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CHAPTER 1

Overview

This dissertation focuses on dynamic production and pricing issues related to new

products. Three essays in this dissertation analyze different aspects of the operations

and marketing decisions. The first essay is focused on the dynamic pricing issue for

new product diffusion process when capacity is limited, the second essay is focused

on the production lot sizing decisions for a pharmaceutical firm that manufactures

new medicines for clinical trial, and the third essay deals with outsourcing decisions

when firms manufacture a new product and production costs can be reduced through

“learning-by-doing” effect.

In Essay 1, “New Product Diffusion Decisions Under Supply Constraints,” I study

a capacity constrained firm prices products during new product introductions. Man-

agement of new product introductions is critical for nearly all firms, and one of its

most important dimensions is the management of demand during the introduction.

Research analyzing this area uses predominantly various versions of diffusion model

(Bass 1969) to capture the demand trajectory of a new product with a fixed poten-

tial market. The classical Bass model assumes that price is fixed and capacity is

unlimited. In reality, both factors critically influence firms’ strategies. Price fluctu-

ations for a new product are common and price is often a critical lever that helps
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to shape the demand. Also, often firms have rather significant capacity constraints,

especially during new production introduction times, which influence feasibility of

their strategies.

I assume that the demand rate is influenced by price. When capacity is insufficient,

I allow some customers to either be lost or to be backlogged and, therefore, for the

imitation effect to be delayed. In order to understand the effect of both pricing and

capacity, using control-theory framework (a generalization of the classic Bass model),

I consider the integrated optimal pricing, production, and sales decisions. Most of

the results are fairly robust and apply under the assumption of complete lost sales

and partial backlogging, as well as make to order and make to stock environments.

I show that in most of the cases, the optimal trajectory of demand is unimodal, as

in the Bass model, but the optimal price trajectory can have multiple local maxima

when capacity is limited. Lack of pricing flexibility might lead to intentional creation

of backorders or lost sales, a phenomenon not observed when price adjustments are

allowed. I also explore when pricing flexibility is most valuable using a numerical

study. I find that benefits are highest when capacity is not unlimited nor very little,

and when imitation effect dominates innovation effect. I also find that the capability

to adjust prices is significantly more effective than the option of producing in advance

and holding inventory.

In Essay 2, “Optimal Production and Ordering Policies with Random Yield Pro-

duction and Queueing,” I study lot sizing decisions with random yield, rigid demand

and significant delay costs. The essay is motivated by lot sizing for active ingredi-
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ent production for experimental drugs in the pharmaceutical industry. Clinical trials

require a fairly rigid amount of products, whereas production yields for new drugs

tend to be low and highly variable. Finally, delaying clinical trial is very costly, while

the materials for making the active ingredients are also very expensive. Thus firms

have a major tradeoff: releasing too much material would ensure on-time completion

but waste materials, while releasing too little would delay this drug and potentially

future ones because of compounding of delays.

I model this problem as a lot sizing decision with random yield and rigid demand

in an M/G/1 queue environment. I derive structural results on the optimal policy

and show that under reasonable assumptions about the yield distributions, the op-

timal production quantities are increasing in the number of waiting orders and the

remaining quantity to be produced for the current lot. I also show that the ratio of

the lot size to required amount is decreasing in required quantity.

I conduct a numerical study to compare the optimal average cost with several

heuristic policies commonly used in the industry. The results indicate that in most

cases the simple heuristic policies used in practice are very inefficient and substantial

savings can be obtained by appropriate lot sizing policies.

In an extension, I consider a more complicated model where the firm also has the

choice to outsource certain lots or use overtime and show that optimal policies follow

a threshold structure.

In the third essay, “Make-or-Buy Decisions When Cost Reduction Requires Min-

imum Production Quantity,” I study a problem of outsourcing some or all of the
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production (Make or Buy) in a dynamic setting, where both Manufacturer and his

Supplier may improve their operations and decrease production costs. Such cost re-

ductions, however, require costly effort and are only possible when experimenting with

actual production methods. That is some minimum quantity of production enables

potential improvements. Make or Buy is closely related to the question of dual sourc-

ing, which has been studied before. While various reasons have been provided for

dual sourcing, I provide a new explanation, which is driven by the fact that in-house

production may facilitate learning about potential process improvements leading to

eventual cost reductions.

In a two-period setting, I show that the choice between Manufacturer fully out-

sourcing to the Supplier, fully producing in house, or partial production and partial

outsourcing depends predictably on the cost difference between Manufacturer and

Supplier, but other factors matter as well. I find that dual sourcing is more likely

when the learning process is more uncertain, when Manufacturer’s minimum quantity

required for learning and improvement is larger, or when the two plants incentives

are aligned, e.g., they are part of the same company.

An extension to three periods suggests that it may be optimal to switch back and

forth from full to partial outsourcing. Although Manufacturer has no incentive to

subsidize Supplier’s learning in two periods, in longer horizons the dynamics is more

subtle. On one hand, such incentive may appear, on the other hand, the options to

subsidize may hurt Manufacturer.
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CHAPTER 2

New Product Diffusion Decisions Under Supply

Constraints

2.1 Introduction

We are interested in the joint pricing, sales, and production decisions made by a man-

ufacturer introducing a new product to the market and facing capacity constraints.

Pricing of new products is a critical decision that firms make, and often firms face

capacity constraints that affect their capability to satisfy demand during new product

introductions. We are thus interested in the following groups of questions:

1. How does a firm manage pricing, production, and inventory decisions over

time during new product introductions? What is the structure of optimal pricing,

production and inventory policies? 2. What is the effect of the firm’s capability to

adjust prices? How effective is pricing as a tool to shape demand? How much does

a firm lose if it has to stick to constant prices during a product’s lifetime? 3. What

effect does the firm’s capability to make to stock prior to product introduction have

on its profitability? Is pricing or inventory a more effective tool to maximize profit

and satisfy demand during product introductions?

This setting is directly related to a fundamental stream of research. A classical

model that characterizes demand diffusion dynamics for an innovative product is
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the Bass model (Bass 1969). It assumes that (i) products can be produced in any

quantities and are always available for purchase, and (ii) price is fixed or has no

impact on the diffusion process. In reality, however, these assumptions are often

violated.

While capacity shortages can be observed in many settings, they are quite likely to

occur when new products are introduced to market and the appropriate infrastructure

does not yet exist. Examples of supply shortages for new products are known in

abundance. In December 2005, the Apple Store noted that the 1GB iPod shuffle is

“Currently Unavailable. Sold out for holiday. Expected availability mid-January.”

Similarly, in 2006 Sony announced a shortage of PlayStation 3’s due to insufficient

manufacturing capacity of its key component, blue-laser diode. It is worth noting

that capacity constraints, which are not captured in the classical Bass model, have a

more significant impact on innovative products than they do on mature products. For

an innovative product, not only does capacity shortage result in backlogged demand

or lost sales, it also slows down the product diffusion process, because customers who

have not received the product are not able to generate the positive word-of-mouth

effect.1 Firms clearly need to consider manufacturing capacity and resulting product

availability as critical elements of new product roll-outs.

The other critical factor we focus on is pricing. While prices of all products are

adjusted over time, dynamic changes in prices have potentially big consequences for

new products. Management of such price adjustments can be critical, as recently

1The opposite effect not studied in this paper is the increase of desirability of product driven by
perceived unavailability of products, see Stock and Balachander (2005).
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observed in the introduction of the Apple iPhone. It is common, especially for man-

ufacturers of electronic products, to adjust prices of products several times during

their lifetime.

Given the practical importance of how firms’ pricing, production, and inventory

decisions change in the presence of capacity constraints, we are interested in both the

characteristics of the optimal demand and price trajectories as well as in the choice

of appropriate tools (levers) that can be used to manage this process. Clearly, to

maximize profit when facing capacity shortage, a firm can use multiple tools, some

of which have been analyzed in the existing literature in isolation. For example,

producing in advance of product launch to build early supply has been considered by

Ho et al. (2002), deliberately holding sales to slow down diffusion has been considered

by Kumar and Swaminathan (2003), and changing prices to shape demand during

new product introductions has been widely considered in the marketing literature.

We are interested in how a manufacturer chooses any of these levers when all are

available.

Despite the relevance of these questions, the effect of limited capacity and dynamic

pricing, for new products remains relatively unclear in the research literature and the

choice of tools sometimes even controversial. Qualitatively, capacity makes the pric-

ing/production/selling decisions more complicated, as there is a potential benefit of

influencing demand dynamically with pricing in order to match demand with avail-

able capacity. While there is a wide marketing literature on the role of pricing, it does

not generally consider capacity constraints. The operations literature that deals with
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product introductions does not generally consider pricing. Furthermore, predictions

are sometimes contradictory. E.g., Kumar and Swaminathan (2003), considering a

model where price is not a lever, proved that intentionally holding sales to slow dif-

fusion (i.e., refusing to sell to customers even when the firm has sufficient inventory)

can be optimal, while Ho et al. (2002) suggests that it is never optimal. We resolve

these inconsistencies, when price cannot be adjusted.

Further, we show that analyzing production/inventory decisions without pricing

as a lever can lead to results that fundamentally differ from when pricing can be

used as a lever. We show that the strategy described in Kumar and Swaminathan,

considering a model where price is not a lever, is no longer optimal when price can

be dynamically adjusted. Instead, myopic policy, following the spirit of Ho et al.,

becomes optimal.

Based on the modified Bass demand dynamics that captures capacity constraint

and pricing, we analyze the jointly optimal pricing, sales, and production decisions.

We start with unlimited capacity, and show that both demand and price trajectories

are unimodal over time. For limited capacity, we analyze a sequence of scenarios,

starting from the simplest case of lost sales in make-to-order environment. Later,

we examine the incremental effects of the possibility of holding inventory (make to

stock) and partial backlogging. While the optimal trajectory of demand is unimodal

for most cases (except when backlogging is possible and firm builds to stock), the

optimal price trajectory may be more complicated and multiple local maxima may

be observed. Our results can be interpreted in the framework of skimming and
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penetration pricing strategies. Although multiple local optima may be optimal, our

numerical experiments show that a penetration pricing strategy, widely considered

in marketing literature under infinite-capacity assumptions, is often very close to

optimal under finite capacity as well. Another interesting issue is how much a firm

loses by not being able to change prices during a product’s lifecycle or not being

able to build inventory of the product or not being able to backorder the product.

Our results indicate that pricing is a much more effective tool than inventory or

backordering and losing that the capability to adjust prices affects profits much more

severely than losing the capability to hold inventories or backorder.

The rest of the paper is organized as follows. In Section 2.2 we review the relevant

literature. The Bass model is modified to incorporate capacity constraint and pricing

in Section 2.3. In Section 2.4 we analyze pricing decisions when capacity is not

limited, while Section 2.5 analyzes the optimal decisions for the limited capacity

case. We present a numerical study to gain insights into the effectiveness of the

pricing, inventory, and backordering levers in new product introduction, in Section

2.6. Finally, we provide conclusions in Section 2.7.

2.2 Literature Review

Among various demand diffusion models analyzed in marketing literature, the Bass

(1969) model is one of the most recognized. The model describes adoption of new

durable goods and assumes that there are two types of customers, innovative cus-

tomers who make purchasing decisions independent of other customers’ decisions,

and imitative customers whose purchasing decisions are influenced by previous cus-
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tomers through “word-of-mouth” effect. As a result, the instantaneous demand rate

at time t is given by

d(t) =
[
p +

q

m
D(t)

]
[m−D(t)],

where D(t) is the cumulative demand up to time t, m is the market size (the remaining

potential market size is m − D(t)), p and q are labeled as “innovation coefficient”

and “imitation coefficient” to represent the effects of direct communication and word

of mouth, respectively.2 Since the Bass diffusion model was introduced, it has been

used to describe and forecast demand in various industries. In addition to the original

consumer durable goods markets, these include, e.g., agriculture (Akinola 1986) and

technology (Kalish and Lilien 1986).

The Bass model has been refined and extended in multiple directions, see Ma-

hajan et al. (1990) for a thorough survey. Among those, one particularly relevant

to our work is the influence of pricing on coefficients of innovation and imitation.

Robinson and Lakhani (1975) is among the first papers to incorporate price into dif-

fusion model. They assume that the diffusion rate is modified by e−kp(t), where p(t)

is price at time t and k is a constant, and production cost decreases due to learning-

curve effects. The paper examines a number of intuitive pricing strategies, including

constant price, constant margin pricing, and constant-return-rate pricing. Through

numerical examples, it is shown that all of these strategies can be far from optimality.

2Later literature, e.g., Mahajan et al. (1990), assumes the same functional form, but instead
of labelling customers as innovators or imitators, assumes that individual customer’s adoption, or
probability of purchase, is influenced by two factors: external and internal. External factors might
have the form of direct communications from mass media, such as advertisement. Internal factors
refer to the internal communications between potential customers and customers who have already
purchased.
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This exponential form of price dependence is among the most common (if not the

most common) form of incorporating price in diffusion models and we use it in our

model. There exist, however, some variations in how price has been incorporated into

diffusion models. Some of the papers assume the size of the potential market to be

affected by price, m = m(p), or assume adoption rate to be affected by price, such

as Robinson and Lakhani (1975), Dolan and Jeuland (1981), etc. Other alternative

is to model customer individual behavior as maximizing individual utility functions

(Kalish 1985). Krishnan et al. (1999) propose a Generalized Bass model, where the

price fluctuation rate also affects the adoption rate.

The above studies, as well as several others, disagree on the structure of optimal

pricing strategy. The pricing policies are generally classified into two categories: (i)

skimming, where prices are decreased over time, and (ii) penetration, where low prices

are offered early to attract a broad range of consumers (penetrate market) in order

to create some diffusion-like effects. Usually, in the case of penetration, the price

increases and may eventually decrease. Many of the earlier papers claim that the

optimal price always follows the demand process (e.g. Kalish 1983). Later, Krishnan

et al. (1999) propose a Generalized Bass Model and show that the pricing trajectory

depends on the “discounted price coefficient”, a product of the discount rate and the

diffusion price parameter.

All of the above variants of Bass model assume sufficient availability of products,

i.e., production capacity is never a constraint. We show that co-existence of pric-

ing flexibility and capacity constraint influences the production, as well as pricing

11



decisions and that the resulting policies may have different structure than policies

described in the existing literature.

In operations literature there have been several papers that consider the capacity-

constrained diffusion problem. Jain, Mahajan, and Muller (1989) consider a diffusion

model under capacity constraint. They find the demand pattern with limited capac-

ity to be negatively skewed, and empirically verify such behavior using new telephone

market data in Israel. Kumar and Swaminathan (2003) and Ho et al. (2002) inde-

pendently propose models, which include capacity constraint in a diffusion model and

analyze the optimal operational and marketing decisions. Although the two models

differ only in minor details, some of their conclusions are contradictory. Both models

adopt a modified Bass model and assume that only customers who purchased the

product create the word of mouth effect as we do. Also, both models assume partial

backlogging and focus on optimal sales decisions. Ho et al. shows that a myopic

sales policy is always optimal, that is, always satisfy current demand if capacity and

inventory allow for it, while Kumar and Swaminathan shows that not satisfying some

of the demand, i.e., strategically holding sales by denying some customers even when

they can be satisfied by current inventory/capacity, might be optimal in order to

slow down the diffusion process. While the above operations-focused papers incor-

porate capacity constraint, they ignore possibility of using pricing to influence sales.

Dynamic pricing is both used in practice and promising from a conceptual point of

view, since unlike the strategy of holding sales, resulting in backlogging or lost-sale

costs, or the strategy of delaying launching, that delays cash flow, raising price may
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slow down diffusion process without incurring these costs. We re-examine the ex-

isting models and put it in a broader framework with price flexibility. Our model

shows that price flexibility changes the qualitative insights and leads to myopic sales

decisions in settings analyzed in these papers.

Thus, we focus on a diffusion model incorporating both realistic features, capacity

constraints and pricing flexibility, and evaluate appropriate policies that should be

used.

2.3 Model

Consider a diffusion process of a new product with limited capacity. We use a mod-

ification of the Bass diffusion model (Bass 1969), where price, sales, and production

are decision variables that need to be determined during the whole product life cycle.

The Bass model assumes that a new durable product is introduced to a potential

market of size m. Given cumulative demand D(t) at time t, demand rate d(t) is given

by:

d(t) =
[
p +

q

m
D(t)

]
[m−D(t)],

where p is an innovation coefficient and q an imitation coefficient.

Capacity shortage not only results in immediate unsatisfied demand, but also in-

fluences the future diffusion process of demand, because unsatisfied customers cannot

spread product information without having experienced it. We define a sale as when

a customer receives a product. S(t) denotes the cumulative sales at time t. As in

Kumar and Swaminathan (2003) and Ho et al. (2002), only those customers who
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have received the product can be the source of the word-of-mouth effect. (In the case

when backlogs are allowed, we assume that backlogged customers start generating

word of mouth only when they have received the product.)

We make three assumptions about customer behavior:

1. We do not model detailed customer strategic purchasing behavior. Some cus-

tomers may be acting strategically and waiting for lower prices and some cus-

tomers may not. We assume that d(t) represents the overall demand we face as

a function of the price we set.

2. If the firm is not able to fully satisfy demand at time t, a fraction ξ of the un-

satisfied customers is backlogged with backlogging cost b per customer per unit

time. Backlogged customers wait until they obtain the product, while the rest

of the customers leave and never return. A complete lost sale case is captured

by ξ = 0 and a complete backlogging case by ξ = 1. For backlogged customers,

it is critical to specify which price is charged. We assume that customers pay

the price when they place orders and the firm collects the payment immedi-

ately,3 but backlogged customers are not included in the total number of sales,

S(t), that generates the word of mouth effect.

3. When the firm produces new units, backlogged customers are given priority

over new customers in receiving the product. All backorders are satisfied at the

end of horizon t = T at production cost.

During a finite horizon [0, T ], a firm with fixed capacity K determines price π(t),

3If customers paid the price at the time they receive the product, this could be easily gamed
by the retailer. E.g., the retailer could accumulate high backlog and then force the backlogged
customers to pay an extremely high price.
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sales rate s(t), and instantaneous production rate x(t), in order to maximize total

discounted profit with discount factor r ≥ 0. Production incurs linear cost c and

excess inventory I(t) is stored with linear holding cost h.

We assume that the price for the product at time t, π(t), influences both the

innovation coefficient p and imitation coefficient q in the same fashion, i.e., p(π) =

pe−θπ, and q(π) = qe−θπ, as is typically assumed in the marketing literature (e.g.,

Dolan and Jeuland 1981, and Robinson and Lakhani 1975). To make the proofs

easier to follow, we use θ = 1.4 Thus, the production rate is constrained by capacity

and price is the decision variable:

d(t) =
[
p +

q

m
S(t)

]
[m−D(t)]e−π(t).

We define dB(t) =
[
p +

q

m
S(t)

]
[m−D(t)] and, therefore, d(t) = dB(t)e−π(t). Clearly

π(t) = log dB(t)− log d(t).

A discrete analog of our model would have the following interpretation. In period

t, the firm’s starting inventory is I(t) and backlog is W (t). The firm decides to

produce quantity x(t), subject to capacity constraint K, and sets price π(t) and

observes demand d(t). It decides that it will sell a quantity s(t) that cannot exceed

x(t) + I(t). Any left product becomes inventory in the next period I(t + 1). If

s(t) < W (t)+d(t), backlogged customers from period t are satisfied first and a fraction

of the new customers ξ[d(t) − (s(t) − W (t))+] become the backlogged customers

W (t + 1) for period t + 1.

We analyze the continuous-time model. In this model, we determine at all points

4Proofs for θ 6= 1 are similar and do not change the structure of optimal demand and price.
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in time t, the price level π(t) and the production rate x(t). The price level determines

the demand rate d(t) we observe and we also determine what sales rate s(t) to allow.

We first focus on the instantaneous revenue collected at time t. Because backlogging

has higher priority than new demand, there are no sales to new customers as long as

backlog remains positive, W (t) > 0, i.e., each unit of production is immediately used

to satisfy a backlogged customer and thus revenue is collected at a rate of ξπ(t)d(t).

(This is because we assume backlogged customers had already paid, and we only

collect revenues from new customers who agree to be backlogged). If W (t) = 0,

then s(t) + ξ[d(t)− s(t)] customers will purchase, among whom ξ[d(t)− s(t)] will be

backlogged, and the collected revenue is π(t)[s(t) + ξ(d(t) − s(t))]. Once again, we

assume that at time T , all backlogs are satisfied and any remaining inventory can be

salvaged at cs per unit. Thus, our objective function can be stated as follows:

Π = max
π(t),s(t),x(t)

∫ T

0

{
π(t)

[
ξd(t) + (1− ξ)s(t)1{W (t)=0}

]
− cx(t)− hI(t)

−bW (t)} e−rtdt− cW (T )e−rT + csI(T )e−rT (2.1)

s.t. d(t) =
[
p +

q

m
S(t)

]
[m−D(t)]e−π(t), (2.2)

dD

dt
= d(t), (2.3)

dS

dt
= s(t), (2.4)

dI

dt
= x(t)− s(t), (2.5)

dW

dt
= ξd(t)− s(t) + (1− ξ)s(t)1{W (t)=0}, (2.6)

I(t) ≥ 0,W (t) ≥ 0, 0 ≤ x(t) ≤ K, 0 ≤ s(t)1{W (t)=0} ≤ d(t), (2.7)

D(0) = S(0) = I(0) = W (0) = 0. (2.8)
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The objective function (2.1) includes the revenue rate for new customers minus pro-

duction cost, inventory holding cost, and backlogging cost. (2.2) describes the diffu-

sion process. Equations (2.3-2.6) define cumulative demand, cumulative sales, inven-

tory and backlogging dynamics. When backlog W (t) = 0, it (potentially) increases

at a rate of ξ[d(t)− s(t)], otherwise with positive backlog, fraction ξ of new demand

is backlogged, while new production is used for previously backlogged demand. Con-

straints (2.7) require nonnegative inventory, nonnegative backlogging, production not

to exceed available capacity, and sales rate smaller than demand rate in case of no

backlog. Note that the constraints for s(t), when backlog occurs, are implicitly given

by equations (2.5-2.7). Equation (2.8) provides the initial conditions. All models we

consider are a special case of this general formulation.

2.4 Infinite Capacity

Before analyzing the case with both capacity constraint and dynamic pricing, we start

with the problem with infinite capacity. We show that in this case, both demand and

price trajectories have unimodal structures, and the demand peak (as a function of

time) precedes the price peak, when the discount factor r is positive.5

Clearly, holding inventory is expensive and its only purpose is to hedge against fu-

ture capacity shortage. Therefore, under infinite capacity, we will not hold inventory.

Also, strategically backlogging some demand slows down the diffusion process and

would only be useful when capacity is insufficient. Using price adjustments, we can

decrease the sales (slow down the diffusion) and achieve higher profit. Thus, myopic

5Without discounting, the optimal demand is flat over the time horizon, see Lemma 4.
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sales and production policies are optimal, i.e., s∗(t) = x∗(t) = d∗(t) and the problem

simplifies to:

Π = max
π(t)

∫ T

0
[π(t)− c]d(t)e−rtdt

Since price π(t) = log dB(t)− log d(t), the problem can be reformulated as finding the

optimal demand d∗(t):

Π = max
d(t)

∫ T

0
[log dB(t)− log d(t)− c]d(t)e−rtdt

s.t.
dD(t)

dt
= d(t)

In order to solve this control-theory problem, we use Hamiltonian H, which after

incorporating factor ert into λ(t) becomes:

H(D, d, λ, t) = (log dB(t)− log d(t)− c)d(t) + λ(t)d(t)

Notice that, because S(t) = D(t), dB(t) is unimodal (negative quadratic) in D, and

because D(t) is non-decreasing in t, we have that dB(t) is unimodal in t, and reaches

its peak at time τB, such that D(τB) = (q − p)
m

2q
. In the following lemmas, we

show that the optimal demand and price are both unimodal in time, as illustrated

in Figure 2.1. We further characterize conditions under which demand and price are

monotonically increasing, monotonically decreasing, or increasing-decreasing. Finally,

we demonstrate that, in the presence of positive discount factor, the demand peak

always precedes the price peak.

Lemma 1 Assume discount factor r > 0 and capacity K = +∞. Then, the optimal

demand d∗(t) is unimodal over time. It increases on [0, T ] if the optimal cumulative
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demand D∗(T ) < (q − p)
m

2q
, decreases if D∗(T ) ≥ (q − p)

m

2q
and λ(0) ≤ 0, and is

increasing-decreasing otherwise.

Lemma 2 When discount factor r > 0 and capacity K = +∞, the optimal price

π∗(t) is unimodal over time. It increases on [0, T ] if D∗(T ) < (q − p)
m

2q
, decreases if

D∗(T ) ≥ (q − p)
m

2q
and rλ(0)− (q − p)e−π∗(0) ≥ 0, and is increasing-decreasing oth-

erwise.

Lemmas 1 and 2 describe the shape of demand and price trajectories when capacity

is not limited and when discount factor is positive. Note first that the conditions for

demand and price to be increasing over the whole horizon are the same (D∗(T ) <

(q − p)m
2q

), which is most likely when the time horizon T is relatively short. If the

selling season is long enough, usually both demand and price will eventually start

decreasing.

Second, given the price and demand decrease at the end of the horizon, the lem-

mas describe, whether initial increase may take place or they decrease throughout

the whole horizon. Clearly, demand decreases throughout the selling season if the

marginal benefit of cumulative demand is already negative at the beginning of hori-

zon (λ(0) ≤ 0), i.e., when the saturation effect already exceeds the diffusion effect.

This typically takes place in a market with strong innovation effect (p) and weak

imitation effect (q). The condition for price to drop throughout the time horizon

typically requires a small discount factor and very weak imitation effect (q). A small

discount factor ensures that it is not necessary to offer promotional price at the very

beginning to boost instant revenue, and a market with weak imitation effect is quickly
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Figure 2.1. Optimal demand and price with unlimited capacity.

shrinking and thus price cut is needed later on.

Let τd and τπ denote the time at which we reach the maximum (peak) of demand

and of price, respectively. We show that they satisfy the following relationship.

Lemma 3 When discount factor r > 0 and capacity K = +∞, the peaks of optimal

demand, and price are ordered as follows: τd ≤ τπ. Furthermore, assume that the firm

does not have pricing flexibility, and is forced to set the same fixed price πF for all

times t ≤ T . Consider any constant price and let the time at which the peak demand

is reached under the constant price be τF . Then we have that τd ≤ τF ≤ τπ.

With infinite capacity and positive discount factor, the firm prefers collecting

revenue earlier, thus would like to stimulate the diffusion at a faster pace, making

demand trajectory more negatively skewed.

Without discounting the profit, optimal demand and price can be derived in

closed-form.

Lemma 4 If discount factor r = 0 and capacity K = +∞, then for all t ∈ [0, T ],

demand rate is constant, while price is correspondingly adjusted over time:

d(t) = d̄ =
1

2qT 2/m

{
−(p− q)T − e1+c +

√
((p− q)T + e1+c)2 + 4pqT 2

}

π(t) = 1 + c + log
(m− d̄t)(p + qd̄t/m)

(m− d̄T )(p + qd̄T/m)
(2.9)
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Furthermore, price is decreasing on [0, T ] if and only if q < p.

Without discounting, the price structure is similar to that in Dolan and Jeuland

(1981). Surprisingly, the optimal demand remains flat over the time horizon.6 That

is, the firm should modify the price, according to (2.9), to maintain constant demand.

This may contradict the intuitive expectation that the firm might want to set a

constant price over the whole time horizon when profit is not discounted. However,

since the firm’s myopic profit rate at time t is given by (π(t) − c)d(t) = (π(t) −

c)(m − D(t))(p + qD(t)/m)e−π(t), constant price π(t) = 1 + c maximizes only the

firm’s myopic profit, while ignoring the indirect effect of pricing on future product

diffusion. This indirect effect takes place through cumulative demand. For example,

a low price drives a faster increase in cumulative demand. Fast increase in cumulative

demand is desirable at the beginning of the time horizon, as it translates into needed

word-of-mouth effect, not desirable in the middle phase due to market saturation,

and eventually not critical at the end of the time horizon. Therefore, if the time

horizon is long enough, the firm first stimulates word-of-mouth effect through a low

price, then charges a higher price, and a low price at the end of the life cycle to clear

the market. Consequently, the demand should be much flatter than the case where

the firm is forced to set a constant price for the whole time horizon.

It is easy to verify that π(t) peaks at
q − p

2aq/m
. Therefore, price is decreasing

throughout the whole life cycle (skimming) if and only if q < p, i.e., if imitation

effect is dominated by innovation effect. Otherwise, we see initial penetration. This

is easy to understand in the extreme case: without any imitators, q = 0, all sales are

6Dolan and Jeuland (1981) assume no discounting, but do not analyze the demand function.
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driven by the innovators and, since the remaining market size decreases, the price

correspondingly decreases. (The same logic applies to the general q < p case.)

Note that the lemma above has immediate implications for the interactions of

marketing and operations in new product markets with fairly small discount rates.

