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Abstract 

Two basic motivating questions in biomedical research are: What genes regulate what 

other genes? What genes or groups of genes regulate a specific phenotype? Gene 

regulatory network (GRN) reconstruction and pathway inference are the two 

computational strategies addressing these two questions respectively. GRN reconstruction 

is to infer the components and topology of an unknown pathway, while pathway 

inference is to infer association between known pathways and a phenotype. 

This thesis focuses on gene regulatory network reconstruction and pathway inference 

from high throughput biological data.  

In the first part of this work, I developed a novel method, MI3, for de novo GRN 

reconstruction using continuous three-way mutual information. MI3 addresses three 

major issues in previous probabilistic methods simultaneously: (1) to handle continuous 

variables, (2) to detect high order relationships, (3) to differentiate causal vs. confounding 

relationships. MI3 consistently and significantly outperformed frequently used control 

methods and faithfully capture mechanistic relationships from gene expression data. 

In the second part of this work, I proposed another novel method, GAGE, Generally 

Applicable Gene Set Enrichment for pathway inference. I successfully apply GAGE to 

multiple microarray data sets with different sample sizes, experimental designs and 

profiling techniques. GAGE shows significantly better performance when compared to 

two other commonly used GSA methods of GSEA and PAGE. GAGE reveals novel and 

relevant regulatory mechanisms from both published and previously unpublished 

microarray studies. 

In the third part of this work, we conducted a microarray study on transcriptional 
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programs during BMP6 induced osteoblast differentiation and mineralization, and applied 

GAGE to recover the regulatory pathways and transcriptional signaling networks in the 

process. I not only showed which pathways or gene sets are significant, but also when 

and how they are involved in the osteoblast differentiation and mineralization. Different 

from common pathway analyses, our work further captures the interconnections among 

individual pathways or functional groups and integrate them into a whole system. 
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Chapter I  

Introduction 

1.1 Motivation 

Modern biomedical research focuses on the molecular-level regulatory mechanisms 

underneath the development of normal functional phenotypes (like differentiation) or 

abnormal phenotypes (like cancer) as to find strategies for better health and cures for 

diseases. Two basic motivating questions in biomedical research are (Figure 1.1): (1) 

What genes regulate what other genes? (2)What genes or groups of genes regulate a 

specific phenotype? Answers to these questions help us understand the biological systems 

and effectively interfere with them for ideal biomedical effects. 

These two questions are both directly related to gene expression. First question concerns 

the regulation of gene expression (gene regulation), the second one concerns regulation 

of phenotype expression by gene expression (phenotype regulation). These two processes 

together form a causal chain: gene regulatory mechanism causes gene expression, which 

in turn causes phenotype expression. Two statistical learning problems are defined along 

this chain in the reverse direction: (1) we infer the gene regulatory mechanisms from 

gene expression data, which is called reverse engineering; (2) we infer the specific gene 

expression events associated with a phenotype too, which is called feature selection. 

Reverse engineering and feature selection problems are further defined with gene 

expression data. With traditional molecular/cellular biology techniques such as qPCR, we 

can only measure the expression of limited number of genes in a study. Correspondingly, 

we can only learn local regulatory models for individual genes or identify individual gene 

markers for particular phenotypes. With the development of high throughput technology 
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such as microarrays, we can profile the expression of the whole genome at a time. This 

brings the potential to study biology as whole systems. Correspondingly, we can 

reconstruct gene regulatory network (GRN) involving large number of genes or infer the 

connections between functional groups or signaling pathways with up to hundreds of 

genes and particular phenotypes. 

 

Figure 1.1 Outline of the thesis. The thesis focuses on two problems: GRN reconstruction 
and pathway inference, which are motivated by two basic questions in biomedical 
research: what genes regulate what other genes; what genes or groups of genes regulate 
a specific phenotype. Two novel methods, MI3 and GAGE, were developed to address 
these two problems, and were applied to two systems biology studies respectively: MYC 
centered GRN and BMP6 induced osteoblast differentiation and mineralization. 

This thesis focuses on gene regulatory network reconstruction and pathway inference 

from high throughput gene expression data (Figure 1.1 and 1.3). To address these 

problems, I developed two new computational methods, MI3 and GAGE. These methods 

are applied to solve two representative biological problems: (1) the gene regulatory 

network centered at MYC, a transcription factor that regulates the expression of up to 
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15% of all human genes [1] and a strong oncogene that involves in a variety of cancers 

and other cellular processes [2]; (2) the regulatory pathways and functional groups 

involved in BMP6 induced osteoblast differentiation and mineralization, a phenotypic 

change responsible for skeleton development and multiple bone diseases [3], including 

osteoporosis, osteogenesis imperfecta, osteosarcoma etc. These applications plus 

validation experiments suggest that our methods are generally applicable to a broad 

variety of problems derived from the two motivating questions at the beginning of this 

section. 

 

Figure 1.2 An example GRN defined at different detail and abstraction levels. (a) a more 
complete functional description; (b) a model with both mRNAs and proteins; (c) an 
abstract model with conceptual nodes the for three genes g1-g3 and their interactions. 
The dark solid square represents an unknown/unobserved transcription factor protein 
that binds to g3 promoter. In this thesis, I focus on learning (c) the abstract GRN models 
from high throughput gene expression data. 

1.2 Gene Regulatory Network and reconstruction 

A gene regulatory network (GRN) includes genes and interactions that control the 

transcription or mRNA expression levels of genes (Figure 1.2). GRN may be defined 

with different levels of detail, each focusing on different aspects of the process. From a 

functional perspective, a simple GRN would consist of input signaling pathways, 
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regulatory proteins that integrate the input signals, target genes, and the RNA and 

proteins produced from those target genes [4] (Figure 1.2a). In addition, such networks 

often include dynamic feedback loops that provide for further regulation of network 

architecture and output [4]. There are other slightly different functional descriptions of 

GRN too. However, all GRN consider the transcriptional regulation of genes. 

A GRN may also be considered an abstract model for regulatory interactions among 

genes (Figure 1.2b-c). In such models, genes are represented as nodes, regulation 

relationships as edges with arrows standing for the direction. In a detailed GRN model 

(Figure 1.2b), regulator nodes are the transcriptional regulator proteins, target nodes are 

the mRNA levels for the target genes. For instance, Gene g1 regulates g3, actually means 

that the protein of g1 regulates the mRNA transcription of g3 (Figure 1.2b-c). It is not 

necessary to tell protein vs mRNA explicitly for a gene in abstract GRN models (Figure 

1.2c), and a conceptual node for each gene is enough. Frequently we only have 

expression data at mRNA level (as in microarray datasets) or protein level (as in 

proteomics datasets), an abstract GRN model such as in Figure 1.2c becomes necessary. 

In such abstract models, edges represent conceptual regulation relationships rather than a 

real physical interaction (Figure 1.2c). Hence the statement that g1 regulates g3 does not 

necessarily means g1 binds to the regulatory elements of g3 DNA sequence, but often g1 

may affect the g3 transcription through indirect actions such as being a transporter or 

modulator of another transcription factor that binds and controls g3 promoter directly 

(Figure 1.2a). 

Schlitt et al proposed to categorize GRN models in four classes according to increasing 

level of detail in the models [5]. Each class has its own advantages and limitations. The 

four classes are [5]: 

i. parts lists – a collection, description and systematization of network elements in a 

particular organism or a particular biological system (e.g., transcription factors, 

promoters, and transcription factor binding sites); 
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ii. topology models – a description of the connections between the parts; this can be 

viewed as wiring diagrams where directed or undirected connections between genes 

represent different types of interactions; 

iii. control logic models – a description of combinatorial (synergetic or interfering) 

effects of regulatory signals – e.g., which transcription factor combinations activate and 

which repress the transcription of the gene; 

iv. dynamic models – the simulation of the real-time behavior of the network and the 

prediction of its response to various environmental changes, external, or internal stimuli. 

Schlitt et al [5] pointed out that for a fixed number of network elements each next level is 

more detailed and complex. However, the size of the networks that we are able to model 

at each particular level is constrained by both experimental data and computational power. 

This said, larger networks can be described on topological level than on the dynamic 

level [5]. 

GRN reconstruction or reverse engineering is to infer GRN models from data. A complete 

GRN model should integrate features of all four classes mentioned above: parts, topology, 

control logic, and dynamics. However, currently learning GRN models of classes i-iii is 

the most feasible due to the lack of data and the complexity of the models. Generally 

speaking, models at higher levels take models at lower level as prerequisite implicitly. 

Hence, topology models are built on top of part list, and control logic models on topology 

models (and part list) in turn. Dynamic models are built on all three previous levels, 

hence are the most complex and complete models. Learning accurate dynamics models 

requires time series data at all relevant levels, mRNA, protein and metabolites, their 

active and inactive forms, their distribution and local concentration, as well as kinetic 

measurements such as transportation rates and reaction rates. Many of these data are 

difficult or impossible to obtain currently. Even all these data were available, 

reconstructing fully parameterized dynamic models from these data remains a significant 

challenge. 
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Currently, the two most relevant model learning or inference tasks are structure learning 

and parameter learning, which corresponds to models at the levels of classes ii-iii 

respectively, i.e. topology and control logics [5]. I will next focus on these models and 

two major categories of learning methods: linear correlation based methods and 

probability based methods. 

Linear correlation based methods, such as clustering [6, 7], correlation networks [8, 9] 

and graphical Gaussian models [10], have been frequently used to learn GRN. All linear 

methods are computationally fast and relatively easy to interpret.  

Clustering finds groups of coregulated genes with similar expression pattern [6, 7]. 

Clustering can be used to infer part list, including coregulated target genes, common 

cis-regulatory elements such as transcription factor binding sites. Additional data are 

needed to determine the regulator hence topology model based on clustering results. For 

example, the common regulator for a coregulated cluster is likely a known TF in that 

cluster [11, 12], or the common regulator for several member genes of that cluster, or the 

known or unknown TF with binding motif derived from multiple promoter alignment [13, 

14]. There are methods taking clusters as modules or sub-networks of gene regulatory 

system, and try to learn the gene order or topology of these sub-networks [15, 16]. 

Assuming each cluster as a gene regulatory network is problematic because coexpression 

or correlation among cluster genes suggests coregulation rather than a causal relationship. 

The gene regulatory model learned this way is most likely the highest scoring 

confounding model. 

Correlation networks or relevance networks are networks of highly correlated genes [8, 

9]. Edges connect pairs of genes with correlation coefficient over a certain threshold. 

Correlation networks cluster genes naturally without pre-assigned cluster number. 

Different from the classic clustering methods, correlation networks keep the strongest 

pair-wise association between genes, which contain relevant information for functional 

interpretation of genes and their relationships. However, like clustering, the relationships 



7 

between genes in a correlation network are mostly coregulation not causal relationship. 

Graphical Gaussian Models (GGMs) [10], also known as “covariance selection” or 

“concentration graph” models, are a class of graphical models related to correlation 

networks. The key idea behind GGMs is to use partial correlations as a measure of 

independence of any two genes conditioned on all other genes. Note that partial 

correlations are related to the inverse of the correlation matrix. Edges in GGMs represent 

high conditional dependency, i.e. direct rather than indirect relationships. In contrast, 

correlation networks define relationships between genes through standard correlation 

coefficients. Edges in correlation networks only represent high marginal dependency 

without telling direct vs indirect relationships. Therefore, GGMs are considered a more 

accurate model over correlation networks for gene regulatory network reconstruction [17]. 

However, GGMs assume multivariate normality, which is frequently not the case for real 

biological systems. 

Linear correlation methods as a whole suffer from a few important limitations. First 

among these is that linear methods assume linear relationships between variables, and 

hence are unable to model non-linear relationships in transcriptional regulatory systems. 

Furthermore, correlation can only capture association relationships, which are commonly 

not causal or regulatory interactions.  

Probability based methods are a second class of methods commonly used for 

reconstructing GRNs from biological data. Representative probability methods include 

Bayesian networks [18-21] and mutual information networks [22, 23]. Probability based 

methods can capture both linear and nonlinear regulatory relationships and are noise 

tolerant. Probabilistic graphical models use directed edges to represent causal relationship 

rather than correlative relationships. However, probabilistic methods require significant 

more data than correlation based methods. They can be computationally slow. A GRN 

with several nodes could become intractable using exhaustive search, hence heuristics 

procedures or local GRN learning are frequently used. 
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A Bayesian network is a directed graphical probabilistic model that represents the joint 

probability distribution among variables in a decomposed form [24]. A Bayesian network 

has two components: a directed acyclic graph (DAG), G, which encodes conditional 

independent relationships among nodes (variables); and parameters, θ, which is specific a 

conditional distribution for each variable given its parents. Bayesian networks have been 

widely used in modeling gene regulatory system [18-21]. These tools have several major 

advantages: (1) The ability to handle imperfect (incomplete and noisy) data sets; (2) a 

greater ability to identify causal relationships; (3) direct method to combine domain 

knowledge and data. A less obvious issue with Bayesian networks is that the joint 

probability score decomposes into local conditional probability terms. Conditional 

probability is still a generalized correlative metric for the two-way dependency between 

the target and the parent set, hence cannot effectively tell the real causal relationships 

from confounding ones based on observational data. This is a severe issue when there are 

a large number of correlative variables, like coregulated genes in microarray data.  

Mutual information is a probabilistic quantity defined in information theory to measure 

the similarity or dependency between two variables. Mutual information has been widely 

used to model gene networks [22, 23, 25]. Mutual information captures both linear and 

non-linear relationships between two genes, hence can replace correlation to learn more 

robust relevance or association networks. Mutual information may also work in place of 

conditional probability to capture dependency between target gene and parent gene set 

and learn directed causal networks [26]. In both cases, mutual information measure 

two-way dependency either between two parties (genes or gene sets). Real biological 

systems frequently involve more complicated, higher order relationships, such as 

transcriptional regulation coordinated by multiple transcription factors, binding 

interaction in protein complexes etc. Definition of mutual information has been extended 

to higher dimensional spaces to measure such high order relationships among multiple 

variables or variable groups [27-29]. In these senses, mutual information is potentially 
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more versatile than other probabilistic metrics such as conditional probability used in 

Bayesian networks. 

These are purely computational methods to learn gene regulatory networks from high 

throughput expression data alone. The resulting models are limited to mRNA or protein 

levels, and do not include additional information about gene regulation such as promoter 

sequence data, TF binding data (CHIP-chip), and literature data that contain relevant and 

complementary information to expression data in GRN learning. When available and 

ready to integrate, these extra data bring more reliable, relevant and informative results. 

As such, data integration has been explored and established as an effective analysis 

strategy in literature works [14, 30, 31] and commercial applications [32-34]. 

Unfortunately, in most studies, other types of data are either unavailable or not amenable 

to incorporate. Methods learning from expression data alone or exhaust the maximal 

potential of expression data are undoubtedly highly valuable. Therefore, the first part of 

this thesis focuses on learning GRN with expression data as the only experimental data. 

In the remaining part of the thesis, I also explore pathway/gene set analysis, as data 

integration based strategy to infer gene regulatory mechanisms. 

1.3 Pathway inference and gene set analysis 

Differential expression analysis is a well established strategy to screen genes or sets of 

genes associated with specific phenotypes or sample conditions. There are two categories 

of differential expression analyses: individual gene analysis (IGA) and gene set analysis 

(GSA, also called category analysis, pathway inference or analysis) [35]. IGA evaluates 

the differential expression of individual genes between two sample groups. A list of 

significantly altered genes is then selected based a certain threshold and downstream 

biological interpretation is focused on this short list of genes. GSA on the other hand 

evaluates the coordinate differential expression of predefined gene sets between two 

sample groups. Downstream biological interpretation is based on the definition or 

annotation of most significant gene sets. 
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GSA differs from IGA in two key aspects. First, the zoom-in level of the expression 

pattern analysis: GSA screens differential expression signals at whole gene set level, 

whereas IGA screens signals at individual gene level. It is common sense that genes 

usually work in groups as regulatory pathways, functional groups or target sets in 

biological systems. Therefore, GSA tends to focus on the right level and see the bigger 

picture or more sensible patterns, yet IGA frequently zooms-in too much for the finer but 

less sensible and replicable patterns. Second, the use of prior knowledge: GSA 

incorporates functionally related gene sets derived from literature works or public 

databases [35, 36], which bring extra information unavailable in the expression data and 

place the data analysis in a more relevant context. Therefore, GSA is considered as a 

knowledge based analysis method. 

Gene sets are collected from public databases and literature [35, 36]. Diverse biological 

knowledge and functional genomics data can be sources for gene set definitions, 

including signaling pathway (KEGG [37], GenMAPP [38], BioCarta [39] and Reactome 

[40]), Gene Ontology [41] (molecular function, biological processes, cellular 

components), genomic location or cytogenetic bands (EntrezGene [42]), cis-acting 

regulatory motifs for transcription factors or microRNAs (MsigDB [43]), 

coregulated/coexpressed gene groups (MsigDB [43]), and co-citation in literature 

(Entrez-PubMed [44]) for example. 

A variety of methods have been proposed to test differential expression of gene sets. 

These methods can be divided into different categories based on whether a cutoff value is 

imposed on the sorted gene list, statistical inference procedures being used, and whether 

the detail of gene-gene relationships (topology) is considered.  

Cutoff based methods [45] are the earliest form of GSA evolving directly from IGA [35]. 

Similar to IGA, all genes are ranked based on some differential expression score, and 

then a short list genes are selected and labeled as differentially expressed based on a 

cutoff value, with the rest genes as non-differentially expressed. We examine whether 
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predefined gene sets are overrepresented in this differentially expressed list, using a test 

for independence in a 2×2 (contingency) table. This approach has been widely used with 

many minor variations [43]. The major issues with this approach [45, 46]: (1) the choice 

of cutoff is arbitrary and testing results depended strongly on the choice of cutoff; (2) the 

ranking information is lost since all differentially expressed or non-differentially 

expressed genes are treated equally, which will lower the inference power. 

Cutoff free methods [35, 36, 46-53] were proposed to address the issues with cutoff based 

methods. These methods rank all genes based on differential test, aggregate of per gene 

statistics or scores as the score for the whole gene set, and test whether such gene set 

scores are significant compared to random control scores. Commonly used per gene 

statistics or scores include Kolmogorov-Smirnov score, P-values, t statistics, fold changes 

etc [35]. Cutoff free methods can be further divided into two groups based on the 

statistical tests used for the significance of gene set scores: sample randomization and 

gene randomization  [35, 51]. Sample randomization methods test significance of gene 

sets based on permutation of sample labels, with GSEA [36, 47], SAFE [53] and 

SAM-GS [52] as representatives. In contrast, gene randomization methods test the 

significance of gene sets based on permutations of gene labels or a parametric 

distribution over genes, with PAGE [48], T-Profiler [50] and Random-set [49] as 

representatives. Sample randomization keeps the correlation structure among genes but 

only applies to large expression data sets with multiple samples per experimental 

condition. Gene randomization has no limitation on sample size, but may break the 

correlation structure among genes. 

Two newly developed methods incorporate network topology in gene set analysis. First, 

the impact analysis [54] considers not only the magnitudes of expression changes, but 

also more pathway-specific factors such as gene type and position in the given pathways, 

their interactions, etc. however, the impact factor (IF) score used in the impact analysis 

mixes log based P value and the sum of normalized absolute differential expression 
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(perturbation factor), hence is ad-hoc and hard to interpret. A more sensible scoring 

metric should count for gene position and interactions (topology), as well as magnitude 

and direction of the overall impact of pathway perturbations. Second, Chuang et al [55] 

extended gene set analysis to infer significantly perturbed protein interaction sub-network 

significant associated with particular phenotypes. However, network topology was only 

used to define candidate sub-network boundaries incrementally, and not considered in the 

sub-network score or statistical inference. 

1.4 MYC centered GRN and BMP6 induced osteoblast differentiation and 
mineralization 

From a biology-driven perspective, I am particularly interested in solving the regulatory 

mechanisms for two representative biological problems. 

The first problem is MYC dependent transcription. MYC transcription factor has been 

established as a universal transcriptional regulator that affects the expression of 

significant portion of the whole genome [1]. By modifying the expression of its target 

genes, MYC involves in a variety of cellular processes, including cell cycle, apoptosis, 

differentiation and stem cell self-renewal, as well as multiple cancers [2]. Therefore, 

MYC centered GRN is universally important at both molecular level and phenotypic 

level. However, our current understanding of the system is both incomplete and 

inaccurate with key questions not answered: what are MYC target genes, and what are the 

cofactors MYC interact, and how is the specificity of MYC dependent transcription 

controlled?  

Construction of a MYC centered GRN would give answer to these questions and better 

understanding of MYC affected physiological/pathological processes. Basso et al [22] 

published a big microarray study with 336 chips on human B cells under various 

experimental/physiological conditions. Throughout this study, MYC showed significant 

transcriptional regulatory activity and numerous known MYC target genes significantly 

correlate with MYC at gene expression level [22]. Theoretically, reconstruction of a 
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realistic MYC centered GRN is plausible from this microarray study. However, such 

GRN reconstruction is demanding and requires new effective method since no previous 

method is appropriate (more in Chapter 2). 

The second problem is BMP6 induced osteoblast differentiation and mineralization [56]. 

This is a phenotypic change responsible for skeleton development and function, its 

deregulation is associated with multiple common bone diseases [3]. Our previous work 

showed BMP6 is a primary endogenous factor for human osteoblast differentiation and 

mineralization [56]. But little is known on BMP6 induced transcriptional programs, 

particular the regulatory signaling pathways or functional groups responsible for the 

induction of osteoblast phenotype and function.  

High throughput microarray profiling experiments and pathway inference would dissect 

the regulatory mechanisms throughout this process. We designed and carried out a 

microarray study with BMP6 addition and withdrawal at different stages of the 

osteogenic induction. As in most other microarray studies, the sample size for this study 

is small with two replicates for each state. But different from many other studies, this 

study has a time series design. No previous pathway inference method handles such 

dataset effectively. I develop a new pathway inference method (Chapter 3) and apply it 

for a special temporal pathway inference study (Chapter 4). 

