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Abstract

The use of passenger cars in the U.S. is widely recognized as a primary source of

greenhouse gas emissions. Among other concerns related to transportation energy

usage, these emissions have motivated policy makers to reform regulatory policies that

impact the design and pricing behavior of automotive firms. However many prominent

analyses supporting these reforms neglect aspects of imperfect competition that many

economists have come to recognize in the automotive industry, particularly Bertrand

competition. Understanding the impacts of alternative regulatory policies accounting

for imperfectly competitive behavior may improve policy makers’ decisions regarding

regulatory policy, as well as firms’ abilities to profitably respond to the policies chosen.

Examining and exploiting this potential first requires further development of the

theory of Bertrand competition.

This dissertation makes three contributions the application of Bertrand competition

in regulated differentiated product markets. We focus on the classes of Logit and

Mixed Logit Discrete Choice Random Utility Models of consumer demand and avoid

assumptions on the number or type of products offered by different firms. Our first

contribution is a proof of the existence of unregulated equilibrium prices for Logit mod-

els using a new fixed-point equation equivalent to the first-order necessary condition

for equilibrium, minimal assumptions on the utility specification, and mathematical

tools from differential topology. This fixed-point equation is then generalized to the

class of Mixed Logit models, one of the most flexible and popular empirical forms

for representing consumer demand, under a weak hypothesis on the utility specifi-

cation and mixing distribution. Several numerical approaches based on fixed-point

characterizations of stationarity are demonstrated to be efficient and reliable methods

for the computation of unregulated equilibrium prices in large-scale and complex

differentiated product markets. Finally, we further extend this fixed-point approach

to regulated equilibrium pricing problems with regulatory policy forms inspired by

those considered for the U.S. automotive industry. Modified fixed-point iterations

are derived for a number of regulatory policies with differentiable regulatory costs. A

x



hybrid fixed-point approach is developed for the computation of regulated equilibrium

prices under standard-based policies with non-differentiable regulatory costs, such as

the Corporate Average Fuel Economy standards currently active in the U.S.

xi



Chapter 1

Introduction

Understanding the prices firms choose to set for the products they offer to market

has long been a central task of economics. Of course, the most basic theory is the

equality of supply and demand. In this theory, firms exercise no control over the prices

they receive for their products or the quantities they offer to to the market. Bertrand

first introduced the idea that firms selfishly select those prices that maximize their

own profits given the prices their competitors have chosen, committing to producing

enough units of every product offered to meet whatever demand arises under these

prices (Shapiro, 1989; Baye and Kovenock, 2008). Equilibrium prices in Bertrand

competition are not merely prices that make markets clear, because firms can control

production to ensure that at any prices. Rather, equilibrium prices are prices that

simultaneously maximize profits for all firms in the industry. This model was originally

a response to Cournot competition, which proposed that firms strategically control

the quantities of the product they have in hand, letting prices be determined so that

all products are sold. These models have been generalized and widely applied through

the field of Game Theory. See, for example, Nash (1950, 1951); Luce and Raiffa (1957);

Fudenberg and Tirole (1991); Myerson (1997).

Many authors consider the automotive market to be a classical example of an im-

perfectly competitive oligopoly, and subsequently characterize it with game-theoretic

models such as Bertrand or Cournot competition (Bresnahan, 1987; Berry et al., 1995;

Goldberg, 1995, 1998; Sudhir, 2001; Petrin, 2002; CBO, 2003; Berry et al., 2004;

Austin and Dinan, 2005; Bento et al., 2005; Jacobsen, 2006; Beresteanu and Li, 2008).

This market also plays a major role in the U.S.’s resource consumption and greenhouse

gas emission problems. Motivated by the increasing intensity and public recognition

of these problems, debate over how the automotive industry should be regulated has

intensified over the past decade. Much of this debate has been shaped by quantitative
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analyses of vehicle technologies that can improve fuel economy and emissions intensity

(NRC, 2002; NESCCAF, 2004; EIA, 2003). However, as we explain below, these

analyses neglect important aspects of economic behavior that game-theoretic models

of design and pricing intend to capture. While there are game-theoretic analyses that

study the impacts of regulatory policies, there remain both theoretical and pragmatic

gaps to widespread implementation of game-theoretic models in the analysis of regula-

tory policy for differentiated product markets. This dissertation contributes to the

construction and use of game-theoretic models of design and pricing by developing

the underlying theory of equilibrium pricing and investigating methods for solving

large-scale equilibrium pricing problems.

This introductory chapter motivates the contributions contained in Chapters 3-5.

We begin in Section 1.1 with a discussion of influential quantitative analyses of reg-

ulatory policy options for the automotive industry. Our intention here is to justify

the application of game-theoretic models of firm behavior in the analysis of regulated

differentiated product markets. Next, in Section 1.2 we provide a formal description

of game-theoretic models of product design and pricing. Here our emphasis lies on

establishing the importance of equilibrium pricing in the game-theoretic analysis of

regulated differentiated product markets. In Section 1.3 we motivate our specific

contributions to equilibrium pricing with a discussion of the existing understanding

of equilibrium prices for the largest class of empirically-relevant models of consumer

demand. Finally Section 1.4 introduces our contributions in greater detail and outlines

the remainder of this thesis.

1.1 Analysis of Regulatory Policy

The product offerings in the new car market are currently subject to well-known

regulatory policies that are an important component of managing the growing fuel

consumption and greenhouse gas emissions from personal vehicles. Congress debated

increasing the Corporate Average Fuel Economy (CAFE) Standards (NHTSA, 2008b)

as recently as last year, ultimately raising the standard levels1 and increasing the size

of vehicles regulated under the policy (NHTSA, 2008a). There are other approaches

being debated for regulating the automotive industry. In 2005, California proposed

to regulate CO2 emissions (and other greenhouse gases) from vehicles sold in that

state directly using a Corporate Average Emissions (CAE) standard (CARB, 2008).

1Loosely speaking, the standards were raised to an estimated 35 miles per gallon, although there
is no strict standard under the new policy. This is explained in detail below.

2



Perceiving this to be too closely related to a fuel economy standard, which California

has no legal authority to impose, this regulation was recently ruled down (Maynard,

2007). Cap and trade and carbon taxes have also been proposed (Dingell, 2007;

Stavins, 2007).

It is fundamentally important that policy makers understand the potential conse-

quences of alternative policy decisions when reviewing policy options. Firms operating

in regulated markets also need this understanding in order to undertake strategic

planning and decision making. Quantitative modeling plays a central role in both

developing this understanding and justifying particular decisions. In this section we

provide a brief overview of several quantitative analyses that have influenced the recent

automotive policy debate. Our intention is to convince the reader that game-theoretic

models of regulation product design and pricing should be a component of the analysis

of regulatory policy in differentiated product markets like automotive.

1.1.1 Technology/Cost Analysis

In a review of 20 years of analyses focusing on the impact of vehicle technologies on

fuel economy, Greene and DeCicco (2000) define the core of Technology/Cost Analysis,

the prevailing policy analysis paradigm, as follows:

“Technology/Cost Analysis is a method for estimating the potential of au-
tomotive fuel economy improvement by enumerating specific technologies,
estimating their cumulative impact on fuel economy, and adding up their
cost.”(Greene and DeCicco, 2000, pg. 480)

Most often such studies consider aggregate or “average” vehicles, rather than the

thousands of specific vehicle models actually offered by firms, and account for the

impact of technology adoption on fuel economy and cost using incremental percentage

improvements. Marketshares of particular technologies within an aggregate vehicle

class are projected and combined into projections of the impact of technological diffu-

sion on vehicle fuel economy and cost using simple rules for estimating the combined

impact of multiple technologies. Here we briefly review three prominent applications

of these principles.

The U.S. National Research Council (NRC) employed the Technology/Cost

paradigm in their prominent 2001/2002 review of the CAFE standards (NRC, 2002),

a study that continued to be influential in last year’s Congressional debates on CAFE

reform (Levin, 2007b) and has shaped the new structure of the CAFE standards

(NHTSA, 2006, 2008a). In this study, twelve aggregate vehicle types were defined.
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Incremental vehicle technologies were identified and their cumulative potential impact

on fuel economy projected. Incremental costs for these technologies were estimated by

reviewing literature and interviewing suppliers.

In 2004 the Northeast States Center for a Clean Air Future (NESCCAF) released

a report detailing incremental vehicle technology packages that could reduce vehi-

cle greenhouse gas emissions. California’s Air Resources Board relied on this study

heavily when designing their proposed CAE standard (CARB, 2008). The authors of

the NESCCAF report defined five vehicle types and, instead of applying percentage

improvements, applied the vehicle simulation software CRUISE (AVL, 2008b) to assess

incremental emissions intensity reductions of feasible vehicle technology packages se-

lected for each of these vehicle types. This simulation-based assessment approach was

intended to capture technical synergies and conflicts that could impact performance

improvements and might have been neglected in the NRC study. Incremental costs

for adopting these technology packages were estimated by interviewing suppliers. The

potential impact of these technologies on other vehicle characteristics (e.g., size, weight,

power, and speed) was largely ignored. In fact, vehicle acceleration was purposely

held constant.

Neither the NRC nor the NESCCAF report aims to project a specific fuel economy

or emissions intensity level will be achieved under a particular regulatory policy struc-

ture. These studies focus almost entirely on technology, aiming only to make claims

to the technical feasibility of a certain level of improvement in fuel consumption or

emissions intensity. In the end, both studies conclude that there are large feasible

improvements in fuel economy and emissions intensity to be gained through existing

vehicle technologies, and that the additional costs of these technologies are likely to be

balanced by future fuel savings. While this is an appropriate use of Technology/Cost

Analysis, policy makers choosing regulatory policy options to achieve reduced fuel

consumptions and greenhouse gas emissions, as well as the firms being regulated, must

understand the systemic economic consequences of various vehicle technologies and

regulatory policies.

The National Energy Modeling System (NEMS), a computable general equilibrium

model for the entire U.S. economy focused on energy demand and supply (EIA, 2003,

2007), is aimed at this ultimate need for of integrated technological/economic analysis.

The NEMS projects energy demand in the transportation sector using a mix of Tech-

nology/Cost and economic principles and has been repeatedly used to advise Congress

on issues of transportation policy (EIA, 2008b). Only two aggregate vehicle types are

considered: a car and a light truck. Energy demand from transportation depends on

4



the diffusion of specific fuel economy technologies. The specific technologies considered

can be found in EIA (2008a). Technology marketshares for four aggregate vehicles

− a domestic car and truck and a foreign car and truck − are projected based on

cost effectiveness calculations that relate the “value of fuel savings” (and regulatory

pressure for increased fuel economy) and the “value of performance” gained or lost

by adopting the technology to the technology cost (EIA, 2007, pg. 17-23).2 We

are not aware of any theoretical or empirical justification for the specific formulae

applied provided in the model documentation. The NEMS also assumes that increased

technology costs are passed on directly to consumers through vehicle prices, and that

regulatory policy (i.e., fuel taxes and CAFE) have no direct effect on vehicle prices

(EIA, 2007, pg. 30).

1.1.2 The Importance of Economic Behavior

Pricing

Increases in the costs of doing business aren’t always transmitted directly to con-

sumers as NEMS presupposes. The airline industry has recently provided a convenient

example of this. Due to the recent spike in world oil prices, carriers are facing drastic

increases in the costs of doing business and are correspondingly raising prices. USA

Today (USAToday, 2008) recently reported that summer airline fares are up 18%

since last summer, and only on the most popular routes. However, fuel costs have

risen by “50% or more” (USAToday, 2008). The International Air Travel Association

has a much stronger estimate, claiming that jet fuel prices have essentially doubled

(IATA, 2008). It is unlikely that unobserved cost-cutting can account for this large

a gap between these increased costs and the corresponding price hikes. Rather, it

is more likely that carriers perceive that, in the presence of their competitors, they

cannot simply pass on all these costs to their customers without unacceptably negative

impacts on profitability. Transliterating this observation to the automotive industry

suggests that firms will absorb some of the costs of technology adoption, whether this

is fueled by regulation or by changes in the marketplace.

Strategic pricing has generally become an important model of the automotive

industry. While the nature of strategic interaction in the automotive market is not yet

settled, a consistent conclusion appears to be that firms set prices to maximize their

own profits. Particularly, there appears to be a strong consensus that the automotive

2Ad hoc corrections to marketshares and fuel economy impacts are made based on feasibility and
synergy considerations.
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market follows Bertrand competition within the “New Empirical Industrial Organiza-

tion” (NEIO) literature; see, e.g., Bresnahan (1987); Berry et al. (1995); Verboven

(1996); Goldberg (1995, 1998); Fershtman et al. (1999); Sudhir (2001); Petrin (2002);

Verboven (2002); Berry et al. (2004); Bento et al. (2005); Jacobsen (2006); Beresteanu

and Li (2008). Particularly, Verboven (1996) claims that

“The assumption of price-setting behavior in the car market is common
and consistent with industry wisdom, see, e.g., the discussion of pricing
practices by the U.K. Monopolies and Mergers Commission Report (1992).”
(Verboven, 1996, pg. 247)

Work from this area estimates unit costs and consumer demand, typically using

Logit, Generalized Extreme Value, and Mixed Logit Random Utility Models (RUMs)

(McFadden, 1981; Louvierre et al., 2000; Train, 2003). With these models, the im-

pact of historical events or future changes can be evaluated using counterfactual

experiments, in which the impact of changes to the economic environment relative

to the environment-at-estimation are assessed. Such studies have provided insight

into the welfare impacts of regulatory policy changes (Goldberg, 1995; Verboven,

1996; Goldberg, 1998; Fershtman et al., 1999; Bento et al., 2005; Beresteanu and Li,

2008), corporate mergers (Nevo, 2000a), innovative products (Petrin, 2002), and other

product portfolio changes (Berry et al., 2004).3

Generally speaking, regulatory policies have an impact on product prices in im-

perfectly competitive markets even prior to motivating the design of more efficient,

and often more expensive, products and services. This is true even for regulatory

policies directed at non-price characteristics of these products or do not even explicitly

regulate the firm at all. For instance, economists have acknowledged the potential for

the CAFE standards to influence pricing behavior in a specific way, a phenomenon

called mix-shifting: in the “short run” firms should have the incentive to raise the

prices of their least fuel efficient vehicles and lower the prices of their most fuel efficient

vehicles in order to support movement of their Corporate Average Fuel Economy

toward the standard level (Goldberg, 1998; Kleit, 1990, 2004; Austin and Dinan, 2005;

Jacobsen, 2006).

Out of the many models of the automotive market that apply Bertrand competi-

tion, a number intend to study the influence of regulatory policies like tax structures

(Verboven, 1996; Fershtman et al., 1999; Bento et al., 2005; Verboven, 2002; Beresteanu

and Li, 2008), import quotas (Goldberg, 1995), and the CAFE standards (Goldberg,

3In the last study, full equilibrium price computations were not undertaken in conflict with the
equilibrium pricing assumptions generating the model.
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1998; Jacobsen, 2006). These studies implicitly claim that the potentially complex

pricing behavior resulting from imperfect competition in differentiated product markets

needs to be an aspect of the assessment of alternative regulatory policies for these

markets. Even though gasoline taxes don’t explicitly regulate firm behavior at all,

empirical studies have generated evidence that local sales taxes influence vehicle prices

(Doyle, 1997), that firms may exploit tax reductions by raising prices (Fershtman

et al., 1999), the expected reductions in demand effects from an increase in fuel taxes

can be halved when models include firms that price strategically in response to tax

changes (Verboven, 2002), and that the benefits of tax policy changes depend on how

the tax revenue is recycled (Bento et al., 2005). Beyond contradicting the NEMS

assumption that regulatory policy has no impact on prices for cars and trucks, these

results illustrate important, unintended effects that could dampen the efficacy of

gasoline taxes as a policy option for reduced GHG emissions.

Counterfactual experiments on Bertrand competition models are becoming a pri-

mary tool in analyzing potential impacts regulatory policy decisions. Particularly,

Goldberg (1998) estimated a Bertrand competition model of the U.S. car market

under CAFE and compared the effect of increases in CAFE to increases in gasoline

taxes.4 More recently, Bento et al. (2005) analysis of the consumer welfare impacts

of increased gasoline taxes under different tax revenue recycling schemes applies a

Bertrand competition model with Mixed Logit demand, assuming that all firms satisfy

the CAFE standards. They simulate the impact of modest increases in gasoline taxes

of 10, 30, and 50 cents per gallon, concluding that income-based recycling is highly

regressive,5 resulting in significant heterogeneity in welfare impacts across income

groups and other demographic variables compared to tax-based recycling. Echoing

Kleit’s observation that not all firms respect the CAFE standards (Kleit, 1990, 2004),

Jacobsen (2006) extends this modeling paradigm to study the impact of changes to the

CAFE standards including firms that violate the standards. Most recently, Beresteanu

and Li (2008) study hybrid vehicle purchasing during 2000-2006 using an empirical

Bertrand competition model of the automotive market with a Mixed Logit demand

model.6 They report on a number of counterfactual experiments meant to study the

effects of increased gasoline prices observed during the period, changes to the tax

incentives for hybrid vehicles, and a flat rebate on hybrid vehicle sales.

4Unfortunately, Goldberg used an arithmetic average of fuel economy instead of the harmonic
average required by CAFE legislation and thus her results are not necessarily reflective of the impacts
of changes to the real CAFE standards.

5That is, the tax disproportionately impacts lower-income households.
6There referred to as a “random coefficients” model.
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Design

Recent Technology/Cost Analyses also neglect how the benefits of vehicle technologies

are allocated to fuel economy versus other characteristics that are desired by consumers.

Greene and DeCicco (2000) recognize this as a major obstacle for Technology/Cost

Analysis. They give the simple example of electronic transmission control, which

“can be implemented to provide a small efficiency benefit along with
improved shift smoothness and reliability. The same hardware can be
reprogrammed to ... provide the greatest fuel efficiency benefit, but with a
change in the feel of driving smoothness.” (Greene and DeCicco, 2000, pg.
485)

The NRC also recognizes that most fuel economy improving technologies improve

vehicle energy efficiency generally and are likely to be applied by firms to improve

vehicle characteristics that are more strongly valued by consumers (NRC, 2002). GM

is currently advertising their 2009 Cadillac Escalade hybrid as “intelligent indulgence”

(GM, 2008), or efficiency without compromising aspects of luxury such as stereos and

DVD players. While the hybrid powertrain will certainly improve the fuel economy of

the Escalade, inclusion of such luxury features precludes achievement of maximal fuel

economy gains.

The diversion of energy efficiency from fuel economy or emissions improvement can

demonstrate how the complex linkage between technical aspects of product design and

economic behavior of firms must be considered in effective assessments of regulatory

policy. Suppose that regulatory policy incentivizes firms to product more efficient

vehicles with declining or stagnant preferred performance characteristics. As a result,

consumers are less likely to exchange their existing vehicles for new models.7 Firms

have an incentive to “relax” intensified price competition, arising from smaller mar-

kets, through product design (Shaked and Sutton, 1982). Diverting energy efficiency

improvements from fuel economy to other performance characteristics of vehicles to

attract consumers to new vehicle purchases is a probable mechanism for this relaxation,

implying reduced fuel economy benefits (for the same costs).

Along these lines, Greene and DeCicco observe that some Technology/Cost Anal-

yses include “markets for fuel economy,” intending to either improve the accuracy

of fuel economy forecasts or to permit classical economic measurements of welfare

impacts (to either consumers or firms, or both). The central input to such models are

7This may be changing with an evolving culture and the tripling of gasoline prices that has
occurred in the intervening years and is likely to continue. Essentially, the “public” and “private”
motivations may be aligning.

8



assumptions about firm’s decision processes and consumers’ preferences over different

vehicle configurations. For example, “[f]uel economy supply curves ... reflect assump-

tions about producer behavior, such as cost minimization.” (Greene and DeCicco,

2000, pg. 489)

There exist several recent analyses meant to inform the debate surrounding the

CAFE standards that include vehicle fuel economy choice, one aspect of design.8 In

order to compare CAFE standards to gasoline taxes, the Congressional Budget Office

(CBO, 2003) and Austin and Dinan (2005) model firms choosing fuel economy and

vehicle prices to maximize profits. As in Bento et al. (2005), all firms are assumed to

respect the CAFE standards. The model framework is relatively simplistic. Unit costs

as a function of fuel economy are estimated using NRC (2002) data on fuel economy

improving technologies and their costs. Consumer demand is modeled using price

elasticities of demand, rather than a RUM as in the wider literature concerning game-

theoretic models of the automotive industry. Demand for fuel economy is connected

to these price elasticities through discounted lifetime fuel costs.

In contrast to the assumptions adopted by the CBO (2003), Austin and Dinan

(2005), and Bento et al. (2005), Kleit (1990, 2004) observes that U.S. automakers

tend to unconditionally satisfy the CAFE standards while luxury European brands

tend to treat the CAFE standards as a “mere tax” (Kleit, 2004, pg. 280).9 U.S. firms

contend10

“[w]ere they to violate the standards, ... they would be liable for civil
damages in stockholder suits” (Kleit, 2004, pg. 280)

Kleit (1990) accommodates this behavior in the context of a simple Cournot compe-

tition model by imposing ad hoc constraints on firms optimal production problems.

These constraints are used to estimate “shadow taxes” on firms constrained by the

CAFE standards. Kleit (2004) goes further, including fuel economy decisions as

strategic variables that firms constrained by the standard use to minimize total cost.11

Kleit’s model frameworks are otherwise simplistic, considering only a few firms and

8While cost minimization and profit maximization are reasonable proposals, it is possible to make
unrealistic assumptions about firm behavior. For example, a recent analysis of Feebates (Greene
et al., 2005) assumes that manufacturers choose fuel economy to maximize consumer’s surplus, rather
than maximizing their own profits or minimizing total costs, in conflict with much economic theory.

9Jacobsen (2006), following Kleit (2004), also applies this observation but does not consider firms
that choose the design of their vehicles.

10The official record of CAFE standard violation is available from the National Highway Safety
Administration (NHTSA) (NHTSA, 2008c). Kleit (1990, 2004) also notes that, as can be seen in this
record, during the one period that prominent U.S. automakers were sure to violate the standards the
policy was put on hold.

11It is not made clear how other firms choose fuel economy, if they do at all.
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vehicles, applying linear supply and demand functions, and assuming that the vehicle

market is perfectly competitive in that automotive firms have no control over the

prices they set. Austin and Dinan openly critique this last aspect of Kleit’s modeling

efforts.

While these attempts to integrate design decisions into economic models for policy

analysis are a useful first step, they are not quite in line with the most prominent

theoretical economic models. Particularly, design decisions are less flexible than prices,

in the sense that design decisions have to be fixed well in advance of the point-of-sale,

while prices are flexible up until this point, at least in principle. This fact might lead

theoretical economists to model design and pricing with a multi-stage, as opposed to

single-stage game.

The use of elasticity-based demand models is also somewhat less appropriate for

a model in which firms are changing the new vehicle fleet. These demand models

characterize demand for a fixed set of vehicles based on price alone, with parameters

linked directly to the observed vehicle fleet. Thus, the appropriate demand parame-

ters for a new product or even for an existing product with modified attributes are

somewhat poorly defined. Furthermore, demand as a function of vehicle character-

istics must be linked to the value of characteristic changes, as in Kleit (2004) and

Austin and Dinan (2005), although this value is not consistently estimated with the

parameters that govern the relationship between price and demand, if estimated at all.

On the other hand, RUMs are designed to extract systematic relationships between

various product characteristics, price, and demand for an observed vehicle fleet. Of

course, one must assume that these systematic relationships do not change when

the vehicle fleet changes when evaluating demand for new products or products with

different attributes. Marketers and economists are currently very comfortable with

this assumption.

1.1.3 Heterogeneous Firms and Vehicle Model Detail

Another related aspect of real markets that is missing from the NRC, NESCCAF

studies and the NEMS system is a characterization of the impact that different reg-

ulatory policies have on specific, real firms with heterogeneous product portfolios,

capabilities, and costs. The role of such considerations in actually crafting policy

in the U.S. is should not be underestimated. For example, during the most recent

round of CAFE debates the use of fleet-wide averages was successfully argued as

discriminatory toward the American automakers who sell a disproportionate amount
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of larger vehicles (NRC, 2002; Levin, 2007b,a). This has resulted in new firm-specific

“attribute-based” standards tied to specific vehicle characteristics (NHTSA, 2008a, pg.

136).

As we have pointed out in this section, most Technology/Cost Analyses are reduc-

tive, studying only a few vehicle types and a few manufacturers. Some market-oriented

studies (e.g., Kleit (1990, 2004); Bento et al. (2005); Jacobsen (2006)), are similarly

reductive, studying only a few firms and vehicle types. However most econometric

studies reject this reductivism, characterizing many firms and vehicles.

The National Highway Safety Administration (NHTSA), the federal government

body to whom responsibility over CAFE has been delegated, has also rejected this

reductive approach for its preliminary analysis of the new CAFE standards:

“For the model years covered by the current proposal, the light vehicle
(passenger car and light truck) market forecast included more than 3,000
vehicle models, more than 400 specific engines, and nearly 400 specific
transmissions. This level of detail in the representation of the vehicle
market is vital to an accurate analysis of manufacturer- specific costs and
the analysis of reformed CAFE standards, and is much greater than the
level of detail used by many other models and analyses relevant to light
vehicle fuel economy.” (NHTSA, 2008a, pg. 149)

While this level of detail is encouraging, NHTSA rejects profit-driven technology

adoption and pricing in the analysis that has determined their regulatory levels.

Specifically:

“The proposed standards were developed using a computer model (known
as the ‘Volpe Model’) that, for any given model year, applies technologies
to a manufacturers fleet until the manufacturer reaches compliance with
the standard under consideration. The standards were tentatively set at
levels such that, considering the seven largest manufacturers, the cost of
the last technology application equaled the benefits of the improvement in
fuel economy resulting from that application.” (NHTSA, 2008a, pg. 12)

This method is an attempt to determine “maximum feasible” regulatory levels that

balance the benefits and costs of a particular regulatory level. However the lack of

profit-driven technology adoption (i.e. design) and the corresponding imperfectly

competitive pricing behavior cannot be expected to result in an accurate assessment

of either the costs of the policy, to both consumers and firms, or the benefits of

ultimate fuel consumption and emissions reduction under the proposed policy. It is

these features of real markets that are captured by game-theoretic models of regulated

vehicle design and pricing.
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1.2 Game-Theoretic Models of Product Design

and Pricing

In this section we formally introduce game-theoretic models of strategic design and

pricing. These models are not the focus of the remainder of this dissertation. Rather

through this discussion we hope to convince the reader that models of equilibrium

pricing are a fundamental component of game-theoretic models of competitive design

and pricing, thereby justifying the focus on equilibrium pricing that we do maintain.

To begin the development we first provide a brief formal definition of equilibrium

prices. Our full model is described in Chapter 2.

1.2.1 Bertrand-Nash Equilibrium Prices

Suppose F ∈ N firms offer J ∈ N products to a consumer population. Each product

j ∈ N(J) is characterized by a vector of characteristics yj ∈ Y ⊂ RK (for some K ∈ N)

and a price pj ∈ [0,∞) = R+. Assume that some function q : YJ × RJ
+ → RJ

+ gives

the quantities of all products demanded by the population given any matrix of all

product characteristics Y ∈ YJ and vector of all prices p ∈ RJ
+. Each firm f ∈ N(F )

offers the Jf products indexed by the integers in Jf ⊂ N(J), at unit costs cUf ∈ RJf
+

and fixed cost cFf ∈ R+. For any firm f we denote its own prices by pf ∈ RJf
+ and the

prices set by its competitors p−f ∈ RJ−f
+ , where J−f =

∑
g 6=f Jg. qf : YJ ×RJ

+ → RJf
+

denotes the demand function for firm f products only.

With these definitions, every firm solves the following optimal pricing problem:

given Y ∈ YJ ,p−f ∈ RJ−f , cUf ∈ RJf
+ , c

F
f ∈ R+

maximize πf (Y,p) = qf (Y,p)>(pf − cUf )− cFf
with respect to pf ∈ RJf

+

where p = (pf ,p−f )

(1.1)

Note that the objective of this optimization problem depends on the choices of all

firms, though firm f controls only a subset of the variables.

Definition 1.2.1. p∗ is a (Bertrand-Nash) equilibrium of the game formed by Problem

(1.1) if p∗f solves Problem (1.1) for all f ∈ N(F ). The set of all equilibrium prices, as

a function of all product characteristics Y ∈ YJ and all unit costs cU ∈ RJ
+ will be

denoted by E(Y, cU).12

12As we will assume throughout this document, equilibrium prices do not depend on fixed costs.
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Formally speaking, this is the definition of pure strategy equilibrium. Many of the

early theoretical successes of Game Theory were induced by “convexifying” games

through the introduction of mixed strategies, i.e. probability distributions over the set

of actions. For example, it is only in mixed strategies that Nash’s seminal existence

proof applies (Nash, 1950, 1951). However, applying mixed strategies to game-theoretic

models of real firms may be dubious simply because “firms don’t play dice in the

boardroom” (Choi et al., 1990).

1.2.2 Single-Stage Equilibrium Design and Pricing

As we have pointed out, firms operating in differentiated product markets also get

to choose the physical characteristics of products as well as their prices in order to

maximize profits or another chosen business objective. Beginning with Hotelling’s

seminal oligopolistic model of two firms choosing where to locate stores in order to

maximize profits (Hotelling, 1929), there have appeared many theoretical studies of

firm behavior including market entry/exit and some qualitative form of product or

service design in addition to pricing.13

The most direct way to extend the competitive pricing model to include prod-

uct characteristics is to assume that firms choose both product characteristics and

prices “simultaneously” with their competitors (see, e.g., Economides (1987)). The

fuel economy and price choice models used by CBO (2003) and Austin and Dinan

(2005) fall into this category. For another example, Michalek et al. (2004) provides a

model of single-stage design and pricing that also includes regulation and “engineering

content.”14 Particularly, firms choose an engine type, engine size, and final drive

ratio for a representative midsize vehicle. These three “technical characteristics” or

“engineering variables” determine fuel economy and 0-60 acceleration, performance

characteristics ultimately valued by consumers. The ADVISOR software (AVL, 2008a)

(and interpolating splines) were used to map between engineering variables and per-

formance characteristics. Unit and fixed costs were estimated as a function of the

engineering variables from publicly available data. With a modified version of the

Logit model estimated by Boyd and Mellman (1980) representing demand, firm profit

functions are defined and coupled. Michalek et al. use this model to study the

influence of alternative regulatory policies on the resultant equilibrium vehicle designs

13Hotelling’s purpose was to demonstrate a qualitative feature of some markets, the “Principle of
Minimum Differentiation,” which states that firms strategically minimize the differentiation of their
products. See also d’Aspremont et al. (1979). In real markets, firms both differentiate their products
and make them similar to one another.

14See also Skerlos et al. (2005).
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and prices, when designs and prices are chosen by all firms “at the same time.”

We can write a formal version of such a single-stage game as follows. Let X be

some set from which feasible values of engineering variables x are taken, and let

τ : X → Y be a “technology map” that defines performance characteristics in terms

of these technical variables.15 Suppose that the unit and fixed cost functions depend

on the technical variables, as in Michalek et al. (2004), as opposed to the product

characteristics.16 Each firm solves the optimization problem:

given Y−f ∈ YJ−f ,p−f ∈ RJ−f
+

maximize πf (Xf ,Y−f ,p) = qf (Y,p)>(pf − cUf (Xf ))− cFf (Xf )

with respect to (Xf ,pf ) ∈ X Jf × RJf
+

where Yf = τ (Xf )

Y = (Yf ,Y−f )

p = (pf ,p−f )

(1.2)

Pure strategy equilibria of such a game is defined exactly as in the case of Bertrand

competition.

Definition 1.2.2. (X∗,p∗) is a (Nash) equilibrium of the game formed by Problem

(1.2) if (X∗f ,p
∗
f ) solves Problem (1.2) for all f ∈ N(F ).

1.2.3 Multi-Stage Equilibrium Design and Pricing

In reality, product design decisions are almost universally “less flexible” than pricing

decisions. For example, vehicles design changes start at least 2 years in advance (Hill

et al., 2007) while, in principle, market prices must be fixed only at the point of

sale. Many economists, recognizing this as a common qualitative feature of many

markets as far back as Hotelling’s original model, have applied multi-stage games

to model competition among firms when the strategic variables firms control have

varying degrees of flexibility; see, e.g., Shaked and Sutton (1982, 1990); Anderson and

de Palma (1992a,b); Anderson et al. (1995); Verboven (1999); Anderson and de Palma

(2001, 2006); Doraszelski and Draganska (2006). Economists have most often used

this modeling paradigm to investigate sub-optimality of various market features −
15For simplicity, we assume X and τ are shared by all firms. This is a trivial assumption

to relax, if desired. We also use τ to refer to the vector function τ : XN → YN defined by
X = (x1, . . . ,xN ) 7→ (τ (x1), . . . τ (xN )) = τ (X) for any N ∈ N.

16This is a conceptual (and computational) device, as firms could choose product characteristics
rather than technical variables taking costs to be, for example, cU (y) = inf {cU (x) : x ∈ τ−1(y)}.
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the number of firms, the “quality” of products, the “variety” or products − relative

to certain socially-optimal states.

Loosely speaking, multi-stage games are predicated on the assumption that, when

deciding on their “inflexible” strategic variables, firms recognize and account for the

responses their competitors will have in their own “flexible” strategic variables to

these choices. For example, a particular vehicle-designing firm understands that while

its competitors may not be able to react to its vehicle design decisions with their own

vehicle design changes, these competitors can react with competitive pricing behavior

when the vehicles are ultimately offered to the public.

Formally speaking, multi-stage games are (imperfect information) extensive form

games (Myerson, 1997). Analysts usually restrict attention to subgame-perfect equi-

librium of multi-stage models of competing firms.17 Loosely speaking, full (Nash)

equilibrium in extensive form games is too broad a notion to be acceptable for realistic

models of rational actors; see Myerson (1997).

Because defining subgame-perfect equilibrium in a general way is somewhat in-

volved, we define it here only for the relatively simple example of two-stage design

and pricing. If each firm assumes that, once all vehicle designs are fixed, pricing will

occur in equilibrium, then each firm faces the following optimization problem:18

given Y−f ∈ YJ−f , cU−f ∈ RJ−f
+

maximize πf (Xf ,Y−f ,p) = qf (Y,p)>(pf − cUf (Xf ))− cFf (Xf )

with respect to (Xf ,p) ∈ X Jf × RJ
+

subject to p ∈ E(Y, cU)

where Yf = τ f (Xf )

Y = (Yf ,Y−f )

cU = (cUf (Xf ), c
U
−f )

(1.3)

Note that because E need not be single-valued, solutions to Problem (1.3) are pairs

(Xf ,p) ⊂ X Jf × RJ
+. We also remark that competitors costs are required to evaluate

the equilibrium constraint in Problem (1.3). Subgame-perfect equilibria are defined as

follows.

Definition 1.2.3. A subgame-perfect equilibrium of the game formed by Problem (1.3)

17Strictly speaking, most models, including ours, restrict attention to subgame-perfect equilibrium
in pure strategies, for the same reason as above: firms choose actions, not probability distributions
over feasible actions.

18Generally speaking, Problem (1.3) is a mathematical program with equilibrium constraints (Luo
et al., 1996).
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is a pair (X∗,p∗) ∈ graph E(τ (·), cU(·)) ⊂ X J × RJ
+, which is to say that

X∗ ∈ X J and p∗ ∈ E(τ (X∗), cU(X∗)),

that solves Problem (1.3) for each f ∈ N(F ).

Extrapolating this definition to more than two stages is conceptually straightfor-

ward. In fact, two-stage design and pricing is just a first step towards modeling firms

that understand and account for all the future consequences of the strategic decisions

they must make today. Economists now often consider “dynamic” game-theoretic

models of markets, in which firms solve coupled dynamic programs instead of coupled

optimization problems. In dynamic models where prices are a strategic variable, it is

often assumed these prices are set, myopically, in Bertrand-Nash equilibrium (Ericson

and Pakes, 1995; Gowrisankaran and Town, 1997; Bajari et al., 2007).19

Bertrand-Nash equilibrium prices thus play a fundamental role in Problem (1.3),

as well as its extensions beyond two stages. Particularly, if equilibrium prices exist and

are unique then we can view the equilibrium constraint in Problem (1.3) as simply a

function that defines an intermediate variable, p. This is emphasized in the theoretical

economic literature studying imperfect competition using multi-stage games: almost

all such studies characterize equilibrium prices as a first step in the analysis, generally

making enough assumptions to guarantee that equilibrium not only exists and is

unique, but has a convenient closed-form expression. So long as Problem (1.3), or an

extension of it, is to play a role in modeling the impact of regulatory policies including

the effects of competition, a more general understanding of Bertrand-Nash equilibrium

prices will be required.

1.3 The Existing Understanding of Equilibrium

Prices

In the previous sections, we have argued that (i) a game-theoretic theory of competitive

product design and pricing under regulation must be a component of the analysis of

regulatory policy in differentiated product markets and (ii) equilibrium pricing is a

fundamental component of a game-theoretic models of competitive product design

and pricing (whether under regulation or not). There remain two gaps in the existing

understanding of equilibrium prices that stand in the way of applying Bertrand compe-

19Benkard (2004) gives an interesting example of an empirical dynamic Cournot competition model.
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tition as a rigorous modeling real differentiated product markets. First, a theoretical

analysis of price equilibrium, including the foundational assurances of existence and

uniqueness, is insufficient for widespread application of Bertrand competition as a

model of differentiated product markets. Second, the existing body of literature does

not include a focused study of numerical methods for the computation of equilibrium

prices. This section develops these two gaps in more detail.

