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CHAPTER I

Introduction

Cancer is a disease caused by the accumulation of phenotype-altering genetic mu-

tations in somatic cells. Malignancies exhibit different characteristics based on the

specific types of mutations they have acquired, but there are commonalities found in

most forms of cancer. In particular, deregulation of cell proliferation, evasion of pro-

grammed cell death, independence of growth or control signals, and increased genetic

instability endow a fitness advantage in cancer cells over their normal counterparts,

resulting in tumor formation.

Due to various regulatory mechanisms that preserve genomic integrity, the rate at

which genetic mutations arise is very low. Furthermore, it is believed that a single

mutation is not sufficient to initiate malignant growth, and thus the probability of

acquiring enough mutations to initiate tumorigenesis is small. Mammalian tissues

are organized in a hierarchical structure of stem, progenitor, and differentiated cells

that is believed to offer additional protection against cancer. Stem cells are a small

percentage of tissue cells and are long-lived with substantial proliferative potential.

They often have the ability to generate all of the other cells in the tissue. In contrast,

progenitors mature and lose proliferative capability as they divide, and eventually

form differentiated cells that are generally short-lived and compose the majority of
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the tissue. Consequently, it has been suggested stem and early progenitor cells are

the only tissue cells that persist long enough to accumulate enough mutations to

initiate malignancy.

Just as not every cell is capable of dividing, not all tumor cells have an equal

capacity for forming new tumors. Tumor-initiating cells have qualities similar to

those of stem cells, including longevity and the ability to self-renew or differentiate,

albeit abnormally. Due to these parallels, tumor-initiating cells are called cancer

stem cells. Cancer stem cells form as the result of mutation accumulation in stem

cells or in progenitors or differentiated cells that have acquired the ability to self-

renew. The cancer stem cell hypothesis suggests this population generates mutated

progeny and drives tumor growth, meaning that their eradication is required to cure

cancer.

In order to characterize cancer stem cells, it is necessary to know what mutations

deregulate normal cell behavior. Much research has focused on identifying specific

genetic transformations that initiate particular types of cancer in order to better

understand the causes and driving mechanisms of these tumors. Some mutations are

disease-specific, for example, the BCR-ABL fusion gene found in Chronic Myeloge-

nous Leukemia, while others, such as the tumor suppressor, p53, have been detected

in a wide variety of malignancies. In addition, investigation seeks to determine the

order in which mutations are acquired, because this may influence tumor growth

dynamics.

There are several challenges in cancer research, and mathematical modeling may

be helpful in addressing issues that are difficult to conclude experimentally. The

goal of this dissertation is to address, with the assistance of mathematical modeling,

several unanswered questions surrounding the cancer stem cell hypothesis. In partic-
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ular, focus is directed towards (1) investigating the sequential order of mutations that

causes the most rapid tumor initiation in hierarchical tissues, (2) identifying which

cellular mechanisms instigate aggressive malignancies when deregulated, and (3) ex-

amining tumor heterogeneity and composition, with specific attention to the cancer

stem cell population. This will be accomplished by developing a maturity-structured

mathematical model of mutation acquisition in hiearchical tissue.

Pertinent biological background information is presented in Chapter II to famil-

iarize the reader with the biology. Specifically, hierarchical tissue, cancer stem cells,

and the pathology of Chronic Myelogenous Leukemia are discussed. Chapter III re-

views previously developed mathematical models that were used to simulate tissue

of both normal homeostasis and cancer. In addition to highlighting the insightful

conclusions derived from these models, attention is drawn to the lack of cancer mod-

els that explicitly incorporate the maturity structure of hierarchical tissue, which

motivates this dissertation.

In Chapter IV, a maturity-structured model is developed and used to examine

mutation acquisition in hierarchical tissue. This model has many novel features that

have not previously been integrated. For instance, symmetric self-renewal, asymmet-

ric self-renewal, and symmetric differentiation divisions are incorporated, enabling

investigation of the effects on tissue homeostasis due to imbalance of the stem-cell

division pattern. In addition, sequential acquisition of genetic mutations in stem, pro-

genitor, and differentiated cells is explored. Evolving tumor composition is discussed,

and the significance of genetic instability and increased symmetric self-renewal are

emphasized.

Various factors influence the pattern of stem-cell division but these are not in-

corporated in the modeling in Chapter IV. In Chapter V, an ordinary differential
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equations model is presented that incorporates regulatory mechanisms governing

stem-cell division and quiescence. The model is used to simulate tissue generation

and achieve homeostasis. A sensitivity analysis is conducted in Chapter VI to de-

termine which model parameters impart the most effect on healthy tissue formation

and equilibrium. Specifically, the analysis suggests that tissue equilibrium is most

altered due to increased stem-cell proliferation, decreased stem-cell apoptosis, and

increased symmetric self-renewal.

Chapter VII explores the deregulation of stem-cell governing mechanisms as a

result of mutation acquisition. In particular, mutations increasing symmetric self-

renewal in stem cells are found to cause the most aggressive forms of cancer. Further-

more, it is demonstrated that regulatory mechanisms prevent significant expansion

of stem cells, but complete loss of governance can result in exponential growth.

Finally, in Chapter VIII, all of the model features from previous chapters are

incorporated into one comprehensive framework. Specifically, a maturity-structured

model of hierarchical tissue that incorporates stem-cell regulatory mechanisms is

used to investigate mutation acquisition initiating cancer. The model structure is

general enough to simulate tumorigenesis in various tissues, but as an example,

the dynamics of Chronic Myelogenous Leukemia are simulated to demonstrate the

model’s capabilities. To conclude, the relevance and significant contributions of

this modeling approach are discussed in Chapter IX, and future investigations are

proposed.



CHAPTER II

Biological Background

This year, the National Cancer Institute estimates that nearly one-and-a-half

million Americans will be diagnosed with cancer [93]. Although medical advances

have prolonged patient survival, cures remain elusive for many forms of cancer when

surgery is not enough, resulting in approximately half a million American deaths a

year [93]. Based on trends established in the last five years, forty percent of people

born today will develop some form of cancer in their lifetime [93]. The rate of

mortality in combination with the rate of incidence makes cancer a deadly disease

that affects the entire population. As a result, much research has been devoted to

understanding the causes of cancer in order to develop new therapeutic treatment

strategies.

The cancer stem cell hypothesis proposes that a small subpopulation of mutated

cells drives malignant growth [110]. These tumor-initiating cells are called cancer

stem cells because they share similar qualities with normal somatic stem cells, in

particular, the ability to self-renew. Furthermore, cancer stem cells are sometimes

more resistant to current methods of treatment, and their survival promotes malig-

nant regeneration and prevents complete eradication of the tumor. In this chapter,

biological background information is presented pertaining to cancer stem cells and

5
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their contribution towards cancer development in hierarchically structured tissues.

2.1 Hierarchical Tissue Structure

Mammalian tissues are complex and composed of heterogeneous cell populations

that differ in functional abilities as well as state of maturation. In many human

tissues, rare and immature stem cells have been identified that are ultimately re-

sponsible for generating all tissue cells [4, 98]. Stem cells proliferate and differentiate

to form progenitor cells, which are slightly more mature than stem cells. Progenitors

are not fully differentiated, but they expand through several rounds of cell division

and become more differentiated as they divide. When all rounds of division are com-

pleted, terminal differentiation ensures that cells reach full maturity, after which they

are generally incapable of additional proliferation. Tissues often consist of several

types of differentiated cells; each is necessary to perform specialized tasks. Many hu-

man tissues are formed and maintained through this hierarchical structure in which

stem cells give rise to progenitor cells, which in turn give rise to differentiated cells [4].

Stem cells have several characteristics that make them unique. First, because they

are näıve and multipotent, stem cells are capable of forming progeny of various lin-

eages [63]. In contrast, as non-stem cells divide, they also become more differentiated

and committed in lineage. Second, stem cells are rare within a tissue [4, 110]. Third,

stem cells may enter long periods of quiescence between divisions [39, 79, 89, 104].

While it is true that a few types of differentiated cells, such as lymphocytes, can

remain quiescent for an extended time between divisions, most progenitor and dif-

ferentiated cells do not have a significant G0 phase while retaining the ability to

divide intermittently [61]. Fourth, stem cells have the ability to self-renew, which

means that they can form daughter cells that are also stem cells [4, 110]. When non-
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stem cells divide, they lose some of their proliferative potential and become more

differentiated, but self-renewal allows daughter cells to retain stemness. It is this

final quality that allows stem cells to live longer than other types of cells without

exhausting their proliferative potential or depleting the stem-cell pool.

2.1.1 Stem-Cell Division

Stem cells are capable of both self-renewal and differentiation, which they ac-

complish through three different types of cell division. In a symmetric self-renewal

division, the two daughter cells are also stem cells, which increases the stem-cell pool

by one. Asymmetric division creates one daughter stem cell and one daughter pro-

genitor cell that is fated to differentiate, which does not change the stem-cell pool,

but increases the progenitor pool by one. Symmetric commitment occurs when both

daughter cells are progenitors, which depletes the stem-cell pool by one and increases

the progenitor pool by two. The three outcomes of stem cell division are depicted

in Figure 2.1. In order to regulate tissue homeostasis, a balance of divisions and

stem-cell apoptosis is necessary to maintain a constant number of stem cells while

also generating progenitor cells [34].

Although all three types of division have been observed in various experimental

settings, it is unknown which types of division occur in human tissues in vivo [97, 107,

125]. It is believed that stem cells possess the mechanisms to permit both symmetric

and asymmetric divisions, and can switch division type based on the demands of the

tissue [89, 104]. For instance, in time of injury or tissue generation, symmetric self-

renewal expands the stem-cell pool to speed cell production [89]. Some hypothesize

that under homeostatic conditions, asymmetric divisions occur in order to preserve

stem cell numbers, but a healthy steady state could also be maintained through

balanced symmetric self-renewal and differentiation divisions [34, 89].
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Figure 2.1: Stem cells are capable of three kinds of division. Stem cells may symmetri-
cally self-renew to form two daughter stem cells (A), asymmetrically self-renew to form
one stem cell and one progenitor cell (B), or symmetrically differentiate to form two
progenitor cells (C).

The immortal strand hypothesis suggests that stem cells have internal mechanisms

that asymmetrically cosegregate chromosomes at division ensuring the production

of one stem cell and one progenitor cell [81, 107]. According to this hypothesis,

the same set of chromosomes is always passed on to daughter stem cells, while the

newly synthesized set is passed on to daughter progenitor cells. Thus, the immortal

strand is a mechanism that assists stem cells in maintaining genetic integrity and

avoiding mutation during DNA replication. Chromosomal cosegregation has been

reported in a variety of mammalian adult stem cells, but experimental evidence

demonstrates that murine hematopoietic stem cells do not asymmetrically segregate

chromosomes [25, 64, 65, 106, 114, 115]. This finding suggests that chromosomal

cosegregation is not a characteristic of all stem cells and cannot be used as a method

of identifying and isolating stem cells within a tissue.

2.1.2 The Stem-Cell Niche

Because stem cells are rare and need to replenish tissue cells, they reside in niches

that both protect and regulate [42]. Niches have been identified in various tissues,
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including bone marrow, colon, testes, skin, hair follicle, and brain [42, 63, 97]. The

stem-cell niche is defined as the microenvironment of supporting cells and chemical

signals that regulates stem-cell maintenance and function [76, 97, 126]. It is believed

that the niche plays a crucial role in maintaining stem-cell qualities and regulating

the proliferation and differentiation of stem cells [42].

Physical interactions between stem cells and supporting cells in the niche are an

important aspect of niche control [42, 97]. Adherens junctions, integrins, and contact

with the extracellular matrix have all been implicated in rooting stem cells in the

niche [42, 97]. Because stem cells are usually in a quiescent state, it is thought

that signals in the niche inhibit differentiation [42]. Thus when a stem cell loses

interaction with the niche, it may lose its stem cell characteristics and differentiate.

In addition, the stem-cell niche may promote asymmetric divisions as a means of

mediating homeostasis [75].

Not only are stem cells difficult to isolate from mammalian tissues, but the inabil-

ity to artificially reconstruct the stem-cell niche is an additional obstacle preventing

long term observation of stem cells in vitro [75, 95]. Consequently, it is evident

that the stem-cell niche provides necessary signals to support stem cells. As more

is discovered about the stem cell niche, it may be possible to more successfully ob-

serve stem cells in vitro, which would foster additional understanding. Furthermore,

knowledge of the niche may also assist investigation regarding abnormal growth or

degeneration of hierarchically structured tissues [75].

2.1.3 The Hematopoietic System

Hematopoietic stem, progenitor, and differentiated cells compose what is arguably

the most understood hierarchical system. Due to the availability of data regarding

blood cell production, this dissertation uses the hematopoietic system to model hi-
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erarchical tissue, both in normal and cancerous situations. In order to further un-

derstand characteristics of hematopoiesis, detailed information of the hematopoietic

system is now presented. Particular attention is given to cells of the granulocyte

lineage as aberrant white blood cell production contributing to leukemia is discussed

in Section 2.3.

Hematopoietic stem cells are responsible for generating various cell types that cir-

culate in the blood and lymph. Differentiation of hematopoietic stem cells produces

progenitor cells of either the myeloid or lymphoid lineages. Myeloid progenitors are

precursors for erythrocytes, macrophages, platelets, and granulocytes, which include

neutrophils, eosinophils, and basophils. Lymphoid progenitors are precursors for

lymphocytes, including the T-cells and B-cells that are necessary for adaptive im-

munity [61, 99]. A schematic of the hierarchy of hematopoietic cells is shown in

Figure 2.2.

In accordance with other types of hierarchical tissue, hematopoietic stem cells

are a very small percentage of all hematopoietic cells. In murine models, stem cells

comprise less than 0.01% of bone marrow cells [35, 32, 68, 80, 94]. It is difficult to

purify immature cell populations and isolate stem cells, but several markers have

been identified. Human hematopoietic stem cells are enriched in populations with

the phenotype of CD34+, CD38−, Lin−, where Lin refers to a collection of “lin-

eage markers” that can be used to exclude differentiated cells [94]. Recently, it was

demonstrated that SLAM family receptors CD150, CD244, and CD48 could be used

to isolate stem and progenitor cells. Hematopoietic stem cells are purified in the pop-

ulation expressing CD150+ CD244− CD48−, transiently reconstituting multipotent

myeloid progenitors express CD244+ CD150− CD48−, and more committed progen-

itors express CD48+ CD244+ CD150− [68]. Even with the most current isolation
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[Thy1.1low, Flk-2neg], ST-HSC [Thy1.1low, Flk-2!], and MPP
[Thy1.1", Flk-2!] in combination with the [Linneg/low, c-Kithigh,
and Sca-1!] markers (10). Morphologically, HSCs and MPPs
resemble lymphocytes.

Differentiation Potential. Whereas LT-HSCs self-renew for the life
of the host, the derivative ST-HSCs retain self-renewal capacity
for #8 weeks (2) and give rise to the briefly self-renewing MPPs
(11), which then differentiate into oligolineage-restricted pro-
genitors through functionally irreversible maturation steps (see
Fig. 1). Two kinds of oligolineage-restricted progenitors have
been identified so far in the mouse: the common lymphoid
progenitors (CLPs), which at a clonal level are restricted to give
rise to T lymphocytes, B lymphocytes, and natural killer cells
(12), and the common myeloid progenitors (CMPs), which are
progenitors for the myelo-erythroid lineages (13). CMPs give
rise to myelomonocytic progenitors (GMPs), which in turn
produce monocytes!macrophages and granulocytes, and to
megakaryotic!erythroid progenitors, which differentiate into
megakaryocytes!platelets and erythrocyte, but still maintain the
potential for B cell lineage differentiation at an extremely low
frequency (13). Interestingly, both CMPs and CLPs can give rise
to dendritic cells (14, 15), suggesting the existence of alternative
commitment pathways to the mutually exclusive developmental
pathways for myeloid and lymphoid lineages. All of these
progenitor populations are separable as pure populations by
using cell surface markers and have been shown to be devoid of
detectable self-renewal activity after transplantation (16).

In parallel to the clarification of the developmental hierarchy
between HSCs and committed progenitors, considerable
progress has been made toward the identification of molecular
mechanisms regulating lineage commitment within the hema-
topoietic system. Although it is largely beyond the scope of this
review to describe these mechanisms in detail, they appear to
represent a stepwise process characterized by the alternate
expression of specific transcriptional regulators, growth factors,
and growth factor receptors, whose combination determines
lineage commitment and maturation (17, 18). With the recent
use of DNA microarrays to investigate the gene expression
profile of HSCs, progress has also been made toward the
identification of the downstream effectors genes of the tran-
scription factors (19, 20). Future gene expression profiling of
defined HSCs and progenitor populations should rapidly ad-
vance our understanding of the molecular regulatory networks
that control the development of all blood cells.

Proliferation, Apoptosis, and Self-Renewal. As HSCs mature from
the long-term self-renewing pool to MPPs, they progressively
lose their potential to self-renew but become more mitotically
active. In young mice, the frequency of HSCs in hematopoietic
tissues is relatively constant (21–23) and HSCs have long been
considered to be a resting cell population, with only a few stem
cells contributing to steady-state hematopoiesis. In fact, recent
studies have shown that in young adult mice #8–10% of
LT-HSCs randomly enter the cell cycle per day, with all HSCs
entering the cell cycle in 1–3 months (24, 25). Although the rate

Fig. 1. Hematopoietic and progenitor cell lineages. HSCs can be divided into LT-HSCs, highly self-renewing cells that reconstitute an animal for its entire life
span, or ST-HSCs, which reconstitute the animal for a limited period. ST-HSCs differentiate into MPPs, which do not or briefly self-renew, and have the ability
to differentiate into oligolineage-restricted progenitors that ultimately give rise to differentiated progeny through functionally irreversible maturation steps.
The CLPs give rise to T lymphocytes, B lymphocytes, and natural killer (NK) cells. The CMPs give rise to GMPs, which then differentiate into monocytes!
macrophages and granulocytes, and to megakaryotic!erythroid progenitors (MEP), which produce megakaryocytes!platelets and erythrocytes. Both CMPs and
CLPs can give rise to dendritic cells. All of these stem and progenitor populations are separable as pure populations by using cell surface markers.

Passegué et al. PNAS " September 30, 2003 " vol. 100 " suppl. 1 " 11843

Figure 2.2: Hierarchical structure of the hematopoietic system. Hematopoietic stem cells
form common myeloid and lymphoid progenitors, which in turn produce cells of the
myeloid and lymphoid lineages. Figure from [103].
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techniques, less than 50% of cells labeled as stem cells yield long-term reconstitu-

tion when transplanted into irradiated mice, implying that additional markers are

needed to truly distinguish long-term reconstituting hematopoietic stem cells from

the earliest progenitor cells [68].

Although there is a small number circulating in the blood, hematopoietic stem

cells mainly reside in the bone marrow, where most of blood cell production takes

place [103]. Progenitors expand and continue further maturation in the soft marrow

in the inner bone cavity [126]. It is believed that the hard outer bone surface offers

protection for immature cells while also creating a pressure gradient that pushes

fully differentiated cells into the bloodstream [39, 76]. Once myeloid cells complete

terminal differentiation, they no longer proliferate and are released into the blood.

Within the bone marrow, specialized niches maintain and regulate hematopoi-

etic stem cells. It is believed that endosteal and vascular or perivascular cells each

have roles in governing stem-cell behavior, as portrayed in Figure 2.3 [66]. The en-

dosteum is the vascularized inner lining of the bone surface, including osteoblasts

and osteoclasts that mediate bone formation and remodeling, respectively [66]. Al-

though hematopoietic stem cells home near the endosteal surface, it is uncertain if

endosteal cells compose the niche or instead produce signals that influence stem cells

nearby [66, 68]. Recently, it was observed that nearly all hematopoietic stem cells

reside within five cell diameters of sinusoids, which are specialized areas of the vascu-

lature specially constructed to permit cells to enter the blood [67, 68]. When taken

into account with the fact that hematopoietic stem cells can be mobilized quickly, this

provides compelling evidence for a vascular niche [66, 72]. Experimental evidence has

shown the importance of both endosteal and vascular cells in hematopoiesis, demon-

strating the significance of each for blood cell production [39, 87]. Consequently,
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it is likely that endosteal and vascular or perivascular cells are each significant in

hematopoietic stem cell maintenance, though more detailed information regarding

the contributions of these cells is needed [66].

Hematopoietic stem and progenitor cells must have high proliferative potential

in order to produce the vast number of differentiated blood cells that are needed

daily. The estimated blood cell daily turnover in humans includes approximately one

hundred billion granulocytes, two hundred billion erythrocytes, and one hundred and

fifty billion platelets [39, 78]. Most of the cell population expansion takes place in

the progenitor pool, which proliferates rapidly [109]. In contrast, hematopoietic stem

cells cycle less frequently, and the vast majority are in the G0 quiescent phase [89].

In fact, approximately 70-90% of hematopoietic stem cells are quiescent at any one

time [21, 39, 104]. In mice, 99% of hematopoietic stem cells have divided within 57

days [21]. Although the average division rate has not been explicitly experimentally

observed in humans, it has been hypothesized that cells divide may even divide more

infrequently in larger mammals, with a human hematopoietic stem cell cycling once

every 25-50 weeks, on average [1, 113].

Several factors influence hematopoietic stem cell proliferation and mediate the bal-

ance between quiescence, self-renewal and differentiation. It is believed that these

decisions are regulated through extrinsic and intrinsic signals, though the participat-

ing mechanisms are not fully understood [98, 108, 125]. For example, it is hypothe-

sized that osteoblasts secrete factors that maintain quiescence, namely angiopoietin

and thromboipoietin, while other factors, such as CXCL12, promote migration and

localization in the bone marrow [66]. The Bmi-1, Wnt, and Sonic hedgehog (Shh)

signaling pathways are involved in self-renewal [4, 57, 62, 63, 97, 108, 123]. Wnt-

signaling promotes self-renewal of hematopoietic stem cells, may encourage quies-
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HSCs also reside and undergo haematopoiesis in asso-
ciation with blood vessels in the placenta59,60. These data 
suggest that HSCs probably reside primarily in vascular 
and/or perivascular niches during embryonic and fetal 
development. Nonetheless, these niches remain to be 
characterized and could depend on critical contributions 
by non-vascular cells. It is also possible that embryonic 
and fetal HSCs behave differently from adult HSCs in part 
because the niches in which they reside are different.

Do perivascular cells regulate adult HSCs?
Vascular cells probably contribute to the creation of 
HSC niches in extramedullary tissues. HSCs are present 
throughout adult life in extramedullary tissues, such as 
the liver and spleen61, and extramedullary haematopoiesis  
can flourish in these tissues for long periods of time, 
despite the absence of bone or endosteum62,63. This 
implies that there are cells other than osteoblasts and 
osteoclasts that can create environments capable of 
sustaining adult HSCs. Most HSCs mobilized to the 
adult spleen localize adjacent to sinusoids6, suggesting 
that HSCs in extramedullary tissues may reside within 
perivascular niches. Sinusoids are specialized blood 
vessels that are present in haematopoietic tissues and 
through which venous circulation occurs. The walls of 
sinusoids are composed of fenestrated endothelial cells 
through which haematopoietic cells can enter and exit 
the circulation. The case for extramedullary vascular 
niches remains circumstantial as no data directly dem-
onstrate that perivascular cells in extramedullary tissues 
can promote the maintenance of HSCs.

Many HSCs in adult bone marrow can also be found 
around sinusoids. When the localization of HSCs in bone 
marrow has been studied using signalling lymphocyte 
activation molecule (SLAM) family markers, which give 
very high levels of HSC purity using a simple combination 
of markers, about 60% of bone-marrow HSCs were found 
adjacent to sinusoids and up to 20% of HSCs localized 
to the endosteum6,7. The remaining HSCs were scattered 
throughout the bone marrow, and were not located 
adjacent to sinusoids or the endosteum. HSCs were thus 
significantly more likely than other bone-marrow cells to 
localize to sinusoids or the endosteal surface, consistent 
with the idea that there might be niches in these loca-
tions7. Virtually all HSCs were within 5 cell diameters 
of a sinusoid in the bone marrow7, raising the possibility 
that even HSCs near the endosteum may be influenced 
by vascular or perivascular cells.

The observation that substantial numbers of HSCs 
localize to sinusoids in the bone marrow is reasonable, 
given that HSCs can be mobilized into circulation within 
minutes of administering interleukin-8 (IL-8) to mice64. 
Furthermore, HSCs deficient for Rac1 and Rac2 (genes 
encoding proteins that control cell migration) are defec-
tive in their ability to migrate (as assessed by in vitro 
migration assays) and yet conditional deletion of Rac1 and 
Rac2 from adult haematopoietic cells65 or administration 
of a RAC inhibitor leads to the entry of HSCs into circula-
tion within hours66. This rapid mobilization of HSCs that 
seem impaired in their migratory capacity suggests that 
many HSCs might not have to migrate very far to enter the 
circulation, such as would be the case if these cells were 
in perivascular niches, poised to enter circulation. All of 
these data raise the question of whether endothelial cells 
or perivascular cells actually create a perivascular niche 
that helps to maintain HSCs6,67 (FIG. 4a,c), or whether HSCs 
transiently migrate through perivascular sites on their way 
in and out of the circulation68 (FIG. 4b).

Similar to osteoblasts, endothelial cells can promote 
the maintenance of HSCs in culture69,70, and normal 
endothelial-cell function is required for haematopoiesis 

Figure 3 | Many different cell types may contribute to formation of HSC niches 
near the endosteum and around sinusoids. a | Osteoblasts and osteoclasts secrete a 
variety of factors that have been implicated in the regulation of haematopoietic stem 
cells (HSCs)2,43. Furthermore, bone remodelling by these cell types elevates the 
concentration of Ca2+ ions locally and in circulation, influencing HSC localization and 
maintenance through the Ca2+-sensing receptor44. Sympathetic-nervous-system activity 
also regulates HSC localization in the bone marrow85. The endosteal surface is also 
heavily vascularized. Vascular and perivascular cells, such as reticular cells8 and 
mesenchymal progenitors9, might contribute to the formation of HSC niches at or near 
the endosteum8,46. As-yet-unidentified cells could also contribute. b | Perivascular sites 
are likely to maintain fetal HSCs in the placenta, spleen and liver. During adulthood, the 
presence of HSCs around sinusoids in haematopoietic tissues6, the ability of endothelial 
cells to promote HSC maintenance in culture69,70, and the secretion of HSC regulatory 
factors by perivascular reticular cells and mesenchymal progenitors8,9,34, raises the 
possibility of perivascular niches for HSCs67 in the bone marrow and in extramedullary 
tissues such as the spleen. If such niches exist, a wide variety of vascular and 
perivascular cells could conceivably contribute to such niches, including endothelial 
cells, megakaryocytes, perivascular reticular cells, mesenchymal progenitors and other 
cell types.
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Figure 2.3: Hematopoietic stem cell niches in bone marrow. Hematopoietic stem cells are
governed by endosteal and vascular or perivascular cells in the bone marrow. Figure
from [66].
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cence, and influences cell fate decisions during development [42, 63, 87, 94, 98, 110].

In addition to chemical signals influencing stem-cell division, it is hypothesized that

cell-to-cell interaction and location within the niche may determine the mode of

stem-cell division as the niche size dictates the size of the stem-cell pool that can

be supported [33, 42, 76, 87, 97, 108]. Clearly, there are many influences governing

stem-cell proliferation, many of which are not yet fully understood; however, new

discoveries continue to be made.

The hematopoietic system is just one example of hiearchically structured tissue in

the human body. Composed of hematopoietic stem cells, common myeloid and lym-

phoid progenitors, and a variety of differentiated cell types, hematopoiesis is a prime

example of differentiated cell production that originates from the same population of

pluripotent precursors. Hematopoietic stem cells are the most studied mammalian

adult stem cells simply because of their accessibility. With new scientific advances

in experimental techniques, adult stem cells in other tissues are now being studied

in greater detail. Even though much has been learned, there are still many unknown

characteristics of adult stem cells. In particular, understanding the mechanisms gov-

erning stem-cell self-renewal and differentiation may shed light on abnormalities in

tissue regulation and maintenance.

2.2 Cancer Stem Cells

Cancer is a disease in which accumulated genetic mutations alter normal cellular

characteristics. It is thought that three to ten genetic mutations are required to

malignantly transform a cell [10, 50]. Although specific mutations vary from one

cancer to another, there are commonalities in the types of genes they affect. In their

review of cancer cells, Hanahan and Weinberg cite six characteristics that promote
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aberrant growth: self-sufficiency in growth signals, insensitivity to antigrowth signals,

evasion of apoptosis, limitless replicative potential, promotion of angiogenesis, and

tissue invasion causing metastasis [50]. Ultimately, malignant growth requires a

combination of mutations that gain cellular function in addition to those that remove

tumor suppression [50].

Hierarchical tissues are not uniform in cellular composition, hence it is not sur-

prising that the tumors arising in them are heterogeneous as well. Most notably,

not all tumor cells are capable of initiating tumorigenesis [4, 12, 54, 57, 102, 110].

Tumor-initiating cells actually possess many of the same qualities as stem cells, in-

cluding the ability to self-renew and differentiate into diverse cell types, significant

replicative potential, and longevity [102, 110, 123]. The noted similarities between

tumor-initiating cells and stem cells has led to their labeling as cancer stem cells,

and the cancer stem cell hypothesis is a model explaining tumorigenesis. This hy-

pothesis states that malignant tumors are initiated and driven by a subpopulation

of cancer stem cells that promote unregulated growth [110]. It is uncertain whether

or not tumorigenic cells are a small minority in all types of malignancies, and it is

possible that the proportion cancer stem cells in the tumor may characterize disease

aggressiveness [4].

Sometimes cancer stem cells are mutated stem cells and sometimes they arise

from the mutations of progenitor or differentiated cells that have acquired the ability

to self-renew extensively [4, 56, 60, 62, 102, 103, 110]. Because stem cells are are

long-lived, they have more time to acquire mutations that contribute to transforma-

tion into a malignant state [28, 102, 123]. In addition, they already possess internal

mechanisms enabling self-renewal and inhibiting apoptosis, so fewer mutations may

be needed to initiate malignant growth [110]. In contrast, progenitors cannot limit-
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CD34+CD38+ leukaemia cells cannot transfer disease to mice in the
vast majority of cases, despite the fact that they exhibit a leukaemic
blast phenotype. This suggests that normal HSCs rather than 
committed progenitors are the target for leukaemic transformation.

The most frequent chromosomal abnormalities in AML involve
the 8;21 translocation, which results in AML1–ETO chimaeric 
transcripts in leukaemic cells. In work done on human HSCs from
patients in remission, AML1–ETO transcripts were found in a 
fraction of normal HSCs in the marrow32. These prospectively 
isolated HSCs and their progeny were not leukaemic, and could 
differentiate to normal myeloerythroid cells in vitro. This indicates
that the translocation occurred originally in normal HSCs and that
additional mutations in a subset of these HSCs or their progeny 
subsequently lead to leukaemia32. In this study, the normal HSCs
were CD34+CD38–Thy-1+, whereas the leukaemic blasts were
CD34+CD38–Thy-1–. Although the translocation must have
occurred in normal HSCs, subsequent transforming mutations
might have occurred either in downstream Thy-1– progenitors, or in
HSCs if one consequence of neoplastic proliferation was the loss of
Thy-1 expression. The idea that stem cells are a common target of
pre-leukaemic events or leukaemic transformation is also supported
by work in lymphoid33 and chronic myeloid leukaemias34 where
clonotypic leukaemia-associated chromosomal rearrangements
have also been found in CD34+CD38– cells, a population enriched for
HSCs. Thus, a variety of leukaemias may arise from mutations that
accumulate in HSCs to cause their malignant transformation at the
stage of stem cells or their progeny.

Progenitor cells as targets of transformation
Although stem cells are often the target of genetic events that are 
necessary or sufficient for malignant transformation, in other cases
restricted progenitors or even differentiated cells may become trans-
formed (Fig. 3). By targeting the expression of transgenes specifically
to restricted myeloid progenitors using the hMRP-8 promoter, it is

possible to create a mouse model in which myeloid leukaemia arises
from restricted progenitors. These leukaemias resemble human
leukaemias in many respects, even though the targeted genetic
changes cause the leukaemias to arise from restricted progenitors
rather than stem cells. For example, we have generated transgenic
mouse models for myeloid leukaemias using an hMRP-8 promoter,
which targets the expression of transgenes specifically to myeloid
progenitors35. The enforced expression of the anti-apoptotic gene
bcl-2 in the myeloid lineage leads to a disease that is similar to human
chronic myelomonocytic leukaemia, including monocytosis,
splenomegaly and neutropenia, as the mice age. However, these mice
rarely develop acute malignancies.

To test whether additional mutations are required to synergize
with bcl-2 to promote AML, hMRP8–bcl-2 transgenic mice were bred
with lpr/lpr Fas-deficient mice. Remarkably, the loss of these two 
distinct apoptosis pathways led to the development of AML in 15% of
the mice36. These mice have an expansion of myeloblasts in all
haematopoietic tissues, with a substantially lowered number of 
granulocytes in the marrow and blood. These studies show that 
prevention of cell death is a crucial event in myeloid leukaemogenesis
and that restricted progenitors can be transformed. As described
above, in the case of spontaneously arising human leukaemias it is
likely that stem cells accumulate the mutations that are necessary for
neoplastic proliferation; however, these mutations may accumulate
in stem cells even while the effects of the mutations are expressed in
restricted progenitors. That is, mutations that accumulate in stem
cells may lead to neoplastic proliferation of primitive progenitors
downstream of stem cells.

Perhaps the reason why only 15% of mice progress to AML in mice
expressing Bcl-2 and lacking Fas is that the progenitors in these mice
also must acquire an additional mutation that causes dysregulated
self-renewal (Fig. 3). If a single additional mutation causes transfor-
mation then this transforming event is probably a gain-of-function
mutation, such as one that promotes constitutive self-renewal.
Because stabilized !-catenin can promote the self-renewal of HSCs
and other types of progenitors (ref. 25, and T.R. et al., submitted; 
Fig. 2), we propose that gain-of-function mutations in !-catenin
may, in many cases, transform deathless pre-malignant cells to 
cancer cells by promoting proliferation. In support of this is evidence
to show that activation of !-catenin and dysregulation of the Wnt
signalling pathway in general is common in cancer37, and that the 
targeted overactivation of this pathway can lead to tumours in 
transgenic mice38. It is also possible that mutations in other signalling
pathways promote progenitor self-renewal. It is important to study
this further, because understanding the molecular basis of the 
unregulated self-renewal of cancer cells will allow the design of more
effective therapies.

In essence, newly arising cancer cells may appropriate the
machinery for self-renewing cell divisions that is normally expressed
in stem cells. In the haematopoietic system, the only long-term self-
renewing cells in the myeloerythroid pathway (Fig. 1, bottom) are
HSCs; however, at least two differentiated cell types (Fig. 1, top) can
also self-renew. Both T and B lymphocytes undergo clonal expansion
on stimulation to produce resting memory lymphocytes. These 
lymphocytes proliferate again when the antigens are re-encountered.
Lymphoid leukaemias can activate these receptor-mediated 
mitogenic pathways in the course of leukaemogenesis39–43.

Cancer stem cells and aberrant organogenesis
Basic cancer research has focused on identifying the genetic changes
that lead to cancer. This has led to major advances in our understand-
ing of the molecular and biochemical pathways that are involved in
tumorigenesis and malignant transformation. But while we have
focused on the molecular biology of cancer, our understanding of the
cellular biology has lagged. That is, although we understand (to a first
approximation) the effects of particular mutations on the prolifera-
tion and survival of model cells, such as fibroblasts or cell lines, we
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Figure 3 Comparison of self-renewal during haematopoietic stem cell development
and leukaemic transformation. Because of their high level of self-renewal, stem cells
are particularly good targets of leukaemic transformation. Unlike normal
haematopoiesis, where signalling pathways that have been proposed to regulate self-
renewal are tightly regulated (top), during transformation of stem cells, the same
mechanisms may be dysregulated to allow uncontrolled self-renewal (middle).
Furthermore, if the transformation event occurs in progenitor cells, it must endow the
progenitor cell with the self-renewal properties of a stem cell, because these
progenitors would otherwise differentiate (bottom).
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Figure 2.4: Cellular origin of cancer stem cells. Cancer stem cells may form as a result of
either mutated stem cells or mutated progenitors that acquire the ability to self-renew.
Figure from [110].

lessly self-renew even though they have high proliferative potential. Eventually they

terminally differentiate and thus do not have the longevity of stem cells. However,

if progenitors acquire the ability to self-renew, this permits the accumulation of ad-

ditional mutations, thereby creating a cancer stem cell population [4, 60, 102, 110].

Another possibility is that some mutations could occur in stem cells that are inher-

ited by progenitor daughter cells and thus predispose these progenitors to transfor-

mation [103, 105, 110]. Figure 2.4 schematically shows how tumor growth can be

initiated in stem and progenitor cell populations. Cellular origin and order of mu-

tation acquisition likely influence the tempo of disease progression, therefore further

investigation of the pathways causing tumorigenesis may provide insight useful in

preventing malignant transformation.

Aberrant self-renewal is a key component in the behavior of cancer stem cells.

Deregulated pathways governing stem-cell self-renewal, such as Bmi-1, Wnt, and
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Shh, contribute to tumorigenesis in various tissues [3, 12, 23, 57, 102]. Mechanisms

mediating the balance between symmetric and asymmetric divisions may be po-

tential targets for mutation as well. For example, when the machinery governing

asymmetric division is deregulated, symmetrically dividing neuroblasts form tumors

while the oncogene NUP98-HOXA9 that favors symmetric self-renewal in hematopoi-

etic cells causes Acute Myelogenous Leukemia [89, 125]. It has been hypothesized

that asymmetric divisions may suppress tumors, whereas increased symmetric self-

renewal leads to malignancy [89]. Due to the recent findings regarding deregulated

self-renewal, more attention has been focused towards understanding how balanced

division is controlled.

