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PREFACE 

“The greatest glory in living lies not in never falling but in rising every time we fall” 

-Nelson Mendela, South African President and Human Rights Activist 

 

The significance of this quote is that it defines greatness and success in how we as 

human beings handle hardship, failure, or unexpectedness in life. Persistence and 

perseverance are important qualities in a scientist, since the essence of scientific research 

almost always implies that our hypothesis may not be right the first time around. 

Moreover, these qualities are not only important for the success of a scientist in the 

workplace but for any human being in his or her personal life since life is unforeseeable 

and unpredictable.           

 The thesis presented herein has been completed in the Department of 

Pharmaceutical Sciences, College of Pharmacy, at the University of Michigan, Ann 

Arbor. The thesis is unique in that it has allowed me to explore and learn various aspects 

of drug disposition (pharmacokinetics) and drug action (pharmacodynamics), broadening 

my exposure to basic science aspects of pharmacology and the quantitative science 

aspects of clinical pharmacology. The half of the thesis related to the PEPT2 transporter 

system has enhanced my understanding of drug transporters and how a transporter may 

modulate the disposition of a drug substrate systemically or locally and how such 

modulation may translate to significant changes of drug pharmacodynamics at the 

biophase. Moreover, it has provided me with the experience in designing 
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pharmacokinetic studies and working with experimental animal models in the laboratory, 

the latter which I had not learned before.       

 The half of the thesis related to the utility of subjective continuous and ordinal 

pharmacodynamic scales in early CNS drug development has allowed me to build on the 

pharmacokinetic/pharmacodynamic (PK/PD) priniciples I learned while completing my 

PharmD at the University at Buffalo, extending my training in the pharmacostatistical 

and population aspects of PK/PD modeling and simulation. While different in theme, 

both sections of the split thesis cover an in-depth study of the pharmacokinetics and 

pharmacodynamics of Central Nervous System (CNS) agents.  

 

 

 



iv 
 

TABLE OF CONTENTS 

PREFACE………………………………………………………………………………ii 

LIST OF TABLES…………………………………………………………………….viii 

LIST OF FIGURES……………………………………………………………………ix 

LIST OF APPENDICES………………………………………………………………xii 

 

I.  PHARMACOMETRIC UTILITY OF ORDERED CATEGORICAL AND  
CONTINUOUS PHARMACODYNAMIC SCALES IN EVALUATING 
LORAZEPAM SLEEPINESS AND  DIZZINESS  

 
 
CHAPTER  1- INTRODUCTION TO PART I 
 
Subjective Pharmacodynamic Scales…………………………………………………1 

Visual Analog Scale (VAS)……………………………………………………………1 

The Ordered Categorical (Ordinal) Scale……………………………………………4 

Comparison of Ordinal and Continuous Scales……………………………………...6 

Pharmacokinetic/Pharmacodynamic Applications………………………………..…7   

Nonlinear Mixed Effect Modeling (NONMEM)……………………………………...8 

SPLUS………………………………………………………………………………......9 

Modeling Continuous versus Ordinal Data…………………………………………..9 

Preliminary Pharmacodynamic Differentiation Profile…………………………….11 

Pharmacokinetic Models……………………………………………………………...14 



v 
 

Study Rationale………………………………………………………………………..17 

Study Objectives……………………………………………………………………….18 

Tables…………………………………………………………………………………..19 

Figures………………………………………………………………………………….22 

References……………………………………………………………………………...27 

CHAPTER 2- UTILITY OF AN ORDERED CATEGORICAL 
PHARMACODYNAMIC SCALE TO EVALUATE LORAZEPAM SLEEPINESS 
AND DIZZINESS 
 
Abstract………………………………………………………………………………..30 

Introduction……………………………………………………………………………31 

Methods………………………………………………………………………………...33 

Results……………………………………………………………………………..........41 

Discussion………………………………………………………………………………46 

Tables……………………………………………………………………………….......55 

Figures…………………………………………………………………………………..59 

References………………………………………………………………………………65 

 

CHAPTER 3- PHARMACOMETRIC ANALYSES OF A CONTINUOUS VISUAL-
ANALOG MEASURE OF LORAZEPAM SLEEPINESS   
 
Abstract…………………………………………………………………………………67 

Introduction……………………………………………………………………….........68 

Methods………………………………………………………………………….….......70 

Results…………………………………………………………………………………..74 

Discussion……………………………………………………………………………….76 

Tables………………………………………………………………………………........80 

Figures………………………………………………………………………………......82 

References…………………………………………………………………………......88 



vi 
 

 

CHAPTER 4- CONCLUSION TO PART I 

Major Findings………………………………………………………………………..90 

Proposed Future Studies……………………………………………………………...91 

 

II. ROLE OF PEPT2 SYSTEM IN NEUROPEPTIDE DISPOSITION, 
DYNAMICS, AND TOXICITY. 

CHAPTER 5- INTRODUCTION TO PART II 

Proton-Coupled Oligopeptide Transporters (POTs)……………………………….93 

POT Tissue and Cellular Localization………………………………………………95 

PEPT2 Transport Models…………………………………………………………….97 

General Substrate Structure………………………………………………………….98 

Choroid-Plexus and the Blood-CSF Barrier…………………………………………99 

Structure and Function of the Choroid Plexus……………………………………...100 

Potential For Drug Delivery…………………………………………………………..102 

Transporter Distribution at Choroid Plexus………………………………………...104 

Role of PEPT2 in Choroid Plexus Whole Tissue: In Vitro Studies………………...105 

Role of PEPT2 in Peptide/Mimetic Disposition: In Vivo Studies…………………..106 

Figures…………………………………………………………………………………109 

References……………………………………………………………………………..114 

CHAPTER 6- A PHYSIOLOGICAL PERSPECTIVE OF PEPT2: THE 
DISPOSITION OF L-CARNOSINE IN WILD-TYPE AND PEPT2 KNOCKOUT 
MICE 
 
 Abstract……………………………………………………………………………….117 

Introduction…………………………………………………………………………...118 

Materials and Methods……………………………………………………………...120 



vii 
 

Results………………………………………………………………………………..125 

Discussion…………………………………………………………………………….127 

Tables………………………………………………………………………………...131 

Figures………………………………………………………………………………..133 

References…………………………………………………………………………....137 

 

CHAPTER 7- CONCLUSION TO PART II 

Major Findings………………………………………………………………………139 

Proposed Future Studies…………………………………………………………….140 

 

APPENDICES………………………………………………………………………141 

 

 

 

 

 

 

 

 



viii 
 

LIST OF TABLES 

Table 

1.1 Summary of noncompartmental pharmacokinetic parameter values (% CV) following 
administration   of  single dose of atomoxetine 80 mg, paroxetine 20 mg, olanzapine 10 mg 
and lorazepam 2 mg  after single oral dose administration …………………………19 
 

1.2 Summary of statistically significant results of the ANOVA analysis on VAS TACB 
(Time Average 0-12 hr Change from Baseline) endpoint of pairwise comparisons 
with placebo………………………………………………………………………...20 

 
1.3 Summary of statistically significant results of the ANOVA analysis on Categorical 

TACB (Time Average 0-12 hr Change from Baseline) endpoint of pairwise 
comparisons with placebo…………………………………………………………..21 
 

2.1 Subject Demographics (n=20)……………………………………………………...55 
 

2.2 Pharmacokinetic Parameters in Healthy Volunteers after a 2 mg Oral Dose of  
      Lorazepam.................................................................................................................56 
 

 
  2.3 Categorical Sleepiness and Dizziness Pharmacodynamic Parameters in Healthy  
        Volunteers after a 2 mg Oral Dose of Lorazepam or Placebo (n=20)……………..57 
 
  2.4 Relationship of Data-Derived and Model-Derived PD Parameters to the Label 
        Incidence of Sleepiness and Dizziness in Healthy Volunteers after Administration 
        of a 2 mg Oral Dose of Lorazepam……………………………………………….58 
     
 3.1 Subject Demographics (n=20)……………………………………………………..80 
 
 3.2 Pharmacodynamic Parameters in Healthy Volunteers after a 2 mg Oral Dose of   
       Lorazepam…………………………………………………………………….........81 
       
6.1  Pharmacokinetic parameter estimates of L-carnosine after an IV bolus dose  
       administration of drug at 1 nmol/g in PEPT2+/+ and PEPT2-/- mice (n=10)............131       
 
6.2   Renal pharmacokinetics of L-carnosine in PEPT2+/+ and PEPT2-/- mice (n=7).....132 
         
H.1  Table of Final PK Parameter Estimates of Four Study CNS Drugs.......................187



ix 
 

LIST OF FIGURES 

Figure 

1.1 Illustration of continuous Visual Analog Scales (VAS)…………………………….22  
 

1.2 Illustration of 7- point ordered categorical scales……………………………….......23 
 
1.3 The mean plasma concentration vs. time plots of the four study CNS drugs 

(Lorazepam 2 mg, Olanzapine 10 mg, Paroxetine 20 mg, and Atomextine 80 mg) 
after single oral dose administration in twenty healthy volunteers………………….24 

 
1.4 Mean VAS effect vs. time pharmacodynamic profiles of sleepiness, dizziness, 

nausea, and blurred vision measured in 20 healthy volunteers after administration of 
single oral dose of Lorazepam 2 mg, Olanzapine 10 mg, Paroxetine 20 mg, 
Atomextine 80 mg, and placebo……………………………………………………..25 

 
1.5 Mean ordered categorical effect vs. time pharmacodynamic profiles of sleepiness, 

dizziness, nausea, and blurred vision measured in 20 healthy volunteers after 
administration of single oral dose of Lorazepam 2 mg, Olanzapine 10 mg, Paroxetine 
20 mg, Atomextine 80 mg, and placebo…………………………………………….26 

 
2.1  Left Panel: Observed mean ± SD and predicted mean plasma concentrations versus  
       time after a 2mg  oral dose  of  lorazepam  in healthy volunteers (n=20).Right Panel:  
       Observed   Individual, mean, and predicted mean plasam concentrations versus 
       Time………………………………………………………………………………….59 
                 
2.2  Cumulative probability plots of reporting sleepiness and dizziness. P≥1-5 is the  
       cumulative probability of reporting an effect of at least minimum, mild, moderate,  
       significant, and severe intensity on the categorical scale…………………………...60 
 
2.3 Ninety percent prediction intervals of sleepiness and dizziness scores in healthy  
      volunteers as a function of time (n=20). Panel one shows lorazepam and placebo 
      sleepiness, panel two lorazepam  and placebo dizziness , and panel three  
      lorazepam sleepiness and dizziness. Symbols indicate observed data, middle line  
      indicates simulated data, and lower and upper lines indicate lower and upper  
      prediction interval bounds…………………………………………………………..61 
 
2.4 Posterior distributions of MaxS and AUEC for lorazepam sleepiness and 
     dizziness in healthy volunteers after a 2 mg oral dose of lorazepam(n=20). Line 
     indicates mean observed value. MaxS is the maximum reported categorical score, 



x 
 

    AUEC is the area under the effect curve from 0h-24h…………………………...63    
 
2.5 Relationship between the probability and logistic  domains……………………64 
 
3.1  A modified Visual Analog Scale used to measure sleepiness………………….82   

3.2  The time course of Lorazepam plasma concentrations after oral administration of a 2 
       mg   dose in twenty healthy volunteers.  B: Time course of Sleepiness measured on  
       the VAS after administration of 2 mg Lorazepam. C: Counter-Clockwise Hystereisis  
       on the Effect-Concentration plot denoting the lag in Sleepiness effect compared to  
       plasma lorazepam concentrations……………………………………………....83       
           
3.3A  Histograms showing the right skewed distribution of VAS sleepiness scores 
          reported by 20 healthy subjects after after oral administration of a 2 mg dose at  
          various time points (Time = 0, 0.5, 3, 4, 6, 12  hr)…………………………..84   
 
3.3B Histograms showing distribution of transformed VAS sleepiness scores reported by  
         20 healthy subjects after after oral administration of a 2 mg dose at various time  
         points (Time = 0, 0.5, 3, 4, 6, 12  hr)………………………………………....85              
             
3.4  Concordance and Residual Plots. (Top panel: Model applied to VAS Scores in the  
       Untransformed Domain. Bottom Panel: Model applied to Transformed VAS scores  
       in the Logistic Domain). A  Predicted (PRED) VAS scores versus Observed (OBS).  
       B Individual Predicted VAS Scores (IPRED) versus Observed (OBS) C  Weighted 
       Residuals (WRES)  versus time. D  Individual Weighted residuals versus  
       Time....................................................................................................................86     
 
3.5  Monte-Carlo Simulations of the VAS untransformed scores and transformed scores 
       converted to the original scale…………………………………………………87  

5.1  Sequential models of peptide/ mimetic transport in the choroid plexus [A] and renal  
       proximal tubule epithelium [B] by PEPT2 showing the concerted action of apical and  
       basolateral  transporters in creating the acidic microenvironment at the apical  
       interface……………………………………………………………………….109 
 
 
5.2 Schematic of the kidney and nephron functional unit. PEPT1 is localized in the S1  
      segment of the cortex (convoluted proximal tubule), while PEPT2 is localized in the   
      later segment of the proximal tubule (corresponding to theS2-S3 segments of the  
      outer medulla)………………………………………………………………….110 
 
 
5.3 Sites of the barriers of the nervous system.  Specialized endothelial cells with tight  
      junctions form the blood-brain barrier (BBB). Tight junctions of the choroidal  
      epithelium and the arachnoid epithelium forms the blood-CSF barrier (BCSFB). ECF  
      = extracellular fluid; CSF  CSF=cerebrospinal fluid………………………….111 



xi 
 

 
  
5.4  Illustration of the the Blood-Brain and Blood-CSF Barriers. The leaky ependyma 
      separates  the CSF and extracellular fluid surrounding the brain parenchymal cells.  
      PEPT2 (shown as P2) is localized on the apical side of the choroid plexus epithelium  
      and acts to remove peptides/mimetics from the CSF into the choroid plexus……112 
 
5.5 Structures of various substrates of PEPT2 under study. Glysar is a synthetic dipeptide,  
      while L-carnosine, 5-ALA, and L-Kyotorphin are physiologically relevant dipetides.  
      Cefadroxil is a peptide-mimetic amino-chepalosporin……………………………113 
 
6.1 The Plasma concentration-time profile of L-carnosine after IV bolus administration of  
      drug at  1 nmol/g (mean ± SE, n=10) in PEPT2+/+ and PEPT2-/- mice……………133 
 
6.2 Tissue-to-blood concentration ratios of L-carnosine in PEPT2+/+ and PEPT2-/- mice as  
      observed 30 min after IV bolus administration of drug at 1 nmol/g  
      (mean ± SE, n=7)………………………………………………………………….134 
 
6.3  L-Carnosine stability in kidney, urine and plasma samples from PEPT2+/+ and  
      PEPT2-/- mice as observed 30 min after IV bolus administration of drug at 1 nmol/g  
      (mean ± SE, n=4)………………………………………………………………….135 
 
6.4  Renal clearance of L-carnosine in PEPT2+/+ and PEPT2-/- mice as observed 30 min  
       after IV bolus administration of drug at 1 nmol/g (mean ± SE, n=7). The estimated  
       GFR of 250 µl/min is indicated by a dashed line………………………………...136 
 
A.1  Top panel: cerebrospinal fluid (CSF)-to-plasma concentration ratios in PEPT2 null 
        mice were 4.2, 5.6 and 7.3 times that of values in wild-type mice for  
        glycylsarcosine (GlySar),cefadroxil and 5-aminolevulinic acid (ALA), respectively.  
        Bottom panel: choroid plexus-to- CSF concentration ratios in PEPT2 null mice were  
        0.3, 0.07 and 0.09 times that of values in wild-type mice for GlySar, cefadroxil and  
        ALA, respectively………………………………………………………………..154  
 
A.2  Schematic of how the proton-coupled oligopeptide transporter SLC15A2 (PEPT2  
        displayed as PT2) affects the distribution of 5-aminolevulinic acid (ALA) in  
        different compartments of the brain The top-half of the figure represents a scenario  
        in wild- type (WT) mice while the bottom-half of the figure represents a scenario in  
        PEPT2-deficient (Null) mice…………………………………………………….155 
 
I.1  PK model goodness-of-fit plots…………………………………………………..188 
 
 
 
 



xii 
 

LIST OF APPENDICES 

Appendix 

A. Role and relevance of PEPT2 in Drug Disposition, Dynamics, and Toxicity...141 

B. NONMEM control streams for paroxetine, atomexetine, lorazepam, and 

olanzapine PK models………………………………………………………...159 

C. NONMEM control streams of lorazepam sleepiness and dizziness  categorical 

models………………………………………………………………………...163 

D. NONMEM control stream of  VAS Sleepiness model……………………….167 

E. SPLUS nonparametric bootstrap code………………………………………..169 

F. Categorical sleepiness simulation code (SPLUS)…………………………….170 
 

G. Categorical dizziness simulation code (SPLUS)……………………………..179 
 

H. Table of final PK parameter estimates of four study CNS drugs…………….187 

I. PK model goodness-of-fit plots………………………………………………188 
 

 

 

 

 



1 
 

PART I 

PHARMACOMETRIC UTILITY OF ORDERED CATEGORICAL AND 
CONTINUOUS PHARMACODYNAMIC SCALES IN EVALUATING 

LORAZEPAM SLEEPINESS AND DIZZINESS 
 

CHAPTER  1 

 INTRODUCTION TO PART I 

 

Subjective Pharmacodynamic Scales 

Subjective pharmacodynamic scales become important in drug development when 

a clinical effect of interest has no alternative objective measure. A good example is pain 

which has been measured in several analgesic trials using ordered categorical (e.g. none, 

mild, moderate or severe) and continuous subjective scales(marking a line with none on 

one end and worst imaginable on the other). In CNS drug development the reliance on 

subjective pharmacodynamic scales increases as clinical endpoints such as anxiety, 

mood, depression and sleepiness, for example are difficult to measure objectively. 

Examples of commonly used subjective scales in CNS drug development are Likert 

questionnaires which use a categorical scale and the continuous visual analog scale both 

of which can be modified to measure a number of subjective effects.  

 The Visual Analogue Scale 

 The Visual Analogue scale (VAS) is a continuous scale typically consisting of a 

10-centimeter line anchored at both ends with words descriptive of the maximal and 

minimal extremes of the dimension being measured. Subjects are asked to indicate 
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specific feelings at the time by marking the line at the appropriate point between the two 

extreme statements. The scale is scored by measuring the distance from the minimal end-

point to the mark, on a predetermined measurement interval. The most commonly chosen 

interval is millimeters with a 10 centimeter line, producing a 100- point scale 

(McCormack et al, 1988). Although verbal labels define the endpoints of VAS, neither 

numbers nor intermediate labels are used to define intermediate points, as this may cause 

clustering of scores around a preferred digit leading to bias (Scott and Huskisson, 1974). 

Figure 1.1  shows a representation of the VAS scale. 

The VAS is not a novel scale and was first used in psychological research as early 

as the 1920’s (Hayes M. et al, 1921; Freyd M; 1923). Its widespread use in clinical 

research was stimulated by the work of Aitken & Zealley who used it to construct single 

item mood scales (Aitken and Zealley, 1970). They argued that words may fail to 

describe the ‘exactness of the subjective experience’ and that verbal rating scales 

imposed artificial categories on the continuous phenomena of feelings. They proposed 

that VAS offered a sensitivity of scoring which was impossible with digital and ordinal 

rating scales (Aitken et al 1969). 

Most reports describing the use of VAS in the literature are validation studies. 

The majority of these studies focus on VAS developed to measure either mood or pain 

and assess validity by correlating VAS scores with the scores of an established scale 

(McCormack et al, 1988).         

 The re-test reliability of VAS was also established. Robinson et al (1975) asked 

subjects to rate their hunger on two occasions separated by a one hour interval, during a 
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fasting period in their study of the reliability of VAS-Hunger. The correlation between 

the two rating periods was very high (r=0.92, P<0.001). 

The apparent simplicity of the VAS and its adaptability to a wide range of 

research settings has made it an attractive measurement option. Among its advantages 

proponents have claimed that VAS:1)  is simple and quick to construct (Ahles et al, 

1984);  2) quick and easy to administer and score (Rampling et al, 1977); 3) suitable for 

frequent and repeated use (Rampling et al, 1977); 4) is easily understood by subjects 

(Morrison, 1983); 5) is very sensitive with a discriminating capacity superior to other 

scales (Scott & Huskisson, 1976); 5) require little motivation for completion by subjects 

(Rampling et al, 1977); 6) is suitable for use by untrained staff (Folstein & Luria, 1973);  

and 7) allows the use of numerical values suitable for statistical analysis (Robinson et al, 

1975).   

Despite the studies that advocate VAS as a valid, reliable, sensitive, and robust 

measurement instrument, some have highlighted difficulties associated with its use. 

Carlsson et al (1983) questioned the assumption that VAS is an easy scale to use by 

subjects pointing out that the VAS requires an ability to transform a complex subjective 

experience into a visuo-spatial display, involving perceptual judgment and accuracy. 

Older age and the loss of ability to think abstractly (Kremer et al, 1981), mental 

disorganization and confusion (Hornblow, 1976), and decline of perceptual skills and 

memory (Carlsson, 1983) have all been suggested as factors, which may contribute to 

respondent error. The reliability of the VAS may even change as a study progresses. For 

example, results of a study (Hornblow and Kidson, 1976) suggest that the ability to use 

VAS-Anxiety as a continuum and as a valid scale decreases as the psychiatric symptoms 
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of subjects become more severe. In contrast, when Carlsson (1983) explored the impact 

of learning, memory, and perceptual judgment on the reliability and validity of VAS, no 

relationship between these variables and the subject’s ability to make reliable 

assessments on VAS-Pain were found. However these two studies measured different 

effects (anxiety versus pain), therefore alluding to the possibility that, depending on the 

effect measured as well as study conditions (i.e. absence or presence of altering 

medications and disease progression), and the reliability of VAS may be quite different. 

 Moreover, certain studies demonstrated that the same VAS could be treated 

differently by different populations. In their comparison of psychiatric patients and 

medical students on the VAS-Anxiety, Hornblow and Kidson (1976) found that, while 

medical students treated the scale as a continuum, patient scores were tri-modal, with 

clusters at the midpoint and extremes of scales, suggesting interpretation of the scale 

instructions may be different between varying populations. 

 Little and McPhail (1973) also pointed out that patients, while using the VAS-

Depression as a repeated measure, scored the VAS to the maximum before completion of 

the study, leaving themselves no room to record a higher score should their mood worsen. 

 The above studies emphasize the importance of testing the suitability of VAS for 

the population to be assessed prior to application of the technique. 

The Ordered Categorical (Ordinal) Scale 

 The ordered categorical or ordinal scale sorts and ranks the dimension to be 

measured in non-overlapping categories, which usually have a numerical rating scale, 

attached. While the magnitude of change in going from category to category is unknown 
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the direction of change is (Stevens S, 1946; Merbitz C et al, 1989). The ordered 

categorical scale was included in the aforementioned study and was part of a 69-item 

questionnaire called the Subject Rated Drug Effect Questionnaire (SRDEQ, developed by 

Pfizer Inc) that measures subjective effects in 7 distinct ordered categories. As shown the 

categories are described by verbal adjectives that describe an ascending order in effect 

intensity. 

 Ordinal scales have been used in a variety of clinical settings as an instrument 

measuring subjective phenomena, otherwise difficult to measure using objective tests. 

Such phenomena as Pain (Ahles et al, 1984; Seymour et al, 1982; Jensen et al, 1986; 

Sheiner , 1994; Gupta et al; 1999; Mandema et al, 1996; Lundeberg et al, 2001), mood 

(Folstein and Luria, 1973), sleepiness (Mitsutomo et al, 2000), health perception and 

quality of life (Cox et al, 1992; Spilker et al, 1996) and have all been measured using 

single- and multi-item categorical scales.Moreover, the validity (McCormack et al, 1988; 

Jensen et al, 1986) and reliability (Jensen et al, 1986; Lundeberg et al, 2001) of many 

ordinal scales have been established in a number of studies.    

 Some of the advantages of ordinal scales are their: 1) simplicity, ease of use and 

administration (Merbitz et al, 1989; Jensen et al, 1986); 2) ease of comprehension 

providing definite tangible descriptors that require less imagination (Joyce et al, 1975, 

Merbitz et al, 1989); 3) requirement of little training and motivation for the subject to 

complete (Joyce et al, 1975); 4) suitability for frequent and repeated use (Deyo et al, 

1986, 1991; Lundeberg et al, 2001).  The reported disadvantages of ordinal scales are 

their: 1) placement of artificial boundaries on subjective dimensions (Aitken & Zealley, 

1970); 2) decreased sensitivity, responsiveness and discriminating capacity (due to fewer 
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categories) to detect small clinically relevant changes (Joyce et al, 1975; Ohnhaus & 

Adler, 1975; Seymour et al, 1982; McCormack et al, 1988; Svensson et al, 2000); 3) 

inability to quantify change in going from category to category (Merbitz et al, 1989); 4) 

difficulty in manipulating ordinal data for statistical analysis leading to sometimes misuse 

and misinference  (Merbitz et al, 1989;Svensson et al, 1998, 2000). 

Comparison of Ordinal and Continuous Scales     

 A number of comparative studies between continuous scales and ordinal scales 

measuring various types of variables have been performed, however no consensus has 

been reached as to the superiority of one over the other.     

 Ohnhaus & Adler (1975) found their VAS -Pain was more sensitive to increases 

and decreases in reported pain then the five point verbal ordinal (ordered categorical) 

scale that they compared it to. Similar conclusions were reported by Joyce et al (1975) 

that compared a 4-point ordinal scale to a VAS measuring chronic pain and Seymour et al 

that compared the VAS to a 4-point ordinal scale measuring post-operative dental pain. 

While one might logically conclude that the VAS is the more sensitive scale then the 

ordinal scale, which has a small number of response categories, Jensen et al (1986) 

pointed out that scales with more response categories have only the potential to be more 

sensitive, but are not necessarily more sensitive when used in a given study. Moreover, 

sensitivity to detect treatment effects is not necessarily associated with greater construct 

validity.         

 Lundeberg et al (2001) reported that the VAS produced significantly greater 

systematic discrepancies then the categorical scale, the reason being that subjects tended 

to overestimate their baseline pain on the VAS while discrepancies on the verbal scale 
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occurred in both directions.         

 Jaeshke et al (1990) recommended a 7-point ordinal scale over the VAS while 

Mckelvie et al (1978) recommended scales with five or six categories. In a study 

comparing a 7 point ordinal and VAS measures of muscle soreness Vickers et al (2000), 

found that VAS scores plotted recorded concurrently with each Likert score (a categorical 

scale) varied enormously and that their was significant overlap in the VAS scores, 

depicting a high variability in VAS measures. However their deduction that the Likert 

scale is more responsive must be considered with caution as the statistical approaches 

used assume normally continuous distributions and ignore the rank-invariant properties of 

ordinal data          

 In another study highlighting the superiority of the ordered categorical scale, 

Svensson (2000) presented a rank-invariant approach to evaluate the parallel reliability of 

intra-rater assessments made of a VAS scale, a 5-point ordinal scale, and a graphical 

rating scale. The latter is a hybrid of the ordinal and continuous scales consisting of a 

continuous line land marked with verbal categories. Overlapping of the VAS assessments 

on the discrete categories was observed and it was concluded that both ordinal scale and 

graphical rating scale displayed higher intra-scale stability (defined as intra -rater 

agreement and lack of systematic disagreement in assessments between two occasions) 

then the VAS. 

Pharmacokinetic/Pharmacodynamic Applications     

 As mentioned previously, continuous and ordinal scales have been used in a 

variety of clinical PK/PD applications. They have been used extensively as biomarkers in 

clinical pharmacology studies assessing efficacy, safety, comparative efficacy, effect of 
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formulation on phamracodynamics, and pharmacodynamic interaction studies. To 

highlight some examples:  1) A 5 point ordered categorical scale was used to measure 

efficacy of ketorolac as an analgesic for postoperative pain after administration of various 

intramuscular doses. (Mandema el al, 1996); 2) The safety of oxybutynin was 

investigated where the undesirable effect of dry mouth was measured using a 4 point 

categorical scale  (Gupta et al, 1999); 3) In another study by Mitsutomo et al (2000), a 7-

point ordinal scale called the Stanford Sleepiness Scale and a multi-item visual analogue 

scale measuring various dimensions of mood were used to measure and compare the 

residual effects of standard clinical doses of Zolpidem and Zopiclone (two hypnotics) on 

daytime sleepiness and psychomotor function;  4) The time course of sleepiness  in 6 

male subjects was assessed on the Stanford sleepiness scale and a nurse rating sedation 

scale (both ordinal scales) to compare the pharmacodynamics of an intravenous and 

orally administered  1mg dose of alprazolam (Smith R et al 1984); 5) In a 

pharmacodynamic  drug-drug interaction study, the VAS scale was used to measure the 

effect of coadministration of nimodipine on diazepam induced tiredness (Heine R et al, 

1994). 

NonLinear Mixed Effects Modeling (NONMEM) 

NONMEM (Beal and Sheiner, 1002) is a computer program, written in using 

Abbreviated Fortran, designed to fit general statistical (nonlinear) regression models to 

data. Proper modeling of such data involves accounting for both unexplainable inter- and 

intra-subject effects (random effects), as well as measured concomitant effects (fixed 

effects). NONMEM allows for this ‘mixed effects modeling’. 
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In population PK/PD modeling one attempts to describe or model 

exposure/response data obtained from a sample that one believes represents the 

population. The model allows us to make inferences of the population as a whole. Fixed 

effects are estimated with THETA parameters that measure the typical population value 

or central tendency. The random effects consist of two parameter types. Omega 

parameters quantify the magnitude of interindividual or between-subject variability in the 

population, whereas Epsilon parameters quantify the magnitude of residual error (a 

measure of intraindividual variability, measurement error and model misspecification).  

SPLUS 

SPLUS is a statistical software package used for data visualization and 

exploration and statistical programming and simulation, and as such is used frequently in 

the area of pharmacometrics. In the current thesis, S- Plus has been used mostly for 

creating graphics, bootstrapping, and simulation based on bootstrap estimates.  

Modeling Continuous versus Ordinal Data 

Modeling ordered categorical data poses a challenge as this data is not continuous 

and thus cannot be modeled using conventional linear and nonlinear regression 

techniques. The outcome variable (in this case effect) is polytomous (many discrete 

outcome categories) and has a polynomial distribution. The simplest case of an ordinal 

variable is a dichotomous or binary variable, which has a binomial distribution. 

Statistically, the polynomial distribution is different from the continuous 

distribution in that outcome categories may not be equidistant and hence homogeneity of 

variance does not hold in such a case. For example, on the continuous VAS, going from 

5mm to 10mm is the same change in effect as going from 10mm to 15mm, whereas in the 
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ordinal scale, the change in effect in going from mild to moderate is not necessarily the 

same as going from moderate to significant. Only the direction of change is known but 

not the magnitude. This essentially highlights what statisticians refer to as the rank 

invariant property of ordinal data or that the data remains invariant in all order-preserving 

transformations, which means that the category labels do not represent any mathematical 

value other then the order of responses (McCullagh et al, 1980). 

This is why modeling ordinal data requires a special type of regression known as 

logistic regression. If we convert ordinal pharmacodynamic data into probabilities of 

scoring a particular category as a function of time we can then use the logit 

transformation as follows: 

                                                                         Equation   1 

 

Where m represents the effect category (i.e. 0=none, 1=minimum, 2=mild, etc), P is the 

probability (ranging from 0 to 1) of reporting that effect category at time t and g (x) is the 

function in logits.  

The logit domain is an infinitely continuous domain ranging from -∞ to+∞, and so 

now the data can be manipulated using techniques that apply to continuous data and can 

be modeled using similar principles to those that apply to linear and nonlinear regression. 