1.3.1 Theoretical Understanding

While there are many existing theoretical results concerning price equilibrium, most

from the multi-stage game literature, two obstacles preclude use of these results to

inform the models used to study real differentiated product markets.20 The first

problem is that models built for theoretical study rarely consider multi-product firms,

describe products through a single “quality” measure,21 and rely on symmetries be-

tween the firms. Firms in real differentiated product markets, particularly automotive,

ubiquitously offer more than one product and are heterogeneous in the number of

products offered, the values of the many characteristics that describe these products,

and also the costs with which these products can be produced.22 These facts are

reflected in the many empirical applications of the price equilibrium concept already

discussed. While there a few theoretical studies that consider multi-product firms (e.g.,

Shaked and Sutton (1990); Anderson and de Palma (1992b, 2006)), these still suffer

from simplistic descriptions of the resulting firm structures and product portfolios.

Second, and more importantly, the demand models used in theoretical studies have

only on rare occasions been consistent with those that are used to model demand in

real differentiate product markets. Most theoretical models of differentiated product

markets, like many empirical models of demand, structure consumer’s purchasing

decisions by assuming that these consumers choose those products that maximize some

utility function u. Many theoretical models also represent preference heterogeneity

in the consumer population through the inclusion of some “demographic” variable

θ (often called a “type” in this literature), on which utility depends. However it is

most often implicitly assumed that individuals’ purchases can be predicted by the

firms without error conditional on the knowledge of this demographic. Mathemati-

cally, this “perfect conditional prediction” often implies that firms’ profit functions

20For examples, see the references in Section 1.2.3.
21Authors in this literature use “quality” more in the sense of “value” than in the way it would

probably be interpreted by engineers, marketers, or laypeople as a measure of reliability.
22Considering the second “design” stage of these games exacerbates this problem, as most engi-

neering models of design are quite complicated.
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are non-smooth, even discontinuous, greatly complicating mathematical analyses of

equilibrium.

The discrete choice RUMs of demand (McFadden, 1981; Louvierre et al., 2000;

Train, 2003) especially popular in the many econometric models of the automotive

market reject the assumption that individual consumer’s purchasing decisions can be

predicted exactly, even with demographic data. Mathematically, this is a consequence

of including an additive stochastic error independent of demographics. No real firm

can exactly predict the purchasing behavior of consumers, even with demographic

information, and thus this feature of RUMs actually provides what could be a key

aspect of the real decision environment firms face. Furthermore, at least for the Logit

and Mixed Logit classes of RUMs considered in this work, firms’ profit functions

are continuously differentiable under very weak assumptions on the demand model

specification. Because Mixed Logit models are dense in the collection of RUMs (Mc-

Fadden and Train, 2000), a comprehensive study of Mixed Logit models theoretically

encapsulates a study of all RUMs.

There are a few existing theoretical analyses of equilibrium prices that use

empirically-relevant RUMs. Anderson and de Palma (1992a) consider Bertrand

competition with a linear in price Logit model with symmetric single-product firms

and characterize the unique equilibrium prices with a fixed-point equation. Anderson

and de Palma (1992b) also study Bertrand competition with multi-product firms

under a specific (and quite restrictive) Nested Logit Model and similarly characterize

equilibrium. The assumptions made in this latter analysis essentially reduce the

multi-product firm problem to one with single-product firms under Logit demand.

More recently Anderson and de Palma (2006) study a multi-product firms under

a general Nested RUM and provide another good example of how reductive these

analyses can be. They admit that

“empirical application[s] would have to relax the symmetry assumptions
and allow firms to produce products of different qualities, allow for
heterogeneity across firms, and differing costs to introducing products.”
(Anderson and de Palma, 2006, pg. 98)

Specifically, a key assumption of their analysis of price equilibrium is that firms and

their products are not differentiated except by prices, a dubious choice for a theoretical

model of differentiated product markets and an unacceptable choice for a model of

real markets. Again, Anderson and de Palma achieve success by assuming away the

essential character of the multi-product firm problem, rather than uncovering tools

that can address it. Theoretical analyses that rely on such assumptions cannot support
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empirical applications of the Bertrand pricing model under RUM demand.

Ideally, a general understanding of Bertrand-Nash equilibrium prices should begin

with the conditions under which equilibrium prices exist. Without this understanding,

empirical practitioners may specify RUMs that do not even have equilibrium prices.23

Outside of equilibrium existence results applicable only to specific models, the current

literature contains limited results regarding the conditions under which equilibrium

will exist. Specifically, general existence conditions are only known for single-product

firms. Nonetheless, these conditions have been used to ensure that both theoretical

and empirical single-product firm models based on equilibrium prices are well-posed

(Pakes and McGuire, 1994; Anderson et al., 1995; Gowrisankaran and Town, 1997;

Anderson and de Palma, 2001).

Milgrom and Roberts (1990) and Caplin and Nalebuff (1991) provide two prominent

examples of generic equilibrium existence proofs for generalized Bertrand competition

with single-product firms that apply to the Logit RUM.24 However, the methods

employed in these examples cannot be extended to establish the existence of equilib-

rium prices for models with multi-product firms. While Milgrom and Roberts have

applied “supermodularity” to prove the existence and uniqueness of single-product

firm equilibrium prices under Logit, Sandor (2001) has shown that multi-product firm

profit functions under linear in price utility Logit fail to be supermodular arbitrarily

near equilibrium prices.25 This result definitively excludes supermodularity as a route

to establishing the existence of equilibrium prices with multi-product firms. Similarly,

Caplin and Nalebuff’s proof relies on the quasi-concavity of the firms’ profit functions

while Hanson and Martin (1996) have observed that multi-product firm profits are

not quasi-concave. In order to deal directly with the existence of equilibrium prices

for multi-product firms, new tools are needed.

1.3.2 Computation of Equilibrium Prices

Beyond requiring an assurance that equilibrium prices indeed exist, the growing

prominence of applications of Bertrand competition to the study of real differentiated

product markets requires that the computation of equilibrium prices receive greater

attention. Most of the extant literature in econometrics justifiably focuses on the

difficult task of model specification and estimation from market observations. Even

23In Chapter 3 we point out one example of where this has already occurred.
24These proofs were given only for linear in price utility functions. However, Milgrom and Roberts’s

proof extends easily to any twice-differentiable and strictly decreasing utility function.
25We extend Sandor’s proof to any Logit model with a concave in price utility function.
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though counterfactual experiments, one of the most important and frequent appli-

cations of such models, requires the computation of equilibrium prices, discussion

of suitable methods for this task are rarely discussed in any detail. When taking

the perspective of a particular firm (as is often done in engineering and marketing)

demand (and cost) can be determined through controlled experimentation, thereby

avoiding some of the complicating issues with estimating Bertrand competition models

from market observations (e.g., see Louvierre et al. (2000)).

Some practitioners have identified Newton’s method, a generic algorithm for solving

for zeros of nonlinear systems (Ortega and Rheinboldt, 1970; Dennis and Schnabel,

1996), as the de facto approach to compute equilibrium prices; e.g., see (Petrin, 2002;

Doraszelski and Draganska, 2006; Jacobsen, 2006).26 In this setting, Newton’s method

can be applied to compute solutions to the combined first-order optimality or “simul-

taneous stationarity” conditions. When successful these solutions can these be checked

against the second order optimality conditions to ensure that they are indeed (local)

equilibria. Recently, Beresteanu and Li (2008) have suggested that a common transfor-

mation of the first-order conditions can be used to solve for equilibrium prices.27 This

common form is a fixed-point equation for prices that dates back at least to Berry

et al. (1995); Goldberg (1995), to which Newton’s method can also be applied.

Few novel approaches to the computation of either profit-optimal or equilibrium

prices exist. Hanson and Martin (1996) derive a homotopy method for the computation

of profit-optimizing prices for a restrictive (but important) subset of Mixed Logit

models, but do not discuss equilibrium problems. Choi et al. (1990) suggest iterating

on the pricing game’s best response correspondence (i.e., tattonement) to compute

equilibrium prices.28 This process itself requires a method for the computation of

profit-optimal prices, ostensibly driven by an application of Newton’s method or

Hanson and Martin’s homotopy method.

The efficiency, reliability, and accuracy with which any method computes equi-

librium prices in realistic market models has yet to be explored in detail. Efficiency

and reliability are important for the following reasons. In econometric-style analysis,

broadly investigating the counterfactual implications of empirical models of differenti-

ated product markets requires the analysis of equilibrium outcomes under suites of

26Jacobsen (2006) is somewhat more specific, referring to Broyden’s (or the “BFGS”) quasi-Newton
method.

27They do not, however, make any reference to how the transformed first-order conditions should
be attacked numerically.

28CBO (2003); Michalek et al. (2004); Austin and Dinan (2005) take the same approach to solving
for equilibria in single-stage design and pricing games.
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counterfactual assumptions, rather than simply one or a few specific cases. Similarly,

including equilibrium computations in large-scale, complex multi-stage strategy games

with regulation and engineering content requires the ability to compute equilibrium

prices repeatedly under various values of equilibrium problem parameters (i.e., charac-

teristics and costs). Both of these applications motivate the desire for efficient methods

of computation. Furthermore, the same applications challenge the degree to which

equilibrium prices can be known prior to computations, motivating computational

methods that reliably compute equilibrium prices regardless of problem parameters,

especially the analyst’s initial guess of equilibrium prices.

Also required is an examination of the sensitivity of computed equilibrium prices

to two necessary aspects of the procedure for computing equilibrium prices: choice

of an initial condition and selection of a finite-sample approximation to a full Mixed

Logit model. First, computed equilibrium prices are generally dependent on a set of

initial prices that can be considered an initial guess of equilibrium. There has not yet

been an examination of the influence of initial condition on the resulting computed

equilibrium prices. Second, computing equilibrium prices under most empirical Mixed

Logit models relies on computing equilibrium prices for a finite-sample approximation

to the true Mixed Logit model. The sensitivity of computed equilibrium prices to

the selection of a particular set of sampled demographic variables and/or random

coefficient values has not been investigated.

Conclusions of counterfactual experiments may depend on the sensitivity of

computed equilibrium prices to computational approximations. Table 1.1 reports

Beresteanu and Li’s results for one counterfactual experiment regarding gasoline prices.

In this experiment, gas prices were held at 1999 levels and 2006 vehicle prices in

equilibrium computed, thereby erasing the steady increase in gasoline prices that

occurred during 2000-2006. As one might expect, lower gas prices appear to lower

hybrid prices (as well as decrease hybrid sales). However, comparing the level of the

price changes in Table 1.1 to our Figs. 4.7 and 4.8 in Chapter 4 should induce a

degree of caution. For the 2005 vehicle market under the Berry et al. (1995) model,

Fig. 4.8 demonstrates that 106 samples are required to generate 90% of computed

equilibrium prices that varied by less than 100 USD when selecting the sample set.

While we do not know how the sample set chosen inflences the Beresteanu and Li

model without explicit experiments, our results clearly suggest that the sample set

size could be a key issue when studying counterfactual experiments that induce price

changes on the order seen in Table 1.1. Even if the sample set does not influence

the resulting conclusions, the variability in potential outcomes based on necessary
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Table 1.1 One counterfactual experiment result from Beresteanu and Li (2008). In this
experiment gas prices are held constant at 1999 levels and new 2006 vehicle prices in equilib-
rium computed. Only price changes for hybrid models and their corresponding standard
variants are reported.

Observed Counterfactual
Price Price Change

(2006 USD) (2006 USD) (2006 USD) (%)

Hybrid
Ford Escape 29,140 28,734 -406 -1.39
Honda Civic 22,400 21,662 -738 -3.29
Honda Accord 31,540 31,031 -509 -1.61
Toyota Highlander 34,430 33,319 -1,111 -3.23
Toyota Prius 22,305 21,407 -898 -4.03

Standard
Ford Escape 21,745 22,139 394 1.81
Honda Civic 17,660 17,514 -146 -0.83
Honda Accord 21,725 21,750 25 0.12
Toyota Highlander 26,535 26,841 306 1.15
Toyota Corolla 15,485 15,428 -57 -0.37

computational approximations is an important issue to address in studies of this kind,

currently ignored in the econometric community.

1.3.3 Empirical Validity

Despite the proliferation of Bertrand competition models of the automotive industry,

there is little direct empirical evidence that Bertrand competition is an appropriate

model. Bresnahan (1987) compares Bertrand competition to collusive pricing, finding

positive evidence for Bertrand competition in a specific year (1955) and and for more

collusive pricing behavior in nearby years (1954 and 1956).29 The historical period was

examined because it presented a problematic observation for economists. Following

Bresnahan, Berndt et al. (1990) constructed “simultaneous” and “leader/follower”

(GM leading with Ford and Chrysler following) Cournot competition models of the

automotive industry, finding that neither could be rejected for the period 1959-1983.

29Sudhir (2001) refines this balance between competition and collusion in Bertrand competition by
demonstrating that contemporaneous automotive firms may collude more in some vehicle segments
more than others.
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Their specification was not tested against Bertrand competition. Outside of these few

examples, authors do not report on direct tests of Bertrand competition assumptions.

Some authors suggest that the way to validate models of economic behavior is to

validate behaviors that the models universally imply. For example, instead of “fitting”

a Bertrand competition model to data, the analyst should take some property of

behavior implied by the model − say constant markups − and statistically test the

likelihood of this property in market data. Even without this level of rigor, models

have been rejected because of the expectation that properties that hold under them

are counterintuitive. For example, the Logit model we study in Chapter 3 is widely

critiqued because the “independence of irrelevant of alternatives” property that many

economists and marketers believe to be a spurious conclusion to make about real

markets.

Generic properties of equilibrium prices under RUM demand are unknown. An

understanding of what, if any, aspects of a Logit or Mixed Logit demand model

generate intuitive equilibrium pricing behavior would aid model construction and

application. Two avenues exist to developing this understanding. First, direct mathe-

matical analysis can uncover structural properties that equilibrium prices must have

under certain demand models. This can be a difficult task requiring skill, insight,

and even luck. Second, broad numerical experimentation with the models can help

develop an understanding of whether intuitive equilibrium pricing behavior exists.

Some practitioners limit their reports on counterfactual equilibrium prices to specific

results, as in Beresteanu and Li (2008). Others report only on aggregate measures

(Petrin, 2002; Bento et al., 2005; Jacobsen, 2006), unintentionally obfuscating a general

understanding the model’s realism.

1.4 Contributions Made in this Dissertation

This dissertation takes a step towards a rigorous understanding of game-theoretic

models of realistic regulated differentiated product markets through the study of

equilibrium pricing. We first introduce a general framework for Bertrand competition

under an arbitrary RUM in Chapter 2. Chapters 3, 4, and 5 discuss three specific

contributions to Bertrand competition with RUM demand.

• In Chapter 3 we prove the existence of unregulated equilibrium prices for the

Logit class (Train, 2003, Chapter 3) of discrete choice RUMs using a new

fixed-point equation equivalent to the first-order necessary condition for equilib-

rium, minimal assumptions on the utility specification, and mathematical tools
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from differential topology. We also use this equation to uncover some generic

properties of equilibrium prices under the Logit model.

• In Chapter 4 we generalize this fixed-point equation to one of the most flexible

and popular empirical forms for representing consumer demand, the class of

Mixed Logit models (Train, 2003, Chapter 6), under a very weak hypothesis on

the utility specification and mixing distribution. Applying Newton’s method

to this fixed-point equation and a commonly used existing fixed-point equation

is demonstrated to improve the efficiency and reliability of computations of

unregulated equilibrium prices in large-scale and complex differentiated product

market models relative to a naive application of Newton’s method directly to

the first-order conditions. However, fixed-point iteration based on the new

fixed-point equation proves to be the most reliable and efficient method for

computing equilibrium prices for the example problems studied.

• Finally, in Chapter 5 we further extend this fixed-point approach to regulated

equilibrium pricing problems with regulatory policy forms inspired by those

considered for the U.S. automotive industry. A hybrid fixed-point iteration is de-

veloped for the computation of regulated equilibrium prices under standard-based

policies with non-smooth regulatory costs.

To close this chapter, we provide a more developed introduction to these con-

tributions in the form of an outline of the rest of this dissertation. Appendix A

describes all of our basic mathematical notation, and Appendix ?? provides proofs of

the mathematical results we present.

Analysis of Unregulated Equilibrium Prices Under Logit Models

Chapter 3 focuses on equilibrium prices for multi-product firms under Logit models of

demand. We present a new approach to studying these problems that does not require

restrictive assumptions on product characteristics, firm homogeneity or symmetry, or

product costs. Our approach extends in straightforward ways to most Generalized

Extreme Value (GEV) (Train, 2003, Chapter 4) or Mixed Logit (Train, 2003, Chapter

6) models, although it is not yet known what conditions on the utility function, GEV

function, and mixing distribution are required to generate results similar to those

presented in Chapter 3.

In Section 3.1 we prove the existence of equilibrium prices by applying the Poincare-

Hopf Theorem (Milnor, 1965; Simsek et al., 2007) to a new fixed-point equation derived

from the Simultaneous Stationarity Condition. While similar expressions have been
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posed in the literature,30 this new form provides a fairly straightforward proof of

the existence of equilibrium under very general assumptions on the utility function.

A variety of examples of generally nonlinear in price utility functions support our

definitions and assumptions. We also demonstrate that our fixed-point equation can

be used to undertake a structural investigation of equilibrium prices under the Logit

model under general assumptions on the utility and cost functions. The properties we

identify or, more generally, our method of analysis may be of interest to practitioners

using market models based on Logit.

Subsection 3.1.1 contains our conditions for the utility function under which finite

equilibrium prices exist. These conditions admit any utility function that is concave in

price and finite for all finite prices − functions commonly seen in theoretical economics,

econometrics, and marketing. While violation of these conditions is uncommon, it is

not unprecedented and can occur for models built on economic fundamentals. Particu-

larly we use our approach to show that Bertrand competition under Logit with a utility

function first derived by Allenby and Rossi (1991) need not have finite expected profit

maximizing prices, and hence need not have finite equilibrium prices. It is important

to note that this utility function was specifically derived to model an observed market

behavior related to pricing.

In Section 3.2 we apply the fixed-point equation to examine properties of equilib-

rium prices for Bertrand competition under Logit. Particularly, our analysis allows us

to identify a counter-intuitive equilibrium outcome of profit maximizing prices under

Logit: the more the population values a product’s characteristics relative to the same

firm’s other offerings, the lower that product’s equilibrium markup. This result is

based only on the additional, reasonable assumptions that (i) the utility function is

concave in price and separable in price and characteristics and (ii) unit costs increase

with the value of product characteristics. A consequence of this property is that

generalized Bertand competition under Logit with conventional utility specifications

cannot have fixed percentage markups as an equilibrium outcome; i.e. cost plus

pricing (Nagle and Holden, 1987) is not “rationalized” by Bertrand competition under

conventional Logit models. Our fixed-point equation also proves a portfolio effect:

equilibrium prices for the same products offered by two different firms at the same

costs depends on the profitability of the entire portfolio of products offered by these

firms. In other words, asymmetric portfolios lead to distinct equilibrium prices for

equivalent products.

30See, for example, Anderson and de Palma (1992a); Besanko et al. (1998).

25



Computation of Unregulated Equilibrium Prices under Mixed Logit Mod-

els

In Chapter 4 we extend this new approach to the class of Mixed Logit RUMs. Specifi-

cally, Section 4.1 generalizes the fixed-point equations derived in Chapter 3 for Logit

models to a broad class of Mixed Logit RUMs. This class is built upon a very general

specification for the systematic utility function, restricted only by a straightforward

integrability condition that should hold for any reasonable Mixed Logit model. Partic-

ularly, no additional assumptions on the firms or products are made beyond those

required of the general framework for Bertrand competition, and no specific restrictions

are made on the mixing distribution.

Section 4.2 compares four approaches for computing equilibrium prices built from

Newton’s method and fixed-point iteration. Newton’s method can be applied directly

to the first-order conditions or to either of the two fixed-point equations we derive.

Fixed-point iteration, in principle possible for both fixed-point expressions, only ap-

pears convergent for the new fixed-point expression. Although fixed-point iteration

can only be expected to obtain a linear convergence rate it requires far fewer floating

point operations (flops) per iteration than variants of Newton’s method and also

avoids solving large linear systems.

In Section 4.3 we introduce a model of the calendar year 2005 new vehicle market

with many vehicle model variants and modified versions of Mixed Logit models es-

timated by Boyd and Mellman (1980) and Berry et al. (1995). Section 4.4 carefully

studies the properties of computations of equilibrium prices for this market using the

fixed-point iteration. The most original observation is that computations may be

much more sensitive to the finite-sample approximation used computations than is

currently acknowledged. In Section 4.5 we employ this model of the 2005 new vehicle

market to compare the practical performance of all of the numerical approaches. We

conclude that, although each of the approaches based on fixed-point characterizations

of equilibrium appear to be a fairly reliable means of computing equilibrium prices,

the significant additional computational burden of taking Newton steps can lead to

computational times far higher than those required by the fixed-point iteration.

Computation of Regulated Equilibrium Prices

In Chapter 5 we further extend the fixed-point approach developed in the previous

sections to the case where firms face several regulatory policies debated for the U.S.

automotive industry. Specifically, we focus on fuel taxes, CO2 taxes levied on firms
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(Michalek et al., 2004), Corporate Average Fuel Economy (CAFE) standards (NHTSA,

2008b), Corporate Average Emissions (CAE) standards (CARB, 2008), and both

fixed-pivot and revenue neutral feebates on fuel consumption (Greene et al., 2005). We

restrict attention to single-class versions of these policies, but address how our results

generalize to multi-class regulations (as in the CAFE standards currently employed in

the U.S.). To characterize regulated profit-maximizing and equilibrium prices under

potentially non-differentiable regulatory costs, we adopt Clarke (1975)’s generalized

first-order necessary condition and Ioffe (1979)’s second-order necessary and sufficient

conditions.

This fixed-point approach can be used to provide an analytical characterization

of incentives engendered by different regulatory policies. Particularly, we prove the

existence of a mix-shifting incentive under both the CAFE and CAE policies for most

Mixed Logit models of demand, and transliterate Kleit’s simple analysis of “shadow

taxes and rebates” to the general setting of regulated Bertrand competition in the

automotive market under a fairly arbitrary Mixed Logit RUM.

Another contribution to regulated equilibrium problems is the proposal of a hybrid

fixed-point iteration for computing equilibrium prices in regulated Bertrand competi-

tion when the regulatory costs may not be everywhere differentiable. Based on the

strong performance of the fixed-point approach developed for computing unregulated

equilibrium prices, we first derive modified fixed-point equations for regulated equilib-

rium pricing problems with both differentiable and non-differentiable regulatory costs.

Through “hybridizing” the fixed-point iteration with direct solution of the non-smooth

first-order conditions we propose a method applicable to policies with regulatory costs

that are non-differentiable even at equilibrium prices. This hybrid approach is justified,

for single-class standards, by proving fixed-point steps near profit-maximizing prices

at which regulatory costs are not differentiable exhibit a cycling behavior that is easy

to detect in computations.
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Chapter 2

A General Framework for Bertrand
Competition Under an Arbitrary

Random Utility Model

In this chapter we present a mathematical framework for Bertrand competition used

throughout this work. This generalizes the discussion in Baye and Kovenock (2008) by

using multi-product firms and an arbitrary Random Utility Model (RUM). Conceptu-

ally, a fixed number of firms decide on prices for a fixed set of products prior to some

time period in which these prices must remain fixed. During this purcshasing period,

a fixed number of individuals independently choose to purchase one of the products

offered by these firms, or to forgo purchase of any of these products, following a given

RUM. Verboven (1999) describes this as a two-stage stochastic game, where in the

first stage the firms choose prices and in the second stage individuals choose products

to maximize their own utility after sampling, or “drawing,” from the distribution of

random utilities.

The goal is to derive a widely applied first-order or necessary condition for local

equilibrium, the “Simultaneous Stationarity Condition,” assuming the RUM choice

probabilities are continuously differentiable in prices. We first introduce the choice

probabilities and expected demands arising from an arbitrary RUM. A derivation of

firms’ expected profit functions then follows from the Bertrand supply assumption

that the firms “committ” to produce only what individuals demand in the second

stage of the game (Baye and Kovenock, 2008). Finally, we define local equilibrium

and derive the Simultaneous Stationarity Condition.
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2.1 Random Utility Models and Demand for Prod-

ucts

RUMs provide a means to describe selection from a choice set, a collection of J ∈ N
products that individuals may choose to purchase along with a no-purchase option

(or “outside good”) indexed by 0. Each product j ∈ N(J) is characterized by its price

pj ∈ [0,∞) and vector of characteristics yj ∈ Y , where Y ⊂ RK for some K ∈ N.

The random variable Ui,j(yj, pj) gives the utility individual i receives by purchasing

product j ∈ N(J). The random variable Ui,0 gives the utility received by not purchas-

ing any of the products (i.e. “purchasing the outside good”). Conditional on the values

of {Ui,0}∪ {Ui,j(yj, pj)}j∈N(J), individual i chooses the option j ∈ {0}∪N(J) with the

highest utility. The choice variable Ci(Y,p) encapsulates this selection, taking values

in {0} ∪ N(J) following the distribution

P(Ci(Y,p) = j) =


P
(
Ui,j(yj, pj) = max

{
Ui,0 , max

k∈N(J)
Ui,k(yk, pk)

})
if j ∈ N(J)

P
(
Ui,0 = max

{
Ui,0 , max

k∈N(J)
Ui,k(yk, pk)

})
if j = 0

The distribution of these random utilities assures that “ties” occur with probability

zero. We let

Ui(Y,p) = (Ui,0, Ui,1(Y,p), . . . , Ui,J(Y,p)).

The following assumption is usually made.

Assumption 2.1.1. For any (Y,p) ∈ YJ × RJ
+ and i, i′ ∈ N(I), Ui(Y,p) and

Ui′(Y,p) are independent and identically distributed.

Under this assumption, we can drop the individual index on utilities and the choice

variable, referring to simply U(Y,p) and C(Y,p). Note also that this does not imply

that Ui,j(yj, pj) and Ui,k(yk, pk) are independent.

In practice, models take the form

U0 = ϑ+ E0 and Uj(yj, pj) = u(yj, pj) + Ej for all j ∈ N(J)

for some utility function u : Y × [0,∞) → R, ϑ ∈ [−∞,∞) and “error” vector

E = {Ej}Jj=0. When E is given an i.i.d. extreme value distribution (NIST/SEMATECH,

2008), we have the Logit RUM (Train, 2003, Chapter 3), the focus of Chapter 3.1

1This independence assumption on E is distinct from our independence assumption on the random
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Letting E have a Generalized Extreme Value distribution (Bierlaire et al., 2003), we

have a GEV RUM (Train, 2003, Chapter 4), or taking E multivariate normal gives

the Probit RUM (Train, 2003, Chapter 5). Either of these forms can have a E that is

not an independent vector.

More generally, we can let T be a space of individual characteristics or “demo-

graphics” and define

U0 = ϑ(Θ) + E0 and Uj(yj, pj) = u(Θ,yj, pj) + Ej for all j ∈ N(J)

where u : T ×Y × [0,∞)→ R, ϑ : T → [−∞,∞) where Θ is a T -valued random vari-

able with the distribution µ, ostensibly representing the distribution of demographic

variables over the population. With the same error distribution, we obtain a “mixed”

RUM. Particularly, taking E i.i.d. extreme value gives the Mixed Logit RUM class

(Train, 2003, Chapter 6), the object of Chapters 4 and 5.

To define firms’ profits we must also define demands, the total quantity of each

product purchased during the purchasing period. For this, we require the following

assumption.

Assumption 2.1.2. Every individual i ∈ N(I) observes the same choice set during

the purchase period.

Under this assumption, the demand Qj(Y,p) for each product j ∈ N(J) can

be expressed simply as Qj(Y,p) =
∑I

i=1 1{Ci(Y,p)}, where here {Ci(Y,p)}i∈N(I) are

I i.i.d. “copies” of C(Y,p). The primary benefit of Assumption 2.1.2 is that

{Q0(Y,p)} ∪ {Qj(Y,p)}j∈N(J) is a multinomial family of variables with parameter I

and probabilities {Pj(Y,p)}Jj=0 (Feller, 1968; Grimmett and Stirzaker, 2001). Thus

expected demands for each product are given simply by E[Qj(Y,p)] = IPj(Y,p).

A more serious implication of Assumption 2.1.2 is there must be at least I units of

every product available for the individuals to choose during the purchasing period.

Specifically, no product can “sell out.” This is often overlooked in analyses of dif-

ferentiated product markets, and appears presents an issue for Cournot competition

models using RUM demand interpreted this strictly. Specifically, if any firm commits

(or is forced by capacity constraints) to only produce I ′ < I units of some product

they offer, then Assumption 2.1.2 is violated.

utilities in that now it is independence across products in the choice set, rather than across individuals
in the population
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2.2 Firms, Product Portfolios, Costs, and Profits

To describe the optimal pricing problems faced by each firm we must recall the fol-

lowing notation. Again let F ∈ N denote the number of firms. For each f ∈ N(F ),

there exists a set Jf ⊂ N(J) of indices that corresponds to the Jf = |Jf | products

offered by firm f . The collection of all these sets, {Jf}Ff=1, forms a partition of N(J).

Subsequently, in writing “f(j)” for some j ∈ N(J), we mean the unique f ∈ N(F )

such that j ∈ Jf . The vector pf ∈ RJf refers to the vector of prices of the products

offered by firm f . Negative subscripts continue to denote competitor’s variables as in,

for instance, p−f ∈ RJ−f , where J−f =
∑

g 6=f Jg, is the vector of prices for products

offered by all of firm f ’s competitors. Firm-specific choice probability functions are

denoted by Pf (p).

Specifying unit and fixed costs completes the definition of firms’ profits. We assume

the existence of a unit variable cost function cUf : Y → R+ and a fixed cost function

cFf : F(Y) → R+ for all f ∈ N(F ) that depend only on the collection of product

characteristics chosen by the firm. Particularly, they are independent of the quantity

sold.2 This assumption, while standard for the price equilibrium problem, may neglect

the possible dependence of unit and fixed costs on production volumes. The random

variable
∑

j∈Jf c
U (yj)Qj(Y,p)+cFf (Yf ) gives the total cost firm f incurs in producing

Qj(Y,p) units of product j, for all j ∈ Jf . We let cUf (Yf ) be the vector of these unit

costs for the products offered by firm f .

Bertrand competition entails the following “comittment” assumption on the quan-

tities produced (Baye and Kovenock, 2008).

Assumption 2.2.1 (Bertrand Production Assumption). Each firm produces exactly

Qj(Y,p) units of each product j ∈ Jf during the purchasing period.

This implies that the firm has no production capacity constraints that limit a

firm’s ability to meet any demands that arise during the purchase period or, if there

are such constraints, then consumers “order” products and delivery schedules do not

impact demand.

Under Assumption 2.2.1, the random variable Πf(Y,p) = Qf(Y,p)>(pf −
cUf (Yf)) − cFf (Yf) gives firm f ’s profits for the production period as a function

of prices. Following most of the theoretical and empirical literature in both marketing

2Strictly speaking, the fixed costs can be affine in the quantities produced, i.e. cFf (qf ,Yf ) =

α(Yf )q>f c̄f (Yf ) + β(Yf ) for some α, β : F(Y)→ R+ and c̄f : F(Y)→ RJf

+ . However, α(Yf )c̄f (Yf )
is then just a vector of unit costs.

31



and economics, we assume that firms take expected profits,

πf (Y,p) = Iπ̂f (Y,p)− cFf (Yf ) where π̂f (Y,p) = Pf (Y,p)>(pf − cUf (Yf )),

(2.1)

as the metric by which they optimize their pricing decisions in this stochastic opti-

mization problem.

We briefly demonstrate why the unit and fixed cost functions must be independent

of the quantity sold. Supposing otherwise, we let cUf (yj, Qj(Y,p)) give the unit costs

to firm f for offering product yj in the market of products with characteristics Y and

prices p. Then

Πf (Y,p) = Qf (Y,p)>(pf − cUf (Yf ,Qf (Y,p)))− cFf (Yf )

Notice that profits are no longer a linear function of the demands, and thus expected

profits are no longer a linear function of the expected demands. This has been over-

looked in some econometric studies that regress unit costs onto nontrivial functions of

quantities (Berry et al., 1995; Petrin, 2002).

Eqn. (2.1) demonstrates that neither the total firm fixed costs cFf nor the pop-

ulation size I play a role in determining the prices that maximize expected profits.

Therefore we only consider the “population-normalized gross expected profits” π̂f (p),

referred to below as simply “profits”. We also consider Y fixed, and cease to include

this characteristic matrix as an argument. Finally, we write cf = cUf as these are the

only relevant costs for the price equilibrium problem. Henceforth we write simply

π̂f (p) = Pf (p)>(pf − cf ).

The following adaptation of well-known necessary conditions for the local max-

imization of an unconstrained, continuously differentiable function (e.g., Munkres

(1991)) informs our derivation of the Simultaneous Stationarity Condition.

Proposition 2.2.1. Suppose Pf(·,p−f) is continuously differentiable on some open

A ⊂ (0,∞) ⊂ RJf . If pf ∈ A is a local maximizer of π̂f (·,p−f ), then

(∇f π̂f )(p) = (DfPf )(p)>(pf − cf ) + Pf (p) = 0. (2.2)
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2.3 Local Equilibrium and the Simultaneous Sta-

tionarity Conditions

As in much of the existing literature, our analysis relies on local conditions for

optimality of prices and thus must rely on the following local definition of equilibrium.

Definition 2.3.1. A price vector p ∈ [0,∞] is called a local equilibrium if pf is a

local maximizer of π̂f (·,p−f ) for all f ∈ N(F ). A price vector p ∈ [0,∞] is called an

equilibrium if pf is a maximizer of π̂f (·,p−f ) for all f ∈ N(F ).

Finally, the following Simultaneous Stationarity Condition is a generic neces-

sary condition for local equilibrium if the RUM choice probabilities are continuously

differentiable in prices.

Definition 2.3.2. Let (∇̃π̂)(p) denote the “combined gradient” with components

((∇̃π̂)(p))j = (Djπ̂f(j))(p). Let (D̃P)(p) be the sparse matrix corresponding to the

intra-firm price derivatives of choice probabilities; that is,

(
(D̃P)(p)

)
j,k

=

{
(DkPj)(p) if f(j) = f(k)

0 if f(j) 6= f(k)
.

Proposition 2.3.1 (Simultaneous Stationarity Condition). Suppose P is continuously

differentiable on some open A ⊂ (0,∞). If p ∈ A is a local equilibrium, then

(∇̃π̂)(p) = (D̃P)(p)>(p− c) + P(p) = 0. (2.3)

Prices satisfying Eqn. (2.3) are called “simultaneously stationary.”

We emphasize that the necessity of the Simultaneous Stationarity Condition does

not depend on the RUM type, but only on the continuous differentiability of the

choice probabilities (with respect to price) and the cost assumption.3 Thus, Eqn. (2.3)

has appeared in many different studies using alternative RUM specifications. For

example: Besanko et al. (1998) apply this condition for Logit models; Goldberg (1995,

1998), Besanko et al. (1998), and Villas-Boas and Zhao (2005) apply this condition

for certain Generalized Extreme Value models (particularly, Nested Logit models);

and Berry et al. (1995, 2004), Nevo (2000a, 2001), Sudhir (2001), Petrin (2002), and

Beresteanu and Li (2008) apply this for Mixed Logit models.

3Furthermore, much of this development is the same for an arbitrary demand function, rather
than a RUM.
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In most of these studies, Eqn. (2.3) has not been investigated beyond Proposition

2.3.1. However, Eqn. (2.3) has been consistently used through the corresponding

markup equation p = c + η(p) where

η(p) = −(D̃P)(p)−>P(p) (2.4)

assuming (D̃P)(p)> is nonsingular.4 The markup equation p = c + η(p) is a fixed-

point equation satisfied by all simultaneously stationary prices that we will derive

again below in the specific context of Logit and Mixed Logit models. We further derive

a new fixed-point equation for simultaneously stationary prices by using a splitting of

(D̃P)(p)> valid under Logit and Mixed Logit models.

4Virtually all of the papers referenced above contain this expression.
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Chapter 3

An Analysis of Unregulated
Equilibrium Prices Under Logit

Models

In this chapter, we study Bertrand competition with multi-product firms, differentiated

products, and Logit models of demand. Our main result is a proof of the existence of

Bertrand-Nash equilibrium prices, enabled by the derivation of new conditions on the

utility function and a new fixed-point equation that characterizes equilibrium prices.

This fixed-point equation also allows us to demonstrate that Logit price equilibrium

cannot adequately represent multi-product pricing. One counterintuitive property of

equilibrium prices under most Logit models of interest to economics is identified: a

firm’s more valued products must have lower markups in equilibrium. Appendix B

provides various examples to highlight the conditions used to prove the existence of

equilibrium prices.

3.1 Logit Price Equilibrium

The goal of this section is to prove the following theorem regarding equilibrium

prices for generalized Bertrand competition under the Logit model (defined below, in

Subsection 3.1.2).

Theorem 3.1.1. Suppose the utility function (cf. Assm. 3.1.1) is finite for all finite

prices, is twice continuously differentiable and strictly decreases in price, eventually de-

creases sufficiently quickly (cf. Defn. 3.1.2), and has sub-quadratic second derivatives

(cf. Defn. 3.1.3). Let ζ : [0,∞)J → [0,∞)J be defined as in Defn. (3.1.5).
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If there is an outside good there is at least one equilibrium, no equilibria with

infinite or non-positive markups, and a price vector p ∈ (c,∞) ⊂ RJ is an equilibrium

if and only if p = c + ζ(p).

If there is not an outside good, then ∞ is always an equilibrium. If p < ∞ is

an equilibrium, then in fact c < p < ∞ and p = c + ζ(p). Conversely, if there is

a solution to p = c + ζ(p) with at least one finite price for at least two firms, then

c < p < ∞ and p is an equilibrium.

Conceptually, the fixed-point equation p = c + ζ(p) states that markups are equal

to profits plus the (local) willingness to pay for product value. Loosely speaking, this

equation is derived from the simultaneous stationarity conditions Eqn. (2.3) by first

factoring out the gradient of the inclusive value from (D̃P)(p). What remains is the

identity and the “contractive” component of (D̃P)(p). This equation also states that

multi-product firm pricing problems under Logit are “one-parameter” problems. In

other words, true multi-product pricing does not occur under Logit.