In considering the important role that the stem-cell niche has in maintaining the

homeostasis of stem cells, it is not surprising that alteration in the microenvironment

may also contribute to cancer formation. First, it is thought that cancer stem cells

become more independent of the niche. They may not rely on environmental cues

to self-renew or proliferate and may ignore inhibitory signals [74]. Mutations may

also affect receptors and molecules that bind stem cells in the niche, and loss of this

control could potentially lead to metastasis [74, 105]. In addition, mutations could

affect the supporting cells found in the niche rather than the stem cells themselves,

thereby altering stem cell behavior. It has been demonstrated that stromal cells may

be manipulated in ways that cause cancer, proving that the niche itself can become

tumorigenic [16].

It is important to characterize tumor-initiating cells so that treatment successfully

targets them. Unfortunately, cancer stem cells may be more resistant to therapy

than other cancer cells. As shown in Figure 2.5, the cancer differentiated cells that

compose the bulk of the tumor are eradicated, but cancer stem cells persist, causing
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have unlimited proliferative potential and can acquire the ability to
metastasize. For many years, however, it has been recognized that
small numbers of disseminated cancer cells can be detected at sites
distant from primary tumours in patients that never manifest
metastatic disease58,60. One possibility is that immune surveillance is
highly effective at killing disseminated cancer cells before they can
form a detectable tumour. Another possibility is that most cancer
cells lack the ability to form a new tumour such that only the 
dissemination of rare cancer stem cells can lead to metastatic disease
(reviewed in ref. 45). If so, the goal of therapy must be to identify and
kill this cancer stem cell population. If solid cancer stem cells can be
identified prospectively and isolated, then we should be able to iden-
tify more efficiently new diagnostic markers and therapeutic targets
expressed by the stem cells.

If tumour growth and metastasis are driven by a small population
of cancer stem cells, this might explain the failure to develop thera-
pies that are consistently able to eradicate solid tumours61. Although
currently available drugs can shrink metastatic tumours, these effects
are usually transient and often do not appreciably extend the life of
patients62,63. One reason for the failure of these treatments is the
acquisition of drug resistance by the cancer cells as they evolve;
another possibility is that existing therapies fail to kill cancer stem
cells effectively.

Existing therapies have been developed largely against the bulk
population of tumour cells because they are often identified by their
ability to shrink tumours. Because most cells with a cancer have 
limited proliferative potential, an ability to shrink a tumour mainly
reflects an ability to kill these cells. It seems that normal stem cells
from various tissues tend to be more resistant to chemotherapeutics
than mature cell types from the same tissues64. The reasons for this are
not clear, but may relate to high levels of expression of anti-apoptotic
proteins65–68 or ABC transporters such as the multidrug resistance
gene69,70. If the same were true of cancer stem cells, then one would
predict that these cells would be more resistant to chemotherapeutics
than tumour cells with limited proliferative potential. Even therapies
that cause complete regression of tumours might spare enough 
cancer stem cells to allow regrowth of the tumours. Therapies that 
are more specifically directed against cancer stem cells might 
result in much more durable responses and even cures of metastatic
tumours (Fig. 5).

Genomics may provide a powerful means for identifying drug 
targets in cancer cells. Although targeting genetic mutations does not

require isolation of the stem cells, there are likely to be differences in
gene expression between cancer stem cells and tumour cells with 
limited proliferative potential. The application of microarray 
analysis to malignant tumours has shown that patterns of gene
expression can be used to group tumours into different categories,
often reflecting different mutations71–74. As a result, tumour types
that cannot be distinguished pathologically, but that can be 
distinguished on the basis of differences in gene-expression profile,
can be examined for differences in treatment sensitivity. 
However, gene-expression profiling is often conducted on tumour
samples that contain a mixture of normal cells, highly proliferative
cancer cells, and cancer cells with limited proliferation potential.
This results in a composite profile that may obscure differences
between tumours, because the highly proliferative cells that drive
tumorigenesis often represent a minority of cancer cells. 
Gene-expression profiling of cancer stem cells would allow the 
profile to reflect the biology of the cells that are actually driving
tumorigenesis. Microdissection of morphologically homogeneous
collections of cancer cells is one way of generating profiles that reflect
more homogeneous collections of cells75,76. The next frontier will be
to purify the cancer stem cells from the whole tumour that retain
unlimited proliferative potential and to perform gene-expression
profiling on those cells. In addition to being a more efficient way of
identifying new therapeutic and diagnostic targets, the profiling of
cancer stem cells might sharpen the differences in patterns observed
between different tumours.

Perspectives
The ideas discussed in this review can be summarized as a set of
propositions. First, self-renewal is the hallmark property of stem cells
in normal and neoplastic tissues. Second, in the haematopoietic 
system, long-term self-renewal is limited to rare long-term HSCs and
some lymphocytes; other cell types lack this potential. Third, 
cells that continue to divide over long periods of time are much more
likely to accumulate mutations that cause neoplasia. Thus 
genetic changes that lead to myeloid leukaemias must occur either in
long-term HSCs or in progeny that first acquire the ability to 
self-renew. The fact that normal long-term HSCs in leukaemia
patients often have leukaemia-associated translocations strongly
supports the idea that leukaemic mutations often accumulate in
HSCs. Mutations that lead to certain types of lymphoma may 
accumulate in lymphocytes, given their ability to self-renew over the
long term. Fourth, in other normal tissues that contain self-renewing
stem cells, such as the epithelia, the genetic changes that are steps in
the progression to solid tumours probably also occur in the stem
cells, or in progeny that acquire the potential for self-renewal. 
Fifth, distinct signalling pathways control stem cell self-renewal in
different tissues. But perhaps within individual tissues, the same
pathways are used consistently by both normal stem cells and cancer
cells to regulate proliferation. For example, Wnt signalling regulates
the self-renewal of normal stem cells in the blood and epithelia. 
Constitutive activation of the Wnt pathway has been implicated 
in a number of epithelial cancers. The regulation and consequences
of Wnt signalling in normal and neoplastic cells need to be 
further elucidated. Sixth, understanding the signalling pathways that
are used by for normal stem cells and neoplastic cells should 
facilitate the use of normal stem cells for regenerative medicine and
the identification of cancer stem cell targets for anticancer therapies.
Seventh, within most tumours there may exist cancer stem cells that
can self-renew indefinitely, in contrast to most stem cells that 
may have limited proliferative potential. Finally, in order to cure 
cancer, it is necessary and sufficient to kill cancer stem cells. To
accomplish this it will be necessary to identify and characterize the
properties of these cells.

There are many connections between stem cells and cancer that
are important to understand. Just as the signals that are known to
control oncogenesis are providing clues about the control of 
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Figure 5 Conventional therapies may shrink tumours by killing mainly cells with
limited proliferative potential. If the putative cancer stem cells are less sensitive to
these therapies, then they will remain viable after therapy and re-establish the
tumour. By contrast, if therapies can be targeted against cancer stem cells, then they
might more effectively kill the cancer stem cells, rendering the tumours unable to
maintain themselves or grow. Thus, even if cancer stem cell-directed therapies do
not shrink tumours initially, they may eventually lead to cures.
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Figure 2.5: Cancer stem cells must be targeted for disease elimination. Tumors return
when cancer stem cells persist, but are eradicated when cancer stem cells are targeted.
Figure from [110].

recurrence of the disease [62, 102, 110, 123]. There are various explanations as to

why cancer stem cells may be insensitive to current drug regimens. First, normal

stem cells resist drug-induced apoptosis due to multidrug resistant and ATP-binding

cassette transporters that pump drugs out of the cell. These could also be present in

cancer stem cells [29, 55, 62, 102, 110, 123]. Second, many drugs specifically target

cycling cells, but cancer stem cells may have long periods of quiescence, thereby

avoiding drug sensitivity [29, 62]. Third, additional mutations may accumulate,

causing drug resistance [29, 83]. Unfortunately, treatment strategies that successfully

eradicate cancer stem cells may also eliminate healthy stem cells, therefore it is

imperative that additional research is conducted to identify potential drug targets

unique to cancer stem cells to minimize toxicity to healthy cells.

The cancer stem cell hypothesis provides a new paradigm of tumorigenesis that
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accounts for heterogeneity, drug resistance, and relapse. It has reshaped the under-

standing of cancer and continues to influence how research is conducted. Since the

cancer stem cell hypothesis was first introduced, cancer stem cells have been identi-

fied in malignancies of the blood, brain, breast, colon, and skin [40, 123]. The next

section reviews a specific example of cancer that is driven by leukemic stem cells.

2.3 Chronic Myelogenous Leukemia

Chronic Myelogenous Leukemia (CML) is a form of leukemia caused by hyper-

cellarity of cells of the granulocyte lineage. In 2008, approximately 5,000 new cases

of CML will be diagnosed and 450 people will die from the disease in the United

States [45, 93]. CML generally manifests in later stages of life with the median diag-

nosis age ranging from 45-66 years, but it can affect people of all ages [45, 93, 112].

Although it takes a relatively long time to present itself, disease progression is fairly

rapid. Patients progress through three stages of disease, starting with a slow-growing

chronic phase that turns into an accelerated phase and finally ends in the aggressive

blast phase [41, 45, 59, 112, 120]. The whole process is fairly rapid as approximately

50% of patients die within five years of diagnosis, though survival times depend on

how early disease is detected and the success of treatment [93].

Symptoms alone are not sufficient to diagnose CML since they resemble those of

other diseases including weight loss, fatigue, night sweats, and enlarged spleen [45,

73]. Detection is often the result of a routine blood test due to elevated levels of

white blood cells [45]. A cytogenetic analysis concludes if the patient has CML by

determining the presence of the BCR-ABL fusion gene, the hallmark identifier of the

disease. BCR-ABL alone cannot initiate disease, however, as it has been traced in

healthy patients that do not develop CML [22, 47, 57, 60]. The mutations occurring
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in CML are discussed in greater detail in Section 2.3.1.

2.3.1 Mutations Causing Chronic Myelogenous Leukemia

The Philadelphia (Ph) chromosome formed by the translocation t(9; 22)(q34;

q11) is believed to be the primary source of CML [47, 103]. This mutation creates

the fusion gene BCR-ABL that alters cellular kinetics that give the mutated clone

growth advantage [47, 60, 119]. Many types of cancers have great variety in the

mutations that cause them, but approximately 90-95% of CML patients have the

Ph chromosome [41, 59, 103, 112]. Although the World Health Organization uses

the Ph chromosome and BCR-ABL to diagnose CML, there are cases that are not

Ph-positive, but they express a mutation whose effects are similar to those of BCR-

ABL [112, 120].

The BCR-ABL mutation alters several aspects of normal cellular behavior. It

inhibits apoptosis through increased survival and independence from signals that

negatively regulate growth [27, 47, 48, 112]. BCR-ABL also deregulates prolifera-

tion, though there is conflicting evidence as to how this is achieved. In vitro data

from hematopoietic precursor cells demonstrated that cycling time decreased, thereby

increasing the proliferation rate, while other reports argue that leukemic stem cells

retain long periods of quiescence and proliferation rates may be unaltered or even

slower [48, 62, 122, 125]. Cells expressing BCR-ABL still retain the ability to differ-

entiate, but it is hypothesized that they are able to complete extra rounds of division,

increasing the number of progeny they produce and causing hypercellularity [27, 55].

Furthermore, Ph-positive cells are more susceptible to additional mutations, increas-

ing genetic instability [47].

It is believed that CML originates in stem cells but driven by aberrant progenitor

expansion [22, 47, 112]. In patients that are Ph-positive, the mutated chromosome
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can be detected in stem cells as well as differentiated cells of the granulocytic, mono-

cytic, megakaryocytic, erythroid, and occasionally lymphoid lineages, suggesting that

the initial mutation occurs at the stem cell level [47, 59, 103]. It is suggested that the

effects of BCR-ABL are not fully manifested in stem cells, but rather progenitors [22].

Consequently, it is likely that the progenitor population that is Ph-positive suppresses

normal hematopoiesis because of its competitive growth advantage [41, 48].

The Ph chromosome alone is not sufficient to initiate CML, and additional mu-

tations occur as the disease progresses [22, 57]. The additional expression of the

anti-apoptotic protein Bcl-2 has been linked to progression into a more advanced

stage [59]. In addition, mutations to tumor suppressor genes, such as p53, may also

contribute to malignancy [45, 112, 122]. Deregulation of self-renewal pathways are

of particular interest in monitoring the progression from chronic to blast phase. For

instance, β-catenin is believed to give granulocytic progenitors self-renewal capabil-

ities, and levels are normal in cells during the chronic phase, but increased in the

later accelerated and blast phases [60]. Further investigation may determine which

mutations are most significant in promoting malignant transformation.

2.3.2 Three Phases of Disease Progression

Disease progression in CML is classified into three phases: chronic, accelerated,

and blast. In the chronic phase, differentiation still occurs, even in mutated cells [60].

As the disease progresses, immature leukemic cells self-renew instead of differentiat-

ing, and immature blast cells accumulate [60]. Staging is based on the percentage

of immature blasts that are in the blood or bone marrow, as determined by blood

tests and bone marrow aspirates. The World Health Organization classification la-

bels the chronic phase when blasts comprise less than 10% of bone marrow or blood.

Approximately 85% of diagnoses are during this stage. Accelerated phase is reached
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when blasts compose 10-19% of cells. When blasts are 20% of cells, the fatal blast

phase is diagnosed [120].

The chronic phase of CML is believed to be initiated by the BCR-ABL mutation.

BCR-ABL deregulates cell proliferation and increases survival to cause hypercellu-

larity, particularly in cells of the granulocytic lineage [47, 55, 59, 60]. During the

chronic phase, it is thought that the hematopoietic stem cell population remains at

levels comparable to those in healthy individuals [60]. In contrast, mutated progeni-

tor and differentiated cell populations expand and suppress hematopoiesis of healthy

cells due to competitive advantage [41, 60, 119].

The duration of the chronic phase ranges from 3-7 years [41, 59, 112]. During

this time, mutated cells slowly take over the bone marrow, depleting Ph-negative

cells [41]. Additional mutations accumulate that contribute to the progression from

the chronic to accelerated and blast phases [48, 57, 59, 103]. In particular, much

evidence suggests that progenitors acquire an increased capacity for self-renewal di-

visions that produce undifferentiated blast cells [22, 48, 60]. The immature blast

population expands and differentiation ceases so that blasts compose a greater per-

centage of all cells, and the accelerated phase is reached when blasts comprise 10%

of cells [48, 59, 60, 112, 120].

The accelerated phase is characterized by the increasing accumulation of blast cells

in the blood and bone marrow. In healthy hematopoiesis, the number of precursors

circulating in the peripheral blood is negligible. In contrast, blood tests from CML

patients show significant amounts of immature blasts due to extensive progenitor

expansion, inability to differentiate, and poor adhesion to bone marrow stroma [112].

Normal hematopoiesis is suppressed due to the dominance of the leukemic blasts, and

as a result, patients may experience anemia [73]. Although not as fatal as the more
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aggressive blast phase that follows, an estimated 10-20% of CML patients die in the

accelerated phase [45].

Once blast phase is reached, prognosis is extremely poor, with a median survival

time of five months if patients have already failed therapy with imatinib [45]. In blast

phase, patients experience night sweats, fever, and bone pain as well as increased

infections and bleeding as a result of lacking differentiated granulocytes and ery-

throcytes [45]. By this time, the leukemic clone has displaced normal hematopoiesis

and granulocytic precursors are increased [59]. As portrayed in Figure 2.6, it is be-

lieved the progression to blast phase is caused by mutated progenitors that have

acquired self-renewal capabilities [22, 60, 82]. Sadly, current treatment options do

not eradicate leukemic stem cells, and blast accumulation persists, ultimately causing

death [47, 55].

2.3.3 Treatment Options

Although prognosis is poor for patients in advanced phases of CML, the introduc-

tion of imatinib mesylate, commonly referred to as Gleevec, has demonstrated great

potential and revolutionized treatment. Imatinib was first used to treat patients in

1998, and since then has become the first choice of treatment options [47]. The use

of imatinib has displaced interferon-α, though the latter may be used in patients

that are resistant to imatinib [45].

Imatinib is one of the more successful drugs used in fighting cancer because it

successully attacks cancer cells without toxicity to healthy cells [46]. This drug

inhibits ABL tyrosine kinases, which allows it to selectively target cells expressing

BCR-ABL and inhibits their proliferation [55, 62]. Consequently, it is not uncommon

for patients to have molecular and cytogenetic responses after treatment; that is, they

have undetectable levels of BCR-ABL and the Ph chromosome, respectively [26, 47].
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this procedure is limited by the toxicity of the treat-
ment, the risk of graft-versus-host disease, and the
lack of suitable donors for many patients. Up to 60
percent of patients with chronic-phase CML enter a
period of remission when treated with imatinib, an

inhibitor of the BCR-ABL kinase. Despite its re-
markable efficacy, imatinib may not be curative,
because early progenitor cells carrying the Phila-
delphia chromosome persist in most patients, de-
spite treatment. Just as the Hydra regenerated two

Figure. Cellular Hierarchy in Normal Hematopoiesis and in CML.

Proposed cell compartments in normal hematopoiesis (Panel A), chronic-phase CML (Panel B), and CML blast crisis 
(Panel C) are shown. The circular arrows represent self-renewing compartments that contain cells with nuclear b-cate-
nin. Secondary events involving ongoing mutations leading to progression to blast crisis could occur in CML stem cells, 
granulocyte–macrophage precursors, or both. Ph1 denotes the Philadelphia chromosome.
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Figure 2.6: Progression of CML. Cells of the myeloid lineage expand during chronic phase, but
differentiation still occurs. As disease progresses, progenitors acquire the ability to self-
renew, causing the accumulation of immature blasts in the bone marrow and blood.
Figure from [22].
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If treatment is discontinued, however, relapse shortly follows, demonstrating that

imatinib does not completely eliminate all leukemic cells [26, 62].

The success of imatinib demonstrates that chemotherapeutic agents may be syn-

thesized to attack cancerous cells without also causing toxicity to healthy cells. Un-

fortunately, imatinib does have shortcomings in that it is not curative. One obstacle

is that imatinib cannot kill quiescent cells, which allows cancer stem cells to persist

and regenerate the cancer population once treatment is stopped [55]. In addition,

imatinib is more successful in killing cells that are more committed, whereas primi-

tive cells might be forced into quiescence instead of apoptosis [55]. Another challenge

is one that is common in treating many forms of cancer in that cells acquire addi-

tional mutations that increase resistance to the drug [47]. For these various reasons,

imatinib is unsuccessful in treating CML as it advances.

Allogeneic stem cell transplantation is the only curative treatment option known

to date, but it is not considered appropriate for all cases. The percentage of pa-

tients surviving ten years ranges between 30-60%, but there is a 5-50% chance of

mortality related to the procedure, which is why it is not always used as the first

option of treatment [45]. Disease phase and patient age are both critical factors that

determine whether or not to proceed with this treatment option. Allogeneic stem

cell transplantation is generally conducted for patients in the chronic phase because

survival chances decrease in more advanced stages [45]. Likewise, survival decreases

as age increases, so this aggressive treatment is likely reserved for young patients in

early chronic phase [45].

The progression of CML provides a perfect example of how cancer stem cells

initiate and drive malignancy. The dynamics of this type of leukemia are partic-

ularly interesting because it is slow to develop but advances quickly as a result of
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accumulating immature cells. Mathematical modeling can assist in gaining further

understanding of this disease by examining the mutation pathways that generate

disease while monitoring changes in stem, progenitor, and differentiated cell popu-

lations. The next chapter reviews previously developed mathematical models that

address such issues in order to highlight areas that require additional investigation.



CHAPTER III

Mathematical Modeling of Cancer in Hierarchical Tissue

Mathematical modeling has long been utilized to supplement biological research.

It can be used to interpret scientific data, make short- or long-term predictions based

on recorded observations, and quantify parameters that are difficult to determine

experimentally. In the area of cancer research, mathematical modeling addresses

issues such as malignant growth, mutation acquisition, chemotherapy regimens, and

tumor heterogeneity. The goal of this dissertation is to develop a mathematical model

that investigates mutation acquisition in hierarchical tissue. In this chapter, existing

relevant mathematical models are reviewed. Specifically, this chapter summarizes

previous investigations of hierarchical tissue, multi-step tumorigenesis, and cancer

stem cells.

3.1 Modeling Hierarchical Tissue

Most mammalian tissues are organized into a hierarchical structure consisting of

stem, progenitor, and differentiated cells, and the cellular kinetics of each of these

populations differs. Therefore, one cannot accurately model hierarchical tissue by

assuming tissue cells are homogeneous. It is true that meaningful biological conclu-

sions can be derived from models that simulate only one population of cells, but all

of the cells must exhibit similar characteristics. For instance, it is not unreasonable

28
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to model one cell population when all the cells are stem cells, but if differentiated

cells are added to the system, then these two cell types should be separately modeled

in order to capture the distinct dynamics of each population.

Stem cells generate all cells within the tissue, and under normal conditions, it

is believed that the equilibrium of the stem-cell population dictates tissue home-

ostasis. Consequently, several mathematical models specifically focus on stem-cell

regulation. In particular, the balance of self-renewal, differentiation, and apoptosis is

commonly investigated. A simple time-discrete model by Hardy and Stark examined

the relationship between stem and differentiated cells at steady state [51]. It was

determined that stem-cell equilibrium ensured homeostasis in differentiated cells as

well. Although this model simplified the mechanisms governing stem-cell division

and differentiation by using constant probabilities for each, the general conclusion

that stem-cell kinetics dictate tissue homeostasis is insightful.

More complicated models attempt to depict the intricate feedback regulations that

govern stem-cell self-renewal, differentiation, and quiescence. For instance, Mackey

introduced a model in which proliferating and quiescent stem cells were separated

and the rate of self-renewal was dependent on the number of stem cells in the sys-

tem [77]. By making stem-cell proliferation dependent on the number of stem cells,

proliferation increases when stem cells are depleted and decreases when stem cells

are numerous to prevent over-expansion, thereby incorporating negative feedback as

a means of achieving and maintaining homeostasis. Further complexity was included

in this model by the incorporation of a time delay that corresponded with the cycling

time of proliferating cells. This feature helped to capture the dynamics of cyclical

neutropenia.

Collaborators later extended Mackey’s modeling framework in various ways. In
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2001, Andersen and Mackey used the model to investigate chemotherapeutic effects

on cancerous cells in Acute Myelogenous Leukemia [5]. Cell dynamics were modeled

for both normal and malignant bone marrow cells, in order to determine the success

or failure of several types of chemotherapy that target proliferating cells. To make

predictions, normal and cancer cell dynamics were simulated separately, that is they

did not coexist in the same tissue, with appropriate corresponding parameters. In

addition, heterogeneity of bone marrow cells was not considered and mutation ac-

quisition initiating malignancy was not discussed. However, from this model, the

authors predicted that chemotherapy would not be effective, especially if tumor cells

were capable of proliferating faster than normal cells.

Bernard et al. and Colijn and Mackey added mature cell populations to create

a more comprehensive model of the hematopoietic system [13, 24]. The former

considered only mature neutrophils in a model that simulated cyclical neutropenia.

The latter included neutrophils, platelets, and erythrocytes to capture the cyclical

dynamics of Periodic Chronic Myelogenous Leukemia. Both models incorporated

negative feedback mechanisms controlling the rate of differentiation into committed

lineages. As a result, regulatory mechanisms governed both stem-cell symmetric

self-renewal and symmetric commitment differentiation.

The inclusion of regulatory feedback is a significant improvement in modeling

tissue homeostasis. One shortcoming of the models by Mackey et al. is the absence

of asymmetric stem-cell divisions. As a result, differentiated progeny only increase

when stem-cell differentiation occurs, which depletes the stem-cell population by one.

Although stem-cell loss is balanced by symmetric self-renewal divisions, the omission

of asymmetric division does not permit differentiated-cell expansion without some

expense to the stem-cell pool. Another limitation is the exclusion of intermediate
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progenitor populations. Progenitors are not explicitly modeled but are represented

in an amplification factor that incorporates precursor proliferation and apoptosis

rates as well as the number of divisions that transpire between näıve stem cells and

terminally differentiated cells.

Tissue hierarchy naturally lends itself to a maturity-structured mathematical

framework. Several approaches have been taken in developing models that include

progenitor populations. A simple structure classifies cells into stem, progenitor,

and differentiated populations and model parameters are values that are averaged

throughout the entire subpopulation [83, 118]. The addition of an intermediate

progenitor pool more accurately simulates hierarchical tissue and may be accept-

able when the characteristics of early progenitors resemble those of late progenitors.

However, early progenitors often behave markedly different from progenitors later

downstream, so that averaging the kinetics of all progenitors may not provide favor-

able results.

There are two general model structures that can capture the detailed growth

dynamics in all of the intermediate progenitor populations. One discretizes ma-

turity based on the number of divisions a cell has completed, while the other is

maturity-continuous [36]. The former was conducted by Stochat et al. and re-

cently in collaboration with Ashkenazi et al., while the latter has been used to model

hematopoiesis [7, 100, 117]. These maturity-structured models are not to be confused

with age-structured models in which cell age represents progression through the cell

cycle [14, 111]. Such models provide useful insight about the cycling distribution of

cells within a tissue but are not within the scope of this dissertation.

When maturity is discretized, equations are created for each subpopulation. In

so doing, all rates of entry or exit are specific for that cell population and need not
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be uniform throughout all populations. Generally, cells of maturity i exit through

apoptosis or by dividing and maturing to form cells of maturity i+1. If self-renewal

is permitted, then the cell does not advance in maturity and remains in the ith popu-

lation after division. This type of structure explicitly simulates all of the dynamics of

intermediate populations, but one potential drawback is the system of equations may

be rather large since the number of equations in the system is often determined by

the maximum number of divisions that can occur. In contrast, maturity-continuous

models can capture the same dynamics as discretized models with only a few equa-

tions. A maturity variable is introduced, enabling rates to depend on cell maturity.

Because maturity is continuous, smooth distribution curves can be generated that

quantify the number of cells in any maturity bracket. One hindrance of this model

is that it involves partial differential equations, which can be difficult to analyze

theoretically.

In essence, both discretized and continuous model structures effectively capture

the dynamics of hierarchical tissue, but each has its own disadvantages and advan-

tages. A discretized approach was used in collaboration with Ashkenazi et al., but

in the present work, a maturity-continuous model will be developed. In particular,

it will differ from previous models by including all three modes of stem-cell divi-

sion and incorporating regulatory mechanisms that govern stem-cell self-renewal and

differentiation.

3.2 Modeling Multi-Step Tumorigenesis

It is well known that cancer is a multi-step process in which somatic mutations

accumulate to initiate malignancy [10, 50]. While it is generally accepted that muta-

tions causing angiogenesis and metastasis occur later in development, there is much
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uncertainty regarding the order of mutation acquisition in the early stages of tumori-

genesis. Mathematical modeling has provided insightful information regarding these

mutagenic pathways. In particular, modeling can help highlight which transforma-

tions most increase cell fitness, determine which mutations speed cancer onset and

progression, and predict the order of mutation acquisition in specific malignancies.

Because cancer is a result of genetic mutations, there is some degree of probability for

cell transformation. Stochastic models can explore random events, while determin-

istic models predict the average outcome based on mutation rates and probability

distribution functions. In this section, the latter are summarized.

In order to address issues of healthy cell loss that contribute both to aging and

tumorigenesis, Wodarz developed a model of hierarchical tissue that modeled the

degeneration of stem cells and subsequent progenitors [124]. Two scenarios of mu-

tation accumulation were considered. When mutations did not occur during cell

division, it was hypothesized that a faster rate of cell turnover protected against the

mutation of normal cells. However, if mutations occurred during division, then the

model predicted that faster proliferation rates promoted cancer, since cells had more

opportunities to acquire mutations. This mathematical model did not explicitly in-

clude mutated cell populations, but rather investigated the loss of non-mutated cells

in a hierarchical tissue.

The order of mutation acquisition likely affects the tempo of malignant growth.

Spencer et al. developed a model of ordinary differential equations of a homogeneous

tissue to address which pathway instigated the fastest tumor growth [116]. Loosely

based on breast cancer data, their model predicted that evasion of apoptosis, followed

by increased replication, then angiogenesis, then genetic instability constituted the

fastest path to cancer. Their model, however, did not actually discriminate the se-
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quential order in which mutations were acquired. For instance, cells with the ability

to evade apoptosis as well as increased proliferation were collectively combined into

the same subpopulation and the historical order of mutation was not distinguished.

Since cells with the mutation for evasion of apoptosis surpassed all other popula-

tions expressing only one mutation, it was assumed that this was the first event in

the fastest sequence. Similar calculations concluded subsequent transformations to

establish the fastest path, ignoring the specific order of mutagenic events.

To specifically model mutli-step tumorigenesis in the breast, Enderling et al. de-

veloped a model that incorporated the multi-step approach of Spencer et al. for a

specific mutation sequence [38]. Breast stem cells sequentially acquired two muta-

tions to knock out one tumor suppressor gene, followed by an additional two muta-

tions that removed a second tumor suppressor gene. Cells that had completely lost

both tumor suppressor gene alleles were considered cancerous stem cells. In addition,

the authors included radially symmetric spatial aspects to simulate tumor growth.

As a result, non-cancerous cell populations were modeled with ordinary differential

equations, while cancerous cells were modeled with a partial differential equation

that was dependent both on time and a one-dimensional space variable. This model

predicted that in order to generate a tumor within the clinically observed time, either

mutations are acquired before puberty that make cells predisposed to accumulating

additional mutations or genetic instability occurs early.

Several models have been developed that emphasize the significance of genetic

instability in cancer-initiation. These models demonstrate that genetic instability

promotes faster tumor growth. Beckman and Loeb used a deterministic model to

figure out the probability that a cell would become cancerous based on the order

in which the mutator phenotype was acquired [11]. They concluded that genetic
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instability confers the greatest advantage when it occurs as the initial mutagenic

event and becomes increasingly significant in highly proliferative tissues. Their re-

sults confirm those of Michor et al., who established that chromosomal instability is

likely an early event in the initiation of colon cancer [84, 85].

To demonstrate the competitive advantage of mutator cells over those that are not

unstable, Komarova and Wodarz developed a differential equations model that con-

trasted the fitness of these two cell types [69]. This study hypothesized that mutator

cells do not necessarily expand faster than stable cells during mutation acquisition.

For instance, the magnitude of mutation rate and the extent to which apoptotic

checkpoints remain in tact both influence whether the mutator or stable phenotype

is favored. Therefore, they conclude genetic instability is most tumorigenic when

programmed cell death is previously deregulated.

Clearly the order of mutation acquisition affects tumor dynamics. The multi-

step models mentioned here were did not consider how hierarchical organization may

affect the pathways to tumorigenesis. Due to the longevity and increased proliferative

potential of stem cells in comparison to terminally differentiated cells, it is reasonable

to propose that transformed stem cells are more capable of propagating malignancy.

As a result, segregating stem, progenitor, and differentiated cells in multi-step models

can generate more accurate results of mutation acquisition in hierarchical tissue.

3.3 Modeling Cancer Stem Cells

Not all mutated cells are equal in their ability to promote malignancy. It is be-

lieved that only a small percentage of tumor cells are responsible for cancer initiation

and growth. These tumor-initiating cells share many qualities with stem cells, partic-

ularly the ability to self-renew and differentiate into various types of progeny, which
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has led them to be called cancer stem cells [110]. Cancer stem cells are generated ei-

ther as a result of mutations in stem cells that deregulate the mechanisms controlling

proliferation and apoptosis, or they can arise from mutated progenitor populations

that have regained self-renewal capacity [4, 22, 60, 102, 110]. The mechanisms that

factor into the emergence of cancer stem cells are not fully understood. Consequently,

mathematical models have been developed in order to gain insight into the dynamics

of these tumorigenic cells.

Using a simple discrete mathematical model, Tomlinson and Bodmer established

that mutations at the stem-cell level were most significant in promoting malig-

nancy [118]. They argued that expansion could result from the failure of apoptosis

or the block of differentiation rather than unbridled proliferation. Furthermore, they

were able to demonstrate the importance of incorporating tissue hierarchy in cancer

models, because mutated progenitors and differentiated cells were unable to cause

exponential growth, unlike mutated stem cells. The model was first developed to sim-

ulate a normal system in homeostasis. Predictions of cancer cells were made based

on the variation of model parameters, so the actual process of mutation acquisition

was not studied.

One possible approach to distinguishing stem cells from differentiated cells is to

classify them based on their location in the tissue. For instance, stem cells reside

in the base of the colon crypt whereas differentiated progeny work their way up the

crypt until they die and are removed [8, 84]. Nowak et al. used a linear process to

simulate mutation acquisition in cells of the colon crypt [96]. Because of the way

differentiated cells move up the crypt, mutations in non-stem cells are eventually

removed, providing protection from cancer. A subsequent study employed the same

linear structure and demonstrated that the first mutation of the tumor suppressor
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APC gene must happen at the stem-cell level and predicted that a mutation causing

chromosomal instability also occurred in the initial stages of colon cancer [84].

To model the cancer stem cell hypothesis in neural tumors, Ganguly and Puri

created a deterministic model of tumorigenesis that compartmentalized stem, pro-

genitor, and differentiated cells as well as their mutated counterparts [44]. In this

model, stem and progenitor cells could become cancer cells through the acquisition

of one mutation, so the multi-step pathways initiating cancer were not explicitly

explored. The model predicted that mutations occurring in stem cells had more of

an effect on tumorigenesis than mutations to progenitors. In addition, by incorpo-

rating feedback regulatory mechanisms between the various cell populations, it was

suggested that repeated injury to mature cells, such as repeated radiation, could

promote stem-cell proliferation, which in turn could increase mutation acquisition.

This model is a good example of tumorigenesis in regulated hierarchical tissue and

emphasizes the impact of mutations in stem cells, but it does not investigate the

sequential order of mutation acquisition that promotes cancer.

In order to investigate what type of cell initiates blast crisis during the progression

of Chronic Myelogenous Leukemia, Michor developed a model of two ordinary differ-

ential equations, one for leukemic stem cells, the other for leukemic progenitors [82].

It was argued that if leukemic stem cells promote blast crisis, then there should be

no difference in the time of disease progression between patients treated with ima-

tinib versus those that were not treated because imatinib does not kill leukemic stem

cells. In contrast, if leukemic progenitors drive blast crisis, then there should be a

noticeable difference between treated and untreated patients, which is indeed the

case.

Mathematical models that incorporate cancer stem cells can also predict how
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tissue dynamics will change as a result of treatment. In particular, cancer stem

cells are not eradicated by current chemotherapeutic regimens, and therefore cause

relapse by regenerating the tumor. With a simple system of ordinary differential

equations, Michor et al. modeled the effects of imatinib administration to patients

with Chronic Myelogenous Leukemia [83]. Treatment successfully killed progenitor

and differentiated cells, but not all cancer stem cells. Consequently, when treatment

was stopped, cancer regenerated from leukemic stem cells. In addition, the model

was used to investigate the role of drug resistance in disease progression.

To further emphasize the need for therapies that target cancer stem cells, Dingli

and Michor presented a simple model to investigate the effects of various treatment

regimens on both normal and cancer cells [31]. The model consisted of four ordinary

differential equations to simulate four distinct subpopulations in the tissue: normal

stem cells, cancer stem cells, normal differentiated cells, and cancer differentiated

cells. Numerical simulations started with the normal steady state values of healthy

stem and differentiated cells and one cancer stem cell, and tumor generation was

modeled. After cancer had reached detectable levels, various methods of treatment

were simulated and it was confirmed that targeting cancer differentiated cells is

insufficient to eradicate malignancy. In contrast, the model predicted that therapies

either inhibiting proliferation or increasing death in cancer stem cells could eliminate

cancer altogether.

Due to new discoveries of cancer stem cells, it is now more common to find math-

ematical models of cancer that incorporate some level of maturity-structure. To our

knowledge, however, no existing mathematical model examines the sequential ac-

quisition of mutations within hierarchically structured tissue governed by regulatory

mechanisms. This dissertation aims to fulfill this lacking need in cancer modeling.
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In the following chapter, mutation acquisition in hierarchical tissue is studied with a

maturity-structured model. In Chapters V, VI, and VII, stem-cell governing mech-

anisms are discussed and their deregulation is investigated as a potential cause of

cancer. Finally, in Chapter VIII, both maturity structure and regulatory mechanisms

are combined into one comprehensive model, and the relevance of this model is il-

lustrated with a simulation of mutation acquisition instigating Chronic Myelogenous

Leukemia.



CHAPTER IV

A Maturity-Structured Mathematical Model of Mutation
Acquisition in the Absence of Homeostatic Regulation

It is well known that mammalian tissue is not a homogeneous collection of cells,

but is instead a composition of different types of cells that each have specific roles.

Healthy tissue is carefully organized in a hierarchical structure consisting of stem,

progenitor, and differentiated cells. Rare näıve stem are long-lived and unique in that

they both self-renew and differentiate [4, 98]. Progenitor cells are more committed

in lineage, but too immature to carry out specific functions. As they complete

additional divisions, progenitors expand in number and become more specific, until

they are fully differentiated [4]. Although differentiated cells are responsible for

completing tasks that ensure the tissue functions properly, stem cells are crucial

because their division kinetics ultimately maintain tissue homeostasis.

It has been suggested that the cells capable of initiating tumorigenesis share many

characteristics of stem cells. Both malignant cells and normal stem cells are long-

lived, evade apoptosis, have high proliferative potential, and are able to produce

daughter cells of different phenotypes [4, 50, 57, 110]. Realizing these similar prop-

erties, tumor-initiating cells have been called cancer stem cells. The cancer stem cell

hypothesis suggests that malignant growth is driven by a subpopulation of tumor

cells that are capable of self-renewal. It is predicted that these cancer stem cells are

40
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mutated stem cells or progenitors that have acquired stem-cell characteristics [110].

Since this cancer stem cell hypothesis originated, cancer stem cells have been identi-

fied in tumors of the breast, brain, colon, and blood, among others [4, 12, 40, 43, 57].