Obviously, the analysis of unlimited-capacity case applies to all cases where capacity is

simply sufficient (not constraining the demand trajectory). Given that the “optimal”

diffusion implies constant demand, a direct lesson is that the firm would build a

facility which would serve a fairly constant demand over time, while all potential

non-stationarities are absorbed by the pricing policy. The interesting fact here is that

although it is generally recommended in the operations literature to level demand to

help operations, in this case, it turns out to be optimal even when operations do not

create a constraint. If discounting is significant, however, the firm is more impatient

to satisfy customers and stimulates demand more aggressively in the early phase of

product life cycle.

2.5 Limited Capacity

For the rest of the paper, we consider the more general situation, when capacity is

constrained. We start with a case of lost sale and no inventory. In the following sub-

sections, we incorporate inventory and backorders in the model. Recall that Kumar

and Swaminathan (2003) allow for constrained capacity, but assume constant price.

Their paper suggests that strategically holding sales to slow the diffusion of demand

can be optimal. That is the firm may decide not to sell the product, even when hold-

ing some inventory of the product. We show that this never happens with dynamic

22



pricing, which emphasizes the strategic importance of pricing in new product intro-

ductions. The joint decisions of production quantity, sales level, and pricing makes

the problem more complicated and we first describe the optimal demand and price

trajectories. We will do this first for the case where unsatisfied demand is assumed

to be completely lost and then for the most general case where partial backlogging is

allowed.

2.5.1 Optimal demand and price trajectories under lost sales

We will now characterize the optimal pricing, production and sales trajectories over

time. In this subsection, we assume that all unsatisfied demand is lost. We first

characterize the optimal trajectories for the make-to-order case. Thus ξ = 0, x(t) =

s(t), and W (t) = I(t) = 0.

Under make-to-order, our assumption is that if the demand rate for arriving cus-

tomers exceeds our capacity rate, we experience lost sales. Clearly, lost sales cannot

be optimal when we can control pricing. Note that allowing demand to be higher

than available capacity results in lost sales, reduces future potential market, and does

not create word-of-mouth effect. Thus, the firm is better off raising prices to reduce

demand, which increases revenues and does not reduce future market potential.

Lemma 5 Assume products are made-to-order and unsatisfied demand is completely

lost. The optimal production, sales, and demand are equal and never exceed capacity,

i.e., x∗(t) = s∗(t) = d∗(t) ≤ K.

As lost sales will never occur, price becomes the only decision variable, and equa-
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Figure 2.2. Optimal policies with complete lost sale in make-to-order environment

tions (2.1-2.8) are further simplified to

Π = max
d(t)

∫ T

0
(log dB(t)− log d(t)− c)d(t)e−rtdt

s.t.
dD

dt
= d(t),

0 ≤ d(t) ≤ K, D(0) = 0.

Theorem 1 Assume that products are made to order and unsatisfied demand is com-

pletely lost. There exist time thresholds 0 ≤ tA1 ≤ tA2 ≤ T , such that

(a) Optimal demand d∗(t) increases on (0, tA1 ), d∗(t) = K on (tA1 , tA2 ), and decreases on

(tA2 , T ).

(b) Optimal price π∗(t) increases on (0, tA1 ), is unimodal on (tA1 , tA2 ), and unimodal on

(tA2 , T ).

(c) There exists K̄ such that tA1 = tA2 for all K ≥ K̄.

Theorem 1 states that, when capacity is insufficient, the optimal demand tra-

jectory becomes “truncated unimodal” (there still exists only one demand peak but

when this demand peak is equal to the firm’s capacity, demand may equal capacity

for an interval), while optimal price can be bimodal. Let τA
1 and τA

2 be the two

price peaks. We can, accordingly, divide product life cycle into five phases as shown

in Figure 2.2. In Phase I, (0, tA1 ), the product has been just introduced with no or

24



minimal word of mouth. Thus, demand is low and a low promotion price is offered

in order to boost demand. This behavior continues until demand reaches capacity.

In Phase II, (tA1 , τA
1 ), the firm’s demand has picked up and may exceed its capacity.

To avoid this, the firm raises the price in order to bring the demand rate down to its

capacity rate. In Phase III, (τA
1 , tA2 ), a noticeable portion of the market has already

been penetrated and the need for price premium to keep demand at the capacity level

is first increased and then reduced. In Phase IV, (tA2 , τA
2 ), demand drops to a level

where it is not necessary to increase prices to maintain sales at the capacity level.

Since the effect of the word of mouth is less significant in this phase, the firm may

in fact raise prices, as in case with infinite capacity. Finally, in Phase V, (τA
2 , T ),

the remaining market is very small, demand is decreasing and clearance prices are

charged.

When capacity is sufficiently large, part (c) indicates that the constrained phase

(tA1 , tA2 ) disappears, and the price and demand trajectories are identical to those de-

rived in the infinite capacity case.

Theorem 1 indicates that limited capacity significantly affects the structure of the

pricing policy. Although the optimal demand behavior is similar to the classical Bass

diffusion model, the optimal price is not unimodal anymore. The firm may charge a

penetration price, and then charge a premium (possibly interpreted as “skimming”)

price when demand is high to bring it down to the capacity level. (Skimming would

be strictly driven by limited capacity.) In later stages, when demand falls below

capacity, it might be optimal to increase price again.
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Having characterized the structure of optimal trajectories for the make-to-order

case, we now extend our results to the make-to-stock case. We show that it is optimal

for the firm to produce at the demand rate for an interval of time, and then to switch

to producing at full capacity at a threshold time to build excess inventory. The firm

uses this excess inventory to satisfy demand during the time when demand will exceed

capacity. (Since inventory is allowed to be built, demand can exceed capacity at a

certain interval of time.) The optimal price trajectory remains bimodal.

Previously, when holding inventory was not allowed, we had demand, production,

and sales rates equal, x∗(t) = s∗(t) = d∗(t) ≤ K. When carrying inventory is allowed,

the production rate can exceed the sales rate, x∗(t) ≥ s∗(t), and also the sales rate

may exceed capacity when using inventory to satisfy demand, s∗(t) ≥ K. While the

model allows demand to exceed sales, we once again show that this can never occur

under an optimal policy, i.e., there will be no lost sales.

Lemma 6 Assume a make-to-stock environment with complete lost sales. Then

d∗(t) = s∗(t), for all t.

Using the result from Lemma 6, we have that S∗(t) = D∗(t), and recalling that
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dB(t) = [m−D(t)]
[
p +

q

m
D(t)

]
, equations (1-8) become:

Π = max
d(t),x(t)

∫ T

0
[(log dB(t)− log d(t))d(t)− cx(t)− hI(t)]e−rtdt + csI(T )e−rT

s.t.
dD

dt
= d(t),

dI

dt
= x(t)− d(t),

I(t) ≥ 0, I(0) = 0,

0 ≤ x(t) ≤ K,

D(0) = 0.

The Hamiltonian for this problem is:

H(D, I, d, x, λ1, λ2, t) = (log dB(t)− log d(t))d(t)− cx(t)− hI(t)

+λ1d(t) + λ2(x(t)− d(t)) (2.10)

By Pontryagin’s Maximum Principle, the optimal demand and production pair (d∗(t),

x∗(t)) maximizes H subject to constraints I(t) ≥ 0 and 0 ≤ x(t) ≤ K. For any given

λ1 and λ2, partial derivatives of H w.r.t. d(t) and x(t) are:

∂H

∂d
= log dB(t)− log d(t)− 1 + λ1(t)− λ2(t)

∂H

∂x
= −c + λ2(t)

We note that λ1(t) can be interpreted as the discounted shadow price of the

cumulative demand and λ2(t) can be interpreted as the discounted shadow price of

inventory.

Due to the constraint on the state variable I(t), the analysis in this case is more

complicated than that of make-to-order case in two aspects. First, the terminal value
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λ2(T ) is not necessarily 0, but can take any nonnegative values, since remaining

inventory at the end of the horizon can have some salvage value. Second, λ2(t)

may be discontinuous. When the state constraint becomes binding, i.e., when I(t)

transitions from positive to zero, λ2(t) can have a downward jump.

Lemma 7 For an open interval: (a) If I∗(t) > 0, then almost everywhere x∗(t) = K

and λ2(t) ≥ c. (b) If I∗(t) = 0, then almost everywhere x∗(t) = d(t).

Intuitively, Lemma 7(a) states that a firm cannot produce less than its capacity

and hold inventory at the same time. If a firm has inventory at the moment, and is

producing less than capacity, it would have been better off by shifting some production

from a previous time to the present. By doing so, demand can still be satisfied while

production cost is delayed and inventory cost is decreased. For part (b), simply note

that if inventory remains 0 for any open interval, production and demand must be

equal.

Using similar logic, we show that it is not optimal to have positive inventory at

the end of the horizon, since the excess inventory at the end of the horizon is of no

use to the firm, while incurring extra holding cost and production cost.

Lemma 8 There is no inventory left at the end of the horizon, i.e., I∗(T ) = 0.

Therefore, the optimal decisions, can be characterized as a function of inventory

and the coefficients λ1(t) and λ2(t).

Lemma 9 Given I(t), λ1(t), and λ2(t), the optimal demand and production quanti-

ties are:

1. If I∗(t) > 0, then λ2(t) ≥ c, x∗(t) = K, and log d∗(t) = log dB(t)− 1 + λ1(t)− λ2(t).
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2. If I∗(t) = 0 and λ2(t) ≥ c, then x∗(t) = K, log d∗(t) = min{log K, log dB(t) − 1 +

λ1(t)− λ2(t)}.

3. If I∗(t) = 0 and λ2(t) < c, then x∗(t) = d∗(t), log d∗(t) = min{log K, log dB(t)− 1 +

λ1(t)− c}.

The production strategy is determined by the discounted shadow price of inven-

tory λ2. When λ2 is greater than the production cost, the firm produces as much

as possible, which is full capacity. If λ2 is smaller than the production cost, it is

not beneficial to fully utilize capacity. In that case, the firm’s production perfectly

matches its current demand.

We are now ready to describe the whole trajectory of price, demand, and produc-

tion.

Theorem 2 In a make-to-stock environment (with holding cost h < +∞), there exist

time thresholds 0 ≤ tB1 ≤ tB2 ≤ tB3 ≤ T , such that

(a) Optimal demand d∗(t) increases on (0, tB1 ), is unimodal on (tB1 , tB2 ), d∗(t) = K on

(tB2 , tB3 ), and decreases on (tB3 , T ).

(b) Optimal price π∗(t) increases on (0, tB1 ), is unimodal on (tB1 , tB3 ), and is unimodal on

(tB3 , T ).

(c) Optimal production x∗(t) = d∗(t) on (0, tB1 ) ∪ (tB3 , T ), and x∗(t) = K on (tB1 , tB3 ).

Inventory I∗(t) > 0 and is unimodal on (tB1 , tB2 ) and 0 otherwise.

Theorem 2, illustrated in Figure 2.3, states that with the ability to hold stock, the

optimal demand and price trajectories are similar to those of make-to-order product,

except for an intermediate phase (tB1 , tB2 ). At tB1 , demand is still below capacity, but

the firm starts producing at full capacity rate and accumulates inventory. Demand

29



Demand

Price

t1
B

Capacity

t3
B T

Inventory

t2
B t

Figure 2.3. Optimal policies with complete lost sale in make-to-stock environment

at some time exceeds the firm’s capacity and inventory is naturally depleted. At tB2 ,

inventory is sold out and the firm continues selling at capacity rate in time interval

(tB2 , tB3 ). Finally, demand drops below capacity after tB3 . Essentially, the ability to

hold inventory allows the firm to start producing larger amounts than demand early

on so that it can sell more than what it is producing at a later time. Thus, pricing

does not negate the need for inventory build-up. However, in this case, with pricing,

we do not have to resort to withholding sales whereby we turn away customers even

though we have inventory, which implies qualitatively different results from those of

Kumar and Swaminathan (2003).

2.5.2 Optimal demand, and price trajectories under partial backlogging

When unsatisfied demand is completely lost, we showed that price is used to shape

demand so that demand always equals sales and is never lost. We were also able to

characterize the demand, price, and inventory trajectories. Consider now the most

general case with partial backlogging and inventory - as defined in Section 2.3. In

this general setting, the optimal demand can indeed exceed sales, resulting in some

backlogged customers. We show that before any backlog appears, the firm builds

some inventory and uses it when demand exceeds capacity (as in Section 2.5.1).
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After inventory is depleted, selling more than capacity may continue, and the excess

demand will be then backlogged. After demand drops below capacity level, the

firm will continue to produce at full capacity level until the backlogged demand is

cleared. We will first characterize the structure of the production and sales policies

and compare them to those derived in Kumar and Swaminathan (2003) and Ho et al.

(2002). What we will show is that, with pricing as an available option, a myopic sales

policy that sells all the available inventory up to demand at any time is optimal. This

is the policy derived in Ho without pricing as an available option, but we will in fact

derive a counterexample to show that Ho’s conclusion is invalid without pricing as an

available control and that, as Kumar and Swaminathan predicted, without pricing, it

is potentially optimal for the firm to withhold sales even if it is capable of satisfying

the demand, something that would never happen with dynamic pricing.

We consider here the non-trivial case of partial or full backlog, 0 < ξ ≤ 1 (lost sale

ξ = 0 has already been analyzed in the previous sections). The problem formulation

is exactly the same as in equations (2.1-2.8) and the Hamiltonian depends on whether

the backlog is positive:

1. If W (t) = 0:

H(D,S, I, W, d, x, s, λ1, λ2, λ3, λ4, t) = (log dB(t)− log d(t))(ξd(t) + (1− ξ)s(t))

−cx(t)− hI(t)− bW (t) + λ1(t)d(t) + λ2(t)s(t) + λ3(t)(x(t)− s(t))

+λ4(t)ξ(d(t)− s(t))
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2. If W (t) > 0:

H(D,S, I, W, d, x, s, λ1, λ2, λ3, λ4, t) = (log dB(t)− log d(t))ξd(t)− cx(t)

−hI(t)− bW (t) + λ1(t)d(t) + λ2(t)s(t) + λ3(t)(x(t)− s(t))

+λ4(t)(ξd(t)− s(t))

It is possible to interpret λ1, λ2, λ3, and λ4 as, respectively, the discounted shadow

prices of cumulative demand, cumulative sales, inventory, and backorders. We first

show that it is not possible to have, at the same time, backlogged customer and

positive inventory (as it is beneficial to use inventory to immediately satisfy backlog).

To avoid trivialities, we assume that b > rc, which implies that the backlogging

cost is higher than what the firm can save by postponing production a unit of time. If

this does not hold, the firm may have an incentive to intentionally delay all production

till the end of the horizon.

Lemma 10 (a) If I∗(t) > 0 on an open interval, then W ∗(t) = 0, x∗(t) = K and

s∗(t) = d∗(t) almost everywhere.

(b) If b > rc and W ∗(t) > 0 on an open interval, then I∗(t) = 0, x∗(t) = s∗(t) = K

almost everywhere.

(c) If I∗(t) = W ∗(t) = 0 on an open interval, then x∗(t) = s∗(t) = d∗(t) almost

everywhere.

The lemma above states that although backlogging is possible, deliberately back-

logging demand when inventories are available or capacity is sufficient, as shown

optimal in Kumar and Swaminathan (2003), is no longer optimal when price is dy-

namically adjusted. Inventory, if available, is used to immediately clear any backo-
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rders and, by the same token, if no inventory is available, then the firm uses current

production to satisfy the backorders rather than build any inventory. Lemma 10

confirms that the production strategy used in Lemma 7 continues to hold when back-

logging is allowed, that is, the firm produces at full capacity if it is optimal to keep

positive inventory on hand.

Recall that in two previous papers, Kumar and Swaminathan and Ho et al. ob-

tained conflicting results about the optimality of delaying sales in models where price

is fixed. Kumar and Swaminathan showed that delaying sales can be optimal while in

Proposition 1 of their paper, Ho et al., claimed that a myopic policy that never delays

sales is always optimal as long as the firm has positive profit margins, and positive

holding costs. Thus, Ho et al. claimed that it is never optimal for a firm to carry

inventory and backlog (or turn away) customers at the same time while Kumar and

Swaminathan showed the opposite. We provide a counter example that contradicts

the conclusion of Proposition 1 in Ho et al.

To explain the counterexample, we first need to explain two variables that Ho et

al. use in their model. First, they define a launch time tl, where product is launched

and demand diffusion can begin. Inventory, however, can be built before product

launch. In our model, we can always achieve that by setting prices arbitrarily high,

so that demand equals zero for some initial period of time. Thus, we do not need this

additional variable. Ho et al. also allow backlogged customers to wait for an average

of 1/l units of time before departing the system. Our counter example to Ho et al.’s

result uses the following parameters: p = 0.03, q = 0.4,m = 3000, K=100, discount
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factor r = 0.01, holding cost h = 0.001, profit margin a(t) = 1.3 (a(t) = π(t) − c in

our setting) for all t, complete lost sales, so 1/l = 0 (where 1/l is the average time

that a backlogged customer will wait before departing the system) launch time tl = 0.

These parameter values satisfy the condition of Proposition 1 in Ho et al. Solving the

continuous time equation that these parameters result in (equations (11-16) in Ho et

al.), we obtain the profit under the myopic sales policy which never delays sales to

be 2270.07. However, we consider an alternative policy under which we intentionally

delay sales by τ = 5 time units. That is, for t ∈ [0, τ ] = [0, 5], customers come

to purchase, but the firm does not sell to them even if inventory is available. For

t ≥ τ a myopic sales policy is used. We obtain a profit of 2311.92. (Please see the

Appendix for the derivation of profits.) Therefore, in this case a myopic sales policy

is dominated by a policy that delays sales even when the firm has inventory. This is

exactly what Kumar and Swaminathan showed.

This counterexample suggests that the myopic sales policy suggested in Ho et al.

is not an optimal policy when price cannot be dynamically adjusted. In our coun-

terexample, the firm has a small discount factor so delaying sales does not hurt profit

very significantly. When capacity is limited, delaying sales slows down the diffusion

process, thus reducing further sale losses from a sudden onslaught of demand that

exceeds capacity. Our setting differs in that our model allows dynamic price changes,

and we find that myopic sales policy is optimal when pricing flexibility is available.

Clearly, when the firm has pricing flexibility, it can adjust price to control the diffu-

sion process, without incurring the cost of losing sales. Therefore, pricing flexibility
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acts as another lever to hedge against capacity shortage. An interesting question is

how powerful pricing is as a tool compared to delaying sales or building inventory in

advance by delaying the launching of the process as Kumar and Swaminathan and

Ho et al. allow. We explore these questions in the next section.

We conclude this section by characterizing the optimal demand and price trajec-

tories for the most general setting with partial backorders. We show that there is

at most one backlogging interval, and the optimal price trajectory has at most three

modes.

Theorem 3 In a make-to-stock environment with partial backlogging, if b > rc, and

if demand is continuous, then there is at most one backordering interval, and the

optimal price has at most three local maxima. There exist time thresholds 0 ≤ tC1 ≤

tC2 ≤ tC3 ≤ tC4 ≤ T , such that

(a) Optimal demand d∗(t) ≤ K and increases on (0, tC1 ), d∗(t) is unimodal on (tC1 , tC2 ),

d∗(t) = K on (tC2 , tC3 ), d∗(t) is unimodal on (tC3 , tC4 ), and d∗(t) ≤ K and decreases on

(tC4 , T ).

(b) Optimal price π∗(t) is unimodal on (0, tC3 ), (tC3 , tC4 ), and (tC4 , T ).

(c) Optimal production x∗(t) = d∗(t) on (0, tC1 ) ∪ (tC4 , T ), and x∗(t) = K on (tC1 , tC4 ).

Inventory I(t) > 0 and is unimodal on (tC1 , tC2 ).

(d) Optimal sales s∗(t) = d∗(t) on (0, tC3 ) ∪ (tC4 , T ), and s∗(t) = K on (tC3 , tC4 ). Backlog

W (t) > 0 on (tC3 , tC4 ).

In the special case where the product is made to order (holding cost h = +∞), then

tC1 = tC2 and the optimal demand trajectory is unimodal over time on [0, T ], and the
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optimal price is bimodal.
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The option of backorders, either partial or full, complicates the firm’s pricing

strategies. A typical situation is shown in Figures 2.4 and 2.5, where the selling season

includes a positive inventory period and a positive backorder period. Parameters used

are m = 3000, p = 0.03, q = 0.4, c = 70, α = 0.05, β = 0.9, h = 0.01, w = 0.01, T = 50,

where β is the discrete discount factor corresponding to r in continuous time. During

the positive inventory period, the firm first produces at full capacity to build up

some inventory while capacity is sufficient, and then sell more than capacity using

the inventory prepared. After inventory is depleted, the firm may sell at capacity

level for a while. And then, when the firm anticipates that the capacity-constrained

phase will end in the near future, it may decide to sell more than it can offer (from

inventory or from production) and hold some of the excess demand as backorders.

Theorem 3 indicates that a tri-modal price may be a possibility while Figure

2.5 shows an example with a bimodal price. (We have actually not succeeded in

creating a numerical example with a tri-modal pricing structure). However, in the

marketing literature and in fact in practice, it is not that easy to see products that

36



had a trimodal or even a bimodal pricing structure during their life cycle. As we

stated in the introduction, the most commonly encountered pricing structures are

skimming pricing where the prices only decrease over time and penetration pricing

which essentially is unimodal. In fact, our numerical results in the next section

indicate that penetration pricing is very close to optimal when used in conjunction

with optimal inventory and production policies,

2.6 Numerical Study

In the last section, we have characterized the optimal demand, price, inventory and

backorder trajectories under different situations. Although the firm can use price,

preparing inventory, or allowing backorders to hedge against capacity shortage, it is

not clear how effective these tools are. We conduct numerical study to compare the

benefit of these tools.

We have shown that the optimal price trajectory has a complicated bimodal (or

potentially tri-modal) structure. The interesting question is how much benefit the

firm has gained from using this complicated structure as opposed to simpler struc-

tures, which we also investigate in this section.

Similar to Kumar and Swaminathan (2003), we solve the discrete-time version of

the continuous-time model. For all results presented in this section, unless otherwise

stated, we use the following parameters: m = 3000, p = 0.03, q = 0.4, c = 0.5,

r = 0.1, h = 0.01, b = 0.005, ξ = 1, and T = 50 periods.

• Value of pricing flexibility.

Pricing flexibility acts as a lever to hedge against capacity shortage. We define
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the value of pricing flexibility as

Optimal profit with dynamic pricing− Profit with the optimal fixed price

Profit with the optimal fixed price
×100%

Figure 2.6 shows that, as capacity increases, the value of pricing flexibility first

increases and then decreases and, thus, it is most beneficial when the firm’s

capacity is in the intermediate range. Intuitively, if the firm has sufficient

capacity, demand is seldom constrained and thus price, while actively used, has

moderate variation, driven solely by revenue maximization. When the firm has

low capacity, demand is always constrained, so use of price is very important,

but it is used solely to shape demand to fit available capacity and, therefore,

price does not vary dramatically. In-between, both of these reasons exist and

the seller more actively accelerates and decelerates demand to maximize revenue

and take advantage of slack capacity in the beginning and the end of product

life cycle, while constraining the sales in the middle of product life cycle.
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Figure 2.6 also shows that the value of pricing flexibility increases in the imi-

tation factor q. As the customers are more easily influenced by other people’s

purchases, a low promotion price can create a significant word-of-mouth effect

38



and thus is more helpful.

• Value of holding inventory. Figure 2.7 shows the value of holding inventory,

which is defined similarly, as the percentage profit increase from make-to-order

environment to make-to-stock environment. Similar to the value of pricing

flexibility, the value of holding inventory is also highest for intermediate range of

capacity. However, compared to value of pricing flexibility (20%-50%), value of

holding inventory is very small (0-0.2%), which implies that carrying inventory

does not help much when price adjustments are a viable tool, even for a firm

with potential capacity constraints.

• Value of allowing backorders.
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Figure 2.8 illustrates the value of allowing backorders, defined as the percentage

profit increase when backlogging is allowed as compared to the complete lost

sales case. The value of allowing backorders is typically larger than that of

holding inventory, and it decreases in capacity. Clearly, when capacity is large,

backorders/lostsale do not occur very often. When capacity is small, it may,

however, be significant, as shown in Figure 2.8. Similarly, it is higher for bigger

imitation factors, q.
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• Comparison of the optimal pricing strategy with simple pricing strategies

Although the marketing literature has suggested that the optimal price should

have either a skimming or a penetration structure, they have assumed that the

firm has infinite capacity. We have shown that when the firm has capacity

constraints, the optimal pricing strategies may have a complicated structure.

However, implementing such a complicated dynamic pricing structure may be

difficult and explaining it to customers may be even harder. Therefore, we com-

pare the optimal pricing strategy with the simple pricing strategies suggested

in the marketing literature (when those simple policies are used in conjunction

with optimal production/inventory policies) and examine the profit implica-

tions.

We define a skimming pricing strategy as the price decreasing over time, and

a penetration pricing strategy as the price increasing and then decreasing over

time, thus the penetration pricing trajectory is unimodal. We define the opti-

mality gap for skimming price as:

Profit with the optimal price− Profit with the optimal skimming price

Profit with the optimal skimming price
.

Similarly, we define the optimality gap for penetration price as:

Profit with the optimal price− Profit with the optimal penetration price

Profit with the optimal penetration price
.

Figures 2.9 and 2.10 show the optimality gaps for skimming and penetration

price policies, respectively. The parameters used are m = 3000, p = 0.03, q =

0.3, c = 0.05, r = 0.1, h = 0, b = 0.01, ξ = 1, T = 50. We can see that for
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some parameters, skimming pricing strategy still does not perform very well,

and the profit difference can be 10% to 30%, although the profit difference is

smaller when the firm also has other levers such as holding inventory and al-

lowing backorders. On the other hand, the penetration strategy performs very

close to the optimal strategy. This is very encouraging since we have shown

that even though the optimal price trajectory may have multiple modes, the

simple unimodal strategy, suggested in marketing literature without capacity

constraints, actually works well in the situation of capacity constraints. There-

fore, managers can avoid the frustration of using a complicated pricing policy as

long as they focus on coordinating optimal production/inventory policies with

the right penetration pricing.

0.00%

0.02%

0.04%

0.06%

0.08%

0.10%

0.12%

50 60 70 80 90 100 110

K

Figure 2.10. Optimality gap of penetration pricing strategies

2.7 Conclusions

In this work, we analyzed a capacity-constrained firm introducing a new product

and making decisions about how to price and manufacture the product for the most

profitable diffusion of the product into the marketplace. Our model generalizes Kumar

and Swaminathan (2003) and Ho et al. (2002) by incorporating price decisions. As
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multiple decisions about production, sales, and pricing interact with each other, we

examined these interactions in several situations, starting from the simplest ones, to

eventually include complete lost sales and partial backlogging, and make-to-order and

make-to-stock environments.

While marketing literature had considered pricing decisions, it had typically ig-

nored capacity constraints. Our first contribution was to derive the structure of

integrated pricing, production and inventory policies under capacity constraints. We

demonstrated that the presence of supply constraints may result in fairly complex

optimal pricing strategies as well as production/inventory policies. Thus, the pene-

tration and skimming pricing policies suggested in marketing are no longer optimal.

While the operations literature had considered capacity, it had ignored pricing.

Compared to Kumar and Swaminathan (2003), our results suggest that pricing flex-

ibility is a very effective lever to use when facing capacity constraints. Moreover,

when dynamic pricing is used, intentionally holding sales is not necessarily optimal

any longer, as pricing flexibility allows the firm to delay diffusion process without

losing any profits.

We examined the benefit of pricing flexibility and found that it is most effective

when the firm has intermediate range of capacity, and when imitation effects are

high. Finally, we showed that a penetration pricing policy, while no longer optimal,

does perform very well when used in conjunction with optimal production/inventory

policies.
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CHAPTER 3

Optimal Production and Ordering Policies with

Random Yield Production and Queueing

3.1 Introduction

In this paper, we address a problem commonly encountered in the pharmaceutical

industry. Pharmaceutical firms manufacture a batch of drugs for testing purposes

in job-shop like environments called kilo labs or pilot plants. Since most compounds

are found to be toxic or ineffective in initial trials, they are manufactured only once.

Furthermore, in this initial manufacturing process, yields tend to be fairly low and

variable. The chemicals required to make the active ingredients in the drug are often

extremely expensive (it is common for them to cost many times the cost of gold).

Since yields are random, the firm procures more chemicals and starts a larger

batch than the amount that will be needed in the trials. The major tradeoff that is

faced is as follows: If the firm starts a much larger quantity than needed, it will have

wasted a lot of expensive chemicals; on the other hand if the yield turns out to be

too low to yield a quantity sufficient for the animal and/or clinical trials, then the

trial has to be postponed until the firm can produce a second (or third etc.) batch

until the required amount is obtained. Delaying animal and clinical trials is very
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expensive1. Thus, the firm faces a problem of determining the optimal batch size for

the particular phase of clinical or animal trials.

