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ABSTRACT

A class of scheduling problems involving deferral costs
has been formulated by McNaughton, who has described a sim-
ple method of solution for the linear, single-processor case.
In this report dynamic programming and linear programming
techniques are applied to nonlinear and multiple-processor
problems. A dynamic programming solution of the nonlinear,
single-processor problem is possible, provided the number of
jobs is small. Transportation methods of linear programming
can be used to solve large nonlinear, multiple-processor
problems, provided the processing times for the jobs are
equal. Approximate and/or partial solutions are possible for

other cases.






1. INTRODUCTION

This report summarizes the results of an investigation of computational
techniques for scheduling problems involving deferral costs. These problems are charac-
terized as follows: There are n jobs and m identical processors. For each job i

(i=1, 2, ..., n), there is a fixed processing time a, that does not depend upon which pro-

cessor performs the job, or upon which jobs precede or follow the job on the same pro-
cessor. Also associated with job i is a deferral cost ci(t), which is assumed to be mono-
tonically nondecreasing with t, the time of completion of the job. It is desired to find a

schedule for the jobs, with completion times tl’ t2’ ceey tn such that the total deferral cost,

is as small as possible.

Deferral costs may be associated with ''relative’ and "'absolute' deadlines,
as indicated in Fig. 1. These problems have been studied in this context by McNaughton
(Ref. 1), who describes a simple procedure for finding a minimal schedule, subject to the

very severe restrictions

(a) there is only one processor, i.e., m = 1.
(b) the deferral costs are all linear, i.e., Ci(t) = p.lt , for

some p; ~ 0.
McNaughton also proves a basic theorem concerning the scheduling of multiple processors,
but concludes that this more general problem is quite difficult. These results are summa-
rized in Section 2 of this report. The remaining sections describe the application of dynamic

programming and linear programming methods to nonlinear and multiple-processor problems.
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2. KNOWN RESULTS

The most important results of McNaughton (Ref. 1) can be summarized as

follows: First, in the case of a single processor and linear deferral costs, where

c.(t) = p;t,

0,

N/

jobs should be ordered according to the ratios p.l/ai , with the job having the largest ratio
being performed first.

Second, in the case of multiple processors and linear deferral costs, if S is
a schedule with at least one "split," but only finitely many, then there is a schedule for the
same set of jobs with no splits and with a total deferral cost that is no greater than that of S.
A split is defined as an interruption in the execution of a job, or the shifting of a job from

one processor to another.



3. DYNAMIC PROGRAMMING TECHNIQUES

We shall now develop a dynamic programming method for solving single-pro-
cessor problems with deferral costs that are nonlinear but monotone nondecreasing with
time.

If deferral costs are monotone nondecreasing with time, it follows that there
exists an optimal schedule in which each job is followed immediately by the next job, i.e.,
there is no "idle time." Thus, if jobs 1, 2, 3, ..., k are performed by the single processor

before any others, the processor is busy with these jobs fromt =0tot =d, where

This is true without regard to the order in which the jobs are performed.
Let I denote the complete set of jobs, as represented by their indexes, i.e.,
I={12 ..., n}, andlet J denote an arbitrary subset, e.g., J = {1, 3, 5} . Then let

d(J) be defined as follows:

diJ) = i;f] a, .

It is seen that d(J) represents the length of time that the processor is busy performing those
jobs not included in the subset J.
Suppose we are given a schedule, and that the first k jobs performed under

that schedule are represented by I-J and the remaining n-k jobs by J. Bellman's Principle

regardless of the order in which the first k jobs are performed, the remainder of the sched-

ule constitutes an optimal schedule of the jobs J, subject to the restriction that none of these

jobs is commenced before t = d(J).




We now let C(J) denote the minimal cost of performing the jobs J, subject to
the restriction that no job is commenced before t = d(J). C is a well-defined function from
the set of all subsets of I to the set of real numbers. The solution of the problem involves

finding the value of C(I) and the schedule of jobs that yields this value as its cost.

With some reflection, it becomes apparent that

c) = 1.1“6“11 {ci(ai) +C(I- {1})}

More generally,

c) = {ci(ai+d(J)) v C(J - {1}} ,

and

where @ denotes the empty set. These functional equations are all that is required to define
a computational procedure for the solution of the single processor problem (Ref. 2).

Computational difficulty can be estimated as follows. There are 2" distinct
subsets J, where n is the number of jobs, and hence 2" values C(J) to be stored in computer
memory. The number of arithmetic operations is related to n2". These figures imply that
it is a simple matter with an IBM 7090 to solve problems for which n < 15, and that some-
what larger values of n are not intractable.

The dynamic programming approach can be extended to the multiple-processor
problem in various ways. In doing so, it is possible to make use of the fact that a schedule
is optimal only if the jobs assigned to each individual processor are sequenced as they would
be for a single-processor problem. However, no method for the multiple-processor prob-

lem known to the author is sufficiently nonexhaustive to be practicable.



4. TRANSPORTATION METHODS, UNIFORM PROCESSING TIMES

We shall now develop a method for solving multiple-processor problems with

nonlinear costs, subject to the restriction that the jobs have uniform processing times. This

method is based on the solution of the well-known transportation problem, a special type of
linear program.