However one drawback with the logistic function (and hence ordinal data) is that the final 

model can give information only about the population as a whole. Individual estimates, 

however, cannot be obtained and so information (which may be valuable) is lost at the 

individual level. 
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Preliminary Pharmacodynamic Differentiation Profile 

It is clear that continuous and ordered categorical scales have been used as 

measurement instruments in a variety of clinical studies and that they each have 

advantages and disadvantages. However, their standard use and relative suitability for 

measuring pharmacodynamics and subjective experiences in relation to pharmacokinetic 

profiles have not been examined closely in the context of PK-PD modeling analysis, 

especially in smaller study settings. Use of timed assessments with VAS or ordered 

categorical scales to measure commonly occurring adverse events and other drug effects 

may provide useful information from small samples of healthy volunteers. This would 

help in creating a Preliminary Pharmacodynamic Differentiation Profile (PPDP) to 

evaluate new compounds (Moton et al, 2005).While the PPDP would not be a definitive 

assessment of tolerability or other important drug effects, it would be used to provide a 

preliminary characterization of several effects of leading marketed compounds for a 

comparison of those of new compounds in early development.  This profile amongst 

other factors, may also be used to identify doses of the drug candidate that are unlikely to 

achieve a profile of adverse events or other drug effects that are equal to or better than a 

particular drug currently marketed for the same indication.      

 Pharmacometric utility of these psychometric scales in small pharmacology 

studies will depend on the feasibility of pharmacokinetic-pharmacodynamic (PK-PD) 

modeling to develop reliable population models that can accurately compare the relative 

potency of different compounds based on various measures of CNS effects which would 

be used to:1) characterize the time course of pharmacodynamic response in relation to the 

PK profile 2) identification of PD parameters that can be modeled for several compounds 
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or used in clinical trial simulation studies. Pharmacokinetics and pharmacodynamic 

effects measured using both a continuous and ordered categorical scales were obtained in 

a study designed to assess the feasibility of using different subjective scales as 

biomarkers of pharmacodynamic response using model CNS drugs (Moton et al, 2005).  

This study was conducted in 20 healthy volunteers using a randomized, double-blind, 

single dose, 5-way crossover design.  Each subject received 5 treatments administered 

approximately 1 week apart for 5 consecutive weeks. The regimens under investigation 

were: 1) Olanzapine 10mg, 2) Atomoxetine 80mg, 3) Paroxetine 40 mg, 4) Lorazepam 2 

mg, and 5) Placebo. These are prescribed for a spectrum of CNS therapeutic indications- 

atomoxetine for attention deficit hyperactivity disorder, olanzapine for schizophrenia, 

lorazepam for anxiety and insomnia, and paroxetine for depression and Obsessive 

Compulsive Disorder. These model drugs were selected in the study because they: 1) 

have distinct pharmacologies and as such would produce different AE profiles and 2) 

would produce measurable CNS symptoms with single doses. The doses selected 

represent the maximum recommended clinical doses of each drug.     

 Blood concentrations (PK) were measured at various intervals spanning 72 hours 

post dose. As originally reported per protocol analysis (Pfizer Report, data on file), the 

PK  profiles of the 4 model CNS drugs are shown below in Figure 1.3. As seen these 

drugs have distinct PK properties, with Atomoxetine possessing rapid absorption and 

disposition kinetics, lorazepam rapid absorption and slower disposition kinetics, 

olanzapine and paroxetine showing slow absorption and disposition kinetics. The distinct 

PK properties of the model CNS drugs are reflected in the noncompartmental estimates 

shown in Table 1.1. Atomoxetine and lorazepam both showed the shortest Tmax (1.14 hr 
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and 1.71 hr respectively) while olanzapine and paroxetine concentrations peaked at later 

times (7.32 and 6.83 hr respectively). Olanzapine had the longest biological half life 

followed by lorazepam, paroxetine and atomoxetine.    

 The Preliminary Pharmacodynamic Differentiation Profiles (PPDP) of these four 

CNS drugs was created by administering a battery of various instruments after single 

dose administration. These including the VAS;  7 point ordered categorical scales, 4 point 

Likert scales measuring drug strength and likeness, the Digit  Symbol Substitution Test 

(DSST) measuring cognition, a test for extrapyramidal signs and symptoms, and a 

glucose and prolactin assay to measure any hyperglycemic and hyperprolacteneamic 

effects was also applied. The Modified VAS administered was a 9-item VAS measuring 

the following effects (sleepiness, dizziness, nausea, anxiety, forgetfulness, confusion, 

fatigue/weakness, stiffness, blurred vision). The ordered categorical scale as shown in 

Figure 1.2 was administered as a 7-point Likert questionnaire consisting of 69 statements, 

which assessed the subject’s intensity of drug effect experienced, ranging from none to 

extreme, after test drug administration using an ordered categorical scale. The 

questionnaire included a list of statements about various complaints, symptoms, or 

feelings the subjects have experienced.       

 Tables 1.2 and 1.3, shows the VAS effects measured and some of the 69 

categorical effects measured respectively, including p values for significant and highly 

significant differences obtained from an ANOVA analysis of the Time-Averaged Change 

from Baseline (TACB) endpoint when compared with placebo. Due to the number of test 

employed some effects may be significant by chance. No correction for Type I error such 

as a Bonferroni or Tukey’s correction was applied. Bonferroni which involves 
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determining the actual p-value using the product of the number of tests and the observed 

p-value would disqualify most effects as non-significant due to the large number of tests 

employed. However the procedure is very conservative and assumes independence of 

tests and since most tests employed were dependent (e.g. sleepiness and dizziness) a 

Tukey’s correction would be more appropriate, however this would require measurement 

of dependence between tests which is difficult to perform. Therefore only those effects 

with the lowest p-values (p<0.0001) were considered viable for any further 

pharmacometric analysis. Differential pharmacodynamic (PD) profiles shown in Figures 

1.4 and 1.5 shows the onset and offset of some of the more pronounced PD signals 

recorded on the VAS and ordered categorical scale respectively as well as their 

relationship to plasma concentrations. For example lorazepam shows fast onset of 

sleepiness and slow offset of effect consistent with its rapid absorption kinetics and 

slower disposition kinetics. 

Pharmacokinetic Models  

The time course of drug concentrations of the 4 compounds, lorazepam 2 mg, 

paroxetine 40 mg, atomoxetine 80 mg, and olanzapine 10 mg, were structurally modeled 

using either 1 or 2 compartments with first order absorption with or without a lag time of 

absorption.  For olanzapine and lorazepam, a 2-compartment model with and without a 

lag time for absorption respectively, adequately described the time course of drug 

concentrations while paroxetine and atomoxetine PKs were described with a 

1-compartment model with and without an absorption lag time respectively.  A summary 

of the final PK parameter estimates is provided in Appendix H.  The NONMEM control  
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are provided in Appendix B.. Residual variability was modeled by a combined 

additive/proportional model for olanzapine, atomoxetine, and paroxetine and with a 

proportional model for lorazepam. As a measure of the goodness of fit of the final 

models, different plots were generated (Appendix I) including observed concentrations 

(CONC) versus population predicted (PRED) and versus individual predicted (IPRED), 

weighted residuals (WRES) versus population predicted concentrations, individual 

weighted residuals (IWRES) versus individual predicted concentrations, and weighted 

residuals versus time. In general, for all 4 drugs studied, a good correlation between the 

predicted values and the measured drug concentrations was observed both at the 

population level and with the individual predicted concentrations however, some 

underestimation was seen in the atomoxetine and paroxetine plots at higher 

concentrations.  Generally, the weighted residuals were randomly scattered across the 

range of predicted concentrations with the exception of atomoxetine and paroxetine plots.  

For atomoxetine data, WRES were above the line of concordance at time = 0.5 and 1 hr 

(tmax = 1.14 hr from noncompartmental analysis). Similarly for paroxetine data, IWRES 

were above the line of concordance at time = 6 and 8 hr (tmax = 6.83 hr), supporting the 

finding that peak concentrations are slightly underestimated by the model.  Certain 

outliers are visible in the residual plots.  On the WRES versus PRED and Time plots, for 

olanzapine PK data, Subjects 14 and 20 showed abnormally higher positive residuals at a 

time of 1 hour.  For atomoxetine, Subject 20 was an outlier in the IWRES versus IPRED 

and Time plots with a large negative residual at time = 0.5 hour.  For lorazepam, Subject 

5 showed an extremely lower residual on the WRES versus PRED and TIME plots at 

time = 0.5 hour.  Subject 20 showed a larger negative residual on the IWRES versus 
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IPRED plot and Subjects 1 and 5 showed large negative residuals on the IWRES versus 

TIME plots at time = 72 and 0.5 hour, respectively. 

Although not the primary purpose of the PK analysis, further analysis of the effect 

of covariates on interindividual random effects (unexplained variability) and hence model 

goodness of fit was performed.  Despite the few subjects that were studied, certain 

covariates were observed to be significant and included in the final PK models.  In the 

final olanzapine model, the effect of gender on volume of distribution was significant and 

hence kept in the final model.  For lorazepam, CLcr on clearance and weight on volume 

of distribution were significant and for atomoxetine, a significant effect of gender on 

volume of distribution was observed.  No covariate effects were observed with the 

paroxetine PK data.  
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Study Rationale  

Upon inspection of the pharmacodynamic profiles in Figures 1.4 and 1.5 and their 

relationship to the pharmacokinetic signature profiles in Figure 1.3, the following 

questions were of interest: 

1. Is it feasible to model these PD measures using a mixed effects population 

approach? 

2. If so, which PD measures would be appropriate for modeling? 

3. Can clinically relevant PD parameters be identified and related to a tangible 

known quantity, e.g. using label incidence rates as a benchmark. 

The categorical and VAS PD measures of lorazepam sleepiness and dizziness were 

chosen to initiate an exploratory pharmacometric analysis. These effects were of 

interest because they: 1) showed relatively high signal amplitude on both scales as 

indicated by maximum  mean differences from placebo (VASsleep=30.2 mm, 

VASdizz=9.1 mm and CategoricalSleep=1.6, CategoricalDizz= 1.2) showed high 

statistical significance in ANOVA analyses of TACB, 3) their reported label 

incidence rates are different and based on data from healthy volunteers, i.e., 

Sleepiness (15.7%) has a higher incidence than dizziness (6.9%), 4) there are no  PD 

data published contrasting these effects of lorazepam. In addition, their pharmacology 

is thought to be conferred by benzodiazepine receptor activity in distinctly different 

areas of the brain (Volkow et al) and this may further differentiate these two 

symptoms.          

 Mean olanzapine (difference from placebo) sleepiness signal was also high on 
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both scales (Maximum VAS=35.1 mm, Maximum Categorical Score=2.1) however 

was exluded from the analysis since label incidence data was based on schizophrenic 

patients and not healthy volunteers as in the current study. Atomoxetine and 

paroxetine were not included in the analysis as they showed no strong signals on both 

the VAS and categorical scale (with Atomextine nausea showing the largest signal yet 

recorded very modestly on both scales, Maximum Mean VAS Score=15.3 mm, 

Maximum Average Categorical Score=1.57). 

Study Objectives 

The objectives of the pharmacometric analyses described in the following chapters 

are to: 

1) Determine the feasibility of modeling the categorical and VAS endpoints of 

Lorazepam Sleepiness and Dizziness using a population mixed effect approach, 

thereby assessing the pharmacometric utility of these measures using the current 

study design. 

2) Assess the performance of proposed population models using simulation and 

posterior predictive checking. 

3) Relate data-derived (e.g. Maximum Score) and model-derived (e.g. slope, EC50) 

pharmacodynamic parameters to the label incidence of lorazepam sleepiness and 

dizziness (15.7% and 6.9%, respectively). 
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Table 1.1 Summary of noncompartmental pharmacokinetic parameter values (%CV) following 
administration of  single dose of atomoxetine 80 mg, paroxetine 20 mg, olanzapine 10 mg and 
lorazepam 2 mg  after single oral dose administration in twenty healthy volunteers (data on 
file, Pfizer report). 

 
Pharmacokinetic 

Parameter 
Olanzapine 

10 mg 
Atomoxetine 

80 mg 
Paroxetine 

20 mg 
Lorazepam 

2 mg 
Tmax (hr) 7.32 (35.8) 1.14 (67.9) 6.83 (17.0) 1.71 (40.8) 

Cmax (ng/mL) 16.4 (31.5) 624 (31.1) 21.5 (38.6) 26.8 (22.9) 
AUC(0-tlqc), ng·hr/mL 502 (28.8) 3233 (42.4) 484 (50.2) 517 (29.3) 
AUC(0-∞), ng·hr/mL 668 (28.0) 3343 (41.7) 514 (51.9) 551 (31.0) 

t½, hr 35.6 (17.2) 3.49 (30.0) 14.6 (27.0) 16.8 (21.3) 
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Table 1.2. Summary of statistically significant results of the ANOVA analysis on TACB 
(Time Average 0-12 hr Change from Baseline) endpoint of pairwise comparisons with 

placebo. The VAS was applied as a 9 item instrument. Blank cells indicate the absence of 
a statistically significant result (alpha = 0.05). (data on file, Pfizer report).. 

 
 

Olanzapine Atomoxetine Paroxetine Lorazepam

10 mg 80 mg 20 mg 2 mg
VAS - Sleepy p<0.001 p<0.001
VAS - Dizzy p<0.001
VAS - Nauseous p=0.047
VAS - Anxious p=0.009
VAS - Forgetful p=0.067
VAS - Confused p<0.001
VAS - Fatigued/Weak p=0.014 p=0.004
VAS - Stiff p=0.003
VAS - Blurred Vision p=0.017 p<0.001

Question
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Table 1.3. Summary of statistically significant results of the ANOVA analysis on TACB 
(Time Average 0-12 hr Change from Baseline) endpoint of pairwise comparisons with 
placebo.The 7 point Ordered Categorical Scale was applied as a questionnaire measuring 
69 items measuring various effects,  subject complaints and feelings of which 30 items 
are shown below. Blank cells indicate the absence of a statistically significant result 
(alpha = 0.05). (data on file, Pfizer report).. 
 
 
Question Olanzapine Atomoxetine Paroxetine Lorazepam

10 mg 80 mg 20 mg 2 mg

Q1 - Arousing or Stimulating
Q2 - Depressing or Sedating p=0.035 p<0.001

Q3 - Headache
Q4 - Confused or Disoriented p=0.006 p<0.001
Q5 - Sleepy p<0.001 p=0.053 p<0.001

Q6 - Blurred Vision p<0.001
Q7 - Dry Mouth p<0.001 p=0.012
Q8 - Drooling
Q9 - Difficulty Swallowing p=0.045
Q10 - Sweating p=0.005
Q11 - Limp or Loose p<0.001
Q12 - Rapid Heart Rate p=0.037
Q13 - Problem Walking p=0.039 p<0.001
Q14 - Poor Balance p=0.029 p<0.001
Q15 - Lightheaded or Dizzy p=0.013 p<0.001
Q16 - Queasy or Sick to Stomach p=0.006 p=0.001

Q17 - Vomiting or Throwing Up p=0.041

Q18 - Stomach Pain
Q19 - Lost Appetite p=0.05 p=0.035
Q20 - Diarrhea p<0.001
Q21 - Fatigued or Weak p=0.013 p=0.001
Q22 - Unsteady p=0.013 p<0.001
Q23 - Hot or Flushed p=0.001
Q24 - Difficulty Urinating
Q25 - Difficulty Concentrating p=0.007 p=0.006
Q26 - Slurred Speech p=0.050 p=0.005

Q27 - Mentally Slowed Down p=0.011 p<0.001
Q28 - Muscle Stiffness

Q29 - Body or Limb Shaking p=0.031
Q30 - Slowing of Movement p=0.023 p<0.001  
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Figure 1.1. An illustration of continuous Visual Analog Scales (VAS). Subjects make a 
visual analogy of the dimension being measured by placing a slash on the 10 cm line 
anchored by words descriptive of the dimension being measured. The score is recorded as 
the distance in mm from the slash to the minimum anchor point of the scale. 
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Figure 1.2. An illustration of 7- point ordered categorical scales. These scale measure the 
pharmacodynamic dimension of interest using non-overlapping categories with a 
numerical rating scale attached (0-6). 
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Figure 1.3. The mean plasma concentration vs. time plots of the four study CNS drugs 
(Lorazepam 2 mg, Olanzapine 10 mg, Paroxetine 20 mg, and Atomextine 80 mg) after 
single oral dose administration in twenty healthy volunteers (data on file, Pfizer report). 
. 
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Figure 1.4.  Mean VAS effect vs. time pharmacodynamic profiles of sleepiness, 
dizziness, nausea, and blurred vision measured in 20 healthy volunteers after 
administration of single oral dose of Lorazepam 2 mg, Olanzapine 10 mg, Paroxetine 20 
mg, Atomextine 80 mg, and placebo (data on file, Pfizer report). 
. 
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Figure 1.5.   Mean ordered categorical effect vs. time pharmacodynamic profiles of 
sleepiness, dizziness, nausea, and blurred vision measured in 20 healthy volunteers after 
administration of single oral dose of Lorazepam 2 mg, Olanzapine 10 mg, Paroxetine 20 
mg, Atomextine 80 mg, and placebo (data on file, Pfizer report). 
. 
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CHAPTER 2  

UTILITY OF AN ORDERED CATEGORICAL PHARMACODYNAMIC SCALE 
TO EVALUATE LORAZEPAM SLEEPINESS AND DIZZINESS 

 

Abstract 

Pharmacokinetic/pharmacodynamic (PK/PD) modeling of ordered categorical scales may 

provide insight into drug response by utilizing relatively small samples of subjects. Two 

lorazepam adverse events (AEs), sleepiness and dizziness, were modeled to identify 

differences in PD parameters and differences compared to relative incidence rates in the 

drug label (15.7% and 6.9%, respectively). Healthy volunteers (n=20) received single 

oral doses of 2 mg lorazepam or placebo in a randomized, double-blind, cross-over 

fashion. A 7 point categorical scale measuring the intensity of AEs was serially 

administered over 24 hr.  PK samples were obtained over 72 hr.  The Maximum Score 

(MaxS), and Area Under the Effect Curve (AUEC) were determined by 

noncompartmental methods and compared using a paired t-test.  Individual scores were 

modeled using a logistic function. AUEC and MaxS for sleepiness were significantly 

higher than dizziness (20.35 vs. 9.76, p<0.01) and (2.35 vs.1.45, P<0.01). Model slope 

estimates were similar for sleepiness and dizziness (0.21 vs. 0.19 logits*ml/ng), but 

baseline logits were significantly higher for sleepiness (-2.81 vs. -4.34 logits). Therefore, 

the higher intensity of sleepiness may be directly related to baseline (no drug present) 

while the increase in intensity due to drug was relatively similar for both AEs.  
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Introduction 

Ordered categorical scales have been used in a variety of clinical settings to measure 

subjective effects and feelings which are clinically relevant but yet difficult to measure 

using objective tests. A good example is pain where several analgesic trials used various 

categorical scales (Jensen et al, 1986; Lundeberg et al, 2001). Such scales have been 

reported to display high validity and reproducibility (Lundeberg et al, 2001; Svensson  

2000) during repeated assessments and are usually quick and easy to administer (Jensen et 

al, 1986; Merbitz et al, 1989). 

Pharmacokinetic-pharmacodynamic modeling of ordered categorical scales may 

provide insight into the PD of drug action utilizing relatively small samples of subjects. 

The feasibility of using different subjective scales as biomarkers of PD response was 

investigated in a small clinical pharmacology study with four model Central Nervous 

System (CNS) drugs (Moton et al, 2005). The rationale was that these responses may be 

used to compare potency and tolerability of new drugs relative to marketed drugs and 

thus be used as biomarkers of adverse event rates in the development of new CNS agents.  

In that study, seven-point ordered categorical scales measuring different types of 

subjective response (e.g. sleepiness, dizziness, etc) were administered serially after single 

dose administration to measure intensity of drug effects over 24 hours. Inspection of the 

effect-time profiles of the more common drug effects showed differential profiles for the 

different CNS agents, the onset and offset of response as well as the relationship to 

plasma concentrations. 
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The current analysis focuses on the categorical measures of two adverse effects 

(AEs) of one of the representative CNS drugs studied (Moton et al, 2005), namely 

lorazepam sleepiness and dizziness, with an aim to identify differences in relevant 

pharmacodynamic parameters using a PK/PD modeling approach. To date, no 

pharmacodynamic data, whether being categorical or continuous, have been published 

contrasting lorazepam induced sleepiness and dizziness in the context of population 

modeling. Their incidence rates in the drug label offer a unique benchmark for 

comparison. Thus, any differences found in PD measures between sleepiness and 

dizziness in the current analysis will be compared to differences in incidence rates in the 

drug label (Ativan Drug Insert). This pharmacometric approach is novel and may have 

significant utility in early clinical development particularly in constructing 

pharmacodynamic and adverse event differentiation profiles (Moton et al, 2005) for drug 

candidates under devolopment and marketed comparators. 

 Moreover, from the spectrum of CNS effects measured in the larger study (Moton et 

al, 2005), lorazepam sleepiness and dizziness were selected as the endpoints of interest 

because: 1) these effects showed a relatively high scale signal amplitude and highest 

statistical significance in the time- averaged- change- from -baseline differences with 

placebo , 2) sleepiness is a more common AE of lorazepam than dizziness according to 

incidence rates in the label, and 3) their pharmacology is thought to be conferred by 

benzodiazepine receptor activity in distinctly different areas of the brain (Volkow et al, 

1995; Schreckenberger et al, 2004) - sleepiness from GABA inhibition of the thalamus 

and sensory cortex and dizziness from the cerebellum. 
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 It must be noted that modeling categorical data can not be performed using 

conventional nonlinear regression because it has a polynomial distribution which violates 

the assumption of homogeneity of variance (Hastie et al, 1989). In shifting from one 

effect category to another, the direction of change is known but not the magnitude, and 

the categories cannot be assumed to be equidistant (Merbitz et al, 1989). However, if the 

probabilities of reporting the effect categories as a function of time are modeled, a special 

type of regression known as logistic regression can be used. The current study employs a 

logistic function (Sheiner,  2004; Mandema and Stanski, 1996)  to model sleepiness and 

dizziness categorical scores and assesses model performance using previously published 

pharmacometric methodology (Ette et el, 2003; Mandema et al, 2005, Yano et al, 2001) . 

 

Methods 

Data Collection 

Twenty healthy volunteers were randomized in a double blind, single dose, 5-way 

crossover design (Moton et al, 2005). All subjects gave written informed consent to 

participate in the study. The study was conducted at the Clinical Pharmacology Unit of 

Pfizer (Ann Arbor, MI) in accordance with the principles of the Declaration of Helsinki. 

The study protocol was approved and performed in compliance with the Institutional 

Review Board/Independent Ethics Committee (IRB/IEC) and International Committee on 

Harmonization (ICH) Good Clinical Practice guidelines. Each subject received an oral 

dose of either lorazepam 2 mg, as one of four CNS drugs, or placebo. All study drugs 

were commonly used marketed compounds within their respective therapeutic indications 
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and were selected to produce different AE profiles which could potentially be measurable 

after single dose administration. Each regimen was separated by a one week washout 

period for a total trial period of five consecutive weeks. Blood samples were drawn 

before dosing and at 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 24, 48, and 72 hr after the morning dose.  

Prior to each blood collection during the first 24 hr, a 69 item questionnaire was 

administered. Items on the questionnaire covered various complaints, symptoms, or 

feelings the subject experienced. For each statement the subject was to answer how 

strongly he or she felt the complaint, symptom, or feeling on a seven-point ordered 

categorical scale. The seven effect categories were 0=none, 1=minimum, 2=mild, 

3=moderate, 4=significant, 5=severe, 6=extreme.  

Analytical Assay 

Plasma levels of lorazepam were determined using liquid chromatography tandem 

mass spectrometry (LC/MS/MS). Briefly, 0.1 mL of human plasma containing sodium 

heparin was extracted by a liquid-liquid extraction using methyl t-butyl ether. The 

organic extract was dried and reconstituted in 0.2 mL of formic acid/methanol/5 mM 

ammonium formate (0.1:50:50, v/v/v), and an aliquot was injected into the LC/MS/MS 

system. The compounds were separated by reverse phase on a C18 column (2.0 mm x 50 

mm, 5 µm) by gradient elution using a binary mobile phase consisting of formic 

acid/methanol/water (0.1:10:90, v/v/v) and 0.1% formic acid in methanol (v/v). The 

analytes were ionized in the mass spectrometer in a Turbo IonSpray source with positive 

ion atmospheric pressure electrospray ionization and detected with multiple-reaction 

monitoring modes. The nominal ion transitions monitored were m/z = 321 > 275 for 

lorazepam and m/z 327 > 281 for the internal standard (lorazepam-d4). These transition 
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ions were selected based on predominant fragmentation pathways of lorazepam and 

internal standard and their intensity, as observed in their product ion mass spectra. The 

lorazepam standard was linear over the range of 0.5 to 50 ng/mL when 0.1 mL plasma 

was used for the analysis (r2 > 0.998). The intra- and inter-assay variations were less than 

15% for the spiked standard curve and quality control samples. The variations for the 

long-term study quality control samples were <12%.  

 Data Analyses 

Pharmacokinetics 

A non-compartmental analysis (Benet et al, 1979) was performed using 

WINNONLIN on lorazepam plasma concentration-time profiles to determine maximal 

concentration (Cmax), time to maximal concentration (tmax), Area Under the Curve from 

time zero to infinity (AUC0-∞) and the terminal half-life (t1/2). Compartmental population 

analyses were conducted in NONMEM (Beal and Sheiner, 1992)  using the first order 

conditional estimation method with interaction.  The general model building strategy is 

based on modification of different approaches discussed by Beal and Sheiner (1992), 

Mandema et al, (1992) and Ette and Ludden (1995). During model building, the goodness 

of fit of different models to the data was evaluated using the following criteria: change in 

the minimum objective function (MOF), visual inspection of concordance and residual 

plots, precision of the parameter estimates, and decreases in both inter-individual and 

residual variability. A decrease in the MOF of at least 3.8 upon addition of a parameter 

was considered statistically significant. This corresponds to a nominal p value of <0.05 
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and one degree of freedom in the chi square distribution of the difference of MOF 

between hierarchical models. 

 The initial PK model was a one-compartment model defined in terms of the 

following structural parameters: oral clearance (CL/F), volume of distribution (V1/F), 

and first-order rate of absorption (ka). Other models tested include a term for lag time in 

absorption (tlag) and/or 2-compartments. Inter-subject variability on mean PK parameters 

was modeled using an exponential error term and was estimated sequentially on structural 

parameters such as oral clearance (CL/F), volume of distribution in the central and 

peripheral compartments (V1/F, V2/F), and on the first order absorption rate constant 

(ka). Various models of residual variability were tested including additive, proportional 

and combined additive/proportional error models. During model building, the off-

diagonal elements of the variance-covariance matrix were fixed to 0, i.e., it was assumed 

that there was no correlation between PK parameters.  In the final step, the correlation 

between all parameters was estimated in NONMEM.   

To explain interindividual variability in PK parameter estimates, possible covariates 

were tested serially by including each covariate one at a time in NONMEM and checking 

for statistical significance. Covariates tested included the effects of age, gender, weight, 

and creatinine clearance on CL/F and the effects of age, gender and weight on V1/F. 

Covariates were centered using the mean and modeled initially using a simple linear 

relationship. All covariates found to be statistically significant were included sequentially 

in NONMEM based on their rank order of significance and starting with the covariate 

that resulted in the largest decrease in MOF.   
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Parameter estimates of CL/F and t1/2 were compared to the non-compartmental results 

to ensure that model was adequate.  Confidence intervals around parameter estimates 

were generated using nonparametric bootstrap procedure (n=500 runs) as described by 

Ette et al (2003). 

 Pharmacodynamics 

In order to produce a typical value versus time curve for sleepiness and dizziness 

categorical scores, the expected value at each time point was calculated. The expected 

value or average score of the categorical measure of sleepiness and dizziness at time t can 

be defined by the following equation:           

       Equation 1  

where  X is the discrete random variable denoting the categorical measure of 

sleepiness or dizziness, tx  is the categorical sleepiness or dizziness score at time t with a 

set of possible categorical values m ranging from 0-6 and P(x) is the probability (obtained 

as a frequency) of reporting a categorical score x at time t. This equation is equivalent to 

taking the sum of all categorical scores at each time t and dividing by n (the total number 

of scores). The former definition is preferred due to the categorical nature of the data 

(Merbitz et al, 1989). 

To examine whether or not there were differences in sleepiness and dizziness 

intensities, a noncompartmental analysis of the time course of  average sleepiness and 

dizziness  scores was conducted. Effect intensity endpoints determined were  maximum 

score (MaxS) and area under the effect curve (AUEC) over the entire dosing interval (24 
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hr). A paired t-test was used to determine whether differences in MaxS and AUEC 

between sleepiness and dizziness were statistically signficant. 

Population modeling of the time course of sleepiness and dizziness scores was 

implemented in NONMEM using a logistic function (Sheiner, 1994; Mandema and 

Stanski, 1996) with the second order Laplacian method of estimation (Beal and Sheiner, 

1992). Since the intensity of pharmacodynamic effect was self-rated on the 7-point 

categorical scale (0-6), the logistic function was used to model the probability (P) of 

observing scores P≥m (m = 0 to 6) as a function of baseline effect, drug concentrations, 

and placebo effect. The logistic function used was: 

ηβη +++=≥ ∑
=

placebodrugmYPg
m

i
mt

1
)}({     Equation 2 

where )}({ ηmYPg t ≥  is the function describing the probability of being greater than or 

equal to a particular effect category, m; ∑ mβ  is the sum of  baseline parameters (β1, β2, 

β3,… βm) describing the baseline probability of experiencing a particular effect category; 

‘drug’ and ‘placebo’ are model components describing drug and placebo effects; and η  is 

a subject specific random effect parameter quantifying inter-individual variability in 

response assumed to be normally distributed with a mean of 0 and variance ω2. The logit 

transform function was used to convert the function )}({ ηmYPg t ≥  , which is in logits, 

into a probability. 

           Equation 3 
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Initial inspection of sleepiness data showed the highest reported effect category as 5 

(severe). As such, the probabilities modeled over time were (P≥1, P≥2, P≥3, P≥4, P≥5). 

By definition, P≥0 =1, and this is not modeled. For the dizziness data, the highest 

reported category was three, and the probabilities modeled over time were (P≥1, P≥2, 

P≥3). Model building was conducted by adding the model components in Equation 2 

sequentially and observing the change in the MOF.   

 First, baseline probabilities for each effect category were modeled as constants as 

described by Sheiner (1994). From Equation 2, β1 is the Y intercept (in logits) describing 

the baseline for reporting an effect category of at least minimum intensity (1 or more), β2 

is the intercept added to β1 to determine the baseline logit contribution for reporting an 

effect category of at least mild (2 or more), and so forth. The drug component was added 

by beginning with a simple linear slope function as described below: 

E = S*C         Equation 4 

where E is the drug effect, S is the slope describing the relationship between drug effect 

in the logistic domain and drug concentrations C. Originally C was tested as 

concentration in the central compartment determined by posthoc individual PK parameter 

estimates.  Addition of an effect compartment (Sheiner et al, 1979), where C in Equation 

4 now represents concentration in the effect compartment, was tested to account for any 

delay in effect with respect to peak plasma concentrations.   This required addition of an 

extra parameter ke0, the first order rate constant describing lag in effect in the biophase 

(Sheiner et al, 1979) compared to central compartment concentrations. A hill function 

without and with a sigmoidicity constant were also tested. Change in the MOF and 
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inspection of the correlation matrix of estimates to ensure model stability was used to 

select final models.  

For the placebo component of Equation 2, several models were tested including a 

constant modeled as a parameter in logits and a Bateman-like function. Incorporation of 

the placebo component in this manner resulted in the covariance step being aborted. 

However, inspection of the individual placebo profiles revealed some subjects as non- 

responders and others as mild to moderate responders with a Bateman-like response. As 

such a mixture model (Frame et al, 2003) on placebo response was tested. A mixture 

model assumes the population is composed of two or more subpopulations, each having a 

distinct population mean and random effects. Therefore, if the subject belonged to 

subpopulation 1 of non-responders, the placebo response was set to zero. If the subject 

belonged to subpopulation 2, the placebo response was modeled using a Bateman- like 

function with a theta parameter in logits describing the amplitude of placebo effect, and 

first order rate constants describing the onset and offset of placebo effect. 

 Assessment of PK/PD Model Performance       

 Nonparametric bootstrapping (Ette et al, 2003) and simulation based on bootstrap 

estimates were performed using SPLUS VI software (Insightful Corporation, Seattle, 

Washington).  Five-hundred bootstrap runs were conducted to determine confidence 

intervals of parameter estimates. This analysis was repeated using successful bootstrap 

runs only. Simulations were then performed using each set of bootstrap estimates to 

generate five hundred sets of data as described by Ette et al (2003). Using this simulated 

data, cumulative probability plots of reporting at least an effect  intensity m ( P≥m ) as a 

function of time were constructed to show the performance of the model across effect 
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categories. Ninety percent prediction intervals (Mandema et al, 2005) of the time course 

of categorical scores were also constructed to visually depict the degree of uncertainty in 

the models due to random effects and parameter estimate uncertainty. In addition, 

posterior distributions of relevant PD endpoints were constructed and overlaid on the 

observed mean values as described by Yano et al (2001). The PD endpoints selected were 

those determined in the PD noncompartmental analysis -MaxS and AUEC. 

