z-axis, I plot values
of the treated-to-control number of observations, the ratio n;/ng, which has a one-to-one
mapping to kg (for a given x;,j = 1,2,3) and provides a more intuitive interpretation. As
the ratio nj/ng increases it becomes harder to estimate the TOT because there are fewer
controls to build counterfactuals for the treated units. The top panel of Figure 4.2 plots a
DGP with homoscedastic errors in the outcome equation. The test that uses the SQMM
variance estimate tends to underreject when the ratio n1/ng is too small and it overrejects
when the ratio is too large. The same pattern is observed when using the HC3 variance but
for every value of nj/ng the size distortion is larger in the latter. If the outcome error is
heteroscedastic (1) = 2) then the size distortion of the test with SQMM variance disappears
whereas the test using the HC3 variance tends to always overreject. The reason for the
better performance of the SQMM-based test in a situation with heteroscedastic errors, is
that the proposed SQMM variance estimator is agnostic regarding the heteroscedasticity
of the error term and it is therefore expected to perform better (when the sample size is

small) in a context in which the DGP is heteroscedastic.

Figure 4.3 studies the effect of changing x; for j = 1,2, 3, while keeping xo = 1 as well
as all the other features of the baseline DGP constant. Again, in the interest of providing a
clearer interpretation of the results, instead of plotting values of x; on the z-axis, I plot val-
ues of the maximum value of the propensity score among the controls. This is an important
quantity involved in the computation of the weights because as the max {p (X;)|T; = 0}
approaches one, we are closer to violating the strict overlap assumption and therefore to
violating the assumptions for convergence in distribution of the SQMM estimator of the
ATE and TOT. Note, however, that because u is Cauchy it is always the case that strict
overlap is satisfied. The top panel of the figure plots the case of homoscedastic outcome
errors. The t-test tends to reject slightly more (relatively to the baseline case) as the
max {p (X;)| T; = 0} approaches one. In a DGP with heteroscedastic errors in the outcome

equation, the t-test based on the SQMM variance tends to have good size properties.

Figure 4.4 presents the effect of violating the strict overlap assumption. I now assume
that v is standard normal, kg = 1 and the outcome error is homoscedastic. Recall that
the variance of the index xkX; is k3 + k3 + k3 and let x; = v for j = 1,2,3. Since X; are
standard normal then kX, is normal with mean zero and variance 3v2. So the tails of the
index will be fatter than tails of u when v > /1/3 a2 0.577. Busso et al. (2008) point out
that the breakdown of the asymptotics happens continuously even before strict overlap is
actually violated. The figure shows that when r; is low, the empirical size of a test that
uses the SQMM variance is close to the nominal size. As k increases the test tends to
overreject the true null of no treatment effect. This pattern is the opposite of the expected

one. As k increases, a larger number of observations will have a propensity score close to
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one. This should increase the variance of the treatment effect leading to inability to reject
the null. However, as noted by Busso et al. (2008), in contexts with poor overlap the point
estimate of the treatment effect will be severely biased which could more than compensate

for the increase in the variance, thereby leading to rejection of the null@

I turn now to the computation of a power function of the ¢-test that uses the SQMM vari-
ance estimator. I compare it to the simulated power obtained using a bootstrap percentile-t
method, the only other inference procedure that presented relatively good size properties.
Due to computational constraints the power function for the percentile-t bootstrap was
computed in a sparser grid for 7o and using 2,000 Monte Carlo repetitions whereas the
power function of the t-test based on the SQMM variance was calculated using 10,000 rep-
etitions. Figure 4.5 plots the power functions for different values of the true Oror in the
baseline DGP. Both power functions are similar for values of #por less than one. When
the true O7or = 1 the power of both methods is approximately 0.81. For values greater
than one the SQMM t-test has more power specially at lower nominal sizes. The fact that
both size and power are so similar between these two procedures is an indication that the
bootstrap percentile-t method is not providing any refinement to the asymptotic variance,
which indicates that the SQMM variance estimator is providing a good approximation to
the true variance of éTOT