One standard form of the transportation problem is as follows.

Given an
r X s cost matrix C = “cin and two sets of constants a,a,, ..., @, and 8,8, ...,
BS, determine an r X s solution matrix X = ”xij” so as to
r s
minimize ), ), Cii Xy (1)
i=1 j=1 N Y
s
subject to ), X;; > a (i=1, 2, , T) (2)
j=1
r
1;1 xl] é BJ (] =1, 2, ’ S) (3)

and X, 2 0.

Transportation problems with quite large dimensions, e.g., r =s

be solved efficiently by large scale digital computers like the IBM 7090. Many standard

routines for this purpose exist (Ref. 3).

Let us now proceed with the formulation of the scheduling problem. We

assume that all jobs have the same processing time, i.e., a; = a]. =aforalli, j, Asin
the previous section, we assume that the deferral costs are monotone nondecreasing with

time, so that there exists an optimal schedule in which each job is followed immediately by



the next job. Hence there will be an optimal schedule in which the time of completion of

each job will be

for some positive integer k.

It is a peculiar feature of transportation problems that there always exists an
optimal solution in which the variables take on nonnegative integer values, rather than
merely nonnegative real values. (This assumes all s, B]. are integers.) Moreover, the
standard routines always obtain such solutions. We make use of this fact in the following
interpretation of the solution variables. We let r = n and associate all variables having row

index i with the job i. Then

X‘xj > 0 if job i is assigned the completion

timet = ja

= 0 otherwise

For each i, if we set

]}

x.. > 1, (i=1, 2, ..., n) (2a)
1 Y-

n

]
we will cause exactly one of the x.lj to take on the value 1. Then, the condition Xij > 0is
equivalent to Xij = 1, and xij = 1if and only if job i is completed at time t = ja.

Each value of j corresponds to a possible time of completion, and we choose
s to be sufficiently large to allow all jobs to be performed, i.e., s is chosen as the least

integer not less than n/m, where m is the number of processors. It is clear that no more

than m jobs can be completed at the same time, since there are only m processors. Hence

we require
n
X.. < m, {(j=1, 2, ..., 8) (3a)
T =
i=1
Finally, we must represent the deferral costs by appropriate cost coefficients
Cij' This is quite simple, i.e.,



cij = ci(ja) , (i=1, 2, ..., n; j=1, 2, ..., s)

where Ci(t) is the original nonnegative, monotone nondecreasing cost function for job i.



5. TRANSPORTATION METHODS, NONUNIFORM PROCESSING TIMES

Let us consider the possible extension of transportation methods to multiple-
processor problems in which the jobs have nonuniform processing times.

Suppose all the processing times are integral values. We can then divide job
i into a, unit jobs, each having a processing time of one time unit. We then assign the

following interpretation to the solution variables Xij :



»
1

i 1 if one unit of the job i is assigned
completion time t =7j .

0 otherwise.

"

Since a, units of job i must be performed, we have, instead of Eq. 2a

K

(i=1, 2, ..., n)

LT Tm
>
AV
®

. ij
j ]
The constraint Eq. 3a remains the same, since it is possible to perform only m unit jobs
simultaneoulsy.

A schedule without splits will be obtained if and only if the ith row of the solu-

tion matrix X = “Xij“ takes on the form

(0,0,1,1, ..., 1,0,0). (5)
\‘..f———/
ai times

It is not possible to enforce this restriction within the framework of the transportation prob-
lem, and therein lies the difficulty of the method. It is, however, possible to insure that the
variables xij take on only the values 0 and 1, and not larger integer values. This is done by

applying the constraint

Xij<—1’ (i=1, 2, ..., n; j=1, 2, ..., 8). (6)
A transportation problem with a constraint like Eq. 6 is said to be "capacitated.' There
are standard methods of solution for capacitated problems (Ref. 3), and these are virtually
as efficient as those for the noncapacitated case.

We have yet to determine a suitable set of cost coefficients. Suppose these

are determined in accordance with the following constraint:

c.l]. = Ci(]) - Z Cik - (i=1, 2, ..., n; j=1, 2, ..., s) (7)

10



Then, any solution satisfying Eq. 5 will have the same cost as the deferral cost of the cor-

responding schedule. For any given i such that

xi].=1, ]i-ai+1§1§]i
= 0 otherwise
it follows that
e,
c.. X,, = c ..
iR VR . i i
j=1 UNRY ]:Ji—ai+1 R
j-1
= Z Gt S X
=it N M
= ¢y

One can now adopt the following strategy: Set up a capacitated transportation
problem with the cost coefficients determined in accordance with Eq. 7. Solve the problem
and see if the solution satisfies Eq. 5. If it does, an optimal schedule has been obtained. If
it does not, the value of the cost function at least gives a valid lower bound on the cost of an
optimal solution in which there are no splits. One can then try a new set of cost coefficients,
perhaps one designed to enhance the possibility of satisfying Eq. 5. Because transportation

problems are easily solved, one can afford to make several attempts of this type.