Comparison of PD Parameters and Label Incidence 

 The relative ratio of label incidence of lorazepam sleepiness and dizziness was 

compared to the relative ratio of various data-derived PD parameters including MaxS, 

AUEC, and the maximum probability of reporting at least a particular effect category m 

(P≥1, P≥2, P≥3 ). The relative ratio of model-derived PD parameters such as slope was 

also related to the ratio of label incidence of sleepiness and dizziness. 

Results 

Pharmacokinetics 

Table I shows the demographic information of the twenty study subjects. The 

time course of observed mean ± SD, mean predicted, and individual plasma 

concentrations after single oral dose administration of lorazepam 2 mg are shown in 

Figure 2.1. A noncompartmental analysis yielded mean (CV%) estimates for Cmax of 

26.8 ng/ml (22.9), tmax of 1.7 hr (40.8), t1/2
  of 16.8 hrs (21.3) and a total systemic 

exposure or AUC0-∞ of 551 ng*hr/ml (31.0). Significant decreases in the MOF, residual 

and inter-individual variability, and inspection of concordance and residual plots 
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indicated that a two-compartment model with first order absorption adequately described 

the time course of plasma concentrations of 2 mg oral lorazepam. 

Table 2.2 shows the final pharmacokinetic population parameter estimates. 

Significant covariates were determined to be creatinine clearance on CL/F and weight on 

V1/F.  The population mean parameter estimates were in good agreement with 

parameters derived using non-compartmental analysis for both CL/F (3.63 vs.4.02 L/hr) 

and the derived half-life (16.7 vs. 16.8 hrs).  Results of the non-parametric bootstrap 

analysis are included in Table 2.2.  The model was robust with 87% of the runs 

minimizing successfully. The parameter estimates and confidence intervals obtained from 

the bootstrap procedure which included all runs (even those which failed) were generally 

comparable to the estimates derived from NONMEM. Similar bootstrap estimates and 

confidence intervals were obtained using only successful runs. 

Pharmacodynamics 

Noncompartmental analyses conducted on the effect-time profiles of sleepiness 

and dizziness scores showed significant differences between these AEs in the maximum 

score (MaxS) and area under  the effect curve (AUEC) endpoints. The MaxS of 

lorazepam sleepiness (±SE) was significantly higher then dizziness (2.35 ± 0.26 vs. 1.45 

± 0.22, p<0.01), as was the AUEC (20.35 ± 3.58 vs. 9.76 ± 2.45, p<0.01).  The time to 

reach MaxS for lorazepam sleepiness scores was delayed (3.98 hr, Figure 2.3) compared 

to time of maximal lorazepam concentrations (1.71 hr, Figure 2.1). This observation 

justified addition of the effect compartment (Sheiner et al, 1979) to describe drug effect in 
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the lorazepam sleepiness model. In contrast, the dizziness effect peaked (2.55 hr, Figure 

2.3) at time similar to that observed for peak plasma drug concentrations. 

Population PD model-building was initialized by addition of baseline logit 

intercepts for each effect category. As indicated in Equation 2, these are added 

sequentially from i=1 to m in order to quantify the probability of experiencing a score 

category m or more in the absence of drug or placebo. Table III shows the final PD model 

estimates. As shown, β1 (which represents the probability in logits of reporting a score of 

1 or more at baseline) was significantly higher for sleepiness (-2.81) than dizziness (-

4.34) as indicated by the 95% confidence intervals, whereas the baseline intercept 

parameters β2 and β3 were not significantly different across these AEs β4 and β5 were 

included in the sleepiness model as they resulted in significant decreases in the MOF. 

Addition of the drug component of the model as a slope as described in Equation 4  

resulted in a decrease in point reduction in the MOF of 216 and 174 for sleepiness and 

dizziness models, respectively, indicating a significant drug effect. As shown in Table III, 

slope estimates of sleepiness (0.21 logits/ml*ng) and dizziness (0.19) were not 

significantly different on inspection of the 95% confidence intervals. Addition of an 

effect compartment as described in Equation 5 was significant for sleepiness (MOF 

reduction was 3.9) but not dizziness, and the final estimate of ke0, the first order rate 

constant describing lag in effect in the biophase compared to central compartment 

concentrations, was 2.44 hr-1. 

Placebo effect was modeled as a mixture of non-responders and responders in the 

final model, where the responder component was described using a Bateman-like 

function. Modeling the placebo effect as a mixture, remedied the initial problem 
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encountered with abortion of the covariance step and resulted in stabilization of the final 

model as indicated by the correlation matrix of estimates being devoid of high 

correlations (>0.8) among parameters. PLAC describes the amplitude of response and, as 

indicated in Table III, was similar for sleepiness (3.6 logits) and dizziness (4.3 logits) as 

was k1, the first order rate constant describing onset of placebo effect. When k2, the first 

order rate constant describing offset of placebo effect, was modeled for sleepiness 

placebo, it resulted in over-parameterization as determined by inspection of the 

correlation matrix of estimates. However, given that the individual responder profiles 

showed a Bateman pattern of effect and not exponential decay, k2 was modeled as a 

fraction of k1 and the constant used to determine this fraction was determined using a 

sensitivity analysis. The majority of subjects were non-responders to placebo effect as 

indicated by P(1), the subpopulation proportion that was non-responder to placebo, and 

this estimate was similar between sleepiness (63%) and dizziness (71%).  The inter-

individual random effects parameter Ω1 was significantly higher for sleepiness effect 

(3.31 logits) compared to dizziness (0.32 logits).  

As shown in Table 2.3, mean population parameter estimates obtained from the 

bootstrap procedure were generally comparable to the estimates from the final model 

with the exception of the estimate of β5 of the sleepiness model. The bootstrap CI of this 

parameter showed a smaller lower bound (-21.3 logits) compared to the NONMEM lower 

bound.  The success rate of bootstrap runs was 80% for the lorazepam sleepiness model 

and 83% for the dizziness model.  

 Figure 2.2 shows the observed and simulated cumulative probabilities of reporting 

a sleepiness and dizziness effect greater then or equal to a particular effect category over 
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time (P>=m). The simulations describe the data adequately. As shown, the cumulative 

probabilities decrease with increasing effect category (m). Moreover, peak probabilities 

of reporting at least an effect category m at time of maximal effect are higher for 

lorazepam sleepiness (P≥1=1, P≥2=0.45, P≥3=0.25, P≥4=0.1, P≥5=0.05) then for 

lorazepam dizziness (P≥1=0.7, P≥2=0.3, P≥3=0.15) as shown in Figure 2. 

 Figure 2.3, shows the observed (points) and overlaid mean simulated scores 

(lines) and 90% shaded prediction intervals (PIs) obtained from five hundred sets of 

bootstrap parameter estimates. The mean simulations adequately describe the time course 

of sleepiness and dizziness scores with the prediction intervals (shaded region) capturing 

the data and mean simulations. The one exception, however, is a data point of placebo 

sleepiness (at 6 hr) which is not captured by the model and lies slightly outside of the 

shaded interval. The shaded PI for lorazepam sleepiness is wider than that of lorazepam 

dizziness indicating the greater model uncertainty of sleepiness. 

Figure 2.4 shows histograms of the simulated distribution of MaxS and AUEC 

obtained from 500 sets of bootstrap parameter estimates, overlaid on the observed mean 

of these PD endpoints (represented by the vertical black bar). The panels indicate that 

that proposed models simulate posterior distributions of these parameters which are 

centered close to the observed means. 

Finally, Table 2.4 relates the various data-derived PD parameters, and the model-

derived PD parameter, slope, to the incidence rates of the adverse events in the more 

general patient populations, as reported in the drug label. The ratio of the 

sleepiness/dizziness endpoints was calculated across these parameters. As shown by the 
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relative ratios, Max(P≥2), Max(P≥3) and  AUEC, show the greatest concordance to label 

incidence, followed by MaxS and  Max(P≥1). However, the ratio of sleepiness to 

dizziness slope parameters was very close to 1 indicating that drug effect may not explain 

the differences between sleepiness and dizziness across these PD parameters. 

Discusssion 

The current PK/PD analyses of an ordered categorical scale utilized as a 

biomarker of drug effect was used to gain insight into pharmacodynamics using a 

relatively small sample of subjects. Using the representative CNS agent lorazepam, this 

was illustrated by comparing the time course, self-rated on the scale by twenty healthy 

volunteers, of two of the most common AEs of the anxiolytic, sleepiness and dizziness. 

The 2 mg dose of drug selected in this study represents the daily recommended dose of 

lorazepam for maintenance treatment of generalized anxiety disorder.  

PK estimates obtained from the noncompartmental and compartmental analysis of 

the concentration-time profiles are consistent with previous reports (Greenblatt DJ, 1981) 

and showed that lorazepam is rapidly absorbed (Ka=1.04 h-1), has peak plasma 

concentrations occurring at about 2 hours post dose and that it has relatively moderate 

steady state volume of distribution (90 L), low systemic clearance (4 L/h), and moderate 

terminal half-life (16.7 hr). 

The noncompartmental analysis of the effect-time profiles of sleepiness and 

dizziness scores indicated that the MaxS of sleepiness was significantly higher then 

dizziness (2.35 vs. 1.45, p<0.01) as was the AUEC (20.35 vs. 9.76, p<0.01). As shown in 

Table 2.4, The ratios of sleepiness/dizziness of these PD parameters are in concordance 



47 
 

to the ratio of label incidence,   with AUEC showing stronger concordance. It must be 

noted that while these parameters are related to label incidence, they reflect effect 

intensity rather then effect frequency.      

 Differences in reporting various effect intensities between these AEs are seen in 

the cumulative effect probability plots in Figure 2.2. Maximum probabilities of reporting 

at least a minimal effect (P≥1) at are higher for lorazepam sleepiness (P=1) then dizziness 

(P=0.7). Likewise, the peak cumulative effect probabilities of at least mild and moderate 

intensity are higher for lorazepam induced sleepiness (P≥2=0.45, P≥3=0.25) than for 

dizziness (P≥2=0.3, P≥3=0.15). Since these parameters may be determined by taking the 

cumulative frequency of categorical scores at a time t, they are data-derived PD 

parameters reflecting the probability of reporting a cumulative, categorical effect 

intensity in a conceptual population. As shown in Table IV, the sleepiness/dizziness ratio 

across these PD parameters are also in concordance to the ratio of label incidence with 

Max (P≥2) and Max (P≥3) showing the highest concordance followed by Max (P≥1).  

Since these represent the cumulative probabilities (which is a frequency) of reporting an 

effect of given intensity in a conceptual population, their relationship to label incidence is 

more direct than MaxS and AUEC.  

The lack of significant difference between the slope estimate of sleepiness (0.21) 

and dizziness (0.19) at the 95% confidence level suggests that lorazepam confers similar 

intensity of sleepiness and dizziness effects and that drug does not contribute to the 

observed differences in the PD of these effects. Nevertheless, the proposed population 

PK/PD model gives possible insight into the differences in PD endpoints between these 

AEs. To understand certain PD model estimates reported in logit units in Table 2.3, it 
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may be helpful to refer to Figure 2.5, which shows the relationship between the logistic 

domain (which is rather abstract) and the probability domain (which is more familiar). On 

inspection of the population CIs of PD parameter estimates in Table 2.3, the only 

parameter that is significantly different between these effects at 95% confidence level is 

β1, the baseline intercept parameter of effect category 1 (likelihood of having a response 

of at least minimum intensity). The difference between this estimate for sleepiness and 

dizziness effects is 1.5 logits. As shown in Figure 2.5, the majority of the probability 

domain (0.1 ≤y≤ 0.9) occurs in the logit range -3≤x≤3, and 0 logits corresponds to the 

inflection point at y=0.5. In this range, 1.5 logits corresponds to a probability of 0.82. 

Since 0 logits corresponds to P=0.5 the difference P=0.82-0.5=0.32 corresponds to the 

greater likelihood of reporting sleepiness then dizziness due to the baseline difference. 

From Figure 2.2, the difference in observed cumulative effect (P≥1) at tmax between 

sleepiness and dizziness is 1-0.7=0.3 equivalent to the value determined above. Since 

(P≥1) is the cumulative effect across all effect categories, differences in this endpoint 

between sleepiness and dizziness at tmax closely resembles differences in Max Score. It 

is unclear from a physiological standpoint why the difference in baseline effect exists 

between sleepiness and dizziness, but one possible explanation may be the time of day in 

which the data was collected. Given that the scale was first applied in the morning, some 

subjects may have experienced a residual sleepiness in the morning that was reported at 

baseline. 

Another explanation may be that subjects may have a greater tendency to report a 

sleepiness effect than dizziness even in the absence of any drug. However, no placebo 

response rates of these effects are reported in the lorazepam label to confirm this. Placebo 
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data in the current study as shown in Figure 2.3, show a slightly greater sleepiness 

response at earlier time points (at 0.5 hrs post dose administration), suggesting that 

differences in reporting sleepiness and dizziness in the absence of drug may be related to 

time of day. 

As mentioned, addition of an effect compartment was significant in the PD model 

of sleepiness (decrease in 3.9 of MOF). From Table 2.3, the ke0 estimate was 2.44 h-1 

and the half- life in the biophase is determined as ln(2) / 2.44 =0.28 h. Approximately 

five half lives in the biophase (1.5 hr) is equivalent to the slight delay in sleepiness effect 

with respect to peak plasma concentrations of lorazepam confirmed by results of the non-

compartmental PD analysis (2.2 hr). Slight delays in psychomotor and cognitive PD 

measures with respect to peak plasma concentrations after single dose administration of 

lorazepam 2mg have been reported previously (Ellinwood et al, 1985; Bin et al, 1999). 

On the other hand, dizziness showed no such significant delay in effect and the time to 

Max Score was close to the tmax of lorazepam concentrations. While this contrast is 

unclear, one plausible pharmacologic explanation may be the distinct anatomical location 

in the brain from which these CNS effects originate. It is known that lorazepam induced 

sleepiness is the result of binding to and inhibition of benzodiazepine receptors of GABA 

complexes in the thalamus and sensory cortex of the brain (Volkow et al, 1995; 

Schreckenberger et al, 2004). The receptor binding causes downstream inhibition of 

glucose metabolism (Volkow et al, 1995; Schreckenberger et al, 2004), which might 

account for the delayed sensation of sleepiness recorded by the scale. On the other hand, 

lorazepam induced dizziness is conferred by benzodiazepine action in receptors of the 

cerebellum (responsible for maintenance of balance) and these receptors may have a 
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different subunit composition (Lunddens et al, 1995), altering rates of downstream 

signaling. 

The performance of the final population models was assessed by a number of 

diagnostics including the simulations in Figure 2.2 which capture the observed 

cumulative probabilities, and the mean simulations in Figure 2.3 which adequately 

capture the time course of drug and placebo scores. As a further check, the invalidity of 

these models was refuted by results of the posterior predictive check (Yano et al, 2001) 

which showed that the simulated distributions of MaxS and AUEC were centered close to 

the observed mean. These PD parameters were selected based on them being clinically 

relevant, data-derived parameters which could be determined using the profile of an 

individual subject (Yano et al, 2001). The 90% PI in Figure 2.3 show the model 

uncertainty conferred by both random effects and uncertainty in estimating the parameter 

estimates. Typically, the 90% as opposed to 95% PI is assessed, because some confidence 

to detect a type I error is compromised to compensate for the increased uncertainty 

incurred by random effects. As shown in Figure 2.3, the PI of lorazepam sleepiness is 

wider then dizziness indicating greater model uncertainty. This may be the result of the 

greater random effects as shown in Table 2.3 (Ω is higher for sleepiness). Since 

overlaying PIs of these effects shows separation beyond 2 hours, one can make the 

conclusion that, given uncertainty in the model estimates and random effects, the models 

can detect a difference between the time course (at tmax and beyond) of these effects at 

the 90% confidence level. 

A particular feature of the logistic function that underscores its quantitative power 

is the ability to quantify a population incidence of a cumulative or specific effect category 
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at a particular time post dose administration using population model estimates, as 

illustrated in the following example. To determine the probability P>=3 of reporting a 

drug induced sleepiness of at least moderate effect intensity at Cmax in the biophase (26 

ng/ml), Equation 2  and final model estimates from Table 2.3 can be used to determine 

the total logits as (β1+β2+β3)+(Slope*Cmax)= (-2.81-2.57-1.79)+(0.21*26)= -1.71 

logits. Referring to Figure 2.5, or by using the logit transform (Equation 3), this logit 

corresponds to a probability of 0.15. Likewise the probability P≥3 of reporting lorazepam 

dizziness effect at tmax is 0.03.Therefore, the model predicts that at time of peak 

lorazepam effect, 15% of the population will experience a sleepiness effect of at least 

moderate intensity while 3% will experience a dizziness effect of at least moderate 

intensity.  

While sleepiness and dizziness are the most commonly reported AEs of 

lorazepam according to the drug label and endpoints obtained in the study (Moton et al, 

2005), the effects show minimal to moderate amplitude on the categorical scale as shown 

in Figure 3. This observation speaks to the power of the approach described, 

underscoring the sensitivity of the categorical scale in discerning small differences 

between relatively mild to moderate PD effects over time, and the ability to model such 

data from a relatively small sample of subjects using the logistic function. Currently, 

tolerability is described in drug labels as AE incidence rates, rates of dropouts associated 

with particular AEs, or label warnings.  The high variability in AE rates in labels due to 

the varying methods of collecting AEs,  varying populations, and varying doses used in 

clinical trials  make them inadequate for assessing relative tolerability between 

compounds unless the sample size is large and there is a within study comparison of  
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drugs. The 7 point categorical scale described in this study can therefore have important 

utility as a biomarker of AE rates in smaller pharmacology studies, and the logistic 

function can be used to model the time course of AEs to provide more insight into the PD 

of AEs.           

 A question that arises, however, is whether less frequent or less intense AEs could 

be quantified using the pharmacometric approach, trial design, and sample size described. 

Clinical trial simulation (Girrard, 2005) studies will therefore be needed to apply 

sensitivity analysis (Girrard, 2005) to the proposed model parameters, such as slope, to 

determine the minimum intensity signal that can be quantified using the current clinical 

trial design. It must also be pointed out that a slope model was used in this study rather 

then an Emax model since only one dose which represents the maximum daily 

recommended dose for maintenance treatment was studied, however an Emax model may 

be used in future clinical studies where dose escalation may be performed on a candidate 

drug until the maximum effect is reached. 

Another question that arises is which of the PD parameters shown in Table 2.4 is 

most adequate to relate to label incidence. As mentioned, AUEC and MaxS are data-

derived PD parameters which reflect effect intensity rather then effect frequency. 

Moreover, AUEC may not always relate directly to label incidence, since the AUEC of 

an effect which has a large intensity but short duration may be similar to that of an effect 

with low intensity and longer duration yet these effects may have different incidence 

rates. Therefore, AUEC may not be adequate to use when comparing the AE rates of 

drugs of vastly different PK profiles. In such situations AUEC normalized to time may be 

better related to incidence. Max (P≥1), Max (P≥2) and Max (P≥3) are also data-derived 
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PD parameters which reflect frequency of reporting a cumulative categorical effect 

intensity in a conceptual population. The stronger concordance of Max (P≥2) and Max 

(P≥3) to label incidence seems to suggest that the frequency of reporting categorical 

effects of higher intensity may be better related to population incidence. The Slope 

parameter, which is model-derived, is very important since it shows whether the 

difference in incidence is drug related or not. If the differences in incidence were entirely 

drug related, in this scenario, a 2 fold greater slope of sleepiness would be expected to 

that of dizziness. More studies using this scale with different AE endpoints, and 

implementing the pharmacometric approach described in this paper will ultimately 

confirm and clarify the PD parameter in Table 2.4 showing the strongest concordance to 

label incidence consistently across studies. 

Lastly, in emphasizing other potential utilities of this ordered categorical scale in 

early clinical development, the approach described in this paper may not be limited to 

comparing effects of the same drug as done in the current study, but can be applied to 

other scenarios as well. If the comparison was conducted between the dizziness AE of an 

anxiolytic under development and lorazepam for example, the relative ratio PD 

parameters in Table 2.4, e.g. Max (P≥3), and the lorazepam label incidence of dizziness 

may be used to extrapolate an estimate of dizziness incidence for the candidate under 

development. This would assist in developing a PD differentiation profile of the 

candidate which would show advantages and disadvantages of the candidate compared to 

marketed comparators early on in development. The scale may not only have utility as 

biomarker of AEs but of Pharmacodynamic effect in general. For example, in another 

scenario, if the comparison was conducted on sleepiness scores between two different 



54 
 

hypnotic drug candidates under development, prediction intervals as those shown in 

Figure 2.3 may be used to determine at which level of confidence a difference in 

sleepiness effect (which is now therapeutic rather then AE) between these drugs is seen 

given the uncertainty in model estimates and random effects. Such an analysis would, 

again, show a competitive adavantage/disadvantage of a particular candidate and assist in 

go/no go decision making during early drug development. Other scenarios include PD 

comparisons of different formulations of the same compound, or between different study 

populations (e.g. geriatric vs. non-geriatric), or in assessing PD drug-drug interactions.  

In conclusion, this study has shown that use of an ordered categorical scale as a 

measurement of drug effect, coupled to PK/PD modeling, may be applied successfully in 

a small study setting to gain valuable insight into the pharmacodynamics of drug action. 

This was illustrated by characterizing the exposure-response relationship of two common 

effects (sleepiness and dizziness) of the representative CNS agent lorazepam, and 

showing that differences in the PD endpoints described may be due to differences in 

baseline parameters. Differences between data-derived PD measures of sleepiness and 

dizziness were consistent with differences in incidence rates reported in the label, 

suggesting the utility of this scale as a biomarker of adverse event rates in early clinical 

development. 
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Table 2.1. Subject Demographics (n=20). 

Parameter Mean (SD) 
Gender, n
   Male 5
   Female 15
Race, n
   White 17
   Black 3
Age, y 43 (11)
Weight, kg 72 (12)
Creatinine clearance, ml/min 103 (22)  
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Table 2.2. Pharmacokinetic Parameters in Healthy Volunteers after a 2 mg Oral Dose of 
Lorazepam (n=20). 

Parameter
NONMEM 
Estimate

NONMEM  
95% CI

Bootstrap 
Estimate

Bootstrap 
95% CI

CL/F  (L/h)    4.02 3.58 - 4.46 4.02 3.57- 4.47
V1/F  (L) 53.6 48.1-59.1 53.4 45.5-59.0
V2/F  (L) 37.6 33.3-41.9 38.0 33.3-44.7
Ka     (h-1) 1.04 0.82-1.26 1.03 0.79-1.27
Q       (L/h) 10.9 9.00-12.8 11.0 9.13-13.9
TVCL = CL/F+θ1*(CLCR-103) θ1=0.03 0.01 - 0.05 0.03 0.01-0.05
 TVV  = V1/F+θ2*(WGT-72) θ2=1.11 0.87 -1.36 1.13 0.83-1.39
Ω-CL/F      25.4% 12.1- 38.7 24.0% 16.6-30.6
Ω-V1/F  9.24% 2.08- 16.4 8.60% 0.70-14.4
Ω-V2/F  13.1% 3.98-19.1 12.5% 1.08-19.1
Ω-Ka    35.9% 16.4-55.5 34.8% 20.9-45.0
Residual Proportional Error 8.34% 5.54 - 11.1 8.09% 5.79-10.9  

CL is systemic clearance, F is bioavailability, V1 is central compartment volume, V2 is 
peripheral compartment volume, Ka is the first order rate of absorption, Q is 
intercompartmental clearance, TVCL and TVV are typical population value of clearance 
and volume, θ1 and θ2 are covariate parameters on CLCR (creatinine clearance) and 
WGT (weight), and Ω is a random effects parameter estimating inter-subject variability.  

 

 



Table 2.3. Pharmacodynamic Parameters in Healthy Volunteers after a 2mg Oral Dose of 
Lorazepam or Placebo (n=20).  

 

β1- β5 are intercept logistic parameters describing the baseline, PLAC is amplitude of 
placebo effect, k1 and k2 are the first order rates of onset and offset of placebo response, 
P(1) is percentage of  non-responders to placebo, SLOPE describes the  relationship 
between drug effect and concentrations, keo is the first order rate constant describing lag 
in the effect compartment compared to lorazepam concentrations in the central 
compartment, Ω1 is a random effects parameter describing inter-subject variability. 
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Table 2.4. Relationship of Data-Derived and Model-Derived PD Parameters to the Label 
Incidence of Sleepiness and Dizziness in Healthy Volunteers after Administration of a 2 
mg Oral Dose of Lorazepam. 

Endpoint/ Parameter Label Incidence AUEC MaxS Max(P≥1) Max(P≥2) Max(P≥3) Slope
Sleepiness 15.7 20.35 2.34 1 0.57 0.35 0.21
Dizziness 6.9 9.76 1.45 0.7 0.25 0.15 0.19

Ratio (Sleepiness/Dizziness) 2.3 2.1 1.6 1.5 2.3 2.3 1.1  
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Figure 2.1. Left Panel:.Observed mean ± SD and predicted mean plasma concentrations 
versus time after a 2mg  oral dose  of  lorazepam  in healthy volunteers (n=20).Right 
Panel: Observed Individual, mean, and predicted mean plasam concentrations versus 
time. 
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Figure 2.2. Cumulative probability plots of reporting sleepiness and dizziness. P≥1-5 is 
the cumulative probability of reporting an effect of at least minimum, mild, moderate, 
significant, and severe intensity on the categorical scale. 
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Figure 2.3. Ninety percent prediction intervals of sleepiness and dizziness scores in 
healthy volunteers as a function of time (n=20). Panel one shows lorazepam and placebo 
sleepiness, panel two lorazepam  and placebo dizziness , and panel three lorazepam 
sleepiness and dizziness. Symbols indicate observed data, middle line indicates simulated 
data, and lower and upper lines indicate lower and upper prediction interval bounds.  
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Figure 2.4. Posterior distributions of MaxS and AUEC for lorazepam sleepiness and 
dizziness in healthy volunteers after a 2 mg oral dose of lorazepam(n=20). Line indicates 
mean observed value. MaxS is the maximum reported categorical score, AUEC is the 
area under the effect curve from 0h-24h. 
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Figure 2.5. Relationship between the probability and logistic domains. 
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CHAPTER 3 

 PHARMACOMETRIC ANALYSES OF A CONTINUOUS VISUAL- 
ANALOG  MEASURE OF LORAZEPAM SLEEPINESS  

 

Abstract 

A continuous measure of drug effect may have potential advantages over a categorical 

counterpart in pharmacometrics. This study investigates the feasibility of modeling a 

pharmacodynamic measure of the Visual Analog Scale (VAS) using a population mixed 

effects approach Healthy volunteers (n=20) received single oral doses of 2 mg lorazepam 

or placebo in a randomized, double-blind, cross-over fashion. The VAS was serially 

administered over 24 hr to measure the intensity of several effects including sleepiness. 

Lorazepam Cmax (26 ng/ml) occurred at 1.7 hrs while maximal VAS sleepiness (MaxS= 

50.6 mm) was delayed occurring at 3.3 hrs. Lorazepam-induced sleepiness was modeled 

using a linear slope model with an effect compartment implemented in NONMEM. High 

unexplained interindividual and residual variability, poor concordance plots and 

Montecarlo simulations were observed. Inspection of the histograms of VAS scores at 

various time points showed a right- skewed distribution, Logistic transformation of the 

VAS scores produced distributions closer to normal,  greatly improving concordance 

plots, residual plots, and simulations. In conclusion, the logistic transformation well 

handles the skewness and boundedness aspects of the VAS, making such data suitable for 

non-linear mixed effects analyses in NONMEM. 

 



68 
 

 

Introduction 

Continuous and ordered categorical subjective scales have been used to measure 

effects which are clinically relevant yet have no alternative objective measure. The 

Visual Analog Scale (VAS) is an example of a continuous subjective scale which has 

been used in clinical studies to measure relevant effects such as pain (Deloach et al, 1998; 

Lundeberg et al, 2001; McCormack et al, 1998), mood (Aitken et al, 1970; Folstein  and 

Luria, 1973; McCormack et al, 1998), and anxiety (McCormack et al, 1998). It consists 

of a 10 cm line anchored at both ends with words descriptive of the maximal and minimal 

extremes of the dimension being measured. Figure 3.1 shows an illustration of the 

modified VAS drawn to scale.       

 The feasibility of using different subjective scales as biomarkers of 

pharmacodynamic (PD) response was investigated in a small clinical pharmacology study 

with four model Central Nervous System (CNS) drugs (Moton et al, 2005).  The rationale 

was that these scales may be used as biomarkers of efficacy and tolerability to create 

preliminary pharmacodynamic differentiation profiles in the development of new CNS 

agents.  In that Phase I study (Moton et al, 2005) , the VAS and a seven point ordered 

categorical scale measuring different types of subjective response (e.g. sleepiness, 

dizziness, etc) were administered serially after single dose administration to measure 

intensity of drug effects over 24 hours.  Inspection of the effect-time profiles of the more 

common drug effects showed differential profiles for the different CNS agents, the onset 

and offset of response as well as the relationship to plasma concentrations.  

 The criteria for selecting the most ideal subjective scale for pharmacometric 
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utility in a small study setting are unclear. From a clinical outcomes perspective, the 

controversy in the literature over the superiority of categorical versus VAS scales stresses 

the need to closely investigate the suitability of a subjective scale for a particular clinical 

study design. We have previously shown that  7-point ordered categorical  measures of 

lorazepam sleepiness and dizziness reported by twenty healthy volunteers were modeled 

successfully using a logistic function, and demonstrated the potential utility of this scale 

as a biomarker of adverse events. (chapter 2). However, a continuous measure of drug 

effect may have potential, inherent advantages over a categorical counterpart in 

pharmacometrics. Aitken  and Zealley (1970)  popularized use of the VAS  arguing such 

scales can quantify sensitively what subjects wish to convey, however words may fail to 

describe the ‘exactness of the subjective experience’ while   categorical scales impose 

artificial categories on the continuous phenomena of feelings. Moreover, with a 

continuous scale such as the VAS, the change in effect can be quantified, i.e., in going 

from 10 mm to 20 mm the change may assumed to be the same as going from 30 to 40 

mm, however the effect categories in a categorical scale cannot be assumed to be 

equidistant (Merbitz et al, 1989). The VAS also has the potential to be more sensitive 

than a categorical scale in detecting small changes in clinical effect over time (Scott and 

Hiskinsson, 1976). Since a continuous scale provides scores which are amenable to 

parametric analysis using non-linear regression (Robinson et al, 1975), such data may 

also potentially offer a better characterization of interindividual variability compared to a 

categorical scale.         

 From the spectrum of CNS effects measured in the phase I study (Moton et al, 

2005), the endpoint of lorazepam-induced sleepiness was selected for analysis because 
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this measure: 1) showed the largest signal on both VAS and categorical scales, 2) showed 

the highest statistical significance in time-averaged change from baseline differences with 

placebo (p<0.001), and 3) was analyzed previously using the categorical measure 

(Chapter 2). The current study investigates the exposure/response relationship of VAS- 

measured- lorazepam-sleepiness and explores the feasibility of modeling this VAS 

measure using a population mixed effects approach.  

Methods 

Data Collection 

Twenty healthy volunteers were randomized in a double blind, single dose, 5-way 

crossover design (Moton et al, 2005). All subjects gave written informed consent to 

participate in the study. The study was conducted at the Clinical Pharmacology Unit of 

Pfizer (Ann Arbor, MI) in accordance with the principles of the Declaration of Helsinki. 

