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ABSTRACT 
 
 
Vesicle exocytosis involves number of essential protein families that cooperatively mediate 

physical attachment between the vesicle and the plasma membrane, including Rab GTPases, 

Sec1/Munc18 proteins, and SNARE proteins. We have examined two specific molecules in the 

regulated exocytotic pathway, Munc18c and Rab27a, at sites of SNARE-mediated vesicle fusion 

in tissues integral to the controlled maintenance of blood glucose, adipocytes and pancreatic β-

cells.  We have hypothesized that Munc18c regulates the progression of GLUT4 storage vesicle 

(GSV) trafficking and fusion via the insulin-induced alteration of its binding to the t-SNARE 

syntaxin4.  Our results indicate that Munc18c interaction with a conformationally folded 

syntaxin4 acts as a negative regulator GSV docking.   By comparison, syntaxin4 mutants that 

promote a SNARE complex-forming conformation demonstrate a shift in the state of Munc18c 

interaction that is sufficient for GSV docking, and is likely to mimic insulin activation of GSV 

trafficking, resulting in increased GLUT4 at the plasma membrane.  Upstream of SM proteins, 

Rab GTPases and their effector proteins assist with the transport to and docking of vesicles at the 

plasma membrane, where they are believed to interact directly with the Munc18/syntaxin 

complex.  We focused on identifying sites of Rab27a action in the insulin secretory pathways 

using membrane capacitance measurements of pancreatic β-cells isolated from Rab27a-null 

(ashen) mice.  We demonstrate that Rab27a exerts dual roles in insulin granule exocytosis, 

facilitating the glucose-induced refilling of releasable granule pools while also limiting release 

from these pools.  In summary, the investigations of this dissertation support a role for Munc18c 

and Rab27a in controlling both the timing and magnitude of vesicle docking and priming (i.e., 

SNARE complex formation) at the plasma membrane, thereby acting as crucial regulators in the 

regulated exocytotic pathways in glucose regulatory tissues.    
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CHAPTER I 

 

BACKGROUND 

 

Introduction 

‘If you love me, don't feed me junk food.’   ~ children’s t-shirt slogan 

The global burden of diabetes 

Underlying diabetes mellitus is an insufficiency of the hormone insulin.  Insulin is 

essential for growth and tissue development, and relevant to diabetes, the maintenance of whole 

body glucose homeostasis.  After a meal, glucose and amino acids stimulate insulin secretion 

from β-cells in the pancreatic islets of Langerhans.  At several tissues, insulin then promotes the 

synthesis and storage of carbohydrates, lipids and proteins while concurrently inhibiting their 

degradation and return into circulation.  For example, hepatic glucose output is reduced via 

reduced gluconeogenesis and glycogenolysis, and glucose uptake is increased, primarily at 

striated muscle and adipose tissue.  In type 1 diabetes mellitus, reduced insulin secretion results 

from the destruction of β-cells owing to immune system dysregulation.  Comparatively, in type 2 

diabetes mellitus the relative insulin deficiency is due to (1) an insensitivity of peripheral tissues 

to the hormone combined with (2) dramatically reduced insulin secretion from pancreatic β-cells.  

95% of diabetics have type 2 diabetes.  Currently, the treatment strategies encompass lifestyle 

alterations (principally diet and exercise) and frequently administration of pharmacologic agents 
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(e.g., hypoglycemic sulphonylureas, metformin, etc.) or exogenous insulin, although alternative 

interventions including cell therapies are being pursued. 

Currently, the American Diabetes Association estimates that 20.8 million Americans 

have diabetes (defined as >125 mg/dl fasting blood glucose) and an additional 54 million have 

pre-diabetic sugar levels (100-125 mg/dl).  Globally, data collected by the World Health 

Organization (WHO) and the United Nations indicates that diabetes is most prevalent in India, 

China, and the United States.  Particularly disturbing is the prevalence of diabetes in the U.S. 

(6.9%) considering the population (300 million) is roughly 23% that of China (1.31 billion), 

which harbored 16 million diabetics when the survey was completed in 1998.  A 42% increase in 

type 2 diabetes is predicted in the United States and other industrialized countries by 2025, and 

projections are even worse in countries WHO statisticians termed ‘developing’ (non-

industrialized), which are expected to see an average 170% increase per capita (King et al. 1998).  

The specific cultural or environmental factors that have triggered this recent precipitous increase 

in the prevalence of type 2 diabetes remains unclear.   

For the individual, the impact of a diabetes diagnosis has substantial social and lifestyle 

implications including the planning and timing of meals, frequent self-measurement of blood 

glucose, the administration of insulin or oral medications, adjustments and precautions for 

physical activity, and avoidance of short term complications such as hypoglycemic episodes.  A 

major goal of this thesis and an important step in addressing and eventually treating type 2 

diabetes is to develop a better understanding of the cellular and molecular underpinnings of 

processes that underlie the control of blood glucose.  As more information becomes available 

about these pathways, medicine will be better equipped to deal with the impending diabetes 

epidemic.  More broadly, information gleaned from this thesis may also assist in the development 

of treatments for the multitude of other diseases, particularly those affecting neuroendocrine cells 

that are manifested by dysfunction of membrane trafficking pathways.    

The role of membrane trafficking in glucose homeostasis 
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Membrane trafficking, in general, is an essential feature of all eukaryotic cells.  Cargo 

molecules, either membrane bound or soluble, are carried by specific classes of membrane 

delimited granules or vesicles.  The vesicles that undergo transport and fusion with the plasma 

membrane, exocytosis, must go through at least four basic processes:  translocation of vesicles to 

the plasma membrane along the cytoskeletal network; tight docking, the physical attachment to 

the plasma membrane; priming of the granules to allow assembly of exocytotic machinery; and, 

finally, fusion of the granule membrane with the plasma membrane. 

Exocytotic pathways can be categorized as either constitutive or regulated, the latter of 

which allows cells to temporally control vesicle release.  The most common mechanism of 

regulated secretion for release of neurotransmitters or hormones is Ca2+-triggered exocytosis.  

This form of membrane fusion is engineered specifically for high-speed execution, with fusion 

following Ca2+ entry by only milliseconds (Schneggenburger and Neher 2000).  In this 

dissertation, Ca2+-triggered exocytosis is examined in pancreatic β-cells, which releases the 

hypoglycemic hormone insulin in response to glucose and other physiologic stimuli.  This process 

is dysfunctional in the diabetic state when β-cells decompensate and lose their capacity to secrete 

insulin.  In addition to cell-to-cell communication, the secretory pathway allows for transport of 

membrane and membrane proteins to the cell surface, which in some cases relies on second 

messengers other than Ca2+ to trigger vesicle movement and membrane fusion.  This case is 

examined here in adipocytes, which control blood sugar in response to insulin through the cell-

surface presentation of the glucose transporter GLUT4 (Slc2a4) when triggered by the insulin 

signaling cascade, independently of intracellular Ca2+ levels.  Thus, this thesis links these two key 

systems of blood glucose regulation, pancreatic β-cells and adipocytes, through the study of 

protein families critical to the physical attachment and fusion of vesicles to the plasma membrane 

in the regulated exocytotic pathways.   
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Vesicle trafficking involves a number of essential protein families that cooperate to 

provide attachment (tethering and docking) between the vesicle and the plasma membrane.  

Among these, Rab GTPases, Sec1/Munc18 (SM) proteins, and soluble N-ethylmaleimide-

sensitive receptor (SNARE) proteins represent gene families that cooperatively mediate the final 

stages of the exocytotic pathway.  Rab GTPases become localized to specific organelles when 

activated by GTP-binding, regulate vesicle transport along the cytoskeleton, as well as mediate 

vesicle tethering and docking through interaction with specific effector complexes (Fukuda 2005; 

Pfeffer 2007).  Sec1/Munc18 proteins are believed to be Rab effector molecules that have dual 

roles in both docking and fusion, due to direct binding of SNARE proteins (Toonen and Verhage 

2003).  Ultimately, SNARE proteins anchored to both vesicles and their target membranes form 

the molecular machine responsible for generating the forces necessary for fusion (Chen and 

Scheller 2001; Jahn and Scheller 2006).   

The over-arching hypothesis of this dissertation is that molecular docking and priming of 

vesicles is strongly regulated by two specific molecules in the exocytotic pathway, Rab27 and 

Munc18, at sites of SNARE-mediated fusion.  The experiments of this dissertation demonstrate 

that both molecules work in concert to exert spatial and temporal control over membrane fusion 

reactions.  Below I introduce the fusion processes carried out by the SNARE proteins in 

adipocytes and identify their potential sites of regulation.  The evidence for the necessity of 

Munc18 as a syntaxin chaperone to define specific sites of exocytosis is discussed.  Subsequently, 

the potential for Munc18 family members to exert inhibitory and potentiating actions on vesicle 

docking and priming is outlined across cell types, and the actions of Munc18c are then addressed 

specifically within the context of the adipocyte.  The second half of this chapter reviews the 

literature supporting an important role of Rab27a GTPase for glucose-stimulated insulin secretion 

from pancreatic β-cells.  Finally, evidence is presented for the specific hypothesis that Rab27a 

acts to finely adjust the number of vesicles that are docked and appear in a primed and release-

competent state at the plasma membrane.  
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Regulation of glucose uptake by adipocytes 

The molecular basis of insulin resistance 

 A decline in glucose uptake by peripheral tissues (i.e., muscle and fat) is a known pre-

diabetic condition, which only worsens with onset of type 2 diabetes.  At the simplest level, it 

results from the failure of insulin to properly stimulate the surface presentation of the facilitative 

glucose transporter GLUT4 (Zierath et al. 1996; King et al. 1998).  The first theory behind this 

‘insulin resistance’ postulated that insulin receptors (IR) themselves were down-regulated, 

resulting in immediate termination of the hormonal signal.  However, based on individuals with 

IR mutations it was soon realized that the loss of insulin-dependent stimulus-secretion coupling 

arises primarily from defects in intracellular signaling events downstream of insulin receptors 

(Pessin and Saltiel 2000).  Consistently, tissue-specific deletion of the IRs in either muscle or fat 

(MIRKO and FIRKO mice, respectively) results in mild insulin resistance, whereas severe 

diabetes ensues upon deletion of GLUT4 in the same tissues (reviewed in (Huang and Czech 

2007).  These findings prompted a detailed analysis of signal transduction pathways in these 

tissues.  This is a difficult task, as IR signaling through its tyrosine kinase activity quickly 

diverges to accomplish numerous tasks.  These include cell growth and differentiation, 

activation/repression of transcription, and importantly to this work, stimulation of 

kinases/phosphatases that regulate the trafficking of vesicles containing GLUT4 to the membrane 

upon insulin stimulation (Saltiel and Pessin 2002).    

Insulin regulation of GLUT4 compartmentalization and cycling 
 

 Changes in the location of GLUT4 determine the rate of glucose uptake in adipocytes and 

muscle.  Pathways of continuous cycling within an intramembrane system keep GLUT4 

sequestered in the absence of insulin.  Upon synthesis, GLUT4 is membrane anchored via 12 

transmembrane domains.  Following this process, GLUT4 exits from the trans-Golgi network into 

a pool of insulin-responsive GLUT4 storage vesicles (GSVs).  This newly synthesized GLUT4 is 

joined by ‘old’ GLUT4 contained in membrane contributed from the endosomal-recycling 
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compartment.  Flux from both pathways is increased in response to insulin.  Insulin stimulation 

increases GLUT4 at the PM ~20-fold in rat adipocytes, ~2-3 fold in human adipocytes, and ~10-

fold in 3T3L1 adipocytes, a widely used cell line derived from mouse embryonic fibroblasts 

(Ishiki and Klip 2005).  Insulin is also capable of simultaneously slowing the endocytosis of 

GLUT4 on the plasma membrane (PM).  Upon exit from the PM, GLUT4 enters sorting 

endosome/early endosome membranes.  There the pathway diverges.  Most GLUT4 is recycled 

into the endosomal membrane-recycling compartment where it can be returned to the PM.   In a 

second pathway, GLUT4 enters the late endosome, and is either recycled back through the trans-

Golgi network or is degraded by lysosomes.  

The use of total internal reflection (TIRF) microscopy to follow GLUT4-GFP 

localization has recently been used to study events within 100-250 nm of the adipocytes plasma 

membrane, revealing a previously undiscovered insulin-regulated step proximally to GSV fusion.  

Overall, insulin is found to stimulate a 2- to 3-fold increase in GLUT4 in the TIRF zone within a 

10-20 min period (Tengholm and Meyer 2002; Gonzalez and McGraw 2006).  This population 

includes vesicles moving along cytoskeletal tracks within the TIRF field, tethered/docked 

vesicles, and those that have accumulated in static clathrin coats during endocytosis (Bellve et al. 

2006; Huang and Czech 2007).  In studies of single GSV exocytosis, insulin stimulation was 

shown to result in a 4-fold increase in the frequency of vesicle fusion and significant shortening 

of the duration of vesicle tethering/docking prior to fusion (Bai et al. 2007; Huang et al. 2007).  

Of significant importance will be the correlation of these insulin-stimulated events (i.e., GSV 

translocation, docking, and fusion) with the actions of specific proteins.    

Stimulus-secretion coupling in the adipocyte 

 As shown in Figure 1.1, insulin binds a receptor tyrosine kinase on the extracellular alpha 

subunits of an α2β2 heterotetrameric complex.  The β-subunits contain tyrosine kinase activity, 

and the two subunits phosphorylate each other, allowing proximal effectors including four insulin 

receptor substrate (IRS 1/2/3/4) proteins to bind.  Phosphorylation of IRS proteins then creates a 
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binding site for Src homology 2 (SH2) domain proteins.  Most importantly for glucose uptake is 

the binding of type 1A phosphatidylinositol-3-kinase (PI3K).  Interestingly, homozygous deletion 

of IRS1 protein, which couples to PI3K, induces mild insulin resistance but not diabetes, 

probably because of β-cell compensation (Araki et al. 1994; Tamemoto et al. 1994).  However, 

inhibition of PI3K activity by a variety of pharmacologic inhibitors, interfering antibodies, and 

dominant-interfering mutants (reviewed in (Cheatham et al. 1994; Okada et al. 1994; Czech and 

Corvera 1999)) have clearly demonstrated that PI3K is the only enzyme that is absolutely 

essential to insulin-stimulated glucose uptake and GLUT4 surface presentation.  

 PI3K catalyzes the conversion of phosphatidylinositol-4,5-bisphostphate (PIP2) into 

phosphatidylinositol-3,4,5-bisphostphate (PIP3).  However, PIP3 is unable to mimic insulin 

stimulation in stimulating glucose uptake, which has been taken to mean that PI3K by itself is not 

a sufficient signal (Jiang et al. 1998).  Subsequently,  knockdown studies have suggested an 

alternative pathway involving activation of the small GTPase TC10 by CAP is required (Chiang 

et al. 2001; Chang et al. 2006), although this hypothesis has been challenged by studies showing 

a lack of effect of RNAi experiments directed against these signaling intermediates (Mitra et al. 

2004; Zhou et al. 2004). Chang et al. (Chang et al. 2006) also showed that TC10 catalyzes GSV 

movement to the plasma membrane.  The physiologic relevance of this step has been questioned 

by numerous studies using TIRFM showing that GSVs pass into the evanescent field (i.e., within 

100 nm of the PM) regularly in the absence of insulin in 3T3L1 adipocytes (Gonzalez and 

McGraw 2006; Bai et al. 2007; Sano et al. 2007) and rat adipocytes (Lizunov et al. 2005).  

Collectively, however, there is near unanimous agreement that PI3K is a primary signal 

transduction pathway downstream of insulin in GSV targeting.    

 Downstream of PI3K, PIP3 activates phosphoinositide-dependent kinase 1 (PDK1). At 

the level of PDK1 the wortmannin-sensitive (PI3K-dependent) signaling cascade diverges (Figure 

1.1).  In one pathway, PI3K stimulates the activity of atypical protein kinase C (aPKC) isoforms 

(Bandyopadhyay et al. 2002; Sajan et al. 2006), although their downstream targets have not yet 
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been identified. In a second pathway, PI3K stimulates the activation and translocation of Akt2 to 

the PM.  In 3T3L1 adipocytes, the expression of a constitutively active membrane-delimited Akt2 

results in dramatically increased glucose uptake and persistent PM GLUT4 localization (Kohn et 

al. 1996; Kohn et al. 1998).  Consistently, a dominant negative Akt2 inhibits glucose uptake 

(Wang et al. 1999).  At the level of Akt2, the insulin-signaling cascade diverges again.  One 

important Akt2 substrate, AS160, has a Rab GTPase activating protein (GAP) domain that is 

required for its ability to regulate glucose uptake (Sano et al. 2003; Eguez et al. 2005; Larance et 

al. 2005; Miinea et al. 2005).  Akt2, through inhibition of AS160, is thereby able to activate one 

of the master regulators of membrane trafficking, vesicle-associated Rab10 (Sano et al. 2007).  

Importantly, knockdown of AS160 is sufficient to increase glucose uptake in the basal state 

(Eguez et al. 2005; Larance et al. 2005).  Subsequently, Gonzales et al. (Gonzalez and McGraw 

2006) demonstrated the necessity of Akt2 for a pre-fusion step that includes GSV recruitment 

and/or docking, but somewhat inconsistently with the AS160 knockdown studies (Eguez et al. 

2005; Larance et al. 2005), fusion was shown to be dependent on the activity of PI3K but 

independent of Akt2 (Gonzalez and McGraw 2006).  Further kinetic analysis again using TIRFM 

has shown that GSV docking, in particular, is regulated by PI3K/AS160 (Bai et al. 2007).  This 

step brings GSVs close enough the plasma membrane to be acted up by the SNARE fusion 

machinery and its regulatory molecules.  Another outcome of the kinetic analysis performed by 

Bai and colleagues (Bai et al. 2007) indicates that insulin dramatically accelerates a priming step 

after docking, thereby contributing to the ~6-fold increase in the frequency of fusion seen in the 

presence of insulin.  This result specifically implicates SNARE complex formation as a key 

molecular event for surface presentation of GLUT4, which is a central aspect of this dissertation. 

     

Vesicle Fusion Machinery:  SNARE proteins  

The SNARE hypothesis 
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Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs) 

are recognized as central to vesicle fusion events in all eukaryotes.  The superfamily has 25 

members in S. ceriviseae and 36 members in humans.  The adaptive advantage of this diversity is 

that SNARE proteins are directed to catalyze fusion in specific intracellular membrane 

compartments (reviewed in (Hay 2001)).  The first SNARE complex to be discovered comprised 

syntaxin1A (Bennett et al. 1992), SNAP25 (25 kDa synaptosome-associated protein) (Oyler et al. 

1989), and VAMP/synaptobrevin (Trimble et al. 1988; Baumert et al. 1989 ).  Each SNARE 

protein possesses a hallmark SNARE motif, a 60-70 amino acid sequence composed of 

evolutionarily conserved heptad repeat sequences that formed coiled-coil interactions (Figure 

1.2).  The ‘SNARE hypothesis’, in its original form, postulated that pre-assembled SNARE 

complexes at the sites of vesicle docking were acted on by the ATPase N-ethylmaleimide-

sensitive factor (NSF) and its cofactor α-SNAP (soluble NSF attachment protein) to drive 

membrane fusion (Sollner et al. 1993; Sollner et al. 1993).  Soon after, it was discovered that 

NSF and α-SNAP were not involved in fusion itself, but in SNARE complex disassembly (Mayer 

et al. 1996), and the hypothesis was altered to its present form, that assembly of SNARE core 

complexes is coincident with fusion events in the constitutive pathway of vesicle fusion.  Indeed, 

reconstitution of SNAREs into separate lipid bilayer vesicles (liposomes) is sufficient for 

membrane fusion (Weber et al. 1998), and requires the presence of SNARE transmembrane 

domains (Nichols et al. 1997; McNew et al. 1999).  A further advancement of the SNARE 

hypothesis came with ultrastructural analysis, using EM, which directly visualized the parallel 

alignment of neuronal SNAREs in the membrane from N- to C-termini (Hanson et al. 1997; Lin 

and Scheller 1997).  This finding subsequently led to the hypothesis that N- to C-terminal 

‘zippering’ of the SNARE motifs of these proteins provides the forces necessary to initiate 

vesicle-target membrane lipid mixing (Pobbati et al. 2006).       

SNARE structure and core complex formation 
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In isolated SNARE proteins, the α-helical SNARE domains remain unstructured.  

However, SNARE core complexes are characterized by four parallel intertwined α-helices, one 

from each SNARE motif (Figure 1.2).  The crystal structure has been solved for two SNARE core 

complexes, syntaxin1A/SNAP25/VAMP (Sutton et al. 1998) and an endosomal SNARE complex 

containing syntaxin 7, syntaxin 8, vti1b, and VAMP8/endobrevin (Antonin et al. 2002).  In the 

former, SNAP25 contributes two SNARE domains to the four-helix bundle, while each SNARE 

motif is present on a separate protein in the endosomal complex.   In this dissertation, the 

syntaxin4/SNAP23/VAMP2 complex is extensively studied in the plasma membrane docking and 

fusion of GLUT4 storage vesicles in adipocytes.  Comparatively, the 

syntaxin1A/SNAP25/VAMP2 is believed to catalyze the fusion of insulin granules in β-cells.  

The high stability of these ternary complexes is evidenced by a melting temperature of 90°C 

(Sollner et al. 1993; Hayashi et al. 1995; Fasshauer et al. 1997). The stability arises from 

interacting side chains that form 16 hydrophobic ‘layers’, excepting the 0-layer which contains a 

highly-conserved arginine or glutamine residue that classifies SNARES as Q- or R-SNAREs 

(Fasshauer et al. 1998).  Mutating amino acids in the center of this bundle impairs fusion 

(Fasshauer et al. 1998; Chen et al. 1999).   

 Regions outside the helical SNARE bundle are also of utmost importance for SNARE 

proteins to function.  Most SNARE proteins contain transmembrane domains at their C-terminal 

ends, which are separated from the SNARE motif by a short linker (Jahn and Scheller 2006).  

Upstream of the conserved SNARE motifs there are independently folded domains.  In SNAP23 

and SNAP25, for example, a loop region covalently connects the two SNARE coils.  While this 

loop region is not required for fusogenic activity (Parlati et al. 1999; Fukuda et al. 2000; Scales et 

al. 2000), it is likely that the cysteine-palmitolyation anchors permit high local concentrations of 

the two SNARE coils at the plasma membrane.  Some Q-SNAREs like syntaxin (Fernandez et al. 

1998; Misura et al. 2000; Misura et al. 2002; Dietrich et al. 2003) have an N-terminally folded 3-
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helix bundle, whereas others such as Ykt6 contain a profilin-like fold (a.k.a. longin domain) 

(Gonzalez et al. 2001).  These two motifs each possess an auto-inhibitory function, despite being 

structurally disparate (Tochio et al. 2001). 

The function of the syntaxin N-terminal helices varies significantly between syntaxins.  

In the exocytotic pathway syntaxin1A is thought to assume multiple conformations that determine 

its ability to form into SNARE complexes.  The autonomously folded N-terminal three helix 

bundle, termed the Habc domain, reversibly folds the SNARE motif (H3 domain) (Dulubova et 

al. 1999; Misura et al. 2000; Margittai et al. 2003).  These two motifs are separated by a short 

structured linker.  By itself, syntaxin1A in vitro rapidly fluctuates between a folded (closed) 

conformation and an unfolded (open) conformation every 0.8 ms (Margittai et al. 2003).  The 

open conformation facilitates SNARE-SNARE pairing, resulting from accessibility of the 

SNARE motif.  In the closed (SNARE-pairing inactive) conformation of syntaxin1A, the N-

terminal bundle competes with SNAP25 and VAMP2 for binding to the H3 SNARE motif.  

Hence, removing the N-terminal helices of syntaxin1A increases the rate of ternary complex 

formation between synthetic liposomes reconstituted with SNAP25 and VAMP2 (Parlati et al. 

1999), and between the yeast homologues Sso1p/syntaxin, Sec9p, and the vesicle SNARE Snc2p 

in solution (Nicholson et al. 1998).  Comparatively, syntaxins 5 and 18, which regulate 

intracellular transport events, do not fold (Dulubova et al. 2002; Yamaguchi et al. 2002; Bryant 

and James 2003).  In other cases, such as syntaxin4, no direct structural information currently 

exists.  

SNARE complex assembly and cycling 

 The assembly of the ternary SNARE complex is believed to begin when the N-terminal 

ends of the Q-SNARE motifs on the acceptor complexes (e.g., syntaxin1A and SNAP25) nucleate 

the formation of a three-helix complex (Fasshauer et al. 1997), which is joined by vesicle bound 

VAMP2 to nucleate a four-helix trans-complex (Sutton et al. 1998).  Fluorescence anisotropy 

studies suggest that a loose state, in which only the N-terminal ends of the SNARE complex are 
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‘zipped’ up, then proceeds to a tight state (zippering is mostly completed) (Pobbati et al. 2006).  

This may be the point at which SNARE complex assembly can be arrested by interaction with 

other regulatory proteins (e.g., complexin) without fusion occurring.  Alternative models suggest 

that no directionality is required for the electrostatic interactions of the SNARE bundles to 

associate, akin to a ‘Velcro’ strip (Durrieu et al. 2008).  Significant evidence indicates that 

SNARE complexes are intact as late as the final few milliseconds prior to Ca2+-stimulated fusion, 

based on their continued sensitivity to SNARE-cleaving Botulinum neurotoxins (Bruns and Jahn 

1995; Parsons et al. 1995).  In regulated exocytosis, these assembly transition states are 

kinetically controlled by late regulatory proteins such as complexins (small proteins that bind to 

the surface of SNARE complexes and hinder fusion) and synaptotagmin, which is activated by 

Ca2+ to trigger fusion (Tucker et al. 2004; Giraudo et al. 2006; Dai et al. 2007). After trans-

complexes are transformed into cis-complexes during fusion, the AAA+ ATPase N-

ethylmaleimide sensitive factor (NSF) together with α-SNAP (soluble NSF attachment protein) 

cofactors disassemble the complex (Whiteheart et al. 1994; DeBello et al. 1995).  A high 

constitutive activity of NSF constantly regenerates free (uncomplexed) SNAREs. 