1.5 Overview 

1.5.1 Problem statement 

GRN reconstruction and pathway inference are two basic and related biological problems 

(Figure 1.1 and 1.3). The former considers what genes regulate what other genes, the 

latter considers what genes or groups of genes regulate a specific phenotype. Pathways 

are networks of genes and proteins and their interactions involved in a biochemical 

process or signal transduction. GRNs are a subset of biochemical pathways, where 

regulatory signals are transmitted at gene expression level. GRN reconstruction, pathway 

inference and another problem, gene marker selection are all closely related (Figure 1.3). 



14 

Gene marker selection identifies the two-way association between individual genes and a 

specific phenotype without considering the interactions between these genes (part list, 

Figure 1.3a). GRN reconstruction instead solves the regulatory interactions among such 

functionally related genes conditioned on specific phenotype(s) (wiring, Figure 1.3b). 

Upon constructed, GRNs can be taken as functional modules or regulatory pathways 

(circuits, Figure 1.3c). Pathway inference examines whether such functional modules are 

significantly associated with a phenotype. Pathway inference accounts for the aggregate 

behavior of all genes in a module with or without considering the network topology. 

Further connections between GRN reconstruction and pathway inference can be 

described from a statistical learning perspective (Table 1.1). 

 

Figure 1.3 A schematic description and comparison of three statistical learning problems 
using gene expression data. (a) gene marker selection; (b) GRN reconstruction; (c) 
pathway inference. Parts plotted in dashed lines are dispensable for the problem. In this 
thesis, I focus on (b) GRN reconstruction and (c) pathway inference. 

Table 1.1 Comparison between the two basic problems studied in the thesis, GRN 
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reconstruction and pathway inference. 

Sub-problem GRN reconstruction Pathway inference 
Super-problem Reverse engineering Feature selection 
Graph 

  

Nodes Gene (or pathway) Pathway (or gene), discrete phenotype 
Edges Causal relationships between genes 

or pathways 
Naïve two-way association with 
phenotype, often interpreted as causal. 

Summary of 
Available 
Methods 

Correlation based: clustering [6, 7], 
correlation networks [8, 9], graphical 
Gaussian models [10] 
Probability based: Bayesian networks 
[18-21], mutual information networks 
[22, 23] 

Cutoff based: 2×2 contingency table 
[46] 
Cutoff free: Sample randomization 
methods such as GSEA [36, 47], SAFE 
[53] and SAM-GS [52]; Gene 
randomization methods such as PAGE 
[48], T-Profiler [50] and Random-set 
[49] 
Topology based: the impact analysis 
[54], protein interaction sub-network 
analysis [55] 

Sample size 
requirement 

Correlation based: ~101 data points; 
Probability based: ~102 data points 

~100 data points 

New Method 
Proposed 

MI3: continuous three-way mutual 
information network 

GAGE: Generally Applicable Gene Set 
Enrichment (cutoff free, gene 
randomization) 

1.5.2 Thesis outline 

This work focuses on gene regulatory network (GRN) reconstruction and pathway 

inference from high throughput gene expression data and their applications (Figure 1.1). 

In chapter 2, I present a new method, MI3, for de novo GRN construction using 

continuous three-way mutual information. I validate the method systematically using 

synthetic data and applied the method to infer a regulatory network centered at the MYC 

transcription factor from a published microarray dataset. In chapter 3, I present another 
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novel method, GAGE, Generally Applicable Gene Set Enrichment for Pathway Inference. 

I validate GAGE and compare it to established pathway inference methods using 

published and new microarray datasets of different sample size, experimental design, and 

by using different profiling techniques. In chapter 4, we conducted a microarray study on 

transcriptional programs during BMP6 induced osteoblast differentiation and 

mineralization, and applied GAGE to infer the regulatory pathways and transcriptional 

signaling networks in the process. I will introduce each part of our work, their relevance 

and results briefly below. 

Chapter 2 Gene Regulatory Network Reconstruction from High Throughput Gene 
Expression Data Using Continuous Three-Way Mutual Information 

Probability based statistical learning methods such as mutual information and Bayesian 

networks have emerged as a major category of tools for GRN reconstruction from 

quantitative biological data. In this work I introduce a new statistical learning strategy, 

MI3 that addresses three common issues in previous methods simultaneously: (1) 

handling of continuous variables, (2) detection of more complex three-way relationships 

and (3) better differentiation of real causal versus correlative but confounding 

relationships. With these improvements, I provide a more realistic representation of the 

underlying biological system.  

I test the MI3 algorithm using both synthetic and experimental data. In the synthetic data 

experiment, MI3 significantly outperformed the control methods, including Bayesian 

networks, classical two-way mutual information and a discrete version of MI3. I then 

used MI3 and control methods to infer a regulatory network centered at the MYC 

transcription factor from a published microarray dataset. Unlike control methods, MI3 

effectively differentiated true causal models from confounding models. MI3 recovered 

major MYC cofactors, and revealed major mechanisms involved in MYC dependent 

transcriptional regulation, which are strongly supported by literature. The MI3 network 

showed that limited sets of regulatory mechanisms are employed repeatedly to control the 
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expression of large number of genes. 

Chapter 3 GAGE: Generally Applicable Gene Set Enrichment for Pathway Inference  

Gene set analysis (GSA), also called pathway inference, is a widely used strategy for 

gene expression data analysis based on pathway knowledge. GSA focuses on sets of 

related genes and has established major advantages over individual gene analyses, 

including greater robustness, sensitivity and biological relevance. However, previous 

GSA methods suffer from limitations in the sample size and experiment design of the 

data sets they apply to. 

To address these limitations, I present a new GSA method called Generally Applicable 

Gene-set Enrichment (GAGE). I successfully apply GAGE to multiple microarray data 

sets with different sample sizes, experimental designs and profiling techniques. GAGE 

shows significantly better results when compared to two other commonly used GSA 

methods of GSEA and PAGE. I demonstrate this improvement in the following three 

aspects: (1) consistency across repeated studies/experiments; (2) sensitivity and 

specificity; (3) biological relevance of the regulatory mechanisms inferred. 

GAGE reveals novel and relevant regulatory mechanisms from both published and 

previously unpublished microarray studies. From two published lung cancer data sets, 

GAGE derived a more cohesive and predictive mechanistic scheme underlying lung 

cancer progress and metastasis. For a previously unpublished BMP6 study, GAGE 

predicted novel yet biologically plausible regulatory mechanisms for BMP6 induced 

osteoblast differentiation, including the canonical BMP-TGF beta signaling, JAK-STAT 

signaling, Wnt signaling, and estrogen signaling pathways. 

Chapter 4 Time Series Microarray Gene Expression Profiling and Temporal Regulatory 
Pathway Analysis of BMP6 Induced Osteoblast Differentiation and Mineralization 

Osteoblast differentiation and function are implicated directly in skeletal development 

and bone diseases. Our pervious studies established that BMP6 as a primary endogenous 

regulator of human osteoblast differentiation and function. Although functionally critical, 



18 

BMP6 signaling largely remains uncharacterized. Key problems that still remain 

unsolved include: what pathways and gene groups are responsible for MSC 

differentiation to bone in response to BMP6 stimulation? How and when these pathways 

are altered (induced or repressed) by BMP6 during the process? 

To answer these questions, we designed and conducted a time series microarray study on 

BMP6 induced osteoblast differentiation and mineralization. I conducted a 

comprehensive temporal pathway analysis using GAGE and predefined gene sets 

collected from KEGG, GO databases, and literature sources. I inferred novel and coherent 

sets of regulatory mechanisms and functional groups downstream BMP6 signal during 

osteoblast differentiation and mineralization. Different from other pathway analyses, our 

work captures the interconnections between individual pathways or functional groups and 

integrates them into a whole system. Besides the systems approach, this work also has a 

dynamic perspective. I not only inferred which pathways or gene sets are significant, but 

also determined when and how they are involved in the osteoblast differentiation and 

mineralization. 
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Chapter II  

Gene Regulatory Network Reconstruction from High Throughput Gene 

Expression Data Using Continuous Three-Way Mutual Information 

2.1 Introduction 

A major challenge in systems biology is to infer mechanistic gene interactions from high 

throughput microarray data [1, 2]. Underlying this challenge is the problem to find causal 

regulatory relationships among genes, or gene regulatory network (GRN) reconstruction. 

Robust solutions to this problem would provide us with a transcriptomic map of a 

genome that allows us to accurately predict the effect of gene perturbations. 

Previous efforts to detect mechanistic relationships from gene expression data can be 

broadly divided into linear correlation and probability based methods. Linear correlation 

based methods, such as clustering [3, 4], correlation networks [5, 6] and graphical 

Gaussian models [7], have a long and fruitful history in statistical modeling and 

bioinformatics. These linear methods are computationally fast and relatively easy to 

interpret. However, a key limitation with these methods is that they assume linear 

relationships between variables. While some components of any transcriptional 

regulatory network are linear, nonlinear events such as OR, AND, and XOR type 

transcriptional regulation are relatively commonplace [8]. These nonlinear interactions 

would not be captured with a linear model, leading to spurious relationships between 

variables. 

Probability based methods have also been used to detect relationships between genes.  

These probability methods include Probabilistic Boolean Networks (PBN) [9, 10], 
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Bayesian networks [11-14] and mutual information networks [15, 16]. Probability based 

methods can capture both linear and nonlinear regulatory relationships and are noise 

tolerant. However, many of the current probability based tools used in systems biology 

suffer from the following three limitations: (1) data discretization [9-14, 16], (2) pairwise 

testing [15, 16], (3) emphasis on correlation over causality [11, 12, 14, 17]. To transform 

continuous data into a more easily computable form, most probabilistic methods require 

the data to first be discretized into a finite number of bins, such as high, medium, and low 

[9-14, 16]: The number of bins used in discretization is difficult to choose, and is 

generally selected at some consistent yet arbitrary point. Unfortunately, different binning  

procedures can produce different analysis results [12], suggesting that the act of binning 

alone introduces errors into the analysis. Methods that search for pairwise associations 

only focus on a single relationship between regulator and target at a time. Pairwise 

association networks have been created using classical mutual information [15, 16]. 

However, simple pairwise relationships are likely less common than multivariate 

relationships in real biological systems, as the expression of most genes is regulated not 

by a single gene but more likely by multiple genes. Methods that allow multivariate 

interactions such as Bayesian networks or some fuzzy logic approaches [18] are 

inherently superior in this respect. 

A final challenge in creating mechanistically predictive transcriptional models is the 

ability to identify not just correlative but also causal models. Although difficult, causal 

relationships have been learned properly from non-sequential observational data [19, 20]. 

Probabilistic graphical modeling methods like Bayesian networks have been used to infer 

causal models from gene expression data [12, 14]. However, many probabilistic 

approaches are able to make correlative networks but not necessarily causal networks [11, 

12, 14, 17]. Their multivariate scoring metrics such as conditional probability and mutual 

information are still generalized two-way correlation between the target and the parent set. 

Similar to the classical two-way metrics, these generalized correlations alone cannot 
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differentiate between a causal versus confounding parent set. True causal relationships 

like genetic regulation feature positive higher order interaction [21, 22], the non-additive 

effect above the sum of the lower order interactions [22]. For instance, for regulation 

involved two regulators such as OR, AND, XOR type relationships, two regulators 

together account for much more in the target than they individually can (Table 2.1). 

Intuitively such non-additive effect can be described as coordination or synergy between 

parents (with respect to the target, more description in Methods). On the other hand, 

confounding models commonly have no or negative higher order interaction (redundant 

parents, see the results). We propose that with such high order interaction considered, we 

can better differentiate true causal model versus confounding models. 

In this work, we demonstrate a novel algorithm that attempts to overcome all three 

limitations using a continuous high order mutual information based scoring metric we 

call MI3 (Mutual Information 3). Note that continuous two-way mutual information has 

been described previously [23]. High order interaction information (an extension of 

mutual information) has been employed to model complex interactions [21, 22, 24]. 

However, both two-way mutual information and high order interaction information are 

symmetric and as such unable to make causal statements. MI3 combines 3rd order 

interaction information with the asymmetric mutual information between target and 

regulator set to account for the direction of regulation. MI3 is novel as a combinatorial 

probabilistic metric and an integrated statistical learning method. 

In this work, we compare MI3 to other probability based methods quantitatively and 

qualitatively using synthetic data where the true model is known. Next we apply MI3 and 

control methods to reconstruct regulatory networks centered at the transcription factor 

MYC from a published high throughput microarray dataset [15]. The learning results are 

then evaluated numerically and biologically. 

Learning MYC centered transcriptional regulatory network represents an ideal test case 

for MI3 as MYC is a well characterized transcriptional regulator that acts in tandem with 
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a finite set of co-effectors and regulates the expression of a large group of genes [25-27]. 

MYC has been well investigated [26, 28, 29] and online databases of MYC targets [30] 

are available for validation purpose. Despite these efforts, many cofactors and targets 

remain unidentified, and corresponding regulatory mechanisms unknown [15, 25, 26, 28]. 

As a result, an integrated understanding of MYC dependent transcriptional regulation has 

remained out of reach [15, 25, 26, 28, 29]. In this study, we use MI3 to derive an accurate 

transcriptomic map surrounding MYC from the same gene expression dataset used to 

identify MYC targets [15]. The approaches used here are general and can be directly used 

for any transcriptional regulator given sufficient gene expression data. 

Table 2.1 Examples of the non-additive property of high order interactions. The 
non-additive property of high order interactions, i.e. I(T;R1,R2)-I(T;R1)-I(T;R2) = I(T;R1;R2) 
>0, is shown by common types of regulatory relationships involving two independent 
parents (R1 and R2) and a target (T). Entropies (H’s) and mutual information (I’s) are 
calculated according to definitions in 2.5.1 Mutual information definition, extension and 
calculation. These are ideal cases. In reality, we don’t always get positive high order 
interactions due to the data quality and absence of real regulators in the data. Hence we 
don’t impose any threshold on high order interaction alone. 

Relationship OR AND XOR 
Contigency Table p R1 R2 T

1/4 0 0 0 
1/4 1 0 1 
1/4 0 1 1 
1/4 1 1 1  

p R1 R2 T 
1/4 0 0 0 
1/4 1 0 0 
1/4 0 1 0 
1/4 1 1 1  

p R1 R2 T 
1/4 0 0 0 
1/4 1 0 1 
1/4 0 1 1 
1/4 1 1 0  

H(T) 2-0.75*log23 2-0.75*log23 1 
H(R1)=H(R2) 1 1 1 
H(T,R1)=H(T,R2) 1.5 1.5 2 
H(R1,R2) 2 2 2 
H(T,R1,R2) 2 2 2 
I(T;R1)=I(T;R2)= H(T)+ 
H(R1)- H(T,R1) 

1.5-0.75*log23 1.5-0.75*log23 0 

I(T;R1,R2)= H(T)+ 
H(R1,R2) -H(T,R1,R2) 

2-0.75*log23 2-0.75*log23 1 

I(T;R1,R2)- 
I(T;R1)-I(T;R2) 

0.75*log23-1 
=0.189 

0.75*log23-1 
=0.189 

1 
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2.2 Results 

2.2.1 MI3 validation with synthetic data 

We validated MI3 against other commonly used methods listed in Table 2.2, including a 

discrete version of MI3 (dMI3), two-way mutual information (MI2) and a log conditional 

probability score used in Bayesian network (BN) learning. Learning was carried out 

using data sampled from a synthetic regulatory network, described in Figure 2.7 and 

Table 2.6, where the true network structure is known. We learned the best two-parent 

regulatory model (Figure 2.1) for each dependent node (u1-u6) by exhaustively searching 

through each possible parent set and scoring with each metric. 

Table 2.2 MI3 and control methods evaluated and compared using the synthetic data. All 
scores are calculated based on continuous nonparametric probability density estimation, 
except dMI3 based on discretization using 5 bins of equal size. 

Performance 
Rank# 

Method Metric Description 

Syn Real 
MI3 2*I(T;R1,R2)-I(T;R1)-I(T; R2) 

= I(T; R1| R2)+ I(T; R2| R1) 
 

The sum of Correlative and 
Coordinative Criteria, which 
equals to the conditional mutual 
information between the target 
gene and the each regulator 
given the other regulator 

1 1 

dMI3 2*I(T;R1,R2)-I(T;R1)-I(T; R2) 
 

Discrete version of MI3, control 
score to show the strength of 
continuous mutual information 

3 2 

Bayesian 
network 
(BN) 

logP(T | R1,R2)† Log conditional probability, 
control score which maximize 
correlation of the parent set to 
the target , while ignores the 
interaction between R1 and R2 

2 3 

Two-way 
MI (MI2) 

I(T;R1)+I(T;R2) Control two-way mutual 
information score to show the 
strength of three-way metric 

4 4 

† In this paper, log conditional probability and BN are used interchangeably. 
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# Performance rank for real data experiment is based on qualitative comparison. 

 

Figure 2.1 A schematic view of the network inference procedure for MI3 and control 
methods. We learn gene regulatory networks in two steps: (1) learn local regulatory 
network for each of the interesting nodes through an exhaustive search; (2) assemble 
local networks up into a unified network if needed. When there is no list of interesting 
nodes, all nodes becomes interesting in step (1). In the step (2), we may need to 
reconcile the conflicting local structures (labeled by *) if there are any, mainly the two way 
edges and cycles. In this work, the key difference between different methods is the score 
metric being used rather than the network inference procedure. For a fair comparison 
between scoring metrics, we simple assemble the local networks up without the 
reconciliation of conflicts in step (2). 

The resulting best scoring network from a representative experiment is shown in Figure 

2.2. Using the MI3 score, we recovered the true models for all dependent variables with 

exactly two parents, including u2, u3 and u5. For variables with fewer or more than two 

parents, i.e. u1, u4 and u6, MI3 detected the best two-parent representative of the true 

models. Continuous MI3 outperformed dMI3 as dMI3 identified poor models for u1, u4, 

and u5. The BN tended to select confounding yet correlative models with low or negative 
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coordination (parents overlapping in their correlation with the target) between the two 

parents. For example, the BN score selected u2+u3 and x3+u2 over x1+x2 as the top 2 

models for u4. Therefore, the coordinative component in MI3 is necessary to differentiate 

the true parent set from the confounding set. Compared to MI2, MI3 as well as log 

conditional probability consistently gave more accurate models whenever there was a 

difference, demonstrating their advantage in capturing higher order relationships. The 

existence of two way edges or edges with reversed direction showed that MI2 could not 

 

Figure 2.2 Networks inferred by MI3 or control methods from a 350-sample synthetic 
dataset. (a) MI3, (b) dMI3, (c) BN (log conditional probability) and (d) MI2. The best two 
parent model for each target gene was selected by using different methods and 
compared to true models. Here our interesting nodes are all the dependent nodes, u1-u6. 
Local regulatory networks are learned on these nodes and then assembled. When there 
is no information on dependent versus independent nodes, local networks are learned for 
all nodes including x1-x3. Conflicting local structures can be resolved in step (2) of Figure 
2.1. For instance, the best two parents for x1 are u3 and u5, which conflicts with the local 
model for u5 whose parents are x1 and u3. Such conflicts were solved easily based on 
MI3 score, u3+u5->x1 scores 1.07 while x1+u3 ->u5 scores 1.49; hence the latter is the 
true model. The results remained essentially the same for MI3, BN and dMI3, but not for 
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MI2. 

 

Figure 2.3 Sensitivity curves for MI3 versus control methods in learning two-parent 
models from the synthetic dataset. (a) Average absolute sensitivity of the 4 methods to 
recover the known network. (b) Average relative sensitivity of the 4 methods to recover 
the known network given that only two parents are possible for each dependent node. 
Vertical dashed lines marked sample size of 350 used in Figure 2.2, which is similar to 
the experimental sample size used for the MYC study.  

identify direction of causality between variables. In addition, the two parents for nodes u1, 

u4, u5 and u6 picked by MI2 have highly negative coordination with each other. These 

results demonstrate that, among the methods tested, MI3 most accurately identified the 

underlying regulatory network for both linear and nonlinear relationships between 

variables (Table 2.6). 

Next we quantitatively compared the performance of MI3 to other commonly used 

methods in terms of both sensitivity (ratio of correctly inferred interactions among all 

true interactions) and precision (ratio of correct interactions among all inferred 

interactions) [15]. In Figure 2.3, only sensitivity curves are shown because the precision 

curves are essentially the same but shifted. Figure 2.3a provides the absolute performance, 

while 2b shows the relative performance. The relative performance is a more meaningful 

comparison, given that the number of parents was fixed, although both results are quite 

similar. The absolute sensitivity and precision MI3 algorithm achieved were 0.77 and 
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0.83 respectively (Figure 2.3a), and the relative levels are both 0.99 (Figure 2.3b). In this 

comparison, MI3 consistently outperformed dMI3 across all different sample sizes.  

Also MI3 was more robust than dMI3 in that the sensitivity and precision curves have 

smaller error bars (standard deviation not shown for better plot view). In addition MI3 

always outperformed the correlative BN. MI2 consistently demonstrated the lowest 

performance by a large margin as long as the sample size was greater than 25. All 

methods reached a plateau at ~250 samples, indicating that the 350 (or 336 for real data) 

sample default used in this paper is appropriate for all 4 methods to learn two parent 

regulatory models (3 nodes). Finally, all four methods were ranked in terms of 

performance in Table 2.2. Overall, MI3 always gave the highest true positive and the 

lowest false positive rate, and significantly outperformed all control methods 

(p-value=4.45×10-11). 

2.2.2 MI3 applied to high throughput microarray data 

We used MI3 and control methods to infer regulatory network centered at MYC 

transcription factor from a human B cell microarray dataset. Note that the same dataset 

had been generated and used for identifying MYC target genes by another group using 

the mutual information tool ARACNE [15]. Instead of doing an exhaustive search of 

co-regulator pairs for each target as in the synthetic data, we fixed one of the regulators to 

be MYC and the target to be a known MYC target, and searched for the second regulator. 