The study protocol was approved and performed in compliance with the Institutional 

Review Board/Independent Ethics Committee (IRB/IEC) and International Committee on 

Harmonization (ICH) Good Clinical Practice guidelines. Each subject received an oral 

dose of either lorazepam 2 mg, as one of four CNS drugs, or placebo. All study drugs 

were commonly used marketed compounds within their respective therapeutic indications 

and were selected to produce different AE profiles which could potentially be measurable 

after single dose administration. Each regimen was separated by a one week washout 

period for a total trial period of five consecutive weeks. Blood samples were drawn 

before dosing and at 0.5, 1, 2, 3, 4, 6, 8, 10, 12, 24, 48, and 72 hr after the morning dose 

and were assayed for lorazepam concentrations as previously described (Chapter 2).  
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Prior to each blood collection during the first 24 hr, the VAS, as shown in Figure 

3.1, was administered along with the 7 point ordered categorical scale previously reported 

(Kamal et al, in press). Subjects were asked to indicate how they felt at the moment for 9 

separate VAS scales measuring sleepiness, dizziness, nausea, forgetfulness, confusion, 

weakness, stiffness, and blurred vision. The scales consisted of 100 mm line anchored at 

both ends by “Not at all” and “Extremely” as shown in Figure 3.1. Subjects were 

instructed to draw a slash across the line between these anchor points and the effect was 

quantified by measuring the distance of the slash from the minimal extreme, “Not at all”, 

and was recorded to the nearest millimeter.  

Data Analysis 

Logistic Transformation 

Distribution of the lorazepam sleepiness VAS scores at various time points was 

skewed to the right as shown in Figure 3.3A. VAS scores were transformed using the 

following logistic transformation as described by Senn (2002).  

      Equation 1  

 Where Y denotes the transformed score in logits. For this transformation to be 

applied, 1 mm was added to zero data and 1 mm was subtracted from 100 mm data (if 

any). The following reverse logit transform was used to reconvert transformed scores in 

logits to VAS millimeters.  

         Equation 2 
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Where Y denotes the transformed variable obtained by Equation 1. 

Structural PK/PD Model 

PK/PD modeling of the time course of lorazepam concentrations and transformed 

VAS sleepiness scores were conducted in NONMEM (Beal and Sheiner, 1992) using the 

first order conditional estimation method with interaction (FOCE INTERACTION). The 

general model building strategy is based on modification of different approaches 

discussed by Beal and Sheiner (1992), Mandema et al (1992), and Ette and Ludden 

(1995). During model building, the goodness of fit of different models to the data was 

evaluated using the following criteria: change in the minimum objective function (MOF), 

visual inspection of concordance and residual plots, precision of the parameter estimates, 

the distribution of interindividual variability, and decreases in both inter-individual and 

residual variability. A decrease in the MOF of at least 10.83 upon addition of a parameter 

was considered statistically significant. This corresponds to a nominal p value of <0.001 

and one degree of freedom in the chi square distribution of the difference of MOF 

between hierarchical models.           

 The previously reported two-compartment model with first order absorption 

employed in the categorical analysis was used to describe the time course of plasma 

concentrations of 2 mg oral lorazepam (Kamal et al, in press).VAS  sleepiness scores 

were modeled  as a function of baseline effect, placebo effect, and lorazepam drug 

concentrations. The general model describing VAS sleepiness scores was: 

VAS Score=BSL + PLAC + DRUG            Equation 3 
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Where BSL a constant describing baseline sleepiness effect, PLAC is a structural model 

describing placebo sleepiness effect and DRUG is a structural model component 

describing lorazepam sleepiness effect. Exploratory analyses of each component was 

done separately by modeling baseline initially and then adding drug and placebo model 

components sequentially while observing the decrease in MOF.    

 Several models of drug effect were tested including: linear slope models using 

actual concentrations, post hoc PK estimates, and effect compartment concentrations.  

Hill functions with a fixed (Emax = 100) and non-fixed Emax with and without a 

sigmoidicity factor were also tested. Examination of the PK- and PD-time profiles 

showed a lag between concentrations and effect and as such used an effect compartment 

model was proposed. In the final model, the effect of lorazepam (DRUG) is linearly 

related to lorazepam concentrations in the effect compartment and was written as: 

Drug =SLOPE*CE        Equation 4 

Where SLOPE is the slope of the relationship between the increase in VAS 

response and CE, the concentrations of lorazepam in the hypothetical effect 

compartment, as described by Sheiner et al (1979).  Concentrations in this effect site are 

linked to the central compartment with a first order rate process and assume negligible 

mass transfer of drug to that compartment.  Thus, the equilibration between the central 

and effect compartment is driven by a first order rate constant (Ke0) which describes the 

delay between appearance of concentrations in plasma and onset of PD effect.  

Concentrations in the central compartment were predicted from the posthoc Bayesian 

estimates from the final PK model (chapter 2).  
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Many models were tested for placebo response including a simple constant 

response, exponential decay and a Bateman function. Although the Bateman function 

showed the lowest MOF, when k2, the first order rate constant describing offset of 

placebo effect, was modeled for sleepiness placebo, it resulted in over-parameterization 

as determined by inspection of the correlation matrix of estimates. The approach taken 

was to use a single first order  rate constant k using the Equation 5 below:  

PLAC = alpha * k * t * exp (-k * t).           Equation 5 

Where PLAC is placebo response, alpha is a parameter describing amplitude of 

placebo response and k is a first order rate constant. This resulted in stabilization of the 

final placebo model and the lowest MOF. 

Intersubject and Residual Variability 

Intersubject variability was estimated on the mean pharmacodynamic parameter  

θ using an exponential error term.  This was tested sequentially on all structural 

parameters and those parameters that were significant were retained during model 

building.  Residual variability was described using an additive error model as this model 

showed the greatest decrease in the MOF. 

Assessment of PK/PD Model Performance 

In addition to concordance and residual plots, Monte-Carlo simulations were performed 

to assess the final model performance and these simulations were visually compared to 

those of the model applied to the untransformed VAS scores. 

Results 
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Table 3.1 shows the demographic information of the twenty study subjects. The time 

course of observed mean ± SD, after single oral dose administration of lorazepam 2 mg 

are shown in Figure 3.2. A noncompartmental analysis yielded mean (CV%) estimates 

for Cmax of 26.8 ng/ml (22.9), tmax of 1.7 hr (40.8), t1/2
  of 16.8 hrs (21.3) and a total 

systemic exposure or AUC0-∞ of 551 ng*hr/ml (31.0). Peak lorazepam sleepiness score 

(MaxS) recorded on the VAS was 50.6 mm. The time to reach MaxS for lorazepam 

sleepiness scores was delayed (3.3 hr, Figure 3.2, B) compared to time of maximal 

lorazepam concentrations (tmax=1.71 hr, Figure 3.2, A). This temporal delay in relation 

to plasma concentrations was shown as a counter-clockwise hysteresis in the 

effect/concentration plot (Fig 3.2, C) and justified addition of the effect compartment  to 

describe drug effect in the lorazepam sleepiness model. 

 Figure 3.3A shows the right skewed distribution of  lorazepam sleepiness VAS 

scores at baseline and various time points. Figure 3.3B shows how applying the logistic 

transform shown in Equation 1 remedies the skewness, making the distributions look near 

normal. 

Population PD model-building was initialized by addition of baseline parameter 

(BSL) Addition of the drug component of the model as a slope as described in Equation 4 

resulted in a decrease in point reduction in the MOF > 300 indicating a significant drug 

effect.  Table 3.2 shows the final PD parameter estimates.   Addition of an effect 

compartment as described in Equation 5 was significant for sleepiness (MOF reduction 

was 22 points) and the final estimate of ke0, the first order rate constant describing lag in 

effect in the biophase compared to central compartment concentrations, was 5.17 hr-1. 
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Addition of the k1 parameter as shown in Equation 5 stabilized the model and 

significantly reduced the MOF (by >20 points). 

Improvement in the diagnostics of the model after logistic transformation is seen in 

Figure 3.4. The PRED vs. Observed plots (panel A, Figure 3.4) showed an improvement 

after transformation as well as the IPRED vs. Observed concordance plot (panel B, 

Figure 3.4). The residual plot of WRES vs. PRED also showed great improvement with 

outliers (defined as points lying outside the range -5 to5) seen in the upper panel of C, 

Figure 3.4, but absent in the lower panel.      

 The montecarlo simulations of the model applied to untransformed and 

transformed VAS scores is shown in Figure 3.5.  As shown, a significant improvement in 

the fit is seen after the scores are transformed.       

Discussion 

Although the VAS has been used in several clinical studies to measure subjective 

effects such as pain and mood, its pharmacometric utility in measuring drug effects in 

relation to drug exposure particularly in smaller studies is not well established. The 

current analysis investigates the pharmacokinetic/pharmacodynamic relationship of a 

VAS measure of sleepiness after single oral dose administration of lorazepam 2 mg 

reported by 20 healthy volunteers using a mixed effects population approach. The 2 mg 

dose of lorazepam represents the maintenance dose used in the treatment of generalized 

anxiety disorder. 

Noncompartmental PK estimates of the plasma concentration/time plot shown in 

Figure 3.2, showed oral lorazepam 2 mg displayed rapid absorption kinetics with a tmax 
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of 1.71 hr, Cmax of 26.8 ng/ml, and biological half life (t1/2) of 16.8 hr. The PK model 

which was previously described (Chapter 2) was a 2 compartmental model with first 

order absorption which adequately characterized the time course of lorazepam plasma 

concentrations. 

Mean peak Lorazepam sleepiness score (MaxS) recorded on the VAS was 50.6 

mm at 3.3 .hrs. This delay in effect in relation to plasma concentrations was shown as a 

counter-clockwise hysteresis in the effect/concentration plot (C, Fig 3.2). This temporal 

delay in lorazepam sleepiness observed with the categorical scale (chapter 2)..Peak 

lorazepam dizziness effect measured on the VAS showed no such delay (closed 

hysteresis loop, data not shown) and this temporal relationship was also in agreement 

with the categorical measure of dizziness (chapter 2), suggesting PK/PD temporal 

consistency between the VAS and the 7 point categorical scale. The temporal difference 

between lorazepam sleepiness and dizziness may be explained the presence of the Blood-

Brain-Barrier (BBB). Subjects may be experiencing vertigo which is reported as 

dizziness. Such an effect occurs due to action of the benzodiazepine at GABA receptors 

in the vestibular nuclei of the inner ear and this does not require traversing the blood 

brain barrier. On the other hand, sleepiness may occur due to GABA receptor activity in 

the thalamus and sensory cortex in the brain (Volkow et al) and this requires traversing 

the BBB, which causes the temporal delay recorded on both VAS and categorical 

(chapter 2) scales. 

Although the current VAS analysis uses non linear regression as opposed to  the 

categorical analysis which uses logistic regression, the VAS pharmacodynamic model 

described in the current analysis contained similar structural features to the categorical 
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pharmacodynamic model, i.e. constant baseline, linear slope model with an effect 

compartment to characterize drug effect, and a Bateman-like placebo response.  

The right skewed distribution of VAS scores at various time points at baseline and 

post lorazepam administration is shown in Figure 3.3A. This skewness phenomenon is 

the product of applying a bound scale, and as such there is a need to transform the data to 

make it normal or near normal. Typically, a Log transformation is applied in such 

situations (Senn, 2002), however while the log transformation may address the skewness, 

the transformed scores remained bound on a finite interval. Moreover, since zero data 

exists, there is a need to bias such data using a constant (c) and there is the problem of 

model predictions lying outside the interval Log(c) ≤Y≤ Log (100). A transformation that 

addresses both the skewness and boundedness of the VAS is the logistic transform shown 

in Equation 1. As shown in Figure 3.3B, the distribution of VAS scores after logistic 

transformation approaches normality. The function also accommodates the scale limits at 

0 and 100 mm by unsqueezing the values on both ends of the scale, converting the finite 

interval to the unbound logistic domain. To employ the transformation in the current 

analysis, there was a need to bias the extreme data by adding 1 mm to the minimal 

extreme (0 mm) and subtracting 1mm from the maximal extreme (100 mm) to 

accommodate the minimum and maximum asymptotes of the logistic function.. Since the 

subjects were not instructed to avoid marking anchor points in the current study protocol, 

there is a need in future studies to instruct subjects not to mark the anchor points of the 

VAS so as to avoid the need to induce this bias by the pharmacometrician. This may also 

necessitate modifying the scale, for example, changing the minimum anchor phrase in 

Figure 3.1 from “Not at all” to “ minimally”  to assist the subject in following this 
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directive during a clinical trial. As shown in Figure 3.4, the concordance of the 

population predictions (PRED) and individual model predictions (IPRED) to observed 

VAS sleepiness scores  improved greatly after transforming the data to the logistic 

domain. This is also reflected in the improvement in Montecarlo simulations in Figure 

3.5 when re-converting transformed scores to the original scale using Equation 2.Both the 

lorazepam treatment and placebo response simulations adequately capture the observed 

mean VAS responses.  

Conclusion 

Similar to the categorical measure, the VAS measure of lorazepam sleepiness was 

recorded with a delay compared to peak plasma concentrations. The logistic 

transformation remedied the skewness and boundedness of VAS scores and greatly 

improved pharmacodynamic model diagnostics. 
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Table 3.1 Subject Demographics 

 

Parameter Mean (SD) 
Gender, n
   Male 5
   Female 15
Race, n
   White 17
   Black 3
Age, y 43 (11)
Weight, kg 72 (12)
Creatinine clearance, ml/min 103 (22)  
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Table 3.2. Pharmacodynamic Parameters in Healthy Volunteers after a 2mg Oral Dose of 
Lorazepam or Placebo (n=20).  

Parameter NONMEM Estimate 95% CI
BSL (logit) -3.53   -3.93 ,-3.13

SLOPE  (logit*ml/ng) 0.07 0.04, 0.1
Keo    ( h-1  ) 5.17 1.3, 9.1
alpha  (logit) 2.03 1.12, 2.94

k    ( h-1  ) 0.36  0.27 ,0.45
IIV-BSL 22.25  9.96, 34.53
IIV-Slope 68.48 22.32,  114.6
IIV-keo 148.32 40.76, 255.75

IIV-alpha 60.17  21.31 , 99.03
Residual Additive Error 0.9 0.26, 1.54  

BSL describes the baseline, SLOPE describes the  relationship between drug effect and 
concentrations, ke0 is the first order rate constant describing lag in the effect 
compartment compared to lorazepam concentrations in the central compartment, alpha, 
describes the amplitude of placebo effect, k is a second order rate constant , IIV 
represents the percent inter-subject variability. 
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Figure 3.1.  A modified Visual Analog Scale used to measure sleepiness. 

 

 

 

 

 

 

 

 

 

 

 

How sleepy do you feel right now?

Not at All  Extremely Score in mm 
(investigator’s use only) 

Place a slash (|) across the line in the position that best describes your response. 
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Figure  3.2.  A: The time course of Lorazepam plasma concentrations after oral 
administration of a 2 mg dose in twenty healthy volunteers.  B: Time course of Sleepiness 
measured on the VAS after administration of 2 mg Lorazepam. C: Counter-Clockwise 
Hysteresis on the Effect-Concentration plot denoting the lag in Sleepiness effect 
compared to plasma lorazepam concentrations. 
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Figure 3.3A Histograms showing the right skewed distribution of VAS sleepiness scores 
reported by 20 healthy subjects after after oral administration of a 2 mg dose at various 
time points (Time = 0, 0.5, 3, 4, 6, 12 hr). 

 

 

 

 

 



85 
 

 

-5 -4 -3 -2 -1 0

0
1

2
3

4
5

6
0 hr

LOGIT

-4 -2 0 2

0
2

4
6

0.5 hr

LOGIT

-4 -2 0 2

0
1

2
3

4
5

6

3 hr

LOGIT

-4 -2 0 2 4

0
1

2
3

4
5

4 hr

LOGIT

-4 -2 0 2

0
1

2
3

4
5

6 hr

LOGIT

-5 -4 -3 -2 -1 0 1
0

1
2

3
4

5
6

12 hr

LOGIT

 

Figure 3.3B Histograms showing the  distribution of Logit transformed  VAS scores  
reported by 20 healthy subjects after after oral administration of a 2 mg dose at various 
time points (Time = 0, 0.5, 3, 4, 6, 12 hr). 

 

 

 

 



86 
 

A

VAS Score

P
R

E
D

0 20 40 60 80 100

0
10

20
30

B

VAS Score

IP
R

ED

0 20 40 60 80 100

0
20

40
60

C

PRED

W
R

ES

0 10 20 30

-1
5

-1
0

-5
0

5
10

15

D

Time (hr)

IW
R

ES

0 5 10 15 20

-1
0

1
2

3
4

5

VAS Logit

P
R

E
D

-4 -2 0 2

-4
-3

-2
-1

0

VAS Logit

IP
R

ED

-4 -2 0 2

-4
-2

0
2

PRED

W
R

ES

-4 -3 -2 -1 0

-4
-2

0
2

4

Time (hr)

IW
R

ES

0 5 10 15 20

-4
-2

0
2

4

 

Figure  3.4. Concordance Plots. (Top panel: Model applied to VAS Scores in the 
Untransformed Domain. Bottom Panel: Model applied to Transformed VAS scores in the 
Logistic Domain). A  Predicted (PRED) VAS scores versus Observed (OBS). B 
Individual Predicted VAS Scores (IPRED) versus Observed (OBS). C: Weighted  
Residuals (WRES) versus time. D  Individual Weighted residuals versus Time.  
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Figure 3.5. Monte-Carlo simulations of the VAS untransformed scores and transformed 
scores converted to the original scale. 
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CHAPTER 4 

CONCLUSION TO PART I 

Major Findings 

 The pharmacometric analyses have shown that the ordered categorical measures of 

lorazepam sleepiness and dizziness were successfully modeled using a logistic function. 

The performance of the models were shown to be appropriate and verified by simulation 

and various posterior predictive checks. Logistic transformation of theVAS lorazepam 

sleepiness  scores normalized the right skewed distribution of VAS scores, greatly 

improved model diagnostics and simulations compared to those of the model applied to 

untransformed scores.. Although results of these pharmacometric analyses are promising, 

certain limitations of the current study preclude any definite conclusion of standard 

pharmacometric utility of the categorical scale or the VAS in small clinical studies and 

warrant further investigation. The major limitations of the analyses include the inclusion 

of one study drug only (lorazepam) with the exclusion of the other three drugs studied 

(olanzapine, atomoxetine, and paroxetine). Atomoxetine and paroxetine both showed 

very weak PD signals on both scales whereas olanzapine showed a strong sleepiness 

signal on both scales, however, was excluded because sleepiness incidence data in the 

label was based on schizophrenic patients and not healthy volunteers. Another limitation 

of the study was that the order of tests (i.e. categorical vs. VAS) was not randomized at 

each time they were administered which may induce a bias, further complicating any 

direct comparison of these scales.  
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Proposed Future Studies 

Future studies should investigate the following: 

1) Modeling the VAS measure of lorazepam dizziness. Such an analyses would 

allow determination of whether the potency (i.e. slope) ratio between sleepiness 

and dizziness are constant across both categorical and VAS measures. 

2) The measurement of PD differentiation profiles of adverse events in patients as 

opposed to healthy volunteers. To what degree are tolerability and efficacy PD 

profiles similar between actual patients and healthy volunteers?  

3) Since most PD signals recorded on these scales were of fairly low amplitude, 

further investigation into what constitutes the minimum quantifiable signal using 

the current power and study design is justified. The proposed population models 

may serve as a platform for clinical trial simulation studies to conduct sensitivity 

analysis on effect intensity parameters such as slope. Moreover, other factors need 

to be investigated such as the added power of current 5-way cross-over study 

designs and what power would be needed when using other study designs. Since a 

mixture of responder and non-responder sleepiness and dizziness was observed in 

the placebo group, simulation studies should also aim to determine what power is 

necessary to model responder data for a given ratio of responders. 

4) The approach described of relating model-derived PD parameters to label 

incidence in creating preliminary PD differentiation profiles should be explored 

with other drugs and adverse event endpoints to determine the extent to which the 

approach is applicable in early small clinical studies. 
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5) Investigation of the interaction of certain factors such as age and drug effects 

altering mental alertness (e.g. sleepiness) on the ability of the subject to use 

categorical and VAS instruments during the course of a clinical trial are 

warranted, especially to identify those factors which contribute to potential 

respondent error. 
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                                                                PART II 

ROLE OF PEPT2 SYSTEM IN NEUROPEPTIDE DISPOSITION, 
DYNAMICS, AND TOXICITY 

CHAPTER 5 

INTRODUCTION to PART II 

 Proton-Coupled Oligopeptide Transporters (POTs) 

Four peptide transporters - PEPT1, PEPT2, PHT1 and PHT2- have been identified in 

mammals and are part of the proton-coupled oligopeptide transporter (POT) superfamily. 

These transporters are responsible for tanslocating small peptide fragments (di- and 

tripeptides) across biological membranes. What is unique about these peptide transporters 

are their driving force and substrate specificity. An inwardly-directed proton gradient and 

negative membrane potential is used as the driving force rather than ATP hydrolysis or 

Na+ concentration gradient for the transporters. PEPT1 was the first mammalian 

oligopeptide transporter cloned, using expression-cloning strategies from a rabbit 

intestinal cDNA library (Fei et al., 1994).  PEPT2 was the next peptide transporter 

identified, which was cloned from a human kidney cDNA library (Liu et al., 1995). 

Recently, two oligopeptide transporters, PHT1 (Yamashita, et al., 1997) and PHT2 

(Sakata, et al., 2001), were cloned from a rat brain cDNA library.  The transporters are 

unique from PEPT1 and PEPT2 in that they were shown to transport the amino acid, L-

histidine, as well as di- and tri-peptides in the same proton gradient-dependent manner 

 The primary physiological function of POTs has long been recognized as the main 
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route for absorbing dietary nitrogen in the intestine and reabsorbing filtered peptide-

bound nitrogen in the kidney. The fact that the absorption of protein digestion products in 

the small intestine occurs primarily in the form of small peptides (Matthews, 1975), and 

that up to 50% of circulating plasma amino acids is peptide bound (Seal et al, 1991; 

Schlagheck  et al., 1984), further exemplifies the nutritional importance of peptide 

transporters. However, the wide expression of transporters in various tissues, especially 

PEPT2, implies the transporters might be involved in transporting peptides into cells for 

cellular metabolism and controlling overall amino acid homeostasis in the body. In 

particular, PEPT2 transcripts (Berger et al., 1999), protein (Novotny et al., 2000; Shu et 

al., 2002) and functional activity (Teuscher et al., 2000; 2001) have been reported in 

choroid plexus and this transporter is believed to play a role in neuropeptide homeostasis 

and the efflux of peptides/mimetics from cerebrospinal fluid.  

The peptide transporters also have important pharmacological relevance because 

of their ability to transport numerous  peptidemimetic drugs including amino β-lactam 

antibiotics of the cephalosporin and penicillin classes, angiotensin-converting enzyme 

inhibitors, aminopeptidase inhibitors (e.g., bestatin), renin inhibitors, photosensitizing 

agents (e.g., 5-aminolevulinic acid) and even non-peptidic compound (e.g., valacyclovir, 

valglanciclovir).  The oral absorption of these substrates is peptide transporter dependent, 

suggesting that their efficacy is at least partially attributable to the peptide transporters.  

Once the drugs are circulating in the plasma, they are filtered through the glomerulus 

then reabsorbed in the kidney via peptide transporters.  This reabsorption lowers the renal 

clearance of drug, thereby increasing its half-life in the circulation. The transporters also 

affect the drug distribution and disposition in the other organs such as the brain, lung and 
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eye. Hence, the peptide transporters play a critical role in the pharmacokinetic profile 

and, ultimately, the therapeutic effect of various peptidomimetic drugs. 

 POT Tissue and Cellular Localization 

PEPT1 protein is localized on the brush border membrane of the absorptive 

epithelia cells of the small intestine (Ogihara et al., 1996) and the kidney (Shen et al., 

1999; Terada et al., 1997) . More specifically, intestinal PEPT1 is confined to duodenum, 

jejunum and ileum of intestine, and S1 segments of the proximal tubule in the kidney 

(Shen et al., 1999). These segments are shown in Figure 5.2.  PEPT1 is thought to be the 

predominant POT located on the brush border membrane of the small intestine, and is 

primarily responsible for the absorption of small peptide fragments from the digestion of 

dietary proteins (Fei et al., 1994).  PEPT1 mRNA is mainly expressed in the small 

intestine and at low levels in the kidney, liver and pancreas (Fei et al., 1994; Gonzalez et 

al., 1998). PEPT1 however, is unable to be detected either as mRNA in rabbit, human or 

rat brain (Fei et al., 1994; Saito et al., 1995; Liang et al., 1995; Doring et al., 1998; and 

Fujita et al., 1999) or as protein in rat brain (Shen et al., 2004). 

PEPT2 exhibits different expression patterns in the kidney when compared to that 

of PEPT1 (Liu et al., 1995; Boll et al., 1996).  More specifically, it is confined to the S2 

and S3 segments of the proximal tubule (Shen et al., 1999) shown in Figure 5.2, and is 

especially enriched in the brush border membrane of the renal villi.  PEPT2 is believed to 

play a more dominant role than that of PEPT1 with respect to conservation of peptide-

bound amino acids in the kidney (Shu et al., 2001; Shen et al., 1999).  PEPT2 mRNA 

expression is not only found in the kidney but also exhibits strong levels of expression in 
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the brain, lung and mammary gland, with weaker signals detected in the pancreas, 

skeletal muscle, heart, liver, spleen and colon (Doring et al., 1998).  In regard to PEPT2 

brain distribution, PEPT2 mRNA has been specifically localized to astrocytes, 

subependymal cells, ependymal cells and epithelial cells of the choroid plexus (Berger et 

al., 1999).  Recently, PEPT2 protein was demonstrated in choroid plexus by Western blot 

analysis (Novotny et al., 2000; Shu et al., 2002) and by functional analysis (Teucher et 

al., 2000; 2001; Shu et al., 2002).  Western blots also show that PEPT2 protein is 

expressed in whole brain homogenates (Novotny et al., 2000) as well as in the peripheral 

nervous system glial cells (Groneberg et al, 2001a).  In the eye, in situ hybridization 

studies have localized PEPT2 mRNA to the retina (Berger et al., 1999).  In the lung, 

PEPT2 protein was demonstrated to be expressed in alveolar type II pneumocytes, 

bronchial epithelium, and endothelium of small vessels (Groneberg et al, 2001b).  As 

previously mentioned, the function of PEPT2 is also confirmed in mammary gland, in 

which it may contribute to the reuptake of short-chain peptides derived from hydrolysis 

of milk proteins secreted into the lumen and may reduce the burden of xenobiotics in 

milk (Groneberg et al, 2002). 

PHT1 mRNA has been found in the brain and eye, particularly in the choroid 

plexus and retina (Yamashita et al., 1997).  PHT2 mRNA transcripts were expressed 

primarily in the lymphatic system, lung, spleen and detected faintly in the brain (Sakata et 

al., 2001).  However, the physiological role of PHT1 and PHT2 in these different organs 

and tissues has yet to be elucidated.  In comparison to PEPT1 and PEPT2, relatively little 

is known about their cellular localization (i.e. plasma membrane vs. intracellular 

compartment).  
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PEPT2 Transport Models 

As early as in 1983, Ganapathy discovered that the transport of peptides via the 

peptide transporters is driven by an inward H+ gradient and a negative transmembrane 

potential difference.  However, this proton motive force is generated by different 

mechanisms depending on the tissue and cell type where the proton-coupled oligopeptide 

transporter is located. 

PEPT2 is assumed to be located on the apical membrane of the epithelium based 

on functional and immunolocalization studies in neonatal CP cells in primary culture 

(Shu et al., 2002). What is unclear, at present, is the mechanism generating the proton 

motive driving force by which peptides and mimetics are transported across apical 

membranes and into choroid plexus epithelial cells. Normally, the pH of bulk CSF is 

similar to that in plasma, but about 0.3 units lower in choroid plexus cells (Johanson, 

1985). Unlike most epithelial cells, the choroid plexus distributes Na+/K+-ATPase to the 

apical membrane and not the basolateral membrane (Ernst et al., 1986). This unique 

distribution is involved in the formation of CSF.  Recently, a model for the transport of 

peptides and peptidomimetics in choroid plexus was proposed by Smith et al. (in press) 

and involves three primary steps: 1) Na+/K+-ATPase in the apical membrane causes a 

sodium efflux from the cell and thus Na+ gradient; 2) this gradient is then utilized by two 

Na+/H+ exchangers. The Na+/H+ exchanger located in the basolateral membrane applies 

this gradient for extruding protons into the blood with pumping Na+ into the cell.  The 

other Na+/H+ exchanger located in the apical membrane also exploits this gradient for 

exporting protons into CSF and creates an acid microenvironment at the choroidial 

epithelial surface between apical microvilli, such as that observed in the intestine and 
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kidney (Lucas, 1983); 3) the acid microenvironment or local hydrogen gradient drives 

uptake of peptides via the proton-coupled oligopeptide cotransport system. Figure 5.1 

shows the transport model of PEPT2 in the choroid plexus epithelial cell. 

While the basolateral localization of Na+/H+ antiporter in the CP has been 

confirmed (Speake et al., 2001), an apical Na+/H+ exchanger need further experiments to 

confirm its presence in CP. Figure 5.1A shows  a representation of the oligopeptide 

transport model in the choroid plexus epithelial cell. Figure 5.1B shows a different 

representation of peptide/mimetic transport in the proximal tubule epithelial cell. As 

shown this model differs from that of the choroid plexus epithelial cell in the distribution 

of transporters on the apical and basolateral side. 

 General Substrate Structure 

After an initial understanding of di-and tripeptide transport via POT, researchers 

began to evaluate the possibilities of transporting drug molecules using these peptide 

transporters. Drugs (and prodrugs) such as amino-cephalosporins and penicillins, 

angiotensin-converting enzyme (ACE) inhibitors, bestatin and renin inhibitors have been 

reported to be transported by the POT transporters. Figure 5.5 shows the structures of 

various substrates of PEPT2 under study in our lab. 

While specific pharmacophore models have been developed for both PEPT1 and 

PEPT2, in general, several structural features of substrates are important for high-affinity 

interactions and binding by PEPT1 and PEPT2. These features include: 1) a peptide 

backbone of 2-3 amino acid residues, 2) both a free amino and carboxyl terminus (with 

free anion group in α-position), 3) the presence of hydrophobic side chains and 4) 
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stereoselectivity (with L-amino acids and trans-conformers being preferred). Still, the 

structural requirements for substrate recognition by the binding sites of oligopeptide 

transporters are even broader than once believed. A peptide bond is not an absolute 

requirement for transport, nor is the presence of a terminal amino or carboxyl group. 

Some significant exceptions have been demonstrated (Han et al, 1998) and, until a three 

dimensional crystal structure of the transporter protein is available, current 

pharmacophore models will continue to be refined by trial and error. 

Choroid-Plexus and the Blood-CSF Barrier 

The brain is an unusual tissue in that the entry of drugs from the circulating blood 

into the central nervous system (CNS) is restricted by presence of the blood-brain barrier 

(BBB) and the blood-cerebrospinal fluid barrier (BCSFB). The blood-brain-barrier, 

formed by the cerebral endothelial cells, is the interface of the circulating blood and the 

brain interstitial fluid (ISF), which surrounds the neurons and glia. The cerebral 

endothelial cells are characterized by presences of tight junctions which connect these 

cells to each other and by the paucity of fenestra or pinocytotic vesicles (Davson et al., 

1989 Fenstermacher et al., 1989). The other barrier, the blood-CSF barrier, is formed by 

the choroid plexus and the arachnoid membrane. The tight junction between the epithelial 

cells, but not the endothelial cells of the choroid plexus, is involved in the functional role 

of this barrier (Cserr et al., 1971). 

Once across these initial barriers, drug accumulation in the brain can be further restricted 

by a number of mechanisms including passive efflux into the bulk flow of cerebrospinal 

fluid (sink effect), metabolic degradation, and active efflux via transporters in the 
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epithelial cells of the choroids plexus and endothelial cells of the brain capillaries. In 

considering the therapeutic and toxic effects of drugs in the CNS, it is important to 

elucidate the routes and mechanisms by which these drugs that enter and leave brain. 

Figures 5.3 and 5.4 show sites of the barriers in the central nervous system.   