Due to the difficulty of isolating and studying stem cells experimentally, mathe-

matical modeling provides further insight into the growth dynamics involved during

tumorigenesis in hierarchical tissue. In order to simulate the cancer stem cell hy-

pothesis mathematically, it is necessary to model cancer stem cells as a distinct

subpopulation from other tumor cells. Furthermore, tissue hiearchy must be con-

sidered because stem, progenitor, and differentiated cells have very different prop-

erties. In this chapter, a maturity-structured mathematical model is presented that

investigates mutation acquisition in stem, progenitor, and differentiated cells. The

development of cancer stem cells is the focus, and mutation pathways causing the

fastest emergence of disease are determined. In addition, tumor heterogeneity and

composition are discussed.

4.1 A Maturity-Structured Mathematical Model of Hierarchical Tissue

Due to the varying properties of cells in hierarchical tissue, it is desirable to

create a mathematical model that allows cellular kinetics to depend on cell maturity.

Stem cells are the most immature cells in the tissue and they are capable of self-

renewal. Though still immature, progenitors are more committed in lineage, and as

they divide, they differentiate to increase cell maturity. Progenitors must complete

a number of divisions to expand and generate an adequate amount of terminally

differentiated cells. Therefore, the rate of proliferation must be significantly greater

than the rate of apoptosis to allow expansion in this cell population. Fully mature

cells are terminally differentiated, do not have any proliferative potential, and exit
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Figure 4.1: Maturity scheme for mathematical model. Stem cells are the most immature
and can self-renew. Progenitors are more committed and differentiate as they divide.
Terminally differentiated cells cannot divide and eventually die.

the tissue through cell death. Consequently, the rate of apoptosis is substantial

in terminally differentiated cells. Figure 4.1 provides a schematic of the maturity

progression from stem to differentiated cell.

There are various ways of explicitly modeling each of the cell subpopulations in a

tissue. Some mathematical models compartmentalize stem cells, progenitor cells, and

differentiated cells [5, 13, 24, 83], while others distinguish cells based on maturity,

be it through discrete cell divisions [7] or continuous cell maturity level [100]. In this

chapter, a differential equations model is presented in which both time and maturity

are continuous. First, a model of healthy tissue will be established, and then this

model will be used to investigate the process of mutation acquisition in hierarchical

tissue. An ordinary differential equation is used to model the stem-cell population

since it is assumed stem cells do not mature. In contrast, a partial differential

equation is used for non-stem cells that is dependent on both time and maturity. To

our knowledge, this is the first mathematical model that addresses the emergence of

cancer stem cells within a maturity-continuous structure.

4.1.1 Model Structure

It is known that the properties of stem, progenitor, and differentiated cells are

markedly different from each other. Stem cells are unique in that they are näıve

and have the potential to remain in an undifferentiated state. Under homeostatic
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conditions, it is thought that the majority of stem cells are in a quiescent state and

divide infrequently. In contrast, progenitors eventually reach full maturity through

extensive proliferation that produces differentiated progeny. As progenitors mature,

their proliferative and apoptotic behavior may also change. For instance, immature

myeloid precursor cells, such as myeloblasts, divide faster than more differentiated

myelocytes [109]. Consequently, it is desirable to mathematically model hierarchical

tissue in such a way as to allow cell kinetics to depend on cell maturity.

In 2003, Ostby et al. presented a continuous maturity-structured model of granu-

lopoiesis, which simulated cells from the myeloblast stage through terminally differ-

entiated granulocytes in a normal, healthy system [100]. Stem cells were not modeled,

but rather were assumed to be at a constant level in homeostasis that fed into the

progenitor population. A one-dimensional wave equation dependent on time and cell

maturity was employed for progenitor cells in the bone marrow. Rates of prolifera-

tion, mobilization from the bone marrow to blood, and apoptosis were all dependent

on cell maturity. Cell maturity was scaled such that the most immature cell had

maturity level zero, the most mature cell had maturity level one, and the matura-

tion rate determined how quickly cells progressed through each stage. This model

assumed that cells in the blood were terminally differentiated, and thus were fully

mature and did not proliferate, so that blood cells were modeled with an ordinary

differential equation dependent on time only. From numerical simulations, it was

suggested that progenitor apoptosis may be significant under certain assumptions.

In particular, the authors determined that the significance of cell death depended on

the times precursors spent in each phase and concluded that model accuracy would

be improved with more reliable predictions of these transit times.

In the present work, a mathematical model is introduced that imparts a similar
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maturity-continuous structure, while making various significant alterations from the

Ostby model. It is important to note that the Ostby model simulated granulopoesis

in homeostasis, which permitted the omission of explicitly modeling stem cells. In

modeling tumorigenesis, and specifically the generation of cancer stem cells, it is

essential to include an equation monitoring the dynamics of the stem-cell population.

Therefore, the most significant difference between the present work and the Ostby

model is the inclusion of a stem-cell equation that fosters investigation of the effects

that stem cells have on tissue dynamics.

Other differences between the two models are not as striking, but still noteworthy.

For instance, because the Ostby model was specifically tailored for granulopoiesis,

the maturity-structured progenitor population was contained in the bone marrow,

while all cells in the blood were assumed to be fully mature and thus did necessitate

maturity structure in the blood compartment. Although the hematopoietic system

will be simulated in this chapter as well, the mathematical model developed here is

general and can be applied to any hierarchical system. The models also slightly differ

in how the measurement of maturity is handled. In the Ostby model, maturity was

on a scale of zero to one, and a constant maturation rate was derived from the time

needed for a cell to progress from myeloblast to granulocyte. In contrast, maturity

is not scaled in the current presentation, but rather progresses according to the time

scale. A cell with a maturity level measured in weeks has completed an approximate

number of divisions depending on the proliferation rate, which determines its progress

to terminal differentiation. Therefore, the models slightly differ in how maturity is

defined, but in essence are comparable since both models rely on average proliferation

rates to determine maturity.

A continuous maturity-structured model is now introduced. Consider a time- and
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maturity- continuous model in which time is denoted by t and the maturity of cells

is denoted a. Stem cells are the most näıve cells in the system. They do not mature,

and, therefore, the size of the stem cell population, denoted S(t), is not dependent

on a. Stem cells proliferate at rate k. Assume that each stem cell encounters one

of four fates during each division: symmetric self-renewal, asymmetric self-renewal,

symmetric commitment differentiation, and apoptosis. Stem cells symmetrically self-

renew with probability αS, which increases the stem cell pool by one. Stem cells

asymetrically self-renew with probability αA, which does not change the stem cell

pool but increases the progenitor pool of maturity level zero by one. Stem cells

symmetrically differentiate with probability αD, which decreases the stem cell pool

by one and increases the progenitor pool of maturity level zero by two. Finally, stem

cells die with probability δS, and it follows that αS +αA +αD +δS = 1. It is assumed

in this model that stem cells only die and differentiate when dividing, though the

model equations could easily be slightly modified to allow for division-independent

differentiation and apoptosis.

The maturity density of differentiated cells at time t is denoted n(t, a), where the

number of cells between maturity level a and a + ∆a is approximately n(t, a)∆a.

The proliferation rate of differentiated cells, denoted by the function β(a), allows

immature to proliferate but tends to zero as maturity is reached. The death rate of

differentiated cells, given by the function µ(a), increases after full maturity. If the

initial stem cell population is S0, the initial maturity distribution of differentiating

cells is given by f(a), and the total number of non-stem cells in the tissue is N(t),

then the model equations follow:
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dS

dt
= (αS − αD − δS)kS(4.1)

∂n

∂t
+

∂n

∂a
= (β(a)− µ(a))n

n(a, 0) = f(a)

S(0) = S0

∂n

∂t
(0, t) = (2αD + αA)kS

N(t) =

∫ ∞

0

n(t, a)da.

For ease of reference, this model is labeled the Maturity-Structured Model in the

Absence of Homeostatic Regulation (MSMAHR). In the MSMAHR model, probabil-

ities of stem-cell division are constant, but in the next chapter, dynamic regulatory

feedback mechanisms that influence the pattern of self-renewal and differentiation

will be discussed.

There are many potential functions that would be suitable choices for β(a) and

µ(a). Generally, β(a), should be greater than µ(a) for immature cells that have not

yet completed terminal differentiation in order to allow for progenitor expansion.

Furthermore, as a → ∞, β(a) → 0 and µ(a) increases well beyond β(a). By not

explicitly defining functions for the proliferation and death rates of differentiating

cells, the MSMAHR model remains a general enough framework to be used modeling

various types of hierarchical tissue. In Section 4.1.3, specific examples are given in

order to generate numerical simulations of the hematopoietic system.

4.1.2 Model Analysis

The solution of the stem-cell equation is S(t) = S0e(αS−αD−δS)kt. The method of

characteristics may be used to solve the differentiated cell equation [92]. Assuming

cell maturity is determined by time passed since a differentiated cell was formed gives
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da
dt = 1, and the differentiated cell population equation is simplified to dn

dt = βn−µn.

Note that da
dt = 1 implies that a = t+C, for some constant C. For a > t, C = a0 and

for a < t, C = −t0.

When a > t, the following is true:

dn

dt
= β(a)n− µ(a)n

dn

dt
= (β(t + a0)n− µ(t + a0))n

∫
dn

n
=

∫
(β(t + a0)n− µ(t + a0))dt

∫
dn

n
=

∫ t

0

(β(τ + a0)n− µ(τ + a0))dτ

∫
dn

n
=

∫ t+a0

u=a0

(β(u)− µ(u))du

n = K exp

[∫ t+a0

a0

(β(u)− µ(u))du

]

n = K exp

[∫ a

a0

(β(u)− µ(u))du

]
.(4.2)

At time t = 0, a = a0, and so K = n(a0, 0). If the initial age distribution is given by

n(a, 0) = f(a), then since a0 = a− t,

n(a, t) = n(a0, 0) exp

[∫ a

a0

(β(u)− µ(u))du

]

n(a, t) = n(a− t, 0) exp

[∫ a

a0

(β(u)− µ(u))du

]

n(a, t) = f(a− t) exp

[∫ a

a0

(β(u)− µ(u))du

]
.(4.3)

Note that if f(a) = 0, then n(a, t) = 0 for a > t. That is, it their are no differentiating

cells in the tissue at time t = 0, then it is impossible for the maturity level of a cell

to be greater than the time that has elapsed. For instance, if n(a, 0) = 0, then at

two weeks all differentiating cells must have maturity that is less than or equal two

weeks.
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When a < t, then the following holds:

dn

dt
= β(a)n− µ(a)n

dn

dt
= (β(t− t0)n− µ(t− t0))n

∫
dn

n
=

∫
(β(t− t0)n− µ(t− t0))dt

∫
dn

n
=

∫ t

t0

(β(τ − t0)n− µ(τ − t0))dτ

∫
dn

n
=

∫ t−t0

u=0

(β(u)− µ(u))du
∫

dn

n
=

∫ a

0

(β(u)− µ(u))du

n = K exp

[∫ a

0

(β(u)− µ(u))du

]
.(4.4)

When a = 0, t = t0, so that K = n(0, t0) = n(0, t), which in this model gives

K = (2αD + αA)kS. Therefore, for a < t,

n(a, t) = (2αD + αA)kS(t) exp

[∫ a

0

(β(u)− µ(u))du

]
.(4.5)

The differentiated-cell population will go to steady state as long as the stem-cell

population is in steady state, as seen in Equation 4.5. The stem-cell population

is in steady state if αS − αD − δS = 0. Otherwise, it either grows or decays ex-

ponentially, which causes the differentiated-cell population to behave accordingly.

Thus stem-cell population dynamics dictate differentiated-cell population dynamics,

which correlates with previous modeling results from Hardy and Stark that predicted

stem-cell equilibrium determines tissue homeostasis [51].

4.1.3 Parameter Estimation

Due to the difficulty of isolating and studying stem cells in vivo, there are limited

data for stem-cell kinetics. The hematopoietic system is perhaps the best quantified

system, and as a result, parameter values for model simulations are derived from
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Parameters Used
Parameter Biological Meaning Value Range Value Used
S0 Initial number of stem cells 11,000 - 22,000 cells [1] 18,000 (cells)
αS Probability SSR (derived from [125]) 0.20
αA Probability of ASR (derived from [125]) 0.60
αD Probability of SD (derived from [125]) 0.15
δS Probability of stem-cell death 0.05 [83] 0.05
k Proliferation rate of stem cells 0.4043 weeks−1 [21] 0.4043 weeks−1

b Max. prol. rate of progenitors 9.0 - 10.6 weeks−1 [109] 9.7 weeks−1

ρβ Steepness of proliferation switch No information 2
ωβ Maturity at proliferation switch No information 2.05 weeks
d Max. death rate of diff. cells 15 - 18 weeks−1 [9, 13] 16.8 weeks−1

ρµ Steepness of death switch No information 10
ωµ Maturity at death switch No information 4.10 weeks

Table 4.1: Baseline parameters used to simulate the Maturity-Structured Model in the Absence of
Homeostatic Regulation, found in Equations 4.1.

hematopoietic stem cells and progenitor and differentiated cells of the granulocytic

lineage. The parameters used are presented in Table 4.1.3.

Although hematopoietic stem cells are better understood than stem cells in other

tissues, there is still much uncertainty concerning in vivo measurements. Part of

the discrepancy comes from the process of isolating stem cells. There are several

markers that isolate immature cells from those that are more differentiated, but it

can be difficult to separate stem cells from early progenitor cells. Therefore, it is

not uncommon for a population of “stem” cells to also include early progenitor cells,

which can taint the true measurements of stem versus early progenitor cells. As a

result, the current literature includes a wide range of values regarding hematopoietic

stem-cell kinetics. Because this mathematical model separates stem cells from all

other cells, the parameters used here attempt to reflect the most purified stem-cell

population

As cells differentiate, they lose their ability to proliferate. Stem and early progen-

itor cells have high proliferative potential, whereas terminally differentiated cells are

unable to complete further divisions. Although some terminally differentiated cells
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are long-lived, such as lymphoid cells, this model assumes that fully mature cells have

a short half-life and, consequently, a significant rate of apoptosis [9, 13, 61]. In order

to capture the dependence of proliferation and apoptosis on cell maturity, functions

that smoothly transition between two different baseline rates are used. There are

many possibilities for such functions, but for simplificity, this model assumes that

the proliferation rate is approximately constant until terminal differentiation, after

which it approaches zero. In contrast, the death rate is assumed to be approximately

zero until terminal differentiation, after which it is approximately constant with a

short half-life. Instead of incorporating step functions that introduce discontinuity,

the functions used to model proliferation and death rates for non-stem cells are as

follows:

β(a) =
−b

2
tanh(ρβ(a− ωβ)) +

b

2
(4.6)

µ(a) =
d

2
tanh(ρµ(a− ωµ)) +

d

2
+ δSk.

The maximum rate of proliferation is given by b and the maximum rate of death is

given by d. The maturity at which non-stem cells proliferate at half the maximum

rate is ωβ, and ρβ is the steepness of the decreasing switch. Similarly, the maturity

at which non-stem cells die at half the maximum rate is ωµ and the steepness of the

increase in the switch is ρµ. It is also assumed that progenitors die at a rate at least

as great as stem cells. The proliferation and death rate functions in Equations 4.6

are plotted in Figure 4.2.

4.1.4 Numerical Simulations and Results

In the Section 4.2, mutation pathways generating cancer in hierarchical tissue

will be explored, but before this can be investigated, the steady state of healthy

tissue must be first determined. In order to conduct numerical simulations, model
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Figure 4.2: Proliferation and death rates of differentiating cells depend on cell maturity.
The functional forms presented in Equations 4.6 are plotted versus cell maturity.
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equations were discretized with the upwind method and simulations were conducted

in MATLAB. Step sizes for ∆t and ∆a satisfy the CFL condition. For the boundary

condition of differentiating cells, at the jth time step, nj
0 = (2αD + αA) kSj−1∆t.

To determine the steady state maturity-distribution of cells, it is necessary to

generate the progeny resulting from a steady state of stem cells. Since hematopoi-

etic stem cells are arguably the most observed, the hematopoietic system is used to

illustrate the dynamics of hierarchical tissue. It is estimated that there are between

11,000 - 22,000 hematopoietic stem cells in an adult human [1]. In future chapters,

the mechanisms regulating stem cell hematopoiesis will be discussed, so in order to

correlate with following work, suppose a system is infused with 18,000 stem cells and

zero progenitor and differentiated cells. Assume stem cells divide with probabilities

that maintain equilibrium within the stem-cell compartment so it possible to de-

termine the steady state maturity distribution of progenitor and differentiated cells

resulting from this many stem cells. Progenitors are formed through asymmetric

and symmetric commitment divisions of the existing stem cells. Progenitors prolif-

erate and expand in number to generate fully-differentiated cells, and eventually a

steady-state distribution of progenitor and differentiated cells is reached.

Figure 4.3 plots tissue dynamics as stem cells generate progenitor and differen-

tiated cells. The maintained homeostasis of stem cells and the generation of the

resulting progeny of non-stem cells is displayed in a log plot in Figure 4.3A. Initially,

there is a low number of non-stem cells that are all progenitors formed from the stem-

cell population. As time progresses, progenitors proliferate and expand in number as

the stem-cell source continues to form early progenitors. As equilibrium is reached,

the total number of non-stem cells includes all progenitors and fully-differentiated

cells. Using the parameters in Table 4.1.3, the total number of non-stem cells, N ,
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Figure 4.3: The generation of hierarchical tissue from stem cells. (A) A log plot of stem
(blue) and non-stem (red) cells in the tissue versus time. Starting at stem-cell home-
ostasis, the stem-cell population remains constant over time, while the non-stem cell
population expands until it reaches homeostasis. (B) The maturity distribution of non-
stem cells at steady state demonstrates the majority of cells are fully mature.
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reaches 6.54× 1011 cells, which is within the range of 5− 15× 11 cells of the granu-

locytic lineage estimated in a human adult [52, 100, 109]. It takes approximately 4.6

weeks for N to reach 90% of its equilibrium value, though the time to constitution

can be altered by the rate of proliferation in both stem and progenitor cells. In Fig-

ure 4.3B, the maturity distribution of non-stem cells at steady state demonstrates

that the majority of stem cells are fully mature. At homeostasis, it is estimated that

1.3×1011 cells are fully differentiated, which correlates with the estimated 1.2×1011

granulocytes that are released from the bone marrow to the blood daily.

The proliferation and death rate functions, β and µ, respectively, are those dis-

played in Figure 4.2. Cells are considered to be fully mature when µ > β, which

occurs at approximately 3.8 weeks in this simulation. The cycle times of immature

myeloblasts, myelocytes, and promyelocytes are estimated to be 11, 27, and 39 hours,

respectively [109]. Therefore, the proliferation rate is greater for lower maturity lev-

els, with a maximum rate of 9.7 divisions per week to correlate with the doubling

time of myeloblasts. Neutrophils reside in the bone marrow for approximately 4 days

after their final division before being released into the blood [39]. Once in the blood,

the half-life of neutrophils is estimated at seven hours, thus the maximum of the

death rate is achieved soon after cells have reached full maturity.

This section presented a maturity-structred model of hierarchical tissue that is

continuous both in time and cell maturity. Mathematical analysis determined the

solution for both stem and non-stem cell populations, and it was concluded that the

number of progenitor and differentiated cells is directly dependent on the number of

stem cells present in the system. Through numerical simulations in which cells of

the granulocytic lineage were produced from an initial population of hematopoietic

stem cells, it was possible to determine the steady state of non-stem cells as well as
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the maturity distribution of progenitor and differentiated cells at homeostasis. These

findings will be used as the baseline values of healthy hierarchical tissue in exploring

the process of mutation acquisition and tumorigenesis in the next section.

4.2 Mutation Acquisition in Stem, Progenitor, and Differentiated Cells

It is believed that tumorigenesis does not result from a single mutation, but

rather is a multistep process [20, 50]. Although it is known several events are needed

to cause the malignant transformation of a normal cell, the order in which these

mutations are acquired can affect tumor dynamics. Deregulated proliferation, evasion

of apoptosis, and genetic instability are likely involved in the early stages of cancer,

whereas mutations causing angiogenesis and metastasis are probably acquired in

later stages, after a tumor has grown beyond a certain threshold size [50]. In this

section, mutation acquisition in hematopoietic cells is investigated; consequently,

angiogenesis and metastasis may be disregarded.

The hierarchical organization of most mammalian tissues may offer protection

against cancer. The vast majority of tissues consist of differentiated cells that have

a high rate of turnover and generally don’t live long enough to accumulate enough

mutations to become malignant [102, 110]. In addition, most differentiated cells do

not self-renew, and when they reach full maturity, mutations are not passed on to

any progeny. Generally, stem cells, or progenitors that have gained self-renewal capa-

bility, are the only tissue cells that live long enough to acquire a sufficient number of

mutations and possess a sufficient proliferative potential that allows the propagation

of mutations to their progeny [28, 110].

In this section, the pathways leading to tumorigenesis in hierarchical tissue are

explored. This mathematical model is one of the first that permits the investigation
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of sequential mutation acquisition within hierarchically structured tissue [7]. Be-

cause mutation order is monitored, it is possible to quantify the increased advantage

gained through each transformation. Furthermore, tissue composition can be deter-

mined that is based on the percentages of cells with a certain number of mutations.

An additional feature of this model is the explicit inclusion of all three models of

stem-cell division: symmetric self-renewal, asymmetric self-renewal, and symmetric

commitment differentiation. This differs from other mathematical models of can-

cer in which asymmetric divisions are often ignored. To our knowledge, this is the

first model to incorporate all of these novel features within a maturity-continuous

framework.

4.2.1 Model Structure for Mutation Acquisition

To study the process of oncogenesis in hierarchical tissue, the MSMAHR model

presented in Equations 4.1 is expanded to incorporate mutation acquisition in both

stem and differentiated cells. Normal stem cells, S0, acquire their first mutation at

rate m0, at which time they are labeled as S1. Likewise, S1 cells acquire the second

mutation at rate m1 to become S2 cells, and S2 cells acquire the third mutation at

rate m2 to become S3 cells. Stem cells with i mutations, Si, form progenitor cells

with i mutations, ni, when they differentiate. Committed cells may also mutate as

they continue to divide, and Mi is used to denote the mutation rates from ni to

ni+1. It is assumed that cells may only acquire one mutation at a time. Cells with i

mutations may alter any of the model parameters, depending on which mutation is

acquired, thus each parameter is denoted with an i-subscript to allow these values

to differ from the baseline value. A schematic diagram is displayed in Figure 4.4 and

the model equations for mutation acquisition are presented below.
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Figure 4.4: Schematic diagram of mutation acquisition in hierarchical tissues. Stem cells
with zero, one, two, or three mutations may self-renew or differentiate to form pro-
genitors, which in turn continue dividing and maturing. Each time cells divide, there
is a small probability they will acquire a mutation. Cells can accumulate up to three
mutations, at which point they are classified as cancer cells.
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Stem Cells:

dS0

dt
= [(1− 2m0)αS0 −m0αA0 − αD0 − δS0] k0S0(4.7)

dS1

dt
= [(1− 2m1)αS1 −m1αA1 − αD1 − δS1] k1S1

+ [2m0αS0 + m0αA0] k0S0

dS2

dt
= [(1− 2m2)αS2 −m2αA2 − αD2 − δS2] k2S2

+ [2m1αS1 + m1αA1] k1S1

dS3

dt
= [αS3 − αD3 − δS3] k3S3

+ [2m2αS2 + m2αA2] k2S2

Differentiating Cells:

∂n0

∂t
+

∂n0

∂a
= [(1− 2M0)β0(a)− µ0(a)] n0(4.8)

∂n1

∂t
+

∂n1

∂a
= [(1− 2M1)β1(a)− µ1(a)] n1 + 2M0β0(a)n0

∂n2

∂t
+

∂n2

∂a
= [(1− 2M2)β2(a)− µ2(a)] n2 + 2M1β1(a)n1

∂n3

∂t
+

∂n3

∂a
= [β3(a)− µ3(a)] n3 + 2M2β2(a)n2

Birth and Death Functions for Differentiating Cells:

βi(a) =
−bi

2
tanh(ρβi(a− ωβi)) +

bi

2
(4.9)

µi(a) =
di

2
tanh(ρµi(a− ωµi)) +

di

2

for i = 0, 1, 2, 3.

Initial Conditions:

n0(a, 0) = f(a)(4.10)

n1,2,3(a, 0) = 0

S0(0) = S0

S1,2,3(0) = 0
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Boundary Conditions:

∂n0

∂t
(0, t) = [2(1−m0)αD0 + (1−m0)αA0] k0S0(4.11)

∂n1

∂t
(0, t) = [2(1−m1)αD1 + (1−m1)αA1] k1S1

+ [2m0αD0 + m0αA0] k0S0

∂n2

∂t
(0, t) = [2(1−m2)αD2 + (1−m2)αA2] k2S2

+ [2m1αD1 + m1αA1] k1S1

∂n3

∂t
(0, t) = [2αD3 + αA3] k3S3

+ [2m2αD2 + m2αA2] k2S2

To easily refer to this model in subsequent discussion, it is named the Maturity-

Structured Model of Mutation Acquisition (MSMMA).

4.2.2 Exploring the Pathways to Tumorigenesis

Several types of genetic transformations have been implicated in oncogenesis, but

in this investigation, focus is directed towards somatic mutations that occur during

DNA replication. In their review and classification of cancer cells, Hanahan and

Weinberg identified commonalities in malignant cells: independence of growth sig-

nals, increased proliferation, evasion of apoptosis, insensitivity to anti-growth signals,

and the abilities to promote angiogenesis and metastasize [50]. In addition, genetic

instability is believed to be widespread in various cancers [15].

To examine the initiation of cancer, three mutations are considered in this work.

The D mutation decreases the percentage of stem cells that go through apoptosis

and decreases the maximum death rate of non-stem cells. The G mutation increases

the rate at which subsequent mutations are acquired. The R mutation alters cell

proliferation, by either increasing the rate of proliferation or shifting the balance of
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stem-cell division to favor symmetric self-renewal. A cell is considered to be healthy

and normal if it does not have any mutations and assumed to be cancerous once it

has acquired all three mutations. For model simulations, all mutations are one-hit,

though mutations requiring two genetic events could easily be incorporated simply

by increasing the number of mutations that must occur to malignantly transform

a cell. Mutations enabling angiogenesis and metastasis are not considered because

model simulations are of the hematopoietic system.

The order in which mutations are acquired is noted by the order in which D, G,

and R are listed. There are six possible sequences in which the mutations accumulate:

• D ⇒ G ⇒ R

• D ⇒ R ⇒ G

• G ⇒ D ⇒ R

• G ⇒ R ⇒ D

• R ⇒ D ⇒ G

• R ⇒ G ⇒ D

Tumor dynamics are compared and contrasted for all six pathways. Note that each

pathway produces cancer cells that have acquired the same three mutations, but

each pathway is different in the order in which mutations occur. Because a specific

cancer is not being modeled, it is assumed that for each D, G, and R mutation in

the model, there are approximately 100 genes that may cause transformation [116].

As a result, the mutation rate is one hundred times the suggested mutation rate of

10−8 per division [83, 116].

Numerical simulations were conducted using MATLAB. The upwind method was
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Parameters Used
Parameter Biological Meaning Normal Value Mutated Value
S0 Normal stem-cell homeostasis 18,000 (cells) [83] 18,000 (cells)
αS Probability of SSR 0.20 [125] 0.40
αA Probability of ASR 0.60 [125] 0.425
αD Probability of SD 0.15 [125] 0.15
δS Probability of stem-cell death 0.05 [83] 0.025
k Stem-cell proliferation rate 0.4043 (weeks−1) [21] 0.8086 (weeks−1)
m Mutation rate of stem cells 10−6 [6, 58, 116] 10−4 [58, 116]
M Mutation rate of non-stem cells 10−6 [6, 58, 116] 10−4 [58, 116]
b Max. progenitor proliferation rate 9.7 (weeks−1) 19.4 (weeks−1)
ρβ Steepness of prog. prol. switch 2 2
ωβ Maturity at prol. switch 2.05 (weeks) 1.025 (weeks)
d Max. differentiated cell death rate 16.8 (weeks−1) [9, 13] 8.4 (weeks−1)
ρµ Steepness of diff. cell death switch 10 10
ωµ Maturity at death switch 4.10 (weeks) [39] 3.075 (weeks)

Table 4.2: Parameters used for the Maturity-Structured Model of Mutation Acquisition.

used to discretize model equations, as described in Section 4.1.4. It is assumed

that the hierarchical tissue begins in the healthy steady state determined by the

MSMAHR model in equation set 4.1. As a result, the number of stem cells and the

maturity distribution of differentiating cells for healthy tissue in homeostasis is the

initial condition for simulations of tumorigenesis. Parameter values used to simulate

healthy and mutated cells are presented in Table 4.2.2.

Because cancer stem cells are believed to drive tumor growth, the emergence of

the first cancer stem cell establishes the onset of malignancy. As a result, the time

required to generate the first cancer stem cell is recorded for each mutation pathway

in order to determine which is the fastest in cancer development.

Four scenarios of mutation acquisition are investigated. In the first case, all

mutations are advantageous and increase the cell’s competitive advantage in some

way. In the second case, mutations occurring in cells that have not yet acquired the

ability to evade apoptosis are disadvantageous and increase cell death. The third

case investigates the effects of a shift in the stem-cell division pattern that increases

symmetric self-renewal. Finally, increased expansion in the progenitor pool due to
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extra divisions is explored in the fourth case.

All Mutations are Advantageous

Consider a case in which all mutations are advantageous, which for convenience

shall be referred to as Case A. In particular, suppose all mutations give the cell

a specified advantage over its normal counterpart and do not cause an increase in

cell death upon mutation. Specifically, the D mutation decreases the probability

of stem-cell death by half and the decreases the death rate of differentiating cells

by half. The G mutation augments genetic instability, increasing the rate at which

mutations are acquired from 10−6 to 10−4. The R mutation doubles the proliferation

rate of both stem and progenitor cells. It is worth noting that progenitor cells with

the R mutation reach full maturity in half the time of normal cells since the cells are

dividing twice as fast but this mutation does not increase the number of divisions

they are able to complete.

Under these conditions, genetic instability is the most significant contributor to

cancer onset. The GDR and GRD pathways produce the first cancer stem cell in the

shortest time, followed by the DGR and RGD pathways, and finally the DRG and

RDG pathways. Figure 4.5 plots the cancer stem cells and cancer non-stem cells for

each pathway over time, and illustrates that there is negligible difference between

the GDR and GRD pathways, between the DGR and RGD pathways, and between

the DRG and RDG pathways. Thus, it is evident that the order in which the G

mutation is acquired determines the speed of cancer stem cell generation.

The fastest pathways are those in which G is acquired first, while the slowest

acquire G last. The significance of the G mutation may at first seem surprising

because it does not increase the cell’s fitness as the D and R mutations do. In fact,

the G mutation might be thought of as a silent mutation that does not appear to
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Figure 4.5: Genetic instability determines the fastest path when all mutations are ad-
vantageous. (A) Cancer stem cells for each pathway versus time. The order in which
genetic instability is acquired has the greatest influence on determining tumor growth.
Pathways in which G is acquired first are the fastest, while those that acquire G last
are slowest. (B) Cancer non-stem cells reflect the behavior of cancer stem cells.
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give the mutated cell any advantage. However, the acquisition of G accelerates the

rate at which additional mutations are acquired, and therefore decreases the time

required to generate the first cancer stem cell.

The sequential order of the G mutation is the most important in determining the

fastest pathway, but no such conclusion can be made about the order of D and R

mutations. Whether D or R occurs earlier in the fastest pathway depends on the

amount of change between normal and mutated proliferation and death rates. For

instance, using certain parameter values, GDR could be the fastest, while for others

it would predict that GRD is fastest. Over a wide range of parameters, however,

the impact of the G mutation is still most significant in determining the time to

cancer onset. As a result, the conclusion that genetic instability dictates the time to

malignancy is robust.

As shown in Figure 4.5, cancer differentiating cells are present in the tissue at

early times. In fact, all pathways generate a small number of cancer differentiating

cells years before the first cancer stem cell emerges. In this case it is assumed that no

mutation occurs in progenitor populations that arrests differentiation. As a result,

mutated differentiating cells may cause hypercellularity in the tissue, but they do

not instigate malignancy because they die after completing a prescribed number of

divisions. Instead, it is the emergence of the first cancer stem cell that marks the

onset of disease because these cells can both self-renew to expand their number and

differentiate to form mutated differentiating cells.

From Figure 4.5, one may also notice the correlation between the growth dynamics

of the stem-cell population with those of the differentiating population. The model

predicts that tumor growth is dependent upon the behavior of a small subpopulation

of cancer cells. Therefore, under the assumptions of Case A, the model supports the
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cancer stem cell hypothesis in that a select subgroup of cells promotes tumorigenesis.

That is, if differentiating cells do not acquire self-renewal capability, then a small

population of mutated stem cells is the driving force in tumor growth.

Death Increases Without an Anti-apoptotic Mutation

Because cell division is a tightly regulated process, the presence of mutations can

force apoptosis. This defense mechanism prevents the propagation of mutations to

progeny, thereby maintaining the genetic integrity of cells in the tissue. As a result,

cells that have become transformed are more prone to programmed death unless they

have also acquired a mutation that allows them to evade apoptosis. The next case,

labeled Case B, investigates the consequences of increased death in cells that have

acquired either R or G without obtaining D previously.

Suppose the mutations are defined as in Case A, with the additional condition that

cells with either a G or R mutation have a higher death rate if D has not previously

been acquired. The DGR and DRG pathways do not change in comparison with

Case A since the D mutation is acquired first, but all other pathways are affected.

Figure 4.6 demonstrates that cancer onset is delayed in pathways in which D is

not acquired first. Specifically, in sequences where D is acquired second, the first

cancer stem cell appears approximately ten years later than it did in case A for

parameter values found in Table 4.2.2. When D is acquired last, the first cancer

stem cell appears approximately twenty years later than it did for the same sequence

in Case A. These results suggest that the acquisition of a mutation decreasing cell

death is most advantageous in producing cancer cells if mutations are lethal. This

follows from the fact that in this simulation, cells with only R and G mutations

are suppressed through apoptosis, whereas cells with the D mutation can expand.

For that reason, it is not surprising that the DGR pathway is the fastest, with the
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Figure 4.6: The emergence of cancer is slowed when all mutations are not advantageous.
The emergence of cancer is delayed in pathways in which the D mutation is not acquired
first. Case A is plotted with dashed lines while case B is plotted with solid lines.

first cancer stem cell appearing in 25.8 years, while the RGD pathway is slowest and

produces the first cancer stem cell in 46.4 years.

The contrasting results from Case A and Case B demonstrate that the fastest

pathway is dependent upon the assumptions that are made to characterize mutations.

When all mutations are advantageous as in Case A, acquiring the G mutation first

leads to the fastest appearance of a cancer stem cell. On the other hand, when

mutated cells have increased death without the ability to evade apoptosis as in Case

B, acquiring the D mutation gives rise to the first cancer stem cell. In addition,

the tissue composition of the fastest pathway from Case A, denoted GDRA, and the

fastest pathway from Case B, denoted DGRB, are notably different, as illustrated in
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Figure 4.7. Following the GDRA pathway, the majority of cells are normal for the

first 28 years, after which cancer cells dominate, while cells with one or two mutations

remain a small portion of the system, as shown in Figure 4.7A. Compare this with

the tissue composition of the DGRB pathway plotted in Figure 4.7B. Normal cells

are the majority until 31 years, after which cells with one mutation, namely the D

mutation, are most numerous. Cells with the D mutation dominate until cancer cells

surpass them at 36 years. Thus the decline of normal cells in the system is comparable

between the two pathways, but the system following the GDRA pathway is usurped

by cells having all three mutations, whereas the tissue following the DGRB pathway

first fills up with cells having only one mutation before being filled with cancer cells.

The dominance of cancer is nearly thirteen years faster in GDRA than in DGRB,

indicating that the disease created through the former is more aggressive than the

latter.

Due to cellular machinery that arrests proliferation of mutated cells, it is likely

that mutations would be detected that would force the cell into apoptosis unless the

machinery itself was also erroneously transformed. Consequently, the assumptions

of Case B are likely a more realistic depiction of mutation acquisition in human cells.

In this case, acquiring the D mutation first bears greatest importance since it ensures

the cell’s survival, allowing it to accumulate further abnormalities. As in Case A,

the population of cancer stem cells drives tumorigenesis and is a very small minority

of all tumor cells.

Unbalanced Stem-Cell Division Pattern

Deregulation of cell proliferation can refer either to the alteration of proliferation

rate or the transformation of cell division pattern. Both Cases A and B defined the

R mutation as an increase in proliferation rate. Now consider Case C in which the
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Figure 4.7: Comparison of tissue composition for fastest paths when all mutations are
advantageous versus when some are lethal. (A) The changing tissue composition
in the GDR pathway, fastest for Case A in which all mutations are advantageous. Within
28 years, cancer cells dominate the tissue. (B) The changing tissue composition for the
DGR pathway, fastest for Case B in which R and G are not advantageous without D
first. At approximately 31 years, cells with the D mutation are the majority, but cancer
cells increase and take over the tissue in 36 years.
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R mutation doubles the probability of symmetric self-renewal in stem cells, while

the proliferation rate of stem cells and the division properties of progenitors are

unaltered. In essence, progenitor cells with the R mutation do not behave differently

than those without the R mutation, but stem cells with the R mutation are more

likely to symmetrically self-renew than normal stem cells. The G and D mutations

are defined as in Case A, and it is assumed that all mutations are advantageous.

Increasing symmetric self-renewal significantly quickens the pace of cancer devel-

opment. In fact, all pathways have a first cancer stem cell within eight years. The

fastest pathway is the GRD pathway, with the first cancer stem cell formed in 5.5

years, but the slowest pathway, DRG, is less than three years slower. Therefore, the

difference between the fastest and slowest pathways is relatively insignificant, imply-

ing that increased symmetric self-renewal minimizes the impact of other mutations.