As T mentioned in section [[IT, we can also use the SQMM variance estimator to test
hypotheses that are difficult to test using other variance estimators. Some examples are:
a test of homogeneity of the treatment effect for outcome y, that is Hy : Oror (V) =
Oare (Y); a test of equality of treatment effect across outcomes, that is Hy : Oror (V) =
Oror (Y') or Hy : Oarp (Y) = Oa7p (Y') for Y # Y'; and a test for the complete absence
of any treatment effect by testing the joint null that the treatment effect is zero across all
outcomes Hy : Opor (Y1) = -+ = Oror (Yr) = 0. All these tests require the computation of
the covariance between treatment effect estimators for different outcomes and/or estimands,
which is easily done using sequential method of moments. Table 4.2 presents the size and
power of a Wald test of the null Hy : 707 (Y1) = 0ror (Y2) = 0 against the alternative
that the treatment has some effect on at least one outcome. I use the baseline DGP where,
as before, Y7 is a function of my (p (X;)) and I let Y2 be a function of ma (p (Xz))ﬁ The

size of the test is very close to the nominal size although the test tends to over-reject for

21 find that if the error tern u in the selection equation follows a logistic or a normal distribution with
good overlap, the results in terms of size do not differ substantially from the ones found using the baseline
DGP (that assumes u follows a Cauchy distribution).

221n results not shown I tested whether the distribution of éTOT is normal. I cannot reject symmetry but
I can reject zero excess kurtosis. In a qg-plot it can be observed that the the distribution of Oror differs
from the normal distribution at the far ends of the tails.

23Results for the ATE are presented in appendix Table 4.2. In the case of the ATE the test tends to
under-reject the null of no treatment when the null is true. The power of the test is similar to the power
observed for nulls involving the TOT.
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low nominal sizes. The test has power against the alternative that there is a treatment
effect on both outcomes. In the case of the true alternative that Oror (Y1) = Oror (Y2) =1

the test rejects the null of no treatment 0.785 percent of the time.

V  Conclusion

In this paper I propose a simple sequential method of moments variance estimator
of inverse probability weighting estimators of average treatment effects. The proposed
estimator has several advantages over competing inference strategies. First, it is easy to
compute (i.e. faster than the bootstrap). Second, it allows to simply test hypotheses
involving different outcomes and estimands because it directly provides an expression for
the covariance of the treatment effects across estimands and outcomes. Third, Monte Carlo
simulations suggest that the size and power of tests based on the SQMM variance perform
well against other competing inference strategy. If anything inference based on the SQMM

variance estimator tend to be slightly conservative.

I assess the finite samples size and power of t-tests of no treatment effect using the
SQMM variance estimator and find that it performs well even in samples of size 100. The
empirical size is close to the nominal size. This is a finding that is robust in settings with
homoscedastic and with heteroscedastic errors in the outcome equation. It is also robust
to different samples sizes. In contexts in which the ratio of treated to control units is too
high t-tests that use the SQMM variance tend to slightly overreject. The same pattern
was observed in situations in which the observed maximum estimated propensity score was
close to being one and in settings in which the strict overlap assumption, necessary for
identification, was violated. In all these DGPs, using the SQMM variance yields better

size than alternative estimators that ignore the fact that the weights were estimated.

I also compare inference using SQMM to inference procedures using the bootstrap.
The percentile bootstrap tends to reject too often, specially in very small samples. The
percentile-t bootstrap implemented using the SQMM variance estimator has similar size
and power to the tests using the asymptotic SQMM variance. This is an indication that the
bootstrap percentile-t does not provide any refinement to the asymptotic variance, which
indicates that the SQMM variance estimator is a good enough approximation of the true

variance of the IPW treatment effect estimators.
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Empirical size — Nominal size

Empirical size - Nominal size

Figure 4.2: Size of test in DGPs with different N1/NO ratios
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Figure 4.3: Size of test in DGPs with different max{p(X)| T=0}
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Appendix I. Moments for identification of TOT and ATE

Assume that (1) ¥;(0) L T; | X; and (2)€ < p(X

Imbens (2004)

where the fourth equality is because of (1). Similarly, we can show that E[Y; (0)] = E [
For the TOT, as shown first in Dehejia and Wahba (1997) and then in Busso and Kline (2008)

have a similar result:

EY; (0) T; =1] E[E]

E[E]