 Structure and Function of the Choroid Plexus 

The choroid plexuses (CPs) are located in the two lateral ventricles, and the third 

and fourth ventricles. The CP in the fourth ventricle, like a single sheet of tissue, forms 

the roof of the cavity. Inside these tissues there is a complex, highly permeable, mainly 

venular, capillary network, which supplies the blood gases and nutrients to support the 

active secretion of CSF and the transport processes between blood and CSF. The 

epithelial cells of the CP are joined together by an occluding band of tight junctions close 

to the CSF side of the cell. These junctions are made up of multiple strands yet are more 

permeable than those of the BBB (Meller et al., 1985). The tight junctions do permit the 

flow of water and some salts between the cells (the paracellular pathway) yet restrict the 

passage of small molecules such as mannitol. The fact that the choroid plexus is the 

major site of CSF secretion probably entails that it be a relatively leaky barrier tissue with 

a greater potential for leakage of neuroactive substances from blood. To prevent the entry 

of such agents from blood, transporters or enzyme may be required to remove any 

substances that cross the epithelium. It is possible that paracellular mechanisms may be a 

therapeutic target to enhance drug permeability if such confounding efflux transporters 

and enzymes could be avoided. 
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The cell walls of the basolateral sides of CP cells are highly convoluted, which 

expands the surface area between the cytoplasm and the extracellular fluid (ECF) of CP. 

The cell walls on the apical or CSF side of these cells are covered with microvilli, which 

greatly expands the surface area at the interface between the cytoplasm and CSF. Besides 

containing the apical brush border and basolateral interdigitations mentioned previously, 

the choroid plexus epithelium is endowed with mitochondria, which is required to 

maintain a high rate of oxidative metabolism during secretory and transport processes. 

Moreover, the cells also have well-developed subcellular organelles such as Golgi 

complexes, endoplasmic reticulum, ribosomes and a vesicular network. These structures 

may be involved in peptide and protein disposition such as synthesis, transcytosis, 

endocytosis and degradation. Figure 5.4 shows a representation of the choroid plexus and 

other barriers in the CSF. 

As shown in Figure 5.1A, the epithelial cell membrane of the CP displays 

sidedness, i.e., the basolateral side of the choroid cells or the side facing the plasma has 

structural and functional features strikingly different from those associated with the 

opposite, apical pole of the cell in contact with the CSF. The basolateral side of choroid 

plexus epithelial cells also has a different repertoire of ion channels and pumps compared 

to the apical (CSF) side. Such polarization allows the net secretion of solutes from blood 

to CSF concurrently with net reabsorption of other compounds in the reverse direction. 

This asymmetric two-way traffic of solutes across the BCSFB is finely coordinated so 

that there is resultant homeostasis of both choroidal cellular fluid and the generated CSF. 

By elucidating the physiologic nature for transepithelial fluxes of solute across the 



102 
 

choroidal membrane, the pharmacologist and clinician should be better able to 

manipulate the movement of drugs between plasma and CSF. 

The main functions of the choroid plexus are to: 1) secrete CSF.  70-90% of CSF 

is generated by choroidal tissues located in all four ventricles; 2) provide buoyancy and 

protection where the floating of brain on a fluid cushion of CSF within the skull protects 

the brain from injuries that would otherwise result from abrupt movements such as a car 

crash; 3) Control and buffer extracellular fluids composition forming a physical barrier to 

the diffusion of molecules between blood and CSF. 4) Participate in neurohumoral 

signaling in transduction either as a target or a source of synthetic endocrine messenger; 

5) Provide immune privilege acting as is a ‘port of entry’ for many pathogens into brain 

and contains cells of the immune system that can present antigen and stimulate the 

production of peripheral T helper cells to form a critical “arm” of the cellular immune 

system of brain (Cserr and Knopf, 1992).  

Potential for Drug Delivery 

   The blood-CSF barrier route has been considered to have a minor role for drug 

delivery to CNS compared to the blood-brain barrier. The main argument has been that 

the surface area of the CP is three to four orders of magnitude less than the total 

circumferential surface area of the brain capillaries (Pardridge et al., 1981). Another fact 

is that all parenchymal cells are within about 50 μm of a capillary, whereas cells in deep 

brain structures may be substantially further away from the CSF system, especially in 

species with large brain, such as man. However, other blood-CSF barrier studies have 

revealed that the choroid plexus may play a more significant role in brain drug delivery 
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than previously viewed. First, as previously mentioned, the choroidal surface available 

for exchange between the blood and the CSF is largely increased by the basolateral 

infolding, and the apical microvilli of the choroidal cells. (Keep, 1990). As estimated 

from the choroid plexus of 1-month-old rats, which is typically 2-3 mg wet weight, the 

total apical surface area of the choroidal epithelium approximates 75 cm2, about one half 

that of the blood-brain barrier (155 cm2) (Keep, 1990).   

Second, drugs introduced into the ventricular CSF are quickly distributed by the 

flow of this fluid that circulates by different routes within and around the brain to various 

tissues, such as ependymal, leptomeninges, velae, outer layers of pial vessels and 

perivascular spaces of parenchymal vessels (Ghersi-Egea et al., 1996). Thus, CPs 

constitute a direct access to pharmacological targets for diseases (Alzheimer’s, AIDS 

dementia, stroke, epilepsy, cancer and bacterial meningitis).  

Moreover, the paracellular permeability of the choroidal epithelium is higher than 

that of the endothelium forming BBB (Davson and Segal, 1996; Meller, 1985), which 

implies the blood-CSF barrier is somewhat “leakier” than the blood-brain barrier. As 

demonstrated stavudine, a polar antiretroviral agent, can slowly diffuse into the CSF 

through the CPs, whereas its penetration cross the BBB is almost completely prevented 

(Thomas et al., 1998). 

 Finally, the expression of a large number of influx and efflux transport systems 

(e.g. PEPT2) and metabolic enzymes at the choroid plexus has been recently found. For 

many solutes and substances, their main, if not exclusive, route of entry into the brain is 

by the way of the blood-CSF barrier through specific saturable carriers. Such selectivity 
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in the CP affords pharmacological opportunities for manipulating fluxes of therapeutic 

agents into the highly protected cerebral environment. However, the blockade of efflux 

transporters and enzyme has been explored as an alternative approach to increasing CNS 

drug exposure (Wong et al., 1993).  

Transporter Distribution at Choroid Plexus 

The choroid epithelia, unlike the cerebral endothelia, are equipped with channels 

for large-capacity secretion of ions and water into the CNS (Johanson, 1988). 

Additionally, there are specialized carrier transport systems in CP for facilitating the 

movement of micronutrients. Numerous transport systems related to drug delivery at the 

choroid plexus have been identified.  They include organic anion transporters and organic 

cation transporters (OATs and OCTs, SLC22 family) (Ghersi-Egea et al., 2002), organic 

anion transporting polypeptides (OATPs, SLC21) (Choudhuri et al., 2003), 

Na+/dicarboxylate cotransporters, monocarboxylate transporters (MCTs), metal 

transporters (Choudhuri, 2003), bile acid transporters (Choudhuri, 2003), peptide 

transporters (POT, SLC15) (Teucher et al., 2000; 2001; Shu et al., 2002; Choudhuri, 

2003) and glucose transporters. Compounds such as taurine (Keep et al., 1996), amino 

acids, choline, antipyrine and barbital (Johanson et al., 1997), nucleosides, riboflavin, and 

hypoxanthine have been characterized with respect to their uptake at the blood-CSF 

barrier.  In addition, Rao et al. (Rao et al., 1999) determined the expression of the drug 

efflux protein, P-glycoprotein (multidrug resistance, MDR, ABCB) and the multidrug 

resistance-associated protein (MRP, ABCC) in human and rat choroid plexus.   
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Role of PEPT2 in Choroid Plexus Whole Tissue: In Vitro Studies 

  While many in vitro studies have been performed to elucidate the role of PEPT2 

in transport of peptides these studies are confounded by the overlapping substrate 

specificities of the various transporters located on the epithelia of the choroids plexus. 

Thanks to development of the knockout PEPT2 model in our lab, in vitro whole tissue 

studies performed using transgenic knockout mice have provided preliminary evidence to 

the unequivocal role of PEPT2 in the transport of neuropeptides and peptide/mimetics. 

Many in vitro studies have provided preliminary evidence as to the role of PEPT2 

in the uptake kinetics of neuropeptides and peptide/mimetics. The proton-stimulated (pH 

6.5) uptake of the dipeptide, glycylsarcosine (GlySar), in isolated whole choroid plexus 

tissue obtained from PEPT2-/- mice was found to be functionally absent.  Only 10.9% 

and 3.9% of the GlySar uptake present in PEPT2+/+ mice was still present at 5 min and 

30 min in PEPT2-/- mice, thereby providing functional evidence for the successful 

development of the PEPT2 transgenic knockout model and the conclusion that PEPT2 is 

the only transporter responsible for GlySar uptake at the choroid plexus (Shen et al., 

2002). 

 Moreover uptake of the neuropeptide carnosine in rat choroid plexus primary cell 

cultures and choroid plexus whole tissue from PEPT2 knockout mice was investigated 

(Teuscher el al, 2004). Results indicated that carnosine was preferentially taken up from 

the apical as opposed to basolateral membrane of monlayers, and that this uptake process 

was characterized by a high affinity (Km=34 uM), low capacity (Vmax=73 pmol/mg 

protein/min) process consistent with that of PEPT2. Studies demonstrated that PEPT2 



106 
 

was responsible for over 90% of carnosine’s uptake in choroids plexus whole tissue while 

the non-saturable component was small and only accounted for 3% of total uptake. 

To further investigate the relative importance of PEPT2 in the transport of 

peptide-like drugs, as opposed to model peptides and/or neuropeptides, uptake studies 

were performed with radiolabeled cefadroxil in the isolated choroids plexus of wild-type 

and PEPT2 knockout mice. At normal pH (pH 7.4) and temperature (37 °C), the uptake 

of 1 μM cefadroxil was reduced by 83% in PEPT2-/- mice as compared with PEPT2+/+ 

mice (p < 0.001). Although a proton-stimulated uptake of cefadroxil was demonstrated in 

PEPT2+/+ mice (pH 6.5 versus pH 7.4; p < 0.01), no pH dependence was observed in 

PEPT2-/- mice. Based on kinetic and inhibitor analyses, it was determined that (under 

linear conditions), 80 to 85% of cefadroxil's uptake in choroid plexus is mediated by 

PEPT2, 10 to 15% by organic anion transporter(s), and 5% by nonspecific mechanisms 

(Ocheltree et al., 2004a). These findings demonstrate that PEPT2 is the primary 

transporter responsible for cefadroxil uptake in the choroid plexus. Moreover, the data 

also suggest a role for PEPT2 in the clearance of peptidomimetics from cerebrospinal 

fluid.  

Role of PEPT2 in Peptide/Mimetic Disposition: In Vivo Studies 

While great improvements have been made in the design of in vitro studies they 

are still limited by in vitro experimental designs which employ non-physiologic 

conditions, such as the lack of an intact blood supply. Moreover, as alluded to before the 

presence of multiple transport systems in a tissue or organ of interest, some of which are 

even unknown at time of study, makes it difficult to accurately determine the significance 
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of a single specific transporter relative to other transporters. Such a situation exists in the 

brain where multiple POT transporters are present with overlapping substrate specificities 

(e.g., PEPT2, PHT1 and PHT2) (Yamashita et al., 1997; Sakata et al., 2001). Thus, it is 

difficult to accurately define the function and significance of PEPT2 in relation to other 

peptide transporters. 

The studies using wild type and PEPT2-deficient mice offer a unique opportunity 

to study the role and relevance of PEPT2 under physiological in vivo conditions. As both 

a nutrient and drug transporter, we believe that PEPT2 will play a pivotal part in affecting 

the pharmacodynamics, tissue distribution and systemic exposure of peptides, 

neuropeptides and therapeutically important peptide/mimetic drugs. This contention is 

supported by preliminary data from our laboratory (Ocheltree et al, 2004b) in which 

GlySar was administered as an iv bolus dose (0.05 μmol/g body weight) to wild type and 

PEPT2 null mice. In the study, the AUC was lower in PEPT2-/- mice than in wild-type 

animals, as a result of the approximately two-fold difference in total clearance values 

(0.46 ml/min in PEPT2-/- mice vs. 0.27 ml/min in PEPT2+/+ mice). However, no 

differences were observed in the volume of the central compartment (~3.8 ml) or volume 

of distribution steady-state (~10 ml) between genotypes. PEPT2-/- mice demonstrated a 

shorter half life (18 min vs. 25 min) and mean residence time (24 min vs. 34 min), and a 

faster central compartment elimination rate (0.12 min-1 vs. 0.07 min-1) as compared to 

PEPT2+/+ mice. Greater tissue concentrations of GlySar (nmol/g) were observed in the 

kidney (5 fold), lung (3-fold) and liver (1.5 fold) of PEPT2+/+ mice compared to PEPT2-

/- mice. In contrast, PEPT2-/- mice demonstrated a 2-fold greater concentration of GlySar 

in cerebrospinal fluid (CSF) and 4-fold greater CSF/choroids plexus ratio. Although 



108 
 

Glysar is a synthetic substrate with no physiological significance, these preliminary 

results suggest that the pharmacokinetics of a peptide/mimetic or peptide-like drug can be 

significantly altered by the presence and functional activity of PEPT2 in the body, 

particularly the kidney and brain.  
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Figure 5.1. Sequential models of peptide/ mimetic transport in the choroid plexus [A] 
and renal proximal tubule epithelium [B] by PEPT2 showing the concerted action of 
apical and basolateral transporters in creating the acidic microenvironment at the apical 
interface.  
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Figure 5.2. Schematic of the kidney and nephron functional unit. PEPT1 is localized in 
the S1 segment of the cortex (convoluted proximal tubule), while PEPT2 is localized in 
the  later segment of the proximal tubule (corresponding to theS2-S3 segments of the 
outer medulla). Adapted from: Kriz W, Bankir L, Bulger RE, et al. A standard 
nomencalature for structures of the kidney.The Renal Commission of the International 
Union of Physiological Sciences. Kidney Int. 33:1 (1998). 
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Figure 5.3. Sites of the barriers of the nervous system.  Specialized endothelial cells with 
tight junctions form the blood-brain barrier (BBB). Tight junctions of the choroidal 
epithelium and the arachnoid epithelium form the blood-CSF barrier (BCSFB). ECF = 
extracellular fluid; CSF = cerebrospinal fluid. (Taylor, Clin Pharmacokinet., 41(2):81-92, 
2002). 
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Figure 5.4. Illustration of the the Blood-Brain and Blood-CSF Barriers. The leaky 
ependyma separates the CSF and extracellular fluid surrounding the brain parenchymal 
cells. PEPT2 (shown as P2 above) is localized on the apical side of the choroid plexus 
epithelium and acts to remove peptides/mimetics from the CSF into the choroid plexus. 
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Figure 5.5. Structures of various substrates of PEPT2 under study. Glysar is a synthetic 
dipeptide, while L-carnosine, 5-ALA, and L-Kyotorphin are physiologically relevant 
dipetides. Cafadroxil is a peptide-mimetic amino-chepalosporin. 
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CHAPTER 6 

A PHYSIOLOGICAL PERSPECTIVE OF PEPT2: THE DISPOSITION OF 
CARNOSINE IN WILD-TYPE AND PEPT2 KNOCKOUT MICE  

 

Abstract 

Carnosine (β-alanyl-L-histidine), an endogenous dipeptide substrate of the proton-

coupled oligopeptide transporter PEPT2, plays an important role in many physiological 

processes.  This study investigated the in vivo relevance of PEPT2 on the systemic 

exposure, tissue distribution, and renal handling of [3H]carnosine (1 nmol/g intravenous 

dose) in wild-type and Pept2 null mice.  A marked increase in the systemic clearance of 

carnosine was observed in Pept2 null versus wild-type animals (0.50 vs. 0.29 ml/min;  

p<0.001), resulting in the decreased systemic exposure of dipeptide (AUC=43.7 vs. 73.0 

min•µM;  p<0.001).  Carnosine uptake was substantially reduced in the kidney of Pept2 

null mice and renal clearance increased 17-fold in this genotype (206 vs. 11.5 µl/min;  

p<0.001).  Fractional reabsorption of carnosine in Pept2 null mice was only one-fifth of 

the fraction reabsorbed in wild-type animals (0.20 vs. 0.94;  p<0.001).  This finding 

reflected the ability of PEPT2 to mediate 83% of carnosine’s total reabsorption from 

tubular fluid, while PEPT1 mediated 17% of the reabsorption process.  PEPT2 also had a 

substantial impact in brain where the cerebrospinal fluid/plasma concentration ratio of 

carnosine was 8-fold greater in Pept2-deficient versus Pept2-competent mice (0.70 vs. 

0.08; p<0.001).  The results demonstrate that PEPT2 is the predominant peptide 
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transporter in the physiological handling of carnosine in kidney, and that this protein 

significantly limits carnosine exposure in cerebrospinal fluid.  These findings suggest that 

Pept2 may act as a gene modifier for a variety of pathophysiological conditions in the 

kidney and brain, and that the gene product may serve as a potential target for 

pharmacological interventions.   

Introduction 

Carnosine (β-alanyl-L-histidine), an endogenous dipeptide, is abundantly expressed in the 

skeletal muscle and central nervous system (Flancbaum et al, Teuscher et al).  Carnosine 

has many physiological roles including its action as a cytosolic buffer (Quinn et al), 

neurotransmitter/neuromodulator (Biffo et al), and metabolic reservoir of histidine which 

is converted to histamine during physiological stress in mammals (Flancbaum et al).  The 

dipeptide also possesses strong antioxidant and free radical scavenging activities 

(Hartman et al, Quinn et al), and has been shown to be neuroprotective when 

administered intraperitoneally in rodent models of global and focal cerebral ischemia 

(Rejanikant et al, Stvolinsky et al).  More recently, protective effects of carnosine have 

been demonstrated in ischemia/reperfusion-induced acute renal failure (Fujii et al, Kurata 

et al) and diabetic nephropathy (Janssen et al).  Having favorable structural attributes, 

such as a β-amino group and L-conformation, the dipeptide is a substrate of PEPT2 

(Terada et al) which is a member of the proton-coupled oligopeptide transporter family 

SLC15A.   

 PEPT2 is primarily localized in the apical membrane of kidney epithelial cells, with 

immunolocalization studies specifically identifying the transporter in S2 and S3 segments 
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of the proximal tubule (Shen et al, 1999).  In brain, PEPT2 is expressed at the apical side 

of choroid plexus epithelial cells of the blood-cerebrospinal fluid (CSF) barrier (Berger 

and Hediger), and in astrocytes (newborns) and neuronal cells (newborn and adults) of 

brain parenchyma (Shen et al, 2003).  PEPT2 protein has also been identified in the 

alveolar lining of lung tissue, mammary glands, as well as retina and spleen (Doring et 

al).  The primary physiological roles of PEPT2 include:  1) the reabsorption of peptides 

from glomerular filtrate in renal proximal tubules, 2) the maintenance of brain 

homeostasis by controlling peptide trafficking in brain interstitial fluid and peptide 

removal from CSF, and 3) the facilitation of peptide uptake for action by intracellular 

peptidases.  However, the significance and interplay of these physiological roles in vivo 

are not entirely clear.   

 A previous study has demonstrated that carnosine is taken up into choroid plexus 

primary cell cultures and choroid plexus whole tissue by PEPT2 (Teuscher et al).  

However, the in vivo significance of PEPT2 in mediating this dipeptide’s disposition has 

not been investigated.  It is hypothesized that PEPT2 ablation will have a profound 

impact on the systemic pharmacokinetics of carnosine, as well as on the regional 

exposure of carnosine in kidney and brain.  Differences in PEPT2-mediated disposition 

may also alter the physiological and pharmacological benefits of carnosine, including its 

renal (Fujii et al,, Kurata et al) and neuroprotective (Rejanikant et al, Stvolinsky et al) 

effects after ischemic insult. 

 The current study aims to demonstrate the physiological relevance of PEPT2 by 

contrasting the systemic exposure, tissue distribution, metabolic stability, and renal 
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handling of carnosine in wild-type and Pept2 knockout mice after an intravenous bolus 

dose of the dipeptide.   

Materials and Methods 

 Chemicals.  [3H]Carnosine (sp act: 7.0 Ci/mmol), [3H]histidine (sp act: 44 

Ci/mmol), and [14C]dextran-MW 70,000 (sp act: 79 mCi/mmol) were purchased from 

Moravek Radiopharmaceuticals (Brea, CA).  Unlabeled carnosine was obtained from 

Sigma-Aldrich (St Louis, MO).  Cytoscint scintillation fluid and hyamine hydroxide were 

obtained from ICN (Irvine, CA).  All other chemicals were obtained from standard 

sources.   

 Animals.  Gender- and weight-matched wild-type (Pept2+/+) and null (Pept2-/-) mice 

(>99% C57BL/6 genetic background), 8 to 10 weeks of age, were generated in-house 

(Shen et al, 2003) and used for all study designs.  Animals were housed in a temperature-

controlled environment with a 12-hour light, 12-hour dark cycle and given ad libitum 

access to food and water.  All experiments with mice were performed in accordance with 

the guidelines from the National Institutes of Health for the care and use of animals, and 

were approved by the Institutional Animal Care and Use Committee.   

 Systemic Pharmacokinetic and Tissue Distribution Studies.  Wild-type and Pept2 

null mice were anesthetized with sodium pentobarbital (65 mg/kg ip).  [3H]Carnosine was 

injected into the tail vein of mice as a single bolus injection (1 nmol/g body weight; 5 

μl/g in normal saline).  Serial blood samples (~20 μl, via tail clipping) were collected at 

0, 0.25, 1, 2, 5, 10, 20, and 30 min, placed in 0.2 ml thin-wall PCR tubes (United 

Laboratory Plastics; St. Louis, MO) containing 1 µl of 7.5% potassium EDTA, and 
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centrifuged at 3,000 g for 3 min at room temperature.  A 5-μl aliquot of plasma 

supernatant was collected for each sample, mixed with 6 ml of scintillation fluid, vortex-

mixed for 5 sec, and then allowed to stand for 24 hr at ambient temperature.  

Radioactivity (measured in dpm/ml) for each plasma sample was measured by a dual-

channel liquid scintillation counter (Beckman LS 3801; Beckman Coulter, Fullerton, 

CA).   

An intravenous bolus of [14C]dextran-MW 70,000 (1 μCi/mouse) was 

administered 2 min prior to harvesting the 30-min tissue samples in order to correct for 

the vascular space (Shen et al, 2007).  A skin incision was made in the dorsal neck region 

to allow insertion of a 30-gauge needle into the cisterna magna for CSF sampling (~5-10 

μl).  The mouse was immediately decapitated and a 10-μl blood sample was obtained.  

Various organs/tissues were harvested at this time including the cerebral cortex, olfactory 

bulb, combined lateral and fourth ventricle choroid plexuses, kidney, liver, eye, lung, 

spleen, small and large intestines, and skeletal muscle.  The tissue samples were blotted 

dry and weighed, solubilized in 1 M hyamine hydroxide, and then incubated for 48 hr at 

37°C.  Solubilized tissue samples (and CSF) were mixed with 6 ml of scintillation fluid 

and left to stand for 24 hours at room temperature.  Radioactivity (measured in dpm/ml) 

in the blood, CSF, and tissue samples was measured by a dual-channel liquid scintillation 

counter.   

 Renal Clearance Studies.  Following sodium pentobarbital anesthesia (65 mg/kg 

ip), Pept2+/+ and Pept2-/- mice were administered [3H]carnosine (1 nmol/g body weight; 5 

μl/g in normal saline) by tail vein injection.  Blood samples (~20 μl, via tail clipping) 

were collected serially over 30 min and the plasma harvested.  The total urine of each 



122 
 

animal was aspirated directly from the bladder with a 28G1/2 U-100 insulin syringe at 30 

min.  Radioactivity in the plasma and urine was determined by dual-channel liquid 

scintillation counting.   

 Plasma Protein Binding Studies.  The protein binding of carnosine was determined 

by an ultrafiltration method (Ocheltree et al), with minor modification.  Blank plasma 

from each genotype was spiked with unlabeled and radiolabeled carnosine (0.1 µCi/ml) 

to produce concentrations of 0.1, 1, and 10 µM, values that represent the plasma 

concentration range observed after a 1 nmol/g intravenous dose of carnosine.  A 0.5-ml 

aliquot of each standard was added to a disposable Microcon YMT-30 centrifugal filter 

device (Millipore Corporation, Billerica, MA) using an anisotropic hydrophilic 

membrane that excluded molecules greater than 30 kDa.  The device was capped, 

equilibrated for 15 min at 37°C in a 35° fixed angle rotator, and centrifuged at 1,800 g for 

25 min at 37°C.  The protein free ultrafiltrate was then collected for each sample.  The 

unbound fraction in plasma was calculated as the ratio of carnosine concentration in the 

ultrafiltrate to that in the original plasma standard.  Liquid scintillation counting was used 

to determine radioactive counts in the samples.   

 Stability Studies.  [3H]Carnosine and [3H]histidine  peaks were detected using a 

high-performance liquid chromatography (HPLC) system consisting of a pump (model 

616 with 600S controller; Waters, Milford, MA), a Rheodyne injector port (Rohnert Park, 

CA) with 20 µl sample loop, a reversed-phase column stationary phase (Supelco C-18, 5 

µm, 25 cm x 4.6 mm), and a radiochemical detector (FLO-ONE 515TR Series Flow 

Scintillation Analyzer; Perkin Elmer Life and Analytical Sciences, Boston, MA).  The 

mobile phase was comprised of 0.10 M NaH2PO4 buffer (pH=3.2) and 0.10% 
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heptafluorobutyric acid, pumped isocratically at 1.0 ml/min under ambient conditions.  

Peaks were identified by injecting known standards of radiolabeled carnosine and 

histidine.   

 The metabolic stability of [3H]carnosine was determined in plasma, kidney, and 

urine samples following an intravenous dose (1 nmol/g body weight) in wild-type and 

Pept2 null mice.  Blood samples (100 µl) were collected by cardiac puncture at 2, 5, 10, 

20 and 30 min, and the plasma harvested.  Kidney samples (200 mg) were obtained at 30 

min and homogenized in 1 ml of water (4°C).  A 0.2-ml volume of trichloroacetic acid 

(10% w/v) was added to one volume of plasma or kidney homogenate, vortex-mixed for 

1 min, and then centrifuged at 15,000 g for 10 min at room temperature.  Urine samples 

were also centrifuged at 15,000 g for 10 min (ambient conditions) to remove any 

particulates.  Resultant supernatants were injected into the HPLC, and stability was 

evaluated by the ratio of carnosine area to the total area of carnosine and histidine (x100 

for percent).  The physicochemical integrity of [3H]carnosine stock solution (1 µCi/ml) 

was also determined at 25°C and 37°C following 0.5 and 24 hr incubations.   

 Data Analysis of Carnosine Systemic Pharmacokinetics.  The plasma concentration-

time profiles of carnosine displayed biexponential pharmacokinetics and were best 

described by a 2-compartment open model with first order elimination and uniform 

weighting (WinNonLin v 5.1; Pharsight Inc., Mountain View, CA).  The model goodness 

of fit was determined by evaluating the coefficient of determination (r2), the coefficient of 

variation of parameter estimates, and by visual inspection of the residuals.  

Pharmacokinetic parameters included AUC, area under the plasma concentration time 

curve;  CL, total systemic clearance;  V1, volume of the central compartment;  Vdss, 
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volume of distribution steady state;  t1/2, terminal half-life;  and MRT, mean residence 

time.   

 Data Analysis of Carnosine Renal Pharmacokinetics.  The renal clearance (CLR) of 

carnosine was calculated as:  CLR=Ae30/AUC30 where Ae30 is the amount of carnosine 

excreted unchanged in the urine over 30 min and AUC30 is the area under the carnosine 

plasma concentration-time curve from 0-30 min (determined noncompartmentally by 

partial areas using WinNonLin).  In the absence of tubular secretion (of which there is no 

evidence for this dipeptide), the renal clearance of carnosine can be expressed as (14):  

CLR=fu•GFR•(1-F) where fu is the fraction of carnosine unbound in plasma, GFR is the 

glomerular filtration rate (a measure of functional nephron mass) and F is the fraction of 

available dipeptide that is reabsorbed from tubular fluid.  The excretion ratio (ER) and 

fraction reabsorbed (F) was determined according to the following:  

ER=CLR/(fu•GFR)=1-F.  Based on the sequential expression of PEPT1 and PEPT2 in the 

proximal tubule of the nephron (Shen et al, 2003), the renal clearance equation can be 

transformed to (Shen et al, 2000):  CLR=fu•GFR• (1-F1) • (1-F2) where F1 is the 

available fraction of carnosine reabsorbed by PEPT1 and F2 is the available fraction 

reabsorbed by PEPT2.  Since F2=0 in PEPT2-/- mice, an estimate of F1 can be made in 

these mice.  An estimate of F2 can then be made in PEPT2+/+ mice with the assumption 

that F1 is unchanged in wild-type animals.  The relative contribution of each transporter 

to the reabsorption of carnosine can then be calculated as % PEPT1=100•(F1/F) and % 

PEPT2=100• [F2• (1-F1)/F]. 
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 Statistics.  The data are reported as mean±SE.  Statistical comparisons between the 

two genotypes were performed using an unpaired t-test (GraphPad Prism v4.0;  GraphPad 

Software, Inc., San Diego, CA).   

Results 

 Systemic Pharmacokinetics and Tissue Distribution of Carnosine.  As shown in 

Figure 6.1, the plasma concentrations of carnosine were significantly lower in Pept2-/- 

mice as compared to Pept2+/+ animals.  The altered plasma profiles are reflected in the 

pharmacokinetic parameters shown in Table 6.1.  The systemic clearance (CL) of null 

animals is 2-fold higher compared to wild-type animals (p<0.001), resulting in a 2-fold 

lower systemic exposure (AUC) (p<0.01).  PEPT2 had no affect on volume of 

distribution in the central compartment (V1), however, the steady-state volume (Vdss) 

was somewhat higher in null mice (p<0.05).  In contrast, no significant differences were 

observed in the terminal half-life (t1/2) and mean residence time (MRT) of carnosine.  

These last two parameters are not statistically different since they reflect changes in both 

distribution and elimination (which increase in Pept2-/-).  Figure 6.2 shows the tissue 

concentrations of carnosine, normalized for plasma concentrations, 30 min following an 

intravenous bolus dose of dipeptide.  PEPT2 ablation had a significant effect on the 

ability of many tissues to accumulate carnosine.  Most notably, lower tissue/plasma 

concentration ratios of carnosine were observed in the kidney (5-fold), choroid plexus (8-

fold), spleen (12-fold), eye (3-fold), lung (3-fold), cerebral cortex (3-fold), olfactory bulb 

(3-fold) and muscle (2-fold) of Pept2 knockout mice.  In contrast to these results, PEPT2-

/- mice had an 8-fold higher CSF/plasma concentration ratio (p<0.001).   
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 Renal Clearance of Carnosine.  An analysis of the renal tubular handling of 

carnosine is shown in Table 6.2 and Figure 6.3.  The renal clearance of carnosine (CLR) 

was approximately 17-fold higher in the Pept2 null mice as compared to wild-type mice 

(p<0.001), resulting in a significantly higher fraction of dipeptide being excreted 

unchanged in the urine at 30 min (fe30) (p<0.001).  Ultrafiltration studies showed no 

protein binding of carnosine across the relevant plasma concentrations of 0.1-10 µM and, 

as such, the fraction unbound (fu) for carnosine in plasma was unity.  GFR was fixed at 

250 µl/min based on the consistent values between genotypes in two previous studies by 

our group in gender-matched mice of similar age and weight (Ocheltree et al; Shen et al, 

2007).  Since the excretion ratio (ER) of carnosine represents its renal clearance, 

corrected for filtration clearance (fu•GFR), the significantly higher ER in null mice 

reflects the reduced reabsorption of carnosine in Pept2-deficient mice (i.e., F=0.94 vs. 

0.19 for wild-type and null mice, respectively).  Moreover, of the two oligopeptide 

transporters expressed in kidney, PEPT2 was responsible for the great majority of 

dipeptide reabsorption.  In this regard, PEPT1 accounted for only 17% of carnosine’s 

reabsorption from tubular fluid while PEPT2 accounted for 83% of dipeptide 

reabsorption in the kidney.   

 Stability of Carnosine.  Analysis of the HPLC chromatograms showed [3H]histidine 

eluting at 5.5 min and [3H]carnosine eluting at 9.1 min.  The physicochemical integrity of 

[3H]carnosine stock solutions was maintained during 0.5 and 24 hr incubations, at 

ambient temperature and 37°C (data not shown).  While the 30-min urine collections of 

both genotypes were stable (<5% degradation), about 12% of carnosine was degraded in 

the 30-min kidney samples of wild-type, but not Pept2 null, mice (Figure. 6.4).  
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Likewise, serial plasma samples from Pept2-/- mice were stable over 30 min (<3% 

degradation), as were the 2-, 5- and 10-min plasma samples from Pept2+/+ mice (<10% 

degradation).  However, the 20 and 30 min plasma samples showed about 15 and 20% 

degradation, respectively, in wild-type mice.  As a result, the plasma concentrations of 

carnosine in Pept2+/+ mice were corrected for the degradation observed at these times 

(Figure  6.1 and Table 6.1).   