The arrival of a batch of a new compound request to the kilo lab is a random

process as it depends on when the researchers (and the firm management) feel that

the compound is promising enough to merit a test. Thus, the kilo lab may face a

situation where it receives a large number of requests in a given month. Given this

variability in the arrival process and the resulting delays, it is clear that the batch

size should depend on the number of batches waiting to be manufactured. Taking a

risk, which results in having to produce a second batch, is much more expensive if

there are many batches (and therefore many trials) being delayed. Our experience

with the industry however is that it is common for pharmaceutical firms to use fairly

simplistic policies for determining batch sizes. Common policies inflate the amount

needed for the clinical trial by dividing the amount needed for the clinical/animal

trial by the average or minimum percentage yield the researchers observed in their

labs. Apart from the fact that the yields obtained in the researchers’ labs may not be

perfectly representative of the yields obtained in the pilot plants, the main problem

with the simplistic models is that they do not take into account the costs of delays or

materials or the number of compounds waiting to be manufactured (i.e., how loaded

the plant is). We therefore model this problem to obtain an understanding of optimal

batch sizes and their dependence on these factors.

1Some firms do not postpone clinical trials but schedule them far enough that even with very
long production lead times the trial can still start on time. Of course, this kind of delay also has
significant costs as delaying clinical trials in this manner still delays the time when the product can
be introduced to the market, potentially costing millions of dollars
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Versions of the problem that we address have been recognized in the literature

and “Multiple Lot sizing in Production to Order system with rigid demand” (MLPO).

Most of the studies assume a known probability distribution of the yield, given the

input lot size, and a setup cost for each production run. For every production run,

lot size is determined to minimize the total material and setup costs. Most of the

pharmaceutical production processes yield random outputs and have rigid demand

and are MLPO processes. The demand is often rigid because failing to provide suffi-

cient volume of drugs will delay the trials. However, the pharmaceutical production

process is characterized by some properties not studied before. First, the effect of

limited capacity combined with rigid demand, which often results in queueing, has

not been studied in the literature. In practice, capacity is often scarce since the

facilities to make these batches are expensive and even the largest pharmaceutical

companies such as Pfizer or Merck have only a few kilo labs where they can make

such batches. Clearly more capacity is needed if smaller batch sizes are used as more

production runs are needed. When there are a lot of batches waiting to be manu-

factured, smaller batch sizes can result in queueing and long delays. The existing

literature only provides solutions to the MLPO problem for a single customer, while

ignoring the externality effect of serving one customer on the other waiting orders.

In fact, the lack of kilo lab capacity in the large pharmaceutical companies has led

to the existence of contract manufacturers that manufacture batches for all pharma-

ceutical firms on demand. A common decision that the firms have to make is when

to outsource a particular batch to the contract manufacturer because the kilo lab is
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already too overloaded. We also model this decision which has not been addressed in

these problems.

The rest of this paper is organized as follows. In Section 2, we provide a literature

review. Section 3 first provides a basic model with only production decisions and as-

suming infinite raw materials, thus focusing on the tradeoff between material expense

and delay expense. We show the existence and the structure of the optimal policy and

also provide managerial insights on the factors that affect the batch size. We conduct

a numerical study to compare the optimal policy with heuristic policies commonly

used in the pharmaceutical industry. We then extend the model to the case where

the firm also has the option to outsource a batch to a contract manufacturer or run

overtime productions. Finally, we summarize our work in Section 4.

3.2 Literature Review

Our research is related to two streams of literature: queueing control models and

MLPO random yield models, and is the first one that belongs to both streams, while

having differences with previous work in both fields.

The first stream of relevant research is traditional queueing control. A typical

problem in this literature is that a machine can be operated at different rates with

different costs, and waiting orders or materials incur inventory holding costs. In some

cases a switching cost is also charged when the production rate changes. The objective

is to find an optimal policy to control the production rate, based on the length of

the queue. For detailed review of related work see Grabill, Gross and Magazine

(1977). Our model essentially controls the production rate by changing lot sizes, but
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it differs from previous work as the production rate is not completely controllable.

Even though lot size is used to control the rate, the number of production runs to

complete the service remains uncertain in our setting.

The second stream of research, random yield problems, has received considerable

amount of attention since the 1980s. An extensive review of literature on random yield

production was provided by Yano and Lee (1995). They summarize various models of

production policies with the objective of minimizing costs, which often include setup

costs, salvage costs, inventory holding costs, and backlogging or lost sale penalty costs,

etc. Some papers study rigid demand problems, while others assume that production

takes place only once or a fixed number of times for each customer. For example,

Shih (1980) generalizes the EOQ model and Henig and Gerchak (1990) generalize

the newsvendor model to include yield uncertainty, which was further generalized

to a variation of DP models for multi-period problem by Moinzadeh (1987). The

optimal production policies with random yield have a critical order point below which

it is optimal to order, but the order-up-to level is not constant. A review of the

subgroup of random yield models, the MLPO models, is provided by Grosfeld-Nir

and Gerchak (2004). In the basic model they assume that multiple production runs

have to be completed in order to fulfill the entire order of a single customer. Each

production attempt is costly for the firm, due to equipment setup costs and labor

cost, etc. While it may be natural to increase production output, reduce the number

of repeated attempts, and order a larger amount of materials. However, this may

result in unnecessary production. The key question in the related research is the
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tradeoff between batch size (and the potential of overproduction) and the number of

production runs.

One of the earliest papers on MLPO is Beja (1997), where a single stage MLPO

with binomial yield is analyzed. He proves intuitive properties of the optimal produc-

tion policy, such as the monotonicity of lot size in demand. Later research has focused

mostly on generalizing this model to more general yield distributions, including both

discrete and continuous ones. Typical discrete yield distributions are Binomial (Beja

(1997), Interrupted Geometric (Porteus (1990) and (1986)), Uniform (Anily (1993)),

and All-or-Nothing (Grosfeld-Nir and Gerchak (2004)). For continuous yield distri-

bution, on the other hand, the optimal lot size cannot be computed recursively and

thus has received less attention. To the best of our knowledge, the only MLPO model

with continuous distribution is by Grosfeld-Nir and Gerchak (1990). They assume

a power distribution and provide closed-form solutions for special cases with power

parameters k = 1 and 2. Our model assumes a more general yield distribution.

Our model also generalizes the previous models to include continuous yield distri-

butions and, at the same time, incorporate queueing effects. These effects have not

been studied before in the MLPO literature, and the optimal solution to the tradeoff

between the material cost and delay cost remains unclear in systems with random

yield, rigid demand, and order queueing.

Almost all of the MLPO papers focus on material cost savings, but ignore the

effect of multiple production runs on customer delays. Most papers assume single-

demand problems, in which only one customer requires to be served. Orders’ waiting
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time, however, is often an important performance measure and is associated with

costs in a make-to-order environment. Reduction in the number of production runs

not only shortens the waiting time for the customer being served, but creates an

external effect of reducing all other orders’ waiting time.

There exist some random yield models with multiple orders, but with the re-

strictive assumption of only limited number of production runs. Most models include

assumptions of one production run per period, linear holding and shortage costs, com-

plete backlogging and, with one exception, zero lead times (Yano and Lee (1995)).

None of them studies rigid demand in make-to-order system.

We next present our basic model that looks at the tradeoff between material costs

and order delay costs.

3.3 Basic Model

We study a make-to-order production system with a single server. Orders arrive

according to a Poisson process with rate λ, each of whom demands D̄. Products are

unique to orders, therefore the product is made to order. Orders are served FCFS,

and only one customer can be served at one time. We assume that orders wait until

getting the entire demand. Any excessive production has to be discarded and cannot

be used in the future.

The production process yields random output. While most of the continuous

yield literature is restricted to stochastically proportional yield, meaning the portion

of production output to input follows a common distribution, we allow a more gen-

eral distribution. We also allow yield distribution to be non-stationary. The yield
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distribution is often improved from one trial to another. This is because the firm’s

chemists learn about the root cause of yield loss, and use this information in con-

secutive runs. Given lot size Q and the production run number i of a particular

order, we define Y to be the amount of product obtained, with cdf F (i, Q, y) and pdf

f(i, Q, y) =
∂F (i, Q, y)

∂y
. Grosfeld-Nir and Gerchak (1990) assume the yield propor-

tion has a support [0, 1], while we assume the support of F is [a, b], 0 ≤ a ≤ b ≤ 1.

Although this does not change the analytical results, we feel it is more realistic

for pharmaceutical production processes where the yield rate has a minimum lower

bound. If the products obtained from one production run is not sufficient, another

production run is restarted, and the process continues until sufficient products are

obtained. We assume F and f are twice continuous differentiable.

The time for each production run is a random variable T , and is assumed i.i.d with

cdf G(.), pdf g(.) and mean
1

µ
. This is consistent with the pharmaceutical production

processes, where the production time is often determined by the chemical reaction

time in the reactor. G, g and µ are the independent of lot size Q. We assume λ < µ

for system stability.

The costs we consider include linear material cost cM per unit material used, linear

customer waiting cost cW per unit time per order, and resource cost cR per unit time

for the resources (e.g., machine, labor, etc.) used to make the products. Setup cost

for each production run is ignored, but it can be easily included without changing

the results significantly.

A batch size Q needs to be determined before starting each production run. If Q
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is too large, one or two production runs may be able to provide sufficient products,

and this accelerates service speed at the cost of large material waste. On the other

hand, if Q is too small, the desired amount can be obtained with less material waste,

but this may cause a long queue of waiting orders. So the objective is to find the

optimal production lot size Q∗ that minimizes the expected long-run average cost.

Intuitively, lot size decisions are influenced by demand and how heavily the system

is loaded. So we define the state variables as:

(i,D, N) = (production run number of the first order, remaining demand of the

first order, number of orders in the system). (i,D, N) ∈ N × [0, D̄]× Z+.

We further restrict the decision space. Since any Q ≥ D

a
will produce enough

quantity to meet demand, without loss of generality we can restrict attention to

Q ≤ D

a
. Furthermore, we assume Q ≥ D

b
so that there is positive probability to

obtain more than demand with one production run. When b = 1 this is consistent with

the assumption Q ≥ D in Grosfeld-Nir and Gerchak (1990). One can create possible

instances where Q > D may not be optimal when the delay costs are trivially small,

but in practice the delay costs are significant enough that one would never produce

a quantity less than demand. In fact we believe that this assumption is even more

reasonable in our setting compared to settings where delay costs were not considered.

So the decision space is Ω(D) =
[
D

b
,
D

a

]
, if a = 0, then Ω(D) =

[
D

b
, +∞

)
.

We determine lot sizes for each production run in order to minimize total material

and waiting costs. Let Γ(T ) be the number of production runs started until time T ,

and 1N(t) be an indicator function, then the objective is to minimize the expected
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average cost:

g = min
Qj∈Ω(Dj)

lim
T→∞

1

T
E




Γ(T )∑

j=1

cMQj +
∫ T

0
cW Nt + cR1N(t)dt




The problem can be formulated as a Markov Decision Process. Decisions are made

after each production run or when a customer arrives in an empty system. If there

are N orders in the system, the first order requires D more units to complete the

order, and it is the ith production run for the first order, then after one production

run, if the yield Y is greater than D, the new state is (1, D̄, N + N ′ − 1), where N ′

is the number of orders that arrived during the production process. If the yield Y is

smaller than D, then the new state is (i + 1, D− Y, N + N ′). The distribution of N ′

is Prob (N ′ = n) = ET Prob (N ′ = n|T ) =
∫∞
0

(λs)ne−λs

n!
dG(s).

For each production run, the associated costs are material cost, waiting cost of

the orders in the queue, and waiting cost of the orders who just arrived during this

production run. Material cost is straightforward and defined to be cMQ; the expected

waiting cost of orders in the queue during the production run is W = cW /µ per

order; and the expected waiting cost of the new arrivals Wnew can be computed

in the following way: Given production time T , the expected number of arrivals is

λ ∗ T . Since the arrivals follow a Poisson process, these arrivals are i.i.d uniformly

distributed on [0, T ], thus the expected waiting time for each order is T/2. Therefore

the expected total waiting time of new arrivals is Wnew = cW λ ∗E(T 2/2). Note that

both W and Wnew are independent of i,D,N and Q.
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We can write the optimality equations as the following:

V (i,D, 0) + g ∗ 1/λ = V (1, D̄, 1); (3.1)

V (i,D, N) + g ∗ 1/µ = min
Q∈Ω(D)

{N ∗W + Wnew + cR/µ + cMQ + (3.2)

∞∑

N ′=0

Prob(N ′)
[
F̄ (i, Q, D)V (1, D̄, N + N ′ − 1) (3.3)

+
∫ D

aQ
V (i + 1, D − y,N + N ′)dF (i, Q, y)

]
}, (3.4)

for all i ∈ N, D ∈ (0, D̄], N ≥ 1.

We also define V (i, 0, N) = limD→0+ V (i,D, N).

The three terms in (3.2) include the waiting costs for orders already in queue,

the waiting costs of new arrivals, and the material costs. (3.3) is the cost-to-go when

yield is large enough to satisfy the current order after this production run. Finally,

(3.4) is the cost-to-go when yield from this production run is not enough to satisfy

the current order.

We show that a unique optimal production policy exists and also provide the

structure. We define a cost difference function H(i,D,N) = V (i,D, N)−V (1, D̄, N−

1) for all i ∈ N, D ∈ [0, D̄], N ≥ 1. For N ≥ 1, we can rearrange the terms and use

only H(i,D,N) functions with N ≥ 1 in the optimality equations.

V (i,D, N)− V (1, D̄, N − 1) + g/µ = min
Q∈Ω(D)

{N ∗W + Wnew + cR/µ

+cMQ +
∞∑

N ′=0

Prob(N ′)F̄ (i, Q, D)V (1, D̄, N + N ′ − 1) +

∞∑

N ′=0

Prob(N ′)
∫ D

aQ
V (i + 1, D − y,N + N ′)dF (i, Q, y)− V (1, D̄, N − 1)}(3.5)
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= min
Q∈Ω(D)

{N ∗W + Wnew + cR/µ + cMQ

+
∞∑

N ′=0

Prob(N ′)(1−
∫ D

aQ
dF (i, Q, y))V (1, D̄, N + N ′ − 1)

+
∞∑

N ′=0

Prob(N ′)
∫ D

aQ
V (i + 1, D − y, N + N ′)dF (i, Q, y)

−
∞∑

N ′=0

Prob(N ′)V (1, D̄, N − 1)} (3.6)

= min
Q∈Ω(D)

{N ∗W + Wnew + cR/µ + cMQ +

∞∑

N ′=0

Prob(N ′)
[
V (1, D̄, N + N ′ − 1)− V (1, D̄, N − 1))

]

+
∞∑

N ′=0

Prob(N ′)
∫ D

aQ
(V (i + 1, D − y, N + N ′)

−V (1, D̄, N + N ′ − 1)
)
dF (i, Q, y)}

= min
Q∈Ω(D)

{N ∗W + Wnew + cR/µ + cMQ

+
∞∑

N ′=0

Prob(N ′)((V (1, D̄, N + N ′ − 1)− V (1, D̄, N + N ′ − 2)

+(V (1, D̄, N + N ′ − 2)− V (1, D̄, N + N ′ − 3))

+.... + (V (1, D̄, N)− V (D̄, N − 1)))

+
∞∑

N ′=0

Prob(N ′)
∫ D

aQ
(V (i + 1, D − y,N + N ′)

−V (1, D̄, N + N ′ − 1))dF (i, Q, y)}. (3.7)

Replace V (i,D, N)− V (1, D̄, N − 1) by H(i,D, N) , then

H(i,D,N) + g/µ = N ∗W + Wnew + cR/µ +
∞∑

N ′=0

Prob(N ′)
N+N ′−1∑

j=N

H(1, D̄, j)

+ min
Q∈Ω(D)

{cMQ +
∞∑

N ′=0

Prob(N ′)

∫ D

aQ
H(i + 1, D − y,N + N ′)dF (i, Q, y)}. (3.8)

(3.9)
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Notice that the first three terms in (3.8) do not depend on Q while the last two terms

do depend on Q.

3.3.1 Optimal Lot Size Decisions

Intuitively, we expect a larger lot size if more people are waiting or if the quantity

needed to satisfy the first order increases. Theorem 4 provides conditions under which

a unique optimal policy exists and increases in both demand and queue length.

Theorem 4 There exists a unique optimal policy Q∗(i,D,N) increasing with D and

N for each i, if for each i (a) F (i, Q, y) is decreasing and convex in Q, and (b)

F (i, Q, y) is submodular in (Q, y).

Proof: All proofs are presented in appendices.

It is easy to find yield distributions that satisfy conditions in Theorem 4. For ex-

ample, consider stochastically proportional yield distributions, where the yield rate is

independent of lot size, i.e., Y/Q follows the same distribution for any Q. In mathe-

matical terms, if there exists some probability distribution P (x), such that F (i, Q, y)

can be written as Pi

(
y

Q

)
for any i, Q, then F is a stochastically proportional yield

distribution.
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For a stochastically proportional yield distribution, F (i, Q, y) = Pi

(
y

Q

)
, then

condition (a) and (b) in Theorem 4 become:

F ′
Q(i, Q, y) = P ′

i

(
y

Q

) −y

Q2
≤ 0; (3.10)

F ′′
Q(i, Q, y) = P ′

i

(
y

Q

)
2y

Q3
+ P ′′

i

(
y

Q

) (−y

Q2

)2

=
y

Q3

(
2P ′

i

(
y

Q

)
+ P ′′

i

(
y

Q

)
y

Q

)
≥ 0;

(3.11)

F ′′
Qy(i, Q, y) = P ′

i

(
y

Q

) −1

Q2
+ P ′′

i

(
y

Q

) −y

Q2

1

Q
=
−1

Q2

(
P ′

i

(
y

Q

)
+ P ′′

i

(
y

Q

)
y

Q

)
≤ 0.

(3.12)

Therefore for a stochastically proportional yield distribution, if P ′
i (x)+xP ′′

i (x) ≥ 0

for any x ∈ [a, b] and i, i.e., if xP ′
i (x) is increasing in x, then condition (a) and (b) in

Theorem 4 are satisfied.

The condition that xP ′
i (x) is increasing is satisfied by any stochastically pro-

portional yield distributions with increasing densities, such as power distributions

with pdf P (x) = xr, x ∈ [0, 1], r ≥ 1, scaled power distributions with pdf P (x) =
(

x− a

1− a

)r

, x ∈ [a, 1], r ≥ 1, and exponential pdf P (x) =
ex − 1

e− 1
, x ∈ [0, 1]. xP ′

i (x)

is also increasing for some stochastically proportional yield distributions with non-

monotone densities, such as the incomplete triangular distribution

P ′
i (x) =





3x, x ∈
[
0,

1

2

]
;

2− x, x ∈
[
1

2
, 1

]
,

as well as some with decreasing densities, such as

P ′
i (x) =

5

4
− 1

2
x, x ∈ [0, 1].
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If yield rate Y/Q is dependent on Q, we can also find distributions that satisfy

condition (a) and (b) in Theorem 4. An example is

F (i, Q, y) =





y

Q
, for Q ≤ 1, 0 ≤ y ≤ Q;

(
y

Q

)Q

, for Q > 1, 0 ≤ y ≤ Q.

We are interested in the relative inflation rate, which is the ratio of optimal lot size

over demand, Q∗/D. If yield follows stochastically proportional power distribution,

we show that although the optimal lot size increases in demand, the inflation rate

decreases in D. With smaller demand, a relatively large lot can be used to accelerate

service, since the cost of wasting material is small. When demand grows larger, it

may be better to try several production runs with lot sizes close to demand, to reduce

the risk of poor yield. The result is summarized in Theorem 5.

Theorem 5 If the yield distribution is a stochastically proportional power distribu-

tion, i.e., if for any i, Q, F (i, Q, y) = (
y

Q
)ri , for some ri ≥ 1, then the optimal

inflation rate Q∗(i,D, N)/D decreases in D.

We also show that the optimal lot size monotonically increases in the unit waiting

cost, the arrival rate, and the production time.

Theorem 6 When a = 0, the optimal production quantity Q∗ increases 1) if material

cost cM decreases, 2) if waiting cost cw increases, 3) if λ increases, 4) if the production

time T stochastically increases, or 5) if yield Y stochastically decreases and F ′
Q(i, Q, y)

also decreases.

Theorem 6 shows that the behavior of the optimal lot sizes is intuitive. Higher

material costs result in lower production quantities (i.e., potentially more runs), be-
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Figure 3.1. Cost difference of heuristic policies
and optimal policy with different material costs.
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Figure 3.2. Cost difference of heuristic policies
and optimal policy with different service rates.

cause the firm does not want to waste valuable material. Higher delay costs have the

opposite effect. More demand or slower production completion also result in larger

batch sizes.

We have proved the policy structures for the optimal dynamic lot sizing decisions.

In reality, firms often use some simple strategies to control lot sizes. A common

strategy is to use the same inflation rate for any demand or queue length. We conduct

a numerical study to compare the profits under these strategies with the optimal

policy. We consider the following three policies: (a) The optimal policy, (b) fixed

inflation by minimum yield, i.e., Q = D/a, and (c) fixed inflation by average yield,

i.e., Q = D/EX.

For all the figures, we use λ = 1, a = 1, cW = 150, cR = 0, D̄ = 50. We use

µ = 4, r = 1, cM = 4 if these parameters are not changed in the graph. We set

a maximum queue length as 20, and use a step size 0.1. The program converges if

maxD,N V k+1((D, N)−V k(D,N))−minD,N(V k+1((D,N)−V k(D,N)) is smaller than

0.1.

We compare the costs resulting from these three policies. Figure 3.1, 3.2, and 3.3

show the cost difference of policy (b) and (c) as a percentage of the optimal average
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cost with different parameters.
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Figure 3.3. Cost difference of heuristic policies and optimal policy with different yield distributions.

Figure 3.1 shows the relative costs of the heuristic policies as the material cost

changes. Clearly, policy (b) performs better with smaller material cost. This is

intuitive since if material is cheap, a larger lot size can be used and thus Q = D/a

is closer to optimal. policy (c) performs in the opposite way. When material is more

expensive, policy (c) performs better. The other two graphs show a similar pattern

when the production rate changes or when yield distribution changes.

In summary, policy (b) is the most conservative policy, and it works the best

when material is cheap, when production is slow, or when yield is poor. Policy (c) is

an intermediate solution and it works better when material is more expensive, when

production is slower, or when yield is better. Both policies can perform significantly

badly compared to the optimal policy, with 25 − 50% higher costs easily observable

in many cases. This indicates that taking the externality of delays caused by the lot

sizing decisions into account has a large impact on costs.

3.3.2 Overtime or Subcontracting Decisions

In our setting, the firm has to rerun the production when any demand remains to be

satisfied. In reality, firms sometimes have an option to schedule excess capacity (in
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the form of overtime or subcontracting for capacity) to finish the current order with-

out delaying other orders. Overtime production often incurs higher resource costs,

therefore the firm needs to make a decision as to when to run overtime production.

Similarly, the use of subcontracting plants to outsource some of the active ingredient

production is fairly common in the pharmaceutical industry, but the subcontracting

plants may charge a higher price than using internal production. If the firm has the

option to subcontract, it also needs to make the optimal subcontracting decisions

depending on the remaining demand and system utilization.

As these two decisions share some common elements, we consider the two decisions

in the same section. In the overtime situation, we assume that after a production

run for a particular order with lot size Q, if the output is not sufficient to satisfy the

order, the firm may either decide to rerun the same product, or to start producing

the next order and schedule overtime for the current order without delaying other

orders. (This is fairly common in the companies we have worked with). We make

an assumption that the firm has infinite overtime capacity. The material cost for

overtime production is the same, while the resource cost is higher, cO > cR per unit

of time. During the overtime production, the firm also needs to make optimal lot

sizing decisions. Therefore, the subproblem during overtime production is equivalent
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to Grosfeld-Nir and Gerchak (1990).

V (i,D, N) + g/µ = min
Q∈Ω(D)

{
N ∗W + Wnew + cR/µ + cMQ +

∞∑

N ′=0

Prob(N ′)

[
F̄ (i, Q,D)V (1, D̄, N − 1 + N ′)

+
∫ D

aQ
min [V (i + 1, D − y,N + N ′),

CO(i + 1, D − y) + V (1, D̄, N + N ′ − 1)
]
dF (i, Q, y)

]}

CO(i,D) = min
Q∈Ω(D)

{
W + cO/µ + cMQ +

∫ D

aQ
CO(i + 1, D − y)dF (i, Q, y)

}

In the equations above, during the regular production, if the order is not satisfied

after a production run, the firm can choose to continue production for this order, or to

work on the next order and do overtime production for the current order. CO(i,D) is

the total production cost if overtime production is used for the ith trial of a particular

order and if the unsatisfied demand for that order is D. The overtime production

cost is similar to the regular production cost except that delay costs for other orders

are not incurred.

In the case of subcontracting, we assume that when the firm is producing for a

particular order, the firm may decide a lot size Q and start producing for this order,

or the firm may decide to switch to the next order, and subcontract this order to

a subcontractor. The subcontractor charges a price CS(D) which is assumed to be
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increasing in D. The optimality equations for N ≥ 1 then become:

V (i,D, N) + g/µ = min
Q∈Ω(D)

{
N ∗W + Wnew + cR/µ + cMQ +

∞∑

N ′=0

Prob(N ′)

[
F̄ (i, Q, D)V (1, D̄, N − 1 + N ′)

+
∫ D

aQ
min [V (i + 1, D − y,N + N ′),

CS(D − y) + V (1, D̄, N + N ′ − 1)
]
dF (i, Q, y)

]}

For both situations, we can apply similar techniques and define H(i,D, N) =

V (i,D, N)− V (1, D̄, N − 1). Then

H(i,D,N) + g/µ = min
Q∈Ω(D)

{
N ∗W + Wnew + cMQ +

∞∑

N ′=0

Prob(N ′)




N+N ′−1∑

n=N

H(1, D̄, n) +
∫ D

aQ
min[H(i + 1, D − y, N + N ′),

C(D − y)]dF (i, Q, y)]}

where C(D − y) = CO(i + 1, D − y) in the situation of overtime production, and

C(D − y) = CS(D − y) in the situation of subcontracting.

For both situations, we can show that there exists a threshold in queue length for

each remaining demand level, such that the firm starts to work on the next order if

and only if the current queue length exceeds that threshold. The idea is intuitive:

if the number of waiting orders exceeds a limit, which means the system is heavily

utilized and cost of delay is significant, the firm should consider overtime production

or subcontracting for the current order.

Theorem 7 If the conditions in Theorem 4 are satisfied, then there exists a unique

optimal lot size Q∗(D,N) increasing in D and N . After the production run if D̃ unit

of demand still needs to be satisfied for the current order, and if there are Ñ orders
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in total, then there exists an N̄(D̃), such that the firm runs overtime production (or

subcontracts production) if and only if the queue length Ñ ≥ N̄(D̃); otherwise the

firm starts a new regular production run for the current order.

Next we consider the threshold structure for the remaining demand. In the sit-

uation of subcontracting, if the subcontracting cost consists of a fixed cost AS and

a linear variable cost cS, and the yield follows stochastically proportional power dis-

tribution, we can show that the optimal policy has a threshold structure for the

remaining demand level depending on the fixed cost. If the fixed cost is relatively

small, then there is one threshold for the remaining demand below which the firm

would subcontract the production. If the remaining demand of the customer currently

in service is below the threshold, then it is not worthwhile to restart the production

run and make other orders wait, thus it is optimal to subcontract. Moreover, the

threshold level (the remaining quantity below which the firm subcontracts produc-

tion) is increasing in the queue length. However, if the fixed cost is relatively high,

then there two thresholds for the remaining demand level. If the remaining demand

is too low, the savings on subcontracting cannot offset the high fixed cost, thus it is

optimal to continue the production in house. If the remaining demand is at an inter-

mediate level, it is worthwhile to pay the fixed cost and subcontract the production,

in order to accelerate the production and save the delay cost on other orders. The

results are summarized in the following theorem.

Theorem 8 If the subcontracting cost is linear in the remaining demand, i.e., CS(D) =

AS +cSD, where AS is a constant, and if the yield is stochastically proportional power
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distribution, then for each N , there exists a constant Ā, such that

1. If the fixed cost AS ≤ Ā, then there exists a threshold D̄i(N), such that the firm

subcontracts production if and only if the remaining demand for the current order

D ≤ D̄∗
i (N), otherwise the firm starts a new regular production run for the current

order. Furthermore, the threshold D∗
i (N) is increasing in N .

2. If the fixed cost AS > Ā, then there exist two thresholds Di(N) ≤ D̄i(N), such that

the firm subcontracts production if and only if the remaining demand for the current

order Di(N) ≤ D ≤ D̄i(N). Furthermore, the threshold Di(N) decreases in N and

D̄i(N) increases in N .

In the situation of overtime production, the firm still makes optimal lot sizing

decisions during the overtime productions. Depending on the overtime cost, we can

show that the overtime decisions also have a threshold structure.