This section provides a sequence of results that culminate in Theorem 3.1.1. We

separately prove that fixed-points p = c+ζ(p) are equilibria and that such fixed-points

exist. Proving existence of a finite fixed point of c + ζ(·), even when ζ is not bounded,

is accomplished through a straightforward application of the Poincare’-Hopf theorem.

Proving that fixed-points are in fact equilibria is slightly more involved. Generally

speaking, this is accomplished by showing that profits have unique maximizers, most

often proving by appealing to quasi-concavity. While the multi-product firm Logit

profit functions are not quasi-concave (Hanson and Martin, 1996), under utilities with

sub-quadratic second derivatives first-order stationarity of profits implies local con-

cavity. Here the Poincare-Hopf theorem implies that any firm’s profit-optimal prices

are unique (for fixed competitor’s prices), effectively circumventing the difficulties

with profits that are not quasi-concave. While this establishes that fixed-point are

equilibria, note that it does not necessarily imply that equilibria are unique.

That ∞ is always an equilibrium when there is no outside good suggests that a

general treatment cannot be extended to this case without additional bounds on ζ.

The key results for both profit maximization and equilibrium problems are outlined

with their assumptions in Tables 3.1 and 3.2.
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Table 3.1 Assumptions required for important profit maximizations results.

ϑ > −∞
Assm. (3.1.1) (a-c) (a-c) (a-c) (a-c)
Defn. (3.1.2) (Dw)(p) ≤ −r/p (Dw)(p) ≤ −r/p
Defn. (3.1.3) (D2w)(p) < (Dw)(p)2 (D2w)(p) < (Dw)(p)2

pf = cf + ζf (p) is nec-
essary for local profit
maximization

pf = cf + ζf (p) is suf-
ficient for local profit
maximization

Local profit maximiz-
ing prices are finite

Profit-maximizing
prices are unique

Table 3.2 Assumptions required for important equilibrium results.

ϑ > −∞
Assm. (3.1.1) (a-c) (a-c) (a-c) (a-c)
Defn. (3.1.2) (Dw)(p) ≤ −r/p (Dw)(p) ≤ −r/p
Defn. (3.1.3) (D2w)(p) < (Dw)(p)2 (D2w)(p) < (Dw)(p)2

p = c + ζ(p) is nec-
essary for finite local
equilibria

p = c + ζ(p) is suf-
ficient for finite local
equilibria

Local equilibria are
equilibria

Finite solutions to p =
c + ζ(p) exist
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We first define our utility specifications and the remaining terminology in Theorem

3.1.1, followed by the specific random utilities and choice probabilities of the Logit

model.

3.1.1 Systematic Utility Specifications

The random utility any individual receives by purchasing any particular prod-

uct is parameterized by its characteristic vector and price through some function

u : Y × [0,∞)→ [−∞,∞). We consider specifications of the following form.

Assumption 3.1.1. There are functions w : Y × [0,∞) → (−∞,∞) and v : Y →
(−∞,∞) such that utility can be written u(y, p) = w(y, p) + v(y). Concerning the

behavior of w, we assume that, for all y ∈ Y, w(y, ·) : [0,∞) → (−∞,∞) is (a)

strictly decreasing, and (b) continuously differentiable on (0,∞). We also assume that

(c) limp↑∞w(y, p) = −∞, and subsequently set w(y,∞) = −∞.

Writing u(y, p) = w(y, p) + v(y) is, of course, completely general, so long as utility

is defined for all p ∈ [0,∞). We use this form in order to define the “value” of a

product as that component of utility that does not vary with price, and to define

“separable” utilities, the most common class of utility functions used in practice.

Definition 3.1.1. We say v(y) is the value of any product with characteristic vector

y, and that utility is separable in price and characteristics (or simply separable) if

w(y, p) = w(p) for all y ∈ Y. We call |(Dw)(y, p)|−1 the (local) willingness to pay

(for product value).

By not explicitly requiring concave-in-price utility functions, the class formed by

(a-c) is slightly larger than the norm for theoretical economics and encompasses the

majority of utility functions used in the empirical literature. The assumption (c) is a

natural condition that ensures that the choice probabilities vanish as prices increase

without bound. A number of examples are given in Appendix B.

Caplin and Nalebuff (1991) gave a prescription on which we base our specifica-

tion. In our notation, they assume that w(y, p) = α(y)r(ς − p) for p ∈ [0, ς), where

ς ∈ (0,∞) is intended to represent income, r is some strictly increasing and concave

function, and α(y) > 0 for all y ∈ Y; w is not defined for [ς,∞]. This prescription

implies that, where defined, w(y, p) is strictly decreasing and concave in price. Caplin

and Nalebuff’s framework is more general in that it does not need to be defined on all

of [0,∞).1

1They also allow for heterogeneous preferences, which we address in Chapter 4.
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Concave-in-price utilities are certainly an important special case often considered

in economics. However, concavity is a stronger assumption than is required to ensure

the existence of finite equilibrium prices under Logit. We define the following weaker

property of the utility price derivatives to achieve this.

Definition 3.1.2. We say that w eventually decreases sufficiently quickly at y ∈ Y if

there exists some r(y) > 1 and some p̄(y) ∈ [0,∞) such that (Dw)(y, p) ≤ −r(y)/p =

−r(y)D[log p] for all p > p̄(y). We say w itself eventually decreases sufficiently

quickly if w eventually decreases sufficiently quickly at all y ∈ Y.

The most commonly used finite utility functions, particularly strictly decreasing

and concave in price utility functions, satisfy limp→∞(Dw)(y, p) < 0, hence eventually

decrease sufficiently quickly with any r.

A distinct requirement on the second derivatives of utility is synonymous with the

sufficiency of stationarity under Logit.

Definition 3.1.3. Suppose w(y, ·) is twice differentiable for all y ∈ Y. We say

that w has sub-quadratic second derivatives at (y, p) ∈ Y × [0,∞) if (D2w)(y, p) <

(Dw)(y, p)2. We say that w itself has sub-quadratic second derivatives if w has

sub-quadratic second derivatives at all (y, p) ∈ Y × [0,∞).

Note that if (D2w)(y, p) = 0 then, under (a), w trivially has sub-quadratic second

derivatives at (y, p).

With any collection of fixed product characteristic vectors {yj}Jj=1, we set

wj(p) = w(yj, p) and vj = v(yj) and thus generate a collection of product-specific

utility functions, uj(p) = wj(p) + vj, that depend on price alone. Vector func-

tions w : [0,∞]J → [−∞,∞)J and u : [0,∞]J → [−∞,∞)J are constructed from

these product-specific components by taking (w(p))j = wj(pj) and (u(p))j = uj(pj).

In particular, u(p) = w(p) + v. Firm-specific product values vf and utilities

uf (pf ) = wf (pf ) + vf are also defined in the natural way.

3.1.2 Logit Choice Probabilities and Profits

The Logit model (Train, 2003, Chapter 3) takes the utility any individual receives

when purchasing product j to be the random variable Uj(yj, pj) = u(yj, pj) + Ej
and the utility of the outside good to be the random variable U0 = ϑ + E0, where

E = {Ej}Jj=0 is a family of i.i.d. standard extreme value variables and ϑ ∈ [−∞,∞) is

a number representing the utility of the outside good.
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The i.i.d. standard extreme value specification for E generates the following choice

probabilities (see, e.g., Train (2003)):2

PL
j (p) =

euj(pj)

eϑ +
∑J

k=1 e
uk(pk)

. (3.1)

We set e−∞ = 0 so that when ϑ = −∞ we recover the familiar “closed” Logit formula

PL
j (p) =

euj(pj)∑J
k=1 e

uk(pk)
.

We use the following basic properties of the Logit choice probabilities.

Proposition 3.1.2. The following hold under (a-c):

(i) 0 < PL
j (p) < 1 for all p ∈ [0,∞) and all j ∈ N(J).

(ii) PL
f (p)>1 < 1 for all p ∈ [0,∞) and all f ∈ N(F ).

(iii) If ϑ > −∞ and q ∈ [0,∞], limp→q P
L
j (p) exists. Moreover, limp→q P

L
j (p) = 0

if qj =∞, and PL
f (p)>1 < 1 for all p ∈ [0,∞] and all f ∈ N(F ).

(iv) If ϑ = −∞, then for any x ∈ S(J), there exists some sequence {p(n)}n∈N ⊂
[0,∞) with p(n) →∞ such that limn→∞PL(p(n)) = x.

Claim (iv) amounts to the surprising technical fact that the closed Logit choice

probabilities cannot be single valued on [0,∞] if extended to respect limits, and

suggests that the presence of an outside good purchased with positive probability,

i.e., ϑ > −∞, is very important to equilibrium problems under Logit. This claim

is a consequence of the following basic generalization of the “invariance of uniform

price shifts” property of the linear in price utility Logit model to the class of utility

functions specified by (a-c).

Lemma 3.1.3. Suppose w satisfies (a-c). For any p ∈ (0,∞) and each j ∈ N(J),

define χj,p : [1,∞)→ R+ by χj,p(λ) = w−1
j (wj(p)− log λ), and define χp : [1,∞)→

[p,∞) componentwise by (χp(λ))j = χj,pj(λ).

(i) χp(λ) is strictly increasing, with limλ→∞χp(λ) = ∞.

(ii) If ϑ = −∞, PL is invariant on χp([1,∞)); i.e., PL(χp(λ)) ≡ PL(p).

2The equivalent formula

PLj (p) =
e(uj(pj)−ϑ)

1 +
∑J
k=1 e

(uk(pk)−ϑ)

corresponding to setting ϑ = 0 is often seen in the literature and can also be used, but offers no
substantial advantage to our analysis in this Chapter. This form does become more useful in analyzing
Mixed Logit models.
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(iii) If ϑ > −∞, PL(χp(λ)) is strictly decreasing in λ, and PL(χp(λ)) → 0 as

λ→∞.

We view the invariance of the choice probabilities over sequences of prices that

tend to infinity as an unacceptable property for realistic market models.3 Furthermore,

a general existence proof is made much easier through the introduction of an outside

good with positive purchase probability.

The following form for the price derivatives of the Logit choice probabilities is used

extensively.

Proposition 3.1.4. If w satisfies (b), then PL is continuously differentiable for all

p ∈ (0,∞) with

(DkP
L
j )(p) = PL

j (p)(δj,k − PL
k (p))(Dwk)(pk)

= (δj,k − PL
j (p))PL

k (p)(Dwk)(pk).
(3.2)

In other words,

(DPL)(p) = diag(PL(p))
(
I− 1PL(p)>

)
(Dw)(p)

=
(
I−PL(p)1>

)
diag(PL(p))(Dw)(p)

and
(DfP

L
f )(p) = diag(PL

f (p))
(
I− 1PL

f (p)>
)

(Dwf )(pf )

=
(
I−PL

f (p)1>
)

diag(PL
f (p))(Dwf )(pf )

(3.3)

When w is twice differentiable, the second derivatives of the Logit choice probabilities

are given by

(DlDkP
L
j )(p) = δk,l

(
(D2wk)(pk) + (Dwk)(pk)

2
)
PL
k (p)

(
δj,k − PL

j (p)
)

+ (Dwk)(pk)P
L
j (p)

(
2PL

j (p)− δj,k − δj,l
)
PL
l (p)(Dwl)(pl).

(3.4)

3.1.3 Bounded and Vanishing Logit Profits

An understanding of when profits are bounded over the set of all non-negative prices

is a pre-requisite to a general analysis of profit-optimal prices and corresponding price

3Mizuno (2003) makes explicit use of this unrealistic property in proving the existence and
uniqueness of equilibrium prices under Logit with single-product firms and linear in price utilities.
Additionally, while we do not provide a proof of this fact in this document, it is easy to see that this
property extends beyond Logit to any GEV model without an outside good.
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equilibrium. One might expect that because (c) implies that the choice probabilities

vanish as prices increase without bound that profits should also, but this is not true.

Below we show that w(y, p) = −α log p is a specification for which profits can be

unbounded even though the choice probabilities vanish.4 In this article, we rely on

the following property of utility functions to guarantee not only the finiteness of Logit

profits, but that these profits vanish as prices increase without bound.5

Definition 3.1.4. We say that w is eventually log bounded at y ∈ Y if there exists

some r(y) > 1, κ(y), and some p̄(y) ∈ [0,∞) such that w(y, p) ≤ −r(y) log p+ κ(y)

for all p > p̄(y). We say w itself is eventually log bounded if w is eventually log

bounded at all y ∈ Y.

We note that if w eventually decreases sufficiently quickly then the fundamental

theorem of calculus implies that w is also eventually log bounded. Appendix B contains

an example demonstrating that the converse need not hold.

The following proposition establishes that functions with eventually log bounded

utility functions generate bounded and vanishing Logit profits.

Proposition 3.1.5. Let ϑ > −∞, q ∈ [0,∞], and suppose that there exists

r : Y → [1,∞), p̄ : Y → [0,∞), and κ : Y → R such that w(y, p) ≤ −r(y) log p+κ(y)

for all p > p̄(y). Then limp→q π̂f(p) <∞. If in fact r(y) : Y → (1,∞), i.e. if w is

eventually log bounded, then limp→q π̂f (p) = 0 if qf = ∞.

Appendix B contains an example demonstrating that the converse to the second

claim is false. That is, bounded and vanishing Logit profits need not imply that w is

eventually log bounded. If eventual log boundedness is strongly violated in the sense of

the hypothesis in the following proposition, then profits must increase without bound

as prices do.

Proposition 3.1.6. Let ϑ > −∞. Suppose that for all y ∈ Y there exists an r ∈ (0, 1)

such that for all p̄ ∈ [0,∞) there exists a p > p̄ with w(y, p) ≥ −r log p + κ. Then

limp→q π̂f (p) =∞ for any q ∈ [0,∞] with any qj =∞, j ∈ Jf .

The results above prove that profit-optimal prices are not all infinite if some

competitor’s product or the outside good is purchased with positive probability.

4We draw this example from the empirical literature: Allenby and Rossi (1991) derive this
specification from consumer-theoretic principles to represent “asymmetric brand switching under
price changes.”

5The constant κ(y) is convenient, but not necessary; it is easy to show that w is eventually log
bounded with (r(y), p̄(y), κ(y)) where κ(y) 6= 0 if and only if it is so with some (r′(y), p̄′(y), 0).
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Proposition 3.1.7. Suppose w satisfies (a-c) and is eventually log bounded.

(i) If ϑ > −∞ and pf ∈ [0,∞] locally maximizes π̂f (·,p−f ) for any p−f ∈ [0,∞],

then pf 6= ∞.

(ii) If ϑ = −∞ and pf ∈ [0,∞] locally maximizes π̂f(·,p−f) for any p−f ∈
[0,∞] \ {∞}, then pf 6= ∞. However, π̂f (·,∞) is maximized only by pf = ∞.

This proposition states that profit-maximizing prices are not all infinite. To show

that profit maximizing prices are all finite under the same hypotheses, we must take

develop other aspects of our analysis.

3.1.4 Fixed-Point Characterizations of Price Equilibrium

In this subsection, we characterize equilibria as a fixed-point of two maps, both of

which arise directly from the Simultaneous Stationarity Condition.

Our first fixed-point characterization specializes Eqn. (3.8) using Eqn. (3.3).

This is a direct generalization of the fixed-point equations derived under “constant

coefficient” linear in price utility (i.e., w(y, p) = −α for some α > 0) for single-product

firms by Anderson and de Palma (1992a) and for multi-product firms by Besanko

et al. (1998).

Proposition 3.1.8. Suppose w satisfies (a-c).

(i) (I − 1PL
f (p)>)−1 exists whenever ϑ > −∞ or, if ϑ = −∞, when p−f 6= ∞,

but not otherwise. Moreover, (I− 1PL
f (p)>)−1 maps positive vectors to positive

vectors.

(ii) If pf ∈ (0,∞) locally maximizes π̂f (·,p−f ), then pf = cf + ηf (p) where

ηf (p) = −(I− 1PL
f (p)>)−1(Dwf )(pf )

−11. (3.5)

(iii) If p ∈ (0,∞) is a local equilibrium, then Eqn. (3.5) holds for all f ∈ N(F ).

This characterization is easily derived by noting that

(DfPf )(p)> = (Dfwf )(pf )diag(Pf (p))(I− 1Pf (p)>)

and hence Eqn. (3.8) becomes

(I− 1Pf (p)>)(pf − cf ) = −[(Dfwf )(pf )diag(Pf (p))]−1Pf (p) = −(Dfwf )(pf )
−11.

We derive our second fixed-point function by multiplying (I− 1Pf (p)>) through,
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to obtain

(pf − cf ) = (Pf (p)>(pf − cf ))1− (Dfwf )(pf )
−11 = π̂f (p)1− (Dfwf )(pf )

−11.

We can consider 1Pf(p)> the “contractive” part of (I − 1Pf(p)>) because

||1Pf (p)>||∞ ≤ ||Pf (p)||1 < 1.

Definition 3.1.5. Define ζ : (0,∞)J → (−∞,∞)J by ζ(p) = π̃(p) − (Dw)(p)−11

where π̃(p) ∈ RJ is the vector with components (π̃(p))j = π̂f(p), for j ∈ Jf . ζ has

components ζj(p) = π̂f (p)− (Dwj)(pj)
−1 where j ∈ Jf , and “intra-firm” components

ζf (p) = π̂f (p)1− (Dwf )(pf )
−11.

The intra-firm profit gradients can be written in terms of the maps ζf . Specifically,

(∇f π̂f )(p) = (Dwf )(pf )diag(PL
f (p))

(
pf − cf − ζf (p)

)
(3.6)

and

(∇̃π̂)(p) = (Dw)(p)diag(PL(p))
(
p− c− ζ(p)

)
. (3.7)

In other words, the fixed-point “deviations” p − c − ζ(p) arise directly from the

combined gradient by factoring out the gradient of the inclusive value.

The derivation above is encapsulated in the following result.

Proposition 3.1.9. Suppose w satisfies (a) and (b).

(i) If pf ∈ (0,∞) locally maximizes π̂f (·,p−f ), then pf = cf + ζf (pf ,p−f ).

(ii) If p ∈ (0,∞) is a local equilibrium, then p = c + ζ(p).

In Appendix B we also use Eqn. (3.6) to show that profits under Logit with

w(y, p) = −α log p where α ≤ 1 (Allenby and Rossi, 1991) has no finite profit-

maximizing prices.6

The positivity of markups in equilibrium is an important result known to hold for

single-product firm models (Anderson and de Palma, 1992a). As might be expected,

profit-maximizing and equilibrium prices are not only positive but are also greater

than costs under Logit. Our proof is based on both fixed-point characterizations.

Proposition 3.1.10. Suppose w satisfies (a-c).

(i) No pf ∈ [0,∞] \ (cf ,∞] maximizes π̂f(·,p−f). Hence no p ∈ [0,∞] \ (c,∞]

can be a local equilibrium.

6Sandor (2001) has also made this observation, although it is not clear he knew this function had
been derived for an empirical model.
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(ii) If, in addition, w is eventually log bounded and ϑ > −∞, then no pf ∈
[0,∞] \ (cf ,∞) maximizes π̂f(·,p−f). Hence no p ∈ [0,∞] \ (c,∞) can be a

local equilibrium.

The ζ characterization also shows that Logit price equilibrium problems are “single-

parameter problems.” Specifically, pj = cj+ζj(p) can also be written as ψj(pj) = π̂f (p),

where ψj(p) = p− cj + (Dwj)(p)
−1. We note the following characteristics of the maps

ψj : R+ → R.

Lemma 3.1.11. Suppose (a-c). (i) ψj(cj) < 0. (ii) If w eventually decreases suffi-

ciently quickly, then ψj(p)→∞ as p→∞. (iii) ψj is strictly increasing if, and only

if, w has sub-quadratic second derivatives.

By this Lemma, the equation ψj(p) = π has a unique solution Ψj(π) > cj for any

π > 0 when w eventually decreases sufficiently quickly and has sub-quadratic second

derivatives. Thus if πf > 0 are profit-optimal profits, the stationarity condition re-

quires pj = Ψj(πf ) for all j ∈ Jf . In other words, we only need profits or, equivalently,

a single price for each firm to derive profit-optimal prices for all of a firm’s products.

We can subsequently characterize Logit equilibrium in terms of profits alone,

through a fixed-point of a map from RF
+ → RF

+. Let Ψ : RF
+ → RJ be defined by

(Ψ(π))j = Ψj(πf(j)). Let π̂ : RJ → RF have component functions π̂f : RJ → R. The

equilibrium condition is simply (π̂ ◦Ψ)(π) = π̂(Ψ(π)) = π.

3.1.5 Sufficiency of the Fixed-Point Characterizations

Because quasi-concavity of profits is demonstrably absent with multi-product firms

under Logit (Hanson and Martin, 1996) no general approach to multi-product firm

equilibrium problems can rely on quasi-concavity to establish the uniqueness of profit-

maximizing prices. However, something like quasi-concavity is required to be able

to state that solutions to the fixed-point equation pf = cf + ζf(p), which will be

shown to exist, are in fact profit maximizers. When w has sub-quadratic second

derivatives Logit profits have the surprising property that the first order necessary

conditions imply the second order sufficient conditions; that is, stationarity implies

local concavity. This circumvents the need for quasi-concavity, as desired.

Theorem 3.1.12. Suppose w satisfies (a-c) and has sub-quadratic second derivatives.

(i) Fix f ∈ N(F ). If ϑ = −∞, suppose that p−f ∈ [0,∞] \ {∞}. Satisfaction of

either fixed-point equation pf = cf + ηf(pf ,p−f) or pf = cf + ζf(pf ,p−f) is

sufficient for pf ∈ (0,∞) ⊂ RJf to be a local maximizer of π̂f (·,p−f ).
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(ii) Satisfaction of either fixed-point equation p = c + ζ(p) or p = c + η(p) is

sufficient for p ∈ (0,∞) ⊂ RJ to be a local equilibrium.

(iii) If, in addition to the hypotheses of (i), w also eventually decreases sufficiently

quickly then there is a unique finite maximizer of π̂f (·,p−f ).

(iv) When w eventually decreases sufficiently quickly, either fixed-point equation

p = c + ζ(p) or p = c + η(p) is sufficient for p ∈ (0,∞) ⊂ RJ to be an

equilibrium.

Claim (i) is probably the most surprising result, from which Claim (ii) follows read-

ily. The proof of Claim (i) follows from writing out the intra-firm profit price-Hessians,

which turn out to be diagonal with negative diagonal entries at any stationary prices

when w has sub-quadratic second derivatives. That the profit Hessians should be

diagonal when pricing optimally is a surprising aspect of Logit profits suggesting that

near optimality, the intra-firm profit gradients become diagonal functions.7 Again

setting ψj(p) = p− cj + (Dwj)(p)
−1, we can write

(Djπ̂
L
f )(p) = (Dwj)(pj)P

L
j (p)(ψj(pj)− π̂Lf (p))

to see that the intra-firm profit gradients (∇f π̂
L
f )(p) are a row scaling of the difference

between a diagonal function, ψf (pf ), and a “full” function whose Jacobian vanishes

when pricing optimally, namely π̂Lf (p)1.8 This implies that

(
(Dwj)(pj)P

L
j (p)

)−1
(DkDjπ̂

L
f )(p)

=
(
(Dwj)(pj)P

L
j (p)

)−1
Dk[(Dwj)(pj)P

L
j (p)](ψj(pj)− π̂Lf (p))

+ δj,k(Djψ)(pj)− (Dkπ̂
L
f )(p).

When firm f prices optimally, (Dkπ̂
L
f )(p) and ψj(pj)− π̂Lf (p) vanish, leaving

(
(Dwj)(pj)P

L
j (p)

)−1
(DkDjπ̂

L
f )(p) = δj,k(Djψ)(pj).

It is easy to see that ψj is strictly increasing if, and only if, wj has sub-quadratic

second derivatives.

Claim (iii) can be proved with an application of the Poincare-Hopf Theorem

(Milnor, 1965, Chapter 6, pg. 35) to the negative gradient vector field of firm f ’s

profit function. This application requires utilities to eventually decrease sufficiently

quickly in order to construct a bounded compact set with a boundary on which the

7A diagonal function is simply a function with a diagonal Jacobian.
8This function always has a singular Jacobian.
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negative gradient vector field always points outward. This is a consequence of the

following lemma.

Lemma 3.1.13. Suppose w satisfies (a-c) and eventually decreases sufficiently quickly.

(i) For any p−f ∈ [0,∞] \ {∞}, there exists some p̄f(p−f) ∈ (cf ,∞) such that

pf > cf + ζf(pf ,p−f) whenever pf ∈ [0,∞) \ [0, p̄f(p−f)); i.e., whenever

pj ≥ p̄j(p−f ).

(ii) When ϑ > −∞, there exists some p̄ ∈ (c,∞) such that p > c + ζ(p) whenever

p ∈ [0,∞] \ [0, p̄); i.e., whenever pj ≥ p̄j.

On the other hand, if for some j there exists p̄j such that (Dwj)(pj) ≥ −p−1
j , then

pj − cj ≤ ζj(p) for all pj > p̄j.

By Theorem 3.1.12, Claim (i), all stationary points of the negative gradient vector

field have index equal to one (Milnor, 1965) and thus, by the Poincare-Hopf Theorem,

there is a unique stationary point. This proof exploits the same ideas as the abstract

uniqueness condition recently given by Simsek et al. (2007) for the uniqueness of

solutions in inequality constrained optimization problems under a generalized Poincare-

Hopf Theorem. Theorem 3.1.12, Claim (iv), then follows from Claims (ii) and (iii) of

the same theorem.

Requiring utilities to have sub-quadratic second derivatives is a condition as weak

as possible in the following sense. If w strictly violates the sub-quadratic second

derivatives condition at (yj, pj) where pf makes π̂f(·,p−f) stationary, then profits

are minimized over changes of the jth price and π̂f(·,p−f) is not maximized. Fur-

thermore, maximization of π̂f (·,p−f ) by pf requires w to have sub-quadratic second

derivatives at (yj, pj) for all j ∈ Jf : the Hessian must be negative semi-definite,

including the case where it might be zero, which implies w has sub-quadratic second

derivatives at (yj, pj) for all j ∈ Jf . In principle, it is possible that a function w

that does not have sub-quadratic second derivatives for all (y, p) ∈ Y × (0,∞) has

unique profit-maximizing prices so long as w has sub-quadratic second derivatives at

every stationary point of π̂f(·,p−f). Seeing as most functions w of current interest

in economics have sub-quadratic second derivatives everywhere, investigating this

complicated degree of generality does not currently seem worthwhile.

3.1.6 Existence of Fixed-Points

The existence claim in Theorem 3.1.1 is a consequence of the following fixed-point

existence result.
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Theorem 3.1.14. Let ϑ > −∞ and w satisfy (a-c) and eventually decrease sufficiently

quickly. There exists at least one p ∈ (c,∞) such that p = c + ζ(p).

The easiest proof is obtained by again using the Poincare-Hopf Theorem, which

requires only that one know that pj > cj + ζj(p) for large enough pj. This result

is valid even for certain convex in price utilities that, despite eventually decreasing

sufficiently quickly, generate unbounded ζ.9 Applying Brouwer’s Fixed Point Theorem

on [0,∞] is uninformative for such utilities because ∞ is a fixed-point of c + ζ when

limp→∞(Dw)(y, p) = 0.10 Furthermore, if w is not concave in price, it is not clear that

c + ζ(·) maps [c, p̄] into itself, where p̄ is given by Lemma 3.1.13.

Note also that we have not required that w have sub-quadratic second derivatives.

However, this assumption is necessary to make the claim that the fixed-point whose

existence is guaranteed by Theorem 3.1.14 is in fact an equilibrium.

Again, the assumption ϑ > −∞ is essential to ensure that ζ can be extended as a

function, rather than as a set-valued map. The natural candidate for a more general

existence proof applicable to the case ϑ = −∞ is Kakutani’s Fixed Point Theorem

(Kakutani, 1941; Caplin and Nalebuff, 1991). However, the following straightforward

extension of Proposition 3.1.7 makes any potential application of this tool on [0,∞]

uninformative.

Proposition 3.1.15. ∞ is always an equilibrium if ϑ = −∞.

It is also impossible to extend our application of the Poincare-Hopf Theorem to

this case because the minimal value of pj for which pj > cj + ζj(p) holds depends on

p−f and grows without bound as p−f →∞. This suggests that a generic treatment

of the price equilibrium existence problem for ϑ = −∞ must rely on bounds of the

values taken by ζ.

To close this section, we state a generalization of Sandor’s claim that under Logit

with linear in price utility, profits are neither supermodular nor log-supermodular

arbitrarily close to equilibrium prices (Sandor, 2001, Chapter 4).

Proposition 3.1.16. Let ϑ > −∞ and let w satisfy (a-c), be concave in price, and

be twice continuously differentiable. Suppose p∗f ∈ (0,∞) maximizes π̂f (·,p−f ). Then

for any ε > 0, there exists a pf such that ||pf − p∗f || < ε, (DlDkπ̂f)(p) < 0, and

(DlDk log π̂f )(p) < 0, where p = (pf ,p−f ).

9For example, −α log p, where α > 1. ζ is unbounded because the price derivative of utility
vanishes as p→∞.

10Because [0,∞) is not compact, |pj − cj − ζj(p)|, pj , and cj + ζj(p) can all be unbounded as
pj →∞.
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This result implies that there does not exist a compact set with non-empty

interior containing any equilibrium on which Logit profits are supermodular or log-

supermodular, ruling out the possibility of using this general property to establish

the existence of equilibrium for multi-product firms as Milgrom and Roberts (1990)

did for single-product firms. Naturally, because supermodularity has been used to

prove the existence of equilibrium prices under Logit for single-product firms, the

proof relies on the fact that firms produce more than one product.

3.2 Structural Properties of Price Equilibrium

The goal of this section is to establish properties that the finite prices and markups

of any local equilibrium must satisfy based only on properties of ζ. We emphasize

that such properties depend only on the necessity of the fixed-point equation, and not

on our sufficiency and existence results. The most general result is Corollary 3.2.1,

which states that the difference between local profit optimal markups for two products

offered by the same firm depends only on the prices and characteristics of those two

products. This property is very similar to the embodiment of the “Independence of

Irrelevant Alternatives” (IIA) property in Logit models.11 In Corollaries 3.2.5 through

3.2.8 we apply this to concave-in-price utility functions under hypotheses on the unit

cost and value functions to illuminate some counterintuitive properties of equilibrium

prices under Logit.

3.2.1 Intra-Firm Structural Properties

For this subsection, we focus on a single firm f ∈ N(F ) and derive our results as

properties of locally profit-optimal prices. Naturally, these properties will be manifest

in locally equilibrium prices as well. This section is also the only portion of this article

in which we focus heavily on concave in price utilities, which will satisfy our existence

conditions. Throughout we assume that w satisfies (a-c) and p ∈ (c,∞) is such that

pf maximizes π̂f (·,p−f ), and do not list these hypotheses explicitly in the corollaries

presented in this section.

The basic observation is as follows.

11Particularly, that the ratio of choice probabilities depends only on the characteristics and prices
of those two products (Train, 2003).
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Corollary 3.2.1. For any j, k ∈ Jf ,

(pj − cj)− (pk − ck) = −
(

1

(Dwj)(pj)
− 1

(Dwk)(pk)

)
. (3.8)

That is, the difference between locally profit optimal markups for any two products

offered by a single firm depends only on the corresponding utility derivatives, and

hence only on the characteristics and prices of those products.

We immediately state one obvious application, motivated by the frequent applica-

tion of constant coefficient linear in price utility functions.

Corollary 3.2.2. If w(y, p) ≡ −αp for some α > 0, then profit-optimal markups are

constant regardless of product costs or the value of product characteristics.

Constant intra-firm markups have appeared as an assumption (Rossi et al., 2006;

Doraszelski and Draganska, 2006), but not often proven to be an equilibrium outcome

(Verboven, 1999).

The following example motivates the more general propositions on profit-optimal

markups given below. Consider the quadratic in price utility w(y, p) ≡ w(p) = −αp2.

Then

(pj − cj)− (pk − ck) =

(
1

2α

)(
1

pj
− 1

pk

)
,

demonstrating that locally profit optimal markups decrease with the corresponding

prices (i.e., mj > mk if and only if pj < pk). Rearranging and setting λ = 1/(2α), we

obtain (
pj −

λ

pj

)
−
(
pk −

λ

pk

)
= cj − ck.

The function ηλ(p) = p− λ/p is strictly increasing in p for non-negative λ, and thus

cj > ck implies pj > pk. Thus, locally profit optimal prices increase with costs while

the corresponding markups decrease with costs. Additionally, we note that if cj = ck

then pj = pk, even if yj 6= yk; that is, variations in value that do not affect willingness

to pay or costs are not reflected in profit-optimal prices.

Following this example we are motivated to re-write Eqn. (3.8) as(
pj +

1

(Dwj)(pj)

)
−
(
pk +

1

(Dwk)(pk)

)
= cj − ck (3.9)

essentially because of the following important observation, applied above.

Lemma 3.2.3. Set ϕ(y, p) = p + (Dw)(y, p)−1, and suppose w is twice differen-

tiable. Then w has sub-quadratic second derivatives if, and only if, ϕ(y, p) is a strictly
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increasing function of p.

We first generalize the counterintuitive property that differences in characteristics

that do not impact costs or willingness to pay do not impact prices even if they impact

value.

Corollary 3.2.4. Let w have sub-quadratic second derivatives. Suppose cj = ck and

(Dwj)(p) = (Dwk)(p) for all p ∈ [0,∞) for some j, k ∈ Jf , even if yj 6= yk. Then

pj = pk.

In other words, for any separable utility with sub-quadratic second derivatives,

profit-optimal prices are determined by costs, not value. One would expect that real

firms would not follow this rule, charging higher markups for the more valued product.

Corollary 3.2.1 also implies the second counterintuitive property of locally profit

optimal markups − that they decrease with costs − under Logit with any utility

function that is both strictly concave in price and separable in price and characteristics.

Corollary 3.2.5. Suppose that w is separable in price and characteristics and strictly

concave in price. Then firm f ’s higher marginal cost products have lower locally profit

optimal markups. That is, if j, k ∈ Jf and cj > ck, then pj − cj < pk − ck.

Intuition holds that both locally profit optimal markups and costs should increase

with value, if not costs. To make this connection explicit, we pose the only quantitative

assumption on costs we make in this article:

Assumption 3.2.1 (Value Costs Hypothesis). More valued products cost more per

unit to offer; that is, v(y) > v(y′) implies that c(y) > c(y′) for all y,y′ ∈ Y.

Bresnahan (1987) has remarked that this is a natural condition. When considering

equilibrium prices, this assumption need only be applied within firms. That is, there

may be firm-specific cost functions each independently satisfying the value costs hy-

pothesis, while the value costs hypothesis is violated across firms. This states that two

distinct firms can produce a value-equivalent product at distinct unit costs without

violating the results that apply this hypothesis. With this definition, we provide the

following restatement of Corollary 3.2.5.

Corollary 3.2.6. Suppose that w is separable in price and characteristics and strictly

concave in price; suppose also that the value costs hypothesis holds. Then firm f ’s

higher value products have lower locally profit optimal markups. That is, if j, k ∈ Jf
and vj > vk, then pj − cj < pk − ck.
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Markups can increase with value when w is convex in price. Consider w(y, p) ≡
w(p) = −α log p,

(pj − cj)− (pk − ck) =

(
1

α

)
(pj − pk) .

and we observe that locally profit optimal markups increase with the corresponding

prices. This implies

(pj − pk) =

(
1

α− 1

)
(cj − ck).

Hence if α > 1, locally profit optimal prices increase with costs, and locally profit

optimal markups increase with costs. While this is a more intuitive outcome, it comes

from a less intuitive utility specification.

We introduce another assumption, the “unique value hypothesis,” to further con-

nect value with prices. As defined by Nagle and Holden (1987), the unique value

hypothesis postulates that as a product’s combination of characteristics becomes more

valued, individuals are less sensitivity to price changes. We transcribe this for our

framework as follows.

Assumption 3.2.2 (Unique Value Hypothesis). For any y,y′ ∈ Y, v(y) > v(y′)

implies

|(Dw)(y, p)| ≤ |(Dw)(y′, p)| for all p ∈ [0,∞).

We first use this definition to give an example of a non-separable but convex in

price utility for which markups increase with value. Consider w(y, p) = −α(y)p,

where α : Y → (0,∞). Then

(pj − c(yj))− (pk − c(yk)) =

(
1

α(yj)
− 1

α(yk)

)
,

and (pj − c(yj)) ≥ (pk − c(yk)) if and only if α(yj) ≤ α(yk). The unique value hy-

pothesis mandates that v(yj) > v(yk) implies α(yj) ≤ α(yk), and hence markups do

not decrease with value if this hypothesis holds. Note that this is consistent with our

previous result for constant coefficient linear in price utility where α(y) ≡ α ∈ (0,∞).

Whenever α(yj) < α(yk), that is whenever the unique value hypothesis holds in a

non-trivial way, markups can strictly increase with value.

A related and important question is whether higher value products have higher

locally profit optimal prices. By Corollary 3.2.4, this cannot hold without additional

hypothesis. We show that this indeed holds using the value costs and unique value

hypotheses.
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Corollary 3.2.7. Suppose that w has sub-quadratic second derivatives and satisfies

the unique value hypothesis; suppose also that the value costs hypothesis holds. Then

firm f ’s higher value products have higher locally profit optimal prices. That is, for

any j, k ∈ Jf , vj > vk implies that pj > pk.

Since any separable utility trivially satisfies our “weak” specification of the unique

value hypotheses, we have the following special case.

Corollary 3.2.8. Suppose that w is separable in price and characteristics and that

the value costs hypothesis holds. Then firm f ’s higher value products have higher

locally profit optimal prices. That is, vj > vk implies that pj > pk for any j, k ∈ Jf .

3.2.2 An Inter-Firm Structural Property

Eqn. (3.8) is a special case of the following equation.