Discussion 

Studies using wild-type and knockout mice offer a unique opportunity to study the role 

and relevance of a particular protein under physiological in vivo conditions.  By 

challenging Pept2-competent and Pept2-deficient mice following an intravenous dose of 

carnosine, the significance of gene disruption can be revealed in regard to dipeptide 

disposition.  In our studies, we found:  1) that PEPT2 was the major oligopeptide 

transporter responsible for dipeptide reabsorption in the kidney, 2) that the regional 

effects of PEPT2 in several organs, including the brain (e.g., choroid plexus and CSF), 

were greater than the systemic effects on dipeptide exposure, and 3) that transport-

metabolic coupling of dipeptide occurs to retain amino nitrogen.  These findings may 

have important physiological, pharmacological and pathophysiological implications 

including those related to nutrition, drug delivery and targeting, and ischemia.   

 Most notably, the results show that PEPT2 had a predominant role in the renal 

tubular reabsorption of carnosine.  Specifically, the fraction of dipeptide reabsorbed in 

Pept2 null mice was only one-fifth of that reabsorbed in wild-type animals.  This finding 

reflected the ability of PEPT2 to mediate 83% of carnosine’s total reabsorption from 
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tubular fluid.  In addition to differences in renal handling, PEPT2 ablation led to 

substantially decreased levels of carnosine in tissues where the peptide transporter is 

predominantly localized (e.g., cerebral cortex, olfactory bulb, choroid plexus and CSF, 

kidney, eye, lung, spleen and skeletal muscle).  The differences observed in olfactory 

bulb and skeletal muscle were particularly interesting since these tissues concentrate 

endogenous carnosine in abundance (Flancbaum et al, Teuscher et al).  As a result, 

PEPT2 may play an important role in regulating the neurotransmitter/neuromodulator 

action of carnosine in the olfactory pathway (Biffo et al) and in modulating the cytosolic 

buffering capabilities of carnosine during muscle fatigue (Quinn et al).  Given the 

predominance of PEPT2 on dipeptide transport in kidney, this oligopeptide transporter 

may also influence the renoprotective effects of carnosine during ischemic acute renal 

failure (Fujii et al, Kurata et al) and diabetic nephropathy (Janssen et al).   

 PEPT2 ablation had a significant influence on the influx of carnosine from CSF into 

choroid plexus as demonstrated by the 8-fold greater CSF/plasma concentration ratios of 

dipeptide in Pept2 null versus wild-type mice.  The greater CSF ratios of carnosine in 

Pept2-/- animals reflect the directionality of PEPT2 transport from the apical, CSF-facing, 

side of choroid plexus epithelial cells.  These differences were even more dramatic for 

carnosine than that observed in similarly-designed experiments for the synthetic dipeptide 

glycylsarcosine (Ocheltree et al) or the aminocephalosporin cefadroxil (Shen et al, 2007).  

Moreover, the results with carnosine, along with previous studies from our group 

(Ocheltree et al; Shen et al, 2007), point to the fact that PEPT2-induced changes in the 

regional disposition of peptides/mimetics in CSF are more dramatic than the PEPT2-

induced effects on systemic exposure.  While the PEPT2-induced renal accumulation of 
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carnosine might facilitate the renoprotective effects of dipeptide in renal failure, the 

limiting effect of PEPT2 on CSF exposure might diminish its reported neuroprotective 

effects (Rejanikant et al, Stvolinsky et al).  It is unclear whether or not the PEPT2-

mediated changes in regional carnosine disposition will translate into significant changes 

in the dipeptide’s neuroprotective effects after focal and global brain ischemia.  However, 

we have shown that PEPT2 expression in brain does protect against 5-aminolevulinic 

acid neurotoxicity (Hu et al, 2007).   

 Finally, results from the metabolic stability studies point to another physiological 

role of PEPT2 in facilitating the exposure of peptide substrates to tissue and serum 

dipeptidases.  Carnosine is hydrolyzed to its constituent amino acids by carnosinase 

(Harding et al, Margolis et al), a non-specific dipeptidase with high enzymatic activity in 

the cytosol of proximal tubule renal epithelia (Margolis et al).  Although C57BL/6 mice 

express low levels of carnosinase in their kidneys (Margolis and Grillo), some instability 

of carnosine was still observed in our mice.  In particular, after only 30 min, about 20% 

and 12% of the plasma and kidney samples of wild-type mice, respectively, were in the 

form of carnosine hydrolysis products.  However, in Pept2 null mice, these same samples 

displayed little instability (<6% degradation) as did the urine samples for both genotypes 

(<5% degradation).  These results can be explained by the greater PEPT2-mediated 

uptake, and subsequent renal hydrolysis, of carnosine in wild-type animals.  Although 

other tissues may contribute to carnosine hydrolysis, this outcome is less likely given the 

kidney’s unique combination of high PEPT2 (Ocheltree et al; Shen et al, 2007) and 

carnosinase activity (Harding et al).  Amino acid transporters on the basolateral 

membrane of the renal epithelia (Broer) can then reabsorb the degradation products (i.e., 
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β-alanine and/or L-histidine) back into plasma.  Amino acid transporters on the apical 

membrane of renal epithelia (Broer) can efficiently reabsorb the degradation products of 

carnosine in renal filtrate and, thereby, minimize the extent of hydrolysis products found 

in the urine of both wild-type and Pept2 null mice.  The concerted transport-metabolic 

coupling of carnosine by PEPT2 and peptidases has been depicted for dipeptides 

previously in kidney (Daniel and Rubio-Aliaga) and demonstrated previously for 

glycylglutamine in choroid plexus epithelial cells (Hu et al, 2005).   

 Conclusion and Perspective.  Using a Pept2 knockout model in mice, we 

demonstrated for the first time that PEPT2 can substantially impact the in vivo tissue 

distribution, systemic and regional exposure, and renal disposition of an endogenous 

dipeptide.  Specifically, our results are definitive in showing that PEPT2 is responsible 

for the great majority of carnosine reabsorption in renal tubular epithelial cells, and in 

substantially reducing the exposure of dipeptide in the CSF compartment.  Moreover, 

PEPT2 functions to increase the exposure of carnosine to intracellular carnosinase, 

thereby affecting the metabolic profile of dipeptide and constituent amino acids.  These 

findings suggest that Pept2 may act as a modifier gene for a variety of pathophysiological 

conditions in the kidney and brain, and that the gene product may serve as a potential 

target for pharmacologic interventions.   
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Table 6.1.  Systemic pharmacokinetics of carnosine in Pept2+/+ and Pept2-/- mice after a 1 
nmol/g intravenous bolus dose of drug 

Parameter Pept2+/+ Pept2-/-

AUC (min*uM) 73.0 ± 7.4 43.7 ± 5.0**

CL    (ml/min) 0.29 ± 0.03 0.50 ± 0.05***

V1    (ml) 1.4 ± 0.2 1.3 ± 0.2

Vdss (ml) 4.0 ± 0.3 5.5 ± 0.5*

MRT (min) 14.2 ± 1.2 11.7 ± 1.3

t1/2     (min) 10.6 ± 0.9 9.0 ± 0.9

r2 0.994 ±0.002 0.995 ±0.001  

Values are expressed as mean ± SE (n=10).  AUC is the area under the plasma 
concentration-time curve, CL is the total clearance, V1 is the volume of central 
compartment, Vdss is the volume of distribution steady-state, MRT is the mean residence 
time, t1/2 is the terminal half-life, and r2 is the coefficient of determination.  *P<0.05, 
**P<0.01, ***P<0.001. 
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Table 6.2.  Renal pharmacokinetics of carnosine in Pept2+/+ and Pept2-/- mice after a 1 
nmol/g intravenous bolus dose of drug 

Parameter Pept2+/+ Pept2-/- 

CLR  (µl/min) 11.5 ± 4.3 206 ± 16 ***

GFR (µl/min) 250 250

fu    1.0 1.0

fe30 0.023 ± 0.005 0.50 ± 0.03***

ER 0.06 ± 0.02 0.81 ± 0.08***

F 0.94 ± 0.02 0.19 ± 0.08***

F1 0.19 ± 0.08 0.19 ± 0.08

F2 0.92 ± 0.02 0

%PEPT1 16.9 ± 8.1 100

%PEPT2 83.1 ± 7.2 0  

Values are expressed as mean ± SE (n=7).  CLR is the renal clearance, GFR is the 
glomerular filtration rate (values taken from references 14, 15), fu is the fraction unbound 
in plasma, fe30 is the fraction excreted unchanged in the urine over 30 min, ER is the 
excretion ratio, F is the fraction of available dipeptide reabsorbed, F1 is the fraction of 
available dipeptide reabsorbed by PEPT1, F2 is the fraction of available dipeptide 
reabsorbed by PEPT2, %PEPT1 is percentage of reabsorbed carnosine that occurs via 
PEPT1, and PEPT2 is percentage of reabsorbed carnosine that occurs via PEPT2.  
***P<0.001.   
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Figure 6.1. Plasma concentration-time profiles of carnosine in Pept2+/+ and Pept2-/- mice  
after a nmol/g intravenous bolus dose of drug (mean ± SE, n=10). 
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Figure 6.2.Tissue-to-plasma concentration ratios of carnosine in Pept2+/+ and Pept2mice,  
30 min after a 1 nmol/g intravenous bolus dose of drug (mean ± SE, n=7).   
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Figure 6.3. Stability of carnosine in plasma, kidney, and urine samples from Pept2+/+ and  
Pept2-/- mice, 30 min after a 1 nmol/g intravenous bolus dose of drug (mean ± SE, n=4).   
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Figure 6.4. Renal clearance of carnosine in Pept2+/+ and Pept2-/- mice after a 1 nmol/g  
intravenous bolus dose of drug (mean ± SE, n=7).  The estimated GFR of 250 µl/min is  
indicated by a dashed line. 
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CHAPTER 7 

CONCLUSION TO PART II 

 

Major Findings 

The PEPT2 knockout mouse has become an important tool to evaluate the evolving role 

and relevance of this transporter in drug disposition, dynamics and toxicity. Although 

disruption of the PEPT2 gene itself does not result in obvious phenotypic changes in the 

knockout mouse, our studies emphasize the fact that challenging the knockout in a certain 

manner may bring about phenotypic abnormalities. This study and others conducted in 

our lab have challenged the PEPT2 knockout model with various substrates of 

physiological, pharmacological and toxicological relevance, and have consistently 

demonstrated the dual action of this transporter with respect to its apical localization in 

kidney and choroid plexus epithelial cells.  The results have clearly shown that in vivo: 1) 

PEPT2 effluxes carnosine from the CSF into choroid plexus, thereby affecting regional 

disposition in the brain; and 2) PEPT2 reabsorbs carnosine from renal tubular fluid, 

thereby affecting systemic pharmacokinetics and exposure. It also appears that the 

regional effect of PEPT2 in limiting exposure of L-carnosine to the CSF (and presumably 

ISF) of brain may be of more importance than its effect in increasing systemic exposure. 

These findings may have implications on the reported neuroprotective and 

neuromodulatory effects of L-carnosine, however, further studies will be needed to assess 

if PEPT2- mediated changes in disposition of L-carnosine translate directly into 

significant changes in its pharmacodynamics 
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Proposed Future Studies 

 Future studies should aim to further investigate how PEPT2-induced changes in 

regional disposition of carnosine in the kidney and brain affect its pharmacodynamics. 

For example, carnosine can be administered in wild-type and Pept2 knockout mice 

induced with cerebral ischemia to determine the effect of PEPT2 on the neuroprotective 

action of carnosine. Based on our results, PEPT2 should significantly reduce the 

neuroprotective effects of carnosine in the brain while facilitating the reno-protective 

activity of the dipeptide in an ischemia/reperfusion-induced acute renal failure mouse 

model.  

 Future studies should further investigate the proposed transporter-metabolic 

interaction of PEPT2 and carnosinase by conducting metabolic stability studies of 

carnosine in wild-type and PEPT2 knockout mice in which the enzyme carnosinase is 

inhibited. Such a study would provide definitive evidence of how PEPT2 may increase 

exposure of peptide substrates to intracellular peptidases. 
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APPENDIX A 

ROLE AND RELEVANCE OF PEPT2 IN DRUG DISPOSITION, DYNAMICS, 
AND TOXICITY 

 

Introduction 

Heterogeneity of Proton-Coupled Oligopeptide Transporters (POTs) 

a) Molecular Biology of POTs 

 The superfamily of POTs is characterized by the ability to transport small peptides 

and peptide-mimetic molecules across biological membranes.1,2) Uptake of peptides into 

epithelial cells by these transporters is driven by an inwardly-directed proton gradient and 

negative membrane potential. In mammals, the POT family consists of four members: 

PEPT1 (SLC15A1), PEPT2 (SLC15A2), PHT1 (SLC15A4) and PHT2 (SLC15A3) which 

vary in size from 572-729 amino acids and contain 12 transmembrane domains, with the 

N- and C-termini facing the cytosol. PEPT1 was the first mammalian POT cloned, using 

expression-cloning strategies from a rabbit intestinal cDNA library.3) PEPT2 was next 

identified and cloned from a human kidney cDNA library4). The more recent members 

PHT15) and PHT26) were cloned from a rat brain cDNA library. These transporters differ 

from PEPT1 and PEPT2 in that they recognize the amino acid L-histidine as a substrate. 

While both PEPT1 and PEPT2 have high inter-species homology (about 80% in rat, 

rabbit, human, and mouse), the sequence homology between these transporters for a 

given species is low (about 50%).7) Rat PHT1 and PHT2 have an amino acid identity of 
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about 50%, but they show little sequence homology to either PEPT1 or PEPT2 (less then 

20%). 

 PEPT1 and PEPT2 proteins are believed to share a high degree of overlapping 

substrate specificity, possessing the capability for sequence-independent transport of 400 

different dipeptides and 8000 different tripeptides. It is unclear whether or not the PHT1 

and PHT2 proteins can transport the same spectrum of di-/tripeptides. However, the 

ability of PHT1/PHT2 to transport L-histidine marks a distinct difference in functionality 

from PEPT1/PEPT2. Since a three-dimensional structure of the transporter proteins has 

yet to be developed, no precise pharmacophore model is currently available. However, 

preferred configurations and conformational features of PEPT1 and PEPT2 substrates 

include: 1) a peptide backbone of 2-3 amino acid residues, 2) both a free amino acid and 

carboxy terminus with the free amino group in the α or β positions, 3) the presence of 

hydrophobic sidechains, and 4) stereoselectivity with L-amino acids and trans-

conformers being preferred. It must be noted that these are not absolute criteria and some 

notable exceptions have been reported in the literature.1,2,8)   

b) Expression of POTs 

 Several studies have shown unique tissue distribution and expression patterns for the 

different POTs. PEPT1 protein is localized in the brush border (apical) membrane of 

absorptive epithelia cells of the small intestine 9) and the kidney.10,11) Intestinal PEPT1 is 

confined to duodenum, jejunum and ileum of the small intestine, while renal PEPT1 is 

localized predominantly in S1 segments of early convoluted proximal tubule (i.e., pars 

convoluta).10) PEPT1 mRNA is expressed at lower levels in the liver and pancreas.3,12)  
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 PEPT2 exhibits a different tissue expression pattern compared to PEPT1.4,13) In 

kidney, immunolocalization studies show it is localized predominantly in S3 segments of 

latter proximal tubule (i.e., pars recta)10). PEPT2 mRNA also exhibits strong levels of 

expression in the brain, lung and mammary gland, with weaker signals detected in the 

pancreas, skeletal muscle, heart, liver, spleen and colon.14)  In brain, PEPT2 mRNA has 

been specifically localized to astrocytes, subependymal cells, ependymal cells and 

epithelial cells of the choroid plexus.15) With immunohistochemistry, PEPT2 protein has 

been found in astrocytes, ependyma and choroid plexus epithelium, as well as in some 

neurons.16) The same study also found that PEPT2 expression in cerebral cortex 

(probably astrocytic) decreased with age. The choroid plexus epithelium is the site of the 

blood-cerebrospinal fluid barrier (BCSFB) and the presence of PEPT2 at that barrier has 

been demonstrated by immunoblot17,18) and functional analyses.18-20) PEPT2 appears to be 

absent at the blood-brain barrier of cerebral capillaries.16) Immunoblots show that PEPT2 

protein is expressed in whole brain homogenates16) as well as in peripheral nervous 

system glial cells.21) In the eye, in situ hybridization studies have localized PEPT2 

mRNA to the retina.15) In the lung, PEPT2 protein was expressed in alveolar type II 

pneumocytes, bronchial epithelium, and endothelium of small vessels.22)  Relatively less 

is known about the expression and distribution of PHT1 and PHT2. PHT1 mRNA has 

been found in the brain and eye, particularly in the choroid plexus and retina.5) PHT2 

transcripts were expressed primarily in the lymphatic system, lung, and spleen and 

detected faintly in the brain.6)  

c) Function of POTs 
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 As mentioned previously, an inwardly-directed electrochemical gradient for protons 

provides POTs with the driving force needed for active transport of peptides and peptide-

mimetic molecules across biological membranes.1,2) The pH of the extracellular 

microenvironment, therefore, plays an important role in determining the rate of transport. 

This is important in the intestine and kidney where low pH microenvironments are 

established by ion transporters at the microvilli of apical membrane epithelia.   

 Due to their unique tissue distribution and expression patterns, the POTs are thought 

to have distinct functions in vivo. Being the predominant (and perhaps only) POT located 

on the brush border membrane of the small intestine, PEPT1, a high-capacity and low-

affinity transporter, is the transporter responsible for the absorption of small peptide 

fragments from the digestion of dietary proteins.3) It may also to be the primary 

transporter responsible for absorption of peptide-mimetic drugs such as some ACE 

inhibitors and the antiviral prodrug valacyclovir. Despite the sequential expression of 

PEPT1 and PEPT2 in the proximal tubule of the nephron,10) recent in vivo studies have 

shown PEPT1 plays a relatively minor role in the reabsorption of a dipeptide and an 

aminocephalosporin from tubular fluid.23,24) In contrast, these studies have shown that 

PEPT2, a high-affinity and low-capacity transporter, is the major player involved in the 

renal handling and reabsorption of peptide substrates and peptide-mimetic drugs. The 

localization of PEPT2 on the apical membrane of choroid plexus epithelial cells at the 

BCSFB is thought to facilitate its mediation of neuropeptide homeostasis and removal of 

neurotoxins from the brain. This localization of PEPT2 also makes it an attractive target 

for manipulating delivery of peptide-mimetic drugs to the brain.25) Because little is 

known about the cellular localization, tissue distribution, and transport properties of 
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PHT1 and PHT2, little is also known about their functional activity in vivo. Functional 

studies17-20) in the choroid plexus have failed to show inhibition of dipeptide uptake by 

excess L-histidine, suggesting that PHT1/PHT2 are unlikely to be involved in peptide 

transport at the BCSFB. Some studies suggest they may play a role in intracellular 

trafficking of small peptides.6,26)  

d) Relevance to physiology, pharmacology and toxicology 

While in vitro studies are convenient to probe mechanism, they are limited by 

experimental designs that employ nonphysiologic conditions, such as the lack of an intact 

blood supply. Moreover, the presence of multiple transport systems with overlapping 

substrate specificities in a tissue or organ of interest confounds an accurate assessment of 

the significance of a specific transporter relative to other transporters. Studies using wild-

type and knockout mice offer a unique opportunity to study the role and relevance of a 

particular POT under physiological in vivo conditions. By challenging in vivo knockout 

models, unique phenotypes can be discovered, demonstrating the role and relevance of a 

particular POT with respect to drug disposition, dynamics, and toxicity. The rest of this 

review will address in vivo findings of PEPT2 with respect to the three model substrates 

glycylsarcosine,23) cefadroxil,24) and 5-aminolevulinic acid27), and attempt to illustrate the 

evolving relevance of this transporter to physiology, pharmacology, and toxicology using 

a PEPT2 knockout mouse model developed by our laboratory.28) 

Disposition of Glycylsarcosine (GlySar) 

 Our first study investigated the in vivo pharmacokinetics, tissue distribution, and renal 

handling of a synthetic dipeptide following an intravenous bolus dose (0.05 µmol/g body 
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weight) of [14C]GlySar in wild-type and gender-matched PEPT2 knockout mice.23) These 

findings showed that, in PEPT2 knockout mice, the clearance of GlySar was markedly 

increased (2-fold), resulting in significantly lower systemic exposure of GlySar. In 

addition, renal reabsorption was almost abolished and GlySar was eliminated almost 

exclusively by glomerular filtration. Of the 46% of GlySar reabsorbed in wild-type mice, 

PEPT2 accounted for 86% of this process. Null mice also had lower choroid plexus 

concentrations of GlySar and a 5-fold lower choroid plexus-to-cerebrospinal fluid (CSF) 

ratio compared with wild-type mice at 60 min. Despite a 2-fold lower systemic exposure, 

null mice exhibited a greater CSF/blood ratio at 60 min (0.9 versus 0.2) and area under 

the curve (AUCCSF/AUCblood) ratio over 60 min (0.45 versus 0.12), indicating that PEPT2 

significantly impacts GlySar exposure in the CSF compartment.   

 These findings were consistent with our hypothesis that PEPT2 is the predominant 

peptide transporter in kidney and that it acts as an efflux transporter in the choroid plexus 

(clearing peptides from CSF). However the next logical step was to determine whether or 

not these in vivo results hold when PEPT2 is challenged with a substrate of 

pharmacologic relevance.   

Disposition of Cefadroxil 

 Our second study investigated the in vivo pharmacokinetics, renal tubular 

reabsorption, and brain penetration of cefadroxil, a broad spectrum, first-generation 

aminocephalosporin antibiotic.24) In these experiments, [3H]cefadroxil was administered 

by a single intravenous bolus injection in wild-type and gender-matched PEPT2 knockout 

mice over a wide range of doses (i.e., 100, 50, 12.5, and 1 nmol/g body weight). Results 

showed that cefadroxil disposition was clearly nonlinear over the dose range studied, due 
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to both saturable renal tubular secretion and reabsorption of the antibiotic. After the 1 

nmol/g dose of cefadroxil, PEPT2 null mice exhibited a 3-fold greater total clearance and 

3-fold lower systemic concentrations of drug compared to wild-type animals. Further, the 

cefadroxil plasma concentrations produced at this dose (i.e., approximately 0.01-10 µM) 

are clinically relevant since they are in the minimal inhibitory concentration range of 

most bacteria.29) Renal reabsorption of cefadroxil was almost completely abolished in 

PEPT2 null mice versus wild-type animals (i.e., 3% versus 70%, respectively; p<0.001). 

Of the 70% of cefadroxil reabsorbed in wild-type mice, PEPT2 accounted for 95% of 

reabsorbed substrate. Tissue distribution studies indicated that PEPT2 had a dramatic 

effect on cefadroxil tissue exposure, especially in brain where the CSF-to-blood 

concentration ratio of cefadroxil was 6-fold greater in PEPT2 null mice compared with 

wild-type animals.           

 The results were consistent with our hypothesis that PEPT2 significantly limits the 

exposure of cefadroxil in CSF, despite its role in increasing systemic exposure of the 

cephalosporin by renal reabsorption.  Thus, cefadroxil (and possibly other 

aminocephalosporins) may be ineffective in the treatment of meningitis, at least in part, 

because of PEPT2-mediated efflux of antibiotic from CSF, thereby resulting in sub-

therapeutic levels of drug at its active site. However, while the results were encouraging, 

a question that remained unanswered was whether or not PEPT2-mediated changes in 

drug disposition would result in significant changes to the pharmacological or 

toxicological effect of a drug.   
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Disposition and Neurotoxicity of 5-Aminolevulinic Acid (ALA) 

 Our third study investigated the role of PEPT2 in modulating ALA concentrations in 

the CSF and brain, and whether or not these changes would translate into greater 

neuroprotection in vivo against challenge doses of ALA, an endogenous heme precursor. 

ALA was chosen for study because of its known neurotoxicity in patients with hepatic 

porphyria30-32) or lead toxicity33, and because it is a PEPT2 substrate.14,17,34) Studies below 

report the PEPT2-mediated changes in ALA pharmacokinetics and pharmacodynamics 

under different experimental conditions.   

 Preliminary studies were first performed to probe the pharmacokinetics of [14C]ALA 

after an intravenous bolus dose of drug (10 nmol/g body weight) in gender-matched wild-

type and PEPT2 knockout mice27). Results indicated that PEPT2 knockout mice had a 2-

fold higher clearance resulting in a 2-fold lower systemic exposure. Despite the reduction 

in systemic concentrations of ALA, knockout mice showed a 5-fold greater concentration 

of drug in CSF, an 8-fold greater CSF/blood concentration ratio, and significantly lower 

concentrations of drug in choroid plexus.  These results are very consistent with that of 

GlySar and cefadroxil, as described previously and in Figure 1. As shown in this figure, 

the CSF-to-plasma ratios increased to a similar extent for GlySar, cefadroxil, and ALA in 

PEPT2 knockout mice as compared to wild-type animals.  Similar reductions in the 

choroid plexus-to-CSF ratio were also observed in PEPT2 null vs. wild-type mice for all 

three PEPT2 substrates.  These findings underscore the impact of PEPT2 in limiting 

exposure of these substrates to the CSF compartment and emphasize the directionality of 

PEPT2 transport from CSF into the choroid plexus epithelium in vivo.  
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 With respect to pharmacodynamics, PEPT2 had a major impact on the ability of 

PEPT2 null mice to survive the toxic insult of a single high dose of ALA (4000 mg/kg 

s.c.).27) The time at which 50% of the animals died was 21 hr in wild-type mice as 

compared to only 4 hr in null mice (p<0.001), providing strong evidence that PEPT2 

confers a neuroprotective advantage against the toxicity of ALA. Further evidence of a 

neuroprotective role of PEPT2 was demonstrated under chronic dosing conditions of 

ALA (500 mg/kg s.c. each day) for 7 days, where wild-type mice showed no sign of a 

reduced ability to maintain balance on a rotating rod while for PEPT2 knockout mice, 

rotary rod times were progressively lower in response to chronic ALA administration.27) 

Neuromuscular dysfunction in the null mice was particularly evident after 4 days of ALA 

dosing, and balance times were reduced to 58% of control values at 7 days. This finding 

was even more obvious when chronic dosing conditions of ALA (100 mg/kg s.c each 

day) were examined for 30 days. Specifically, by 30 days, wild-type mice had balance 

times that were 91% of control values while PEPT2 knockout mice had balance times 

that were only 60% of control values. Two-way ANOVA showed these correlations were 

highly significant as a function of both time and genotype (p<0.001 for both factors). 

These differences could not be explained by plasma concentrations as there was little 

difference in the systemic exposure of ALA (after a single dose of 100 mg/kg s.c.) in 

wild-type and PEPT2 null mice. In contrast, the CSF concentrations were 8- and 30-fold 

greater in PEPT2 null mice at 30 min and 240 min (p<0.001 for both times), respectively, 

indicating that the observed pharmacodynamic differences between genotypes were the 

result of differences in brain, and not systemic, levels of ALA. Moreover, the results are 

clinically relevant since chronic dosing of ALA at 100 mg/kg s.c. produced plasma 
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concentrations (i.e. ~ 23 µM, on average) which are similar to those observed in patients 

during acute attacks of porphyria (i.e. 2-13 µM).31)      

 These findings are novel in that they demonstrate not only a neuroprotective 

phenotype for the POT family member PEPT2, but that PEPT2-mediated effects on 

disposition in the brain translate into significant changes in toxicity.27) This phenomenon 

demonstrates the ability of a transporter to modulate drug effects beyond the conventional 

role of mediating drug disposition. The ability of PEPT2 to limit ALA exposure in CSF 

suggests that it may act as a secondary genetic modifier in the sensitivity of the brain to 

diseases such as hepatic porphyria or to environmental challenges such as lead poisoning. 

Figure 2 shows a proposed model of ALA neurotoxicity and the protective role of PEPT2 

in reducing ALA concentrations in CSF and the interstitial fluid (ISF) surrounding 

parenchymal cells. As a result of higher ALA concentrations in the ISF of PEPT2 

knockout mouse (or in conditions where choroid plexus expression of PEPT2 is reduced), 

there would be more interactions of this neurotoxin with extracellular receptors (e.g., 

glutamatergic or GABAergic receptors30,35)), leading to an increased risk of toxicity. This 

scenario was demonstrated phenotypically as reduced survival and balancing times in our 

transgenic PEPT2 null mice.   

Translation to humans 

 Translation of the role and relevance of PEPT2 in drug disposition, dynamics, and 

toxicity from the mouse to human will depend on four important factors: 1) the degree of 

inter-species sequence homology between mouse and human PEPT2 protein, 2) the 

conservation of PEPT2 transport functionality between these species; 3) the concordance 
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in cellular localization, expression levels and tissue distribution patterns of PEPT2 in 

both species; and 4) the concordance in cellular localization, expression levels and 

distribution patterns of other transporters with overlapping substrate specificities to 

PEPT2. These criteria, with the exception of criterion 4, have been tested when 

comparing the human and monkey peptide transporters, PEPT1 and PEPT2.36) As 

mentioned previously, the sequence homology between the mouse and human PEPT2 is 

high at about 80%. The molecular and structural features of the POT superfamily is 

highly conserved37) and studies have shown the ability of human cell lines expressing 

PEPT2 to transport the same range of substrates as mouse PEPT2.38-40) Moreover, the 

apical localization of PEPT2 in the kidney38,41) and lung42) cells of human has been shown 

indicating the same directionality of transport. Further studies, however, will be needed 

to demonstrate the inter-species concordance in expression levels and tissue distribution 

patterns of PEPT2. Since more than one transporter may affect the tissue distribution and 

organ elimination of a drug, additional studies will need to be performed to probe the 

influence of transporters with overlapping substrate specificity.  

Pharmacogenomic Implications   

 As the PEPT2 transporter is continued to be challenged with various substrates or 

conditions, more phenotypes will be elucidated, further demonstrating the relevance of 

PEPT2 in mediating drug disposition, dynamics, and toxicity. To the extent that more 

PEPT2-mediated therapeutic agents are discovered, the transporter will become an 

important target for manipulating the delivery of drugs to intended sites of action (e.g., 

the brain), or manipulating the overall kinetic, dynamic, or toxic profiles of drugs. What 

is less clear, however, is the extent to which genetic variants of PEPT2 exist in the human 
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population, and whether or not these variants may lead to functional polymorphisms in 

drug disposition, dynamics, and toxicity.  

 A few investigators have reported that certain genetic variants of human PEPT2 

(hPEPT2) may lead to functional polymorphisms in transport. For example, Terada et 

al.43) showed that a single amino acid substitution (Arg57His) of hPEPT2 caused the 

complete loss of functional activity when expressed in Xenopus oocytes or HEH293 

cells, in spite of PEPT2 having a conserved protein expression at the plasma membrane. 

This phenotype, although believed to be rare in humans, is analogous to our PEPT2 

knockout mouse. Pinsonneault et al.44) conducted a haplotype analysis of 27 single 

nucleotide polymorphisms of hPEPT2 and found two main variants containing several 

phased amino acid substitutions (i.e., hPEPT2*1 and hPEPT2*2; about 45% each), being 

present in all ethnic groups tested. They found that CHO cells, transfected with both 

variants, displayed similar Vmax values for GlySar but significantly different values for 

Km (83 µM vs. 233 µM for hPEPT2*1 and hPEPT2*2, respectively). The two haplotypes 

also differed in their pH sensitivity of GlySar uptake. While these two in vitro studies43,44) 

point to an attenuation (or complete abolition) of PEPT2-mediated transport in some 

groups, the in vivo relevance of these genetic variants in the human population remains 

unclear. Further studies will be needed to determine the frequency and phenotypic 

significance of these (and other) genetic polymorphisms in PEPT2.  