Theorem 9 Assume that the conditions in Theorem 4 are satisfied. For each queue

length N , there exist two thresholds ci(N) ≤ c̄i(N), such that

1. If the overtime resource cost cO ≤ ci(N), then the firm runs overtime production for

the current order for any remaining demand on the current lot.

2. If the overtime resource cost cO > c̄i(N), then the firm continues production for the

current order for any remaining demand on the current lot.

3. If the overtime resource cost ci(N) < cO ≤ c̄i(N), then there exists a threshold D̄

such that the firm runs overtime production if and only if the remaining demand on

the current lot D < D̄.

The theorem above describes the firm’s optimal overtime production policy. If the
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overtime resource cost is too high or too low, continue production or overtime produc-

tion dominates for any demand. If the overtime resource cost is in the intermediate

range, then the firm only does overtime production if the remaining demand is small

enough.

3.4 Summary

In this paper we study a lot-sizing problem in pharmaceutical industry with consider-

able yield losses, high material costs, high delay costs and limited capacity. We build

a dynamic programming model to show how the optimal lot sizes should be adjusted

based on the actual demand and queue length.

Our model builds a bridge between the classic queueing control models and MLPO

random yield models, and provides solutions under joint consideration. We also adopt

a more general yield distribution than the existing random yield literature. Our

optimality results indicate that the simple inflation rate policies currently used in

many pharmaceutical companies are very far from optimal. In certain situations the

cost can be significantly decreased if the lot sizes can be dynamically adjusted as in

the optimal policy.

Clearly, our model captures the two critical elements that should be taken into

account for lot-sizing decisions: material cost and delay cost. Other factors may

be interesting for further exploration. Future directions may include analysis of a

process with multiple production stages, heterogeneous demand with priority service,

learning effects that improve yield rate over time.
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CHAPTER 4

Make-or-Buy Decisions When Cost Reduction

Requires Minimum Production Quantity

4.1 Introduction

In recent years, increasingly many US companies seek lower production costs and

outsource all or a portion of their production to developing countries, such as Mexico

and Southeast Asia, mostly due to lower labor and material costs in these regions.

Thus, in a variety of industries where low cost plays an important role in gaining com-

petitive advantage, the potential for outsourcing has made the Make-or-Buy decision

extremely visible and strategically important.

When making outsourcing decisions, firms might, and often do, limit themselves

to the comparison of the current outsourcing and internal production costs, or in

case of more sophisticated firms, they may take into consideration likely trends in

the currency exchange rates and in labor rates per hour. In reality, however, costs

do not remain the same over time even if these global conditions are fairly stable.

Clearly, cost reductions are widely observed in various industries and sectors, such as

high-tech or sectors with new products and technologies. Myopic comparisons often

ignore the fact that various firms have different potentials to reduce costs, and that

manufacturers have no direct control over Supplier’s production cost or cost-reducing
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activities. In this paper, we model two elements related to cost reduction activities,

the first one being a minimum production quantity necessary for a firm to engage in

an active learning, and the second one being the costly effort necessary in order to

learn and reduce cost. In practice, these two elements are essential for allowing cost

reductions and, sometimes, they are referred to as “learning-by-doing”.

To model such a “learning-by-doing” environment, we consider a Manufacturer

selling a single product with fixed demand and fixed retail price in a two-period

model. Manufacturer can produce the product himself as well as outsource any

portion of production to a Supplier. Each of them can invest effort in cost-reducing

activities, but cost reduction can take effect only if production quantity exceeds a

certain minimum level. Based on wholesale price offered by supplier, manufacturer

decides whether to produce or to outsource. Clearly, the strategies of the supplier

and manufacturer as well as the optimal production and outsourcing quantities are

influenced by both starting production costs and learning abilities.

Outsourcing in practice means giving up some of the decision rights. Thus, a nat-

ural question is about the relative benefits of centralized versus decentralized solution,

In the considered “learning-by-doing” environment, owning a facility (a centralized

system) means that manufacturer can capture all benefits from cost reductions, as

opposed to two independent firms acting in their own interest. We compare the

decisions in these two ownership environments.

Our work is closely related to Gray et al (2007), who also study cost reduction

through learning-by-doing, in a two-period model. Our model differs from theirs in a
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few aspects, such as modeling research questions, and the resulting insights. First, our

model focuses on an settings with low price sensitivity and includes realistic features

of “’earning by doing” environment. Price and demand are fixed in our model as

opposed to price being a linear function of demand. We require that production has

to exceed a certain minimum quantity and that costly effort needs to be invested,

which are not considered in Greys et al. Instead of function of production, the learning

in our model is a function of effort (usually learning and cost reductions do not take

place automatically in practice). We also incorporate a realistic feature of uncertainty

in the cost-reducing effect. Some of the observations in Gray et al (2007) and in our

model are the same. For example, Manufacturer may choose to produce internally,

even if he is at a cost disadvantage, partial outsourcing is possible, and Supplier may

charge below-cost wholesale prices. It is easy, however, to see that without price

sensitivity, the many of the results described Greys et al would not anymore hold.

In terms of research questions, Gray et al (2007) focuses on the influence of power

structure between Manufacture and Supplier, while we concentrate on identifying

when and why outsourcing in general, and partial outsourcing specifically, is more

likely. In settings where Supplier is Stackelberg leader, we show that the results de-

pend on the cost difference of Manufacturer and Supplier and also on the learning

ability and minimum production quantity. Also, partial outsourcing is more likely

when the initial cost difference is relatively small, when Manufacturer’s learning is

more uncertain, and when the minimum production quantity required for Manufac-

turer to be able to learn is larger.
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Finally, some of our additional insights follow from a three-period model which

shows that Manufacturer can benefit from Supplier’s learning behavior and, conse-

quently, Manufacturer may consider investing some effort to subsidize the Supplier’s

cost of effort. However, sometimes this benefit disappears. If Supplier knows that

Manufacturer would be willing to help, Supplier will take advantage of it and charge

a higher wholesale price, forcing Manufacturer to inded subsidize his cost. In this

situation Manufacturer may end up worse off compared to not having this option.

The paper is organized as follows: Section 2 reviews the previous work on sub-

contracting problems; Section 3 describes the basic model and analyze the problem;

Section 4 extends the model to three periods and considers the option of effort sharing.

Section 5 summarizes the work.

4.2 Literature Review

The early research of outsourcing decisions considers only one decision maker and

outsourcing is used as a more expensive outside production option to be used when

internal production is not sufficient. Lee and Zipkin (1989) study the multi-period

inventory problem assuming reliable outsourcing capacity and a constant cost. They

characterize the structure of inventory policy and provide a DP algorithm to compute

the optimal solution. Atamturk and Hochbaum (2001) consider a problem of acquir-

ing a fixed capacity to meet non-stationary deterministic demand over a multi-period

horizon. Production and outsourcing decisions are made after capacity is acquired.

They construct a Linear Programming model and provide an algorithm to find the

optimal decisions.
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Later work takes supplier’s reaction into account and focuses on the contract

design and supply chain coordination between manufacturer and supplier. Kamien

and Li (1990) study a multi-period production planning problem and define feasible,

transaction-feasible, efficient, and dominant contracts. They show that coordination

contracts, which achieve social optimum, are always feasible and always dominate

other contracts. An example with quadratic production cost is used to demonstrate

that subcontracting is a useful tool for production smoothing. Van Mieghem (1999)

adds capacity investment cost to cost factors and studies four types of outsourcing

contracts. He shows that an incomplete contract, where production quantities are

jointly decided in order to maximize total profit, can coordinate production decisions,

but only state-dependent contract, where price or quantity is agreed up-front as a

function of capacities and demands, can coordinate both capacity and production

decisions.

In both of the above papers on contract design, costs and demands are exogenously

given. Plambeck and Taylor (2001) propose a model in which firms can use effort

to stimulate demands and also the firms can outsource their production to a joint

supplier. They show that when benefits of capacity pooling are significant and profits

are retained (or mostly retained), manufacturers may be better off by subcontracting

their production. Lewis and Sappington (1991) propose a model close to ours, where

costs can be reduced by technological improvements. Both technology and costly

effort can reduce production cost, while technology can also increase the efficiency

of effort and reduce the cost of the effort. They show that technology improvement
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leads to a more frequent use of internal production. However, both manufacturer

and society may be worse with more frequent technology changes. Their model is

a one-period game focusing primarily on the effect of asymmetric information. In

our paper, we have assumed that demand is exogenous and that production cost can

be reduced over time due to learning by doing. We are interested in understanding

how outsourcing decisions are made and how production and learning decisions are

related to the outsourcing option.

Another related question is often labeled as “make or buy” decision and a subset

of papers in operations and economics literature asks when it is in firms’ interest to

both make and buy. Kamien, Li, and Samet (1989) study the effect of adding subcon-

tracting option to Bertrand game. Because of strictly convex production costs, sub-

contracting is beneficial, as it allows for reallocating production and thus a decrease in

the marginal cost. Spiegel (1993) studies subcontracting within Cournot framework.

Costs include a convex upstream cost (manufacturing) and a linear downstream cost

(marketing and sale). Two types of subcontracting agreements are allowed: ex ante

agreements signed before the firms compete in the market, and ex post agreements

signed after competition takes place. He shows that subcontracting can allocate pro-

duction more efficiently under asymmetric costs. In both papers, concurrent sourcing

is due to the diseconomy of scale resulting from convex production costs. None of the

models above considers the interaction between production process and cost reduc-

tion. In our model firms can reduce costs with effort, but only if a certain production

requirement is satisfied. We show that in absence of the diseconomy of scale dual
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production can still appear.

We described the work by Greys et al in the previous section. Our results are

complementary in the sense that they apply in price insensitive environment, and

include the realistic features of cost of effort, minima over which learning may take

place, and uncertainty in the effects of effort. We also explain how the multi-period

behavior may differ from a stylized two-period setting. At the end of the paper, we

also consider the possibility for Manufacturer to share learning effort of Supplier. A

related work is Krishnan et al (2004), which considers the impact of effort sharing

between a manufacturer and a retailer, and compares different contract mechanisms.

Other research related to our work appears in corporate strategy framework.

Parmigiani (2002) claims that firms may choose concurrent sourcing if (a) no clear

price advantage exists for either internal or external suppliers; (b) quality monitoring

is difficult; (c) disputes are not likely; (d) both autonomous and coordinative incen-

tives exist. Our results confirm not only that (a) is a possible condition for dual

sourcing, but provide a model that explains potential reasons for this outcome.

4.3 Model

We consider a Manufacturer selling a single product in two periods (i = 1, 2). In

each period, prices are exogenously given as P1 and P2, and demand in Period i is a

random variable Qi with expectation Q̄i. Demand has to be satisfied in full.

Manufacturer is considering to outsource some production to a Supplier. Both

Manufacturer and Supplier’s production costs are linear. Without other consider-

ations, Manufacturer would outsource all production if Supplier quotes a wholesale
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price lower than Manufacturer’s cost. However, both firms have the ability of learning

and consequently reducing their production costs if they have the chance to conduct

sufficient amount of production. These cost-reducing activities also require some

costly effort, and the cost reduction takes place at the beginning of the next period.

Specifically, if firm I’s unit production cost in Period 1 is cI
1, then if firm I produces

qI
1 less than a certain minimum quantity qI

min, his cost stays the same in the next

period. If he produces more than qI
min, then he can invest effort εI , and his cost

will be reduced by gI(εI , δI) in the next period, where δI is a random disturbance.

Therefore,

cI
2 =





cI
1 if qI

1 < qI
min,

cI
1 − gI(εI , δI) else.

Let ḡI(ε) be the expectation of gI(ε, δ).

In each period i = 1, 2, events happen in the following sequence:

1. Supplier quotes linear wholesale price ωi.

2. Demand realizes, Manufacturer decides in-house production quantity qM
i and

outsourcing quantity qS
i , so that qM

i + qS
i = Qi.

3. Both Manufacturer and Supplier determine effort level εM
i and εS

i .

4. Production takes place, and costs are reduced at the beginning of the next

period if production quantities exceed minimum amount.

We make the following assumptions:

1. Pi ≥ cM
1 and Pi ≥ cS

1 , i = 1, 2. We assume that production makes nonnegative

profit at both firms in every period.

2. The two random disturbance δM and δS are independent.
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3. ḡM(ε) is concave in ε, so as Manufacturer invests more effort, the learning effect

diminishes.

4. Without loss of generality, we assume the unit monetary cost of effort is 1.

5. In each period, the realized demand is large enough for two firms to possibly

learn, i.e., Qi ≥ qM
min + qS

min for any realized Qi, i = 1, 2.

6. If Manufacturer is indifferent between producing q1 and q2 in house, he always

chooses to produce the smaller quantity.

The last assumption restricts the game outcome on one path. It is reasonable

since Supplier is the Stackleburg leader, he can always reduce wholesale price by a

tiny amount, then Manufacturer will choose to produce the smaller quantity.

Both firms maximize expected total profit for two periods,

πM = EQ1,Q2,δM ,δS

2∑

i=1

(Pi − cM
i )qM

i + (Pi − ωi)q
S
i − εM

1

πS = EQ1,Q2,δM ,δS

2∑

i=1

(Pi − cS
i )qS

i − εS
1

4.3.1 Centralized Problem

As a benchmark we first consider the case where a single firm owns both facilities M

and S, and considers the problem of allocating demand in each period in order to

maximize expected total profit. Then similarly we have the two-threshold properties

of quantity allocation:

Lemma 11 There exist two thresholds x1 ≤ 0 ≤ x2 such that the production quantity

at M is:

qM
1 = Q1 if cM

1 − cS
1 ≤ x1, qM

1 = Q1 − qS
min if x1 ≤ cM

1 − cS
1 ≤ 0, qM

1 = qM
min if

0 ≤ cM
1 − cS

1 ≤ x2, and qM
1 = 0 if x2 ≤ cM

1 − cS
1 .
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If both learning functions are deterministic, then one of the two thresholds x1

and x2 must be zero, since we know exactly which facility can have lower cost in the

second period and thus will not invest effort in the other facility.

4.3.2 Decentralized Game

Next we analyze the game equilibrium when Manufacturer and Supplier do not belong

to the same company. We analyze this game in a backward fashion. First we examine

the pricing and production strategies in the second period, given costs cM
2 and cS

2 .

Since no learning effects need to be considered in the second period, the results are

straightforward and are summarized in the following lemma.

Lemma 12 If the costs at the beginning of the second period are cM
2 and cS

2 , then

(a) If cM
2 ≥ cS

2 , then Supplier offers wholesale price ω2 = cM
2 and produces all qS

2 = Q2.

(b) If cM
2 < cS

2 , then Manufacturer produces all qM
2 = Q2.

(c) Manufacturer makes expected profit RM
2 = (P2− cM

2 )Q̄2, and Supplier makes expected

profit RS
2 = (cM

2 − cS
2 )+Q̄2, where x+ represents the positive part of x.

We observe that Manufacturer makes the same profit no matter where the pro-

duction takes place, and also no matter how cheaply Supplier can produce. This

indicates that in the first period Manufacturer does not have an incentive to let Sup-

plier improve his cost, on the other hand, he has a strong incentive to reduce his own

cost.

Supplier only makes positive profit if his cost is lower than Manufacturer’s. Fur-

thermore, the difference between Manufacturer’s cost and his own cost represents the

profit margin he is able to obtain. This implies that in the first period Supplier also
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has an incentive to reduce his own cost, but at the same time he would try to prevent

Manufacturer from improving.

We examine the effort investment after production and outsourcing decisions are

made in the first period. Apparently no effort is invested if the production quan-

tity is smaller than the minimum requirement. If it exceeds the minimum quantity,

then Manufacturer invests a certain level of effort εM e
regardless of initial costs and

Supplier’s improvement, while Supplier’s effort level is a function of initial costs cM
1

and cS
1 , and also depends on whether Manufacturer improves or not. The results are

summarized in the following lemma.

Lemma 13 Given wholesale price ω1 and quantity allocation qM
1 , qS

1 ,

(a) Manufacturer invests a unique effort εM e
if qM

1 ≥ qM
min, where εM e

= arg max(−ε +

ḡM(ε)Q̄2);

(b) Supplier invests effort εSe
if qS

1 ≥ qS
min, where

εSe
=





arg max{−εS + EδS(cM
1 − cS

1 + gS(εS, δS))+Q̄2} if qM
1 < qM

min,

arg max{−εS + EδM ,δS(cM
1 − cS

1 + gS(εS, δS)− gM(εM e
, δM))+Q̄2} else.

As an intermediate result, we find that no matter whether outsourcing or produc-

ing internally, Manufacturer always invests in the same level of effort. On the other

hand, Supplier will not invest in any learning effort if he expects that he is not going

to obtain any production in the second period. If Supplier will produce in the second

period, he will invest in some learning effort in the first period, the amount of which

depends on the quantity he will produce. The larger the outsourcing quantity in the

second period, the more effort Supplier invests in.
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Since Manufacturer does not benefit from Supplier’s learning, we find that Man-

ufacturer does not have an incentive to help Supplier learn. As we will notice later,

this conclusion is only suitable for short planning horizon (two periods in this case).

When the problem is extended into three periods, Manufacturer may be willing to

help Supplier learn from production.

We redefine some notations to simplify analysis below. Let GM(Q̄2) = −ε +

ḡM(ε)Q̄2, then GM is the extra profit Manufacturer gains from learning. Manufacturer

benefits more from learning if there is a larger market in the second period. Also let

RSe
= max

εS
{−εS + EδM ,δS(cM

1 − cS
1 + gS(εS, δS))+Q̄2}

RMSe
= max

εS
{−εS + EδM ,δS(cM

1 − cS
1 + gS(εS, δS)− gM(εM e

, δM))+Q̄2}

RM e
= EδM (cM

1 − cS
1 − gM(εM e

, δM))+Q̄2

Then RSe
, RMSe

, RM e
represent Supplier’s maximum second-period profit subtracted

by effort cost when (a) only Supplier can learn, (b) both firms can learn, and (c) only

Manufacturer can learn, respectively.

Lemma 14 Manufacturer produces more in house as wholesale price ω1 increases.

More specifically,

qM
1 =





0 if ω1 ≤ ω̄ = cM
1 − GM(Q̄2)

qM
min

,

qM
min if ω̄ < ω1 ≤ cM

1 ,

Q1 else.

Notice that other than full internal production (qM
1 = Q1) and full outsourcing

(qM
1 = 0), there is a situation when partial outsourcing (qM

1 = qM
min) takes place. The

lemma indicates that Manufacturer allocates production quantity according to the
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wholesale price Supplier offers. Using his own current production cost as a bench-

mark, if the wholesale price is higher than his cost, Manufacturer produces all the

demand internally. If the wholesale price is much lower than his own cost, Manu-

facturer outsources all the production. However, if the wholesale price is lower than

Manufacturer’s cost, but not significantly lower, Manufacturer chooses to outsource

most of the production, but still keep a minimum level of internal production, in order

to learn and reduce cost in the next period. This may happen no matter outsourcing

takes place or not in the next period, because Manufacturer’s profit only depends on

his own cost, so he always has an incentive to learn and reduce cost.

Knowing Manufacturer’s response to any wholesale price, Supplier chooses one

to maximize his own expected profit. We observe that ω̄ is independent of demand

in the first period Q1, therefore Manufacturer’s quantity allocation is independent of

demand realization. Since any wholesale price ω1 ∈ [0, ω̄] results in the same quantity

allocation and effort investment, and similarly for any ω1 ∈ (ω̄, cM
1 ], Supplier quotes

the highest wholesale price by which he can obtain a certain amount of production.

So Supplier considers three options and chooses the one with the highest expected

profit: (a) Offer deep discount ω1 = ω̄ and produce all demand qS
1 = Q1 for any

realized demand Q1; (b) Match Manufacturer’s cost ω1 = cM
1 and produce partial

demand qS
1 = Q1 − qM

min; and (c) Offer ω1 > cM
1 and produce nothing qS

1 = 0.

When considering these three options, Supplier makes tradeoff between price and

quantity, and also between current period profit and future gains. Myopically, a larger

quantity can only be obtained through a deep discount; For future considerations,
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Supplier benefits from large quantity in two ways: having enough production provides

Supplier the opportunity of learning, and having extremely large production prevents

Manufacturer from learning. The following table lists the pros and cons for each

option.

(a)qS
1 = Q1 (b) qS

1 = Q1 − qM
min (c) qS

1 = 0

Wholesale price in Period 1 Small Medium Large

Quantity in Period 1 Large Medium Zero

Wholesale price in Period 2 Large Small Small

Cost reduction in Period 2 Large Large Small

We show in the following theorem that the choice of Supplier is monotone in

initial cost difference. So if Supplier’s initial cost cS
1 is significantly lower than Man-

ufacturer’s, he will produce all, if Supplier’s initial cost is significantly higher than

Manufacturer’s, he will produce nothing and if their costs are close, he will produce

partial demand.

Theorem 10 There exists two thresholds x1 ≤ x2 such that




qM
1 = Q1, ω1 > cM

1 , if cM
1 − cS

1 < x1

qM
1 = qM

min, ω1 = cM
1 , if x1 ≤ cM

1 − cS
1 < x2

qM
1 = 0, ω1 = ω̄, else

Furthermore, x1 < 0, x2 ≥ 0 if the following condition holds:

Q̄1
GM(Q̄2)

qM
min

≥ max
εS

(−εS+ḡS(εS)Q̄2)−max
εS

(−εS+EδM ,δS(gS(εS, δS)−gM(εM e
, δM))+Q̄2)

x1 < 0 indicates that as long as Supplier has a lower cost, he will outsource at

least part of the production. This is intuitive since Manufacturer can still learn by

doing so, and also will not be hurt by Supplier’s learning.
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Figure 4.1. Supplier’s profits under three options.

x2 can be positive or negative, which implies that even if Supplier has a lower cost

than Manufacturer, sometimes he cannot produce full demand, because Manufacturer

always wants to reserve some production in house for the purpose of learning. This

happens when the condition in Theorem 10 holds.

Whether the condition holds depends on many factors. Specifically speaking, it

holds when (a) average demand in Period 1 is large enough, or (b) the minimum

requirement for Manufacturer qM
min is small enough, or (c) the extra profit Manufac-

turer gets from learning GM(Q̄2) is large enough, or (d) the optimal cost reduction

for Manufacturer gM(εM e
, δM) is small enough.

We make a couple of observations related to this outcome. First, if both firms

are symmetric, i.e., they have the same initial cost cM
1 = cS

1 , and the same learning

functions gM = gS, then Manufacturer always produces minimum quantity qM
min.

Secondly, if one firm produces everything in the first period, that firm will produce

everything in the second period, as well. The reason is that the other firm did not
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have the chance to learn, so the cost disadvantage remains there or becomes even

larger in the second period.

By comparing the centralized and decentralized problems, we found that in some

situations Manufacturer always produce more in the decentralized case. If we label

x2
d and x2

c as the thresholds for decentralized and centralized cases respectively, then

we have the following lemma.

Lemma 15 If gM > gS, then x2
d > x2

c.

Thus, if Manufacturer has a stronger learning ability, then Manufacturer is more

reluctant to outsource (even partially) in the decentralized case then in the centralized

case.

4.3.3 Effect of Parameter Changes

Effect of Variance: We also examine the effect of variance of learning on the outcome.

We find that both firms’ strategies only depend on the expectation of decrease in

cost, independent of variance.

For a given wholesale price, variance of Manufacturer’s cost-reducing function

gM(ε, δ) also does not influence Manufacturer’s quantity allocation and both firms’

effort decisions. Since Manufacturer’s second-period profit only depends on his own

cost, for a fixed wholesale price, only the expectation of future improvement matters,

thus the outsourcing and effort decisions remain the same.

However, the variance does have an impact on Supplier’s optimal wholesale price

decision, and thus on the final outcome. Supplier compares three options. For pro-

ducing 0 or Q1, the variance of gM does not influence Supplier’s expected profit.

81



However, for producing Q1 − qM
min, Supplier’s profit is larger if Manufacturer’s learn-

ing is more uncertain. This is because Supplier only makes positive profit in the

second period if his cost is lower than Manufacturer’s. With a larger variance of gM ,

there is a higher chance for this to happen. Therefore with a larger variance of

gM , x1 decreases, x2 increases, and Manufacturer is more likely to produce

minimum quantity qM
min.

Variance of Supplier’s cost-reducing function gs(ε, δ) has a similar but slightly

different effect. A larger variance also increases the probability that Supplier will

have a lower cost than Manufacturer in the second period, but this makes both

options of producing partially and producing everything at Supplier’s plant more

promising than before. In other words, As cost-reduction of Supplier becomes

more variable, x1 decreases, and outsourcing (at least partially) tends to

be more likely. Once the wholesale price is announced, it does not influence any

further decisions.

Profits change with costs: As shown in Figure 4.2, for a given cM
1 , Supplier’s profit is

a decreasing convex function of cS
1 . However, Manufacturer’s profit is not monotone

in cM
1 . When Manufacturer produces Q1 or qM

min, his profit is linearly decreasing in

his cost cM
1 , regardless of Supplier’s cost. Similarly, when Manufacturer outsources

all demand, his profit is again linearly decreasing in his cost and independent of

Supplier’s cost. However, if a tiny increase in Manufacturer’s cost or a tiny decrease

in Supplier’s cost happens, so that Manufacturer starts to outsource all rather than

produce some amount in house, then Manufacturer’s profit dramatically increases.
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The amount of increase in profit is ( Q̄1

qM
min

− 1)GM(Q̄2).

Supplier’s profit is influenced by Manufacturer’s initial cost. As cM
1 increases,

Supplier’s profit increases.

Manufacturer’s profit is only slightly influenced by Supplier’s initial cost. By

”slightly” we mean that as cS
1 increases, Manufacturer’s profit does not change

unless Manufacturer switches to outsource some production from produc-

ing everything internally, in which case Manufacturer’s profit drops.

 

C1
S 

RS 

C1
M 

RM 

C1
S+x2 

Figure 4.2. Manufacturer and Supplier’s profits change with costs.

Effect of demand in the first period Q1: We examine the effect of Q1 on x1 and x2

separately. x1 is the cost difference of Manufacturer and Supplier at which Supplier

is indifferent between producing 0 and Q1 − qM
min. With a larger demand in the

first period, Supplier still makes zero profit if he produces nothing, For the option

of producing partially, Supplier offers the same wholesale price ω1 = cM
1 , invests the

same level of effort, and makes the same profit in the second period, but produces

more in the first period. As we have known that x1 < 0, so at cM
1 − cS

1 = x1 Supplier

loses money by producing in period one. He loses more if he produces more in the first
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period. Therefore as the demand in the first period increases, x1 increases,

and it is more likely to produce everything in Manufacturer’s facility than

producing at both places.

x2 is the cost difference between Manufacturer and Supplier, at which Supplier

is indifferent between producing partially versus producing everything. Again, for a

fixed wholesale price, Q1 has no impact on the subsequent decisions. Q1 only changes

the amount of production in the first period. For Supplier, the profit margin of

producing partially is greater than that of producing everything, so at cM
1 − cS

1 = x2,

as Q1 increases, Supplier’s profit increases more (or decreases less) if he produces

partial production. In other words, as Q1 increases, x2 increases, and it is more

likely to outsource partial production than to outsource all.

In summary, Manufacturer tends to produce more when demand in the first period

is larger.

Effect of demand in the second period Q2: The effect of Q2 on the outcome of the

game is not immediately clear. In general x1 and x2 can change in both directions.

For x1, we compare the option of outsourcing partially and not outsourcing at all.

Supplier always makes zero profit for the latter option, while for the former option

Supplier is more eager to learn and hopefully can make more profit in the second

period if demand is larger in the second period. However Manufacturer thinks in the

same way and also invests more to reduce cost. If this demand increases influences

Manufacturer’s learning more than Supplier’s, Supplier is worse off and thus is more

likely to give up production, while if it influences Supplier’s learning more, Supplier
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is better off and thus is more likely to produce some of the production.

Similarly, for x2, we compare the option of outsourcing partially and outsourcing

everything. As discussed above we are not clear whether a larger demand in the

second period makes the former option more or less promising. For the latter option,

demand change also affects Supplier’s profit in two ways. With a larger demand, on

one hand Supplier is more eager to learn and has a larger demand in the second period

if he produces, on the other hand, Manufacturer is also eager to learn, so Supplier

has to offer a much deeper discount in order for Manufacturer to give up production.

It is not immediately clear which of these two impacts dominates the other.

Effect of minimum quantity of Manufacturer qM
min:

At cM
1 −cS

1 = x1 < 0, a larger qM
min increases Supplier’s profit if he produces partial

demand in the first period. This is because Supplier loses profit by making Q1− qM
min

in the first period, and a larger qM
min reduces this profit loss while keeping all the other

decisions the same. Therefore as qM
min increases, x1 decreases, and it is more

likely to produce at both facilities than to produce everything in house.

