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CHAPTER I 

General Introduction 

 

Skill learning 

On any given day at the local driving range, golfers of all ages and skill 

levels can be found practicing their golf swing.  The better players exhibit a 

seemingly effortless swing in striking the ball, unlike their novice counterparts.  

This raises the question: how does performance improve with practice?  Each of 

us can surely recall a motor task which was initially challenging but then became 

automatic following sufficient practice.  One way to examine the motor learning 

process is through comparisons between novice and skilled performers.  

Movements of skilled performers are effective, consistent (while still adaptable), 

and appear to require only minimal attention.  For the novice performer, 

improvements in any of these characteristics would be indicative of learning. 

A number of useful revelations regarding how humans represent and interact 

with their environment have been extracted from study of a particular type of 

motor learning, visuomotor adaptation.   

 Visuomotor adaptation involves the recalibration of a well-learned spatial-

motor association.  The study of motor performance under transformed spatial 

mappings spans over one hundred years.  Helmholtz (1866) originally used 
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prisms to invert the visual world, while more recent investigations make use of 

computer displays to transform visual feedback of movement (Cunningham, 

1989; Ghilardi et al., 1995; Krakauer et al., 2000; Seidler et al., 2006).  These 

studies have demonstrated that sensorimotor adaptation occurs when 

movements are actively made in the new environment.  It is thought that updated 

visuomotor mappings are stored as an internal model, housed in the cerebellum 

(Imamizu et al. 2000, 2003; Wolpert and Miall, 1996; Shadmehr & Mussa-Ivaldi, 

1994; Wolpert and Ghahramani, 2000).   

Visuomotor adaptation clearly involves sensorimotor processes, but 

cognitive processes such as visuospatial attention and working memory are also 

thought to play a role (Eversheim and Bock, 2001; McNay and Willingham, 1998; 

Taylor and Thoroughman, 2007, 2008).  Working memory here refers to a 

system that involves both active storage and processing to manipulate 

information for a given cognitive process (Baddeley, 1986; Miyake and Shah, 

1999).  Baddeley (1986) proposed the existence of a working memory subsystem 

specialized for processing visuo-spatial information (“a visuo-spatial sketch pad”).  

Revised versions of this model (Logie, 1995; Cornoldi and Vecchi, 2003) suggest 

tasks which require information manipulation (‘active’; i.e. mental rotation) have 

greater processing demands than ‘passive’ tasks (i.e. storage tasks; Cornoldi 

and Vecchi, 2003).  Given that increased executive demands have been shown 

to compromise motor adaptation (Taylor and Thoroughman, 2007, 2008), the 

contributions of ‘active’ spatial working memory may be integral for visuomotor 

adaptation.       
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 However, findings by Mazzoni and Krakauer (2006) argue against the use 

of cognitive processes during adaptation, as these authors demonstrated explicit 

cognitive strategies were unconsciously overridden during the adaptation 

process.  These findings are in opposition to studies that have shown the 

involvement of cognitive processes in learning a sensorimotor transformation 

(Eversheim and Bock, 2001; Taylor and Thoroughman, 2007, 2008).  For 

example, Eversheim and Bock (2001) demonstrated that cognitive resources are 

engaged in a time-dependent fashion during adaptation: resources related to 

spatial transformations and attention were highest in demand early in adaptation, 

while those related to movement preparation were more in demand later in 

learning.  This study described the learning process as having two distinct stages 

in a manner familiar to the skill learning literature: a cognitively driven “fast/early 

learning” stage during which performance improves with a limited number of trials 

(Adams, 1971; Fitts and Posner, 1967; Karni et al., 1998; Schmidt, 1976; Smith 

et al., 2006; Willingham, 1998) and an autonomous “slow/late learning” stage 

with smaller performance gains evolving over hours or days of practice (Doyon et 

al., 2003; Fitts and Posner, 1967; Karni et al., 1998; Willingham, 1998).  These 

data have been incorporated into theories of motor learning, which posit that 

there are distinct neural correlates associated with each stage (early versus late; 

Doyon et al., 2003; Willingham, 1998).   

For example, PET studies of force-field adaptation demonstrate bilateral 

activation at the dorsolateral prefrontal cortex (DLPFC) and parietal regions early 

in learning, while later learning activation shifts towards left premotor and right 
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cerebellar regions (Krebs et al., 1998; Shadmehr and Holcomb, 1997).  Similarly, 

fMRI studies of visuomotor adaptation have reported activation in the right 

DLPFC, basal ganglia, premotor, and parietal regions during the early stages of 

adaptation (Anguera et al., 2007; Hikosaka et al., 1999; Inoue et al., 1997; Sakai 

et al., 1998; Seidler et al., 2006; Toni et al., 1998), with late learning activation 

observed at the cerebellum, visual, parietal and temporal cortices (Graydon et 

al., 2005; Imamizu et al., 2000; Inoue et al., 2000; Krakauer et al., 2004; Miall et 

al., 2001).  Interestingly, a number of imaging studies targeting the neural 

correlates of spatial working memory have also shown involvement of the right 

prefrontal cortex, specifically the right DLPFC (Courtney et al., 1998; Jonides et 

al., 1993; McCarthy et al., 1994; McCarthy et al., 1996; Reuter-Lorenz et al., 

2000).  While these imaging results suggest that spatial working memory may be 

engaged during the early adaptation stage, no study has directly tested for neural 

activation overlap between these two types of tasks in the same subjects.   

The first aim of this dissertation is to determine the contribution of spatial 

working memory to the early stage of visuomotor adaptation.  I hypothesize that 

spatial working memory resources are relied on for the early, but not late, stage 

of visuomotor adaptation.  This prediction is based upon a greater cognitive 

contribution being present during the early, rather than late, stage of learning 

(Eversheim and Bock, 2001;Taylor and Thoroughman, 2007, 2008; Willingham, 

1998).  Further details regarding the theoretical motivations for this distinction will 

be described in this dissertation.  I will test this hypothesis using two approaches: 

1) determining correlations between participants’ rate of adaptation and 
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behavioral measures of spatial working memory, and 2) looking for neural 

overlap between brain regions engaged during the early adaptation period and 

for a spatial working memory task.   

 

Skill learning in advancing age 

 

The older adult population in the U.S. in 2030 has been projected to be 

nearly twice as large it was in 2000, growing from 35 to approximately 71.5 

million (http://agingstats.gov).  This group would then constitute nearly 20% of 

the total U.S. population (http://agingstats.gov).  The 85+ year old population (the 

‘oldest old’) is also projected to increase from 4.2 million in 2000 to 7.3 million in 

2020 (http://agingstats.gov).  This dramatic shift in the population demographics 

has resulted in an increased awareness regarding the need for developing 

programs and interventions that would facilitate activities of daily living (ADLs).  

This is especially important considering that ADLs have been shown to be a 

reliable measure of health and longevity in older adults (Mahurin et al., 1991; 

Roos and Havens, 1991).  Unfortunately, within this growing population will also 

be a greater number of individuals affected by a neurological disease or injury, 

providing another reason for age-appropriate interventions and rehabilitative 

approaches.    

Declining cognitive and motor functions obviously have detrimental effects 

on the quality of life in older adults.  The aging process is accompanied by a 

number of physiological changes in motor (Brooks & Faulkner, 1994; Brown, 
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1972; Swash & Fox, 1972), sensory (Adamo et al., 2007; Demer, 1994; 

Galganski et al., 1993; Horak et al., 1989), and cognitive systems (Kramer et al., 

1994; Park et al., 2002).  These changes can proceed in a gradual fashion with 

‘normal’ aging, or with an accelerated trajectory due to injury or disease.  In 

either case, these changes typically require an individual to adapt the way they 

approach a task to achieve a desired goal.  The striking growth of the older adult 

population highlights the need for studying the underlying mechanisms of skill 

acquisition, as these studies form the foundation of effective preventative and 

rehabilitative programs.   

It is well documented that increased age is accompanied by declines in 

motor skill performance (Cooke et al., 1989; Darling et al., 1989; Seidler-Dobrin 

et al., 1998; Welford 1984), with movements becoming more variable (Contreras-

Vidal et al., 1998; Cooke et al., 1989; Darling et al., 1989).  It has also been 

shown that older adults do not acquire new motor skills as quickly as young 

adults (i.e. rate of learning; Brown, 1996; Raz et al., 2000; Rodrigue et al., 2005; 

Seidler-Dobrin et al., 1998; Seidler, 2006; alternatively, see Durkin et al., 1995).  

With regards to age-related studies involving visuomotor adaptation, the literature 

is inconsistent: some studies have shown no age-related adaptation deficits 

(Canavan et al. 1990; Roller et al. 2002) while others have demonstrated that 

aging results in slower and reduced adaptation (Etnier and Landers 1998; 

Fernandez-Ruiz et al. 2000; McNay and Willingham 1998; Seidler, 2006; 

Teulings et al. 2002).   
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While the findings regarding visuomotor adaptation and aging have been 

inconsistent, the literature on cognitive declines with advancing age has been 

much more constant (Craik and Salthouse, 1992; Craik and Salthouse, 2000).  

Older adults show impaired spatial working memory performance (Park et al., 

2002; Shaw et al., 2006).  Moreover, there is a negative relationship between 

age and general spatial ability (Kirasic, 2000); accordingly, older adults do not 

perform as well as younger adults on spatial tasks, including mental rotation 

(Dobson et al. 1995; Hertzog and Rypma, 1993; Salthouse et al., 1989; 

Salthouse, 1994).  While the relationship between sensory and cognitive decline 

is currently unknown, age-related declines in these systems are thought to lead 

to increased coupling between the two domains (Baltes and Lindenberger, 1997; 

Li et al., 2001; Lindenberger et al., 2000).  This is not only the case for older 

adults, but also for individuals afflicted with a neurological disease (e.g. 

Parkinson’s disease) or injury (e.g. stroke), as studies have shown visuospatial 

impairments along with motor deficits in each population (Maeshima et al., 1997).  

While the nature of the relationship between these two domains is unclear, these 

findings suggest the possibility that age-related declines in certain cognitive 

processes may affect the early stages of skill acquisition in older adults. 

 If spatial working memory plays an essential role during the early learning 

period in young adults, then degraded spatial working memory processes in older 

adults may underlie age-related declines in motor learning.  The overarching goal 

for the second aim of this dissertation is to examine whether older adults’ spatial 

working memory deficiencies can partially explain age-related deficits in 
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visuomotor adaptation.  The findings from this study will provide valuable insight 

into the motor learning process in older adults from both a behavioral and neural 

perspective.  It will also allow me to potentially identify correlates of successful 

aging in skill learning, which would be an important precursor to the development 

of rehabilitative interventions.  

 

The current investigation 

 

 There are still several important questions related to visuomotor 

adaptation and spatial working memory (SWM) that have not been addressed in 

the existing literature.  Therefore, I asked the following questions: 

 
i) Does SWM contribute to visuomotor adaptation in young adults? I 

tested this by determining whether SWM performance, as assessed by 

neuropsychological tests, was correlated across participants with the 

rate of visuomotor adaptation, and by looking for neural activation 

overlap between a SWM and a visuomotor adaptation task.   

ii) Do age-related declines in SWM partially explain age-related deficits in 

visuomotor adaptation?  In order to assess this, I tested older adults 

using the same methods as outlined for the young adults.    

 

I tested Aim #1 by having 18 young adults (18-30 years old) perform a 

visuomotor adaptation task as well as a test of SWM in an fMRI scanner.  In 

addition, these participants performed neuropsychological tests of working 
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memory (spatial and non-spatial), allowing me to test for correlations between 

these standardized measures and performance on the experimental tasks 

performed in the fMRI scanner.   

I tested Aim #2 by having 18 older adults (65-80 years old) undergo the 

same procedures as outlined above, in addition to screening for cognitive and 

general health status.  I hypothesized that I would observe reduced performance 

on both tasks by the older adults, in addition to under-recruitment of brain areas 

that were engaged in an overlapping fashion during SWM and visuomotor 

adaptation for the young adults.   

I also performed a behavioral validation study (see appendix A) to 

strengthen my interpretations of the cognitive mechanisms that mediate 

performance on the SWM task. 
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CHAPTER II 
 

Does Spatial Working Memory Contribute to Visuomotor Adaptation in 
Young Adults? 

 

Abstract 

Previous studies of motor learning have described the importance of 

cognitive processes during the early stages of learning; however, the identity of 

these processes remains unclear. The present study tested the function of one 

specific cognitive process, spatial working memory (SWM), during a visuomotor 

adaptation task.  I hypothesized that SWM would play a role early in adaptation, 

reflected by i) correlations between the rate of adaptation and SWM measures, 

and ii) overlapping neural substrates between the two types of tasks.  I found that 

performance on a behavioral test of SWM involving mental rotation correlated 

with the rate of early, but not late, visuomotor adaptation.  Using SWM brain 

activation as a limiting mask during the early adaptation period, participants 

showed overlapping activation in the right dorsolateral prefrontal cortex and 

bilateral inferior parietal cortex, regions previously identified in other SWM 

studies.  A similar analysis performed with the late phase of adaptation produced 

no commonly activated regions.  These findings reveal that the early phase of 

visuomotor adaptation engages SWM processes related to mental rotation, while 
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SWM ability does not appear to be a determinant of the rate of late phase 

adaptation. 
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Introduction 

Skill learning has been defined as an increase in spatial and temporal 

accuracy of movements with practice (Willingham, 1998).  It is characterized by 

at least two stages: an initial learning stage (“fast/early learning”) in which within-

session improvements can be induced through a limited number of trials on a 

time scale of minutes (Adams, 1971; Brooks et al., 1983, 1995; Fitts and Posner, 

1967; Karni et al., 1998; Puttemans et al., 2005; Schmidt, 1976; Smith et al., 

2006; Willingham, 1998), and a “slow/late learning” stage, where improvement 

occurs in a more incremental fashion over hours or even days of practice (Doyon 

et al., 2003; Karni et al., 1998; Willingham, 1998).  In general, the early learning 

stage is described as being cognitively demanding, while the late learning stage 

is described as being more autonomous (Fitts and Posner, 1967).   

A specific type of skill learning, visuomotor adaptation1, has provided 

important insights into how humans represent and interact with their 

environment.  This type of learning requires the modification of a well-learned 

sensorimotor transformation, thought to be based in part on neural maps which 

encode this information for use by the motor control system (Cunningham, 1989).  

These maps are thought to be represented as internal models (cf. Wolpert and 

Ghahramani, 2000), which use an efferent copy of the motor commands to 

predict the sensory consequences of action (Wolpert and Miall, 1996).  These 

                                                 
1 The terms learning and adaptation from this point forward are used interchangeably.  Both describe a 
relatively permanent change in performance, with adaptation being more specific to the task at hand.  
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models are updated via error feedback during sensorimotor adaptation 

(Shadmehr & Mussa-Ivaldi, 1994).     

Neuroimaging studies of visuomotor adaptation have shown that early 

learning engages prefrontal regions (Anguera et al., 2007; Clower et al., 1996; 

Hikosaka et al., 1999; Inoue et al., 1997; Sakai et al., 1998; Seidler et al., 2006; 

Seidler & Noll, 2008; Toni et al., 1998), suggesting that this phase of learning is 

under cognitive control.  The late learning phase is associated with a shift in 

activation towards the visual, parietal and temporal cortices, as well as the 

cerebellum (Graydon et al., 2005; Imamizu et al., 2000, 2003, 2004; Inoue et al., 

2000; Krakauer et al., 2004; Miall et al., 2001), which is thought to support 

internal model formation.  Although these studies have shown prefrontal 

activation during the early visuomotor adaptation stage, it is unclear which 

cognitive process(es) may be supported with this activation.   

Eversheim and Bock (2001) used a dual tasking methodology and found 

that secondary spatial attention and sensorimotor transformation tasks interfered 

with the early phase of adaptation.  Similarly, Taylor and Thoroughman (2007) 

examined the role of attention in adaptation, and found that performance of a 

secondary tone counting task disrupted error encoding, which in turn impaired 

internal model updating.  While these studies support a role for cognitive 

processes in sensorimotor adaptation, Mazzoni and Krakauer (2006) found that 

cognitive strategies were unconsciously overridden by participants during the 

adaptation process, suggesting that these processes do not contribute to 



 

 19

adaptation.  Similarly, Bock (2005) reported a lack of correlation between the 

magnitude of visuomotor adaptation and performance on the trail-making test, 

which measures multiple cognitive domains including spatial organization and 

visual pursuit.  It may be, though, that other cognitive processes are contributing 

to the adaptation process, especially those which the trail-making test is unable 

to directly test.   

One cognitive system which I hypothesize plays a role in visuomotor 

adaptation, particularly in the early stage, is spatial working memory (SWM).  

Neuroimaging studies of SWM have reported activation of the right prefrontal 

cortex (Courtney et al., 1998; Jonides et al., 1993; McCarthy et al., 1994; 

McCarthy et al., 1996; Reuter-Lorenz et al., 2000) and parietal cortex (Jonides et 

al., 1993; Nystrom et al., 2000; Reuter-Lorenz et al., 2000; Walter et al., 2003).  

As described above, these regions are also engaged during the early stage of 

visuomotor adaptation.  However, these regions are engaged in many other 

cognitive tasks (cf. Cabeza and Nyberg, 2000), suggesting that common 

activation does not necessarily mean that the same processes are being 

engaged.  Therefore, I tested whether SWM plays a role during the early stage of 

visuomotor adaptation through performance correlations and overlapping neural 

activation patterns.   

In the current study, participants performed a joystick-controlled 

visuomotor adaptation task.  They were required to make manual aiming 

movements to targets under veridical and rotated visual feedback.  Furthermore, 
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they performed a test of SWM, as well as a battery of neuropsychological 

assessments of several cognitive processes.  I hypothesized that SWM would 

play a role during early, but not late, adaptation, evidenced by correlations 

between the rate of early adaptation and SWM measures, as well as overlapping 

neural substrates for the performance of SWM and visuomotor adaptation tasks.   