In other words, when a mutation increases symmetric self-renewal, cancer stem cells

rapidly emerge in all pathways so that the order of mutation acquisition does not

meaningfully influence the time to first cancer stem cell.

Figure 4.8 compares the time to first cancer stem cell for each pathway in Cases

A, B, and C. Cancer stem cells in Case C emerge 15 to 20 years faster than in Case

A and 20 to 40 years earlier than in Case B. The speed of disease onset suggests

that aberrant symmetric self-renewal may be a key contributor in aggressive forms

of cancer, whereas deregulated cell proliferation may be characteristic of diseases

that progress more slowly. Furthermore, increased symmetric self-renewal appears

to diminish the impact of genetic instability because the difference between slowest

and fastest pathways is relatively insignificant.
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Figure 4.8: Unbalanced symmetric self-renewal significantly decreases the time to can-
cer. When stem-cell division pattern is unbalanced with an increase in symmetric
self-renewal, cancer stem cells rapidly develop.
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Progenitors Complete Additional Divisions

It is unknown if cancer stem cells are mutated stem cells or mutated progenitor

cells that have gained stem-cell characteristics, particularly the ability to self-renew.

To address this issue, Case D assumes the R mutation affects the proliferation of

progenitor cells by increasing the number divisions before terminally differentiating.

Stem cells may acquire the R mutation, though it does not alter the stem-cell kinetics

and therefore acts as a pre-cancerous mutation that later manifests in progeny that

are more differentiated. The proliferation rate of both stem and non-stem cells does

not increase with the R mutation so that this mutation only increases the number of

progenitor divisions. As in Cases A, B and C, the D mutation decreases apoptosis,

the G mutation increases the mutation rate. In addition, it is assumed that all

mutations are advantageous.

The time to first cancer stem cell is slower for all six pathways than in the previous

cases because mutated stem cells do not proliferate faster or symmetrically self-renew

more than normal stem cells. However, progenitor and differentiated populations

expand due to the extra divisions completed by progenitors, as shown in Figure 4.9A.

The percentage of tissue cells having one mutation is plotted in Figure 4.9B. The

DGR pathway, in which R is acquired last, is the only pathway in which a majority

of tissue cells have one mutation over time. As demonstrated in Figure 4.9C, the

majority of tissue cells following the DRG and RDG pathways have two mutations, D

and R. All other pathways are taken over by cells with all three mutations, as shown

in Figure 4.9D. The hypercellularity resulting from the D and R mutations alone

could lead to death as the tissue reaches a fatal burden of cells as in the DRG and

RDG pathways. However, tissues following these pathways are primarily composed

of cells with the D and R mutations that might be more reactive to treatment since
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genetic instability has not been acquired. If treatment successfully targets cells that

have not acquired all three mutations, then pathways generating tumors mainly

composed of cells with all three mutations are more problematic.

Unlike Cases A, B, and C, the composition of non-stem cells in the tissue does

not mirror the composition of stem cells because the R mutation only manifests itself

in progenitor cells. Consider the GDR pathway, which is the first pathway to have

a cancer stem cell in this case. Figure 4.10A plots the composition of the stem-

cell pool over time. Normal stem cells dominate for the first forty-nine years, after

which the majority of stem cells have the G and D mutations. There are a small

number of cancer stem cells, and although they exceed normal stem cells in 57 years,

they do not surpass those with only two mutations. In contrast, the composition of

differentiated cells is markedly different, as plotted in Figure 4.10B. Cells with all

three mutations take over the non-stem cell pool within 34 years, while cells with one

or two mutations remain a small percentage of progenitor and differentiated cells.

The contrast between stem-cell and non-stem cell compositions proves that cancer

growth is due to expansion in the progenitor pool, not the stem-cell pool.

Because mutated differentiating cells continue to mature and have not acquired

the ability to limitlessly self-renew, it is still the small percentage of cancer stem cells

that drives tumorigenesis. Without the self-renewing cancer stem cell population,

mutated differentiating cells would cause hypercellularity but ultimately reach a state

of homeostasis, even though elevated. It should be noted that the R mutation is what

causes significant expansion in progenitors, and the growth of cell populations with

the R mutation may cause proliferative disorders, even if all three mutations have

not been acquired.

This case in which R extends proliferation of progenitors without affecting stem
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Figure 4.9: Progenitor and differentiated cells accumulate due to extra progenitor divi-
sions. (A) The total non-stem cell population for each pathway. The DRG pathway
generates hypercellularity the fastest. However, most of these cells only have 2 muta-
tions. (B) The percentage of progenitor and differentiated cells that have one mutation.
DGR is the only pathway dominated by cells with one mutation. (C) The percentage of
progenitor and differentiated cells that have two mutations over time. Tissues following
the DRG and RDG pathways are mainly composed of cells with both the D and R mu-
tations. (D) The percentage of progenitor and differentiated cells with three mutations
over time. Tissues following GDR, GRD, and RGD are eventually taken over by cancer
cells.
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Figure 4.10: Comparison of stem cell composition and non-stem cell composition for
the GDR pathway in case D. (A) The percentage of stem cells with 0, 1, 2, or
3 mutations over time. After 30 years, the majority of stem cells have only the D
mutation. (B) The percentage of non-stem cells with 0, 1, 2, or 3 mutations. After
20 years, the majority of non-stem cells have all 3 mutations due to the extra division
and amplification of progenitor cells that have acquired the R mutation.
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cells is unique in that the system may reach a fatal level of cancer cells before any

cancer stem cells are formed. By increasing the number of divisions progenitors

complete before terminal differentiation, there is a massive expansion in mutated

progenitor and differentiated cell populations and may be indicative of a myelopro-

liferative disease. However, this type of R mutation is not sufficient in causing cancer

without pre-cancerous mutations occurring in the stem-cell pool, which is illustrated

in Figure 4.11. If stem cells are capable of acquiring one, two, or three mutations,

then the cancer cell population grows due to the exponential growth of mutated stem

cell populations. In contrast, if stem cells do not acquire any mutations, then cancer

progenitor and differentiated cells remain at low, undetectable levels because can-

cer progenitors eventually reach terminal differentiation and die, thereby preventing

expansion. Therefore, at least one mutation must occur in stem cells that initiates

exponential growth in order to generate malignancy.

These results indicate that unless progenitor cells acquire a mutation that per-

mits them to self-renew and prevent maturation as stem cells normally do, stem-cell

mutations are critical in promoting tumorigenesis. However, the model predictions

from Case D demonstrate the substantial impact that extra progenitor divisions have

on tissue hypercellularity. As a result, it is hypothesized that progenitor self-renewal

would generate an even greater increase in tissue mass and would be a more ag-

gressive disease. Such a mutation is believed to facilitate the transition between

chronic to blast phase in Chronic Myelogenous Leukemia. As a result, the possi-

bility of progenitors gaining limitless self-renewal potential will be investigated later

in Chapter VIII, where a mathematical model is presented that simulates disease

progression in Chronic Myelogenous Leukemia.
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Figure 4.11: At least one mutation is needed in stem cells for malignant tumor growth.
Cancer growth is fastest when stem cells acquire all three mutations, but cancer growth
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malignant growth.
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4.3 Conclusions

Although many types of mutations have been identified in cancer cells, it is dif-

ficult to determine the order in which they were acquired that led to malignancy.

In this chapter, mutation acquisition in hierarchical tissue has been examined with

a maturity-structured mathematical model in order to investigate the impact that

mutation order has on tumor dynamics. In particular, the sequential accumulation

of somatic mutations was modeled to examine the multi-step process that initiates

cancer. Importantly, it was concluded that the order in which mutations are acquired

does affect the tempo of tumorigenesis. In addition, tumor composition varies for

different mutation pathways, so that some sequences generate tumors that are dom-

inated by cancerous cells, while others are primarily comprised of cells with only one

or two mutations.

For each mutation pathway considered, the time to first cancer stem cell deter-

mined the onset of malignancy, so that the fastest pathway could be established.

If all mutations are advantageous, genetic instability is the key determining factor

for the emergence of cancer stem cells, and this result is robust for a wide range

of parameters. The fastest pathways acquired genetic instability first, which agrees

with the results of Michor et al., who predicted that chromosomal instability was

an early event in colon cancer [84]. This result differs from the work by Spencer et

al., who predicted that the fastest pathway to cancer ends with genetic instability.

Rather than following the particular order in which mutations accumulate, however,

Spencer et al. did not distinguish the chronological order of mutations that gener-

ated cells with a particular phenotype. In contrast, the predictions presented in this

chapter suggest that the specific sequential order of mutation acquisition decisively
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influences tumor dynamics.

In addition to the importance of mutation sequence, model predictions indicate

that certain types of mutations are more significant than others in dictating cancer

onset. For instance, when all mutations are advantageous, acquiring genetic insta-

bility first leads to the fastest path. In contrast, if mutations are lethal when evasion

of apoptosis has not yet been acquired, then the fastest pathways are initiated with

mutations decreasing cell death. Particularly significant are mutations that cause the

stem-cell division pattern to be unbalanced in the favor of symmetric self-renewal.

Increased symmetric self-renewal significantly quickens cancer onset and progression

because it rapidly expands the cancer stem cell population. Furthermore, it dimin-

ishes the importance of all other mutations in that cancer stem cells emerge in all

pathways within a relatively short time of each other.

When mutations affect stem and progenitor cells similarly, the model predicts

that the dynamics of the differentiating-cell population are dictated by the dynamics

of the stem-cell population. As a result, the cancer stem cell population is the

driving force of tumor growth. However, if a mutation is acquired in stem cells, but

is not manifested until inherited in a progenitor, then the dynamics of stem cells

and non-stem cells do not closely correlate. For example, a mutation that increases

the number of progenitor divisions contributes to hypercellularity and tumorigenesis,

even before the formation of cancer stem cells. Yet, if progenitor and differentiated

cells do not acquire limitless self-renewal potential, malignancy does not form unless

some initial mutations occur in the stem-cell population. This result demonstrates

the driving force of cancer stem cells in tumor formation and disease progression.

Furthermore, the model predicts that the cancer stem cell population is a small

minority of tumor cells for all cases discussed in this chapter. Because differentiation
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pathways are not disabled, mutated progeny continue to expand and mature, forming

cancerous differentiated cells that significantly outnumber stem cells. According to

model results, it is predicted that the percentage of tumor cells that are cancer stem

cells significantly increases only if differentiation is somehow inhibited.

The mathematical model presented in this chapter provides a general framework

that could be used to investigate tumorigenesis in any hierarchical tissue. To demon-

strate the usefulness of this model, simulations of mutation acquisition in hematopoi-

etic cells were conducted, but the model structure is general enough to be adapted

to other tissues and include any number of mutations. The maturity structure offers

unique insight into the maturity distribution of tumor cells, which may be bene-

ficial for studying malignancies in which the distribution of stem, progenitor, and

differentiated cells is significantly altered. Another novel feature of this model is

the incorporation of all three modes of stem-cell division, which makes it possible

to determine the effects on tumor dynamics when the balance is deregulated. In

this model, it is assumed the probabilities of symmetric self-renewal, asymmetric

self-renewal, and symmetric commitment differentiation are constant and regulatory

mechanisms governing stem-cell division pattern are not incorporated. There are

many factors that influence self-renewal and differentiation, however, which moti-

vates the investigation of stem-cell regulation in the next chapter.



CHAPTER V

Regulatory Mechanisms in Hierarchical Tissue

The previous chapter introduced a mathematical framework for hierarchical tissue

in which stem cells were modeled with an ordinary differential equation while dif-

ferentiating cells were modeled with a maturity-structured partial differential equa-

tion. The Maturity-Structured Model in the Absense of Homeostatic Regulation

(MSMAHR) presented in Equations 4.1 used constant probabilities to determine the

outcomes of stem-cell division. Although useful information about tumorigenesis can

be obtained by starting with such a model, cellular growth dynamics in hierarchical

tissue are more accurately modeled when regulatory factors governing stem-cell divi-

sion are incorporated. In particular, the stem-cell niche and chemical signaling can

influence both self-renewal and differentiation to promote tissue homeostasis. When

constant probabilities of stem-cell division are employed, there are three possible sce-

narios of tissue dynamics: cell populations may exponentially grow without bound,

cell populations may decline to elimination, or cell populations may remain in steady

state for all time. While homeostasis is likely most common in healthy individuals,

clearly there are times when tissue expansion is needed, such as in tissue generation

or reconstitution after injury, and others when suppression is required, such as when

correcting hypercellularity. Because cellular kinetics can adjust in accordance with

80
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tissue demands, the MSMAHR model is insufficient in capturing the intricacies of

feedback regulations acting within hierarchical tissue. Rather, probabilities of stem-

cell self-renewal and differentiation are likely dependent upon the number of stem

and differentiated cells within the tissue, thereby necessitating a non-linear model.

It is not surprising that abnormalities in tissue regulation can potentially insti-

gate tumor formation. Therefore, mathematical investigation of feedback interac-

tions may highlight the types of genetic mutations that cause greatest malignancy

within hierarchical tissue. However, in order to understand how irregularities con-

tribute to tumorigenesis, it is necessary to first validate a model that accurately

simulates healthy tissue. This chapter incorporates mechanisms that regulate stem-

cell division and quiescence in order to mathematically simulate homeostasis of the

hematopoietic system. First, biological background of regulatory mechanisms is re-

viewed. Then, an introductory mathematical model is developed to fit experimental

data of the stem-cell division pattern. Subsequently, cycling and quiescent stem

cells and differentiated cells are incorporated into a non-linear model of ordinary

differential equations, which is then used to simulate tissue generation. In contrast

with the MSMAHR model, intermediate classes of differentiating cells are not explic-

itly modeled, thereby removing the maturity-structured partial differential equation

modeling non-stem cells. Instead, terminally differentiated cells are assumed to have

reached full maturity and are modeled with an ordinary differential equation. This

was done to focus more on regulatory mechanisms governing the stem-cell population

without added complexities from the maturity structure. In Chapter VIII, a model

will be introduced that incorporates both regulatory mechanisms in stem cells and

a maturity-structured population of differentiating cells. Finally, this chapter con-

cludes by discussing the significance of feedback regulations contributing to tissue
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homeostasis.

5.1 Regulation of Tissue Homeostasis

The proliferation of stem cells is a tightly regulated, yet responsive, process, con-

trolled by various mechanisms that are not fully understood. For instance, certain

chemical signals may promote stem-cell self-renewal, while others initiate differen-

tiation in response to a need for additional mature cells [89, 125]. Furthermore,

environmental cues also influence stem-cell division [125]. Changes in the microenvi-

ronment have the ability to alter stem-cell function and in some cases, could lead to

malignancy, so it is important to understand how interactions within the surrounding

microenvironment affect stem cells [2].

5.1.1 The Stem-Cell Niche

Because the percentage of stem cells in healthy tissues is very small, these cells

must be protected and maintained through tight regulation. It is believed that the

stem cell niche is crucial in both aspects [42, 95, 126]. The niche is the microenvi-

ronment composed of neighboring cells and cytokines that surround the stem cells

in a tissue [126]. One of the obstacles in stem-cell research is the inability to scien-

tifically reconstruct niches, which makes it difficult to maintain stem cells in vitro

because signals from the niche affect stem-cell survival, proliferation and differenti-

ation [42, 95, 126].

In recent years, researchers have investigated the importance of the stem-cell

niche in various tissues such as bone marrow, testis, hair follicle, colon, ovary,

and brain [42]. The mathematical model presented in this chapter investigates tis-

sue homeostasis in the hematopoietic system, therefore the bone marrow niche of

hematopoietic stem cells (HSCs) is now discussed. The bone marrow is composed
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of red and yellow marrow. Fatty cells constitute yellow marrow, while red marrow

is responsible for blood cell production [39]. Soft bone marrow and blood vessels

comprise the inner bone cavity, while the rigidity of the outer bone capsule provides

external protection and maintains the balance of pressure needed to release appro-

priate amount of new blood cells into circulation [39, 126]. Many details regarding

the hematopoietic stem cell niche remain uncertain, but it is believed that endosteal,

vascular, and perivascular cells may all play a role [66].

The stem-cell niche also includes cytokines that are found in the microenviron-

ment. Several proteins are associated with stem-cell maintenance and differentiation,

and scientists have recently begun identifying these molecules and their functions.

For instance, the expression of Notch, a transmembrane protein used in cell-to-cell

communication, may promote stem-cell quiescence, and integrins may affect the inter-

actions between stem cells and the extracellular matrix [42]. The growth-promoting

Wnt family of proteins are prevalent during embryogenesis and may play a role in

cell proliferation and differentiation [42]. Independence from the control of niche

signaling leads to cancer, which is further evidence that the niche is crucial in main-

taining tissue balance. Loss of tumor suppressor Pten causes HSC mobilization and

leukemia [76]. Alteration in the balance between the anti-growth bone morphongenic

protein, BMP, and Wnt signaling promotes tumorigensis [74, 76]. Therefore, it is

clear that signaling pathways in the niche mediate tissue homeostasis.

It is known that a small number of hematopoietic stem cells circulate in the blood,

but their function remains a mystery [70]. Stem cells may temporarily leave the niche

and maintain stemness through mobilization, and return to the niche in a process

known as homing [70, 126]. Stem-cell mobilization and homing are crucial for suc-

cessful stem-cell transplantation, and will only occur if the niche is intact [39]. While
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all of the mechanisms involved in mobilization and homing are not fully understood,

it is known that the niche significantly impacts the maintenance and growth of stem

cells.

5.1.2 Signals Promoting Differentiation

Within hierarchically structured tissues, immature progenitors are responsible for

expanding and eventually differentiating into fully mature cells that carry out specific

functions for the tissue. Hematopoietic stem cells are precursors for all types of blood

cells including lymphocytes, macrophages, erythrocytes, platelets, and granulocytes.

Chemical signaling may influence the proliferation and differentiation of stem cells

into different progeny types as demanded. Several colony-stimulating factors have

been identified in the hematopoietic system that impact stem and progenitor cell be-

havior. Interleukin-3, IL-3, has been used as part of stem-cell mobilization regimens

and promotes the survival and proliferation of progenitors to increase production

of various differentiated progeny including macrophages, granulocytes, mast cells,

megakaryocytes, and erythrocytes [9, 86]. Macrophage colony-stimulating factor,

M-CSF, and granulocyte colony-stimulating factor, G-CSF, promote survival, prolif-

eration, and differentiation of mature and precursor macrophages and granulocytes,

respectively [9, 30].

Additional knowledge of the role of G-CSF is of particular interest in develop-

ing a mathematical model of stem cells and neutrophils. G-CSF is the primary

signal involved in promoting the survival, proliferation, and differentiation cells

within the neutrophil lineage, and it is essential for terminal differentiation of ma-

ture neutrophils [9]. In an immune response, G-CSF is produced by monocytes and

macrophages. It then binds to cells expressing the G-CSF receptor, which are pri-

marily neutrophils and their precursors [9]. It is interesting to note that G-CSF
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receptors are not expressed by cells of the erythroid or megakaryocytic lineage [30].

Thus G-CSF binding is a mechanism specifically used to maintain homeostasis of

granulocytic cells in that its presence promotes differentiation and ensures a suf-

ficient neutrophil response, but its absence prevents hypercellularity by inhibiting

surplus production [9].

5.2 Stem-Cell Division Pattern

It is believed that stem cells are capable of three types of division: symmet-

ric self-renewal (SSR), asymmetric self-renewal (ASR), and symmetric commitment

differentiation (SCD). It is difficult to determine the mode of stem-cell division ex-

perimentally, but current investigation continues to identify potential signals that

promote self-renewal and differentiation. In a recent experiment, Wu et al. used

time-lapse imaging techniques to record the divisions of murine hematopoietic pre-

cursor cells in vitro. Immature cells were isolated by expression of the GFP marker,

which is downregulated as cells differentiate. Over the course of three days, GFP+

cell division was recorded to investigate the effects of both extrinsic and intrinsic cues

on cell proliferation and self-renewal [125]. Although in vitro observations cannot

possibly mirror in vivo human hematopoietic stem cell kinetics perfectly, the experi-

mental data quantifies all three types of stem-cell division in mammals and provides

an opportunity to determine appropriate parameter values, which will be useful in

subsequent modeling investigations.

5.2.1 Mathematical Modeling of Feedback Mechanisms Governing Stem-Cell Division

The in vitro experiment by Wu et al. is certainly a simplification of the behavior of

stem and progenitor cells in vivo, but it provides rare data on the division pattern of

stem cells. Unfortunately, scientists are currently unable to monitor stem-cell kinetics
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and division patterns in vivo, which makes it difficult to create a mathematical model

that accurately simulates in vivo behavior. Modeling these in vitro results may assist

in quantifying parameters that would otherwise be unattainable. Consequently, a

simplified model of stem and early progenitor cells is now used to investigate stem-

cell division patterns.

The experimental data may be modeled with a system of differential equations for

two types of cells, GFP+ and GFP-. The GFP+ cell population, denoted S, contains

the most immature cells, including stem cells, while the GFP- cell population, de-

noted N , consists of cells more differentiated. Every successful GFP+ division results

in one of three fates: symmetric self-renewal (SSR) with probability αS, asymmetric

self-renewal (ASR) with probability αA, and symmetric commitment differentiation

(SCD) with probability αD. Therefore, αS +αA +αD = 1. Furthermore, GFP+ cells

divide at rate k and die with rate δS, and GFP- cells die with rate δN . GFP- cells are

formed through asymmetric and differentiation divisions of the GFP+ population.

The amplification factor, A, incorporates the average number of progeny resulting

from the differentiation of a precursor cell as well as the rate of division for GFP-

cells, which was not directly measured in the experiment. Using an amplification

factor to eliminate the need for explicitly modeling all intermediate cellular popula-

tions has been done in various mathematical models of hematopoiesis [13, 24, 83].

The resulting model is a system of two ordinary differential equations:

dS

dt
= [k (αS − αD)− δS] S(5.1)

dN

dt
= (2αD + αA) kAS − δNN
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where

αS(S) = (1− δS)

(
θn

S

θn
S + Sn

)

αA(S) = 1− αS(S)− αD.

Symmetric self-renewal of stem cells may be controlled by both extrinsic and

intrinsic chemical signaling. Certain environmental cues may promote self-renewal,

while others promote differentiation. Similarly, proteins produced within the cell

affect how a stem cell divides. The Hill function
(

θn
S

θn
S+Sn

)
in αS has been used

in previous mathematical models of hematopoiesis and is derived from receptor-

ligand binding kinetics [5, 13]. As the number of stem cells, S, approaches zero, the

probability of symmetric self-renewal based on chemical signaling approaches the

maximum value of one. The parameter θS may be interpreted as the number of stem

cells at which the probability of symmetric self-renewal based on chemical signaling

is equal to one-half. Higher values of the exponent n > 0 increase the sensitivity

of GFP+ cells to the chemical signaling for symmetric self-renewal. Because the

cells are monitored for three days, it is assumed that progeny cells do not reach full

maturity, and thus there is no feedback of differentiated cells to affect the probability

of symmetric commitment differentiation. Therefore, αD is approximately constant

over the course of three days. The model terms are summarized in Table 5.1.

5.2.2 Environmental Effects on Stem-Cell Division Pattern

To test the role of the extrinsic signaling on proliferation and division pattern,

GFP+ cells were plated in two different environments. Both groups of cells exhibited

similar rates of proliferation and cell death, but the pattern of GFP+ cell division

was markedly different. The OP9 medium, composed of stroma cells capable of

maintaining hematopoietic stem cells in vitro, promoted symmetric self-renewal. In
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Term Definition
S Number of GFP+ cells
N Number of GFP- cells

αS(S) Proportion of GFP+ cells that symmetrically self-renew
= (1− αD)

(
θn

S
θn

S+Sn

)

αD Proportion of GFP+ cells that symmetrically differentiate

αA(S) Proportion of GFP+ cells that asymmetrically self-renew
= 1− αS(S)− αD

θS Switch parameter of symmetric self-renewal
n Exponent that determines sensitivity for symmetric self-renewal
k Proliferation rate of GFP+ cells
δS Death rate of GFP+ cells
A Amplification factor
δN Death rate of GFP- cells

Table 5.1: Definitions of terms used in modeling experimental data from Wu et al [125].

contrast, the 7F2 medium, composed of osteoblastic cells from mice, promoted dif-

ferentiation and asymmetric self-renewal. It was thus concluded that environmental

cues can affect the outcome of stem cell division[125].

Experimental Procedure and Results

In the experiment performed by Wu et al., 5000 GFP+ cells were plated on either

a 7F2 or OP9 feeder layer. Over the course of three days, division modes were

observed. At the end of three days, the number of GFP+ and GFP- cells were

recorded along with the average percentage of all three types of GFP+ cell division

that occurred over the three days. The 7F2 feeder layer promoted asymmetric self-

renewal. Of all GFP+ cell divisions, only 33% resulted in symmetric self-renewal,

whereas 50% were asymmetric divisions and 17% were differentiation divisions. In

contrast, the OP9 feeder layer promoted symmetric self-renewal over differentiation.

Of all GFP+ cell divisions observed for three days, 60% resulted in symmetric self-

renewal divisions, whereas 26% were asymmetric, and 14% were differentiation. The

death rate and division rate of GFP+ cells did not vary significantly between the

two different feeder layers. The different environments, however, altered the death
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rate of GFP- cells. In the 7F2 medium, it was estimated that the death rate of GFP-

cells was approximately twice that of GFP+ cells, while in the OP9 medium, it was

estimated that the death rate of GFP- cells was approximately three to four times

that of GFP+ cells [125].

Model Simulations of Experimental Data

Due to the lack of published data on the three potential outcomes of stem-cell

division, these experimental results provide a rare opportunity to quantify math-

ematical parameters used to model regulatory mechanisms. Many of the model

parameters may be determined directly from the experimental data. Specifically,

the division rate of GFP+ cells, k, death rate of GFP+ cells, δS, probability of

symmetric commitment differentiation, αD, and death rate of GFP- cells, δN , were

recorded experimentally. The Hill function parameters, θS and n, and amplification

factor, A, are determined to fit the experimental results. In Table 5.2, we present

the parameters used in the mathematical simulations.

For numerical simulations, the ordinary differential equation solver ode15s in

MATLAB was used. Using the experimental initial condition of 5000 GFP+ cells and

zero GFP- cells, the number of GFP+ and GFP- cells was modeled for a time span

of three days. The average occurrence of each division type was found by calculating

the average of the functions for αS, αA, and αD over the three-day span. As demon-

strated in Table 5.2, the model predictions are in coherence with the experimental

data. Over the course of three days on the 7F2 feeder layer, the experimentalists

found that the fraction of GFP+ cells undergoing symmetric self-renewal, asym-

metric self-renewal, and differentiation was 33%, 50%, and 17%, respectively. With

parameter values θS = 4, 300, n = 2, and A = 1.3, the model derives the same

division fractions and predicts the three-day cell count total of 5,666 GFP+ cells
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Model Comparisons with Experimental Data
7F2 7F2 OP9 OP9
Param. Range Model Param. Range Model

k (per day) * 0.6238-0.9935 0.8087 0.6469-0.9242 0.7856
θS (cells) + 4,100-4,600 4,300 11,000-14,800 13,000
n + 2-4 2 2-5 2
δS (per day) * 0.0662-0.0959 0.0828 0.0622-0.0786 0.0744
δN (per day) * 2δS 0.1756 4δS 0.2976
A + 1.0-1.6 1.3 0.7-1.0 1.0
GFP+ cells + N/A 5,666 N/A 12,617
GFP+ cells (%) * 34% ± 5% 33% 65% ± 5% 61%
GFP- cells + N/A 11,400 N/A 8,129
GFP- cells (%) * 66% ± 5% 67% 35% ± 5% 39%
GFP-:GFP+ cells * 1.56-2.45 2.01 0.43-0.67 0.64
αS (%) * 32-34% 33% 61-67% 65%
αA (%) * 47-53% 50% 19-25% 23%
αD (%) * 16-18% 17% 11-14% 12%

Parameters with * are experimentally determined
Parameters with + are mathematically determined

Table 5.2: A comparison of the experimental data with the predicted model values. Cell numbers
are determined at the end of the three-day experiment. Division percentages are average
values figured over the course of the experiment.

and 11,400 GFP- cells. For the OP9 feeder layer, the experimental data concluded

that the fraction of GFP+ cells undergoing symmetric self-renewal, asymmetric self-

renewal, and differentiation was 65%, 25%, and 10% respectively. With θS = 13, 000,

n = 2, and A = 1, the model achieves these results for division pattern and predicts

a three-day cell count of 12,617 GFP+ cells and 8,129 GFP- cells. A comparison of

the experimental data with model predictions is presented in Table 5.2.

Figure 5.1 plots the growth dynamics of the cells in the 7F2 medium in A and

B, and the dynamics of the OP9 medium in C and D. There are striking differences

in both cellular composition and mode of GFP+ cell division when the 7F2 medium

is contrasted with the OP9 medium. GFP+ cells plated in the 7F2 medium fa-

vor asymmetric self-renewal over other division outcomes. Consequently, the GFP+

population grows minimally whereas the GFP- cell population experiences signif-

icant expansion, as seen in Figure 5.1A. In particular, GFP- cells surpass GFP+
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cells in approximately 1.3 days and by the end of the three-day experiment, GFP-

cells compose 67% of all cells. In contrast, GFP+ cells plated in the OP9 medium

favor symmetric self-renewal over both asymmetric and commitment differentiation

divisions. As a result, it is not surprising that the GFP+ population expand consid-

erably and remain the majority of cells over the three-day experimental course, as

shown in Figure 5.1C.

The properties of cells in the 7F2 and OP9 environments are alike for proliferation

and death of GFP+ cells, but the division pattern is significantly different. There-

fore, it is not surprising that the majority of parameters are comparable between

both cases while the switch parameter affecting symmetric self-renewal, θS, differs

significantly. The value used for θS in the OP9 environment is more than three times

that of the 7F2 environment. In the 7F2 environment, the probability of symmetric

self-renewal due to chemical signaling is 50% when there are 4,300 GFP+ cells, but

since 5,000 GFP+ cells are initially plated, throughout the three-day experiment

the probability of symmetric self-renewal divisions is less than 50%, and asymmetric

division is dominant. In contrast, in the OP9 environment, 13,000 GFP+ cells are

needed before the GFP+ cell division mode switches from symmetric to asymmetric

self-renewal, so symmetric division is dominant during the experiment. Therefore,

knowing the value of θS is crucial in determining the balance between symmetric and

asymmetric self-renewal divisions. Although this particular experimental procedure

focused on the division pattern of GFP+ cells, thereby highlighting the significance

of θS in the mathematical model, the effects of other model parameters are better

understood through a sensitivity analysis.
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Figure 5.1: Growth dynamics of GFP+ cells in 7F2 and OP9. (A) GFP+ and GFP- cells
in 7F2 versus time. (B) Asymmetric division is favored in 7F2. (C) GFP+ and GFP-
cells in OP9 versus time. (D) Symmetric self-renewal is favored in OP9.
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Figure 5.2: Sensitivity Analysis. The ratio of the number GFP+ cells to GFP- cells (green) and
the ratio of symmetric self-renewal to asymmetric division (blue) are plotted as each
parameter varies. Baseline parameters are taken from the 7F2 model set in Table 5.2.
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Parameter Sensitivity Analysis

A sensitivity analysis can be used to determine the effects of parameter changes

on the model. The sensitivity analysis was conducted for parameters used for 7F2

as opposed to OP9 because the 7F2 medium is believed to be more representative of

the hematopoietic stem-cell environment for an adult human. Using the parameter

values determined for the 7F2 medium, Figure 5.2 plots the ratio of GFP+ cells to

GFP- cells as well as the ratio of symmetric self-renewal to asymmetric self-renewal

divisions as the specified parameter varies. Cell counts and division averages are

determined at the end of a three-day period of observation and then compared to

the data from modeling the original experimental results.

As shown in Figure 5.2A, increased GFP+ cell proliferation decreases the ratio of

GFP+ to GFP- cells. Recalling that asymmetric divisions are dominant in the 7F2

environment, increasing the proliferation rate increases the number of asymmetric

divisions more than the number of symmetric self-renewal divisions, thereby increas-

ing the GFP- cell population in comparison with GFP+ cells. Doubling the rate of

GFP+ cell proliferation decreases the ratio of GFP+:GFP- cells from approximately

1:2 to 1:4, because an increase in k does not affect GFP+ steady state, but greatly

increases GFP- cells. In addition, the frequency of symmetric self-renewal decreases

in relation to asymmetric division. Increasing the rate of proliferation switches off

symmetric self-renewal faster, thereby decreasing the three-day average. However,

the ratio of divisions does not decrease as quickly as the ratio of cells. In contrast,

increasing GFP+ cell death increases both ratios, as demonstrated in Figure 5.2B.

An increase in δS decreases the number of GFP+ cells, which increases symmetric

self-renewal. If δS > 0.35, symmetric division is favored over asymmetric division,

as stem cells divide symmetrically to avoid elimination. The increase in symmetric
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self-renewal subsequently decreases asymmetric and differentiation divisions, which

decreases the number of GFP- cells as compared to GFP+ cells.

Figures 5.2C and D plot the model sensitivity to the Hill function parameters, θS

and n. The switch parameter θS has more effect on GFP+ division pattern than any

other parameter. Doubling θS from 5,000 to 10,000 cells more than doubles the ratio

of symmetric self-renewal to asymmetric self-renewal. The increase in symmetric

self-renewal increases the number of GFP+ cells, which in turn increases the ratio

of GFP+ cells to GFP- cells. Increasing the Hill function exponent, n, does not

significantly decrease the ratio of GFP+ to GFP- cells, but rather has more impact

on decreasing the frequency of symmetric self-renewal. Increasing n sharpens the

switch for symmetric self-renewal so that when S > θS, the probability of SSR

approaches zero faster. Since the initial condition of 5,000 plated GFP+ cells is

greater than the baseline parameter value of θS = 4, 300, the probability of SSR

decreases for higher values of n. Although n affects the division pattern, it has

minimal impact on the steady state of the system, suggesting that there are several

values that could fit this parameter.

Figure 5.2E demonstrates that the amplification factor, A, does not affect the

ratio of cell division, but decreases the ratio of GFP+ to GFP- cells. It does not

alter the steady state of GFP+ cells, but increasing A does increase the steady state

of GFP- cells, thereby increasing the number of GFP- cells for every GFP+ cell.

Figure 5.2F plots the model sensitivity to the frequency of symmetric differentiation.

As expected, increasing the probability of symmetric differentiation increases the

frequency of SSR as GFP+ cells must symmetrically self-renew to compensate for

GFP+ cells lost through differentiation. In addition, the number of GFP- cells

increases as differentiation increases, decreasing the ratio of GFP+ to GFP- cells.
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Although the experiment is only run over the course of three days, long-run predic-

tions may be made through a steady state analysis. The steady states of the system

are the elimination state (0, 0) and a positive steady state (S∗, N∗) corresponding to

healthy tissue containing both stem and mature cells, where

S∗ = θS

(
k (1− 2αD)− δS

kαD + δS

) 1
n

(5.2)

N∗ =
(2αD + αA) kA

δN
S∗

=
(k − δS) A

δN
S∗.

Specifically, when n = 2,

S∗ = θS

√
k (1− 2αD)− δS

kαD + δS
(5.3)

N∗ =
(k − δS) AθS

δN

√
k (1− 2αD)− δS

kαD + δS
.

For biological parameter values, θS, k, αD, δS, A, and δN are non-negative. When

k < δS
(1−2αD) , the healthy tissue steady state does not exist and the elimination state

is stable. The positive steady state exists when k > δS
(1−2αD) and it is stable. Careful

consideration of the parameters shows that the latter case holds true for biologically

relevant values.

The steady state analysis proves that the relationship between GFP+ cell prolifer-

ation, k, symmetric differentiation, αD, and the death rate of GFP+, δS determines

the existence of a healthy tissue steady state as well as the instability of the elimi-

nation state. Bifurcation diagrams of GFP+ cell steady state as dependent on the

rates of GFP+ proliferation, differentiation, and death are presented in Figure 5.3.

As expected, increasing symmetric differentiation or GFP+ cell death decreases the

steady state until the positive solution is eliminated completely and the elimina-

tion state becomes stable. Increasing the GFP+ cell proliferation rate increases the



97

steady state of GFP+ cells, but the change in steady state is small in comparison

with changes in k. This corresponds with the sensitivity analysis, which concluded

that increasing GFP+ cell proliferation had greater impact on the steady state of

GFP- cells than GFP+ cells.

Although stability does not depend on θS, A, and δN , each of these parameters is

important in determining the actual value of the steady state of the system. First,

observe that N∗ is linearly dependent on S∗, so the parameters that most greatly

affect the steady state of stem cells will similarly affect differentiated cells. Note S∗

depends linearly on θS. Thus, increasing θS and thereby increasing the probability

of symmetric self-renewal has a greater impact on increasing GFP+ cells than does

increasing the GFP+ cell proliferation rate, k. Although a large increase in k may

result in minor GFP+ cell increase, it is important to note that N∗ is linearly de-

pendent on (k − δS), so that large increases in k significantly increase GFP- cells.

In addition, N∗ is linearly dependent on the amplification factor, A, which means

that extra divisions during maturation contribute to an elevated level of GFP- cells.

From this analysis, we conclude that the number of GFP+ cells is most affected by

θS, and the number of GFP- cells is most affected by θS, k, and A.

By studying each parameter’s effects on model outcomes, it is possible to predict

how mutations might alter the growth dynamics of both the GFP+ and GFP- cell

populations. Clearly, mechanisms controlling the balance between asymmetric and

symmetric self-renewal could be potential targets for oncogenesis, as demonstrated

by the impact of the parameter θS. Mutations increasing the GFP+ proliferation

rate or increasing the amplification factor may not significantly contribute to the

accumulation of GFP+ cells, but may lead to hypercellularity of differentiated cells.

Although this in itself may be problematic, it is likely less pathologically aggressive
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than the accumulation of GFP+ cells because current treatment regimens are often

able to eliminate differentiated cells but are unsuccessful in targeting näıve stem

cells. These issues were addressed in an additional experiment in which Wu et al.

investigated the mechanisms of two specific mutations that are known to cause very

different forms of leukemia.