The actual configuration of the SNARE machinery required for rapid, sub-millisecond 

fusion (Sabatini and Regehr 1996), remains controversial.  Primarily, the number of copies of 

SNARE complexes required for fusion is not precisely known.  Hua and Scheller (Hua and 

Scheller 2001) calculated that three SNARE complexes are required to fuse large dense-core 

vesicles in cracked PC12 cells, while Han and Jackson (Han et al. 2004) calculated that between 

5 and 8 transmembrane segments of syntaxin lining the fusion pore are required, and Keller and 

Neale (Keller and Neale 2001; Keller et al. 2004) estimated ~10-15 complexes in studies using 

Botulinum neurotoxins to cleave the SNAREs.  On a larger scale, it is also known that SNARE 

complexes cluster in cholesterol-dependent nanodomains, which are not evenly distributed in the 

membrane (Chamberlain et al. 2001; Lang et al. 2001; Predescu et al. 2005).  However, it is not 

clear that this clustering is a trademark of SNAREs in general; clustering may be a particular 
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feature of steroid-rich membranes.  Since secretory vesicles dock at SNARE clusters, the high 

local SNARE concentration may lead to more efficient fusion (Lang et al. 2001). 

  SNARE complex nucleation is a rate-limiting step in the SNARE cycle that is thought to 

be ordered.  Most data suggests that formation of a Q-SNARE complex (e.g., syntaxin4/SNAP23 

or syntaxin1A/SNAP25) likely precedes entry of the final R-SNARE domain (Fasshauer et al. 

1997; Nicholson et al. 1998; Fiebig et al. 1999; Fasshauer and Margittai 2004).  In vivo, both 

SNARE binding studies (Lang et al. 2002) and live cell imaging (An and Almers 2004) indirectly 

support the presence of Q-SNARE complexes.  In contrast, kinetic analyses of exocytosis in the 

presence of various SNARE motif combinations suggest that prior to fusion, VAMP2 and 

SNAP25 become associated before syntaxin1A binds (Chen et al. 2001).  A critical advancement 

to understanding SNARE complex formation will be direct evidence of ordered assembly.  

 SNARE complex nucleation is furthermore potentially the most highly regulated step in 

the SNARE complex assembly cycle, owing to SNARE-binding regulatory proteins that either 

inhibit or activate this process.   One group of enzymatic regulators is the protein kinases.  For 

example, potentiation of complex formation and exocytosis occurs in neuroendocrine cells via 

phosphorylation of SNAP25 by PKC (Nagy et al. 2002; Shu et al. 2008), PKA (Hepp et al. 

2002), and calcium/calmodulin-dependent protein kinase II (CaMKII) (Risinger and Bennett 

1999).  Syntaxin, meanwhile, is phosphorylated by casein kinase 2 (Hepp et al. 2002).  Apart 

from tonic regulators are molecules required for the SNARE assembly process.  Isoforms of the 

Munc13 family, for example, are essential priming factors that function by stabilizing the open 

conformation of syntaxin, and thus permitting SNARE complex nucleation (Augustin et al. 1999; 

Richmond et al. 1999; Brose et al. 2000; Richmond et al. 2001).  Consequently, both the size and 

release probability of readily-releasable vesicles are increased in neurons and β-cells 

overexpressing Munc13 (Rhee et al. 2002; Kwan et al. 2006). Apart from Munc13, the 

Sec1/Munc18 (SM) proteins are the only other family of SNARE binding partners found to be 
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essential for secretion.  The molecular basis of when and how SM proteins are believed to 

regulate SNARE assembly is discussed in detail in the next section.  

 

Vesicle Docking and Priming Machinery: Role of Munc18  

The Sec1/Munc18 (SM) protein family 

The first family member of the Sec1/Munc18 (SM) proteins, unc18, was isolated in a 

genetic screen of uncoordinated (unc) mutants in C. elegans (Brenner 1974).  Independently, the 

S. Ceriviseae homolog Sec1 was isolated through studies of a secretion-defective mutant strain 

(Novick and Schekman 1979).  The discovery of mammalian unc18 (Munc18) homologues 

followed, and seven vertebrate SM gene family members (Munc18a/b/c, Sly1, Vps45, Vps33a/b) 

have now been described.  The family is conserved throughout their ~600 aa, which fold three-

dimensionally into an arch-shaped molecule (Misura et al. 2000; Bracher and Weissenhorn 2001) 

(Figure 1.3).   

As discussed in the previous section, the formation of SNARE core complexes is 

sufficient for membrane fusion (Weber et al. 1998; Parlati et al. 1999).  However, SM proteins 

are the only family apart from the Munc13 family identified as essential to exocytosis.  In fact, 

deletion of Munc18a in the nervous system results in the complete loss of spontaneous and 

evoked secretion (Verhage et al. 2000).  This effect on exocytosis is greater than deletion of 

either SNARE protein SNAP25 or syntaxin1A (Schoch et al. 2001; Washbourne et al. 2002), 

perhaps as a result of partial redundant actions among compartmentalized SNAREs.  

Mechanistically, SM proteins affect membrane trafficking in distinct subcellular pathways, 

predominantly through their association with specific syntaxin Q-SNAREs (Toonen and Verhage 

2003).   

SM proteins and exocytosis 
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Historically, the first clues to understanding SM function in exocytosis stemmed from 

discovery of Munc18a as a syntaxin1A binding partner involved in regulated neuroexocytosis 

(Hata et al. 1993; Garcia et al. 1994; Pevsner et al. 1994).  As stated above, syntaxin1A fluctuates 

between closed and open conformations, and the closed conformation of syntaxin1A is stabilized 

by interaction with Munc18a (Dulubova et al. 1999; Misura et al. 2002).  Subsequently it was 

hypothesized that Munc18a directs syntaxin conformation, and more broadly, temporal control 

over secretion.   

Considering that SNARE complex formation is critical for membrane fusion, and 

exocytotic vertebrate SM proteins impair closed syntaxin interaction with other cognate SNAREs 

(Calakos et al. 1994; Liu et al. 2004; Medine et al. 2007), one might anticipate an overall 

negative role of SM proteins.  Although this hypothesis has been at the forefront for over a 

decade, it is difficult to reconcile with most structural, genetic data, and overexpression studies.  

Primarily, there is a lack of general correlation between SM function and a particular 

conformation of syntaxin.  The situation is further complicated because not all syntaxins assume 

folded conformations.  For instance, the SM proteins Sly1 and Vps45, which regulate trafficking 

of intracellular transport vesicles, bind to a conserved N-terminal domain found upstream of the 

Habc domain in their cognate syntaxins (Sly1 to syntaxins 5 and 18, and Vps45 to syntaxin16) 

(Dulubova et al. 2002; Yamaguchi et al. 2002; Bryant and James 2003).  This subset of SM 

proteins does not hinder the kinetics of SNARE pairings (Peng and Gallwitz 2002).  In fact, yeast 

Q-SNARE Tlg2p/syntaxin cannot form SNARE complexes in the cells lacking Vps45p (Bryant 

and James 2001).  Likewise, Vps33p is thought to prepare SNAREs for vacuole fusion (Collins et 

al. 2005).  Comparatively, the yeast Munc18 homologue Sec1p stimulates fusion through its 

interaction with the ternary SNARE complex, only binding weakly to monomeric Sso1p/syntaxin 

(Carr et al. 1999; Scott et al. 2004).  In mice and C. elegans, deletion of Munc18a leads to a 

complete block of neurotransmitter release, largely due to an absence of docked vesicles 

(Verhage et al. 2000; Weimer et al. 2003).  Furthermore, in most systems including chromaffin 
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cells (Voets et al. 2001; Graham et al. 2004) and PC-12 cells (Graham et al. 1997; Fisher et al. 

2001), overexpression of Munc18a has no deleterious effect on exocytosis, excepting a single 

report on the SM homolog Rop in Drosophila (Schulze et al. 1994).  Thus, the majority of studies 

indicate an activating or essential role for SM proteins.  One notable and surprising 

counterexample is Munc18c, whose functions have been touted as largely inhibitory.   

Munc18c and GLUT4 vesicle cycling 

As discussed above, upon activation of the insulin signaling cascade (Figure 1.1), 

GLUT4 storage vesicles (GSV) move to and fuse with the plasma membrane.  In the final stages 

of this process, Munc18c-syntaxin4 interactions are believed to exert a critically important role in 

the temporal control of insulin-stimulated GSV exocytosis in muscle and adipose tissue (Tellam 

et al. 1997; Tamori et al. 1998; Thurmond et al. 1998; Dugani and Klip 2005).  Of significant 

importance is that insulin signaling to Munc18c is disrupted in the diabetic state (James 2005; 

Kanda et al. 2005; Karlsson et al. 2006).   

Based on overexpression studies, Munc18c was initially proposed to function as a 

negative regulator of GLUT4 vesicle translocation in 3T3L1 adipocytes (Tellam et al. 1997; 

Thurmond et al. 1998).  Notably, the failure of the phosphatidylinositol-3-phosphate kinase 

(PI3K) inhibitor wortmannin to suppress GLUT4 externalization in adipocytes derived from 

Munc18c-null mice suggests that Munc18c specifically inhibits a priming and/or fusion step 

under the control of the PI3K pathway (Kanda et al. 2005).  Although the exact mechanism for 

this inhibition is not fully understood, Munc18c has been proposed to preclude the binding of 

syntaxin4 to its cognate SNAREs, vesicle-associated membrane protein 2 (VAMP2) and 

synaptosomal-associated protein of 23-kDa (SNAP23), preventing GLUT4 externalization in the 

absence of insulin (Araki et al. 1997; Tellam et al. 1997; Thurmond et al. 1998).  This 

interpretation would be consistent with the ability of its homologue Munc18a to inhibit the in 

vitro binding of syntaxin1A to VAMP2 and SNAP25, consistent with the closed conformation of 

syntaxin1A seen in the crystal structure with Munc18a (Figure 1.3) (Misura et al. 2000).  
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Therefore, by analogy, the most prevalent model for Munc18c regulation of SNARE complex 

formation equates the association of Munc18c and closed syntaxin4 to the inhibition of GLUT4 

transport vesicle externalization.  However, given the absence of fine structural information, a 

model of Munc18c control over syntaxin4/SNARE complex formation is not easily predicted by 

other SM-syntaxin interactions due to the diversity in their modes of action.   

 Recent evidence suggests that SM-syntaxin interactions regulating exocytosis at the 

plasma membrane may possess multiple binding and functional states.  Widberg and colleagues 

(Widberg et al. 2003) showed that Munc18c associates with the ternary SNARE complex in vitro.  

This finding seemed incongruous with other SM-syntaxin protein interactions until it was shown 

that Munc18c possesses an interaction site for the N-terminal amino acids of syntaxin4 

resembling the syntaxin binding sites on Sly1 and Vps45 (Figure 1.3) (Latham et al. 2006; Hu et 

al. 2007), which bind to open conformations of their cognate syntaxins (5 and 18) (Dulubova et 

al. 2002; Yamaguchi et al. 2002; Bryant and James 2003).  Subsequently, although Munc18a 

binding to the closed form of syntaxin1a has been extensively established, Munc18a has been 

very recently shown to also bind to SNARE complexes and facilitate SNARE-mediated fusion in 

vitro (Dulubova et al. 2007; Khvotchev et al. 2007; Shen et al. 2007). The basis of 

Munc18a/SNARE complex binding involves Munc18a utilizing both the N-terminus of 

syntaxin1A as well as interactions with the SNARE bundle (Dulubova et al. 2007; Khvotchev et 

al. 2007).  

 In spite of similar binding modes of Munc18a and Munc18c to syntaxins 1 and 4, genetic 

studies suggest that the mechanism of Munc18c action may be different than Munc18a.  For 

example, the insulin-induced fusion of GLUT4 vesicles was enhanced in adipocytes prepared 

from Munc18c-null mice (Kanda et al. 2005), while Munc18a deficiency was demonstrated to 

eliminate both evoked and spontaneous synaptic exocytosis (Verhage et al. 2000).  Additionally, 

insulin (Thurmond et al. 1998) as well as N-ethylmaleimide (NEM) (Widberg et al. 2003), which 

inhibits NSF-mediated SNARE core complex disassembly, have been reported to dissociate 
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Munc18c from syntaxin4.  Thus, the Munc18c-syntaxin4 interaction may be unique in negatively 

regulation of vesicle docking, priming, or fusion.  

Munc18c and vesicle docking 

 Of the several potential roles for Munc18c in GLUT4 vesicle cycling, the most 

convincing studies suggest that it may function as a link between the vesicle docking and fusion 

machinery through Rab proteins.  Indeed, genetic interactions between SM proteins and Rab 

proteins have been described in yeast (Toonen and Verhage 2003), suggesting that Rabs and SM 

proteins work in tandem.  For example, the yeast SM protein Sly1 is named as suppressor of loss 

of ypt1, the Rab homologue that functions in ER-to-Golgi vesicle trafficking (Peng and Gallwitz 

2002).  In fact, the blockage of vesicle fusion upon deletion of SM proteins is principally due to 

docking defects (Voets et al. 2001; Weimer et al. 2003; Korteweg et al. 2005).  Furthermore, in 

the exocytosis of synaptic vesicles in neurons, the enhanced docking seen by Rab3a 

overexpression does not occur in the absence of Munc18a (van Weering et al. 2007).  Thus, a 

relationship between SM proteins, Rab proteins, and vesicle docking is well supported in several 

cell types.  A critical question remaining is whether Munc18c likewise functions downstream of 

Rab proteins in GLUT4 vesicle docking processes. 

 The identity of critical Rab protein(s) involved in GLUT4 trafficking is/are still being 

elucidated.  Rab10 appears critical to the process, as overexpression of a Rab10 mutant defective 

in GTP hydrolysis increases basal surface GLUT4 while Rab10 knockdown inhibits the rate of 

exocytosis (Sano et al. 2007).  In the absence of insulin stimulation, Rab10 activation is inhibited 

by constitutive activity of the Rab GTPase activating protein (GAP) AS160.  Upon activation of 

the insulin signaling cascade, AS160 is inactivated via direct phosphorylation by PI3K/Ak2.  

Indeed, expression of dominant negative AS160 mutant that lacks Akt2 phosphorylation sites 

inhibits GLUT4 translocation (Sano et al. 2003; Karylowski et al. 2004), while RNAi of AS160 

increases basal levels of GLUT4 on the adipocyte surface (Eguez et al. 2005; Larance et al. 

2005).  Of interest, the phosphorylation of AS160 is impaired in the skeletal muscle of patients 
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with type 2 diabetes (Karlsson et al. 2006).  Since the functional activity of both Munc18c and 

AS160 are sensitive to the PI3K inhibitor wortmannin (Kanda et al. 2005), it is furthermore likely 

that they function in the same pathway.  The model that emerges is that Munc18c might link to 

Rab10 upon activation of the PI3K/Akt2 pathway, ultimately resulting in a conformational 

change in the Munc18c-syntaxin4 interaction which results in GLUT4 vesicle docking, priming, 

and fusion.   

Summary 
 

The experiments in Chapter II of this dissertation test the hypothesis that Munc18c exerts 

spatial and temporal control over GLUT4 vesicle docking and fusion.  Experiments are presented 

that examine the relevant molecular mechanisms.  This hypothesis arises, in part, from evidence 

that the N-terminal domain of syntaxin retards binding of syntaxin to other SNAREs, which is the 

rate-limiting step in SNARE complex formation.  Munc18, as a governor of syntaxin 

conformation, is therefore likely to have effects on the ability of vesicles to undergo priming and 

tightly dock with SNARE complexes.  Underlying this feature of SM proteins is their ability to 

confer specificity on membrane trafficking pathways by serving as high affinity syntaxin 

chaperones at the sites of fusion.   

As discussed above, increasing evidence is available that SM proteins are directly 

regulated by Rab GTPases.  The next section addresses how the kinetics of fast Ca2+-dependent 

secretion in pancreatic β-cells may be facilitated by the actions of Rab27a GTPase under 

conditions of stimulation and vesicle replenishment.  

 

Vesicle Docking and Priming Machinery: Role of Rab27a 

The small GTPase Rab27  

 The process of vesicle targeting includes all the steps necessary to deliver a newly formed 

transport vesicle to its target membrane.  Central to this process from start to finish are the Rab 
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family of small GTPases, which facilitate vesicle budding, transport, tethering, and docking 

through a plethora of effector molecules.  Evolutionarily, Rab proteins belong to the Ras-related 

superfamily of small monomeric GTPases.  More than 60 mammalian and 11 yeast Rab proteins 

have been identified, and are involved in intracellular fusion reactions of vesicles or organelles 

with their target membranes (Takai et al. 2001; Zerial and McBride 2001; Gurkan et al. 2005).   

 Two Rab27 isoforms, Rab27a and Rab27b, have been described, which share ~70% 

homology (Fukuda 2005).  While both of these molecules are located on secretory granules 

(Tolmachova et al. 2007), our interest was in the cellular function of insulin-secreting pancreatic 

β-cells, which contain Rab27a but lack Rab27b (Yi et al. 2002; Tolmachova et al. 2004; Tsuboi 

and Fukuda 2006).  Additionally, Rab27a is singularly involved in exocytosis cytotoxic T cells 

(Stinchcombe et al. 2001), histamine granule secretion in mast cells, as well as dense core ADP- 

and serotonin-granule secretion in platelets (Kondo et al. 2006).  Rab27a expression is also 

evident in the pigment epithelium and choriocapillaris of the retina (Futter et al. 2004).  Recently 

it has been shown that Rab27 is also involved in synaptic transmission in C. elegans (Mahoney et 

al. 2006).  Vesicular trafficking in each of these cell types is affected by Rab27a deficiency.  

Clinical manifestations of Rab27a deficiency 

 Our understanding of the function of Rab27a in the exocytosis pathway has been greatly 

accelerated by studies of human disease.  Mutations in the human Rab27A gene result in Griscelli 

syndrome (hemophagocytic syndrome), an often fatal disease which is characterized by pigment 

dilution of the hair (albinism) and uncontrolled T-lymphocyte and macrophage activation, 

resulting in immunodeficiency.  These symptoms are likely due to the dysregulation of membrane 

transport of melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes, 

respectively (Mancini et al. 1998; Stinchcombe et al. 2001; Aslan et al. 2006).  Less common are 

the phenotypically-related Rab27 disorders choroideremia and Hermansky-Pudlack syndrome, 

which result from Rab27-prenylation defects due to Rab escort protein and Rab 

geranylgeranyltransferase defects, respectively (Seabra et al. 2002). 

http://www.sysy.com/rab27b/rab27b_gen.html
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 Insights into the human conditions were largely facilitated by positional cloning studies 

identifying Rab27a-deficiency as the cause of vesicle secretion defects in the ashen mouse, a 

model of both Griscelli and Hermansky-Pudlack syndromes (Wilson et al. 2000).  The murine 

Rab27a gene, first isolated from a melanocyte library, has five exons, similar to human RAB27A.  

In ashen mice (Wilson et al. 2000; Kasai et al. 2005), a single A-to-T transversion in the splice 

donor site downstream of exon 4 results in a larger than normal transcript due to the insertion of 

235 or 252 base pairs of intron into the Rab27a message.  An in-frame stop codon in the intron 

sequence leads to the production of a non-functional protein lacking two critical domains of the 

GTP-binding pocket.  Genetic experiments using overexpressed GFP-Rab27a to rescue Rab27a 

deficiency subsequently revealed that Rab27a is expressed in a broad range of secretory cells, 

including ovarian cells, hematapoietic cells, and pancreatic β-cells, most of which undergo 

regulated exocytosis (Tolmachova et al. 2004).  Interestingly, Rab27a is functionally redundant 

with Rab27b (Barral et al. 2002), which can compensate for Rab27a-deficiency in cells where 

both are present (e.g., platelets) but not in tissues where only one isoform is present, resulting in 

the ashen phenotype (Barral et al. 2002; Tolmachova et al. 2007).   

Rab27a deficiency results in defective granule exocytosis 

Studies of ashen mice suggest that Rab27 has multiple functions in vesicle exocytosis.  

Particularly well characterized are the functions of Rab27a to transport and dock granules and 

vesicles to the PM.  For example, melanosomes were found clumped in peri-nuclear regions in 

ashen melanocytes, while re-expression of Rab27a restores melanosome trafficking to the 

dendrite tips (Wilson et al. 2000; Bahadoran et al. 2001; Hume et al. 2001).  The role of Rab27a 

was further clarified when melanosome movement by Myosin Va was shown to require Rab27a 

(Hume et al. 2001; Wu et al. 2002), through the Rab effector melanophilin (Nagashima et al. 

2002; Provance et al. 2002).  Likewise, ashen lytic granules do not reach the PM, dramatically 

reducing the cytotoxicity of T-lymphocytes (Stinchcombe et al. 2001).  
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Of significant interest to this work, a marked deficit in the replenishment of docked 

insulin granules at the plasma membrane during glucose stimulation was reported in pancreatic β-

cells of ashen mice (Kasai et al. 2005).  Consistently, ashen mice are glucose intolerant owing to 

defective glucose-stimulated insulin secretion (GSIS) (Kasai et al. 2005).  However, this docking 

defect alone cannot account for the reduced secretion, as EM shows that the number of granules 

docked/adjacent to the plasma membrane is similar in wildtype and ashen β-cells prior to 

stimulation (Kasai et al. 2005).  Kasai and colleagues (Kasai et al. 2005) furthermore 

demonstrated by TIRFM a reduced release of vesicles pre-docked on the plasma membrane.  

These results collectively suggest that in addition to defects in vesicle transport/docking, 

defective insulin granule priming may underlie the secretory defect in ashen β-cells.  This 

hypothesis can be rationalized after consideration of the numerous studies linking (1) Rab 

activation and (2) Rab27a-binding proteins to the vesicle priming reactions that govern SNARE 

complex formation in pancreatic β-cells.   

The Rab27 activation cycle in β-cells 

 In response to continued activation, Rab proteins are thought to cycle repeatedly through 

active and inactive states.  Like other GTPases, the activity of Rab27a is regulated by its 

GDP/GTP binding state, with Rab27a in its GTP state strongly facilitating and Rab27a-GDP 

potently inhibiting insulin secretion (Yi et al. 2002; Fukuda 2003).  In general, Rab proteins are 

inactive in the GDP bound state and active in the GTP bound state.  To maintain their inactive 

conformation, interaction of GDP-Rab with a Rab-specific GDP dissociation factor (Rab-GDI) 

maintains the complex in the cytosol by forming a 1:1 complex (Ullrich et al. 1993; Wu et al. 

1996; Takai et al. 2001; Alory and Balch 2003).  The Rab-GDI interaction masks the prenylation 

sites required for membrane anchoring and prevents unwanted association with lipids in non-

target membranes (Peter et al. 1992; Maltese et al. 1996).  In some signaling pathways, the 

activation of Rabs is facilitated by GDI displacement factors (GDFs), which catalyze the 
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dissociation of Rab proteins from GDI (Novick and Zerial 1997; Pfeffer 2001; Zerial and 

McBride 2001; Seabra et al. 2002).  This allows Rab escort protein (REP) to recruit GDP-Rab to 

Rab geranylgeranyltransferase (RabGGTase) resulting in the anchoring of one or two geranyl 

groups to C-terminal cysteines (Andres et al. 1993).  REP is additionally necessary to maintain 

the solubility of prenlyated Rab in aqueous solution (Wu et al. 2007).  Guanine exchange factors 

(GEFs) subsequently assist the replacement of GDP by GTP, while GTPase activating proteins 

(GAPs) complete the activity cycle, deactivating Rab27.  

In pancreatic β-cells, several properties governing its activity/cycling set Rab27a, and the 

four isoforms of Rab3 (a/b/c/d), apart from other Rab GTPases.  First, Rab3/27 isoforms function 

specifically in the secretory process and are localized to insulin granules (Tsuboi and Fukuda 

2006).  Second, is that GTP-Rab27a tends to remain active (~80%) due to a low intrinsic GTPase 

activity, until further catalyzed by GAPs (Becker et al. 1991; Kondo et al. 2006).  Rab3d, for 

example, is also ~80% in the GTP-bound form (Chen et al. 2003), while other Rab family 

members (e.g., Rab5) are mostly maintained in an inactive GDP-bound state (Barbieri et al. 

2000).  In fact, the larger Ras and Rho/Rac/CDC42 GTPase families are largely maintained in the 

inactive GDP-bound state (Takai et al. 2001).  Third, Rab3 and Rab27 were recently shown to be 

connected by a common GEF (termed Rab3GEP) (Figueiredo et al. 1997), which is active on at 

least the a/c/d isoforms of Rab3 (Fukui et al. 1997).  Likewise, the C. elegans homologue of 

Rab3GEP is AEX-3 is also active on both Rab3 and Rab27 (Iwasaki et al. 1997; Mahoney et al. 

2006).  Other Rab GEFs are more specific.  For example, Rabex-5 is specific for the Rab5 

subfamily (Horiuchi et al. 1997), and yeast Sec2p (the GEF) is specific for Sec4p GTPase 

(Walch-Solimena et al. 1997).  Predictions based on the human genome project indicate ~50 

putative Rab-GAPs (a.k.a. TBC proteins) are present, though only 6 have been characterized as 

accelerating the cycling of specific Rabs (Bernards 2003).  Among those characterized are a 

Rab3-specific GAP, termed Rab3 GAP (Fukui et al. 1997), and two putative Rab27a-specific 

GAPs (EPI64 and FLJ13130/Rab27a-GAPβ), which were isolated from melanosomes by 
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screening for molecules pulled down by the Rab27a effector Slac2a (Itoh and Fukuda 2006; Itoh 

et al. 2006).  Comparatively less is known about GDIs for Rab3/27.  In summary, these 

parameters favor the predominant association of Rab27a and Rab3 with granules and with their 

effector molecules.  And for Rab27a, cycling is believed to be initiated upon stimulation (Kondo 

et al. 2006), though the rate of cycling in vivo remains to be discovered.  

 The structural basis underlying nucleotide cycling has not yet become available for either 

Rab27 isoform, although x-ray diffraction information is available for other related Rab GTPases:  

Rab3a (Dumas et al. 1999; Ostermeier and Brunger 1999), P. falciparum Rab6 (Chattopadhyay et 

al. 2000; Chattopadhyay et al. 2000), yeast Ypt51p (Esters et al. 2000), and Sec4p (Sato et al. 