Corollary 3.2.9. For any f, g ∈ N(F ), j ∈ Jf , and k ∈ Jg,

(pj − cj)− (pk − ck) =

(
π̂f (p)− 1

(Dwj)(pj)

)
−
(
π̂g(p)− 1

(Dwk)(pk)

)
. (3.10)

Mirroring our approach to studying intra-firm structural properties, it is useful to

set

ψf (y, p) = p+
1

(Dw)(y, p)
− cf (y)

and re-write Eqn. (3.10) as

ψf (yj, pj)− ψg(yk, pk) = π̂f (p)− π̂g(p). (3.11)

This equation expresses the existence of a portfolio effect present in equilibrium pricing

with multi-product firms and even the simplest Logit model: equilibrium prices for

the same product offered at the same cost by different firms can be influenced by the

profitability of other products in these firm’s portfolios. Stated another way, if the

other products offered by a particular firm did not matter in determining equilibrium

prices, then we would expect yj = yk and cf (yj) = cg(yk) for some j ∈ Jf and k ∈ Jg
to imply that pj = pk. However, Eqn. (3.11) says this is not so.

Corollary 3.2.10. (Portfolio Effect.) Let w have sub-quadratic second derivatives

and suppose that yj = yk and cf (yj) = cg(yk) for some j ∈ Jf and k ∈ Jg. Then (i)

pj > pk if, and only if, π̂f (p) > π̂g(p), (ii) pj < pk if, and only if, π̂f (p) < π̂g(p), and

(iii) pj = pk if, and only if, π̂f (p) = π̂g(p).
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3.3 Conclusions

In this chapter, we have proved the existence of equilibrium prices for Bertrand compe-

tition with multi-product firms under the Logit model without restrictive assumptions

on the firms or their products. Instead of studying a particular utility function, we

introduce abstract conditions on the utility function under which existence holds.

Our proof circumvents fundamental obstacles to the extension of existing equilib-

rium proofs for single-product firms by applying the Poincare-Hopf Theorem to a

new fixed-point equation derived from the Simultaneous Stationarity Condition. By

invoking the conventional assumption that utility is concave in price and separable

in price and characteristics along with the reasonable assumption that more valued

products cost more to make per unit, we have identified a counterintuitive property of

profit-maximizing prices under Logit: the more the population values a product’s char-

acteristics, the lower its profit-optimal markup. We have also used the new fixed-point

characterization to prove that Logit price equilibrium problems are “single-parameter

problems,” even when firms offer many products.
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Chapter 4

Computation of Unregulated
Equilibrium Prices Under Mixed

Logit Models of Demand

In this chapter we consider four numerical approaches for computing equilibrium prices

for Bertrand competition models with fairly arbitrary Mixed Logit models of demand:

CG-NM: Solve (∇̃π̂)(p) = 0 using Newton’s method;

η-NM: Solve p− c− η(p) = 0 using Newton’s method (see Eqn. (3.8), or Eqn.

(4.1));

ζ-NM: Solve p− c− ζ(p) = 0 using Newton’s method (see Eqn. (4.2));

ζ-FPI: Iterate p← c + ζ(p).1

Solving any of the three problems (∇̃π̂)(p) = 0, p − c − η(p) = 0, and

p − c − ζ(p) = 0, though equivalent in the sense of having the same solution set,

may have entirely different numerical properties. Applying Newton’s method to either

fixed-point formulation instead of directly attacking the simultaneous stationarity

conditions can be thought of as “nonlinearly” or “analytically” pre-conditioning the

original problem (∇̃π̂)(p) = 0. We study fixed-point iteration based on ζ because we

have not observed fixed-point iteration based on η to be convergent.

This chapter proceeds as follows. In Section 4.1 we derive the fixed-point expres-

sions p = c + η(p) and p = c + η(p) to virtually all Mixed Logit models. Then

Section 4.2 briefly reviews the numerical methods employed; Appendix C provides

more details. Section 4.3 introduces our numerical example, the computation of equi-

librium vehicle prices for vehicles sold during 2005 under two Mixed Logit models from

the econometric literature (Boyd and Mellman, 1980; Berry et al., 1995). Section 4.4

1We have not found the fixed-point iteration p← c + η(p) to be convergent.
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provides a detailed analysis of the behavior of the fixed-point iteration as a method of

computing equilibrium prices for 5,298 vehicles sold during 2005. Section 4.5 reports on

a detailed comparison between the fixed-point iteration and a state-of-the-art variant

of Newton’s method applied directly to the Simultaneous Stationarity Condition and

to the fixed-point characterizations using a model with only 993 vehicles. Generally,

we observe that using the fixed-point characterization can result in significant increases

in reliability and efficiency. Specifically, ζ-FPI proves to be the fastest and most

reliable approach for computing equilibrium prices for the model we examine.

4.1 Fixed-Point Equations for Equilibrium Prices

Under Mixed Logit Models

In this section we generalize our fixed-point equations for local equilibrium prices

derived under Logit models to any Mixed Logit model with continuously differentiable

choice probabilities. Broadly speaking, Mixed Logit models characterize choice in

a population through a parameterized family of simpler Logit models (Train, 2003,

Chapter 6). A random vector of “demographics” Θ, taking values in a set T with

probability measure µ, serve as the parameters. These “demographics” may be either

(or both) “observed” demographics (e.g., income, age, family size etc.) or may be

“unobserved” demographics (Berry et al., 1995), often also called “random coefficients”

(e.g., see Nevo (2000b) or Train (2003)). We first extend our class of utility functions

to one that depends on these demographic variables. Next, we derive a particular

“splitting” of the matrix of choice probability derivatives that allows us to write Eqn.

(2.3) as a fixed-point equation of the type derived for Logit models.

4.1.1 Systematic Utility Specifications

Throughout this article we use the following basic utility assumption, now a proper

generalization of that introduced by Caplin and Nalebuff (1991).

Assumption 4.1.1. There exists some ς : T → (0,∞], w : T ×Y×[0,∞]→ [−∞,∞),

and v : T × Y → (−∞,∞) satisfying w(θ,y, p) > −∞ for all p < ς(θ) and

w(θ,y, p) = −∞ for all p ≥ ς(θ) such that u(θ,y, p) = w(θ,y, p) + v(θ,y). Concern-

ing the behavior of w, we assume that for µ-almost every (a.e.) θ ∈ T and all y ∈ Y,

w(θ,y, ·) : (0, ς(θ)) → (−∞,∞) is (a) continuously differentiable and (b) strictly

decreasing, with (c) w(θ,y, p) ↓ −∞ as p ↑ ς(θ). We also suppose there exists some

ϑ : T → [−∞,∞).
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We are not aware of any utility specifications used empirically that do not fall

under this assumption. Individuals in the population are assigned the random utilities

Uj(yj, pj) = u(Θ,yj, pj) + Ej for each product j ∈ N(J) and U0 = ϑ(Θ) + E0 for the

outside good, where E = {Ej}Jj=0 is a random vector of i.i.d. standard extreme value

variables.

The random variable Σ = ς(Θ) represents a random, “non-compensatory” pricing

cutoff beyond which individuals characterized by the demographics Θ cannot purchase

a product, no matter how valued its combination of characteristics. In many models

Σ represents income, often given a lognormal distribution to fit empirical income data.

We set ς∗ = ess supµ ς and allow, but do not require, ς∗ =∞. An important subclass

of models − those with finitely-supported µ − will in fact have ς∗ <∞.

Note also that we have not restricted µ, the distribution of Θ, with Assumption

4.1.1. Important examples of µ from the econometrics and marketing literature include

empirical frequency distributions, standard continuous distributions (e.g. normal,

lognormal, and χ2), truncated standard continuous distributions, and finite mixtures

of standard continuous distributions.

4.1.2 Mixed Logit Choice Probabilities and Their Deriva-

tives

The choice probabilities conditional on the value of Θ are those of the Logit model:

PL
j (θ,p) = P(C(p) = j | Θ = θ) =

euj(θ,pj)

eϑ(θ) +
∑J

k=1 e
uk(θ,pk)

.

Since P(C(p) = j) =
∫

P(C(p) = j | Θ = θ)dµ(θ), Pj(p) =
∫
PL
j (θ,p)dµ(θ) gives

the Mixed Logit choice probabilities. This “mixing” of a family of Logit choice rules

parameterized by θ ∈ T via the “mixing distribution” µ provides the Mixed Logit

class of RUMs its name.

The following representation of the Mixed Logit choice probability price derivatives

engenders the fixed-point expression given below.

Proposition 4.1.1. Let u satisfy (a-c), and suppose the Leibniz Rule (e.g., see

Munkres (1991)) holds for the Mixed Logit choice probabilities; that is, (DkPj)(p) =∫
(DjP

L
k )(θ,p)dµ(θ). Then the price derivatives of the Mixed Logit choice proba-

bilities are given by (DP)(p) = Λ(p) − Γ(p) where Λ(p) = diag(λ(p)), λj(p) =∫
(Dwj)(θ, pj)P

L
j (θ,p)dµ(θ), and Γ is the full J × J matrix with entries γj,k(p) =∫

PL
j (θ,p)PL

k (θ,p)(Dwk)(θ, pk)dµ(θ). The intra-firm price derivatives of the Mixed
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Logit choice probabilities are given by (D̃P)(p) = Λ(p)− Γ̃(p) where

(
Γ̃(p)

)
j,k

=

{
γj,k(p) if f(j) = f(k)

0 if f(j) 6= f(k)

It is easy to see that the formula

(DP)(p) = (I− Γ(p)Λ(p)−1)Λ(p)

generalizes the form given in Proposition 3.1.4 for Logit models.

Finally, we provide a simple, abstract condition on the utility specification (u, ϑ)

and demographic distribution µ guarantees that the Leibniz Rule holds and defines

continuously differentiable choice probabilities. We use this condition and the proposi-

tion that follows to validate our application of the fixed-point equation to two empirical

Mixed Logit RUMs of new vehicle purchasing.

Assumption 4.1.2. |(Dw)(·,y, p′)| eu(·,y,p′)−ϑ(·) is uniformly µ-integrable for all p′ in

a neighborhood of any p ∈ (0, ς∗) for all y ∈ Y; that is, there exists some ϕ(y,p) : T →
[0,∞) with

∫
ϕ(y,p)(θ)dµ(θ) < ∞, such that |(Dw)(θ,y, p′)| eu(θ,y,p′)−ϑ(θ) ≤ ϕ(y,p)(θ)

for all p′ in some neighborhood of p.

Proposition 4.1.2. If Assumption 4.1.2 holds, then the Leibniz Rule holds for the

Mixed Logit choice probabilities which are also continuously differentiable on (0, ς∗1).

4.1.3 Fixed-Point Equations

We now derive fixed-point characterizations of simultaneously stationary prices. Propo-

sition 4.1.1 states that

(D̃P)(p)> = Λ(p)(I−Λ(p)−1Γ̃(p)>),

and hence Eqn. 2.4 can be written as p = c + η(p) where

η(p) = −
(
I−Λ(p)−1Γ̃(p)>

)−1
Λ(p)−1P(p). (4.1)

This is an extension of the second fixed-point characterization derived under Logit,

and a specialization of Eqn. (3.8).2 Lemma 4.1.5 establishes that I−Λ(p)−1Γ̃(p)> is

invertible, and thus η is well-defined.

2Though we could simply write η(p) = −(D̃P)(p)−>P(p), the form given in Eqn. (4.1) has
resulted in a more stable means of computing η(p).
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We could, however, write instead

(
I−Λ(p)−1Γ̃(p)>

)
(p− c) = (p− c)−Λ(p)−1Γ̃(p)>(p− c) = −Λ(p)−1P(p),

generating the equivalent fixed-point equation p = c + ζ(p) where

ζ(p) = Λ(p)−1(Γ̃(p)>(p− c)−P(p)). (4.2)

This generalizes the other fixed-point expression derived under Logit.

We have essentially proved the following proposition:

Proposition 4.1.3. Let p ∈ (0, ς∗1) be a vector of simultaneously stationary prices,

u satisfy (a-c), and Assumption 4.1.2 hold. Then p = c + η(p) = c + ζ(p).

It is important to note that these two fixed-point expressions, while algebraic

reorganizations of one another, are based on distinct maps ζ and η.3 Specifically,

because c + η(·) and c + ζ(·) have identical fixed-point sets, equal to the set of zeros

of (∇̃π̂), both maps can be used to characterize equilibrium prices as in Chapter

??. However because these maps are distinct everywhere outside of these fixed-point

sets, these two characterizations can have entirely different properties when used

numerically, with either Newton’s method or fixed-point iteration.

Proposition 4.1.4. (i) ζ and η satisfy both

ζ(p) = (Λ(p)−1Γ̃(p)>)(p− c) + (I−Λ(p)−1Γ̃(p)>)η(p)

p− c− ζ(p) = (I−Λ(p)−1Γ̃(p)>)(p− c− η(p)).

(ii) Together, these relations imply that ζ(p) = η(p) if, and only if, (∇̃π̂)(p) = 0.

The following Lemma helps validate this approach.

Lemma 4.1.5. Let p ∈ (0, ς∗1) and suppose ϑ : T → (−∞,∞).

(i) ||Λf (p)−1Γf (p)>||∞ < 1 and ||Λ(p)−1Γ̃(p)>||∞ < 1.

(ii) The matrices I−Λf (p)−1Γf (p)> and I−Λ(p)−1Γ̃(p)> are strictly diagonally

dominant and nonsingular. Subsequently (D̃P)(p)> is strictly diagonally domi-

nant and nonsingular.

(iii) (I−Λf (p)−1Γf (p)>)−1 maps positive vectors to positive vectors.

3Of course, this holds under Logit as well as Mixed Logit, even though we did not address the
question of whether the two fixed-point characterizations are distinct in Chapter ??.
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(iv) If max x > 0, then max (I − Λf(p)−1Γf(p)>)x > 0, and if min x < 0, then

min (I−Λf (p)−1Γf (p)>)x < 0.

Claim (iv) is used only for results in the next chapter. Claim (i), discussed further

in Chapter ??, is based on the simple observation that the kth row sum of Λ(p)−1Γ̃(p)>

equals ∫  ∑
j∈Jf(k)

P l
j(θ,p)

 dµk,p(θ) < 1

where

dµk,p(θ) =
|(Dwk)(θ)|PL

k (θ,p)dµ(θ)∫
|(Dwk)(θ′)|PL

k (θ′,p)dµ(θ′)
. (4.3)

While we do not provide a rigorous bound, the maximal row sum of Λ(p)−1Γ̃(p)>

should be reasonably bounded away from one because of the influence of the outside

good and a firm’s competitor’s products.

Much in the same manner as under Logit, Claim (iii) allows us to prove that

profit-optimal markups are positive under Mixed Logit models.

Corollary 4.1.6. If pf ∈ (0, ς∗1) locally maximizes π̂f (·,p−f ), then pf > cf . Conse-

quently, if p ∈ (0, ς∗1) is a local equilibrium, then p > c.

4.2 Numerical Methods

In this section we review and compare several approaches for computing equilibrium

prices. The first approach is the fixed-point iteration p← c + ζ(p) (ζ-FPI). We use

this fixed-point equation both because it is easy to evaluate and appears to converge

reliably. The other fixed-point expression considered in this work, p = c + η(p), does

not appear to generate a convergent fixed-point iteration. The remaining approaches

make use of Newton’s method, a classical technique to compute a zero of an arbi-

trary function F : RJ → RJ (Ortega and Rheinboldt, 1970; Dennis and Schnabel,

1996). To compute equilibrium prices, one may take F(p) = (∇̃π̂)(p) (CG-NM),

F(p) = p− c−η(p) (η-NM), or F(p) = p− c− ζ(p) (ζ-NM). In Sections 4.3 and 4.5

below we apply these methods to compute equilibrium prices for an empirical example.

In this section we provide a concise review of Newton’s method and introduce one

state-of-the-art implementation suitable for large-scale price equilibrium problems:

Viswanath’s GMRES-Hookstep method (Viswanath, 2007, 2008). Appendix C contains a

more detailed discussion of the fixed-point iteration and variants of Newton’s method.
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Before reviewing the fixed-point iteration and Newton’s method, we must identify

some features common to any approach.

4.2.1 Preliminary Considerations

Finite-Sample Approximations

Any method for computing equilibrium prices under Mixed Logit models faces a

common obstacle: the integrals that define the choice probabilities (P) and their

derivatives (Λ, Γ̃) cannot be computed exactly. We employ “finite-sample” versions

of the methods discussed below by drawing S ∈ N samples from the demographic

distribution and applying the method to the finite-sample model thus generated.

These samples are kept fixed for all steps of the method and, in principle, can be

generated in any way. We draw directly from the demographic distribution, although

importance and quasi-random sampling (e.g., see Train (2003)) can also be employed.

The Law of Large Numbers (Grimmett and Stirzaker, 2001), which states that the

choice probabilities and expected profits can be made as accurate as one desires by

increasing the number of samples, loosely motivates this widely-used approach to

econometric analysis (e.g., see McFadden (1989) and Draganska and Jain (2004)). All

numerical approaches for computing equilibrium prices described here rely on a similar

convergence of simultaneously stationary prices for finite-sample approximations to

simultaneously stationary prices for the full model. While we do not provide a proof

of this convergence, we provide numerical evidence that it does indeed occur in our

examples.

Termination Conditions

We terminate all iterations by the condition ||(∇̃π̂(p)||∞ ≤ εT where εT is some small

number (e.g., 10−6). Note that a standard application of Newton’s method to solve

p − c − η(p) = 0 would terminate when ||p − c − η(p)||∞ ≤ εT . This does not

necessarily imply that ||(∇̃π̂)(p)||∞ ≤ εT . Similarly, terminating Newton’s method

for p− c− ζ(p) = 0 when ||p− c− ζ(p)||∞ ≤ εT does not imply ||(∇̃π̂)(p)||∞ ≤ εT .

Because

(D̃P)(p)>(p− c− η(p)) = (∇̃π̂)(p) = Λ(p)(p− c− ζ(p)),

it is easy to terminate CG-NM, η-NM, ζ-NM, and ζ-FPI all when ||(∇̃π̂(p)||∞ ≤ εT .

While this ensures a degree of consistency when comparing different methods,
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||(∇̃π̂(p)||∞ ≤ εT should always be the termination condition for price equilibrium

computations.

Second-Order Sufficiency

All of the methods studied find simultaneously stationary points, rather than local

equilibria. In local equilibrium every firm’s profit Hessian, (Df∇f π̂f)(p) for firm f ,

is negative definite.4 The formulas given in Proposition C.2.1, Appendix C give an

analytical expression for (Df∇f π̂f)(p) that can be approximated directly. Cholesky

factorization, rather than eigenvalue estimation, can then be used to test the negative

definiteness of (Df∇f π̂f )(p) (Golub and Loan, 1996).

4.2.2 ζ Fixed-Point Iteration

To implement the fixed-point iteration, simply iterate the assignment p← c + ζ(p)

where Eqn. (4.2) defines ζ(p). Integral approximations, rather than the actual

computation of the step, drive the computational burden of this step. Given a price

vector, utilities, and utility derivatives, computing P(p), Λ(p), and Γ̃(p) for a set of S

samples requires O(S
∑F

f=1 J
2
f ) floating point operations (flops), while the fixed-point

step itself only requires O(
∑F

f=1 J
2
f ) flops. Note that computing the fixed-point step

requires an equivalent amount of work as computing the combined gradient (∇̃π̂)(p).

Furthermore, no serious obstacles to computing the fixed point step arise as J becomes

large, because Λ(p) is a diagonal matrix.

4.2.3 Some Comments on the η Map

Applying Newton’s method to p− c− η(p) requires computing η(p) by solving linear

systems. We have found solving (I−Λ(p)−1Γ̃(p)>)η(p) = −Λ(p)−1P(p) more “well

behaved” than solving (D̃P)(p)>x = (Λ(p)− Γ̃(p)>)x = −P(p). Note also that only

the systems (I−Λf (p)−1Γf (p))xf = −Λf (p)−1Pf (p) for all f ned be solved. If QR

factorization is used to solve these systems, then computing η(p) from P(p), Λ(p),

and Γ̃(p) requires O(
∑F

f=1 J
3
f ) flops. This is a significant increase in computational

effort relative to computing ζ(p) or (∇̃π̂)(p). Additional work is required to compute

(Dη)(p), if this is to be used in Newton’s method. Though it requires solving a

4This is equivalent to saying that some symmetric permutation of (D∇̃π̂)(p) has a negative
definite block diagonal. Note also that this (by itself) does not imply that (D∇̃π̂)(p) has any
definiteness whatsoever.
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matrix-linear system of the type (D̃P)(p)(Dη)(p) = B(p) (cf. Appendix C), the

required matrix factorizations need only be computed once.

The diagonal dominance of I−Λ(p)−1Γ̃(p)>, indeed of (D̃P)(p) itself, suggests

that Jacobi, Gauss-Seidel, and SOR iterations may be a relatively efficient way to

compute η. While we have not investigated this in detail, these classical iterations

illustrate a connection between the fixed-point iteration for ζ and computing η. Note

that the Jacobi-like update

x← Λ(p)−1Γ̃(p)>x−Λ(p)−1P(p) = Λ(p)−1
(
Γ̃(p)>x−P(p)

)
converges to a vector x solving (I−Λ(p)−1Γ̃(p)>)x = −Λ(p)−1P(p). The similarities

of this update formula to the fixed-point iteration based on ζ are obvious. Particu-

larly, starting this iteration at p− c one has a first step that is exactly the update

p ← c + ζ(p). Continuing with further steps we deviate from p ← c + ζ(p) by

compounding the update based on this ζ-like map without updating P, Λ, and Γ̃. If,

in the spirit of a nonlinear Gauss-Seidel iteration, we were to use the p obtained after

the first step to update P, Λ, and Γ̃, and then take another step of the Jacobi-like

iteration, we would have the fixed-point iteration itself.

4.2.4 Newton’s Method

Solving F(p) = 0 through Newton’s method involves repeatedly solving for the zeros

of the first-order approximations to F(p). That is, one solves the Newton system

(DF)(p)sN = −F(p) for sN , taking the update p ← p + sN . It must be assumed

that (u, ϑ, µ) forms a model sufficiently “regular” so that (DF)(p) is nonsingular and

reasonably well-conditioned.

Fast local convergence (Ortega and Rheinboldt, 1970; Dennis and Schnabel, 1996)

often motivates the use of Newton’s method. However this fast local convergence comes

at the cost of considerably more computationally intensive steps. First, computing

F(p) on the right-hand side of the Newton system has at least the computational

burden of taking a ζ fixed-point step. To compute the Newton step sN one must also

form the Jacobian matrix (DF)(p) and solve the Newton system. Finite differences are

extremely wasteful, requiring J evaluations of F. Quasi-Newton methods, discussed

in Appendix C, approximate the Jacobian matrix in order to reduce computational

burden. In Appendix C, we derive explicit expressions for the Jacobians (D∇̃π̂), (Dη),

and (Dζ).5 Loosely speaking, computing (DF)(p) requires O(SJ2) flops. Solving

5Automatic differentiation is another alternative to computing these Jacobians. While this may
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the Newton system with direct methods, most prominently QR factorization, requires

another O(J3) flops (indirect methods are discussed explicitly below). In Section 4.3

it will be observed that each step of Newton’s method can require such an increased

computational burden that fast local convergence in terms of iteration count may not

lead to a faster computation of equilibrium prices.

Global Convergence.

It has long been recognized that Newton’s method only has strong local convergence

properties (i.e. for initial conditions near solutions), often exhibiting poor global con-

vergence behavior (i.e. for “arbitrary” initial conditions). By requiring that the steps

taken satisfy certain “acceptability” conditions, some global convergence behavior can

be enforced. See (Dennis and Schnabel, 1996, Chapter 6).

Line search, the simplest modification to Newton’s method that facilitates global

convergence (e.g., see Dennis and Schnabel (1996)), employs the update p← p + αs

for some choice of step lengths α ∈ R and any step s. The choice of an “acceptable”

value of α is an iterative process that requires evaluating the combined gradient in

each iteration, which can thus be considered equivalent to taking a fixed-point step.

Another class of methods, called “trust-region” methods, instead minimizes the

2-norm of the local linear model of F subject to the constraint that steps must lie

within a ball of radius δ:

min
||s||≤δ

(
1

2

)
||F(p) + (DF)(p)s||22.

If the Newton step can be trusted, in the sense that it has a norm less than δ, it

solves the problem above and should be taken. The Levenberg-Marquadt method

or “hookstep” and Powell’s Hybrid Method or “dogleg step” (Powell, 1970; More

and Trangenstein, 1976; Dennis and Schnabel, 1996) offer two alternative courses of

action when the Newton step cannot be trusted. Both have seen widespread success

in the iterative solution of nonlinear equations. The hookstep method computes the

true solution to this problem using the Singular Value Decomposition of (DF(p),

and can thus add significantly to the computational burden of Newton’s method.

The dogleg step involves a heuristic solution to the minimization problem, with a

relatively small additional computational burden. Finding an acceptable step is again

an iterative process, requiring repeated evaluations of the combined gradient. Both

be more efficient than finite differences, it is unclear how this could be more efficient than the direct
formulae we derive and use.
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are implemented by matlab’s fsolve function.

Inexact Newton Methods.

A different theory exists for the solution of systems of nonlinear equations via New-

ton’s method when there are “many” variables. This is driven by two reasons. First,

direct methods like QR factorization may not be the most effective means to solve

the Newton system when this system is large, because of computational burden and

accumulation of roundoff errors. Instead, iterative solution methods are often used to

solve linear systems with many variables (Golub and Loan, 1996; Trefethen and Bau,

1997). Second, when far from a solution Newton steps may often point in inaccurate

directions (Pernice and Walker, 1998). Thus solving for exact Newton steps may

involve wasted effort, especially when there are many variables. These ideas have lead

to a theory of “inexact” solutions to the Newton system, defined as any vector sIN

that satisfies ||F(p) + (DF)(p)sIN || ≤ δ||(F)(p)|| for some δ ∈ (0, 1) (Dembo et al.,

1982; Eisenstat and Walker, 1994, 1996; Pernice and Walker, 1998).

Each of the globalization strategies developed for “exact” Newton methods can be

applied in the inexact context. We focus on GMRES (Saad and Schultz, 1986; Walker,

1988) a particularly strong iterative method for general linear systems that has been

consistently used in the context of solving nonlinear systems.6 Pernice and Walker

(1998) use GMRES to solve for inexact Newton steps with a safeguarded backtracking

line search (Eisenstat and Walker, 1996) to facilitate global convergence. Brown and

Saad (1990) and Pawlowski et al. (2006, 2008) have derived dogleg steps suitable for

GMRES Newton methods. Finally, Viswanath (2007, 2008) has derived a version of

the hookstep method suitable for GMRES solution of the Newton system. Viswanath’s

approach requires computing the Singular Value Decomposition only of a matrix whose

size is determined by the number of iterations taken by GMRES. For reasonable uses of

GMRES, this is far less than the size of (DF)(p) itself and can accumulate a tremendous

savings over an exact-Newton implementation of the hookstep method. Each of these

approaches iterates until an acceptable step is found, and can, in principle, involve

many additional evaluations of F or fail to find an acceptable step.

6matlab’s fsolve function implements a related approach using (preconditioned) conjugate
gradients applied to the normal equation for the Newton system, (DF)(p)>(DF)(p)sIN =
−(DF)(p)>F(p). This requires that the Jacobian of F is explicitly available. Although this holds
for our problems, it may be a significant restriction for general problems. Even if the Jacobian
is explicitly available, this approach increases the work by O(NJ2) flops by requiring products
(DF)(p)>y in each step of the iterative linear solver. This approach can also be less accurate: using
the normal equation squares the condition number (Trefethen and Bau, 1997), and can thus risks
serious degradation in solution quality.
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There an additional advantage to using iterative solvers like GMRES in the con-

text of nonlinear systems: only products of the type (DF)(p)s will be required to

solve the Newton system for F at p. Such a product can be approximated by a

single additional evaluation of F in a “directional” finite difference. This is, generally

speaking, much less work than it takes to approximate the entire Jacobian matrix

as is required by direct methods. Only needing to program F can be a significant

advantage in implementation, especailly for highly complex problems. Ultimately,

however, whether efficiency is gained by using directional finite differences instead of

computing the Jacobian matrices and using standard matrix-vector products depends

on the number of steps taken by the iterative linear solver. For example, if GMRES

takes N ∈ N iterations to find an inexact Newton step for F, computing and using

the Jacobian requires O((S +N)J2) flops while directional finite differences requires

O(SN
∑F

f=1 J
2
f ) flops. In Appendix C we argue that, for price equilibrium problems,

these relationships will tend to make computations based on the Jacobian faster. This

property is shown to hold in practice as well: in our examples, using the Jacobian

can as much as half the computation time even though GMRES converges in very few

iterations.

4.3 A Numerical Example: the 2005 New Vehicle

Market

In this section we present the results of equilibrium price computations in a large

differentiated product market with many products and a high degree of firm and

product heterogeneity: the 2005 U. S. new vehicle market. This particular market has

played a central role in the development of econometric applications of the generalized

Bertrand competition framework for differentiated product market analysis. We begin

by describing the vehicle data used and two demand models of new vehicle purchasing

taken from the econometric literature. We next discuss the results of equilibrium price

computations obtained using the fixed-point iteration, providing evidence that the

fixed-point iteration reliably and efficiently computes local equilibrium prices.

4.3.1 Vehicle Data

We combine vehicle characteristics data from Ward’s Automotive Yearbook (Wards,

2004-2007) with average cost and transaction price data for vehicles sold during 2005

as reported by dealers to J. D. Power. These data describe vehicles offered under the
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Table 4.1 Make statistics for the 2005 dataset. Abbreviations: MK: Makes; ML: Models;
MLY: Model-Year Vehicles; MLYV: Model-Year Variants.

MK ML MLY MLYV MK ML MLY MLYV
Acura 6 18 26 Lexus 16 28 36
Audi 7 19 78 Lincoln 6 15 49

BMW 30 66 84 Mazda 11 26 98
Buick 9 18 66 Mercedes-Benz 46 85 132

Cadillac 10 27 62 Mercury 9 19 87
Chevrolet 27 81 760 Mini 1 3 10
Chrysler 8 20 123 Mitsubishi 12 29 128

Dodge 11 33 408 Nissan 11 39 268
Ford 22 61 933 Oldsmobile 2 3 18

GMC 16 41 443 Pontiac 12 31 91
Honda 11 35 148 Porsche 3 9 43

Hummer 1 1 1 Saab 4 8 32
Hyundai 8 23 87 Saturn 9 15 31

Infiniti 8 17 38 Scion 3 8 8
Isuzu 5 8 42 Subaru 6 17 89

Jaguar 10 25 47 Suzuki 7 19 90
Jeep 5 14 99 Toyota 18 56 352
Kia 8 19 60 Volkswagen 7 24 140

Land Rover 5 11 23 Volvo 9 22 68
Median 8.5 19.5 81

Total 399 993 5298

brands or “makes” enumerated in Table 4.1. Moreover, these data describe vehicles at

different resolutions. J. D. Power reports average cost and transaction price (defined as

price less customer cash rebate) for 993 model-year vehicles (e.g., “2005 Ford Focus”)

from dealers in every major region in the U.S. On the other hand, Ward’s provides

vehicle characteristics and Manufacturer’s Suggested Retail Price (MSRP) for 5,298

model-year variants (e.g., “2005 Ford Focus ZX3 S”, “2005 Ford Focus ZX3 SE”, etc.)

that correspond to some cost and price observation from the J. D. Power data, after

excluding virtually all vehicles with a gross vehicle weight rating above 8,500 lbs due to

an absence of fuel economy data for these vehicles. To generate an equilibrium pricing

problem with 5,298 vehicles we extrapolate the J. D. Power cost data by assuming

that variation in dealer costs is reflected in MSRP. Specifically, we define a model-year

variant’s dealer cost as the average dealer cost for the model-year vehicle with which

it is associated plus the deviation of the model-year variant specific MSRP from the

average MSRP across all variants of that model-year.
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4.3.2 Two Demand Models

To characterize demand for new vehicles, we employ modified versions of two existing

models of new vehicle purchasing (Boyd and Mellman, 1980; Berry et al., 1995). Here

we give a brief description of the versions of these models used in our examples below.

The utility function in the Boyd and Mellman (1980) model is linear in charac-

teristics and price with lognormally distributed “unobserved” demographic variables

(random coefficients) θ, has no “observed” demographic variables, and does not model

an outside good (i.e., ϑ(θ) ≡ −∞). Specifically,

u(θ,y, p) = θ>

[
−p
y

]
.

We include the vehicle characteristics length times width over height (all in inches), 60

divided by the 0-60 acceleration time (in seconds), and 100 times fuel consumption (in

gallons per mile). A simple function of horsepower to weight ratio approximates 0-60

acceleration, a commonly used proxy in econometric models of the vehicle market.

Due to a lack of data, we exclude several consumer reports ratings (“ride,” “handling,”

and “noise”) used in the original model. Finally, we use 1980 USD as our monetary

units.

The utility function in the Berry et al. (1995) model is linear in characteristics

with independent and normally distributed “unobserved” demographics (random coef-

ficients), nonlinear in income minus price, and models an outside good. Specifically,

with θ = (φ,ψ),

u(φ,ψ,y, p) = α log(φ− p) + β(ψ)>y and ϑ(φ,ψ) = α log φ+ v0(ψ)

for some price coefficient α > 0, income φ, and unobserved-demographic dependent

coefficient vector β(ψ). Consistent with the original model, we take income, price,

and cost to be in thousands of 1983 USD where income is lognormally distributed

with a log-mean of 10−3 log 10 ≈ 3.092 and a log-standard deviation of 1 (CPS, 2007).

For vehicle characteristics we include operating cost (in 10 mile increments driven

per dollar spent using a fuel price of 2.50 2005 USD = 1.27 1983 USD), horsepower

to weight ratio (weight is in 10 lbs.), and length times width (both in hundreds of

inches). We effectively exclude a dummy variable for standard air conditioning present

in the original model by assuming standard air conditioning on all vehicles. No other

characteristics from the original model differ in our version.
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Table 4.2 “Worst-case” observed computation times for various sample set sizes.

Boyd and Mellman (1980) Berry et al. (1995)
Number of Samples (#) 103 104 105 106 103 104 105 106

CPU Time (hrs) 0.1 2.4 4.4 65 0.2 1.4 7.5 125

The following proposition ensures the validity of our treatment of equilibrium

prices using the fixed-point iteration under these two demand models.

Proposition 4.3.1. (i) The conclusions of Proposition 4.1.2 hold under the Boyd

and Mellman (1980) model. (ii) Assumption 4.1.2, and hence the conclusions of

Proposition 4.1.2, hold under the Berry et al. (1995) model so long as α > 1.

We treat the Boyd and Mellman model separately because it does not have an

outside good, and hence does not match the format of Assumption 4.1.2.

4.4 Computing Equilibrium Prices with the Fixed-

Point Iteration

In Figs. 4.1 and 4.2 we compare equilibrium prices, computed via the fixed-point

iteration, to transaction prices for a single 1,000,000 sample set. Note that in com-

paring the 5,298 computed equilibrium prices at the model variant level with the 993

average transaction prices at the model level, we average the computed model variant

prices using the choice probabilities for all variants of the corresponding model as

weights. Computed equilibrium prices under both demand models appear to over-

predict average transaction prices, with the error increasing with price and smallest

under the Berry et al. model. In Table 4.2 we list the longest times taken to compute

equilibrium prices using the fixed-point iteration. A simple analysis of the fixed-point

iteration suggests that adding samples increases the computational burden in a linear

fashion, as observed in these times.

Figs. 4.3 and 4.4 demonstrate the effectiveness of the fixed-point iteration as a

method of computing simultaneously stationary prices for all 5,298 vehicles under

both demand models and “arbitrary” initial conditions. For the Boyd and Mellman

model we test 10 initial conditions drawn uniformly from [minj∈N(J) cj,maxj∈N(J) cj]
J .

For the Berry et al. model, the non-compensatory treatment of income makes choos-

ing “arbitrary” initial conditions more difficult. We test 10 initial conditions drawn

uniformly from [0, 19], where the 70th percentile of income is approximately 19, 000
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Figure 4.2 Transaction versus equilib-
rium prices for 993 vehicle models for a
single 1,000,000 sample set under the Berry
et al. (1995) model.

1983 USD. Using such initial conditions ensures that, loosely speaking, the upper 30

% of the sampled population can buy any vehicle at the initial prices, and does not

preclude the existence of individuals in the sampled population that have an income

too low to buy any of the vehicles at their initial prices. The combined gradient norm

||∇̃π̂(p)||∞ consistently decreases to ∼ 10−6 in less than forty fixed-point steps over

these trials for various sample set sizes under both demand models. Furthermore, the

computed equilibrium prices consistently generate negative definite profit Hessians for

each firm. That is, the fixed-point iteration reliably computes local equilibrium prices,

rather than simply simultaneously stationary prices.

Figs. 4.3 and 4.4 also illustrate quite different paths to simultaneous stationarity

under the two models. Particularly, under the Berry et al. model, ||∇̃π̂(p)||∞ need not

be monotonically decreased over the iteration. Although this can be a feature of the

trajectory of the combined gradient norm, the fixed-point step norm ||ζ(p) + c−p||∞
and the distance to equilibrium ||p− p∗||∞ may decrease monotonically.

Figs. 4.5 and 4.6 illustrate the negligible variability in computed equilibrium

prices driven by these “arbitrary” initial conditions. These figures plot the cumulative

distribution of standard deviation in computed equilibrium prices over the entire set of

model-year variants for the 10 initial conditions with a fixed sample set of various sizes

(as well as the corresponding standard deviation in initial conditions). Under the Boyd

and Mellman model all of the 5,298 model-year variants have standard deviations less

than 1 1983 USD over these different initial conditions and sample set sizes. With

100,000 samples, 97% of these vehicles have standard deviations less than 0.01 1983
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USD. Under the Berry et al. model, more than 99% of the 5,298 model-year variants

have standard deviations less than 0.01 1983 USD. For the larger sample set sizes of

50,000 and 100,000 all computed equilibrium prices vary less than 0.01 1983 USD.