  

Methods 

Participants 

Eighteen participants (21.1 ± 2.5 yrs; 9 males) were recruited from the 

University of Michigan student population and were paid for their participation.  

Each participant signed an IRB-approved informed consent document and filled 

out a health history questionnaire prior to their participation.  All participants were 

right-handed as assessed using the 20-item version of the Edinburgh Inventory 

(Oldfield, 1971; mean handedness score = .83 ±.10).  

 

Experimental setup and procedure 

Testing occurred on two separate days for this experiment.  On day one, 

participants performed a battery of neuropsychological tests to assess the 

following cognitive processes: 1) SWM involving mental rotation abilities were 

tested using Thurston’s card rotation and cube rotation tasks (Ekstrome et al., 

1976); 2) short term visuospatial memory was assessed by the forward Corsi 

Block tapping test (Corsi, 1972); 3) sensorimotor processing speed was 
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determined by the digit-symbol substitution task from WAIS-R; 4) short-term 

verbal memory was evaluated by the forward digit span tasks from WAIS-R 

(Wechsler, 1997) and the reading span task (Daneman & Carpenter, 1980); 5) 

verbal working memory was assessed by the backward digit span task from 

WAIS-R (Wechsler, 1997), while serial visuospatial working memory was 

assessed through the backward Corsi Block tapping task (Corsi, 1972); 6) The 

DEX questionnaire (dysexecutive syndrome; Wilson et al., 1996) determined 

whether individuals had difficulty with abstract thinking, planning, or other tasks 

associated with executive functioning.  Participants also practiced three blocks of 

joystick aiming movements made under veridical feedback conditions, as well as 

1 block of a SWM control task (detailed below), to familiarize them with basic 

task requirements before subsequent testing in the fMRI scanner.     

The second day of testing was completed within 1 week following the first 

day of testing.  During this testing session, participants performed the visuomotor 

adaptation task, the SWM control task (SWMc), and the SWM task.  For these 

tasks, participants lay supine in a 3.0 Tesla magnet (General Electric) with their 

head comfortably restrained to prevent excess head movement.  Task 

presentation and response collection were accomplished with custom Labview 

6.1 software (National Instruments) for the visuomotor adaptation task, and E-

prime 1.1 software for the SWM tasks (Psychology Software Tools, Inc.).  Stimuli 

were presented through a mirror mounted on a set of specialized goggles, 

reflecting a video projection screen placed at the rear of the scanner.  For the 



 

 22

SWM tasks, E-prime recorded participants' responses via a right-handed button-

glove.   

 

Figure 2.1.  Spatial rotation and spatial control tasks schematic.  RI = retention interval. 
 

The SWM task, modeled after the task employed by Reuter-Lorenz et al., 

(2000), required participants to memorize a three target set (three solid circles) in 

a 500 msec period (Figure 2.1).  Following presentation of the target set, 

participants saw a blank screen for 3000 msec (retention interval, RI).  During 

this period, they were instructed to mentally ‘connect the dots’ of the target set, 

and then mentally rotate this shape by 30° clockwise.  Following the RI, 
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participants were given 3000 msec to decide whether the subsequently 

presented probe set of open circles formed the same configuration as the target 

set that they had mentally rotated.  There was a 30 second visual fixation 

baseline period before and after each set of 10 trials.  Participants performed 2 

runs of this task, with 30 trials within each run.  70% of the trials were ‘match’ 

trials in which the probe set was rotated 30° clockwise; the remaining ‘non-match’ 

trials had two of the three probe circles displaced by 1.1cm (hard), 1.5cm 

(medium), and 1.9cm (easy) from the original target dot configuration.  

Participants also performed a SWMc task (1 block of 40 trials; see Figure 2.1) 

modeled after the control task used by Reuter-Lorenz et al. (2000).  This task 

involved the presentation of three solid circles for 500 msec, followed by a 200 

msec RI.   Following this, participants were presented with a single circle for 

2500 msec and asked to determine whether its spatial location matched that of a 

previously observed dot.  There was a 30 second visual fixation baseline period 

before and after each set of 10 trials. This control task included all of the 

cognitive components of the SWM task (e.g. perceptual encoding, response 

selection, preparation, and initiation) except for the working memory and mental 

rotation components.  Thus, the subtraction of images from the control condition 

should reveal areas actively involved with working memory and mental rotation.  

In order to establish that SWM processes were specifically being engaged during 

the RI, a separate group of participants were tested on the SWM task under dual 

task conditions (see appendix A for further details and results). 
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Figure 2.2.  Visuomotor adaptation task schematic and apparatus.  The start position was 
always the screen center, with targets appearing in the periphery (here shown with a target 
at the top of the screen).  Participants were instructed to hit the target with the joystick as 
quickly and accurately as possible, and maintain the cursor in the target until it 
disappeared.  During the adaptation blocks, the feedback display was rotated 30° 
clockwise about the start position.  This is shown here as the joystick is pointed directly 
towards the target, yet the cursor’s trajectory (dashed line, not visible to participants) 
veers off at a 30° angle from a straight movement towards the target (dotted lines). 

 

For the visuomotor adaptation task, targets (0.8 cm in diameter) appeared 

for four seconds in one of four locations: 4.8 cm to the right, left, above, or below 

the centrally-located home position (0.8 cm in diameter).  Participants controlled 

a cursor with a dual potentiometer joystick placed on their lap.  Participants held 

the joystick with their thumb and index finger, and made small wrist and finger 

movements to control the joystick, with real-time feedback displayed as a cursor 

on the projection screen.  Participants were asked to move the cursor into the 

target circle as quickly and accurately as possible, and to maintain the cursor 

within the circle until the target disappeared.  Upon target disappearance, they 
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were told to release the spring-loaded joystick handle so that it would re-center 

for the subsequent trial.  The next trial began one second later, resulting in an 

inter-trial interval (from one target presentation to the next) of five seconds.  

Participants performed 17 blocks (B; Table 2.1) as separate fMRI runs of the task 

(24 trials per block), with 30 second visual fixation baseline periods at the 

beginning and end of each block.   

 

Table 2.1.  Condition by block for the visuomotor adaptation task.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P = practice block (no scanning), B = scanning  
block.  30º = adaptation blocks with rotated feedback.   

Block 
Number 

Rotated 
Feedback 

Condition 

P1 NO practice 
B1 NO control 
B2  30º adaptation 
B3  30º adaptation 
B4  30º adaptation 
B5  30º adaptation 
B6  30º adaptation 
B7  30º adaptation 
B8  30º adaptation 
B9  30º adaptation 
B10  30º adaptation 
B11  30º adaptation 
B12  30º adaptation 
B13 NO non-vision 
B14 NO non-vision 
B15 NO after-effect 
B16 NO  after-effect 
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The 1st block was treated as a practice block (P) in order for the participant 

to become familiar with the task in the fMRI environment; thus it was not included 

in the analysis.  The first block of trials (B1) was performed under normal visual 

feedback conditions (control condition), while the subsequent 11 blocks (B2-B12; 

adaptation period) were performed with visual feedback rotated 30º clockwise 

about the center of the screen.  Following the adaptation period, I explained to 

participants how the visual feedback they had been presented during B2-B12 

had been rotated in a clockwise fashion by 30º.  They were then told that they 

should perform the subsequent blocks like they did under the non-perturbed 

conditions, such as they had experienced during B1.  They were also informed 

that, while this rotation effect would be absent for subsequent blocks, there would 

be no visual feedback of their movements for B13-14.  Participants were again 

encouraged to perform the task as quickly and accurately as they had during the 

control condition and adaptation periods.  The final two blocks (B15-B16) were 

performed under non-perturbed conditions with visual feedback present.   B13-14 

allowed me to determine activation associated with adaptive realignment of 

control.  Similarly, B15-16 would reflect activation associated with after-effects of 

adaptation, as visual feedback now would illustrate whether previously applied 

corrections during the adaptation period persisted.  

 

fMRI acquisition parameters 
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Functional images were acquired using a single-shot gradient-echo 

reverse spiral pulse sequence (Börnert et al., 2000).  The field of view was 220 x 

220 mm, voxel size was 3.2 x 3.2 x 3.2 mm, TR (repeat time to accomplish a full 

volume) was 2 seconds, and TE (echo time) was 30 msec.  Forty contiguous 

axial slices were acquired, encompassing the whole brain, including the 

cerebellum.  Structural images were acquired using a T1-weighted gradient echo 

pulse sequence (TE/TR/FA = 3msec/250msec/25 degrees) with a field of view of 

240 x 240 mm, voxel size = 1.4 mm x 1.4 mm x 3.2 mm).   

 

Behavioral data processing 

For both the SWMc and SWM task, I calculated the reaction time and 

percentage of correct answers in the identification of matching spatial locations 

and rotated triangles, respectively.  The X and Y coordinates from the joystick 

were recorded at a rate of 100 Hz.  I analyzed the joystick data offline using 

custom Labview 6.1 software (National Instruments) to track behavioral changes 

with learning.  I first filtered the data with a dual low pass Butterworth digital filter 

(cf. Winter, 1990), using a cutoff frequency of 10 Hz.  The resultant joystick path 

was calculated by computing the square root of the sum of the squared X and Y 

coordinate data at each time point.  The tangential velocity profile was then 

calculated through differentiation of the resultant position data.  Movement onset 

and offset were computed through the application of Teasdale et al.’s (1993) 

optimal algorithm to the velocity profile for each movement.  I assessed learning 



 

 28

by measuring direction error (DE), which is the angle between a straight line from 

the start to the target position and the position at peak velocity (see Figure 2.3).   

 

Figure 2.3.  Direction error measurement. A single trajectory is shown, with Point 1 
indicating the point (time of peak velocity) at which the direction error (DE) is calculated. 

 

I made the assumption based on previous literature that the learning 

process consisted of two phases (“early” and “late”; cf. Krebs et al., 1998), with 

the early phase reflected by a period of rapid improvement, and the late phase 

showing slower incremental performance gains.  To identify which adaptation 

blocks comprised the early learning period, I searched for the optimal number of 

consecutive adaptation blocks which resulted in the steepest rate of learning (i.e. 

the slope across the 1st two adaptation blocks, the slope across the 1st three 

adaptation blocks, etc) for each subject.  The breakpoint was identified as the 

block whose inclusion led to a significant decrease in the rate of learning slope.  

Late learning was then defined as the equivalent consecutive number of 

adaptation blocks, counting backwards from the final adaptation block.  I chose to 
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focus on rate of learning as my primary measure, as these slopes describe the 

adaptation span multiple adaptation blocks while also reflecting differences in 

performance.  Mean DE was also examined to provide a within-block index of 

learning; I performed a block x trial repeated measures analysis of variance (RM 

ANOVA) on DE to test for differences across blocks and trials.  Significant 

interactions were followed up with simple contrasts.  The Huynh-Feldt epsilon 

(Huynh and Feldt, 1970) was evaluated to determine whether the repeated 

measures data met the assumption of sphericity (Σ > 0.75).  I also computed 

Pearson correlations between performance on each of the neuropsychological 

tests and accuracy and reaction time for each SWM task, as well as the rate of 

learning for each adaptation period for DE.   

 

fMRI data processing 

The first three volumes of each run were discarded to allow the MRI signal 

to reach its steady state.  I performed movement correction for excessive head 

motion using the Automated Image Registration (AIR) package (Woods et al., 

1998).  Structural images were skull-stripped using FSL’s Brain Extraction Tool 

(http://www.fmrib.ox.ac.uk/fsl).  fMRI data were processed and analyzed using 

Statistical Parametric Mapping 2 (SPM2; Wellcome Department of Cognitive 

Neurology, London, UK).  Following the computation of a mean functional image 

for each participant, their structural image was coregistered to this mean image 

and then spatially normalized to the Montreal Neurological Institute (MNI) 
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template (Evans et al., 1994).  These images were then spatially smoothed with 

a Gaussian kernel with a full width at half maximum (FWHM) of 8mm.  In 

addition, head movement parameters were added as covariates of no interest to 

correct for potential confounding effects induced by head movement. 

I created boxcar models time-locked to the effect of interest and convolved 

with an estimate of the canonical hemodynamic response function.  Analyses 

were performed at the single participant and group levels through SPM2 to 

determine regions activated in association with task performance.  Significant 

areas of activation were then localized using the automated anatomical atlas 

(AAL; Tzourio-Mazoyer et al., 2002) and confirmed with the Talairach atlas 

(Talairach and Tournoux, 1988; see http://www.mrc-cbu.cam.ac.uk/Imaging/) and 

visual inspection.  Medial motor areas were identified as in Picard and Strick 

(1996) and Mayka et al. (2006), and cerebellar regions as in Schmahmann et al. 

(1999).   

 

fMRI contrasts and region of interest analyses 

I designed different contrasts to examine the visuomotor adaptation task 

and the SWM task, using an uncorrected p-value of .005 and cluster magnitude ≥ 

10 voxels as a threshold for significance.  The SWM contrast searched for 

regions of statistically greater activation for the two SWM blocks in comparison to 

the SWM control block.  The first adaptation contrast (early adaptation) searched 

for regions of statistically greater activation across the first 3 adaptation blocks 
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(defined as the early learning phase by the breakpoint analysis) versus the first 

control block (B1).  The second adaptation contrast evaluated the late adaptation 

period using the final 3 adaptation blocks (late adaptation) versus B1.  I 

examined the activation at the after-effect blocks (B15-16) by searching for 

greater activation at these blocks versus i) control (B1; after-effect 1) and ii) non-

vision blocks (B13-14; after-effect 2).  I quantified the activation for the non-vision 

blocks by searching for greater activation at these blocks (B13-B14) versus i) 

control (B1; non-vision 1) and ii) after-effects (B15-16; non-vision 2).   

In order to evaluate overlapping regions of activation between the SWM 

task and each stage of learning during the visuomotor adaptation task, I applied 

an inclusive mask of the SWM contrast using an uncorrected p-value of .05 to 

both the early and late adaptation activation maps, then searched for significance 

using a False Discovery Rate (FDR)-corrected threshold p-value of .05 

(Genovese et al., 2002).    I also performed correlations between the following 

behavioral performance measures and activation at their corresponding scanning 

blocks in whole brain analyses: DE early average block score and rate of early 

adaptation, DE late average block score and rate of late adaptation.   

I created regions of interest (ROIs) using areas which reached 

significance for the early and late adaptation contrasts after they had been 

masked using the SWM contrast using the MARSBAR toolbox (Brett et al., 

2002).  Following ROI creation, I used custom software to calculate the percent 

signal change for each scanning block.  I calculated the mean magnitude of 
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activation during the visual fixation baseline period before and after each block of 

testing.  The visual fixation baseline period activation was then subtracted from 

the mean magnitude of activation during the task period, and this value was then 

divided by the mean control period activation and changed to a percentile for 

each scanning block to yield percent signal change.  I computed Pearson 

correlations between this activation from each ROI during the early and late 

adaptation periods and the participants’ rate of learning and average DE scores 

for the early and late learning periods.   

 

Results 

fMRI data from two participants were excluded due to complications with 

the collection process.  This left 18 participants for the behavioral analysis, and 

16 for the imaging portion (8 males).   

 

Behavioral dependent measures 

Table 2.2 shows the group mean and standard deviation for performance 

on each of the neuropsychological tests, as well as performance on the SWM 

tests.  The SWM task resulted in reduced accuracy (t(1, 17)= 6.85, p< .0001) and a 

longer reaction time (t(1, 17)= -7.27, p< .0001) compared to the SWMc task.   

Sample spatial trajectories for a single participant are depicted in Figure 

2.4 at the early stages of adaptation (panel A) and late in adaptation (panel B).  

In this figure, the open circles represent the location of the targets as viewed by 
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the participant in real time, while the closed circles represent the location of the 

targets under the feedback rotation.  Adaptation to the rotated feedback is shown 

through the less distorted trajectories employed in reaching the targets in panel B 

versus panel A.   

Table 2.2. Group mean (M) and standard deviation (SD) for each behavioral 
measure. 
  

Task Units M SD 
 

Neuropsych 
   

Card rotation # of correct-incorrect cards (3 min) 52.3 20.4 
Cube rotation # of correct-incorrect cubes (3 min) 8.4 6.4 
Digit symbol # of correct symbols (2 min) 79.6 16.2 
Corsi forward # of correct trials 8.7 1.9 

Corsi backward # of correct trials 8.5 1.9 
Digit span forward # of correct trials 11.8 2.6 

Digit span backward # of correct trials 7.8 2.5 
Reading span # of words recalled 30.2 6.3 

Edinburgh inventory handedness index .83 .11 
DEX executive impairment  19.8 8.4 

 
SWMc 

   

Spatial control 
accuracy 

% correct 93% 3% 

Spatial control RT msec 905 147 
    
 

SWM 
   

Spatial rotation 
accuracy 

% correct 81% 7% 

Spatial rotation  RT msec 1257 209 
    
 

VMA 
   

 DE (early) linear slope at early 3.4 1.0 
DE (late) linear slope at late 1.3 0.9 

(2/3 min) = time limit for each task to accurately answer as may question as possible.  VMA 
= visuomotor adaptation. 
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Figure 2.4.  Examples of visuomotor adaptation performance.  The open circles represent 
target locations in visual space, while the filled circles represent the target locations in 
joystick space.  Panel A presents trajectories for a participant during the first adaptation 
block.  Panel B shows adapted trajectories from the final adaptation block from the same 
participant.  
 

 

Figure 2.5. Visuomotor adaptation task performance across all blocks.  Each block reflects 
performance averaged across trials and participants (group mean ± SD).  Blocks 1 and 13-
16 were performed under veridical visual feedback, while blocks 2-12 were performed 
under 30º clockwise rotation about the center of the screen.  Each period is highlighted 
with the shading, with Non representing the non-vision blocks, and AE representing the 
after-effect blocks.    
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Figure 2.5 illustrates performance by block for DE.  A repeated measures 

ANOVA (RM ANOVA) with block (16) and trial (24) for DE resulted in a significant 

main effect for block (F(15, 255) = 54.71, p< .001), so follow up tests were 

conducted.  Within-participants polynomial contrasts across block for the 

adaptation period (11 blocks) for each measure showed a significant linear fit 

(F(1,17) = 151.38, p< .001), indicating improvements in both performance 

measures with practice.  Following the calculation of slopes for each combination 

of consecutive adaptation blocks, A RM ANOVA with a repeated contrast of the 

slopes revealed that the 1st 3 adaptation blocks had the steepest rate of learning 

versus all other combinations (see Table 2.3).   