This constraint imposed by our specific biological focus made the analysis more tractable 

and our results more testable, because we only need to select and test the second regulator 

(more details given in Footnote 2). Notice that this simplified problem is a sub-case of the 

synthetic problem. We are still using the same scoring metrics (Table 2.2) and following 

the same procedure (Figure 2.1), except that one parent node is fixed by introducing extra 

literature data.  In this sense, all methods are still comparable. Experiments with 

synthetic data showed that such simplification does not change the final results as long as 

we are introducing a real parent of the target with enough marginal dependency, i.e. 
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I(T;R1)>0.3, for MI3, dMI3 and BN. For MI2, fixing R1=MYC does change the results, 

but it makes sense when taken as prior knowledge introduction. We pre-filtered MYC 

targets, T, with I(T; MYC) ≥0.3 to prevent bias upon fixing R1=MYC, and to speed up 

analysis similar to candidate parent set selection in the sparse candidate algorithm [31]. 

The verified targets were retrieved from the MYC Target Gene Database [30] available 

online [32]. After pre-filtering using the constraint I(T; MYC) ≥0.3, 368 MYC targets 

remained as shown in Table 2.3. For each filtered target of MYC we selected top 5 

cofactor (R2) models using MI3 or control methods. Because for each target gene, there 

are usually multiple models which score almost the same and are equally interesting. For 

example, several coregulated cofactors are involved, or multiple genes in a 

pathway/complex represent the same regulatory action equally well. This is slightly 

different from the synthetic experiment, where only there is 1 true or best model for each 

target and the number of regulators is known. Nonetheless, keeping only top 1 model led 

to almost the same lists of most frequently selected cofactor (Table 2.5) as the list based 

on top 5 models (Table 2.4), except that the number of targets mapped to individual 

cofactors was smaller. All other comparisons between MI3 and control methods led to the 

same results when top 1 models were used (not shown). 

Table 2.3 MYC target pre-selection based on two-way mutual information. Genes are 
selected to be potential MYC targets (T) based on criterion I(MYC; T) > specific cutoff 
value: cutoff value vs total number of targets, number of targets verified against the MYC 
target database (http://www.myccancergene.org/), and the verified ratio. 

Cutoff Selected† Verified Verified 
Ratio 

<0.1 8358 1156 0.138  
0.1 4042 733 0.181  
0.2 2226 513 0.230  
0.3 1303 368 0.282  
0.4 634 231 0.364  
0.5 249 107 0.430  
0.6 58 34 0.586  
0.7 3 3 1.000  



34 

† MYC gene itself was pre-excluded from the target selection 

 

Figure 2.4 Two-way and three-way gene expression patterns and mutual information for 
representative top two-parent models inferred by MI3 and control methods. For all models, 
T= PSMD7, R1=MYC. The first three columns show the three-way and two-way gene 
expression patterns, and the fourth column the mutual information triangles. The bottom 
row shows the two-way expression pattern for PSMD7-MYC and the legend for mutual 
information triangle. This Figure 2.gives a concrete example for the difference between 
MI3 and control scores, echoing the results in Figure 2.5. For high throughput gene 
expression data, the BN and MI2 metrics both pick up models with high mutual 
information between parents and between either parent and the target. MI3 selected 
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relationships with slightly lower I(T;R1,R2) but I(T;R1;R2) much higher than the BN and 
MI2 metrics. 

 

Figure 2.5 Two-way and three-way mutual information distributions for top models 
selected by MI3 and control methods. For each MYC target gene, the top 5 R2 or MYC 
cofactors were selected by applying different scoring metrics to the microarray dataset 
generated by Basso et al [15]. (a). I(R1;R2) vs I(R2;T), i.e. two way mutual information 
between R2 and R1 or T, (b). I(T;R1,R2) vs I(T;R1,R2)−I(T;R1)−I(T;R2), i.e. the correlative 
and coordinative components of MI3 score for the top 5 models selected by MI3 or control 
methods. Each ellipse represents the distribution of top 5 models in the specified mutual 
information coordinates, with mean as center and standard deviations as width and 
height. Note that I(R1;T) scores are the same for all methods hence not shown in (a). 

MI3 and dMI3 selected models with significant coordination I(T;R1;R2), whereas the BN 

and MI2 selected models with high two-way dependency or I(T;R2) (note that I(T;R1) is 

constant because R1 is fixed to MYC) shown by Figure 2.4-5. Models inferred by all 

methods showed distinct patterns when plotted in three dimensions (T~R1,R2 in Figure 

2.4), which means two parents together explain the target expression well. The difference 

is that BN and MI2 models showed distinct two dimensional patterns as well (T~R1 and 

R1~R2 in Figure 2.4), while the MI3 and dMI3 models did not. What MI3 and dMI3 

captured are 3-way interactions in that neither of the two parents alone can describe the 

target well enough. In contrast, the relationships BN and MI2 captured are essentially 

two-way, and as such do not require both parents. This outcome is not surprising in that 
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the MI3 metric favors strong three way interactions, while the BN and MI2 methods have 

no such favor and as such would be expected to include confounding two-way models 

more frequently. 

Table 2.4 Top 10 most frequently selected coregulators for the 368 verified MYC targets 
using different methods. Top 5 highest scoring cofactors are counted for each target. 
Cofactors in bold font are involved in MYC dependent or general transcriptional 
regulation, those in italics are in the list of 368 verified MYC targets with I(T; MYC) ≥ 0.3. 

Method MI3 dMI3 BN MI2 
Rank\R2 Symbol Targets Symbol Targets Symbol Targets Symbol Targets
1 ARPC1B 45 PSIP1 46 HAT1 23 CTPS 29 
2 TRIP12 45 FNBP1 42 GTF2A2 15 JTV1 24 
3 ASH2L 41 MRPL28 28 PSMD14 14 MRPL3 23 
4 GCN5L2 35 RAB33A 23 PSMA4 13 SSRP1 21 
5 SHOC2 25 HSPB1 22 SFRS1 13 TPX2 20 
6 CSK 23 TPP2 21 PSMA3 12 PSMB7 19 
7 ZNF143 23 ANKMY2 18 ADRM1 11 RFC4 19 
8 FNBP1 22 CD59 18 DNMT1 10 MCM7 18 
9 MIZF 22 KIAA0922 17 CCT5 10 HAT1 18 
10 CBX1 19 SIAH2 17 WDR62 10 HSPC111 17 

 

Table 2.5 Top 10 most frequently selected coregulators for the 368 verified MYC targets 
using different methods. Top 1 highest scoring cofactor is counted for each target. 
Cofactors in bold are involved in MYC dependent or general transcriptional regulation, 
those in italics are in the list of 368 verified MYC targets with I(T; MYC) ≥ 0.3. This table 
based on top 1 MYC cofactors is directly comparable to Table 2.4 based on top 5 MYC 
cofactors. 

Method MI3 dMI3 BN MI2 
Rank\R2 Symbol Targets Symbol Targets Symbol Targets Symbol Targets
1 ASH2L 18 PSIP1 19 PSMD14 4 MRPL3 6 
2 TRIP12 14 FNBP1 19 SFRS1 4 PES1 6 
3 ZNF143 13 MRPL28 14 TXNDC9 3 HSPC111 6 
4 ARPC1B 11 NIPSNAP1 7 PCID1 3 SSBP1 6 
5 CSK 9 CD59 7 GTF2A2 3 SSRP1 6 
6 SIAH2 7 RAB27A 6 MSH2 3 MCM7 5 
7 FNBP1 6 ACOT8 5 NDUFAB1 3 TMEM53 5 
8 MIZF 6 ARPC5 5 PSMA3 3 JTV1 5 
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9 GCN5L2 6 KIAA0922 5 KIF23 3 TPX2 4 
10 PRPSAP1 5 SIAH2 5 CHERP 2 MAD2L1 4 

 

Figure 2.6 The transcriptional regulatory networks centered at MYC transcription factor. 
Networks included the top 10 most frequently selected MYC cofactors by using MI3 or 
control methods and the corresponding target genes (transparent). (a-d) are networks 
inferred by MI3, dMI3, BN and MI2 respectively. Regulators are large nodes and targets 
are small transparent nodes. Node colors indicate the identity where yellow is MYC, 
aquamarine are the cofactors involved in MYC dependent or general transcriptional 
regulation according to literature, gray are unverified cofactors, pink are confounding 
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cofactors that are actually verified MYC targets. Edges represent transcription regulation. 
Note that all edges from MYC to targets are hidden for clarity. 

BN and MI2 models had low or negative 3-way coordination, and are likely confounding 

models. The relationship R2~R1 is similar to T~R1 and T~R2 follows a nearly perfect 

linear pattern (Figure 2.4). Such high similarity between R2 and T is less likely true 

regulation but rather coregulation relationship when considering various other factors 

affecting the target gene expression that are not counted by transcription level of the 

regulator(s), such as mRNA to protein translation, protein modification, and localization 

of the regulator. We expect that the R2 factors predicted by the BN and MI2 methods is 

most often another MYC target tightly coregulated with T instead of a coregulator, and 

indeed many top R2 are MYC targets (Table 2.4 and Figure 2.6, more description next). 

Next we collected the top 5 cofactors and ranked each cofactor according to its frequency 

of being selected. Table 2.4 lists the top 10 most frequently selected cofactors using the 

four methods. Transcriptional regulatory networks centered at MYC were constructed 

based on the top 10 cofactors and corresponding targets, as shown in Figure 2.6. 

Literature validation was focused on these top 10 cofactor lists (Table 2.4). 

The top 10 cofactors captured by MI3 and dMI3 were more informative and inclusive 

regulatory mechanisms than those captured by BN and MI2 (Table 2.4). Correspondingly, 

top 10 cofactor transcriptional regulatory networks constructed by MI3 and dMI3 were 

larger than the networks created by BN and MI2 (Figure 2.6). Out of 368 MYC targets, 

MI3 places 56.3% of these targets while dMI3 places 51.6%, BN places 26.9%, and MI2 

places 41.8% of the targets. In other words, more MYC target genes are regulated by the 

top 10 mechanisms inferred by MI3 or dMI3, which is more consistent with the current 

mechanistic understanding of MYC dependent transcription that MYC regulates a large 

number of targets (>1000 verified) [25, 30] as a global transcriptional regulator yet only 

interacts with a small set of cofactors (13 listed) [26, 28]. 

Biologically, top 10 MYC cofactor list selected by MI3 was more consistent with the 

literature than the lists created by the control methods (Table 2.4). Seven out of ten MI3 
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top MYC cofactors are involved in MYC dependent or general transcriptional regulation. 

GCN5L2 (known as human GCN5), ASH2L, MIZF, CBX1 (HP1 beta homolog 

Drosophila) are chromatin structure modifiers, which change chromatin structure around 

target genes through chemical modification hence activate or repress their transcription. 

Chromatin structure modification by GCN5L2 and similar enzymes is a well documented 

mechanism for MYC dependent transcriptional regulation [26, 27, 33, 34]. ZNF143 [35] 

and MIZF  [36] are transcriptional factors. CSK phosphorylates and activates 

GSK-3beta directly [37] and indirectly [38], while GSK-3beta phosphorylates, 

deactivates MYC and promotes its degradation [26]. SHOC2 complexes with Ras and 

Raf and enhances MAP kinase activation [39, 40], which in turn positively regulates 

MYC stability/activity by phosphorylation [26]. In contrast, only 2 (PSIP1, SIAH2), 3 

(HAT1, GTF2A2, DNMT1) and 3 (SSRP1, MCM7, HAT1) top 10 MYC cofactors 

selected by dMI3, BN and MI2 respectively are transcriptional regulators based on Gene 

Ontology and literature. Moreover, 3 (SFRS, CCT5, PSMD14) and 6 (CTPS, JTV, 

PSMB7, RFC4, MCM7, HSPC111) top 10 MYC cofactors selected by BN and MI2 

respectively are actually from the 368 verified MYC targets. Other top 10 cofactors 

selected by BN and MI2 are likely ‘unverified’ MYC targets given that they either share 

function annotations have similar expression profile with these questionable cofactors. In 

other words, BN and MI2 frequently produced confounding models where target genes 

were mistaken as MYC cofactors, while MI3 and dMI3 produced no confounding models. 

In Figure 2.6d, the two-way edges between red nodes suggest that MI2 not only 

confounded coregulators with targets, but also failed to tell the causal direction of the 

relationships. Combined with numerical comparison in Figure 2.4-5, these biological 

results show that unlike BN and MI2 scores, MI3 score effectively differentiates true 

causal models from confounding models because it takes the interaction between 

regulators into account. 

2.3 Discussion 
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In this study, we have used MI3 to identify mechanistically plausible relationships from 

gene expression data. For synthetic data, MI3 recovered all true two-parent models, or the 

best representatives of the true models, and showed superior performance over the 

commonly used probability based methods including Bayesian networks and classical 

two-way mutual information. For experimental data, MYC cofactors identified by MI3 

are either true or strongly supported by literature, while cofactors identified by control 

methods make little sense. Notably, the same microarray dataset has been used to identify 

MYC targets based on two-way mutual information [15]. 

MI3 uses three strategies to improve its predictions. First, MI3 does not require data 

discretization, and as such retains more of the information in the data. This continuous 

method enhanced the learning quality significantly, as shown by the synthetic example in 

Figure 2.2-3. Second, we extended classical two-way mutual information to three-way, 

which allows MI3 to capture more complex relationships between regulators and targets. 

Third, the MI3 score considers high order interaction or coordination and better 

differentiates causal relationships from confounding relationships as was shown by both 

the synthetic and MYC problem (Figure 2.2 and 2.6). 

MYC cofactors predicted by MI3 details agree with the established literature. Notably, 

four of the top 10 cofactors selected by MI3 are chromatin structure modifier genes, 

suggesting that chromatin structure modification is the primary mechanism for MYC 

dependent transcriptional regulation. This inference is directly supported by the 

independent experimental results of Knoepfler et al (21), which provides further evidence 

of the role of MYC on chromatin structure modification via histone acetylation and 

methylation. Among the top MYC cofactors identified by MI3, GCN5L2 [26, 27, 29, 41], 

CSK [26, 37, 38], and SHOC2 [39, 40] are known or presumed coregulators for MYC 

transcriptional activity. All other seven MYC cofactors selected by MI3 are novel, 

although their connections to MYC or transcription are well documented. All these 

results demonstrate that MI3 is an accurate and powerful method to infer regulatory 
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models from microarray data. In contrast, top MYC cofactors inferred using control 

methods make much less sense biologically. Fewer of them are known transcriptional 

regulators and none of them is directly connected to MYC function. The fact that multiple 

MYC targets were mistaken as top MYC coregulators suggests that BN and MI2 methods 

have difficulty inferring true causal relationships from high throughput gene expression 

data. It is not likely that these MYC targets taken as co-regulators are real co-regulators 

because of feedback loops, since almost all of them are not functionally related to 

transcriptional regulation or MYC regulation activity. Similar confounding regulators 

were selected by control methods in the synthetic example (Figure 2.2). Figure 2.4-5 

show why such confounding models occurred. There are likely feedback loops in MYC 

regulation, however these feedback relationships could only be identified with knockout 

data or time series data would be needed for the inference. In this work we only consider 

the general case where non-sequential observational gene expression data are available. 

Learning from high throughput microarray data was different from learning from the 

small synthetic dataset. Differences between methods were larger for the microarray data 

(Figure 2.6 and Table 2.4), compared to the synthetic experiment (Figure 2.2). For the 

microarray data, MI3 and dMI3 were closer, whereas for the synthetic data BN and MI3 

were closer (Table 2.2). This change in ranking suggests that the coordinative component 

was more significant than the difference made by using continuous versus discrete metric 

(MI3 vs dMI3) or 3-way versus 2-way metric (BN vs MI2) for microarray data, but not 

for synthetic data. These differences between microarray data and synthetic data can be 

ascribed to the fact that large numbers of highly correlative confounding models exist for 

the microarray data due to the large number of variables (genes), especially coexpressed 

genes, while the synthetic data contained relatively fewer possible confounding models. 

The high order mutual information framework presented here is generally applicable, 

although we have only described and used three-way mutual information. The same set of 

strategies can be used to model arbitrarily high order relationships. To learn a regulatory 
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model with d dimensions or nodes (1 child with d-1 parents) by exhaustive searching 

through a system with v variables, we need ~10*5d data samples for nonparametric 

probability density estimation [42-44], and computation time is O(vd). Although 10*5d is 

conservative compared to sufficient sample size indicated in the performance curve, ~250 

for d=3 (Figure 2.3), undoubtedly, both the required dataset size and computational time 

exponentially increase with d. Therefore, 4-way or 5-way relationships require more 

samples than currently available microarray chips. 

Through the use of MI3 we have demonstrated that tailored probability based metrics can 

outperform more standard methods used in systems biology for identifying mechanistic 

regulatory relationships. We expect that future enhancements to these scoring metrics are 

possible to identify larger sets of regulators while making fewer assumptions during the 

analysis. 

2.4 Methods 

2.4.1 MI3 algorithm 

The MI3 algorithm is a novel three-way mutual information engine for local causal 

model inference. The algorithm is limited to three-way mutual information (two 

regulators and one target) (Figure 2.5), but the same method can be easily extended to 

higher order mutual information to model more complicated regulation mechanisms. 

Note that we call all types of mutual information involving 3 variables 3-way mutual 

information (2.5.1 Mutual information definition, extension and calculation), while 

three-way interaction information refers to I(T;R1;R2) only. 

The MI3 scoring function has two parts, including correlative and coordinative 

information components. The correlative component measures the correlation between 

the target and the parent set, similar to other correlative probabilistic metrics such as log 

conditional probability for Bayesian networks. 

Correlative component: I(T; R1,R2) 

Here I() is the mutual information function, T is the target gene, and R1 and R2 are the 
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regulators as illustrated in Figure 2.1. Mutual information definition and high order 

extensions are describe in detail in the 2.5.1 Mutual information definition, extension and 

calculation. Pairs of regulators accurately describing the expression of the target gene will 

score well by the correlative component. 

The coordinative component measures the coordination effect between the regulators 

with respect to the target. Note this component is actually the third order interaction 

information between T, R1 and R2, i.e. I(T; R1; R2) [22], and is three-way symmetric. 

Coordinative component: I(T; R1,R2)- I(T; R1)-I(T; R2)  

The coordinative component of the score identifies how well pairs of regulators versus 

individual regulators predict the target (examples in Table 2.1). Confounding models 

commonly have a negative coordinative score because parents overlap in their correlation 

with the target. The coordinative component can be rearranged to I(T; R1|R2)- I(T; R1), 

suggesting that this component measures how much better R1 predicts T given R2 versus 

not given R2. The coordinative component provides a quantitative measurement for the 

well-known ‘selection bias’ (also called Berkson's paradox) [45] in statistics or the 

‘explaining-away phenomenon’ in Bayesian network theory [46]. 

The MI3 score is the sum of the correlative and coordinative component. 

MI3 score: 2*I(T; R1,R2) - I(T; R1)-I(T; R2)= I(T; R1| R2)+ I(T; R2| R1) 

The symmetric coordinative component captures higher order interactions and 

differentiates causal relationships from confounding ones without telling the causal 

direction. The asymmetric correlative component determines the direction of the causal 

relationship. By merging these two components, the MI3 score considers connections 

between the regulators as well as dependency between child and regulators. The MI3 

score can be rearranged and simplified to I(T;R1|R2)+ I(T;R2|R1). This rearrangement 

can be interpreted as the conditional mutual information between the target gene and the 

each regulator given the other regulator, which better shows the three-way nature of this 

score. The MI3 score is structurally different from yet related to other probability scoring 
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metrics such as log based conditional probability used in Bayesian network learning 

logP(T|R1,R2)[11, 12] and two-way mutual information I(T;R1)+I(T;R2) [15, 16] 

(described in Table 2.2 and 2.5.2 Comparison between MI and log-based local 

conditional probability). 

Network inference procedure  

Regulatory network inference procedure based on MI3 is shown in Figure 2.1. Note that 

the key difference between MI3 and control methods is the scoring metrics, less in the 

network construction procedure. For a fair comparison between methods, we keep the 

procedure for all methods the same as in Figure 2.1. For more details on how the local 

network was selected see Footnote 1. 

MI3 is implemented in the statistical computing language R, and codes are available 

online [47]. 

2.4.2 Nonparametric probability density estimation for continuous variables 

To avoid discretizing our data to calculate mutual information, we have adopted a 

continuous method for mutual information calculation based on a classical nonparametric 

Gaussian kernel method in probability density estimation [42, 43]. To estimate the 

probability density at a specific location, we used all our data points. First we calculate 

the probability density at an interesting location based on a Gaussian distribution centered 

at each data point (kernel), and then take the average of all these densities using the 

following expression: 
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Here x is the position where probability density is to be estimated, and xi (i=1,2,, N) is 

the ith data point, both x and xi are d-dimension vectors, σ is the standard deviation of the 

kernel Gaussian distribution. We used optimal bandwidth described by Scott [43]. As 

others have noted, the choice of kernel distribution makes little difference in probability 
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estimation [42]. The reason we chose to use a Gaussian kernel is that it is intuitive and 

the result probability density distribution is continuous and infinitely differentiable [42]. 

Data may be transformed into a uniform distribution before the kernel density estimation 

to eliminate the potential effect of specific distributions. We found uniform 

transformation does help but the improvement is limited when the gene expression data 

are log transformed. 

Following our description above, to calculate entropy and mutual information for 

continuous variables, we calculated a probability density estimate at the positions of 

sample data points, then took the sample mean of log probability density [23], to  

approximate the full integration. The probability density estimation was the most 

computationally intensive step for this work. 

Nonparametric probability density estimation for continuous variables effectively 

eliminates the inaccuracies introduced by discretizing data. However, this method is 

computationally demanding, and requires a large sample size [42, 43]. Due to these 

limitations, we limited our MI calculation to 3 variables. Notice that the sufficient sample 

only depends on the number of relevant dimensions of the local models (3 nodes, Figure 

2.1), and has nothing to do with the size of the total number of variables. 

To compare our continuous approach to more commonly used discretization approaches, 

we used 5 bins of equal size. 