Thus it appears that for any fixed sample set, regardless of size, computed equilibrium

prices appear very stable over arbitrary initial conditions when using the fixed-point

iteration.

Finally Figs. 4.7 and 4.8 demonstrate that computed equilibrium prices have a

stronger dependence on the sample set used. We plot the cumulative distribution
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functions of standard deviation in computed equilibrium prices over different sample

set sizes (using unit costs as the initial condition). As the Law of Large Numbers

would suggest, increasing the sample size reliably decreases the standard deviation in

computed equilibrium price for most vehicles. This holds under the Boyd and Mellman

model for all sample set sizes, though becomes evident for the Berry et al. model only

for sample sizes above 1, 000. Small sample sizes (S =50, 100, and 500) are problematic

under the Berry et al. model because of the non-compensatory decisions engendered

by the treatment of income. Even for very large sample sets (S = 1, 000, 000), only

20-25% of vehicles have computed equilibrium prices varying more than 100 1980 USD

under the two models. Thus precision in equilibrium price computations appears to

be driven by the sample set, rather than the initial condition.

4.5 Method Comparison

In this section we compare the performance the four approaches to computing equi-

librium prices identified in the introduction: CG-NM, η-NM, ζ-NM, and η-FPI. To

undertake this comparison we aggregate the characteristics of the 5,298 model-year

variants to create a smaller, 993 model-year vehicle dataset. Specifically, we construct

model-year vehicle characteristics by averaging the characteristics of the model-year

variants of specific model-year vehicles. We do not currently have the detailed sales

data required to construct a more preferable sales-weighted average of model-year
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variant characteristics. Using this smaller dataset allows us to keep the computational

times reasonable enough to quickly run numerous trials while maintaining a reasonably

large and complex numerical problem. We do not see any significant reason beyond

increased computational times that this comparison could not be made on the larger

5,298 vehicle problem, nor any reason to expect that the qualitative conclusions of

the results described here would change.7

We only report results using Viswanath’s GMRES-Hookstep method (Viswanath,

2007, 2008). We have tested other variants of Newton’s method, finding many of

them less robust and more time consuming for the example problems. In order to

carry out our comparison on a “level field,” we have implemented these methods

ourselves following the prescriptions in Dennis and Schnabel (1996), as well as many

other more specific sources from the literature. While we have attempted to use the

most efficient and robust known Newton methods, professionally developed Newton

solvers are likely to have advantages that our implementations lack. However the

same could be said of the fixed-point iteration which, after continued study, is likely

to result in further refinements. Additionally, comparisons with matlab’s fpsolve

have verified the efficiency of our implementations. However, there is no “professional”

implementation of the GMRES-Hookstep. We have made every effort to make ours as

professional as possible by following the prescriptions of Dennis and Schnabel (1996)

for general trust region methods.

Other algorithmic details are as follows. ||(∇̃π̂)(p)||∞ ≤ 10−6 is the termination

condition for all methods, and the second order conditions are always checked at com-

puted equilibria. GMRES in CG-NM uses a problem-specific preconditioner discussed in

Appendix C. Neither η-NM or ζ-NM require preconditioned GMRES. We require that

GMRES always solve the (unpreconditioned) Newton system to a relatively tight relative

residual of 10−6 within 50 steps without restarting. Loosening this relative residual

tolerance8 or including the adaptive tolerances recommended by Eisenstat and Walker

(1996) may incrementally improve computational speed. These inclusions should not

make a significant impact on the η-NM or ζ-NM methods simply because GMRES is

already very fast on these methods: generally less than ten GMRES steps are required

to achieve convergence to an inexact Newton step. For CG-NM, these inclusions may

have a more pronounced improvement.

7If we were using direct methods to solve the Newton system, the order of magnitude increase in
problem size may in fact be good reason to expect degradation in the speed and quality of Newton’s
method.

8Viswanath (2008) uses a relative residual tolerance of only 10−2.
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Starting Near Equilibrium

To test that Newton’s method performs well when started near equilibrium prices (as

predicted by theory; e.g., see Ortega and Rheinboldt (1970); Dennis and Schnabel

(1996)), we performed the following test. We first compute equilibrium prices p∗ using

the fixed-point iteration for a single 1,000 sample set. We then generate a set of

T = 10 initial conditions p(t) = p∗ + κν(t), t ∈ N(T ), by drawing ν(t) from a uniform

distribution on [−1,1]. The multiplier κ given the values 1, 10, 100, and 1000 USD.

One can think of these T initial conditions as guesses of equilibrium prices correct to

within κ USD.

Table 4.3 contains a summary of results for this experiment under the Boyd and

Mellman (1980) model. All methods appear to be a reliable way to solve for equi-

librium prices. Except for a single trial with the CG-NM formulation and a 1,000

USD perturbation, all trials converged to simultaneously stationary prices satisfying

the second order conditions. All methods converge rapidly for small perturbations

(< 100 USD), with the Newton method approaches taking only 1 and 2 steps for 1

and 10 USD perturbations, respectively. The η-NM method converges in very few

iterations even with perturbations of 1, 000. Another feature to note is the speed of

the ζ-FPI method. Generally speaking, the approaches based on Newton’s method

take 250-770% of the time required by the ζ-FPI to converge despite taking 30-50%

fewer iterations. Particularly, even though CG-NM, η-NM, and ζ-NM converge in a

single step under a 1 USD perturbation, they take at least twice as long to do so as

the fixed-point iteration.

Fig. 4.9 illustrates a typical performance by the various approaches we consider

under the Boyd and Mellman model. These plots clearly illustrate the rapid conver-

gence of Newton’s method applied to any formulation, in terms of iterations. However

when considering computation (CPU) time, we again observe that, for this example,

a single step of Newton’s method can take longer than it takes ζ-FPI to converge.

For 100 and 1,000 USD perturbations, using Newton’s method took longer than the

original ζ-FPI started at unit costs and used to compute equilibrium prices, regardless

of the formulation to which Newton’s method is applied. One can also observe in

Fig. 4.9 the significant speed-up gained by using the analytical Jacobian for matrix

multiplications in GMRES. Using analytical and directional finite difference Jacobians

result in the same convergence curves in terms of iterations, but using directional

finite differences can double the time required by computations.

Table 4.4 details a similar comparison under the Berry et al. (1995) model. Again,

all methods are fairly robust near equilibrium, with only three exceptions. In one
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Figure 4.9 Typical convergence curves for perturbation trials under the Boyd and Mell-
man (1980) model. The fixed-point iteration and the GMRES-Hookstep Newton’s method are
starting from random points in p∗+κ[−1,1] USD, where p∗ is a vector of equilibrium prices
computed using ζ-FPI (convergence curve given as dotted black line). Results for a fixed
sample set (S = 1,000) under the Boyd and Mellman (1980) model. Solid colored lines denote
convergence curves for Newton method implementations using the analytical Jacobian, and
the colored dashed lines denote convergence curves for Newton method implementations
using directional finite differences.
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Table 4.3 Summary of results for ten perturbation trials under the Boyd and Mellman
(1980) model for a fixed set of 1,000 samples. Both iterations and CPU time are given in
the form “minimum/median/maximum,” each taken over the ten trials.

Boyd and Mellman (1980)
CG-NM η-NM ζ-NM ζ-FPI

1 USD Iterations (#) 1/1/1 1/1/1 1/1/1 5/7/8
CPU Time (s) 15/15/16 18/18/18 18/18/18 4/5/6

10 USD Iterations (#) 2/2/2 2/2/2 2/2/2 8/11/11
CPU Time (s) 23/23/24 27/27/28 26/26/27 6/8/9

100 USD Iterations (#) 2/3/4 2/3/3 2/3/4 12/14/15
CPU Time (s) 25/31/36 30/33/36 30/35/41 9/10/11

1000 USD Iterations (#) 4/6/14(a) 3/4/5 6/7/10 15/17/19
CPU Time (s) 39/47/94(a) 41/48/53 57/68/82 11/12/14

(a) The results of two trials failed to satisfy the second order conditions.

trial, ζ-NM failed to compute simultaneously stationary prices. In two separate

trials, CG-NM failed to compute simultaneously stationary prices and compute prices

satisfying the second order condition. Again, Newton’s method across formulations

takes 30-60% of the iterations required of the ζ-FPI but 150-360% of the CPU time.

The ζ-FPI has the significant advantage of requiring, on average, only ∼ 1.2 seconds

per iteration regardless of κ while Newton’s method requires 6 seconds per iteration

for small κ and 7 for large κ. This increase in average time per iteration is, of course,

related to more relatively more expensive hooksteps becoming required as the initial

prices deviate from equilibrium.

Fig. 4.10 illustrates a typical performance by the approaches we consider under

the Berry et al. model. Again, these plots clearly illustrate the rapid convergence of

Newton’s method applied to any formulation, in terms of iterations. For 100 and 1,000

USD perturbations, using Newton’s method again took longer than the original ζ-FPI

started at unit costs. Though one can still observe in Fig. 4.10 a CPU time benefit

to using the analytical Jacobian for matrix multiplications in GMRES, the advantage

is somewhat less pronounced under the Berry et al. (1995) model. Interestingly, it

appears that using directional finite differences increases the convergence rate in terms

of iterations, but still ultimately increases overall computation times.

Under both models, the prices computed by the fixed-point iteration and the

variants of Newton’s method compare quite well to the equilibrium prices used to

generate the perturbed initial conditions. Using any convergent method, roughly 97%
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Figure 4.10 Typical convergence curves for perturbation trials under the Berry et al.
(1995) model. The fixed-point iteration and the GMRES-Hookstep Newton’s method are
starting from random points in p∗+κ[−1,1] USD, where p∗ is a vector of equilibrium prices
computed using ζ-FPI (convergence curve given as dotted black line). Results for a fixed
sample set (S = 1,000) under the Berry et al. (1995) model. Solid colored lines denote
convergence curves for Newton method implementations using the analytical Jacobian, and
the colored dashed lines denote convergence curves for Newton method implementations
using directional finite differences.
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Table 4.4 Summary of results for ten perturbation trials under the Berry et al. (1995)
model for a fixed set of 1,000 samples. Both iterations and CPU time are given in the form
“minimum/median/maximum,” each taken over the ten trials.

Berry et al. (1995)
CG-NM η-NM ζ-NM ζ-FPI

1 USD Iterations (#) 2/2/3 2/2/3 2/2/3 8/9/10
CPU Time (s) 18/18/24 20/20/26 19/19/25 10/11/12

10 USD Iterations (#) 3/3/3 3/3/3 3/3/3 10/12/13
CPU Time (s) 24/24/24 24/26/26 25/25/27 12/14/15

100 USD Iterations (#) 4/4/5 3/4/4 3/4/5 12/14/17
CPU Time (s) 31/31/37 27/34/34 27/33/39 14/17/20

1000 USD Iterations (#) 8/10/50(a) 5/5/6 5/6/26(b) 17/18/22
CPU Time (s) 58/79/320(a) 46/46/52 45/52/248(b) 20/21/26

(a) CG-NM failed to compute simultaneously stationary prices in one trial,
and failed to compute prices satisfying the second order conditions in another.
(b) ζ-NM failed to compute simultaneously stationary prices in one trial.

of vehicles have prices deviating from the originally computed equilibrium prices by

less than 1 USD (in the appropriately deflated units).

Starting at Unit Costs

Unit costs give a “canonical” starting point in the absence of a reasonable guess

about equilibrium prices. Table 4.5 details results starting from unit costs, with

typical convergence curves provided in Figs. 4.11 and 4.12. The GMRES-Hookstep

method generally failed to converge for the CG-NM problem under both demand

models, and thus is not included in Table 4.5. Both the η-NM and ζ-NM problems

converge reliably, as does the ζ-FPI. Again, despite a rapid convergence rate in terms

of iterations, the relative computational intensity of taking Newton steps makes the

ζ-FPI the fastest method. For the example illustrated in Fig. 4.11, the η-NM method

requires only about 30% of the iterations of the ζ-FPI but 440% of the actual CPU

time. For the example illustrated in Fig. 4.12, the ζ-NM method requires only about

25% of the iterations of the ζ-FPI but 200% of the actual CPU time.
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Table 4.5 Results of price equilibrium computations starting at unit costs under both
demand models for ten 1, 000-sample sets. Iterations and CPU time are again listed as
“minimum/median/maximum,” where we only include successful trials; that is, trials in which
a simultaneously stationary point was computed. The number of successful trials is also
given below. All successful trials resulted in prices satisfying the second order conditions.

Boyd and Mellman (1980)
η-NM ζ-NM ζ-FPI

Iterations (#) 8/10/15 10/15/20 23/39/70
CPU Time (s) 71/87/123 80/118/147 17/29/53
Successful (#/#) 7/10 6/10 10/10

Berry et al. (1995)
η-NM ζ-NM ζ-FPI

Iterations (#) 6/6/9 8/9/11 18/19/23
CPU Time (s) 50/52/70 64/73/90 23/24/29
Successful (#/#) 10/10 9/10 10/10
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Figure 4.11 Convergence curves for the fixed-point iteration and variants of Newton’s
method started at unit costs for a fixed 1,000 sample set under the Boyd and Mellman
(1980) model. Newton’s method applied to the preconditioned combined gradient does not
converge.
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Figure 4.12 Convergence curves for the fixed-point iteration and variants of Newton’s
method started at unit costs for a fixed 1,000 sample set under the Berry et al. (1995) model.
Newton’s method applied to the preconditioned combined gradient does not converge.

4.6 Conclusions

In this article we have described several methods for computing equilibrium prices

under a nearly arbitrary Mixed Logit model. One approach naively applies Newton’s

method to the simultaneous stationarity condition. Two other approaches apply

Newton’s method to distinct fixed-point characterizations derived from the simul-

taneous stationarity condition. Finally, one of these fixed-point characterizations,

novel to this work, is used in a fixed-point iteration. We have undertaken numerical

comparison of these approaches using two models of the 2005 new vehicle market

and a state-of-the-art Newton’s method for large-scale systems, Viswanath’s GMRES-

Hookstep (Viswanath, 2007, 2008). These examples have demonstrated the ability to

reliably and efficiently compute equilibrium prices in markets with many products

and a large degree of product and firm heterogeneity under Mixed Logit demand

specifications using the fixed-point characterizations of equilibrium prices. While the

GMRES-Hookstep applied to either of the fixed-point characterizations appears to be

an efficient and reliable approach for computing equilibrium prices, the fixed-point

iteration was the most reliable and efficient method of computing equilibrium prices

for our example problems.

We thus view the fixed-point iteration proposed in this article as a powerful al-

ternative to Newton’s method when economists, marketers, operations researchers,
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and engineers need to compute equilibrium prices in differentiated product market

models. The fixed-point iteration appears to be an efficient computational tool even

when counterfactual assumptions might radically alter the structure of equilibrium

prices. The added reliability and efficiency of the fixed-point iteration should allow for

more developed counterfactual analyses exploring model outcomes over a variety of

counterfactual scenarios, including extreme conditions. This “reliable efficiency” may

also prove useful when equilibrium pricing is a component of optimization approaches

to determining governmental or firm strategy.
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Chapter 5

Regulated Equilibrium Prices
Under Mixed Logit Models

In this chapter, we study regulated Bertrand competition under Mixed Logit models

of demand, restricting attention to several regulatory cost forms relevant for the auto-

motive industry. First, Section 5.1 presents an extended framework that incorporates

regulatory costs. Next in Section 5.2 we describe several regulatory policies that

fit under this framework. Using a generalized form of expected regulatory costs, in

Section 5.3 we derive an extension of the ζ fixed-point characterization, valid even

when expected regulatory costs are not differentiable. We also illustrate how these

forms can shed some light on incentives and “shadow taxes” under certain regulatory

policies. In Section 5.4 we propose a numerical approach for the computation of

regulated equilibrium prices motivated by the success of the ζ-FPI. For differentiable

regulatory costs, the extended ζ-FPI suffices, while for standards with non differen-

tiable regulatory costs ζ-FPI must be combined with direct solution of the first-order

non-smooth necessary conditions.

5.1 Additions to the Framework

In this section we describe an extension to the framework discussed in Chapter 2 that

includes regulatory costs.

5.1.1 Regulatory Costs and Heuristic Expected Profits

We assume that firms face regulatory costs prescribed by a firm-specific penalty level

rf ≥ 0 and a function cRf : ZJ
+ × YJ → R that may depend on all quantities sold (and
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hence produced) as well as the product characteristics of all products offered. This

form is a generalization of several regulatory policies proposed for the automotive

industry, discussed below. Note also that we allow “costs” to take on negative values,

as occurs with subsidies or rebates. With this form, the total (random) regulatory

cost imposed on firm f is then given by rfc
R
f (Q(Y,p),Y).

Without production capacity constraints that limit a firm’s ability to meet

any demands that arise during the purchase period and assuming that unit and

fixed costs remain independent of the specific quantity demanded (and hence

prices), firm f ’s profits as a function of prices are given by the random variable

Πf(p) = Qf(Y,p)>(pf − cUf ) − cFf − rfcRf (Qf(Y,p),Y). The expected regulatory

costs complicate the evaluation of profits because they can, in principle and in practice,

be a nonlinear function of demands. Computing with actual expected regulatory costs

E[cRf (Q(Y,p),Y)], and its price derivatives, requires approximating sums over the

very large space of realizable demands, and we are not currently aware of tractable

ways to do this in the context of equilibrium pricing problems.

Existing analyses of regulated Bertrand competition under a RUM implicitly

assume that

E[cRf (Q(Y,p),Y)] = cRf (E[Q(Y,p)],Y)

although may not be true for the policy being studied (e.g. Goldberg (1998)). In

this work we follow the existing literature in using cRf (E[Q(Y,p)],Y) although we

recognize this as a heuristic.

Assumption 5.1.1. Firms choose prices to maximize Iπ̂Rf (p) − cFf where π̂Rf (p) =

π̂f (p)− rf ĉRf (p) and ĉRf (E[Q(Y,p)],Y) = I−1cRf (E[Q(Y,p)],Y).

The computational burden of determining actual expected regulatory costs may

justify the use of the heuristic expected regulatory costs ĉRf (Y,p) in market models.

Specifically, firms may not use the actual expected regulatory costs in their decision

making because this is too difficult to evaluate while heuristic is relatively easy to

evaluate. On the other hand, much of this work concerns overcoming one key technical

shortcoming of the heuristic expected regulatory costs: that they are not always

differentiable functions of p. The true expected regulatory costs are (continuously)

differentiable in p so long as P(Q(Y,p) = q) is a (continuously) differentiable function

of p, regardless of nonlinearities in cRf .

In all of our examples, the heuristic expected regulatory costs can be written in a

specific form that should hold for any regulatory policy that scales regulatory penalties

(or revenues) with total demand to the firm.
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Assumption 5.1.2. There exists a map %f : RJ → RJf such that ĉRf (p) =

Pf (p)>%f (p) for all p ∈ RJ .

Assumption 5.1.2 implies that regulated profits can be written

π̂Rf (p) = Pf (p)>(pf − cf − rf%f (p)).

Some policies have non-differentiable %f . In this work we are only concerned with

non-differentiable policies satisfying the following assumption.

Assumption 5.1.3 (Standards). There exists a continuously differentiable function

%̂f : [0, ς∗1)→ R such that %f (p) = max{0, %̂f (p)}1.

Definition 5.1.1. Policies satisfying Assumption 5.1.3 are called standards. %̂f is

called the standard function. We say that the standard is violated at p if %̂f (p) > 0,

satisfied at p if %̂f(p) < 0, and exactly satisfied at p if %̂f(p) = 0. Prices satisfying

%̂f (p) = 0 will also be called standard-bound.

5.2 Several Regulatory Policies

We now introduce several regulatory policies debated for the automotive industry.

Throughout, κ : Y → R denotes an arbitrary function of vehicle characteristics;

e.g., fuel economy, fuel consumption, or CO2 emissions intensity. This function may

be a projection − fuel economy itself may be a characteristic − or may be a proper

function of characteristics. For example, we may want κ to be fuel economy while

fuel cost, defined as fuel price times fuel consumption, is a characteristic. Let also

κ : YJ → RJ be defined componentwise by κj(Y) = κj(yj) = κ(yj) and, for each f ,

let κf(Y) ≡ κf(Yf) denote the firm-specific sub-vectors of κ(Y). For any vectors

x,w ∈ RN , w ≥ 0, we let aA(x,w) denote the w-weighted arithmetic average of the

values in the vector x and aH(x,w) denotes the w-weighted harmonic average of the

values in the vector x. That is,

aA(x,w) =

∑N
n=1wnxn∑N
n=1 wn

and aH(x,w) =

∑N
n=1 wn∑N

n=1wn/xn
.

5.2.1 Fuel Taxes.

Fuel taxes are one prominent regulatory policy option that does not directly explicitly

regulate the firm at all, but has an effect on pricing decisions (Verboven, 2002). These
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taxes often enter the differentiated product market model through operating cost

characteristics in the demand model, and thus can be numerically treated using

techniques such as those described in Chapter 4.

5.2.2 CO2 taxes on firms.

Michalek et al. (2004) analyze a tax levied on firms proportional to the expected

lifetime CO2 emitted by driving vehicles they sell. Letting κf(Yf) denote the vec-

tor of expected lifetime CO2 emissions for each vehicle as a function of product

characteristics, firm f faces regulatory costs cRf (q,Y) = q>f κf(Yf). Fixing Yf and

writing κf = κf(Yf), this formula yields the heuristic expected regulatory costs

ĉRf (p) = Pf (p)>κf , which in this case (and this case only) are also the actual expected

regulatory costs. Thus %f(p) = κf , a constant. More generally, for any fixed vector

tf ∈ RJf we call the policy with %f ≡ tf a flat tax/subsidy policy.

The effects of this policy might be regarded as equivalent to the impact of a

cap-and-trade policy that makes firms accountable for the lifetime CO2 emissions of

the vehicles they sell. Firm f chooses to purchase an allowance of af units of emission

from the permit market at a price ρ, which we assume the firm alone cannot control

(it’s set on a world market). That is, we assume that competition for permits is perfect,

in the sense that no individual firm can change the permit price by changing their

product prices. Firm f is charged rf ≥ 0 USD for every unit of emission above af it

is accountable for. This makes firm f ’s regulated profits

π̂Rf (p, af ) = π̂f (p)−ρaf−rf
(
Pf (p)>κf − af

)
= π̂f (p)−(ρ−rf )af−rf

(
Pf (p)>κf

)
.

Note that (∇p
f π̂

R
f )(p, af ) = ∇p

f

[
π̂f (p)− rf

(
Pf (p)>κf

)]
, and thus the price gradient

is the same as under a CO2 tax levied on firms (getting all the quantities right). In

particular, profit-stationary prices are independent of the allowance procured by the

firm and are those of a model with a CO2 tax of rf .

We must remark that accounting for driving CO2 emissions through the man-

ufacturer is not an effective way to implement a cap-and-trade program aimed at

capping the CO2 emissions from driving. Funneling the cap policy through automotive

firms would be flawed for two reasons. First, the “caps” cannot be respected because

only expected lifetime emissions are accounted for during the sale year of the vehicle.

There is no control over the actual value or temporal distribution of these emissions,

antithetical to the concept of an effective cap. Second, drivers of the vehicles should

be incentivized under the cap-and-trade program to reduce their emissions as well
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as modify their vehicle purchases. This might be effectively accomplished through

the fuel producers if it can be assumed that vehicles have identical emissions factors.

Though complicated and politically challenging, an effective cap-and-trade program

for the transportation industry must target individual drivers. CO2 taxes as described

above are a better model of the impacts of cap-and-trade on the CO2 burden of vehicle

production.

5.2.3 Corporate Average Fuel Economy (CAFE) Standards.

The Corporate Average Fuel Economy (CAFE) standards are the primary regulatory

policy active in the U.S. automotive industry (NHTSA, 2008b). Let κ : Y → R+ define

a vehicle’s fuel economy from its characteristic vector, and κSf be a fixed, firm-specific

standard level.1 A basic CAFE standard has the penalty

cRf (q,Y) = cRf (qf ,Yf ) =
(
q>f 1

)
max

{
0 , κSf − aH(κf (Y),qf )

}
.

Thus, setting κf = κf (Yf ), this basic CAFE standard has heuristic expected regula-

tory costs

ĉRf (p) =
(
Pf (p)>1

)
max

{
0 , κSf − κ̄Hf (p)

}
where κ̄Hf (p) = aH(κf ,Pf (p))

These can be written in a form satisfying Assumption 5.1.2 by setting %f(p) =

max{0, κSf − κ̄Hf (p)}1. We note that this %f is not differentiable for any p such that

κ̄H(p) = κSf .

The actual CAFE standards are more complicated than this simple model, in

primarily three ways. First is that there are different standards for different “classes”

of products firms offer. Particularly, there are independent standards for “domestic”

cars,2 “imported” cars, and “light-duty” trucks.3 Though we do not provide an explicit

description of the extension to multi-class standards, most of our framework applies

in the more general setting. Second, the existing crediting system is a persistent

complication. Firms can receive “credits” for offering and selling alternative fuel

vehicles, though the fuel consumption and emissions benefits of these alternative fuel

vehicles need not actually be accrued in the fleet (NRC, 2002). Firms can also offset

1All firms currently share the same standard level under the CAFE standards. This will change
in 2011, the year attribute-based standards begin.

2A car is domestically produced if “if at least 75 percent of the cost to the manufacturer is
attributable to value added in the United States or Canada” (NHTSA, 2008d, 32904(b)(2)).

3“Heavy-duty” trucks having a Gross Vehicle Weight Rating over 8,500 pounds have historically
been excluded from the CAFE standards. This weight rating limit has been raised to 10,000 pounds.
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CAFE deficits in one year with CAFE surpluses within the following three years.

Similarly, firms can credit CAFE surpluses in the current year towards CAFE deficits

in following years. Jacobsen (2006) considers this temporal crediting system by simply

using repeated Bertrand competition models with history-dependent CAFE standards

reflecting past surpluses or deficits. Most generally, treating the temporal crediting

system should require a pricing analysis where firms decide on pricing with foresight

regarding future markets. A third element of complication, the use of standard levels

that depend on the characteristics of vehicles, is our next item of discussion.

Atrribute-based CAFE

Based on an argument that the existing CAFE standards discriminate against the

American automakers (NRC, 2002; Levin, 2007b), the new CAFE standards passed in

2007 include flexible, firm-specific standards that depend on the mix of vehicles sold

by a firm. Essentially, this is meant to bolster American firms which, although selling

more larger, less fuel-efficient vehicles than its foreign rivals, is generally perceived

to have more efficient large vehicles than the foreign competition. This has not yet

been a prominent part of the active CAFE standards, having only been enacted by

the NHTSA for the light-duty truck class as an option for 2008-2011 model years

(NHTSA, 2006) and has just been introduced as a mandatory component of the

national standards for the 2011-2015 model years NHTSA (2008a).

The flexible firm-specific standard is based on a continuous target fuel econ-

omy function defined over the vector of vehicle characteristics. Specifically, let

κT : Y → R+ define a fuel economy target as a function of vehicle characteristics.

Letting κTf = κTf (Yf ) be the vector of vehicle-specific targets for those vehicles offered

by firm f , this firm is assigned an attribute-based CAFE standard of aH(κTf ,qf ) when

demands for firm f ’s vehicles are given by qf . Firm f ’s basic regulatory costs are

cRf (qf ,Yf ) = (q>f 1) max{ 0 , aH(κTf ,qf )− aH(κf ,qf )},

with heuristic expected regulatory costs given by

ĉRf (p) = (Pf (p)>1) max{ 0 , κSf (p)− κ̄Hf (p) }.

where κSf (p) = aH(κTf ,Pf (p)) is the firm-specific (heuristic) standard level as a func-

tion of prices. NHTSA has chosen the target fuel economy, κT , to be generated by
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Table 5.1 Parameters proposed by NHTSA for attribute-based CAFE standards in 2011-
2015. See Eqn. (5.1)

Cars Light Trucks
2011 2012 2013 2014 2015 2011 2012 2013 2014 2015

a 38.2 40 40.8 41.2 41.7 30.9 32.7 34.1 34.1 34.3
b 25.9 27.4 28.7 29.9 31.2 21.5 22.8 23.8 24.3 24.8
c 45.9 45.8 45.7 45.6 45.5 51.9 52.0 52.0 52.1 52.1
d 1.6 1.5 1.5 1.4 1.4 3.8 3.8 3.8 3.9 3.9

the constrained logistic function

1

κT (y)
=

1

a
+

(
1

b
− 1

a

)(
e(κF (y)−c)/d

1 + e(κF (y)−c)/d

)
(5.1)

where κF : Y → R defines a vehicle’s footprint from its characteristic vector and

a, b, c are parameters chosen to obtain increasingly stringent standards over 2011-2015

(NHTSA, 2006, 2008a).

5.2.4 Corporate Average Emissions (CAE) Standards.

In response to California’s Assembly Bill 1493 (Pavley, 2002), California’s Air Re-

sources Board proposed to regulate the Greenhouse Gas emissions from vehicles

(including CO2) via a Corporate Average Emissions (CAE) Standard (CARB, 2008).

Let κ : Y → R+ define a vehicle’s CO2 emissions intensity from its characteristic

vector. A basic, single-class CAE standard has the penalty

cRf (q,Y) = cRf (qf ,Yf ) =
(
q>f 1

)
max{ 0 , aA(κf (Y),qf )− κSf }

for a firm-specific emissions intensity standard level κSf and where κ̄A(qf ,κf(Y)) is

the arithmetic average of the values κf(Y) weighted by qf . Thus the single-class

CAE standard has heuristic expected regulatory costs

ĉRf (p) = rf
(
Pf (p)>1

)
max{ 0 , κ̄Af (p)− κSf } where κ̄Af (p) = aA(κf ,Pf (p)).

and satisfies Assumption 5.1.2 with %f(p) = max{0, κ̄Af (p)− κSf }1. Again %f is not

differentiable for any p such that κ̂Hf (p) = κSf .

California’s waiver for the legal authority to implement this standard was denied
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by the federal government (Maynard, 2007), and thus this standard is not currently

in place in the U.S. vehicle market.

5.2.5 Feebates.

Feebates are similar to the CAFE and CAE standard policies discussed above in

that firms that violate a standard incur fees, but differ in that firms that satisfy the

standard are rewarded with rebates (Greene et al., 2005). A feebate could be placed

on any characteristic of interest; i.e. fuel economy, fuel consumption, or CO2 emissions

intensity. The form of regulatory costs depends on what characteristic is regulated.

Fixed Pivot Feebates

In placing a feebate on fuel economy, the government would assign a fixed “pivot” fuel

economy κS such that firms are penalized for offering vehicles with fuel economies

below this pivot and rewarded for having fuel economies above this limit. The heuristic

expected regulatory costs for such a policy are

ĉRf (p) = Pf (p)>%f and %f = κS1− κf .

More generally, the pivot could be made characteristic-dependent by specifying

κS : Y → R. The heuristic expected regulatory costs would then be generated

by % with components %j = κS(yj)− κj.
In placing a feebate on fuel consumption (or emissions intensity), the government

would again assign a fixed “pivot” fuel consumption κSf such that firms are penalized

for offering vehicles with fuel consumption above this pivot and rewarded for having

fuel consumptions below this limit. The heuristic expected regulatory costs for such a

policy are

ĉRf (p) = Pf (p)>%f and %f = κf − κS1.

More generally, the pivot could be made characteristic-dependent by specifying

κS : Y → R. The heuristic expected regulatory costs would then be generated

by % with components %j = κj − κS(yj).

Revenue-Neutral Feebates

Feebates can be made “revenue neutral” instruments in the sense that they do not

result in a net deficit or surplus of funds generated by the policy (ignoring administra-
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tion costs) (Greene et al., 2005). This can be accomplished by setting rf = r for all

f ∈ N(F ) and using an appropriately chosen “flexible pivot” κS ≡ κS(p).

Proposition 5.2.1.
∑

f ĉ
R
f (p) ≡ 0 if κS(p) = aA(κ,P(p)).

We remark that these flexible pivots give revenue-neutral policies not only for the

heuristic expected regulatory costs, but for actual regulatory costs as well.

5.3 Stationarity

As in Chapters 3 and 4, the first-order stationary can be applied here when %f is

differentiable. However, we have noted that some of the regulatory policies we consider

are not continuously differentiable: the heuristic form of the CAFE, attribute-based

CAFE, and CAE policies are not differentiable when the standards are exactly satis-

fied. In this section we provide straightforward necessary and sufficient conditions for

profit-optimal prices under such standard policies below, based on the work of Clarke

(1975) and Ioffe (1979). We also undertake some analysis based on these conditions,

identifying basic incentives present under these regulatory policies and discussing

“shadow taxes” on firms whose profit-optimal prices are implicitly constrained by a

regulatory standard.

5.3.1 Smooth Stationarity

The following is a further adaptation of well-known necessary conditions for the local

maximization of an unconstrained, continuously differentiable function (Munkres,

1991).

Proposition 5.3.1. Let A ⊂ (0, ς∗1) ⊂ RJ be open. Suppose Assumptions 4.1.2

and 5.1.2 hold with %f is continuously differentiable on A. Then π̂Rf is continuously

differentiable on A, and if pf maximizes π̂Rf (·,p−f ) on A then (∇f π̂
R
f )(p) = 0 where

(∇f π̂
R
f )(p) = (DfPf )(p)>(pf − cf − rf%f (p)) + (I− rf (Df%f )(p)>)Pf (p). (5.2)

Eqn. (5.2) leads to a fixed-point characterization of profit-maximizing prices.

Definition 5.3.1. We define the map ζR : RJ → RJ through it’s intra-firm compo-

nents ζRf : RJ → RJf ,

ζRf (p) = ζf (p)− rfΛf (p)−1
(
Γf (p)>%f (p)− (Df%f )(p)>Pf (p)

)
(5.3)
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wherever (D%f )(p) exists. Otherwise, ζRf can be defined arbitrarily. ζ is defined as in

Chapter 4.

Proposition 5.3.2. Suppose the hypotheses of Proposition 5.3.1.

(i) On A, the regulated profit gradient can be written

(∇f π̂
R
f )(p) = Λf (p)

(
pf − cf − rf%f (p)− ζRf (p)

)
.

(ii) If pf ∈ A locally maximizes π̂Rf (·,p−f ), then

pf = cf + rf%f (p) + ζRf (p). (5.4)

Incentives

These representations enable an analysis of the incentives engendered by different

policies. In saying a firm has an “incentive” to raise (lower) the price of the jth vehicle

at prices p, we simply mean that (Djπ̂
R
f )(p) > 0 (< 0).

Proposition 5.3.3. The following hold:

(i) Under the CO2 tax, every firm has an incentive to increase the price of their

most emissions-intensive vehicle, relative to unregulated profit-optimal prices.

(ii) Suppose the regulation is a fixed-pivot feebate on fuel economy, and that for each

firm f there are products k, l ∈ Jf such that κk < κS < κl. Then every firm has

an incentive to raise the price of its least efficient vehicle and lower the price of

its most efficient vehicle relative to unregulated profit-optimal prices.

(iii) Suppose the regulation is a fixed-pivot feebate on fuel consumption (or emis-

sions intensity), and that for each firm f there are products k, l ∈ Jf such that

κk < κS < κl. Then every firm has an incentive to raise the price of its most

fuel consumptive vehicle and lower the price of its least consumptive vehicle,

relative to unregulated profit-optimal prices.

(iv) Suppose that, under the single-class CAFE standards, firm f ’s unregulated equi-

librium prices violate the standard. Then from these prices the firm has an

incentive to increase the price of its least fuel efficient vehicle.

(v) Suppose that, under the single-class CAE standards, firm f ’s unregulated profit-

optimal prices violate the standard. Then from these prices the firm has an

incentive to increase the price of its most emissions-intensive vehicle, and

decrease the price of its most emissions-intensive vehicle.

Claims (ii)-(v) are related to the “mix-shifting” incentives perceived by economists

studying pricing in the automotive market under CAFE (Kleit, 1990; Goldberg, 1998;
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Kleit, 2004). This form of these incentives are present for any Mixed Logit model

for which the Leibniz Rule holds and under no assumptions on the firms or products

offered by them. More is true than stated, in the sense that it will not only be the

extremal vehicles that have prices shifting in the manners described. However it

appears impossible to say in general exactly which vehicles, other than these extremal

ones, will have prices affected in the stated ways without a numerical analysis.

5.3.2 Standards and Non-Smooth Stationarity

For continuously differentiable regulatory costs, the fixed-point expression of stationar-

ity suffices. However these conditions must be modified to account for the (potential)

non-differentiability of ĉRf under standards like CAFE and CAE. We apply abstract

necessary and sufficient conditions to this problem, reaching first and second order

conditions satisfied by regulated profit-maximizing prices when the CAFE or CAE

standards are satisfied exactly.

Gradient Conditions

The following proposition gives necessary and sufficient conditions applicable when

%̂f (p) = 0.

Proposition 5.3.4. Suppose Assumption 5.1.3 holds and pf satisfies %̂f (pf ,p−f ) = 0.

(i) If pf locally maximizes π̂Rf (·,p−f ) then there exists some υf ∈ [0, rf (Pf (p)>1)]

such that (∇f π̂f)(p) = υf(∇f %̂f)(p). Moreover, if υf ∈ (0, rf(Pf(p)>1)) then

(Df∇f π̂f )(p)− υf (Df∇f %̂f )(p) is negative semi-definite on (∇f %̂f )(p)⊥.

(ii) On the other hand if there exists some υf ∈ (0, rf(Pf(p)>1)) such that

(∇f π̂f )(p) = υf (∇f %̂f )(p) and (Df∇f π̂f )(p)− υf (Df∇f %̂f )(p) is negative defi-

nite on (∇f %̂f )(p)⊥, then pf is a strict local maximizer of π̂Rf (·,p−f ).