Conclusions 

 The PEPT2 knockout mouse has become an important tool to evaluate the evolving 

role and relevance of this transporter in drug disposition, dynamics and toxicity. 
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Although disruption of the PEPT2 gene itself does not result in obvious phenotypic 

changes in the knockout mouse, our studies emphasize the latent fact that challenging the 

knockout in a certain manner may bring about phenotypic abnormalities. Our studies 

have challenged the PEPT2 knockout model with various substrates of physiological, 

pharmacological and toxicological relevance, and have consistently demonstrated the 

dual action of this transporter with respect to its apical localization in kidney and choroid 

plexus epithelial cells.  The results have clearly shown that in vivo: 1) PEPT2 effluxes 

GlySar, cefadroxil and ALA from the CSF into choroid plexus, thereby affecting regional 

disposition in the brain; and 2) PEPT2 reabsorbs these substrates from renal tubular fluid, 

thereby affecting systemic pharmacokinetics and exposure. It also appears that the 

regional effect of PEPT2 in limiting exposure of substrates to the CSF and ISF of brain 

may be of more importance for some compounds than its effect in increasing systemic 

exposure.  Specifically, in the case of ALA, the modulation of regional brain disposition 

by PEPT2 translates directly into significant changes in neurotoxicity.   
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Figure A.1. Top panel: cerebrospinal fluid (CSF)-to-plasma concentration ratios in 
PEPT2 null mice were 4.2, 5.6 and 7.3 times that of values in wild-type mice for 
glycylsarcosine (GlySar), cefadroxil and 5-aminolevulinic acid (ALA), respectively. 
Bottom panel: choroid plexus-to-CSF concentration ratios in PEPT2 null mice were 0.3, 
0.07 and 0.09 times that of values in wild-type mice for GlySar, cefadroxil and ALA, 
respectively. Samples were obtained 60 min after dosing GlySar (50 nmol/g body 
weight)23), 120 min after dosing cefadroxil (1 nmol/g body weight)24), and 60 min after 
dosing ALA (10 nmol/g body weight).27) 
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Figure A.2 Schematic of how the proton-coupled oligopeptide transporter SLC15A2 
(PEPT2 displayed as PT2) affects the distribution of 5-aminolevulinic acid (ALA) in 
different compartments of the brain.27) In particular, the loss of PEPT2 results in 
substantially lower concentrations of ALA in choroid plexus (CP) epithelial cells, and 
substantially higher concentrations of ALA in cerebrospinal fluid (CSF) and interstitial 
fluid (ISF) surrounding the parenchymal cells. As a result of the higher concentrations of 
ALA in ISF, there may be more interactions with extracellular receptors, thereby, leading 
to an increased risk of neurotoxicity (as displayed by the “skull and crossbones” symbol). 
The top-half of the figure represents a scenario in wild-type (WT) mice while the bottom-
half of the figure represents a scenario in PEPT2-deficient (Null) mice.  
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Appendix B 

NONMEM control streams for paroxetine, atomextine, lorazepam, and olanzapine 
PK models 

Atomextine PK Control Stream 
$PROB pkatom 1cmpt no tlag    
$INPUT STUD NMID=ID AGE WGT HT GEN HORM RACE DOSE AMT NTIM TIME DAY 
CONC=DV SCR CLCR EVID MDV TXT PER 
$DATA pop_pk_atomoxetine.csv IGNORE=#    
$SUBS   ADVAN=2 TRANS=2  INFN=infnci.txt  
 $PK 
    TVCL = THETA(1) 
    CL   = TVCL * EXP(ETA(1)) 
    TVV  = THETA(2)*(1-THETA(6)*(1-GEN)) 
    V    = TVV * EXP(ETA(2)) 
    TVKA = THETA(3) 
    KA   = TVKA * EXP(ETA(3)) 
    K=CL/V 
    KA=KA    
    S2=V/1000    
 $ERROR    
    IPRED=F         ;INDIVIDUAL PREDICTION 
   W=((THETA(4)**2)*(F**2)+THETA(5)**2)**0.5             ;1=Additive and F (or 
IPRED)=Constant CV 
   IRES=DV-IPRED   ;INDIVIDUAL RESIDUAL 
   IWRES=IRES/W     
    Y = IPRED+W*EPS(1) 
 $THETA (0 15 50)  ; CL TH1 
        (0 100 2000) ; V  TH2 
        (0 3 15)   ; KA TH3 
        ;(0 0.4 2)  ; ALAG1 TH4 
          (0 0.2) 
          (0 5) 
           (0 0.1) 
           
 $OMEGA BLOCK(2)  
    0.3  
    0.01 0.3  
$OMEGA BLOCK(1)  
    0.3            
 $SIGMA (1 FIXED) 
 $EST  METHOD=1 INTERACTION SIGDIGITS=3 MAXEVAL=9999 PRINT=5 POSTHOC  
  NOABORT MSFO=MSF1 
 $COV PRINT=E 
$TABLE NMID  CL V KA DOSE WGT GEN CLCR AGE RACE HT HORM ETA(1) 
  ETA(2) ETA(3) NOPRINT ONEHEADER FIRSTONLY FILE=pk_atom_12A.tab 
$TABLE NMID MDV  CL V KA DOSE WGT GEN CLCR AGE RACE HT HORM  
 TIME IPRED IRES IWRES NOPRINT ONEHEADER FILE=pk_atom_12.tab 
 $SCAT DV VS PRED IPRED UNIT 
  

NONMEM Control Stream for Paroxetine PK 

Paroxetine PK Output 
$PROB 01 One-Compartment Model with tlag 
$INPUT STUD NMID=ID AGE WGT HT GEN HORM RACE DOSE AMT NTIM TIME DAY 
CONC=DV SCR CLCR EVID MDV TXT PER 
$DATA pop_pk_paroxetine.csv IGNORE=#    
$SUBS   ADVAN=2 TRANS=2  INFN=infnci.txt 
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 $PK 
    TVCL = THETA(1) 
    CL   = TVCL * EXP(ETA(1)) 
    TVV  = THETA(2) 
    V    = TVV * EXP(ETA(2))   
    TVKA = THETA(3) 
    KA   = TVKA * EXP(ETA(3)) 
    TVLAG= THETA(4) 
    ALAG1= TVLAG  
    K=CL/V 
    KA=KA   
    S2=V/1000  
 $ERROR    
    IPRED=F         ;INDIVIDUAL PREDICTION 
   W=((THETA(5)**2)*(F**2)+THETA(6)**2)**0.5             ;1=Additive and F (or 
IPRED)=Constant CV 
    IRES=DV-IPRED   ;INDIVIDUAL RESIDUAL 
   IWRES=IRES/W  
    Y = IPRED+W*EPS(1)    
 $THETA (0 100)  ; CL TH1 
        (0 1000) ; V  TH2 
        (0 0.1)   ; KA TH3 
        (0 0.4 1)  ; ALAG1 TH4 
         (0 0.25)   ; TH(5) 
          (0 0.1)   ; TH(6) 
 $OMEGA 0.3 0.3 0.01          
 $SIGMA (1 FIXED) 
 $EST  METHOD=1 INTERACTION SIGDIGITS=3 MAXEVAL=9999 PRINT=5 POSTHOC  
  NOABORT MSFO=MSF1 
 $COV PRINT=E 
 $TABLE   NMID MDV TIME NTIM CL V KA DOSE WGT GEN CLCR RACE AGE ETA(1) ETA(2)  
  ETA(3) NOPRINT ONEHEADER FIRSTONLY FILE=pk_paro_16A.tab 
 $TABLE   NMID MDV TIME NTIM CL V KA DOSE WGT GEN CLCR RACE AGE IPRED IRES IWRES WRES RES 
  NOPRINT ONEHEADER  FILE=pk_paro_16.tab  
 $SCAT DV VS PRED IPRED UNIT 
  

NONMEM Control Stream for Lorazepam PK 

$PROB 04 Test 2 COMP Model without Tlag and etas on v3 

$INPUT STUD NMID=ID AGE WGT HT GEN HORM RACE DOSE AMT NTIM TIME DAY 

CONC=DV SCR CLCR EVID MDV TXT PER 

 

$DATA pop_pk_lorazepam.csv IGNORE=# 

$SUBS   ADVAN=4 TRANS=4  INFN=infnci.txt 
 $PK 
  
    TVCL = THETA(1)+THETA(6)*(CLCR-105) 
    CL   = TVCL * EXP(ETA(1)) 
 
    TVV  = THETA(2)+THETA(7)*(WGT-75) 
   V2    = TVV * EXP(ETA(2)) 
     
    TVKA = THETA(3) 
    KA   = TVKA* EXP(ETA(4))  
 
    Q = THETA(4) 
    V3= THETA(5)* EXP(ETA(3)) 
 
     
 
    K=CL/V2 
    K23 = Q/V2 
    K32 = Q/V3 
    KA=KA    
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    S2=V2/1000 
 $ERROR    
     
    IPRED=F         ;INDIVIDUAL PREDICTION 
    W=THETA(8)*(F)             ;1=Additive and F (or IPRED)=Constant CV 
    IRES=DV-IPRED   ;INDIVIDUAL RESIDUAL 
    IWRES=IRES/W 
      
    Y = IPRED+W*EPS(1)     
 
 $THETA (0 4 15)     ; CL TH1 
        (0 50 100)  ; V  TH2 
        (0 1 5)     ; KA TH3 
        (0 11 20)     ; Q  TH4 
        (0 37 100)  ; V3 TH5  
        (0 0.01); TH6 CRCL ON CL 
        (0 0.7) ; TH7 WGT ON V  
        (0 0.25); TH8  
$OMEGA  0.3 0.3  0.3  0.3           
 $SIGMA (1 FIXED) 
 $EST  METHOD=1 INTERACTION SIGDIGITS=3 MAXEVAL=9999 PRINT=5 POSTHOC  
  NOABORT MSFO=MSF1 
 $COV PRINT=E 
$TABLE NMID  CL V2 KA Q V3  DOSE WGT GEN CLCR AGE RACE HT HORM ETA(1) 
  ETA(2) ETA(3) ETA(4) IPRED IRES NOPRINT ONEHEADER FIRSTONLY  
  FILE=pk_lorA_28.tab 
$TABLE NMID MDV  CL V2 KA Q V3  DOSE WGT GEN CLCR AGE RACE HT HORM  
 TIME IPRED IRES IWRES  NOPRINT ONEHEADER FILE=pk_lor_28.tab 
 $SCAT DV VS PRED IPRED UNIT 

 

NONMEM Control Stream for Olanzapine PK 
$PROB 14b (Model 14) FINAL Model Calc WRES 
$INPUT STUD NMID=ID AGE WGT HT GEN HORM RACE DOSE AMT NTIM TIME DAY 
CONC=DV SCR CLCR EVID MDV TXT PER 
$DATA pop_pk_olanzapine.csv IGNORE=#     
$SUBS   ADVAN=4 TRANS=4  INFN=infnci.txt 
 $PK 
    TVCL = THETA(1) 
    CL   = TVCL * EXP(ETA(1)) 
    TVV  = THETA(2)*(1-THETA(7)*(1-GEN)) 
    V2    = TVV * EXP(ETA(2))   
    KA = THETA(3) 
    Q = THETA(4) * EXP(ETA(3)) 
    TVV3 = THETA(5) 
    V3= TVV3 * EXP(ETA(4)) 
    ALAG1 = THETA(6) 
    K=CL/V2 
    K23 = Q/V2 
    K32 = Q/V3 
    KA=KA   
    S2=V2/1000 
$ERROR    
    IPRED=F         ;INDIVIDUAL PREDICTION 
   W=((THETA(8)**2)*(F**2)+THETA(9)**2)**0.5         ;1=Additive and F (or 
IPRED)=Constant CV 
    IRES=DV-IPRED   ;INDIVIDUAL RESIDUAL 
   IWRES=IRES/W     
    Y = IPRED+W*EPS(1) 
 $THETA (0 15 50)     ; CL TH1 
        (0 300 2000)  ; V  TH2 
        (0 0.1 3)     ; KA TH3 
        (0 20 50)     ; Q  TH4 
        (0 600 2000)  ; V3 TH5  
        (0 0.4 2)     ; ALAG TH6 
        (0 0.1 0.8)   ; TH7 GDR on V   
        (1)           ; TH8 Factor for WRES 
        (0.2)           ; TH9 Factor for WRES 
 
 $OMEGA 0.3 0.3 0.1 0.1          
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 $SIGMA 1 
 $EST  METHOD=1 INTERACTION SIGDIGITS=3 MAXEVAL=9999 PRINT=5 POSTHOC  
  NOABORT MSFO=MSF1 
 $COV 
 $TABLE  ONEHEADER NMID TIME NTIM CL V2 KA V3 Q ALAG1 DOSE WGT GEN CLCR  
  AGE ETA(1) ETA(2) ETA(3) ETA(4) MDV IPRED IWRES NOPRINT FILE=pk_olan_14c.tab 
 $SCAT DV VS PRED IPRED UNIT 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



163 
 

Appendix C 

NONMEM control streams of lorazepam sleepiness and dizziness  categorical 
models 

Lorazepam Sleepiness Categorical Model  
$PROB SRDEQ Lorazepam sleepiness model 
$INPUT STUD NMID=ID DOSE DAY=DROP NTIM=TIME SQTM RESP=DV 
MV3=MDV TPK=DROP CON2 ICL IV1 IKA IQ IV2 AGE WGT HT=DROP GEN  
RACE CRCL   
$DATA MOE.csv IGNORE=#     
 $PRED 
;****************************PHARMACODYNAMIC MODEL********************* 
;********************************************************************** 
  
 ; Define Equations for PK in Central and Effect Comp 
    K10 = ICL/IV1 
    K12 = IQ/IV1 
    K21 = IQ/IV2 
    KKK1 = (K12 + K21 + K10) 
    KKK2 = K21*K10 
    ALPH = (KKK1+(KKK1**2-4*KKK2)**0.5)/2 
    BETA = (KKK1-(KKK1**2-4*KKK2)**0.5)/2    
   TI = TIME 
   IF (TI.LE.0) TI=0 
   AAA = IKA*DOSE*1000/IV1 
  BBB = (K21-ALPH)/((ALPH-BETA)*(ALPH-IKA)) 
   CCC = (BETA-K21)/((ALPH-BETA)*(BETA-IKA)) 
   DDD = (K21-IKA)/((ALPH-IKA)*(BETA-IKA)) 
   KE0 = THETA(7) 
   AAA2 = AAA*KE0 
   BBB2 = BBB/(KE0-ALPH) 
   CCC2 = CCC/(KE0-BETA) 
   DDD2 = DDD/(KE0-IKA) 
   EEE = (K21-KE0)/((ALPH-KE0)*(BETA-KE0)*(IKA-KE0)) 
 
   CONC = AAA*(BBB*EXP(-ALPH*TI)+CCC*EXP(-BETA*TI)+DDD*EXP(-IKA*TI)) 
    
  SUM1=BBB2*EXP(-ALPH*TI) 
    SUM2=CCC2*EXP(-BETA*TI) 
    SUM3=DDD2*EXP(-IKA*TI) 
    SUM4=EEE*EXP(-KE0*TI) 
 
   CE=AAA2*(SUM1+SUM2+SUM3+SUM4)  
  
  ; Define Parameters and Equation for Drug Effect 
 
   SLOPE = THETA(6) 
    DRUG = SLOPE*CE  
  ; Define Parameters and Equation for Placebo Effect 
 EST=MIXEST   
IF (MIXNUM.EQ.1) THEN 
       PLAC=0 
   ELSE 
       PLAC= THETA(8)*(EXP(-THETA(10)*TIME)-EXP((-THETA(10)*230)*TIME)) 
   ENDIF  
 
  ; Define Different Intercepts for n-1 scores  
 
   B1 = THETA(1) 
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   B2 = B1 + THETA(2) 
   B3 = B2 + THETA(3) 
   B4 = B3 + THETA(4) 
   B5 = B4 + THETA(5) 
  
  ; Define logits for Score 0, 1, 2 
  ; (Y=>1, Y=>2) 
   A1 = B1 +DRUG+PLAC+ETA(1) 
   A2 = B2 +DRUG+PLAC+ETA(1) 
   A3 = B3 +DRUG+PLAC+ETA(1) 
   A4 = B4 +DRUG+PLAC+ETA(1) 
   A5 = B5+DRUG+PLAC+ETA(1) 
   C1 = EXP(A1) 
   C2 = EXP(A2) 
   C3 = EXP(A3) 
   C4 = EXP(A4) 
   C5 = EXP(A5) 
          
   ; Define Probability for Each Score 
   ; (Y=>0, Y=>1, Y=>2) 
   P1 = C1/(1+C1)  ; Probability of Score=>1 
   P2 = C2/(1+C2)  ; Probability of Score=>2 
   P3 = C3/(1+C3)  ; Probability of Score=>3 
   P4 = C4/(1+C4)  ; Probability of Score=>4 
   P5 = C5/(1+C5)  ; Probability of Score=>4 
    
   PR0 = 1-P1       ; Probability of Score=0 
   PR1 = P1-P2      ; Probability of Score=1 
   PR2 = P2-P3      ; Probability of Score=2 
   PR3 = P3-P4      ; Probability of Score=3 
   PR4 =P4-P5       ; Probability of Score=4 
   PR5 = 1-(PR0+PR1+PR2+PR3+PR4)      ; Probability of Score=5  
     
   ; Expected Score OR Predicted Score 
   ;ESCR = 4*PR4+3*PR3+2*PR2+1*PR1 
   ; Select Appropriate P(Y=m) 
   IF (DV.EQ.5) Y=PR5    
   IF (DV.EQ.4) Y=PR4    
   IF (DV.EQ.3) Y=PR3    
   IF (DV.EQ.2) Y=PR2 
   IF (DV.EQ.1) Y=PR1 
   IF (DV.EQ.0) Y=PR0  
 $MIX 
  NSPOP=2 
  P(1)=THETA(9) 
  P(2)=1-P(1)   
    
    
$THETA (-2)          ; THETA2 B1 
$THETA (-2)         ; THETA3 B2  
$THETA (-2)         ; THETA4 B3 
$THETA (-2)         ; THETA5 B4 
$THETA (-2)         ; THETA6 B4 
$THETA (0.2)         ; SLOPE 
$THETA (3)         ; KEO 
 $THETA (3)         ; PLAC 
 $THETA (0 0.5 1)         ; PROP  
$THETA (0.1)         ; PROP   
;$THETA (1)         ; PROP   
        
 $OMEGA 1 
$COV PRINT=E 
 $ESTIMATION MAXEVAL=9999 PRINT=5 METHOD=COND LAPLACE LIKELIHOOD 
  NOABORT MSFO=MSF1 
 $TABLE ONEHEADER FIRSTONLY STUD NMID  NTIM  DOSE   
   ETA(1) P1 P2 P3 P4   PR0 PR1 PR2 PR3 PR4    
  NOPRINT FILE=lor.srdeq.9.tab 
 
 
 
 



165 
 

 
 
 

B) Lorazepam Dizziness Categorical Model 
 
$PROB SRDEQ PK/PD Model of Dizziness 
;BOTH TREATMENT AND PLACEBO DATA WITH PK POSTHOC 
$INPUT STUD NMID=ID DOSE DAY=DROP NTIM=TIME SQTM=DROP DIZZ=DV  
MV9=MDV TPK=DROP CON2 ICL IV1 IKA IQ IV2 AGE WGT HGT GEN  
RACE CRCL 
 
$DATA dizziness.data.csv 
 
     
 $PRED 
 
;****************************PHARMACODYNAMIC MODEL********************* 
;********************************************************************** 
  
 ; Define Equations for PK in Central and Effect Comp 
    K10 = ICL/IV1 
    K12 = IQ/IV1 
    K21 = IQ/IV2 
 
   KKK1 = (K12 + K21 + K10) 
    KKK2 = K21*K10 
 
    ALPH = (KKK1+(KKK1**2-4*KKK2)**0.5)/2 
    BETA = (KKK1-(KKK1**2-4*KKK2)**0.5)/2 
         
   TI = TIME 
   IF (TI.LE.0) TI=0 
 
   AAA = IKA*DOSE*1000/IV1 
  BBB = (K21-ALPH)/((ALPH-BETA)*(ALPH-IKA)) 
   CCC = (BETA-K21)/((ALPH-BETA)*(BETA-IKA)) 
   DDD = (K21-IKA)/((ALPH-IKA)*(BETA-IKA)) 
 
    
   CONC = AAA*(BBB*EXP(-ALPH*TI)+CCC*EXP(-BETA*TI)+DDD*EXP(-IKA*TI)) 
    
  
  ; Define Parameters and Equation for Drug Effect 
 
    SLOPE = THETA(1) 
 
    DRUG = SLOPE*CONC 
    
  ; Define Parameters and Equation for Placebo Effect 
 
 EST=MIXEST   
IF (MIXNUM.EQ.1) THEN 
       PLAC=0 
   ELSE 
      PLAC= THETA(5)*(EXP(-THETA(7)*TIME)-EXP(-THETA(8)*TIME)) 
 
   ENDIF  
 
  ; Define Different Intercepts for n-1 scores  
 
   B1 = THETA(2) 
   B2 = B1 + THETA(3) 
   B3 = B2 + THETA(4) 
    
   
   
  ; Define logits for Score 0, 1, 2 
  ; (Y=>1, Y=>2) 
    
   A1 = B1 + DRUG +PLAC+ETA(1) 
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   A2 = B2 + DRUG +PLAC+ETA(1) 
   A3 = B3 + DRUG +PLAC+ETA(1) 
    
     
   C1 = EXP(A1) 
   C2 = EXP(A2) 
   C3 = EXP(A3) 
    
   
             
   ; Define Probability for Each Score 
   ; (Y=>0, Y=>1, Y=>2) 
 
   P1 = C1/(1+C1)  ; Probability of Score=>1 
   P2 = C2/(1+C2)  ; Probability of Score=>2 
   P3 = C3/(1+C3)  ; Probability of Score=>3 
   
   PR0 = 1-P1       ; Probability of Score=0 
   PR1 = P1-P2      ; Probability of Score=1 
   PR2 = P2-P3      ; Probability of Score=2 
   PR3 = 1-(PR0+PR1+PR2)      ; Probability of Score=3 
    
     
   ; Expected Score OR Predicted Score 
   
   ;ESCR = 4*PR4+3*PR3+2*PR2+1*PR1 
 
   ; Select Appropriate P(Y=m) 
     
   IF (DV.EQ.3) Y=PR3    
   IF (DV.EQ.2) Y=PR2 
   IF (DV.EQ.1) Y=PR1 
   IF (DV.EQ.0) Y=PR0 
    
    
 $MIX 
  NSPOP=2 
  P(1)=THETA(6) 
  P(2)=1-P(1)   
  
  
$THETA (0 0.2)      ; THETA1 SLOPE 
$THETA (-5)          ; THETA2 B1 
$THETA (-3)         ; THETA3 B2  
$THETA (-1)         ; THETA4 B3 
$THETA (0 5)         ; Plac 
$THETA (0 0.5 1)      ;PROPORTION nrsp 
$THETA (0.1)   
$THETA (1)     
 
        
 $OMEGA 1 
$COV PRINT=E 
 $ESTIMATION MAXEVAL=9999 PRINT=5 METHOD=COND LAPLACE LIKELIHOOD 
  NOABORT MSFO=MSF1 
 $TABLE ONEHEADER FIRSTONLY STUD NMID  NTIM  DOSE CON2   
   P1 P2 P3 PR0 PR1 PR2 PR3 ETA(1) 
  NOPRINT FILE=LOR.DIZZ.16.TAB 
 
 
 
 
 
 
 
 
 
 
 



167 
 

Appendix D 

 
NONMEM control stream of  VAS Sleepiness model 

 
$PROB vas 01 Initial Model  
 
 
$INPUT STUD NMID=ID TPK=DROP CON2 ICL IV1 IKA IQ IV2  AGE  WGT HT=DROP    
GEN HORM=DROP RACE=DROP DOSE TXT=DROP NTIM=TIME DAY CLCR VAS1 ADJ  
LOGT=DV MV1=MDV  
 
 
$DATA vas_finalmodel.csv IGNORE=# 
    
$PRED 
 
 
;****************************PHARMACODYNAMIC MODEL********************* 
;********************************************************************** 
 
  K10 = ICL/IV1 
    K12 = IQ/IV1 
    K21 = IQ/IV2 
 
    KKK1 = (K12 + K21 + K10) 
    KKK2 = K21*K10 
 
    ALPH = (KKK1+(KKK1**2-4*KKK2)**0.5)/2 
    BETA = (KKK1-(KKK1**2-4*KKK2)**0.5)/2 
         
   TI = TIME 
   IF (TI.LE.0) TI=0 
 
   AAA = IKA*DOSE*1000/IV1 
  BBB = (K21-ALPH)/((ALPH-BETA)*(ALPH-IKA)) 
   CCC = (BETA-K21)/((ALPH-BETA)*(BETA-IKA)) 
   DDD = (K21-IKA)/((ALPH-IKA)*(BETA-IKA)) 
 
   KE0 = THETA(4)*EXP(ETA(3)) 
 
   AAA2 = AAA*KE0 
   BBB2 = BBB/(KE0-ALPH) 
   CCC2 = CCC/(KE0-BETA) 
   DDD2 = DDD/(KE0-IKA) 
   EEE = (K21-KE0)/((ALPH-KE0)*(BETA-KE0)*(IKA-KE0)) 
 
   CONC = AAA*(BBB*EXP(-ALPH*TI)+CCC*EXP(-BETA*TI)+DDD*EXP(-IKA*TI)) 
    
   SUM1=BBB2*EXP(-ALPH*TI) 
    SUM2=CCC2*EXP(-BETA*TI) 
    SUM3=DDD2*EXP(-IKA*TI) 
    SUM4=EEE*EXP(-KE0*TI) 
 
   CE=AAA2*(SUM1+SUM2+SUM3+SUM4)  
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 BSL  = THETA(1) * EXP(ETA(1)) 
SLOPE=THETA(2)*EXP(ETA(2))  
DRUG=SLOPE*CE 
 
PLAC =THETA(3)*EXP(ETA(4))*(EXP(-THETA(5)*TIME)-EXP(-((THETA(5)*1.5)*TIME))) 
   
 IF (TIME.EQ.0) THEN 
F=BSL 
ELSE 
F=BSL+DRUG+PLAC 
ENDIF 
   IPRED=F         ;INDIVIDUAL PREDICTION 
   IRES=DV-IPRED   ;INDIVIDUAL RESIDUAL 
   W=1            ; 1=Additive and F (or IPRED)=Constant CV 
   IWRES = IRES/W 
  
   Y =F+EPS(1)  
 
    
 $THETA (-3)    ; BSL 
  $THETA (0.1) ;SLOPE 
 $THETA (-5); PLAC 
  $THETA (3); Keo 
$THETA (0 0.01);  
;$THETA (0 1) 
 
$OMEGA 0.01  0.01  0.01 0.01 
 
 $SIGMA 1  
 
 $EST  METHOD=1 INTERACTION SIGDIGITS=3 MAXEVAL=9999 PRINT=5  
  POSTHOC NOABORT MSFO=MSF1 
 $COV PRINT=E 
 $TABLE  ONEHEADER NMID NTIM TIME DOSE CONC BSL    
WRES IWRES IPRED IRES NOPRINT FILE=vas_7aaaa.tab  
 $SCAT DV VS PRED  IPRED UNIT   
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Appendix E 

 
SPLUS nonparametric bootstrap code 

 
data1<-read.table("C:\\nmv\\LOR.SLEEP.SRDEQ\\MOE.csv",sep=",",skip=1) 
#there are 20 subjects simple PK data 
sam<-seq(1,20,1) 
for (j in 1:1000) { 
                 BGSH<-NULL 
                 for (i in 1:20) { lucky<-sample(sam,size=1,replace=T)+1000 
                                 data2<-data1[data1[,2]==lucky,]  
                                 data2[,2]<-i  
                                  BGSH<-rbind(BGSH,data2) 
                               }  
                exportData(BGSH, 

file="c:\\nmv\\LOR.SLEEP.SRDEQ\\dumby.csv",colNames=F,quote=F) 
                dos(paste("nmfe5 c1.txt r1.txt"),multi=F,output=F) 
 
               } 
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Appendix F 

Categorical sleepiness simulation code (SPLUS) 
 

## filter micha file with bootstrap parameters 
tab<-importData("nadia.txt",type="ASCII",stringsAsFactors=F) 
tab2<-tab[tab$Col1==0,c(1:14)] 
tab3<-tab2[tab2$Col2==0,c(1:14)] 
tab32<-tab3[tab3$Col14!=0,] 
tab4<-tab32[c(4:14)] 
 
##Get dumby file 
data<-importData("dumby1.csv",type="ASCII", stringsAsFactors=F) 
nr<-nrow(data) 
names(data)<-c("STUD","ID", "DOSE", "TIME", "DV" ,"MDV", "ICL", "IV1", "IKA", 

"IQ", "IV2") 
BGSH<-NULL 
##NESTED LOOP 
##LOOP OVER MICHA FILE (OUTER LOOP) 
## LOOP WITHIN STUDY (INNER LOOP) 
for(i in 1:250){ 
    #i<-1 
    #get row i of micha 
    vec<-tab4[i,] 
    names(vec)<-

c("th1","th2","th3","th4","th5","th6","th7","th8","th9","th10", 
    "om11") 
    temp<-matrix(NULL,ncol=7,nrow=400) 
    for (j in 1:nr){ 
    if (j==1) {oldid<- -1} 
     ##subject level stuff 
    if (data[j,2]!=oldid) { 
     test1<-runif(1,0,1) 
     eta<-rnorm(1,0,sd=sqrt(vec$om11)) 
    } 
    #j<-1 
    K10<- data$ICL[j]/data$IV1[j] 
              K12<- data$IQ[j]/data$IV1[j] 
               K21<- data$IQ[j]/data$IV2[j] 
              KKK1<- (K12 + K21 + K10) 
               KKK2<- K21*K10 
               ALPH <- (KKK1+(KKK1**2-4*KKK2)**0.5)/2 
              BETA<- (KKK1-(KKK1**2-4*KKK2)**0.5)/2 
              TI<- data$TIME[j] 
               if (TI<=0) { TI==0} 
               AAA<- data$IKA[j]*data$DOSE[j]*1000/data$IV1[j] 
             BBB <- (K21-ALPH)/((ALPH-BETA)*(ALPH-data$IKA[j])) 
             CCC <- (BETA-K21)/((ALPH-BETA)*(BETA-data$IKA[j])) 
            DDD <- (K21-data$IKA[j])/((ALPH-data$IKA[j])*(BETA-data$IKA[j])) 
            CONC<- AAA*(BBB*exp(-ALPH*TI)+CCC*exp(-BETA*TI)+DDD*exp(-

data$IKA[j]*TI)) 
             KE0<-vec$th7 
            AAA2 <- AAA*KE0 
           BBB2 <- BBB/(KE0-ALPH) 
           CCC2<- CCC/(KE0-BETA) 
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           DDD2 <- DDD/(KE0-data$IKA[j]) 
          EEE <- (K21-KE0)/((ALPH-KE0)*(BETA-KE0)*(data$IKA[j]-KE0)) 
         SUM1<-BBB2*exp(-ALPH*TI) 
        SUM2<-CCC2*exp(-BETA*TI) 
        SUM3<-DDD2*exp(-data$IKA[j]*TI) 
         SUM4<-EEE*exp(-KE0*TI) 
        CE<-AAA2*(SUM1+SUM2+SUM3+SUM4)  
        SLOPE<-vec$th6 
       DRUG<-SLOPE*CE 
PLAC<-as.numeric(test1<=vec$th9)*0+as.numeric(test1>vec$th9)*vec$th8*(exp(-

vec$th10*data$TIME[j])-exp(-vec$th10*230*data$TIME[j])) 
                                                     MIXNUM<-

as.numeric(test1>vec$th9)+1 
                                                     B1<-vec$th1 
                                                     B2<- B1 + vec$th2 
                                                     B3<- B2 + vec$th3 
                B4<- B3 + vec$th4 
                  B5<- B4 + vec$th5 
                                                     #  ; Define logits for 

Score 0, 1, 2 
                                                     #  ; (Y=>1, Y=>2) 
                                                     A1<- B1 + DRUG +PLAC+eta 
                                                     A2<- B2 + DRUG +PLAC+eta 
                                                     A3<- B3 + DRUG +PLAC+eta 
                                                     A4<- B4 + DRUG +PLAC+eta 
                    A5<- B5 + DRUG +PLAC+eta 
                                                     C1<-exp(A1) 
                                                     C2<-exp(A2) 
                                                     C3<-exp(A3) 
                                                     C4<-exp(A4) 
                 C5<-exp(A5) 
                                                     #; Define Probability for 