 

Table 2.3.  Adaptation slopes for each combination of adaptation blocks. 
 

Adaptation slope M SD 

    1st 2 ** 1.71 1.26 
1st 3 3.42 1.03 

    1st 4 ** 2.80 0.56 
   1st 5 * 2.88 0.57 
   1st 6 * 2.69 0.47 

    1st 7 ** 2.55 0.42 
    1st 8 ** 2.13 0.27 
    1st 9 ** 1.88 0.20 

   
* p < .05, ** p < .005   

Each comparison is with regards to the slope for the 1st 3 blocks (highlighted) 

 



 

 36

Evidence for the 1st 3 adaptation blocks comprising the early adaptation 

period was established by a difference between the 3 and 4 block slopes (F(1,17) 

= 10.49, p< .01), and lack of difference between the 4 and 5 block slopes (F(1,17) 

= .32, p> .50).  There was a difference in the adaptation slope between the early 

and late periods (t(1,17)= 7.08, p< .0001).  There was no significant difference 

between the late slope across the final 8 adaptation blocks versus the final 3 

adaptation blocks (t(1, 17) = -1.40, p > .15).  Therefore, I analyzed the 

neuroimaging data using the final 3 adaptation blocks as the late period, in order 

to have an equal number of blocks for the early and late learning periods.   

Removal of the visual feedback rotation led to persistent compensatory 

actions, as trajectory deviations were opposite to the previously imposed 

perturbation, when compared to the control condition (B13: F(1,17) = 31.67, p< 

.0001; B14: F(1,17) = 20.98, p< .0001).  This was also the case during the after-

effect blocks, as again performance was significantly poorer than at the control 

condition (B15: F(1,17) = 20.06, p< .0001; B16: F(1,17) = 31.84, p< .0001).   There 

was no difference in performance between the non-vision blocks and the after-

effect blocks (F(1,17) = .13, p> .70).   

 

Behavioral Correlation Analysis 

Table 2.4 shows the results of the correlation analyses between the 

neuropsychological tests, measures of accuracy and RT for the SWM task, and 

the rate of adaptation for each stage of learning.  The card rotation task 
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correlated with both accuracy and RT on the SWM task (r = .63, p< .05 and r = -

.52, p< .05, respectively).  The card rotation task also correlated with the DE rate 

of learning during the early adaptation period (r = .57, p< .05; see Figure 2.6), but 

not during the late period (r = -.42, p> .05), supporting the hypothesis that SWM 

plays a role in early visuomotor adaptation.  The digit symbol task, which tests 

sensorimotor processing speed, also showed a correlation with the DE rate of 

learning during the early adaptation period (r = .50, p< .05), but not during the 

late (r = .30, p> .05) .  Tests of short term verbal memory (i.e. forward digit span 

and reading span) did not show a correlation with either SWM task or the rate of 

learning for either period of the visuomotor adaptation task.   
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Table 2.4.  Behavioral correlation analysis (r- values shown) 

38
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Figure 2.6.  Performance correlation between card rotation task and early adaptation rate 
of learning.  r = .53, p< .05 
 

fMRI results- SWM, early, and late activation 

The SWM > SWMc contrast revealed significant bilateral brain activation 

in a number of frontal, parietal, temporal, and cerebellar regions, including the 

right DLPFC, consistent with previous investigations of similar tasks (see Table 

2.5; Courtney et al., 1998; Jonides et al., 1993; McCarthy et al., 1994; McCarthy 

et al., 1996; Nystrom et al., 2000; Reuter-Lorenz et al., 2000; Walter et al., 2003).  

Early adaptation was also associated with significant bilateral brain activation in 

frontal and parietal regions, in addition to a number of other areas (see Table 

2.6), consistent with previous investigations of visuomotor adaptation (Anguera et 

al., 2007; Hikosaka et al., 1999; Inoue et al., 1997; Sakai et al., 1998; Seidler et 
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al., 2006; Toni et al., 1998).  No regions at late adaptation showed significantly 

greater activation than the control condition.  Using the SWM activation as a 

limiting mask resulted in early adaptation activation in the right dorsolateral 

prefrontal cortex and bilateral inferior parietal lobule, among other regions (see 

Table 2.7).  There were no regions which reached significance when this mask 

was applied to the late adaptation period.  These findings provide further support 

for the hypothesis that SWM resources are relied upon during the early, but not 

late, adaptation period. 
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; DLPFC = dorsolateral prefrontal cortex; IPL = inferior 
parietal lobule; SPL = superior parietal lobule; ITG = inferior temporal gyrus; MOG = middle occipital gyrus; SOG = superior 
occipital gyrus; IOG = inferior occipital gyrus; HV = hemisphere 5 of the cerebellum 
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; MFG = middle frontal gyrus; MeFG = medial frontal gyrus; 
VPMc = ventral premotor cortex; DPMc = dorsal premotor cortex; IPL = inferior parietal lobule; SPL = superior parietal lobule; 
Prec = precuneus; MTG = middle temporal gyrus; VL = ventral lateral  
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; DLPFC = dorsolateral 
prefrontal cortex; LPMc = lateral premotor cortex; IPL = inferior parietal lobule; SPL = 
superior parietal lobule; Prec = precuneus; SOG = superior occipital gyrus 
 

fMRI- Correlations with whole brain activation  

 Table 2.8 shows activation in the left middle frontal gyrus (MFG)/DLPFC 

and caudate obtained from a whole brain correlation analysis of early visuomotor 

activation with the rate of early adaptation slope.  Using the same analysis with 

the rate of late adaptation resulted in activation in the left MTG and STG, as well 

as the left cerebellum (Table 2.9).  Left Cerebellum activation was observed 

when the early mean DE score was correlated with early adaptation activation 
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(see Appendix Table B.1). A whole brain correlation analysis of SWM accuracy 

with SWM activation resulted in activation in the left cerebellum again (see 

Appendix Table B.2), while using this same analysis with SWM RT showed 

activation in the left IPL and putamen (see Appendix Table B.3).    

  

 
BA = Brodmann area; R = right, L = left; MFG = middle frontal gyrus; DLPFC = dorsolateral 
prefrontal cortex 
 
 

 

BA = Brodmann area; R = right, L = left; STG = superior temporal gyrus; MTG = middle 
temporal gyrus; XI = hemisphere 11 of the cerebellum 
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fMRI- non-vision blocks and after-effects 

 The results for the non-vision and after-effect blocks are detailed in the 

Appendix, and are only described in summary form here.  The right DLPFC was 

engaged to a greater extent during the non-vision blocks versus the control 

condition (see Appendix Table B.4), while no regions reached significance versus 

the after-effects blocks.  More profound and widespread activation was observed 

during the after-effect versus the control condition contrast (see Appendix table 

B.5: bilateral SFG, R DLPFC, bilateral IPL), as well as the after-effect versus 

non-vision contrast (see Appendix table B.6: bilateral SFG, bilateral SPL).  The 

extent of activation for the after-effect contrasts was similar to the early 

adaptation activation, in agreement with previous visuomotor adaptation studies 

from our laboratory (Seidler et al. 2006).   

 

Region of interest (ROI) analyses 

The signal from the regions showing overlapping activation for the SWM 

task and early adaptation (see Table 2.7) was extracted to examine changes in 

activity across the course of the visuomotor adaptation task.  For regions whose 

peak activation was within a cluster that spanned multiple anatomical areas (R 

DLPFC and R IFG, R Prec and R SOG), I created 4mm spherical ROIs centered 

at the peak for each region.  Figure 2.7 illustrates the average percent signal 

change for the visuomotor adaptation periods, SWMc, and SWM tasks for the 

regions identified as overlapping between early adaptation and SWM.  At the 

early adaptation stage, each ROI region showed a significant difference from the 
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control condition, with the R DLPFC and R IPL activation being equivalent 

between late learning and the control condition.  The percent signal change at 

early adaptation for all regions did not correlate with the rate of early or late 

adaptation; however, R IFG signal change did correlate with the mean early DE 

score (Figure 2.8). 
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Figure 2.7.  ROI activation.  Mean activation and standard error for each visuomotor adaptation period (control (ctrl), early, late, 
non-vision (Non), and after-effect (AE), SWMc, and SWM. * = p< .05, ** = p< .001 reflects activation differences to the control 
condition versus each VMA period; for SWM, this differences is with regards to SWMc.  R = right, L = left; IFG = inferior frontal 
gyrus; DLPFC = dorsolateral prefrontal cortex; LPMc = lateral premotor cortex; IPL = inferior parietal lobule; SPL = superior 
parietal lobule; Prec = precuneus; SOG = superior occipital gyrus 

47
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Figure 2.8.  Right inferior frontal gyrus (IFG) activation correlation with direction error (DE) 
early average score.  r = .53, p< .05 
 
 
 
 
Discussion 

The present study examined the relationship between visuomotor 

adaptation and SWM, with the results supporting that early, but not late, 

adaptation relies on spatial cognitive processes.  This conclusion was supported 

by two findings: i) behavioral correlations between the rate of early adaptation 

and a behavioral measure of SWM, and ii) neural overlap between the SWM task 

and the early adaptation period.  These findings support the idea that cognitive 

processes, specifically SWM, are engaged during the early adaptation period. 

 

Correlations between cognitive measures and visuomotor adaptation 
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In agreement with previous studies of visuomotor adaptation (Anguera et 

al., 2007; Cunningham, 1989; Ghilardi et al., 1995; Krakauer et al., 2000; Seidler 

et al., 2006; Smith et al., 2006), as well as motor learning theories (Doyon et al., 

2003; Karni et al., 1998), more rapid improvement was observed at the early 

adaptation stage versus the late adaptation stage.  Support for distinct 

mechanisms underlying the two stages of learning was evidenced by the rate of 

early, but not late, visuomotor adaptation being correlated with the card rotation 

task and the digit symbol task.  I also observed a correlation between the card 

rotation task and both the accuracy and reaction time for the SWM task, 

providing support that both tasks engage similar cognitive processes related to 

SWM.  This finding was further supported by the results presented in the 

appendix regarding the use of SWM resources during the retention interval of the 

SWM task (see appendix A). 

The relationship between SWM and mental rotation plays a key part in 

explaining the previous significant behavioral correlations.  SWM has been 

described as an active storage and processing system for manipulating 

information (Baddeley, 1986; Miyake and Shah, 1999).  This definition addresses 

why active cognitive manipulations like mental rotation require SWM processes 

versus passive visuospatial storage measures (i.e. Corsi block forward).  These 

type of passive tasks have been shown to rely on a related, yet distinct, cognitive 

process from SWM, short term memory (Miyake and Shah, 1999).  This is 

reflected in the present findings through the correlation with the card rotation and 

SWM task, while neither measure correlates with the Corsi block task.  Simply 
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stated, solving a mental rotation task cannot be accomplished utilizing short term 

memory resources as the processing components required for manipulation and 

comparison are absent.  These results also suggest why SWM versus short term 

memory resources are necessary during the early stage of learning: the 

transformation of the visuomotor mapping requires active processing.  This 

interpretation is supported by the observed correlation with the rate of early 

learning for the card rotation task, and the null correlation with the Corsi block 

forward task. 

The lack of SWM measures correlating with the late learning slope is in 

line with Fitts and Posner’s (1967) description of the late learning stage being 

autonomous and not requiring the same level of cognitive processes as early 

learning.  In addition, there were no correlations between the early or late rate of 

adaptation and non-SWM tasks (i.e. digit span, reading span).  This suggests 

that the correlation between SWM and the early phase of adaptation is not simply 

a general executive effect, but rather reflects overlap in spatial cognitive 

resources between these two tasks.  These results also highlight the importance 

of targeting specific cognitive processes when trying to establish correlations with 

motor learning variables.  The failure to find a correlation between adaptation and 

the trail-making test previously reported by Bock (2005) may be because the 

trail-making test does not engage the relevant cognitive processes.  These 

findings also seemingly contradict earlier work that proposed the use of verbal  

processes during the early stage of learning (Adams, 1971; Fitts and Posner, 

1967; Gentile, 1972).  I do not believe that the present findings redefine long held 
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views of skill learning; rather, the engagement of cognitive processes here is 

likely not in a manner initially envisioned by these authors.  The amount of verbal 

versus cognitive processing during early learning may be task specific, with the 

present task not appearing to engage verbal resources in a substantial manner.   

   

SWM, early, and late activation 

Activation associated with the SWM > SWMc contrast was observed 

bilaterally in the prefrontal and parietal cortices, including the right DLPFC.  

Activation in these regions is in accord with other imaging studies of SWM and 

mental rotation (Cohen et al., 1996; Courtney et al., 1998; Gauthier et al., 2002; 

Jonides et al., 1993; McCarthy et al., 1994; McCarthy et al., 1996; Nystrom et al., 

2000; Reuter-Lorenz et al., 2000; Walter et al., 2003).  The observed activation in 

premotor, prefrontal, temporal, and parietal regions during the early adaptation 

phase also agrees with previous imaging studies of visuomotor adaptation 

(Anguera et al., 2007; Clower et al. 1996; Krakauer et al. 2004; Seidler et al., 

2006).  No regions at late learning reached significance, in agreement with each 

of the above studies as well.   

 

Neural overlap between SWM and visuomotor adaptation 
 

Upon masking both the early and late adaptation periods with the 

activation from the SWM task, only the early adaptation period showed significant 

activation.  In particular, the right DLPFC and right IPL, regions which have 

previously been associated with mental rotation in SWM tasks (Cohen et al., 
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1996, Gauthier et al., 2002), were engaged.  In addition to these regions, I also 

observed activation in the right IFG and right PMC, supporting previous work 

from this laboratory which suggested that these right lateralized regions comprise 

a network that contributes to spatial cognitive processes of adaptation, 

specifically SWM and spatial attention (Seidler et al., 2006).  Other studies have 

also reported right lateralized activation with the same task (Ghilardi et al., 2000; 

Inoue et al., 1997; Krakauer et al., 2004), but have not interpreted this activation 

as supporting SWM processes.   

The present findings suggest that prefrontal activation during the early 

stage of adaptation is contributing to SWM processes, supporting the idea of 

early adaptation being under cognitive control.  These data support previous 

findings suggesting that cognitive processes play a role in the adaptation process 

(Eversheim and Bock, 2001, Taylor and Thoroughman, 2007, 2008), and are 

also in line with theories of motor learning regarding the engagement of distinct 

neural correlates at different stages of learning (Doyon et al., 2003; Smith et al., 

2006; Willingham et al., 1998).   

 

Visuomotor adaptation – Neural correlates, non-vision & after-effect blocks  

Whole brain correlations of early activation and the rate of early adaptation 

engaged the left middle frontal gyrus (MFG)/DLPFC.  This region was also 

engaged for the SWM contrast, supporting the importance of SWM processes for 

early adaptation.  At late learning, left middle temporal gyrus (MTG) activation 

was correlated with the rate of late adaptation.  This region was previously 
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observed during late learning for a sensorimotor adaptation task (Krebs et al., 

1998).  Mean early DE score also correlated with ROI activation at the right 

inferior frontal gyrus (IFG), a region previously shown to be activated during the 

early adaptation period (Anguera et al., 2007; Seidler et al., 2006).  This region 

has been implicated in inhibition of responses regarding visuomotor conditional 

learning, memory encoding, and memory retrieval (cf. Aron et al., 2004).  I 

suggest that the activation here in this task at early learning reflects an inhibition 

of a previous, flawed visuomotor mapping which is no longer applicable; 

however, this hypothesis requires further testing. 

The right DLPFC was engaged to a greater extent during the non-vision 

and after-effect blocks than the control condition (see Appendix tables B.4-B.6).  

This laboratory has previously shown this region’s engagement during an after-

effect period for a visuomotor adaptation task (Seidler et al., 2006).  This result 

provides further support that this region, implicated in SWM, plays a role in re-

adaptation.  Similar to the present findings, Jueptner et al. (1997) showed that 

prefrontal activation returned to early learning levels when participants were told 

to attend to their actions following a learning period.  In the present study, making 

participants aware of the non-vision task environment led to a unique 

performance strategy compared to the control condition, suggesting that the 

activation at these non-vision blocks reflects a novelty effect of performing the 

task under different conditions.  Without having tested participant performance 

under the non-vision conditions before the adaptation period, however, I cannot 
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say for certain that the observed activation is solely attributable to spatial 

adaptation processes. 

 
When and how is SWM used in the motor learning process? 

Recent dual-tasking studies of motor adaptation and executive function 

have provided a framework for when and how SWM would most likely be relied 

upon during the early adaptation period.  Taylor and Thoroughman (2007, 2008) 

have shown that the adaptation process is most affected when attentional 

resources are distracted by a dual task between adaptation trials.  As they did 

not observe interference effects when a secondary task was performed within a 

trial, these authors suggested that cognitive resources are engaged between 

trials to encode errors and update visuomotor maps for the subsequent trial.  

Similar to Eversheim and Bock (2001), these studies did not set out to test the 

contributions of distinct cognitive processes.  The present results extend the 

findings of both Eversheim and Bock (2001) and Taylor and Thoroughman (2007, 

2008) by indentifying SWM as one specific cognitive process (SWM) contributing 

to adaptation.       

How does SWM contribute to visuomotor adaptation?  I propose its 

contribution involves the modification of visuomotor maps using mental rotation.  