The first-order necessary condition follows from the theory of generalized gradients

developed by Clarke (1975), while the second-order necessary and the sufficient condi-

tion follow from those developed by Ioffe (1979). From a computational perspective,

this formulation is beneficial because both (i) and (ii) are easy to test for a particular

vector of prices pf satisfying %̂f (pf ,p−f ) = 0.

Shadow Taxes

Conceptual benefits of the characterization of standard-bound profit-optimal prices

given in Proposition 5.3.4 also exist. Proposition 5.3.4 can be used to characterize the
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“shadow” taxes structured by standard-based regulatory policies.

Proposition 5.3.5. Suppose pf is stationary for π̂Rf (·,p−f), where %̂f(p) = 0, and

define χf (p) by (∇f %̂f)(p) = (DfPf )(p)>χf (p).4 Then pf is stationary for the flat

tax/subsidy regulated optimal pricing problem with flat taxes tf = υfχf(p) where

υf ∈ [0, rf(Pf(p)>1)] is the Lagrange multiplier from the non-smooth first-order

conditions of the standard regulated problem.

In this sense, υfχf(p) are the “shadow,” or “effective,” taxes acting on firm f

under the standard, when that standard is binding. By defining χf (p) for our standard

policies, we can get a more specific handle on what drives these shadow taxes.

Proposition 5.3.6. The following hold:

(i) Under the CAFE standards,

χf (p) = −

(
κ̄Hf (p)

Pf (p)>1

)(
1−

κ̄Hf (p)

κf

)
.

(ii) Under the attribute-based CAFE standards,

χf (p) =

(
1

Pf (p)>1

)[
κ̄Sf (p)

(
1−

κ̄Sf (p)

κSf (p)

)
− κ̄Hf (p)

(
1−

κ̄Hf (p)

κf

)]

(iii) Under the CAE standards,

χf (p) =

(
1

Pf (p)>1

)
(κf − κ̄Af (p)1).

The following intuitive claims are a consequence of Proposition 5.3.5 and Proposi-

tion 5.3.6.

Corollary 5.3.7. The following hold:

(i) Under the CAFE standard, any firm with standard-bound profit-optimal prices

is effectively taxed for all vehicles with fuel economies below the standard and

effectively subsidized for all vehicles exceeding the standard.

(ii) Under the attribute-based CAFE standard, any firm with standard-bound profit-

optimal prices is effectively taxed for all vehicles falling short of their target

fuel economy and effectively subsidized for all vehicles exceeding their target fuel

economy.

4χf is well-defined because (DfPf )(p) is nonsingular.
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(iii) Under the CAE standard, any firm with standard-bound profit-optimal prices is

effectively taxed for all vehicles with emissions intensities above the standard

and effectively subsidized for all vehicles with emissions intensities below the

standard.

Because the standard-constrained optimization problems are independent of the

penalty level rf , we are also assured that shadow taxes exist whenever there are

standard-bound profit maximizing prices.

Corollary 5.3.8. Suppose pf is a strict local solution to the constrained optimization

problem

maximize π̂f (qf ,p−f )

with respect to qf ∈ RJf
+

subject to %̂f (qf ,p−f ) = 0

(5.5)

with Lagrange multiplier υf > 0. Then there exists a r̄f > 0 such that pf locally

maximizes π̂Rf (·,p−f ) for any penalty level rf > r̄f .

The proof is trivial: any rf > r̄f = υf/(Pf (p)>1) satisfies υf < rf (Pf (p)>1).

Fixed-Point Form

We can summarize the stationarity conditions for standards in fixed-point form using

a revised definition of ζ.

Definition 5.3.2. Let

ζR,∗f (p, υ) = Λf (p)−1(Γf (p)>mR
f (p, υ)−Pf (p))

where mR
f (p, υ) = pf − cf − rf max{0, %̂f (p)}1− υχf (p).

Proposition 5.3.9. Suppose pf locally maximizes π̂Rf (·,p−f ). Then

pf = cf + rf max{0, %̂f (p)}1 + υfχf (p) + ζR,∗f (p, υf ) (5.6)

where

υf


= 0 if %̂f (p) < 0

∈ [0, rf (Pf (p)>1)] if %̂f (p) = 0

= rf (Pf (p)>1) if %̂f (p) > 0

.
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5.3.3 Simultaneous Stationarity

Without regulation, or indeed with any regulatory policies having continuously dif-

ferentiable %f , local equilibrium prices p simultaneously satisfy Eqn. (5.4) for all

f ∈ N(F ). For non-differentiable standard policies satisfying Assumption 5.1.3, local

equilibrium prices p simultaneously satisfy Eqn. (5.6).

5.4 A Hybrid Fixed-Point Iteration

The existence of the fixed-point characterization of simultaneous stationarity and

the successful implementation of a fixed-point iteration for unregulated problems

suggests using fixed-point iteration to solve for regulated equilibrium prices. This

is a straightforward application of Eqn. (5.3), and thus we do not discuss this here.

Preliminary computations demonstrate that this approach works quite well; see Fig.

5.2.

However, the fixed-point iteration, or indeed any Newton-type method, cannot

appropriately solve the non-smooth regulated equilibrium pricing problem under stan-

dards without fixing a collection of firms assumed to be bound by the standard. In

this section we suggest a hybrid fixed-point iteration by adding direct solution of

the non-smooth first-order conditions for those firms that are suspected of having

standard-bound profit-maximizing prices. Moreover, we derive these suspicions from

fixed-point iteration. This hybrid fixed-point iteration is thus akin to an active set

strategy, in which algorithm process informs the designation of constraints as active.

Specifically, the following result leads us to expect that “naive” fixed-point iteration

will tend to cycle near standard-bound profit-optimal prices.

Proposition 5.4.1. Let pf locally maximize π̂Rf (·,p−f) where %̂f(pf ,p−f). Then

cf + ζf (p)− pf and

cf + ζf (p) + rf (Pf (p)>1)Λf (p)−1(∇f %̂f )(p)− pf

are colinear and point in opposite directions. That is, there is a scalar αRf > 0 such

that

cf + ζf (p) + rf (Pf (p)>1)Λf (p)−1(∇f %̂f )(p)− pf = −αRf
(
cf + ζf (p)− pf

)
.
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Moreover (cf + ζf (p)− pf )
>(∇f %̂f )(p) > 0 and, by the first result,

(
cf + ζf (p) + rf (Pf (p)>1)Λf (p)−1(∇f %̂f )(p)− pf

)>
(∇f %̂f )(p) < 0.

A consequence of this result is that for prices p′f near pf but with %̂f (p′f ,p−f ) < 0,

the fixed-point step points towards violation of the standard, while for prices p′f near

pf but with %̂f(p
′
f ,p−f) < 0, the fixed-point step points towards satisfaction of the

standard. These fixed point steps do not vanish as exact satisfaction of the standard

is approached.

We can take this observation as the basis of a hybrid algorithm for solving uncon-

strained price equilibrium problems under standards. For any prices that either violate

or satisfy a firm’s standard function, we simply take the fixed-point step prescribed

by Eqn. (5.3). Particularly, if the current prices are such that firm f satisfies the

standard, the unregulated fixed-point step is taken. If the corresponding sequence

of iterates displays some firm that tends to set prices that generate a cycle between

satisfying and violating the standard, then we take this to imply that the firm actually

has profit-maximizing prices that exactly satisfy the standard. Such prices cannot be

reached by fixed-point steps (at least without some form of damping), and thus in

future iterations we solve the first-order conditions instead of taking fixed-point steps.

Suppose then that the firms indexed by F ⊂ N(F ) are suspected of having standard-

bound equilibrium prices. Let pF be that sub-vector of p containing only the prices

for firms in F , and p−F be that sub-vector of p containing only the prices for firms in

N(F ) \ F . We solve for a simultaneous solution (pF ,υF) ∈
∏

f∈F RJf × R|F| to the

first-order conditions

(∇f π̂f )(pF ,p−F) = υf (∇f %̂f )(pF ,p−F)

%̂f (pF ,p−F) = 0
for all f ∈ F . (5.7)

Newton’s method can be used to solve this system on equations. The bounds

0 ≤ υf ≤ rf (Pf (p)>1) must also be checked to validate that indeed a simultaneously

stationary point is found.

Given the success of the fixed-point approach ζ-NM for unregulated price equi-

librium computations, we propose a hybrid fixed-point algorithm outlined in Fig.

5.1 using the fixed-point form of the conditions (5.7). In fact, preliminary computa-

tional experiments have demonstrated that solving the conditions (5.7) in their given,

combined gradient form can be very difficult. To use the fixed-point form we define
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Figure 5.1 A hybrid fixed-point approach for standard-regulated Bertrand competition.
The following steps update p, an estimate of regulated equilibrium prices, and F , an estimate
of the firms standard-bound in equilibrium.

. compute ζ, %̂ = {%̂f}Ff=1, %, ζ
R

. terminate if the first-order conditions are satisfied

. append firms f /∈ F suspected of being standard-bound to F

. for f /∈ F , compute qf ← cf + rf%f + ζRf

. if F 6= {∅}, compute (qF ,υF), a Newton step for ϕF

. update p← q

ϕpF :
∏

f∈F RJf × R|F| →
∏

f∈F RJf and ϕσF :
∏

f∈F RJf × R|F| → R|F| by

ϕpk(pF ,σF) =
(
ϕpF(pF ,λF)

)
k

= pk − ck − υf(k)χk(pF ,p−F)− ζR,∗k (pF ,p−F , υf(k)) for all k ∈ JF
ϕσf (pF ,σF) =

(
ϕσF(pF ,σF)

)
f

= %̂f (pF ,p−F) for all f ∈ F .

We then define ϕF :
∏

f∈F RJf × R|F| →
∏

f∈F RJf × R|F| by ϕF = (ϕpF ,ϕ
σ
F). A pair

(pF ,υF) ∈
∏

f∈F RJf × R|F| simultaneously solves the first-order conditions (5.7) if,

and only if, it is a zero of ϕF .
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Figure 5.2 Convergence curves for several regulated fixed-point iterations under the Berry et al. (1995) model. Unregulated fixed-point
iteration started at unit costs, and regulated fixed-point iterations started at unregulated equilibrium prices. Under CAFE, no firms are
bound by the standard.
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5.5 Conclusions

In this chapter we have extended our fixed-point approach from Chapters 3 and 4 to

the setting where firms face regulatory costs. We have devised a general framework

under which regulated Bertrand competition can be analyzed for any market, but

focused on the automotive industry for specific policies. While a number of recent

analyses consider the impact of regulations on Bertrand competition, many of these

study only policies that influence consumer utility rather than firm profit functions

directly. Several analyses of the CAFE standards that do include regulation’s impact

on firm’s profit functions study a single policy and fix which firms behave as if bound

by the standards. In order to relax these assumptions, we have adopted necessary and

sufficient conditions from nonsmooth optimization and proposed a hybrid fixed-point

iteration for the computation of regulated equilibrium prices. While preliminary

computations using the extended fixed-point approach have been successful, future

work needs to present a detailed study of the numerical properties of these algorithms

similar to that presented in Chapter 4. Our theory also needs to be extended to

multi-class standards.
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Chapter 6

Conclusions and Future Work

This dissertation has presented several contributions to the existing theory of equilib-

rium pricing. We have described a cohesive framework for Bertrand competition under

an arbitrary RUM. The development of this framework has identified fundamental

assumptions that may currently be overlooked in prominent econometric applications

of Bertrand competition. We have also undertaken a detailed analysis of equilibrium

prices under the Logit RUM, resulting in a new proof of the existence of equilibrium

that does not rely on restrictive assumptions on the number and type of products or

firms. Our analysis has also uncovered one counterintuitive property of profit-optimal

prices under many Logit models, that markups are constant or decrease with value.

We have developed and experimented with a fixed-point approach for computing

equilibrium prices in large-scale and complex differentiated product markets with

Mixed Logit RUMs. Despite the prominence of such models, focused study of the

computation of equilibrium prices has not yet been undertaken. We have clearly

demonstrated two benefits to the fixed-point approach to equilibrium prices:

(i) “Analytically preconditioning” the equilibrium problem by using η-NM or ζ-NM

instead of CG-NM yields a significant reduction in the time required to compute

equilibrium prices as well as an improvement in reliability;

(ii) ζ-FPI can be a very reliable and efficient method of computing equilibrium

prices.

Due to the success of the general fixed-point approach for computing equilibrium

prices without regulation, we have also extended the fixed-point approach to models

where firms face regulatory policies. All of these results contribute to the theory

of Bertrand competition in differentiated product markets applied by economists,

marketers, and engineers in ways that have been outlined in Chapter 1.
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In this concluding chapter, we critically reflect on these contributions and pose

directions for future work.

6.1 Criticisms of this Research

This research focuses entirely on Bertrand competition models of differentiated product

markets where demand is characterized using a Logit or Mixed Logit RUM. While such

models have played a prominent role in econometric studies of the automotive market

for over a decade, they have not been completely validated as appropriate models of

this market. An argument might therefore be made that this research focuses on a

mathematical framework that is not useful for policy purposes, simply because it does

not truly represent real markets.

We agree that future work needs to more rigorously validate particular Bertrand

competition models as representative of real markets, and contend that the research

developed in this dissertation already helps achieve that goal. For example, in Chapter

3, we identified specific ways in which Bertrand competition may be an inappropriate

model of real markets. The decreasing-in-cost (or -quality) equilibrium markups under

any reasonable Logit model is a direct, qualitative conclusions that can be succinctly

verified or rejected with real market data. This particular example may seem unnec-

essary given the anecdotal prominence of markups that increase with quality. One

item of future work discussed below is the extension of this analysis to Mixed Logit

models, where these ideas may find more empirical relevance. However, it is likely

that a direct analysis of Mixed Logit models will be limited to specific, simple cases.

This is where our second contribution may play a role. The development of fast and

reliable methods of computing equilibrium prices enables the exploration of complex

Bertrand competition models that cannot be analyzed directly. With these methods,

computational experiments can be undertaken that will allow practitioners to explore

the pricing implications of alternative models, and whether these are plausible or

counterintuitive. Such examinations have not yet been undertaken.

A more technical criticism that has been made of this research is that the numerical

studies reported in Chapter 4 are not based on widely-available, professionally-

developed software packages for solving nonlinear equations. We have used our own

programs developed in matlab in order to run comparisons of various approaches on

a “level playing field.” That being said, the GMRES-Hookstep (Viswanath, 2007, 2008),

one elegant, efficient, and robust globally-convergent variant of Newton’s method

for large-scale price equilibrium problems, is not currently available in any profes-
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sional software package. As part of this work, we have developed a generic matlab

implementation of this method.1 We have also compared the computational times

required of our methods with those of matlab’s professional nonlinear equations solver

fpsolve, finding our GMRES-Hookstep method to compute solutions in comparable

amounts of time. Use of both directional finite differences and analytical Jacobians,

as well as the use of three distinct formulations, serves as an extensive “validity check.”

Implementations of the fixed-point iteration and the GMRES-Hookstep methods in

FORTRAN and/or C should be somewhat straightforward to develop, at which point

formal comparisons between professional solvers like MINPACK (MINPACK, 2008),

KNITRO (Byrd et al., 2006; KNITRO, 2008), KINSOL (Brown and Saad, 1990; KINSOL,

2008), or NITSOL (Pernice and Walker, 1998; Walker, 2005) our new methods can be

undertaken. However, there is no reason to expect that the conclusions of our study

would change.

Finally, our conclusion that existing results may be sensitive to the sample set

may be critiqued for examining results under the ζ-FPI only, rather than with all

the numerical approaches considered. Certainly the same experiments should be

undertaken with all methods to truly gauge the variation resulting from sample set

selection. However, in all our comparison trials the prices computed by all methods

were highly consistent, far more so than the results of equilibrium price computations

under different sample sets. This suggests that where one method (ζ-FPI) is sensitive,

the others (CG-NM, η-NM, and ζ-NM) will be as well.

6.2 Future Work

We divide elements of future work into two categories: those concerning price equilib-

rium and those considering single- and two-stage design and pricing games.

6.2.1 Price Equilibrium

Uniqueness of Equilibrium Prices

One key theoretical aspect of equilibrium pricing that we have not addressed is unique-

ness. However, this is a very important property to prove in dealing with empirical

Bertrand competition models of differentiated product markets. Multi-product firm

1Our Householder GMRES implementation matches matlab’s implementation step-by-step, and we
have made use of the primary aspects of existing trust region methods as expounded by Dennis and
Schnabel (1996).
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equilibrium prices are known to be unique only under a linear in price utility Logit

model (Sandor, 2001). We can currently perceive three potential avenues towards a

uniqueness proof that extends to nonlinear utility functions. First, the most powerful

result would be to prove contractivity of the map c + ζ(p). This would not only

prove equilibrium uniqueness but also establish the fixed-point iteration as a globally

convergent computational method. We address this issue further below. Second,

Kellogg (1975) has proven the following result:

Theorem 6.2.1. (Kellogg (1975)) Let X be a convex compact subset of a finite di-

mensional Banach space, and let ϕ : X → X be a continuously differentiable map such

that (i) 1 is not an eigenvalue of (Dϕ)(x) for any x ∈ X and (ii) no x ∈ ∂X , the

boundary of X , is a fixed-point of ϕ. Then ϕ has a unique fixed-point in X .

In the context of Logit models this theorem could be applied to c +η(p), c + ζ(p),

or to the best response map (whose Jacobian can be derived from the Chain Rule).

Note that unlike contractivity, Kellogg’s theorem says nothing about the convergence

of fixed-point iteration. Third, it might be possible to apply the Poincare-Hopf the-

orem yet again to prove uniqueness of equilibrium prices if the index of any zero of

p−c−η(p) or p−c−ζ(p) can be computed. Particularly, if the index of any such zero

can be shown to be one, then the Poincare-Hopf theorem will again prove uniqueness

of equilibria. This feels like a strong property to prove, but it may nonetheless be

possible. Both the second and third approach must be based on a more developed

understanding of (Dη)(p) or (Dζ)(p).

Convergence of the Fixed-Point Iteration

The most striking and unexplained technical outcome of this research is the fast and vir-

tually ubiquitous convergence of the fixed-point iteration p← c + ζ(p) for the specific

models we explored. In Lemma 4.1.5, Claim (i) we stated that ||Λ(p)−1Γ̃(p)>||∞ < 1.

Again, the proof of this claim is based on the simple observation that the kth row sum

of Λ(p)−1Γ̃(p)> equals

∫  ∑
j∈Jf(k)

PL
j (θ,p)

 dµk,p(θ) < 1

where

dµk,p(θ) = µk(θ,p)dµ(θ) µk(θ,p) =
|(Dwk)(θ)|PL

k (θ,p)∫
|(Dwk)(θ′)|PL

k (θ′,p)dµ(θ′)
.
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Based on this equation, we also conjectured that ||Λ(p)−1Γ̃(p)>||∞ should be reason-

ably bounded away from one. Combined with the appearance of Λ(p)−1Γ̃(p)>(p− c)

in ζ(p), this fact makes it seem somewhat plausible that ζ will have some contractiv-

ity. Investigating this further, both near equilibrium and globally, may yield strong

theoretical support for use of the fixed-point iteration to supplement the numerical

evidence given in this dissertation.

Further Development of Numerical Methods

One direct item for future work is the development of codes for the ζ-FPI and a

generic version of the GMRES-Hookstep in C taking full advantage of the Basic Linear

Algebra Subroutines (“BLAS”) (BLAS, 2008). Once this is completed, a comprehen-

sive comparison of the different approaches for computing equilibrium prices can be

undertaken with professionally developed codes like MINPACK, KNITRO, KINSOL, and

NITSOL. We do not, however, anticipate that such study will change the qualitative

outcomes of our existing comparisons: η-NM and ζ-NM are superior to CG-NM and

ζ-FPI can be quite efficient and reliable.

There are three areas where numerical methods proposed in this dissertation might

be further improved. First, the success of ζ-FPI suggests “series acceleration” tech-

niques (Weniger, 1989) as a means to further speed up computations. These methods

can achieve the quadratic convergence rate of Newton’s method using compounded

fixed-point steps. A related approach, which also connects to quasi-Newton methods

for fixed-point problems, is Steffensen’s iteration (Johnson and Scholz, 1968; Ortega

and Rheinboldt, 1970). Second, most of the computational burden of any method

we have employed is derived from the integral approximations involved in computing

utilities, choice probabilities, and choice probability derivatives. Alternative integral

approximation methods such as importance or quasi-random sampling (Train, 2003;

Train and Winston, 2007) could reduce the number of samples required to accurately

compute equilibrium prices. Alternatively, parallelism could be exploited in the com-

putation of equilibrium prices in both the computation of utilities, choice probabilities,

and choice probability derivatives and the execution of steps based on these quantities.

Analysis of Mixed Logit Models

Analysis of equilibrium prices under Mixed Logit models is warranted as one path to

validating Bertrand competition as a practical model of real markets. The first and

most important question, one that cannot be addressed through computations, is the
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existence of equilibrium. We expect that the Poincare-Hopf Theorem will again imply

the existence of fixed-points given the right assumption on the asymptotic rate of

decrease of the utility function with respect to price. However the claim that stationary

prices are profit maximizing, the central piece of the argument for Logit models, is

obscured under a generic Mixed Logit model. It is possible that classes of models can

be found for which this claim can be proven, or that a more involved degree-theoretic

argument can be made to prove the existence of equilibrium. A particularly useful

result here would be to find an example model where equilibrium does not exist. Such

a finding would begin to structure the assumptions on (u, ϑ) necessary for equilibrium

to exist.

The new fixed-point expression derived in this dissertation also isolates the ability

to generalize equilibrium markups by “mixing” Logit models. Specifically, p = c+ζ(p)

is componentwise equivalent to

pk = ck +

∫
ζLk (θ,p)dµk,p(θ) where ζLk (θ,p) = π̂Lf(k)(θ,p)− (Dwk)(θ, pk)

−1.

It is the product-and-price dependent measures dµk,p(θ) that relieve the reductive

properties of Logit equilibrium prices discussed in Chapter 3. Particularly, if for

some k, l ∈ Jf dµk,p ≡ dµl,p for all p, then the same properties of the two prices

pk, pl and markups pk − ck, pl − cl proved for Logit pass over to the Mixed Logit

setting. In other words, the the measures dµk,p isolate the ability of a Mixed Logit

specification to represent more realistic markup patterns than those that hold under

Logit. Further study of these measures will thus play a fundamental role in study of

the properties of equilibrium prices under Mixed Logit models. First of all, whether

or not dµk,p ≡ dµl,p can ever be true for a “nontrivial” Mixed Logit specification2

remains an open question.

Generalized Extreme Value Models

Generalized Extreme Value models (Train, 2003) are another prominent class of RUMs

used to model the automotive industry. Loosely speaking, these models generalize

Logit models by introducing across-product correlations in random utilities. The

2A “trivial” Mixed Logit specification would be one having w and v both independent of θ. By
exclusion, a “nontrivial” Mixed Logit specification has one of w and v dependent on θ. If only ϑ
depends on θ, then dµk,p = dµl,p for all p and all k, l. Thus a nontrivial Mixed Logit model must at
least have price or characteristic components of utility that depend on the demographics. However,
dµk,p 6= dµl,p for some p even for simple cases such as w(θ,p) = −αp with vk(θ) anything not
constant in θ. This raises some skepticism as to whether dµk,p = dµl,p can ever hold for nontrivial
Mixed Logit models.
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fixed-point approach described here extends to these models in the form

(I + G(p))(p− c) = ζ(p)

for a specific matrix G(p) related to these across-product correlations in utility.

One economist has already expressed an interest in developing the analysis and

computational experience with this model class.

Multi-Class Regulatory Policies

Including multi-class policies is arguably the important extension of the methods

discussed in Chapter 5. Without multi-class policies, the actual regulations in place

in the U.S. today cannot be analyzed. While this extension may make numerical

solution of the first-order conditions more challenging to program and implement,

this extension may not involve a more challenging theory. The adopted results from

non-smooth analysis and the primary numerical methods certainly apply to models

with multi-class standards.

6.2.2 Single- and Multi-Stage Design Games

While this dissertation has dealt solely with price equilibrium, equilibrium designs and

prices will play an important role in game-theoretic models of differentiated product

markets for policy analysis.

Single-Stage Design Games

Simple single-stage design games can also be analyzed using the stationarity condi-

tions. For the simplest models of the type introduced in Chapter 1: single-stage games

of unconstrained characteristics choice (x ≡ y, Y ∼ RK) differentiable unit costs

(cUf : Y → (0,∞)) and without fixed costs (cFf (Yf) ≡ cFf ≥ 0), a very conceptually

appealing representation of equilibrium designs can be shown to hold: for each product,

the gradient of unit costs with respect to characteristics is equal to the local willingness

to pay for changes to these characteristics; i.e.

(∇ycUf )(yk) =
(∇yu)(yk, pk)

|(Dpu)(yk, pk)|
=

(∇yw)(yk, pk) + (∇yv)(yk)

|(Dpw)(yk, pk)|
.

The conceptual appeal can be described as follows: If this equation were to fail, then

there would exist a characteristics change that consumers were willing to pay more for
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than the incremental unit cost of the change to the firm. In particular, this expression

shows that linear in price utility Logit models (w(y, p) = −α(y)p) may generate

optimal characteristics choices that are independent of competitor actions.3 We say

“may” because it is easy to use this equation to also derive specifications for cUf and v

for which no profit-optimal characteristics choices exist. Furthermore, it is fairly easy

to see that this criteria holds not just for Logit models, but for any GEV model with

across-product correlations in error that are independent of product characteristics.

In other words, while adding across-product correlations in the additive errors can

result in models with more realistic choice predictions, this does not necessarily result

in well-posed or realistic product design behavior.

Taking the engineering perspective, we could allow these potentially ill-posed

models to be used recognizing that technical constraints subsequently determine the

optimal solutions. While this may be an appropriate theoretical resolution, the subse-

quent question for economic theory is whether it will allow engineering considerations

to make its models well-posed or if it would rather change the modeling paradigm to

have models that are inherently well-posed.

Two-Stage Design Games

Two-stage design and pricing games are an alternative modeling construct preferred

by theoretical economists that may “naturally” resolve this potential ill-posedness.

Future research must undertake a basic analysis of the two-stage model. A first step

would be to determine if and when the two-stage model is in fact different from the

single-stage model. The central obstacle to such an analysis is a characterization of the

derivatives of equilibrium prices with respect to changes in design variables. Abstract

formulae for these derivatives are easily derived from the Chain Rule by invoking the

Implicit Function Theorem (Munkres, 1991), but understanding how they impact the

gradient of profits as a function of design decisions alone, given prices in equilibrium,

is a more challenging task for analysis.

Such abstract formulae can, however, be implemented in computations. These

computations can immediately capture quantities of interest like shadow profits cor-

responding to changes in unit costs, product characteristics, or regulatory policy

parameters. The use of these formulae in two-level optimization or two-stage games

of regulated design and pricing is also feasible, and should occupy a central place in

further work.

3Simply note that both sides of the given equation are functions of yk only.
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When considering numerical approaches for two-stage games of regulated design

and pricing, we must recall a guiding principle for this dissertation: finding the right

formulation for a problem makes all the difference in its solution. While fixed-point

expressions will not exist for design decisions as they have for prices,4 there may still

exist reformulations of the stationarity conditions for design problems that will be

important for efficient and reliable computations. Our use of the hybrid fixed-point

form of the non-smooth stationarity conditions for regulated equilibrium prices is an

example of this.

6.2.3 A Roadmap for Policy Analysis

Quantitative policy analysis should be informative, scientific, practical, complete, and

effectively communicated. Informative analyses address questions of relevance to the

policy debate. Scientific analyses are based on principles verified using logic and

empirical observations; in other words, based on sound science. Practical analyses can

be reasonably undertaken and replicated. Complete analyses address all features of the

system being regulated that have a reasonable potential to be influential in determining

policy outcomes. Finally, an analysis is effectively communicated when influential

policy makers understand the implications of the analysis for policy decisions.

A reasonable degree of completeness requires considering all of the disparate aspects

considered in the various analyses outlined in Chapter 1 including: heterogeneity

in consumer preferences, both for vehicle purchasing and driving; heterogeneous,

self-interested firms; vehicle purchasing decisions including new and used cars, as

well as scrappage decisions; vehicle-specific use decisions included alongside vehicle

purchasing decisions. Specifically, game-theoretic models of regulated design and

pricing are intended to make policy analysis more complete by depicting the actions

taken by heterogeneous, self-interested firms.

It can certainly be argued that game-theoretic models of design and pricing have

the potential to quantify policy outcomes that are currently ignored or discussed

only in a qualitative way. As argued in Chapter 1, technology “configuration” is a

prominent example of this. Single-stage game models of fuel economy choice and

pricing are an initial application of game-theoretic principles to quantify how policy

influences configuration. A simpler example is a pricing response to a fuel or sales tax

increase. In part, tax increases may intend to sponsor fuel-efficient vehicle purchasing.

However strategic firms can lower the prices of their vehicles in response to tax price

4The gradient condition above is a compact expression of this.

108



increases in order to maximize profits, potentially absorbing some of the desired

response in vehicle purchases. Models that do not consider all the motivations that

shape firm decisions cannot resolve these fairly intuitive aspects of market behavior.

The research presented in Chapters 2-5 and the future work proposed above

primarily serve to make game-theoretic analyses of regulated differentiated product

markets increasingly scientific and practical. Developing the underlying theory of

equilibrium improves makes applications of game-theoretic models to policy questions

more scientific. Advancing numerical methods for the computation of equilibrium

has the potential to improve both how scientific an analysis is, as well as improving

practicality.

Should these efforts succeed, the resulting analysis must still be informative and

effectively communicated. Ensuring this requires deeper collaboration with other

stakeholders in the policy debate, including automotive corporations, lobbyists, and

key policy makers themselves. Engagement with these stakeholders will ensure that

the primary questions of relevance to the policy debate are addressed by quantitative

analyses, and that policy makers can act appropriately.
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Appendix A

Mathematical Notation

Sets. N denotes the natural numbers {1, 2, . . . }, and N(N) denotes the natural

numbers up to N , that is, N(N) = {1, . . . , N}. R denotes the set of real num-

bers (−∞,∞), [0,∞) denotes the non-negative real numbers, and [0,∞] denotes

the extended non-negative half-line. We denote the (J − 1)-dimensional simplex

{(x1, . . . , xN) ∈ [0, 1]N :
∑N

n=1 xn = 1} by S(N), and the J-dimensional “pyramid”

{(x1, . . . , xN) ∈ [0, 1]N :
∑N

n=1 xn ≤ 1} by 4(J). Hyper-rectangles in RN , i.e. sets of

the form [a1, b1] × · · · × [aN , bN ] for some an, bn ∈ R with an < bn for all n ∈ N(N),

are denoted by [a,b] where a = (a1, . . . , aN) and b = (b1, . . . , bN). For other sets, we

typically use calligraphic upper case letters such as “A”. For any set A, |A| denotes

its cardinality. For any B ⊂ A, A \ B denotes the set {b ∈ A : b /∈ B}. For any set A,

F(A) denotes the collection of finite subsets of A.

Symbols. Bold, un-italicized symbols (e.g., “x”) denote vectors and matrices; typi-

cally we reserve lower case letters to refer to vectors and use upper case letters to refer

to matrices; the vector of choice probabilities “P” is an exception made to conform

with existing notation of these quantities. Throughout we use 1 to denote a vector of

ones of the appropriate size for the context in which it appears. I always denotes the

identity matrix of a size appropriate for the context. For any x ∈ RN , diag(x) denotes

the N × N diagonal matrix whose diagonal is x. Any vector inequalities between

vectors are to be taken componentwise: for example, x < y means xn < yn for all n.

Random variables are denoted with capital letters “X”, with random vectors being

denoted with bold capital letters (e.g., “Q”). While this overlaps with our notation for

matrices, it should not cause any confusion. P denotes a probability and E denotes an

expectation. “log” always denotes the natural (base e) logarithm. “ess sup” denotes

the essential supremum of a measurable function, where the measure on measurable

subsets of the domain should always be clear.
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Differentiation. Our conventions for denoting differentiation follow Munkres (1991).

We use the symbol “D” to denote differentiation using subscripts to invoke additional

specificity. Letting f : RM → RN , (Dmfn)(x) denotes the derivative of the nth compo-

nent function with respect to the mth variable and (Df)(x) is the N ×M derivative

matrix of f at x with components ((Df)(x))n,m = (Dmfn)(x). Thus for f : RM → R,

(Df)(x) is a row vector. If f : RM → R, we define the gradient (∇f)(x) ∈ RM as the

transposed derivative: (∇f)(x) = (Df)(x)>.

Other Definitions. Let X be any topological space and let f : X → R. We say

x∗ ∈ X is a local maximizer (over X ) of f if there exists a neighborhood of x∗, say U ,

such that f(x∗) ≥ f(x) for all x ∈ U . We say x∗ ∈ X is a maximizer (over X ) of f if

f(x∗) ≥ f(x) for all x ∈ X .
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Appendix B

Examples for the Logit Model

B.1 Demonstrations of the Basic Definitions

We first provide some examples of indirect utilities to illustrate properties (a-c). A lin-

ear in price utility, given by w(y, p) = −α(y)p for some α : Y → (0,∞), satisfies (a-c).

More generally, any “Cobb-Douglas” in price utility, given by w(y, p) = −α(y)pβ(y)

with α, β : Y → (0,∞), satisfies (a-c). A “Cobb-Douglas” specification for “remaining

income,” w(y, p) = α(y)(ς − p)β(y) is a bit more complicated, being a function finite

for all finite prices and satisfying (a-c) only for β : Y → (2N + 1), where 2N + 1

denotes the set of odd positive integers: if β(y) : Y → (−∞, 0) then w is not finite

for all finite p; clearly w violates (a) if β(y) = 0; if β(y) > 0 is not an integer, then w

is complex for p > ς; finally, if β(y) ∈ N is not an odd positive integer then w violates

(a). The common “log-transformed” Cobb-Douglas in “remaining income” utility

w(y, p) = α(y) log(ς − p) for p < ς < ∞, α : Y → (0,∞),1 is not finite for all finite

prices. Allenby and Rossi’s negative log of price utility, given by w(y, p) = −α(y) log p

for α : Y → (0,∞) satisfies (a-c) (Allenby and Rossi, 1991). Finally, the utility

w(p) = −α(log p− ε sin log p), where α > 1 and ε ∈ (0, 1), satisfies (a-c).

We now demonstrate which of these utility functions is eventually log bounded

and/or eventually decreases sufficiently quickly. Any linear in price or Cobb-Douglas

in price utility is both eventually log bounded and eventually decreases sufficiently

1This log transformation usually occurs (see Berry et al. (1995), Rossi et al. (2006)) based
on the observation that choices are invariant over increasing utility transformations, so that
u′(y, p) = ew(y,p)ev(y) yields the same random choices as the specification introduced in the text,
with the caveat that the additive errors introduced in the text are taken as multiplicative errors
(with a related distribution) in the former specification. In a Cobb-Douglas specification for the
former, u′(y, p) ∝ (ς − p)α(y) = eα(y) log(ς−p), illustrating that the logarithm of this utility has the
log-transformed specification for the price component.
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quickly. For if β(y) ≥ 1, (Dw)(y, p) = −α(y)β(y)pβ(y)−1 ↓ −∞ as p → ∞. If

β(y) < 1, then although (Dw)(y, p) = −α(y)β(y)p−(1−β(y)) ↑ 0 as p→∞,

(Dw)(y, p)− r

p
= −α(y)β(y)

1

p1−β(y)
+
r

p
=

(
1

p

)[
r − α(y)β(y)pβ(y)

]
≤ 0

if p ≥ β(y)
√
α(y)β(y)/r and hence w(y, p) eventually decreases sufficiently quickly for

any r. The class of negative log of price utility functions contain the most obvious

examples of utilities that are neither eventually log bounded nor eventually decrease

sufficiently quickly; particularly w(y, p) ≤ −α(y) log p with α(y) ≤ 1. If α(y) < 1

there are no finite profit maximizing prices under this utility.

In the text we defined utilities with sub-quadratic second derivatives. Any linear

in price utility has sub-quadratic second derivatives, since (D2w)(y, p) ≡ 0. More

generally, under any Cobb-Douglas in price utility

(D2w)(y, p)

(Dw)(y, p)2
= −

(
1

α(y)

)(
β(y)− 1

β(y)

)(
1

pβ(y)

)
=

(
β(y)− 1

β(y)

)(
1

w(y, p)

)
,

and hence w has sub-quadratic second derivatives if β(y) ≥ 1. If β(y) < 1, then w has

sub-quadratic second derivatives only at (y, p) such that |w(y, p)| > (1− β(y))/β(y),

i.e. p > β(y)
√

(1− β(y))/(α(y)β(y)). Finally, if w(y, p) = −α(y) log p then

(D2w)(y, p)/(Dw)(y, p)2 ≡ 1/α(y) and hence w has sub-quadratic second deriva-

tives if α(y) > 1. Hence far from requiring concavity, some convex utility functions

have sub-quadratic second derivatives.

B.2 Examples of the ζ map

Let α(y) ≡ α > 0. For the linear-in-price utility, ζj(p) = π̂f(p) + 1/α with

the fixed-point equation being pj = cj + π̂f(p) + 1/α. For any Cobb-Douglas in

price utility, ζj(p) = π̂f(p) + (1/(αβ))p1−β
j with the fixed-point equation being

pj = cj + π̂f(p) + (1/(αβ))p1−β
j . For negative log of price, ζj(p) = π̂f(p) + (1/α)pj

with the fixed-point equation being pj = cj + π̂f (p) + (1/α)pj.

Our proof that the negative log of price utility has no finite profit maximizing

prices can be strengthened using the relationship between ζ and the profit gradients.

We already know that w(y, p)/1 = −(α(y)/1) log p does not eventually decrease suffi-

ciently quickly when α(y) ≤ 1. We have also observed that ζj(p) = π̂f (p) + (1/αj)pj,
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which implies that

ζj(p)− (pj − cj) = (π̂f (p) + cj) +

(
1

αj
− 1

)
pj = (π̂f (p) + cj) +

(
1− αj
αj

)
pj.