2007).  Shared with the Ras family is a structural fold consisting of a six strand β-sheet, 

comprising five parallel strands and one antiparallel strand, surrounded by five α-helices.  The 

structural elements responsible for Mg2+ and guanine nucleotide binding, and well as GTP 

hydrolysis, are located in five loops that connect the alpha helices and β-sheets.  The major 

nucleotide induced differences occur in two regions, denoted switch I and II, which are 

responsible for interaction with regulatory proteins such as GAPs and GEFs (Stenmark and 

Olkkonen 2001), and create a platform for effector proteins to bind specifically to GTP-Rab 

(Pfeffer 2005).  In turn, Rab effectors function to assist in vesicle transport, docking, and priming.  

Rab27 effectors in vesicle priming 

 In general, Rab27 effectors contain a common ~100 aa GTP-Rab27 binding domain, the 

synaptotagmin-like protein (Slp) homology domain (SHD).  The SHD domain is comprised of 

two helical domains termed SHD1 and SHD2, which are separated by two zinc-finger motifs 

(except in Slp1 and Slp2a, in which the SHD domains are directly linked) (Fukuda 2005).  These 

effectors are classified into three main groups:  Slp 1-5 and rabphilin contain two tandem 

calcium-binding C2 domains, which are absent in Slp-lacking C2 domains (Slac2)-a-c as well as 
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Noc2 (No C2), and the priming factor Munc13.  Through a subset of its effectors, most 

prominently Slp4a, Rab27a is linked to the SNARE fusion machinery.  

 A critical role for Slp4a (a.k.a. granuphilin) in the docking of large dense core vesicles 

has been identified in multiple neuroendocrine cell types.  For example, β-cells isolated from 

Slp4a-/Y mice (Gomi et al. 2005), as well as PC12 cells expressing Slp4aRNAi (Tsuboi and Fukuda 

2006), display a morphological docking defect (as shown by TIRFM and EM), and paradoxically, 

increased secretion.  Comparatively, Slp4a overexpression significantly increases the number of 

vesicles docked prior to stimulation, yet dramatically decreases the number of exocytotic events 

in PC12 cells as measured by TIRF microscopy (Tsuboi and Fukuda 2006).  Likewise, in Min6 β-

cells overexpressing Slp4a, insulin secretion stimulated by high K+ is reduced by about 50% 

(Torii et al. 2002).   Importantly, the inhibitory effects of Slp4a overexpression on secretion in 

either PC12 cells or Min6 β-cells appear to require Slp4a interaction with both Rab27a and the 

SM-syntaxin complex.  For example, these effects are eliminated by the point mutants Slp4aW118S 

(which eliminates binding to Rab27a) as well as Slp4aL43A (which maintains binding to Rab27a 

but eliminates binding of syntaxin1A) (Torii et al. 2002; Gomi et al. 2005).  Thus, interactions 

between Rab27a/Slp4a on the granule and Munc18/syntaxin on the plasma membrane act in 

concert to facilitate β-granule docking and secretion.   

Rab27a in β-cell stimulus-secretion coupling 

As first described in 1968 by Grodsky and colleagues (Curry et al. 1968), insulin 

secretion in response to physiologic stimuli such as glucose is typically biphasic and pulsatile, 

consisting of a transient (10 min) first stage followed by a sustained second phase.  The cellular 

underpinnings of this process have not been fully elucidated.  Depicted in Figure 1.4, the best 

characterized metabolic coupling event is the increase in ATP/ADP ratio induced by glucose 

metabolism, which promotes closure of the KATP-sensitive K+ channel (KATP).  This leads to 

membrane depolarization and opening of voltage-dependent Ca2+ channels (VDCC), with the 
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subsequent rise in [Ca2+]i being the critical second messenger that stimulates insulin secretion 

(Wollheim and Sharp 1981; Ashcroft et al. 1984; Hoenig and Sharp 1986).  Importantly, the 

initial phase (KATP-dependent pathway) does not appear to require access to metabolic energy 

sources and can be elicited in the absence of any nutrient by depolarization with high 

extracellular K+.  Second phase release, however, is only apparent in the presence of energy-

providing secretagogues.  It is induced by glucose via a mechanism distinct from closure of KATP 

channels and alterations in [Ca2+]i via VDCCs (Henquin et al. 1994).  This so-called KATP-

independent pathway was identified by treating β-cells with diazoxide to hold KATP channels open 

and high extracellular K+ to depolarize the membrane sufficiently to restore Ca2+ influx (Gembal 

et al. 1992; Sato et al. 1992).  Using this protocol, glucose does not increase [Ca2+]i to high levels 

yet insulin release is promoted (Gembal et al. 1993j; Straub et al. 1998).  The signaling molecules 

proposed to mediate second phase secretion include malonyl CoA (and other long chain acyl 

CoA) (Prentki 1996; Prentki and Corkey 1996), protein kinases (PKA, PKC, AMPK) (Nesher et 

al. 2002), and ATP/ADP (Henquin 2000).  Ultimately, the KATP-dependent and KATP-independent 

pathways converge to regulate the size of the readily-releasable pool (RRP) of docked and primed 

vesicles, thereby controlling the magnitude of insulin secretion.  Importantly, Rab27a has been 

shown to strongly enhance both the KATP-dependent and KATP-independent pathways of secretion 

(Fukuda 2005; Kasai et al. 2005). 

Since the Rab family of GTPases has a role in essentially all intracellular membrane 

trafficking, a general hypothesis of this dissertation is that Rab27a is a central effector upon 

which β-cell signaling pathways converge to regulate granule recruitment, priming, and 

exocytosis. Consistent with this idea are the basic deficiencies of glucose intolerance and reduced 

biphasic secretion seen in Rab27a-null ashen mice (Wilson et al. 2000; Kasai et al. 2005).  

Notably, the actions of Rab27a that underlie these deficiencies remain unclear.  Two potential 

sites of Rab27a action have been proposed.  First are the well-studied effects of Rab27a to 
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promote β-granule transport and tethering/docking to the PM.  Following vesicle 

tethering/docking are absolutely essential priming events that result in formation of SNARE 

complexes, although the effects of Rab27a on these latter processes have not been elucidated.  

Thus, a major goal of this dissertation was to elucidate the kinetic parameters of priming and 

exocytosis that are specifically altered by Rab27a deficiency.  Inherent in this objective is 

uncovering the nature of the undefined relationship between Rab27a activity and its ability to 

augment the size of specific vesicle pools of primed and release-competent granules:  the 

immediately-releasable and readily-releasable pools.  The following sections of this chapter detail 

the mechanisms in the β-cell that control vesicle pool size, as well as the cellular mechanisms that 

provide for vesicle replenishment under constant stimulation, as both are thought to be under 

Rab27a control.  

β-granule pool dynamics 

 The pancreatic β-cell contains 10,000-13,000 insulin secretory granules (Dean 1973; 

Olofsson et al. 2002), each of which contains between 150,000-280,000 molecules (1.4-2.5 fg) of 

insulin (Howell 1974).  The maturation of these vesicles occurs beginning with biogenesis and 

vesicle filling, followed by transport and physical attachment to the plasma membrane (tethering 

and docking).  A rapid secretory response to physiologic stimuli requires that a subset of vesicles 

is readily available for release (Figure 1.5).  Under continued glucose stimulation and depletion of 

this ‘readily-releasable’ pool (RRP), continuing exocytosis is supported by the recruitment of 

granules to the PM, and by priming of those vesicles already at the PM.  It has been hypothesized 

that priming is responsible for second phase secretion, as both are known to have dependence on 

time, temperature, energy (glucose and ATP), and Ca2+ (Straub and Sharp 2002).    

The ‘readily-releasable’ pool (RRP) 

 Release from the RRP occurs rapidly upon elevation of [Ca2+]i, and is readily apparent as 

an exocytotic burst stage in experiments that monitor release during prolonged stimulation 
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(Elmqvist and Quastel 1965).  When the number of vesicles present in the RRP, measured 

electrophysiologically, is compared with the number of docked vesicle using electron microscopy 

(EM), it is apparent that not all docked vesicles are release competent (Parsons et al. 1995; Steyer 

et al. 1997).  By EM, the density of granules in β-cells is highest near the plasma membrane, with 

an estimated 650 (7%) of granules morphologically docked and another 2000 within a granule 

diameter (300 nm) away from the plasma membrane.  The ~650 vesicles in direct contact with the 

plasma membrane could account for several hours of glucose-induced insulin secretion (Olofsson 

et al. 2002).  Yet, by capacitance measurements the RRP has been estimated as 40-50 granules 

(Eliasson et al. 1997).  Therefore, the number of granules in the RRP is only 6-8% of the total 

number of docked granules.  This finding has led to the hypothesis that vesicle translocation is 

not required for conversion of the reserve pool into a readily releasable state (Parsons et al. 1995).  

Instead, the additional maturation steps can be explained by the time- and energy-dependent 

chemical reactions of priming, during which SNARE complexes are formed and vesicles are 

prepared for fusion within milliseconds of a sufficient Ca2+ signal.  Thus, vesicles can exists in 

(1) undocked, (2) docked but unprimed, or (3) readily-releasable (docked and primed) states.   

The ‘immediately-releasable’ pool (IRP) 

 When membrane depolarization in applied, the fastest kinetic component of vesicle 

release comes from the immediately-releasable pool (IRP).  Several observations across multiple 

neuroendocrine cell types have led to the hypothesis that the IRP is a subset of the RRP that is 

located near Ca2+ channels.  Principally, in pancreatic β-cells, ~10% of readily releasable granules 

are found colocalized with ~500 α1C L-type Ca2+ channels (Gromada et al. 1997; Barg et al. 

2001; Barg et al. 2002).  Owing to this proximity to the Ca2+ stimulus the IRP is less sensitive to 

introduction of exogenous Ca2+ buffers than the slower phase representing RRP release, as 

demonstrated in adrenal chromaffin cells (Horrigan and Bookman 1994; Moser and Neher 1997) 

and neurons (Mennerick and Matthews 1996), in addition to pancreatic β-cells (Barg et al. 2001).  
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Furthermore, as no distinct kinetic component corresponding to the IRP has been identified in UV 

flash photolysis experiments where calcium is uncaged to >20 μM, it is likely that the fast IRP 

release kinetics in response to voltage depolarization is not due to intrinsically higher calcium 

sensitivity (Voets et al. 1999; Yang and Gillis 2004).   

The highly Ca2+-sensitive pool (HCSP) 

 Flash uncaging experiments using NP-EGTA/Ca2+ have revealed a population of vesicles 

with faster release kinetics than the RRP, termed the highly calcium-sensitive pool (HCSP).  

Because uncaging experiments elevate [Ca2+]i almost uniformly throughout the cytosol, vesicle 

proximity to Ca2+ channels is irrelevant, and the direct relationship between [Ca2+]i and 

exocytosis can be measured.  After its discovery in adrenal chromaffin cells (Yang and Gillis 

2004), the HCSP has been described in rat pancreatic β-cells (Wan et al. 2004) as well as the 

INS-1 insulin-secreting cell line (Yang and Gillis 2004).  In each cell type, the HCSP is released 

by low [Ca2+]i (<4 μM) in response to flash uncaging, as compared to the ~17 μM [Ca2+]i required 

to elicit half-maximal response from the RRP (Barg et al. 2001).   

 By all indications, the HCSP is a separate pool from the IRP, although both function in 

first phase insulin release.  The most definitive measure of their independence is that UV flash 

uncaging to low [Ca2+]i preceding membrane depolarization does not significantly decrease the 

size of the IRP (Yang et al. 2002), nor does brief membrane depolarization reduce the size of the 

HCSP (Wan et al. 2004).  This furthermore indicates that IRP vesicles located close to Ca2+ 

channels are not as highly Ca2+-sensitive as the HCSP.  Second, the HCSP is distinguished by 

responsiveness to activators of PKA and PKC, which likely affects its role in pool refilling.  For 

example, in rat pancreatic β-cells the HCSP was measured as ~20 fF (6-12 vesicles), yet was 

increased by 4-fold in response to PKC activation by phorbol-12-myristate-13-acetate (PMA), 

whereas the RRP was only moderately increased (Wan et al. 2004).  Forskolin, which increases 

cAMP production, increases the HCSP by an equivalent magnitude.  The effects of PKC and 
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cAMP on HCSP size are not additive, suggesting that their actions converge on the same 

molecular targets.  Glucose, however, has been shown to enhance the effects of PKA and PKC, 

affecting both the HCSP and the RRP (Yang and Gillis 2004).   

As a major focus of this dissertation, the insulin secretion defect in ashen mice was 

exploited to identify how the Rab27a GTPase found on insulin granules facilitate vesicle priming 

and replenishment under stimulation.  Despite considerable studies of Rab effectors discussed 

above, many of which could affect vesicle priming, no studies to date have reported on potential 

effects of Rab27a on priming.  Our hypothesis is that in addition to its well-characterized role in 

vesicle trafficking, Rab27a serves as a critically important Rab protein in regulating the terminal 

events of priming and vesicle exocytosis. 

Role of cAMP in insulin secretion 

 While intracellular calcium is the principal second messenger of glucose-stimulated 

insulin secretion, hormonal modulation of other second messengers modulate the magnitude of 

secretion.  cAMP is the most powerful potentiator of insulin secretion (Holst and Gromada 2004), 

via its contribution to both the initial size and the refilling of multiple vesicle pools (Gromada et 

al. 1998; Yang et al. 2002; Wan et al. 2004; Yang and Gillis 2004; Kwan and Gaisano 2005).  A 

rise in intracellular cAMP in pancreatic β-cells is mediated by incretins such as glucagon-like 

peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), which are secreted after 

meals from L and K cells, respectively (Meier et al. 2002; Drucker 2006) (Figure 1.6).  Both 

protein kinase A (PKA)-dependent and PKA-independent pathways have been discovered. Epac2 

(exchange protein directly activated by cAMP) (Ozaki et al. 2000) serves as a primary effector of 

the PKA-independent pathway.  It exerts effects on exocytosis via regulation of ion channel 

activity (KATP) (Kang et al. 2001; Shibasaki et al. 2004) and Ca2+ release from intracellular stores 

(Kang et al. 2001).  However, up to 80% of the effects of cAMP on exocytosis are through direct 

interaction with the secretory machinery (Ammala et al. 1993).  This effect is believed to arise in 

part via the actions of cAMP-Epac2, which serves as a GEF for the small GTPase Rab3a  (Holz et 
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al. 2006).  The conversion of Rab3a to its GTP-bound state then initiates its binding to the 

priming factors Rim2 and Munc13-1 (Fujimoto et al. 2002; Kwan et al. 2007).  This mechanism 

is influenced by PKA-dependent processes, owing to direct phosphorylation of Rim2 by PKA 

(Lonart et al. 2003).  However, since cAMP-Epac2 may be promiscuous in binding to other small 

GTPases localized on insulin granules (Shibasaki et al. 2007), it remains unclear whether 

additional Rab-dependent priming pathways are also involved, including those of Rab27a.   

The effects of cAMP to augment secretion are synergistic with those seen under 

conditions of elevated glucose (Wan et al. 2004; Yang and Gillis 2004), suggesting that glucose 

and cAMP act via separate pathways.  This synergism is capable of more than doubling both the 

HCSP and RRP in rat β-cells and INS-1 cells (Wan et al. 2004; Yang and Gillis 2004).  As 

discovered in ashen mice, Rab27a is required for both first- and second- phase GSIS (Kasai et al. 

2005).  An outstanding question is whether Rab27a also mediates increased β-granule pool size in 

response to elevated cAMP levels.   

Summary 

Secretory granules in pancreatic β-cells exhibit distinct states of competence to undergo 

secretion.  The size of each pool (i.e., RRP, IRP, HCSP) defines the magnitude and kinetics of the 

cell secretory response to glucose.  A limiting feature of these pools is that they require refilling 

to sustain secretion in the continued presence of secretagogues.  Replenishment of the pools is 

achieved principally through mobilization and priming of granules at the PM.  Collectively, the 

actions of Rab27a and its effector molecules act to expand and/or increase the rate of β-granule 

replenishment of the docked and primed pool of vesicles.  However, a critical unknown is which 

vesicle pools and molecular targets mediate the Rab27a-induced alterations in vesicle release 

kinetics. The experiments in Chapter III of this dissertation address these questions and 

collectively argue that Rab27a GTPase comprises a major regulatory step in membrane transport 

owing to precise control over its activation, the spatial control and identity they confer on a 
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particular vesicle or organelle, and their links to the SNARE vesicle fusion machinery through 

effector molecules.   

   

Statement of Hypothesis and Specific Aims 

     In type 2 diabetes the exocytotic process is defective in adipocytes and pancreatic β-cells, 

two tissues critical to the maintenance of blood glucose.  This dissertation examines the role of 

specific members of the Sec1/Munc18 and Rab27 protein families which carry out vesicle 

docking, priming, and fusion in each of these tissues.  The current model of Munc18c function in 

adipocytes, which is controversial, proposes that Munc18c is inhibitory to SNARE complex 

formation and hence GLUT4 storage vesicle fusion until its dissociation from syntaxin4. Based 

on in vitro evidence we have alternatively hypothesized that Munc18c participates throughout the 

formation of SNARE complexes, and has additional facilitative actions on GLUT4 storage 

vesicle fusion.  Thus, there exists a clear need for structural studies to determine the Munc18c-

SNARE binding interactions in vivo, as well as precisely which steps in the vesicle docking, 

priming, and fusion processes Munc18c participates in.  Upstream of Sec1/Munc18 proteins are 

the vesicle-associated Rab GTPases.  One family member, Rab27a, has been identified as 

important for insulin secretion from pancreatic islets based on studies of Rab27a-null ashen mice.  

Still lacking are studies of single pancreatic β-cells that identify the specific molecular 

mechanisms under Rab27a control, and how via these mechanisms Rab27a affects the 

amplification of secretion by priming factors such as glucose and cAMP.  In summary, the 

specific aims of this dissertation are directed at defining the mechanisms by which Munc18c and 

Rab27a exert spatial and temporal control over vesicle exocytosis, through their regulation of 

vesicle docking and priming at the sites of SNARE complex-dependent membrane fusion.    
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Specific Aim 1:  Identify the molecular determinants through which Munc18c specifically 

binds to and serves as a chaperone for the t-SNARE syntaxin4 in adipocytes.   

 

Specific Aim 2:  Determine whether Munc18c association and control over syntaxin4 

conformation affects competency of GLUT4 storage vesicle docking and priming.   

 

Specific Aim 3:  Determine the primary sites at which Rab27a acts to facilitate insulin 

secretion using patch-clamp measurements of membrane capacitance to resolve specific  

kinetic parameters of vesicle docking and priming.  Sites within the secretory pathway that are 

affected will be identified by comparison of results obtained from β-cells isolated from ashen 

(Rab27a deficient) and background control mice.   
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Figure 1.1.  Insulin signaling pathways regulating GLUT4 vesicle translocation.  The 
canonical insulin signaling cascade is triggered by activation of the insulin receptor (IR) tyrosine 
kinase activity leading to tyrosine phosphorylation of insulin receptor substrate (IRS) proteins and 
their recruitment of phosphatidylinositol 3-kinase (PI3K).  At this critical node, the insulin 
signaling pathway diverges such that the delivery of GLUT4 to the cell surface occurs 
independently of PI3K (blue), utilizing a pathway proposed to involve APS (Hu et al. 2003), c-
Cbl (Ribon et al. 1998), CAP, and the small GTPase TC10 (Chiang et al. 2001; Saltiel and Kahn 
2001; Saltiel and Pessin 2003), although this hypothesis has been challenged by the lack of effect 
of RNAi experiments directed against these signaling intermediates (Mitra et al. 2004; Zhou et al. 
2004).  In a parallel pathway, PI3K directs vesicle docking and fusion (red).  Conversion of PI-
4,5-P2 to PI-3,4,5-P3 activates the intermediate kinases PDK1 (Hajduch et al. 2001) and 
Ak2/PKB (Cho et al. 2001; Whiteman et al. 2002), which in turn leads to the activation of Rab10 
GTPase (Sano et al. 2007) and the SNARE-associated vesicle docking and fusion machinery.  
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Figure 1.2.  Model of the neuronal SNARE core complex.  A, The syntaxin1A (red) N-terminal 
Habc domain folds into a three helix bundle that self-associates with the SNARE domain (closed 
conformation), preventing interactions with other SNAREs.   The open (unfolded) conformation 
of syntaxin1A is available to form binary Q-SNARE complexes with SNAP25 (green), prior to 
the entry of the final SNARE domain contributed by VAMP2 (blue) on the vesicle.  B, The four 
helix bundle of the neuronal SNARE complex (syntaxin1A, blue; VAMP2, red; SNAP25, green). 
The structure of the 0-layer is shown.  Figure adapted from (Kloepper et al. 2007).   

A.  

B.  
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Figure 1.3.  Comparison of Sec1/Munc18 (SM) protein crystal structures (Hu et al. 2007).  
Mouse Munc18c/syntaxin41-19

 (Hu et al. 2007), Squid neuronal Munc18 (sSec1), yeast 
Sly1p/Sed5p1-21 (Bracher and Weissenhorn 2002), and rat neuronal Munc18a/syntaxin1A (Misura 
et al. 2000).   
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Figure 1.4.  Sites of Rab27a action within the pathways of glucose-stimulated insulin 
secretion in pancreatic β-cells.  The actions of Rab27a to augment insulin secretion are 
proposed to occur via enhanced insulin granule recruitment, as well as a step following vesicle-
PM docking.  Adapted from (Aizawa and Komatsu 2005). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 38

 
 
 
Figure 1.5.  Granule pools in the pancreatic β-cell (Straub and Sharp 2002).  Approximately 
95% of the secretory granules in a β-cell reside in a non-releasable pool (reserve pool, ~10,000 
granules).  The remaining 1-5% of the granules are in a ‘readily-releasable’ pool (RRP) of 50-100 
granules that can be functionally subdivided based on kinetic differences and/or Ca2+-sensitivity.  
One RRP subset is termed the ‘immediately-releasable’ pool (IRP; 6-12 granules), comprised of 
secretory granules situated adjacent to L-type voltage-dependent Ca2+ channels, and therefore 
exhibit a minimal latency from channel opening to membrane fusion (Horrigan and Bookman 
1994; Barg et al. 2001; Barg et al. 2002).  A second subset (not pictured) is termed the highly 
calcium-sensitive pool  (HCSP; 15 granules) which exhibits rapid kinetics of release at [Ca2+]i of 
1-3 μM, which is a Ca2+ level below that required (~15 μM) for rapid release of the bulk of the 
secretory granules in the IRP and RRP (Yang et al. 2002; Wan et al. 2004; Yang and Gillis 
2004).   
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Figure 1.6.  Mechanism of glucose-stimulated insulin secretion in pancreatic β-cells.  After 
glucose entry through passive glucose transporters, metabolism of glucose increases ATP 
production, closing KATP channels, resulting in membrane depolarization and the opening of 
voltage-dependent Ca2+ channels (VDCC), which triggers insulin granule exocytosis (red).  A 
secretion-amplifying pathway independent of the KATP channel has also been discovered (green), 
although its downstream effectors remain unclear.  Secretion is also regulated by hormones and 
neurotransmitters through G-protein coupled receptor pathways (blue), which generate 
intracellular signals such as diacylglycerol (DAG) and cAMP, which directly activates protein 
kinase A (PKA) and Epac2 (exchange protein directly activated by cAMP) to enhance the 
secretory response.    
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MUNC18C INTERACTION WITH SYNTAXIN4 MONOMERS AND SNARE COMPLEX 
INTERMEDIATES IN GLUT4 VESICLE TRAFFICKING 

 
 
 

Abstract 

 In the process of insulin-stimulated GLUT4 vesicle exocytosis, Munc18c has been 

proposed to control SNARE complex formation by inactivating syntaxin4 in a self-associated 

conformation. Using in vivo fluorescence resonance energy transfer (FRET) in 3T3L1 adipocytes, 

co-immunoprecipitation, and in vitro binding assays, we provide data to indicate that Munc18c 

also associates with near equal affinity to a mutant of syntaxin4 in a constitutively open 

(unfolded) state (L173A/E174A; LE).  To bind to the open conformation of syntaxin4, we found 

that Munc18c requires an interaction with the N-terminus of syntaxin4 which resembles Sly1 

interaction with the N-terminus of ER/Golgi syntaxins.  However, both N- and C-termini of 

syntaxin4 are required for Munc18c binding since a mutation in the syntaxin4 SNARE domain 

(I241A) reduces the interaction, irrespective of syntaxin4 conformation.  Using an optical reporter 

for syntaxin4-SNARE pairings in vivo, we demonstrated that Munc18c blocks recruitment of 

SNAP23 to wildtype syntaxin4, yet associates with syntaxin4LE-SNAP23 Q-SNARE complexes.  

Fluorescent imaging of GLUT4 vesicles in 3T3L1 adipocytes revealed that syntaxin4LE bypassed 

the requirement of insulin for GLUT4 vesicle plasma membrane docking, even while Munc18c is 

bound.  Furthermore, as the reduction of the Munc18c-syntaxin4 interaction with the I241A 

mutation does not promote docking, formation of a Munc18c-syntaxin4 complex is not essential 

for the docking process.  Therefore, in contradiction to previous models, our data indicates that 
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the conformational ‘opening’ of syntaxin4 rather than the dissociation of Munc18c is the critical 

event required for GLUT4 vesicle docking.   

  

Introduction 

Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs) 

are central to vesicle fusion events in all eukaryotes.  SNARE proteins anchored to both transport 

vesicles and their target membranes overcome the forces necessary for fusion by binding with 

high affinity in a ternary core complex (Jahn and Scheller 2006).  Though formation of the 

SNARE core complexes are sufficient for membrane fusion (Weber, Zemelman et al. 1998; 

Parlati, Weber et al. 1999) essential regulatory proteins of the Sec1/Munc18 (SM) family are 

believed to control SNARE complex formation.  Seven vertebrate SM gene family members 

(Munc18a/b/c, Sly1, Vps45, Vps33a/b) have been described which affect membrane trafficking in 

distinct subcellular pathways, predominantly through their association with specific syntaxin Q-

SNAREs (Toonen and Verhage 2003).    

Of the varied SM-syntaxin partners, Munc18c-syntaxin4 interactions are believed to exert 

a critically important role in the temporal control of insulin-stimulated GLUT4 storage vesicle 

exocytosis in muscle and adipose tissue (Tellam, Macaulay et al. 1997; Tamori, Kawanishi et al. 