2.4.3 Generation of synthetic testing data 

Synthetic data was used to validate our MI3 method as an example of a completely 

known gene regulatory network. We created a synthetic network structure with algebraic 

relationships between variables found in Figure 2.7 and Table 2.6 online. We sampled 25 

to 1000 samples from this network to generate a set. At each sample size, the 

sampling-learning procedure was repeated 500 times to determine the average sensitivity 

and precision of MI3 and control methods. This model structure is designed to mimic a 

miniature gene regulatory system, with regard to the network size, overall and local 
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structure, and dependency relationships.  

 

Figure 2.7 The synthetic gene regulatory network. This synthetic model structure is 
designed to mimic a miniature gene regulatory network, with several major features. First 
the network contains a number of variables, 9 variables in total, 3 of which are 
independent and 6 dependent. Second, the variables are assembled into a hierarchy of 
regulatory relationships, with independent variable mimicking regulators and cofactors, 
and dependent variables mimicking target genes. Third, the complexity of the network is 
controlled in that dependent variables have 1-3 parents, mostly 2 or 3, and each 
regulator/cofactor controls a set of targets. Targets may share regulators and thus may 
have different levels of coregulation/coexpression, which can lead to confounding models. 
Fourth, a diverse set of continuous non-linear and logical relationships among variables 
were encoded by the algebraic formulas in Table 2.6 to describe a realistic, yet 
complicated regulatory network. 

Table 2.6 Relationships encoded into the true models for the synthetic dataset. N(μ, σ) is 
a normal random distribution with mean of μ and standard deviation of σ. 

Variable Algebraic formula True parent set 
x1 N(0,1)  
x2 N(10,5)  
x3 N(0,10)  
u1 (x1)3 + N(0,0.1) x1 
u2 x1 + N(0,0.1), x1+10≥x2 

x2/10 + N(0,0.1), x1+10<x2 
x1, x2 

u3 (x2-x3)/(x2+10) + N(0,0.05) x2, x3 
u4 x1+sin(x3) + N(0,0.1), x1+10≥x2 

x2/10+sin(x3) + N(0,0.1), x1+10<x2 
x1, x2, x3 

u5 log(exp(x1)+exp(u3)) + N(0,0.1) x1, u3 
u6 (u1+u5)*u3/2+ N(0,0.05) u1, u3, u5 
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2.4.4 Gene expression data processing and annotation 

A gene expression dataset of human B cells with 336 samples was used for our study. 

These data were collected on the Affymetrix HG-U95Av2 platform and published by 

another group [15]. The raw data in .CEL format was collected from Gene Expression 

Omnibus (GEO) and processed by using RMA [48] method implemented in 

Bioconductor [49] Affy package [50]. A up-to-date probe set definition (.CDF file) based 

on Entrez Gene sequence, Hs95Av2_Hs_ENTREZG_7, created by the Microarray Lab at 

University of Michigan [51, 52], is used in place of the Affymetrix original probe set 

definition provided by Bioconductor [53]. The corresponding annotation data was 

generated with AnnBuilder package based on the latest release of public databases, 

including Entrez Gene, UniGene, PubMed of NCBI, Gene Ontology (GO) and KEGG.  

For downstream analysis, all genes are included without discriminative filtering process 

based on magnitude of changes. The expression level for each gene is standard 

normalized before use.  
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2.5 Appendices 

2.5.1 Mutual information definition, extension and calculation 

Here we describe entropy and mutual information definition for discrete variables. The 

corresponding definition for continuous variables remained the same [23], except that the 

summation becomes integration in the following formulas. 

In information theory, for a discrete variable, X, Shannon entropy H(X) is defined to be 

[54]: 
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Where X=xi (i=1,2, , Mx), corresponding to Mx different states of variable X, notice that 

Mx may be different from total number of data points. Shannon entropy is a measurement 

for the randomness of variable distribution, i.e. how unpredictable the value or state of a 

variable is. The higher the Shannon entropy is, the harder to predict the value or state of 

this variable. Similarly, the entropy of joint distribution of two discrete variables X and Y 

is defined to be [54]: 
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Where Y=yj (j=1,2, , My), corresponding to My different states of variable Y.  

Mutual information between two variable X and Y, I(X;Y), is defined based on Shannon 

entropy, it equals the difference between the sum of entropy of X and Y individually vs 

the entropy of them jointly [54, 55]:  

),()()();( YXHYHXHYXI −+=                 (1.4) 

Mutual information measures the difference in predictability when considering two 

variables together versus considering them independently. Said another way, mutual 

information is a measurement of dependency between variables. High dependency or 

mutual information usually occurs when there is causal relationship between variables, or 
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common causal factors exit. Therefore, mutual information can be used to identify best 

predictors, or even causal factors and target/dependent factors of variables.  

One specific problem addressed in this work is the mutual information among multiple 

variables. We extended entropy and mutual information definitions in Formula 1.2-1.4 

correspondingly. For 3 variables X, Y, Z, we can define three types of three-way mutual 

information: total correlation C(X;Y;Z) [56], generalized two-way I(X;Y,Z), and 

three-way interaction information I(X;Y;Z) [21, 22]: 

),,()()()();;( ZYXHZHYHXHZYXC −++=            (1.5) 
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These are all generalized mutual information of order 3, different in lower order terms: 
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);();(),;();;( ZXIYXIZYXIZYXI −−=             (1.9) 

Table 2.1 show common examples, where the relationships are high order and can only 

be fully captured by high order mutual information. 

Conditional entropy and mutual information can also be defined based on conditional 

probability. A rearranged version of conditional mutual information can derived by 

starting with the definition of conditional probability given Z: 
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Next, apply Bayes’ rule and rearrange to yield: 
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Re-write into mutual information: 

);(),;()|;( ZXIZYXIZYXI −=                      (1.12) 
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Apparently, this conditional mutual information is of order 3 and is closely related to all 

other types of three-way mutual information. So far, we have been focusing on three-way 

mutual information and entropy. Similarly, the conception of entropy and mutual 

information can be directly extended to arbitrary higher order to capture even 

complicated relationships among multiple variables or multiple sets of variables. 

2.5.2 Comparison between MI and log-based local conditional probability 

Plug entropy definitions Formula 1.2 and 1.3 into Formula 1.4, we get the expanded 

Formula for mutual information based on probability:  
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Where X=xk (j=1,2, , N) Y=yk (j=1,2, , N), corresponding to N data points of variable X 

or Y.  

The counterpart to mutual information in Bayesian network (BN) is log-based local 

conditional probability, or log likelihood (LL) can be expanded as:  
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It can be seen that mutual information is close to log likelihood. However mutual 

information is more standardized, with a weighted-averaging term 1/N and normalizing 

term P(xk), which minimize the effects of sample size and specific distribution of 

individual variables. 
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2.6 Footnotes 

1. In MI3, model learning was focused locally, i.e. we scored and compared all possible local regulatory 
models for specific target T. This target centered model learning applied to both synthetic data and 
experimental data, even though biologically we are interested in constructing models centered at 
particular R1=MYC in the latter case. It would be less appropriate to compare models across different 
T’s because they are not mutually exclusive. Similarly, in Bayesian network, logP(T|R1,R2) is only 
comparable for fixed T, where all other terms including P(R1)P(R2) in the full product form of joint 
probability [11, 12] cancelled out. Therefore, we only searched for best R1-R2 pairs given T, but not 
best R2-T pairs given R1 when learning probabilistic models based on MI3 score or log conditional 
probability or any other established score. This local approach makes it affordable for MI3 to conduct 
exhaustive search, which leads to globally optimized models. Heuristic search can be taken when 
computing time is limited. 

2. When MI3 is applied to an experimental gene expression dataset, two key differences between 
experimental data and synthetic data need to be considered. First, in our gene expression data there are 
8359 genes, which is significantly larger system than the 9-variable synthetic network. For an 
exhaustive search for the best two-parent set for each gene, this problem size would require searching 
~1011 (83593) combinations—a scale that is currently out of reach computationally. In this work, we 
focus on the construction transcription regulatory networks centered to MYC. Therefore, we can fix 
one regulator, R1, to MYC, and only search across cofactors (R2s) and targets (T). This reduced 
problem requires the search of ~107 (83592) combinations for our gene expression data.  This scale 
of problem is computationally tractable. For both scenarios, we constrain MYC targets (T) with I(T; 
MYC)≥0.3, i.e. targets that have enough marginal dependency on MYC to ensure that MYC does 
likely regulate the target based on the microarray dataset. Second, there are frequently multiple 
equally interesting and closely scoring regulatory models learned from experimental data for each 
target. For example, several regulators are equally important, or multiple genes in a pathway/complex 
represent the same regulatory action equally well. Correspondingly, we kept the top 5 highest scoring 
2-parent models for each target gene, rather than the top 1 as in the synthetic data. Keeping top 1 
model only led to almost the same list of top 10 MYC cofactors (Table 2.4-5), except that the number 
of targets mapped to individual cofactors was too small for quantitative evaluation. 
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Chapter III  

GAGE: Generally Applicable Gene Set Enrichment for Pathway 

Inference 

3.1 Introduction 

A central goal of biomedical research is to define mechanistic causes for cellular behavior 

and disease. High throughput technologies such as gene expression profiling provide a 

rich starting point to identify mechanistic causes. Ideally we would like to contextualize 

gene expression patterns with the known biochemical processes and regulatory signaling 

pathways. This way we gain a more systems level and informative view of the biological 

states that have been perturbed, which in turn allows us to identify points where we could 

intervene to change cellular behavior. 

Gene set analysis (GSA) , also called pathway inference, is a widely used strategy for 

gene expression data analysis based on pathway knowledge [1-10]. Unlike previous 

strategies which focus on individual or a limited number of genes, GSA focuses on sets of 

related genes and has demonstrated three major advantages. First, GSA methods are 

better able to detect biologically relevant signals and give more coherent results across 

different studies [2, 4]. Second, GSA uses all of the available gene expression data 

instead of prefiltering the data for a short list of strongly differentially expressed genes. 

Indeed, small coordinated gene expression changes in a pathway can have a major 

biological effect even if these changes are not statistically significant for any individual 

gene [2]. Third, GSA incorporates prior knowledge of biological pathways and other 

experimental results in the form of gene sets [2, 3]. These gene sets are constantly 
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updated in the literature and represent a significant repository of useful biological 

knowledge. 

There are two categories of GSA based on the statistical tests used: sample randomization 

and gene randomization [1, 7]. Sample randomization methods test significance of gene 

sets based on permutation of sample labels, with GSEA [2, 3], SAFE [9] and SAM-GS [8] 

as representatives. In contrast, gene randomization methods test the significance of gene 

sets based on permutations of gene labels or a parametric distribution over genes, with 

PAGE [4], T-Profiler [6] and Random-set [5] as representatives. Sample randomization 

keeps the correlation structure among genes but only applies to large expression data sets 

with multiple samples per experimental condition. For a two-state comparison, a 

minimum of 8 chips for each state is required for 1000 balanced (presence of the two 

sample states) permutation or 6 chips for 1000 unbalanced permutation. Gene 

randomization has no limitation on sample size, but may break the correlation structure 

among genes [10]—an issue that may not be a problem (detailed in discussion) [4, 5]. 

Sample randomization and gene randomization test different but related null hypotheses , 

hence combinatory procedures [1, 7] were proposed to achieve more robust results. 

In spite of its advantages, GSA as a whole strategy still suffers from three major 

limitations. 

First, no GSA method currently available is appropriate for small data sets, yet most gene 

expression data sets fall into this category. As mentioned above, the sample 

randomization strategy used by methods such as GSEA is not appropriate for studies with 

under 8 gene chips per state, thus gene randomization remains to be the only feasible 

option [1, 2]. Gene randomization methods such as PAGE have been applied to small 

data set [4], but these methods tend to make large number of (false) positive calls with 

extremely small P-values [11, 12] (also see the results). T-profiler targets data sets with 

one sample pair [6], however, it can’t combine results from multiple paired experiments 

nor can it be applied to studies with non-paired studies [6]. 
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Figure 3.1 A schematic overview of the GAGE algorithm. GAGE has three major steps. 
Step 1: input preparation. Separate gene sets into two categories: experimental sets (ES) 
and canonical pathways (CP), for differential treatment in significant test. Step 2: 
one-on-one comparison between samples from the two experimental conditions. For 
each experiment-control pair, calculate differential expression in log based fold change 
for all genes. Test whether specific gene sets are significantly differentially expressed 
relative to the background whole set using two-sample t-test. Step 3: summarization. For 
each gene set, derive a global P value based on a meta test on the P-values from all 
one-on-one comparisons. More details of GAGE are given in the Methods. Variables m, s 
and n are the mean fold change, standard deviation and number of genes in a gene set, 
M, S and N are those for the whole set. 

Second, no GSA method currently available handles data sets with different sample sizes 

and experiment designs consistently. For data sets with few or no replicates, t-test 

statistics, signal noise ratios, or their corresponding P-values are not robust estimates of 

differential expression for genes or simply not applicable. Therefore, fold change (log 
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based) is frequently used as more versatile per gene statistics [2, 4-6, 13]. This gives rise 

to two issues that have been largely neglected so far. First, average fold change does not 

account for different experimental designs, i.e. pair-matched samples or non-paired 

samples. The per gene statistics such as t-test statistics may vary significantly depending 

on if the samples are paired or not, yet there is no difference in fold change. Second, 

average fold change does not contain any information for the sample size. Sample size 

largely determines the confidence or significance level of our inference, yet is dropped 

when using fold change. Fold change makes sense in one-on-one paired comparison, as 

in T-profiler [6]. However for data sets with replicate samples, the test power or the 

significance of relevant gene sets would be underestimated. 

Third, most GSA methods only consider transcriptional regulation towards one direction 

in a gene set. This directional bias makes sense for experimentally derived gene sets, but 

not for gene sets based on canonical signaling pathways, which frequently show 

reciprocal gene regulation in both directions upon perturbation [14, 15]. Thus it is 

advisable to consider both cases for an inclusive analysis for regulatory mechanisms. 

To address these issues, we have developed a novel method called Generally Applicable 

Gene-set Enrichment (GAGE, Figure 3.1). GAGE applies to data sets with any number of 

samples and is based on a parametric gene randomization procedure. Similar to 

Parametric Analysis of Gene Set Enrichment (PAGE) and T-profiler, GAGE uses 

log-based fold changes as per gene statistics. However, GAGE differs from PAGE and 

T-profiler in three significant ways (Figure 3.1). First, GAGE assumes a gene set comes 

from a different distribution than the background and uses two-sample t-test to account 

for the gene set specific variance as well as the background variance. In contrast, PAGE 

assumes gene sets comes from the same distribution as the background and uses 

one-sample z-test that only considers the background variance. T-profiler also employs 

two-sample t-test, but it is essentially a one-sample z-test since the sample size of a gene 

set is not comparable to its complementary set [6] (Footnote 1 and Methods). Second, 
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GAGE adjusts for different microarray experimental designs (paired or non-paired) and 

sample sizes by decomposing group-on-group comparisons into one-on-one comparisons 

between samples from different groups. GAGE derives a global P-value using a meta test 

on the P-values from these comparisons for each gene set. Third, GAGE separates 

experimentally perturbed gene sets (from literature) and canonical pathways (from 

pathway databases). Experimental sets are taken as genes coregulated towards single 

direction, whereas canonical pathways allowed changes towards both directions. This 

gene set separation strategy give GAGE more test power in detecting relevant biological 

signals. 

In this work, we show that GAGE is generally applicable to data sets with different 

sample sizes and experimental designs (Footnote 2). We first apply GAGE to two lung 

cancer data sets [16, 17] and one type 2 diabetes data set [3], which as been analyzed by 

GSEA [2, 3] and PAGE [4] as example cases. These are representatives for large data sets 

with tens of samples per condition frequently seen in large clinical or experimental 

studies. We then analyze a smaller dataset describing mesenchymal stem cell response to 

BMP6 treatment. This is a typical small data set with as few as two samples per condition 

like in most experimental studies. BMP6 treated samples and controls are one-on-one 

matched, which is a frequently used experiment design particularly for all the 

two-channel microarray studies. In each case, we compare GAGE to GSEA and PAGE. 

Finally, we also detail the major strategies employed by GAGE. 

3.2 Results 

3.2.1 Application to large data sets with the GSEA and PAGE as control methods 

As a test case, we applied GAGE, PAGE and GSEA to two lung cancer data sets [16, 17] 

which were originally analyzed and compared by GSEA [2]. These two data sets were 

generated by two independent studies done in Boston [17] and Michigan [16], containing 

gene expression profiles of lung adenocarcinomas samples from patients. Patients were 

classified as having “good” or “poor” clinical outcomes. For each data set, we defined the 
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control set as patient profiles with good clinic outcomes, and selected the most 

differentially regulated gene sets associated with poor outcomes. Note that we used the 

updated curated gene set collection c2 from MSigDB [2, 18]. For fair comparison, 

experimental sets and the canonical pathways were separated for all methods. 

Table 3.1 GAGE applied to the two lung cancer datasets of large sample sizes. Top 10 
most significantly enriched experimental sets and canonical pathways in poor clinical 
outcomes vs good outcomes were inferred by GAGE from two published lung 
adenocarcinoma data sets used in the GSEA paper [2]. Both positively and negatively 
regulated gene sets were collected and ranking by the P-value, and by absolute value of 
average t-statistics (data not shown) for ties. Consistencies between the two data sets 
are shown in bold font. Notes show the connections of the gene sets to cancer related 
topics: t for tumor related; bt for tumor metastasis and bad outcome; c for cell growth and 
proliferation related; blank represents no evident connection. These annotations came 
from the original studies for experimental sets, and from relevant literature for the 
canonical pathway. 

Boston study Michigan study 
Experimental Sets P-value Notes Experimental Sets P-value Notes 
Tarte_Plasma_Blastic <1.0E-16 c Tarte_Plasma_Blastic <1.0E-16 c 
Uvb_Nhek3_All <1.0E-16 t Cancer_Undifferentiat* <1.0E-16 bt 
Peng_Glutamine_Dn <1.0E-16 c Brca_Er_Neg <1.0E-16 bt 
Lei_Myb_Regulated_Ge* <1.0E-16 bt,c Serum_Fibroblast_Cell* <1.0E-16 bt,c 
Peng_Leucine_Dn <1.0E-16 c Uvb_Nhek3_All <1.0E-16 t 
Cancer_Undifferentiat* <1.0E-16 bt Zhan_Mm_Cd138_Pr_* 1.8E-15 bt 
Brca_Er_Neg <1.0E-16 bt Li_Fetal_Vs_Wt_Kidne* 3.6E-14 t 
Peng_Rapamycin_Dn <1.0E-16 c Dox_Resist_Gastric_Up 9.5E-14 bt 
Cancer_Neoplastic_Me* <1.0E-16 t Idx_Tsa_Up_Cluster3 2.3E-13 c 
Rcc_Nl_Up <1.0E-16 t Tarte_Mature_Pc 6.0E-13 c 
Canonical Pathways P-value Notes Canonical Pathways P-value Notes 
Gpcrs_Class_A_Rhod* <1.0E-16 bt Gpcrs_Class_A_Rhod* 3.0E-10 bt 
Gpcrdb_Class_A_Rho* <1.0E-16 bt Gpcrdb_Class_A_Rho* 1.1E-09 bt 
Blood_Clotting_Casca* 3.4E-15 bt Androgen_Genes 5.0E-08 bt 
Intrinsicpathway 5.2E-15 bt Cytokinepathway 1.8E-07 bt 
Fibrinolysispathway 5.9E-13 bt Prostaglandin_And_Leu* 2.8E-05 bt 
Peptide_Gpcrs 1.9E-12 bt Proliferation_Genes 5.1E-05 c 
Tyrosine_Metabolism 7.9E-09 bt Peptide_Gpcrs 5.8E-05 bt 
Extrinsicpathway 4.2E-07 bt Intrinsicpathway 8.4E-05 bt 
Gpcrdb_Other 5.1E-06 bt Androgen_And_Estroge* 4.1E-04 bt 
Small_Ligand_Gpcrs 6.1E-06 bt Blood_Clotting_Casca* 7.0E-04 bt 
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We compared the top 10 most significant gene sets inferred by the three methods (Table 

3.1-3) and identified evident differences in four aspects. First, the top experimental gene 

sets selected by GAGE and PAGE overlapped significantly, but the canonical pathways 

identified by GAGE, PAGE, and GSEA did not (Table 3.3). The lack of overlap for the 

canonical pathways is expected because GAGE allows perturbations in both directions in 

canonical pathways. Second, GAGE derived more modest P-values and numbers of 

significant gene sets compared to GSEA and PAGE (Table 3.2). While others have 

suggested that GSEA suffers from low sensitivity [4, 7, 8], our results suggest that PAGE 

is overly sensitive (low specificity). Third, the top 10 gene sets inferred by GAGE are 

more consistent between the two studies: 4 experimental sets and 5 canonical pathways 

are the same for GAGE results, 4 and 4 for PAGE and 2 and 0 for GSEA respectively 

(Table 3.2). Fourth, the top 10 gene sets inferred by GAGE better describe poor outcomes 

of lung cancer mechanistically (Table 3.2). Experimental sets inferred by GAGE and by 

PAGE are similarly indicative of tumor occurrence and prognostic of metastasis or poor 

clinical outcomes, and both are better than those inferred by GSEA. Canonical pathways 

inferred by GAGE are by far the most indicative of tumor occurrence and metastasis. 

Table 3.2 Comparison between GAGE, PAGE and GSEA results from the two lung cancer 
datasets. The top 10 most significantly enriched experimental sets and canonical 
pathways in poor clinical outcomes vs good outcomes were inferred by GAGE, PAGE, 
and GSEA from two published lung adenocarcinoma data sets used in the GSEA paper 
[2].Data columns are overlap between top 10 gene sets for the two studies, top 10 
P-values, number of top 10 gene sets related to metastasis (bt) and tumor (t and bt), and 

numbers of significant gene sets with P-values ≤ 0.001. 