Y (0) T, =1,X,] |
Yi(0)] T; =0, X;] | T; = 1]

E

;) < 1—¢& for some & > 0. Then as shown in

[T,Y; (1)}
p(Xi)
T;Y; (1)
p(X;)

E

oy
[TX][mnwﬂ

1
X
1
EEe)
! u»Emu>&ﬂ
p(X,)

EIE[Y: (1) X]

By, (1),

(l—T,-)Y,Ll
1-p(X;) |°
we

:1]

[Em O T=0.x] ar (x| 1= 1)

F(X|T,=1
- /E |T_0X]dF(X|Ti=0)ZF§X:TzO;
= /w(X)E[YZ(O)| T, =0,X;] dF (X | T; =0)
= Elw(X;) Y (0)] T; =0, X4],
where the second equality is by (1), the fourth equality is by (2) and
dF (X | Ti=1) P(Ti=1 X)) 1-P(Ti=1)  p(Xy) 1-p
W) = X This0) 1-PL=1 X)) POi=1) T-pX) p
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Appendix II: Derivation of elements of G

Below we show the values of F (+), F’ () and F” (-) for the normal, logistic, Cauchy and linear
probability models. In the binary choice model V = kX.

Model — F (V) F' (V) F" (V)

Probit @ (V) (V) —S(V)V

Logit — Tobld FWV)1—=FV)] F(V)[1-2F (V)]
Cauchy 1 arctan[V]+ 3 %ﬁ —%WV
LPrM  V 1 0

Derivative of g; (k) with respect to x which is just the Hessian of the likelihood function of the
binary choice parametric model

L [ F/(5X) [T — F(5X)]  (F (X)) [Ti— F (sX)]\?| {
G = n ; F (kX;)[1 - F(kX))] ( F (kX;)[1 - F(kX})] ) ] XiXi.
Derivatives go with respect to .

n

t
Gt = 1 > (Yi-0'Z) oW (x) Zj for t = ATE, TOT;
n

=1 8H

where,
OWIT (W) _ (L=T)f(xX) oy (L=T)F(X) (1 f(mx ) X ) |

Ok [1—F (kX;)] 1- n = F (kX))
aWiATE (k) _ T f (/{Xi)ch Z, 1-T)f (H)gz) 2X7{ i

Ok [F (kX)) [1—F(X:)]

T,Cf (1 GTf (kX)) Xe) (-T)C3 (1K (1-T)f(xX:)X;
TEX) (nz_; [F (X)) ) 1 - F(Xi) (ng [1-F(X;)]? )

where F' () is the cdf and f () is the pdf of the error term in the selection equation.

Derivatives of go with respect to 7.

Gt = Z W (k) Z; Z..
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Chapter 5

Conclusion

This dissertation studies semiparametric methods for the evaluation of social programs.
The first essay, with Patrick Kline, evaluates Round I of the federal urban Empowerment
Zone (EZ) program, which constitutes one of the largest standardized federal interventions
in impoverished urban American neighborhoods since President Johnson’s Model Cities
program. The EZ program is a series of spatially targeted tax incentives and block grants
designed to encourage economic, physical, and social investment in the neediest urban
and rural areas in the United States. We use four decades of Census data on urban
neighborhoods in conjunction with information on the proposed boundaries of rejected
EZs to assess the impact of Round I EZ designation on local labor and housing market
outcomes over the period 1994-2000. We use a semiparametric difference-in-differences

estimator to estimate the effect of the program on neighborhoods that received EZ status.

Our comparison of EZ neighborhoods to rejected and future EZ tracts in other cities
strongly suggests that EZ designation substantially improved local labor and housing mar-
ket conditions in EZ neighborhoods. The implications of these findings for the study of
local economic development policies are manifold. First, it appears that the combination
of tax credits and grants can be effective at stimulating local labor demand in areas with
very low labor force participation rates. That this can occur without large changes in av-
erage earnings suggests either that labor force participation in such neighborhoods is very
responsive to wages or that job proximity itself affects participation perhaps due to reduc-
tions in the cost of learning about vacancies or the cost of commuting to work. Second, in
the case of the EZs, the impact of these demand subsidies does not seem to have been cap-
tured by the relatively well off; economic development and poverty reduction seem to have
accompanied one another in the manner originally hoped for by proponents of the program.
Indeed, our use of disaggregate Census tabulations suggests that even young high school
dropouts experienced improved labor market prospects as a result of the program. Third,
while the treated communities appear to have avoided large scale gentrification over the
period examined in this study, policymakers should consider carefully the potential impact