5.2.3 Intrinsic Properties Affect Cellular Proliferation

Both extrinsic and intrinsic signals contribute to the regulation of the many pro-

teins and signaling pathways involved in cellular proliferation and maintenance. The

different GFP+ cell division patterns of cells on 7F2 versus OP9 media prove that en-

vironmental cues are capable of altering cellular signaling. To demonstrate how mu-

tated proteins contribute to oncogenesis by way of intrinsic signals, Wu et al. tested

the effects of BCR-ABL and NUP98-HOXA9 in murine hematopoietic cells [125].

Both mutations are found in hematopoietic precursor cells and are causes of leukemia,

but each leads to the development of very different forms of disease. Therefore, by

investigating the cellular properties that are deregulated by each protein, it is possi-

ble to gain further understanding regarding the causing mechanisms and progression

of disease.

Although other mutations are involved in the development of Chronic Myeloge-

nous Leukemia (CML), expression of the BCR-ABL fusion protein is the primary

marker used for diagnosis of the disease [17, 22, 120]. Caused by the translocation

t(9; 22)(q34; q11) in hematopoietic precursor cells, BCR-ABL inhibits apoptosis and

enables additional cellular divisions [27, 46]. It is believed that BCR-ABL-positive

cells suppress normal hematopoiesis by creating a dominant clone that hinders the

differentiation of non-mutated progenitors [48]. BCR-ABL does not, however, block

differentiation altogether, and the initial chronic phase of CML is characterized by
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an increase of both progenitor and mature cells [55].

In contrast, the fusion protein NUP98-HOXA9 caused by the translocation t(7;

11)(p15; p15) is expressed in cells of patients with Acute Myelogenous Leukemia

(AML) and blast crisis CML [37, 88]. It is believed NUP98-HOXA9 expression in-

creases self-renewal in myeloid progenitor cells, contributing to an increased number

of immature blast cells of the myeloid lineage [88]. Furthermore, in patients express-

ing NUP98-HOXA9, both erythroid and myeloid differentiation is inhibited [88].

Therefore, this mutation shifts the balance of stem-cell division mode in favor of

symmetric self-renewal.

Experimental Procedure and Results

In order to investigate how these mutations affect cell proliferation and death,

three thousand GFP+ cells were infected with BCR-ABL, three thousand GFP+

cells were infected with NUP98-HOXA9, and then compared to three thousand non-

infected GFP+ cells in a control group. Cell divisions, pattern of division, and death

were monitored in each group over three days in vitro. The data suggests that BCR-

ABL has greater impact on the cell proliferation rate and survival, while NUP98-

HOXA9 alters the pattern of cell division. In three days, GFP+ cells completed an

average of 2.7 divisions in the control group, 6.5 divisions in BCR-ABL cells, and 3.5

divisions in NUP98-HOXA9 cells, corresponding to the derived proliferation rates

of 0.6238 per day, 1.5018 per day, and 0.8087 per day, respectively. The percent of

GFP+ cells lost to apoptosis was 14% in the control cells, 7% in the BCR-ABL cells,

and 12% in NUP98-HOXA9 cells. Consequently, the death rate was 0.0503 per day

in the control cells, 0.0242 in BCR-ABL cells, and 0.0426 in NUP98-HOXA9 cells. In

the control group, the frequency of symmetric self-renewal (SSR), asymmetric self-

renewal (ASR), and symmetric commitment differentiation (SCD) was 42%, 48%,



101

Parameter Control BCR-ABL NUP98-HOXA9
Exper. Model Exper. Model Exper. Model

k(day−1) 0.6238 0.6238 1.5018 1.5018 0.8087 0.8087
δS(day−1) 0.0503 0.0503 0.0242 0.0242 0.0426 0.0426
θS(cells) n/a 3,200 n/a 4,900 n/a 7,300
δN (day−1) 0.1006 0.1006 0.0484 0.0484 0.0852 0.0852
A n/a 1.3 n/a 1.4 n/a 1.4
GFP+ cells n/a 4,385 n/a 8,210 n/a 7,698
GFP- cells n/a 5,758 n/a 28,086 n/a 9,653
GFP-:GFP+ n/a 1.31 3.45 3.42 1.22 1.25
Avg. SSR (%) 42 41 45 45 62 62
Avg. ASR (%) 48 49 42 42 25 25
Avg. SCD (%) 10 10 13 13 13 13

Table 5.3: Parameter values, experimental observations, and model predictions for mutated
cells [125].

and 10%, respectively. In BCR-ABL cells, SSR was slightly greater with 45%, ASR

slightly less with 42% and SCD slightly greater with 13%. In NUP98-HOXA9 cells,

SSR increased to 62%, ASR decreased to 25%, and SCD was 13% [125].

Model Simulations of Experimental Data

The mathematical model presented in Equations 5.1 can also be used to simu-

late the growth dynamics of BCR-ABL and NUP-HOXA9 infected cells. Table 5.3

presents the model parameters and a comparison of experimental data with model

predictions. With an initial condition of 3,000 uninfected GFP+ and zero GFP-

cells, mathematical modeling predicts the control GFP+ population grows to 4,461

cells and the control GFP- population grows to 5,752 cells. The average frequency

of SSR is 41%, ASR is 49%, and SCD is 10%, in accordance with 42%, 48%, and

10% experimentally recorded.

Model predictions for the BCR-ABL group are compared with the control group.

Both are plotted in Figure 5.4A-B, where BCR-ABL curves are solid, and control

curves are dashed. With the initial condition of 3,000 BCR-ABL-infected GFP+

cells and zero GFP- cells, the model predicts GFP+ growth to 8,210 cells and GFP-
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growth to 28,086 cells. The ratio of GFP- cells to GFP+ cells is 3.42, which is more

than 2.6 times that of the non-infected cells, demonstrating that cell differentiation

is successful, and cell accumulation occurs from increased proliferation and survival.

In the BCR-ABL group, the GFP- population surpasses the GFP+ population by

day one, which is less than half the time needed in the control group. However,

the average frequency of SSR is 45%, ASR is 42%, and SCD is 13%, which is not

significantly different from measurements of the control group. Therefore, BCR-ABL

causes disease by accumulating cells through increased proliferation and decreased

apoptosis.

Similarly, in Figure 5.4C-D, model predictions for the NUP98-HOXA9 group are

plotted with solid lines and compared to the control group plotted with dashed lines.

With the initial condition of 3,000 NUP98-HOXA9-infected GFP+ cells and zero

GFP- cells, the model predicts that over three days, the GFP+ population grows

to 7,698 cells and the GFP- population grows to 9,653 cells. In comparison to the

non-mutated control group, the ratio of GFP- cells to GFP+ cells decreased slightly

to 1.25, demonstrating the preference for symmetric divisions of immature cells over

differentiation. In contrast, the percentage of cells symmetrically self-renewing is

markedly different from those in the control group. In NUP98-HOXA9 cells, the

average frequencies of SSR, ASR, and SCD are 62%, 25%, and 13%, as compared with

42%, 48%, and 10%, respectively. In the control group, the switch from symmetric to

asymmetric self-renewal occurs within a half day, but in the NUP98-HOXA9 group,

the switch does not occur until two-and-a-half days, indicating the dominance of

symmetric self-renewal in mutated cells. It may be concluded that NUP98-HOXA9

causes disease through abnormal symmetric self-renewal, which increases immature

blast cells and prevents the formation of differentiated cells, thereby inhibiting the
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Figure 5.4: BCR-ABL and NUP98-HOXA9 promote cancer growth through different
mechanisms. (A) BCR-ABL (solid) expression increases proliferation and decreases
apoptosis, causing greater expansion of both cell types, but particularly GFP- cells,
compared to control cells (dashed). (B) The mode of GFP+ cell division in cells infected
with BCR-ABL is comparable to uninfected cells. (C) GFP+ cell proliferation and
death rates of cells infected with NUP98-HOXA9 (solid) are not significantly different
from those in control cells (dashed), but the ratio of GFP- cells to GFP+ cells is slightly
decreased in comparison with control cells due to increased SSR. (D) NUP98-HOXA9
shifts the mode of GFP+ cell division to favor symmetric self-renewal.
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daily functions performed by mature blood cells.

5.2.4 Conclusions

The experiments conducted by Wu et al. employ time-lapse imaging to demon-

strate that mammalian hematopoietic precursor cells can complete three types of di-

vision: symmetric self-renewal, asymmetric self-renewal, and symmetric commitment

differentiation. In addition, their results confirm that both external environmental

cues and internal cellular signals may affect cell division pattern and proliferation

rate. A mathematical model was created that accurately captures the experimen-

tal data. Further investigation determined that mutations affecting the GFP+ cell

proliferation rate, k, and the symmetric self-renewal switch parameter, θS, have the

most potential in causing abnormal growth, though each instigates different forms

of disease. Increased GFP+ cell proliferation contributes to the hypercellularity of

GFP- cells, whereas increased symmetric self-renewal increases the fraction of prim-

itive cells. The former is observed in Chronic Myelogenous Leukemia, but the latter

found in the more aggressive Acute Myelogenous Leukemia, which suggests that

deregulation of symmetric self-renewal may be involved in speeding disease progres-

sion.

Although this in vitro experiment cannot fully characterize hematopoietic stem

cells, the conclusions derived from this model may be usefully employed in creating

a mathematical model of the hematopoietic system in vivo. It is accepted that stem

cells are capable of three types of division, but there is minimal data quantifying the

proportions of division type because mammalian stem cells are difficult to isolate,

maintain, and observe experimentally. Of the cells and environments used in these

experiments, the non-mutated GFP+ cells in the 7F2 environment most resemble

hematopoietic stem cells in vivo. This environment favors asymmetric division, and
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if the plated cells reached steady state, the probabilities of symmetric self-renewal,

asymmetric self-renewal, and symmetric differentiation would be approximately 20%,

65%, and 15%. While it is certainly possible for other division patterns to occur in

human hematopoietic stem cells, it is currently impossible to conclusively determine

these probabilities in vivo. Because this division pattern is determined from experi-

mental data that can be referenced, this estimation of division pattern will be used

is subsequent modeling of hematopoiesis.

5.3 Cycling and Quiescent Stem Cells

The use of regulatory mechanisms to influence stem-cell division pattern is one

way that homeostasis is maintained. Another is through mechanisms that govern the

transition between quiescence and cycling in the stem-cell population. The ability

to remain quiescent for long periods of time is one of the major differences of stem-

cell behavior in vivo versus in vitro [63]. In adults, it has been estimated that

5-25% of hematopoietic stem cells are actively cycling [21, 90, 104]. Consequently,

under homeostatic conditions, the majority of hematopoietic stem cells are quiescent,

resting in the G0 phase of the cell cycle. However, the percentage of cycling stem

cells is not static throughout the life of the host. For instance, in tissue generation,

a larger proportion of stem cells actively divide in order to expand cell number [89].

If the majority of cells remained quiescent, the tissue would never expand or could

even be eliminated. Yet stem cells could not perpetually sustain an elevated amount

of cycling or the tissue would exponentially grow without bound. Clearly, there are

mechanisms in place that control the balance between cycling and quiescent stem

cells, and these regulations likely depend on the number of cells in the system.

Due to the difficulty of reproducing stem cell niches in vitro, it is challenging to
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experimentally quantify the kinetics of the interchange between the quiescent and

cycling stem-cell compartments. Mathematical modeling enables theoretical inves-

tigation of the interactions between cycling and quiescent stem cells. In addition,

predictions may be made pertaining to how the balance between quiescent and cy-

cling cells subsequently effects the growth dynamics of the tissue. In this section,

a mathematical model is presented that incorporates regulatory mechanisms gov-

erning stem-cell division pattern similar to those discussed in Section 5.2 while also

including mechanisms that mediate the balance between cycling and quiescent stem

cells.

5.3.1 Incorporating Cycling and Quiescent Stem-Cell Compartments

To accurately model tissue generation followed by maintenance in vivo, it is nec-

essary to separate stem cells into cycling and quiescent compartments. In doing so,

it is possible to capture the initial stages of expansion, followed by tapering growth

leading to homeostasis. In contrast with the model presented in Section 5.2.1, the

stem-cell population is divided into quiescent stem cells, Q, and cycling stem cells,

C. Mature differentiated cells are denoted N . At this time, intermediate progen-

itor cells are not explicitly modeled, however, an amplification factor is included,

denoted A. Quiescent stem cells enter the cycling compartment at maximum rate p

and cycling cells enter the quiescent compartment at maximum rate q. The proba-

bility that a quiescent cell will enter cycling is Φ and the probability that a cycling

cell will go into quiescence is Ψ. Cycling cells proliferate with rate r. Once in the

cycling compartment, stem cells complete one of four processes during the division

process: symmetric self-renewal, asymmetric self-renewal, symmetric differentiation,

or apoptosis. The proportions of stem cells that symmetrically self-renew, asym-

metrically self-renew, symmetrically differentiate, and die are given by αS, αA, αD,
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Figure 5.5: Schematic diagram of quiescent and cycling stem cells and differentiated
cells. Stem cells enter cycling and quiescent compartments with probabilities that are
dependent on stem-cell numbers. Cycling stem cells are capable of three types of divi-
sions. Differentiated cells are formed through asymmetric and symmetric commitment
differentiation divisions.

and δS, respectively. Cycling stem cells are the source for the mature differentiated-

cell population. Differentiated cells are formed through symmetric differentiation or

asymmetric divisions of a cycling stem cell, and differentiated cells die with rate δN .

A schematic diagram of the flow of cells between quiescent, cycling, and differentiated

compartments is presented in Figure 5.5.

In contrast with Equations 5.1, the number of terminally differentiated cells in

the tissue influences the probability of symmetric commitment differentiation in stem

cells, which was previously irrelevant in modeling experimental data due to the short

time frame. It should also be noted that this model differs from others in which

differentiation occurs after division. In such models, cycling cells always self-renew

and progeny enter the quiescent compartment. Stem cells exit the quiescent pool

by differentiating, dying, or entering the cycling pool to self-renew [13, 24]. Instead,
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this model employs the recent observations of Wu et al. that suggest symmetric

differentiation can occur at the time of division [125].

Regulatory mechanisms that control the transition between cycling and quiescent

stem cells are poorly understood. However, it is known that in times of stress or

tissue generation, quiescent stem cells may enter the cycling compartment to promote

expansion. The interchange of quiescent and cycling cells is likely dependent on

chemical signaling. The probability that a quiescent cell enters cycling is given by

Φ(C) =
σ2

C

σ2
C+C2 , where σC is the number of cells in the cycling compartment at

which the probability that a quiescent cell enters cycling is 50%. A higher number

of cycling cells yields a lower probability that a quiescent cell will enter the cycling

compartment. Cycling cells are forced into quiescence when a sufficient number

of cells are cycling. The probability a cycling cell enters quiescence is given by

Ψ(C) = C2

σ2
Q+C2 , where σQ is the number of cycling cells at which the probability of a

cycling cell entering quiescence is 50%. As cycling cells approach zero, Ψ approaches

zero so that the few cycling cells do not become quiescent. As cycling cells increase,

Ψ approaches one.

Because stem cells are long-lived and tightly regulated, it is assumed stem-cell

death only occurs due to errors in the division process. Therefore, death of quiescent

stem cells is negligible and the small constant probability that a cycling stem cell

goes through apoptosis during division is denoted δS. The probabilities of division

outcomes of cycling stem cells adhere to the condition αS + αA + αD + δS = 1.

The proportion of cycling stem cells that symmetrically self-renew, denoted αS, is

dependent on stem-cell chemical signaling as well as the physical size of the stem-cell

niche, KS. Specifically,

αS(C, Q) = (1− δS)

(
θ2

S

θ2
S + C2

) (
1− C + Q

KS

)
,(5.4)
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where the Hill function is described in Section 5.2.1 and was used in previous model-

ing by Mackey et al. [13, 24, 77]. Stem-cell interaction with the niche is necessary for

maintaining stemness, thus the logistic term
(
1− C+Q

KS

)
demonstrates the physical

restraint of the niche size on symmetric self-renewal due to limited available space for

stem-cell sustenance [124]. Note that symmetric self-renewal cannot exceed (1− δS),

since it is assumed that stem cells die with constant probability.

To further illustrate why both chemical signaling and niche control are found in the

functional form for symmetric self-renewal, consider the function f(x) = g(x)h(x),

where g(x) =
(

a2

a2+x2

)
and h(x) =

(
1− x

c

)
, where a and c are arbitrary positive

constants. Note that αS resembles f(x), the chemical signaling function shares the

form of g(x), and the niche control function is similar to h(x). Let c = 1 for the

purpose of this example. Figure 5.6 displays two examples for f(x) with different

a values. In Figure 5.6A, symmetric self-renewal is more restricted by chemical

signaling than the niche, whereas the converse is true in Figure 5.6B. In both cases,

f(x) captures key components of both the Hill function and the logistic function.

Note that f(x) is zero when the niche is full, which is x = 1 in this example, but it

also follows the qualitative behavior of the Hill function due to chemical signaling.

As a result, both functional forms are incorporated into αS in order to capture both

traits.

The proportion of cycling stem cells that divide into differentiated cells is given

by

αD(C, Q, N) = (1− δS)

(
θN

θN + N

) (
C + Q

KS

)
.(5.5)

The Hill function
(

θN
θN+N

)
reflects the effects of chemical signaling that promote or

suppress differentiation depending on the existing population of mature cells and
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Figure 5.6: Functional forms used to determine the probability of symmetric self-
renewal. The probability of symmetric self-renewal follows that of function f(x), which
takes into account both chemical interactions and niche control. Probability based solely
on chemical signaling is given by function g(x), and probability based solely on niche
control is given by function h(x).
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has been used in previous models [13, 24]. In addition, the term
(

C+Q
KS

)
ensures

preference is given to self-renewal division over differentiation in cases where both

stem and differentiated cells are depleted so the system is not compromised and

extinguished [117].

The proportion of cycling stem cells that asymmetrically self-renew is determined

by

αA(C, Q, N) = 1− αS(C, Q)− αD(C, Q, N)− δS.(5.6)

It is important to note that the model does not discriminate based on the mechanism

by which asymmetric division is achieved. The asymmetric division term can encom-

pass divisions that occur by the immortal-strand hypothesis or divisions in which two

identical cells determine their fates from cues after division. The stem-cell division

types are merely classified by the state of the two daughter cells at the time of their

subsequent division. The system of differential equations for the model under the

presented assumptions is as follows:

dQ

dt
= −pΦQ + qΨC(5.7)

dC

dt
= pΦQ− qΨC + r [αS − αD − δS] C

dN

dt
= (2αD + αA) ArC − δNN.

For ease, this model is labeled the ODE Model of Tissue Generation (ODEMTG)

when referenced in subsequent text. The model terms and definitions are summarized

in Table 5.4.
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Definition of Model Terms
C Cycling stem cells
Q Quiescent stem cells
N Differentiated cells

Φ(C) The probability quiescent cells enter the cycling compartment
= σ2

C

σ2
C+C2

σC Number of cells at which quiescent cells enter cycling at 50%

Ψ(C) The probability at which cycling cells become quiescent
= C2

σ2
Q+C2

σQ Number of cells at which cycling cells enter quiescence at 50%
r The division rate of cycling stem cells
p The rate at which quiescent cells enter cycling
q The rate at which cycling stem cells enter quiescence

αS(C,Q) The proportion of cycling cells that symmetrically self-renew
= (1− δS)

(
θ2

S

θ2
S+C2

) (
1− C+Q

KS

)

θS Number of cells at which SSR due to signaling occurs at 50%

αD(C,Q,N) The proportion of cycling cells that differentiate
= (1− δS)

(
θN

θN+N

) (
C+Q
KS

)

θN Number of cells at which SCD due to signaling occurs at 50%

αA(C,Q,N) Proportion of stem cells that renew asymmetrically
= [1− αS(C,Q)− αD(C,Q,N)− δS ]

δS The proportion of cycling stem cells that go through apoptosis
KS Carrying capacity of all stem cells, determined by the niche
A Amplification factor
δN Death rate of differentiated cells

Table 5.4: The biological meaning of the model terms used in the ODE Model of Tissue Generation.
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5.3.2 Steady States and Stability Analysis

The steady states of the model include an elimination state whose eigenvalues

correspond to the solutions for λ in the polynomial

−λ3 + (r(1− 2δS)− q)λ2 + (p + δN)(r(1− 2δS)− q)λ + pδNr(1− 2δS) = 0.

All parameters are measurements of biological qualities and therefore cannot be

negative. When δS < 1
2 , according to Descartes’ Rule of Signs, there exists at least

one positive eigenvalue, and therefore the solution is unstable. Furthermore, when

δS > 1
2 , all roots for λ are negative, so the elimination is stable. In other words,

when stem cells die with at least 50% probability, the tissue is eliminated, which is

sensible considering that stem cells are the source of all other cells in the tissue.

Non-zero steady states may be found by noting that at equilibrium,

Q =
qΨ

pΦ
C(5.8)

N =
(2αD + αA)rA

δN
C,

which leads to the condition

αS − αD − δS = 0.

Therefore, steady states may be determined by solving for roots of the seventh-degree

polynomial

P7C
7 + P6C

6 + P5C
5 + P4C

4 + P3C
3 + P2C

2 + P1C + P0 = 0
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with the following coefficients:

P7 = −(1− δS)δNθNq

P6 = −(1− δS)θ2
S(1− 2δS)rAq

P5 = −(1− δS)θ2
SδNθNq − (1− δS)δNθN

(
qθ2

S + (p + q)σ2
C

)

−KSpσ2
CδS(1− 2δS)rA

P4 = −(1− δS)θ2
S(1− 2δS)rAσ2

C(p + q)−KSpσ2
CδSδNθN

P3 = (1− δS)θ2
Sσ2

C ((1− 2δS)rApKS − δNθN(p + q))

−(1− δS)δNθNσ2
C

(
θ2

S(p + q) + pσ2
Q

)

−KSpσ2
CδS(θ2

S + σ2
Q)(1− 2δS)rA

P2 = (1− δS)θ2
Spσ2

C(δNθNKS − (1− 2δS)rAσ2
Q)

−KSpσ2
CδS(θ2

S + σ2
C)δNθN

P1 = (1− δS)θ2
Spσ2

Cσ2
Q ((1− 2δS)rAKS − δNθN)

−(1− δS)δNθNθ2
Spσ2

Cσ2
Q −KSpσ2

CδSσ2
Qθ2

S(1− 2δS)rA

P0 = KSpσ2
Cσ2

QδSθ2
SδNθN(1− 2δS).

By Descartes’ Rule of Signs, there exists at least one positive steady state (Q∗, C∗, N∗)

since P7 < 0 and P0 > 0 for all positive parameter values with δS < 1
2 . In particu-

lar, when using the parameters given in Table 5.5, there is only one positive steady

state at (Q∗, C∗, N∗) = (1.52e4, 2.75e3, 2.62e10) and it is stable, with eigenvalues

λ1,2,3 = −0.0151,−0.6296,−2.7420.

5.3.3 Numerical Simulations of Tissue Generation

There is little conclusive data regarding the in vivo cellular kinetics of stem cells.

The hematopoietic system is the most studied, but there are still many unknown be-

haviors, particularly regarding the interchange between quiescent and cycling stem
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Parameters
Term Value Range Used Value
r 0.002 - 0.6931 (1/day) [1, 21] 0.2310 (1/day)
p No Information 0.4620 (1/day)
q No Information 0.2310 (1/day)
σC No Information 750 (cells)
σQ No Information 1,500 (cells)
θS No Information 3,000 (cells)
θN No Information 1× 1010(cells)
δS 0.05 (calculated from [83]) 0.05
KS 15,000 - 1,000,000 (cells) [1, 83] 3× 104(cells)
A No Information 1.1× 108

δN 2.4 (1/day) [9, 13] 2.4 (1/day)
Model Steady State Predictions

C 5-25% of stem cells [21, 90, 104] 2,750 (cells)
Q 75-95% of stem cells [21, 90, 104] 15,200 (cells)
N 2− 6× 1010 (cells) [9, 100] 2.62× 1010

Ψ No Information 0.7701
Φ No Information 0.0694
αS 0.1850 - 0.2760 (derived from [125]) 0.2073
αA 0.5540 - 0.7150 (derived from [125]) 0.5853
αD 0.1000 - 0.1700 (derived from [125]) 0.1573

Table 5.5: Parameter values for the ODE Model of Tissue Generation are from in vivo hematopoi-
etic cells when possible.

cells. Furthermore, there is some discrepancy in the classification of long-term ver-

sus short-term stem cells and early progenitor cells, making it difficult to isolate

parameter values for a pure stem-cell population. The following simulations use the

parameter values presented in Table 5.5, measured in hematopoietic cells when pos-

sible. The differential equation solver ode15s in MATLAB was used to run numerical

simulations.

By separating cycling and quiescent stem cells into two compartments, it is possi-

ble to investigate stem-cell dynamics during tissue generation. For instance, consider

the case in which one stem cell must generate additional stem cells and neutrophils

until homoestasis is reached. As seen in Figure 5.7A-B, one stem cell is capable of

generating enough progeny to achieve a healthy steady state. Initially, the majority

of stem cells are cycling, but as the system is reconstituted, most become quiescent
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and at steady state, 85% of stem cells are quiescent, while 15% are cycling. With

an initial condition of one cycling stem cell and zero quiescent stem cells and dif-

ferentiated cells, it takes 7.25 weeks to reach 1010 differentiated cells, bringing the

system out of neutropenia, and 22.55 weeks weeks to reach 90% of the steady state of

differentiated cells. The corresponding probabilities for stem-cell transition between

quiescence and cycling and division outcomes are plotted in Figure 5.7C-D. When

the system begins to regenerate, no cycling cells enter quiescence, but at steady state,

77% of cycling cells enter quiescence. In contrast, the probability that quiescent cells

enter cycling is initially the maximum 100%, but this decreases to approximately

7% at steady state. Stem-cell division patterns also change throughout the time of

generation. Symmetric self-renewal first expands the cycling pool of stem cells, then

asymmetric and differentiation divisions create differentiated cells. Initially, 95% of

all stem-cell divisions result in symmetric self-renewal, but as steady state is achieved,

this decreases to about 21%, and the probabilities of symmetric differentiation and

asymmetric division increase from 0% to 16% and 59%, respectively.

Such dynamics of tissue generation could not be studied with a model using

constant probabilities of cycling and stem-cell division. Note that in this model,

100% of stem cells are initially cycling, and they self-renew with 95% probability

and die with 5% probability. With a stem-cell proliferation rate of 0.231 per day, the

net growth rate of stem cells is 0.207 per day. If constant division probabilities were

used, the stem-cell population would exponentially grow. One stem cell proliferating

at a rate of 0.207 per day would expand into a population that would surpass the

niche size of 30,000 cells within 50 days, and in the meantime, zero differentiated

cells would be formed due to the lack of differentiation. On the other hand, at

homeostasis, the net growth rate of the stem-cell population is zero, and it would be
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Figure 5.7: Tissue generation from one cycling stem cell. (A) Quiescent stem cells, Q, cycling
stem cells, C, and total stem cells, T, are plotted versus time for 60 weeks as a system
is generated by one cycling stem cell. (B) Differentiated cells reach 90% of the steady
state in 22.6 weeks. (C) The probability that cycling cells enter quiescence, increases
from 0 to 77% while the probability that quiescent cells enter cycling, decreases from
100 to 7%. (D) Symmetric self-renewal decreases from 95 to 21%, while asymmetric
and symmetric differentiation increase from zero to 59% and 16%, respectively.
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impossible for one stem cell to expand and generate an entire tissue. It is therefore

evident that a mathematical model incorporating feedback regulatory mechanisms

is preferable when investigating hierarchical tissue.

5.4 Conclusions

In order to accurately capture characteristics found in hierarchical tissue, a math-

ematical model has been presented that incorporates feedback mechanisms between

stem- and differentiated-cell populations. A three-compartment mathematical model

of quiescent stem cells, cycling stem cells, and differentiated cells may be used to

study generation or reconstitution of normal tissue. Furthermore, it permits inves-

tigation of the balance between cycling and quiescent stem cells as well as the three

modes of stem-cell division involved in hematopoiesis. The parameters used in nu-

merical simulations were derived from the hematopoietic system, but the model could

easily be adapted to gain insight into other types of tissue by changing appropriate

parameter values.

Accurately modeling healthy tissue enables the study of mutation acquisition in

cells within a hierarchical structure. In particular, it fosters investigation of aber-

rant feedback mechanisms that contribute to abnormal tissue growth. The bal-

ance between symmetric self-renewal, symmetric differentiation, and asymmetric self-

renewal divisions is especially important in achieving and maintaining homeostasis,

which implies that disturbing this balance is a potential cause of malignancy. Sub-

sequent work will further examine these effects to indicate the types of mutations

that are most problematic, but before mutation acquisition is addressed, a sensi-

tivity analysis of the ODEMTG model is presented in the next chapter in order to

investigate the significance of parameters on homeostasis.



CHAPTER VI

Modeling the Regulation of Tissue Homeostasis

The preceding chapter introduced a mathematical model of hierarchical tissue

that enabled investigation of the mechanisms governing stem-cell division pattern

and the transition of stem cells between quiescence and cycling. This model was

used to simulate tissue generation and to establish homeostasis. In this chapter, the

sensitivity of model parameters is discussed in further detail in order to highlight the

regulatory aspects that have the greatest effect on tissue generation and equilibrium.

First, a differential sensitivity analysis is conducted that quantifies the change in

cell populations during tissue generation due to parameter perturbations. Next, a

system of two ordinary differential equations is derived from the reduction of the

ODE Model of Tissue Generation (ODEMTG) system in Equations 5.7 to model

tissue homeostasis. Finally, a principle component analysis is conducted in order to

determine parameter combinations that significantly impact equilibrium solutions.

6.1 Differential Sensitivity Analysis

Tissue generation is a dynamical process likely influenced by several aspects of

cellular kinetics. For instance, the stem-cell proliferation rate determines the speed

at which daughter cells can be produced, affecting the time required to reach full

constitution. In addition, the mechanisms regulating the pattern of stem-cell division

119
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can factor into tissue composition by controlling the ratio between stem cells and

differentiated cells. In this section, a sensitivity analysis of the ODEMTG model in

equation 5.7 is conducted in order to quantify the effects of parameter perturbations

on tissue generation.

6.1.1 Sensitivity Equations

Following the techniques outlined by Bortz and Nelson, sensitivity equations are

generated by differentiating model equations with respect to the parameter in ques-

tion [18]. Thus the sensitivity equations are partial derivatives of the solution curves,

and interpret how parameter changes alter solutions over time. For any arbitrary

parameter ρ, the sensitivity functions are defined as

Cρ(t) =
∂

∂ρ
C(t, ρ)(6.1)

Qρ(t) =
∂

∂ρ
Q(t, ρ)

Nρ(t) =
∂

∂ρ
N(t, ρ).

For example, to investigate the effects of the stem-cell proliferation rate, r, the three

equations in the ODEMTG model are differentiated with respect to r, resulting in

the following system:

Q̇r = −pΦQr − pQΦr + qΨCr + qCΨr(6.2)

Ċr = pΦQr + pQΦr − qΨCr − qCΨr + r (αS − αD − δS) Cr

+ C [r (αSr − αDr) + (αS − αD − δS)]

Ṅr = (2αD + αA) ArCr + AC [r (2αDr + αAr) + (2αD + αA)]− δNNr.

The sensitivity solutions can be analyzed in two ways. Semi-relative sensitivity

solutions can be computed by multiplying the parameter of interest by the sensitivity

equations, for example, rCr, rQr, and rNr. Solving the resulting system quantifies
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how solutions change when a parameter is varied by a factor of choice. For instance,

it is often of interest to know how solutions behave when the sensitivity parameter is

doubled. Semi-relative solutions have the same units as the original model solutions;

that is, the units of rCr are those of C, which in this case is cycling stem cells.

Logarithmic sensitivity solutions are computed by multiplying the parameter of

interest by the sensitivity equations and dividing by the baseline solutions. For

instance, the logarithmic sensitivity solutions with respect to r are r
C Cr,

r
QCr, and

r
N Cr. The logarithmic name derived from the equality ∂ log(C)

∂ log(r) = r
C Cr. In contrast

to semi-relative solutions, logarithmic sensitivity solutions are dimensionless and

determine the percentage change of solutions according variation in the parameter

of choice. Although useful information is obtained from both types of sensitivity

solutions, only logarithmic solutions are presented in this chapter.

6.1.2 Logarithmic Sensitivity Solutions

The system of differential equations needed to produce sensitivity solutions were

analytically derived for each of the eleven parameters in the ODEMTG model. Sen-

sitivity solution curves were produced using the ode15s solver in MATLAB. In order

to visually manage all of the corresponding sensitivity solution curves, parameters

are classified into three groups. The first group consists of parameters found in the

functional forms governing stem-cell transition between quiescent and cycling pools:

p, q, σC , and σQ. The second group of parameters are involved in regulating stem-

cell division probabilities: θS, KS, θN , and δS. The third group is composed of the

parameters most significantly affecting the number of differentiated progeny in the

system: r, A, and δN .

First, the parameters involved in stem-cell transition between quiescence and cy-

cling are studied. Specifically, the logarithmic sensitivity solutions with respect to
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Figure 6.1: Sensitivity of parameters affecting stem-cell transition. Parameters controlling
the transition between quiescence and cycling have little effect on homeostasis.
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the parameters p, q, σC , and σQ are plotted in Figure 6.1. Recall that p is the max-

imum rate at which quiescent stem cells enter cycling and q is the maximum rate at

which cycling stem cells enter quiescence. Parameters σC and σQ are found in the

functional forms for Φ(C) and Ψ(C), the probabilities at which stem cells enter the

cycling and quiescent compartments, respectively. The solution curves in Figure 6.1

may be interpreted as the percentage change to the solutions for quiescent stem cells,

cycling stem cells, and differentiated cells due to the doubling of the parameter in

question. This type of analysis gives insight into the temporal changes in solution

curves due to the variation of a parameter. For instance, according to Figure 6.1A,

at time t = 0, the solutions generated by doubling q increase baseline solutions

by approximately 100%, but as time progresses, the logarithmic sensitivity solution

approaches zero, suggesting that q has minimal effect on homeostasis of quiescent

cells.

Interestingly, doubling any of the parameters involved in stem-cell transitioning

does not significantly change homeostatic population levels. While at first this may

seem surprising, one must remember that regulatory mechanisms such as symmetric

self-renewal and symmetric differentiation remain intact that control any increase or

decrease in cycling stem cells, thereby minimizing extreme expansion or depletion of

all populations. Although each cell population is fairly robust to changes in these

parameters over the long term, there are short-term effects that are worth noting.

In particular, perturbations to the rate at which cycling cells enter quiescence, q,

and the parameter σQ have significant effect on the quiescent stem-cell compartment

during the initial stages of tissue generation. Increasing σQ increases the number of

cells needed in the cycling compartment before cycling cells enter quiescence with

50% probability. Therefore, doubling σQ decreases the number of quiescent stem
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cells at the start of tissue generation by 200% because less cells exit the cycling

compartment. On the other hand, doubling the maximum rate at which cells enter

quiescence, q, causes an initial 100% increase of quiescent cells at the start of tissue

generation. As homeostasis is reached, however, perturbations in both σQ and q are

negligible.

Next, the parameters found in the functional forms governing stem-cell division

are investigated. The ODEMTG model in Equations 5.7 incorporates feedback mech-

anisms that regulate four possible outcomes of stem-cell division. Parameters θS and

θN respectively determine how many stem or differentiated cells are needed for sym-

metric self-renewal or commitment differentiation to occur with 50% probability due

to chemical signaling. The size of the stem cell niche, KS, also contributes to the

probability of symmetric self-renewal and symmetric commitment differentiation. Fi-

nally, the probability of stem-cell death, δS, also influences the outcome of stem-cell

division. The logarithmic sensitivity solutions with respect to θS, θN , δS, and KS

are plotted in Figure 6.2.

Perturbations to the size of the stem-cell niche, KS, have the greatest long-term

effects on tissue homeostasis. Doubling the niche increases the cycling stem-cell and

differentiated-cell populations at homeostasis by approximately 30%, but increases

the number of quiescent stem cells by approximately 100%. This implies that if other

regulatory mechanisms remain unaltered, a larger niche supports a greater number of

stem cells, but favors these additional cells in quiescence. Doubling the parameters

θS, θN , and δS has less effect on homeostatic population levels, but variation in δS

significantly alters all of the cell populations in the initial stages of tissue generation.

Since tissue generation is initiated with one cycling stem cell, a significant increase

in the probability of stem-cell death will negatively impact the cycling population of
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Figure 6.2: Sensitivity of parameters involved in determining stem-cell division mode.
The size of the stem-cell niche is most significant in a long-term increase of quiescent
stem cells. The probability of stem-cell death significantly impacts all cell populations
early in tissue generation, but the effect is neutralized within ten weeks.
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stem cells, which in turn diminishes the number of cells able to enter quiescence as

well as the potential for producing differentiated progeny. These effects are contained

within the first 10 weeks of tissue generation, however, and do not radically alter

homeostasis.

The final group of parameters features those most directly affecting the number

of differentiated cells in the system. The stem-cell proliferation rate, r, is the rate

at which cycling stem cells divide. The amplification factor, A, accounts for the

expansive cell divisions of intermediate progenitors that produce the necessary num-

ber of differentiated cells. Lastly, δN is the death rate of terminally differentiated

cells. Since this last group of parameters each appear linearly in the model equa-

tion for differentiated cells, it is expected that doubling the stem-cell proliferation

rate or amplification factor leads to a 100% increase in differentiated cells, whereas

increasing differentiated cell death rate leads to a 100% decrease in differentiated

cells. Furthermore, neither of these parameters affects the long-term equilibrium of

the cycling or quiescent stem-cell populations. Because perturbations of the ampli-

fication factor and differentiated cell death rate do not cause significant temporal

changes during the early stages of tissue generation, these are not explicitly plotted.

However, perturbation of the stem-cell proliferation rate has a major impact on gen-

eration time, and as a result, the final plot focuses on this parameter, and only plots

the logarithmic sensitivity solutions with respect to r in Figure 6.3.