This hypothesis is based on the relationship between SWM and mental rotation, 

as well as the correlation between the card rotation task and the rate of early 

adaptation.  Just and Carpenter (1976) described the stages of mental rotation 

as i) searching, ii) transforming and comparing, and iii) confirmation.  In terms of 

the present study, SWM resources would assist with recalling and manipulating 



 

 55

the original visuomotor mapping, and then evaluating this new mapping to ensure 

improved accuracy for subsequent movements.  It should be noted that other 

cognitive processes (i.e. inhibition) may also be contributing to the adaptation 

process; however, this would require further evaluation.       

 

Conclusions 

 The early, but not late, stage of adaptation relies on cognitive processes, 

specifically SWM.  This was evidenced through both behavioral performance 

correlations and overlapping neural activation patterns between this period and a 

SWM task involving mental rotation.  These findings highlight the importance of 

spatial cognition early in the motor learning process, and provide insight into the 

function of prefrontal and parietal regions that are engaged during the visuomotor 

adaptation process.  
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CHAPTER III 
 

Contributions of Spatial Working Memory to Visuomotor Adaptation in 
Older Adults 

 

Abstract 

It is well documented that motor learning abilities decline with normative 

aging.  Given that motor learning has a cognitive component, these deficits may 

be due to declines in cognitive capabilities like spatial working memory (SWM).  

The purpose of this study was to investigate whether age-related declines in 

SWM partially explain age-related deficits in visuomotor adaptation.  The 

visuomotor adaptation task required participants to adapt manual aiming 

movements to a 30º rotation of the visual feedback display.  Young adults had a 

steeper learning curve for the visuomotor adaptation task than older adults, and 

were also more accurate on a SWM task.  Young and older adults showed very 

similar brain activation for the SWM task, including the engagement of the right 

dorsolateral prefrontal cortex (DLPFC).  Using their SWM activation as a mask, 

older adults did not show neural activation overlap at the early (or late) 

adaptation period (unlike young adults).  Accordingly, older adults’ rate of early 

adaptation did not correlate with SWM performance, while young adults’ did.  

However, a partial correlation controlling for age revealed that the rate of early 

adaptation was associated with activation at the right DLFPC.  Young adults 
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showed equivalent activation at this region to high performing older adults (HIGH 

OAs), and greater activation here versus the low performing older adults (LOW 

OAs).  These findings suggest that the effective engagement of SWM processes 

helps to explain these adaptation differences between young adults and older 

adults.      
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Introduction 

 Older adults exhibit numerous motor performance deficits including 

increased movement slowing and variability (Contreras-Vidal et al., 1998; Cooke 

et al., 1989; Seidler-Dobrin and Stelmach, 1998; Seidler et al., 2002a; Welford, 

1984), as well as a reduced rate of acquiring new motor skills in comparison to 

young adults (Brown, 1996; Raz et al., 2000; Rodrigue et al., 2005; Seidler, 

2006; alternatively, see Durkin et al., 1995).  One specific type of motor learning 

that has been used extensively to examine how humans represent and interact 

with their environment is visuomotor adaptation.  Visuomotor adaptation involves 

the modification of a well-learned sensorimotor transformation and tests one’s 

ability to adapt to environmental changes.  Studies investigating the effects of 

age on visuomotor adaptation have had mixed results: some groups have 

reported age-related impairments (Bock et al., 2005; Fernandez-Ruiz et al. 2000; 

McNay and Willingham 1998; Seidler et al, 2006; Teulings et al. 2002) while 

others have not (Canavan et al. 1990; Roller et al. 2002).  The cause of these 

deficits is unclear as age-related declines in motor (Booth et al., 1994; Galea, 

1996; Galganski et al., 1993), sensory (Baltes & Lindenberger, 1997; Demer, 

1994; Lindenberger & Baltes, 1994), or cognitive function (Park et al., 2002) 

could explain these differences.  

The examination of neural structures associated with sensorimotor 

adaptation is another avenue for exploring these age-related differences.  For 

example, a comparison of brain regions that young and older adults engage for 

visuomotor adaptation may shed light on the underlying mechanisms of age-
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related declines.  It has been suggested that the cerebellum contributes to 

visuomotor adaptation for eye-hand coordination (Miall et al., 2001) and internal 

model formation (Imamizu et al., 2000, 2003; Seidler and Noll, 2008).  Cerebellar 

volumetric age-related declines have been shown to be correlated with reduced 

motor skill performance (Raz et al., 2000).  Similarly, individuals with lesions of 

the posterior parietal cortex also show visuomotor adaptation deficits (Pisella et 

al., 2000, 2004), suggesting that age-related declines in this structure may also 

contribute to adaptation impairments for older adults.  Furthermore, the prefrontal 

cortex undergoes the highest degree of age-related atrophy (Raz et al., 1997; 

Tisserand et al., 2004).  Given that young adults engage the right prefrontal 

cortex during visuomotor adaptation (Anguera Chapter 2; Seidler et al., 2006), it 

may be that age-related structural and functional changes here also contribute to 

impairments in visuomotor adaptation.   

The right prefrontal cortex has been shown to contribute not only to the 

early stages of skill acquisition (see Anguera Chapter 2; Hikosaka et al., 1999; 

Seidler et al., 2006; Toni et al., 1998), but also to spatial working memory (SWM) 

processes (Courtney et al., 1998; Jonides et al., 1993; McCarthy et al., 1994; 

McCarthy et al., 1996; Reuter-Lorenz et al., 2000).  SWM has been shown to 

decline with age (Jenkins et al., 2000; Myerson et al., 1999; Park et al. 2002), as 

reflected through a negative relationship between age and general spatial ability 

(Kirasic, 2000), including tasks involving mental rotation (Dobson et al. 1995; 

Hertzog and Rypma 1991; Salthouse et al., 1989; Salthouse 1994).  My recent 

work has shown that in young adults, the early stage of adaptation is associated 
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with SMW (see Anguera Chapter 2).  Given the relationship between SWM and 

age, along with the findings from Chapter 2, I chose to evaluate whether declines 

in SWM contribute to age-related deficits in visuomotor adaptation.   

There is some evidence in the literature to suggest that cognitive declines 

may contribute to visuomotor adaptation deficits.  For example, Raz et al. (2000) 

found that both prefrontal volume and a composite score of nonverbal working 

memory measures2 were significant predictors of performance on a pursuit rotor 

task.  McNay and Willingham (1998) reported age-related visuomotor adaptation 

deficits, but none when visual feedback was removed.  As older adults’ 

adaptation was impaired only when cognitive strategies could be used, these 

authors suggested that age-related adaptation declines could be due to reduced 

working memory resources.  These studies, as well as the young adult findings 

from Chapter 2, suggest that declines in SWM processes may provide at least a 

partial explanation for age-related differences in visuomotor adaptation.   

In the present study, older adults performed both a SWM task and a 

joystick-controlled visuomotor adaptation task while lying prone in an MRI 

scanner.  The visuomotor adaptation task involved making manual aiming 

movements to targets under veridical and rotated visual feedback.  Participants 

also performed a battery of neuropsychological and health assessments.  I 

hypothesized that age-related declines in SWM would underlie deficits in 

visuomotor adaptation for older adults, especially at the early stages of 

                                                 
2 Raz et al. (2000) measured spatial abilities in young and older adults using two tasks: a size judgment 
span task and a spatial relations test.  The size judgment task involved repeating the final 4 objects from an 
expanding list in order of size from smallest to largest.  The spatial relations test required participants to 
choose the correct combination of components to assemble a given shape.  Performance on each task was 
transformed in order to make a composite score of “nonverbal working memory.” 
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adaptation.  Support for this hypothesis would be reflected as a lack of 

correlation and lack of neural overlap between the SWM and visuomotor 

adaptation tasks.  I previously demonstrated that young adults show a correlation 

and neural overlap for these tasks (see Anguera Chapter 2).  In order to better 

characterize correlates of successful aging, I subdivided the older adults into high 

and low performing subgroups based upon each individual’s rate of early 

adaptation, then tested for differences between these two groups and versus 

young adults.   

 

Methods 
 
Participants 

Eighteen older (71.4 ± 4.2 yrs; 9 males) and young participants (these 

participants and their data have previously been reported in Chapter 2) were 

recruited from the community and were paid for their participation.  Each 

participant signed an IRB-approved informed consent document and filled out a 

health history questionnaire (see Appendix D) prior to their participation.  All 

participants were right-handed as assessed using the 20-item version of the 

Edinburgh Inventory (Oldfield, 1971; Older adult mean handedness score = 93 

±.05).   

 

Experimental setup and procedure 

There were two separate days of testing for this experiment.  On day one 

participants performed a series of questionnaires providing an assessment of 
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their cognitive status.  Older adults were administered the Mini-Mental State 

Exam (MMSE; Folstein et al., 1975) and the Mattis dementia rating scale (Mattis, 

1988) in order to potentially exclude participants exhibiting signs of dementia and 

confirm that participants were representative of their respective age group.  A 

minimum MMSE score of 27 and a Mattis score of 123 were required for 

participation.  Older adults were also given a health history questionnaire as well 

as the CHAMPS physical activity questionnaire (Stewart et al., 2001) in order to 

better quantify each participants’ daily activities and general health status.  These 

participants were given the same battery of neuropsychological tests that were 

given to the young adults (see Anguera Chapter 2), and were tested on the 

visuomotor adaptation task, SWM control task (SWMc), and SWM task in the 

same manner as outlined in Anguera Chapter 2.   

 

fMRI acquisition parameters 

The functional images were acquired using the same parameters as for 

the young adults (see Anguera Chapter 2).   

 

Behavioral data processing 

The behavioral data were processed in the same manner as for the young 

adults (see Anguera Chapter 2).  I made the assumption based on previous 

literature that the learning process consisted of two phases (“early” and “late”; cf. 

Krebs et al., 1998).  The early phase would be reflected by a period of rapid 

improvement, while the late phase would be characterized by slower incremental 
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performance gains.  To identify which adaptation blocks comprised the early 

learning period for the group, I searched for the optimal number of consecutive 

adaptation blocks which resulted in the steepest rate of learning (i.e. the slope 

across the 1st two adaptation blocks, the slope across the 1st three adaptation 

blocks, etc.) for the direction error (DE) measure for each subject (see Anguera 

Chapter 2 for description of this measure).  But unlike the young adults (see table 

2.2), older adult’s adaptation slope analysis failed to reveal a breakpoint for the 

early learning period.   

Thus, I designated the 1st 3 and final 3 adaptation blocks as the early and 

late learning periods, respectively, in order to match the young adults 

parameters.  I divided the older adults into separate high and low performing 

groups (HIGH OA and LOW OA) based on a median split of their rate of early 

adaptation.  This was done to examine adaptation differences between each 

group, then use the other measures to potentially explain these differences.  

While this group division creates a limitation of power, it is not uncommon to 

observe this procedure in the cognitive aging literature.  Furthermore, all 

performance effects within the older adult group were already taken into account 

by testing across this group.  As with the young adults, I computed Pearson 

correlations between the rate of learning for each adaptation period with 

performance on the SWM task, measures of health, and performance on each of 

the neuropsychological tests.  

 

fMRI data processing 
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The fMRI data processing steps were the same as with the young adults 

(see Anguera Chapter 2).   

 

fMRI contrasts and regions of interest analyses 

The same fMRI contrasts and whole brain activation correlations 

performed with the young adults were also administered for the older adult group 

(see Anguera Chapter 2).  In addition to the within-group analyses, I also 

examined activation differences between each population using a second-level 

random-effects analysis: young versus older adults, HIGH versus LOW older 

adults, and differences between a randomly selected subgroup of 9 young adults 

(from Anguera Chapter 2) and the HIGH and LOW OAs.  Each of these between 

group analyses used an uncorrected p-value of .001 as a threshold for 

significance, and cluster size ≥ 10 voxels. 

To better characterize age-related differences in brain activation, I created 

regions of interest (ROIs) using the MARSBAR toolbox (Brett et al., 2002) for 

areas that both groups had in common for the SWM > SMWc contrast.  These 

ROIs were based on each group’s separate activation sites to allow for slight 

differences in localization with age.  Following ROI creation, I used the same 

software and parameters for calculating signal change as with the young adults 

(see Anguera Chapter 2).  For each ROI, I also examined activation differences 

between the HIGH and LOW OAs, as well as these groups versus the young 

adult subgroup.  I also computed Pearson correlations for young and older adults 



 

 70

between their ROI activation at early and late adaptation periods with their 

respective rates of learning.    

 

Results 

Behavioral dependent measures- Young and older adults 

I compared each group’s performance on the neuropsychological tests, 

CHAMPS measures, SWM tasks, and early and late rates of learning to 

characterize their cognitive and motor learning abilities (Table 3.1).  Like the 

young adults, older adults performed more poorly on the SWM task than the 

SWMc task, as measured through task accuracy (t(1,17) = 8.63, p< .001).  Older 

adults showed reduced performance in comparison to the young adults on a 

number of the neuropsychological tests (card rotation: F(1, 34) = 13.75, p< .001; 

cube rotation: F(1, 34) = 18.80, p< .001; digit symbol: F(1, 34) = 32.35, p< .001; Corsi 

backward: F(1, 34) = 13.24, p< .001; and reading span task: F(1, 34) = 4.48, p< .05).  

Young adults showed greater accuracy on the SWMc task (F(1, 34) = 16.78, p< 

.001) and the SWM task (F(1, 34) = 15.67, p< .001), as well as faster RT (SWMc: 

F(1, 34) = 24.57, p< .001; SWM: F(1, 34) = 14.28, p< .001).  There was no difference 

in the amount of calories expended (F(1, 34) = 3.21, p> .05) or bouts of exercise 

performed each week (F(1, 34) = .181, p> .65) between the two groups. 

 
Table 3.1. Group mean and standard deviation for performance on each 
behavioral measure.   

Task Units Older adults Young adults 
 

Neuropsych 
   

Card Rotation # of correct cards    32.9 ± 13.0 52.3 ± 20.4** 
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(3 min) 

Cube Rotation # of correct cubes   
(3 min) 1.6 ± 3.3 8.4 ± 6.4** 

Digit Symbol # of correct symbols 
(2 min) 66.2 ± 8.0 79.6 ± 16.2** 

Corsi Forward # of correct trials 7.8 ± 1.5 8.7 ± 1.9 
Corsi Backward # of correct trials 6.5 ± 1.2 8.5 ± 1.9** 

Digit Span 
Forward # of correct trials 11.3 ± 2.1 11.8 ± 2.6 

Digit Span 
Backward # of correct trials 6.8 ± 1.4 7.8 ± 2.5 

Reading Span # of words recalled 27.4 ± 4.8 30.2 ± 6.3 
Edinburgh 
Inventory handedness  .93 ± .05** .83 ± .11 

Dex executive impairment 27.4 ± 4.8* 19.8 ± 8.4 

CHAMPS cal/wk exercise: calories 
expended 4825 ± 2442 6802 ± 3996 

CHAMPS freq/wk bouts of exercise 19 ± 8.3 18 ± 6.3 
MMSE  29.3 ± 1.2 - 

MATTIS  141.3 ± 3.2 - 
 

SWM    

Spatial Rotation 
Accuracy % correct 74% ± 6% 81% ± 7%** 

Spatial Rotation  
RT msec 1580 ± 197** 1257 ± 209 

 
VMA    

 DE (early slope) linear slope  2.0 ± 2.0 3.4 ± 1.0** 
DE (late slope) linear slope 1.2 ± .6 1.3 ± 0.9 

* = p< .05, ** = p< .001 between group difference, with asterisk location indicating which 
group had the greater value.  2/3 min = time limit to perform the task.  cal/wk = calories 
expended per week.  freq/ week = frequency per week of bouts of exercise. VMA = 
visuomotor adaptation. 
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Figure 3.1  Examples of young and older adult visuomotor adaptation performance at early 
adaptation (A) and late adaptation (B).  The open circles represent target locations in 
visual space, while the filled circles represent the target locations in joystick space.  Panel 
A presents trajectories for a young (dark blue) and older participant (yellow) during early 
adaptation.  Panel B shows adapted trajectories from the same subjects during the final 
adaptation block.  

 

 Sample spatial trajectories for a single young and older adult participant  
 
are depicted in Figure 3.1 at the early stages of adaptation (panel A) and late in  
 
adaptation (panel B).  Adaptation to the rotated feedback is shown through the  
 
less distorted trajectories employed in reaching the targets in panel B versus  
 
panel A.  Young adults did adapt at a faster rate at the early adaptation period  
 
than the older adults (F(1, 34) = 9.40, p< .005), but the groups did not differ in  
 
their late learning rate (F(1, 34) = .70, p> .40; Figure 3.2).  Older adults did not  
 
show any difference in the rate of learning between the early and late adaptation  
 
periods (t(1,17)= 1.85, p> .05), unlike young adults who showed a steeper early  
 
rate versus late (t(1,17)= 7.08, p< .0001).  Evaluation of within block group  
 
differences on the visuomotor adaptation task was tested using a repeated  
 
measures ANOVA (RM ANOVA) with age (2) by block (16) by trial (24) for DE. 
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Figure 3.2  Visuomotor adaptation task (group mean ± SD).  Block numbers correspond 
with scanning blocks.  Blocks 1 and 13-16 were performed under veridical visual feedback, 
while blocks 2-12 were performed under 30º clockwise rotation about the center of the 
screen.  Each period is highlighted with the shading, with Non representing the non-vision 
blocks, and AE representing the after-effect blocks.  Young adults’ rate of learning at early 
adaptation was greater than the older adults’ and LOW OAs’ (p< .001), but was not 
different from HIGH OAs’ (p> .5).  There was no difference in the rate of late adaptation 
between any groups.   
 

This analysis resulted in a significant age x block x trial interaction (F(345, 11730) = 

1.23, p< .05), so follow up tests were conducted.  There was no between group 

difference main effect at the control condition (F(1, 34) = 3.76, p> .05), across the 

entire adaptation period (F(1, 34) = 1.64, p> .20), across the 1st 3 adaptation blocks 

(F(1, 34) = .176, p> .50) or the final 3 adaptation blocks (F(1, 34) = 3.07, p> .05).  