11



6. LINEAR PROGRAMMING TECHNIQUES

In this section we describe a method that may be useful for verifying the
optimality of a given multiple-processor schedule, if all deferral costs are linear.

Assume for the moment that all processing times are equal, i.e., a, = 1 for
i=1, 2, ..., n. Then each job is completely characterized by its nonnegative cost coeffici-

ent P where

Ci(t) = p.lt.

We suppose that no two coefficients are equal (the coefficients may always be perturbed

infinitesimally to satisfy this requirement), and we let r(pi) denote the rank of p;- For

example, if
then

r(pz) = 1; r(p4) = 2, I‘(p3) = 3, r(pl) = 4.

An optimal schedule is obtainedby the rule:
Job i is scheduled for completion at t=j if and only if

m(j-1) < r(pi) < mj. (8)

This rule says merely that all jobs of rank 1 through m must be scheduled for the first time
interval, those of rank m+1 through 2m for the second time interval, etc. An equivalent

form of this rule is as follows:

12



Job i is scheduled for completion at t=j if and only if

>
Si.1 2 Py 2 8y (9)
where Sj is any value such that
s]. < m;n {pi Ir(pi) < mj} ,
sj > max {p Ir(pi) > mj+1}

Now let us consider the case in which all processing times are not equal. We
assume that each a, is an integral value and so divide job i into a unit jobs, as in the previ-
ous section. We assign cost coefficients 9> Y490 -0 iy to the unit jobs obtained from

job i, subject to the constraint

a
Zl

q.,, = P.. (10)
K= ik i

The satisfaction of Eq. 10 insures that for any t,

a.-1

1:2::0 qik(t+k) = pit + constant .

Hence, if the unit jobs obtained from job i are performed in consecutive time intervals, the
total of the costs of the unit jobs will differ from the deferral cost of the original job only by
a constant.

Suppose one is able to divide a set of jobs into unit jobs and to assign cost
coefficients q;, to these unit jobs in such a way that (1) constraint Eq. 10 is satisfied, and
(2) an optimal schedule of the unit jobs by Eq. 8 or Eq. 9 places all the unit jobs of each of
the original jobs in consecutive time intervals. (The coefficients U take the place of P, in
these rules.) The result will then correspond to an optimal schedule for the original prob-
lem.

There does not always exist a set of coefficients Ay that will yield a solution

in this way. Nor does there appear to be a simple method to determine such coefficients

13



when they do exist, so that they may be used to set up an optimal schedule. It is, however,
possible to set up a linear programming problem to determine these coefficients for a given

schedule, if the coefficients exist. In this way an arbitrary schedule may be tested for opti-

mality.
Suppose that a given schedule calls for job i to be completed at t = ti' Let
T = max ti' Then we desire to find nonnegative values for qik(i=1, 2,...,n;k=1,2,..., a.l)
i
and sj(j=1, 2, ..., T), subject to
a,
)
Q.. = P., (i=1, 2, ..., n) (10)
k=1 ik i
Syt < Qi < Spr1-17 (i=1, 2, ..., n; k=1, 2, ..., a.l) (11)
where k' = ti-ai+k.

It is to be emphasized that the value of each % must be nonnegative, or else
the rules of Eq. 8 and Eq. 9 are not valid. If there are nonnegative values that satisfy
Eq. 10 and the inequalities of Eq. 11, these values can be found by the simplex method of
linear programming. If such values exist, it is known that the given schedule is an optimum
one. If no such values exist, then one can make no certain statement about the optimality or
nonoptimality of the given schedule.

It is feasible to solve linear programs with as many as 150 constraints. The

present problem has n + 2A constraints where

Hence, one may hope to apply this method to problems involving a moderate number of jobs,
say n = 20 or n = 50.
An example for which the above method is of no use is the following two-pro-

cessor problem:

14
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An optimal solution consists of having jobs 1, 2, and 3 performed in that order by one pro-
cessor, and jobs 4, 5, and 6 by the other. The reader may convince himself, first, that
the schedule is optimal, and second, that there is no way to satisfy Eq. 10 and Eq. 11 for

this schedule.

15



7. CONCLUSIONS

The applicability of the methods described in this report is summarized in
Table I below. These methods, of course, do not begin to exhaust the computational tech-
niques that might be applied to the present class of scheduling problems. For example, it
is also possible to formulate these problems as quadratic assignment problems (Ref. 4) or
as integer linear programming problems. Various methods of limited exhaustion might
also be applied. However, these other approaches seem to be of questionable value. The
efficient solution of large, nonlinear, multiple-processor problems, with nonuniform pro-

cessing times, is for the moment beyond our grasp.

Linear Costs Nonlinear Costs

Uniform Trivial problem Transportation method satis-
Processing factory for both single and
Times multiple processors (n < 200).

McNaughton's method satisfactory Dynamic programming satis-

for single processor (n unlimited); factory for single processor
Nonuniform transportation method at least yields (n < 15); transportation method
Processing lower bound for multiple processors at least yields lower bound for
Times (n < 200); linear programming may multiple processors (n < 200).

sometimes prove optimality of a

given solution (n < 50).

Table I. Summary of methods.

16
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