Thus, if αj = α(yj) ≤ 1, the jth price derivative of profit is always positive. While we

have already shown that only infinite prices maximize profits under this utility when

αj < 1, this shows the same holds for αj = 1 as well even though the corresponding

maximal profits are finite.

We now present an example of a utility function for which has finite profit-

maximizing prices but for which a “local” criterion restricting profit maximization

at infinity fails. This local criterion is simply that profits decrease for all sufficiently

large prices. Let w(p) = −α(log p− ε sin log p) with α > 1 and ε ∈ [1− α−1, 1). Then

pj − cj − ζj(p) ≥ 0 if and only if

pj

(
1− 1

α(1− ε cos log pj)

)
≥ cj + π̂f (p). (B.1)

But based on our choice of ε, there exist arbitrarily large pj such that the left

hand side above is non-positive: For all p̄ there exists some pj > p̄ such that

α(1 − ε cos log pj) = α(1 − ε) ≤ 1, which implies the claim. Since cj + π̂f(p) is

positive (or rather is for all p that matter), the inequality (B.1) is violated and there

exist arbitrarily large pj such that profits increase, locally, with pj, despite the fact

that profits must vanish as pf →∞ since this utility is eventually log bounded. That

is, the local criterion for finite profit maximizing prices is violated.
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Appendix C

An Extended Discussion of
Numerical Methods

In this section we extend our discussion of the fixed-point iteration and Newton’s

method.

All of the methods we implement can be built to ignore products with excessively

low choice probabilities. That is, one can ignore price updates for all products with

Pj(p) ≤ εP , where εP is some small value (say 10−10). Products with a choice proba-

bility this small (or smaller) need not be considered a part of the market in the price

equilibrium computations. For example, Wards (2004-2007) reports total sales of cars

and light trucks during 2005 as N = 16, 947, 754.1 Because expected demand is defined

by E[Qj(p)] = NPj(p), any εP ≤ 0.5 ∗N−1 ≈ 3× 10−8 ignores any vehicle that, as

priced, is not expected to have a single customer out of the millions of customers that

bought or considered buying new vehicles. There are also technical reasons for this

truncation. Particularly, Λ(p) and (D∇̃π̂)(p) become singular as Pj(p)→ 0, for any

j. Truncating avoids this non-singularity and hopefully helps conditioning.

C.1 Our Fixed-Point Iteration

The only potential complication that may arise in iterating

p← c + Λ(p)−1(Γ̃(p)>(p− c)−P(p)).

is that λj(p)→ 0 for some j, as suggested above. This happens if pj → ς∗, which will

be finite for the finite-sample models applied in computations. Technically, ζj(p) is

1Particularly, 7,667,066 cars and 9,280,688 light trucks.
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not defined when λj(p) = 0. However it is also true that (Djπ̂f)(p) = 0. Hence the

objective of the iteration, to zero the price derivatives of profit, has been achieved for

the jth price. Furthermore, so long as λj(p) = 0, the value of pj does not determine

the value of the fixed-point step for any other prices. These facts are guaranteed by

the following proposition.

Proposition C.1.1. Under assumption (a) Pj(p) and λj(p) are either both zero or

neither is. If either is, then also γj,k(p) = γk,j(p) = 0 for all k ∈ N(J).

C.2 Newton’s Method

C.2.1 Computing Jacobian Matrices

Standard “exact” or quasi-Newton methods either always or periodically require the

Jacobian matrix (DF)(x). Using finite differences to approximate either Jacobian

matrix increases the computational burden by an order of magnitude by requiring

work equivalent to J evaluations of the function F. In our 993 vehicle example, approx-

imating (DF)(x) once with finite differences would take roughly 993 evaluations of

the combined gradient, when the work of less than 50 evaluations appears to sufficient

to converge to equilibrium prices using the ζ fixed-point iteration. We recommend

directly approximating (DF)(x) using integral expressions for (D∇̃π̂)(p), (Dη)(p),

and (Dζ)(p). In this subsection we report formulae that enable this task. Another

alternative is to use automatic differentiation, but we are skeptical that this would in

fact be faster than the direct formulae provided here.

Combined Gradient

Assuming a second application of the Leibniz Rule holds, we can derive integral

expressions for the second derivatives (DlDK π̂f(k))(p) through

(
(D∇̃π̂)(p)

)
k,l

= (DlDkπ̂f(k))(p) =

∫
(DlDkπ̂

L
f(k))(θ,p)dµ(θ).

Proposition C.2.1. Let w be twice continuously differentiable in p and suppose a

second application of the Leibniz Rule holds for the Mixed Logit choice probabilities at
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p. Set

φk,l(p) =

∫
(Dwk)(θ, pk)P

L
k (θ,p)PL

l (θ,p)(Dwl)(θ, pl)dµ(θ)

ψk,l(p) =

∫
(Dwk)(θ, pk)P

L
k (θ,p)π̂Lf(k)(θ,p)PL

l (θ,p)(Dwl)(θ, pl)dµ(θ)

χk(p) =

(
1

2

)∫ (
(D2wk)(θ, pk) + (Dwk)(θ, pk)

2
)

× PL
k (θ,p)

(
(pk − ck)− π̂Lf(k)(θ,p)

)
dµ(θ)

(i) Component form: Setting

ξk,l(p) = δk,l(λk(p) + χk(p))− γk,l(p)− (pk − ck)ϕk,l(p)

we have

(DlDkπ̂f(k))(p) = ξk,l(p) + 2ψk,l(p) + δf(k),f(l)ξl,k(p)

(ii) Matrix form: Let Φ(p), Ψ(p) and X(p) = diag(χ(p)) be the matrices of these

quantities. Also set

Ξ(p) = Λ(p)− Γ(p)− diag(p− c)Φ(p) + X(p).

and

(Ξ̃(p))k,l =

{
ξk,l(p) if f(k) = f(l)

0 if f(k) 6= f(l)

Then

(D∇̃π̂)(p) = Ξ(p) + 2Ψ(p) + Ξ̃(p)>. (C.1)

Proof. Proof: To see that this only relies on a second application of the Leibniz Rule

to the choice probabilities, note that

(DlDkπ̂f(k))(p) =
∑

j∈Jf(k)

(DlDkPj)(p)(pj − cj) + δf(k),f(l)(DkPl)(p) + (DlPk)(p)

and thus the continuous second-order differentiability of π̂f(p) depends only on the

second-order continuous differentiability of Pf . This result is then an immediate

consequence of the validity of the Leibniz Rule and Eqn. (D.2).

The validity of a second application of the Leibniz Rule to the choice probabilities

is ensured by the following condition.

118



Proposition C.2.2. Let (u, ϑ, µ) = (w + v, ϑ, µ) be such that

(i) w(θ,y, ·) : (0, ς∗) → R is twice continuously differentiable for all y ∈ Y and

µ-a.e. θ ∈ T
(ii) for all (y, p) ∈ Y × (0, ς∗), |(D2w)(·,y, q) + (Dw)(·,y, q)2| eu(·,y,q)−ϑ(·) : T →

[0,∞) is uniformly µ-integrable for all q in some neighborhood of p.

(iii) for all (y, p), (y′, p′) ∈ Y × (0, ς∗),

|(Dw)(·,y, q)| eu(·,y,q)−ϑ(·)eu(·,y′,q′)−ϑ(·) |(Dw)(·,y′, q′)| : T → [0,∞)

is uniformly µ-integrable for all (q, q′) in some neighborhood of (p, p′).

Then a second application of the Leibniz Rule holds for the Mixed Logit choice proba-

bilities, which are also continuously differentiable on (0, ς∗1).

This is proved in the same manner as Proposition 4.1.2.

We also observe the following.

Proposition C.2.3. If Pk(p) = 0 then (DlDkπ̂f(k))(p) = (DkDlπ̂f(l))(p) = 0 for all

l ∈ N(J).

The proof follows from the derivative formulae given above. Of course, if Pk(p) = 0

then (Dkπ̂f(k))(p) = 0 as well and we have a similar situation as with the fixed-point

iteration: (i) the Newton system is consistent for any sNk (p) ∈ R and (ii) sNl (p) does

not depend on sNk (p) for all l ∈ N(J) \ {k}. Thus, in practice we restrict attention to

the Newton step defined by the submatrix of (D∇̃π̂)(p) formed by rows and columns

indexed by {j : Pj(p) > εP}.
The formulae above give the following expression of the profit Hessians.

Corollary C.2.4. Let w be twice continuously differentiable in p and suppose a second

application of the Leibniz Rule holds for the Mixed Logit choice probabilities. Firm f ’s

profit Hessian is given by

(Df∇f π̂f )(p) = Ξf,f (p) + 2Ψf,f (p) + Ξf,f (p)>.

The η map.

Applying F(p) = p − c − η(p), we have (DF)(p) = I − (Dη)(p). (Dη)(p)

solves the linear matrix equation (D̃P)(p)>(Dη)(p) = −(A(p) + (DP)(p)) where

(A(p))k,l =
∑

j∈Jf(k)(DlDkPj)(p)ηj(p). This is easily derived from the defining formula

(D̃P)(p)>η(p) = −P(p).
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The ζ map.

Applying F(p) = p − c − ζ(p), we have (DF)(p) = I − (Dζ)(p). (Dζ)(p) can be

computed using the following formula.

Lemma C.2.5.

(Dlζk) = λ−1
k

[
δk,l

[∫
PL
k

(
(D2wk) + (Dwk)

2
) (
π̂Lf(k) − ζk

)
− λk

]

+ ζk (φk,l + γk,l) + δf(k),f(l)φk,l(pl − cl) + γl,k − 2ψk,l

]

C.2.2 Quasi-Newton Methods and the BFGS Update.

Quasi-Newton methods build and apply approximations to the Jacobian matrices

(DF)(p) to reduce the often large burden of their computation (Dennis and Schnabel,

1996). These methods generalize Newton’s method by taking steps sQN that satisfy

AsQN = −F(p) for some (nonsingular and well-conditioned) matrix A. The price

update then takes the form p← p + sQN . For example, Newton’s method results from

setting A = (DF)(p). The fixed-point iteration p← c + ζ(p) can also be considered

a Quasi-Newton method for F = (∇̃π̂) by setting A = Λ(p).2

The most prominent quasi-newton method for nonlinear equations is probably the

BFGS update (Broyden et al., 1973; Dennis and Schnabel, 1996). Taking a BFGS

quasi-Newton step will always be strictly more burdensome than taking a fixed-point

step because either the combined gradient, η, or ζ itself remain on the right-hand

side. Outside of initialization (and periodic re-initialization) of A with the actual

Jacobian matrix (DF)(p) and the computation of its QR factors, directly updating

the QR factorization of A and solving for sQN requires only O(J2) flops (Dennis and

Schnabel, 1996). Some globalization strategy is generally needed to ensure convergence

and further compounds the computational effort required. Line search, the hookstep,

and the dogleg step are easily implemented by exchanging all occurrences of the

Jacobian (DF)(p) with its Quasi-Newton approximation A.

2In fact, this could lead to a proof of the local linear convergence of the fixed-point iteration
if Λ(p) can be shown to be an approximation to (D∇̃π̂)(p) of “bounded deterioration” in some
neighborhood of equilibrium; see (Broyden et al., 1973).
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C.2.3 Inexact Newton Methods

Because Inexact Newton methods are not as widely known, we present a relatively

detailed discussion of these methods and our implementation here.

As stated in the Chapter 4, inexact Newton steps are simply “inexact” solutions

to the Newton system; that is, an inexact Newton step sIN is any vector that satisfies

||F(x) + (DF)(x)sIN || ≤ δ||F(x)|| (C.2)

for some fixed δ ∈ (0, 1). In principle, one could implement an inexact Newton

method on a problem with few variables using direct methods of solution. In fact, if

in quasi-Newton fashion sIN is defined as the solution to AsIN = −F(x) for some A

satisfying ||I− (DF)(x)A−1|| ≤ δ, then the inexact Newton condition holds. In this

sense, some quasi-Newton methods could be considered inexact Newton methods.3

By appropriately choosing a sequence of δ’s, the local asymptotic convergence rate of

a sequence generated by an inexact Newton’s method can be made fully q-quadratic

(Dembo et al., 1982; Eisenstat and Walker, 1994). Of course, this will also require in-

creasingly burdensome computations of inexact Newton steps that satisfy increasingly

strict inexact Newton conditions.

When using iterative linear solvers like GMRES to approximately solve (DF)(x)sIN =

−F(x), the inexact Newton condition is a statement on the relative residual of the

approximate solution to the Newton system. In this context this approach may be

called a “truncated” Newton method. It is this area that is relevant for large-scale

problems and on which we focus.

Directional Derivatives

When implementing an iterative linear system solver like GMRES only matrix-vector

products of the type (DF)(x)s will be required. These directional derivatives can be

approximated with “directional” finite differences in much less work than it takes to

approximate the entire Jacobian matrix. For example, the first-order formula

(DF)(x)s ≈ h−1
(
F(x + hs)− F(x)

)
,

3However if δ → 0 during an iteration, this condition would in some sense require that A→ (DF).
This is not true for the most popular and successful quasi-Newton methods like the BFGS update
that do have q-superlinear locally asymptotic convergence rates (Broyden et al., 1973; Dennis and
Schnabel, 1996). On the other hand, δ can be chosen to be a constant if a q-linear locally asymptotic
convergence rate is suitable (Pernice and Walker, 1998).
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requires only a single additional evaluation of F per approximate evaluation of

(DF)(x)s. Higher-order formulae requiring 2 and 4 additional evaluations of F are

easy to derive; see Pernice and Walker (1998). Since this is repeated at each step of

iterative linear solvers, each step of an iterative Newton system solver using directional

finite differences is at least as expensive as a ζ fixed-point step. If an iterative solver

should take 100 steps to compute an inexact Newton step having small enough residual

to satisfy the inexact Newton condition, then we could have equivalently taken 100,

200, and 400 ζ fixed-point steps with the first, second, and fourth order formulae

available in Pernice and Walker (1998). In our examples, this is easily enough to

converge to equilibrium prices from relatively arbitrary initial conditions.4 While we

have found appropriately implemented iterative linear solvers take tens, rather than

hundreds, of iterations to solve the inexact Newton system, this comparison highlights

the increase in work implicit even in this “fast” version of Newton’s method.

Generally speaking, whether or not is more efficient to compute the directional

finite differences or to compute the Jacobian and carry out the actual multiplications

depends on how many steps the iterative solver requires to satisfy the inexact Newton

condition. Computing and using the Jacobian matrix is an O((S+N)J2) process while

using directional finite differences is an O(SN
∑F

f=1 J
2
f ) process when it takes N ∈ N

steps to satisfy the inexact Newton condition. To leading order, it is worthwhile to

use the full Jacobian when

(S +N)J2 ≤ SN
F∑
f=1

J2
f . (C.3)

If S > J2/
∑F

f=1 J
2
f (which should hold, generally speaking, because J2/

∑F
f=1 J

2
f ≤ F

and S should probably be larger than F ), then Eqn. (C.3) is equivalent to

N ≥ S

(
J2/

∑F
f=1 J

2
f

S − J2/
∑F

f=1 J
2
f

)
(C.4)

Moreover

S

(
J2/

∑F
f=1 J

2
f

S − J2/
∑F

f=1 J
2
f

)
≥ J2∑F

f=1 J
2
f

4In their implementation of the GMRES method in the context of an inexact Newton method, Per-
nice and Walker (1998) only use higher order finite-differencing formulas at restarts. The first-order
approach must still be applied at each step of the iterative solver.
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and

lim
S↑∞

[
S

(
J2/

∑F
f=1 J

2
f

S − J2/
∑F

f=1 J
2
f

)]
=

J2∑F
f=1 J

2
f

.

Thus if GMRES (or other similar iterative numerical method) takes N > J2/
∑F

f=1 J
2
f

steps, computing using the Jacobian matrix is asymptotically more efficient as S →∞.

In our 5,298 vehicle example, J2/
∑F

f=1 J
2
f ≈ 12 while in the 993 vehicle example

J2/
∑F

f=1 J
2
f ≈ 24; in either case J2/

∑F
f=1 J

2
f ≤ F = 38. As we shall see below, our

preconditioned version of GMRES for (∇̃π̂) takes roughly this many steps, and thus

we feel justified in using the full Jacobian in our calculations. For the fixed-point

formulations, GMRES generally converges rapidly (¡ 10 steps). Direct comparison of

calculations done using finite directional differences and the full Jacobians illustrate

that using the Jacobians is more efficient.

Preconditioning

As is well known, preconditioning is key to the effectiveness of iterative linear

solvers; see Golub and Loan (1996). We have not found F(x) = x − c + η(x)

or F(x) = x− c + ζ(x) to need preconditioning. However, when F(x) = (∇̃π̂)(x) we

have found the preconditioned system

Λ(p)−1(D∇̃π̂)(p)sIN = −Λ(p)−1(∇̃π̂)(p) = c + ζ(p)− p (C.5)

to be very rapidly solved for reasonably small relative errors. The following result, an

extension of the ideas in Chapter 3, Section 3.1, relates the Jacobian of the combined

gradient to the Jacobians of the fixed-point maps in equilibrium.

Lemma C.2.6. I− (Dζ)(p) = Λ(p)−1(D∇̃π̂)(p) for any simultaneously stationary

p.

Proof. This follows from differentiating (∇̃π̂)(p) = Λ(p)(p− c− ζ(p)) via the prod-

uct rule, recognizing that p − c − ζ(p) = 0 in equilibrium and D[p − c − ζ(p)] =

I− (Dζ)(p).

In other words, Newton-type methods applied to F(x) = x − c − ζ(x) and

F(x) = (∇̃π̂)(x) preconditioned as above end up being essentially the same iterations,

close enough to equilibrium.

Note that GMRES, used successfully on this preconditioned system Eqn. (C.5), will
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ensure that

||Λ(p)−1(∇̃π̂)(p) + Λ(p)−1(D∇̃π̂)(p)sIN || ≤ δ′||Λ(p)−1(∇̃π̂)(p)|| (C.6)

for some δ′. This is distinct from the inexact Newton condition Eqn. (C.2). The

following proposition gives modified tolerances for the preconditioned system to ensure

satisfaction of the original system.

Proposition C.2.7. Let δ > 0 be given. If Eqn. (C.6) is satisfied with δ′(p, δ) ≤ δ

given by

δ′(p, δ) =

(
||(∇̃π̂)(p)||2

maxj {|λj(p)|} ||Λ(p)−1(∇̃π̂)(p)||2

)
δ, (C.7)

then Eqn. (C.2) is satisfied.

This is a consequence of the following general result, which we state without proof.

Lemma C.2.8. Let b ∈ RN and A,M ∈ RN×N be nonsingular. Then

||Ax− b||
||b||

≤ α

(
||M−1Ax−M−1b||

||M−1b||

)
(C.8)

where α ∈ [1, κ(M)] is given by

α =
||M||||M−1b||

||b||
= ||M||||M−1

(
b

||b||

)
||.

This implies that

||Ax− b||
||b||

≤ δ if
||M−1Ax−M−1b||

||M−1b||
≤ δ

α
.

Note that the preconditioned system must always be solved to a stricter tolerance than

is desired for the un-preconditioned system using this bound. Additionally, computing

α for a generic preconditioner M relies on the ability to compute ||M||.
Eqn. (C.7) simply adopts the 2-norm and applies the formula (Golub and Loan,

1996)

||Λ(p)||2 =

√
max
j
{|λj(p)|2} = max

j
{|λj(p)|}

In addition, δ′(p, δ) ≤ δ, simply because

||(∇̃π̂)(p)||2
||Λ(p)||||Λ(p)−1(∇̃π̂)(p)||2

=
||Λ(p)(p− c− ζ(p))||2
||Λ(p)||||(p− c− ζ(p))||2

≤ 1.
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Eqn. (C.8) also implies that if Eqn. (C.6) holds with δ′ > 0, then

||(∇̃π̂)(p) + (D∇̃π̂)(p)sIN ||2
||(∇̃π̂)(p)||2

≤ κ2(Λ(p))δ′

where κ2(Λ(p)) = ||Λ(p)||2||Λ(p)−1||2 is the (2-norm) condition number of Λ(p).

This equation, while the more compact representation, can also be overly conservative

as clearly illustrated in Fig. C.1. It is unlikely that κ(Λ(p)) is a tight upper bound

on the multiplier in Eqn. (C.7). In fact, the multiplier on δ depends only on the

norm of Λ(p)−1x at a single point on the surface of the unit sphere in RJ rather than

||Λ(p)−1||2, the maximum norm of Λ(p)−1x over this entire sphere. Our examples in

Fig. C.1 bear this out, having condition numbers many orders of magnitude larger

than the multiplier in Eqn. (C.7).

The power of the preconditioning is that the preconditioned system Eqn. (C.6)

appears to be solved to a relative error of δ′(p, δ) much faster than the original system

can be solved to a relative error of δ, even though δ′(p, δ) ≤ δ. As can be seen in Fig.

C.1, solving the preconditioned system to δ′(p, δ) can achieve a relative error in the

original system below δ = 10−10 in roughly four orders of magnitude fewer iterations

than solving the original system to this same relative error for prices near equilibrium.

Away from equilibrium, GMRES may not be able to solve the original system to small

relative errors like 10−6 at all. Thus using the original system would appear to slow,

if not halt, an implementation of the inexact Newton’s method.

GMRES Hookstep

We describe an implementation of the locally constrained optimal or “hookstep” (Den-

nis and Schnabel, 1996) modification suitable for GMRES as first suggested by Viswanath

(2007, 2008). First, we recall the basic structure of model trust region methods; see

(Dennis and Schnabel, 1996, Chapter 6, Section 4). We then adopt this structure to

the case of Krylov subspace methods, particularly GMRES.

Model Trust Region Methods

Let F : RN → RN . Assume that for steps s satisfying ||s||2 ≤ δ, the function

m̂x(s) =

(
1

2

)
||F(x)||22 + ((DF)(x)>F(x))>s +

(
1

2

)
s>(DF)(x)>(DF)(x)s

is a suitable local model of the globalizing objective function f(x) = ||F(x)||22/2.5 The

5Note that this is not the usual, quadratic model of f , because (DF)(x)>(DF)(x) 6= (D∇f)(x)
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Figure C.1 Relative error in computed solutions to the Newton system and its precon-
ditioned form using GMRES under the Berry et al. (1995) model. On the top, prices are
p = p∗+ 100ν where p∗ are equilibrium prices and ν ∈ [−1,1] is a sample from a uniformly
distributed random vector. For this case κ(Λ(p)) = 1.56× 1011 while the multiplier in Eqn.
(C.8) is only 106.41. On the bottom, prices are p = 20, 000ν + 5, 000 where ν is a sample
from a random vector uniformly distributed on [0,1]. For this case κ(Λ(p)) = 4.6 × 104

while the multiplier in Eqn. (C.8) is only 10.73. Abbreviations are as follows. REL: relative
error in the Newton System; PREL: relative error in the pre-conditioned Newton System;
OBREL: our bound, Eqn. (C.8), on the relative error in the Newton System as determined
from the relative error in the preconditioned Newton system; CNBREL: condition number
bound on the relative error in the Newton System as determined from the relative error in
the preconditioned Newton system.
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idea is to solve

min
||s||2≤δ

m̂x(s). (C.9)

The solution s∗ is given as follows: take s∗ = sN = −(DF)(x)−1F(x) if ||sN ||2 ≤ δ; if

||sN ||2 > δ, take s∗ = s(µ∗) where

s(µ) = −
(
(DF)(x)>(DF)(x) + µI

)−1
(DF)(x)>F(x)

and µ∗ > 0 is the unique µ > 0 such that ||s(µ)||2 = δ.6

Hybrid Model Trust Region - Krylov Subspace Methods

A Krylov method for solving (DF)(x)sN = −F(x) builds approximate solutions

in the successive Krylov subspaces K(n) = span{−(DF)(x)mF(x)}n−1
m=0 (Trefethen and

Bau, 1997). This has the effect of further constraining the local model problem (C.9)

to

min
s∈K(n), ||s||2≤δ

m̂x(s). (C.10)

As we describe in greater detail below GMRES builds an orthonormal basis for K(n),

contained in the columns of Q(n) ∈ RJ×n. For any Q ∈ RJ×n with orthonormal

columns (generated by GMRES or not) we can set m̂x,Q(q) = m̂x(Qq) and restrict

attention to the trust region problem min||q||2≤δ m̂x,Q(q).7 The first-order conditions

for this problem8 are equivalent to either

(i) (∇m̂x,Q)(q) = 0 and ||q||2 ≤ δ

(ii) or (∇m̂x,Q)(q) + µq = 0 for ||q||2 = δ and some µ > 0.

By the definition of m̂x,Q, (i) implies

Q>(DF)(x)>(DF)(x)Qq + Q>(DF)(x)>F(x) = 0

and (ii) implies

Q>(DF)(x)>(DF)(x)Qq + µq + Q>(DF)(x)>F(x) = 0.

Note that these are square problems that can be solved exactly.

(Dennis and Schnabel, 1996, pg. 149).
6These follow from the standard optimality conditions, or rather that the gradient (∇m̂x)(s) must

lie in the negative normal cone to B̄δ(0) = {y ∈ RN : ||y||2 ≤ δ} at x (Clarke, 1975); see (Dennis
and Schnabel, 1996, Lemma 6.4.1, pg. 131).

7See (Brown and Saad, 1990, pgs. 149-150).
8Again, the gradient of m̂x,Q lies in the negative normal cone to B̄δ(0) = {y ∈ RN : ||y||2 ≤ δ} at

x (Clarke, 1975; Dennis and Schnabel, 1996).
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Householder GMRES

As described by Saad and Schultz (1986), Golub and Loan (1996), and Trefethen

and Bau (1997), the GMRES process is based on the classical Gram-Schmidt orthogo-

nalization process and unstable. We implement a numerically stable variant based

on Householder transformations due to Walker (1988).9 In this version of the GMRES

process applied to the generic problem Ax = b, Householder reflectors P(n) ∈ RN×N

are used to generate the orthonormal matrices

Q(n) = P(1) · · ·P(n)

[
I

0

]
∈ RN×n (I ∈ Rn×n, 0 ∈ R(N−n)×n)

satisfying

AQ(n) = P(1) · · ·P(n+1)H(n) = Q(n+1)H̃(n)

where H(n) ∈ RN×n is

H(n) =

[
H̃(n)

0

]
for upper Hessenberg H̃(n) ∈ R(n+1)×n and 0 ∈ R(N−n−1)×n. P(1) is chosen to sat-

isfy P(1)b = −βe1 where β = sign(b1)||b||2, and hence (Q(n))>b = −βe1. The nth

approximate solution x(n) is taken to be x(n) = Q(n)y(n) where y(n) ∈ Rn solves

min
y∈Rn
||H̃(n)y − βe1||2.

These problems can be solved cheaply by updating Givens QR factorizations, and the

solution vector and residual ned not be formed until GMRES converges.

For A = (DF)(x) and b = −F(x), β = −sign(F1(x))||F(x)||2 and −βe1 =

P(1)b = −P(1)F(x) so that

P(1)F(x) = βe1 = −sign(F1(x))||F(x)||2e1.

Moreover, P(n)e1 = e1 for all n > 1 so that

(Q(n))>F(x) = −sign(F1(x))||F(x)||2e1.

9This is also the version implemented in matlab. We have verified that our implementation
generates results matching matlab’s implementation.
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Hybrid Model Trust Region - GMRES Methods

Using GMRES started at zero, (DF)(x)Q(n) = Q(n+1)H̃(n) and (Q(n+1))>F(x) =

−sign(F1(x))||F(x)||2e1. Thus we consider the family of n× n linear systems

(Q(n))>(DF)(x)>(DF)(x)Q(n)q + µq + (Q(n))>(DF)(x)>F(x)

=
(
(H̃(n))>H̃(n) + µI

)
q− sign(F1(x))||F(x)||2(H̃(n))>e1 = 0

defined for all µ ≥ 0.

By computing the (“thin”) Singular Value Decomposition of H̃(n), H̃(n) = ŨΣV>

where Ũ ∈ R(n+1)×n, V ∈ Rn×n, and Σ ∈ Rn×n, we can easily solve each such

problem.10 Particularly,

((H̃(n))>H̃(n) + µI)q− sign(F1(x))||F(x)||2(H̃(n))>e1 = 0

is solved by q(µ) = Vη(µ) where

η(µ) = sign(F1(x))||F(x)||2(Σ2 + µI)−1ΣŨ>e1.

Because the diagonal elements of Σ2 are positive, η(µ) is well defined for all µ ≥ 0.

Note also that we only need the first row of U, but all of V, to compute q(µ).

In particular, q(0) = sign(F1(x))||F(x)||2VΣ−1U>e1. Invoking the full SVD of

H̃(n),

H̃(n) =
[
Ũ un+1

] [Σ

0>

]
V>

for some un+1 ⊥ span{ui}ni=1, we can write

||H̃(n)q− sign(F1(x))||F(x)||2e1||2 = ||

[
Σ̃V>q

0

]
− sign(F1(x))||F(x)||2

[
Ũ>e1

u1,n+1

]
||2.

We thus see that q(0) solves the (n+ 1)× n GMRES least squares problem

min
q
||H(n+1,n)q− sign(F1(x))||F(x)||2e1||2.

with residual |u1,n+1| ||F(x)||2.11

10See (Golub and Loan, 1996, Section 12.1, pgs. 580-583) for closely related results.
11|u1,n+1| is unique: First, note that un+1 is a unit vector in the span of a single vector, say v,
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It is also easy to see that

F(x)>(DF)(x)s(n)(µ) = F(x)>(DF)(x)Q(n)q(n)(µ)

=
((

Q(n+1)
)>

F(x)
)>

H̃(n)q(n)(µ)

= −β2
(
ν>1 D(µ)ν1

)
= −||F(x)||22

(
ν>1 D(µ)ν1

)
< 0

where ν1 is the first row of Ũ and D(µ) = diag(d1(µ), . . . , dn(µ)) for di(µ) =

σ2
i /(σ

2
i + µ). That is, the Householder GMRES Newton-Hookstep always lies in a

descent direction for the globalizing objective f(x) = ||F(x)||22/2.

Trust Region Constrained Steps

It remains to find µ∗ > 0 such that q∗ = q(µ∗) satisfies ||q∗||2 = δ when ||q(0)||2 > δ.

First note that ||q(µ)||2 = δ if and only if ||η(µ)||2 = δ. Next we define

ψ(µ) =

(
1

2

)[
||η(µ)||22 −

(
δ

||F(x)||2

)2
]

=

(
1

2

)[ n∑
i=1

(
σiu1,i

σ2
i + µ

)2

−
(

δ

||F(x)||2

)2
]
.

The proofs of the following easy claims are left to the reader.

Lemma C.2.9. (i) ||q(0)||2 = ||η(0)||2 > δ if and only if ψ(0) > 0. (ii)

limµ→∞ ψ(µ) < 0. (iii) (Dψ)(µ) < 0 for all µ ≥ 0. (iv) (D2ψ)(µ) > 0 for all

µ ≥ 0.

The differentiation denoted by “D” is, of course, taken with respect to µ. These

results establish the following uniqueness result.

Corollary C.2.10. If ψ(0) > 0, then ψ has a unique root µ∗ > 0.

There are two obvious ways to solve for µ∗ > 0 when ψ(0) > 0. The first is

Newton’s method, a linear local model approach, and the second is a more general

nonlinear local model approach inspired by Newton’s method and the specific form of

ψ. See (Dennis and Schnabel, 1996, pgs. 134-136).

that is orthogonal to the span of the columns of Ũ. There are only two unit vectors in this span,
specifically ±v/||v||2, and thus un+1 ∈ {±v/||v||2}. Thus |u1,n+1| ∈ |±v1/||v||2| = |v1| /||v||2.
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Newton’s method is easily seen to be update µ← µ+ ν(µ) where

ν(µ) = − ψ(µ)

(Dψ)(µ)
=

(
1

2

)(∑n
i=1 σ

2
i u

2
1,i/(σ

2
i + µ)2 − (δ/||F(x)||2)2∑n

i=1 σ
2
i u

2
1,i/(σ

2
i + µ)3

)
.

Clearly ||η(µ)||2 > δ/||F(x)||2 implies ν(µ) > 0 and ||η(µ)||2 < δ/||F(x)||2 implies

ν(µ) < 0. In other words, µ is increased (decreasing ||η(µ)||2) whenever ||η(µ)||2 >
δ/||F(x)||2 and µ is decreased (increasing ||η(µ)||2) whenever ||η(µ)||2 < δ/||F(x)||2.

For the nonlinear local model approach, we define the local model

ψ̂µ(µ̂) =

(
α

β + µ

)2

−
(

δ

||F(x)||2

)2

for some α, β. To choose α, β, we fit ψ̂µ to ψ by requiring (a) ψ̂µ(µ) = ψ(µ) and (b)

(Dψ̂µ)(µ) = (Dψ)(µ). In other words, α/(β + µ) = ||η(µ)||2 and

α2

(β + µ)3
=

n∑
i=1

σ2
i u

2
1,i

(σ2
i + µ)3

.

The first condition implies α/||η(µ)||2 = β + µ, and the second condition becomes

α

||η(µ)||2
=

||η(µ)||22∑n
i=1 σ

2
i u

2
1,i/(σ

2
i + µ)3

.

As Newton’s method chooses an update to zero the linear local model, here we choose

an update to zero the nonlinear local model ψ̂µ. Note that ψ̂µ(µ̂0) = 0 for

µ̂0 =

(
||F(x)||2

δ

)
α− β.

Thus we generate the update µ← µ+ ν(µ) where

ν(µ) =

(
||η(µ)||22∑n

i=1 σ
2
i u

2
1,i/(σ

2
i + µ)3

)(
||η(µ)||2
δ/||F(x)||2

− 1

)
.

Again, if ||η(µ)||2 > δ/||F(x)||2 then µ is increased (decreasing ||η(µ)||2), while if

||η(µ)||2 < δ/||F(x)||2 then µ is decreased (increasing ||η(µ)||2).

Preconditioning

An important component of successful implementations of GMRES is preconditioning.

Let M = MLMR be a preconditioner. The local quadratic model (prior to projec-
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tion onto a Krylov subspace) was half of the squared 2-norm of the linear model

`x(s) = F(x) + (DF)(x)s. Since this locally linear model has a zero if and only if the

preconditioned local linear model

`x,M(s) = M−1F(x) + M−1(DF)(x)s

does, we can consider the preconditioned local quadratic model

m̂x,M(s) =

(
1

2

)
||M−1F(x)||22 + F(x)>M−>M−1(DF)(x)s

+

(
1

2

)
s>(DF)(x)>M−>M−1(DF)(x)s

of the globalizing objective function fM(x) = ||M−1F(x)||22/2.

Projecting this model into a subspace spanned by the columns of any matrix Q,

m̂Q
x,M(q) =

(
1

2

)
||M−1F(x)||22 + F(x)>M−>M−1(DF)(x)Qq

+

(
1

2

)
q>Q>(DF)(x)>M−>M−1(DF)(x)Qq.

Defining q(µ) by

(Q>(DF)(x)>M−>M−1(DF)(x)Q + µI)q(µ) + Q>(DF)(x)>M−>M−1F(x) = 0

the constrained optimality conditions again state that the solution to the projected

trust region problem is given by q(0) if ||q(0)||2 ≤ δ and otherwise by q(µ∗) for the

unique µ∗ such that ||q(µ)||2 = δ.

Applying GMRES to the preconditioned system M−1(DF)(x)s = −M−1F(x), we

build orthonormal matrices Q
(n)
M satisfying M−1(DF)(x)Q

(n)
M = Q

(n+1)
M H

(n)
M and

(Q
(n)
M )>M−1F(x) = sign((M−1F(x)))1)||M−1F(x))||2e1 for all n. Thus q(n)(µ) satisfies

((H
(n)
M )>H

(n)
M + µI)q(n)(µ)− sign((M−1F(x))1)||M−1F(x)||2(H

(n)
M )>e1 = 0.

Invoking the (thin) SVD of H
(n)
M , H

(n)
M = UMΣMV>m,

q(n)(µ) = sign((M−1F(x))1)||M−1F(x)||2VM(Σ2
M + µI)−1ΣMU>Me1.

Only one potential problem arises when using preconditioning. While the hooksteps

obtained lie in descent directions for the preconditioned globalizing objective, they do
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not necessarily lie in descent directions for the original globalizing objective.

A Limited-Memory BFGS-Inexact Newton Method

There is a potential variation of the BFGS Quasi-Newton method that can be ap-

plied. Let A(0) be an initial approximation to the Jacobian (DF)(x(0)). In each

iteration n ≥ 1, we have F(n) = F(x(n)), s(n) = x(n) − x(n−1) (which may be different

from the Newton step because of the globalization strategy), ŝ(n) = s(n)/||s(n)||22 and

d(n) = F(n) − (F(n−1) + A(n−1)s(n)). Products A(n)y can be calculated using the

formula

A(n)y = A(n−1)y +
(
y>ŝ(n)

)
d(n)

= A(n−2)y +
(
y>ŝ(n−1)

)
d(n−1) +

(
y>ŝ(n)

)
d(n)

...

= A(0)y +
n∑

m=1

(
y>ŝ(m)

)
d(m)

= A(0)y + D(n)(S(n))>y

from A(0) and {(ŝ(m),d(m))}nm=1, where S(n) ∈ Rn×J has columns {ŝ(m)}nm=1, and

D(n) ∈ RJ×n has columns {d(m)}nm=1.
12 These products can be used by GMRES to

solve for a BFGS-inexact Newton step sIN satisfying ||F(n) + A(n)sIN ||2 ≤ δ||F(n)||2
for some δ > 0. Viswanath’s GMRES-Hookstep can then be applied, resulting in the

(acceptable) step s(n+1), new prices p(n+1) = p(n) + s(n+1), and new function value

F(n+1) = F(p(n+1)). Practically, a limited number of the vector pairs (ŝ(m),d(m))

should be stored.