Gene Sets & Methods Overlap Top 10 P-values Metastasis Tumor Sign. Sets 
GAGE 4 <1.0E-16, 5.9E-13 3, 5 6, 7 245, 122 
PAGE 4 2.1E-170, 4.1E-85 6, 4 8, 6 647, 563 

Experimental 
Sets 

GSEA 2 1.6E-2, 6.4E-3 1, 2 6, 3 2, 5 
GAGE 5 6.1E-6, 7.0E-4 10, 9 10, 9 23, 10 
PAGE 4 8.5E-26, 7.5E-27 2, 3 4, 3 160, 146 

Canonical 
Pathways 

GSEA 0 7.5E-2, 1.4E-2 2, 1 6, 4 2, 4 
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Table 3.3 Overlaps between GAGE, PAGE and GSEA results from the two lung cancer 
datasets. The top 10 most significantly enriched experimental sets and canonical 
pathways in poor clinic outcomes vs good outcomes were inferred by GAGE, PAGE and 
GSEA from two published lung adenocarcinoma data sets used in the GSEA paper [2]. 

Boston 
Gene Sets & Methods GAGE PAGE GSEA 

GAGE NA 5 0 
PAGE 5 NA 0 

Experiment 
Sets 

GSEA 0 0 NA 
GAGE NA 1 0 
PAGE 1 NA 2 

Canonical 
Pathways 

GSEA 0 2 NA 
 

Michigan 
Gene Sets & Methods GAGE PAGE GSEA 

GAGE NA 5 0 
PAGE 5 NA 0 

Experiment 
Sets 

GSEA 0 0 NA 
GAGE NA 0 0 
PAGE 0 NA 3 

Canonical 
Pathways 

GSEA 0 3 NA 
 
Several major mechanistic themes predictive of poor clinical outcomes emerged from the 

list of top gene sets inferred by GAGE. These themes included G-protein coupled 

receptors (GPCRS) associated signals (sets 1, 2, 6, 9, 10 of Boston and sets 1, 2, 7 of 

Michigan in Table 3.1), thrombosis or blood coagulation activation (sets 3, 4, 5, 8 of 

Boston and set 8, 10 of Michigan in Table 3.1), and hormone and cytokine (sets ranking 

>10 of Boston not shown, and set 3, 4, 9 of Michigan in Table 3.1). Indeed, 

G-protein-coupled receptors, the largest family of cell-surface molecules involved in 

signal transmission, have recently emerged as crucial players in the growth and 

metastasis of multiple human cancers [19, 20]. Thrombosis or blood coagulation 

activation has been implicated in the disease and is an predictor for poor survival rates for 

lung cancer patients [21, 22]. Androgen level and cytokine profiles influence clinic 

outcomes of non-small cell lung cancer [23, 24]. All these factors are likely the major 
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causal or contributing mechanisms for non-small cell lung cancer progress and 

metastasis. 

We also applied GAGE, PAGE and GSEA to another large dataset describing type 2 

diabetes progression that was analyzed by GSEA [3] and PAGE [4] previously (Table 3.4). 

This comparison performed similarly to the cancer study mentioned above. In particular, 

GAGE pinpointed multiple experimental sets and canonical pathways which are directly 

involved in type 2 diabetes or closely related metabolism processes. 

Table 3.4 Comparison between GAGE, PAGE and GSEA results from the type 2 diabetes 
dataset. The most significantly enriched experimental sets and canonical pathways in 
type 2 diabetes patients vs healthy controls were inferred by GAGE, PAGE and GSEA 
from published data set generated by Mootha et al [3]. Data columns are top 10 P values, 
number of top 10 gene sets related to type 2 diabetes and metabolism, and numbers of 
significant gene sets with cutoff P value = 0.001. 

Gene Sets & Methods Top 10 P Diabetes Metab. Sign. Calls 
GAGE <1.0E-16 3 3 169 
PAGE <1.0E-307 0 0 911 

Experiment 
Sets 

GSEA 3.6E-2 1 0 1 
GAGE <1.0E-16 5 2 39 
PAGE <1.0E-307 3 4 325 

Canonical 
Pathways 

GSEA 6.1E-2 0 3 0 
 

3.2.2 Application to small data sets with PAGE and GSEA-g (GSEA with gene 
permutation option) as control methods 

We applied GAGE and PAGE to a microarray data set generated by our group to select 

the most differentially expressed gene sets in human mesenchymal stem cells (MSC) 

upon BMP6 treatment (Table 3.5-7). The data set contains a total of 4 gene chip 

measurements from duplicate experiments each with paired measurements of human 

MSC with or without 8 hours BMP6 treatment. Notice that GSEA by default is not 

applicable to this data set because the sample size is too small for permutation based 

inference. However, GSEA with gene labels permutation option (GSEA-g) works. Since 

GSEA-g does not implement the sample randomization strategy recommended by the 
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authors [2], we mainly compared GAGE to PAGE here (Table 3.7-8). GAGE conducts 

one-on-one comparisons, hence was applied to each of the two BMP6 experiments 

individually (Table 3.5). For exact comparison, PAGE was slightly modified to enable 

one-on-one comparison (Table 3.6). The GSEA software took multiple samples per 

condition hence not applicable to the experiments individually. 

Table 3.5 GAGE applied to the BMP6-MSC dataset of small sample size. Top 10 most 
significantly differentially expressed experimental sets and canonical pathways were 
inferred by GAGE from human MSCs following an 8 hour BMP6 treatment. Two replicate 
experiments were done, each with BMP6 treated sample and control. Therefore GAGE 
was applied to each experiment and derived corresponding P-values (P.exp1-2). Gene 
sets were ranked based on global P-values from both experiments. 

Experimental Sets t-statisti
c 

P-value P.exp1 P.exp2 

Ifna_Hcmv_6hrs_Up -3.80  2.8E-07 1.9E-04 8.0E-05 
Der_Ifnb_Up -3.47  1.7E-06 1.7E-03 5.5E-05 
Baf57_Bt549_Dn -3.09  1.4E-05 3.6E-03 2.6E-04 
Ifn_Beta_Up -2.92  5.4E-05 6.1E-03 6.7E-04 
Sana_Ifng_Endothelial_Up -2.88  6.7E-05 6.1E-03 8.2E-04 
Ifn_Any_Up -2.76  1.2E-04 1.2E-02 7.0E-04 
Dac_Bladder_Up -2.65  2.9E-04 1.2E-03 2.0E-02 
Grandvaux_Ifn_Not_Irf3_Up -2.76  2.9E-04 1.9E-02 1.3E-03 
Ifna_Uv-Cmv_Common_Hcmv_6hrs_Up -2.55  5.0E-04 8.2E-03 5.6E-03 
Bennett_Sle_Up -2.48  7.2E-04 6.8E-03 1.0E-02 
Canonical Pathways t-statisti

c 
P-value P.exp1 P.exp2 

Tgf_Beta_Signaling_Pathway 3.15  1.8E-05 1.1E-03 1.1E-03 
Wnt_Signaling 2.47  5.6E-04 3.0E-03 1.7E-02 
Alkpathway 2.46  7.3E-04 8.8E-03 7.8E-03 
Proliferation_Genes 2.27  1.3E-03 6.8E-03 1.9E-02 
Cell_Proliferation 2.24  1.5E-03 2.1E-02 7.5E-03 
Hematopoesis_Related_Transcription_Factors 2.05  4.0E-03 1.8E-02 2.5E-02 
Erythpathway 1.98  7.0E-03 2.5E-02 3.4E-02 
Smooth_Muscle_Contraction 1.79  1.0E-02 2.6E-02 5.2E-02 
Apoptosis 1.73  1.4E-02 7.1E-02 2.5E-02 
Breast_Cancer_Estrogen_Signaling 1.61  2.1E-02 8.1E-02 3.5E-02 

 
Using a P-value cutoff of <0.01, GAGE identified fewer gene sets than PAGE (Table 
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3.5-7). GAGE identified 39 significant experimental sets and 7 canonical pathways 

(Table 3.9-10). There were only 17 experimental sets and 4 canonical pathways 

significant (Table 3.9-10) after removing the redundancy among gene sets, which is 

reasonable number of pathways triggered by a single perturbation in a single cell line. In 

contrast, PAGE gave 745 significant experimental sets and 187 significant canonical 

pathways. Most significant genes sets selected by PAGE were not significant according to 

GAGE using the same cutoff P-value (full result tables not shown). After removing the 

redundancy in these sets, there were more than 200 and 40 non-redundant experimental 

sets and canonical pathways respectively (not shown, Footnote 3). Presumably, PAGE 

made a large number of false positive calls. Similar differences between GAGE and 

PAGE were observed for the two lung cancer data sets and the type 2 diabetes data set 

(Table 3.2 and 3.4). This difference came from the different statistical tests used by 

GAGE and PAGE, i.e. two-sample t-test vs one-sample z-test (detailed in the subsection 

of ‘Dissection of major strategies employed by GAGE’). GSEA-g gave P-values and a 

predicted number of significant gene sets comparable to GAGE when nominal P-values 

were used (Table 3.7, source data table not shown). 

Biologically, GAGE gene sets were mechanistically more relevant for BMP6 effects 

compared to those sets selected by PAGE. 9 out of 10 experimental sets inferred by 

GAGE (Table 3.5) are directly related to interferon or STAT pathway [25], which is a 

target of BMP signaling [26, 27].The experimental sets selected by PAGE alone have less 

connection to BMP (Table 3.6). GAGE and PAGE differed in 8 entries of the top 10 

canonical pathways. Of GAGE predictions (Table 3.5), Wnt signaling [28, 29], 

proliferation [30, 31] are all known pathways or process regulated by BMP treatment in 

MSC or osteoblastic cell lineages. BMPs regulate hematopoiesis and erythrocyte 

differentiation [32, 33]. Breast cancer estrogen signaling interacts with BMP signal [34, 

35]. None of these pathways were significant according to PAGE (Table 3.6, full result 

table not shown). The GSEA-g top experimental sets overlapped with GAGE, but the 
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canonical pathways were more similar to PAGE (Table 3.8). 

Table 3.6 PAGE applied to the BMP6-MSC dataset of small sample size. Top 10 most 
significantly differentially expressed experimental sets and canonical pathways in human 
MSC following 8 hour BMP6 treatment were inferred by PAGE. PAGE by default apples to 
whole data set with duplicate samples and gave the global P value. Upon small 
modification to enable one-on-one comparison, PAGE was applied to each of the two 
BMP6 experiments individually the same way as GAGE in Table 3.5. 

Experiment Sets t-statistic P-value P.exp1 P.exp2 
Rett_Dn 37.2  5.2E-291 2.2E-170 2.5E-233 
Gh_Hypophysectomy_Rat_Up 30.7  4.4E-202 1.2E-60 1.3E-280 
Uvc_High_D2_Dn 29.1  6.4E-182 8.3E-79 1.0E-194 
Gh_Igf_Chondrocytes_Up 29.1  2.2E-181 2.5E-77 9.5E-197 
Passerini_Growth -28.3  1.4E-172 1.4E-95 2.8E-146 
Ifna_Hcmv_6hrs_Up -26.6  6.2E-153 1.4E-85 3.6E-128 
Lvad_Heartfailure_Dn -25.8  1.3E-143 6.3E-88 1.4E-108 
Uvc_Low_C1_Dn 25.1  4.0E-136 1.0E-88 3.0E-95 
Baf57_Bt549_Dn -25.0  1.0E-135 4.9E-66 4.6E-131 
Der_Ifnb_Up -24.6  2.6E-131 4.6E-64 1.6E-126 
Canonical Pathways t-statistic P-value P.exp1 P.exp2 
Apoptosis -14.9  7.2E-50 1.9E-31 6.4E-37 
Tgf_Beta_Signaling_Pathway 13.6  8.2E-42 2.5E-26 3.5E-31 
Valine_Leucine_And_Isoleucine_Degradation -13.0  3.0E-38 7.2E-32 4.7E-19 
Striated_Muscle_Contraction 12.7  1.4E-36 5.0E-20 3.6E-32 
Tob1pathway -12.5  1.1E-35 4.0E-25 3.9E-23 
Gpcrdb_Other 12.4  2.0E-35 9.4E-12 7.5E-48 
Badpathway 11.8  3.3E-32 1.54E-19 2.3E-25 
Mitochondria -11.6  5.7E-31 2.0E-08 9.1E-48 
Eicosanoid_Synthesis 11.5  1.1E-30 1.5E-12 1.1E-35 
Apoptosis_Genmapp -10.9  1.7E-27 4.4E-12 3.1E-30 

 
Significant gene sets inferred by GAGE were consistent across replicate experiments and 

within the top 10 lists. The top 10 gene sets are almost the same if we used either one of 

the two experiments only (Table 3.5). And the difference between the P-values from the 

two experiments almost never exceeded one order of magnitude. On the other hand, the 

top 10 gene set lists inferred by the PAGE and corresponding P-values are more different 

cross the two experiments (Table 3.6, not all top sets for individual experiments included). 
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There was also high level of internal consistency in the top 10 gene sets inferred by 

GAGE (Table 3.5). For example, 9 out of 10 experimental sets were directly related to 

interferon signal. Among the canonical pathways, there were two proliferation and two 

hematopoietic differentiation related pathways, and Alk pathway overlapped with TGF 

beta and Wnt signaling pathways. In contrast, the PAGE (Table 3.6) and GSEA-g (not 

shown) top gene sets had lower internal consistencies. These results indicate that GAGE 

is a method robust against the heterogeneity in experiments or gene set definition. Notice 

that redundant gene sets representative of the same effect or pathway were kept here for 

exact comparison between methods, but they can be differentiated and combined by 

GAGE program if needed (Table 3.9-10). 

Table 3.7 Comparison between GAGE, PAGE and GSEA-g results from the BMP6-MSC 
dataset. The significantly enriched experimental sets and canonical pathways in human 
MSC following 8 hour BMP6 treatment were inferred by GAGE, PAGE and GSEA-g 
(permutation of gene labels). Top 10 t- or z-statistics and P-values and the numbers of 
significant gene sets were shown (P-value < 0.01). Note that GSEA-g results shown were 
based on nominal P-values. 

Gene Sets & Methods Top 10 abs(T/Z) Top 10 P-values Sign. Sets 
GAGE 2.48 7.22E-4 39 
PAGE 24.6 2.62E-131 745 

Experiment 
Sets 

GSEA-g 1.97 <1.0E-3 86 
GAGE 1.61 1.96E-2 7 
PAGE 10.9 1.77E-27 187 

Canonical 
Pathways 

GSEA-g 1.55 3.70E-2 6 
 

Table 3.8 Overlaps between GAGE, PAGE and GSEA-g results from the BMP6-MSC 
dataset. The top 10 most significantly differentially expressed experimental sets 
experimental sets and canonical pathways in human MSC following 8 hour BMP6 
treatment were inferred by GAGE, PAGE and GSEA-g. 

Gene Sets & Methods GAGE PAGE GSEA 
GAGE NA 3 6 
PAGE 3 NA 3 

Experiment 
Sets 

GSEA-g 6 3 NA 
Canonical GAGE NA 2 1 
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PAGE 2 NA 5 Pathways 
GSEA-g 1 5 NA 

Table 3.9 Full and non-redundant list of experimental sets inferred by GAGE. The list of 
significantly (P<0.01) differentially expressed experimental sets were inferred by GAGE 
from human MSCs following an 8 hour BMP6 treatment. Two replicate experiments were 
done, each with BMP6 treated sample and control. Therefore GAGE was applied to each 
experiment and derived corresponding P-values (P.exp1-2). Gene sets were ranked 
based on global P-values from both experiments. The 17 gene sets in bold typeface are 
the non-redundant sub-list, all other 22 gene sets are removed during the redundant test. 

Experimental Sets t-statistic P-value P.exp1 P.exp2 
Ifna_Hcmv_6hrs_Up -3.80  2.8E-07 1.9E-04 8.0E-05 
Der_Ifnb_Up -3.47  1.6E-06 1.7E-03 5.5E-05 
Baf57_Bt549_Dn -3.09  1.4E-05 3.6E-03 2.6E-04 
Ifn_Beta_Up -2.92  5.4E-05 6.1E-03 6.7E-04 
Sana_Ifng_Endothelial_Up -2.88  6.6E-05 6.1E-03 8.2E-04 
Ifn_Any_Up -2.76  1.1E-04 1.2E-02 7.0E-04 
Dac_Bladder_Up -2.65  2.8E-04 1.2E-03 2.0E-02 
Grandvaux_Ifn_Not_Irf3_Up -2.76  2.8E-04 1.9E-02 1.3E-03 
Ifna_Uv-Cmv_Common_Hcmv_6hrs_Up -2.55  5.0E-04 8.2E-03 5.6E-03 
Grandvaux_Irf3_Up -2.56  7.6E-04 1.5E-02 4.7E-03 
Dac_Ifn_Bladder_Up -2.45  9.9E-04 6.4E-03 1.5E-02 
Serum_Fibroblast_Core_Dn -2.32  1.1E-03 1.0E-02 1.1E-02 
Der_Ifna_Up -2.21  1.5E-03 5.6E-02 2.8E-03 
Der_Ifng_Up -2.22  1.8E-03 2.8E-02 6.5E-03 
Radaeva_Ifna_Up -2.18  2.1E-03 3.6E-02 6.3E-03 
Chang_Serum_Response_Dn -2.12  2.5E-03 7.0E-03 3.8E-02 
Lee_Myc_Tgfa_Up -2.14  2.7E-03 1.9E-02 1.6E-02 
Lvad_Heartfailure_Dn -2.11  3.2E-03 1.1E-02 3.3E-02 
Vegf_Huvec_30min_Up -1.98  3.7E-03 2.8E-03 1.5E-01 
Uvc_High_D4_Dn 1.92  3.8E-03 2.7E-03 1.6E-01 
Ifn_Gamma_Up -2.05  4.0E-03 4.0E-02 1.2E-02 
Hif1_Targets -2.02  4.7E-03 1.8E-02 3.0E-02 
Cmv_Hcmv_Timecourse_All_Up -1.82  5.2E-03 1.7E-01 3.5E-03 
Roth_Htert_Up -2.04  5.3E-03 1.2E-02 5.2E-02 
Nf90_Up -2.00  5.4E-03 5.1E-02 1.3E-02 
Lei_Myb_Regulated_Genes -1.90  5.4E-03 9.1E-02 7.2E-03 
Ifnalpha_Hcc_Up -1.97  5.8E-03 4.7E-02 1.5E-02 
Zhan_Multiple_Myeloma_Vs_Normal* -1.91  5.9E-03 7.6E-02 9.3E-03 
Ifnalpha_Nl_Hcc_Up -1.98  6.4E-03 2.8E-02 2.8E-02 
Human_Cd34_Enriched_Transcriptio* 1.89  6.5E-03 1.3E-02 6.1E-02 
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Ifnalpha_Nl_Up -1.94  6.7E-03 3.6E-02 2.3E-02 
Brca_Er_Pos -1.85  6.7E-03 9.5E-03 8.7E-02 
Shipp_Dlbcl_Cured_Up 1.85  7.8E-03 9.3E-03 1.1E-01 
Htert_Up -1.83  8.8E-03 5.8E-02 1.9E-02 
Cmv_Hcmv_Timecourse_18hrs_Dn -1.88  9.1E-03 3.7E-02 3.1E-02 
Verhaak_Aml_Npm1_Mut_Vs_Wt_Dn -1.82  9.1E-03 2.1E-02 5.6E-02 
Takeda_Nup8_Hoxa9_3d_Up -1.82  9.3E-03 5.1E-02 2.3E-02 
Takeda_Nup8_Hoxa9_16d_Up -1.81  9.4E-03 2.0E-02 6.1E-02 

 

Table 3.10 Full and non-redundant list of canonical pathways inferred by GAGE. The list 
of significantly (P<0.01) differentially expressed canonical pathways were inferred by 
GAGE from human MSCs following an 8 hour BMP6 treatment. Two replicate 
experiments were done, each with BMP6 treated sample and control. Therefore GAGE 
was applied to each experiment and derived corresponding P-values (P.exp1-2). Gene 
sets were ranked based on global P-values from both experiments. The 4 gene sets in 
bold typeface are the non-redundant sub-list, all other 3 gene sets are removed during 
the redundant test. 

Canonical Pathways t-statistic P-value P.exp1 P.exp2 
Tgf_Beta_Signaling_Pathway 3.15  1.7E-05 1.1E-03 1.1E-03 
Wnt_Signaling 2.47  5.6E-04 3.0E-03 1.7E-02 
Alkpathway 2.46  7.3E-04 8.8E-03 7.8E-03 
Proliferation_Genes 2.27  1.3E-03 6.8E-03 1.9E-02 
Cell_Proliferation 2.24  1.5E-03 2.1E-02 7.5E-03 
Hematopoesis_Related_Transcription* 2.05  3.9E-03 1.8E-02 2.5E-02 
Erythpathway 1.98  6.9E-03 2.5E-02 3.4E-02 

 

3.2.3 Impact of GAGE strategies: gene set separation, two-sample t-test, and 
one-on-one comparisons 

Compared to PAGE (and GSEA), GAGE employs three different strategies: (1) gene set 

separation, (2) two-sample t-test, and (3) one-on-one comparisons between experiment 

and control samples. In this section, we show the results of each of these three strategies. 

We compare GAGE to PAGE on these aspects if possible, or to GAGE variants which 

ensembles PAGE in each one of these three aspects for exact comparison. GSEA is either 

not or less comparable in these aspects. 

3.2.3.1 Gene set separation 



72 

In contrast to PAGE and GSEA, GAGE separates canonical pathways from experimental 

sets and considers potential perturbations towards both directions (i.e. up and down 

regulation simultaneously) in canonical pathways. Expression data directly showed that 

genes in the most relevant canonical pathways were regulated towards both directions 

(Figure 3.2). Figure 3.2a shows the gene expression level changes following BMP6 

treatment in top 3 different significant canonical pathways inferred by GAGE and PAGE 

(Table 3.5-7). These canonical pathways inferred by GAGE are directly related to BMP 

induced osteoblast differentiation [29, 30] (Alk pathway is essentially TGF Beta 

signaling + Wnt signaling). Figure 3.2b shows the gene expression level changes in the 

TGF beta-BMP signaling pathway following BMP6 treatment. This pathway is a 

presumable gold standard as it is the primary signal triggered directly by BMPs (KEGG). 