of demand side interventions on the local cost of living. Given that the vast majority of
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EZ residents rent their homes, small changes in the cost of zone living can be expected to
impose large burdens on the roughly two thirds of the EZ population who do not work.
Tradeoffs of this sort should be taken into account when attempting to determine the in-
cidence of the EZ subsidies. If authorities wish to use EZs as anti-poverty programs they
may wish to consider combining housing assistance or incentives for the development of

mixed income housing as complements to demand side subsidies.

Though our results appear to corroborate the findings of the Abt study, we cannot,
with our data, ascertain whether the employment gains of local residents are the result of
job growth or the substitution of local workers for outside workers. A detailed analysis of
matched employer-employee data might yield insights into whether the scale or substitution
effects are responsible for generating the local employment gains observed. More research
is also needed to determine whether any job creation that is occurring is due to existing

firms expanding, new firms being born, or outside firms relocating.

Finally, this evaluation has only examined the first six years of the EZ program. Very
little is known about the dynamics of neighborhood interventions. The decisions of resi-
dents, developers, and landlords that lead to neighborhood gentrification and turnover may
respond to changes in housing values and rents with a lag. Moreover, as the program comes
to a close, firms may move out of zones or close up altogether, reversing any employment
gains in the process. Understanding these issues is key to determining the long run winners

and losers of EZ designation.

The second essay, with John DiNardo and Justin McCrary, explores the finite sample
properties of several semiparametric estimators of average treatment effects. The esti-
mators we consider are semiparametric in the sense that only the treatment assignment
process is parametrically modeled. This perspective on estimation encompasses several
popular approaches including reweighting, double robust, control function, and matching,
but rules out maximum likelihood estimation and estimators based on parametric assump-
tions on the relationship between the outcome of interest and predicting variables. The
semiparametric estimators we consider predominate in the empirical literature. We assess

their finite sample properties using simulated cross-sectional data sets of size 100 and 500.

The simulation evidence suggests that when there is good overlap in the distribution
of propensity scores for treatment and control units, reweighting estimators are preferred
on bias grounds and attain the semiparametric efficiency bound, even for samples of size
100. The double robust estimator can be thought of as regression adjusted reweighting and
performs slightly worse than reweighting when there is good overlap, but slightly better
when there is poor overlap. Control function estimators perform well only for samples

of size 500. Matching estimators perform worse than reweighting if preferences over bias
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and variance are lexicographic and if good performance for n = 100 is required. If there
is enough data, then local linear or ridge matching may be competitive with reweighting.
The difficulty of the more complicated matching estimators is potentially related to the

difficulty of accurate finite sample selection of tuning parametersH

When overlap in the distribution of propensity scores for treatment and control units
is close to failing, the semiparametric estimators studied here do not perform well. This
difficulty can be inferred from the available large sample results in the literature (Hirano et
al. 2003, Abadie and Imbens 2006, Khan and Tamer 2007). We also show that the standard
asymptotic arguments used in the large sample literature provide poor approximations to
finite sample performance in cases of near failure of overlap. However, our qualitative
conclusion is the same as that reached by Khan and Tamer (2007), who note that the
semiparametric estimators considered here are on a sound footing only when there is strict

overlap in the distribution of propensity scores.

In empirical applications, economists confronting problems with overlap often resort
to trimming schemes, in which some of the data are discarded after estimation of the
propensity score. We simulate the performance of the estimators studied in conjunction
with four trimming rules discussed in the literature. None of these procedures yield good
performance unless there is homogeneity in treatment effects along the dimension of the

propensity score.