We have given an outline of a “limited-memory” BFGS-inexact Newton method

(Nocedal and Liu, 1989) with GMRES-Hookstep. If the truncated BFGS approximations

to the Jacobian are good enough, this approach could result in a significant reduction

in computational burden by eliminating the need to compute (DF)(x(n)) or evaluate

F in directional finite differences during the GMRES process. However, computational

experience with the BFGS Quasi-Newton method applied to solve (∇̃π̂)(p) = 0 leads

us to suspect that the rate of convergence will be dramatically slowed, potentially

usurping these reductions in computational burden.

12The order in which the vectors s(m) and d(m) appear as columns in S(n) and D(n) is irrelevant,
so long as (S(n))·,l = ˆs(m) if, and only if, (D(n))·,l = ˆd(m).
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Appendix D

Proofs

D.1 Proofs for Chapter 3

Existence

Proof of Proposition 3.1.2. The formula Eqn. (3.2) follows from the chain rule in the

usual way; this is a generalization of the formula in (Train, 2003, Chapter 3). (i), (ii),

and (iii) follow from the choice probability formula Eqn. (3.1). For (iv) we use Lemma

3.1.3.

We must also show that P : [0,∞)→ 4(J) is onto to prove (v). Let x ∈ 4(J).

Since
euj(pj)∑J
k=1 e

uk(pk)
=

eλeuj(pj)∑J
k=1 e

λeuk(pk)
=

euj(pj)+λ∑J
k=1 e

uk(pk)+λ

for any λ ∈ R it suffices to solve

u1(p1) = log x1 − λ
...

uJ(pJ) = log xJ − λ

for some λ ∈ R. A necessary condition is that log xj −λ ≤ uj(0) for all j. Particularly,

if we choose λ ≥ −mink uk(0) then log xj − λ ≤ mink uk(0) ≤ uj(0) for all j. Because

every uj is strictly decreasing, there is then a unique p that satisfies the nonlinear

system of equations above.

Proof of Lemma 3.1.3. By definition, w(χj,pj(λ)) = wj(pj) − log λ. Now if λ′ > λ,

then

w(χj,pj(λ)) = wj(pj)− log λ > wj(pj)− log λ′ = w(χj,pj(λ
′))
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Because wj is strictly decreasing, χj,pj(λ
′) > χj,pj(λ). This proves the first part of (i).

The second follows from the fact that

lim
λ→∞

w(χj,pj(λ)) = wj(pj)− lim
λ→∞

log λ = −∞.

Since eu(χj,pj (λ)) = λewj(pj) (ii) and (iii) follow immediately from the Logit choice

probability formulas.

Proof of Proposition 3.1.4. The componentwise formula Eqn. (3.2) is straightforward

to evaluate from Eqn. (3.1), and the matrix forms follow easily. See Anderson and

de Palma (1992a) or Train (2003) for similar formula for specific utility functions.

Eqn. (3.4) is a bit tedious to derive from Eqn. (3.2), but not any more difficult.

Proof of Proposition 3.1.5. The key is to observe that

lim
pj→qj

pje
uj(pj)−ϑ <∞ implies lim

p→q
pjP

L
j (p) <∞,

or more specifically,

lim
pj→qj

pje
uj(pj)−ϑ = 0 implies lim

p→q
pjP

L
j (p) = 0.

For

pjP
L
j (p) =

pje
uj(pj)

eϑ +
∑J

k=1 e
uk(pk)

≤ pje
uj(pj)−ϑ.

Under the first bounding hypothesis, euj(pj) ≤ p−rjeκj+vj for pj > p̄j where κj = κ(yj),

rj = r(yj), and p̄j = p̄(yj). Thus pje
uj(pj) ≤ p1−rjeκj+vj . If rj ≥ 1, this tends to a

finite limit as pj →∞ while if rj > 1 this tends to zero as pj →∞.

Proof of Proposition 3.1.6. Under the hypothesis, there exists pj > p̄j such that

pje
uj(pj) ≥ (pj)

1−reκ+vj . Taking pj → ∞, pje
uj(pj) → ∞ since r < 1. Clearly then

pjP
L
j (pj,p−j)→∞. The claim follows.

Proof of Proposition 3.1.7. The claim for ϑ > −∞ is a consequence of Proposition

3.1.5. The claim for ϑ = −∞ and p−f = ∞ follows from Lemma 3.1.2, (v). If

ϑ = −∞ and p−f 6= ∞, then some competitor’s product acts like an outside good for

firm f and the proof is completed in the same way as the claim for ϑ > −∞.

Proof of Proposition 3.1.9. This follows from Eqn. (3.6), observing that that

(Dwj)(pj)P
L
j (p) 6= 0 for pj <∞.
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Proof of Proposition 3.1.8. We can write

(∇f π̂f )(p) = (Dfwf )(pf )diag(PL
f (p))

×
(

(I− 1PL
f (p)>)(pf − cf ) + (Dfwf )(pf )

−11
)
.

Stationarity then requires (I−1PL
f (p)>)(pf−cf )+(Dfwf )(pf )−11 = 0. The Sherman-

Morrson formula for the inverse of a rank-one perturbation of the identity (Ortega

and Rheinboldt, 1970, Chapter 2, pg. 50) implies that

(
I− 1PL

f (p)>
)−1

= I +

(
1

1−PL
f (p)>1

)
1PL

f (p)>; (D.1)

so long as PL
f (p)>1 < 1. This last condition will hold if either ϑ > −∞ or, if ϑ = −∞,

p−f 6= ∞. Now if ϑ = −∞ and p−f = ∞, no finite prices maximize π̂f , and hence

we ignore this case. The claim follows.

Proof of Proposition 3.1.10. To prove (i), we first prove that profit-maximizing prices

are positive. No pf with non-positive profits can be a best response to p−f , since

any pf > cf yields positive profits. So suppose pf is a best response to p−f , with

pj = 0. (Djπ̂j)(p + εej) has the same sign as π̂f(p + εej) − σ(Dwj)(ε)
−1 + cj − ε

for all ε > 0. Since π̂ is continuous at p and π̂(p) > 0, there exists some ε∗ so that

π̂(p + εej) > 0 if ε < ε∗. But then (Djπ̂j)(p + εej) is positive for ε < min{cj, ε∗},
since π̂f(p + εej)− σ(Dwj)(ε)

−1 + cj > cj. Thus profits increase with pj near zero,

contrary to the assumption that pf is a best response to p−f .

Now if pf ∈ [0,∞) locally maximizes π̂f(·,p−f), Eqn. (3.5) holds. However

(I−1PL
f (p)>)−1 maps positive vectors to positive vectors, a fact proved by the formula

Eqn. (D.1). Since −(Dwf )(pf )1 > 0, Eqn. (3.5) proves the claim. These two results

prove (i), which allows pj =∞ for some j ∈ Jf .
To prove (ii), we observe that Proposition 3.1.7 rules out pj =∞ for some j ∈ Jf .

Proof of Lemma 3.1.13. We observe the following bound, valid for large enough pj:

pj − cj − ζj(p) ≥
(
rj − 1

rj

)
pj − (cj + π̂f (pf ,p−f )).

Under the hypothesis of (i), π̂f (·,p−f ) is bounded (since w is eventually log bounded).

Because rj > 1, ((rj − 1)/rj)pj →∞ as pj →∞. Thus we can always choose pj large

enough to make pj − cj − ζj(p) > 0. When ϑ > −∞, π̂f (·) itself is bounded and hence
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p̄f can be chosen independently of p−f . The counter-claim is just as straightforward:

Suppose (Dwj)(pj) ≥ −p−1
j for all pj > p̄j. Then (Dwj)(pj)

−1 ≤ −pj and hence

pj − cj − ζj(p) ≤ pj − pj − (cj + π̂f (p)) ≤ 0

if pj > p̄j.

Proof of Theorem 3.1.12. Claim (i) follows from the following componentwise formula

for the intra-firm profit price-Hessians (Df∇f π̂f )(p):

(DlDkπ̂f(k))(p) = δk,l(Dwk)(pk)P
L
k (p)

×
((

(D2wk)(pk) + (Dwk)(pk)
2

(Dwk)(pk)

)
(pk − ck − π̂f(k)(p)) + 2

)
− (Dkπ̂f(k))(p)PL

l (p)(Dwl)(pl)

− (Dwk)(pk)P
L
k (p)(Dlπ̂f(l))(p)

(D.2)

This formula is a consequence of Proposition (C.2.1). Particularly, when pf makes

π̂f (·,p−f ) stationary,

(Df∇f π̂f )(p) = (Dfwf )(pf )diag(Pf (p))(I−Ωf (pf ))

where Ωf (pf ) is a diagonal matrix with entries

ωj =
(D2wj)(pj)

(Dwj)(pj)2
.

Thus, the Hessians are diagonal matrices with negative diagonal entries when w has

sub-quadratic second derivatives.

Claim (ii) is an obvious corollary to (i). Claim (iii) follows from the Poincare-Hopf

Theorem applied to the (continuous) negative gradient vector field −(∇f π̂f)(·,p−f)
on [cf , p̄f (p−f )], with the first part of Lemma 3.1.13 instrumental in proving that the

negative gradient vector field points outward on the boundary of [cf , p̄f (p−f )]. The

Poincare-Hopf Theorem states that the sum of the indices of the negative gradient

vector field at all stationary points equals one, the Euler characteristic of [cf , p̄f (p−f )].

But by (i), all stationary points have index equal to one because they are minimizers

of the function generating the gradient vector field (Milnor, 1965). Hence there can

only be a single stationary point. Claim (iv) is a corollary to the third, and does not

require the assumption that ϑ > −∞. However, it does require stipulating that there
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is a finite solution to the fixed-point equation.

Proof of Theorem 3.1.14. Let p̄ be as in Lemma 3.1.13, (ii). Ξ(p) = p− c− ζ(p) is

a vector field on [c, p̄] that points outward on [c, p̄] \ [c, p̄). Since ζj(p) > 0 when

[c, p̄] \ (c, p̄], Ξ(p) points outward on [c, p̄] \ (c, p̄], and hence on all of the boundary

of [c, p̄]. Let the set of zeros of Ξ be denoted by Z = {p ∈ (c, p̄) : Ξ(p) = 0} and

let ιΞ(p) denote the index of Ξ at p ∈ Z. The Poincare-Hopf Theorem states that∑
p∈Z ιΞ(p) = 1, where the value of the sum on the left is taken to be 0 if Z = {∅}.

Hence |Z| > 0.

Proof of Proposition 3.1.16. Eqn. (D.2) states that

(DlDkπ̂f )(q)

= |(Dwk)(qk)|PL
k (q)

(
π̂f (q)− (qk − ck)− (Dwk)(qk)

−1
)
PL
l (q) |(Dwl)(ql)|

+ |(Dwk)(qk)|PL
k (q)

(
π̂f (q)− (ql − cl)− (Dwl)(ql)

−1
)
PL
l (q) |(Dwl)(ql)|

for any q. Our goal is to choose q, ||q−p|| < ε, so that π̂f (q)−(qk−ck)−(Dwk)(qk)
−1 <

0 and π̂f (q)− (ql − cl)− (Dwl)(ql)
−1.

Let k, l ∈ Jf , k 6= l, and choose δ > 0 so that pf defined by pj = p∗j if j ∈ Jf \{k, l}
and pj = p∗j + δ otherwise also satisfies ||p − p∗|| < ε. Assume that π̂f(·,p−f) is

maximized by p∗f . By our fixed-point characterization,

π̂f (pf ,p−f )− (pk − ck)− (Dwk)(pk)
−1

< π̂f (p
∗
f ,p−f )− (pk − ck)− (Dwk)(pk)

−1 + δ

= π̂f (p
∗
f ,p−f )− (p∗k − ck)− (Dwk)(pk)

−1

= (Dwk)(p
∗
k)
−1 − (Dwk)(pk)

−1.

When w is concave,

(Dwk)(p
∗
k)
−1 − (Dwk)(pk)

−1 = (Dwk)(p
∗
k)
−1 − (Dwk)(p

∗
k + δ)−1 ≤ 0

proving that π̂f (pf ,p−f )− (Dwk)(p
∗
k)
−1 − (pk − ck) < 0. The same argument applies

to l and thus (DlDkπ̂f )(p) < 0, where p = (pf ,p−f ).

For the second claim, note that

(DlDk log π̂f )(p) =
(DlDkπ̂f )(p)π̂f (p)− (Dkπ̂f )(p)(Dlπ̂f )(p)

π̂f (p)2
.
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We have already established that the first term in the numerator is negative at p as

defined above. Furthermore,

(Dkπ̂f )(p) = |(Dwk)(pk)|PL
k (p)(π̂f (p)− (pk − ck)− (Dwk)(pk)

−1) < 0

by the same argument and hence (Dkπ̂f)(p)(Dlπ̂f)(p) > 0, making the second term

in the numerator also negative. This completes the proof.

Intra-Firm Structure

Proof of Corollary 3.2.1. This follows immediately from the fixed-point expression

pf = cf + ζf(p) which is equivalent to the markup equation pj − cj = π̂f(p) −
σ(Dwj)(pj)

−1 for all j ∈ Jf .

Proof of Lemma 3.2.3: Quite simply, (Dpϕ)(y, p) = 1 − ω(y, p) where ω(y, p) =

(D2w)(y, p)/(Dw)(y, p)2.

Proof of Corollary 3.2.4. Let ϕ(p) = p − (Dwj)(p)
−1 = p − (Dwk)(p)

−1 for any

p ∈ [0,∞). Because cj = ck, Eqn. (3.9) implies that ϕ(pj) = ϕ(pk). But ϕ is

strictly increasing, and hence one-to-one, by Lemma 3.2.3, and thus pj = pk.

Proof of Corollary 3.2.5. We prove that pj − cj ≥ pk − ck implies cj ≤ ck. By Corol-

lary 3.2.1, pj − cj ≥ pk − ck implies (Dw)(pj)
−1 ≤ (Dw)(pk)

−1, or equivalently

(Dw)(pj) ≥ (Dw)(pk). By strict concavity, this implies that pj ≤ pk. But then

cj − ck ≤ pj − pk ≤ 0.

Proof of Corollary 3.2.6. Note that cj ≤ ck implies vj ≤ vk is equivalent to the value

costs hypothesis. Then the claim follows from Corollary 3.2.5.

Proof of Corollary 3.2.7. The unique value hypothesis implies that when v(y) > v(y′),

ϕ(y, p) ≤ ϕ(y′, p) for all p ∈ [0,∞). Specifically, if v(yj) > v(yk) then ϕ(yj, pk) ≤
ϕ(yk, pk). Suppose that v(yj) > v(yk) while pj ≤ pk. Because ϕ(yj, p) is a strictly

increasing function of p, we have

ϕ(yj, pj) ≤ ϕ(yj, pk) ≤ ϕ(yk, pk).

Thus Eqn. (3.9) implies that cj − ck = ϕ(yj, pj)− ϕ(yk, pk) ≤ 0 in contradiction to

the value costs hypothesis.
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Inter-Firm Structure

Proof of Corollary 3.2.10. Simply observe that ψ(yj, ·) = ψ(yk, ·) is strictly increasing,

so that ψ(yj, p)− ψ(yk, q) > 0 if, and only if, p > q and so on.

D.2 Proofs for Chapter 4

Proof of Proposition 4.1.1: This follows directly from the Leibniz Rule and the fol-

lowing form of the derivatives of the Logit choice probabilities:

(DkP
L
j )(θ,p) = PL

j (θ,p)(δj,k − PL
k (θ,p))(Dwk)(θ, pk).

Proof of Proposition 4.1.2: We first note that

∣∣(DkP
L
j )(θ,p)

∣∣ ≤ |(Dwk)(θ, pk)| euk(θ,pk)−ϑ(θ)

regardless of j, k. The continuous differentiability of Pj assuming the Leibniz Rule

and the uniform µ-integrability hypothesis is a direct result of this bound and the

Dominated Convergence Theorem. That the Leibniz Rule follows from this bound and

the uniform µ-integrability hypothesis is a consequence of the Mean Value Theorem

and the Dominated Convergence Theorem. Particularly, the mean value theorem for

functions of a single real variable states that

h−1(PL
j (θ,p + hek)− PL

j (θ,p)) = (DkP
L
j )(θ,p + ηek)

for some η such that |η| < |h|. Thus

h−1
∣∣PL

j (θ,p + hek)− PL
j (θ,p)

∣∣ ≤ |(Dwk)(θ, pk + η)| euk(θ,pk+η)−ϑ(θ) ≤ ϕ(yk,pk)(θ)

for µ-a.e. θ ∈ T and the Dominated Convergence Theorem validates the Leibniz Rule.

This proof is essentially that given in a general setting by (Bartle, 1966, Chapter 5,

pg. 46).

A Remark. An “easier” bound is simply
∣∣(DkP

L
j )(θ,p)

∣∣ ≤ |(Dwk)(θ, pk)|, and

thus we might consider changing the statement of Proposition 4.1.2 to hypothesize

only the uniform µ-integrability of the utility price derivatives. In fact, we use this

below to validate the fixed-point approach for the Boyd and Mellman (1980) model
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that lacks an outside good. However, this bound fails to be useful for a central utility

specification of the form (e.g. Berry et al. (1995); Petrin (2002))

w(θ,y, p) = α(θ) log(ς(θ)− p)

for which |(Dwk)(θ, pk)| = α(y)/(ς(θ)− p) is singular on ς−1(p). In empirical applica-

tions, ς is onto, generating a singularity somewhere in T for all p. Thus this singularity

cannot be “controlled” for all p by choosing the measure µ. Thus a hypothesis on

only the utility price derivatives is not useful. We show below that our hypothesis

including the exponentiated utility function can be used to prove the validity of the

fixed-point equation under this same utility specification.

Proof of Proposition 4.1.4: (i) follows easily from the defining relationships.

(ii) If (∇̃π̂)(p) = 0, then ζ(p) = η(p) = p − c. For the oppose implication, we

use the formulae just derived. The first formula implies that if ζ(p) = η(p), then

p− c− ζ(p) ∈ N (Λ(p)−1Γ̃(p)>). The second formula is equivalent to

p− c− η(p) = (I−Λ(p)−1Γ̃(p)>)−1(p− c− ζ(p))

=
∞∑
n=1

(Λ(p)−1Γ̃(p)>)n(p− c− ζ(p)),

where the equality

(I−Λ(p)−1Γ̃(p)>)−1 =
∞∑
n=1

(Λ(p)−1Γ̃(p)>)n

follows from the observation that ρ(Λ(p)−1Γ̃(p)>) ≤ ||Λ(p)−1Γ̃(p)>||∞ < 1 (Lemma

4.1.5, Claim (i)). Thus p − c − ζ(p) ∈ N (Λ(p)−1Γ̃(p)>) ⊂ N ((Λ(p)−1Γ̃(p)>)n)

implies that p = c + η(p), in turn implying that (∇̃π̂)(p) = 0.

Proof of Lemma 4.1.5: (i): We note that

(
Λf (p)−1Γf (p)>

)
k,l

=
γl,k(p)

λk(p)
=

∫
PL
l (θ,p)dµk,p(θ)

where µk,p is the probability distribution with density, with respect to µ, given by

dµk,p(θ) =
PL
k (θ,p) |(Dwk)(θ, pk)| dµ(θ)∫
PL
k (φ,p) |(Dwk)(φ, pk)| dµ(φ)

.

141



Thus Λf (p)−1Γf (p)> has row sums

∫ ∑
j∈Jf

PL
j (θ,p)

 dµk,p(θ) < 1.

The additional assumption that ϑ : T → (−∞,∞) plays a role in establishing this

inequality because then there is always a set T ′k ⊂ T with µk,p(T ′k ) > 0 on which∑
j∈Jf P

L
j (θ,p) < 1. Our claim follows.

(ii): The inequality

1 >

∫ ∑
j∈Jf

PL
j (θ,p)

 dµk,p(θ)

is equivalent to∣∣∣(I−Λ(p)−1Γ̃(p)>)k,k

∣∣∣ = 1−
∫
PL
k (θ,p)dµk,p(θ)

>

∫  ∑
j∈Jf\k

PL
j (θ,p)

 dµk,p(θ)

=
∑
l 6=k

∣∣∣(I−Λ(p)−1Γ̃(p)>)k,l

∣∣∣ .
The claim follows.

(iii): Because

(I−Λf (p)−1Γf (p)>)−1 =
∞∑
n=1

(
Λf (p)−1Γf (p)>

)n
and Λf (p)−1Γf (p)> maps positive vectors to positive vectors, so does its power series;

i.e., so does (I−Λf (p)−1Γf (p)>)−1.

(iv): Let xk = max x, xl = min x < 0, and {ωj}j∈Jf ⊂ [0, 1] be any set of

numbers that sum to less than one. Then

∑
j∈Jf

ωjxj ≤

∑
j∈Jf

ωj

xk < xk and
∑
j∈Jf

ωjxj ≥

∑
j∈Jf

ωj

xl > xl,
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the very last inequality requiring the assumption that xl < 0. Taking, respectively,

ωj = (Λf (p)−1Γf (p)>)k,j and ωj = (Λf (p)−1Γf (p)>)l,j,

we obtain

(
(I−Λf (p)−1Γf (p)>)x

)
k
> 0 and

(
(I−Λf (p)−1Γf (p)>)x

)
l
< 0.

Proof of Corollary 4.1.6: This follows from Eqn. (4.1) and Lemma 4.1.5, (iii), since

−Λf (p)Pf (p) > 0.

Proof of Proposition 4.3.1: The Boyd and Mellman (1980) model takes

w(θ,y, p) = −θK+1p

v(θ,y) =
K∑
k=1

θkyk

with no outside good. As mentioned above,
∣∣(DkP

L
j )(θ,p)

∣∣ ≤ |(Dwk)(θ, pk)| al-

ways holds. While this is not useful in general, it can be applied here to derive∣∣(DkP
L
j )(θ,p)

∣∣ ≤ θK+1, a bound that demonstrates the uniform µ-integrability of the

choice probability derivatives for any probability measure µ giving a finite expected

price coefficient. Thus the conclusions of Proposition 4.1.2 hold, since there is a finite

expected price coefficient under the Boyd and Mellman model.

The Berry et al. (1995) model takes θ = (φ,ψ) and

w(φ,y, p) = α log(φ− p)

v(ψ,y) =
K∑
k=1

ψkγkyk

ϑ(φ,ψ) = α log(φ) + γ0ψ0

The hypothesis of Proposition 4.1.2 is not satisfied if α < 1: For if φ > p, we have

|(Dw)(θ,y, p)| eu(θ,y,p)−ϑ(θ) = α

(
1

φ

)(
1

φ− p

)1−α

ev(ψ,y)

which is not µ-integrable at φ = p, for any p > 0, for any probability measure µ
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supported on a subset of [0,∞). By assuming α > 1 we have instead

|(Dw)(θ,y, p)| eu(θ,y,p)−ϑ(θ) = α

(
1

φ

)
(φ− p)α−1 ev(ψ,y)

which µ-integrable for any probability measure µ supported on a subset of [0,∞) that

vanishes suitably quickly at zero. In addition, |(Dw)(θ,y, p)| eu(θ,y,p)−ϑ(θ) vanishes as

φ ↓ p. Thus we set

|(Dw)(θ,y, p)| eu(θ,y,p)−ϑ(θ) = ϕp(φ)e−γ0ψ0+
PK
k=1 ψkγkyk

where now

ϕp(φ) =

α

(
(φ− p)α−1

φ

)
if φ > p

0 if φ ≤ p

We can take µ = µp×µy where µp is a measure for φ giving it a lognormal distribution

and µy is a measure for ψ giving it a normal distribution. By Fubini’s theorem,∫
|(Dw)(θ,y, p)| eu(θ,y,p)−ϑ(θ)dµ(θ)

=

(∫
e−γ0ψ0+

PK
k=1 ψkγkykdµy(ψ)

)∫
ϕp(φ)dµp(φ)

The normal distribution on ψ ensures that∫
e−γ0ψ0+

PK
k=1 ψkγkykdµy(ψ)

is finite. We turn to the price term,
∫
ϕp(φ)dµp(φ). If p ≤ p′, then ϕp(φ) ≥ ϕp′(φ)

for all φ. Thus, ϕp(φ) ≤ ϕ0(φ) for all φ for any p > 0. Now ϕ0(φ) = αφα−2,

an integrable function with respect to the measure µp for any α > 1. Hence

|(Dw)(θ,y, p)| eu(θ,y,p)−ϑ(θ) is uniformly µ-integrable in a neighborhood of p, for any

p > 0.
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D.3 Proofs for Chapter 5

Regulatory Policies

Proof of Proposition 5.2.1: These formula are derived by setting
∑F

f=1 ĉ
R
f (p) = 0 and

solving for κ̄S(p). For example,

0 =
F∑
f=1

ĉRf (p) = P(p)>κ− κS
(
P(p)>1

)
.

Smooth Stationarity

Proof of Proposition 5.3.1: This is a straightforward application of the chain rule.

Proof of Proposition 5.3.2: Given Eqn. (5.2) and the fact that no diagonal element

of Λf (p) is zero, this formula just algebra.

Incentives

Proof of Proposition 5.3.3: It is easy to see that

(∇f π̂
R
f )(p) = (∇f π̂f )(p)

+ rf
[
|Λf (p)| (I−Λf (p)−1Γf (p)>)%f (p)− (Df%f )(p)>Pf (p)

]
where |A| is the matrix the same size as A with entries given by the absolute value of

the entries of A, not the determinant of A. For CO2 taxes and fixed-pivot feebates,

(Df%f )(p) ≡ 0 and hence

(∇f π̂
R
f )(p) = (∇f π̂f )(p) + rf |Λf (p)| (I−Λf (p)−1Γf (p)>)%f (p).

Thus if (∇f π̂f )(p) = 0,

(∇f π̂
R
f )(p) = rf |Λf (p)| (I−Λf (p)−1Γf (p)>)%f (p).

Recalling Lemma 4.1.5, Claim (iv), we obtain (i), (ii), and (iii).

For (iv) and (v), we note that (Df%f )(p)>Pf (p) = (Pf (p)>1)(∇f %̂f )(p) because

%f = %̂f1 for some function %̂f : RJ → R. Writing (∇f %̂f )(p) = (DfPf )(p)>χf (p) as
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in the text we obtain

(∇f π̂
R
f )(p) = rf |Λf (p)| (I−Λf (p)−1Γf (p)>)

[
%̂f (p)1 + (Pf (p)>1)χf (p)

]
when (∇f π̂f )(p) = 0. Consider the CAE standard. The formula given in Proposition

5.3.6, Claim (iii) proves that

%̂f (p)1 + (Pf (p)>1)χf (p) = κSf 1− κf .

Claim (v) follows. Now consider the CAFE standard. The formula given in Proposition

5.3.6, Claim (i) proves that

%̂f (p)1 + (Pf (p)>1)χf (p) = κ̄Hf (p)

[(
κSf

κ̄Hf (p)

)
1−

κ̄Hf (p)

κf

]

Note that

(
%̂f (p)1 + (Pf (p)>1)χf (p)

)
k
−
(
%̂f (p)1 + (Pf (p)>1)χf (p)

)
l

= κ̄Hf (p)2

(
1

κl
− 1

κk

)
> 0

if, and only if, κk < κl. Thus the maximal element of %̂f(p)1 + (Pf(p)>1)χf(p) is

determined by the minimal element of κf , and vice versa.

Next, we recognize that

%̂f (p) + (Pf (p)>1)χj(p) = κSf − 2κ̄Hf (p) +
κ̄Hf (p)2

κj
> 0

if and only if
κSf

κ̄Hf (p)
− 1 > 1−

κ̄Hf (p)

κj
.

Because κSf > κ̄Hf (p), the left hand side is positive, while for any κj < κ̄Hf (p) the

right hand side is negative. Thus %̂f (p) + (Pf (p)>1)χj(p) > 0 for the vehicle j with

minimal κj. Thus the maximal element of %̂f(p)1 − χf(p) is positive. Claim (iv)

follows.
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Non-Smooth Stationarity

Proof of Proposition 5.3.4: We prove the result for a monopolist firm (that faces an

outside good). For fixed competitor prices, these problems are equivalent, though

as competitors change prices the value of the outside good changes. Thus, in what

follows we neglect the “f” subscript.

This problem falls into the framework studied by Ioffe (1979), who considered min-

imization problems over some Banach space X with objective φ(x) = g(ϕ(x)) where

ϕ : X→ Y, Y another Banach space, is continuously differentiable and g : Y→ R is

sublinear. Take X = RJ , Y = R2,

ϕ(p) =
(
π̂(p) , (Pf (p)>1)%̂(p)

)
,

and g(x, y) = −x+ rmax{0, y}; g is sublinear because its epigraph is a nonempty con-

vex cone Hiriart-Urruty and Lemarechal (2001). These choices casts the maximization

of π̂R in the class of those characterized by Ioffe.

Ioffe (1979) defines the Lagrangian

`(λ,µ)(p) = (λ, µ)>ϕ(p) = λπ̂(p) + µ(Pf (p)>1)%̂(p)

The first order necessary conditions are that 0 ∈ (∂φ)(p) (Clarke, 1975), where

(∂φ)(p) is the generalized gradient of φ; i.e. that there is a λ ∈ (∂g)(ϕ(p)) such that

(Dϕ)(p)>λ = 0 (Ioffe, 1979). Since

(∂g)(x, y) =


{(−1, 0)} y < 0

{−1} × [0, r] y = 0

{(−1, r)} y > 0

and

(Dϕ)(p)> =

 | |
(∇π̂)(p) ∇[(Pf (p)>1)%̂(p)]

| |


this amounts to the existence of λ∗ ∈ [0, r] such that (∇π̂)(p) = λ∗∇[(Pf (p)>1)%̂(p)].

Let

Ω = {λ ∈ (∂g)(ϕ(p)) ⊂ R2 : (Dϕ)(p)>λ = 0}

Ioffe (1979) gives the following condition:

Theorem D.3.1. (Ioffe, 1979) If φ attains a local minimum at p, then, in addition
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to the first order conditions,

max{q>(D∇`λ)(p)q : λ ∈ Ω} ≥ 0

for all q ∈ RJ satisfying g(ϕ(p) + (Dϕ)(p)q) ≤ g(ϕ(p)).

Moreover, if in addition to the first-order conditions there is a µ > 0 such that

max
λ∈Ω

{
q>(D∇`λ)(p)q

}
≥ µ||q||22 (D.3)

for all

q ∈ K = {h : g(ϕ(p) + t(Dϕ)(p)h) = g(ϕ(p)) for some t > 0}

then p is a local minimum of φ.

For us, (∇`λ)(p) = λ1(∇π̂)(p) + λ2(∇%̂)(p) and thus

(D∇`λ)(p) = λ1(D∇π̂)(p) + λ2(D∇)[(P(p)>1)%̂(p)].

Furthermore, Ω is a singleton, λ∗ = (−1, λ∗), where λ∗ < 1 is given by the

first-order necessary conditions. Thus,

max
λ∈Ω

{
q>(D∇`λ)(p)q

}
= q>(D∇`(−1,λ∗))(p)q.

Now we characterize K when %̂(p) = 0.

Lemma D.3.2. (i) If λ∗ ∈ (0, r), then K = (∇%̂)(p)⊥. (ii) If λ∗ = 0, then

K = {h : (∇%̂)(p)>h ≤ 0}. (iii) If λ∗ = r, then K = {h : (∇%̂)(p)>h ≥ 0}.

Proof. First note that ∇[(Pf (p)>1)%̂(p)] = (∇%̂)(p) when %̂(p) = 0.

Next, g(ϕ(p)) = g(π̂(p), 0) = −π̂(p) and

(Dϕ)(p) =

[
λ∗

1

]
(∇%̂)(p)>

Thus

(Dϕ)(p)h = ((∇%̂)(p)>h)

[
λ∗

1

]
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and

ϕ(p) + t(Dϕ)(p)h =

[
π̂(p) + tλ∗((∇%̂)(p)>h)

t((∇%̂)(p)>h)

]
,

which implies

g(ϕ(p) + t(Dϕ)(p)h)− g(ϕ(p) = −tλ∗((∇%̂)(p)>h)

+ tr

{
0 if ((∇%̂)(p)>h) ≤ 0

((∇%̂)(p)>h) if ((∇%̂)(p)>h) > 0

If (∇%̂)(p)>h ≤ 0 then h ∈ K if and only if trλ∗((∇%̂)(p)>h) = 0. If (∇%̂)(p)>h ≥ 0

then h ∈ K if and only if t(r − λ∗)((∇%̂)(p)>h) = 0.

To prove (i), we note that since λ∗ ∈ (0, r), h ∈ K if and only if h ⊥
∇[(Pf(p)>1)%̂(p)]. To prove (ii) and (iii), note that the appropriate inequalities

are trivially satisfied.

To apply the second order necessary condition, we also consider when g(ϕ(p) +

(Dϕ)(p)h) ≤ g(ϕ(p)).

Lemma D.3.3. {h : g(ϕ(p) + (Dϕ)(p)h) ≤ g(ϕ(p))} = K.

Proof. Clearly g(ϕ(p) + (Dϕ)(p)h) ≤ g(ϕ(p)) holds for all h ⊥ ∇[(Pf (p)>1)%̂(p)] =

(∇%̂)(p). If (∇%̂)(p)>h < 0, we must have −rλ∗(∇%̂)(p)>h ≤ 0 which cannot

be satisfied unless λ∗ = 0 or h ⊥ (∇%̂)(p). If (∇%̂)(p)>h > 0 then we must

have (r − λ∗)((∇%̂)(p)>h) ≤ 0, which again cannot be satisfied unless λ∗ = r or

h ⊥ (∇%̂)(p).

To complete the proof, we note that

(D∇`(−1,λ∗))(p) = −(D∇π̂)(p) + λ∗(D∇)[(Pf (p)>1)%̂(p)]

and compute q>(D∇)[(Pf (p)>1)%̂(p)]q on (∇%̂)(p)⊥.

Lemma D.3.4. We have that

∇[(Pf (p)>1)%̂(p)] = %̂(p)((DfPf )(p)>1) + (Pf (p)>1)(∇%̂)(p)

and, when %̂(p) = 0,

(D∇)[(Pf (p)>1)%̂(p)] = ((DfPf )(p)>1)(∇%̂)(p)>

+ (∇%̂)(p)((DfPf )(p)>1)> + (Pf (p)>1)(D∇%̂)(p).
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In particular,

q>(D∇)[(Pf (p)>1)%̂(p)]q = (Pf (p)>1)q>(D∇%̂)(p)q

when %̂(p) = 0 and q ⊥ (∇%̂)(p).

Proof. These are relatively simple calculations.

Ioffe (1979)’s second order necessary condition stipulates that if p is a local min-

imizer of φ, then (D∇`(−1,λ∗))(p) is positive semi-definite on K. By the previous

Lemma, this is equivalent to (D∇π̂)(p)− λ∗(D∇%̂)(p) negative semi-definite on K.

Similarly the second order sufficient condition holds if and only if (D∇`(−1,λ∗))(p)

is positive definite on K; that is, if (D∇π̂)(p)− λ∗(D∇%̂)(p) is negative definite on

(∇%̂)(p)⊥. These are the claims in Proposition 5.3.4.

Shadow Taxes

Proof of Proposition 5.3.5: The first-order conditions are

(∇f π̂f )(p) = υf (∇f %̂f )(p) = υf (DfPf )(p)>χf (p),

equivalent to

pf = cf + ζf (p) + υf
(
I−Λf (p)−1Γf (p)>

)
χf (p)

= cf + Λf (p)−1
(
Γf (p)>(pf − cf )−Pf (p)

)
+ υfχf (p)− υfΛf (p)−1Γf (p)>χf (p)

= cf + υfχf (p) + Λf (p)−1
(
Γf (p)>(pf − cf − υfχf (p))−Pf (p)

)
= cf + tf + Λf (p)−1

(
Γf (p)>(pf − cf − tf )−Pf (p)

)
Clearly then the first order conditions for the flat tax/subsidy problem are satisfied at

pf .

Hybrid Fixed-Point Iteration

Proof of Proposition 5.4.1: We first prove that (∇f π̂f )(p) and

lim
qf→pf

(∇f π̂
R
f )(qf ,p−f ),
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where the limit is taken over any sequence {q(n)
f }n∈N satisfying %̂f (q

(n)
f ,p−f ) > 0, are

colinear and point in opposite directions. Note that (∇f π̂f)(p) = υf(∇f %̂f)(p) for

some υf < rf (Pf (p)>1). Now we write

(∇f π̂
R
f )(qf ,p−f ) = (∇f π̂f )(qf ,p−f )

− rf
(
%̂f (qf ,p−f )(DfPf )(qf ,p−f )

>1

+ (Pf (qf ,p−f )
>1)(∇f %̂f )(qf ,p−f )

)
for %̂f (pf ,p−f ) > 0. Note that as qf → pf (maintaining %̂f (pf ,p−f ) > 0)

(∇f π̂
R
f )(qf ,p−f )→ (∇f π̂f )(p)− rf (Pf (p)>1)(∇f %̂f )(p)

= −
(
rf (Pf (p)>1)− υf

)
(∇f %̂f )(p)

= −
(
rf (Pf (p)>1)− υf

υf

)
(∇f π̂f )(p)

In other words, with αRf = (rf (Pf (p)>1)− υf )/υf > 0 we have

lim
qf→pf

(∇f π̂
R
f )(qf ,p−f ) = −αRf (∇f π̂f )(p).

We now complete the proof. First recall that cf + ζf (p)−pf = −Λf (p)(∇f π̂f )(p)

and hence

cf + ζRf (p) + rf (Pf (p)>1)Λf (p)−1(∇f %̂f )(p)− pf

= −Λf (p) lim
qf→pf

(∇f π̂
R
f )(qf ,p−f )

= −αRf (−Λf (p)(∇f π̂f )(p))

= −αRf (cf + ζf (p)− pf ).

Finally, note that

(cf + ζf (p)− pf )
>(∇f %̂f )(p) = (∇f π̂f )(p)>(−Λf (p)−1)(∇f %̂f )(p)

= υf (∇f %̂f )(p)>(−Λf (p)−1)(∇f %̂f )(p) > 0

(because Λf (p) has only negative entries).
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