Similarly, at cM
1 − cS

1 = x2, if Supplier produces partial demand, a larger qM
min in-

creases Supplier’s profit if x2 < 0, and decreases Supplier’s profit if x2 > 0. If Supplier

produces everything, since Supplier has to offer a discount ω1 = cM
1 −GM ∗

(Q2)/q
M
min,

a larger qM
min allows Supplier to offer a higher wholesale price and thus increases his

profit. Therefore if x2 > 0, as qM
min increases, x2 decreases, and it is more likely

to outsource everything than to produce at both facilities. If x2 < 0 it is

not clear how x2 changes with qM
min
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Effect of minimum quantity of Supplier qS
min: Since Manufacturer does not benefit

from Supplier’s learning, qS
min does not influence Manufacturer’s outsourcing deci-

sions, and thus has no effect on the game outcome.

4.3.4 A Special Example

In this section we look at an example with special cost-reducing functions: gM(ε, δ) =

a
√

ε, and gS(ε, δ) = b
√

ε. In this case learning activities at both firms are deterministic

and take a special square-root form. Coefficients a and b represent the ability of

learning, larger a and b imply stronger learning abilities.

The equilibrium outcome can be characterized in the following lemma: Note that

sometimes the outcome x1 = x2 is possible. In this case it is never optimal to both

make and buy. In the deterministic case, the necessary and sufficient condition for

x1 = x2 is:

Q1

qM
min

GM ∗
(Q2)− gM(εM

1

e
)Q2(Q1 + Q2) < (

Q1

qM
min

GM ∗
(Q2)−GS∗(Q2))q

M
min < 0

Lemma 16 If the cost reducing functions take special forms gM(ε, δ) = a
√

ε, and

gS(ε, δ) = b
√

ε, let A =
1

4
(b2−2a2)Q2

2 and B =
1

4
(b2− Q1

qM
min

a2)Q2
2, then there are four

cases of possible equilibrium outcome:

Case 1: Manufacturer produces (Q1, Q2) if cM
1 − cS

1 <
−B

Q1 + Q2

, and (0, 0) otherwise.

Case 2: Manufacturer produces (Q1, Q2) if cM
1 −cS

1 <
−A

Q1 + Q2 − qM
min

, (qM
min, 0) if

−A

Q1 + Q2 − qM
min

≤ cM
1 − cS

1 <
B − A

qM
min

, and (0, 0) otherwise.

Case 3: Manufacturer produces (Q1, Q2) if cM
1 − cS

1 < 0, (qM
min, Q2) if 0 ≤ cM

1 − cS
1 <

−A

Q2

,

and (0, 0) otherwise.
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Case 4: Manufacturer produces (Q1, Q2) if cM
1 − cS

1 < 0, (qM
min, Q2) if 0 ≤ cM

1 − cS
1 <

−A

Q2

,

(qM
min, 0) if

−A

Q2

≤ cM
1 − cS

1 <
B − A

qM
min

, and (0, 0) otherwise.

Conditions for the four cases are as follows:

Case 1: B ≥ 0,
A

Q1 + Q2 − qM
min

≤ B

Q1 + Q2

.

Case 2: A ≥ 0,
A

Q1 + Q2 − qM
min

≥ B

Q1 + Q2

.

Case 3: A ≤ 0, B ≤ 0,
A

Q2

≤ B

Q2 + qM
min

.

Case 4: A ≤ 0, B ≤ 0,
A

Q2

≥ B

Q2 + qM
min

.

An example of situation which satisfies this condition could be a case when Man-

ufacturer can reduce his cost very significantly but the profit does not significantly in

the absolute terms, while Supplier gains significant extra profit due to learning, and

qM
min is close to Q1. In this case dual sourcing is not promising and only fully internal

production or full outsourcing can be optimal.

For the deterministic cost-reducing functions we can easily provide examples for

the ambiguous effect of parameters, which was discussed in the last section. For

example, x2 =
B − A

qM
min

=
1

4
a2Q2

2(2−
Q1

qM
min

)
1

qM
min

, so if B > A then x2 increases in Q2,

otherwise x2 decreases in Q2.

Similarly, note that x2 increases in qM
min in this case. However, if it is in case 1,

then x2 =
−B

Q1 + Q2

=
1

4

1

Q1 + Q2

(a2 Q1

qM
min

− b2). Since B > 0 in this case, x2 decreases

in qM
min.
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4.4 Three-period Deterministic Problem

We extend our two-period model into three periods, but for analytical trackability,

we only consider a deterministic problem.

Manufacturer’s profit-to-go function is no longer monotone in cost when time

horizon is extended to three periods. Manufacturer may benefit from higher cost,

and consequently be reluctant to improve. Anticipating this response Supplier may

charge higher wholesale price and nonintuitive quantity allocations may appear in

the equilibrium.

Lemma 17 In the first period, (a) Manufacturer never produces (Q1 − qS
min)+, and

(b) Manufacturer produces Q1 − qS
min only when he produces (0, 0) in the next two

periods.

In this section, we analyze the case where the equilibrium quantity in the last two

periods could only be (Q2, Q3) or (0, 0). Analysis of the other scenarios is similar.

We say Supplier “fully participates” when (qM
2 , qM

3 ) = (0, 0). Let A =
M

Q1 + Q2

.

Based on our analysis of two-period problem, Supplier fully participates only if cM
2 −

cS
2 ≥ A. Supplier’s profit is given by:

RS
2 =





0 if cM
2 − cS

2 < A

(cM
2 − cS

2 )(Q2 + Q3) + N otherwise

First we study a benchmark case where RM takes the same form as cM
2 < cS

2 +A for

all cM
2 , i.e., RM = (P2−cM

2 )Q2 +(P3−cM
3 )Q3 +GM ∗

(Q3). Then Manufacturer’s profit

is independent of cS
2 . Similar to two-period problem, Supplier invests εS∗(Q2 + Q3) if

he can produce full quantities in the next two periods. Manufacturer always invests
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εM ∗
(Q2 + Q3). When making production decision, Manufacturer produces qM

1 = Q1

if ω1 > cM
1 , qM

1 = qM
min if cM

1 ≥ ω1 > ω̄ = cM
1 −

GM ∗
(Q2 + Q3)

qM
min

, and qM
1 = 0 otherwise.

The equilibrium is given by comparing Supplier’s profits of the six options:

RS(Q1, Q2, Q3) = 0

RS(Q1, 0, 0) = 0 + (cM
2 −∆cM(Q2 + Q3)− cS

2 )(Q2 + Q3) + GS∗(Q3)

RS(qM
min, Q2, Q3) = (cM

1 − cS
1 )(Q1 − qM

min)

RS(qM
min, 0, 0) = (cM

1 − cS
1 )(Q1 − qM

min) + (cM
2 −∆cM(Q2 + Q3)− cS

2 )(Q2 + Q3)

+GS∗(Q3) + GS∗(Q2 + Q3)

RS(0, Q1, Q2) = (ω1 − cS
1 )Q1

RS(0) = (ω1 − cS
1 )Q1 + (cM

2 − cS
2 )(Q2 + Q3) + GS∗(Q3) + GS∗(Q2 + Q3)

Note that if RM takes the same form as cM
2 > cS

2 + A for all cM
2 , i.e., RM =

(P2 − cM
2 )Q2 + (P3 − cM

3 )Q3 +
Q2

qM
min

GM ∗
(Q3), the equilibrium is the same as above

since the marginal benefit of effort is unchanged.

Lemma 18 Supplier always invests in εS∗(Q2+Q3) if cM
2 −cS

1 ≥ A−GS∗(Q2 + Q3) + N

Q2 + Q3

=

A−D and otherwise invests no effort.

Lemma 19 If only Manufacturer can learn, then there exist E = ∆cM(Q2 +Q3) and

B ≥ 0 satisfying (
Q2

qM
min

−1)GM ∗
(Q3)+fM−1

(B)+B(Q2 +Q3) = GM ∗
(Q2 + Q3), such

that Manufacturer invests εM ∗
(Q2+Q3) if cM

1 −cS
2 < A+B or cM

1 −cS
2 > A+E, where

fM−1
is the inverse function of fM and cS

2 is Supplier’s second-period cost given by

cM
1 , qM

min and Lemma 18. Otherwise he invests fM−1
(cM

1 − cS
1 −A) and after learning

cM
2 − cS

2 = A (See Figure ??).
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Theorem 11 (a) for cM
1 −cS

1 < A−D or cM
1 −cS

1 ≥ A+E, the equilibrium is identical

to the benchmark case. (b) For A − D ≤ cM
1 − cS

1 < A + E, (Q1 − qS
min, 0, 0) may

take place in the equilibrium. (c) For A −D ≤ cM
1 − cS

1 < A + E, if the equilibrium

quantity qM
1 = 0, then the wholesale price ω1 is higher than the one in the benchmark

case.

Since Manufacturer greatly benefits from Supplier’s full participation, he may

prefer keeping own cost at a higher level, providing Supplier more bargaining power

and thus increasing wholesale price.

Because the profit-to-go functions under optimal effort decisions are very irregular,

we cannot prove that the equilibrium quantity allocation is monotonic in initial costs

for three-period model. We can, however, show that only a subset of the allocations

are possible to appear in the equilibrium, and we offer the interpretation for each

possible allocation later.

Theorem 12 In three-period model, the only possible quantities in the equilibrium

are: (Q1, Q2, Q3), (qM
min, Q2, Q3), (qM

min, q
M
min, Q3), (qM

min, q
M
min, 0), (qM

min, 0, 0), (0, 0, 0),

(0, qM
min, 0), (Q1 − qS

min, 0, 0), (Q1, 0, 0), (Q1, q
M
min, 0), and (0, qM

min, Q3). Furthermore,

if demands in each period are stationary, i.e., Q1 = Q2 = Q3, then (Q1, 0, 0),

(Q1, q
M
min, 0), and (0, qM

min, Q3) are not possible in the equilibrium.

With non-stationary demand, it is easy to provide examples where the quantities

listed in Theorem 12 are possible:

• (0, qM
min, 0): Suppose Q1 << Q2, ∆cM(Q2+Q3) is large and GM ∗

(Q2 + Q3) ≈ 0.

Then ω1 ≈ cM
1 , since Q1 is small, the profit loss of offering discount is small,
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and qM
1 = 0 can be optimal. In the second period, Q2 is large, so the profit loss

of offering discount is large as long as GM ∗
(Q3) > 0, and qM

2 = qM
min may be

optimal.

Such quantities are also possible for stationary demand. Let fS = 0, fM =

1 +
εM

2Q
for 0 ≤ εM ≤ 8Q and fM = 5 otherwise. Assume qM

min = Q/4, then it

can be verified that GM ∗
(Q) = Q,GM ∗

(2Q) = 2Q,M = 4Q,N = Q, it satisfies

the condition of scenario 3 in Theorem 1 with A1 = 0, A2 = 1, A3 = 12. For

4.5 < cM
1 −cS

1 < 5, compare the profit of Manufacturer for (0, qM
min, 0), (Q,Q, Q)

and (qM
min, Q, Q), we can verify that the equilibrium quantity is (0, qM

min, 0).

With higher internal, most of the production takes place at Supplier. But

in the second period Manufacturer produces the minimum quantity to reduce

cost. With only one period to go, Manufacturer can only reduce cost by a small

amount of effort, not hurting Supplier’s future profit too much. ( ∆cM ∗
(Q) =

1, GM ∗
(Q) = Q.) In the first period, however, Manufacturer wants to improve a

lot given more demand in the future. But the profit increase from cost reduction

is relatively small due to the high effort cost (∆cM ∗
(2Q) = 8, GM ∗

(2Q) = 2Q).

So Manufacturer is willing to accept a small discount to give up improvement.

• (Q1, 0, 0): Suppose Q1 >> Q2, fS = 0, and cM
1 < cS

1 . Then ω1 ≤ cM
1 < cS

1 , and

Supplier gets the order and incurs large profit loss due to the large quantity.

In period 2 with smaller demand, Supplier can afford to offer ω2 < cS
2 = cS

1

in order to benefit in Period 3. This example shows that when demands are

non-stationary and Supplier has higher cost, he has to strategically choose the
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time to step in the game, i.e., in the period with little demand so that he does

not need to lose too much.

The explanation for (Q1, q
M
min, 0) is similar.

• Example for (0, qM
min, Q3) when demands are not stationary:

Suppose fM(εM) = 1 for all εM , fS(εS) = εS if εS ≤ 1 and fS(εS) = 1 otherwise.

Let Q2 = 8, Q3 = 0.5, qM
min = 1, then we can check that (0, qM

min, Q3) is the

equilibrium quantity for −0.75 < cM
1 − cS

1 < 0.

In this example Q2 >> Q3. Although Manufacturer has bigger incentive to

learn in the first period than in the second one, Supplier prefers blocking Man-

ufacturer from learning by offering a significant discount. In Period 2, however,

Supplier does not improve any more with small demand in Period 3, only pro-

duces part of current-period demand, and gives up production in Period 3.

We can interpret the other possible quantity allocations as follows:

1. (Q1, Q2, Q3): Manufacturer has very low cost or very strong learning ability.

2. (qM
min, q

M
min, Q3) and (qM

min, Q2, Q3): Manufacturer has high initial cost but strong

learning ability. He can exploit the Supplier’s low cost at the beginning but

finally match Supplier’s cost.

3. (qM
min, 0, 0) and (qM

min, q
M
min, 0): Manufacturer wants to exploit Supplier’s strong

learning ability, but he reduces his own cost since it is the upper bound of

Supplier’s wholesale price.

4. (0, 0, 0): Supplier has very low cost or very strong learning ability.

5. (Q1 − qS
min, 0, 0): Supplier fully participates only if he is allowed to learn and
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Manufacturer’s next period cost is not too low. Thus, Manufacturer accepts a

wholesale price higher than his own cost, ω1 > cM
1 , and invests less effort in

order to induce Supplier to fully participate.

In the two-period game, Manufacturer is always better off with lower Supplier

cost. One interesting question is whether Manufacturer is willing to help Supplier

improve. Consider the following revised game: Supplier offers wholesale price ω1, and

Manufacturer decides quantity. After that Manufacturer announces his own effort

level εM , and Manufacturer will offer effort εMS to help Supplier improve. Finally

Supplier decides his effort level εS. Supplier’s improvement is fS(εMS + εS), but he

only incurs effort cost εS, while Manufacturer incurs effort cost εM + εMS with cost

reduction fM(εM).

Observation 1 In a three-period game with deterministic additive cost-reducing func-

tions and the option of offering effort cost sharing, Manufacturer can be worse off

if (a) The conditions of scenario 4 in 1 are satisfied; (b) εS∗(Q2 − qM
min) = 0 ; (c)

A−D > 0 where A is the smallest cost difference cM
2 − cS

2 for (0, 0), and A−D is the

minimal cost difference cM
2 − cS

1 at which Supplier can earn nonnegative profit in the

last two periods by learning; (d)(
Q2

qM
min

− 1)GM ∗
(Q3) > GM ∗

(Q2 + Q3); and (e) There

exists cM
1 − cS

1 < A−D such that (0, 0, 0) is the optimal quantity.

Despite that Manufacturer always has the choice of sharing nothing, he may still

be hurt just by having the option of offering effort sharing. Manufacturer’s internal

learning is not as important as before since he has the option of helping Supplier

improve. Knowing this Supplier does not need to offer a wholesale price as low as
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before to gain the total production, hurting Manufacturer’s profit in the long run.

4.5 Conclusion

In this paper, we study a “make-or-buy” problem when both Manufacturer and Sup-

plier can invest in a costly effort to reduce production cost. This learning requires the

plant to produce a minimum amount of production to provide sufficient experience

for post-savings activities to take place. Although dual sourcing has been studied

before and various reasons have been provided for this decision, we provide a new ex-

planation for this phenomenon, which relates partial internal production to learning

objective that enable cost savings.

In the two-period problem, we have shown that depending on the cost difference

between Manufacturer’s and Supplier’s, Manufacturer can either fully outsource to

the Supplier, fully produce in house, or proceed with partial production and partial

outsourcing. We find that this dual sourcing is more likely when the learning process

is more uncertain, when Manufacturer’s minimum quantity required to learn is larger,

or when the two plants belong to the same company.

We extend the problem to three periods and find that the production quantity

can switch back and forth from full to partial outsourcing. Although Manufacturer

has no incentive to help Supplier learn in two periods, he does have such an incentive

in longer horizons. However, this is not always the case because sometimes simply

having such an option allows Supplier to worsen his offer and exploit Manufacturer.
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CHAPTER 5

Summary

This dissertation is focused on the dynamic production and pricing decisions for

new products. The three essays contained in the dissertation provide theoretical re-

sults and numerical studies for three different aspects of new product decision making.

The first essay studies how a capacity constrained firm should price products

during new product introductions. using control-theory framework (a generalization

of the classic Bass model), I consider the integrated optimal pricing, production,

and sales decisions. I show that in most of the cases, the optimal trajectory of

demand is unimodal, as in the Bass model, but the optimal price trajectory can have

multiple local maxima when capacity is limited. Lack of pricing flexibility might

lead to intentional creation of backorders or lost sales, a phenomenon not observed

when price adjustments are allowed. I also explore when pricing flexibility is most

valuable using a numerical study. I find that benefits are highest when capacity is

not unlimited nor very little, and when imitation effect dominates innovation effect.

I also find that the capability to adjust prices is significantly more effective than the

option of producing in advance and holding inventory.

The second essay is focused on the production lot sizing decisions for a pharma-

ceutical firm that manufactures new medicines for clinical trial. I derive structural
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results on the optimal policy and show that under reasonable assumptions about the

yield distributions, the optimal production quantities are increasing in the number of

waiting orders and the remaining quantity to be produced for the current lot. I also

conduct a numerical study to compare the optimal average cost with several heuristic

policies commonly used in the industry. The results indicate that in most cases the

simple heuristic policies used in practice are very inefficient and substantial savings

can be obtained by appropriate lot sizing policies.

The third essay deals with outsourcing decisions when firms manufacture a new

product and production costs can be reduced through “learning-by-doing” effect. I

provide a new explanation for dual sourcing, which is driven by the fact that in-house

production may facilitate learning about potential process improvements leading to

eventual cost reductions.

These three essays deal with different issues that are important for new product

production and marketing. Various extensions are likely based upon this work.
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APPENDIX A

Main Proofs in Chapter 2

A.1 Proof of Lemma 1

Proof: Applying Pontryagin’s Maximum Principle (Sethi and Thompson, 2000,

p. 33), a necessary condition for optimality is that there exist optimal d∗(t), D∗(t),

dB
∗(t) and a continuous function λ(t) such that

∂H

∂d
= 0,

dλ

dt
= rλ(t) − ∂H

∂D
, and

λ(T ) = 0. Since,

∂H

∂d
= log dB

∗(t)− log d∗(t)− c− 1 + λ(t)

we can obtain the optimal demand as a function of λ:

log d∗(t) = log dB
∗(t)− c− 1 + λ(t) (A.1)

dλ

dt
= rλ(t)− ∂H

∂D
= rλ(t)− d∗(t)

∂log dB
∗(t)

∂D
= rλ(t)− ∂D∗(t)

∂t

∂log dB
∗(t)

∂D

= rλ(t)− dlog dB
∗(t)

dt
(A.2)

Taking the first derivative of t on both sides of (A.1) and substituting (A.2) for
dλ

dt
,

we have

dlog d∗(t)
dt

=
dlog dB

∗(t)
dt

+
dλ

dt
=

dlog dB
∗(t)

dt
+ rλ(t)− dlog dB

∗(t)
dt

= rλ(t) (A.3)

Therefore, if r > 0, the trajectory of the optimal demand depends on λ: d∗(t) increases

if λ(t) > 0, and decreases if λ(t) < 0.
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λ(t) can be solved from differential equation (A.2) and λ(T ) = 0:

λ(t) =
∫ T

t
er(t−u)d log d∗B(u) (A.4)

To examine the shape of λ(t), we further examine equation (A.2). Since λ(T ) =

0,
dλ

dt
|t=T = −dlog dB(t)

dt
|t=T . Note first that

dlog dB(t)

dt
|t=T > 0 is equivalent to

∂dB

∂D
|t=T > 0, i.e. , D(T ) < (q − p)m

2q
. Consider the following cases:

Case 1: D(T ) < (q − p)m
2q

Since dB(t) is unimodal in t,
dlog dB(t)

dt
|t=T > 0 implies

dlog dB(t)

dt
> 0 for all

t ≤ T . By (A.4) λ(t) ≥ 0 for all t ∈ [0, T ]. Thus the optimal demand d∗(t)

is monotonically increasing in [0, T ].

Case 2: D(T ) ≥ (q − p)m
2q

In this case λ(T ) = 0 and
dλ

dt
|t=T ≥ 0. So λ(T − δ) ≤ 0 for small enough

δ > 0. We show first that there is at most one additional zero-point of λ(t)

for t ∈ [0, T ). Assume that there exist τ1 < τ2 ∈ [0, T ] such that λ(τ1) = 0,

λ(τ2) = 0,
dλ

dt
|t=τ1 > 0 and

dλ

dt
|t=τ2 < 0. From (A.2), we have

dlog dB(t)

dt
|t=τ1 < 0

and
dlog dB(t)

dt
|t=τ2 > 0, which is impossible given τ1 < τ2 and dB is unimodal.

Depending on the value of λ(0) we have two possibilities

Case 2.1: If λ(0) ≤ 0, then due to no other zero points, we must have λ(t) ≤ 0 for

all t, and the optimal demand d∗(t) monotonically decreases over

time.

Case 2.2: If λ(0) > 0, then there must exist τd ∈ [0, T ] such that λ(t) > 0 for t < τd

and λ(t) ≤ 0 otherwise. So the optimal demand d∗(t) first increases

and then decreases over time.
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A.2 Proof of Lemma 2

Proof: From equation (A.1) and π(t) = log dB(t) − log d(t), we have π∗(t) =

1+ c−λ(t). Therefore π∗(t) increases if and only if λ(t) decreases. We will show that

λ(t) has a unique local maximum, by showing
d2λ

dt2
≥ 0 whenever

dλ

dt
= 0.

Since
dπ∗(t)

dt
= −dλ(t)

dt
, when

dλ(t)

dt
= 0,

dπ∗(t)
dt

= 0. From (A.2), at local

minimum,

d2λ(t)

dt2
= r

dλ(t)

dt
− d2

dt2
log dB(t) = − d2

dt2
log dB(t)

d

dt
log dB(t) =

d

dt
(log(m−D(t)) + log(p + qD(t)/m)

=
−d(t)

m−D(t)
+

qd(t)/m

p + qD(t)/m

= −(m−D(t))(p + qD(t)/m)e−π(t)

m−D(t)
+

q/m(m−D(t))(p + qD(t)/m)e−π(t)

p + q/mD(t)

= −(p + qD(t)/m)e−π(t) + q/m(m−D(t))e−π(t)

= (−(p + qD(t)/m) + q/m(m−D(t)))e−π(t)

= (q − p− 2qD(t)/m)e−π(t)

d2

dt2
log dB(t) = −2qd(t)e−π(t)/m− (q − p− 2qD(t)/m)e−π(t)dπ

dt
(A.5)

Since π′(t) = −λ′(t) = 0,
d2λ(t)

dt2
= − d2

dt2
log dB(t) = 2q/md(t)e−π(t) ≥ 0. Therefore

λ(t) has a unique local minimum and π∗(t) has a unique local maximum.

Case 1: If D(T ) < (q−p)m
2q

, we have
dlog dB(t)

dt
|t=T > 0. In this case λ is monotonically

decreasing, therefore π∗(t) monotonically increases.

Case 2: If D(T ) ≥ (q − p)m
2q

, we have
dlog dB(t)

dt
|t=T ≤ 0.

Case 2.1: If
dλ

dt
|t=0 > 0, i.e. , rλ(0) − d

dt
log dB(t)|t=0 = rλ(0) − (

−d(t)

m−D(t)
+

q/md(t)

p + q/mD(t)
)|t=0 = rλ(0)−mpeπ∗(0)(q/p−1)/m = rλ(0)−(q−p)eπ∗(0) >
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0, then λ(t) is monotonically increasing, therefore π∗(t) monotonically

decreases.

Case 2.2: If
dλ

dt
|t=0 ≤ 0, i.e. , rλ(0) − d

dt
log dB(t)|t=0 ≤ 0, then there exists

τπ ∈ [0, T ], such that π∗(t) increases for t ∈ [0, τπ], and decreases

afterwards.

A.3 Proof of Lemma 3

Proof: We showed that d, dB and π are all unimodal. Furthermore, if we are forced

to set a fixed price, then the peak time τF is the same as the peak time of dB. Thus,

we consider first-order conditions. From (A.3), λ(τd) = 0, and from proof of Lemma

1
dλ

dt
|τd
≤ 0. By (A.2)

dlog dB

dt
|τd

= rλ(τd)− dλ

dt
|τd
≥ 0, implying τd ≤ τF .

Since price π is maximized at the minimum of λ, we have
dλ

dt
|τπ = 0. Combined

with λ(T ) = 0 it implies λ(τπ) ≤ 0. By (A.2),
dlog dB

dt
|τπ = rλ(τπ)− dλ

dt
|τπ ≤ 0. Thus,

τB ≤ τπ.

A.4 Proof of Lemma 4

Proof: When the discount factor r = 0, equation (A.4) simplifies to

λ(t) = log dB
∗(T )− log dB

∗(t) (A.6)

Substitute (A.6) into (A.1),

log d∗(t) = log dB
∗(t)− c− 1 + (log dB

∗(T )− log dB
∗(t)) = −1− c + log d∗B(T )
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Therefore d∗(t) is a constant, say d∗(t) = d̄ for all t, D(T ) = d̄T , and d̄ solves the

following equation:

log d̄ = −1− c + log[(m− d̄T )(p +
q

m
d̄T )]

or,

(m− d̄T )(p +
q

m
d̄T ) = e1+cd̄

This quadratic equation has one positive solution:

d̄ =
1

2q/mT 2
{−(p− q)T − e1+c +

√
((p− q)T + e1+c)2 + 4pqT 2}

The optimal price is given by π(t) = log dB(t)− log d(t):

π(t) = 1 + c− λ(t) = 1 + c− (log dB(T )− log dB(t)) = 1 + c + log
(m− d̄t)(p + q/md̄t)

(m− d̄T )(p + q/md̄T )

A.5 Proof of Lemma 5

Proof: The problem in Section 2.3 can be simplified as follows:

Π = max
π(t),s(t)

∫ T

0
(π(t)− c)s(t)e−rtdt

s.t. d(t) = (p +
q

m
S(t))(m−D(t))e−π(t),

dD

dt
= d(t),

dS

dt
= s(t),

0 ≤ s(t) ≤ K, 0 ≤ s(t) ≤ d(t),

D(0) = S(0) = 0.

Again it is equivalent to finding the optimal d(t) and s(t). Denote unsatisfied

demand as s̃(t) = d(t)− s(t) ≥ 0. As π(t) = log dB(t)− log d(t), the problem can be
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expressed as:

Π = max
s(t),s̃(t)

∫ T

0
(log dB(t)− log(s(t) + s̃(t))− c)s(t)e−rtdt

s.t.
dD(t)

dt
= s(t) + s̃(t),

dS(t)

dt
= s(t),

s̃(t) ≥ 0, (A.7)

0 ≤ s(t) ≤ K. (A.8)

Write Hamiltonian:

H(D,S, s(t), s̃(t), λ1, λ2, t) = (log dB(t)− log(s(t) + s̃(t))− c)s(t)

+λ1(t)(s(t) + s̃(t)) + λ2(t)s(t)

By Pontryagin Maximum Principle, λ1(T ) = 0 and

dλ1

dt
= rλ1 − ∂H

∂D
= rλ1 +

s∗(t)
m−D∗(t)

Thus λ1(t) = − ∫ T
t er(t−µ) s∗(µ)

m−D∗(µ)
dµ. Since

s∗(µ)

m−D∗(µ)
≥ 0, λ1(t) ≤ 0 for all

t ∈ [0, T ].

Since s∗(t) and s̃∗(t) maximizes H subject to constraints (A.7) and (A.8), and

∂H

∂s̃
= − s(t)

s(t) + s̃(t)
+ λ1(t) ≤ 0,

we have s̃∗(t) = 0 for all t, and d(t) = s(t) ≤ K.

A.6 Proof of Theorem 1

Proof: Define Hamiltonian H as:

H(D, d, λ, t) = (log dB(t)− log d(t)− c)d(t) + λ(t)d(t)
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By Maximum Principle, d∗(t) maximizes H subject to the constraint 0 ≤ d∗(t) ≤ K.

∂H

∂d
= log dB(t)− 1− c + λ(t)− log d(t)

Denote M(t) = log dB(t)− 1− c + λ(t). The same steps as in the proof of Lemma 1

imply
dM

dt
= rλ(t), and λ(t) is positive, or M(t) increases, for t ≤ τd and negative,

M(t) decreases, for τd < t < T .

Let K̄ = emaxt∈[0,T ] M(t). If K ≥ K̄, then d∗(t) = eM(t) satisfies the first order

condition
∂H

∂d
= 0 and satisfies the capacity constraint. In that case it is clear that

d∗(t) is first increasing and then decreasing.