Examination of the adaptation period (11 blocks) resulted in a block main effect 

(F(10,340) = 68.40, p< .001), a trial main effect (F(23,782) = 8.20, p< .001), and a 

block x trial interaction (F(230,7820) = 6.98, p< .001).  However, there was no block 
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x trial x age interaction (F(230,7820) = 1.20, p> .05), indicating equivalent 

improvement in performance with practice across the adaptation period for both 

groups. 

   There were no group differences at the non-vision blocks (F(1, 34) = 1.37, 

p> .20).  Both groups showed greater errors at each non-vision block in 

comparison to performance at the control condition (B13 vs. B2 block main 

effect: F(1,34) = 70.69, p< .0001; B14 vs. B2 block main effect: F(1,34) = 44.12, p< 

.0001), with no group differences for either comparison (B13 vs. B2: F(1, 34) = 

2.70, p> .10; B14 vs. B2: F(1, 34) = 3.10, p> .05).  There was a group difference at 

the after-effect blocks, with older adults exhibiting higher errors (F(1, 34) = 5.57, p< 

.05).  Both groups showed greater errors at each after-effect block versus the 

control condition (B15 vs. B2 block main effect: F(1,34) = 71.02, p< .0001; B16 vs. 

B2 block main effect: F(1,34) = 84.24, p< .0001).  There was no group difference 

comparing the 1st after-effect block and the control condition performance (B15 

vs. B2: F(1, 34) = 3.10, p> .05).  However, older adults showed a greater difference 

between the the control condition and 2nd after-effect blocks (B16 vs. B2: F(1, 34) = 

10.11, p< .005). 

 

Behavioral dependent measures- HIGH vs. LOW OAs 

I compared HIGH and LOW OAs’ performance on the neuropsychological 

tests, SWM tasks, and early and late rate of learning to identify potential 

differences in their cognitive and motor learning abilities.  There were no 

significant differences in performance between these groups for any measure 
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reported in Table 3.1, except for the HIGH OAs having a steeper early DE rate of 

learning (F(1, 16) = 32.58, p< .001), which is how the two groups were defined.  For 

the adaptation task, HIGH OAs were less accurate at the control condition than 

LOW OAs (F(1, 16) = 8.52, p< .05).  An analysis of the 1st three adaptation blocks 

revealed HIGH OAs showed a trend towards better performance than LOW OAs 

(F(1, 16) = 4.04, p= .06).  There was no difference between HIGH and LOW OAs 

across the entire adaptation period (F(1, 16) = 1.79, p> .15), the final 3 adaptation 

blocks (F(1, 16) = 1.07, p> .30), the non-vision blocks (F(1, 16) = .05, p> .80), or the 

after-effect blocks (F(1, 16) = .59, p> .40).    

 

Behavioral dependent measures- HIGH and LOW OAs vs. young adults  

I compared HIGH and LOW OAs’ performance separately to the young 

adults on each measure in Table 3.1 to test for age-related differences for each 

subgroup in their cognitive and motor learning abilities.  Both HIGH and LOW 

OAs showed the same performance deficits as the pooled older adults when 

compared to the young adults in Table 3.1.  HIGH OAs had an early adaptation 

rate equivalent to young adults (F(1, 24) = .209, p> .60), while the young adults 

adapted at a faster rate than LOW OAs (F(1, 24) = 54.03, p< .001).  HIGH OAs, 

LOW OAs, and young adults all had equivalent late adaptation rates (HIGH OA: 

F(1, 24) = .264, p> .60; LOW OA (F(1, 24) = .640, p> .40).  After creating a young 

adults subgroup of 9 randomly selected participants to match the number of 

participants in each older adult subgroup, no differences were observed between 

LOW OAs and young adults for the control condition (F(1, 16) = .79, p> .35); 
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however, these young adults were more accurate than the HIGH OAs for the 

control condition (F(1, 16) = 7.14, p< .05).  Across the entire adaptation period, 

there was no difference between either group and the young adults subgroup 

(HIGH OA: F(1, 16) = .14, p> .70; LOW OA: F(1, 16) = 1.65, p> .20).   An analysis of 

the 1st three adaptation blocks revealed there was no group difference at the 1st 3 

adaptation blocks for either older adult group compared to the young adults 

subgroup (HIGH OAs: (F(1, 16) = 3.72, p> .05); LOW OAs: (F(1, 16) = .04, p> .80)), 

the final 3 adaptation blocks (HIGH OAs: (F(1, 16) = .22, p> .60); LOW OAs: (F(1, 16) 

= 3.05, p> .10), the non-vision blocks (HIGH OAs: (F(1, 16) = .04, p> .80); LOW 

OAs: (F(1, 16) = .28, p> .60), or the after-effect blocks (HIGH OAs: (F(1, 16) = 1.96, 

p> .15); LOW OAs: (F(1, 16) = .435, p> .50). 

  

Behavioral Correlation Analysis  

I performed a correlation analysis between each measure in Table 3.1 in 

addition to measures of health to examine which cognitive processes may be 

contributing to the early and late rate of learning in older adults (Table 3.2).  

Unlike the young adults, older adults did not show a correlation between the card 

rotation task (a visuospatial working memory task) and rate of early adaptation (r 

= .02, p> .70).  The young adults correlation value here was also statistically 

greater than that for the older adults (z= -1.72, p< .05; see Figure 3.3A).  

However, older adults’ Corsi block forward performance (a test of visuospatial 

short term memory) correlated with the rate of early adaptation (r = .51, p< .05).  

The older adults’ correlation value here was greater than that of the young adults 
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(z= 1.82, p< .05).  Further examination of this correlation revealed its significance 

depended upon the HIGH OAs, who had a greater correlation value than the 

LOW OAs (z= 1.64, p< .05; see Figure 3.3B).  However, these significant 

correlations were driven by one HIGH OA.  Although this individual was not a 

statistical outlier, removal of their data point abolished the significant correlations 

(Older adults: p = .12, HIGH OAs: p = .09).  Similarly, the removal of the lowest 

LOW OA, although not a statistical outlier again, led to a significant Corsi block 

forward correlation for this group (p< .05).  Tests of short term verbal memory 

(i.e. digit span, reading span) also did not correlate with the rate of early or late 

adaptation, suggesting that older adults did not utilize these non-spatial cognitive 

resources to reach similar levels of performance as the young adults.  Similarly, 

no measure of health or mental status correlated with the rate of early or late 

adaptation for the older adults.   
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Table 3.2.  Older adult performance correlations.  

 
* = p< .05, ** = p< .005; Cal/wk. = Calories per week, H/wk = hours per week 
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Figure 3.3.  Correlations between early rate of learning and card rotation task for young and older adults (panel A), and 
correlations between early adaptation rate of learning and Corsi forward task (panel B) for HIGH and LOW OAs.  Young adults’ 
card rotation performance and HIGH OAs Corsi forward performance correlated with early adaptation slope.  * = p < .05. 
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fMRI- Older adult within group SWM and visuomotor adaptation activation  

The behavioral correlation analysis suggested that older adults were not 

using SWM resources during the early adaptation period.  This was further tested 

by creating a limiting mask from the older adult SWM > SWMc contrast activation 

(as in Anguera Chapter 2) and applying it to the early and late adaptation 

periods.  This analysis confirmed that there were no brain regions that 

overlapped with either early or late visuomotor adaptation.  All within older adult 

group results regarding the SWM and adaptation task are described briefly here, 

with tables for each contrast presented as supplementary material in the 

appendix (see Appendix Tables C.1-C.5).  Older adult early adaptation activation, 

with respect to the non-rotated control blocks, was observed in the right medial 

frontal/cingulate gyrus and middle temporal gyrus (see Appendix Table C.1).  

Late adaptation activation was in turn observed in the right inferior parietal lobule 

(IPL; see Appendix Table C.2).  Older adult SWM > SWMc activation was 

associated with bilateral DLPFC and IPL activation, consistent with a previous 

investigation using a similar task (Reuter-Lorenz et al., 2000; see Appendix Table 

C.3) and comparable to what I previously found with the young adults (see Figure 

3.4).  Activation at the non-vision and after-effect blocks compared to the control 

condition both showed activation again in the right IPL (see Appendix Table C.4-

C.5).   
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Figure 3.4.  Young and older adults SWM > SWMc glass brain activation profiles.  See 
Tables C.3 and 2.4 for further description of the areas engaged for the young and older 
adults, respectively.    
 

fMRI- Older adult whole brain activation correlations with performance 

 To identify regions whose activation correlated with a steeper rate of 

learning, a whole brain activation correlation was performed with each 

participant’s rate of early and late adaptation.  At the early adaptation period, this 

analysis revealed activation in the right middle temporal gyrus (see Table 3.3), 

while there were no regions whose late activation correlated with the rate of late 

adaptation.  To identify regions whose activation correlated with a participants’ 

within block performance, the same analyses were performed using each 

participant’s mean DE score.  At the early adaptation period, this analysis 

showed broad activation in a number of frontal (right medial frontal gyrus & right 

anterior cingulate cortex), motor (right primary motor cortex), parietal (right IPL), 

temporal (bilateral superior temporal gyrus), and cerebellar regions (see Table 

3.4).  When this analysis was performed with the late learning activation and 

scores, activation in the left primary motor cortex and right cerebellum was 



 

 82

observed, among other regions (see Appendix Table C.6).  Whole brain 

activation correlations involving SWM accuracy and reaction time showed 

activation in the right inferior frontal gyrus (IFG) and bilateral IPL, respectively, 

among other regions; these data are presented as supplementary material in the 

Appendix (see Appendix Tables C.7-C.8).   

 

 

BA = Brodmann area; R = right; MTG = middle temporal gyrus 
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; SFG = superior frontal 
gyrus; MeFG = medial frontal gyrus; ACC = anterior cingulate cortex; M1 = primary motor 
cortex; S1 = primary somatosensory cortex; LPMc = lateral premotor cortex; MePMc = 
medial premotor cortex; IPL = inferior parietal lobule; SPL = superior parietal lobule; MTG 
= middle temporal gyrus; STG = superior temporal gyrus; Hippo = Hippocampus;  H VI = 
hemisphere 6 of the cerebellum; CR I = hemisphere Crus I of the cerebellum; VA = ventral 
anterior. 
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fMRI- Young versus older adults 

 Young adults steeper early rate of learning than older adults suggested a 

potential difference in the underlying neural activation patterns, so I performed a 

between group analysis at early and late adaptation.  Young adults activated a 

number of frontal and motor regions, including the right MFG/DLPFC, to a 

greater extent than older adults at the early adaptation period (Table 3.5), while 

older adults did not activate any region to a greater extent than the young adults 

during early learning.  There were no between group activation differences 

observed at late adaptation or the non-vision blocks.  Young adults showed 

greater prefrontal activation, including bilateral MeFG, than the older adults at the 

after-effects blocks (see Appendix Table C.9), while older adults did not activate 

any region to a greater extent than the young adults.  For the SWM task, older 

adults engaged a number of regions, including the right MFG/DLPFC, to a 

greater extent than the young adults (see Appendix Table C.10), while young 

adults showed greater activation than older adults only at the right IPL during this 

task (see Appendix Table C.11).  The older adult activation here was more 

bilateral in nature compared to the young adult SWM > SWMc contrast (see 

Appendix Figure C.3). 

 In general, the ROI activations followed a similar pattern as the between 

group activation contrasts: young adults showed equal or greater activation than 

the older adults for both early and late adaptation, while older adults displayed 

comparable or greater activation for the SWM task (see Figure 3.5).  A 2 (task, 

early adaptation x SWM) by 6 (each ROI) ANOVA resulted in a task x group 
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interaction (F (1, 32)  = 14.25, p < .0001) as well as a ROI x group interaction (F (5, 

160)  = 3.80, p < .01).  Follow up tests of the ROI x group interaction revealed a 

significant task x group effect for each ROI (all greater than F (1, 32)  = 7.01, p < 

.01) except for the R DLPFC (F (1, 32)  = 2.60, p > .10).  ROI activation for each 

period and their behavioral counterparts (early and late rate of learning, SWM 

accuracy) were entered into a pooled group partial correlation controlling for age.  

One significant correlation emerged: early DE rate of learning was significantly 

correlated with the right DLPFC early activation (r = .42, p< .05; see Figure 3.6).   
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BA = Brodmann area; R = right, L = left; DLPFC = dorsolateral prefrontal cortex; MFG = 
middle frontal gyrus; MeFG = medial frontal gyrus; CG = cingulate gyrus; S1 = primary 
somatosensory cortex; S2 = Secondary somatosensory cortex; MOG = middle occipital 
gyrus; STG = superior temporal gyrus; DM = dorsal medial.   
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Figure 3.5.  ROI activation from regions defined by the SWM > SWMc contrasts for young 
and older adults.  Mean activation and standard error for each adaptation period (control 
(ctrl), early, late, non-vision (Non), and after-effect (AE), SWMc, and SWM). * = p< .05 
reflects activation differences between groups for each period.  See Appendix Table C.12 
for ROI characteristics. 
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Figure 3.6.  Right DLPFC cortex activation correlation with early rate of adaptation.  VMA = 
visuomotor adaptation.  The fit line/Pearson score reflects the pooled scores for both 
groups; a partial correlation controlling for age also resulted in a significant effect here (r 
= .42, p< .05).  ** = p < .01 
 

fMRI- HIGH versus LOW OAs 

 The early rate of learning difference between HIGH and LOW OAs 

suggested different neural activation patterns, so I performed a between group 

analysis.  A comparison for the early adaptation period revealed that LOW OAs 

engaged the left middle temporal gyrus and right sensorimotor cortex to a greater 

extent than HIGH OAs (see Appendix Table C.13), with HIGH OAs failing to 

engage any regions to a greater extent than LOW OAs.  At the late adaptation 

period, LOW OAs activated only the right middle occipital gyrus to a greater 

extent than the HIGH OAs, with HIGH OAs failing to engage any regions to a 

greater extent than the LOW OAs (see Appendix Table C.14).  HIGH OAs 

engaged the right MFG to a greater extent than LOW OAs during the non-vision 
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blocks, with LOW OAs failing to engage any regions to a greater extent than 

HIGH OAs here (see Appendix Table C.15).  There were no group differences in 

activation during the after-effect period.  For the SWM activation, HIGH OAs 

engaged a number of regions to a greater extent, including the right IFG, left 

MFG, and bilateral MTG, while LOW OAs failed to engage any regions to a 

greater extent than the HIGH OAs (see Appendix Table C.16).   

 There were no between group differences observed for any of the ROI 

activation at the early, late, or SWM periods.  However, at the non-vision blocks 

HIGH OAs showed greater activation at the right IFG and bilateral IPL; there 

were no group differences at the after-effect blocks except for the right IFG (see 

appendix figure C.1).  A 2 (task, early adaptation x SWM) by 6 (each ROI) 

ANOVA also resulted in no significant interactions. 

 

fMRI- HIGH and LOW OAs versus young adults subgroup 

 The similar early rate of learning between the young adult subgroup and 

HIGH OAs, with both groups showing a steeper rate compared to the LOW OAs, 

spurred further between group examinations of this period to better characterize 

these findings.  The young adults subgroup engaged a number of frontal (right 

MeFG) and temporal (right MTG and STG) regions to a greater extent than the 

HIGH OAs during early adaptation (Table 3.7).  Compared to LOW OAs, the 

young adults subgroup engaged the right IFG and pre-SMA, among other 

regions (Table 3.8) to a greater extent.  There were no regions which either older 

adult subgroup activated more than their young adults counterparts at early 
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learning.  At late learning, the young adults subgroup engaged the left 

cerebellum to a greater extent than the HIGH OAs (see Appendix Table C.17).  

There were no areas which the young adults subgroup activated to a greater 

extent that the LOW OAs, nor were there any regions which either older adult 

subgroup engaged to a greater extent than these young adults at late learning.  

Activation differences between the HIGH and LOW OAs and the young adults 

subgroup for the SWM periods are described in detail in the appendix (see 

Appendix Tables C.18-19).   

 The young adults subgroup showed greater ROI activation than the LOW 

OAs, with HIGH OAs exhibiting equivalent activation, in the right DLPFC and left 

IFG during the early adaptation period (see Figure 3.6).  These young adults also 

showed greater activation than both groups in the left DLPFC and right IPL.  The 

activation difference in the left DLPFC between the young adults subgroup and 

LOW OAs persisted into the late adaptation.  A 2 (task, early adaptation x SWM) 

by 6 (each ROI) ANOVA resulted in a task x group interaction (F (2, 24)  = 6.28, p < 

.01) and a near significant ROI x group interaction (F (10, 120)  = 1.93, p = .052).  

Follow up tests of the ROI x group interaction revealed a significant task x group 

effect for each ROI (all greater than F (2, 24)  = 3.53, p < .05) except for the R 

DLPFC (F (2, 24)  = 2.37, p > .10).
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YA (n=9) = young adult subgroup; BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; MeFG = medial frontal 
gyrus; DPMc = dorsal premotor cortex; MePMc = medial premotor cortex; LPMc = lateral premotor cortex; MePMc = medial 
premotor cortex; MTG = middle temporal gyrus; STG = superior temporal gyrus; MOG = middle occipital gyrus. 
 

91



 

 92

  
 
Figure 3.7.  ROI activation from regions defined by the SWM > SWMc contrasts for HIGH 
OAs, LOW OAs, and the young adults subgroup (YA).  Mean activation and standard error 
for each adaptation period (control (ctrl), early, late, non-vision (Non), and after-effect (AE), 
SWMc, and SWM). * = p< .05, * = p< .01 reflects activation differences between the young 
adults subgroup and each older adult group for each period.  See Appendix Table C.12 for 
ROI characteristics. 
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Discussion 

In this study, I tested the hypothesis that age-related declines in SWM 

could partially explain age-related declines in visuomotor adaptation.  By 

examining the age-related neural correlates of sensorimotor adaptation using 

fMRI, support was provided for neural-based hypotheses described in previous 

behavioral work regarding aging and visuomotor adaptation.  My findings 

revealed that older adults’ rate of early adaptation did not correlate with SWM 

measures, nor did their activation at this period overlap with their SWM activation 

despite having a pattern of SWM activation comparable to or greater than that of 

young adults.  Given that these relationships were significant in young adults, the 

results support my hypothesis that age-related differences in SWM at least 

partially explain age-related declines in visuomotor adaptation.   