The changes of gene expression were not uniform. TGF-beta pathway includes both 

positive effectors such as BMPs, BMPR1-2, SMAD1/5/8, ID1-4, and THBS, and 

negative effectors such as NOG, SMAD2/3, and SMAD6/7. Clearly, both types of 

effectors were regulated up and down. Genes were regulated in both directions not only 

for the whole pathway but also within the sub-pathways like BMP or TGF-beta signaling 

branches. These results demonstrate that genes in canonical pathways are frequently up- 

and down-regulated simultaneously because (1) they play positive or negative roles [15] 

and (2) homeostatic mechanisms tend to bring a certain level of balance back to the 

system when it is perturbed [14]. Therefore, it is necessary to treat canonical pathways 

differently from experimental sets and count both up and down regulation when doing 

gene set analyses. 

Compared to the top 10 canonical pathways assuming one-way changes, the top 10 

canonical pathways allowing two-way changes better described BMP induced osteoblast 

differentiation mechanistically (Table 3.5 and 3.11). TGF beta signaling, Wnt signaling 

and cell proliferation are all known essential signals or processes for osteoblast 

differentiation [29, 30], yet they were were not significant in the one-way changing list 
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(Table 3.11, full Table 3.not shown). One-way assumption tended to select metabolism 

pathways (6 out of 10 canonical pathways in Table 3.11), which are likely to be tightly 

coregulated as relative simple functional group. In other words, top canonical pathways 

with one-way changes are still interesting if they are not complicated regulatory 

pathways. 

Table 3.11 GAGE with the opposite assumption on canonical pathways vs experimental 
sets. Top 10 most significantly differentially expressed experimental sets and canonical 
pathways in human MSC following 8 hour BMP6 treatment were inferred by GAGE with 
the exact opposite assumption that all genes in a canonical pathways are regulated 
towards the same direction, either up or down, whereas genes in an experimental set can 
be regulated towards both directions at the same time. This analysis is the same as that 
for Table 3.5 otherwise. 

Experiment Sets t-stat P P.exp1 P.exp2 
Cmv_Hcmv_Timecourse_All_Dn 5.81 7.8E-16 1.6E-09 1.2E-08 
Uvc_High_All_Dn 4.21 4.2E-09 1.9E-06 9.5E-05 
Baf57_Bt549_Dn 4.23 4.2E-09 3.0E-05 6.0E-06 
Baf57_Bt549_Up 4.09 1.4E-08 8.4E-05 7.4E-06 
Cmv_Hcmv_6hrs_Dn 3.98 7.9E-08 3.7E-05 1.1E-04 
Takeda_Nup8_Hoxa9_3d_Up 3.71 2.5E-07 5.0E-04 2.7E-05 
Cmv_Hcmv_Timecourse_All_Up 3.61 4.8E-07 2.6E-04 1.0E-04 
Li_Fetal_Vs_Wt_Kidney_Up 3.61 5.4E-07 1.7E-04 1.8E-04 
Cmv-Uv_Hcmv_6hrs_Up 3.63 5.5E-07 3.0E-04 9.9E-05 
Boquest_Cd31plus_Vs_Cd31minus_Dn 3.48 1.2E-06 6.4E-04 1.1E-04 
Canonical Pathways t-stat P P.exp1 P.exp2 
Valine_Leucine_And_Isoleucine_Degra* -2.32 1.3E-03 4.2E-03 3.0E-02 
Mitochondria -2.15 1.3E-03 9.7E-02 1.4E-03 
Apoptosis -2.07 3.6E-03 1.8E-02 2.3E-02 
Propanoate_Metabolism -1.69 1.3E-02 1.2E-02 1.5E-01 
Gpcrdb_Other 1.67 1.4E-02 1.3E-01 1.4E-02 
Human_Mitodb_6_2002 -1.40 2.3E-02 3.1E-01 1.1E-02 
Apoptosis_Genmapp -1.53 2.6E-02 1.0E-01 3.9E-02 
Limonene_And_Pinene_Degradation -1.56 2.7E-02 3.3E-02 1.3E-01 
Beta_Alanine_Metabolism -1.46 3.0E-02 2.6E-02 1.8E-01 
Raspathway -1.46 3.5E-02 7.1E-02 8.0E-02 

 

3.2.3.2 Two-sample t-test 
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GAGE uses a two-sample t-test to compare expression level changes of a gene sets to the 

 

 

Figure 3.2 GAGE captured canonical pathways which are significantly perturbed towards 
both directions following 8h BMP6 treatment in human MSC. (a) Gene expression level 
changes in the top 3 different significant canonical pathways inferred by GAGE and 
PAGE. (b) Gene expression level changes in the canonical TGF beta signaling pathway 
and (c) plotted in pseudo-color on the pathway topology derived from KEGG database. 
The solid horizontal line and dashed lines in (a-b) mark the mean fold changes of all 
genes and the positive/negative two times standard deviation from the mean respectively. 
Note that in (c), one KEGG node may correspond to multiple closely related genes with 
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the same function, and the maximum fold changes among these genes are plotted as the 
color of the node.  

 

Figure 3.3 Differential gene expression in the top 2 significant experimental sets inferred 
by GAGE or PAGE. Gene expression levels are log 2 based, and compared between 
human MSC with 8 hour BMP6 treatment vs control. Results for the first experiment are 
shown, and the second replicate experiment is similar. 

whole set background, whereas PAGE uses a one-sample z-test. GAGE’s use of a 

two-sample t-test has three effects. First, two-sample t-test considers the variance for both 

the target gene set distribution as well as the background distribution (Formula 2.1), 

while a one-sample z-test only considers the variance for the background distribution and 

ignores the effect of specific target gene set distribution (Formula 2.2). The background 

variance is very small and often negligible compared to the within gene set variance, 

hence PAGE can produce unrealistically large z-scores and small P-values (Table 3.6) in 

contrast to GAGE (Table 3.5). Second, the two-sample t-test used by GAGE identifies 

gene sets with modest but consistent changes in gene expression level, whereas PAGE 

tends to identify gene sets with a few extremely changed outliers (Figure 3.3, more 

comments in Footnote 4). In other words, GAGE is more robust to experimental noise or 

variations in gene set definitions than PAGE. Many top gene sets selected by PAGE were 

not significant according to GAGE (Table 3.5, Table 3.6, full tables not shown) because 
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the within gene set variance is too large (Figure 3.4). On the other hand, significant gene 

sets inferred by GAGE are almost always selected as significant by PAGE (Table 3.5, 

Table 3.6, full tables not shown). Said another way, GAGE is likely as sensitive (high true 

positive calls) as PAGE, but more specific (low false positive calls) than PAGE. Third, 

there is higher level of consistency within the top 10 gene sets inferred by GAGE (Table 

3.5) than by PAGE (Table 3.6), and between the top 10 gene sets cross experiments 

(Table 3.5 vs Table 3.6). This consistency is because the two-sample t-test is more robust 

than one-sample z-test for gene set analysis. All these observations for PAGE also apply 

to GAGE-z (GAGE variant doing one-sample z-test, data not shown). 

 

Figure 3.4 Gene expression fold changes (log 2 based) in the top 3 significant 
experimental sets inferred by GAGE or PAGE. For each gene set, the bar height 
represents mean and error bar represent standard error of gene expression fold changes 
induced by 8 hour BMP6 treatment in human MSC. GAGE uses two-sample t-test and 
PAGE does one-sample z-test. PAGE frequently selected gene sets with extreme up or 
down regulation in a few genes and almost no changes in the rest. Such gene sets have 
too large within-group variances to be called significantly different from the background 
based on two-sample t-test, even though their mean fold changes are big. 

3.2.3.3 One-on-one comparisons 

GAGE carries out one-on-one comparisons between experiments and controls, whereas 
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PAGE compares experiments and controls as two groups together. One-on-one 

comparisons are natural when the experiment samples and controls are paired. This 

one-on-one pairing is still preferred over group-on-group comparison even though 

experiments are not pair-matched for two reasons. First, multiple tests on all 

experiment-control pairs are more statistically powerful than single test on group 

averages, as the P-values would be orders of magnitude smaller for the one-on-one 

comparisons versus the group comparisons (Table 3.12). Second, comparisons between 

two specific samples makes sense but not between two sample groups when the net effect 

of the whole gene set is non-additive, for instance, being expressed as mean of the 

absolute fold changes for canonical pathways (Footnote 5). As expected, a one-on-one 

comparison approach produced more consistent and biologically meaningful results 

across independent studies (Table 3.12). The enumeration of all one-on-one comparisons 

is not always advantageous as it can be slow for data sets with large number of replicates. 

To circumvent this problem for larger datasets, we can take the average gene expression 

levels for all controls as a single reference state and do gene set analysis on each 

experiment sample vs this reference state, because controls are often more homogenous 

than experiments. Correspondingly, GAGE has the options for three-way comparison 

schemes specified as 1-on-1, 1-on-grp and grp-on-grp. The option 1-on-grp produces 

similar results to 1-on-1 but different results to grp-on-grp (Table 3.12). The difference 

between these three options is better shown when the sample conditions are complicated 

as in the large clinical data sets above.  

3.3 Discussion 

In this work we have presented a new software tool GAGE that is generally applicable to 

gene expression data sets of all sample sizes and experimental designs and in general 

performs better than two most frequently used gene set analysis packages. We have 

demonstrated GAGE’s performance by comparing it to GSEA and PAGE in the following 



78 

three aspects: (1) consistency across parallel studies or experiments; (2) sensitivity and 

specificity of the pathway inference; (3) biological relevance of the pathways identified. 

Our results show a significant impact of separating gene sets into pathway and 

experimentally derived gene sets as is shown in Figure 3.2. We showed that two-way 

perturbations commonly occur in regulatory pathways (Figure 3.2 and Table 3.1, also in 

Table 3.5), which would otherwise be overlooked (Table 3.11). However, pathway 

derived gene sets do not always show regulation in both directions. For example, we see 

that metabolic pathways or functional groups such as GO term categories tend to be 

coregulated toward one direction (Table 3.11). Strictly speaking, these kinds of pathway 

gene sets are not regulatory canonical pathways and could be further separated from 

canonical signaling pathways (such as in MSigDB collection c2). In response to this 

observation, GAGE provides the option for two rounds of screening on MSigDB pathway 

sets. The first round assumes two-way regulation for regulatory signaling pathways while 

the second round assumes one-way for coregulated functional groups. 

Table 3.12 The three comparison schemes of GAGE, 1-on-1, 1-on-grp and grp-on-grp. 
The top 10 significantly enriched experimental sets and canonical pathways in poor 
clinical outcomes vs good outcomes were inferred by GAGE using these three different 
comparison schemes from two published lung adenocarcinoma data sets [2]. Data 
columns are overlap between top 10 gene sets for the two studies, top 10 P-values, 
number of top 10 gene sets related to metastasis (bt) and tumor (t and bt), and numbers 

of significant gene sets with P-values ≤ 0.001. 

Gene Sets & Methods Overlap Top 10 P-values Metastasis Tumor Sign. Sets 
1-on-1 3 <1.0E-16, 1.1E-9 2, 3 5, 4 203, 55 
1-on-grp 4 <1.0E-16, 5.9E-13 3, 5 6, 7 245, 122 

Experiment 
Sets 

grp-on-grp 3 5.1E-8, 1.8E-4 3, 4 6, 8 52, 17 
1-on-1 6 5.41E-5, 3.5E-4 9, 9 9, 9 18, 9 
1-on-grp 5 6.1E-6, 7.0E-4 10, 9 10, 9 23, 10 

Canonical 
Pathways 

grp-on-grp 1 1.1E-1, 6.0E-2 4, 5 6, 5 0, 0 
 
GAGE made two assumptions in conducting two sample t-tests on the log based fold 

changes of target gene set and control sets. The first assumption is approximate normal 
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distribution for the mean fold change of the two sets. The central limit theorem states that 

the distribution of an average of sampled observations is normal regardless of the nature 

of parent distribution when sampling size is large enough. Indeed, the mean of fold 

change values for gene sets with ≥10 genes are close to normal distribution as shown by 

q-q plot previously [4]. The second assumption is that the fold changes of genes are 

independent and identically distributed (IID). Dependency between genes has been a 

concern for all gene randomization methods. However, Netwon et al [5] argued that 

dependency is not necessarily an issue when GSA was conditioned on the differential 

expression analysis results (like fold changes). Moreover, we think dependency 

(coregulation) is rare for randomly sampled control gene sets. For most curated gene sets 

there is no coregulation under the specific condition of the microarray study (even though 

they might be under certain other condition), and the null hypothesis holds. For the few 

interesting gene sets where genes are coregulated, there will be a significant difference in 

expression between these sets and random control sets, hence the null hypothesis gets 

rejected. Therefore, gene sets which violate the IID assumption are the few significant 

sets and will be captured this way [4, 5]. GAGE results clearly showed that our 

arguments work. The same logic has also been quite successful in well established gene 

randomization methods [4-6]. 

The one-on-one comparison scheme is generally applicable to data sets of all sample 

sizes and experiment designs. We used a meta test to infer a global P-value for all the 

individual comparison P-values. The global P-values and the number of significant gene 

sets we derived are sensible. As in common statistical tests, these P-values tend to 

decrease when the sample size increases, and can become small for large data sets like 

the lung cancer data sets (Table 3.1), hence the number of significant gene sets can be 

large especially when all the redundant gene sets are kept (Table 3.2). This is still sensible 

because large clinical data sets (like the lung cancer studies) are much more 

heterogeneous than small experimental data sets (like the BMP6 study). Large data sets 
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study complicated problems, like cancer, and a variety of different mechanisms cause and 

affect tumor and metastasis. 

There are frequently multiple significant gene sets which share multiple genes or 

represent the same regulatory mechanism, especially for experimental gene sets. This 

redundant gene sets problem has been discussed elsewhere in detail [36]. In response to 

this issue, GAGE has the option to combine redundant gene sets and give more concise 

significant gene set lists (Table 3.9-10). In this work, we chose not to combine these 

redundant gene sets for exact comparison between methods. As a benefit of not merging 

these sets, we took these overlapping sets as an internal control to validate the internal 

consistency of the predictions. There could also be multiple test issue, i.e. gene sets may 

become significant when gene set number is very large. We did not address this issue 

because the number of significant call is limited after removal of redundant gene sets and 

adjustments on P-values based on FDR are usually conservative. Furthermore, such 

adjustment is complicated when gene sets are not strictly independent and of different 

number of genes.  

3.4 Methods 

A schematic overview of GAGE procedure is shown in Figure 3.1. Here we describe the 

major steps of GAGE. 

3.4.1 Gene sets separation 

GAGE uses curated gene sets [2] collected from individual studies or pathway databases 

for regulatory mechanisms inference. In contrast to other gene set analysis approaches, 

GAGE requires that each curated gene set be identified as either a pathway set (canonical 

pathways) or an experimentally derived differential expression set (experiment sets). 

GAGE treats these two categories differently. Genes in an experimental set are assumed 

to be regulated in the same direction, either all up or all down, as they were in the original 

study. In contrast, genes associated with a pathway gene set may be heterogeneously 

regulated in either direction. This separation better reflects the origin of the gene set and 
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is therefore expected to produce better results.  

For an experimental set the test statistic (score) used in GAGE is the average of the 

per-gene test statistics—similar to the scoring scheme used by other gene set analysis 

methods. However, for canonical pathways GAGE uses the average of the absolute 

values of the per gene test statistics to account for both up- and down-regulation. 

3.4.2 Significance test 

To test whether a gene set is significantly correlated with a phenotype or an experiment 

condition, we exam the fold changes of gene expression level in the experiment condition 

(or phenotype) vs control condition. Correspondingly, we want to test whether the mean 

fold changes of a target gene set is significantly different from that of the background set 

(the whole gene set of the microarray). This is a prototype two-sample t-test, as shown in 

Formula 2.1, in contrast to the one-sample z-test used in PAGE [4] shown in Formula 2.2. 

nSnsMmt //)( 22 +−=                       (2.1) 

nSMmz /)( 2−=                           (2.2) 

Where m, s and n are the mean fold change (log ratio of expression levels), standard 

deviation, and number of genes in a particular gene set, and M and S are the mean fold 

change and standard deviation for all of the genes in the dataset. Notice that this is a two 

sample t-test between interesting gene set of n genes and a virtual random set of the same 

size derived from the background (comparable to the one-sample z-test control set in 

Formula 2.2). The degree of freedom (df) for this two-sample t-test with unequal variance 

is given in Formula 2.3. Two sample t-test would be inaccurate when the two sample 

sizes are not comparable [37], for instance, comparison between a gene set and the whole 

set or all other genes as in T-profiler [6] (Footnote 1). The assumptions we made for the 

two-sample t-test are described in Discussion in detail. 
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3.4.3 One-on-one comparison between microarray experiment and control samples 

For microarray studies with one-on-one paired experiment and control samples, we 

calculate fold changes and carried out gene set significance tests for each experiment vs 

control sample pair. For microarray studies with multiple unpaired experimental and 

control samples, GAGE has two options: 1-on-1 and 1-on-grp. In 1-on-1 we enumerate 

all pairs of experiment-control and do gene set significance tests. In the 1-on-grp option 

we take the average gene expression level for all control samples as the sole reference, 

compare each experimental sample against this reference and do gene set significance 

tests. 1-on-1 is more rigorous theoretically. Our experiment showed that 1-on-grp gives 

very close results and is much faster when the sample size is large. We take 1-on-1as our 

standard, and leave 1-on-grp as a computationally fast option (default for unpaired 

experiments in this paper). We also implemented the commonly used comparison 

between experiment group and control group as the grp-on-grp option. 

3.4.4 Combination of multiple comparisons or experiments 

GAGE derived multiple t-statistics and P-values from Formula 2.1 when doing 1-on-1 or 

1-on-grp comparison for data sets with replicate samples. We derive a global P-value by 

combining these individual P-values. Individual P-value follows a Uniform(0,1) 

distribution under the null hypothesis of the two-sample t-test and the negative log sum of 

K independent P-values follows a Gamma(K,1) distribution. Hence we can do a meta-test 

for all the P-values of a gene set cross multiple samples (Formula 2.4-5). 

x = − log Pk
k
∑                            (2.4) 

)1,(~)( KGammaxXP >                       (2.5) 

Note that this analysis assumes that individual P-values come from independent 

comparisons. However, the 1-on-1 comparisons are not all independent for unpaired 

studies (with k=1,.,K experiments and l=1,.,L controls), thus we need to take the average 

of the P-values for all L comparisons of a experiment to different controls as the P-value 
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for that experiment (Formula 2.6) and then apply Formula 2.5 to these K independent 

P-values. 

∑−=
kl

klP
L

x log1                           (2.6) 

3.4.5 Implementation of GAGE 

GAGE is implemented in the statistical computing language R and is freely available 

online [38]. The gene sets used in this paper are from the Molecular Signature Database 

of GSEA website [18]. From this site, we used the curated gene sets (collection c2), and 

treat the two sub-collections experimental sets (CGP: chemical and genetic perturbations) 

and canonical pathways differently. There are 16966 unique gene symbols in c2, 3834 of 

them are nonstandard. Among these nonstandard symbols, 1190 were converted standard 

symbols automatically by using GAIQ database [39]. Database access and scripts for the 

gene symbol standardization is available upon request. 

3.4.6 Comparison software 

GAGE was compared to two widely used gene set analysis software packages: PAGE and 

GSEA. GSEA-P-R.1.0 was downloaded form GSEA website [40], and PAGE is 

implemented in R as part of GAGE package based on description of the authors [4] and 

source codes in PGSEA package [41]. 

3.4.7 Data sets 

The gene set analysis software were compared using three datasets including two large 

studies and one small one. 

The two large studies included a lung cancer set was provided with GSEA-R package [40] 

and a type 2 diabetes data set comes from ChipperDB [42]. These datasets were chosen 

because they were originally used to validate and/or compare GSEA [2, 3] and PAGE [4] 

The small dataset is a gene expression study from our group describing human MSC 

response to 8 hours of exposure to the signaling molecule BMP6. This dataset includes 
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two experimental groups each with paired treatment and control samples, resulting in a 

total of 4 gene chips. The raw data were processed by using RMA implemented in the 

Bioconductor Affy package [43] with up-to-date probe set definition (.CDF file) based on 

Entrez Gene sequence, Hs133P_Hs_ENTREZG_8 [44]. Annotation data were retrieved 

from the GAIQ website [39]. The type 2 diabetes data set was processed similarly from 

raw data files. 
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3.5 Footnotes 

3. T-profiler employs two-sample t-test, but it compares a gene set to the complementary set of all other 
genes, and assumes equal variance between the two set, which made it similar to a one-sample z-test 
in PAGE. In the formulas of the T-profiler [6], given N G' is much greater than NG, the pooled standard 
error s approximately equal sG', and t statistics essentially equals z statistics. 

4. I did not use synthetic data for the comparison between different methods. Real microarray data 
experiments accurately/consistently showed the differences between methods, which are more 
convincing and revealing than synthetic data experiments. The differences between methods were well 
explained by theoretical description in 3.2.3. Similarly, most other gene set analysis methods, 
including GSEA and PAGE, are evaluated based on real microarray data alone. 

5. Note that we used GAGE program to remove PAGE redundant gene sets since PAGE doesn’t offer 
such function. This remover program has been optimized for GAGE, where there were no or very few 
false positive calls. When applied to PAGE results, the large number of false positive calls may result 
in excessive redundancy removal, hence the non-redundant list could be shorter than it should be. 
Nonetheless, the non-redundant list is a good reference for the comparison between GAGE and 
PAGE. 

6. GAGE more stresses the overall expression changes of the whole set, whereas PAGE is more sensitive 
to big changes of individual genes. GAGE can be considered more competitive (Q1) and PAGE more 
like self-contained (Q2) according to the classification described by Geoman [10] and Nam [1], 
although both are assigned to the big competitive (Q1) category. 