1998; Thurmond, Ceresa et al. 1998; Dugani and Klip 2005).  The delivery of GLUT4 to the cell 

surface occurs by distinct signaling processes:  (1) GLUT4 vesicle recruitment to the plasma 

membrane, (2) followed by phosphatidylinositol 3-kinase (PI3K)-dependent vesicle docking and 

fusion mediated by syntaxin4-containing SNARE complexes (Bose, Robida et al. 2004; 

Hodgkinson, Mander et al. 2005).  Based on overexpression studies, Munc18c was initially 

proposed to function as a negative regulator of GLUT4 vesicle translocation in 3T3L1 adipocytes 

(Tellam, Macaulay et al. 1997; Thurmond, Ceresa et al. 1998).  However, the failure of the PI3K 

inhibitor wortmannin to suppress GLUT4 externalization in adipocytes derived from Munc18c-

null mice suggests that Munc18c inhibits docking and/or fusion under the control of the PI3K 
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pathway (Kanda, Tamori et al. 2005).  Although the exact mechanism for this inhibition is not 

fully understood, Munc18c has been proposed to preclude the binding of syntaxin4 to its cognate 

SNAREs, vesicle-associated membrane protein 2 (VAMP2) and synaptosomal-associated protein 

of 23-kDa (SNAP23), preventing GLUT4 externalization in the absence of insulin (Araki, Tamori 

et al. 1997; Tellam, Macaulay et al. 1997; Thurmond, Ceresa et al. 1998).   

In the absence of fine structural information, a model of Munc18c control over 

syntaxin4/SNARE complex formation is not easily predicted by other SM-syntaxin interactions 

due to the diversity in their modes of action.  For example, the Munc18a-syntaxin1A complex 

participates in regulated neuroexocytosis and has high sequence homology to Munc18c-

syntaxin4.  Analysis of the syntaxin1A structure showed that an autonomously folded N-terminal 

three helix bundle, termed the Habc domain, reversibly folds over a helical H3 domain containing 

the SNARE motif (Dulubova, Sugita et al. 1999; Misura, Scheller et al. 2000; Margittai, 

Widengren et al. 2003).  These two helical domains are separated by a short structured linker 

proposed to allow syntaxin1A to rapidly fluctuate between a folded (closed) conformation and an 

unfolded (open) conformation (Margittai, Widengren et al. 2003).  The open conformation 

facilitates SNARE-SNARE pairing resulting from accessibility of the SNARE motif.  The closed 

(SNARE-pairing inactive) conformation of syntaxin1A is stabilized by interaction with Munc18a 

(Dulubova, Sugita et al. 1999), precluding interactions with other SNAREs (Calakos, Bennett et 

al. 1994; Liu, Ernst et al. 2004).  Thus, the association-disassociation of Munc18a suggests a 

mechanism for the regulation of the syntaxin SNARE motif through the control of syntaxin 

conformation.  Yet, there is a lack of general correlation between SM function and a particular 

conformation of syntaxin.  The situation is further complicated because not all syntaxins assume 

folded conformations.  For instance, the SM proteins Sly1 and Vps45, which regulate trafficking 

of intracellular transport vesicles, bind to a conserved N-terminal domain found upstream of the 

Habc domain in their cognate syntaxins (Sly1 to syntaxins 5 and 18, and Vps45 to syntaxin16) 

(Dulubova, Yamaguchi et al. 2002; Yamaguchi, Dulubova et al. 2002; Bryant and James 2003).  
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This subset of SM proteins does not hinder the kinetics of SNARE pairings (Peng and Gallwitz 

2002).  Comparatively, the yeast Munc18 homologue Sec1p stimulates fusion through its 

interaction with the ternary SNARE complex, only binding weakly to monomeric Sso1p/syntaxin 

(Carr, Grote et al. 1999; Scott, Van Komen et al. 2004).   

By analogy to the Munc18a-syntaxin1A interaction, the most prevalent model for 

Munc18c regulation of SNARE complex formation equates the association of Munc18c with 

syntaxin4 to the inhibition of GLUT4 storage vesicle docking and fusion.  Yet, genetic studies 

suggest that the mechanism of Munc18c action may be different than Munc18a.  For instance, the 

insulin-induced presentation of GLUT4 was enhanced in adipocytes prepared from Munc18c-null 

mice (Kanda, Tamori et al. 2005), while Munc18a deficiency was demonstrated to eliminate both 

evoked and spontaneous synaptic exocytosis (Verhage, Maia et al. 2000).  Furthermore, it 

remains unclear whether Munc18c interacts solely with a single closed conformation of syntaxin4 

as modeled by Munc18a-syntaxin1A interactions (Calakos, Bennett et al. 1994; Pevsner, Hsu et 

al. 1994), or additionally to an open conformation in the SNARE complex.  Recent evidence 

indicates that in vitro Munc18c associates with the ternary SNARE complex (Widberg, Bryant et 

al. 2003; Latham, Lopez et al. 2006).  In addition, Munc18c possesses an interaction site for the 

N-terminal amino acids of syntaxin4 resembling the syntaxin binding sites on Sly1 and Vps45 

(Latham, Lopez et al. 2006).  Yet, insulin (Thurmond, Ceresa et al. 1998) as well as N-

ethylmaleimide (NEM) (Widberg, Bryant et al. 2003), which inhibits NSF-mediated SNARE core 

complex disassembly, have been reported to dissociate Munc18c from syntaxin4.  Thus, there is 

growing evidence to suggest that the Munc18c-syntaxin4 association does not fit any single 

model for SM-syntaxin interactions. 

The purpose of this study was to define the molecular properties of the Munc18c 

interaction with syntaxin4.  Specifically, how the Munc18c-syntaxin4 complex influences 

SNARE core complex formation in the pathway of GLUT4 cycling.  Our investigations utilized 

quantitative optical techniques including fluorescence resonance energy transfer (FRET) and 
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biochemical approaches to directly report the state of the Munc18c-syntaxin4 interaction in vivo.  

Using mutational analyses we address the mode of Munc18c binding to syntaxin4, including 

where and when the interaction occurs, and which structural motifs are important for function.  

Our findings indicate that syntaxin4 exists in a closed conformation which is stabilized by 

Munc18c, thus rendering the syntaxin4 SNARE domain unavailable for SNARE complex 

formation.  Using the system of insulin-stimulated GLUT4 exocytosis, we furthermore 

demonstrate that the binding of Munc18c to an open conformation of syntaxin4 is not inhibitory 

to GLUT4 vesicle docking, yet is inhibitory to vesicle fusion in the absence of insulin.  The 

maintenance of the Munc18c-SNARE interaction with such proximity to fusion suggests that 

Munc18c functions as a critical regulatory point in the temporal sequence for the initiation of 

fusion events.   

 

Experimental Procedures 

Chemicals and expression constructs −  The following antibodies were used at 1:1000 dilution for 

Western Blotting:  anti-syntaxin4 rabbit polyclonal (Sigma), anti-syntaxin1A mouse monoclonal 

HPC-1 (Sigma), anti-SNAP23 polyclonal (Synaptic Systems), anti-FLAG polyclonal (Sigma), 

and anti-c-myc mouse monoclonal 9B11 (Cell Signaling).  To generate N-terminal fluoroprotein-

labeled constructs, the following cDNAs were sub-cloned into the SalI-XbaI sites of pDNR-dual 

for use with the cre recombinase-mediated Creator System (Clontech):  rat Munc18a (pGex-KG-

Munc18a), rat syntaxin1A (pGEX-syntaxin1A11), rat Munc18c (pcDNA3-FLAG-Munc18c), 

human syntaxin4 (pcDNA4/TO/syntaxin4-myc2-his) and human SNAP23 (pcDNA3-SNAP23) 

(gifts from J. Pevsner, R. Scheller, J. Pessin, T. Weimbs (syntaxin4 and SNAP23), respectively).  

The recipient vectors pLoxP-ECFP-C1 and pLoxP-EcYFP-C1 (Q39M mutant of pEYFP-C1; 

citrine) were generated and mutated to their monomeric forms (A206K) from pLoxP-EGFP-C1 

(Clontech) as described previously (Liu, Ernst et al. 2004).  To prepare pLoxP-mRFP1-C1, the 

cYFP sequence from pLoxP-EcYFP-C1 was replaced with mRFP1 (monomeric form) from 
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pRSETB-mRFP1 (a gift from R. Tsien) by PCR cloning.  cDNAs in pDNR-dual were subcloned 

into the indicated recipient vectors using cre recombinase according to the manufacturer’s 

instructions.  To prepare recombinant fusion proteins in E. coli, syntaxin41-275 (I276stop) and 

Munc18c were PCR amplified and cloned downstream of glutathione S-transferase (GST) cDNA 

contained in the pGEX-KG plasmid; pGEX-syntaxin1A11 (syntaxin1A1-267) was a gift from R. 

Scheller.  pGex-KG-FLAG-loxP-Munc18c was created using a pGex-KG construct modified to 

include a loxP site suitable for use with the Clontech Creator system and an N-terminal FLAG 

epitope.  The PCR-based Quikchange Site-Directed Mutagenesis kit (Stratagene) was used to 

construct the following mutants:  EGFP-SNAP23C/A, a cytosolic mutant lacking cysteine 

palmitoylation sites at 80, 83, 85 and 87, which were mutated to alanine; Munc18c (R240L); 

syntaxin1A (L165A/E166A, LE; I209A; and I233A), and the homologous mutations in syntaxin4 

(L173A/E174A, LE; I217A; and I241A).   Syntaxin41-188 (ΔH3/TM) and syntaxin1A1-181 were 

created by inserting an XbaI site with the TAG stop codon in frame at L189 and I182, 

respectively.  The same XbaI site along with a SalI site upstream of the start codon was used to 

facilitate construction of the following syntaxin chimeras: syntaxin41 (syntaxin41-188 + 

syntaxin1A182-288) and syntaxin14 (syntaxin1A1-181 + syntaxin4189-297).  Before use, the XbaI 

restriction sites were back-mutated in the syntaxin14 and syntaxin41 plasmids to eliminate the 

stop codon and restore the L189 in the syntaxin4 fragments and the I182 in the syntaxin1A 

fragments.  The sequence fidelity of all expression constructs was confirmed by DNA sequencing 

(University of Michigan DNA Sequencing Core).  

  

Cell culture and transfection −  3T3L1 fibroblasts (American Type Tissue Culture, Rockville, 

MD) were maintained in DMEM containing 10% bovine serum (Invitrogen).  Following two days 

of confluence, differentiation was induced by addition of DMEM with 10% fetal bovine serum 

(FBS) containing 167 nM insulin, 0.25 μm dexamethasone, and 0.25 mM isobutylmethylxanthine 
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(IBMX) for three days, followed by DMEM/FBS containing insulin for 2 days, and subsequent 

removal of insulin for two days.  Adipocytes were transfected by electroporation (0.16 kV, 950 

μF) in PBS pH 7.4 (Invitrogen) with 50-200 μg of each plasmid.  After electroporation, cells 

were allowed to adhere to coverglass for 18-24 hours in DMEM/FBS prior to imaging.  In 

selected experiments cells were exposed to 100 nM insulin after 3 hours serum starvation in 

DMEM low glucose (Invitrogen) containing 0.5% FBS.  HEK293-S3 cells, which contain a 

stably transfected N-type calcium channel (Liu, Ernst et al. 2004), were cultured in RPMI-1640 

(Invitrogen) supplemented with 10% FBS (Invitrogen), 0.4 mg/ml hygromycin (Invitrogen), 0.4 

mg/ml Geneticin (Invitrogen), and 1% penicillin/streptomycin (Invitrogen). Cells were plated on 

coverglass affixed to the bottom of 35mm dishes 12-24 hours prior to transfection using 

Lipofectamine2000 (Invitrogen).  Before live cell imaging, cells were transferred to physiologic 

saline solution (PSS) containing 140 mM NaCl, 5 mM KCl, 5 mM glucose, 1 mM MgCl2, 2.2 

mM CaCl2, 5 mM NaHCO3, and 10 mM HEPES (pH 7.4).  

 

Homology modeling of Munc18c-syntaxin4 complex −  Rat Munc18c (Stxbp3; GenBank 

accession No. NP_446089) and syntaxin4 (STX4; GenBank accession No. NP_112387) 

sequences were threaded into the Munc18a-syntaxin1A structure (PDB No. 1DN1) using O, 

based on a ClustalW alignment.   Helical register, assessed using PredictProtein, was comparable; 

sequence gaps and insertions were not modeled. Figures were made with MOLSCRIPT, 

RASTER 3D v2.1.2, and GIMP.  

 

GST fusion proteins −  Chemically competent BL21DE3(RIPL) E. coli (Invitrogen) containing 

pGex-KG-syntaxin41-275, pGex-KG-syntaxin41-275
LE, or pGEX-KG-Munc18c were cultured and 

induced with 100 nM IPTG for 5-6 hours at 27°C.  Bacteria were lysed by French press 

(15000 PSI pressure differential) and the eluent was solubilized in PBS containing 1% Triton X-
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100 for 1 h on ice.  Proteins were subsequently purified using Glutathione-Sepharose 

(Pharmacia).  Cleavage of the GST moiety from the fusion protein was accomplished by 

treatment with 1.4 NIH units human thrombin (Amersham) for 16 hours at 4°C.  Purity of all 

isolated fusion proteins was confirmed by SDS-PAGE fractionation and subsequent visualization 

with Coomassie Blue or Western Blotting.  Protein concentration was measured using the DC 

Protein Assay (Bio-RAD) against a BSA standard (Sigma).   

 

Trypsin proteolysis assay −  Trypsin digest of recombinant GST-syntaxin41-275 and GST-

syntaxin41-275
LE was modeled after Graham et al. (Graham, Barclay et al. 2004).  Proteins were 

incubated at 5 μM concentration in a total volume of 50 μl containing 60 nM Trypsin (Type IX-

S; Sigma) in PBS (pH 7.4) for the times indicated.  During trypsin incubation, GST fusion 

proteins remained bound to Glutathione-Sepharose beads.  The reactions were terminated by the 

addition of SDS sample buffer and immediate boiling. After separation by 12% SDS PAGE, the 

samples were transferred to nitrocellulose and probed for syntaxin1A or syntaxin4.  Proteins were 

visualized with a HRP-conjugated secondary antibody and ECL substrate (Amersham).   

 

Co-immunoprecipitation −  For each treatment, a 6-well plate of confluent HEK293-S3 cells was 

transiently transfected with pcDNA4/TO/syntaxin4LE-myc2 ± pcDNA3-FLAG-Munc18c.  After a 

two day expression period, cells were rinsed twice in PSS and lysed in a Dounce homogenizer in 

a buffer containing 2% sucrose, 1 mM EDTA, and 20 mM Tris (pH 7.5).   After the homogenate 

was centrifuged (300 x g for 3 minutes) to pellet the nuclei, the supernatant was diluted 1:1 in IP 

Buffer (150 Tris, pH 7.4; 1 mM MgCl2; 0.1 mM EGTA; 2% Triton X-100).  Samples were 

normalized for lysate volume and concentration (2-3 μg/μl), and incubated with 10 μg anti-myc 

9B11 monoclonal antibody (Cell Signaling) for 4 hours at 4°C.  The samples were then incubated 

with ProteinG-Sepharose beads (Pierce) for 1 hour, and washed in IP Buffer.  Finally the pellet 
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was resuspended in SDS sample buffer and subject to fractionation by SDS PAGE and Western 

blotting.   

 

In vitro binding assay −  For all binding reactions in vitro the GST moiety was cleaved from 

purified GST-syntaxin41-275, GST-syntaxin41-275
LE, and GST-Munc18c.  Reactions used 0.03-30 

pmols of Munc18c in a dilution series spotted in quadruplicate on nitrocellulose (BA-83, 

Schleicher and Schuell).  After blocking in 2% milk, the blots were incubated with 500 nM 

syntaxin41-275 or syntaxin41-275
LE for ≥12 hours at 4°C.  Syntaxin4 proteins were visualized using 

an anti-syntaxin4 polyclonal antibody and HRP-conjugated secondary antibody as described 

above.  Integrated intensity (area*intensity) was quantified using Metamorph (version 6.3r5, 

Universal Imaging, Inc., Malvern, PA).      

 

Measurement of FRET stoichiometry by sensitized emission −  Live cell imaging of FRET was 

performed on transfected 3T3L1 adipocytes and HEK293 cells 24 hours after transfection.  As 

false positive FRET signals have been observed when cytoplasmic donors come into contact with 

membrane compartmentalized acceptors (Vogel, Thaler et al. 2006), syntaxin4 was purposefully 

tagged with CFP.  However, performing the experiments using CFP-Munc18c and cYFP-

syntaxin4 resulted in similar FRET efficiency values (data not shown).  Measurement of 

sensitized emission FRET was carried out as previously described (Hoppe, Christensen et al. 

2002; Liu, Ernst et al. 2004). The methodology employed an inverted fluorescence microscope 

(Olympus, IX71) equipped with the following components: a TILL-Photonics Polychrome IV 

xenon-lamp based monochrometer (TILL-Photonics, Grafelfing, Germany), polychroic mirror 

that allowed excitation of multiple fluorophores (436-500nm, Chroma Technology Corp., 

Brattleboro, VT), a Planapo 60x water immersion objective (1.2 NA), a multispec microimager 

(Optical Insights, Santa Fe, NM) containing dichroic splitter (505dcxr) and emission filters 
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(D465/30 and HQ535/30) to allow simultaneous two channel monitoring of emission 

fluorescence, and a cooled digital CCD camera (TILL IMAGO QE).  The multispec microimager 

hardware was calibrated to allow pixel-by-pixel alignment of images, and offline adjustments 

were made using the TILL-Vision software. All analyses of the acquired images were performed 

using Metamorph image-processing software as previously described (Hoppe, Christensen et al. 

2002; Liu, Ernst et al. 2004).  The apparent efficiency of acceptor (monomeric cYFP) in complex 

(EA), the apparent efficiency of donor (monomeric ECFP) in complex (ED) and mole fraction of 

acceptor to donor (RATIO) values were determined using the following equations:  EA = γ[((DA - 

β*DD)/α*AA) - 1](1/EC); ED = [1 – (DD/((DA - α*AA - β*DD)*(ξ/γ) + DD))](1/EC);; and RATIO 

= (ξ/γ2)*[α*AA/((DA - α*AA - β*DD)*(ξ/γ) + DD)] (Hoppe, Christensen et al. 2002), where 

images are abbreviated as follows:  DD, donor excitation-donor emission; DA, donor excitation-

donor emission; AA, acceptor excitation-acceptor emission; EC, characteristic efficiency (0.37; 

(Hoppe, Christensen et al. 2002)).  Donor and acceptor excitations were 436 nm and 500 nm, 

respectively.  Empirically determined constants were established in HEK293 cells:  α, 0.017; β, 

0.9406; γ, 0.0658; ξ, 0.0147.  For all measurements EA values were determined in regions of the 

cell where the mole fraction between cYFP-Munc18c and CFP-syntaxin4 (RATIO) was between 

0.9-1.1; ED is comparable to EA over this RATIO range. 

 

Resolution of SNAP23C/A-SNARE interactions by cytosolic photobleach and membrane FRAP −  

GFP-SNAP23C/A bound to syntaxin4 at the plasma membrane was observed by expression of the 

proteins when viewed with the FV500 Olympus FluoView laser scanning confocal microscope.  

In order to resolve the relative amount of plasmalemmal GFP-SNAP23C/A, images were taken 

before and after 1 min cytosolic photobleach (>90% bleach) using the 488 nm laser line of the 

argon laser.  The localization of GFP-SNAP23C/A fluorescence intensity remaining after 

photobleach was quantified using linescans averaged over a 10 pixel width (~1/8 cell diameter) 
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normalized to peak intensity for each cell. For FRAP experiments, cytosolic photobleach was 

followed by a 10s photobleach (>50%) of the cell membrane using simultaneous excitation with 

the  488 nm line of the Argon laser and 543 nm line of the Helium Neon laser to facilitate 

simultaneous bleach of GFP and RFP, respectively.  FRAP images were taken following a 1.5 

minute recovery period. 

 

Quantification of insulin-induced GLUT4 plasma membrane insertion −  3T3L1 adipocytes stably 

expressing myc7-GLUT4-GFP were prepared as previously described (Chang, Chiang et al. 2006) 

using a retroviral vector pMX-GLUT4myc7-EGFP (a gift from H. Lodish) (Bogan, McKee et al. 

2001).  Cells were electroporated as described above with pcDNA-FLAG-Munc18c and pLoxP-

ECFP-syntaxin4, or mutants of syntaxin4 as described in the figures.  As a control experiment to 

verify the functionality of N-terminally tagged syntaxin4 (Fig. 2.11), adipocytes were 

electroporated with pcDNA-syntaxin4LE and pLoxP-mCerulean-Munc18c.  24 hours after 

electroporation, adipocytes were serum starved for 3 hours in DMEM containing 0.5% FBS.  

Subsequently, cells were treated with 100 nM insulin for the times indicated, fixed in PBS 

containing 4% paraformaldehyde, and quenched with 50 mM glycine for 5 minutes.  Externalized 

myc7-GLUT4-GFP was visualized by exposing the cells to an anti-myc monoclonal antibody 

9E10 (Santa Cruz Biotechnology) without permeabilization, followed by Alexa594-conjugated 

goat anti-mouse secondary antibody (Molecular Probes) as discussed (Chang, Chiang et al. 2006).  

For cell counting experiments, ≥75 cells from each treatment possessing peripheral CFP-

syntaxin4 fluorescence were blindly examined for peripheral GFP fluorescence and/or surface 

Alexa594 fluorescence using an Olympus IX71 microscope equipped with a dual-pass 

GFP/mRFP1 filter set (Chroma Technology Corp).  For quantification of GLUT4 localization, 

cells with equivalent CFP (syntaxin) and GFP (GLUT4) were chosen based on equivalent 

integrated density (cell area x intensity) from a 500 ms image taken at 436 and 480 nm, 

respectively. To quantify CFP and GFP localization, linescans (10 pixel-width averages) drawn 
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from the outside of the cell to the interior were normalized to fluorescence intensity at the plasma 

membrane region and plotted as a function of distance from the plasma membrane.  

 

Results 

Modeling of syntaxin4 structure and generation of a constitutively open syntaxin4 mutant −  To 

facilitate design of specific syntaxin4 mutations that would aid in characterization of the 

conformational states and important domains of syntaxin4 for Munc18c binding, we initially 

constructed a homology model of syntaxin4 based on the reported crystal structure of syntaxin1A 

in complex with Munc18a (nSec1/Munc18-1) (Misura, Scheller et al. 2000).  The Munc18c and 

syntaxin4 sequences (identity:  50%, Munc18; 46%, syntaxin) were threaded directly on the 

crystal structure of the Munc18a-syntaxin1A complex (Protein Data Bank 1DN1).  No modeling 

predictions were made in areas with sequence gaps or insertions.  Figure 2.1A shows the 

generated Munc18c-syntaxin4 homology model.  An analysis of the model over highly conserved 

regions between syntaxin1A and syntaxin4 yielded two important observations.  First, the outer 

surface of the syntaxin4 Habc helices contain most of the non-conserved residues, whereas the 

regions of intramolecular interactions between the Habc domain and the H3 domain were found 

to be highly conserved (Fig. 2.1B, circled).  This structural similarity suggested that the helical 

packing which allows syntaxin1A to adopt a closed conformation would also allow syntaxin4 to 

adopt a closed conformation.  Second, the Habc-H3 linker region is stabilized against the Habc 

and H3 domains by a highly conserved hydrophobic pocket.  A mutation in the syntaxin1A linker 

helix (L165A/E166A; LE) has been reported to destabilize the N-terminal helices from 

interaction with the SNARE motif and result in a constitutively open syntaxin1A conformation 

(Dulubova, Sugita et al. 1999).  This open conformation impairs Munc18a binding to syntaxin1A, 

strongly facilitating its interaction with other SNAREs  (Parlati, Weber et al. 1999; Richmond, 

Weimer et al. 2001; Graham, Barclay et al. 2004; Liu, Ernst et al. 2004).  From the structural 

prediction (Fig. 2.1C), the homologous residues in syntaxin4, L173 and E174, lie in a conserved 
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pocket of the linker helix.  The hydrophobic contacts of L173 are maintained with I156, L160, 

and the semiconserved V168 (I149, L153, and T160 in syntaxin1A).  The hydrophobic regions of 

the non-conserved residues, D170 and R157 (S162 and Q150 in syntaxin1A), may form Van der 

Waal’s interactions contributing to the hydrophobic pocket for L173, whereas their charged 

portions are solvent exposed.  E174 maintains one conserved salt bridge with R149, although a 

second with V153 (R142 and K146 in syntaxin1A) is lost.  Taken together, the model predicts 

that significant L173 and E174 interactions are likely to be disrupted by dual mutation to alanine 

(L173A/E174A), hereafter termed syntaxin4LE, and to confer a constitutively open conformation 

on the syntaxin4 mutant.  

To determine whether the syntaxin4LE conformation is different from the wildtype protein 

in a manner consistent with a constitutively ‘open’ syntaxin4, we examined the effect of partial 

trypsin proteolysis on GST-syntaxin41-275 and GST-syntaxin41-275
LE.  Figure 2.1A shows that 

proteolytic treatment of wildtype GST-syntaxin41-275 resulted in two dominant cleavage products 

recognized by the anti-syntaxin4 polyclonal antibody which fractionated at 15- and 30-kDa.  