It is particularly important to highlight the short-term impact of increasing the

stem-cell proliferation rate. If cycling stem cells proliferate faster in the initial stages

of tissue generation, then it takes less time to reach homeostasis as all cell populations

expand more quickly. Perturbation of stem-cell proliferation realizes its maximal

effect approximately four weeks after the start of tissue generation. At this time,
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the doubling of r increases the quiescent stem-cell population by 17-fold, the cycling

compartment by approximately 5.5-fold, and the differentiated-cell population by

nearly 15-fold. Clearly the rate at which cycling stem cells divide is an important

factor in determining how long it takes for tissue to be generated. Since increasing

the stem-cell proliferation does not alter the steady state of stem cells in homeostasis,

the dramatic temporal variation due to increased stem cell proliferation would not

have been detected without conducting this type of sensitivity analysis.

6.1.3 Discussion

In comparing and contrasting the sensitivity solutions for each of the model pa-

rameters, it is evident that some parameters have significant effects on the long-term

outcome of homeostatic solutions, while others have an immediate, but short-lived

effect during the initial stages of tissue generation. The stem-cell proliferation rate,

r, is unique in that it impacts both long-term and short-term dynamics consider-

ably. Variations in this parameter cause the greatest effect during the initial stages

of generation in comparison with all other parameters. Increasing the stem-cell pro-

liferation rate increases the number of stem cell divisions that occur in a given time

frame, promoting faster expansion in all cell populations. These effects do not per-

sist over time in the stem cell populations, however, as the number of quiescent and

cycling stem cells at homeostasis remains unaltered due to a balanced pattern of

stem-cell division. In contrast, long-term effects are realized in the differentiated-cell

population due to the increased number of stem-cell divisions producing differenti-

ated progeny through asymmetric and commitment differentiation divisions. Home-

ostatic solutions of the differentiated-cell population are also significantly altered by

the amplification factor, A, and differentiated-cell death rate, δN . Specifically, the

differentiated cell population increases by 100% when A is doubled, and decreases
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by 100% when δN is doubled, but this is expected.

There are other parameters that cause significant variation in the the initial stages

of tissue generation. The maximum rate at which cells enter quiescence, q, and the

switch parameter at which cycling cells enter quiescence with 50% probability, σQ,

notably alter the solution of quiescent stem cells at the beginning of tissue formation,

but these effects diminish after five weeks. This result implies that alterations in the

rate and probability at which cycling cells enter quiescence have greater significance

in earlier stages of tissue growth rather than the later period of homeostasis. Simi-

larly, the probability of stem-cell death, δS, initially impacts both quiescent stem cells

and differentiated cells negatively, decreasing these solutions by approximately 180%

and 150%, respectively, but as tissue continues generating, the percentage change at

homeostasis diminishes.

Although various parameters have significant short-term effects during tissue gen-

eration, the change in solutions is normalized over the long run due to regulatory

mechanisms that control tissue homeostasis. Parameters q, σQ, δS and particularly

r all significantly affect tissue dynamics early, but do not maintain their influence

as time progresses and tissue equilibrium is reached. Consequently, single parameter

perturbations may influence the pace of tissue generation, but are held in check by

regulatory mechanisms that govern tissue dynamics.

The sensitivity solutions for the size of the stem-cell niche, KS reveal several

details regarding the importance of this parameter. First, it is the most important

parameter in determining the number of stem cells at homeostasis. Although the

long-term solution of cycling cells does increase, a greater percentage change occurs

in the quiescent population. Specifically, doubling the size of the stem-cell niche

increases the number of cycling stem cells by 30% and quiescent cells by 100%. In
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addition, doubling the niche initially decreases the solution of differentiated cells

by 100%, though this variation goes to zero in approximately five weeks. When

the niche is increased and there are few stem cells in the system, as at the start

of tissue generation, symmetric self-renewal is favored over the other types of stem-

cell division, which inhibits the production of differentiated cells. As the stem-cell

population expands and the niche is filled, however, symmetric self-renewal decreases

and differentiation proceeds. The logarithmic sensitivity solution of the differentiated

cell population with respect to KS is unique in that it is the only one in which the

initial percentage change is negative while the change at homeostasis is positive. This

is explained by the fact that the larger niche supports a greater number of stem cells

in the long-run, which in turn produces more differentiated cells at homeostasis.

One may notice that with the exception of the initial spike caused by increasing

the stem-cell proliferation rate, all other sensitivity solutions for cycling stem cells

have percentage changes of magnitude less than 100%. Even more telling is the

observation that no parameter alters the long-run solution of cycling stem cells by

more than 50%. Therefore, the doubling of a single parameter is not sufficient to

greatly change the homeostasis of cycling stem cells. This implies that the regulatory

mechanisms governing the cycling compartment compensate for considerable param-

eter perturbations. It is possible that a combination of parameters could impact the

solution at homeostasis, but before this type of analysis is discussed in section 6.3,

the next section will present a reduced model that effectively models tissue after

completed generation.
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6.2 Mathematical Modeling of Homeostatic Tissue

In Chapter V, the ODEMTG model was introduced in Equations 5.7 to simulate

generation of hierarchical tissue. The previous section discussed the sensitivity of

each of the parameters in this three-equation model. It was determined that pertur-

bations in parameters associated with stem-cell transitioning between cycling and

quiescent populations could affect the number of cells during the initial stages of

tissue formation, but did not significantly impact tissue homeostasis in the long-

run. This observation suggests that the interplay between quiescence and cycling

does not noticeably alter the composition of the total stem-cell population at home-

ostasis. Consequently, the ODEMTG model can be reduced into a system of two

ordinary differential equations by combining the quiescent and cycling populations

into one stem-cell pool, and this model can be used for tissues that have completed

generation.

6.2.1 Model of Homeostatic Tissue Regulation

In this section, the ODEMTG three-equation model is reduced to a system of two

ordinary differential equations by combining quiescent and cycling stem cells into

one population. Let S be the total number of stem cells and note that S = Q + C

and dS
dt = dQ

dt + dC
dt . Therefore, according to Equations 5.7,

dS

dt
= (αS − αD − δS) rC(6.3)

dN

dt
= (2αD + αA) rAC − δN ,
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where

αS = (1− δS)

(
θ2

S

θ2
S + C2

) (
1− S

KS

)

αD = (1− δS)

(
θN

θN + N

) (
S

KS

)

αA = 1− αS − αD − δS.

If ξ is the percentage of stem cells that are cycling at homeostasis, then C = ξS,

which gives

dS

dt
= (αS − αD − δS) rξS

and

αS = (1− δS)

(
θ2

S

θ2
S + (ξS)2

) (
1− S

KS

)
.

By making the substitutions θ̄S = θS
ξ and k = rξ and dropping the bar on θ̄S for

convenience, the final reduced system of equations is

dS

dt
= (αS − αD − δS) kS(6.4)

dN

dt
= (2αD + αA) rAS − δN

with

αS = (1− δS)

(
θ2

S

θ2
S + S2

) (
1− S

KS

)

αD = (1− δS)

(
θN

θN + N

) (
S

KS

)

αA = 1− αS − αD − δS.

For ease of referral in subsequent discussion, Equations 6.4 is called the Model of

Homeostatic Tissue Regulation (MHTR).

6.2.2 Analysis of Tissue Equilibrium

System equilibrium is achieved when either S = 0 or (αS − αD − δS) = 0. The

elimination state corresponds to a system with zero stem cells and zero differentiated
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cells. This steady state has eigenvalues λ1 = k(1 − 2δS) and λ2 = −δN . Therefore,

the elimination state is stable if and only if δS > 1
2 . In other words, the elimination

state is stable when the probability of stem-cell death is greater than 50%, and

unstable otherwise. In healthy tissue, it is assumed that stem-cell death occurs

with small probability during division, specifically 5% as derived from the suggested

proliferation and death rates of hematopoietic stem cells, rendering the elimination

state unstable [21, 83].

A positive steady state exists when (αS − αD − δS = 0) is satisfied. Under this

condition, the steady state of differentiated cells is linearly dependent upon the stem-

cell population such that

N =
(1− 2δS)kA

δN
S.(6.5)

By substituting this equality for N into (αS−αD− δS) = 0, the steady state of stem

cells can be derived by solving for the roots of the third-degree polynomial

P3S
3 + P2S

2 + P1S + P0 = 0,

where

P3 = −δSKS(1− 2δS)kA− (1− δS)δNθN

P2 = −(1− δS)(1− 2δS)θ2
SkA− δSKSδNθN

P1 = −2(1− δS)θ2
SδNθN − θ2

SKS(1− 2δS)2kA

P0 = (1− 2δS)δNθNθ2
SKS.

If δS < 1
2 , then according to Descartes’ Rule of Signs, there is exactly one positive so-

lution for tissue homeostasis. Using the parameters presented in Table 6.1, numerical

derivation finds the equilibrium solution to be 1.80× 104 stem cells and 2.62× 1010
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Parameters
Term Value Range Used Value
r 0.002 - 0.6931 (1/day) [1, 21] 0.2310 (1/day)
ξ 0.05 - 0.25 [21, 90, 104] 0.1528
k ξr 0.035 (1/day)
θS

3,000
ξ 19,600 (cells)

θN No Information 1× 1010(cells)
δS 0.05 (calculated from [83]) 0.05
KS 15,000 - 1,000,000 (cells) [1, 83] 3× 104(cells)
A No Information 1.1× 108

δN 2.4 (1/day) [9, 13] 2.4 (1/day)

Table 6.1: Parameter values for the Model of Homeostatic Tissue Regulation are from in vivo
hematopoietic cells when possible.

differentiated cells. The eigenvalues of this equilibrium solution are λ1 = −2.71 and

λ2 = −0.02, demonstrating that the solution is stable.

The probability of stem-cell death, δS is the only bifurcation parameter for the

MHTR model presented in Equations 6.4. This implies that stem-cell apoptosis is

the key factor in determining whether a healthy tissue homeostasis may be reached.

If dividing stem cells die with probability greater than 50%, then the stem-cell pop-

ulation declines to zero, subsequently decreasing differentiated progeny until all cells

are eliminated. However, if less than 50% of dividing stem cells go through apoptosis,

then the tissue reaches a positive equilibrium state. Figure 6.4 plots the bifurcation

of solution stability as dependent on δS.

This two-equation model of stem and differentiated cells provides an appropriate

framework for capturing the important dynamics of a generated tissue in homeosta-

sis. Although parameters involved in transitioning stem cells between quiescence and

cycling are eliminated, these have a small impact on tissue equilibrium as confirmed

by the sensitivity analysis from Section 6.1. Importantly, the MHTR model retains

parameters from the ODEMTG model that had long-term effect, particularly the

stem-cell niche and stem-cell proliferation rate. By reducing the number of equa-

tions, there are less parameters, which makes it simpler to now investigate which
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Figure 6.4: The probability of stem-cell death is the only bifurcation parameter for the
Model of Homeostatic Tissue Regulation. When less than half of the stem-cell
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state is stable.
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combinations of parameters cause significant variations in solutions homeostasis.

6.3 Principal Component Analysis

Principal component techniques are often employed in statistical analysis in order

to highlight important combinations of variables in a system. The theory of prin-

cipal component analysis (PCA) may likewise be applied to a model’s parameter

space to determine solution effects based on changes to more than one parameter.

Differential sensitivity analysis, as presented in Section 6.1, is useful in identifying

which individual parameters cause the greatest variation. In a dynamical system,

it is possible that alterations in more than one parameter could negate any effects

resulting in little deviation from the baseline solution. On the other hand, some

parameter combinations could amplify solution differences more when varied jointly

rather than separately. It is therefore beneficial to conduct a principal component

analysis to determine the key groupings of parameters that most significantly alter

solutions.

6.3.1 Theory of Principal Component Analysis

In order to familiarize the reader with PCA theory, an outline of the analysis

is now presented as is relevant to analyze the MHTR model [18]. Let x be the

two dimensional vector x = [S(t, ρ), N(t, ρ)] of the solutions of stem cells, S, and

differentiated cells, N , evaluated at time t for the parameters ρ. If ρ∗ denotes the

baseline parameters, then the least squares function is defined

J(ρ) =

∫ tf

t0

R(ρ; t)T R(ρ; t)dt,(6.6)

where

R(q; t) = [r1(t, ρ, ρ∗), r2(t, ρ, ρ∗)](6.7)
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and

ri(t, ρ, ρ∗) =
xi(t, ρ)− xi(t, ρ∗)

xi(t, ρ)
.(6.8)

Taylor series can be used to make the approximation

J(ρ) ≈ (∆ρ)T

{∫ tf

t0

R′(ρ∗; t)T R′(ρ∗; t)dt

}
(∆ρ),(6.9)

where

R′
(i.j)(ρ

∗; t) =
1

xi(t, ρ)

∂xi(t, ρ)

∂ρj
|ρ=ρ∗ .(6.10)

Because the solutions of the system are numerically derived, the time interval [t0, tf ]

may be partitioned into ν subintervals such that

J(ρ) ≈ (tf − t0)

ν
(∆ρ)TST

ρ Sρ(∆ρ)(6.11)

where the sensitivity matrix

ST
ρ = [R′(ρ; t1), R

′(ρ; t2), . . . , R
′(ρ; tν)] .(6.12)

The maximum of J occurs when the change in parameters, that is ∆ρ, is in

the direction of the eigenvector corresponding to the largest eigenvalue of ST
ρ Sρ,

whereas the minimum occurs in the direction corresponding the the smallest eigen-

value. Therefore, matrix ST
ρ Sρ can be calculated, and its eigenvalues determined

in order to determine the direction in which maximum and minimum change oc-

curs. When the eigenvectors are primarily in the directions of the parameter axes,

it suggests that the parameters act independently of each other. When eigenvectors

are skewed from the parameter axes, however, then it implies that there is some

correlation between the two parameters that leads to maximal change.
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6.3.2 Numerical Results

To determine which parameter pairings can cause the greatest effects on model

solutions, a PCA was conducted for each of the potential couplings of the seven

parameters in the MHTR model. When the directions incurring maximum and

minimum change are nearly horizontal and vertical in correlation with the axes,

the parameters act independently of each other, so it is important to identify those

groups of parameters in which the axes are rotated since it implies some level of

dependence. In other words, when there is parameter dependence, a change in one

parameter may be compensated by a corresponding change in the other parameter

in order to maintain the solution derived when using the baseline parameters ρ∗.

Of all the pairings taken from the seven MHTR parameters, only two couplings

exhibit dependence, and the directions causing maximum and minimum effect are

plotted in Figure 6.5. The first pair consists of the stem-cell proliferation rate, k,

and the probability of stem-cell death, δS, as shown in Figure 6.5A. Perturbations

local to ρ∗ have maximal effect in the direction given by the line

k = −1.03δS + 0.299.(6.13)

and minimal effect along

k = 0.969δS + 0.199(6.14)

This result may be interpreted by saying that an increase in stem-cell proliferation

accompanied with a decrease in stem-cell death in the direction of Equation 6.13 will

cause the greatest increase of cells in the system. On the other hand, an increase in

stem cell death an increase in stem-cell proliferation combined with an increase of

stem-cell apoptosis in the direction of Equation 6.14 will cause minimum change to

the system.
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The second pairing, shown in Figure 6.5B, includes θS and KS, which both con-

tribute to the probability of symmetric self-renewal in stem cells. Perturbations local

to ρ∗ have maximal effect in the direction of

θS = 0.619KS + 1080(6.15)

and minimal effect along

θS = −1.62KS + 68, 100.(6.16)

In other words, maximal effect occurs when both θS and KS increase in the direc-

tion of equation 6.15. In contrast, if perturbation increases the size of the niche,

then a decrease of the chemical signaling switch parameter, θS, in the direction of

equation 6.16 may compensate for minimal change.

This principal component analysis suggests that variation to two pairs of param-

eters could significantly alter tissue homeostasis: (i) k, the stem-cell proliferation

rate, and δS, the probability of stem-cell death, and (ii) θS, the parameter deter-

mining symmetric self-renewal based on signaling, and KS, the size of the stem-cell

niche. Specifically, increased stem-cell proliferation coupled with reduced apopto-

sis contributes to maximal change from equilibrium. In addition, the increase of

symmetric self-renewal of stem cells due to increased signaling and niche availability

causes maximal effect on the state of the tissue.

It is interesting to note that deregulated proliferation, apoptosis, and self-renewal

have all been implicated in tumorigenesis [50]. Therefore, it is not surprising that

variation in these model parameters greatly disturb tissue homeostasis. In particular,

increased proliferation and decreased cell death cause hypercellularity in differenti-

ated cells with little long-term effect on stem cells, whereas unbalanced symmetric

self-renewal significantly expands stem cells, which in turn increases the number of



141

differentiated cells as well. These results are consistent with the findings of Wu et

al. [125]. Specifically, they hypothesize that BCR-ABL increases cell prolfieration

and inhibits apoptosis to cause cancer that exhibits a high ratio of differentiated to

immature cells. In contrast, NUP98-HOXA9 deregulates the balance of symmetric

self-renewal, and causes a form of malignancy that is more aggressive because it ex-

pands the number of cancer stem cells. The next chapter will address the acquisition

of these types of mutations and determine the effects that stem-cell deregulation has

on tumor initiation.



CHAPTER VII

Deregulation of Tissue-Governing Mechanisms

The Maturity-Structured Model of Mutation Acquisition (MSMMA) presented

in Chapter IV investigated tumorigenesis in hierarchical tissue and predicted that

unbalanced stem-cell division pattern is potentially a main cause of malignancy. In

order to further investigate mechanisms that control the stem-cell division pattern,

the Ordinary Differential Equations Model of Tissue Generation (ODEMTG) was

presented in Chapter V. In that model, symmetric self-renewal, asymmetric self-

renewal, and symmetric commitment differentiation divisions critically depended on

both stem-cell and differentiated-cell populations. Chapter VI discussed the sensitiv-

ity of the ODEMTG model, and simplified the system from three equations to two.

It was argued that the two-equation model, called the Model of Homeostatic Tissue

Regulation (MHTR), could be used to simulate tissue that has achieved homeostasis

following generation. In the present chapter, this MHTR model is used to address

how deregulation of the mechanisms preserving stem-cell homeostasis contributes to

cancer.

7.1 Model Structure

Just as hierarchical structure influences the multi-step process of tumorigene-

sis, mechanisms governing tissue homeostasis may also significantly impact cancer
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Figure 7.1: Mutation acquisition in stem cells and the formation of abnormal progeny.
Stem cells acquire mutations with small probability during each division and pass on
mutations to their progeny. Terminally differentiated cells are fully mature, and there-
fore, do not divide and acquire additional mutations.

growth dynamics. In order to investigate the sequential acquisition of mutations

that initiate cancer in regulated tissue, the MHTR model is now extended in order

to incorporate mutated cell populations. Stem and differentiated cells with i mu-

tations are denoted Si and Ni, respectively. Specifically, i = 0, 1, 2, 3 because three

mutations are considered: decreased cell death, genetic instability, and deregulated

proliferation. Stem cells mutate with probability mi during division. Stem cells are

the source for differentiated cells through asymmetric and symmetric differentiation

divisions. Unlike the model presented in Chapter IV, intermediate populations of

progenitors are omitted, and since terminally differentiated cells cannot complete

further divisions and mutate, stem cells are the only cells that can acquire additional

mutations. A schematic of the flow of cells from one population to another is shown

in Figure 7.1.

The mathematical model consists of eight ordinary differential equations. The

parameters of the non-mutated stem cells, S0, and non-mutated differentiated cells,

N0, are as defined in Chapter VI, Table 6.1. Original model equations are presented

in Chapter VI, Equations 6.4. Parameters alter depending on which mutations have
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been acquired; hence, each parameter is also denoted with the subscript i to denote

that it corresponds to the population of cells with i mutations. The model equations

are as follows:

dS0

dt
= [(1− 2m0) αS0 − (1−m0) αA0 − αD0 − δS0] k0S0(7.1)

dS1

dt
= [(1− 2m1) αS1 − (1−m1) αA1 − αD1 − δS1] k1S1

+ [2m0αS0 + m0αA0] k0S0

dS2

dt
= [(1− 2m2) αS2 − (1−m2) αA2 − αD2 − δS2] k2S2

+ [2m1αS1 + m1αA1] k1S1

dS3

dt
= [αS3 − αD3 − δS3] k3S3 + [2m2αS2 + m2αA2] k2S2

dN0

dt
= [2 (1−m0) αD0 + (1−m0) αA0] A0k0S0 − δN0N0

dN1

dt
= [2 (1−m1) αD1 + (1−m1) αA1] A1k1S1 − δN1N1

+ [2m0αD0 + m0αA0] A0k0S0

dN2

dt
= [2 (1−m2) αD2 + (1−m2) αA2] A2k2S2 − δN2N2

+ [2m1αD1 + m1αA1] A1k1S1

dN3

dt
= [2αD3 + αA3] A3k3S3 − δN3N3 + [2m2αD2 + m2αA2] A2k2S2

with the probabilities of stem-cell division defined as

αS0 = (1− δS)

(
θ2

S

θ2
S + (S0 + S1 + S2)2

) (
1− S0 + S1 + S2 + S3

KS

)

αD0 = (1− δS)

(
θN

θN + (N0 + N1 + N2)

) (
S0 + S1 + S2 + S3

KS

)

αA0 = 1− αS − αD − δS.

The functional forms of division probabilities were explained in Chapter V, Sec-

tion 5.3.1. It is assumed that cancer cells with all three mutations, denoted S3, do

not produce signals to inhibit symmetric self-renewal, and thus they are omitted
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from the Hill function in αS. Likewise, cancer differentiated cells do not influence

symmetric differentiation. Cancer cells do take up space within the stem-cell niche,

and as a result, all stem cells are incorporated in the logistic term. For ease of future

discussion, the model presented in Equations 7.1 is called the Model of Mutation

Acquisition in Regulated Tissue (MMART).

The mutation pathway is the order in which mutations occur. All mutation path-

ways are compared and contrasted in order to determine which sequences generate

cancer cells fastest. As in Chapter IV, three mutations are considered that are be-

lieved to be involved in the initial stages of tumorigenesis. The D mutation decreases

the death rate in both stem and differentiated cells. The G mutation increases ge-

netic instability by increasing the rate at which additional mutations are acquired.

The R mutation alters proliferation characteristics of stem cells, by increasing ei-

ther the proliferation rate or the probability of symmetric self-renewal. The various

possibilities for the R mutation will each be examined separately in different cases.

The parameter values for both normal and mutated cells are presented in Table 7.1.

Although values are derived from the hematopoietic system, the model can be easily

applied to other tissues by using appropriate parameter values.

7.2 Increased Stem-Cell Proliferation

The sensitivity analysis conducted in Chapter VI suggested that the stem-cell

proliferation rate is a key parameter in determining tissue generation, and when

combined with changes in stem-cell death, it has a big effect on homeostasis. Pro-

liferation is increased in various forms of cancer. For instance, overexpression of the

potassium channel TREK-1, the androgen receptor, and cyclin D1 have each been

implicated in increased proliferation in prostate cancer cells [49, 53, 121]. It has also
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Parameter Value Used Mutated Value
c* 0.1528
r* 7 ln(2)

3 (weeks−1)
k rc = 0.2471 (weeks−1) 2k (weeks−1) @
θS

3e3
c ≈ 1.96e4 (cells) 2θS (cells) !

KS 3e4 (cells) 2KS (cells) $
θN 1e10 (cells)
δS 0.05 0.5δS

A 1.1e8
δN 16.8 (weeks−1) 0.5δN (weeks−1)
m 10−6 10−4

* parameter from Chapter Six needed to determine parameters
@ only used when proliferation rate increases
! only used when chemical signals are deregulated
$ only used when the niche capacity increases

Table 7.1: Parameter values of non-mutated cells and mutated cells for the Model of Mutation
Acquisition in Regulated Tissue. The D mutation alters death terms, the G mutation
alters the mutation rate, and the R mutation may increase the stem-cell proliferation
rate, or terms increasing symmetric self-renewal.

been suggested that BCR-ABL, which is expressed in CML patients, increases the

rate at which hematopoietic cells divide [125].

According to the sensitivity analysis in Section 6.1.2, increasing the stem-cell pro-

liferation rate alone has minimal effect on the homeostasis level of stem cells. Rather,

it increases the number of divisions that stem cells complete, which offers more op-

portunity to gain additional mutations. It should be noted that as long as symmetric

self-renewal and symmetric commitment differentiation are balanced, then the stem-

cell population reaches equilibrium, even if the rate of proliferation increases. The

number of differentiated progeny significantly increases because of the increased num-

ber of asymmetric self-renewal and symmetric commitment differentiation stem-cell

divisions, but also reaches equilibrium due to stem-cell homeostasis.

When the R mutation doubles the stem-cell proliferation rate, three sub-cases

may be considered. In the first case, all mutations are advantageous and give the

mutated cell added benefits over normal cells. In the second case, mutated cells

that have acquired G and/or R mutations without a previous D mutation have
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increased cell death. In the third case, cells with G and/or R are penalized without

the D mutation with the added assumption that cancer cells do not retain feedback

regulatory mechanisms. Specifically in this case, the probabilities of stem-cell division

are constant in cells with all three mutations. For each of these sub-cases, the

pathway that causes the fastest emergence of the cancer stem cell population is

determined, and the change in tissue composition over time is discussed.

7.2.1 All Mutations are Advantageous

Consider a case in which every mutation gives advantage to the cell. That is, each

mutation increases the cell’s fitness and cell death does not increase in attempting to

eliminate the mutated cell. Under such conditions, the pathways that acquire G first

are the fastest, concurring with the results from Section 4.2.2. Genetic instability

predisposes the cells to accumulating additional mutations, which quickens the time

in forming the first cancer stem cell. The GDR and GRD pathways are fastest, with

the first cancer stem cell forming in 19 years and the slowest pathway, DRG, is nearly

nine years slower. Cancer stem cells and cancer differentiated cells of all pathways

are plotted versus time in Figure 7.2A-B, respectively.

The MSMMA model in Chapter IV did not incorporate feedback regulations gov-

erning stem-cell division, and as a result, the system did not adjust to the increasing

number of mutated cells in the tissue. Normal cells remained in homeostasis, while

all mutated populations expanded without bound. With the inclusion of feedback in

the present model, mutated cells do not grow exponentially for all time, but instead

displace non-mutated cells, until healthy cells diminish from the system entirely.

The tissue composition of the fastest pathway, GDR, is plotted in Figure 7.2C. Non-

mutated cells dominate the tissue for approximately thirty years, after which cancer

cells are the majority. In contrast, when following the slowest pathway, DRG, cells
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Figure 7.2: Comparison of pathways when all mutations are advantageous. The order
in which the G mutation is acquired determines the fastest paths. (A) Cancer stem
cells formed in each pathway are plotted versus time. The GDR pathway has the first
cancer stem cell, followed closely by the GRD pathway. (B) Differentiated cancer cells
are plotted versus time for each pathway. The growth of differentiated cancer cells
mirrors the growth of cancer stem cells in each pathway. (C) Tissue composition for
the fastest pathway, GDR, versus time. (D) Tissue composition for the slowest pathway,
DRG, versus time.
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with only one and two mutations eventually take over the tissue and cancer cells re-

main a small percentage, as demonstrated in Figure 7.2D. Therefore, not only does

the time to form the first cancer stem cell vary between various pathways, but the

order in which mutations are acquired also determines the dominance of cancer cells

within the tissue.

Model predictions for fastest pathway are consistent with results from Chapter IV.

This implies that the significance of genetic instability is not diminished in tissues

that are regulated by governing mechanisms. There is one important difference be-

tween current MMART model predictions in comparison with MSMMA predictions.

Advantageous mutations in tissues that are not governed by regulatory mechanisms,

as in the MSMMA model, automatically cause exponential growth. In contrast,

when regulatory mechanisms are incorporated, exponential tumor growth does not

occur if these governing factors are still in place. Rather, an elevated equilibrium is

approached, and cancer results from the displacement of normal cells. This implies

that exponential cancer growth can only occur in the absence of feedback regulation.

7.2.2 Lethal Mutations

Now a case is investigated in which every mutation does not give the cell added

advantage, but can instead increase cell death as a result of cellular machinery recog-

nizing the mutation and forcing the cell into apoptosis. The D, G, and R mutations

are defined as in Section 7.2.1, but it is assumed that cells that have acquired either

the G and/or R mutation without the D mutation have an increased rate of apopto-

sis such that the probability of stem-cell death is 0.95 during division. For example,

in the GRD pathway, cells with the G mutation only obtain the ability of mutate

faster but they also have a higher death rate. Cells that are able to acquire the next

mutation, R, have both genetic instability as well as increased proliferation, but cell
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death remains high since apoptosis is favored due to the recognition of mutation.

Once D is acquired, then the cell has increased its ability to evade apoptosis, which

lowers the death rate, and the advantages gained in the previous G and R mutations

remain.

Unlike the findings in Section 7.2.1, the order in which genetic instability is ac-

quired is not important in determining the pace in which cancer is initiated. To

illustrate this conclusion, consider the DGR and RGD pathways. Both pathways

acquire G second, but DGR is the fastest pathway while RGD is the slowest. There-

fore, the significance of genetic instability is minimized when it is lethal mutation.

Instead, if the probability of cell death increases in mutated cells that cannot already

evade apoptosis, then acquiring the D mutation first contributes to the fastest emer-

gence of cancer stem cells. Once cells obtain the D mutation, then all subsequent

mutations are advantageous, which is not true if either G or R is acquired first.

Not only does the fastest pathway change under the assumption of advantageous

versus lethal mutations, but the tissue compositions of the fastest pathways are con-

trasting. Figure 7.3 compares the tissue composition between the fastest pathway in

Section 7.2.1, GDR, and the fastest pathway under the assumption of lethal muta-

tions, DGR. In the GDR pathway, cancer cells take over the tissue in thirty years.

In stark contrast, cells with only one mutation, namely the D mutation, eventually

dominate tissue following the DGR pathway. Therefore, it could be argued that the

all-advantageous sequence GDR is a more aggressive form of disease.

The initiation of cancer is delayed 10-20 years in pathways for which D is not

first. Furthermore, the tissue composition for each pathway resembles the pathway’s

composition under the assumption that all mutations are advantageous, but the

dominance of mutated subpopulations is delayed. For example, in the pathway
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Figure 7.3: Comparison of tissue composition in fastest pathways when all mutations
are advantageous versus when some are lethal. (A) The tissue composition of
the fastest pathway, GDR, when all mutations are advantageous. The majority of tissue
is eventually comprised of cells with all three mutations. (B) The tissue composition of
the fastest pathway, DGR, when some mutations are lethal. Its tissue composition is
strikingly different in that the majority of cells eventually have only one mutation and
cancer cells are a small percentage of the tissue.
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GDR in which G is lethal without D, cancer cells still eventually dominate the

tissue, though it is ten years later than when all mutations are advantageous. The

prevalence of cancer cells in the tissue implies that this pathway simulates a disease

that progresses quickly, even though it takes longer to initiate than the DGR pathway.

In contrast, the DGR pathway produces a tumor that primarily consists of cells with

one mutation. The D mutation is the only mutation that can directly increase the

steady state of stem cells, while both the G and R mutations affect how quickly cells

move from one mutated population to the next. As a result, when D is acquired

first, stem cells with one mutation outnumber normal cells, and this advantage for

expansion allows the clone with the D mutation to dominate the tissue.

Once again, model predictions are consistent with the results presented in Chap-

ter IV. Specifically, in the event that mutations are lethal without a previously

acquired ability to evade apoptosis, the fastest pathway begins with the D muta-

tion. Similar with the simulations in Section 7.2.1, regulatory mechanisms remain

intact, so cell populations do not grow exponentially. The two cases explored thus

far demonstrate that unrestricted growth is not possible in tissues that maintain

some level of regulation. Hypercellularity can occur, but some level of equilibrium is

achieved, even if it is abnormal. The next section will consider the effects on tumor

dynamics when regulatory mechanisms are removed in cancerous cells.

7.2.3 Cancer Cells Lose Regulatory Mechanisms

In the two cases presented thus far, mutations have affected death, genetic in-

stability, and proliferation of stem cells, but the regulatory mechanisms governing

stem-cell division pattern have remained intact. As recorded in Chapter IV, without

feedback mechanisms in place that attempt to regain tissue homeostasis, the cancer

population grows exponentially over time. In stark contrast, the results from Sec-
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tions 7.2.1 and 7.2.2 demonstrate that if the stem-cell population does not completely

lose regulatory mechanisms, then even the cancer cell populations can be contained.

In addition, recall that in Chapter IV simulations, non-mutated cells maintained

homeostasis while mutated populations grew exponentially. Cancer dominance was a

result of an increased number of mutated cells that vastly outnumbered non-mutated

cells, not the loss of healthy cells. Conversely, in regulated tissue, non-mutated cells

diminish because mutated cells have a competitive advantage and displace healthy

cells.

Because cancer cells can become independent in providing their own growth sig-

nals, it is not unreasonable to suggest that cancer cells could lose control from reg-

ulatory mechanisms [50]. To investigate this possibility, assume that the D, G, and

R mutations are defined as in Section 7.2.2, so that G and R are not advantageous

without D. In addition, assume that cells that have acquired both the D and R mu-

tations become independent of niche signaling and lose feedback interactions that

dictate the mode of stem-cell division. In other words, the probabilities of stem-

cell division become constant for cells that have acquired both D and R mutations,

equating to some self-reliance in growth signals and evasion of apoptosis.

To determine the constant probabilities of symmetric self-renewal, asymmetric

self-renewal, and symmetric commitment differentiation, the functional forms of αS,

αA, and αD are evaluated at the initial starting time, using mutated parameter values.

For example, at t = 0, the initial probability of symmetric self-renewal in cancer

cells to be αSC = 0.21, when using the mutated parameter value δSC . Likewise, the

probability of symmetric differentiation in cancer cells would initially be αDC = 0.16.

With the probability of apoptosis as δSC = 0.025 in D-mutated cells, the remainder

of the divisions are asymmetric, giving a probability of αAC = 0.60. Thus, there is a
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slight imbalance in symmetric divisions and death of stem cells, causing exponential

growth of cancer cells that is maintained over time since feedback mechanisms are

not in place to decrease symmetric self-renewal or increase symmetric commitment

differentiation. As the cancer population grows without bound, the total stem-cell

population can surpass the size of the niche because cancer cells do not have this

restraint. It is assumed that when the total stem-cell population exceeds the niche

size, the probability of symmetric self-renewal in regulated cells is zero, and the

probability of symmetric differentiation is determined by αD = (1−δS) θN
θN+(N0+N1+N2)

to ensure that the probabilities of stem-cell division are contained between zero and

one. In other words, the influence of the stem-cell niche on division pattern is removed

in cells with both the D and R mutations.

When the D and R mutations enable unrestricted growth, the initial stages of

tumorigenesis do not greatly differ from those determined in Section 7.2.2, but over

time, the differences between these cases are noteworthy. Figure 7.4 plots the total

number of cancer cells that result from the fastest pathways. Let Case A be the case

in which all mutations are advantageous presented in Section 7.2.1, Case B represents

lethal mutations as in Section 7.2.2, and Case C is for unregulated division in this

section. Recall the GDR pathway was fastest when all mutations were advantageous,

while the DGR pathway was fastest if lethal mutations were considered. When

cancer cells are independent of regulation, the DGR pathway is fastest, and the first

cancer stem cell is formed merely 0.3 years faster than when regulation is maintained.

However, unlike previous cases, the cancer population not only displaces non-mutated

cells, but continues to expand and eventually overtakes the number of cancer cells in

both other cases.

The loss of governing mechanisms is not mandatory for the emergence of cancer
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Figure 7.4: Comparison of fastest pathways for all cases in which stem-cell proliferation
is increased. GDR is the fastest pathway in Case A (blue). DGR is the fastest
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feedback regulation, then cancer stem cells grow exponentially (red).
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stem cells, as confirmed by the results in Sections 7.2.1 and 7.2.2. Cancer dominates

tissue in which governing mechanisms continue to be maintained due to competitive

advantage over healthy cells. In such circumstances, disease can result from the

elimination of healthy cells that have been replaced with mutated cells that do not

properly function. However, when mutated cells are also independent of regulation,

not only do cancer cells displace non-mutated cells, but exponential growth causes

the cancer population to expands uncontrollably. These results imply that tumors

composed of cells that have lost tissue-governing mechanisms are more malignant

than tumors in which some semblance of regulation is maintained.

7.3 Unbalanced Pattern of Stem-Cell Division

It has been suggested that an unbalanced symmetric self-renewal divisions in

stem cells may contribute to certain forms of cancer [4, 12, 20, 23]. For instance, the

Wnt/β-catenin signaling pathway that is important in stem-cell self-renewal has also

been implicated in cancer [23]. Furthermore, mutations that increase the probability

of symmetric self-renewal may even cause more aggressive forms of disease than

those that merely quicken proliferation. For example, consider Chronic and Acute

Myelogeous Leukemia (CML and AML). Patients with CML express BCR-ABL,

which increases proliferation, whereas AML patients express NUP98-HOXA9, which

increases self-renewal in hematopoietic stem cells and causes a more malignant form

of leukemia [125].

Clearly, the mechanisms that govern stem-cell self-renewal are of great interest

when investigating the emergence of cancer stem cells. The mathematical model

in Chapter IV did not account for the dynamic regulation of stem-cell division as

dependent upon tissue status. Now that feedback mechanisms have been incorpo-
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rated, it is possible to examine the impact of mutations that affect stem-cell division

properties. Specifically, alteration of θS and KS, will be addressed since these two

parameters determine the probability of symmetric self-renewal. In this section,

the R mutation will increase one of these parameters, thereby increasing symmetric

self-renewal, while the rate of proliferation will remain unaltered. As before, the D

mutation decreases death and the G mutation increases genetic instability.