 
 
Behavioral SWM correlations with visuomotor adaptation 
 
 Older adults’ rates of early and late adaptation were equivalent, with the 

early adaptation rate being slower than that of the young adults.  Moreover, older 

adults’ card rotation, cube rotation, and SWM accuracy were significantly poorer 

compared to the young adults, with none of these tests correlating with rate of 

early adaptation for the older adults (unlike the young adults, see Anguera 

Chapter 2).  It is important to clarify that older adults’ deficits in SWM measures 

did not explain their reduced early rate of adaptation, as there was no correlation 

between these measures.  Rather, these findings suggest age-related 

ineffectiveness in SWM resource utilization during the early adaptation period 
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compared to the young adults.  This interpretation leads to the following question:  

how are older adults performing visuomotor adaptation compared to young 

adults? 

I previously proposed that SWM contributes to visuomotor adaptation for 

recalling, manipulating, and comparing the original visuomotor mapping to the 

rotated state, with these series of steps being comparable to those engaged 

during mental rotation tasks (see Anguera Chapter 2).  While older adults 

showed poorer performance versus the young adults on the SWM measures, 

they still were able to complete these tasks at a level above chance.  This 

suggests that older adults may have been using some yet to be determined 

additional strategy, in addition to their reduced SWM resources, during each 

SWM measure and the visuomotor adaptation task.  This question also highlights 

an important distinction between performance and the rate of adaptation: at the 

early adaptation period, both groups showed equivalent performance at early 

learning, while young adults adapted at a faster rate than the older adults.  Thus, 

older adults were still able to perform this task, but the inability to effectively 

utilize their SWM resources at this period is evidenced by the slower rate of 

adaptation (as well as the greater performance variability during early 

adaptation).          

 Aside from the significant difference in the early rate of adaptation (which 

is how the groups were defined), HIGH versus LOW OAs did not differ in 

performance on any of the neuropsychological assessments of working memory, 

dementia screening tests, age, or self-reports of fitness level and health.  The 
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lack of difference here may reflect the challenge of selecting appropriate and 

sensitive measures that would distinguish these differences.  Likewise, the older 

adult variability from this university-area population tested may be an issue, given 

that these individuals may be considered HIGH OA compared to the overall older 

adult population.  

 

SWM, early, and late adaptation activation – Young and older adults 

Older adults showed bilateral frontal and parietal activation, including the 

right DLPFC, for the SWM task.  These results were in agreement with older 

adult SWM activation previously reported for this paradigm (Reuter-Lorenz et al., 

2000), with older adults showing greater bilateral activation than the young adults 

(see Appendix Figure C.3).  This pattern of activation is in line with cognitive 

aging research describing a compensatory effect of bilateral activation in older 

adults (Cabeza et al., 2002; Reuter-Lorenz et al., 2000) although these 

differences were evaluated here in a qualitative fashion.  Older adult SWM 

activation was also very similar to the pattern of activation observed for the 

young adults performing this task (see Figure 3.4, Anguera Chapter 2 Table 2.5).  

When the early adaptation period was masked with this SWM activation, older 

adults did not show any significant overlap (unlike young adults).  Even when a 

much more liberal threshold for significance was used (uncorrected p< .25), no 

regions reached significance, suggesting that these results were not simply due 

to a lower signal to noise ratio (SNR) in the older adults (D’Esposito et al., 1999; 

Huettel et al., 2001).   
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Examination of the ROI activation suggests that older adults were able to 

successfully engage several regions involved in the SWM network during the 

SWM task, but then failed to recruit these areas effectively during the early 

adaptation period.  The importance of SWM regions in early adaptation was 

supported through the task x group interaction observed as well as the partial 

correlation (controlling for age) between the early rate of adaptation and 

activation at the right DLPFC.  It was not the case that older adults recruited 

these regions later in the adaptation period than the young adults; rather, they 

may be relying on other (yet to be determined) strategies in addition to their 

reduced SWM resources.  These findings follow those from the behavioral 

correlations: that is, young adults’ more effective engagement of SWM resources 

during early adaptation than older adults led to a between-group rate of learning 

difference. 

Young adults engaged a number of motor and frontal (including the right 

DLPFC) regions to a greater extent than older adults during early adaptation.  

Similarly, the ROI activation at early learning also showed that young adults had 

greater bilateral IFG, left DLPFC, and right IPL activation versus older adults.  

These findings are in contrast to several imaging studies showing that older 

adults exhibit stronger and/or more widespread brain activation patterns than 

young adults during the execution of a tapping (Calautti et al., 2001; Mattay et al., 

2002), gripping (Ward and Frackowiak, 2003), and a complex interlimb 

coordination task (Heuninckx et al., 2005; 2008a; 2008b).  These studies differ 

from the current investigation, however, in that they focused on stable motor 
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performance rather than motor learning.  These previous studies either used a 

very simple motor task (Mattay et al., 2002) or had participants practice the task 

until a specified level of performance was reached before scanning (Calautti et 

al., 2001; Heuninckx et al., 2005; 2008a; 2008b; Ward and Frackowiak, 2003), in 

essence removing learning-related activation.  Given young adults’ faster rate of 

early adaptation, the greater activation likely reflects areas involved with both the 

adaptation and performance processes.   

     

HIGH and LOW OA activation 

The early adaptation between group contrasts revealed that LOW OAs 

showed greater activation than HIGH OAs.  This activation pattern is opposite to 

what has frequently been reported for HIGH versus LOW OAs for cognitive tasks 

(Cabeza et al., 2002; Rypma and D’Esposito, 2000).  However, Jaeggi et al. 

(2007) reported that high performing young adults had less activation compared 

to low performing young adults for a challenging cognitive task (also see Rypma 

and D’Esposito, 1999; Rypma et al., 2002).  Specifically, low performing young 

adults engaged additional/non-pertinent resources during the early (‘cognitively 

challenging’) task period, while high performing young adults showed minimal 

activation.  The authors interpreted this as reflecting more efficient processing, 

which corresponded with better performance.  The present findings suggest that 

the HIGH OAs are more “efficient”, in accord with Haier and colleagues’ (1992) 

neural efficiency hypothesis, which suggests that learning results in decreased 

use of extraneous or inefficient brain areas.  These results, supported by the lack 
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of task x group and task x ROI interactions, suggest that the pattern of activation 

differences between HIGH and LOW performing OAs may be task dependent. 

 

Older adult visuomotor correlations between performance/activation 
 

Only the right middle temporal gyrus (MTG) showed activation that was 

correlated with the rate of early adaptation for the older adults.  Activation in this 

region has been previously observed during late adaptation for young adults 

(Della-Maggiore and McIntosh, 2005), with its function associated with 

visuospatial endpoint control (Anguera et al., 2007; Graydon et al., 2005).  Older 

adults’ mean early DE score (which did not show age-related declines) whole 

brain correlation with early adaptation activation resembled young adults’ early 

adaptation activation (see Appendix Figure C.2).  However, older adults’ 

activation did not include the right DLPFC (unlike the young adults), supporting 

an age-related dissociation at the early adaptation period involving this region 

and its associations with SWM.  This interpretation is supported by the pooled 

partial correlation between the early adaptation rate of learning and activation at 

the right DLPFC.  However, this correlation was only significant with both groups 

pooled, as each group alone did not show this correlation.  Increased power 

through group pooling appears to be driving this effect, as well as a range effect 

given the differences in variability between the two groups.  This variability in the 

older adults also appears to be driving the non-significant R DLPFC ROI x group 

interactions. 
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Larger early mean DE error was associated with greater activation at a 

number of regions including the right inferior parietal lobule (IPL), right motor and 

premotor regions, right anterior cingulate cortex (ACC), and right cerebellum, 

among others.  Neuroimaging studies of sensorimotor adaptation have reported 

ACC activation during the adaptation process (Miall et al., 2001; Graydon et al., 

2005; Seidler et al., 2006; Anguera et al., 2007).  Activation at this region is 

thought to reflect an active monitoring system that reacts to the presence of 

conflict and/or performance errors (Botvinick et al., 1999; Carter et al., 1998; 

Gehring et al.1993; Gehring & Knight, 2000; Yeung et al., 2004), with activity 

scaling with visuomotor adaptation error magnitude (Anguera et al., in 

preparation).  This interpretation is in agreement with the present findings, as 

poorer performance (higher errors) for the older adults was associated with 

increased activation at this region. 

Cerebellar activation has also been reported in visuomotor adaptation 

neuroimaging studies (Clower et al., 1996; Imamizu et al., 2000, 2003; Krakauer 

et al., 2004; Seidler and Noll, 2008).  This region is also associated with 

movement trajectory production, as shown in experiments with cerebellar 

patients (Brown et al., 1993), and plays a role in internal model formation 

(Imamizu et al., 2000, 2003; Kawato, 1999; Kawato and Wolpert, 1998; Wolpert 

et al., 1998; Seidler and Noll, 2008).  Raz et al. (2000) demonstrated that age-

related cerebellar volume declines were associated with reduced performance on 

a pursuit rotor task, in line with greater activation here reflecting better task 

performance.  The correlation between cerebellar activation and performance at 
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both the early and late adaptation periods suggests a progressive development 

of the internal model (cf. Imamizu et al., 2000, 2003).  Thus, less effective 

engagement of cerebellar regions may underlie age-related deficits in visuomotor 

adaptation; however, this interpretation requires further analysis given that the 

between group activation contrasts at early and late learning did not reveal 

cerebellar activation differences.  

 

Non-vision & after-effects 

All subjects showed persistent errors during the non-vision and aftereffect 

periods, supporting that adaptive recalibration had occurred.  McNay and 

Willingham (1998) reported no age group differences during a visuomotor 

adaptation non-vision period following adaptation.  These authors suggested that 

any age-related working memory deficits impacting cognitive strategy utilization 

would be absent during this period (unlike the adaptation period), as strategies 

would be less effective without visual feedback to support their use.  The current 

behavioral results partially support this statement, as SWM resources played a 

distinct role in young adults versus older adults at the early adaptation stage.         

No whole brain activation differences were observed between older adults 

and young adults during the non-vision period.  However, the ROI activation 

during the non-vision period in the right IPL was greater in young adults versus 

older adults, as well as the young adults subgroup versus LOW older adults.  

This region has been shown to contribute to visuomotor adaptation (Anguera et 

al., 2007; Anguera Chapter 2; Clower et al., 1996; Inoue et al., 1997, 2000), with 
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age differences in ROI activation also present at early adaptation.  I suggest that 

the activation difference may underlie performance deficits in transformation of 

the sensorimotor coordinates to the non-vision condition. 

At the after-effect blocks, older adults showed greater behavioral after-

effects than the young adults, in agreement with previous visuomotor adaptation 

studies (Fernández-Ruiz et al., 2000; Seidler, 2006; however, see Bock, 2005; 

Buch et al., 2003).  Young adults showed greater engagement of prefrontal 

regions versus older adults at this period, through both activation contrasts (right 

MFG, bilateral MeFG) and the ROI activation differences (right DLPFC, bilateral 

IFG).  The engagement of these cognitive control areas suggests that they 

contribute to the re-adaptation process, reflected by young adults having less 

persistent after-effects than older adults.  These findings support previous data 

suggesting that strategic control implementation is affected by advancing age 

(McNay and Willingham, 1998).    

  

Conclusions 

Age-related difficulties in the effective engagement of SWM resources 

were associated with age-related visuomotor adaptation deficits, especially 

during the early adaptation period.  This was evidenced by a lack of neural 

overlap between the early adaptation period and SWM task performance, as well 

as the partial correlation with early adaptation rate of learning with the right 

DLPFC ROI activation.  Importantly, older adults engaged similar regions during 

the SWM task as the young adults; however, they failed to utilize these regions 
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effectively during the early adaptation period.  HIGH OAs not only had a greater 

rate of early adaptation than LOW OAs, they also showed equivalent early 

adaptation ROI activation compared to the young adults subgroup at a SWM-

associated region (right DLPFC), unlike LOW OAs.  HIGH OAs also showed 

‘cooler brains’ during the early adaptation period, suggesting that reduced 

performance for the LOW OAs was a reflection of excessive or inefficient neural 

activation.  These findings suggest age-related differences in the rate of 

visuomotor adaptation can be attributed to specific cognitive factors, with the 

effective engagement of spatial resources beginning to explain these differences.      
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CHAPTER IV: 
 

General Discussion and Conclusions 
 

Overview 
 

The goal of this dissertation was to determine whether spatial working 

memory (SWM) plays a role in visuomotor adaptation for young and older adults.  

I found evidence that young adults engage SWM processes during the early, but 

not late, phase of visuomotor adaptation (Chapter 2).  In contrast, older adults do 

not, despite showing relatively intact brain activation patterns during performance 

of a SWM task (Chapter 3).  These results support the idea that the early stage 

of visuomotor adaptation relies on cognitive processes (Eversheim and Bock, 

2001; Taylor and Thoroughman, 2007, 2008; however, see Mazzoni and 

Krakauer, 2006), with older adults showing a reduced rate of adaptation possibly 

due to ineffective engagement of these processes.  These findings lead to a 

number of future directions regarding age-related deficits in visuomotor 

adaptation, several of which are described below.     

 

The potential role of inhibition 
 
 The young adults neural overlap results support a role for SWM in 

visuomotor adaptation; however, there were other brain areas associated with 

early adaptation outside of the SWM mask analysis.  For example, the young 
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adults early adaptation > control contrast showed bilateral basal ganglia 

activation (see Table 2.5).  Basal ganglia engagement  has previously been 

reported using the same adaptation task (Seidler et al., 2006), and is suggested 

to support both spatial cognitive and sensorimotor processes contributing to 

adaptation.  Whole brain activation correlations with older adults’ mean early DE 

score showed bilateral activation in the premotor cortex (PMC), the anterior 

cingulate cortex (ACC), and right cerebellum (see Table 3.4)3.  Bilateral PMC 

activation has been previously observed for this task (Anguera et al., 2007), with 

right PMC engagement believed to contribute to movement preparation (Praeg et 

al., 2005), while left PMC engagement has been associated with online 

movement corrections (Lee and van Donkelaar, 2006).  The activation at these 

other regions outside of the SWM mask suggests that additional underlying 

cognitive mechanisms are contributing to visuomotor adaptation.   

 Another cognitive process that may play a role during early adaptation is 

inhibition.  There are many different types of inhibition (response inhibition, task 

switching, interference resolution, etc; cf. Aron, 2007), each of which could 

contribute to visuomotor adaptation.  For example, participants need to inhibit 

their prior visuomotor mapping while developing a new representation during the 

adaptation period.  Inhibition has primarily been associated with activation in the 

right IFG (cf. Aron et al., 2004), although there is also evidence for bilateral and 

left IFG recruitment for assisting interference resolution (D’Esposito et al., 1999; 

Jonides et al., 1998; Thompson-Schill et al., 2002) and response inhibition on 

                                                 
3 The proposed roles of the ACC and cerebellum in early visuomotor adaptation have been 
discussed earlier in Chapter 3. 
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Go/NoGo tasks (Konishi et al., 1999).  Young adults showed a correlation 

between activation in the right IFG and the mean DE score during early learning 

(Figure 2.8), as well as greater activation here versus older adults (Figure 3.4).  

These findings suggest the possibility of at least one form of inhibition 

contributing to the rate of early adaptation group differences.   

 As previously described, one possible role for inhibition during visuomotor 

adaptation  is the suppression of the previously learned visuomotor mapping.  

Brosseau and colleagues (2007) hypothesized that inhibitory control deficits 

regarding competing motor memories may explain age-related difficulties with 

mirror tracing (Brosseau et al., 2007).  Selecting among competing 

representations has been associated with left IFG engagement (Zhang et al., 

2004), which in the present study may reflect performing in the veridical versus 

rotated environment.  Matsubara et al. (2004) showed that left IFG engagement 

was also associated with the inhibition of a well-learned manual behavior.  More 

specifically, these authors observed left IFG activation when participants were 

instructed to lose when playing rock-paper-scissors.  In the present study, young 

adults showed greater left IFG activation compared to older adults and LOW 

OAs, providing additional support for early adaptation deficits being associated 

with age-related declines in inhibition.  This hypothesis would obviously require 

additional testing, but it appears to be a fruitful avenue for future research. 

 Examining the role of inhibition during visuomotor adaptation would 

involve disentangling the contributions of the different types of inhibition.  The 

involvement associated with each type of inhibition could be tested through 



 

 112

behavioral correlations, as inter-correlations among different inhibitory measures 

have shown to be low (Kramer et al., 1994; Davidson and Glisky, 2002).  Smith 

et al. (2008) were able to dissociate between motor and non-motor inhibition 

effects in an EEG GO/NOGO study, providing additional support that 

distinguishing between inhibition types during the motor learning process may be 

possible.  A dual-task approach that identifies the time-course of reliance of 

certain processes (cf. Eversheim and Bock, 2001) could also be useful in 

attempting to examine the different contributions of distinct forms of inhibition.  

Both approaches would potentially provide evidence regarding how inhibition 

plays a role in the motor learning process, further supporting the use of cognitive 

control processes during motor learning.   

 

Do young adults rely on SWM for other forms of motor learning? 
 