After equivalent incubation, these products were dramatically reduced or absent in the GST-

syntaxin41-275
LE digest.  The increased resistance of wildtype syntaxin4 to trypsin relative to the 

LE mutant suggests that the wildtype protein is more compact in structure, thereby limiting 

proteolysis, whereas the LE mutation promotes a more accessible, or open, structure for the 

proteolytic activity of the enzyme.  As a control experiment, we also tested the trypsin sensitivity 

of GST-syntaxin1A1-267
LE (L165A/E166A) relative to wildtype GST-syntaxin1A1-267.  Figure 2.1B 

shows that the wildtype syntaxin1A was more resistant to trypsin than that of syntaxin1A 

carrying the L165A/E166A mutation, confirming the efficacy of the approach initially published 

by Graham and colleagues (Graham, Barclay et al. 2004). These parallel results suggest that 

syntaxin4, like syntaxin1A, forms a self-associated structure folded about the linker region. The 

syntaxin4 LE mutation allowed investigation of the effects of a less restricted syntaxin4 

conformation on Munc18c binding. 
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Munc18c interaction with the closed and open conformations of syntaxin4 in vivo −  Syntaxin4 

has been reported to facilitate insulin-regulated GLUT4 vesicle externalization in 3T3L1 

adipocytes.  By comparison, Munc18c overexpression exerts an inhibitory effect on the same 

pathway through its interaction with syntaxin4 (Tellam, Macaulay et al. 1997; Tamori, Kawanishi 

et al. 1998; Thurmond, Ceresa et al. 1998), signifying that the level of complexation of Munc18c 

with syntaxin4 is an important determinant of SNARE complex formation.  To measure the 

structural parameters important for the direct Munc18c-syntaxin4 protein interaction in living 

3T3L1 adipocytes, we employed expression of cYFP-Munc18c and CFP-syntaxin4 as a 

fluorescence resonance energy transfer (FRET) pair.  Sensitized emission FRET stoichiometry 

yields a spatial map of the apparent FRET efficiency of CFP donor (ED) and cYFP acceptor (EA) 

in complex, as well as the mole fraction of acceptor to donor (RATIO) (Hoppe, Christensen et al. 

2002).  Figure 2.3A (upper panel) shows an image series of a representative adipocyte 

coexpressing cYFP-Munc18c and CFP-syntaxin4.  Both the CFP and cYFP fluorescence is 

enriched at the plasma membrane region relative to the cytosol, as expected for the plasma 

membrane localization of the Munc18c-syntaxin4 complex.  Moreover, the corresponding FRET 

images EA and ED for this cell indicated that substantial FRET occurred between the coexpressed 

cYFP-Munc18c and CFP-syntaxin4 proteins, thereby indicating direct protein-protein 

interactions.  The absolute values of FRET (EA and ED) are sensitive to the relative levels of 

expression of the FRET donor to acceptor (RATIO).  Therefore, Figure 2.3B compares EA values 

averaged from many cells where the range over which the FRET values are averaged was 

restricted to pixels where the molar ratio of cYFP to CFP expression is within the range of 0.9-

1.1.  This strategy allowed us to compare EA values between cells and across treatments.  

Importantly, as a control to confirm that the FRET signal resulted from a specific and direct 

interaction between Munc18c and syntaxin4, we tested the effect of CFP-syntaxin4 coexpressed 

with a single point mutant of Munc18c (cYFP-Munc18cR240L).  This temperature-insensitive 
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mutant was based on the previously characterized temperature-sensitive SM mutants, 

Munc18cR240K and the S. ceriviseae homolog Sly1pR266K, which demonstrated a strongly reduced 

affinity of interaction with syntaxin4 and Sed5p, respectively (Cao, Ballew et al. 1998; Thurmond 

and Pessin 2000).  In following, the measured FRET efficiency was reduced by ~7-fold with 

respect to control on coexpression of cYFP-Munc18cR240L with CFP-syntaxin4.  These results 

establish that FRET between cYFP-Munc18c and CFP-syntaxin4 is specific to the bimolecular 

interaction in 3T3L1 adipocytes and sensitive to changes in Munc18c-syntaxin4 binding affinity.  

Notably, that CFP-syntaxin4, but not cYFP-Munc18cR240L, localized to the plasma membrane 

suggests that syntaxin4 does not require a stable interaction with Munc18c for plasma membrane 

targeting.  We next used the FRET assay to determine if the constitutively open mutant of 

syntaxin4 (CFP-syntaxin4LE) was capable of direct interaction with Munc18c.  Remarkably, we 

observed only a slight reduction (~10%) in cYFP-Munc18c energy transfer with CFP-syntaxin4LE 

as compared to the wildtype control, indicating the strong association of Munc18c with both 

closed and open conformations of syntaxin4.  

Our above FRET experiments in adipocytes demonstrated a significant interaction of 

Munc18c to syntaxin4LE, which contrasts with the strongly reduced interaction reported for the 

LE mutant of syntaxin1A with Munc18a in vitro and in vivo (Graham, Barclay et al. 2004; Liu, 

Ernst et al. 2004).  This indicates that divergence occurs among vertebrate SM-syntaxin protein 

interactions.  To directly compare the interaction of Munc18c and Munc18a with their cognate 

syntaxins in vivo, we measured FRET between the protein pairs when expressed in a common 

reporter cell line, HEK293 cells.  Figure 2.4A indicates that the apparent efficiency (EA) of cYFP-

Munc18c in complex with CFP-syntaxin4LE was mildly reduced from that measured with CFP-

syntaxin4.  By contrast, the apparent efficiency of energy transfer between Munc18a and 

syntaxin1ALE was ~50% lower than that measured for syntaxin1A, a result consistent with the 

strong reduction in affinity conferred by the syntaxin1ALE mutation reported in other studies 

(Graham, Barclay et al. 2004; Liu, Ernst et al. 2004). To further gauge the competence of 
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Munc18c to interact with syntaxin4LE in live cells we examined the ability of RFP-syntaxin4LE to 

compete with wildtype CFP-syntaxin4 for the binding of cYFP-Munc18c (Fig. 2.4B).  The use of 

an RFP probe facilitated the setting of roughly equivalent levels of the RFP-syntaxins between 

treatments.  We found that RFP-syntaxin4LE expression impaired cYFP-Munc18c energy transfer 

to CFP-syntaxin4 by ~70%.  When the RFP and CFP probes were exchanged to measure FRET 

between cYFP-Munc18c and CFP-syntaxin4LE in the presence of RFP-syntaxin4, energy transfer 

was similarly reduced.   Taken together, these data demonstrate that Munc18c binds efficiently to 

syntaxin4 in either a closed or open conformation.  

FRET efficiency is a sensitive function of the distance between the donor and acceptor 

fluorophores, and is also sensitive to the relative orientation of the donor emission dipole and the 

acceptor absorption dipole.  Therefore, we next investigated whether the small difference in the 

apparent FRET efficiency (EA) of cYFP-Munc18c with CFP-syntaxin4 and CFP-syntaxin4LE 

could be attributed to a change in the characteristic efficiency of the interaction (EC) associated 

with conformational differences between syntaxin4 and syntaxin4LE ,  or to changes in the affinity 

of the interaction.  To obtain an estimate of EC for the interactions in live cells we varied the 

expression ratio of cYFP-Munc18c to CFP-syntaxin4 such that it encompassed an extended 

RATIO range, thus driving the apparent efficiency to asymptote to EC.   Figure 2.4C shows the 

combined data for the imaged cells, plotting the calculated EA values of each image pixel versus 

the corresponding inverse RATIO values.  A statistically significant difference in apparent EC was 

found between the LE mutant (EC=26.92±0.05, n=67) and the wildtype syntaxins 

(EC=29.59±0.04, n=61).  This difference may account for the reduced FRET between cYFP-

Munc18c and CFP-syntaxin4LE when compared with wildtype CFP-syntaxin4.  However, the fit 

rate constants also differed slightly between conditions, indicating that small differences may also 

occur in the affinity of the protein-protein interactions.  To test for differences in affinity, we 

measured the in vitro binding of bacterially expressed and purified syntaxin41-275 or syntaxin41-

275
LE to Munc18c spotted in a dilution series (0.03-30 pmols) on nitrocellulose (Fig. 2.5).   To 
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verify that equal amounts of each syntaxin4 protein were used in the binding reaction, small 

standardized amounts of syntaxin41-275 or syntaxin41-275
LE were spotted alongside Munc18c.  No 

apparent differences were observed between the wildtype or syntaxin4LE binding to Munc18c as 

measured over a 3 log concentration range, further confirming the promiscuous interaction of 

Munc18c with both the closed and open conformations of syntaxin4. 

    

The syntaxin4 binding sites for Munc18c −  The interaction of Munc18c with multiple 

conformations of syntaxin4 is in direct contrast to belief that vertebrate exocytotic SM proteins 

bind solely to the closed form of syntaxin.  As a possible explanation, Munc18c-syntaxin4 

interactions may resemble a subset of SM proteins that function in the ER, Golgi, TGN, and 

endosomal networks, Sly1 and Vps45, which are known to require only short N-terminal 

sequences of their cognate syntaxins (Dulubova, Yamaguchi et al. 2002; Yamaguchi, Dulubova et 

al. 2002; Bryant and James 2003).  Since syntaxin4 shares some sequence homology with the 

motif that allows rSly1 to bind the N-terminus of syntaxins 5 and 18 (Fig. 2.6A), it remained 

possible that the N-terminus of syntaxin4 upstream of the Habc domain could be important for 

binding to Munc18c, as first suggested by in vitro studies (Latham, Lopez et al. 2006).  

Yamaguchi and colleagues (Yamaguchi, Dulubova et al. 2002) previously demonstrated that an 

arginine substitution at D5 in Sed5p/syntaxin5, a residue common to syntaxins 1-4 as D3, 

resulted in complete loss of Sly1p binding when mutated to arginine.  Shown in Figure 2.6B, 

CFP-syntaxin4D3R results in a ~40% reduction in FRET with cYFP-Munc18c when compared 

with the wildtype proteins expressed in HEK293-S3 cells.  Moreover, the D3R mutant completely 

eliminated Munc18c binding to the constitutively open mutant of syntaxin4.  However, the N-

terminus of syntaxin4 is insufficient to bind Munc18c since a mutant of CFP-syntaxin4 lacking 

its H3 and transmembrane domains (ΔH3/TM) exhibited negligible energy transfer with cYFP-

Munc18c.  The N-terminus of syntaxin4 could therefore stabilize the association of Munc18c 

with both the closed and open syntaxin4 conformations.  Furthermore, these results point to a 
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mode of Munc18c-syntaxin4 binding that shares the characteristics of SM binding to both 

ER/Golgi syntaxins as well as the exocytotic syntaxins, which require both the N- and C-termini 

of syntaxin for SM binding.  

We next assessed the extent of divergence between the Munc18c-syntaxin4 binding 

interaction and the Munc18a-syntaxin1A interaction, which facilitates neuroexocytosis.  To 

ascertain whether conserved C-terminal syntaxin4 residues are important for Munc18c binding 

specificity, we substituted the syntaxin1A H3 domain into syntaxin4 after residue 189 

(syntaxin41) (Fig. 2.6B).  FRET between Munc18c and syntaxin41 was not different from 

wildtype syntaxin4, indicating that Munc18c likely utilizes residues conserved between the two 

syntaxins to bind the SNARE domain.  Mutation of syntaxin1A at two conserved residues, I209 

and I233, have been reported to reduce binding with SNAP25 and Munc18a, respectively (Kee, 

Lin et al. 1995; Wu, Fergestad et al. 1999; Graham, Barclay et al. 2004; Liu, Ernst et al. 2004).  

These two amino acids lie within the group of hydrophobic residues that form the interior of the 

fully assembled SNARE complex.  Therefore, we tested the homologous alanine mutations in 

syntaxin4, I217A and I241A on Munc18c binding.  FRET between cYFP-Munc18c and CFP-

syntaxin4I217A was found to be reduced moderately (~16%) when compared with wildtype 

syntaxin4.  Yet, I217A did not affect binding of Munc18c to constitutively open syntaxin4.  

These results are consistent with the prediction of the model of Figure 2.1A:  I217A is not 

expected to directly contact Munc18c, but may disrupt the helical packing of syntaxin4 in the 

closed conformation.  Comparatively, I241 is predicted to be a critical residue for contacting the 

central cavity of Munc18c, and it reduced interaction with wildtype syntaxin4 by approximately 

60%.   To an equivalent extent, the I241A mutation impaired the interaction of Munc18c with the 

open mutant of syntaxin4, revealing that the membrane-adjacent SNARE domain is critically 

important for Munc18c binding regardless of syntaxin4 conformation.  Given the effects of the 

D3R mutant and the I241A mutant on Munc18c binding, our data indicate that Munc18c’s actions 
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to regulate SNARE complex formation require association with both the N- and C-termini of 

syntaxin4.  

 

Effects of syntaxin4 conformation and Munc18c binding on Q-SNARE complex formation −  The 

nucleation of syntaxin4-mediated SNARE complex formation is believed to be negatively 

regulated by Munc18c (Araki, Tamori et al. 1997; Tellam, Macaulay et al. 1997; Tamori, 

Kawanishi et al. 1998; Thurmond, Ceresa et al. 1998; Thurmond and Pessin 2000; Kanda, Tamori 

et al. 2005).  As Munc18c binds to both closed and open conformations of isolated syntaxin4 

(Figs. 2.3-6) as well as to the syntaxin4-SNAP23-VAMP2 complex in vitro (Widberg, Bryant et 

al. 2003; Latham, Lopez et al. 2006), we next investigated whether the opening of syntaxin4 is 

sufficient to relieve Munc18c’s inhibition of SNARE complex nucleation in vivo.  To address this 

question we developed an optical reporter system to assess how Munc18c affects the interaction 

of closed or constitutively open syntaxin4 with SNAP23 (Fig. 2.7A).  We expressed limiting 

quantities of syntaxin4 in living HEK293-S3 cells with an excess of GFP-SNAP23C/A, a cytosolic 

mutant of SNAP23 lacking its four-cysteine palmitoylation sequence (Vogel, Cabaniols et al. 

2000).  After a 1 minute photobleach of a delimited region within the cytosol, GFP-SNAP23C/A 

was resolved at the plasma membrane, consistent with the formation of a dimeric SNAP23-

syntaxin4 complex.  The additional expression of mRFP-Munc18c resulted in the complete loss 

of GFP-SNAP23C/A signal after photobleach, signifying that GFP-SNAP23C/A was freely 

diffusible and not tethered at the plasma membrane.  This result intimates that Munc18c binding 

to syntaxin4 occludes SNAP23 binding to syntaxin4.  Indeed, the presence of membrane-

associated mRFP-Munc18c was observed after the photobleach, indicative of its binding to 

syntaxin4.  The membrane association of Munc18c was not due to binding of endogenous 

proteins in the HEK293 cells, since expressed Munc18c was cytosolic in the absence of expressed 

syntaxin4 (data not shown).  In summary, the data are consistent with Munc18c occluding 
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syntaxin4 interactions with SNAP23 in vitro (Araki, Tamori et al. 1997).  Of specific importance, 

we next investigated if the association of Munc18c with the open form of syntaxin4 inhibits 

SNAP23 binding.  For this analysis we coexpressed syntaxin4LE with GFP-SNAP23C/A in the 

absence or presence of mRFP-Munc18c.  After photobleach, GFP-SNAP23C/A remained bound to 

syntaxin4LE despite the association of RFP-Munc18c at the membrane, signifying that the 

conformational transition of syntaxin4 is sufficient to relieve the inhibition of Munc18c on 

SNAP23 binding.  The localization of GFP-SNAP23C/A in both experiments was quantified using 

linescans drawn from the outside of the cell to its center (Fig. 2.7B).  The sharp “ear” in the 

linescan is consistent with membrane localization of GFP-SNAP23C/A, whereas the GFP-intensity 

plateaus in cells where photobleach of diffusible GFP-SNAP23C/A has occurred upon addition of 

mRFP1-Munc18c.  To confirm that a Munc18c-syntaxin4LE-SNAP23C/A complex is formed on 

the plasma membrane, we performed fluorescence recovery after photobleaching (FRAP) 

experiments on the plasma membrane following the cytosolic photobleach. As anticipated, in the 

syntaxin4WT/RFP-Munc18c/GFP-SNAP23C/A coexpression condition, no further bleaching of 

GFP was observed on the membrane, although membrane-associated RFP-Munc18c signal 

recovered after membrane photobleach, consistent with the Munc18c inhibition of Q-SNARE 

complex formation (Fig. 2.9).  However, that both RFP-Munc18c and GFP-SNAP23C/A signals 

recover after a subsequent plasma membrane photobleach when coexpressed with syntaxin4LE 

supports the interpretation that a Munc18c-syntaxin4LE-SNAP23C/A complex is formed 

specifically at the plasma membrane.   

As a final measure of whether the interaction of Munc18c affects Q-SNARE complex 

formation, we tested for co-immunoprecipitation of the proteins when coexpressed in HEK293-

S3 cells.  Since the HEK293 cell line contains endogenous syntaxin4, an epitope tag was used to 

limit immunoprecipitation to proteins interacting with the open mutant of syntaxin4 (syntaxin4LE-

myc2), thereby facilitating a direct comparison with syntaxin4WT-myc2.  As shown in Figure 2.7C, 

immunoprecipitation with an anti-myc antibody resulted in a co-precipitation of endogenous 
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SNAP23 only when syntaxin4LE, not syntaxin4WT, was used for pulldown.  Moreover, the 

syntaxin4LE-SNAP23 complex was not dissociated by the additional overexpression of FLAG-

Munc18c, which also bound to expressed syntaxin4LE.  Comparatively, coexpression of FLAG-

Munc18c inhibited the binding of syntaxin4WT-myc2 to SNAP23. Importantly, detectable levels of 

both SNAP23 and FLAG-Munc18c were present equivalently in the lysate and supernatant in 

cells lacking expressed syntaxin4, which demonstrates that both proteins were specifically pulled 

down by the myc-tagged syntaxins.  Since coprecipitation of Munc18c and SNAP23 may be 

explained by immunoprecipitation of a mixture of syntaxin4LE in heterodimeric complex with 

Munc18c and SNAP23, we tested for a Munc18c-syntaxin4LE-SNAP23 tripartite complex, as 

suggested by the in vitro binding of Munc18c to preformed syntaxin4ΔTM-SNAP23 binary 

complexes (Latham, Lopez et al. 2006).  While expression of Munc18c inhibited co-precipitation 

of syntaxin4WT by myc-SNAP23 (Fig. 2.8, left panel), immunoprecipitation of myc-tagged 

SNAP23 resulted in co-precipitation of both expressed syntaxin4LE and FLAG-Munc18c (Fig. 

2.8, middle panel).  Notably, SNAP23 did not bind directly to Munc18c such that pulldown of 

Munc18c must have occurred through a trimeric complex (Fig. 2.8, right panel).  Endogenous 

VAMP2 was not found associated with this complex, suggesting that either VAMP2 is prohibited 

from entering SNARE complexes when Munc18c is bound (Tellam, Macaulay et al. 1997), or 

that ternary SNARE complex formation was transient and went undetected by our assay.  

However, it is possible to conclude from both the photobleach analysis and immunoprecipitation 

experiments that (1) Munc18c inhibition of Q-SNARE complex formation is relieved by a 

conformational change in syntaxin4, and (2) Munc18c binding to Q-SNARE complexes suggests 

an additional regulatory capacity on downstream fusion events.     

 

Functional effects of Munc18c-syntaxin4 binding states on GLUT4 trafficking −  The above 

results demonstrate two distinct binding states of the Munc18c-syntaxin4 interaction: Munc18c 

binding to a conformation of syntaxin4 that is inhibitory to SNARE complexes, and furthermore 
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to an open conformation, through binding to Q-SNARE complexes (Figs. 2.7-9).  We next sought 

to determine the functional correlate of each Munc18c-syntaxin4 binding state on GLUT4 vesicle 

plasma membrane recruitment and fusion under expression conditions favoring Munc18c’s 

interaction with either the closed or open forms of syntaxin4.  Our assay of SNARE complex 

formation was based on quantification of the insulin-stimulated plasma membrane insertion of 

GLUT4 storage vesicles in 3T3L1 adipocytes stably expressing myc7-GLUT4-GFP (Bogan, 

McKee et al. 2001; Chang, Chiang et al. 2006).  In these cells, the resting distribution of GLUT4 

vesicles is primarily in intracellular compartments, whereas insulin promotes a large net increase 

in the number of plasma membrane-bound transporters, catalyzed by syntaxin4/SNARE 

complexes (Dugani and Klip 2005).  The movement of GLUT4 was monitored by measuring 

GFP fluorescence at the cell periphery.  Immunostaining of the exofacial myc7 epitope, contained 

in the first extracellular loop of GLUT4, was used to distinguish vesicle fusion from vesicle 

plasma membrane localization. 

We examined the effect of Munc18c overexpressed with CFP-syntaxin4WT, CFP-

syntaxin4LE, or CFP-syntaxin4I241A on GLUT4 trafficking in 3T3L1 adipocytes.  The cells were 

fixed before or after stimulation with 100 nM insulin, immunostained against the myc epitope, 

and blindly scored for the presence of translocated (peripheral GFP) or fused (peripheral indirect 

myc immunofluorescence) GLUT4 vesicles (summarized in Table 2.1).  Representative confocal 

images for each treatment are shown in Figure 2.10A.  In the absence of insulin, the extent of 

GLUT4 movement to the cell periphery in cells expressing CFP-syntaxin4WT and Munc18c was 

limited to 18±10% of cells (n=75), with very little vesicle fusion (2.5±1.5%).  Insulin stimulated a 

~4.5-fold increase in vesicle recruitment (83±4%, n=114).  These results are comparable to 

GLUT4 recruitment in untransfected adipocytes in the absence (12±8%, n=75) and presence 

(95±3%, n=75) of insulin.  By comparison, 79±3% (n=100) of the cells expressing CFP-

syntaxin4LE displayed unregulated recruitment of GLUT4 vesicles to the plasma membrane in the 
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absence of insulin, despite the presence of coexpressed Munc18c (Table 2.1).  To rigorously 

quantify the GLUT4 localization changes induced by in the Munc18c/syntaxin4LE-expressing 

cells in the absence of insulin, we examined cells exhibiting equivalent expression of both CFP-

syntaxin4 (or mutants) and myc7-GLUT4-GFP across treatments (Fig. 2.10B).  As depicted in 

Fig. 2.10C, CFP and GFP fluorescence intensity was measured along a 10 pixel wide line, and 

average fluorescence intensities were plotted as a function of distance from the plasma 

membrane.  CFP-syntaxin4WT and CFP-syntaxin4LE, each exhibited proper membrane localization 

when expressed with Munc18c.  Yet, only cells expressing CFP-syntaxin4LE exhibited high 

amounts of plasma membrane localized myc7-GLUT4-GFP.  Thus, GLUT4 vesicle recruitment 

was strictly promoted by the conformational change in syntaxin4.  However, that only 5±3% of 

the cells co-expressing syntaxin4LE and Munc18c exhibited GLUT4 fusion (without insulin) 

(Table 2.1) suggests a further mechanism exists to arrest GLUT4 vesicles at the plasma 

membrane without permitting vesicle fusion.  To eliminate the possibility that the CFP tag used 

on the syntaxin4 constructs inhibits fusion, we transfected adipocytes with unlabeled syntaxin4WT 

or syntaxin4LE cotransfected with Cerulean-Munc18c.    Coexpression of syntaxin4 was 

confirmed based on the plasma membrane targeting of Cerulean-Munc18c (Fig. 2.11), which 

does not occur to a significant extent in the absence of overexpressed syntaxin4.  As before, 

GLUT4 vesicles were found abnormally docked in the absence of insulin in cells expressing 

syntaxin4LE (but not syntaxin4WT) and Cerulean-Munc18c.  These complementary results support 

the interpretation that a conformational change in syntaxin4 is sufficient to tether GLUT4 vesicles 

to the plasma membrane without allowing their fusion.  

Notably, our syntaxin4 experiments were performed  with overexpressed Munc18c, 

which leaves open the possibility that Munc18c is required for either GLUT4 vesicle docking or 

the conformational switch in syntaxin4 at either the docking  or fusion stages of GLUT4 

trafficking.  To test these possibilities, we overexpressed Munc18c with CFP-syntaxin4I241A, 

which exhibits reduced binding with Munc18c regardless of syntaxin4 conformation.  In 
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unstimulated adipocytes GLUT4 movement to the plasma membrane was unaffected (12±4%, 

n=75) (Fig. 2.10D), indicating Munc18c binding to syntaxin4 is not strictly required to inhibit 

GLUT4 vesicle recruitment, consistent with results in Munc18c-null cells (Kanda, Tamori et al. 

2005).  In insulin-stimulated cells, CFP-syntaxin4I241A displayed a slight but significant increase 

in the percentage of cells displaying GLUT4 fusion (65±1%, n=75) when compared with 

coexpression of Munc18c and CFP-syntaxin4WT (46±2%, n=114) or CFP-syntaxin4LE (52±2%, 

n=125).  Thus, the association of Munc18c with syntaxin4 may correlate with the extent of 

insulin-regulated GLUT4 fusion.  

 

Discussion 

Sec1/Munc18 (SM) proteins exert functional effects at different stages of SNARE 

complex assembly primarily through specific, non-conserved, interactions with cognate 

syntaxins.  In this study we have focused on identifying and characterizing the molecular 

underpinnings of the interactions between the ubiquitous SM protein Munc18c and its Q-SNARE 

cognate, syntaxin4, an interaction of critical importance in the regulation of insulin-stimulated 

GLUT4 vesicle exocytosis in adipose tissue and muscle (Dugani and Klip 2005).  Using a 

combination of optical techniques and biochemical approaches, we have demonstrated that 

Munc18c is capable of multiple binding interactions with syntaxin4 in vivo which likely occur 

during the stepwise assembly of SNARE complexes.  These interactions include Munc18c 

binding to a closed conformation of syntaxin4 that is inhibitory to SNARE complex nucleation, 

as well as to an open conformation, which permits Munc18c binding to heteromeric Q-SNARE 

complexes.  Point mutants were used to identify the syntaxin4 SNARE domain as essential for 

mediating Munc18c interaction with both syntaxin4 conformations, although the N-terminus of 

syntaxin4 was strictly required, but insufficient, for Munc18c binding to the open conformation.  

Lastly, we provide evidence that these multiple Munc18c binding states with Q-SNAREs in vivo 
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are critical determinants of distinct functional effects on Glut4 vesicle translocation in 

differentiated 3T3L1 adipocytes.     

Recent reports have indicated that Munc18c possesses an ability to directly interact with 

syntaxin4 while it is bound to other SNARE proteins (Widberg, Bryant et al. 2003; Latham, 

Lopez et al. 2006).  Our findings in living 3T3L1 adipocytes extend the analysis of direct 

Munc18c interactions to an in vivo situation, with a specific focus on its interactions with 

syntaxin4. We report that Munc18c exhibited nearly equal FRET efficiency with either wildtype 

syntaxin4 or a mutant that maintains a constitutively open conformation (L173A/E174A; LE).  

Therefore, the affinity of Munc18c for syntaxin4 appears to be largely unaffected by the 

conformational state of syntaxin4.  Our direct in vitro binding studies using bacterially expressed 

GST fusion proteins, as well as co-immunoprecipitation results from cell lysates confirmed the in 

vivo findings.  We and others have previously reported that Munc18a also exhibits limited 

binding to the constitutively open LE mutant of syntaxin1A in vivo, (Dulubova, Sugita et al. 