7.3.1 All Mutations are Advantageous

Again consider the case in which all mutations are advantageous. That is, cell

death does not increase in mutated cells, and mutated cells have competitive advan-

tage over non-mutated cells. The D mutation decreases the probability of stem-cell

death and the differentiated cell death rate by half. The G mutation increases the

probability at which mutations are acquired from 10−6 to 10−4. The R mutation dou-

bles the value of θS, which increases the initial probability of symmetric self-renewal

by approximately 10%.

In correlation with the conclusions in Section 7.2.1, the earlier genetic instability

is acquired, the faster cancer stem cells are formed. However, increasing symmetric

self-renewal through the doubling of the parameter θS significantly decreases the

time to the first cancer stem cell in all pathways. The fastest pathway is GRD, with

the first cancer stem cell formed in 8.4 years, nearly eleven years earlier than the

appearance of the first cancer stem cell in Section 7.2.1. In agreement with model

predictions in Chapter IV, genetic instability is less significant when symmetric self-

renewal mutations are considered than when the rate of proliferation increases, as

all pathways develop cancer stem cells quickly.

The growth dynamics of the stem- and differentiated-cell populations for the GRD

pathway are plotted in Figure 7.5A-B. As illustrated in Figure 7.5C, the probabilities
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Figure 7.5: Growth dynamics for the fastest pathway when the R mutation increases
symmetric self-renewal. When all mutations are advantageous and the R mutation
increases symmetric self-renewal, the GRD pathway is fastest. (A) Stem cells versus
time. The first cancer stem cell is formed in 8.44 years. (B) Differentiated cells versus
time. (C) The probabilities for each type of stem cell division versus time. Probabilities
for non-mutated cells are plotted with solid lines, cancer cells with dashed lines.
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of stem cell-division shift over time to favor symmetric divisions. Doubling θS in-

creases the initial probability of symmetric self-renewal from 0.21 to 0.32, which con-

sequently decreases the probability of asymmetric division. As cancer cells displace

non-mutated cells, the Hill functions in both symmetric self-renewal and symmetric

commitment differentiation tend to one. In both non-mutated and cancer stem cells,

the probability of symmetric self-renewal goes to 0.5, the probability of symmetric

commitment differentiation goes to 0.475, and the probability of asymmetric division

goes to zero.

An imbalance in favor of symmetric self-renewal causes rapid expansion in mutated

cells and quickly displaces healthy cells. In approximately 15 years, cancer dominates

the tissue. Although the probability of symmetric self-renewal is initially increased in

cells with the R mutation, regulatory mechanisms were not completely eliminated. As

a result, the initial rapid expansion is eventually controlled, preventing unrestricted

tissue growth. This implies that altered regulations may still be capable of mediating

homeostasis, even if it is abnormally controlled.

7.3.2 Lethal Mutations

As in Section 7.2.2, suppose that G and R mutations are not advantageous in cells

that have not previously acquired the D mutation. In stem cells that have either

G and/or R but not D, the probability of death is 0.95. Under these assumptions,

the DGR is the fastest pathway, but the first cancer stem cell forms in 11.7 years,

less than half of the time required by the same pathway when proliferation is altered

rather than symmetric self-renewal. In fact, a cancer stem cell is formed in all

pathways within 18 years. This is remarkable because the slowest pathway initiates

cancer before even the fastest pathway in Section 7.2.1, in which all mutations are

advantageous.
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Figure 7.6: Increased symmetric self-renewal speeds cancer onset more than increased
proliferation rate. The time to first cancer stem cell is faster for increased symmetric
self-renewal when all mutations are not advantageous even when compared to the case
where all mutations are advantageous with increased proliferation rate.

Figure 7.6 compares the time to first cancer stem cell for each pathway when all

mutations are advantageous and R increases the proliferation rate versus those in

which R increases symmetric self-renewal and G and R are lethal. Increasing sym-

metric self-renewal approximately 10% by doubling θS dramatically decreases the

time to first cancer stem cell in comparison with increasing the rate of stem-cell pro-

liferation. It is therefore suggested that increasing unbalanced symmetric divisions

causes malignancies to develop quicker than increasing the rate of division. Fur-

thermore, symmetric self-renewal minimizes the differences in cancer initiation when

comparing all pathways. As a result, unbalanced symmetric self-renewal dictates a

faster pace of cancer development, regardless of the sequential order of mutations.
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7.3.3 Cancer Cells Lose Regulatory Mechanisms

The last two cases demonstrate that cancer cells can emerge from increased sym-

metric self-renewal, even if regulatory mechanisms are not completely lost. Based on

the conclusions that unbalanced symmetric divisions speed the onset of cancer more

than increased stem-cell proliferation, one would predict that unregulated symmetric

divisions would be additionally problematic. Indeed, if stem cells with both the R and

D mutations become independent of division regulation and governing mechanisms

are lost, the cancer stem-cell population emerges quickly and grows exponentially.

To emphasize the significance increasing symmetric self-renewal on cancer stem-

cell dynamics, the cancer stem-cell population of the fastest pathways from each

of the six cases discussed thus far are plotted in Figure 7.7. Case 1 denotes all the

simulations in which the R mutation doubles the proliferation rate of stem cells, while

Case 2 denotes the simulations in which the R mutation doubles θS and increases

symmetric self-renewal. All mutations are advantageous in Cases 1A and 2A, G and

R mutations are not advantageous without D in Cases 1B and 2B, and stem-cell

division regulation is lost in cells with D and R mutations in Cases 1C and 2C.

The fastest pathways in which R increases symmetric self-renewal are significantly

faster than the pathways in which R increases the stem-cell proliferation rate. This

only emphasizes our previous results from Chapter IV that predicted aberrant sym-

metric self-renewal can be an important factor in determining cancer initiation. In

addition, when comparing Cases 1C and 2C in which the cancer stem-cell popula-

tion grows exponentially, the rate at which cancer grows is markedly increased in the

latter case. Therefore, deregulated unbalanced symmetric self-renewal quickly initi-

ates tumorigenesis and continues to promote cancer expansion through an elevated

growth rate if regulatory mechanisms are lost.
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Figure 7.7: Complete loss of regulation enables malignant growth. Case One simulations,
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simulations, in which symmetric self-renewal is increased, are plotted with solid lines.
The first cancer stem cell is formed via the GDR pathway when symmetric self-renewal
is increased and all mutations are advantageous. The most malignant growth is formed
through the DGR pathway, when stem cells have increased symmetric self-renewal and
have also lost feedback regulation.
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7.3.4 Increased Stem Cell Niche

It has been suggested that cancer stem cells are not as dependent on the stem-cell

niche as normal stem cells [74, 76]. As a result, cancer stem cells are not as restricted

by the physical carrying capacity of the niche. In Sections 7.2.3 and 7.3.3, all control

from the stem-cell niche was removed, and cancer stem cells grew exponentially. Now

a case is considered in which cancer stem cells are still restricted by the niche, but

the niche controlling mutated cells is larger since it is assumed mutated cells have

more freedom in where they reside. Due to the results of the sensitivity analysis

in Chapter VI, Section 6.1.2, it is predicted that increasing the niche will have a

major impact on tumor growth, since it was the only model parameter that signifi-

cantly altered long-term homeostasis of stem cells. In the following simulations, the

R mutation doubles the size of the stem-cell niche, KS, but does not change the

proliferation rate, k, or θS. As in Sections 7.2.2 and 7.3.2, the D mutation decreases

the death rate, the G mutation increases the mutation rate, and it is assumed that

the G and R mutations are not advantageous unless D has been acquired.

The results of Section 7.3.2 demonstrated that increasing θS increases symmetric

self-renewal, but it is now suggested that doubling KS causes a greater increase in

symmetric self-renewal divisions. In addition, increasing KS also decreases the prob-

ability of symmetric commitment differentiation. The combination of the increase in

symmetric self-renewal and decrease in symmetric commitment differentiation cre-

ates an even larger imbalance of symmetric divisions than doubling θS. Consequently,

it is not surprising that a mutation increasing the stem-cell niche causes the fastest

cancer onset. The DGR pathway is fastest, forming the first cancer stem cell in 6.65

years, though all pathways have a cancer stem cell in under ten years.

There is an additional interesting aspect of the growth dynamics caused by this
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mutation. The increased niche capacity for R-mutated stem cells give them a signif-

icant competitive advantage other cells. As mutated cells fill up the niche, feedback

regulation forces symmetric self-renewal of normal cells to go to zero since the system

does not want to add more stem cells. In addition, symmetric commitment differen-

tiation of normal cells goes to its maximum value of (1 − δS) in order to push cells

out of the niche. In so doing, the normal cell population differentiates more than it

self-renews, which in turn causes the forced rapid extinction of normal cells.

Figure 7.8 compares the probabilities of stem-cell division that occur in a system

following the DGR pathway for when symmetric self-renewal increases due to in-

creasing θS, as in Section 7.3.2 as opposed to when it increases because of the niche.

When symmetric self-renewal is increased by doubling θS, all cells continue to be reg-

ulated by the same size niche. As time progresses, non-cancer cells diminish, which

forces the chemical signaling term
θ2
S

θ2
S+(S0+S1+S2)2

to one, and symmetric self-renewal

in both normal and cancer cells goes to 50%, as demonstrated in Figure 7.8A. The

other 50% of divisions result in symmetric commitment differentiation and apopto-

sis. In contrast, when the R mutation doubles the niche, the signaling term also goes

to one as time progresses, but because cancer cells fill up the niche and can in fact

surpass the niche, symmetric self-renewal in normal cells diminishes while symmetric

commitment differentiation goes to 95%. Cancer cells do not have the same division

probabilities as normal stem cells in the long run due to the increased niche capacity;

cancer stem cells symmetrically self-renew at 50% and symmetrically differentiate at

47.5%, as plotted in Figure 7.8B. In summary, a mutation that increases the cell’s

self-reliance apart from the niche, thereby increasing the potential niche capacity

in which the cell may reside, creates a considerable imbalance in stem-cell division

probabilities while also promoting extensive differentiation and loss of normal cells.
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Figure 7.8: Comparison of stem-cell division probabilities for mutations that increase
symmetric self-renewal. The fastest pathway of both cases is DGR, but the prob-
abilities of stem-cell division are markedly different. Values for non-mutated cells are
plotted with solid lines, cancer cells are plotted with dashed lines. (A) The probabilities
of stem cell division when the R mutation doubles the switch parameter. Both mutated
and healthy cells approach balanced division patterns in the long run. (B) The proba-
bilities of stem cell division when the R mutation doubles the niche size. Normal cells
are forced to differentiate due to crowding from the niche.
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7.4 Conclusions

This chapter focused on investigating mutation acquisition in hierarchical tissue

in which stem-cell division is governed by regulatory mechanisms. The order of mu-

tations that causes the fastest formation of a cancer stem cell was determined under

various conditions. Several results from this chapter coincide with predictions from

the Maturity-Structured Model of Mutation Acquisition in Chapter IV. In particular,

when all mutations are advantageous, the sequential order in which genetic insta-

bility is acquired crucially determines the time to cancer onset. Although pathways

beginning with genetic instability are fastest for both types of R mutations, its effects

are significantly diminished when symmetric self-renewal is increased, demonstrating

that aberrant symmetric self-renewal may instigate aggressive malignancies. Over

all, mutations that disturb the balance between symmetric self-renewal and symmet-

ric commitment differentiation divisions cause initiate cancer faster than mutations

increasing stem-cell proliferation rate.

Although many of the model predictions in this chapter reflect those discussed in

Chapter IV, there are many aspects of tumor dynamics that can be investigated to a

greater extent with the incorporation of regulatory mechanisms. For instance, with

the inclusion of feedback mechanisms that govern stem-cell division, cancer cells do

not necessarily grow exponentially as seen in the results from Chapter IV. Rather,

if regulation remains in tact, even though it may be abnormal, a new equilibrium

is achieved. Furthermore, unlike the predictions of the MSMMA model in Chap-

ter IV, healthy cells diminish due to the displacement by mutated cells that have a

competitive advantage in the niche.

In the event that all regulation is lost in cancer cells, exponential growth of the
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cancer population occurs in addition to the depletion of normal cells. Therefore, the

model predicts that stem-cell governing mechanisms maintain system homeostasis

under healthy conditions and cancer is easily initiated when they are lost. Con-

sequently, feedback regulation controlling stem-cell self-renewal and differentiation

can prevent exponential growth due to perturbations, but complete loss initiates un-

restricted expansion in cancerous populations. In this chapter, the populations of

progenitors were not explicitly modeled, and thus did not determine the effects of

deregulation on intermediate populations. The following chapter will more closely

examine the effects of tissue deregulation on all tissue cells by incorporating the reg-

ulatory mechanisms outlined in this chapter with the maturity structure defined in

Chapter IV.



CHAPTER VIII

Mathematical Modeling of Homeostatic Deregulation
Instigating Chronic Myelogenous Leukemia

In previous chapters, the process of mutation acquisition was investigated in hier-

archical tissue through the use of two different mathematical models. In Chapter IV,

a maturity-structured model of stem, progenitor, and differentiated cells was used

to monitor the initiation of cancer stem cells and the growth of progeny cancer cells,

but this model did not include regulatory mechanisms that preserve homeostasis.

In order to incorporate these tissue-governing mechanisms, an ordinary differential

equations model was developed in Chapters V and VI in which stem-cell division

probabilities were dependent on stem and differentiated cell populations. This ODE

model was used in Chapter VII to investigate the consequences of acquired mutations

that transform the mechanisms regulating the balance of stem-cell division pattern.

In order to obtain a comprehensive modeling framework for theoretical investigation

of cancer initiation in hierarchical tissue, a model is now presented that incorporates

both the maturity-structure from Chapter IV with the regulatory feedback mecha-

nisms examined in Chapters V, VI, and VII. The tissue of choice is the blood and this

new model is first developed to describe a healthy hematopoietic system. Then, the

model is used to investigate the growth dynamics of Chronic Myelogenous Leukemia

(CML). To our knowledge, this is the first presentation of a cell maturity-structured

168
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model that incorporates (1) the sequential acquisition of phenotype altering muta-

tions, (2) tissue hierarchy, and (3) internal feedback regulation of homeostasis.

8.1 Mathematical Modeling of Granulopoiesis

The hematopoietic system is composed of stem cells and a variety of progenitor

and differentiated cells in the lymph and blood systems. Hematopoietic stem cells

are precursors for cells of both the lymphoid and myeloid lineages. Lymphocytic

progenitors differentiate into B cells, T cells, and NK cells, all of which are neces-

sary components of the immune system. Myeloid progenitors differentiate to form

platelets, macrophages, etrythrocytes, and granulocytes, which include eosinophils,

basophils and neutrophils [99].

The majority of hematopoietic stem cells reside in the bone marrow, though some

have also been detected in the spleen and blood [9, 71, 91]. The bone marrow is

also the location for the expansion and maturation of progenitors and differentiating

cells. Once myeloid cells reach full maturity, they are released into the bloodstream.

Terminally differentiated cells in the blood do not complete additional divisions and

have a short half-life. Therefore, the bone marrow is the site of proliferation, ex-

pansion, and differentiation, while blood circulation transports fully mature cells to

meet tissue demands throughout the body.

In this chapter, a maturity-structured mathematical model is presented that fo-

cuses on granulopoiesis, that is, the process by which granulocytes are formed. Gran-

ulocytes are crucial for an innate immune response. The primary function of these

cells is to remove pathogens, and their continuous production is characteristic of a

healthy immune system [61]. Hematopoietic stem cells, precursor myeloblasts and

myelocytes, and fully-differentiated granulocytes, specifically neutrophils, are con-
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sidered. Unlike the models presented in previous chapters, cells reside in one of two

compartments, namely, the bone marrow or the blood. It is assumed that, under nor-

mal conditions, stem, progenitor, and differentiating cells remain in the bone marrow

while terminally differentiated cells mobilize into the blood. Although it is true that

stem cells can circulate in the blood, it is assumed that their number is negligible in

comparison with all the other cells. By distinguishing between cells that are in the

blood as opposed to the bone marrow, it is possible to determine the distribution of

cell maturity in each tissue, which will later enable investigation of immature blast

accumulation that is associated with the progression of CML.

8.1.1 Model Structure

The model uses the maturity-structure of Chapter IV while also incorporating the

stem-cell division regulatory mechanisms of Chapters V and VI. Stem cells, S, di-

vide at rate k, and with each division, stem cells either symmetrically self-renew with

probability αS, asymmetrically self-renew with probability αA, symmetrically differ-

entiate with probability αD, or die with probability δS. Progenitor cells are formed

through asymmetric and differentiation divisions. Although it is known that a small

number of stem cells circulate the blood through the process of mobilization [71],

it is assumed that stem cells and immature progenitors reside in the bone marrow,

while fully mature cells are released into the blood, as depicted in Figure 8.1. Cells

of maturity level a at time t in the bone marrow and the blood are denoted w(a, t)

and n(a, t), respectively. The net growth rate of cells in the bone marrow, given by

β(a), the mobilization rate of cells from the bone marrow into the blood, given by

γ(a), and the death rate of cells in the blood, given by µ(a), are dependent on cell

maturity. The system of model equations is as follows:
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dS

dt
= (αS − αD − δS) kS(8.1)

∂w

∂a
+

∂w

∂t
= (β(a)− γ(a)) w

∂n

∂a
+

∂n

∂t
= γ(a)w − µ(a)n

with initial and boundary conditions

S(0) = S0(8.2)

w(a, 0) = f(a)

n(a, 0) = g(a)

∂w

∂t
(0, t) = (2αD + αA) kS

∂n

∂t
(0, t) = 0.

The total number of cells in the bone marrow and blood at time t are respectively

defined as

W (t) =

∫ ∞

0

w(a, t)da(8.3)

N(t) =

∫ ∞

0

n(a, t)da.

For ease of referral in subsequent discussion, the model presented in Equations 8.1, 8.2,

and 8.3 is called the Maturity-Structured Model Incorporating Regulatory Feedback

Mechanisms (MSMIRFM).

The functional forms for the probabilities of stem-cell division are as defined in

Chapters V, VI, and VII. Specifically,

αS(S) = (1− δS)

(
θ2

S

θ2
S + S2

) (
1− S

KS

)

αD(S, N) = (1− δS)

(
θN

θN + N

) (
S

KS

)

αA(S, N) = 1− αS(S)− αD(S, N)− δS.
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Figure 8.1: Cells are divided into bone marrow and blood compartments. Hematopoietic
stem cells and progenitor cells reside in the bone marrow while terminally differentiated
neutrophils are in the blood circulation.

The growth rate and death functions, β(a) and µ(a) are those defined in Chapter IV.

The release of differentiated cells into the blood must compensate for the death of

circulating terminally differentiated cells. The mobilization entry rate, γ(a), is also

switch function, with a maximum rate that is derived from the estimated turnover

of granulocytes in the blood. The functional forms are as follows:

β(a) =
−b

2
tanh(ρβ(a− ωβ)) +

b

2
(8.4)

γ(a) =
g

2
tanh(ργ(a− ωγ)) +

g

2

µ(a) =
d

2
tanh(ρµ(a− ωµ)) +

d

2
+ δSk.

The model terms and parameter values are presented in Table 8.1.

8.1.2 Numerical Simulations of Granulopoietic Homeostasis

Model equations were discretized with the upwind method, and numerical simu-

lations were conducted using MATLAB. The initial condition of 1,000 stem cells and
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Term Biological Meaning Value Used
S hematopoietic stem cells 11,000-22,000 (cells) [1]
W precursors in bone marrow 5− 15× 1011 (cells) [1, 52, 100, 109]
N neutrophils in blood 2− 6× 1010 (cells) [9, 100, 101]
αS(S) probability of SSR 0.20 (from Chapter V) [125]
αD(S, N) probability of SCD 0.15 (from Chapter V) [125]
αA(S, N) probability of ASR 0.60 (from Chapter V) [125]
k stem-cell proliferation rate 0.247 (weeks−1) [21]
θS switch parameter for SSR 19,600 (cells)
KS stem-cell niche capacity 30,000 (cells)
θN switch parameter for SCD 1× 1010 (cells)
δS probability of stem-cell death 0.05 [83]
β(a) progenitor net growth rate
b maximum growth rate 9.7 (per week) [100, 109]
ρβ steepness of β switch 2
ωβ maturity at β switch 2.05 (weeks)
γ(a) entry rate into blood
g maximum blood entry rate 4.2 (per week)
ργ steepness of γ switch 10
ωγ maturity at γ switch 4.05 (weeks)
µ(a) differentiated-cell death rate
d neutrophil death rate 16.8 (per week) [9, 13, 39]
ρµ steepness of µ switch 10
ωµ maturity at µ switch 4.10 (weeks) [39]

Table 8.1: Parameter values for the Maturity-Strucutred Model Incorporating Regulatory Feedback
Mechanisms.
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zero progenitor and differentiated cells was used to generate the hierarchical tissue

and determine the homeostasis steady states and maturity distributions of the sys-

tem. It should be noted that the model does not segregate cycling and quiescent stem

cells, but instead monitors the total stem-cell population. Following the results ac-

quired from numerical simulations of hematopoietic tissue generation in Chapter V,

it is assumed that approximately 15% of all stem cells are cycling during the entire

generation period. Although tissue generation is more accurately modeled by sepa-

rating cycling and quiescent stem cell populations so the percentage of cycling stem

cells can vary depending on tissue status, reconstitution is not the primary focus

of these simulations. Rather, the purpose is to establish the steady state maturity

distribution of cells in the bone marrow and blood compartments that will be used as

the initial conditions in the mutation acquisition model, because these distributions

cannot be solved analytically.

Figure 8.2 plots the growth of each of the cell populations during generation. The

stem-cell population is plotted in Figure 8.2A. The system begins with 1,000 stem

cells, growing to a steady state of approximately 18,360 stem cells, which is within

the predicted range of 11,000-22,000 hematopoietic stem cells in adult humans [1].

The total number of differentiating cells in each the bone marrow and the blood is

plotted in Figure 8.2B. Initially there are no cells in both the bone marrow and blood.

As the system is generated, it reaches a steady state of approximately 7.28 × 1011

cells in the bone marrow and 2.97× 1010 cells in the blood. Neutrophils have a short

half-life and high rate of turnover, but they need a few days to fully mature in the

bone marrow before being released into the the blood. Therefore, the total number

of cells in the bone marrow is far greater than the number of cells in the blood.

Figure 8.2C shows the maturity distributions of cells in the bone marrow as well as
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the blood. The majority of cells in the bone marrow are near full maturity, ready

for release into the blood, while the majority of cells in the blood are fully mature.

The functions determining cell division and death rates are plotted in Figure 8.3.

The probabilities for each type of stem-cell division, shown in Figure 8.3A, change

over time in reaction to the generation of additional stem and differentiated cells.

Initially, symmetric self-renewal dominates, but as the system approaches home-

ostasis, asymmetric divisions comprise 60% of stem-cell divisions, while symmetric

self-renewal and differentiation account for 20% and 15% of stem-cell divisions, re-

spectively. The maturity-dependent growth, release, and death rates are plotted

versus maturity level a in Figure 8.3B. Myeloblasts have a cycling time of 11-24

hours, thus the maximum rate of proliferation is determined from this doubling

time [100, 109]. Cell cycle times increase as cells mature, thus the proliferation rate

approaches zero as cells mature. Upon completing the final division, cells require

3-4 days to achieve full maturity, after which they are released into the blood. In

the bone marrow, the number of non-proliferating cells of the granulocyte lineage

ranges from 2.7 − 6.6 × 1011 cells, and it is estimated that 1.2 × 1011 granulocytes

are released into the blood every day [39, 109]. Consequently, the estimated release

from the bone marrow occurs at a maximum rate of 0.2-0.6 per day, or 1.4-4.2 per

week. The maximum release rate is approached after bone marrow cells reach full

maturity, which is assumed to occur when γ > β; or when baseline parameters are

used, as in this simulation, approximately 3.8 weeks. Cells have a short half-life in

the blood, thus accounting for the high death rate of differentiated cells quickly after

release.

The proliferation rate of differentiating cells in the marrow, given by the maturity-

dependent function β(a), is helpful in determining the composition of cells in the bone



176

0 20 40 60 80
0

1

2

3
x 10

4

Time (weeks)

S
te

m
 C

e
ll

s
A

0 20 40 60 80

2

4

6

8

10
x 10

11

Time (weeks)

D
if

fe
re

n
ti

a
ti

n
g

 C
e

ll
s

 

 

BBM

BL

T

0 1 2 3 4 5
0

1

2

3

4

5
x 10

11

Maturity (weeks)

C
e

ll
 D

is
tr

ib
u

ti
o

n

 

 

CBM

BL

T

Figure 8.2: Hierarchical tissue reaching homeostasis. (A) Stem cells versus time. (B) Total
differentiating cells (black) as found in the bone marrow (magenta) and blood (red).
(C) Maturity distribution of cells in the bone marrow (magenta) and the blood (red).
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marrow. The estimated doubling time of precursor cells in the bone marrow is 11-24

hours for myeloblasts, 20-42 hours for promyelocytes, and 39-57 for myelocytes [52,

100]. These cycling times correspond with weekly proliferation rates of 4.85-10.6

in myeloblasts, 2.77-5.82 in promyelocytes, and 2.04-2.99 in myelocytes. Therefore,

bone marrow cells of maturity a can be classified based on their corresponding value

of β(a). When the baseline parameters in Table 8.1 are used, there are approximately

1.39× 1010 myeloblasts, 3.03× 1010 myelocytes, and 1.39× 1011 promyelocytes, and

5.44 × 1011 maturing neutrophils, of which 1.83 × 1011 are fully mature. According

to these cell counts, the composition of granulocytic precursors in the bone marrow

consists of approximately 2% myeloblasts, 4% promyelocytes, 19% myelocytes, and

75% maturing cells; approximately 25% of bone marrow cells are fully mature. These

results are comparable with recorded scientific data of bone marrow composed of

2.5-3% myeloblasts, 3-5% promyelocytes, 22-26% myelocytes, and 66-72% maturing

cells [52, 100, 109].

8.1.3 Conclusions

In this section, a mathematical model was presented that incorporated both

maturity-structure and regulatory feedback mechanisms governing stem-cell division

pattern in order to simulate healthy homeostasis of granulocytes and their precur-

sors. To our knowledge, this is the first mathematical model of hierarchical tissue

that incorporates both maturity structure and feedback mechanisms in its framework.

Numerical simulations of tissue generation were conducted, and tissue homeostasis

was investigated to determine the number and maturity-distribution of granulocytic

cells in equilibrium in both blood and bone marrow. Using experimentally measured

parameter values, model predictions were in coherence with recorded cell counts and

tissue composition based on cell maturity.
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The MSMIRFM model presented in equations 8.1 differs from the MSMAHR

model presented in Equations 4.1 due to the inclusion of regulatory mechanisms that

govern the balance of stem-cell divisions. The main distinction between the model

predictions is in the dynamics regarding stem-cell division. In the MSMAHR model,

the probabilities of symmetric self-renewal, asymmetric self-renewal, and symmetric

commitment differentiation remain constant and do not change, regardless of tissue

dynamics. Stem cells remain in equilibrium as long as the division pattern is bal-

anced. Consequently, the MSMAHR model cannot capture both the expansion that

initially occurs during tissue generation as well as the maintenance of homeostasis. In

contrast, the MSMIRFM model allows the probabilities of stem-cell division pattern

to adjust according to the status of the tissue.

The MSMIRFM model employs the same regulatory feedback mechanisms as the

MHTR model in equations 6.4, but unlike the MHTR model, captures the dynam-

ics of intermediate progenitor populations. The MHTR model accurately simulates

equilibrium of stem cells and terminally-differentiated cells, but does not explicitly

model progenitors. Therefore, it is impossible to determine the maturity-distribution

of tissue cells with the MHTR model. The MSMIRFM model, on the other hand,

includes all tissue cells on the maturity spectrum, from the most näıve stem cells to

progenitors to terminally differentiated cells.

The mathematical model presented in this section combines the novel features of

the models presented in Chapters IV, V, and VI. By doing so, this inclusive model

captures all aspects of hierarchically structured tissue dynamics. Specifically, this

model integrates tissue hierarchy, regulatory mechanisms governing homeostasis, and

maturity-dependent cell proliferation, mobilization, and death into one comprehen-

sive framework. This model will be utilized in the next section in order to investigate
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the sequential acquisition of deregulating mutations causing the accumulation of im-

mature blast cells that contribute to disease progression in Chronic Myelogenous

Leukemia.

8.2 Mathematical Modeling of Chronic Myelogenous Leukemia

Chronic Myelogenous Leukemia (CML) is merely one of the blood and bone mar-

row disorders that deregulates healthy hematopoiesis. Specifically, CML is a myelo-

proliferative disorder in which cells of the myeloid lineage expand [23, 59]. The

National Cancer Institute estimates that 4,830 new cases of CML will be diagnosed

and 450 people will die from the disease in 2008. The rate of incidence in males is

nearly double that of females, with 1.9 per 100,000 men and 1.1 per 100,000 women

having the disease [93]. Although CML affects adults and children, the median age of

patients at diagnosis ranges between 45-66 years [45, 93]. Treatment has been more

successful in the last few years with the introduction of Gleevec, the drug specifically

tailored to attack the mutated cells causing this disease, but the overall survival rate

is still poor and approximately 50% of CML patients will die within five years of

diagnosis [93].

One of the obstacles of treating CML is that current chemotherapy regimens

successfully target differentiated cells but are unsuccessful in killing cancer stem

cells [22]. By not eradicating cancer stem cells, the source of cancer is able to survive

and continues to proliferate and expand, thereby regenerating disease even after times

of remission. In CML, It is unclear if these cancer stem cells are mutated stem cells

that become deregulated or if progenitor cells have acquired mutations that allow

them to self-renew, though mounting evidence suggests the latter [22, 60]. Either

way, the resulting malignant cells have similar qualities of survival and self-renewal
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as stem cells and are thus termed cancer stem cells.

As demonstrated in Chapter VII, mathematical modeling can be a useful tool

in investigating mutation acquisition contributing to the emergence of cancer stem

cells. Additionally, it is possible to deduce how deregulated cells alter the dynamics

of the whole tissue. In this section, the maturity-structured model presented in Sec-

tion 8.1.1 is extended to include mutation acquisition that instigates CML. First, the

types of mutations found in CML cells are classified and the pathology of tri-phasic

disease progression are reviewed. Next, the mathematical framework is presented.

Finally, the results of numerical simulations are discussed.

8.2.1 Biology of Mutated Cells and Pathology of CML

The Philadelphia (Ph) chromosome, formed from the translocation t(9; 22)(q34;

q11), is detected in 95% of CML patients, which has subsequently made it the trade-

mark mutation associated with the disease [47, 59, 103, 120]. It is unknown how

the Ph chromosome is initially formed, but it is believed that its formation leads

to the chronic phase of CML [47]. The Ph chromosome produces the oncoprotein

BCR-ABL, which is one of few mutations that incurs several effects on a cell. BCR-

ABL has been linked to deregulated proliferation, decreased apoptosis, decreased

adherence, and increased genetic instability [27, 47].

The Ph chromosome has been found in cells of the granulocytic, erythroid, lym-

phoid, monocytic, and megakaryocytic lineages, suggesting that the initial mutation

occurs at the stem cell level but manifests itself in progeny downstream, particu-

larly in cells of the granulocytic lineage [59, 103]. Although the Ph chromosome

is used to diagnose CML, it has also been detected at low levels in the blood of

healthy people, suggesting that additional mutations are needed to actually cause

disease [17, 22, 47, 59]. Furthermore, it is believed that Ph-positive progenitors ac-
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quire mutations that promote self-renewal, such as β-catenin, which leads to a more

aggressive form of leukemia and initiates the transition from the chronic to blast

phase [48, 60].

Patients with CML are classified into three phases that are determined by the per-

centage of blasts in the bone marrow or blood. Under normal conditions, myeloblasts

compose approximately 2.5-3% of the bone marrow, and are generally absent from

peripheral circulation [52, 100, 109]. According to the World Health Organization

classification, the chronic phase is when blasts compose less than 10% of cells in

the bone marrow or periipheral blood, the accelerated phase is when blasts compose

10-19%, and the most aggressive phase, the blast phase, is determined when blasts

compose 20% or more [120]. In the chronic phase, mutated cells still differentiate,

preventing the accumulation of mutated progenitors. As the disease progresses, it is

believed that additional mutations enable progenitors to self-renew and prevent dif-

ferentiation [48, 60]. The progression through chronic, accelerated, and blast phases

is caused by deregulated proliferation, increased survival, and inhibited differentia-

tion of leukemic blasts that expand and displace normal hematopoiesis, eventually

resulting in fatality.

8.2.2 A Mathematical Model of Blast Accumulation in CML Progression

Because the progression of CML is characterized by the accumulation of undif-

ferentiated blast cells, a maturity-structured model of hematopoietic cells is needed

to fully capture the dynamics of this form of cancer. In order to simulate the acqui-

sition of mutations in hematopoietic cells that lead to CML, the MSMIRFM model

presented in Equations 8.1 is now extended such that stem, progenitor, and differen-

tiated cells may have zero, one, two, or three mutations. In contrast to the mutation

acquisition models presented in Chapters IV and VII, this model is specifically tai-
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lored to the mutations observed in CML. In particular, BCR-ABL and a mutation

promoting self-renewal in progenitors are considered.

There is little evidence that other mutations occur prior to the formation of the Ph

chromosome, therefore, it is assumed that this is the first mutation [47]. In particular,

BCR-ABL has been associated with deregulated proliferation, increased survival,

and increased genetic instability. Since the Ph chromosome alone is insufficient to

cause disease, it is assumed that these advantages are not fully manifested until the

second mutation is acquired [17, 22, 47, 112]. However, because BCR-ABL increases

survival, it is assumed that acquiring this mutation is not a lethal mutation, and

therefore, the death rate of cells with only one mutation does not increase. When

the second mutation is acquired, cells are phenotypically altered by a change in

proliferation, decrease in apoptosis, and increase in genetic instability. Thus, cells

with either one or two mutations are BCR-ABL-positive, but it is the cells with two

mutations that initiate the chronic phase of CML. Lastly, it is believed that blast

crisis develops as progenitor cells acquire the ability to self-renew [48, 60]. Self-

renewal in essence freezes the maturation of cells. Consequently, this model assumes

that cells with three mutations do not continue maturation, and thus are removed

from the maturity-structured partial differential equation and instead modeled with

an ordinary differential equation, similar to the stem cell populations. A schematic

diagram of the model is shown in Figure 8.4. The model equations are as follows:
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BCR-ABL Self-Renewal Additional 

Mutation 

Figure 8.4: Schematic diagram of the mathematical model for CML. Progenitor and stem
cells first acquire the mutation for BCR-ABL, though it is insufficient alone to change
cellular characteristics. After a second mutation is acquired, cells have proliferative
advantage, increased survival, and increased genetic instability. Differentiation remains
in tact in clones with one or two mutations. The third mutation may only be acquired
in stem cells and early progenitors. It causes unregulated self-renewal and blocks dif-
ferentiation, thereby creating a population of blast cells.

Stem Cells:

dS0

dt
= ((1− 2m0)αS0 −m0αA0 − αD0 − δS0) k0S0(8.5)

dS1

dt
= ((1− 2m1)αS1 −m0αA1 − αD1 − δS1) k1S1

+ (2αS0 + αA0) m0S0

dS2

dt
= ((1− 2m2)αS2 −m0αA2 − αD2 − δS2) k2S2

+ (2αS1 + αA1) m1S1

dS3

dt
= (αS3 − αD3 − δS3) k3S3 + (2αS2 + αA2) m2S2

where

αSi = (1− δSi)

(
θ2

Si

θ2
Si + (S0 + S1 + S2)2

) (
1− ST

KSi

)
(8.6)

αDi = (1− δSi)

(
θNi

θNi + (N0 + N1 + N2)

) (
ST

KSi

)
(8.7)

αAi = 1− αSi − αDi − δSi(8.8)



185

for i = 0, 1, 2, 3 and ST = S0 + S1 + S2 + S3.

Bone Marrow Cells:

∂w0

∂a
+

∂w0

∂t
= ((1− 2M0)β0(a)− γ0(a)) w0(8.9)

∂w1

∂a
+

∂w1

∂t
= ((1− 2M1)β1(a)− γ1(a)) w1

+ 2M0β0(a)w0

∂w2

∂a
+

∂w2

∂t
= ((1− 2M2)β2(a)− γ2(a)) w2

+ 2M1β1(a)w1

dW3

dt
= (2αD3 + αA3) k3S3 + (2αD2 + αA2) m2k2S2

+ 2M2β2(a)w2 + (β3 − γ3) W3

where

Wi(t) =

∫ ∞

0

wi(a, t)da(8.10)

βi(a) =
−bi

2
tanh(ρβi(a− ωβi)) +

bi

2
(8.11)

γi(a) =
gi

2
tanh(ργi(a− ωγi)) +

gi

2
(8.12)

for i = 0, 1, 2, and β3 and γ3 are constants.

Blood Cells:

∂n0

∂a
+

∂n0

∂t
= γ0(a)w0 − µ0(a)n0(8.13)

∂n1

∂a
+

∂n1

∂t
= γ1(a)w1 − µ1(a)n1

∂n2

∂a
+

∂n2

∂t
= γ2(a)w2 − µ2(a)n2

dN3

dt
= γ3W3 − µ3N3
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where

Ni(t) =

∫ ∞

0

ni(a, t)da(8.14)

µi(a) =
di

2
tanh(ρµi(a− ωµi)) +

di

2
(8.15)

for i = 0, 1, 2 and µ3 is constant.

Initial Conditions:

S0(0) = S0(8.16)

S1,2,3(0) = 0

w0(0) = f(a)

w1,2(0) = 0

W3(0) = 0

n0(0) = g(a)

n1,2(0) = 0

N3(0) = 0

Boundary Conditions

∂w0

∂t
(0, t) = (2(1− 2m0)αD0 + (1−m0)αA0) k0S0(8.17)

∂w1

∂t
(0, t) = (2(1− 2m1)αD1 + (1−m1)αA1) k1S1

+ (2αD0 + αA0) m0k0S0

∂w2

∂t
(0, t) = (2(1− 2m2)αD2 + (1−m2)αA2) k2S2

+ (2αD1 + αA1) m1k1S1

∂n0,1,2

∂t
(0, t) = 0

For ease of discussion, this model is now referred to as the Mathematical Model of

Blast Accumulation (MMBA).
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8.2.3 Numerical Simulations for the Onset and Progression of CML

Although it is known that the BCR-ABL fusion gene is the major contributor

in the onset of CML, there are many unanswered questions regarding disease pro-

gression. For instance, it is unknown if both stem cells and progenitor cells acquire

mutations that upregulate self-renewal and cause the accumulation of blast cells [22].