7. First, for two groups each with n samples, we can do n independent-tests on sample pairs, yet only one 
test on the group averages. Obviously, the former is more powerful than the latter. Second, for gene 
set based analyses, what really matters is the change for the whole gene set not that for individual 
genes. Hence big fluctuation for single gene expression level is considered common for the same 
experiment condition (or within group variance) as long as the whole set net effect is zero. Taking 
average of such fluctuated gene expression levels within the group as the representative expression 
level would be misleading when the net effect of the gene set is non-additive as seen in many 
canonical pathways (where we take set mean of the absolute fold changes). Take a simplified example, 
we have a gene set of two genes, the expression level for the control condition is (2, 2). This set is 
perturbed for the two samples under experiment condition and becomes (4, 0) and (0, 4), both are able 
to achieve certain effect because the two genes are functionally related (like A OR B but not A AND 
B). But the average over the experimental condition is (2, 2), no different than the control at all. 
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Chapter IV  

Time Series Microarray Gene Expression Profiling and Temporal 

Regulatory Pathway Analysis of BMP6 Induced Osteoblast 

Differentiation and Mineralization 

4.1 Introduction 

This is a systematic experimental and computational study on the regulatory mechanisms 

involved in BMP6 induced osteoblast differentiation and mineralization. 

Osteoblasts, the bone forming cells, are responsible for bone matrix production and 

mineralization [1]. In concert with osteoclasts, osteoblasts coordinate bone remodeling, a 

physiologic process by which bone mass is maintained constant throughout adult life in 

vertebrates [1]. Osteoblasts arise from osteoprogenitor cells or mesenchymal stem cells 

(MSC) residing in the periosteum and the bone marrow [1]. Osteoblast differentiation and 

function are implicated directly in skeletal development and bone diseases. Identifying 

the endogenous factors controlling osteoblast differentiation and function and in turn the 

signaling and transcriptional networks activated is essential for understanding bone 

related physiological and pathological processes. 

One set of soluble factors, the bone morphogenetic protein family (BMP) [2], induce 

osteoblast differentiation when delivered to cells in vitro and in vivo [3]. Among the 

BMPs, BMP2, 4, 6 and 7 are the best known and characterized osetogenic factors [4]. 

Our previous study [5] show that: (1) human MSC produce BMP6 in defined, serum-free 

conditions, but not BMP2, 4, or 7, (2) BMP6 is upregulated under mild osteogenic 

stimulus (dexamethasone), (3) exogenous BMP6 potently induces osteoblast 
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differentiation, but responses to BMP2, 4, or 7 are inconsistent and require higher doses, 

(4) exogenous BMP-6 induces the expression or upregulation of a repertoire of 

osteoblast-related genes in human MSC. These results establish that BMP6 is an 

important endogenous regulator of human osteoblast differentiation [5]. 

Although functionally critical, BMP6 signaling largely remains uncharacterized. 

Molecular descriptions of osteogenic BMP signals in a whole are still incomplete. 

Significant efforts, particularly a series of high throughput microarray studies [6-12] have 

been undertaken to uncover BMP (including BMP6) responsive genes, transcriptional 

programs and their roles in osteoblast development. However, an integrated 

understanding of the regulatory mechanisms for osteoblast differentiation and 

mineralization has not been achieved. Two key problems still remains unsolved include: 

(1) what pathways and gene groups are responsible for MSC differentiation to bone in 

response to BMP6 stimulation? (2) How and when these pathways are altered (induced or 

repressed) by BMP6 during the osteogenic induction? 

To answer these two questions, we conducted a time series microarray study on BMP6 

osteogenic induction and a comprehensive pathway analysis on the temporal data. We 

met special challenges at both experiment and data analysis levels. 

At experiment level, we considered two major issues: (1) Given our limited experimental 

resources, what rate to sample the time series? The time intervals should be short enough 

to capture the dynamics and continuity, but long enough to show phenotypically 

significant changes. We determined time intervals based on the minimal BMP6 treatment 

durations needed for significant phenotypic changes, including the expression of 

osteoblast markers and formation of mineralized extracellular matrix (Figure 4.1). (2) 

Osteoblast induction is a temporal process with accumulative effects and gradual changes, 

how to dissect out the net effect of BMP6 at different phenotypic stages? We employed a 

BMP6 addition and withdraw scheme (Figure 4.1). 

At data analysis level, we employed the effective method and procedure for a novel 
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temporal pathway analysis. Gene set analysis (GSA) is a well established strategy to 

identify pathways or gene sets associated with particular phenotypes or conditions 

[13-17]. However, no previous method is capable of inferring a dynamic list of pathways 

or gene sets continuously changing over a time course, or temporal pathway analysis. For 

temporal pathway analysis, a method needs to be: (1) applicable to time series datasets 

with small sample size at each time point or condition. (2) both sensitive and selective to 

capture subtle yet real regulatory signals over time. Our newly developed GAGE 

(Generally Applicable Gene-set Enrichment) method meets these technical challenges 

well [18]. To further handle the unevenly distributed short time series (a few time points) 

 

Figure 4.1 Design for the microarray study on BMP6 induced osteoblast differentiation. 
Human MSC cells were pre-cultured for 4 days and subsequently treated with BMP6 for 0 
hours, 8 hours, 24 hours, and 96 hours. These four time points correspond to four 
phenotypic groups, of control, preosteoblast (no mineralization), (sub-maximal) 
mineralization, and maximal mineralization at 14 days (18 days in total). Cells were 
harvested at 8 hours, 24 hours, 96 hours and 10 days for microarray profiling. 
Mineralization level was quantified at 14 days by Alizarin Red S staining (right column). 
GAGE was applied to infer the most differentially expressed pathways or gene sets 
between the matched samples with or without BMP6 at different time points. For 8, 24 
and 96 hours, GAGE compares between two sample conditions for the net BMP6 effect 
at that time, for 10 days, GAGE compares between two mineralized conditions versus 
two non-mineralized conditions. 
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dataset, we designed a special and flexible analysis procedure (Figure 4.1): GAGE was 

applied to compare BMP6 addition or withdrawal samples at different time slices for net 

temporal effect of BMP6 treatment. 

In this systematic and dynamic microarray study and pathway analysis, we discovered a 

novel and coherent sets of regulatory mechanisms and functional groups downstream of 

BMP6 signaling during osteoblast differentiation and mineralization. We not only 

inferred which pathways or gene sets are significant, but also determined when and how 

they are involved in the osteoblast differentiation and mineralization. 

4.2 Results 

Following our previous study [5], we explored BMP6 induced human MSC osteoblast 

gene expression and function. Our preliminary experiments showed that 8 hours BMP6 

treatment was sufficient to induce early osteoblast differentiation marker in human MSC. 

At least 24 hours BMP6 treatment was required to form mineralized matrix at 14 days 

after the initiation of BMP treatment. A maximal mineralization response was observed 

upon 96 hours of BMP6 treatment. 

We designed a high throughput microarray study to explore the regulatory mechanisms 

underneath these phenotypic changes at different stages of human MSC osteoblast 

differentiation (Figure 4.1). Our newly developed GAGE method [18] was applied to 

infer the significantly perturbed KEGG pathways, GO term processes or functional 

groups, and experimentally derived gene sets (experimental sets for short) by BMP6 

treatment at different times along the induction process (Figure 4.1). We examined these 

significant gene sets in details below. 

4.2.1 Significantly perturbed KEGG pathways during BMP6 osteogenic induction 

Essentially the same set of KEGG pathways are significantly perturbed at gene 

expression level throughout BMP6 induction process (Figure 4.2 and Table 4.1). In other 

words, these regulatory mechanisms are constantly involved at different stages of BMP6 

induced osteoblast differentiation and mineralization. To test whether a KEGG pathway 
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are significantly associated with a phenotype or a sample condition, we account for gene 

expression level perturbation in both directions (both up and down regulation), since a 

pathway commonly includes both positive and negative effectors and local feedback 

loops to keep the system balanced and fine tuned. Therefore, we frequently call a KEGG 

pathway significantly perturbed rather than activated or inhibited as a whole. 

These significant KEGG pathways show different perturbation patterns (Figure 4.2). 

TGF-beta signaling pathway, Cytokine-cytokine receptor interaction and Wnt signaling 

pathway are most perturbed at 8h; Jak-STAT signaling pathway, MAPK signaling 

pathway and p53 signaling pathway most perturbed at 24h, whereas Focal adhesion and 

ECM-receptor interaction at 10d. We checked differential gene expression induced by 

BMP6 treatment in three representative pathways in detail (Figure 4.3 a-c, animation not 

shown). (1) TGF-beta signaling pathway is the top 1 significant pathway (compared to 

other pathways) at 8h and is most perturbed (compared to itself at other time points) also 

at 8h. Therefore, this is the pathway triggered directly by BMP6 treatment, or the signal 

nitiating the osteoblast differentiation. This observation is supported by previous work 

[19] and the common sense: BMP6 as a canonical BMP triggers canonical BMP signal, 

which is one major branch of TGF-beta signaling pathway. (2) Focal adhesion is top 1 

significant pathway (compared to other pathways) after 24 h and is most perturbed 

(compared to itself at other time points) at 10 days. This pathway is the convergence 

point of the regulatory signals, and it is associated with late stage osteoblast 

differentiation and mineralization. These results are consistent with the role of Focal 

adhesion inferred from experimental works [20, 21]. (3) MAPK signaling pathway is the 

most perturbed at 24 h or the middle stage, which suggests that this pathway is likely an 

intermediate step during the BMP6 induced signal relay process at gene expression level. 

Indeed, MAPKs have been reported to mediate BMP effect during osteoblast 

differentiation [22, 23]. The temporal perturbation patterns in other pathways suggested 

similar roles in the BMP6 induction process, which are supported by literature works and 
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Table 4.1 Interpretation and validation of the significant KEGG pathways inferred by 
GAGE. Temporal perturbation patterns, literature findings and experimental evidence 
suggest regulatory roles of these KEGG pathways in BMP6 induced osteoblast 
differentiation and mineralization. 

KEGG pathways Most perturbed Literature (Pubmed ID) Other evidences 
TGF-beta signaling 
pathway 

8h 7750491, 16317727 BMP signal targets 
IDs, SMAD6-7, 
DLX5 extremely up 

Cytokine-cytokine 
receptor interaction 

8h 16313349, 16551243 IFN target gene sets 
down (Table 4.4) 

Wnt signaling pathway 8h 17971207, 14584895  
Jak-STAT signaling 
pathway 

24h 16313349, 12796477 STAT1 target genes 
down 

MAPK signaling pathway 24h 18056716, 16000303 -- 
p53 signaling pathway 24h 16380437, 16533949 -- 
Focal adhesion 10d 17081517, 17459803 -- 
ECM-receptor interaction 10d 11771655, 9830051 -- 

 

Figure 4.2 The expression perturbation patterns induced by BMP6 treatment in eight 
significant KEGG pathways. These pathways are consistently significantly differentially 
expressed or near so based on GAGE. The mean t-statistics from multiple one-on-one 
comparisons between the two sample conditions is used as overall perturbation 
magnitude for each pathway. Perturbation magnitude here measures absolute gene 
expression change without considering the direction. The dashed line indicates a 
t-statistics of 1.79, which roughly corresponds to p=0.01 for 8-96 h or 0.001 for 10 d. Two 
panels are used only for better view here, and similarly in Figure 4.5 and 4.7. 

a b 
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extra evidences from expression data (Table 4.1). The temporal roles assigned to the 

pathways are just relatively, because all these pathways are important throughout BMP6 

induced osteoblast differentiation and mineralization (Figure 4.2). Notice that the 

observations are all based on gene expression data, perturbations in these pathways 

occurred at transcriptional level and the regulatory signal in this level is much slower or 

longer lasting than that in post-transcriptional level (i.e. protein phosphorylation level). 

All these significant KEGG pathways are not separated but rather they work as a super 

regulatory system. They interconnected to each other as shown on KEGG pathway graphs. 

For instance, TGF-beta signal triggers MAPK signaling pathway (Figure 4.3a), whereas 

MAPK signaling pathway connects to Focal adhesion (Figure 4.3b). They also share 

common downstream response processes: including apoptosis, cell cycle etc (Figure 

4.3a-c). We collected top KEGG pathways inferred by GAGE [18], gene expression data 

and connections between pathways from LinkDB module of KEGG databases [25], and 

present an integrated dynamic network of pathways in Figure 4.4. The upstream nodes 

including TGF-beta signaling pathway and Cytokine-cytokine receptor interaction etc are 

most perturbed at 8h or early stage, downstream nodes including Focal adhesion and 

ECM-receptor interaction are most perturbed at 10d or late stage, whereas midstream 

nodes including MAPK signaling pathway, p53 signaling pathway etc are most perturbed 

at 24h or middle stage. These sequential perturbation patterns cross interconnected 

pathways clearly suggest a dynamic transmission process of the regulatory signals 

induced by BMP6 treatment at gene expression level. Meanwhile, there are no real 

boundaries between these KEGG pathways. They frequently share multiple component 

genes that are evidently perturbed in expression level, and these overlap are statistically 

significant (Table 4.2). Particularly, overlaps between significant KEGG pathways (Table 

4.2) are consistent with the connections between pathways (Figure 4.4): high overlaps 

(Table 4.2) almost always suggest direct connections between pathways (Figure 4.4), and 

vise versa. These overlap component genes serve as bridges cross these relative 
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independent functional modules or pathways, hence perturbation in one pathway such as 

BMP-TGF beta signaling pathway) can be robustly propagated throughout other relevant 

pathways. All these data suggest that these significant KEGG pathways work as an 

integrated super regulatory system. 

4.2.2 Significantly perturbed GO term gene sets during BMP6 osteogenic induction 

Different from top KEGG pathways, top significant GO term gene sets change with time 

(Figure 4.5). Most relevant GO term gene sets are significantly up or down regulated only 

for part of the induction process, except Notch signaling pathway and insulin-like growth 

factor receptor binding. Different from complex KEGG pathways, genes in a GO term set 

are assumed to be coregulated towards one direction, either all up or all down regulated. 

Figure 4.3 Gene expression fold changes induced by BMP6 in three representative 
significant KEGG pathways. Each pathway shown is at its most perturbed time point. 
Gene expression level fold changes are standardized over the standard deviation of fold 
changes for all genes and visualized using KEGGanim [24]. Note that one KEGG node 
may correspond to multiple closely related genes with the same function. Other relevant 
pathways are magnified locally for better view. 

 

a: 
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b: 

c: 
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Figure 4.4 An integrated network of the significant KEGG pathways with their temporal 
perturbation patterns. Significant KEGG pathways (color pies) or closely related other 
pathways (text only) connected to them are presented by nodes. Connections between 
these pathways collected from KEGG database/graphs are represented by arrows plus 
edges. The mean t-statistics from multiple one-on-one comparisons at four different time 
points are plotted in pseudo heat color in the pie nodes as average perturbation 
magnitude for significant KEGG pathways. Full names for some abbreviated KEGG 
pathways are: Cytokine-cytokine receptor interaction (Cytokine), Ubiquitin mediated 
proteolysis (Ublysis), Phosphatidylinositol signaling system (phosph). 

The top GO term gene sets are novel yet plausible regulatory processes or functional 

group involved in BMP6 induced osteoblast differentiation and mineralization. Some are 

self-explaining, including skeletal development and ossification. Other less evident top 

GO term gene sets are supported by literature works. Notch signaling pathway is directly 

involved in BMP2 induced osteoblast differentiation [11, 26]. Both insulin-like growth 

factor receptor binding and insulin-like growth factor binding suggest that IGF signal is 
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critical for osteoblast differentiation and mineralization. Indeed IGF1 [27] and IGF1R [28] 

promote min and bone formation, whereas IGFBP 3-6 [29-32] sequester IGF1 and inhibit 

osteoblast differentiation and mineralization. Direct connection between immune 

response and bone formation and metabolism has been well appreciated [33, 34], with a 

new research area, osteoimmunology [34], dedicated to this connection. Genes from 

homophilic cell adhesion [35] and oxidoreductase activity [36] sets play a role in ob. 

Selenium deficiency is associated with osteoporosis [37], a disease in bone formation and 

metabolism. Our GAGE predictions (Table 4.3) are novel in that (1) these GO term gene 

Table 4.2 The overlaps in perturbed member genes between the significant KEGG 
pathways inferred by GAGE. For each cell in the table, in the parenthesis is the number of 
perturbed member genes overlapping between the significant KEGG pathways; outside is 
the significance of this overlap between KEGG pathways inferred by a statistical test 
based on hypergeometric distribution. A gene is counted as perturbed when its absolute 
fold change is at least one standard deviation higher than the mean of all gene 
perturbations. Full names for these KEGG pathways are: TGF-beta signaling pathway 
(TGFb), Cytokine-cytokine receptor interaction (Cyto), Wnt signaling pathway (Wnt), 
MAPK signaling pathway (MAPK), Jak-STAT signaling pathway (Jak), p53 signaling 
pathway (p53), Focal adhesion (Focal), ECM-receptor interaction (ECM). 

 TGFb Cyto Wnt MAPK Jak p53 Focal ECM 

TGFb 
0  

(22) 
5.6E-20

(8)
3.3E-06

(2)
4.3E-10

(4)
3.1E-04

(1)
3.1E-04 

(1) 
2.9E-06 

(2) 
4.1E-05

(1)

Cyto 
5.6E-20 

(8) 
0

(34)
1 

(0)
3.4E-11

(5)
8.3E-29

(11)
1  

(0) 
6.4E-10 

(4) 
1 

(0)

Wnt 
3.3E-06 

(2) 
1 

(0)
0 

(24)
6.9E-10

(4)
2.9E-06

(2)
3.5E-09 

(3) 
2.3E-08 

(3) 
1 

(0)

MAPK 
4.3E-10 

(4) 
3.4E-11

(5)
6.9E-10

(4)
0 

(33)
7.0E-04

(1)
2.7E-06 

(2) 
5.5E-10 

(4) 
1 

(0)

Jak 
3.1E-04 

(1) 
8.3E-29

(11)
2.9E-06

(2)
7.0E-04

(1)
0 

(21)
1.4E-04 

(1) 
3.4E-04 

(1) 
1 

(0)

p53 
3.1E-04 

(1) 
1 

(0)
3.5E-09

(3)
2.7E-06

(2)
1.4E-04

(1)
0  

(15) 
3.0E-09 

(3) 
1.9E-05

(1)

Focal 
2.9E-06 

(2) 
6.4E-10

(4)
2.3E-08

(3)
5.5E-10

(4)
3.4E-04

(1)
3.0E-09 

(3) 
0 

(23) 
2.1E-24

(7)

ECM 
4.1E-05 

(1) 
1 

(0)
1 

(0)
1 

(0)
1 

(0)
1.9E-05 

(1) 
2.1E-24 

(7) 
0 

(8)
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Table 4.3 Interpretation and validation information of the significant GO term gene sets 
inferred by GAGE. Temporal perturbation patterns (significantly perturbed time period 
and the direction), supportive literature and experimental evidence all suggest the 
regulatory roles of these GO terms in BMP6 induced osteoblast differentiation and 
mineralization. 

GO terms Perturbation Literature (Pubmed ID) Other evidences 
Notch signaling pathway 8h-10d up 15695512, 15207708 Figure 4.6 
insulin-like growth factor 
receptor binding 

8h-10d up 12215457, 10875273 -- 

insulin-like growth factor 
binding 

10d down 12733722 ,14584894, 
18292241, 18395833 

-- 

homophilic cell adhesion 24h-96h up 12070283 -- 
immune response 96h-10d down 16551243, 11117729 -- 
skeletal development 8h-96h up -- -- 
ossification 96h-10d up -- -- 
oxidoreductase activity 8h-24h, 10d 

down 
17949499 -- 

selenium binding 96h-10d up -- -- 

 

Figure 4.5 The expression perturbation patterns induced by BMP6 treatment in nine 
significant GO term gene sets. Each of these GO term gene sets is significant in at least 
one time point based on GAGE. The mean t-statistics from multiple one-on-one 
comparisons between the two sample conditions is used as overall perturbation for each 
GO term. Different from KEGG pathways, perturbation direction is considered here. 
Dashed line marks t=+/-1.30, roughly corresponds to p=0.05 for 8-96 h or 0.01 for 10 d. 

a b 
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sets as whole processes or functional groups instead of individual genes are involved in 

regulation of osteoblast differentiation and mineralization, (2) these are regulatory 

mechanisms triggered by BMP6 induction, (3) they are effective for specific time periods 

during the induction process. 

We take Notch signal as an example prediction for direct experiment validation (Figure 

4.6). We block Notch signal using the specific gamma secretase inhibitor (GSI, L-685458) 

[38, 39]. GSI inhibits BMP6 induced osteoblast differentiation and mineralization, and 

this inhibition is effective at all stages of the induction process (Figure 4.6). These results 

confirmed that Notch signaling pathway is a critical throughout BMP6 osteogenic 

induction. Downstream effect of Notch signal is likely mediated by HEY1 and HEY2, 

two transcription factors which are significantly unregulated (Figure 4.8c). 

 

Figure 4.6 Effect of blocking Notch signal using GSI on BMP6 induced osteoblast 
differentiation and mineralization. Human MSC cells were treated with BMP for 4 days or 
untreated (control). GSI (the gamma secretase inhibitor, L-685458) was added for the 
indicated days. The cells were harvested and stained with Alizarin Red S at 16 days after 
the initiation of BMP treatment. Note that cells in the + GSI - BMP6 column peeled off 
from the culture surface. This is presumably a direct effect of notch signal inhibition as 
GSI is a specific notch signal inhibitor [37, 38] and integrin-mediated cell adhesion is 
directly regulated by gamma-secretase-mediated intramembranous cleavage of 
membrane-bound Notch [54]. 
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4.2.3 Significantly perturbed experimentally derived gene sets during BMP6 
osteogenic induction 

The most significantly up or down-regulated experimental sets during BMP6 induction 

are selected using GAGE [18]. There are commonly multiple experimental sets 

describing the same perturbation or mapping to the same regulatory mechanism. A 

non-redundant subset of the top experimental sets were collected in Table 4.4 with their 

perturbation patterns shown in Figure 4.7. Similar to gene sets based on GO terms but not 

to those on KEGG pathways, experimental sets are significantly perturbed towards one 

direction, either up or down regulated. 