1999; Liu, Ernst et al. 2004), which has been recently extended to include Munc18a  interaction 

with syntaxin1A in heteromeric Q-SNARE complexes (Zilly, Sorensen et al. 2006) and fully 

assembled SNARE complexes (Dulubova, Khvotchev et al. 2007; Shen, Tareste et al. 2007).  

Comparatively, the yeast exocytotic SM protein Sec1p interacts weakly with a closed 

conformation of Sso1p, favoring binding to Sso1p-Snc2p Q-SNARE complexes (Carr, Grote et 

al. 1999; Scott, Van Komen et al. 2004).  Therefore, the interaction of exocytotic SM proteins 

with their cognate syntaxins appears to be converging on a general model where exocytotic 

Sec/Munc18 proteins demonstrate multiple binding states. 

Our data establishing that Munc18c is able to interact with an open conformation of 

syntaxin4 in vivo prompted experiments to map the primary structural sites that mediate the 

interaction.  To date, the interaction sites between these proteins have been based on the crystal 

structure of Munc18-1 in complex with syntaxin1A (Misura, Scheller et al. 2000).  Indeed, our 

initial threading of the Munc18c and syntaxin4 sequences directly into the Munc18a-syntaxin1A 
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crystal structure predicted similar interactions between Munc18c and the C-terminus of 

syntaxin4, when it is in its closed conformation.  In confirmation of this prediction, homologous 

I241A and I233A mutations in syntaxin4 and syntaxin1A, respectively, both dramatically reduced 

binding to their SM partners (Graham, Barclay et al. 2004; Liu, Ernst et al. 2004).  Furthermore, 

the entire SNARE domain of syntaxin1A substituted for the syntaxin4 SNARE domain exhibited 

no consequence for Munc18c binding.  Notably, the complementary substitution (i.e., 

replacement of syntaxin1A SNARE motif with syntaxin4 sequence) resulted in a complete loss of 

Munc18a binding to the syntaxin1A chimera (data not shown).  These results correlate well with 

the binding of Munc18c to both syntaxin4 and, with lesser affinity, to syntaxin1A, whereas 

Munc18a shows specificity for syntaxin1A (Dulubova, Yamaguchi et al. 2003).   

By comparison to the relatively well-defined interactions of Munc18c with a closed state 

of syntaxin4, the specific structural determinants that allow interaction of Munc18c with an open 

conformation of syntaxin4 have been largely unstudied.    In the current study, we show that the 

N-terminus of syntaxin4 is required for binding of Munc18c to the open mutant of syntaxin4, but 

not to wildtype syntaxin4, via examination of an arginine substitution at syntaxin4 D3 in FRET 

binding assays.  Notably, this residue is conserved in both exocytotic and ER/Golgi syntaxins 

(syntaxins 1-4, 5 and 18), suggesting that SM protein interaction with the N-terminus of syntaxin 

is a common mechanism for association with the open conformation in intracellular SNARE 

complexes.  This is consistent with the N-terminal motif of Sed5p/syntaxin5 an Ufe1p/syntaxin18 

providing a platform for their SM partner, Sly1p, to bind both monomeric syntaxin proteins and 

SNARE complexes (Peng and Gallwitz 2002; Yamaguchi, Dulubova et al. 2002).  Our findings 

complement a recent report that used an in vitro binding assay to elucidate the Munc18c binding 

pocket predicted to hold the N-terminus of syntaxin4 (Latham, Lopez et al. 2006).  However, a 

notable discrepancy between these collective findings is whether the syntaxin4 N-terminus is 

sufficient for Munc18c binding.  Using an in vitro binding assay, Latham et al. (Latham, Lopez et 

al. 2006) reported significant association between Munc18c and a mutant syntaxin4 that lacked 
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the SNARE motif (H3 domain) and transmembrane domain (syntaxin4ΔH3/TM).   However, our in 

vivo analysis using a FRET based assay demonstrated a lack of Munc18c interaction with 

syntaxin4ΔH3/TM, thereby suggesting that the N-terminal interaction is insufficient to mediate a 

Munc18c-syntaxin4 interaction, in parallel to the in vitro findings of Ter Beest et al. (ter Beest, 

Chapin et al. 2005).  The necessity of the syntaxin4 C-terminus was additionally confirmed using 

the I241A mutation of syntaxin4, a residue predicted to bind to the central cavity of Munc18c.  

The syntaxin4I241A mutant eliminated Munc18c binding to constitutively open syntaxin4 and 

severely reduced interaction with wildtype syntaxin4.  Therefore, our data favor a model in which 

Munc18c interaction with either the open or closed conformation of syntaxin4 depends upon 

SNARE motif interactions, and with an additional requirement for an N-terminal interaction with 

syntaxin4 in the open conformation.  A similar requirement has been demonstrated for Munc18a 

binding to the open conformation of syntaxin1A in SNARE complexes (Dulubova, Khvotchev et 

al. 2007). 

The SNARE assembly cycle begins with syntaxin nucleation of Qb- and Qc-SNARE 

complexes followed by the final SNARE motif contributed by vesicular R-SNAREs (Parlati, 

McNew et al. 2000).  It has remained unclear which steps are the relevant sites of action for the 

exocytotic SM proteins.  In the present study we demonstrate that Munc18c can interact with a 

SNARE pairing-competent conformation of syntaxin4 in vivo.   These findings extend the recent 

report using in vitro binding studies which showed Munc18c associated with pre-formed 

syntaxin4-SNAP23 Q-SNARE complexes as well as a ternary SNARE complex composed of 

syntaxin4, SNAP23, and VAMP2 (Widberg, Bryant et al. 2003; Latham, Lopez et al. 2006).  It is 

difficult to directly demonstrate that Munc18c-containing SNARE complexes form in vivo within 

the regulated secretory pathway.  However, as support that these complexes form we show that 

constitutively open syntaxin4LE recruits both Munc18c and diffusible GFP-SNAP23C/A to the 

plasma membrane as resolved by photobleach/FRAP of GFP and RFP.  Our SNAP23 

immunoprecipitation data additionally confirms that a Munc18c-syntaxin4LE-SNAP23 complex 



 78

can be co-precipitated from lysates of HEK293-S3 cells overexpressing these proteins.  This 

complex is prohibited from forming by Munc18c binding to syntaxin4WT.  Thus, the stabilization 

of an open syntaxin4 conformation relieves Munc18c’s block on SNARE complex nucleation, 

although the functional significance of the Munc18c-Q-SNARE complexes remains unclear.  

That endogenous VAMP2 was not found associated with this complex in immunoprecipitation 

experiments is difficult to interpret.  Either the Q-SNARE-Munc18c complex is prohibitive of 

VAMP2 binding despite the constitutive secretion in these cells, or ternary SNARE complex 

formation was transient and went undetected.   

Of fundamental importance is to correlate the distinct conformational states of syntaxin4 

with specific functional effects on the GLUT4 translocation pathway. The accumulation of 

GLUT4 vesicles at the plasma membrane prior to detectable increases in glucose uptake or to the 

accessibility of exofacial GLUT4 epitopes (Jhun, Rampal et al. 1992; Satoh, Nishimura et al. 

1993) has led to a trafficking model that identifies separate tethering, docking and fusion steps as 

the critical sites of hormone action on exocytosis.  To distinguish these separate kinetic steps we 

performed functional assays in differentiated 3T3L1 adipocytes in which dual-labeled myc7-

GLUT4-GFP was used as a tool to differentiate between GLUT4-vesicle docking and GLUT4-

vesicle fusion.  Our results suggest that the specific conformation of syntaxin4 together with its 

state of interaction with Munc18c defines whether GLUT4 vesicles are retained in recycling 

pathways or undergo fusion.  GLUT4 vesicles were observed to accumulate at the plasma 

membrane regions following overexpression of the constitutively open LE mutant of syntaxin4 

with Munc18c, even in the absence of insulin stimulation.  By comparison, no such accumulation 

was observed upon coexpression of wildtype syntaxin4 with Munc18c.  Indeed, reports from 

other groups indicate that GLUT4 vesicles cycle to the plasma membrane in the absence of 

insulin, although studies using TIRFM indicate that these vesicles do not normally dock 

(Lizunov, Matsumoto et al. 2005; Gonzalez and McGraw 2006).  Our results indicate that the 

constitutively open conformation of syntaxin4LE bypasses the requirement for insulin-regulated 
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signaling pathways, uncoupling the normal checkpoint between vesicle recycling and vesicle 

docking.  Interestingly, while SNARE proteins are not traditionally thought of as docking factors, 

particularly in neurons, it has been recently reported that syntaxin1A is required for vesicle 

docking in adrenal chromaffin cells (de Wit, Cornelisse et al. 2006).   

Although we cannot rule out a role for Munc18c in promoting either vesicle docking or 

assisting in the conformational transition of syntaxin4, it does not appear that Munc18c is strictly 

required for either of these processes.  For example, overexpression of the Munc18c with the 

syntaxin4I241A mutant, which demonstrates greatly reduced Munc18c binding, exhibited no 

abnormal docking in the absence of insulin.  Moreover, GLUT4 vesicles dock normally in an 

insulin-regulated fashion in adipocytes lacking Munc18c (Kanda, Tamori et al. 2005).  However, 

the necessity of insulin to drive GLUT4 vesicle fusion with syntaxin4LE-Munc18c coexpression 

may be to promote disassembly of Munc18c from syntaxin4.  Complementary to this 

interpretation, several lines of evidence suggest that insulin ultimately reduces Munc18c-

syntaxin4 complexation through the activity of phosphatidylinositol 3-kinase (PI3K) and protein 

kinase Cξ (PKCξ) (Hodgkinson, Mander et al. 2005; Kanda, Tamori et al. 2005).  A model 

whereby Munc18c dissociates from syntaxin4 proximal to fusion may explain why we observed 

an increased frequency of insulin-stimulated fusion events in adipocytes coexpressing Munc18c 

with the syntaxin4I241A mutant relative to syntaxin4WT or syntaxin4LE.  

In summary, our data indicate that Munc18c likely regulates syntaxin4-mediated SNARE 

complex formation at two discrete stages:  (1) Munc18c prevents monomeric syntaxin4 from 

entering into Q-SNARE complexes with SNAP23, preventing unwanted vesicle docking through 

an inhibition which is probably overcome by the priming factors which open syntaxin4; (2) 

through binding of the SNARE complexes, Munc18c may place an additional inhibitory clamp on 

vesicle fusion, and may also serve as a scaffold for additional proteins to further regulate SNARE 

disassembly or recycling.  An important focus of future experiments will be to elucidate the 
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specific signaling pathways that alter the binding of Munc18c to syntaxin4 and of the specific 

priming factors that control syntaxin4 conformation in insulin-stimulated adipocytes. 

 

Addendum:  Molecular Characterization of Munc18 as a Syntaxin Chaperone 
 

Introduction 
 
Syntaxin is a C-terminally anchored integral membrane protein that participates in the 

catalysis of membrane fusion through its SNARE domain.  The ability of Sec1/Munc18 (SM) 

proteins to specifically bind syntaxin partners with high affinity underscores three potential 

functions of SM proteins as syntaxin chaperones:  to (1) prevent undesired syntaxin-SNARE 

pairings, (2) enhance fusion specificity, and (3) prime the SNAREs to accelerate fusion.   

First, through binding to closed syntaxin, SM proteins may be required to protect the 

SNARE domain from forming undesired SNARE-SNARE pairings as syntaxin is transported 

from its site of synthesis at the ER to the plasma membrane sites of exocytosis (Medine, Rickman 

et al. 2007; Arunachalam, Han et al. 2008).  This hypothesis is generally supported by genetic 

ablation studies indicating that Munc18 and syntaxin tightly regulate each others expression to 

achieve a 1:1 stoichiometric ratio (Verhage, Maia et al. 2000; Voets, Toonen et al. 2001; Toonen, 

de Vries et al. 2005).  Moreover, syntaxin1A is retained intracellularly when overexpressed in 

epithelial cells, with its delivery to the cell surface being strongly facilitated by Munc18 co-

expression (Rowe, Corradi et al. 1999; Rowe, Calegari et al. 2001; Liu, Ernst et al. 2004).  

However, an absolute requirement for Munc18 in syntaxin trafficking is unlikely, as syntaxin 

correctly targets to the plasma membrane in neurons lacking Munc18 (Toonen, de Vries et al. 

2005). 

 A second chaperone function of SM proteins may be to confer specificity to membrane 

trafficking, thus appropriately pairing incoming vesicles with their target membranes.  This 

hypothesis first arose when it was observed that SNARE interactions are not, alone, intrinsically 

selective.  For example, SNARE complexes form with comparable thermal stability even when 
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the SNARE motifs of VAMP 4, 7, or 8 replace VAMP2 in the SNARE complex with either 

syntaxin1A/SNAP25 or syntaxin4/SNAP23 (Yang, Gonzalez et al. 1999; Lang, Margittai et al. 

2002).  Biochemical analysis of SM proteins, meanwhile, indicates they typically interact with 

just one or two syntaxins with nanomolar affinity (Pevsner, Hsu et al. 1994; Dulubova, 

Yamaguchi et al. 2003), placing them in a position to confer specificity.  In vivo rescue 

experiments have additionally shown that SM proteins can rescue null mutations from a different 

species, provided that both isoforms are acting in the same membrane trafficking pathway (e.g., 

exocytosis).  For example, deficiency of the SM protein unc-18 in C. elegans is rescued by 

expression of (mammalian) Munc18-1, but not Munc18-2 (Gengyo-Ando, Kitayama et al. 1996).  

Likewise, mutants lacking neuronal Drosophila VAMP2/synaptobrevin are rescued by a non-

neuronal paralog (Bhattacharya, Stewart et al. 2002). Comparatively, the absence of Munc18c, 

which perturbs normal GLUT4 trafficking in adipose tissue and skeletal muscle, cannot be 

rescued by Munc18b despite the existence of both isoforms in the same tissue.  Thus, a natural 

consequence of SM-syntaxin specificity and affinity is that trafficking pathways are marked by 

unique pairings (Dulubova, Yamaguchi et al. 2003; Toonen and Verhage 2003).   

 Finally, SM proteins can act as stimulatory subunits of the SNARE complex (i.e., as 

priming factors).  Shen and colleagues (Shen, Tareste et al. 2007) established the ability of 

Munc18-1 to dose-dependently accelerate in vitro liposome fusion reactions catalyzed by the 

neuronal SNAREs (syntaxin1A/SNAP25/VAMP2).  Underlying this feature is the ability of SM 

proteins to bind SNARE complexes, as evidenced in constitutive exocytosis (Sec1p), regulated 

exocytosis (Munc18-1), endocytosis (Vps45p), and ER-Golgi transport (Sly1p) (Carr, Grote et al. 

1999; Peng and Gallwitz 2004; Scott, Van Komen et al. 2004; Dulubova, Khvotchev et al. 2007).  

Furthermore, the ability of SM proteins to block SNARE assembly, discussed above, is 

biochemically separable from their function to speed fusion.  For example, SM binding to the N-

terminus of syntaxin is required only for the latter (Khvotchev, Dulubova et al. 2007).  
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Additionally, point mutations in the Drosophila SM homolog ROP that block its inhibitory 

actions do not affect the ability of Munc18-1 to stimulate fusion (Shen, Tareste et al. 2007).     

   The purpose of this study was to provide direct information on the molecular interactions 

underlying syntaxin trafficking by Munc18, as well as to determine how specificity of the 

trafficking pathways are maintained by specific SM-syntaxin partnerships.  Our investigations 

utilized fluoroprotein-labeled syntaxin and Munc18 to visualize their subcellular localization in 

living secretory cells, as well as to study their function in vesicle-plasma membrane fusion 

reactions.  Our findings support the conclusion that SM proteins act as syntaxin chaperones in 

two main ways:  (1) SM levels in excess of syntaxin are required for syntaxin to plasma 

membrane target; (2) the ability of specific SM-syntaxin pairs to catalyze constitutive versus fast 

Ca2+-dependent exocytosis is adaptable and dependent on the levels of each pair.    

 
Experimental Procedures 

  
Cell culture and transfection  −  3T3L1 fibroblasts and HEK293-S3 cells were maintained in 

culture as described in Chapter II Experimental Procedures.   PC-12 cells were cultured in 10% 

CO2 in DMEM supplemented with 10% horse serum, 5% fetal bovine serum, penicillin (100 

U/ml), streptomycin (100 μg/ml), and gentamicin (10 μg/ml) (Invitrogen). Cells were plated on 

coverglass affixed to the bottom of 35mm culture dishes 12-24 hours prior to transfection using 

Lipofectamine2000 (Invitrogen).   

 

Quantification of plasma membrane targeting of Munc18 and syntaxin−  The targeting of cYFP-

Munc18 or CFP-syntaxin to a region adjacent to the plasma membrane was quantified relative to 

the cytoplasm according to the equation 
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where Atot is the total area of the cell, Itot is the averaged intensity of the cell, Acyt is the total area 

of the cytoplasm (defined as the region inside of and exclusive of the plasma membrane), and Icyt 

is the averaged intensity of the cytoplasm.  Regions were selected and computation of average 

fluorescence intensity and area were performed using Metamorph (Universal Imaging, v6.3r5). 

 

Human growth hormone (hGH) Secretion Assay−  PC-12 cells were plated onto 24-well plates 

and transfected with expression plasmids containing cDNAs for hGH, ± the light chain of the 

Botulinum neurotoxin C (BotC).  Rescue of secretion from BotC cleavage of syntaxin1A was 

facilitated by the further addition of Munc18a + BotC resistant CFP-syntaxin1AK253I, or Munc18c 

+ CFP-syntaxin4.  The total DNA concentration during transfection was held constant across 

treatments by addition of a neomycin control plasmid. At 48–72 h following transfection, cells 

were rinsed for 6 min in a physiological saline solution (PSS, in mM: 145 NaCl, 5.6 KCl, 15 

NaHEPES, 0.5 MgCl2, 2.2 CaCl2, 5.6 glucose, 0.5 Na ascorbate, 2 mg/ml bovine serum albumin, 

pH 7.3), followed by a 6-min stimulation with 50 mM K+ (same as PSS, with equimolar 

substitution of K+ for Na+).  PSS containing the secreted hGH was collected, and cells were lysed 

(lysis buffer, in mM: 0.2 EDTA, 10 HEPES, 1% Triton X-100, pH 7.4).  To determine the percent 

of total hGH secreted, an hGH ELISA kit (Roche Diagnostics) was used to measure the hGH 

content of the secreted fraction as a percentage of the hGH contained in the cell lysates.  Each 

experiment was performed with quadruplicate replicates for each treatment.  

 

Human growth hormone (hGH) Secretion Assay−  PC-12 cells were plated onto 24-well plates 

and transfected with expression plasmids containing cDNAs for hGH, ± the light chain of the 

Botulinum neurotoxin C (BotC).  Rescue of secretion from BotC cleavage of syntaxin1A was 

facilitated by the further addition of Munc18a + BotC resistant CFP-syntaxin1AK253I, or Munc18c 

+ CFP-syntaxin4.  The total DNA concentration during transfection was held constant across 

treatments by addition of a neomycin control plasmid. At 48–72 h following transfection, cells 
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were rinsed for 6 min in a physiological saline solution (PSS, in mM: 145 NaCl, 5.6 KCl, 15 

NaHEPES, 0.5 MgCl2, 2.2 CaCl2, 5.6 glucose, 0.5 Na ascorbate, 2 mg/ml bovine serum albumin, 

pH 7.3), followed by a 6-min stimulation with 50 mM K+ (same as PSS, with equimolar 

substitution of K+ for Na+).  PSS containing the secreted hGH was collected, and cells were lysed 

(lysis buffer, in mM: 0.2 EDTA, 10 HEPES, 1% Triton X-100, pH 7.4).  To determine the percent 

of total hGH secreted, an hGH ELISA kit (Roche Diagnostics) was used to measure the hGH 

content of the secreted fraction as a percentage of the hGH contained in the cell lysates.  Each 

experiment was performed with quadruplicate replicates for each treatment. 

Results 
 

Requirements for Munc18 and syntaxin membrane targeting−  To determine whether Munc18c 

and syntaxin4 are reciprocally required for each others membrane targeting, we initially used 

optical imaging of N-terminally labeled cYFP-Munc18c and CFP-syntaxin4 (Figure 2.12AA) to 

follow their subcellular localization when expressed in living differentiated 3T3L1 adipocytes.  

These cells utilize Munc18c and syntaxin4 for cycling of GLUT4 transporters on and off the 

plasma membrane, thereby regulating blood sugar (Dugani and Klip 2005)..  Expressed 

individually, cYFP-Munc18c was found to distribute evenly throughout the cytosol, while CFP-

syntaxin4 fluorescence appeared punctate resulting from intracellular clustering (Fig. 2.12B).  

The restricted ability of syntaxin1A, when overexpressed alone, to target to the plasma membrane 

region has been reported previously in HEK293, MDCK, and Caco-2 cells as a result of limiting 

levels of Munc18-1 expression (Rowe, Corradi et al. 1999; Liu, Ernst et al. 2004).  Accordingly, 

coexpression of CFP-syntaxin4 and cYFP-Munc18c localized both proteins to the plasma 

membrane region, a distribution consistent with that previously reported for the endogenously 

expressed proteins (Tellam, Macaulay et al. 1997).  These results also indicate that the 

fluoroprotein tags used in the fusion protein constructs do not interfere with the plasma 

membrane targeting function of these proteins. 
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It has been reported that the association of these Munc18 and syntaxin is initiated on intracellular 

membranes and continues through trafficking pathways to the plasma membrane (Rowe, Corradi 

et al. 1999; Yang, Xu et al. 2006).  To test whether a stable Munc18c interaction is required for 

targeting of syntaxin4 to the plasma membrane region, we tested the effect of CFP-syntaxin 4 

coexpressed with a single point mutant of Munc18c (cYFP-Munc18cR240L).  This mutant was 

based on the previously characterized temperature-sensitive SM mutants, Munc18cR240K and the 

Saccharomyces cerivisiae homolog Sly1pR266K, which are known to exhibit a strongly reduced 

affinity of interaction with syntaxin 4 and Sed5p, respectively (Cao, Ballew et al. 1998; 

Thurmond and Pessin 2000).  When Munc18cR240L was coexpressed with CFP-syntaxin4, only the 

CFP-syntaxin4 localized to the plasma membrane (Fig. 2.13B), suggesting that syntaxin4 does 

not require a high affinity interaction with Munc18c for plasma membrane targeting.  However, 

these data indicate that Munc18c does require syntaxin4 interaction for membrane localization 

(Fig. 2.13B).  To quantify the Munc18c-syntaxin4 interaction the subcellular targeting of 

Munc18c was calculated as an averaged plasma membrane ‘targeting factor’ (TF).  This TF 

relates the average cYPF-Munc18c fluorescence intensity in the membrane region with its 

average fluorescence intensity in the cytosol (see Experimental Procedures for equation).  A 

targeting factor (TF)>1 indicates predominant membrane localization, whereas TF<1 indicates 

predominant cytosolic localization.  As shown in Figure 2.13C, cYFP-Munc18c was principally 

found in the membrane region when cotransfected with CFP-syntaxin4.  When Munc18c was 

expressed alone or when it was mutated at R240L, it remained primarily cytosolic.  Collectively, 

these results suggest that although the presence of Munc18c is required for efficient syntaxin4 

membrane targeting, neither a high affinity nor high stability interaction with syntaxin4 is 

necessary.    

Molecular requirements for the specificity of Munc18 and syntaxin pairings − As 

SNARE-SNARE interactions are not intrinsically selective in vitro (Yang, Gonzalez et al. 1999), 

it has been hypothesized that the high (nM) affinity SM-syntaxin interactions confer specificity 
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on particular membrane trafficking pathways in cell types where multiple SM-syntaxin pairs are 

present.  For example, in neuroendocrine cells (e.g., neurons, pancreatic β-cells, chromaffin 

cells), Munc18a/syntaxin1A is believed to primarily mediate Ca2+-triggered exocytosis despite 

the presence of Munc18c/syntaxin4 at the PM.  Comparatively, 3T3L1 adipocytes contain 

Munc18a/b/c (Tellam, McIntosh et al. 1995) although the Munc18c/syntaxin4 complex is 

implicated in the insulin-dependent surface presentation of GLUT4 (Tellam, Macaulay et al. 

1997; Thurmond, Ceresa et al. 1998).  To probe the intrinsic molecular requirements for this 

apparent cell-type specificity we examined ‘heterologous’ SM-syntaxin pairings in 3T3L1 

adipocytes.   

Using the membrane targeting assay, we initially introduced cYFP-Munc18a and/or CFP-

syntaxin1A into 3T3L1 adipocytes.  Munc18a was found dispersed throughout the cytosol when 

coexpressed with syntaxin4 (TFMunc18=0.79±0.01, n=31), but localized to the plasma membrane 

(PM) regions in cells co-expressing syntaxin1A (TFMunc18=1.17±0.02, n=25) (Fig 2.12C).  

Importantly, the extent of Munc18a membrane targeting in Munc18a/syntaxin1A-expressing cells 

was comparable to that found for Munc18c in the Munc18c/syntaxin4 cotransfection condition 

(TFMunc18=1.22±0.03, n=20).  By comparison, cYFP-Munc18c demonstrated membrane targeting 

to a lesser but significant extent to when coexpressed with neuronal CFP-syntaxin1A 

(TFMunc18=0.92±0.03, n=25).  In summary, the Munc18a interaction is specific for syntaxin1A, 

while Munc18c is promiscuous in its targeting of both syntaxins 1 and 4 to the PM.   

To address the possibility that the targeting function of SM-syntaxin complexes to the 

PM is cell-type specific or regulated by the activation state of the 3T3L1 adipocytes, the 

experiments were repeated in HEK293-S3 cells, which exhibit constitutive rather than regulated 

secretion.  As in adipocytes, these cells contain syntaxin4/Munc18c, but not 

Munc18a/syntaxin1A (Gladycheva, Ho et al. 2004).  Similar results to those found in adipocytes 

were observed in HEK293-S3 cells (c.f., Fig. 2.12 D and E with Fig. 2.13 B and C).  Notably, the 

targeting of syntaxin to the plasma membrane by Munc18 was found to correlate directly with the 
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previously reported biochemical measurements of the SM-syntaxin binding affinity performed in 

vitro: Munc18a-syntaxin4 <<< Munc18c-syntaxin1A < Munc18a-syntaxin1A ≅ Munc18c-

syntaxin4 (Dulubova, Yamaguchi et al. 2003).   Therefore, we hypothesized that reducing the 

affinity of SM-syntaxin interaction would also consequently reduce the trafficking of syntaxin.  