If K < K̄, then let tA1 < tA2 be the times where M(tA1 ) = M(tA2 ) = log K. Then,

for t ∈ [0, tA1 ], d∗(t) = eM(t), which is increasing, and d∗(t) = eM(t) on [tA2 , T ], which is

decreasing, while d∗(t) = K on [tA1 , tA2 ],

Consider now the trajectory of price. On [0, tA1 ], demand log d∗(t) = log dB(t) −

1 + λ(t)− c, so π∗(t) = log dB(t)− log d(t) = 1 + c− λ(t). Since λ(t) is decreasing on

[0, tA1 ], π∗(t) is increasing on [0, tA1 ].

On [tA1 , tA2 ], optimal demand d∗(t) = K, so π∗(t) = log dB(t)−log d(t) = log dB(t)−

log K. π∗(t) is unimodal on [tA1 , tA2 ] since dB(t) is unimodal.

On [tA2 , T ], log d∗(t) = log dB(t) − 1 + λ(t) − c, so π∗(t) = log dB(t) − log d(t) =

1 + c− λ(t). As in Lemma 2, λ(t) has a unique local minimum on [tA2 , T ] Thus, π∗(t)

has a unique local maximum on [tA2 , T ]. and the theorem is proved.
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A.7 Proof of Lemma 6

Proof: The proof is similar to that of Lemma 5. Defining s̃(t) = d(t) − s(t) ≥ 0,

the problem can be reformulated as:

Π = max
s(t),s̃(t),x(t)

∫ T

0
[(log dB(t)− log(s(t) + s̃(t)))s(t)− cx(t)− hI(t)]e−rtdt + csI(T )

s.t.
dD

dt
= s(t) + s̃(t),

dS

dt
= s(t),

dI

dt
= x(t)− s(t),

I(t) ≥ 0, I(0) = 0,

0 ≤ x(t) ≤ K,

s̃(t) ≥ 0.

The Hamiltonian becomes:

H(D, S, s(t), s̃(t), λ1, λ2, λ3, t) = (log dB(t)− log(s(t) + s̃(t)))s(t)− cx(t)− hI(t)

+λ1(t)(s(t) + s̃(t)) + λ2(t)s(t) + λ3(t)(x(t)− s(t))

By Pontryagin Maximum Principle, λ1(T ) = 0, and

dλ1

dt
= rλ1 +

s∗(t)
m−D∗(t)

Thus λ1(t) = − ∫ T
t er(t−µ) s∗(µ)

m−D∗(µ)
dµ. Since

s∗(µ)

m−D∗(µ)
≥ 0, λ1(t) ≤ 0 for all

t ∈ [0, T ]. As s̃∗ maximizes H, and

∂H

∂s̃
= − s(t)

s(t) + s̃(t)
+ λ1(t) ≤ 0

Thus s̃∗(t) = 0 for all t, and d(t) = s(t).
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A.8 Proof of Lemma 7

Proof: (a) Since the Hamiltonian H in (10) is linear in x, if I∗(t) > 0, then x∗(t) = 0

or x∗(t) = K.

Assume I∗(t) > 0 and x∗(t) = 0 for an open interval [t1, t2]. Since I∗(t1) > 0,

there exist an open interval (s1, s2) before (t1, t2) such that I(s) > 0 and x∗(s) = K

for s ∈ (s1, s2).
1 Consider an alternative strategy where x̃(s) = K− δ for s ∈ (s1, s2),

and x̃(t) = δ ∗ (s2 − s1)/(t2 − t1) for t ∈ (t1, t2), where δ is a small positive number.

All other decisions remain the same. This strategy is still feasible. As demand is not

changed, the firm collects the same revenue, but incurs lower inventory holding cost

and production cost, which contradicts optimality of the original policy.

By equation (2.11), H is linear in x. When I∗(t) > 0, we have x∗(t) = K, implying

that
∂H

∂x
≥ 0, or equivalently, λ2(t) ≥ c.

(b) Let I∗(t) = 0 for a small open interval. Since I∗
′
(t) = 0, we have x∗(t) = d∗(t).

From Lemma 6, d∗(t) = s∗(t).

A.9 Proof of Lemma 8

Proof: Given the price and production strategy d(t) and x(t) on [0, T ], suppose

I(T ) > 0, which implies I(t) > 0 for an open interval t ∈ (T − s, T ). By Lemma

7, x(t) = K almost surely for all t ∈ [τ, T ]. Consider an alternative strategy where

d̃(t) = K − δ for all t ∈ (T − s, T ]. In such a case, D(t) is not changed, the diffu-

sion process is the same and the firm collects the same revenue. However, inventory

1We can always alter the production policy on a set of measure 0, and this is why we consider
the interval.
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costs decrease. Additionally, the alternative strategy saves production cost. There-

fore any production strategy with I(T ) > 0 is dominated, contradicting our original

assumption.

A.10 Proof of Lemma 9

Proof: The Lagrangian for this problem is

L(D, I, d, λ1, λ2, µ, η, t) = (log dB(t)− log d(t))d(t)− cx(t)− hI(t) + λ1(t)d(t) +

λ2(t)(x(t)− d(t)) + µ1(t)x(t) + µ2(t)(K − x(t)) + η(t)(x(t)− d(t))

By maximum principle,

dλ1

dt
= rλ1 − ∂L

∂D
= rλ1 − dlog dB

∗(t)
dt

(A.9)

dλ2

dt
= rλ2 − ∂L

∂I
= rλ2 + h (A.10)

λ1(T ) = 0

λ2(T ) ≥ 0

∂L

∂d
= log dB

∗(t)− log d∗(t)− 1 + λ1(t)− λ2(t)− η(t) = 0 (A.11)

∂L

∂x
= −c + λ2(t) + µ1(t)− µ2(t) + η(t) = 0

µ1(t) ≥ 0, µ2(t) ≥ 0, µ1(t)x
∗(t) = 0, µ2(t)(K − x∗(t)) = 0

η(t) ≥ 0,
dη

dt
≤ rη(t), η(t)I∗(t) = 0 (A.12)

If I∗(t) > 0, then by Lemma 7, λ2(t) ≥ c, x∗(t) = K. From Equation (A.12),

η(t) = 0. From Equation (A.11), log d∗(t) = log dB(t)− 1 + λ1(t)− λ2(t).

If I∗(t) = 0, since
∂H

∂x
= −c + λ2(t), if λ2(t) ≥ c, then x∗(t) = K. As x∗(t) = K,

we have
dd

dx
= 0 and, thus,

dH

dd
=

∂H

∂d
= log dB(t) − log d(t) − 1 + λ1(t) − λ2(t),
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subject to the constraint d∗(t) ≤ K. Therefore, log d∗(t) = min{log K, log dB(t)−1+

λ1(t)− λ2(t)}.

If I∗(t) = 0 and λ2(t) < c, then H is decreasing in x, so x∗(t) = d∗(t). Substituting

d∗(t) for x∗ in H, we have
dH

dd
= log dB(t) − log d(t) − 1 + λ1(t) − c, subject to the

constraint d∗(t) ≤ K. Therefore, log d∗(t) = min{log K, log dB(t)− 1 + λ1(t)− c}.

A.11 Proof of Theorem 2

Proof: We first prove the structure of the optimal demand and production trajec-

tories (part (a) and (c)):

1. By Pontryagin’s Maximum Principle λ2(T ) ≥ 0, and λ2(t) may have a negative

jump whenever inventory I(t) changes from positive to zero. We first show that

λ2(t) is piece-wise increasing.

Solving equation (A.10), for any maximal interval where λ2(t) is continuous,

we have λ2(t) = Cert − h

r
, where C is a constant. We show that C is always

positive, which implies that λ2(t) is increasing on that interval. Note that at

the end of the interval t = t̄, either (i) λ2(t) has a negative jump, or (ii) t̄ is

the end of the horizon. (i) implies that inventory I changes from positive to

zero at t̄, and by Lemma 9, part 1, we have λ2(t̄
−) ≥ c ≥ 0. If t̄ = T , then

λ2(t̄) = λ2(T ) ≥ 0. Therefore, in both cases, C ≥ 0.

2. Let log d1(t) := log dB(t) − 1 + λ1(t) − c. Using the same logic as in the proof

of Lemma 1, we have log d1(t) is unimodal for all t ∈ (0, T ).

3. Let log d2(t) := log dB(t)−1+λ1(t)−λ2(t). We show that log d2(t) is unimodal

for any interval where λ2(t) is continuous by justifying that any local optimum
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is a local maximum. Consider the first derivative of log d2(t). Based on equation

(A.9) and λ2(t) = Cert − h

r
, C ≥ 0, we have

dlog d2(t)

dt
=

dlog dB(t)

dt
+

dλ1(t)

dt
− dλ2(t)

dt

=
dlog dB(t)

dt
+ rλ1(t)− dlog dB(t)

dt
− rCert = rλ1(t)− rCert

At the local optimum of log d2(t),
dlog d2(t)

dt
= 0, thus λ1(t) = Cert ≥ 0. In

the proof of Lemma 1, we have shown that λ1(t) is decreasing if λ1(t) ≥ 0, thus

dλ1(t)

dt
≤ 0 at the local maximum of log d2(t).

We evaluate the second derivative of log d2(t) at
dlog d2(t)

dt
= 0 and show it is

negative.

d2 log d2(t)

dt2
= r

dλ1(t)

dt
− r2Cert ≤ 0.

Thus, log d2(t) is unimodal.

4. We show that it is not possible for the three conditions to take place simulta-

neously on an open interval: d2(t) < K, d2(t) is decreasing, and λ2(t) ≥ c.

If these conditions take place on interval (t′, t′′), then they hold on (t′, T ).

λ2(t) ≥ c implies that x(t) = K (Lemma 9, parts 1 and 2). Combined with

d2(t) < K, we have
dI(t)

dt
> 0 on (t′, t′′). Since d2 is unimodal, we have

d2(t) < K on (t′, T ). For x(t) < K, we need λ2(t) < c, for which we need

a jump down, which is only possible if I(t) = 0. The initial accumulation of

inventory combined with d(t) < K = x(t) makes it, however, impossible. Thus,

I(T ) > 0, which contradicts Lemma 8.

5. Based on the observations above, we consider the following cases depending on

the values of λ2(0) and d2(0):
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Case 1: If λ2(0) ≥ c and d2(0) < K:

By part 1 and 2 of Lemma 9, x∗(0) = K and d∗(0) = d2(0) < K, thus
dI

dt
> 0.

Since I(T ) = 0, we define tB2 := min{t ∈ (0, T ]|I(t) = 0}. Lemma 9 implies

x∗(t) = K, d∗(t) = d2(t), and I(t) > 0 on (0, tB2 ). Since
dI(t)

dt
≤ 0 at tB2

−
, we

have d2(t
B
2
−
) ≥ K. As we have

dI

dt
= K− d2(t) on (0, tB2 ),

dI

dt
must be positive-

negative. Thus I∗(t) is unimodal for t ∈ [0, tB2 ].

λ2(t) may have a negative jump at tB2 . Recall that I(tB2 ) = 0 and either case 2

or 3 of Lemma 9 applies, depending on the value of the jump.

Case 1.1: If λ2(t
B
2

+
) ≥ c, then x∗(t) = K, d∗(t) = min(K, d2(t)) = K, and

dI

dt
= 0 for t ∈ (tB2 , tB2 +δ), where δ is a small positive number. Since, λ2(t

B
2

+
) ≤

λ2(t
B
2
−
) and d2(t

B
2
−
) ≥ K, from Lemma 9, part 1, we have d2(t

B
2

+
) ≥ d2(t

B
2
−
) ≥

K. Thus we have, λ2(t
B
2

+
) ≥ c and d2(t

B
2

+
) ≥ d2(t

B
2
−
) ≥ K.

Note that if d2(t) drops below K at any t ≥ tB2 , then it is decreasing at that

point. However, since λ2(t) is increasing, we have λ2(t) ≥ c, which cannot hap-

pen simultaneously. Therefore in this case x∗(t) = d∗(t) = K, and I∗(t) = 0 for t ∈ (tB2 , T ).

Case 1.2: If λ2(t
B
2

+
) < c, then x(t) = d(t) = min(K, d1(t)), and

dI

dt
= 0

for t ∈ (tB2 , tB2 + δ), where δ is a small positive number. Since λ2(t
B
2
−
) ≥ c,

we have d1(t
B
2 ) ≥ d2(t

B
2
−
) ≥ K. Therefore, we define maximum tB3 ≥ tB2 ,

such that d1(t
B
3 ) ≥ K, which implies x(t) = d(t) = K for t ∈ (tB2 , tB3 ) and

d1(t
B
3 ) = K. Since d1(t) is unimodal, d1 is decreasing for t ≥ tB3 . Since

dd2(t)

dt
=

dd1(t)

dt
− dλ2(t)

dt
, d2(t) is also decreasing for t ≥ tB3 , and we must have λ2(t) < c.

Thus x∗(t) = d∗(t) = K on (tB2 , tB3 ), and x∗(t) = d∗(t) = d1(t) on (tB3 , T ).
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Case 2: If λ2(0) ≥ c and d2(0) ≥ K, the implication of Case 1.1. for tB2 = 0

applies and x∗(t) = d∗(t) = K, and I(t) = 0 for t ∈ (0, T ).

Case 3: If λ2(0) < c:

Then x∗(t) = d∗(t) = min(K, d1(t)) for t ∈ (0, tB1 ), where tB1 is the first time

such that λ2(t
B
1 ) = c. At tB1 , the situation becomes identical to case 1 or 2,

depending whether d1(t
B
1 ) < K or d1(t

B
1 ) ≥ K.

Case 3.1: If d1(t
B
1 ) < K, since λ2(t

B
1 ) = c, I(tB1 ) = 0, d2(t

B
1 ) = d1(t

B
1 ), the

trajectory after tB1 is as in Case 1.

Case 3.2: If d1(t
B
1 ) ≥ K, since λ2(t

B
1 ) = c, I(tB1 ) = 0, d2(t

B
1 ) = d1(t

B
1 ), the

trajectory after tB1 is as in Case 2.

Next we prove the structure of the optimal price trajectory (part (b)):

1. Let t′ ∈ (0, tB1 ) be the minimal t′ such that d1(t
′) ≥ K. It t′ exists, we have Case

3.2 above and for all t ∈ [t′, T ], we have d(t) = K and thus π(t) = log dB(t) −

log d(t) = log dB(t)− log d(t), which clearly means that π(t) is unimodal.

Let t′′ = t′ if it exists and t′′ = tB1 otherwise. For t ≤ t′′: log d(t) = log d1(t) =

log dB(t) − 1 + λ1(t) − c, thus π(t) = log dB(t) − log d(t) = 1 + c − λ1(t). As

shown in the proof of Lemma 2, π(t) is increasing since log d(t) is increasing on

(0, t′′). When t′′ = t′ the price structure is already shown, thus consider t′′ = tB1 .

2. On t ∈ (tB1 , tB2 ), log d(t) = log d2(t) = log dB(t) − 1 + λ1(t) − λ2(t), we will

show that π(t) = log dB(t) − log d(t) = 1 − λ1(t) + λ2(t) is unimodal. Let

λ(t) = λ2(t)−λ1(t). We will show that
d2π(t)

dt2
=

d2λ(t)

dt2
≤ 0 whenever

dπ(t)

dt
=

dλ(t)

dt
= 0, which implies that π(t) is unimodal.
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Note that if
dπ(t)

dt
=

dλ(t)

dt
= 0, by equation (A.9) and (A.10), we have

dλ(t)

dt
=

rλ(t)+
dlog dB(t)

dt
+h and

d2λ(t)

dt2
|dπ

dt
= 0

=
d2 log dB(t)

dt2
. From equation (A.5),

d2

dt2
log dB(t) = −2qd(t)e−π(t)/m− (q − p− 2qD(t)/m)e−π(t)dπ

dt

we have
d2λ(t)

dt2
|dπ

dt
= 0

=
d2

dt2
log dB(t) = −2q/md(t)e−π(t) ≤ 0.

3. On t ∈ (tB2 , tB3 ), d(t) = K, thus π(t) = log dB(t) − log K, which is unimodal.

We show that if π(t) is (already) decreasing at tB2
−
, then it is also decreasing

at tB2
+
, so π(t) is unimodal on (tB1 , tB3 ).

If π(t) is decreasing at tB2
−
, we have

dlog dB(t)

dt
− dlog d2(t

−)

dt
≤ 0, which is

equivalent to
dlog dB(t)

dt
− dlog d1(t)

dt
+

dlog d1(t)

dt
− dlog d2(t

−)

dt
=

dλ1(t)

dt
+

dλ2(t
−)

dt
≤ 0, thus

dλ1(t)

dt
≤ −dλ2(t

−)

dt
≤ 0. From the proof of Lemma 2, λ1(t)

is decreasing only if log dB(t) is decreasing. Thus π(tB2
+
) = log dB(tB2 ) − log K

is also decreasing at tB2
+
.

4. On t ∈ (tB3 , T ), log d(t) = log d1(t) = log dB(t) − 1 + λ1(t) − c, thus π(t) =

1 + c− λ1(t). As shown in the proof of Lemma 2, π(t) is unimodal.

A.12 Proof of Lemma 10

Proof: 1. If I(t) > 0 on an open interval, applying similar argument as in the proof

of Lemma 7, we have x∗(t) = K almost surely.

2. If I(t) = W (t) = 0 on an open interval, then
dI(t)

dt
= x(t) − s(t) = 0 and

dW (t)

dt
= ξ(d(t)− s(t)) = 0. Therefore, s∗(t) = x∗(t) = d∗(t) and part (c) holds.

3. If W (t) > 0 on an open interval and b > rc, then by equation (2.11), the

Hamiltonian is linear in s(t). If (i) I(t) > 0, then s∗(t) = 0 or s∗(t) = +∞. If (ii)
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I(t) = 0, then s(t) = 0 or s(t) = x(t) = K.

(i) Assume I(t) > 0. s∗(t) = +∞ is not sustainable on a positive time interval.

Thus, s∗(t) = 0 is the only possibility. Applying the same logic as in the proof

of Lemma 7, we have x(t) = c. An alternative strategy is to sell s∗(t) = ε and

x∗(t) = K on (t1, t1 + δ), where ε is a small positive number, while x∗(t) = x∗(t) + ε

for (t2, t2 + δ) where t2 is the first t2 ≥ t1 + δ such that x(t2) < c. In this case,

the firm saves backordering cost, inventory holding cost, and benefits from increased

cumulative sales. Therefore s∗(t) = 0 cannot be optimal. Thus I(t) = 0 whenever

W (t) > 0 on a positive interval (which completes part (a)).

(ii) Let I(t) = 0. Note that I(t) = 0 and s(t) = 0 on (t1, t1 + δ), where δ is a small

positive number, cannot be jointly optimal.

When I(t) = 0, applying similar logic as in the proof of Lemma 7, we have x(t) =

s(t). Assume x(t) < K. W,D, S, I can be approximated by W (t+δ) ≈ W (t)+ξδd(t),

D(t + δ) ≈ D(t) + δd(t), S(t + δ) = S(t) and I(t + δ) = I(t). Consider an alternative

strategy to sell x∗(t) = s∗(t) = x(t) + ε on (t1, t1 + δ) where ε is a small positive

number. In this case, W,D, S can be approximated by W (t+δ) ≈ W (t)+ξδd(t)−εδ,

S(t + δ) = S(t) + εδ, D(t + δ) ≈ D(t) + δd(t) and I(t + δ) = I(t). Since b > rc, the

alternative strategy saves on backlogging cost, and increases cumulative sales S(t+δ).

By equation (2.11),
dλ2(t)

dt
= rλ2(t) − ∂H

∂S
= rλ2(t) − q/m

p + qS(t)/m
ξd(t). Note that

λ2(t) is continuous and λ2(T ) = 0. If λ2(t) = 0 for some t ∈ [0, T ], then
dλ2(t)

dt
< 0,

implying that there would be no other 0-points of λ2(t) and λ2(t) ≥ 0 for all t ∈ [0, T ].

Thus the firm would also benefit from the increased cumulative sales, which implies
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s∗(t) = K is optimal when W (t) > 0.

A.13 Compare myopic sales policy with delay sales policy

We first study the myopic sales policy. Under myopic sales policy, at time t = 0, the

cumulative demand is given by D(t) = pm(e(p+q)t−1)/(q +pe(p+q)t). We solve for the

time at which inventory is depleted: D(τ1) = cτ1, and obtain τ1 = 0.57. The profit

during the first phase [0, τ1] is given by Πmyopic
1 =

∫ τ1
0 (ad(t) − h(ct −D(t)))e−rtdt =

73.918. In the second phase, demand is constrained until d(τ2) = c. The cumulative

demand D(t) = m−(m−D1)e
(p+q/m(D1−cτ1)τ1+ q

2m
cτ 2

1 −(p+q/m(D1−cτ1))t− q
2m

ct2)

where D1 = D(τ1). solving for τ2, we have τ2 = 14.89. The profit in the second phase

[τ1, τ2] is given by Πmyopic
2 =

∫ τ2
τ1

ace−rtdt = 1724.59. Finally, demand drops below

capacity, D(t) = m/q(q − (p + q/m(S2 − D2))e
−(t+Constant3)(p+q/m(S2−D2)+q))/(1 +

e−(t+Constant3(p + q/m(S2 −D2) + q))), where S2 = D1 + c(τ2 − τ1), D2 = D(τ2), and

Constant3 = 1/(p+q/m(S2−D2)+q) log((p+q/m(S2−D2)+D2q/m)/(q−D2q/m))−

τ2. The profit during the third phase [τ2,∞) is given by Πmyopic
3 =

∫∞
τ2

ad(t)e−rtdt =

471.55. The total profit is Πmyopic = Πmyopic
1 + Πmyopic

3 + Πmyopic
3 = 2270.07.

Then we examine the profit if we intentionally delay sales. That is, for t ∈ [0, τ ] =

[0, 5], customers come to purchase but the firm does not sell to them even if inventory

is available. The profit in the first phase [0, 5] is 0. In the second phase, the cumulative

demand is given by D(t) = m/q(q−(p+q/m(S0−D0))e
−(t+Constant1)(p+q/m(S0−D0)+q))/(1+

e−(t+Constant1)(p+q/m(S0−D0)+q)), where D0 = m(1 − e−pτ ), S0 = 0, and Constant1 =

1/(p+q/m(S0−D0)+q) log((p+q/m(S0−D0)+D0q/m)/(q−D0q/m))−τ . The time

that inventory is depleted τ1 = 11.356. The profit during the second phase [τ, τ1] is
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Πdelay
1 = 1348.87. Then demand is constrained and the time demand drops below ca-

pacity τ2 = 16.84. Profit during the third phase [τ1, τ2] is Πdelay
2 = 619.25. Finally de-

mand drops below capacity and the profit during this phase [τ2,∞] is Πdelay
3 = 343.79.

Total profit is Πdelay = Πdelay
1 + Πdelay

2 + Πdelay
3 = 2311.92 ≥ Πmyopic. Thus myopic

sales policy is dominated.

A.14 Lemma for the Proof of Theorem 3

Denote log d1(t) = log dB(t)−1+
1

ξ
λ1(t)+λ4(t), log d2(t) = log dB(t)+λ1(t)+λ2(t)−

λ3(t), log d3(t) = log dB(t) + λ1(t) + λ2(t) − c, and πi(t) = log dB(t) − log di(t) for

i = 1, 2, 3.

Lemma 20 If b > rc, then the optimal demand is given by

(a) If W (t) > 0 and I(t) = 0, then log d∗(t) = log dB(t)− 1 +
1

ξ
λ1(t) + λ4(t).

(b) If W (t) = 0 and I(t) > 0, then log d∗(t) = log dB(t)− 1 + λ1(t) + λ2(t)− λ3(t).

(c) If W (t) = 0 and I(t) = 0, then log d∗(t) = min(log K, log dB(t) − 1 + λ1(t) +

λ2(t)− c).

Proof: (a) If W (t) > 0 and I(t) = 0, by Lemma 10, x∗(t) = s∗(t) = K, therefore

dH

dd
=

∂H

∂d
= ξ(log dB(t) − log d(t) − 1) + λ1(t) + ξλ4(t) by equation (2.11). Setting

it to zero, we have log d∗(t) = log dB(t)− 1 +
1

ξ
λ1(t) + λ4(t).

(b) If W (t) = 0 and I(t) > 0, by Lemma 10, x∗(t) = K and s∗(t) = d∗(t), therefore

dH

dd
=

∂H

∂d
+

∂H

∂s
= log dB(t)− log d(t)− 1 + λ1(t) + λ2(t)− λ3(t) by equation (2.11).

Setting it to zero, we have log d∗(t) = log dB(t)− 1 + λ1(t) + λ2(t)− λ3(t).
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(c) If W (t) = 0 and I(t) = 0, by Lemma 10, x∗(t) = s∗(t) = d∗(t), therefore

dH

dd
=

∂H

∂d
+

∂H

∂s
+

∂H

∂x
= log dB(t) − log d(t) − 1 + λ1(t) + λ2(t) − c by equation

(2.11). Setting it to zero, we have log d∗(t) = log dB(t)− 1 + λ1(t) + λ2(t)− c. Since

0 ≤ x(t) ≤ K, log d∗(t) = min{log K, log dB(t)− 1 + λ1(t) + λ2(t)− c}.

A.15 Lemma for the Proof of Theorem 3

Lemma 21 (a) d2(t) and d3(t) are unimodal on [0, T ].

(b) If
dlog dB(t)

dt
≥ 0 whenever

dlog d1(t)

dt
= 0, then d1(t) is unimodal on [0, T ].

(c) π1(t), π2(t) and π3(t) are unimodal whenever they are optimal.

Proof:

1. d3(t) is unimodal: Since I(t) = W (t) = 0 and d∗(t) = x∗(t) = s∗(t),

dλ1(t)

dt
= rλ1(t) +

d(t)

m−D(t)

dλ2(t)

dt
= rλ2(t)− q/md(t)

p + qS(t)/m

dlog d3(t)

dt
=

dlog dB(t)

dt
+

dλ1(t)

dt
+

dλ2(t)

dt

=
dlog dB(t)

dt
+ rλ1(t) +

d(t)

m−D(t)
+ rλ2(t)− q/md(t)

p + qS(t)/m

= rλ1(t) + rλ2(t)

Since
d(t)

m−D(t)
− q/md(t)

p + qS(t)/m
is positive-negative, and λ1(T ) = λ2(T ) = 0, by

similar argument as in the proof of Lemma 1, there exists at most one t ∈ [0, T )

such that λ1(t) + λ2(t) = 0, and λ1(t) + λ2(t) is positive on [0, t) and negative

on (t, T ). Therefore d3(t) is increasing on [0, t) and decreasing on (t, T ).

2. π3(t) is unimodal: π3(t) = log dB(t)−log d3(t) = 1+c−λ1(t)−λ2(t). If
dπ3(t)

dt
=

0 for some t, then
dπ3(t)

dt
= −d(λ1 + λ2)

dt
= −r(λ1(t) + λ2(t)) − d(t)

m−D(t)
+
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q/md(t)

p + qS(t)/m
= −r(λ1(t)+λ2(t))+(−(p+qS(t))/m+q/m(m−D(t))e−π3(t) = 0,

thus

d2π3(t)

dt2
= −r

d(λ1 + λ2)

dt
+ (−(p + qS(t))/m + q/m(m−D(t))e−π3(t)(−dπ3(t)

dt
)

+(−qs(t)/m− qd(t)/m)e−π3(t)

Since the first two terms of the last equation are both zero, we have
d2π3(t)

dt2
≤ 0,

therefore π3(t) is unimodal.

3. d2(t) and π2(t) are unimodal: Since I(t) > 0, W (t) = 0, x∗(t) = K, and s∗(t) =

d∗(t), the unimodality of d2(t) and π2(t) can be shown with the same logic as

in the proof of Theorem 2.

4. d1(t) is unimodal under the condition of the theorem: If
dlog dB(t)

dt
≥ 0 when-

ever
dlog d1(t)

dt
= 0, note that s(t) = K when W (t) > 0, then we examine

d2 log d1(t)

dt2
at

dlog d1(t)

dt
= 0:

dlog d1(t)

dt
=

dlog dB(t)

dt
+

1

ξ

dλ1(t)

dt
+

dλ4(t)

dt

=
−d(t)

m−D(t)
+

qc/m

p + qS(t)/m
+

1

ξ
rλ1(t) +

d(t)

m−D(t)
+ rλ4(t) + b

=
qc/m

p + qS(t)/m
+

1

ξ
rλ1(t) + rλ4(t) + b

If
dlog d1(t)

dt
= 0, then

d2 log d1(t)

dt2
= −

(
qc/m

p + qS(t)/m

)2

+
1

ξ
r
dλ1(t)

dt
+ r

dλ4(t)

dt

= −
(

qc/m

p + qS(t)/m

)2

+ r

(
1

ξ
rλ1(t) +

d(t)

m−D(t)
+ rλ4(t) + b

)

= −
(

qc/m

p + qS(t)/m

)2

+ r

(
d(t)

m−D(t)
− qc/m

p + qS(t)/m

)

= −
(

qc/m

p + qS(t)/m

)2

− r
dlog dB(t)

dt
≤ 0
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Therefore log d1(t) is unimodal.