Each Score 
                                                     #; (Y=>1, Y=>2, Y=>3) 
                                                     P1<- C1/(1+C1)  #; 

Probability of Score=>1 
                                                     P2<- C2/(1+C2)  #; 

Probability of Score=>2 
                                                     P3<- C3/(1+C3)  #; 

Probability of Score=>3 
                P4<- C4/(1+C4)  #; 

Probability of Score=>4 
               P5<- C5/(1+C5)  #; 

Probability of Score=>5 
                                                    PR0<- 1-P1      # ; 

Probability of Score=0 
                                                     PR1<- P1-P2     # ; 

Probability of Score=1 
                                                     PR2<- P2-P3     # ; 

Probability of Score=2 
                                                      PR3<- P3-P4     # ; 

Probability of Score=3 
                                                      PR4<- P4-P5     # ; 

Probability of Score=4 
                                                     PR5<- 1-

(PR0+PR1+PR2+PR3+PR4)  
                #MAKE DATA 
                 temp[j,1]<-data$ID[j] 
                                                     temp[j,2]<-data$DOSE[j] 
                                                     temp[j,3]<-data$TIME[j] 
                                                     temp[j,4]<-eta 
                                                     temp[j,5]<-MIXNUM 
                                                     test2<-runif(1,0,1) 
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                                                     if (test2>P1) {temp[j,6]<-
0} 

                                                     if (test2<=P1 && test2>P2) 
{temp[j,6]<-1} 

                                                     if (test2<=P2 && test2>P3) 
{temp[j,6]<-2} 

                                                     if (test2<=P3 && test2>P4)  
{temp[j,6]<-3} 

                                                      if (test2<=P4 && 
test2>P5)  {temp[j,6]<-4} 

                                                       if (test2<=P5)  
{temp[j,6]<-5}      

                                                    temp[j,7]<-i 
 
                               oldid<-data[j,2] 
                              } 
               
              BGSH<-rbind(BGSH,temp) 
                     
    } 
 
#get observed 
ppcinc <-NULL 
sum<-0 
for (i in 1:400) { 
               if (i==1) {oldid<- -1} 
               if (data$ID[i]!=oldid) {ind<-0} 
               if (data$DV[i]>0 && ind==0) {ind<-1 
                                            sum<-sum+1 
                                            } 
               oldid<-data$ID[i] 
               } 
ppcinc[1]<-sum 
#Get simulated values  
for (j in 1:50) { 
               
              temp<-BGSH[BGSH[,7]==j,] 
              sum<-0 
                 for (i in 1:400) { 
                   if (i==1) {oldid<- -1} 
                   if (temp[i,1]!=oldid) {ind<-0} 
                   if (temp[i,6]>0 && ind==0) {ind<-1 
                                                sum<-sum+1 
                                               } 
                   oldid<-temp[i,1] 
               } 
                  ppcinc[j+1]<-sum 
 
               
                } 
#Here is one way to make pictures your model passes this worthless check! 
hist(ppcinc[2:51]) 
segments(ppcinc[1],0,ppcinc[1],20)  
 
#PPC Number 3 Proportion with any AE>=2 
 
#get observed 
ppcinc2 <-NULL 
sum<-0 
for (i in 1:400) { 
               if (i==1) {oldid<- -1} 
               if (data$ID[i]!=oldid) {ind<-0} 
               if (data$DV[i]>1 && ind==0) {ind<-1 
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                                            sum<-sum+1 
                                            } 
               oldid<-data$ID[i] 
               } 
ppcinc2[1]<-sum 
#Get simulated values  
for (j in 1:50) { 
               
              temp<-BGSH[BGSH[,7]==j,] 
              sum<-0 
                 for (i in 1:400) { 
                   if (i==1) {oldid<- -1} 
                   if (temp[i,1]!=oldid) {ind<-0} 
                   if (temp[i,6]>1 && ind==0) {ind<-1 
                                                sum<-sum+1 
                                               } 
                   oldid<-temp[i,1] 
               } 
                  ppcinc2[j+1]<-sum 
 
               
                } 
hist(ppcinc2[2:51]) 
segments(ppcinc2[1],0,ppcinc2[1],20)  
 
#The model does well here too!  
##P>=2  
ppcinc2 <-NULL 
sum<-0 
for (i in 1:400) { 
               if (i==1) {oldid<- -1} 
               if (data$ID[i]!=oldid) {ind<-0} 
               if (data$DV[i]>1 && ind==0) {ind<-1 
                                            sum<-sum+1 
                                            } 
               oldid<-data$ID[i] 
               } 
ppcinc2[1]<-sum 
#Get simulated values  
for (j in 1:50) { 
               
              temp<-BGSH[BGSH[,7]==j,] 
              sum<-0 
                 for (i in 1:400) { 
                   if (i==1) {oldid<- -1} 
                   if (temp[i,1]!=oldid) {ind<-0} 
                   if (temp[i,6]>1 && ind==0) {ind<-1 
                                                sum<-sum+1 
                                               } 
                   oldid<-temp[i,1] 
               } 
                  ppcinc2[j+1]<-sum 
 
               
                } 
hist(ppcinc2[2:51]) 
segments(ppcinc2[1],0,ppcinc2[1],20)  
help(density)  
  
 ####PPC 4 (Maximum Expected Score) 
par(mfrow=c(2,2))  
 #get observed 
data1<-data[data$DOSE==2,c(1:11)] 
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ppc3 <-NULL 
coll<-NULL 
maxsc<-0 
sum<-0 
for (i in 1:200) { 
               if (i==1) {oldid<- 1001} 
               #if new subject write max score for previous subject, reset 

maxscore 
               if (data1$ID[i]!=oldid && i>1) { 
                                           sum<-sum+1 
                                           coll[sum]<-maxsc  
                                              maxsc<-0 
                                                oldid<-data1$ID[i] 
                                                } 
               if (data1$DV[i]>maxsc && data1$ID[i]==oldid) { 
                                                           maxsc<-data1$DV[i] 
                                                           } 
               oldid<-data1$ID[i] 
               #handle last subject 
               if (i==200) { 
                         sum<-sum+1 
                         coll[sum]<-maxsc 
                           } 
               } 
#the missing dv generates a character vector so change it to numeric  
ppc3[1]<-mean(as.numeric(coll)) 
#Get simulated values 
 BGSH1<-BGSH[BGSH[,2]==2,] 
for (j in 1:250) { 
               
              temp<-BGSH1[BGSH1[,7]==j,] 
              coll<-NULL 
                 maxsc<-0 
                 sum<-0 
 
                 for (i in 1:200) { 
                   if (i==1) {oldid<- 1001} 
                   if (temp[i,1]!=oldid && i>1) { 
                                              sum<-sum+1 
                                              coll[sum]<-maxsc  
                                                 maxsc<-0 
                                                   oldid<-temp[i,1] 
 
                                              } 
                   if (temp[i,6]>maxsc && temp[i,1]==oldid) { 
                                                            maxsc<-temp[i,6] 
                                                            } 
                   oldid<-temp[i,1] 
                   #handle last subject 
                           if (i==200) { 
                         sum<-sum+1 
                         coll[sum]<-maxsc 
                           } 
   
               } 
               ppc3[1+j]<-mean(as.numeric(coll)) 
 
                  
               
                } 
hist(ppc3[2:251], xlab="Max Score", col=6, main="Lorazepam Sleepiness") 
segments(ppc3[1],0,ppc3[1],80)  
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#AUEC 
#get observed 
ppc4 <-NULL 
coll<-NULL 
auc<-0 
sum<-0 
#subset those with dose>0 
data1<-data[data$DOSE>0,] 
ul<-nrow(data1) 
for (i in 1:ul) { 
               if (i==1) {oldid<- 1001 
                         oldtime<-0 
                         oldae<-as.numeric(data1$DV[i]) 
                         } 
               #if new subject write auc for previous subject, reset auc 
               if (data1$ID[i]!=oldid && i>1) { 
                                           sum<-sum+1 
                                           coll[sum]<-auc  
                                              auc<-0 
                                                oldid<-data1$ID[i] 
                                                } 
               if (data1$ID[i]==oldid && data1$TIME[i]>0)    { 
                                                           auc<-

auc+1/2*(oldae+as.numeric(data1$DV[i]))*(data1$TIME[i]-oldtime) 
                                                          } 
               oldid<-data1$ID[i] 
               oldtime<-data1$TIME[i] 
               oldae<-as.numeric(data1$DV[i]) 
               #handle last subject 
               if (i==ul) { 
                         sum<-sum+1 
                         coll[sum]<-auc 
                           } 
               } 
#the missing dv generates a character vector so change it to numeric  
ppc4[1]<-mean(as.numeric(coll)) 
#Get simulated values  
for (j in 1:250) { 
               
              temp<-BGSH[BGSH[,7]==j,] 
              temp1<-temp[temp[,2]>0,] 
              coll<-NULL 
                auc<-0 
                sum<-0 
 
                 for (i in 1:ul) { 
                   if (i==1) {oldid<- 1001 
                             oldtime<-0 
                             oldae<-as.numeric(temp1[i,6])  
                             } 
                   if (temp1[i,1]!=oldid && i>1) { 
                                              sum<-sum+1 
                                              coll[sum]<-auc 
                                                 auc<-0 
                                                   oldid<-temp1[i,1] 
 
                                              } 
                   if (temp1[i,3]>0 && temp1[i,1]==oldid) { 
                                                          auc<-

auc+1/2*(oldae+as.numeric(temp1[i,6]))*(temp1[i,3]-oldtime) 
                                                            } 



176 
 

                   oldid<-temp1[i,1] 
                   oldtime<-temp1[i,3] 
                   oldae<-temp1[i,6] 
                   #handle last subject 
                           if (i==ul) { 
                         sum<-sum+1 
                         coll[sum]<-auc 
                           } 
   
               } 
               ppc4[1+j]<-mean(as.numeric(coll)) 
 
                  
               
                } 
hist(ppc4[2:251],xlab="AUEC", col=6) 
segments(ppc4[1],0,ppc4[1],80)  
 
par(mfrow=c(2,1))  
#PI treatment 
 
bill<-matrix(NULL,nrow=10,ncol=5) 
#observed data first 
data2<-data[data$DOSE>0,] 
ul<-nrow(data2) 
sum<-0 
times<-unique(data2$TIME) 
for (k in times) { 
               data3<-data2[data2$TIME==k,] 
               sum<-sum+1 
               #populate times 
               bill[sum,1]<-times[sum] 
               #populate observed 
               bill[sum,2]<-mean(as.numeric(data3$DV)) 
               #bill[sum,2]<-quantile(probs=0.5,as.numeric(data3$DV)) 
 
               } 
  
 #now for simulations 
 #loop over studies  
 #j<-1 
 #make big matrix cols=time rows = simnum 
 store<-matrix(NULL,nrow=250,ncol=10) 
 for (j in 1:250) {temp<-BGSH[BGSH[,7]==j,] 
                  temp1<-temp[temp[,2]>0,] 
                  sum<-0 
                    for (k in times) { 
                                   temp2<-temp1[temp1[,3]==k,] 
                                   sum<-sum+1 
                                   store[j,sum]<-mean(temp2[,6]) 
                                     } 
   
                 } 
 #now combine results 
 #put mean of simulations in billshit 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                bill[sum,3]<-mean(store[,sum]) 
                #bill[sum,3]<-quantile(probs=0.5,store[,sum]) 
 
                              
                  } 
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 #lower quantile 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                bill[sum,4]<-quantile(probs=0.1,store[,sum]) 
                              
                  } 
#what could be more fun? 
sum<-0 
 for (b in times) { 
                sum<-sum+1 
                bill[sum,5]<-quantile(probs=0.9,store[,sum]) 
                              
                } 
 
# PI placebo 
moe<-matrix(NULL,nrow=10,ncol=5) 
#observed data first 
data2<-data[data$DOSE==0,] 
ul<-nrow(data2) 
sum<-0 
times<-unique(data2$TIME) 
for (k in times) { 
               data3<-data2[data2$TIME==k,] 
               sum<-sum+1 
               #populate times 
               moe[sum,1]<-times[sum] 
               #populate observed 
               moe[sum,2]<-mean(as.numeric(data3$DV)) 
               #bill[sum,2]<-quantile(probs=0.5,as.numeric(data3$DV)) 
 
               } 
  
 #now for simulations 
 #loop over studies  
 #j<-1 
 #make big matrix cols=time rows = simnum 
 store<-matrix(NULL,nrow=250,ncol=10) 
 for (j in 1:250) {temp<-BGSH[BGSH[,7]==j,] 
                  temp1<-temp[temp[,2]==0,] 
                  sum<-0 
                    for (k in times) { 
                                   temp2<-temp1[temp1[,3]==k,] 
                                   sum<-sum+1 
                                   store[j,sum]<-mean(temp2[,6]) 
                                     } 
   
                 } 
 #now combine results 
 #put mean of simulations in bill 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                moe[sum,3]<-mean(store[,sum]) 
                #bill[sum,3]<-quantile(probs=0.5,store[,sum]) 
 
                              
                  } 
 #lower quantile 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                moe[sum,4]<-quantile(probs=0.1,store[,sum]) 
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                  } 
 
 
#what could be more fun? 
sum<-0 
 for (b in times) { 
                sum<-sum+1 
                moe[sum,5]<-quantile(probs=0.9,store[,sum]) 
                              
                } 
 graphsheet()   
 plot(bill[,1],bill[,2],type="n",xlab="Time", ylab="Observed SRDEQ Score and 

Prediction Intervals",ylim=c(0,4)) 
points(bill[,1],bill[,2],col=1,type="p",pch=16) 
points(bill[,1],bill[,3],col=1,type="l") 
points(bill[,1],bill[,4],col=1,type="l") 
points(bill[,1],bill[,5],col=1,type="l") 
polygon(c(bill[,1], rev(bill[,1])), c(bill[,4], rev(bill[,5])),col=4, 

density=20) 
 
points(moe[,1],moe[,2],col=1,type="p") 
points(moe[,1],moe[,3],col=1,type="l") 
points(moe[,1],moe[,4],col=1,type="l") 
points(moe[,1],moe[,5],col=1,type="l") 
 
polygon(c(bill[,1], rev(bill[,1])), c(bill[,4], rev(bill[,5])),col=4, 

density=20) 
polygon(c(moe[,1], rev(moe[,1])), c(moe[,4], rev(moe[,5])),col=4, density=20) 
 
key(corner=c(1,1), text=list(c("Lorazepam Sleepiness","Placebo Sleepiness")), 
lines=list(type="p",col=1,pch=c(16,1),transparent=T, border=T)) 
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APPENDIX G 

Categorical dizziness simulation code (SPLUS) 
 

#Get Micha Filter Junk 
tab<-importData("micha2.txt", type="ASCII",stringsAsFactors=F) 
tab2<-tab[tab$Col1==0,c(1:12)] 
tab3<-tab2[tab2$Col2==0,c(1:12)] 
tab32<-tab3[tab3$Col12!=0,] 
tab4<-tab32[,c(4:12)] 
#Get dumby 
data<-importData("dumby2.csv", type="ASCII",stringsAsFactors=F) 
nr<-nrow(data) 
names(data)<-c("STUD", "ID", "DOSE", "TIME", "DV" ,"MDV", "ICL", "IV1", "IKA", 

"IQ", "IV2")  
BGSH<-NULL 
#loop over micha 
#LEVEL=STUDY 
for (i in 1:350){ 
             
              #i<-10 
              #Get row i of micha 
              vec<-tab4[i,] 
              names(vec)<-

c("th1","th2","th3","th4","th5","th6","th7","th8","om11") 
              temp<-matrix(NULL,ncol=7,nrow=400)  
              for (j in 1:nr) { 
                            if (j==1) {oldid<- -1} 
                            #subject level stuff 
                            if (data[j,2]!=oldid) { 
                                                test1<-runif(1,0,1) 
                                                eta<-

rnorm(1,0,sd=sqrt(vec$om11)) 
                                                } 
                                                #j<-1 
                                                K10<- 

data$ICL[j]/data$IV1[j] 
                                                     K12<- 

data$IQ[j]/data$IV1[j] 
                                                     K21<- 

data$IQ[j]/data$IV2[j] 
                                                     KKK1<- (K12 + K21 + K10) 
                                                     KKK2<- K21*K10 
                                                     ALPH <- (KKK1+(KKK1**2-

4*KKK2)**0.5)/2 
                                                     BETA<- (KKK1-(KKK1**2-

4*KKK2)**0.5)/2 
                                                     TI<- data$TIME[j] 
                                                     if (TI<=0) { TI==0} 
                                                     AAA<- 

data$IKA[j]*data$DOSE[j]*1000/data$IV1[j] 
                                                     BBB <- (K21-ALPH)/((ALPH-

BETA)*(ALPH-data$IKA[j])) 
                                                     CCC <- (BETA-K21)/((ALPH-

BETA)*(BETA-data$IKA[j])) 
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                                                     DDD <- (K21-
data$IKA[j])/((ALPH-data$IKA[j])*(BETA-data$IKA[j])) 

                                                     CONC<- AAA*(BBB*exp(-
ALPH*TI)+CCC*exp(-BETA*TI)+DDD*exp(-data$IKA[j]*TI)) 

                                                SLOPE<-vec$th1 
                                                     DRUG<-SLOPE*CONC 
                                                     PLAC<-

as.numeric(test1<=vec$th6)*0+as.numeric(test1>vec$th6)*vec$th5*(exp(-
vec$th7*data$TIME[j])-exp(-vec$th8*data$TIME[j])) 

                                                     MIXNUM<-
as.numeric(test1>vec$th6)+1 

                                                     B1<-vec$th2 
                                                     B2<- B1 + vec$th3 
                                                     B3<- B2 + vec$th4 
                                                     #  ; Define logits for 

Score 0, 1, 2 
                                                     #  ; (Y=>1, Y=>2) 
                                                     A1<- B1 + DRUG +PLAC+eta 
                                                     A2<- B2 + DRUG +PLAC+eta 
                                                     A3<- B3 + DRUG +PLAC+eta 
    
                                                     C1<-exp(A1) 
                                                     C2<-exp(A2) 
                                                     C3<-exp(A3) 
                                                     #; Define Probability for 

Each Score 
                                                     #; (Y=>1, Y=>2, Y=>3) 
                                                     P1<- C1/(1+C1)  #; 

Probability of Score=>1 
                                                     P2<- C2/(1+C2)  #; 

Probability of Score=>2 
                                                     P3<- C3/(1+C3)  #; 

Probability of Score=>3 
                                                     PR0<- 1-P1      # ; 

Probability of Score=0 
                                                     PR1<- P1-P2     # ; 

Probability of Score=1 
                                                     PR2<- P2-P3     # ; 

Probability of Score=2 
                                                     PR3<- 1-(PR0+PR1+PR2)  
                                                     #Make data 
                                                     temp[j,1]<-data$ID[j] 
                                                     temp[j,2]<-data$DOSE[j] 
                                                     temp[j,3]<-data$TIME[j] 
                                                     temp[j,4]<-eta 
                                                     temp[j,5]<-MIXNUM 
                                                     test2<-runif(1,0,1) 
                                                      if (test2>P1) 

{temp[j,6]<-0} 
                                                     if (test2<=P1 && test2>P2) 

{temp[j,6]<-1} 
                                                     if (test2<=P2 && test2>P3) 

{temp[j,6]<-2} 
                                                     if (test2<=P3)             

{temp[j,6]<-3} 
                                                     temp[j,7]<-i 
 
                               oldid<-data[j,2] 
                              } 
               
              BGSH<-rbind(BGSH,temp) 
              }  
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#PPC Number 3 Proportion with any AE 
 
#get observed 
ppcinc <-NULL 
sum<-0 
for (i in 1:400) { 
               if (i==1) {oldid<- -1} 
               if (data$ID[i]!=oldid) {ind<-0} 
               if (data$DV[i]>0 && ind==0) {ind<-1 
                                            sum<-sum+1 
                                            } 
               oldid<-data$ID[i] 
               } 
ppcinc[1]<-sum 
#Get simulated values  
for (j in 1:50) { 
               
              temp<-BGSH[BGSH[,7]==j,] 
              sum<-0 
                 for (i in 1:400) { 
                   if (i==1) {oldid<- -1} 
                   if (temp[i,1]!=oldid) {ind<-0} 
                   if (temp[i,6]>0 && ind==0) {ind<-1 
                                                sum<-sum+1 
                                               } 
                   oldid<-temp[i,1] 
               } 
                  ppcinc[j+1]<-sum 
 
               
                } 
#Here is one way to make pictures your model passes this worthless check! 
hist(ppcinc[2:51]) 
segments(ppcinc[1],0,ppcinc[1],20)  
 
#PPC Number 3 Proportion with any AE>=2 
 
#get observed 
ppcinc2 <-NULL 
sum<-0 
for (i in 1:400) { 
               if (i==1) {oldid<- -1} 
               if (data$ID[i]!=oldid) {ind<-0} 
               if (data$DV[i]>1 && ind==0) {ind<-1 
                                            sum<-sum+1 
                                            } 
               oldid<-data$ID[i] 
               } 
ppcinc2[1]<-sum 
#Get simulated values  
for (j in 1:50) { 
               
              temp<-BGSH[BGSH[,7]==j,] 
              sum<-0 
                 for (i in 1:400) { 
                   if (i==1) {oldid<- -1} 
                   if (temp[i,1]!=oldid) {ind<-0} 
                   if (temp[i,6]>1 && ind==0) {ind<-1 
                                                sum<-sum+1 
                                               } 
                   oldid<-temp[i,1] 
               } 
                  ppcinc2[j+1]<-sum 
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                } 
hist(ppcinc2[2:51]) 
segments(ppcinc2[1],0,ppcinc2[1],20)  
 
#The model does well here too!  
  
 
#PPC Number ? Average (over subjects) maximum (within subject) score 
 
#get observed 
  
 #get observed 
data1<-data[data$DOSE==2,c(1:11)] 
ppc3 <-NULL 
coll<-NULL 
maxsc<-0 
sum<-0 
for (i in 1:200) { 
               if (i==1) {oldid<- 1001} 
               #if new subject write max score for previous subject, reset 

maxscore 
               if (data1$ID[i]!=oldid && i>1) { 
                                           sum<-sum+1 
                                           coll[sum]<-maxsc  
                                              maxsc<-0 
                                                oldid<-data1$ID[i] 
                                                } 
               if (data1$DV[i]>maxsc && data1$ID[i]==oldid) { 
                                                           maxsc<-data1$DV[i] 
                                                           } 
               oldid<-data1$ID[i] 
               #handle last subject 
               if (i==200) { 
                         sum<-sum+1 
                         coll[sum]<-maxsc 
                           } 
               } 
#the missing dv generates a character vector so change it to numeric  
ppc3[1]<-mean(as.numeric(coll)) 
#Get simulated values 
 BGSH1<-BGSH[BGSH[,2]==2,] 
for (j in 1:300) { 
               
              temp<-BGSH1[BGSH1[,7]==j,] 
              coll<-NULL 
                 maxsc<-0 
                 sum<-0 
 
                 for (i in 1:200) { 
                   if (i==1) {oldid<- 1001} 
                   if (temp[i,1]!=oldid && i>1) { 
                                              sum<-sum+1 
                                              coll[sum]<-maxsc  
                                                 maxsc<-0 
                                                   oldid<-temp[i,1] 
 
                                              } 
                   if (temp[i,6]>maxsc && temp[i,1]==oldid) { 
                                                            maxsc<-temp[i,6] 
                                                            } 
                   oldid<-temp[i,1] 
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                   #handle last subject 
                           if (i==200) { 
                         sum<-sum+1 
                         coll[sum]<-maxsc 
                           } 
   
               } 
               ppc3[1+j]<-mean(as.numeric(coll)) 
 
                  
               
                } 
hist(ppc3[2:301], xlab="Max Score", col=6, main="Lorazepam Dizziness") 
segments(ppc3[1],0,ppc3[1],80)  
  
  
 #PPC Number ? average AUC (over subjects)  
 
#get observed 
ppc4 <-NULL 
coll<-NULL 
auc<-0 
sum<-0 
#subset those with dose>0 
data1<-data[data$DOSE>0,] 
ul<-nrow(data1) 
for (i in 1:ul) { 
               if (i==1) {oldid<- 1001 
                         oldtime<-0 
                         oldae<-as.numeric(data1$DV[i]) 
                         } 
               #if new subject write auc for previous subject, reset auc 
               if (data1$ID[i]!=oldid && i>1) { 
                                           sum<-sum+1 
                                           coll[sum]<-auc  
                                              auc<-0 
                                                oldid<-data1$ID[i] 
                                                } 
               if (data1$ID[i]==oldid && data1$TIME[i]>0)    { 
                                                           auc<-

auc+1/2*(oldae+as.numeric(data1$DV[i]))*(data1$TIME[i]-oldtime) 
                                                          } 
               oldid<-data1$ID[i] 
               oldtime<-data1$TIME[i] 
               oldae<-as.numeric(data1$DV[i]) 
               #handle last subject 
               if (i==ul) { 
                         sum<-sum+1 
                         coll[sum]<-auc 
                           } 
               } 
#the missing dv generates a character vector so change it to numeric  
ppc4[1]<-mean(as.numeric(coll)) 
#Get simulated values  
for (j in 1:300) { 
               
              temp<-BGSH[BGSH[,7]==j,] 
              temp1<-temp[temp[,2]>0,] 
              coll<-NULL 
                auc<-0 
                sum<-0 
 
                 for (i in 1:ul) { 
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                   if (i==1) {oldid<- 1001 
                             oldtime<-0 
                             oldae<-as.numeric(temp1[i,6])  
                             } 
                   if (temp1[i,1]!=oldid && i>1) { 
                                              sum<-sum+1 
                                              coll[sum]<-auc 
                                                 auc<-0 
                                                   oldid<-temp1[i,1] 
 
                                              } 
                   if (temp1[i,3]>0 && temp1[i,1]==oldid) { 
                                                          auc<-

auc+1/2*(oldae+as.numeric(temp1[i,6]))*(temp1[i,3]-oldtime) 
                                                            } 
                   oldid<-temp1[i,1] 
                   oldtime<-temp1[i,3] 
                   oldae<-temp1[i,6] 
                   #handle last subject 
                           if (i==ul) { 
                         sum<-sum+1 
                         coll[sum]<-auc 
                           } 
   
               } 
               ppc4[1+j]<-mean(as.numeric(coll)) 
 
                  
               
                } 
hist(ppc4[2:301],xlab="AUEC", col=6) 
segments(ppc4[1],0,ppc4[1],80)  
 
#PIs ## Treatment 
 
bill<-matrix(NULL,nrow=10,ncol=5) 
#observed data first 
data2<-data[data$DOSE>0,] 
ul<-nrow(data2) 
sum<-0 
times<-unique(data2$TIME) 
for (k in times) { 
               data3<-data2[data2$TIME==k,] 
               sum<-sum+1 
               #populate times 
               bill[sum,1]<-times[sum] 
               #populate observed 
               bill[sum,2]<-mean(as.numeric(data3$DV)) 
               #bill[sum,2]<-quantile(probs=0.5,as.numeric(data3$DV)) 
 
               } 
  
 #now for simulations 
 #loop over studies  
 #j<-1 
 #make big matrix cols=time rows = simnum 
 store<-matrix(NULL,nrow=300,ncol=10) 
 for (j in 1:300) {temp<-BGSH[BGSH[,7]==j,] 
                  temp1<-temp[temp[,2]>0,] 
                  sum<-0 
                    for (k in times) { 
                                   temp2<-temp1[temp1[,3]==k,] 
                                   sum<-sum+1 
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                                   store[j,sum]<-mean(temp2[,6]) 
                                     } 
   
                 } 
 #now combine results 
 #put mean of simulations in bill 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                bill[sum,3]<-mean(store[,sum]) 
                #bill[sum,3]<-quantile(probs=0.5,store[,sum]) 
 
                              
                  } 
 #lower quantile 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                bill[sum,4]<-quantile(probs=0.1,store[,sum]) 
                              
                  } 
 
 
 
sum<-0 
 for (b in times) { 
                sum<-sum+1 
                bill[sum,5]<-quantile(probs=0.9,store[,sum]) 
                              
                } 
### PI placebo  
moe<-matrix(NULL,nrow=10,ncol=5) 
#observed data first 
data2<-data[data$DOSE==0,] 
ul<-nrow(data2) 
sum<-0 
times<-unique(data2$TIME) 
for (k in times) { 
               data3<-data2[data2$TIME==k,] 
               sum<-sum+1 
               #populate times 
               moe[sum,1]<-times[sum] 
               #populate observed 
               moe[sum,2]<-mean(as.numeric(data3$DV)) 
               #bill[sum,2]<-quantile(probs=0.5,as.numeric(data3$DV)) 
 
               } 
  
 #now for simulations 
 #loop over studies  
 #j<-1 
 #make big matrix cols=time rows = simnum 
 store<-matrix(NULL,nrow=300,ncol=10) 
 for (j in 1:300) {temp<-BGSH[BGSH[,7]==j,] 
                  temp1<-temp[temp[,2]==0,] 
                  sum<-0 
                    for (k in times) { 
                                   temp2<-temp1[temp1[,3]==k,] 
                                   sum<-sum+1 
                                   store[j,sum]<-mean(temp2[,6]) 
                                     } 
   
                 } 
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 #now combine results 
 #put mean of simulations in bill 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                moe[sum,3]<-mean(store[,sum]) 
                #bill[sum,3]<-quantile(probs=0.5,store[,sum]) 
 
                              
                  } 
 #lower quantile 
 sum<-0 
 for (b in times) { 
                sum<-sum+1 
                moe[sum,4]<-quantile(probs=0.1,store[,sum]) 
                              
                  } 
 
 
#what could be more fun? 
sum<-0 
 for (b in times) { 
                sum<-sum+1 
                moe[sum,5]<-quantile(probs=0.9,store[,sum]) 
                              
                } 
  
 
  
 graphsheet()   
 plot(bill[,1],bill[,2],type="n",xlab="Time", ylab="Observed and Prediction 

Intervals",ylim=c(0,4)) 
points(bill[,1],bill[,2],col=1,type="p",pch=16) 
points(bill[,1],bill[,3],col=1,type="l") 
points(bill[,1],bill[,4],col=1,type="l") 
points(bill[,1],bill[,5],col=1,type="l") 
polygon(c(billshit[,1], rev(bill[,1])), c(bill[,4], rev(bill[,5])),col=4, 

density=20) 
lines=list(type="p",col=1,pch=c(1,16),transparent=T, border=T) 
 
points(bill[,1],moe[,2],col=1,type="p") 
points(bill[,1],moe[,3],col=1,type="l") 
points(bill[,1],moe[,4],col=1,type="l") 
points(bill[,1],moe[,5],col=1,type="l") 
 
polygon(c(bill[,1], rev(bill[,1])), c(moe[,4], rev(moe[,5])),col=4, density=20) 
key(corner=c(1,1), text=list(c("Lorazepam Dizziness","Placebo Dizziness")), 
lines=list(type="p",col=1,pch=c(16,1),transparent=T, border=T)) 
 
#stop here  
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Appendix H 

Table of final PK parameter estimates of four study CNS drugs 

 
 

Drug Parameter Mean 95% CI IIV(%CV) 95% CI
Olanzapine

CL/F (L/min) 13.4 11.26-15.54 22
V1/F (L) 321 227.6-414.4 80.7
V2/F (L) 684 511.2-856.8 44.6
Ka (h-1) 0.12 .091-0.15

Q (L/min) 33.2 28.32-38.08 18.8
Tlag (h) 0.94 0.87-1.01

Lorazepam
CL/F (L/min) 4.02 3.55 - 4.45 25.6 12.2 - 39

V1/F (L) 26.3 19.12 - 33.48 34.1 13.6 - 54.6
V2/F (L) 58.4 52.1 - 64.7
Ka (h-1) 0.5 0.34 - 0.66 13.3 6 - 20.6

Q (L/min) 16.4 13.92 - 18.88
Paroxetine

CL/F (L/min) 96.6 65
V1/F (L) 1200 19
Ka (h-1) 0.14 59
Tlag (h) 0.46

Atomoxetine
CL/F (L/min) 26.4 21.94-30.86 36.3 16.5-56.1

V1/F (L) 134 115.04-152.96 16 3.7-28.3
Ka (h-1) 3.16 1.31-5.01 108.6 36.4-180.8  
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Appendix I 

PK model goodness-of-fit plots 
 

A. Olanzapine 
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B. Lorazepam 
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C. Paroxetine 
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D)Atomoxetine 
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