To test this hypothesis we took advantage of the intermediate binding/trafficking phenotype seen 

in the cYFP-Munc18c/CFP-syntaxin1A co-transfection condition by adjusting the relative levels 

of Munc18c << syntaxin1A. We found syntaxin1A co-localized to the peri-nuclear region with 

Munc18c (Fig. 2.12F).  In the experiments of Fig 2.12 B-E, where the Munc18c:syntaxin1A ratio 

was set to 1, significant syntaxin1A and Munc18c was present at the plasma membrane.   As a 

test of non-interacting proteins, we demonstrate that CFP-syntaxin4 when coexpressed with 

Munc18a was found predominantly on the peri-nuclear and surrounding inner membranes but 

was not co-localized with Munc18a.  Collectively, these results suggest that the relative level of 

Munc18 to syntaxin is a critical determinant for the proper targeting of Munc18c and syntaxin1A 

to the plasma membrane.  It is also possible that at low concentrations Munc18c fails to hold 

syntaxin1A in a closed (SNARE-pairing inactive) conformation, causing the mislocalization of 

both proteins.  Indeed, the open (SNARE-pairing active) conformation is known to promote 

ectopic SNARE-SNARE binding interactions within intracellular membranes (Medine, Rickman 

et al. 2007).  

Effect of syntaxin conformation on trafficking of Munc18 and syntaxin −  The SNARE-

pairing inactive binding mode (closed conformation) of syntaxin1A seen in the Munc18a-

syntaxin1A crystal structure (Misura, Scheller et al. 2000) is important for the proper targeting of 

both Munc18a and syntaxin1A to the PM (Rowe, Corradi et al. 1999; Rowe, Calegari et al. 2001; 

Liu, Ernst et al. 2004).  We questioned whether the ability of Munc18c and syntaxin4 to properly 

target to the plasma membrane also requires a closed conformation of syntaxin4.  To rigorously 

test this hypothesis, we examined the membrane targeting of Munc18 a or c co-expressed with the 

constitutively open LE mutants of their cognate syntaxins (syntaxin1A, L165A/E166A; 
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syntaxin4, L173A/E174A).  Importantly to our assay, it should be noted that the membrane 

localization of cYFP-Munc18s in these experiments mainly resulted from Munc18 binding to the 

exogenously expressed syntaxins, as a principally cytosolic signal was observed when the cYFP-

Munc18s were expressed alone (TFMunc18c= 0.79±0.01, n=20; TFMunc18a= 0.82±0.02, n=25).  

Figure 2.13A compares the subcellular distribution of cYFP-Munc18c when co-expressed with 

CFP-syntaxin4 or CFP-syntaxin4LE in HEK293-S3 cells.  In both treatments, Munc18c exhibited 

distinct plasma membrane localization.  Substantial differences in SM-syntaxin interaction were 

observed in the inability of CFP-syntaxin1ALE to facilitate plasma membrane targeting of co-

expressed cYFP-Munc18a, consistent with a previous demonstration by FRET that Munc18a-

syntaxin1ALE maintain only a low affinity interaction (Liu, Ernst et al. 2004).  Averaged results 

from numerous cells are shown in Figure. 2.13B.  Thus, based on the ability of syntaxin4LE to 

properly localize Munc18c to the PM, a closed conformation of syntaxin is not strictly required 

for targeting Munc18/syntaxin PM targeting.   

Given that Munc18c can bind and target to multiple conformations of syntaxin4, we next 

examined the possibility that Munc18c utilizes the N-terminus of syntaxin to facilitate the 

targeting of CFP-syntaxin4 (Fig. 2.12 B and C).  To test this possibility we characterized a mutant 

of syntaxin4, I241A, which eliminated binding of Munc18c to both closed and open syntaxin4 in 

our FRET assay (Fig. 2.6).  When co-expressed with cYFP-Munc18c, CFP-syntaxin4I241A 

targeted correctly to the plasma membrane (Fig. 2.13 C and D).  Control cells co-expressing 

cYFP-Munc18c and CFP-syntaxin4ΔH3/TM, which lacks its H3 (SNARE) domain and 

transmembrane anchor and exhibits cytosolic localization, were also analyzed to provide a 

quantitative comparison of TFs for cYPF-Munc18c and syntaxin4I241A.  Taken together, the 

results of Fig. 2.12 and 2.13 suggest the unexpected finding that the presence of Munc18c is 

required (i.e., that its expression strongly facilitates syntaxin4 targeting), but that binding to 

syntaxin4 is not required for proper plasma membrane targeting.    
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Examination of SM-syntaxin specificity in exocytotic fusion reactions −  A central goal of 

our experiments was to determine how Sec1/Munc18 proteins, by acting as chaperones for 

specific syntaxins at sites of exocytosis, confer identity to specific membrane trafficking 

pathways.  In particular, within the exocytotic pathways of most neuroendocrine cells (e.g., 

neurons, adrenal chromaffin cells, pancreatic β-cells, etc.), genetic evidence suggests that  

Munc18c/syntaxin4-SNARE complexes mediate constitutive secretion while 

Munc18a/syntaxin1A-SNARE complexes facilitate fast Ca2+-stimulated secretion (Toonen and 

Verhage 2003; Jahn and Scheller 2006).  It remains unclear how these two exocytotic pathways 

are discerned in vivo, and to what extent there is crosstalk.  Both syntaxin4/ and syntaxin1A/Q-

SNARE complexes form functional membrane receptors for the vesicular SNARE VAMP2 and 

both are present in the same cells.  To probe this question we developed an assay to test the fusion 

competency of various SM-syntaxin pairings in the pheochromocytoma cell line PC-12.  In this 

assay, human growth hormone (hGH) was used as a functional reporter of regulated secretory 

pathway specifically from transfected cells (Wick, Senter et al. 1993).  The BotC light chain, 

which cleaves syntaxin1A and precludes it from catalyzing membrane fusion (Schiavo, Rossetto 

et al. 1994), was co-transfected to eliminate potentially confounding effects of endogenous 

syntaxin1A in these cells.  Resistance of the transfected syntaxin1A constructs to BotC was 

accomplished by substituting Ile in place of Lys at residue 253 within the BotC cleavage site 

(Lam, Tryoen-Toth et al. 2008).  Syntaxin1AK253I and Munc18a have been previously shown to 

both target correctly to the plasma membrane and rescue hGH secretion in PC-12 cells co-

expressing BotC (Lam, Tryoen-Toth et al. 2008).   

Initially we examined the contribution of syntaxin1A to constitutive secretion.  Shown in 

Figure 2.14A, BotC cleavage of endogenous syntaxin1A reduced resting hGH secretion by 50%.  

To test if the BotC secretion defect was due specifically to endogenous syntaxin1A knockdown, 

we overexpressed BotC-resistant syntaxin1AK253I with Munc18a.  A partial restoration of 
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constitutive secretion was observed in cells expressing Munc18a with syntaxin1AK253I (73±13%, 

n=8) or CFP-syntaxin1AK253I (69±9%, n=8).  Importantly, previous studies employing this assay 

have shown that syntaxin1AK253I or Munc18a do not rescue hGH secretion alone, nor does 

syntaxin1AWT (which is susceptible to BotC cleavage) cotransfected with Munc18a (Lam, 

Tryoen-Toth et al. 2008).  When we examined whether the deficiency in basal exocytosis could 

be rescued by syntaxin4-Munc18c complexes in the presence of BotC, we found that the extent of 

secretion in cells overexpressing Munc18c and CFP-syntaxin4 (85±7%, n=8) was equivalent 

those rescued with Munc18a/syntaxin1AK253I.  Thus, Munc18a/synaxin1A or Munc18c/syntaxin4 

are capable of substituting for each other, at least for constitutive secretion.   

The above results prompted us to test whether fast, Ca2+-stimulated exocytosis, may also 

be catalyzed by Munc18c and syntaxin4 when Munc18a/syntaxin1A is inhibited by Bot C.  For 

these experiments we directly depolarized the cells with 50 mM K+.  Compared with PC-12 cells 

expressing pCMV-Neo control plasmid alone, K+-stimulated hGH secretion was reduced to 

42±3% (n=8) in cells expressing BotC and pCMV-Neo control plasmid (Fig. 2.14B).  Clearly, at 

endogenous levels, syntaxin4 and Munc18c are unable to compensate for the BotC defect 

although syntaxin4 is not cleaved by BotC (Schiavo, Rossetto et al. 1994).  As expected, the 

further addition of overexpressed syntaxin1AK253I and Munc18a restored secretion to control 

levels.  Next, we tested whether raising the levels of CFP-syntaxin4 and Munc18c above those 

found endogenously could rescue K+-induced hGH secretion in the presence of BotC.  This 

experiment served an additional purpose, to assess whether N-terminally labeled syntaxins, which 

retain their membrane targeting function (Figs. 2.12 and 2.13) and have been used extensively in 

this study (Figs. 2.3, 2.4, 2.6, 2.10, and 2.11), are furthermore fusion-competent.  CFP-syntaxin4 

and Munc18c rescued 77±4% (n=8) of the BotC secretion defect.  This treatment exhibited 

equivalent hGH secretion as cells containing CFP-syntaxin1AK253I and Munc18a (Fig. 2.14B).  

Therefore, based on the ability of SM-syntaxin pairs to substitute for each other, our results 
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demonstrate that the preference of Munc18c/syntaxin4 and Munc18a/syntaxin1A for constitutive 

and Ca2+-stimulated exocytosis, respectively, is strictly dependent on the levels of each protein.  

Additionally, our results indicate that N-terminally fluoroprotein-labeled syntaxins, while not as 

effective in catalyzing secretion as unlabeled syntaxin, are fusion competent.   

Discussion 

 Syntaxin molecules utilize Sec1/Munc18 (SM) proteins as high-affinity chaperones 

beginning with their synthesis and insertion into intracellular membranes, and throughout their 

transport to the plasma membrane (PM), where together they participate in exocytosis.  In this 

study we have focused on characterizing the factors underlying the specificity of SM-syntaxin 

binding interactions which allow these complexes to traffic and catalyze fusion.  Using optical 

approaches to monitor their movement in vivo, we have shown that the efficient and rapid 

targeting of syntaxin to the plasma membrane, in 3T3L1 adipocytes and HEK293 cells, requires 

the presence of equivalent or higher levels of Munc18.  However, low-affinity mutants of both 

Munc18c and syntaxin4 have suggested that direct and stable binding of the two proteins is not 

required for this process.  Furthermore, as Munc18c targets constitutively open syntaxin4LE to the 

plasma membrane, Munc18 interaction with a closed conformation of syntaxin is not a universal 

requirement for the proper PM targeting of SM-syntaxin pairs.  Finally, using hGH secretion 

assays we provide evidence that elevated levels of syntaxin4/Munc18c can substitute for 

syntaxin1A/Munc18a to catalyze fast, Ca2+-stimulated membrane fusion.  

The validity of these experiments utilizing fluoroprotein-tagged Munc18 and syntaxin is 

predicated on the idea that the fluoroproteins do not disrupt the normal ability of Munc18 and 

syntaxin to (1) properly target to the plasma membrane and (2) form functional acceptor 

complexes for exocytosis at the plasma membrane.  One concern is that CFP and cYFP, which 

form a three-dimensional β-barrel, are relatively inflexible (Palm and Wlodawer 1999).  

Furthermore, the addition of CFP to the 34 kDa syntaxin nearly doubles the molecular weight of 

the protein.  We showed here that fluoroprotein-labeled Munc18 and syntaxin localize properly to 
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the plasma membrane.  Moreover, Munc18a together with CFP-labeled syntaxin1A was able to 

rescue secretion in BotC-transfected PC-12 cells to 77±4% of control levels, while unlabeled 

syntaxin1A completely rescued secretion.  We therefore conclude that while N-terminal labels on 

syntaxin might partially impair function, they do not prevent targeting or fusion.  These results 

furthermore validate our approach of using fluoroprotein-labeled syntaxin4 to study exocytosis in 

3T3L1 adipocytes.   

 It has been reported that cellular feedback mechanisms act to maintain Munc18 and 

syntaxin proteins in a 1:1 ratio in most cell types examined (Voets, Toonen et al. 2001; Oh, 

Spurlin et al. 2005).  For example, syntaxin4 heterozygous mice exhibit 40% reduction in 

Munc18c in adipocytes and skeletal muscle (Yang, Coker et al. 2001), and Tlg2p/syntaxin is 

down-regulated in the absence of Vps45p in yeast (Bryant and James 2001).  Furthermore, in 

response to acute cleavage of syntaxin1A with BotC, Munc18a accumulation is reduced, as are its 

levels at the plasma membrane (Schutz, Zilly et al. 2005; de Wit, Cornelisse et al. 2006).  

Syntaxin1A levels are also reduced by 70% in Munc18a-null mice, with the remaining 30% 

targeting to the plasma membrane correctly (Toonen, de Vries et al. 2005).  One interpretation of 

this finding is that Munc18a is not required for syntaxin targeting.  However, our findings 

highlight a strong correlation between the efficiency of syntaxin membrane localization and the 

expression levels of Munc18.  Using FRET to rigorously quantify the molar ratio of 

Munc18:syntaxin, we found that at limiting Munc18 levels (Munc18/syntaxin ratio < 0.1-0.5), 

syntaxin clusters intracellularly.  At excess levels (Munc18/syntaxin ratio > ~1), the low-affinity 

binding partner Munc18c is nonetheless capable of preventing syntaxin1A from ectopically 

localizing on intracellular membranes. Therefore, although it remains untested, compensation by 

Munc18c binding to syntaxin1A (i.e., priming) could potentially occur in the synapses of 

Munc18a-null mice (Voets, Toonen et al. 2001; Toonen, de Vries et al. 2005).  

 In addition to strongly facilitating exocytosis (Latham, Lopez et al. 2006; Dulubova, 

Khvotchev et al. 2007; Shen, Tareste et al. 2007), SM proteins in a bimolecular complex with 
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syntaxin are also capable of preventing the formation of SNARE complexes  (Figs. 2.7-9; 

(Pevsner, Hsu et al. 1994; Araki, Tamori et al. 1997)).  Fitting well with this are extensive data on 

syntaxin1A (Dulubova, Sugita et al. 1999; Misura, Scheller et al. 2000; Yang, Steegmaier et al. 

2000) and now syntaxin4 indicating this feature is specifically due to Munc18 stabilizing a closed 

conformation of syntaxin4.  Thus, SM proteins may additionally function as chaperones to protect 

the syntaxin SNARE domain en route to the site of action.  Indeed, our data on Munc18c in 

3T3L1 adipocytes is well supported by multiple studies showing that Munc18a prevents 

deleterious effects of syntaxin overexpression in transfected HEK293, Caco2, and MDCK cells 

(Rowe, Corradi et al. 1999; Rowe, Calegari et al. 2001; Liu, Ernst et al. 2004).  However, this 

hypothesis seems inconsistent with our data indicating that syntaxin4 PM localizes when 

expressed with either Munc18cR240L or mutated at residue I241, and both manipulations disrupt 

the SM-syntaxin binding interaction.  That the I241A syntaxin mutant furthermore eliminates 

high-affinity binding of Munc18c to both closed and open syntaxin suggests that maintaining a 

closed conformation of syntaxin4 is irrelevant for its membrane targeting.  Unambiguously, 

constitutively-open syntaxin4LE traffics to the PM when co-expressed with Munc18c.  A probably 

explanation for these seemingly contradictory data is that Munc18 levels are somehow required to 

be equivalent to syntaxin, but at least for membrane targeting their stable binding interaction is 

dispensable. 

It has been suggested that SM proteins serve as syntaxin chaperones to confer specificity 

between particular membrane trafficking pathways (Toonen and Verhage 2003).  This hypothesis 

is based on the finding that SNARE motifs are not selective for particular SNARE complexes in 

vitro (Yang, Gonzalez et al. 1999), while SM proteins bind specifically and with high affinity to 

one or two syntaxins (Dulubova, Yamaguchi et al. 2003).  Indeed, specific SM-syntaxin pairs are 

uniquely localized to various cellular compartments (e.g., Munc18a/syntaxin1A to the plasma 

membrane, and Sly1/syntaxin5 to the Golgi apparatus).  Yet, the question remains how specificity 

is determined within a particular trafficking pathway, particularly when multiple SM/syntaxin 
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pairs are present.  The exocytotic pathway, for instance, contains four syntaxins (1-4) and three 

SM proteins (Munc18 a/b/c).  Based on the experiments described here, we propose that the 

levels of the Munc18a/syntaxin1A and Munc18c/syntaxin4 pairs determine their propensity for 

Ca2+-dependent vs. constitutive secretion seen in neuroendocrine cells in vivo.  Indeed, expressed 

Munc18c and CFP-syntaxin4 were able to rescue secretion when Munc18a-syntaxin1A levels 

were limited by BotC expression.  This rescue was furthermore equivalent to cells which were 

rescued instead by Munc18a and BotC-resistant CFP-syntaxin1AK253I.  Thus, it is clear that 

Munc18c/syntaxin4 can participate in regulated, Ca2+-dependent secretion.  However, the 

supraphysiologic levels required for their participation in fast exocytosis may reflect their lower 

affinity for other vesicle-PM scaffolding proteins (e.g., Rab and Rab effectors) compared with 

Munc18a/syntaxin1A.  This interpretation would explain why syntaxin4 and syntaxin1A are 

unable compensate for each others absence in genetic ablation studies in mice (Verhage, Maia et 

al. 2000; Kanda, Tamori et al. 2005). 
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Figure 2.1.  Homology modeling of the Munc18c-syntaxin4 complex based on the Munc18a-
syntaxin1A crystal structure.  A, Munc18c and syntaxin4 were threaded directly into the 
Munc18a-syntaxin1A crystal structure based on a ClustalW alignment.  Munc18c is colored gray 
and the syntaxin4 helical domains are colored as follows:  Ha in pale blue, Hb in gold, Hc in 
cyan, H3 in green, and the Habc-H3 linker region in orange.  The syntaxin4 point mutants used in 
this study (red) are mapped onto the Munc18c-syntaxin4 structural model: L173A/E174A, LE; 
I217A; I241A. B, Structural map of non-conserved syntaxin4 residues viewed down the axis of 
the syntaxin4 H3 domain (green) as it packs against the Habc helices.  Side chains of non-
conserved residues are shown.  A region of highly conserved packing between SNARE (H3) 
domain and the N-terminal helices is circled (coloring:   Ha,  rust; Hb, blue; Hc, magenta; H3, 
red; Habc-H3 linker, indigo).  C, All contacts proposed to interact with the syntaxin4 linker 
residues L173 and E174 are colored as conserved (yellow) and non-conserved (magenta); 
differing syntaxin1A residues are shown after a slash.  Residue numbers correspond to the rat 
syntaxin4 sequence (GenBank, NP_112387). 
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Figure 2.2.  Comparison of trypsin proteolysis between wildtype and mutant syntaxin4LE.  A, 
Immunoblot comparing the effect of trypsin digest (60 nm, 3 min) on GST-syntaxin41-275 
wildtype and GST-syntaxin41-275

LE (L173A/E174A).  Cleavage products were fractionated on 
SDS PAGE, and visualized by Western blot using a syntaxin4 polyclonal antibody.  Equivalent 
amounts of each undigested protein (control) are also shown.   B, Immunoblot as in (A), 
comparing the products of trypsin digest of wildtype or mutant GST-syntaxin1A1-267

LE 
(L165A/E166A), visualized using an anti-syntaxin1A monoclonal antibody.  Representative blots 
were chosen from four independent experiments.   
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Figure 2.3.  FRET measurements of direct Munc18c and syntaxin4 interaction in 3T3L1 
adipocytes.  A, FRET measured by sensitized emission in living 3T3L1 adipocytes transfected 
with cYFP-Munc18c and CFP-syntaxin4 or mutants as indicated.  EA and ED are the apparent 
FRET efficiencies for the acceptor (cYFP-Munc18c) and donor (CFP-syntaxin4) in complex, 
respectively.  RATIO is the mole fraction cYFP/CFP.  The pseudocolored EA, ED, and RATIO 
images represent a spatial map of FRET efficiency; the color bar indicates scaling.  B, Averaged 
EA values for each co-transfection condition.  Cells with a similar RATIO (averaging 0.9-1.1) 
were chosen for comparison.  Numbers above columns indicate number of cells imaged.  
Significant differences are from the wildtype Munc18c-syntaxin4 treatment:  *, p<0.05; **, 
p<0.01; ***, p<0.001. 
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Figure 2.4.  Comparison of syntaxin4 and syntaxin1A LE mutants on SM protein binding.  
A, Averaged apparent energy transfer (EA) between the indicated isoforms of cYFP-Munc18 and 
CFP-syntaxin or CFP-syntaxinLE co-expressed in HEK293-S3 cells.  RATIOs between 0.9-1.1 
were selected.  B, Competition by RFP-syntaxin4LE/CFP-syntaxin4 or RFP-syntaxin4/CFP-
syntaxin4LE pairs for binding to cYFP-Munc18c as measured by the energy transfer between the 
CFP and cYFP probes in living HEK293-S3 cells.  Cells selected for analysis exhibited similar 
average RATIO (2.0±0.10 for both treatments).  The number of observations is indicated above 
each column. *, p<0.05; **, p<0.01, ***; p<0.001.  C, EA at each image pixel was plotted against 
its corresponding inverse RATIO value for FRET between cYFP-Munc18c and CFP-syntaxin4 
(black, n=61) or CFP-syntaxin4LE (gray, n=67).  Data were fit with a single exponential; the 95% 
confidence interval is displayed.  Vertical dashed lines indicate the RATIO range over which EA 
values were averaged for FRET experiments shown in (A).     
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Figure 2.5.  In vitro binding relationship between Munc18c and syntaxin4WT or syntaxin4LE.  
Immunoblots of the binding reaction between bacterially expressed and purified 500nM 
syntaxin41-275 (black squares, solid line) or syntaxin41-275

LE (open circles, dashed line) and given 
quantities of Munc18c spotted on nitrocellulose.  The syntaxin4 immunoreactive signal was 
quantified as a percent maximal binding (n=4 spots per condition); averaged results (right) are 
from three independent experiments.  Syntaxin41-275 and syntaxin41-275