There is also discrepancy in the literature about how BCR-ABL affects cellular ki-

netics. Some data suggests that BCR-ABL increases the proliferation rate in both

stem and progenitor cells [83, 125]. In direct contrast, other data implies that BCR-

ABL does not increase the rate of dividing cells, but rather increases the number

of divisions before reaching full maturity [19, 27, 48, 122]. It is also possible that

stem cells can acquire this mutation, but that it does not become advantageous until

inherited in progenitors [22, 103]. In this section, model predictions are presented in

order to address these issues.

To execute numerical simulations, model equations were discretized with the up-

wind method and solved in MATLAB. Two primary sets of parameters were used.

The first, recorded in the Mutated Value (1) column in Table 8.2, assumes a doubled

proliferation rate, halved apoptosis rate, and increased genetic instability in stem and

differentiating cells with two mutations. The second, recorded in Table 8.2 under the

column Mutated Value (2), also assumes an increase in genetic instability, but the

kinetics for apoptosis and proliferation are quite different from the first case. In the

second case, the anti-apoptotic quality in cells with two mutations is manifested as a

decreased probability of apoptosis in stem cells and an increased length of survival in

differentiating cells, which enables additional progenitor divisions but does not alter

the rate of proliferation.

Cells with all three mutations are blast cells and do not mature. It is assumed
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Term Baseline Value Mutated Value (1) Mutated Value (2)
k (weeks−1) 0.247 0.494 0.247
θS (cells) 19,600 19,600 19,600
KS (cells) 30,000 30,000 30,000
θN (cells) 1× 1010 1× 1010 1× 1010

δS 0.05 0.025 0.025
b (weeks−1) 9.7 19.4 9.7
ρβ 2 2 2
ωβ (weeks) 1.7 0.85 2.4
g (weeks−1) 4.2 4.2 4.2
ργ 10 10 10
ωγ (weeks) 3.7 2.85 4.4
d (weeks−1) 16.8 8.4 16.8
ρµ 10 10 10
ωµ (weeks) 3.75 2.90 4.45
β3 (weeks−1) 4.215 4.215
γ3 (weeks−1) 4.2 4.2
µ3 (weeks−1) 8.4 8.4
m0,1 10−8 10−8

M0,1 10−8 10−8

m2 10−6 10−6

M2 10−6 10−6

Table 8.2: Parameter values for Mathematical Model of Blast Accumulation simulations.

that these cells are leukemic stem cells because they have acquired the ability to

self-renew. The rates of proliferation, mobilization, and cell death are constant in

blast cells because their cell machinery does not respond to regulatory mechanisms.

Because leukemic stem cells do not mature, the model permits blast cells to exit

the bone marrow at a constant rate. The proliferation rate determines how quickly

the blast population expands. In order to estimate the net growth rate of blasts,

the estimated time of disease progression is considered. Specifically, three to seven

years are required for the transition from chronic phase to blast phase, during which

the number of blasts dramatically increases. It is not unreasonable to suggest blasts

increase by a factor of 20 during this time, which translates into a weekly net growth

rate of 0.008 to 0.02 per week. Consequently, the proliferation of blasts is assumed

to satisfy the condition 0.008 < β3 − γ3 < 0.02. Finally, blasts die at a rate that is

half the apoptotic rate of non-mutated differentiated cells. All model parameters are
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summarized in Table 8.2.

The symptoms of patients with CML is rather vague, and diagnosis sometimes

is made from the results of routine blood tests [45]. In order to identify the time

at which a person might present with CML, the earliest diagnosis time is when

the number of neutrophils in the blood surpasses the maximum normal count of

6× 1010 cells. In all likelihood, this diagnosis estimation is an underestimate, as the

patient can be diagnosed in the chronic phase as long as the bone marrow or blood

compartments have less than 10% blasts. Accelerated phase begins when either the

bone marrow or blood contains 10% blasts, and blast phase is similarly determined

for the composition of 20% blasts. These times are recorded for each of the conducted

simulations in order to directly compare and contrast model predictions.

Tissue Dynamics Resulting from Increased Proliferation Rate

According to the observations in a recent experiment that recorded the division

of immature hematopoietic precursors, BCR-ABL does not influence the division

pattern, but increases the rate at which cells divide [125]. Therefore, the first case

of mutation acquisition contributing to CML is based on the following assumptions:

(1) the first mutation generates BCR-ABL but does not increase cell fitness, (2) the

second mutation doubles the proliferation rates in both stem and progenitor pop-

ulations, decreases the rate of apoptosis by half in all cells, and increases genetic

instability, and (3) the third mutation promotes self-renewal and blocks differentia-

tion. Because the proliferation rate is doubled in progenitors, it doubles the number

of divisions that are completed in a certain time; therefore, the maturity at which

the β(a) function switches off is decreased by half in order to preserve the number

of divisions that occur in the progenitor population. In addition, it should be noted

that this simulation portrays a worst case scenario in the fact that all differentiating



190

cells may acquire the third mutation that upregulates self-renewal. It is likely that

only early progenitors could acquire self-renewal properties, and this case will be

discussed later. The parameters used in for this simulation are listed in the Mutated

Value (1) column of Table 8.2.

Under these assumptions, the model predicts disease onset and time needed for

progression from chronic to blast phase within the recorded median ranges. Blood

cellularity is doubled in 40.5 years, but at this time bone marrow cells have not yet

doubled. At 51.4 years, the bone marrow and blood each contain approximately 5%

leukemic blasts. The number of cells in the bone marrow is approximately 7.5 times

the maximum number of cells in healthy marrow, while cells in the blood are increased

by 15-fold, which correlates with reported estimates of 5-10-fold increase in total cell

mass during the chronic phase of CML [27]. The accelerated phase begins at 52.1

years and is shortly followed by the blast phase at 52.9 years. Assuming the diagnosis

of chronic phase would occur some time between 40.5-51.4 years, this progression time

is in agreement with the estimated 3-7 years required for the transition from chronic

to blast phase. Figure 8.5 plots healthy and mutated cell populations over time as

well as the composition of cells in the bone marrow and the blood.

It is generally believed that chronic phase CML is initiated by mutations at the

stem-cell level, but it is unknown if the mutation increasing self-renewal in progen-

itors, which is the third mutation in model simulations, must also be acquired in

stem cells [22]. In order to address this issue, consider the case in which stem cells

do not acquire the third mutation so that m2 = 0. Surprisingly, the model pre-

dicts that times for disease onset and progression do not greatly alter from those

in which stem cells do accumulate all three mutations, though there is a difference

in tissue dynamics. If stem cells acquire all three mutations, then the final muta-
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Figure 8.5: Tissue dynamics resulting from increased stem-cell and progenitor prolifer-
ating rates. (A) Stem cells with 0, 1, 2, and 3 mutations versus time. (B) Differenti-
ating cells with 0, 1, 2, and 3 mutations versus time. (C)-(D) The evolving composition
of cells in the marrow and blood, respectively.
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Figure 8.6: Healthy granulopoiesis is displaced less quickly when stem cells do not mu-
tate to form cancer stem cells. (A) Non-mutated stem cells are displaced less
quickly when stem cells do not acquire the third mutation (solid line SC2) than when
stem cells can mutate into cancer stem cells (dotted line SC1). (B) The corresponding
non-mutated populations of differentiating cells in the bone marrow and blood depend-
ing on whether or not stem cells acquire the third mutation.

tion enables ungoverned self-renewal, which promotes expansion of cancer stem cells.

These leukemic stem cells take over the niche, forcing non-mutated stem cells into

differentiation. Consequently, the tissue is rapidly depleted of non-mutated stem and

differentiating cells. In contrast, when stem cells do not acquire the third mutation,

stem cells with two mutations dominate non-mutated stem cells, but the total num-

ber of stem cells does not exceed niche control. Therefore the decline of non-mutated

stem cells and thus healthy granulopoiesis is slower when stem cells do not acquire

the third mutation, as demonstrated in Figure 8.6.
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Model simulations predicting slower displacement of non-mutated cells agree more

with scientific observations. It has been noted that Ph-positive stem cells displace

normal hematopoiesis but do not completely destroy normal stem cells [47]. In addi-

tion, it is thought that the total number of hematopoietic stem cells does not signifi-

cantly increase as disease progresses [22, 60]. Both observations are more accurately

captured by the model when stem cells do not acquire the third mutation. Therefore,

model predictions concur with recent findings that suggest the mutation deregulating

self-renewal in progenitors is acquired in progenitors and not stem cells [22, 60].

It is unlikely that fully mature cells can reacquire the properties necessary for

limitless self-renewal capability because they lose much of their proliferative potential

as they divide. As a result, it is reasonable to assume that differentiating cells may

only acquire the third mutation in earlier progenitor phases. Suppose that stem

cells do not acquire the third mutation, and progenitors may only acquire the third

mutation if their maturity level is less than 0.5 weeks, which corresponds to having

completed approximately nine divisions. As predicted, this slows the expansion of the

leukemic blast population, which subsequently delays disease progression. It does not

affect the amount of hypercellularity due to expansion of cells with two mutations, as

the blood surpasses the maximum healthy level in 40.5 years. However, accelerated

phase begins at 67.7 years, and blast phase at 68.8 years, approximately 16 years

later than when all differentiating cells acquire self-renewal capability. Depending on

when the disease is first diagnosed, the length of progression under these assumptions

may be longer than reported values.

One final scenario is yet considered under the assumption that BCR-ABL in-

creases the rate of proliferation. There are contrasting views as to whether BCR-

ABL acts the same way in both stem and progenitor cells. Suppose that BCR-ABL
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does not alter stem-cell proliferation, but only increases the rate at which progeni-

tors divide. Specifically, stem cells with two mutations die with smaller probability

and have increased genetic instability but have a normal rate of proliferation. In

contrast, differentiating cells with two mutations proliferate twice as fast as their

normal counterparts. Furthermore, assume that the third mutation is only acquired

in committed progenitors of maturity less than 0.5 weeks. While the model pre-

dicts that malignancy results from this pathway of mutation acquisition, the tissue

dynamics do not reflect those of CML. In particular, there is no hypercellularity

of the Ph-positive clone, which is shown in Figure 8.7. Under these assumptions,

mutated stem cells gain very little advantage over their non-mutated counterparts.

As a result, very few mutated stem cells exist in the tissue and an increased rate of

progenitor division alone does not increase the number of differentiating cells. Cells

with two mutations, namely, the cells that should initiate the chronic phase of CML,

do not even comprise 1% of all cells and are surpassed by blast cells before they

are probably detected. Based on model simulations of this scenario, results suggest

that if BCR-ABL imparts proliferative advantage by way of increasing the prolifer-

ation rate, then the proliferation rate of stem cells must also be increased to reflect

observations of CML.

Each of the model simulations presented thus far has used the assumption that

BCR-ABL increases the rate of proliferation. According to model predictions, this

type of proliferative advantage does give rise to mutated populations of stem and

differentiating cells that are similar to those observed in CML, but under certain

conditions. In particular, it is hypothesized that if BCR-ABL increases the rate of

proliferation, then it must do so in both stem and progenitor populations in order

to generate dynamics that correlate with CML. Although malignancy can occur



195

0 20 40 60 80
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Time (years)

S
te

m
 C

e
ll
s

 

 

A

0

1

2

3

0 20 40 60 80
10

0

10
5

10
10

10
15

Time (years)

D
if

fe
re

n
ti

a
ti

n
g

 C
e
ll
s

B

Figure 8.7: Increased proliferation in progenitors, but not stem cells, does not generate
tissue dynamics representative of CML. (A) Stem cell populations with 0, 1, and
2 mutations are plotted versus time. Without proliferative advantage, mutated stem
cells do not expand significantly. (B) An increased rate of proliferation followed by
acquisition of self-renewal capability does cause malignancy, but the tissue dynamics
do not reflect those of CML. Hypercellularity is not experienced until the tissue is
dominated by blast cells.
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from self-renewing progenitors, the disease does not resemble CML, and may be

indicative of another disorder. Furthermore, the model suggests that if leukemic

stem cells grow exponentially due to the loss of regulation, normal hematopoiesis is

displaced quicker than if governing mechanisms remain in tact to control the size of

the stem-cell population.

Simulations in which early committed progenitors are the only cells able to acquire

the mutation that upregulates self-renewal exhibit particularly close coherence with

the median times reported for CML diagnosis. The onset of the accelerated phase

occurs more quickly if all differentiating cells have equal opportunity to acquire the

ability to self-renew. Consequently, one of the factors that may influence the tempo

of disease progression may lie in the capacity of downstream progenitors to acquire

self-renewal capability.

This section has explored various scenarios of mutation acquisition, under the

assumption that BCR-ABL increases the rate of proliferation, to determine if any

of these cases generate disease that exemplifies CML. There is some disagreement

on how BCR-ABL gives mutated cells a proliferative advantage, however. Next, the

model will be used to investigate the other view, which suggests that BCR-ABL does

not increase proliferation rate, but rather increases survival, thereby increasing the

number of progenitor divisions.

Tissue Dynamics Resulting from Extra Progenitor Divisions

Some researchers believe that the proliferative advantage gained with BCR-ABL

is not due to an increased rate of division, but rather through increased survival that

permits extra divisions to occur in progenitor stages [19, 27, 48, 122]. In order to

consider this possibility, the second scenario of the initiation and progression of CML

is based on the following assumptions: (1) cells with the first mutation are BCR-
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ABL-positive but do not exhibit increased fitness over non-mutated cells, (2) cells

with two mutations have increased survival that decreases apoptosis in stem cells and

permits extra rounds of division in progenitors, and (3) cells with three mutations can

self-renew and do not mature. Specifically, progenitors survive for an additional 0.7

weeks, which enables them to complete six to seven extra divisions before reaching full

maturity. Although the second mutation is acquired in stem cells, the proliferative

advantage is not realized in stem cells but downstream progeny. Furthermore, it is

assumed that stem cells acquire the third mutation and differentiated cells can only

accumulate the self-renewal mutation if their maturity is less than a = 0.5 weeks.

The parameters used for this simulation are listed in the Mutated Value (2) column

of Table 8.2.

Based on these assumptions and parameter values, the model predicts that blood

cellularity is doubled in 63.7 years and tissue is composed of 5% leukemic blasts in

70.1 years. It is hypothesized that diagnosis would occur some time in this time

frame. The accelerated phase begins at 71.7 years, followed by the blast phase at

73.5 years. Therefore, it takes an estimated 3.4 to 10 years from the time of diagnosis

for disease to develop into the blast phase. The first mutated differentiating stem

cells are formed within weeks, but it is the emergence of the two-mutation stem cell

that truly marks disease onset. Mutated differentiating cells continue to mature and

eventually die, but this clone is sustained once mutated stem cells form. The first

stem cell with two mutations is formed in 58.1 years. Six years later, cells with

two mutations dominate the system, which correlates with scientific observations

that estimate Ph-positive cells displace normal hematopoiesis in approximately eight

years [47].

Even though stem cells may acquire the third mutation in this simulation, cancer
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stem cells do not emerge from the stem cell population, which is quite different from

results of the previous section. Stem cells with two mutations have an increased

rate of genetic instability and increased survival expressed through a diminished

probability of apoptosis, but proliferative behavior of stem cells is unaltered. As a

result, stem cells with two mutations have a slight increase of fitness in comparison

to normal stem cells, but the mutated clone does not overtake normal hematopoietic

stem cells. In fact, when 5% of blasts are detected in the blood, only 75 mutated

stem cells exist and all express two mutations. The number of mutated stem cells

increases to 246 by the time blast phase is diagnosed, but all of these only express two

mutations. It has been suggested that non-mutated cells are more frequent in less

mature cell populations than fully differentiated cells [48]. The model predicts that

less than one percent of stem cells are Ph-positive throughout disease progression,

even though mutated progeny overtake normal granulopoiesis.

The model predicts hypercellularity results from extra rounds of division in mu-

tated progenitors. Furthermore, each subsequent division compounds on the previous

so that the effects are more apparent downstream in the lineage, particularly in the

early stages of disease. Figure 8.8 records the percentage of cells that are proliferat-

ing and those that have completed divisions at four distinct times during progression:

the times at which (A) blood exceeds normal cell counts, (B) 5% of cells are blasts,

(C) the accelerated phase begins, and (D) the blast phase begins. As cells acquire

self-renewal capabilities and the blast population expands, hypercellularity of imma-

ture cells is more noticeable. This prediction is consistent with the observation that

the suppression of normal hematopoiesis by CML cells is more prominent in cells of

greater maturity [48]. Furthermore, the blast population accounts for an increasing

percentage of all proliferating cells as disease progresses. Therefore, by assuming
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blasts. (C) The start of the accelerated phase. (D) The start of the blast phase.

proliferative advantage enables additional progenitor divisions, model simulations

closely correlate with recorded diagnosis times and reflect evolving tissue dynamics

commonly observed in CML.

BCR-ABL Alone is Inadequate for Malignancy

Lastly, model simulations are used to confirm that the BCR-ABL mutation is

insufficient to generate malignancy. Suppose that stem and differentiating cells ac-

quire two mutations: the BCR-ABL mutation and another mutation that enables

increased fitness due to BCR-ABL. In this case, progenitors do not acquire stem-

cell like properties, in particular, the ability to self-renew and inhibit differentiation.

Two cases are considered. In the first case, stem and differentiating cells with two
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mutations have an increased rate of proliferation and a decreased rate of apoptosis.

In the second, it is assumed that BCR-ABL increases survival of all cells, which

enables additional divisions in progenitors and decreases the probability of apoptosis

in stem cells.

The model predicts that hypercellularity ensues from BCR-ABL, but is insufficient

to promote malignancy. In this simulation, no cells exhibit deregulated self-renewal.

Under the assumption that BCR-ABL does not inhibit the mechanisms governing

stem-cell self-renewal, the total number of stem cells is maintained by the niche, as

shown in Figure 8.9A and C. In Figure 8.9B and D, it is evident that added divisions

increase the total number of differentiating cells, but because these cells do not ac-

quire the ability to self-renew, they reach full maturity and eventually die. Therefore,

there is no long-term expansion of mutated cells, so the model predictions concur

with the widely accepted belief that deregulated self-renewal is the key mutation

that drives malignancy and advances disease progression in CML. It should be noted

that fatality could result depending on the magnitude of cell increase, but due to the

success of treating BCR-ABL-expressing cells with the drug imatinib, it is theorized

that this type of hypercellularity could be treated, even if never fully eradicated.

It is hypothesized that expansion of BCR-ABL-expressing cells is due to selective

advantage of Ph-positive stem cells. The Ph chromosome has been detected in various

lineages of hematopoietic stem cells, suggesting that this mutation occurs at the stem-

cell level [59, 103]. In order to determine if hypercellularity results when mutations

only occur in differentiating progeny, suppose the stem-cell mutation rate is zero.

The model predicts that BCR-ABL-expressing cells do form as a result of progenitor

mutations, but in the absence of a self-renewing mutated source, these mutated cells

reach full maturity and die so that mutated cells comprise no more than 0.001% of



201

the overall tissue, as demonstrated by the dashed line comparisons in Figure 8.9.

Therefore, unless BCR-ABL is able to impart some capacity of self-renewal, disease

does not form if this mutation does not occur at the stem-cell level.

Another potential way in which BCR-ABL could lead to life-threatening disease

is if hypercellularity forces immature cells from the marrow into the blood before

they are terminally differentiated. This could result in an insufficient number of

differentiated cells that are needed to perform specific tasks or could problematically

increase blood density. Ph-positive cells do not bind to stromal cells as well as

Ph-negative cells, so it is not unreasonable to assume that the mobilization of cells

with two mutations increases as the bone marrow cavity is filled. There are various

ways in which this could be addressed mathematically in the model. To illustrate

one possibility, suppose that the mobilization rate of cells with two mutations, γ2(a)

shifts up by G, where G depends on the fullness of the bone marrow at that time.

Since normal bone marrow cell counts range from 5× 1011 to 1.5× 1012 cells of the

granulocytic lineage, suppose that the marrow capacity is approximately 1013. As

an example, consider G = ξW (t)
1013 , where W (t) is the total number of cells in the bone

marrow at time t, and ξ is the factor that determines how much mobilization increases

in mutated cells. Suppose for simplicity that ξ = 1. At homeostasis, G = 0.08, which

increases the mobilization of BCR-ABL expressing cells by approximately 2% more

than the rate of non-mutated cells. Obviously, mobility could be increased more with

a greater value for ξ, but this is sufficient for this illustration.

As time progresses and the marrow fills, G increases, which increases the rate

at which cells mobilize into the blood. Whereas non-mutated cells have a negligible

mobilization rate until they reach full maturity, cells with two mutations can mobilize

into the blood at all maturity levels due to the shift in the mobilization curve.
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Figure 8.9: BCR-ABL alone causes hypercellularity but not malignancy. (A)-(B) The
stem- and differentiating-cell populations when BCR-ABL increases the rate of pro-
liferation. Solid lines show the in which stem cells acquire mutations, while dashed
lines show what happens when stem cells do not mutate. (C)-(D) Tissue dynamics
when BCR-ABL increases the survival of progenitors, thereby increasing the number of
permitted divisions.
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Consequently, immature mutated cells are released into the blood before they are

fully differentiated. Over time, as mutated cells expand and overcrowd the bone

marrow, more and more immature cells accumulate in the blood, which is depicted

in Figure 8.10. The healthy maturity-distribution of cells in homeostasis is shown

in Figure 8.10A. The blood consists of fully mature cells and the majority of bone

marrow cells are in the final stages of differentiation. Figure 8.10B plots the maturity

distribution in 35 years, which is not significantly altererd. However, by 70 years,

hypercellularity is accompanied by the appearance of immature cells in the blood,

as demonstrated in the maturity distribution of Figure 8.10C. As time progresses to

100 years, more immature cells are released into the blood, distorting the healthy

distribution even further, which is finally shown in Figure 8.10D.

This illustration suggests that premature mobilization alters the maturity-distribution

of differentiating cells in both the bone marrow and the blood. However, in this sim-

ulation, less than 1% of blood cells were in the myeloblast phase. Because BCR-ABL

does not inhibit differentiation, fully mature cells are abundant in the system as well,

and this tissue remains in what would be classified as the chronic phase of CML. This

implies that although deregulated mobilization may occur during the progression of

CML due to overcrowding in the bone marrow, another mutation is needed that

promotes self-renewal in progenitors if the percentage of blasts is to significantly

increase.

8.2.4 Discussion

The results of this section demonstrate that a maturity-structured model incor-

porating regulatory mechanisms provides a mathematical framework that accurately

captures the growth dynamics involved in CML. In particular, the maturity structure

facilitates the incorporation of maturity-dependent mutations, such as the acquisition
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Figure 8.10: The maturity distribution of cells in the bone marrow and blood changes
as a result of premature cell release due to bone marrow hypercellularity.
(A) The initial healthy distribution of cells. (B) At 60 years, there is little change in
the maturity distribution of cells in the bone marrow and blood. (C) At 70 years, cells
with two mutations surpass non-mutated cells in both the bone marrow and the blood
and immature cells appear in the blood as they are forced out of the bone marrow.
(D) At 80 years, more mutated cells are in the blood than the bone marrow due to
crowding. Furthermore, many cells have been released prematurely from the bone
marrow into the blood.
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of self-renewal capability in early progenitors, and is useful in simulating the accu-

mulation of immature blast cells that promote disease progression. Although CML

is better characterized than many other forms of cancer, there are still unanswered

questions, and model predictions were made to address these issues.

It is believed that BCR-ABL endows cells with a proliferative advantage, though

there is disagreement in how it is conveyed. Recent experimental data recorded that

BCR-ABL-expressing cells had an increased rate of division in comparison to normal

counterparts [125]. The other opinion is that progenitors with BCR-ABL do not

divide faster but can complete extra rounds of division [19, 27, 48, 122]. The model

predicts that both cases are feasible, though the former requires certain conditions.

If BCR-ABL acts to increase the proliferation rate, then it cannot merely act in

differentiating cells. That is, if the rate of division is increases in progenitors but not

stem cells, then the resulting dynamics do not reflect those of CML.

While both scenarios generate CML-like diseases, the contrasts in tissue dynamics

imply that the second more accurately portrays CML. In particular, doubling the

proliferation rate causes mutated stem cells to displace healthy stem cells, which

may not be consistent with scientific observations. For instance, when the disease

is in chronic phase, with blasts comprising only 1% of the bone marrow or blood,

Ph-positive stem cells outnumber Ph-negative cells three to one. This does not agree

with the belief that a small number of BCR-ABL expressing stem cells are responsible

for initiating the chronic phase [103, 48]. However, it cannot be discounted that

an increased rate of proliferation does cause hypercellularity in differentiating cells

expressing BCR-ABL, which is often the indicator of a myeloproliferative disorder,

such as CML.

Several parameters influence model predictions for the time it takes to develop
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CML and progress to blast phase. In the case where the rate of proliferation is

increased, the magnitude of change affects the time in which normal granulopoiesis

is displaced and determines the amount of hypercellularity, which is due to quickened

rounds of stem-cell division. In the case where increased survival enables additional

progenitor divisions, the degree of expansion in the mutated clone depends on how

many extra divisions are completed. In both cases, the net rate of growth in the

blast population controls the rate at which the disease progresses from chronic to

blast phase. If the blast population expands faster than Ph-positive differentiating

cells, then blasts are the cause of hypercellularity and the resulting disease is more

aggressive. In addition, the model predicts that the blast population grows more

quickly when cells of all maturity are capable of acquiring self-renewal capability.

Finally, model predictions agree with the the general consensus that BCR-ABL

alone is insufficient to cause malignancy. Assuming that BCR-ABL does not com-

pletely transform the mechanisms governing stem cell division or enable self-renewal

in progenitors, there is no cell population in which self-renewal is deregulated to al-

low unlimited expansion. Furthermore, model results suggest the mutation creating

BCR-ABL originates in stem cells, otherwise, there is no expansion of Ph-positive

cells.

8.3 Conclusions

The research of this dissertation is culminated in the mathematical models of

tissue homeostasis and mutation acquisition that are presented in this chapter. Ma-

turity structure captures the dynamics of tissue cells of all maturity-levels, namely,

stem cells, progenitors, and differentiated cells. Regulatory mechanisms governing

stem-cell division adapt to promote or inhibit self-renewal and differentiation, which
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mediates homeostasis in healthy tissue or can contribute to malignancy when erro-

neously transformed. Lastly, the sequential acquisition of somatic mutations allows

investigation of the pathways that contribute in tumorigenesis. To our knowledge,

this is the first mathematical model that incorporates all of these aspects in its

framework.

In this chapter, the developed mathematical model was specifically applied to

simulate Chronic Myelogenous Leukemia in order to demonstrate the model’s poten-

tial contributions to the scientific community. In particular, the general framework

of this model can be utilized to investigate mutation acquisition in any hierarchi-

cally structured tissue. By using appropriate parameters for the tissue in question,

it is possible to predict the emergence of cancer stem cells, quantify cellularity, and

determine tissue composition. Although many details regarding cancer stem cells

remain unknown, the model provides a useful tool for predicting tissue dynamics in

tumorigenesis. As stem cell research advances, new discoveries will only increase the

model’s effectiveness.



CHAPTER IX

Summary

Several factors make it difficult to study human cancers in vivo. For example, it is

particularly challenging to investigate the pathways that lead to cancer. Mutations

are often identified in cancer cells long after a patient has developed cancer. As a

result, the sequential acquisition of mutations initiating tumorigenesis is tough to

accurately determine. Furthermore, tumors are composed with cells of different phe-

notypes, even among patients diagnosed with the same type of cancer. Consequently,

it is impossible to generate a prototype that characterizes all tumors. In addition to

these difficulties, there are also experimental limitations to overcome. For instance,

human stem cells are not easily isolated for experimental study, particularly those

in solid tissues. Since various forms of cancer are believed to originate in mutated

stem cells, the inability to monitor stem cells over long periods is an obstacle that

prevents further understanding of how these cells behave.

Although many mathematical models of tumorigenesis have generated insightful

conclusions pertaining to cancer dynamics, none, to our knowledge, have investi-

gated mutation acquisition within the confines of a hierarchically structured tissue

governed by regulatory mechanisms. The modeling approach used in this dissertation

addresses this need and has several novel features. First, it accurately captures the

208
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unique dynamics of heterogeneous cellular populations, as opposed to other models

that simulate tumor growth in homogeneous tissues. Second, it follows the chrono-

logical order in which mutations accumulate and can predict which sequences initiate

cancer fastest under various assumptions. Third, it incorporates all three modes of

stem-cell division while also including governing mechanisms that mediate homeosta-

sis in healthy tissue and contribute to malignancy when altered.

The presented mathematical model provides a general framework that can be em-

ployed in future cancer investigations. The explicit consideration of tissue hierarchy

reveals useful insight into tumor composition and heterogeneity. As a result, the in-

corporation of maturity structure is an important feature that provides more detailed

and comprehensive information concerning cancer growth in hierarchical tissues. In

addition, the inclusion of regulatory mechanisms more accurately models tissue in

homeostasis. With governing mechanisms intact, mutation does not necessarily re-

sult in exponential growth, a nuance that could be missed in a model that does not

incorporate these regulating factors.

The battle against cancer continues, but there are various ways in which this

modeling approach can supplement experimental research. Two of the obstacles

in cancer research are determining the order in which mutations are acquired and

establishing which transformations are most tumorigenic. If certain mutations are

known to occur in cancer cells of a particular tissue, model simulations of potential

pathways can be compared and contrasted with scientific data in order to predict

which sequences generate the type of tumor that is clinically observed. Moreover,

the model may be used to test hypotheses concerning the cell of origin for specific

types of mutations.

Model simulations can also predict the in vivo dynamics of tumor growth based on
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experimental data. This could benefit clinical research in several ways. If it is known

that a current treatment regimen specifically targets cells of a particular phenotype

but not others, then analysis of the tumor composition may dictate whether that

specific treatment is appropriate. For instance, if the tissue is primarily composed

of mutated cells that are known to respond to chemotherapy, then treatment may

successfully decrease the tumor and prolong survival. On the on the other hand,

if the tissue is dominated by mutated cells that will not be targeted, then the ad-

ministration of chemotherapy will be futile, and may even cause greater damage by

causing unnecessary toxicity to any healthy cells that may be in the tissue.

There are various directions for future research. The most immediate is to incor-

porate treatment and investigate the effects on tumor burden and composition. In

particular, imatinib is the first-line of treatment for CML patients in chronic phase.

This drug specifically kills cells expressing BCR-ABL, which makes it successful in

decreasing hypercellarity. Once patients discontinue therapy, however, disease re-

emerges, thereby suggesting that stem cells expressing BCR-ABL are not effectively

targeted [83]. A maturity-structured mathematical model can predict response to

this treatment and determine the maturity-distribution persistent cells. In addi-

tion, the development of drug resistance can be simulated, which may be of clinical

assistance.

Since many current methods of chemotherapy are dependent on the cycling status

of cells, it may be appropriate to segregate cycling and quiescent stem cells when

modeling treatment. Stem-cell quiescence is problematic because it prevents mu-

tated cells from being targeted. It would be interesting to examine the composition

of cancer stem cell population to determine the proportions that are quiescent ver-

sus cycling. If the majority are quiescent, this may suggest that cell-cycle specific
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drugs will not effectively eliminate cancer stem cells, and other forms of treatment

should be considered. Furthermore, the effects of therapies that promote stem-cell

differentiation could be investigated to determine if this method of treatment can

successfully eradicate cancer stem cells without sacrificing healthy tissue.

In studying mutation acquisition in this dissertation, various sequential mutation

pathways were considered, but not simultaneously in the same tissue. In reality,

tissue cells may accumulate various mutations concurrently. For instance, three

mutations were previously discussed, namely D, G, and R, that affected apoptosis,

genetic instability, and proliferation, respectively. Suppose tissue cells could acquire

any of the mutations at any time. One cell may first acquire G, while another first

acquires D. The cell with G could then acquire either D or R, whereas the cell with

D could acquire G or R, and so forth. All of these clones would co-exist and compete

with each other, which may impact tumor composition and disease progression.

The general framework of the maturity-structured mathematical model could eas-

ily be applied to any type of cancer that evolves in hierarchical tissue. Further com-

plexity could be added by incorporating space variables when modeling solid tumors.

The location of cells within the tissue may also influence cellular behavior, particu-

larly for stem cells in the niche. For example, in the colon, stem cells reside in the

base of the crypt, whereas progenitors and differentiated cells rise to the top as they

differentiate. The inclusion of a space variable would allow one to determine where

mutated cells are within the colon crypt. Additionally, the incorporation of space to

simulate tumor masses, such as lumps found in the breast, may enable predictions

for tumor aggressiveness, based on the location of cancer stem cells within the mass.

The modeling results presented in this dissertation highlight potential areas of fur-

ther research for experimentalists. For instance, even for the well studied hematopoi-
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etic system, there is a wide range of suggested values that can be used for model

parameters. Better quantification of stem-cell kinetics will improve the accuracy of

model predictions concerning the time required for cancer stem cell emergence and

disease progression. Due to the significance of unbalanced symmetric self-renewal

and genetic instability in promoting tumorigenesis, it would also be useful to classify

any one-hit mutations that advantageously transform cells.

The unique features of the presented mathematical models, particularly the inclu-

sion of regulatory mechanisms and maturity structure, have enabled investigation of

various aspects of tumorigenesis, which in turn has generated additional questions.

For example, in simulating the dynamics of Chronic Myelogenous Leukemia, model

results suggest that under certain assumptions, BCR-ABL may impart advantage

differently in stem and differentiating cells. In order to effectively treat this disease,

it will be important to determine if BCR-ABL affects stem, progenitor, and differen-

tiated cells in the same manner. In addition, model results predict that the extent to

which progenitors and downstream progeny acquire self-renewal capability influences

the tempo of disease progression. Consequently, it would be of great interest to de-

termine the extent to which progenitors can limitlessly self-renew. For example, how

many mutations, if any, must first be acquired in progenitors before they have the

ability to stop maturation? Is there a threshold maturity after which differentiated

cells are incapable of reacquiring stem cell properties?

Unfortunately, at this time there is relatively little quantified data of cancer stem

cells for several reasons. In general, stem cells are difficult to identify, isolate and

maintain in vitro. Furthermore, it is hard to monitor them in vivo because they are

rare within the tissue and reside in stem-cell niches that offer protection. There has

been some success in studying malignant cells of the hematopoietic system due to
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the relative ease of accessing blood and bone marrow. Solid cancer stem cells, on

the other hand, are particularly challenging to study in vivo, and difficult to monitor

in vitro due to the difficulty of experimentally reconstructing the niche. As more

discoveries are made and cancer stem cells are better understood, the mathematical

models developed in this dissertation can be used to investigate tumors arising in

any hierarchical tissue.
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[86] R Möhle and L Kanz. Hematopoietic growth factors for hematopoietic stem cell mobilization
and expansion. Seminars in Hematology, 44:193–202, 2007.

[87] KA Moore. Recent advances in defining the hematopoietic stem cell niche. Current Opinion
in Hematology, 11:107–111, 2004.

[88] MAS Moore, KY Chung, M Plasilova, JJ Schuringa, JH Shieh, P Zhou, and G Morrone.
Nup98 dysregulation in myeloid leukemogenesis. Annals of the New York Academy of Sci-
ences, 1106:114–142, 2007.

[89] SJ Morrison and J Kimble. Asymmetric and symmetric stem-cell divisions in development
and cancer. Nature, 441:1068–1074, 2006.



220

[90] SJ Morrison, NM Shah, and DJ Anderson. Regulatory mechanisms in stem cell biology. Cell,
88:287–298, 1997.

[91] SJ Morrison, M Uchida, and IL Weissman. The biology of hematopoietic stem cells. Annual
Review of Cell and Developmental Biology, 11:35–71, 1995.

[92] JD Murray. Mathematical Biology. Springer, second edition, 1989.

[93] National Cancer Institute. Surveillance epidemiology and end results, June 2008.
http://seer.cancer.gov/statfacts/.

[94] MJ Nemeth and DM Bodine. Regulation of hematopoiesis and the hematopoietic stem cell
niche by wnt signaling pathways. Cell Research, 17:746–758, 2007.

[95] G Nikolova, B Strilic, and E Lammert. The vascular niche and its basement membrane.
Trends in Cell Biology, 17:19–25, 2006.

[96] MA Nowak, F Michor, and Y Iwasa. The linear process of somatic evolution. Proceedings of
the National Academy of Science, 100:14966–14969, 2003.

[97] B Ohlstein, T Kai, E Decotto, and A Spradling. The stem cell niche: theme and variations.
Current Opinion in Cell Biology, 16:693–699, 2004.

[98] A O’Neill and DV Schaffer. The biology and engineering of stem-cell control. Biotechnology
and Applied Biochemistry, 40:5–16, 2004.

[99] C Orelio and E Dzierzak. Bcl-2 expression and apoptosis in the regulation of hematopoietic
stem cells. Leukemia and Lymphoma, 48:16–24, 2007.

[100] I Ostby, HB Benestad, and P Grottum. Mathematical modeling of human granulopoiesis:
the possible importance of regulated apoptosis. Mathematical Biosciences, 186:1–27, 2003.

[101] OG Ottmann, A Ganser, G Seipelt, M Eder, G Schulz, and D Hoelzer. Effects of recombinant
human interleukin-3 on human hematopoietic progenitor and precursor cells in vivo. Blood,
pages 1494–1502, 1990.

[102] R Pardal, MF Clarke, and SJ Morrison. Applying the principles of stem-cell biology to cancer.
Nature Reviews Cancer, 3:895–902, 2003.
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