5. π1(t) is unimodal: π1(t) = log dB(t)− log d1(t) = 1− 1

ξ
λ1(t)− λ4(t). Let λ(t) =

1

ξ
λ1(t) + λ4(t). We show that

d2λ(t)

dt2
≥ 0 whenever

dλ(t)

dt
= 0.

dλ(t)

dt
=

1

ξ

dλ1(t)

dt
+

dλ4(t)

dt

= r

(
1

ξ
λ1(t) + λ4(t)

)
+

d(t)

m−D(t)
+ b

= rλ(t) + (p + qS(t)/m)e−π(t) + b

d2λ(t)

dt2
= r

dλ(t)

dt
+ (p + qs(t)/m)e−π(t) + (p + qS(t)/m)e−π(t)

(
−dπ(t)

dt

)

At
dλ(t)

dt
= −dπ(t)

dt
= 0,

d2λ(t)

dt2
= (p + qs(t)/m)e−π(t) ≥ 0. Therefore π1(t) is

unimodal.

A.16 Proof of Theorem 3

Proof: We first show that if W (t) = 0 and d(t) < K for an open interval, then

s(t) = d(t) on this interval. Note that s(t) < d(t) for an open interval (t′, t′′), implies

W (t) > 0 and, by Lemma 10, we have s(t) = K > d(t), resulting in a contradiction.

The optimal demand trajectory can be characterized as follows. Since W (0) = 0,

if d3(0) ≤ K, then d∗(t) = min(d3(t), K) until some tC1 , when similar to the case

in Theorem 2, demand switches to d∗(t) = d2(t). As we have shown in Lemma 10,

W (t) = 0, when I(t) > 0, demand cannot switch to d1(t). Therefore d∗(t) = d2(t)

until tC2 , where I(tC2 ) = 0.

While I(t) = 0 and W (t) = 0, we have d∗(t) = min(d3(t), K). If d∗(tC2 ) = d3(t
C
2 ) ≤

K, since d3(t) is unimodal, it will continue to be smaller than K. We have shown

in Theorem 2 that demand cannot switch back to d2(t) (i.e., I(t) > 0), and we have
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also shown that s(t) = d(t) as long as W (t) = 0 and d(t) < K, therefore demand

cannot switch to d1(t). Thus d∗(t) = d3(t) for t ∈ (tC2 , T ).

If d3(t
C
2 ) > K, then d∗(t) = K until tC3 , where demand may switch to d1(t). As

shown in Lemma 21, d1(t) is unimodal. At tC4 , W (tC4 ) = 0, and demand switches

back to min(d3(t), K). As backlogging is cleared, d3(t
C
4 ) ≤ K, and by the argument

above, demand also cannot switch back to d1(t).

For the optimal price trajectory, Lemma 21 has shown that π1(t), π2(t) and π3(t)

are unimodal. Therefore, π∗(t) is unimodal on (tC3 , tC4 ) and (tC4 , T ). Using similar

logic as in the proof of Theorem 2, we can show that π∗(t) is also unimodal on (0, tC3 ).

In a make-to-order environment, h = +∞, therefore, it is not possible to carry

inventory and tC1 = tC2 in Theorem 3. Let tDt = tC1 = tC2 , tD2 = tC3 , and tD3 = tC4 , then

the case for make-to-order environment and partial backlogging is proved.
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APPENDIX B

Main Proofs in Chapter 3

B.1 Proof of Theorem 4

Proof : To prove the structure of optimal policy, we use value iteration.

Let H0(i,D, N) = 0 for all (i,D, N). For any k ≥ 1, define Lk−1(i, N) = N ∗

W + Wnew + cR/µ +
∑∞

N ′=0 Prob(N ′)
∑N+N ′−1

j=N Hk−1(i, D̄, j) and Kk−1(i, Q, D, N) =

cMQ +
∑∞

N ′=0 Prob(N ′)
∫ D
aQ Hk−1(i + 1, D − y,N + N ′)dF (Q, y), then Hk(i,D, N) =

Lk−1(i, N) + minQ∈Π(D) Kk−1(i,D, N,Q), and H(i,D, N) = limk→∞ Hk(i,D,N).

We prove the theorem by induction. The theorem holds obviously for H0, and

Q∗0 exists and increases in D and N . Assume it is true for Hk−1:

1. Hk−1(i,D, N) is nonnegative;

2. Hk−1(i,D, N) increases in D;

3. Hk−1(i,D, N) increases in N .

We take first and second derivatives of K with respect to Q, and show the second

derivative is positive under conditions (a) and (b), therefore there exists an optimal

lot size Q.

Kk−1(i, Q, D, N) = cMQ +
∞∑

N ′=0

Prob(N ′)
∫ D

aQ
Hk−1(i + 1, D − y, N + N ′)dF (i, Q, y)

(B.1)
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∂K

∂Q
= cM +

∞∑

N ′=0

Prob(N ′)[
∫ D

aQ
Hk−1(i + 1, D − y, N + N ′)dF ′

Q(i, Q, y)

−Hk−1(i + 1, D − aQ,N + N ′)F ′
y(i, Q, aQ)a] (B.2)

= cM +
∞∑

N ′=0

Prob(N ′)[Hk−1(i + 1, D − y, N + N ′)F ′
Q(i, Q, y)|DaQ

+
∫ D

aQ
HD

k−1′(i + 1, D − y, N + N ′)F ′
Q(i, Q, y)dy

−Hk−1(i + 1, D − aQ,N + N ′)F ′
y(i, Q, aQ)a] (B.3)

= cM +
∞∑

N ′=0

Prob(N ′)[Hk−1(i + 1, 0, N + N ′)F ′
Q(i, Q,D)

−Hk−1(i + 1, D − aQ,N + N ′)F ′
Q(i, Q, aQ)

+
∫ D

aQ
HD

k−1′(i + 1, D − y, N + N ′)F ′
Q(i, Q, y)dy

−Hk−1(i + 1, D − aQ,N + N ′)F ′
y(i, Q, aQ)a] (B.4)

= cM +
∞∑

N ′=0

Prob(N ′)[Hk−1(i + 1, 0, N + N ′)F ′
Q(i, Q,D)

+
∫ D

aQ
HD

k−1′(i + 1, D − y, N + N ′)F ′
Q(i, Q, y)dy

−Hk−1(i + 1, D − aQ,N + N ′)(F ′
Q(i, Q, aQ) + F ′

y(i, Q, aQ)a)] (B.5)

Since F (i, Q, aQ) = 0 for any i, Q, F ′
Q(i, Q, aQ) + aF ′

y(i, Q, aQ) = 0, thus

∂Kk−1

∂Q
= cM +

∞∑

N ′=0

Prob(N ′)[Hk−1(i + 1, 0, N + N ′)F ′
Q(i, Q, D)

+
∫ D

aQ
HD

k−1′(i + 1, D − y, N + N ′)F ′
Q(i, Q, y)dy] (B.6)

∂2K

∂Q2
=

∞∑

N ′=0

Prob(N ′)[Hk−1(i + 1, 0, N + N ′)F ′′
Q(i, Q, D)

+
∫ D

aQ
HD

k−1′(i + 1, D − y, N + N ′)F ′′
Q(i, Q, y)dy

−HD
k−1′(i + 1, D − aQ,N + N ′)F ′

Q(i, Q, aQ)a] (B.7)

Since Hk−1 is nonnegative and increasing in D, and F is decreasing and convex on

Q by condition (a),
∂2Kk−1

∂Q2
≥ 0. So K is a convex function of Q and Kk−1 →∞ as
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Q →∞, and thus there exists an optimal Q∗k−1(i,D, N) ∈ Ω(D).

We then show that the cross derivatives of Kk−1 with respect to (Q,D) and (Q,N)

are both negative under condition (a) and (b), and thus the optimal policy increases

in D and N . From (B.2)

∂Kk−1

∂Q
= cM +

∞∑

N ′=0

Prob(N ′)
∫ D

aQ
Hk−1(i + 1, D − y, N + N ′)F ′′

Qy(i, Q, y)dy

−Hk−1(i + 1, D − aQ,N + N ′)F ′
y(i, Q, aQ)a (B.8)

∂2Kk−1

∂Q∂D
=

∞∑

N ′=0

Prob(N ′)
∫ D

aQ
HD

k−1′(i + 1, D − y,N + N ′)F ′′
Qy(i, Q, y)dy

+H(i + 1, 0, N + N ′)F ′′
Qy(i, Q, D)

−HD
k−1′(i + 1, D − aQ,N + N ′)F ′

y(i, Q, aQ)a ≤ 0 (B.9)

∂2Kk−1

∂Q∂N
=

∞∑

N ′=0

Prob(N ′)
∫ D

aQ
HN

k−1′(i + 1, D − y, N + N ′)F ′′
Qy(i, Q, y)dy

−HN
k−1′(i + 1, D − aQ,N + N ′)F ′

y(i, Q, aQ)a ≤ 0 (B.10)

Therefore Q∗ increases in N . For D, since Ω(D) = [
D

b
,
D

a
] is a convex set increasing

in D, Q∗ also increases in D.

Then we prove that the three hypotheses also hold for Hk. Clearly Hk(i,D, N) is

nonnegative for all (i,D, N).

Lk−1(N) increases in N . Since Hk−1 is nonnegative and increasing in N , Hk is

still increasing in N after taking expectation and minimization.

Lk−1(N) is constant relative to D. Kk−1 is still increasing in D after taking

expectation. Therefore minQ∈[0,+∞) Kk−1 is still increasing in D. We will show

min
Q∈[

D

b
,
D

a
]
Kk−1 is also increasing in D.

Since any Q >
D

a
is dominated by

D

a
, Kk−1 will not take minimum at

D

a
. So we
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restrict our attention to the case when Q is bounded below by
D

b
.

1. For D1 < D2, if both Kk−1(Q, i, D1, N) and Kk−1(Q, i,D2, N) are constrained

by the lower bound, since Kk−1 is convex in Q, then Kk−1(Q, i, D1, N) is in-

creasing for any Q ≥ D1. Since Kk−1(Q, i, D, N) is increasing in D, we have

Kk−1(D1, i, D1, N) ≤ Kk−1(D2, i, D1, N) ≤ Kk−1(D2, i, D2, N).

2. If only Kk−1(Q, i, D2, N) is constrained by the lower bound, then Kk−1(Q∗(D1), i, D1, N) ≤

Kk−1(Q∗(D2), i, D2, N) ≤ Kk−1(D2, i, D2, N).

3. If only Kk−1(Q, i,D1, N) is constrained by the lower bound, as Kk−1 is convex

in Q, Kk−1(Q, i, D1, N) is increasing for any Q ≥ D1. Since D1 ≤ D2 ≤ D2/b ≤

Q∗(D2) and Kk−1(Q, i, D, N) is increasing in D, we have Kk−1(D1, i, D1, N) ≤

Kk−1(Q∗(D2), i, D1, N) ≤ Kk−1(Q∗D2, i, D2, N).

Therefore Hk(i,D,N) is increasing in D.

By induction a unique Q∗ exists and increases in D and N .

B.2 Proof of Theorem 5

Proof: We prove the theorem by induction. H0 = 0 is concave in D. Assuming that

Hk−1 is concave in D, we prove the results in three steps. First we show that if the

optimal lot size satisfies the first-order condition (FOC), then Hk is also concave in

D. Then we show Q∗/D is decreasing in D, therefore as D increases, Q∗ changes from

D/a to FOC solution to D. Finally we show that if Q∗ = D/a or Q∗ = D, Hk is still

concave, and the first order derivative of Hk at the transition points is continuous,

therefore Hk is concave. In each step, we first prove for r being non-integer, and then

123



complete the proof for integer r. For the purpose of clarity we omit the production

run number i here, and the proof will not change if i is added.

1. If the optimal Q∗ satisfies FOC, and r is not an integer, then Hk is concave:

Assume n < r < n + 1, where n is an integer, n ≥ 1.

Hk(D, N) = Lk−1(N) + min
Q∈Π(D)

Kk−1(Q,D, N)

Kk−1(Q,D, N) = cMQ + EN ′

∫ D

0
Hk−1(D − y, N + N ′)

ryr−1

Qr
dy

The first-order condition is:

∂Kk−1

∂Q
= cM − r

Qr+1
EN ′

∫ D

0
Hk−1(D − y,N + N ′)ryr−1dy = 0

Thus the optimal quantity is

Q∗ = (
r2

cM

EN ′

∫ D

0
Hk−1(D − y, N + N ′)ryr−1dy)

1

r + 1

And the optimal cost difference function Hk is

Hk∗ = Lk−1(N) + (cM(r2 + r−2)EN ′

∫ D

0
Hk−1(D − y, N + N ′)ryr−1dy)

1

r + 1

Denote Pr = EN ′
∫ D
0 Hk−1(D − y,N + N ′)yrdy, we will show in the following

that (Pr−1)

1

r + 1 is concave, and thus Hk is concave in D.

Notice that for any non-integer r, Pr has the following properties: (a) Pr ≥ 0,

(b) limD→0 Pr = 0, and (c)
∂Pr

∂D
= rPr−1. Property (c) is obtained in the

following way:

∂Pr

∂D
=

∂

∂D
(EN ′

∫ D

0
Hk−1(y, N + N ′)(D − y)rdy)

= EN ′

∫ D

0
Hk−1(y, N + N ′)r(D − y)r−1dy

= EN ′

∫ D

0
Hk−1(D − y, N + N ′)ryr−1dy = rPr−1
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Take the second derivative of (Pr−1)

1

r + 1 :

∂

∂D
(Pr−1)

1

r + 1 =
1

r + 1
(Pr−1)

−r

r + 1(r − 1)Pr−2

∂2

∂D2
(Pr−1)

1

r + 1 =
r − 1

r + 1
[− r

r + 1
(Pr−1)

−
r

r + 1
− 1

Pr−2(r − 1)Pr−2

+(Pr−1)
−

r

r + 1(r − 2)Pr−3]

=
r − 1

r + 1
[

r

r + 1
(Pr−1)

−
r

r + 1
− 1

]

∗[(r − 2)(r − 1)Pr−1Pr−3 − r(r − 1)Pr−2Pr−2]

The first two terms in the above equation is nonnegative. Denote the third term

by S(0) = (r− 2)(r− 1)Pr−1Pr−3− r(r− 1)Pr−2Pr−2, and we will show S(0) ≤ 0.

If 1 < r < 2, then clearly S(0) ≤ 0;

If 2 < r < 3, then limD→0 S(0) = 0, and

∂S(0)

∂D
= (r + 1)(r − 2)(r − 3)Pr−1Pr−4 + (r − 2)(r + 1)(r − 1)Pr−2Pr−3

−2r(r − 1)(r − 2)Pr−2Pr−3

= (r + 1)(r − 2)(r − 3)Pr−1Pr−4 − (r − 2)(r + 2)(r − 1)Pr−2Pr−3 ≤ 0

In general, for n < r < n + 1, the (n− 1)th derivative of S(0) is:

∂(n−1)S(0)

∂D(n−1)
= x1Pr−n−2Pr−1 + S(1)

where S(1) is a linear combination of terms: Pr−n−1Pr − 2, Pr−nPr − 3.....,

limD→0 S(1) = 0, and x1 = (r + 1)(r − 2)
∏n+1

i=3 (r − i) < 0.

If S(1) ≤ 0, then
∂(n−1)S(0)

∂D(n−1)
≤ 0. Since for any i ≤ n − 1, limD→0

∂(i)S(0)

∂D(i)
= 0,

we have
∂(i)S(0)

∂D(i)
≤ 0 and S(0) ≤ 0.
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To show that S(1) ≤ 0, we take first derivative again over S(1):
∂S(1)

∂D
=

x2Pr−2Pr−n−2 + S(3). Iteratively we take
∂S(k−1)

∂D
= xkPr−kPr−n−2 + S(k) for

any k ≤ n. Then we can show that xk ≤ 0 for any k ≤ n:

xk = (r + 1)(r − 2)(Ck−1
k+n−2 + Ck−3

k+n−2)
k−1∏

i=1

(r − i)
n+1∏

i=3

(r − i)

−r(r − 1)2Ck−2
k+n−2

k−1∏

i=2

(r − i)
n+1∏

i=2

(r − i)

=
k−1∏

i=1

(r − i)
n+1∏

i=2

(r − i)((r + 1)(Ck−1
k+n−2 + Ck−3

k+n−2)− 2rCk−2
k+n−2)

=
k−1∏

i=1

(r − i)
n+1∏

i=2

(r − i)((r + 1)(
(k + n− 2)!

(k − 1)!(n− 1)!
+

(k + n− 2)!

(k − 3)!(n + 1)!
)− 2r

(k + n− 2)!

(k − 2)!n!
)

=
k−1∏

i=1

(r − i)
n+1∏

i=2

(r − i)
(k + n− 2)!

(k − 1)!(n + 1)!

((r + 1)(n(n + 1) + (k − 1)(k − 2))− 2r(k − 1)(n + 1))

For r = n, ((r + 1)(n(n + 1) + (k− 1)(k− 2))− 2r(k− 1)(n + 1)) = (n + 1)(n +

1− k)(n + 2− k) ≥ 0 for k ≤ n.

For r = n + 1,

((r + 1)(n(n + 1) + (k − 1)(k − 2))− 2r(k − 1)(n + 1))

= ((n + 2)(n(n + 1) + (k − 1)(k − 2))− 2(n + 1)(k − 1)(n + 1))

= (n + 2)(k − 1)2 − (2(n + 1)2 + (n + 2))(k − 1) + n(n + 1)(n + 2)

The above expression can be viewed as a function of k. At k = n, the value is

3 ≥ 0. The first derivative at k = n is −3n− 8 < 0, therefore it is positive for

all k ≤ n.

Since ((r+1)(n(n+1)+(k−1)(k−2))−2r(k−1)(n+1)) is a linear function of

r and is positive at both r = n and r = n+1, it is positive. Since r−n−1 < 0,
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we conclude that xk ≤ 0.

For k = n,
∂S(n−1)

∂D
= xnPr−nPr−n−2 + xn+1Pr−n−1Pr−n−1. We have shown that

xn ≤ 0. Now we show that xn+1 ≤ 0.

xn+1 = (r + 1)(r − 2)Cn
2n−2

n∏

i=1

(r − i)
n∏

i=3

(r − i)− r(r − 1)Cn−1
2n−2

n∏

i=2

(r − i)
n∏

i=2

(r − i)

=
n∏

i=2

(r − i)
n∏

i=1

(r − i)((r + 1)Cn
2n−2 − rCn−1

2n−2)

=
n∏

i=2

(r − i)
n∏

i=1

(r − i)
(2n− 2)!

n!(n− 1)!
((r + 1)(n− 1)− rn)

=
n∏

i=2

(r − i)
n∏

i=1

(r − i)
(2n− 2)!

n!(n− 1)!
(n− 1− r) < 0

So limD→0 S(n−1) = 0 and
∂S(n−1)

∂D
≤ 0, thus S(n−1) ≤ 0. Similarly, for any k if

S(k+1) ≤ 0, then
∂S(k)

∂D
= xk+1Pr−kPr−n−2 + S(k+1) ≤ 0. Since limD→0 S(k) = 0,

we have S(k) ≤ 0. By induction S(0) ≤ 0. Therefore
∂2V k

∂D2
≤ 0 and V k is

concave in D.

2. If the optimal Q∗ satisfies FOC, and r is an integer, then Hk is concave:

Define P−1 = EN ′Hk−1(D, N + N ′), P−2 = EN ′Hk−1
D

′
(D, N + N ′), and P−3 =

EN ′Hk−1
D

′′
(D,N + N ′), then the following properties of Pr are different:

(a) limD→0 Pr = 0 for r ≥ 0.

(b) Pr ≥ 0 for r ≥ −2, and P−3 ≤ 0 by induction hypothesis.

(c)
∂Pr

∂D
= rPr−1 for r >= 1, and

∂Pr

∂D
= Pr−1 for r = 0,−1,−2.

And the proof needs to be modified in the following way:

∂(n−1)S(0)

∂D(n−1)
= x1P−3Pr−1 + S(1)

where x1 = (r + 1)(r − 2)
∏r

i=1(r − i) ≥ 0, P−3 ≤ 0. For any k ≤ n,
∂S(k−1)

∂D
=
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xkPr−kP−3 + S(k), where

xk = (r + 1)(r − 2)(Ck−1
k+r−2 + Ck−3

k+r−2)
k−1∏

i=1

(r − i)
r+1∏

i=3

(r − i)

−r(r − 1)2Ck−2
k+r−2

k−1∏

i=2

(r − i)
r+1∏

i=2

(r − i)

=
k−1∏

i=1

(r − i)
r+1∏

i=2

(r − i)
(k + r − 2)!

(k − 1)!(r + 1)!
(r + 1)(r + 1− k)(r + 2− k) ≥ 0

For k ≤ r we have limD→0 S(k) = 0.

∂S(r+1)

∂D
= xr+1P0P−2 + xr+2P−1P−1, where

xr+2 = (r + 1)(r − 2)Cr
2r−2

r−1∏

i=1

(r − i)
r−1∏

i=3

(r − i)− r(r − 1)Cr−1
2r−2

r−1∏

i=2

(r − i)
r−1∏

i=2

(r − i)

=
r−1∏

i=2

(r − i)
r−1∏

i=1

(r − i)((r + 1)Cr
2r−2 − rCr−1

2r−2)

=
r−1∏

i=2

(r − i)
r−1∏

i=1

(r − i)
(2r − 2)!

r!(r − 1)!
((r + 1)(r − 1)− r2) < 0

So limD→0 S(r+1) ≤ 0, and
∂S(r+1)

∂D
= xr+3P−1P−2, where

xr+3 = (r + 1)(r − 2)(Cr
2r−1 + Cr−2

2r−1)
r−1∏

i=1

(r − i)
r−1∏

i=3

(r − i)

−r(r − 1)2Cr−1
2r−1

r−1∏

i=2

(r − i)
r−1∏

i=2

(r − i)

=
r−1∏

i=2

(r − i)
r−1∏

i=1

(r − i)
(2r − 1)!

(r + 1)!(r − 1)!
((r + 1)(r + 1 + r − 1)− 2r(r + 1)) = 0

So S(r+1) ≤ 0. By similar argument
∂2V k

∂D2
≤ 0 and V k is concave in D.

3. If r is not an integer, then Q∗/D decreasing in D:

We show Q∗/D is decreasing in D by showing
∂Kk−1(Q,D,N)

∂D
|Q=u∗D is in-

creasing in D for any constant u. If so then for D1 < D2, and Q∗(D1) = D1,

we have
∂Kk−1(Q,D1, N)

∂D
|Q=D1 > 0, and thus

∂Kk−1(Q,D2, N)

∂D
|Q=D2 > 0, and

Q∗(D2) = D2.
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Similarly, if Q∗(D1) = u1D1 > D1, then
∂Kk−1(Q,D2, N)

∂D
|Q=u1D2 ≥

∂Kk−1(Q,D1, N)

∂D
|Q=u1D1

= 0, and Q∗(D2) ≤ u1D2. Therefore
Q∗(D2)

D2

≤ Q∗(D1)

D1

.

If Q∗(D1) = D1/a, then
Q∗(D2)

D2

≤ Q∗(D1)

D1

automatically holds.

Thus we need to show
∂Kk−1(Q,D, N)

∂D
|Q=u∗D is increasing in D for any constant

u.

∂Kk−1

∂Q
= cM − r2

Qr+1
Pr−1

∂Kk−1

∂Q
|Q=uD = cM − r2

ur+1Dr+1
Pr−1

We will show that
Pr−1

Dr+1
decreases in D.

∂

∂D

Pr−1

Dr+1
= −(r + 1)

Pr−1

Dr+2
+ (r − 1)

Pr−2

Dr+1

=
1

Dr+2
((r − 1)DPr−2 − (r + 1)Pr−1)

Let S(0) = (r − 1)DPr−2 − (r + 1)Pr−1, we will show S(0) ≤ 0 using similar

techniques used in the first step. For n < r < n + 1,
∂(n)S(0)

∂D(n)
= x1DPr−2−n +

x2Pr−1−n, where x1 =
∏n+1

i=1 (r−i) ≤ 0, and x2 =
∏n

i=1(r−i)−(r+1)
∏n

i=1(r−i) =

−r
∏n

i=1(r − i) ≤ 0.

Furthermore, limD→0
∂(k)S(0)

∂D(k)
= 0 for all k ≤ n−1. So S(0) ≤ 0 and

∂Kk−1

∂D
(Q,D, N)|Q=D

is increasing in D.

4. If r is an integer, then Q∗/D decreasing in D:

The proof above needs to be modified as follows: for r = 1,

∂

∂D

Pr−1

Dr+1
= −(r + 1)

P0

Dr+2
+

P−1

Dr+1
=

1

Dr+2
((DP−1 − (r + 1)P0)

Let S(0) = DP−1 − (r + 1)P0, then limD→0 S(0) ≤ 0.
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∂S(0)

∂D
= DP−2 − P−1, and limD→0

∂S(0)

∂D
≤ 0.

∂2S(0)

∂D2
= DP−3 − P−2 + P−2 = DP−3 ≤ 0. Thus S(0) ≤ 0.

For r ≥ 2, S(0) = (r − 1)DPr−2 − (r + 1)Pr−1.

∂(r+1)S(0)

∂D(r+1)
=

r−1∏

i=1

(r − i)DP−3 + r
r−1∏

i=1

(r − i)P−2 ≤ 0, and limD→0
∂(k)S(0)

∂D(k)
≤ 0 for

all k ≤ n. So S(0) ≤ 0 and
∂Kk−1

∂D
(Q,D, N)|Q=D is increasing in D.

5. If r is not an integer, and if Q∗ = D or Q∗ = D/a, then Hk is concave:

If Q∗ = D/a, then Hk = Lk−1(N) + cMD/a, which is clearly concave in D.

If Q∗ = D, then Hk = Lk−1(N)+cMD+
r

Dr
EN ′

∫ D

0
Hk−1(D−y, N +N ′)yr−1dy.

It is sufficient to show
Pr−1

Dr
is concave in D.

For n < r < n + 1,

∂

∂D

Pr−1

Dr
= cM +

1

Dr+1
((r − 1)DPr−2 − rPr−1)

∂2

∂D2

Pr−1

Dr
=

1

Dr+2
((r − 1)(r − 2)D2Pr−3 − (2r + 1)(r − 1)DPr−2 + r(r + 1)Pr−1)

Let S(0) = (r− 1)(r− 2)D2Pr−3− (2r + 1)(r− 1)DPr−2 + r(r + 1)Pr−1, we will

show S(0) ≤ 0.

∂(n−1)S(0)

∂D(n−1)
= x1D

2Pr−2−n + x2DPr−1−n + x3Pr−n, where

x1 =
n+1∏

i=1

(r − i) ≤ 0

x2 = 2(r − 1)(r − 2)
n∏

i=3

(r − i)C1
n−1 − (2r + 1)(r − 1)

n∏

i=2

(r − i)

=
n∏

i=1

(r − i)(2n− 3− 2r) ≤ 0

x3 = −(2r + 1)(r − 1)
n−1∏

i=2

(r − i)C1
n−1 + r(r + 1)

n−1∏

i=1

(r − i)

=
n−1∏

i=1

(r − i)(−(n + 1)(2r + 1) + r + 1) ≤ 0
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6. If r is an integer, and if Q∗ = D or Q∗ = D/a, then Hk is concave:

∂(r)S(0)

∂D(r)
= x1D

2P−3 + x2DP−2 + x3P−1, where

x1 =
r−1∏

i=1

(r − i) ≥ 0, P−3 ≤ 0

x2 = 2(r − 1)(r − 2)
r−1∏

i=3

(r − i)C1
r − (2r + 1)(r − 1)

r−1∏

i=2

(r − i)

=
r−1∏

i=1

(r − i)(2r − 1− 2r) ≤ 0

x3 = −(2r + 1)(r − 1)
r−1∏

i=2

(r − i)C1
r + r(r + 1)

r−1∏

i=1

(r − i)

=
r−1∏

i=0

(r − i)(−r) ≤ 0

7. The first derivative of Kk is continuous:

If there exists D such that Q∗(D) = D/a for D ≤ D, and Q∗(D) satisfies the

first-order condition for D ≥ D,
∂Hk

∂D
|D− =

∂Kk

∂Q
|Q=D +

∂Kk

∂D
|Q=D =

∂Kk

∂D
|Q=D

=
∂Hk

∂D
|D+

, since
∂Kk

∂Q
|Q=D = 0.

Similarly, if there exists D such that Q∗(D) = D for D ≥ D, and Q∗(D) satisfies

the first-order condition for D ≤ D, then
∂Hk

∂D
|D− =

∂Hk

∂D
|D+

.

By steps 1− 7 the theorem is proved.