 One remaining question is whether SWM also contributes to other types of 

motor learning such as sequence learning, trajectory learning, or even other 

forms of visuomotor adaptation such as mirror tracing.  For example, pursuit rotor 

task performance has shown to be correlated with nonverbal working memory 

measures (Raz et al., 2000)4.  PET and functional near-infrared spectroscopy 

(fNIRS) imaging studies of this task have reported activation in a number of 

regions including the cerebellum, primary motor cortex, SMA, preSMA, and IPL 

(Grafton et al., 1992, 1994; Hatakenaka et al., 2007).  However, none of these 

studies reported activation in the right prefrontal cortex, a region which has 

                                                 
4 These measures are described in greater detail in Chapter 3. 
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repeatedly been associated with SWM tasks (Cohen et al., 1996; Courtney et al., 

1998; Gauthier et al., 2002; Jonides et al., 1993; McCarthy et al., 1996; Reuter-

Lorenz et al., 2000; Walter et al., 2003).   

Imaging studies of maze tracing have shown similar activation patterns as 

the pursuit rotor task (e.g. cerebellum, primary motor cortex, SMA, preSMA, and 

IPL, among others), with the right prefrontal cortex showing deactivation during 

tracing (Balslev et al., 2004; Van Meir et al., 1998).  This is not surprising given 

that maze tracing (and pursuit rotor) do not require making a visuospatial 

transformation.  However, mirror tracing (which requires formation of a new 

visuomotor map) has shown increased bilateral activation at the prefrontal cortex 

(Balslev et al., 2004), suggesting the engagement of SWM processes for learning 

the new visuomotor mapping. Thus, the use of SWM resources appears to be 

dictated by the task.   

Imaging studies of sequence learning have shown young adults utilize 

working memory resources during learning (Jenkins et al., 1994; Jueptner et al., 

1997a; Hazeltine et al., 1997), including the right DLPFC (Toni et al., 1998; 

Seidler et al., 2002).  Recent work from this laboratory has also demonstrated 

young adults’ reliance on spatial processes during sequence learning, as their 

performance was impaired when the spatial components of the response were 

removed (Bo and Seidler, 2007).  Doyon and colleagues (2003) have outlined 

literature showing that both motor sequence and motor adaptation tasks recruit 

similar cerebral structures in the early learning phase, including prefrontal 

regions.  Thus, it may be that SWM is relied on in a similar fashion and time-
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course to visuomotor adaptation for sequence learning.  However, even if the 

same neural regions are engaged, it does not mean that there is an overlap of 

the processing components (e.g. Dahlin et al., 2008)5.  Thus, future work is 

warranted to establish whether both the underlying strategies and neural regions 

engaged for sequence learning overlap with those of visuomotor adaptation. 

  

Do age-related SWM deficits impact other forms of motor learning? 
 

Another remaining question is whether a failure to effectively recruit SWM 

processes in the early adaptation period would account for age-related deficits in 

other forms of motor learning.  Age-related differences have been observed for 

the pursuit rotor task (Raz et al., 2000; Kennedy et al., 2007), mirror tracing tasks 

(Etnier and Landers, 1988; Rodrigue et al., 2005; Kennedy et al., 2005), and 

sequence learning tasks (Curran et al., 1997; Dennis et al., 2006; Negash et al., 

2003; Howard et al., 2004; however, see Howard & Howard, 1989, 1992; 

Frensch & Miner, 1994).  Pursuit rotor and mirror tracing task performance have 

been shown to correlate with prefrontal volumetric declines (Raz et al., 2000; 

Kennedy et al., 2005) as well as nonverbal working memory measures (Raz et 

al., 2000; Kennedy et al., 2007).  These findings suggest that ineffective 

recruitment of SWM resources during early learning may also underlie age-

related deficits for these tasks.   

Age-related deficits in sequence learning have also been attributed to 

working memory deficits (Curran et al., 1997), as reduced working memory span 
                                                 
5  The limitation regarding similar neural engagement by Dahlin et al. (2008) with respect to the 
overlapping SWM and early adaptation activation is further discussed on page 119. 
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may negatively impact the size of the sequence ‘chunk’ being learned.  Findings 

by Cherry and Stadler (1995) support this hypothesis, as ‘high ability’ older adults 

(as defined by education and employment) showed greater sequence learning 

and verbal working memory performance than ‘low ability’ older adults.  However, 

it is not clear how this relates to the current study because the authors tested 

verbal rather than SWM. 

 Age-related sequence learning deficits have still been observed following 

the removal of the spatial aspects of sequence stimulus presentation (Negash et 

al., 2003; Dennis et al., 2003).  However, this finding is not surprising given that 

Willingham and colleagues (2000) demonstrated that participants learn a series 

of response locations during sequence learning.  Recent work from this 

laboratory has shown that older adults’ performance does benefit from the 

removal of spatial aspects associated with the response component compared to 

young adults (Bo and Seidler, 2007).  These findings leave open the possibility of 

older adults’ SWM resources being ineffectively engaged during sequence 

learning like at the early adaptation period.     

      

Visuomotor adaptation generalization: cause and effects   
 
 Visuomotor adaptation requires the integration of multiple processes: 

anticipation of environmental constraints, the interpretation of sensory 

information, and adapting behavior to achieve a desired result.  Age-related 

impairments in visuomotor adaptation are also multi-factorial, given the 

deterioration of musculoskeletal, neuromuscular, and sensory systems with age.  
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More specifically, age-related declines in musculoskeletal and neuromuscular 

systems have been observed for muscle fibers (Brooks & Faulkner, 1994), 

muscle spindles (Swash & Fox, 1972), and motor unit number (Brown, 1972; 

Campbell et al., 1973; Galganski et al., 1993).  Similarly, sensory age-related 

declines have been noted for the visual (Demer, 1994) and vestibular systems 

(Bugnariu and Fung, 2007; Cinelli et al., 2008; Horak et al., 1989), including age-

related deficits in upper-limb proprioception (Adamo et al., 2007).  These 

declines require re-weighting of sensory information and adjusting motor outputs 

to complete a given task.  This can be especially difficult for older adults, 

considering the timecourse and extent of these declines may not be parallel for 

each system. 

 The ability to adapt to age-related changes in motor and sensory systems 

can also be indicative of one’s quality of life with advancing age.  One way of 

assessing sensorimotor plasticity is through visuomotor adaptation, as this 

measure can provide insights regarding an individual’s ability to adapt to age-

related motor and sensory declines.  Age-related kinematic studies of visuomotor 

adaptation have shown, for the most part, reduced sensorimotor plasticity in 

older adults (Bock et al., 2005; Fernandez-Ruiz et al. 2000; McNay and 

Willingham 1998; Seidler et al, 2006; Teulings et al. 2002; however, see 

Canavan et al. 1990; Roller et al. 2002).  However, visuomotor adaptation has 

also been shown to be an effective therapeutic intervention for post-stroke 

individuals using virtual reality techniques (Holden et al., 1999; Sveistrup, 2004), 



 

 117

suggesting that sensorimotor changes can result from visuomotor adaptation 

training.   

To the best of my knowledge, there has not been a training study where 

participants practiced a visuomotor adaptation paradigm like the one studied 

here and then looked for transfer to ADLs.  However, the present work was 

motivated by the idea that age-related declines in one domain (cognitive) would 

negatively affect another (sensorimotor). Given that cognition-based 

interventions have shown preserved plasticity in older adults (Kramer and Willis, 

2002; Kramer et al., 2004; Willis and Nesselroade, 1990; Erickson et al. 2007), 

facilitating sensorimotor changes with age may be best accomplished using a 

less-than-direct approach.  More specifically, training specific cognitive factors 

(e.g. SWM, inhibition, short-term memory) may have positive effects on 

sensorimotor plasticity, with potential approaches described below.  

 

Cognitive training in older adults 

 Beyond a basic science perspective, the current results could be 

integrated into programs designed to facilitate skill acquisition in older adults.  

The 2007 profile of older Americans projects that the older adult population will 

burgeon between the years 2010 and 2030, which is when the "baby boom" 

generation reaches age 65 (http://agingstats.gov).  These developments have 

fostered a recent surge in age-related interventions targeting physical and 

cognitive declines.  For example, there has been a number of laboratory-based 

cognitive interventions for older adults (cf. Colcombe and Kramer, 2003) showing 
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positive results for memory-based (Baron and Mattila, 1989; Erickson et al., 

2006; Verhaeghen et al., 1992) as well as motor-based training interventions 

(Bherer et al., 2008).   

 An interesting and important issue involves how a change in cognitive 

performance would be reflected by corresponding changes in neural activation.  

Cognitive training studies have shown that improved task performance is also 

reflected by corresponding activation changes (Olesen et al., 2004; Thimm et al., 

2005; Westerberg et al., 2007).  However, there are only a few of these types of 

studies with young adults and older adults (Dahlin et al., 2008; Nyberg et al., 

2003; Erickson et al., 2007).  Erickson et al. (2007) showed training-based 

performance gains for a flanker task that correlated with reduced age-related 

differences in ventral and dorsal prefrontal activation.  Dahlin et al. (2008) also 

observed training based performance gains for a verbal short term memory task, 

with activation changes localized to the striatum.  However, Nyberg et al. (2003) 

did not observe training-based changes in frontal activation in older adults, unlike 

their young adults counterparts.  One important difference between these studies 

involves the amount of training given: Erickson et al. (2007) provided 5 training 

sessions, Dahlin et al. (2008) provided 15 sessions, while Nyberg et al. (2003) 

had only one.  This training difference appears to account for changes in neural 

activation patterns, supporting the need for multiple training bouts for neural 

activation patterns to evolve in older adults.  These findings also suggest that the 

effectiveness of a given training study can potentially be associated with these 
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neural activation changes, providing another direction and useful measure of 

improvement for future interventions.  

With regards to the design of new training studies, the most effective 

interventions would have aspects that transfer to related, yet unpracticed, tasks.  

Dahlin et al. (2008) demonstrated that cognitive training will only generalize if the 

training and transfer tasks utilize overlapping cognitive processes and brain 

regions.  These authors showed that while older adults engaged similar regions 

as young adults following training, these gains did not transfer, suggesting the 

utilization of different processing components.  The present findings parallel 

these results: young adults and older adults showed similar activation during the 

SWM task, including the engagement of right prefrontal regions.  However, older 

adults’ rate of early adaptation did not correlate with any measures of SWM, nor 

did they show any neural activation overlap for each task, unlike young adults.   

Another future direction regarding the present work would be to develop a 

SWM training paradigm and test whether these gains transfer to visuomotor 

adaptation.  As SWM resources appear to play a critical role during early 

adaptation, training could hypothetically boost performance in young adults and 

older adults.  This approach is supported in theory by Westerberg and colleagues 

(2007), who suggested that training-related improvements on a visuospatial 

working memory task would “be similar to skill acquisition” (pg. 187, Westerberg 

et al., 2007).  This group observed greater right prefrontal and parietal activation 

following training on a visuospatial working memory task (Olesen et al., 2004; 

Westerberg et al., 2007).  Given the association of these regions with SWM and 
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the early stages of skill acquisition, this approach may have promising outcomes 

but would obviously require follow-up testing.      

  Support for promoting visuomotor adaptation by boosting SWM 

performance in the present work is evidenced by the young adult correlation 

between the card rotation performance and DE rate of early adaptation.  

Similarly, the correlation between the right DLPFC activation and the pooled 

group rate of early adaptation (see Figure 3.5) also supports this idea from a 

neural activation perspective.  The combination of these results suggests that 

SWM training may have the intended effect.  It warrants mentioning that this type 

of training study would require controlling for improvements in general executive 

processing, motivation, and several other potential explanatory variables.  

However, rather than depending upon correlations as in the present study, a 

training intervention would provide more direct evidence of the role of SWM in 

visuomotor adaptation, provided that SWM gains would generalize to this type of 

task.  

  An important note regarding these training studies and their potential 

impact on visuomotor adaptation involves the use of explicit cognitive strategies.  

Transferring training gains to an unlearned task has been shown to be facilitated 

by the use of explicit strategies (Mahncke et al., 2006).  This idea was 

implemented in several of the previous cognitive training studies (Baron and 

Mattila, 1989; Bherer et al., 2008; Kramer et al., 1995; Verhaeghen et al., 1992), 

as practice alone does not always lead to the development of effective 

performance strategies (Maquestiaux et al., 2004).  However, the value of explicit 
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cognitive strategies with a visuomotor adaptation task is unclear, as Mazzoni and 

Krakauer (2006) demonstrated that implicit adaptation processes override explicit 

strategies during visuomotor adaptation.  However, this outcome may have 

resulted from the use of a strategy which conflicted with the adaptation process.  

Cognitive instruction that matches the adaptation process may facilitate 

visuomotor adaptation, although this would again require follow-up testing.   

 

Aging, fitness, and visuomotor adaptation differences 

Older adults with better fitness levels have shown less age-related 

declines in motor learning tasks (Etnier et al., 2001) and cognitive abilities 

(Colcombe and Kramer, 2003).  These findings suggest that differing fitness 

levels may explain the visuomotor adaptation rate of learning differences 

between HIGH and LOW OAs; however, this was not the case.  In addition to all 

of the neuropsychological measures, older adults were also characterized in 

terms of their general health and physical activity using self-reports (“On a scale 

of 1-5, how would you classify your current health status (1 = poor, 5 = very 

good)”; see Appendix D) and the CHAMPS questionnaire (Stewart et al., 2001).  

However, HIGH and LOW OAs did not differ on their physical activity levels 

based on the CHAMPS questionnaire, age, self-reports of physical health, or 

performance on any of the neuropsychological measures.  When these specific 

health and CHAMPS measures were added to the older adults’ behavioral 

correlations, none was associated with either the early or late adaptation rate of 

learning (see Table 4.1).  These results were surprising given the association 
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between fitness and executive cognitive measures (cf. Colcombe and Kramer, 

2003).  Although speculative, the lack of difference here is likely a reflection of 

the university-area population that I tested.  These older adults would likely be 

considered HIGH OAs in many respects, including health, education, and socio-

economic status (SES), compared to the overall older adult population.  In this 

case, finding differences between HIGH and LOW OAs would be challenging 

given our sample size. 

The CHAMPS questionnaire also provides more specific questions that 

allowed for some additional insights regarding the population tested (ex. “How 

many hours per week do you use a computer?”; “How many hours per week are 

spent walking at a slow pace?”).  For example, there was a positive correlation 

between SWM RT and hours spent using a computer per week, suggesting that 

computer usage did not facilitate performance on the SWM task for older adult.  

Card rotation performance showed a positive correlation with the number of 

calories expended per week, while SWM RT negatively correlated with self-

reported health status.  These findings suggest that the more active and healthy 

older adults in the present study showed fewer performance declines on tasks 

requiring SWM and mental rotation processes.  This agrees with previous work 

regarding older adults fitness levels and cognitive abilities (Colcombe and 

Kramer, 2003), suggesting that our sample does appear to follow a normal 

distribution with respect to the general older adult population.  
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Limitations 

 The significance in having overlapping processing components in addition 

to overlapping activation (e.g. Dahlin et al., 2008) highlights an important 

limitation in the present work.  The young adults correlation between the card 

rotation performance and rate of early adaptation suggested that similar neural 

processes were engaged between these tasks.  However, the rate of early 

adaptation did not correlate with SWM task accuracy.  This is important as SWM 

neural activation was measured using the SWM task, not the card rotation task, 

to establish the overlap of SWM processes at the early adaptation period.  The 

lack of significant correlation here casts some doubt on claims regarding the use 

of SWM processes during early adaptation.  However, there was a significant 

correlation between the card rotation task and SWM accuracy with both groups 

pooled, suggesting that these tasks do share similar processes.   

 Another limitation of the present work was the inability to identify 

differences between the HIGH and LOW OAs with any of the neuropsychological 

or health measures taken.  This null result highlights the importance (and 

difficulty) of selecting appropriate and sensitive measures that would distinguish 

these differences.  For example, Bock (2005) found no correlations between 

visuomotor adaptation and the trail-making test, a task which encompasses 

several cognitive constructs including attention, concentration, resistance to 

distraction, and cognitive flexibility.  Given that visuospatial attention and working 

memory have been associated with early adaptation by this group (Eversheim 

and Bock, 2001), the importance of having precise measures for a given 
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construct is apparent.  This absent group difference may also be indicative of 

other unmeasured cognitive processes contributing to the adaptation process.  

For example, I hypothesized earlier that inhibition may play a role during early 

adaptation; a behavioral test of this construct along with its correlation with early 

adaptation performance would provide support for this idea.  Future work in this 

area should consider other neuropsychological, health, and fitness measures that 

may identify correlates of successful aging in terms of motor learning tasks.  

One final concern is whether there was a potential bias between young 

adults and older adults in their computer use, and how this would translate to 

using a joystick for the visuomotor adaptation task.  However, there was no 

performance difference between these groups at the control period of the 

visuomotor adaptation task (when veridical feedback of movements was 

provided).  There was also no difference in the hours per week of computer use 

between young adults and older adults (or HIGH and LOW older adults) as 

measured by the CHAMPS questionnaire.  Again, this null result may be a 

function of the university-area population that was tested, given that these older 

adults would likely be considered HIGH older adults in many respects compared 

to the overall older adult population.     

 

Conclusions 
This dissertation provides evidence of SWM playing a role in the early 

adaptation period for young adults, with older adults failing to utilize their 

relatively intact SWM resources in an effective manner when needed.  Other 

cognitive processes that have shown age-related declines (e.g. inhibition) may 
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also play a role in visuomotor adaptation.  However, it is unclear whether older 

adults would also fail to effectively utilize these resources when needed like 

SWM.  The use of SWM processes during early adaptation may generalize to 

other forms of skill acquisition (i.e. mirror tracing, sequence learning).  Likewise, 

older adults’ SWM deficits may factor into age-related declines for these other 

motor learning tasks.   