What is then to be done in empirical work in which problems with overlap are sus-
pected? First, to assess the quality of overlap, we recommend a careful examination of
the overlap plot, possibly focused on histograms and possibly involving smoothing using
local linear density estimation. Second, if overlap indeed appears to be a problem, we rec-
ommend analysis of subsamples based on covariates to determine if there are subsamples
with good overlap. For example, in some settings, it could occur that problems with over-
lap stem from one particular subpopulation that is not of particular interest. Analyzing
subsamples based on covariates is likely to work better than analyzing subsamples based
on quantiles of an estimated propensity score. Third, if there is no obvious subpopulation
displaying good overlap, we recommend that the economist consider parametric assump-
tions on the outcome equation. Semiparametric estimators work well in this context when
there is good overlap. When overlap is poor, however, these estimators are highly variable,
biased, and subject to nonstandard asymptotics. In settings with poor overlap, the mo-

tivation for semiparametric estimation is poor and the most effective methods are likely

'If preferences over bias and variance are not lexicographic, then some of the biased matching estimators
may be preferred to reweighting. We caution, however, that the data generating processes we consider may
not represent those facing the economist in empirical applications. In empirical applications, the bias
could be of lesser, or greater, magnitude than suggested here, in which case the economist’s preference
ranking over estimators could be different than that suggested by a literal interpretation of the simulation
evidence. Our own preferences over bias and variance lean towards lexicographic because we have a taste
for estimators that minimize the maximum risk over possible data generating processes.
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parametric approaches such as those commonly employed in the older Oaxaca (1973) and
Blinder (1973) (1973) literature.

In the third essay I propose a sequential method of moments variance estimator of IPW
estimators of average treatment effects. IPW estimators are becoming increasingly popular
to compute average treatment effects. Obtaining valid standard errors for these estimators,
however, can be difficult because of the 2-step nature of the estimation procedure. In this
essay, I note that IPW is a sequential method of moments (SQMM) estimator which, in
cases in which a parametric propensity score model is assumed, has a simple expression of
the asymptotic variance. This variance estimator can be used to test not only hypotheses
about treatment effects for a given outcome but also hypotheses involving multiple out-
comes and/or different estimands. Using Monte Carlo simulations I find that tests based
on the proposed SQMM variance estimator have good finite sample size and power com-
pared to competing inference strategies. Tests that ignore the fact that the weights are
estimated tend to severely overreject. Tests based on the percentile-t bootstrap method
using a bootstrap SQMM variance have very similar size and power properties as the ones
obtained using the asymptotic SQMM variance. I interpret this as evidence that the boot-
strap percentile-t method is not providing any refinement to the asymptotic variance, which
indicates that the SQMM variance estimator is a good enough approximation to the true

variance of the treatment effect estimator.

I first propose a simple sequential method of moments variance estimator of inverse
probability weighting estimators of average treatment effects. The proposed estimator has
several advantages over competing inference strategies. First, it is easy to compute (i.e.
faster than the bootstrap). Second, it allows to simply test hypotheses involving different
outcomes and estimands because it directly provides an expression for the covariance of the
treatment effects across estimands and outcomes. Third, Monte Carlo simulations suggest
that the size and power of tests based on the SQMM variance perform well against other
competing inference strategy. If anything inference based on the SQMM variance estimator

tend to be slightly conservative.

I assess the finite samples size and power of t-tests of no treatment effect using the
SQMM variance estimator and find that it performs well even in samples of size 100. The
empirical size is close to the nominal size. This is a finding that is robust in settings with
homoscedastic and with heteroscedastic errors in the outcome equation. It is also robust
to different samples sizes. In contexts in which the ratio of treated to control units is too
high t-tests that use the SQMM variance tend to slightly overreject. The same pattern
was observed in situations in which the observed maximum estimated propensity score was
close to being one and in settings in which the strict overlap assumption, necessary for
identification, was violated. In all these DGPs, using the SQMM variance yields better

size than alternative estimators that ignore the fact that the weights were estimated.
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Finally, I compare inference using SQMM to inference procedures using the bootstrap.
The percentile bootstrap tends to reject too often, specially in very small samples. The
percentile-t bootstrap implemented using the SQMM variance estimator has similar size
and power to the tests using the asymptotic SQMM variance. This is an indication that the
bootstrap percentile-t does not provide any refinement to the asymptotic variance, which
indicates that the SQMM variance estimator is a good enough approximation of the true

variance of the IPW treatment effect estimators.
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