B.3 Proof of Theorem 6

Proof: If a = 0,

H(i,D,N) + g/µ = Lk−1(i, N) + min
Q∈Ω(D)

Kk−1(Q, i, D, N)

= N ∗W + Wnew +
∞∑

N ′=0

Prob(N ′)
N+N ′−1∑

j=N

Hk−1(1, D̄, j)

+ min
Q∈Ω(D)

{cMQ +
∞∑

N ′=0

Prob(N ′)
∫ D

0
Hk−1(i + 1, D − y, N + N ′)dF (i, Q, y)}
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H0 = 0 is constant relative to cW , λ, T and Y . Assume Hk−1 increases in cW , λ,

stochastically increases in T , and stochastically decreases in Y .

∂Kk−1

∂Q
= cM +

∞∑

N ′=0

Prob(N ′)
∫ D

0
Hk−1(i,D − y,N + N ′)dF ′

Q(i, Q, y)(B.11)

Note that dF ′
Q(i, Q, y) = F ′′

Qy(i, Q, y)dy ≤ 0.

1. If cW increases: Hk−1 is larger,
∫ D
0 Hk−1(i,D−y, N +N ′)dF ′

Q(i, Q, y) is smaller,

and thus
∂Kk−1

∂Q
is smaller.

2. If λ increases: then Hk−1 is larger, and N ′ is stochastically larger. As
∫ D
0 Hk−1(i,D−

y, N+N ′)dF ′
Q(i, Q, y) is an decreasing function of N ′,

∑∞
N ′=0 Prob(N ′)

∫ D
0 Hk−1(i,D−

y, N + N ′)dF ′
Q(i, Q, y) is smaller. Therefore

∂Kk−1

∂Q
is smaller.

3. If production time T is stochastically larger, then Hk−1 is larger, W and

Wnew are larger, and N ′ is stochastically larger. As
∫ D
0 Hk−1(i,D − y,N +

N ′)dF ′
Q(i, Q, y) is an decreasing function of N ′,

∑∞
N ′=0 Prob(N ′)

∫ D
0 Hk−1(i,D−

y, N + N ′)dF ′
Q(i, Q, y) is smaller.

∂Kk−1

∂Q
is smaller.

4. If the yield Y is stochastically smaller, then Hk−1 is larger. If F ′′
Qy(i, Q, y) is

smaller, thus
∫ D
0 Hk−1(i,D − y, N + N ′)dF ′

Q(i, Q, y) =
∫ D
0 Hk−1(i,D − y,N +

N ′)F ′′
Qy(i, Q, y)dy is smaller. Thus

∂Kk−1

∂Q
is smaller.

Since Kk−1(Q, i, D, N) is convex in Q, if
∂Kk−1

∂Q
decreases, then the optimal Q∗k−1

increases.

We then prove Hk also increases if cW , λ increases, or if the time for each produc-

tion run T stochastically increases, or if the yield Y stochastically decreases.

1. If cW increases: then Hk−1 is larger, W and Wnew are larger, thus Hk is larger.

2. If λ increases: then Hk−1 is larger, Wnew is larger, and N ′ is stochastically
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larger. As
∫ D
0 Hk−1(i,D− y,N +N ′)dF (i, Q, y) is an increasing function of N ′,

thus
∑∞

N ′=0 Prob(N ′)
∫ D
0 Hk−1(i,D− y, N + N ′)dF (i, Q, y) is larger. Therefore

Hk is larger.

3. If production time T is stochastically larger, then Hk−1 is larger, W and

Wnew are larger, and N ′ is stochastically larger. As
∫ D
0 Hk−1(i,D − y,N +

N ′)dF (i, Q, y) is an increasing function of N ′, thus
∑∞

N ′=0 Prob(N ′)
∫ D
0 Hk−1(i,D−

y, N + N ′)dF (i, Q, y) is larger. Therefore Hk is larger.

4. If the yield Y is stochastically smaller, Hk−1 is larger. As Hk−1(i,D−y,N +N ′)

is an decreasing function of y,
∫ D
0 Hk−1(i,D − y, N + N ′)dF (i, Q, y) is larger.

Therefore Hk is larger.

Therefore by induction Q∗ increases.

B.4 Proof of Theorem 7

Proof: Let H̃(i, D − y, N + N ′) = min[H(i + 1, D − y, N + N ′), C(D − y)]. Let

H0(i,D,N) = 0 for all (i,D,N). Assume it is true for Hk−1 and each i:

1. Hk−1(i,D, N) is nonnegative;

2. Hk−1(i,D, N) increases in D;

3. Hk−1(i,D, N) increases in N .

Then H̃k−1 is nonnegative and increases in D and N for each i. Follow similar steps

as in the proof of Theorem 4, we can show that a unique optimal Q∗
i exists and

increases in D, N .

Since H(i + 1, D − y, N + N ′) is increasing in N , and C(D − y) is constant with

respect to N , then there exists a threshold N̄(D − y), such that the firm outsources
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if and only if N + N ′ > N̄(D − y).

B.5 Proof of Theorem 8

Proof: Define H̃(i,D− y, N + N ′) = min[H(i + 1, D− y, N + N ′), AS + cS(D− y)],

then H̃ is nonnegative and increasing in D. If the yield is stochastically proportional

power distribution, follow similar steps in the proof of Theorem 5, we can show that

H̃ is increasing and concave in D.

Since CS(D − y) = AS + cS(D − y) is linearly increasing in D − y, let Ā =

H(i + 1, 0, N + N ′), then if AS ≤ Ā, H(i + 1, D − y,N + N ′) and AS + cS(D − y)

interact at most once (as a function of D − y), and thus there exists a threshold D̄

such that subcontracting achieves minimum if and only if D − y ≤ D̄.

Furthermore, when the queue length N increases, H(i+1, D−y, N+N ′) increases,

while CS(D−y) = AS+CS(D−y) remains constant. Therefore the threshold increases

with larger N .

If A > Ā, then H(i + 1, D− y, N + N ′) and AS + cS(D− y) may interact at most

twice (as a function of D − y), and thus there exist two thresholds D ≤ D̄ such that

subcontracting achieves minimum if and only if D ≤ D − y ≤ D̄.

Furthermore, when the queue length N increases, H(i+1, D−y, N+N ′) increases,

while CS(D − y) = AS + CS(D − y) remains constant. Therefore the threshold D

decreases and D̄ increases with larger N .

Since the minimum of a linear function and a concave function function is still

concave, we have H̃(i,D− y,N +N ′) is still concave, which completes the induction.
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B.6 Proof of Theorem 9

Proof: For each N , we need to compare H(i, D,N) and CO(D) to make the

overtime decisions. Note that limD→0 H(i, D,N) = N ∗ W + Wnew + cR/µ, and

limD→0 CO(D) = cO/µ. Let cO = µ(N∗W+Wnew+cR/µ). Also note that
∂H

∂D
≥ ∂CO

∂D
.

Then if cO ≤ cO, H(i,D, N) and CO(D) never intersect as a function of D. Thus

the firm will run overtime production for any D.

If cO ≥ cO, then it is possible that H(i,D,N) and CO(D) intersect. Thus the

subcontracting policy takes a threshold structure.

However, let c̄O = arg max{cO|H(i, D̄, N) = CO(D̄)}. Then if cO ≥ c̄O, H(i, D,N)

always takes minimum for any D ∈ (0, D̄], thus the firm should not run overtime pro-

duction for any demand.
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APPENDIX C

Main Proofs in Chapter 4

C.1 Appendix

C.1.1 Proof of Lemma 1

Proof: Given wholesale price ω2 and demand Q2, Manufacturer chooses qM
2 ∈ [0, Q2]

to maximize profit:

RM
2 = (P2 − cM

2 )qM
2 + (P2 − ω2)(Q2 − qM

2 ) = (P2 − ω2)Q2 + (ω2 − cM
2 )qM

2

So Manufacturer produces qM
2 = Q2 if ω2 > cM

2 , and qM
2 = 0 if ω2 ≤ cM

2 . Then

Supplier’s expected profit is

RS
2 = EQ2(ω2 − cS

2 )Q21{ω2≤cM
2 } = (ω2 − cS

2 )Q̄21{ω2≤cM
2 }

Therefore Supplier charges ω2 = cM
2 and produces all if he can make positive profit,

i.e., if cS
2 ≤ ω2 = cM

2 , otherwise he will not produce anything. The outcome is as

described in the lemma.

C.1.2 Proof of Lemma 2

Proof: First we examine Manufacturer’s effort decision. If his production quantity

exceeds the minimum requirement, he chooses an effort level to maximize his expected
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second-period profit subtracted by effort cost.

max
εM
{−εM + EcM

2
(P2 − cM

2 )Q̄2} = max
εM
{−εM + EδM (P2 − cM

1 + gM(εM , δM))Q̄2}

= max
εM
{εM + EδM gM(εM , δM)Q̄2}+ (P2 − cM

1 )Q̄2

= max
εM
{εM + ḡM(εM)Q̄2}+ (P2 − cM

1 )Q̄2

Therefore Manufacturer chooses εM e
to maximize −ε+ ḡM(ε)Q̄2 independent of Sup-

plier’s effort decision. Since ḡM is concave, εM e
is unique.

Supplier also chooses an optimal effort level εSe
given his anticipated Manufac-

turer’s optimal effort, i.e.,

max{−εS + EδM ,δS(cM
1 − cS

1 + gS(εS, δS)− gM(εM e
, δM)1{qM

1 ≥qM
min})

+Q̄2}

There may be multiple εS that maximize the equation above, but since Supplier’s

actual cost in the second period does not affect Manufacturer’s profit, this will not

affect the analysis.

C.1.3 Proof of Lemma 3

Proof: Given a wholesale price ω1 and demand Q1, Manufacturer allocate produc-

tion in order to maximize profit:

RM
1 = (P1 − cM

1 )qM
1 + (P1 − ω1)(Q1 − qM

1 ) + (P2 − cM
1 )Q̄2 + GM(Q̄2)1{qM

1 ≥qM
min}

= (P1 − ω1)Q1 + (ω1 − cM
1 )qM

1 + (P2 − cM
1 )Q̄2 + GM(Q̄2)1{qM

1 ≥qM
min}

= (P1 − ω1)Q1 + (P2 − cM
1 )Q̄2 +





(ω1 − cM
1 )qM

1 if qM
1 < qM

min

(ω1 − cM
1 )qM

1 + GM(Q̄2) else

So the optimal quantity allocation is obtained by choosing qM
1 from {0, qM

min, Q1}, and

the lemma follows.

137



C.1.4 Proof of Theorem 1

Proof: Let RS(0), RS(qM
min), and RS(Q1) be Supplier’s expected profits if Manufac-

turer produces qM
1 = 0, qM

1 = qM
min, and qM

1 = Q1, respectively, then

RS(0) = (cM
1 − cS

1 −
GM(Q̄2)

qM
min

)Q̄1 + RSe

RS(qM
min) = (cM

1 − cS
1 )(Q̄1 − qM

min) + RMSe

RS(Q1) = 0 + RM e

If we can show RS(0), RS(qM
min), and RS(Q1) are all increasing in cM

1 − cS
1 , RS(0)

increases faster than RS(qM
min), and RS(qM

min) increases faster than RS(Q1), then there

exist two thresholds x1 and x2, as shown in Figure 4.1. So it is sufficient to show that

RSe
, RMSe

, and RM e
are all increasing in cM

1 − cS
1 , which is straightforward to show,

and
∂RSe

∂(cM
1 − cS

1 )
≥ ∂RMSe

∂(cM
1 − cS

1 )
≥ ∂RM e

∂(cM
1 − cS

1 )
.

Let h(x) = max{−εS + E(x + gS(εS, δS))Q̄2}, then h(x) is convex since the maxi-

mization and expectation of convex functions are still convex. Then RSe
= h(cM

1 −cS
1 ),

and RMSe
= h(cM

1 − cS
1 − gM(εM e

, δM)), so
∂RSe

∂(cM
1 − cS

1 )
≥ ∂RMSe

∂(cM
1 − cS

1 )
.

For the comparison between RMSe
and RM e

, let h1(ε
S) = −εS + E(cM

1 − cS
1 +

gS(εS, δS)−gM(εM e
, δM))+Q̄2, and h2 = E(cM

1 −cS
1 −gM(εM e

, δM))+Q̄2. Then for any

positive εS,
∂h1

∂(cM
1 − cS

1 )
≥ ∂h2

∂(cM
1 − cS

1 )
. Therefore

∂RMSe

∂(cM
1 − cS

1 )
=

∂h1

∂(cM
1 − cS

1 )
|εS∗ ≥

∂h2

∂(cM
1 − cS

1 )
=

∂RM e

∂(cM
1 − cS

1 )
. x1 < 0 since at cM

1 − cS
1 = 0, RS(qM

min) = RMSe
and

RS(Q1) = RM e ≤ RS(qM
min), thus it is never optimal for Manufacturer to produce all

demand in house.

The condition for x2 ≥ 0 is obtained by setting RS(qM
min) ≥ RS(0) at cM

1 − cS
1 = 0.
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C.1.5 Proof of Lemma 4

Proof: εM
1

e
=

1

4
a2Q2

2, εS
1

e
=

1

4
b2Q2

2, GM ∗
(Q2) =

1

4
a2Q2

2, GS∗(Q2) =
1

4
b2Q2

2,

gM(εM
1

e
) =

1

2
a2Q2.

Supplier makes wholesale price decisions by comparing the following four options

and the equilibrium outcome follows.

RS(Q1, Q2) = 0

RS(qM
min, Q2) = (cM

1 − cS
1 )(Q1 − qM

min)

RS(qM
min, 0) = (cM

1 − cS
1 (Q1 − qM

min) + (cM
1 − cS

1 −
1

2
a2Q2))Q2 +

1

4
b2Q2

2

= (cM
1 − cS

1 (Q1 + Q2 − qM
min) + (

1

4
b2 − 1

2
a2)Q2

2

RS(0, 0) = (cM
1 − cS

1 −
1

qM
min

1

4
a2Q2)Q1 + (cM

1 − cS
1 )Q2 +

1

4
b2Q2

2

= (cM
1 − cS

1 )(Q1 + Q2) + (
1

4
b2 − 1

4
a2 Q1

qM
min

)Q2
2

C.1.6 Proof of Lemma 6

Proof: (a) Based on the two-period results, Manufacturer is never hurt by Supplier’s

improvement, so (Q1 − qS
min)+ is dominated by Q1 − qS

min or Q1.

(b) Based on the two-period results, Manufacturer’s profit is independent of cS

for certain production allocation. Manufacturer benefits from Supplier’s learning

only when (qM
2 , qM

3 ) = (0, 0) if Supplier improves and (qM
2 , qM

3 ) 6= (0, 0) otherwise.

If Supplier does not improve or his improvement does not benefit Manufacturer,

(Q1 − qS
min) is dominated by qM

min or Q1.
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C.1.7 Proof of Lemma 7

Proof: εS∗(Q2 +Q3) = arg max{−εS
1 +(cM

2 − cS
2 + fS(εS

1 ))(Q2 +Q3)+GS∗(Q3)} and

the profit is positive if cM
2 − cS

1 ≥ A− GS∗(Q2 + Q3)

Q2 + Q3

+ N .

C.1.8 Proof of Lemma 8

Proof: If cM
1 −cS

2 < A, then cM
2 −cS

2 < A for any effort, and the problem is identical

to the benchmark case.

If cM
1 − cS

2 > A + E, then cM
2 − cS

2 > A if εM
1 = εM ∗

(Q2 + Q3). By investing more

effort the marginal benefit can only be smaller than fM ′
(εS)(Q2 + Q3).

If A ≤ cM
1 − cS

2 ≤ A + E, Manufacturer has two options: either improve by

εM ∗
(Q2 + Q3) or just improve to make cM

2 − cS
2 = A. The first option is better when

cM
1 − cS

1 < B.

C.1.9 Proof of Theorem 2

Proof:

(a) For cM
1 − cS

1 < A−D, cS
2 = cS

1 by Lemma 18, and cM
1 − cS

1 = cM
1 − cS

2 < A−D.

For cM
1 −cS

1 ≥ A+E, cM
1 −cS

2 ≥ A+E, Supplier will fully participate no matter

he learns or not. In both cases Manufacturer does not benefit from Supplier’s

learning. By Lemma 19, the problem is identical to the benchmark case.

(b), (c) For A − D ≤ cM
1 − cS

1 < A, if only Supplier can learn, by Lemma 18 cS
2 =

cS
1−∆cS(Q2+Q3) and cM

2 −cS
2 = cM

1 −cS
2 ≥ A since Supplier earns positive profit.

This brings Manufacturer extra profit (
Q2

qM
min

− 1)GM ∗
(Q3). If both can learn,

cS
2 = cS

1−∆cS(Q2+Q3) and Manufacturer invests no more than εM ∗
. This brings
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Manufacturer extra profit of no more than (
Q2

qM
min

−1)GM ∗
(Q3)+GM ∗

(Q2 + Q3).

If only Manufacturer can learn, cM
1 − cS

2 < A and he invests εM ∗
(Q2 +Q3). The

extra profit is GM ∗
(Q2 + Q3).

For A ≤ cM
1 −cS

1 < A+B, if only Supplier can learn, Manufacturer does not ben-

efit. If both can learn, Manufacturer benefits by no more than GM ∗
(Q2 + Q3).

This benefit must be higher than GM ∗
(Q2 + Q3) − (

Q2

qM
min

− 1)GM ∗
(Q3) since

the latter can always be achieved by investing εM ∗
(Q2 + Q3). If only Man-

ufacturer can learn, he invests εM ∗
and cM

2 − cS
2 < A. The extra profit is

GM ∗
(Q2 + Q3)− (

Q2

qM
min

− 1)GM ∗
(Q3).

For A + B ≤ cM
1 − cS

1 < A + D, if only Supplier can learn, Manufacturer

does not benefit. If both can learn, Manufacturer benefits by GM ∗
(Q2 + Q3) or

fM−1
(cM

1 −cS
1 +∆cS(Q2 +Q3)−A)+(cM

1 −cS
1 +∆cS(Q2 +Q3)−A)(Q2 +Q3) ≤

GM ∗
(Q2 + Q3), i.e., he either improves by ∆cM(Q2+Q3) or makes cM

2 −cS
2 = A,

depending on which profit is larger. If only Manufacturer can learn, cM
2 −cS

2 = A,

and Manufacturer benefits by fM−1
(cM

1 − cS
1 − A) + (cM

1 − cS
1 − A)(Q2 + Q3).

In all the above three cases, Manufacturer is better off with both learning than

with learning alone. So Manufacturer may produce Q1 − qS
min even if ω1 > cM

1 .

Let ω̃ be the price such that Manufacturer is indifferent between producing

qM
1 = Q1 and Q1 − qS

min, then ω̃ > cM
1 .

In the benchmark case, The difference of Manufacturer’s benefits of both learn-

ing and of only Supplier learning is GM ∗
(Q2 + Q3), while in the above three

cases the difference is smaller. Let ¯̄ω be the price such that Manufacturer is
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indifferent between producing qM
1 = qM

min and 0. By equating two profits we

can obtain ¯̄ω = cM
1 −

RM(both learn)−RM(only Supplier learns)

qM
min

, then ¯̄ω ≥ ω̄.

Manufacturer accepts a higher wholesale price than the one in the benchmark

case to give up full quantity.

Since Manufacturer is indifferent between producing qM
min and Q1 − qS

min when

ω1 = cM
1 , the equilibrium can be obtained by comparing Supplier’s profits of four

options: (ω1 = ¯̄ω, qM
1 = 0), (ω1 = cM

1 , qM
1 = qM

min), (ω1 = ω̃, qM
1 = Q1 − qS

min),

and (ω1 = ∞, qM
1 = Q1).

C.1.10 Proof of Theorem 3

Proof: In the first period Manufacturer only considers four quantities: Q1, Q1 −

qS
min, q

M
min, 0. Since we have proved that only four types of quantity allocation can be

optimal in two-period problem, there are totally 16 candidates, and we can rule out

five of them:

• (Q1, q
M
min, Q3) : If cM

1 > cS
1 , Supplier can offer ω1 = cM

1 , then qM
1 < Q1. Supplier

can earn positive profit in the first period and both players can be better off

because of smaller cS
2 ; If cM

1 < cS
1 , and Manufacturer produces everything in

Period 1, then cM
2 < cS

2 , and by Theorem 1 (qM
min, Q3) cannot be optimal.

• (0, Q2, Q3): Supplier’s profit RS = (ω1 − cS
1 )Q1 ≥ 0, implying cS

1 ≤ ω1 ≤ cM
1

and thus cS
2 ≤ cS

1 ≤ cM
1 = cM

2 . (Q2, Q3) is not optimal by Theorem 1.

• (Q1−qS
min, Q2, Q3), (Q1−qS

min, q
M
min, Q3), and (Q1−qS

min, q
M
min, 0) are not possible

by Lemma 17.
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Assuming that Demands across periods are stationary, three more candidates can

be further ruled out using two-period results:

• (Q1, 0, 0) is dominated by (qM
min, 0, 0):

By Theorem 1, if (0, 0) is the equilibrium quantity , then in scenario 1, cM
2 −cS

2 ≥
M

2Q
≥ −GS∗(Q)

2Q
≥ −GS∗(Q)

Q− qM
min

. In scenario 1, cM
2 − cS

2 ≥ M −N

qM
min

≥ M

2Q
≥

−GS∗(Q)

Q− qM
min

by the conditions of scenario 2. In scenario 3 and 4, cM
2 − cS

2 > 0 >

−GS∗(Q)

Q− qM
min

. If (Q, 0, 0) is the equilibrium quantity, then cM
1 − cS

1 ≥ cM
2 − cS

2 ≥
−GS∗(Q)

Q− qM
min

.

Compare Supplier’s profits of (Q, 0, 0) and (qM
min, 0, 0). By producing (qM

min, 0, 0)

Supplier can improve and earn GS∗(2Q) extra profit in the last two periods. In

the first period, Supplier offers ω1 = cM
1 and earns (cM

1 − cS
1 )(Q − qM

min) ≥
−GS∗(Q)

Q− qM
min

(Q − qM
min) = −GS∗(Q) ≥ −GS∗(2Q). Supplier earns nothing in the

first period by producing Q. So by producing (qM
min, 0, 0) Supplier’s profit is

higher.

• (Q1, q
M
min, 0) is dominated by (qM

min, q
M
min, 0):

By Theorem 1, (qM
min, 0) can be the equilibrium quantity only in scenario 2 and

3. In scenario 2, cM
2 − cS

2 ≥
N

2Q− qM
min

≥ −GS∗(Q)

2Q− qM
min

≥ −GS∗(Q)

Q− qM
min

. In scenario

3, cM
2 − cS

2 > 0 >
−GS∗(Q)

Q− qM
min

. If (Q, qM
min, 0) is the equilibrium quantity, then

cM
1 − cS

1 ≥ cM
2 − cS

2 ≥
−GS∗(Q)

Q− qM
min

.

Compare Supplier’s profits of (Q, qM
min, 0) and (qM

min, q
M
min, 0). Since Manufac-

turer does not benefit from Supplier’s learning, cM
2 are the same, so by produc-

ing (qM
min, q

M
min, 0) Supplier can improve and earn GS∗(2Q− qM

min) extra profit

143



in the last two periods. In the first period, Supplier offers ω1 = cM
1 and earns

(cM
1 − cS

1 )(Q − qM
min) ≥ −GS∗(Q)

Q− qM
min

(Q − qM
min) = −GS∗(Q) ≥ −GS∗(2Q− qM

min).

Supplier earns nothing in the first period by producing Q. So by producing

(qM
min, q

M
min, 0) Supplier’s profit is higher.

• (0, qM
min, Q3) is dominated by (qM

min, Q2, Q3) :

(qM
min, Q3) is optimal in the last two periods only when fM , fS satisfy conditions

in scenario 3 and 4. In scenario 3, cM
1 − cS

1 ≤ cM
2 − cS

2 ≤
N

Q2

<
M

Q2

; In scenario

4, cM
1 − cS

1 ≤ cM
2 − cS

2 ≤ M

Q3 + qM
min

<
M

Q3

. Manufacturer does not benefit

from Supplier’s learning and the equilibrium wholesale price is identical to the

benchmark case, ω1 = cM
1 − GM ∗

(2Q)

qM
min

.

RS(0, qM
min, Q3) = (cM

1 − GM ∗
(2Q)

qM
min

− cS
1 )Q + (cM

1 − cS
1 )(Q− qM

min) + GS∗(Q− qM
min)

RS(qM
min, Q2, Q3) = (cM

1 − cS
1 )(Q− qM

min)

RS(0, qM
min, Q3) − RS(qM

min, Q2, Q3) = (cM
1 − GM ∗

(2Q)

qM
min

− cS
1 )Q + GS∗(Q− qM

min)

≤ M − Q

qM
min

GM ∗
(2Q) + GS∗(Q− qM

min)

=
Q

qM
min

GM ∗
(Q)−GS∗(Q)− Q

qM
min

GM ∗
(2Q) + GS∗(Q− qM

min) ≤ 0

C.1.11 Proof of Observation 1

Proof: First notice that in the second period Manufacturer never shares effort cost

since he does not benefit from Supplier’s improvement.

In the first period,
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1. Supplier’s effort decision: Given cM
2 and εMS

1 , Supplier decides effort level εS
1 .

RS
2 =





0 if (qM
2 , qM

3 ) = (Q2, Q3)

(cM
2 − cS

2 )(Q2 − qM
min) if(qM

2 , qM
3 ) = (qM

min, Q3)

(cM
2 − cS

2 )(Q2 + Q3) + N otherwise

Since εS∗(Q2 − qM
min) = 0,

εS
1 =





(εS∗(Q2 + Q3)− εMS
1 )+, if RS(cM

2 , εMS
1 , εS∗(Q2 + Q3)) ≥ 0;

0, otherwise.

.

In other word, Supplier’s cost improvement remains the same, but he only

invests the effort not paid by Manufacturer. Therefore Supplier is more willing

to improve compared with no cost sharing case.

2. Manufacturer’s effort sharing decision:

Clearly 0 < εMS
1 ≤ εS∗(Q2 + Q3) does not help Manufacturer. By Lemma 18,

if cM
2 − cS

1 > A −D, then Supplier improves and produces full quantity in the

next two periods even without effort shared by Manufacturer, so εMS = 0.

If cM
2 − cS

1 < A − D, Manufacturer only benefits if he can induce Supplier to

fully participate in future periods and chooses the minimum possible effort that

makes Supplier indifferent between full participation and not participating. If

εMS > 0, Supplier always produces everything and gains zero profit. Let A−D′

be the smallest cost difference cM
2 − cS

1 such that εMS > 0.

3. Quantity and wholesale price decisions:

Consider A−D′ < cM
1 −cS

1 < A−D and close to A−D. If Manufacturer cannot

share effort cost, similar to Theorem 11, the equilibrium is identical to the

benchmark case and the wholesale price for qM
1 = 0 is ω̄ = cM

1 −
GM ∗

(Q2 + Q3)

qM
min

,
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where GM ∗
(Q2 + Q3) is the difference of Manufacturer’s profit in the last period

if both learn and if only Supplier can learn.

If Manufacturer has the option of sharing effort cost, then if only supplier

can learn, Manufacturer offers εMS to help Supplier and gains extra profit

−εMS +(
Q1

qM
min

−1)GM ∗
(Q3). If both firms can learn, since (

Q1

qM
min

−1)GM ∗
(Q3) >

GM ∗
(Q2 + Q3) by assumption, Manufacturer is better off by not fully improv-

ing. The optimal effort level keeps cM
2 − cS

1 + ∆cS(Q2 + Q3) = A. So the

extra profit gain from learning is between −εMS + (
Q1

qM
min

− 1)GM ∗
(Q3) and

−εMS + (
Q1

qM
min

− 1)GM ∗
(Q3) + GM ∗

(Q2 + Q3). Thus the profit difference be-

tween both learning and only Supplier learning becomes smaller, resulting a

higher wholesale price ω̄. Supplier need not offer a wholesale discount as deep

as before.

If cM
1 − cS

1 is close enough to A−D > 0, then the extra profit gain when both

can learn is close to −εMS + (
Q1

qM
min

− 1)GM ∗
(Q3), so ω̄ is close to cM

1 . If (0, 0, 0)

is the equilibrium quantity, Supplier gains profit RS = (ω̄ − cS
1 )Q1 + 0 > 0.

Since ω̄ = cM
1 − 1

qM
min

(RM
2 (both learn) − RM

2 (only S learns)), Manufacturer’s

profit can be obtained by:

RM = (P1 − cM
1 +

1

qM
min

(RM
2 (both learn)−RM

2 (only S learns)))Q1 + RM
2 (only S learns)

= (P1 − cM
1 )Q1 +

Q1

qM
min

(RM
2 (both learn)−RM

2 (only S learns)) + RM
2 (only S learns)

As mentioned above, (RM
2 (both learn) − RM

2 (only S learns)) becomes smaller

with effort sharing option, Manufacturer’s profit becomes smaller if Q1 is large

enough relative to Q2.
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