Training interventions may also mitigate age-related visuomotor 

adaptation deficits by strengthening specific cognitive processes engaged during 

the adaptation process.  However, it warrants mentioning that these interventions 

may not be as beneficial for visuomotor adaptation as hypothesized, given that 

older adults may be using some yet to be determined strategies which these 

training paradigms may not affect.  Fitness and health measures did not differ 

between the HIGH and LOW OAs, suggesting that other measures are required 

to reveal the mechanisms of the rate of learning difference between these 

groups.  In conclusion, the present findings and suggested follow up studies may 

provide a template which specifically targets the promotion of increased rates of 

skill acquisition in young and older adults.  These findings may also contribute to 

the development of age-appropriate interventions for both healthy older adults 

and individuals who have suffered specific sensory or motor loss with age.   
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Appendix A 
 

Testing spatial working memory resources under dual-task conditions 

 

Objective 
 

This study examined to what extent spatial resources were engaged when 

participants performed the spatial working memory (SWM) task.  It could be 

argued that participants were not utilizing SWM and/or mental rotation resources 

to perform this task, but instead used an object identification strategy when the 

probe set was presented.  Arguably, a ‘matching’ strategy would be sufficient in 

order to correctly identify the rotated shapes.  To address this potential criticism, I 

conducted a dual tasking control study where participants performed the SWM 

task simultaneously with either a spatial or non-spatial task.  I hypothesized that 

performing the SWM task along with a spatial task would tax the participants’ 

spatial processes, leading to diminished accuracy on the SWM task.  I 

hypothesized, however, that SWM performance would not be affected when 

participants performed a non-spatial task, as these tasks would be calling on 

different working memory resources.  The results of this control study confirmed 

that SWM resources were utilized for accurate performance of the SWM task, as
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evidenced by the corresponding effects on SWM task accuracy with each 

secondary task.   

 

Methods 
 

15 participants (21.1 ± 2.5 yrs; 9 males) were recruited from the University 

of Michigan student population and were given class credit for their participation.  

These individuals did not participate in the study outlined in Chapter 2.  Each 

participant signed an IRB-approved informed consent document prior to their 

participation.   

Participants performed the same SWM task as the fMRI participants in 

Chapter 2, involving the mental rotation and identification of similar shapes (for 

details, see Figure 2.1).  Additionally, participants also performed a color 

identification primary task (COLOR; see Figure A.1) which involved recalling 

whether a dot’s color matched that of one of the previously presented circles, 

regardless of spatial location.  The timing parameters for the COLOR task were 

the same as for the SWM task (detailed in Anguera Chapter 2).  During the RI for 

the SWM and COLOR tasks, participants also performed either a spatial, non-

spatial, or control secondary task (see figure A.1).   
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Figure A.1.  COLOR primary task and each secondary task.  The COLOR task asks participants to respond whether the color of 
one of the probe dots matched the color of one of the previous circles, regardless of spatial location.  For the secondary tasks, 
participants were given 1200 msec to observe the stimuli, and then 1800 msec to respond ‘same’ or ‘different’.  The SHAPES 
condition involves identifying whether the 1st shape presented matches the subsequent shape.  The TRIANGLES condition asks 
whether one of the colors initially presented is present in any of the panels in the subsequent triangle.  The baseline RL 
condition involves responding with the appropriate hand when “right hand” or “left hand” appeared during the RI. 

135 
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The spatial secondary task was based upon Thurston’s card rotation task 

(Ekstrome et al., 1976) which requires both SWM and mental rotation processes 

(SHAPES; see Figure A.1, panel A).  During the RI, a target shape was 

presented for 1200msec, followed by the presentation of a probe shape for 

1800msec.  Participants had to decide whether the two shapes ‘matched’, 

requiring a mental rotation of the probe shape within the plane of the screen.  

However, if the probe shape was the mirror image of the target shape (i.e. 

requiring participants to ‘flip’ the shape outside the plane of the screen), the two 

shapes were considered ‘different’.    

The non-spatial secondary task involved color identification 

(TRIANGLES), as participants were presented a target triangle with 3 colored 

dots, followed by a single colored circle (see Figure A.1, panel B).  At this time, 

participants responded whether the colored circle matched one of the dot colors 

(without regards to the spatial location of the colors in either triangle).   

There was also a control task which required responding with either the 

right or left hand when “right hand” or “left hand” was flashed on the screen for 

3000msec (RL).  This secondary task acted as a control measure with which to 

compare the effect on accuracy and reaction time (RT) of the other tasks.   

Each of these potential combinations were presented randomly, with 3 

blocks (1 block = 20 trials) of each condition combination presented throughout 

the course of the experiment.  Each secondary task was also performed alone to 

establish baseline accuracy levels outside of the dual-task paradigm.  I used four 

separate ANOVAs to test overall mean accuracy and RT for each condition 



 

 137

comparison (SWM and COLOR under each secondary condition, as well as 

SHAPES and TRIANGLES under each primary condition), followed by paired t-

tests between conditions. 

 

Results 
 

A main effect for SWM accuracy was observed under each secondary 

condition (SHAPES, TRIANGLES, RL; F(2,28)= 11.73, p< .0001), so follow up 

tests were conducted.  Follow up paired t-test analyses revealed that SWM 

accuracy was more negatively affected under the SHAPES condition than when 

performed simultaneously with the RL task (see figure A.2; t(1,14)= 4.04, p< .001) 

or the TRIANGLES task (t(1,14)= -4.22, p< .001).  There was no difference in SWM 

accuracy during performance of the TRIANGLES and RL tasks (t(1,14)= .34, p> 

.70).  SWM RT showed a main effect with each secondary task (F(2,28)= 11.73, p< 

.0001), with SWM RT being longer under the RL condition versus either the 

SHAPES (see table A.1; t(1,14)= 4.49, p< .001) or the TRIANGLES task (t(1,14)= 

9.73, p< .001).  However, SWM RT was slower during performance of the 

SHAPES task versus the TRIANGLES tasks (F(1,14)= 2.55, p< .05), which falls in 

line with the accuracy differences between these conditions.   

A main effect for COLOR accuracy was also observed under each 

secondary condition (SHAPES, TRIANGLES, RL; F(2, 28)= 6.86, p< .005), leading 

to follow up tests.  COLOR accuracy was more affected when concurrently 

performing the TRIANGLES task versus the RL task (see figure A.2; t(1,14)= 3.72, 

p< .005).  There was a lesser, yet still significant effect regarding COLOR 



 

 138

accuracy with concurrent performance of the SHAPES versus RL tasks (t(1,14)= 

2.38, p< .05).  However, there was no difference in COLOR accuracy during 

performance of the TRIANGLES and SHAPES tasks (t(1,14)=  1.38, p> .15).  

COLOR RT showed a main effect with each secondary task (F(2,28)= 12.75, p< 

.0001), with COLOR RT being longer under the RL condition versus either the 

SHAPES (see table A.1; t(1,14)= 4.14, p< .001) or the TRIANGLES task (t(1,14)= 

3.95, p< .001).  There was no difference in COLOR RT during performance of the 

SHAPES versus TRIANGLES tasks (t(1,14)= -1.02, p> .30).   

 

Table A.1.  Group mean and standard deviation RT (msec) for each primary 
task under each secondary condition 

 Baseline (RL) SHAPES TRIANGLES

SWM 931 ± 232 834 ± 231 787 ± 216 

COLOR 925 ± 205 822 ± 222 841 ± 223 
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Figure A.2.  Accuracy on SWM and COLOR primary tasks under each secondary task 
condition.  SWM and COLOR accuracy were significantly affected when by performance of 
secondary tasks which utilized similar working memory processes.  * = p<.05, ** = p<.001. 
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Figure A.3.  Secondary task accuracy when combined with each primary task.  SHAPES 
and TRIANGLES accuracy were more affected when performing the primary tasks (SWM 
and COLOR) which utilized similar working memory processes.   * = p<.05, ** = p<.001 
 
 

Secondary task accuracy was affected in a similar fashion to the primary 

tasks.  A main effect of SHAPES accuracy was observed among the three 

conditions (F(2, 28)= 3.59, p< .05), with SHAPES accuracy affected when 

concurrently performing the SWM task (t(1,14)= 2.66, p< .05), but not when 

performing the COLOR task (t(1,14)= 1.09, p> .25).  Similarly, there was a main 

effect of TRIANGLE accuracy among the three conditions (F(2, 28)= 19.36, p< 

.0001), with TRIANGLE accuracy significantly affected by each secondary task 

(SWM: (t(1,14)= 2.39, p< .05; COLOR: (t(1,14)= 4.79, p< .0001).  However, 
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TRIANGLE accuracy was more compromised under concurrent performance of 

the COLOR task than the SWM task (t(1,14)= 4.41, p< .0001). 

SHAPES RT showed a main effect difference with each primary task 

(F(2,28)= 10.34, p< .0001), with SHAPES RT alone being longer compared to the 

SWM (see table A.2; t(1,14)= 3.35, p< .01) or COLORS tasks (t(1,14)= 3.44, p< .01).  

There was no difference in SHAPES RT during performance of the SWM or 

COLORS tasks (t(1,14)= 1.13, p> .25).  TRIANGLES RT showed a main effect 

difference with each primary task (F(2,28)= 8.07, p< .01), with TRIANGLES RT 

alone being longer compared to the SWM task (see table A.2; t(1,14)= 4.16, p< 

0.01), but not versus the COLORS tasks (t(1,14)= .79, p< .40).  TRIANGLES RT 

was slower during performance of the COLORS task versus the SWM task 

(t(1,14)= -4.17, p< .001).   

 

Table A.2.  Group mean and standard deviation RT (msec) for each 
secondary task under each primary condition 

 Alone SWM COLOR 

SHAPES 1117 ± 285 1008 ± 274 987 ± 274 

TRIANGLES 837 ± 212 755 ± 201 816 ± 225 

 
 

Conclusions 

The present findings support the hypothesis that spatial cognitive 

resources were used during the SWM task RI.  I found a double dissociation 

between SWM and COLOR accuracy under each dual-task condition.  More 
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specifically, SWM accuracy and RT were most compromised while concurrently 

performing the SHAPES task, with SHAPES accuracy also being most affected 

during the SWM task.  Similarly, COLOR accuracy (although not RT) was most 

affected by the TRIANGLES task, with TRIANGLE RT being fastest when non-

related resources were being taxed (SWM).  These findings support that 

participants were not using a visual matching strategy when performing the SWM 

task of Chapter 2, but rather relied on SWM resources. 
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Appendix B - Supplementary activation tables for young adults  
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BA = Brodmann area; R = right, L = left; Prec = precuneus; SPL = superior parietal lobule; 
STG = superior temporal gyrus; Hippo = Hippocampus;  H VI = hemisphere 6 of the 
cerebellum. 
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BA = Brodmann area; R = right, L = left; SMA = supplementary motor area; SFG = superior 
frontal gyrus;  H V = hemisphere 5 of the cerebellum; H VI = hemisphere 6 of the 
cerebellum;. 
 

 

 

 

 

BA = Brodmann area; L = left; IPL = inferior parietal lobule. 
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BA = Brodmann area; R = right, DLPFC = dorsolateral prefrontal cortex 
 



 

 147

  
BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; SFG = superior frontal 
gyrus; MFG = middle frontal gyrus; PCG = posterior cingulate gyrus; DLPFC = dorsolateral 
prefrontal cortex; MeFG = medial frontal gyrus; M1 = primary motor cortex; PMc = 
premotor cortex; MePMc = medial premotor cortex; SMA = supplementary motor area; IPL 
= inferior parietal lobule; Prec = precuneus; Lingual = lingual gyrus. 
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; SFG = superior frontal 
gyrus; MFG = middle frontal gyrus; ACC = anterior cingulate gyrus; DLPFC = dorsolateral 
prefrontal cortex; MeFG = medial frontal gyrus; M1 = primary motor cortex; LPMc = lateral 
premotor cortex; MTG = middle temporal gyrus; MOG = middle occipital gyrus; STG = 
superior temporal gyrus; V = hemisphere 5 of the cerebellar vermis; VI = hemisphere 6 of 
the cerebellar vermis. 
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Appendix C - Supplementary activation tables for older adults  
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BA = Brodmann area; R = right, MeFG = medial frontal gyrus, CG = cingulate gyrus, MTG = 
middle temporal gyrus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
BA = Brodmann area; R = right, IPL = inferior parietal lobule. 
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; DLPFC = dorsolateral 
prefrontal cortex; IPL = inferior parietal lobule, Prec = precuneus, MOG = middle occipital 
gyrus. **For comparison with the young adults results here, see Table 2.5** 
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BA = Brodmann area; R = right, IPL = inferior parietal lobule. 
 

 

 

BA = Brodmann area; R = right, L = left; SFG = superior frontal gyrus; IPL = inferior 
parietal lobule; SPL = superior parietal lobule; MTG = middle temporal gyrus; ITG = inferior 
temporal gyrus; IOG = inferior occipital gyrus; Lingual = Lingual gyrus; CG = cingulate 
gyrus. 
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; MeFG = medial frontal 
gyrus; MCC = middle cingulate cortex; M1 = primary motor cortex; SMA = supplementary 
motor area; MePMc = medial premotor cortex; Peri = Perirhinal cortex; H VI = hemisphere 6 
of the cerebellum. 
 

 
 
 



 

 154

 
BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; DLPFC = dorsolateral 
prefrontal cortex; MeFG = medial frontal gyrus; IOG =inferior occipital gyrus; MOG = 
middle occipital gyrus. 
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BA = Brodmann area; R = right, L = left; ACC = anterior cingulate cortex; MePMc = medial 
premotor cortex; IPL = inferior parietal lobule; IOG = inferior occipital gyrus; H VIIa = 
hemisphere 7a of the cerebellum. 
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BA = Brodmann area; R = right, L = left; MeFG = medial frontal gyrus; MFG = middle frontal 
gyrus; SFG = superior frontal gyrus; LPMc = lateral premotor cortex.   
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BA = Brodmann area; R = right, L = left; DLPFC = dorsolateral prefrontal cortex; MFG = 
middle frontal gyrus; SMA = supplementary motor area; IPL = inferior parietal lobule; SN = 
substantia nigra; GP = globus palidus.   
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BA = Brodmann area; R = right, IPL = inferior parietal lobule. 
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Grey shading = older adult SWM region, White = young adults SWM region.  BA = 
Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; DLPFC = dorsolateral 
prefrontal cortex; IPL = inferior parietal lobule 



 

 160

 

BA = Brodmann area; R = right, L = left; MTG = middle temporal gyrus; STG = superior 
temporal gyrus; S1 = primary somatosensory cortex.   

 

 
 
 
 
 
 
 
 
 

 
BA = Brodmann area; R = right, L = left; MOG = middle occipital gyrus.   
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BA = Brodmann area; R = right, MFG = middle frontal gyrus.   



 

 162

 

BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; MFG = middle frontal 
gyrus; IPL = inferior parietal lobule; MTG = middle temporal gyrus; STG = superior 
temporal gyrus; CG = cingulate gyrus.
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BA = Brodmann area; L = left;  H IV = hemisphere 4 of the cerebellum.
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BA = Brodmann area; R = right, L = left; IFG = inferior frontal gyrus; MePMc = medial 
premotor cortex; IPL = inferior parietal lobule; ITG = inferior temporal gyrus; MTG = middle 
temporal gyrus; STG = superior temporal gyrus; CM = centromedian. 
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BA = Brodmann area; R = right, L = left; SMA = supplementary motor area; IPL = inferior 
parietal lobule; GP = globus pallidus; H V = hemisphere 5 of the cerebellum. 
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Figure C.1.  HIGH and LOW OA ROI activation at the non-vision and after-effect blocks.  = p< .05 reflects activation differences 
between groups for each period.  See Appendix Table C.12 for ROI characteristics.  R = right, L = left; IFG = inferior frontal 
gyrus; DLPFC = dorsolateral prefrontal cortex; IPL = inferior parietal lobule. 
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Figure C.2.  Young adults (red) early adaptation > control activation and older adult (green) 
early mean DE score correlation with whole brain activation. 
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Figure C.3.  Young adults (red) early SWM > SWMc activation and older adult > young 
adult (green) SWM alone activation. 
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Appendix D – Health Questionnaire 
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1. Compared to other people your own age, how would you rate your physical 

health? 
 

1      2          3   4     5 
Much Worse                           Worse than                     Average              Better Than                  Much 

Better 
 Than Average                           Average                                                          Average                    Than 

Average 
 
 

2. How satisfied are you with your present health? 
 

1      2          3     4      5 
Not At All                      Not Very                  Neither Satisfied              Somewhat      Extremely                          
Satisfied                        Satisfied                    Nor Dissatisfied               Satisfied                Satisfied 

 
 

3. How often do health problems stand in the way of your doing the things you 
want to do? 

 
1      2          3   4     5 

 Never                              Seldom                       Sometimes           Often                      Always              
 
 

4. Have you ever lost consciousness for more than ten minutes because of a 
head injury? 

   
  1      Yes  2    No 

 
   

5. Are you on post-menopausal estrogen therapy? 
   
  1      Yes  2    No 
 
 
6. Do you take any other medication (prescription or non-prescription) on a 

regular basis (at least once a week)? 
   
  1      Yes- Please Answer Question 7  2    No- Skip To Question 8 
 
 
 
 
7. List all prescription and nonprescription medications you use at least once a 

week: 
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Name of Medication Strength (If 

Known) 
Numbers of times used per week 

   

   

   

   

   

   

   

   

   

 
8. Please check which of the following conditions you have now, or have had in 

the past: 
 

Condition In your 
lifetime 

Now 

Chronic Migrane Headaches   
Diabetes   
Encephalitis or meningitis   
Epilepsy   
Heart attack or bypass Surgery   
Multiple sclerosis   
Parkinson’s disease   
Rheumatoid arthritis or other autoimmune disorders   
Osteoarthritis   
Stroke   
Other significant illnesses or medical diagnoses (please list)   

 
 
11. How many BONE FRACTURES have you had in the LAST FIVE YEARS? 
 1 None 
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 2 1 
 3 2 
 4 3-5 
 5 More than 5 
 
12. How many SURGERIES have you had in the LAST FIVE YEARS? 
 1 None 
 2 1 
 3 2 
 4 3-5 
 5 More than 5 
 
13. How many times have you been HOSPITALIZED in the LAST FIVE 
YEARS? 
 1 None 
 2 1 
 3 2 
 4 3-5 
 5 6-10 
 6 More than 10 
 

 
 

 