MYB transcription factor is selected as a novel regulator for osteoblast differentiation. 

MYB target gene set was down regulated at 8 h, 24 h and 10 d with no change in MYB 

expression level. MYB transcriptional activity at protein level can be inhibited through 

two potential mechanisms following BMP6 treatment: the activation of Wnt signaling 

pathways (Table 4.1 and Figure 4.2) phosphorylates and degrades of MYB protein [40], 

and BMP/TGF beta and Wnt responsive OVOL1 antagonizes transcriptional activation of 

MYB by competing for target promoter binding [41]. 

Another novel transcriptional regulator for osteoblast differentiation we predicted is 

BAF57, which is the regulatory subunit SWI/SNF chromatin remodeling complex [42]. 

Multiple BAF57 target genes are directly related to osteoblast differentiation and function 

(Table 4.5). Indeed, SWI/SNF regulates osteoblast-specific transcription through 

chromatin structure modification [43]. BMP6 treatment may target SWI/SNF to nucleus 

though SMAD1 signal [44] or p38 MAPK pathway targets SWI-SNF 

chromatin-remodeling complex [45]. Interestingly, BAF57 positive target genes are 

up-regulated and negative targets down-regulated during BMP6 induction, which further 

confirms the involvement of BAF57 activity. The different timing of the positive and 

negative regulation likely suggests different dynamics of these actions. 

Other interesting regulatory mechanisms are inferred based on the top ranking 

experimental sets. Interferon beta (interferon alpha and gamma too, but not shown) 
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positive target gene sets are down-regulated, which is consistent with Jak-STAT pathway 

from KEGG (Table 4.2). VEGF positive targets are down-regulated, likely because 

VEGF gene expression is down-regulated due to MYB inhibition [46]. IRS negative 

targets are down-regulated is consistent with activation of IGF signal, particularly 

up-regulation of IGF receptor binding proteins (Table 4.4 and Figure 4.5). 

4.3 Discussion 

This is the first high throughput microarray study on BMP6 induced transcriptional 

program in human MSCs. It covers the whole process from early to late stage osteoblast 

differentiation and mineralization. We conducted a comprehensive gene set analysis to 

identify relevant regulatory mechanisms and functional groups. We inferred a series of 

significant KEGG pathways, GO terms and experimental sets at different stages of BMP6 

induction process. We not only showed which pathways or gene sets are significant, but 

also when and how they are involved in the osteoblast differentiation and mineralization. 

Different from common pathway analyses [14-17], our work further captures the 

interconnections among individual pathways or functional groups and integrate them into  

Table 4.4 Interpretation and validation information on the significant experimental sets 
inferred by GAGE. Temporal perturbation patterns, supportive literature works and extra 
experimental evidences all suggest regulatory roles in BMP6 osteoblast induction. 
Experimental sets came from MSigDB [52] c2 collection, where the original names for 
these significant gene sets are: Lei_MYB_Regulated_Genes, BAF57_BT549_Dn, 
BAF57_BT549_Up; (B) Der_IFNB_Up, VEGF_Mmmec_6hrs_Up, IRS_Ko_Adip_Up. 

Experimental sets Perturbation Literature (Pubmed 
ID) 

Other evidences 

MYB targets 8h-24h,10d down 15082531, 17311813 Wnt signal (KEGG) 
BAF57 down 8h-24h,10d down 16769725, 16772287, 

15231748, 15208625 
BAF57 up 

BAF57 up 24h-96h up 16769725, 16772287, 
15231748, 15208625 

BAF57 down 

IFNb up 8h,10d down -- Jak-STAT signal (KEGG) 
VEGF up 10d down 16650815 MYB targets 
IRS down 8h-10d down -- IGF signal (GO) 
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Table 4.5 Eleven BAF57 positive target genes (the ‘BAF57 up’ gene set) evidently 
induced by 8 hours BMP6 treatment. A gene is counted as evidently induced with its fold 
change is one standard deviation higher than the mean for all genes. Eight of these 
genes are likely regulators for osteoblast differentiation based on their functional 
annotation. 

Gene Relevant function 
FZD1 Wnt signaling 
PRRX1 Transcription factor 
DIO2 -- 
AGC1 ECM, osteoblast function 
PRRX2 Transcription factor 
GHR Osteoblast prolif./diff. 
JAG1 Notch signaling; mineralization 
LBH -- 
BMPR2 BMP signaling 
LMCD1 -- 
SOCS2 Insulin signaling, osteoblast function  

 

 

Figure 4.7 The expression perturbation patterns induced by BMP6 treatment in six 
significant experimental sets. Each of these experimental sets is significantly up or down 
regulated in at least one time point based on GAGE. The mean t-statistics from multiple 
one-on-one comparisons is used as overall perturbation for each gene set. Different from 
KEGG pathways, perturbation direction is considered here. Dashed line marks t=+/-1.78, 
which roughly corresponds to p=0.01 for 8-96 h or 0.001 for 10 d. 

a b 
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a whole system. Taken together, this work provides clearer mechanistic picture of 

osteoblast differentiation and function. We inferred novel and coherent sets of regulatory 

mechanisms downstream of BMP6 signaling during osteoblast differentiation and 

mineralization. First, the same set of KEGG pathways are constantly involved in BMP6 

induction. Their roles in osteogenic induction are clarified based on their perturbation 

patterns and connected to relevant discoveries in literature. These significant KEGG 

pathways are not separated but rather they work as a unified super regulatory system, and 

the pathway perturbation patterns we derived reflect a dynamic transmission process of 

the regulatory signal at transcriptional level along the super system. Second, a varying set 

of GO processes and functional groups are involved at different stage of BMP6 induced 

osteoblast differentiation and mineralization. These suggest novel yet plausible regulatory 

mechanisms, which are validated using experiment and/or connected to literature works. 

Third, the most significant experimental sets suggest novel transcriptional regulators 

including MYB and BAF57, and regulatory pathways consistent with predictions based 

on KEGG and GO gene sets above. 

Connections between KEGG pathways are evident as shown in the super regulatory 

network of pathways (Figure 4.4 and Table 4.2). Perturbation or signal propagates along 

the super network at two levels: at protein level, the phosphorylation, binding, 

activation/inhibition events relay along pathways and transmit into interconnected 

pathways, as stated by KEGG graphs (Figure 4.3); at transcriptional level, gene 

expression perturbation propagates through auto-regulatory (feedback and feed forward) 

loops within pathways, and bridges into its neighbor pathways through the multiple 

component genes in common, as suggested by our pathway analysis results (Figure 4.4 

and Table 4.2). Protein level transmission is much faster, but transcriptional level 

transmission lasts much longer hence ensure the long term biological effects. The latter 

echoes the former process with a long lag. The hard wired KEGG pathways and 

interconnections between them define how BMP6 signal triggers downstream programs 
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(Figure 4.4). 

Presumably, there should be connections between BMP6 signal and the processes/groups 

represented by GO terms and experimental sets too. For example, Notch signal and IGF 

signal are involved in the whole induction process (Figure 4.5a) like all significant 

KEGG pathways (Figure 4.2). It follows that these two signals should be also part of the 

super regulatory system and interconnected with multiple significant KEGG pathways of 

the network (Figure 4.4). This hypothesis is well supported by our data and literature: (1) 

Notch signal directly interacts with BMP signal. SMAD1 and NIC synergize to induce 

expression of HEY1 and other Notch targets [47-49]. Indeed up-regulation of HEY1 (and 

HEY2) requires continued BMP6 treatment by 96 hours (Figure 4.8c). Besides this 

binding-synergy at protein level, Notch ligand JAG1 expression is also up-regulated by 

BMP6 (Figure 4.8c). Notch interacts with Wnt signal too [50]. (2) GH (Growth hormone) 

Figure 4.8 Individual gene expression perturbation patterns induced by BMP6 treatment 
in the representative significant gene sets. (a) Cytokine-cytokine receptor interaction 
(KEGG); (b) Jak-STAT signaling pathway (KEGG); (c) Notch signaling pathway (GO); (d) 
insulin-like growth factor receptor binding (GO); (e) MYB targets, (f) BAF57 down. Log 2 
based expression level fold change induced by BMP6 treatment were standardized over 
the standard deviation for all genes. Top 4 most perturbed genes were labeled out 
differently from other genes. The red dashed line marks the mean for each gene set. 

a b 
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signal [51] as part of cytokine-cytokine receptor interaction (KEGG pathway 04060) and 

Jak-STAT pathways (KEGG pathway 04630) are activated and by BMP signal (Figure 4.4) 

with GHR up-regulated (Figure 4.8a-b), GH signal up-regulates (IGF1 and IRS1, Figure 

4.8d) and activates IGF signal in turn [51]. Connections between BMP signal and the two 

predicted transcriptional regulators, MYB and BAF57, are described above in the 

Results. 

We find strong consistency among significant KEGG pathways, GO terms and 

experimental sets. For example, KEGG focal adhesion and ECM receptor interaction 

c d 

e f 
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pathways (Table 4.1), GO homophilic cell adhesion (Table 4.3) and extracellular matrix 

structural constituent (not shown) groups consistently show the relevance of cell adhesion 

and extracellular matrix in osteoblast differentiation and mineralization. GO immune 

response groups (Table 4.3) echoes KEGG cytokine-cytokine receptor interaction 

pathway (Table 4.1). Similarly, significant experimental target genes sets closely reflected 

changes in the regulatory KEGG pathways or GO processes/groups (Table 4.4). 

Discrepancies among significant KEGG pathways, GO terms, and experimental sets exist 

too. For example, Notch signaling is defined both as KEGG pathway and GO process. 

This KEGG pathway is not significant (not shown) but this GO process is (Figure 4.5). 

This discrepancy between arises from two sources: (1) different definitions, i.e. KEGG 

pathways contain partially different set of genes from corresponding GO processes. 

While KEGG pathways tend to cover the whole haemostatic signal transmission systems 

even cross multiple transcriptional cycles, GO usually covers one or multiple discrete 

steps or functional groups for a process. KEGG and GO definitions can be considered 

complementary and both provide valuable gene sets for our analysis. (2) GAGE [18] 

treats KEGG pathways and GO term gene sets differently: genes under a GO term are 

taken as a group coregulated towards a single direction, either all up or all down 

regulated, whereas genes in a KEGG pathway are frequently not coregulated and 

expression changes in both directions are counted. Timing discrepancies exist between 

experimental sets and corresponding KEGG pathways. For example, IFN positive target 

sets (only IFN beta shown) are not significant at 24-96 hours and MYB target set not at 

96 hours (Figure 4.7) while Jak-STAT pathway and Wnt signaling pathway are 

significantly perturbed all the time (Figure 4.2). This can be explained by the fact that 

two-directional perturbation treatment for KEGG pathway does not account for direction 

or net effect of the perturbation, whether inhibited, activated or no overall effect. In the 

other hand, GO term analysis has no such issue, and IRS negative set and corresponding 

GO IGF receptor binding group are both significant all the time. 
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In this work, we not only took a systems approach in studying MSC differentiation, but 

also followed a systems biology research procedure: rational experimental design, 

whole-system or genome-wide expression profiling, high throughput data process and 

analysis, results interpretation and experimental validation at pathway and system level. 

This study combines experimental and computational work to synthesize a unified picture 

of BMP6 signaling. Because the methods in this paper are generally applicable, the same 

set of experimental design and computational approach could be used to study other 

physiological and pathological processes, including cell differentiation of other cell types 

and tumorogeneis for example. 

4.4 Methods 

4.4.1 Cell culture and BMP6 osteogenic induction 

Passage 5 human MSC (5×105) were plated in 24-well dishes and cultured for 3 days. 

The cells were subsequently placed in serum free media supplemented with ITS for 24 

hours. BMP was then added for the pre-designed time periods and then removed. To 

remove BMP6, cells were rinsed 2 times and fresh media without BMP was added. 

Ascorbate and b-glycerolphosphate were added 4 days after the initiation of BMP 

treatment. Cells were harvested 14 days after the initiation of BMP treatment. To 

quantifying mineralization, the plates were stained with Alizarin Red S [5]. 

4.4.2 Microarray experiment and analysis 

Human MSC cells underwent osteogenic induction with BMP6 treatment for 0 hours, 8 

hours, 24 hours, and 96 hours, which correspond to four phenotypic groups, i.e. control, 

preosteoblast (no mineralization), (sub-maximal) mineralization, and maximal 

mineralization at 14 days after the initiation of BMP treatment (18 days in total). Cells 

were harvested at 8 hours, 24 hours, 96 hours and 10 days for microarray profiling using 

Affymetrix U133 plus Genechip® platform. The raw data (.CEL file) were processed by 

using RMA implemented in the Bioconductor Affy package [43] with up-to-date probe 
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set definition (.CDF file) based on Entrez Gene sequence, Hs133P_Hs_ENTREZG_8 

[44]. Annotation data were retrieved from the GAIQ website [39]. GAGE [18] was 

applied to infer the most differentially expressed pathways or gene sets between the 

BMP6 added or withdrawn samples under comparison at different time points (Figure 

4.1). Note that comparisons at 8, 24 and 96 hours were between two sample conditions, 

whereas comparison at 10 days was between the 24 and 96 hours BMP6 groups versus 0 

and 8 hours BMP6 groups. 

4.4.3 Notch signal inhibition experiment 

Human MSC were treated with a gamma secretase inhibitor (GSI, L-685458) to 

antagonize Notch signaling. The cells were treated with BMP for 4 days or untreated 

(control). GSI was added for the first 4 days of induction, for 8 days, or for 12 days. The 

cells were harvested and stained at 16 days after the initiation of BMP treatment. 

4.4.4 Pathway analysis using GAGE 

We use GAGE [18], Generally Applicable Gene set Enrichment, a novel method we 

developed for gene set/pathway analysis. GAGE procedure has been described in detail 

in the original paper [18]. Here is the brief procedure. 

Step 1 Gene sets separation. Gene sets are derived or collected from KEGG pathways 

[25], GO [52] and MSigDB [53] databases, as KEGG pathways, GO terms and 

experimental sets respectively. GAGE treats KEGG pathways differently from GO terms 

and experimental sets: member genes for a GO term or experimental set are taken as a 

group coregulated towards a single direction, either all up or all down regulated, whereas 

genes in a KEGG pathway are frequently not coregulated and expression changes in both 

directions are counted. 

Step 2 One-on-one comparison. Instead of comparing BMP6 treated samples vs controls 

as two groups, GAGE does one-on-one comparison between samples from the two 

groups at a time. For each one-on-one comparison, log based fold changes are calculated 

for all genes. GAGE conducts two-sample t-test on the average fold change in specific 
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gene sets against that for the background whole set. Repeat such one-on-one comparison 

procedure for all potential experiment-control pairs. 

Step 3 Summarization. For each gene set, GAGE derives a global P value based on a 

meta test on the negative log sum of multiple P-values for this set from all one-on-one 

comparisons between experiments and controls. 

4.4.5 Perturbation pattern visualization 

For significant KEGG pathways, we generated graphs to visualize the dynamic 

expression perturbation at two levels: individual genes (Figure 4.3, animation not shown) 

and whole pathways (Figure 4.4). Gene expression level fold changes are standardized 

over the standard deviation of fold changes for all genes. The standardized fold changes 

for individual genes in KEGG pathways are visualized by using KEGGanim web tool [24] 

in Figure 4.3 (animation not shown). We present an integrated network to show the 

connections between pathways and average expression perturbations for them in Figure 

4.4. Significant KEGG pathways or closely related other pathways connected to them are 

presented by nodes. Connections between these pathways collected from KEGG 

database/graphs [25] are represented by arrows plus edges. The mean t-statistics from 

two-sample t-test from multiple one-on-one comparisons are plotted in pseudo heat color 

as average perturbation magnitude for significant KEGG pathways. 
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Chapter V  

Conclusions and future work 

This work focuses on gene regulatory network reconstruction and pathway inference 

from High Throughput Biological Data. The data we used are high throughput mRNA 

expression data. But the methods are generally applicable to other types of quantitative 

biological data, for instance protein expression data, or even non-biological data. 

In chapter 2, I developed a new GRN reconstruction strategy, MI3 that addresses three 

major issues simultaneously: (1) to handle continuous variables, (2) to detect high order 

relationships, (3) to differentiate causal vs. confounding relationships. MI3 consistently 

and significantly outperformed frequently used control methods and faithfully capture 

mechanistic relationships from gene expression data. I used MI3 to infer a regulatory 

network centered at the MYC transcription factor from a published microarray dataset. 

This MYC centered GRN not only include MYC target genes but also corresponding 

MYC cofactors. This network reveals that MYC regulates the transcription of a large 

number of target genes through limited number of mechanisms, which detail agrees with 

experimental evidences from literature. This is the first time any comparably complex 

and realistic gene regulatory network is constructed on mammalian systems from 

microarray data alone.  

In this work, I only applied MI3 to learn static GRNs. When we have time series data, the 

exact same method can learn dynamic GRN the same way as dynamic Bayesian network. 

The high order mutual information framework resented here is generally applicable, 

although I have only described and used three-way mutual information. The same set of 
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strategies can be used to model arbitrarily high order relationships given enough data. 

In chapter 3, I present another novel method GAGE for pathway inference. GAGE is 

generally applicable to gene expression data sets with different sample sizes and 

experimental designs. GAGE consistently outperformed two most frequently used GSA 

methods and inferred statistically and biologically more relevant regulatory pathways. 

GAGE reveals novel and relevant regulatory mechanisms from both published and 

previously unpublished microarray studies. From two published lung cancer data sets, 

GAGE derived a more cohesive and predictive mechanistic scheme underlying lung 

cancer progress and metastasis. For a previously unpublished BMP6 study, GAGE 

predicted novel yet biologically plausible regulatory mechanisms for BMP6 induced 

osteoblast differentiation. 

One major strategy employed by GAGE is differential treatment of different types of 

gene sets, i.e. allows expression perturbation towards both directions in a canonical 

pathway yet only in one direction in a experimental sets. Further improvement can be 

made by special treatment of canonical pathways or functional groups. For instance, 

genes can be assign different weights based on their roles and positions in a pathway, 

high weight for hubs genes or genes with critical and indispensable roles, low weight to 

less important or redundant genes. Similarly, other pathway specific information like 

network topology can also be accounted for in gene set analysis. 

Pathway inference methods can be improved by adopting ideas from GRN reconstruction, 

since GRN reconstruction and pathway inference are two related problems (detailed in 

Chapter 1). While topology is the major focus of network reconstruction, pathway 

inference commonly does not consider the pathway or network topology (Figure 1.3c). It 

has been proposed that topology and other pathway specific information would enable 

more sensitive and specific pathway inference. Pathway inference commonly identifies 

pathways differentially expressed between two discrete phenotypes. In GRN 

reconstruction, genes are treated as continuous or multi-state discrete variables. Similar 
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procedures dealing with continuous or multiple phenotypes would make pathway 

inference more generally applicable and more powerful. Feature selection takes features 

(either genes or pathways) as independent variables. GRN suggests that it is frequently an 

oversimplified assumption, since individual regulators may have very low dependency 

with the target yet the whole regulator set together predict the target very well. Similarly, 

procedures without this independent assumption would capture more realistic high order 

interaction or the combinatory effects between features, hence allow identifying the real 

causal genes or pathways more efficiently.  

In chapter 4, I present the first high throughput microarray study on BMP6 induced 

transcriptional program in human MSC. It covers the whole process from early to late 

stage osteoblast differentiation and mineralization. I conducted a comprehensive pathway 

inference using GAGE method to identify relevant regulatory mechanisms and functional 

groups. I inferred a series of significant KEGG pathways, GO terms and experimental 

sets at different stages of BMP6 induction process. I not only showed which pathways or 

gene sets are significant, but also when and how they are involved in the osteoblast 

differentiation and mineralization. Different from common pathway analyses, our work 

further captures the interconnections among individual pathways or functional groups and 

integrate them into a whole system. Taken together, this work provides clearer 

mechanistic picture of osteoblast differentiation and function. I followed a systems 

biology study procedure in this work: rational experimental design, whole-system or 

genome-wide expression profiling, high throughput data process and analysis, results 

interpretation and experimental validation at pathway and system level, and further high 

throughput experiment and analysis design. This study combines experimental and 

computational work seamlessly and reaches novel and robust conclusions. 

To better define the transcriptional programs involved in BMP6 induced osteoblast 

differentiation and mineralization, we can expand the microarray dataset with more time 

points and shorter intervals. More time points with smaller interval at early stage (<8 
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hours) can tell the temporal order of the KEGG pathways directly in greater detail. More 

time points not only allow better timing of predefined pathways/gene sets, but also better 

differentiate waves of undefined transcriptional program with individual genes. We may 

better define the phenotypic stages from MSC to fully mature osteoblast, identify novel 

and informative marker genes or transcriptional events. With more time points, we may 

also compare the transcriptional programs triggered by BMP6 to those by BMP2 along 

temporal axis, which would allow us to trace the specificities of different osteogenic 

BMPs. 

In this work, I apply GAGE to an unevenly distributed short time series (a few time 

points) dataset for a temporal pathway inference. The success in such demanding analysis 

highlights two advantages of GAGE: (1) applicable to time series datasets with small 

sample size at each time point or condition. (2) both sensitive and selective to capture 

subtle yet real regulatory signals over time. GAGE was not designed for time series data 

analysis but rather applicable for robust two-state comparison at each time slice due to 

these two advantages. For evenly distributed time-series data, GAGE can be revised to 

test whether gene sets are significantly correlated with the phenotype, which is taken as a 

continuously changing variable similar to the gene expression levels then (unlike the 

discrete phenotype in Table 1.1). To our knowledge, there is no method dedicated to such 

time series pathway inference, nor method for pathway inference other than GAGE 

sharing above-mentioned two advantages. 

With adequate evenly distributed time-series data, other advanced statistical learning such 

as time series analysis and dynamic mutual information networks or dynamic Bayesian 

networks would be plausible too, either for GRN reconstruction or temporal pathway 

inference when phenotype is taken as a continuous node. 
 