LE used for binding were 
spotted on nitrocellulose to verify that equivalent amounts were used for binding and demonstrate 
equivalent immunoreactivity (below).   
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Figure 2.6.  Identification of the syntaxin4 domains required for Munc18c binding.  A, 
Diagram illustrating the relative position of syntaxin4 mutants used to identify interacting sites 
with Munc18c.  Alignments of the syntaxin N-termini are shown for the four vertebrate 
exocytotic isoforms, as well as syntaxins 5 and 18 (Sed5p and Ufe1p in yeast, respectively).  The 
aspartic acid residue mutated in syntaxin4D3R is highlighted in gray.  The SM binding partners for 
each syntaxin isoform are listed, although not all combinations exhibit equal affinity (Yamaguchi, 
Dulubova et al. 2002).  In syntaxin4 chimeric mutants, termed 14 and 41 (not pictured), the 
syntaxin4 Habc or H3 domains were replaced with syntaxin1A sequence upstream or downstream 
of L189 as detailed in Methods.  Syntaxin4ΔH3/TM contains a stop codon in place of L189.  B, 
Averaged apparent energy transfer (EA) between cYFP-Munc18c and the indicated mutants of 
CFP-syntaxin4.  Averaged EA values determined for FRET RATIOs of 0.9-1.1 were selected.  
Significant differences are relative to syntaxin4WT or syntaxin4LE (white bars; controls 
redisplayed from Fig. 4A).  Numbers of observations are indicated above bars.  *, p<0.05; **, 
p<0.01, ***, p<0.001.    
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Figure 2.7.  Munc18c effects on Q-SNARE complex nucleation.  A, Confocal images of 
HEK293-S3 cells expressing GFP-SNAP23C/A and syntaxin4 in the absence or presence of RFP-
Munc18c are shown after 1 min photobleach (488 nm) of a region in the cytosol.  The localization 
of diffusible GFP-SNAP23C/A after cytosolic photobleach was used as an optical reporter for 
SNARE pairings with syntaxin4.  B, Averaged GFP-SNAP23C/A fluorescence intensity remaining 
after photobleach was quantified by plotting the average GFP pixel intensity across the plasma 
membrane region for cells co-expressing syntaxin4 (upper) or syntaxin4LE (lower) in the absence 
(black squares) or presence (gray circles) of RFP-Munc18c.  Linescans are normalized to peak 
GFP intensity (n=8-12 cells analyzed per experiment; three independent experiments).  C, 
Immunoblots showing co-immunoprecipitation of endogenous SNAP23 from HEK293-S3 cell 
lysates containing expressed syntaxin4WT-myc2 or syntaxin4LE-myc2 in the presence or absence of 
expressed FLAG-Munc18c.  Lysates were incubated with anti-myc monoclonal antibody (9B11), 
pulled down with ProteinG-Sepharose, and subject to 12% SDS PAGE fractionation and Western 
Blot analysis.  Blots were cut, and separately exposed to rabbit polyclonal antibodies against 
syntaxin4, SNAP23, and FLAG.  Cell lysates (Lys) and supernatants (Sup) are shown for 
reference.  No SNAP23 or FLAG-Munc18c pulldown was observed when syntaxin4-myc2 was 
absent (right) (n=4).   
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Figure 2.8.  Munc18c interaction with syntaxin4LE-SNAP23 Q-SNARE complexes.  HEK293-
S3 cell lysates expressing either syntaxin4WT or syntaxin4LE with FLAG-Munc18c and myc-
SNAP23 were subject to immunoprecipitation (as detailed in Fig. 7C) using myc antibodies (left, 
middle).  Expression conditions for each co-immunoprecipitation are indicated below 
immunoblots.  Syntaxin4 was omitted in a control experiment (right).  Blots were probed for 
SNAP23 and VAMP2 in addition to the overexpressed proteins syntaxin4 and FLAG-Munc18c 
(n=3). 
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Figure 2.9.  FRAP reveals the presence of RFP-Munc18c/syntaxin4LE/SNAP23C/A tripartite 
complexes on the plasma membrane of living HEK293 cells.  Representative confocal images 
of HEK293 cells expressing syntaxin4WT (upper) or syntaxin4LE (lower) with GFP-SNAP23C/A 
and RFP-Munc18c.  Images show GFP and RFP fluorescence before and after 1 min photobleach 
(simultaneous 488 nm and 543 nm emission to bleach both GFP and RFP) of a region in the 
cytosol (dashed box).  Photobleach of the cytosol was followed by a 10 sec photobleach (>50%) 
of a membrane region (box; magnified at inset) and a subsequent recovery period of 1.5 min.  For 
the cytosolic photobleach, >90% bleach was obtained for both GFP and RFP signals.  With 
exception to the pre-bleach images, the images have been scaled equivalently to visualize FRAP 
after the subsequent membrane photobleach.  n≥8 for each treatment. 
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Figure 2.10.  Effects of syntaxin4 conformation and Munc18c complexation on GLUT4 
vesicle docking in 3T3L1 adipocytes.  A, Confocal images of differentiated 3T3L1 adipocytes 
stably expressing myc7-GLUT4-GFP, transfected with Munc18c and CFP-syntaxin4WT, CFP-
syntaxin4LE, or CFP-syntaxin4I241A as indicated.  Cells were fixed before or after treatment with 
100 nM insulin (30 min at 37C), and stained without permeabilization against the myc epitope 
located in the first exofacial loop of GLUT4.  B, Relative expression levels of CFP-syntaxin4 (or 
mutants as indicated) and myc7-GLUT4-GFP were determined in adipocytes based on 
fluorescence intensity.  Munc18c was coexpressed for each condition and results were quantified 
from non-insulin stimulated cells.  Numbers above columns indicate number of cells imaged.  No 
significant differences in CFP or GFP expression were found between treatments.  C, Relative 
plasma membrane localization of CFP-syntaxin4 (436 nm) and myc7-GLUT4-GFP (480 nm) for 
cells in (B).  Fluorescence intensity along a 10 pixel-width linescan was determined for each cell.  
The plasma membrane is set at pixel 30.  Plots show averaged data (±SEM).  A representative 
cell expressing Munc18c, CFP-syntaxin4LE, and myc7-GLUT4-GFP is shown for clarity with a 
typical region selected for linescan (left).       
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Figure 2.11.  3T3L1 adipocytes coexpressing syntaxin4LE/Cerulean-Munc18c exhibit 
abnormal vesicle docking in the absence of insulin.  A, Relative expression levels of Cerulean-
Munc18c and myc7-GLUT4-GFP were quantified based on fluorescence intensity from images of 
differentiated 3T3L1 adipocytes stably expressing myc7-GLUT4-GFP and transiently transfected 
with Cerulean-Munc18c and syntaxin4WT (WT) or syntaxin4LE (LE).  Cells were fixed after 3 
hour serum starvation, and stained without permeabilization against the myc epitope located in 
the first exofacial loop of GLUT4.  Numbers above columns indicate number of cells imaged.  No 
significant differences in CFP or GFP expression were found between treatments.  B, Relative 
plasma membrane localization of Cerulean-Munc18c (436 nm) and myc7-GLUT4-GFP (480 nm) 
for cells in (A). Fluorescence intensity along a 10 pixel-width linescan was determined for each 
cell.  The plasma membrane is set at pixel 30.  Plots show averaged data (±SEM).  A 
representative cell expressing Cerulean-Munc18c, syntaxin4LE, and myc7-GLUT4-GFP is shown 
for clarity with a typical region selected for linescan (left).   
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Figure 2.12.  Visualizing Munc18 and syntaxin subcellular localization in living cells.  A, To 
facilitate subcellular localization of syntaxin and Munc18 in living 3T3L1 adipocytes, we 
engineered fusion proteins to spectral variants of green-fluorescent protein (GFP) from the 
hydromedusa Aequoria victoria.  Syntaxin 1 and 4 isoforms were labeled with monomeric cyan-
fluorescent protein (CFP) and Munc18 a and c isoforms with monomeric citrine (cYFP), a pH 
insensitive mutant of yellow-fluorescent protein. For both syntaxin and Munc18, the N-termini 
were chosen for the fluoroprotein label based on their steric availability, which is evident in the 
crystal structure of syntaxin1A in complex with Munc18-1 (Misura, Scheller et al. 2000).  B, 
Differentiated 3T3L1 adipocytes were electroporated with 200 μg each of the CFP- or cYFP-
tagged proteins as indicated, and visualized using conventional fluorescence microscopy.  
Cotransfection conditions (not pictured) are indicated in parentheses.  C,  Plasma membrane 
targeting factors (TF) for cYFP-Munc18c or -Munc18a were calculated based on the ability of 
specific isoforms of syntaxin to localize Munc18 to the PM in 3T3L1 adipocytes.  Mean values 
are expressed as the ratio of average fluorescence intensity in the membrane region compared 
with the average fluorescence intensity measured over the cytosol, corrected for area (see 
Experimental Procedures for equation).  Numbers above columns indicate numbers of cells 
imaged.  Significant differences are from the Munc18c-syntaxin4 treatment.  D, HEK293-S3 cells 
were transfected with 2 μg each of the CFP- or cYFP-tagged proteins as indicated.  E, TFs for 
Munc18 were calculated from images of HEK293-S3 cells as in C.  F, HEK293-S3 cells were 
imaged following transfection with 2 μg each of the CFP- or cYFP-tagged proteins as indicated.  
*, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 2.13.  Effect of syntaxin conformation on Munc18 plasma membrane localization.  A, 
HEK293-S3 cells were transfected with either cYFP-Munc18c or cYFP-Munc18a, with co-
transfected wildtype or constitutively open (LE) syntaxin as indicated in parenthesis.  B, 
Averaged targeting factors for each transfection condition in A.  C, Epifluorescence images of 
HEK293-S3 cells expressing cYFP-Munc18c and syntaxin4I241A (eliminates Munc18c binding) or 
syntaxin4dH3/TM (lacks the SNARE (H3) and transmembrane (TM) domains).  D, Quantification of 
membrane targeting of Munc18c (black bars) and syntaxin4 (white bars).  Numbers above 
columns indicate numbers of cells imaged.  *, p<0.05; **, p<0.01, ***, p<0.001.    
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Figure 2.14.  BotC knockdown allows testing of functional effects of exogenous syntaxin 
constructs in living secretory cells.  Rescue of BotC knockdown of human growth hormone 
(hGH) secretion under basal or stimulatory (50 mM K+, 6 min) conditions was measured from 
transfected PC12 cells.  CFP-Syntaxin1AK253I (BotC resistant) and CFP-syntaxin4WT were 
transfected with equimolar amounts of Munc18a or Munc18c, respectively.  Secretion was 
normalized to total hGH content.  Significant differences are from control cells transfected with 
pCMV-Neo:  *, p<0.05; **, p<0.01; ***, p<0.001.  Bars, means ± SEM. 
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 no insulin  
Transfection conditions GLUT4 myc  

Munc18c + CFP-syntaxin4WT 18 ± 10% 2.5 ± 1.5% n=75 
Munc18c + CFP-syntaxin4LE 79 ± 3% 5 ± 3% n=100 

Munc18c + CFP-syntaxin4I241A 12 ± 4% 2.5 ± 1.5% n=75 
Munc18c + CFP-syntaxin4LE+I241A 40 ± 6% 4.5 ± 0.5% n=60 

 
 
 
 
 
 
 
 

 
Table 2.1.  Effects of syntaxin4 mutants on GLUT4 trafficking and fusion in 3T3L1 
adipocytes. 3T3L1 adipocytes stably expressing myc7-GLUT4-GFP were transfected with the 
indicated constructs, fixed before or after treatment with 100 nM insulin for 30 min at 37C, and 
stained with myc antibody.  The percentage of CFP-positive cells exhibiting peripheral GLUT4 
(as detected by GFP fluorescence) or GLUT4 externalization (as detected by indirect myc 
immunofluorescence) are displayed ± SEM (data are averaged from 3 independent experiments). 

 insulin  
Transfection conditions GLUT4 myc  

Munc18c + CFP-syntaxin4WT 83 ± 4% 46 ± 2% n=114 
Munc18c + CFP-syntaxin4LE 92 ± 6% 52 ± 2% n=125 

Munc18c + CFP-syntaxin4I241A 92 ± 2% 65 ± 1% n=75 
Munc18c + CFP-syntaxin4LE+I241A 88 ± 4% 45 ± 2% n=60 
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CHAPTER III 
 
 

RAB27A-DEPENDENT ACTIONS ON VESICLE DOCKING AND PRIMING IN 
PANCREATIC β-CELLS 

 

Abstract 

The small GTPase Rab27a, along with the isoforms of Rab3, is present on insulin 

secretory granules and has been implicated in regulation of Ca2+-triggered exocytosis.  We have 

used membrane capacitance measurements to define the role of Rab27a in regulating the size and 

refilling of distinct pools of insulin granules by comparison of evoked secretory responses from 

Rab27a-null ashen and strain-matched wildtype control pancreatic β-cells.  We find that ashen β-

cells display a kinetic defect in refilling of readily-releasable and immediately-releasable vesicle 

pools (RRP and IRP, respectively) in response to depolarization-evoked Ca2+ influx.  The deficit 

in IRP refilling was not observed in the presence of stimulatory glucose concentrations (16.7 

mM), though incomplete refilling of the RRP persisted.  Comparatively, β-cells from Rab3a-/- 

mice exhibited complete refilling of the IRP and RRP, demonstrating that Rab27a and Rab3a 

exert distinct roles in the insulin granule secretory pathway.  Further, depletion of the RRP in 

ashen β-cells was two-fold faster than that of control β-cells.  These deficits in refilling and 

exocytotic rate in ashen β-cells were absent when cAMP-regulatory pathways were activated.  

Elevated cAMP increased the RRP pool size, and complete refilling of the RRP occurred in ashen 

β-cells; responses were comparable to wildtype controls.  These effects of cAMP were largely 

eliminated by Rp-cAMP inhibition of PKA, indicating that PKA acts on vesicle priming 

downstream or via pathways independent of Rab27a.  In summary,  Rab27a exerts dual roles in 
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glucose-mediated insulin granule exocytosis, facilitating refilling of releasable granule pools 

while also limiting the rate of release from these pools.   

 

Introduction 

 Glucose initially evokes insulin release from pancreatic β-cells by increasing ATP 

production, which closes KATP channels and results in the opening of voltage-dependent Ca2+ 

channels, stimulating Ca2+-triggered insulin granule exocytosis.  Kinetically slower secretion-

amplifying pathways that are dependent on glucose metabolism but independent of the KATP 

channel also occur, and their relevance has been extensively reviewed (Eliasson et al. 1997; 

Takahashi et al. 1997).  Additionally, hormones and neurotransmitters modulate the magnitude of 

secretion through a number of G-protein coupled receptor pathways.  For example, GLP-1 and 

GIP generate intracellular second messenger signals that include cAMP, which then directly 

activates protein kinase A (PKA) and Epac2 (exchange protein directly activated by cAMP) 

leading to a robust enhancement of the secretory response (Jones et al. 1986; Ammala et al. 1993; 

Renstrom et al. 1997; Wan et al. 2004; Yang and Gillis 2004; Shibasaki et al. 2007).  The net 

effect of the secondary metabolic and cAMP amplifying pathways is to increase the number of 

insulin containing granules that are immediately competent for release.  These pools of release 

competent granules include the ‘readily-releasable’ pool (RRP), a subset of which is the 

‘immediately-releasable’ pool (IRP) that is spatially positioned adjacent to Ca2+-channels, and a 

small highly Ca2+-sensitive pool (HCSP) that is distinct from the RRP (Wan et al. 2004; Yang 

and Gillis 2004).  The number of secretory granules in each pool, the rate of pool refilling, and 

the rate at which fusion is regulated from these pools largely determines the short-term secretory 

response of a β-cell.   

Rab proteins, which belong to the Ras-related superfamily of small monomeric GTPases, 

are central mediators of membrane trafficking in all eukaryotic cells.  Rab proteins continuously 
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cycle between GTP and GDP bound states, interacting and activating effector molecules when 

GTP-bound (Fukuda 2005).  With respect to regulated exocytosis, Rab proteins regulate a series 

of steps including: vesicle/granule transport along cytoskeletal tracts, physical attachment of the 

vesicles/granules to the plasma membrane (i.e., docking/tethering), priming reactions that allow 

assembly of the molecular machinery for membrane fusion, and soluble N-ethylmaleimide-

sensitive factor attachment protein receptor (SNARE)-catalyzed fusion (Burgoyne and Morgan 

2003).  Rab27a, along with four isoforms of Rab3 (a/b/c/d), are localized to secretory granules in 

a number of cell types, and have been directly implicated in the regulation of Ca2+-dependent 

exocytosis in β-cells (Fukuda 2005).  While Rab27a mutants locked in the GTP-bound and GDP-

bound states strongly facilitate and potently inhibit insulin secretion, respectively (Yi et al. 2002; 

Fukuda 2003), it is becoming increasingly apparent that it is the rate at which GTP/GDP cycles 

on Rab proteins that determine the level of their control on a physiologic function (Kondo et al. 

2006). 

Rab27a deficiency results in multiple defects in ashen mice (Wilson et al. 2000), which 

are glucose intolerant owing to strongly reduced first- and second-phase glucose-stimulated 

insulin secretion (Kasai et al. 2005).  Part of the β-cell secretory defect is reportedly due to a 

deficit in the replenishment of docked granules, a phenotype evident in other Rab27a-null 

secretory cells including melanosomes and cytotoxic T-lymphocytes (resulting in the ashen coat-

color and immunodeficiency) (Hume et al. 2001; Stinchcombe et al. 2001; Wu et al. 2002).  In 

addition, there are indications that insulin granule priming may be reduced in ashen β-cells based 

on total internal reflection microscopy (TIRFM) imaging showing a reduced release of insulin 

granules that are docked to the plasma membrane in ashen β-cells with respect to that in control 

β-cells (Kasai et al. 2005).  As a potential mechanism for these defects, Rab27a effectors are 

known to directly interact with SNARE proteins and SNARE regulators, for example:  Slp4a with 

Munc18/syntaxin (Torii et al. 2002; Tsuboi and Fukuda 2006; Tomas et al. 2008), Noc2 with 
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Munc13-1 (Cheviet et al. 2004; Matsumoto et al. 2004), and rabphilin with SNAP-25 (Deak et al. 

2006).  Consistently, ablation of certain of these Rab/Rab effector binding partners (e.g., Munc18, 

syntaxin, Munc13) reduces vesicle docking and priming (Voets et al. 2001; de Wit et al. 2006; 

Kang et al. 2006; Gulyas-Kovacs et al. 2007).  

 Our goal in the present investigation was to identify and characterize the specific 

parameters in the insulin secretory pathway that are altered by Rab27a deficiency in ashen mice.  

To accomplish this we have used high temporal resolution membrane capacitance measurements 

to measure secretion from single pancreatic β-cells, allowing us to define the role of Rab27a in 

regulating the size, rate of release from and refilling of (i.e., priming into) specific functionally 

defined insulin granule pools.  In addition, we examined the effects of glucose and cAMP 

enhancing pathways on the actions of Rab27a.  Our results are novel in demonstrating (1) that 

ashen β-cells exhibit a time-dependent kinetic defect in vesicle priming into both the IRP and 

RRP granule pools, and (2) that Rab27a regulates the rate of insulin granule release from the 

RRP.  By comparison, Rab3a-null mice demonstrate normal IRP and RRP refilling and rates of 

release demonstrating that Rab27a and Rab3a act in different β-cell priming pathways.  Finally, 

we demonstrate that cAMP increases both the RRP and IRP pool sizes in ashen β-cells to an 

extent similar to that observed in control β-cells, suggesting that the cAMP augmentation of 

secretion is largely independent of Rab27a.  The effects of cAMP on refilling of the granule pools 

were largely PKA dependent.   

 

Methods 

Mice and tissue preparation − All experiments were carried out according to rules and 

regulations of the University Committee on Use and Care of Animals (UCUCA).  The ash/ash 

mice (C3H/He background) were kindly provided by N.A. Jenkins in cooperation with Jackson 

Laboratories (National Cancer Institute, Frederick, Maryland).  C3H/He mice were purchased 
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from Jackson Labs (Bar Harbor, ME).  In ashen mice (Wilson et al. 2000; Kasai et al. 2005), a 

single A-to-T transversion in the splice donor site downstream of exon 4 results in a larger than 

normal transcript due to the insertion of 235 or 252 base pairs of intron into the Rab27a message.  

An in-frame stop codon in the intron sequence leads to the production of a non-functional Rab27a 

protein lacking two critical domains of the GTP-binding pocket.  Rab3a-/- mice (C57Bl/6 

background) and control C57Bl/6 mice were provided by K. Engisch (Wright State University, 

Dayton, OH).  Mice were sacrificed by cervical dislocation and islets were isolated by retrograde 

perfusion of the pancreatic duct with 4 ml 0.6-8 mg/ml collagenase (Roche Liberase RI, Roche 

Diagnostics) in physiologic saline solution (PSS, in mM:  137 NaCl, 5.6 KCl, 1.2 MgCl2, 0.5 

NaH2PO4, 4.2 HCO3, 2.6 CaCl2, 2.5 glucose, pH 7.4, 310 mOsm).  The pancreas was immediately 

excised and further digested for 35-40 min at 37°C.  Islets were hand-picked after washing the 

tissue twice in 20 ml PSS containing 5 mg/ml BSA.  130-180 islets were dispersed into single 

cells and small clusters by 10 min incubation at room temperature in 10 ml Ca2+-free PSS (PSS 

lacking CaCl2 and containing 2 mM EGTA), followed by 5 min gentle shaking in 1 ml Ca2+-free 

PSS containing 0.025% trypsin at 37°C (Invitrogen).  The dispersed cells were washed twice in 

10 ml RPMI 1640 media containing 5 mM glucose and 10% (v/v) FBS supplemented with 

penicillin (100U/ml) and streptomycin (100 μg/ml), before plating on glass-bottom dishes coated 

with poly(L)-lysine.  Cells were kept in a 37°C incubator at 5% CO2 and recorded from 2-3 days 

after preparation. 

 

Imaging of Intracellular Ca2+ − Mouse pancreatic β-cells plated on glass-bottom dishes were 

incubated in PSS containing 2 μM Fura2-AM (Molecular Probes) for 15 min at 37°C.  

Subsequently the dish volume was reduced to 0.5 ml, and the cells were equilibrated in PSS at a 

flow rate of 1 ml/min in a heated chamber (30-33°C).  After >10 min, cells were incubated in PSS 

containing 16.7 mM glucose, and fluorescence of individual β-cells was elicited using alternating 



 120

excitation wavelengths of 340 and 380 nm (Till Polychrome V), a 410dlcp beamsplitter, and a 

D510/80 wide band emission filter (Chroma).  Emission intensity was collected with a 

Photometrics Quant-EM camera at 2 Hz.   

 

Electrophysiology − Whole-cell patch clamp measurements were performed at 30-33°C using an 

EPC-9 amplifier and Patchmaster acquisition software (HEKA electronics, Lambrecht/Pfalz, 

Germany).  Pipettes (3-5 MΩ) were pulled from borosilicate glass (A-M systems, Carlsborg, 

WA), coated with Slygard 184 (Dow Corning, Midland, MI), and fire-polished.  The pipette was 

held at a DC potential of -70 mV except during membrane depolarization.  Capacitance 

measurements were performed using the software Lock-in extension of the Patchmaster software 

(dc+sine) using a sinusoid applied with an amplitude of 20 mV and a frequency of 1250 Hz.  Rs 

was typically < 10 MΩ.   

All reagents were from Sigma unless stated otherwise.  The standard bath solution 

consisted of 113 mM NaCl, 5.5 mM KCl, 1.2 mM MgCl2, 4.8 NaHCO3, 10 mM CaCl2, 20 mM 

TEA-Cl, 5 glucose, and 10 mM HEPES titrated to pH 7.3 with NaOH (310 mOsm).  The standard 

pipette solution contained 125 mM Cs-glutamate, 10 mM CsCl, 10 mM NaCl, 0.25 mM EGTA, 

0.16 mM CaCl2, 3 mM Mg-ATP, 0.01 mM Na-GTP, and 5 mM HEPES titrated to pH 7.2 using 

CsOH (300 mOsm).  The initial [Ca2+]i was estimated to be 272 nM (WebMAXC software).  

TEA+ and Cs+ eliminated the contribution of K+ efflux, allowing calculation of QCa by integration 

of leak-subtracted (P/4) ICa during a 15 ms pulse given 1 min after membrane rupture and 2 min 

prior to the stimulus train.  As described previously (Kinard and Satin 1995; Miley et al. 1999), a 

large slow onset Cl- influx was observed during the stimulus protocol (Fig. 3.1A), possibly 

activated by our intracellular clamp of ATP at 3 mM as well as the cell-swelling associated with 

the whole-cell patch configuration, prohibiting  quantification of ICa during measurement of the 
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RRP.    In some experiments, the pipette solution was supplemented with 100 μM cAMP, 100 

μM 8-pCPT-2’-O-Me-cAMP (Axxora), or 500 μM Rp-cAMP (Axxora). 

 

Statistics − Statistical analysis was performed using InStat (Graphpad).  Two-tailed paired t tests, 

assuming Gaussian distribution (parametric), were used to determine differences between mean 

IRP and RRP size measured from pairs of depolarization trains (see Fig. 3.1A) on each cell.   

Two-tailed unpaired t tests, assuming equal standard deviations, were used to compare mean IRP 

and RRP size between treatments (e.g., wildtype vs. ashen).  

 

Results 

Ashen mice display a time-dependent kinetic defect in vesicle pool refilling − Our initial 

goal was to determine the kinetic parameters within the exocytotic pathway that are specifically 

altered by Rab27a deficiency using cultured mouse β-cells isolated from control C3H/He and 

ashen mice, which lack functional Rab27a protein (Wilson et al. 2000).  High-resolution 

membrane capacitance measurements were used to monitor exocytosis.  We devised a voltage-

clamp depolarization protocol to separately stimulate vesicle release from the immediately-

releasable and readily-releasable pools (IRP and RRP, respectively), which consist of docked and 

primed granules.  The stimulation protocol consisted of a series of five 50-ms depolarizations 

(ΔCm5) to deplete the IRP, followed by eight 500-ms depolarizations (ΔCm8) to elicit secretion 

from the RRP, each from a holding potential of -70 mV to +20 mV (Fig. 3.1A), with a 100 ms 

inter-pulse interval.  In wildtype β-cells we observed a small capacitance increase (8±1 fF, n=33) 

after ΔCm5 corresponding to release from the IRP (Fig. 3.1B, 3.1D).  From Figure 3.1B it can be 

seen that there is little additional capacitance change after the first two pulses, indicating 

depletion of the IRP without significant stimulation of release from the RRP.  As an alternative 

estimation of the IRP size, a subset of the wildtype β-cell ΔCm5 responses fit the criteria for a ‘2-



 122

pulse’ protocol (using the first two successive 50 ms pulses which are separated by 100 ms) for 

estimating the IRP as previously described (Gillis et al. 1996).  In a comparable fashion to 

measuring IRP at the end of ΔCm5, this analysis estimated the IRP size (Bmax) as 7±1 fF (n=19) in 

wildtype β-cells (Fig. 3.1D).  The magnitude of the IRP in ashen β-cells was comparable to 

C3H/He cells as shown in Figure 3.1B and D.  Stimulated release from the RRP in wildtype cells 

(114±24 fF, n=33) was not significantly different than ashen cells (128±22 fF, n=33) using the 

ΔCm8 stimulation train.  The membrane conductance (Gm) in both control and ashen β-cells also 

exhibited similar patterns to the step depolarization protocol (Fig. 3.1C).  Assuming 1.7 

fF/granule measured previously in mouse β-cells (Ammala et al. 1993), the fast kinetic phase 

corresponding to the IRP was estimated at ~5 granules while ΔCm8 released ~75 granules, which 

by other reports of mouse β-cells employing flash photolysis corresponds to the majority and 

perhaps the entire RRP under the equivalent conditions of 5 mM glucose (Renstrom et al. 1997; 

Wan et al. 2004; Yang and Gillis 2004).  Interestingly, kinetic analysis of Figure 3.1B indicates 

that secretion from ashen β-cells progresses significantly faster (2X) than from control C3H/He 

β-cells, based on single exponential fits of the ΔCm8 secretory response (ashen, 1/τ=0.63±0.09 s-

1; C3H/He, 1/τ=0.32±0.06 s-1).  The increased rate of secretion in ashen β-cells indicates that 

Rab27a participates in a rate-limiting step in the final stages of glucose-regulated exocytosis.   

Our above results are novel in indicating that the defect in glucose-stimulated insulin 

secretion previously observed in ashen islets (Kasai et al. 2005) is not due to a limited initial size 

of the RRP.  However, perfused islets from ashen mice exhibit a strong deficit in insulin secretion 

with respect to control islets in response to sustained elevated glucose exposure.  Therefore, we 

next examined if Rab27a affects the rate at which the IRP and RRP refill, as may be necessary for 

sustained secretory responses. To examine refilling of the RRP and IRP pools that is reflective of 

the rate of insulin granule priming, the IRP and RRP were initially depleted and then the entire 

ΔCm5 and ΔCm8 stimulation train was applied a second time following a 2 min recovery period to 
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measure extent to which refilling of the IRP and RRP occurred.  A 2 min recovery period was 

chosen as it provided sufficient time for both the IRP and RRP pools to completely refill in 

wildtype cells (Fig. 3.1 B and D).  Comparatively, the ΔCm5 response in ashen cells exhibited a 

~70% deficit in pool refilling while a ~40% deficit was observed in the refilling of the RRP (Fig. 

3.1B and D).   

 Since intracellular calcium [Ca2+]i is both a stimulus for secretion as well as an important 

determinant of secretory granule priming (Gillis and Misler 1992; Eliasson et al. 1996; Barg et al. 

2001), differences in calcium dynamics between wildtype and ashen β-cells could potentially 

confound interpretation of the results.  To determine if such differences occurred we quantified 

the total Ca2+ influx (integrated current, QCa) during a 15 ms depolarizing pulse (-70 mV to +20 

mV) 2 min prior to the first stimulus train under each condition.  This depolarization was 

insufficient to evoke secretion, consistent with other reports (Barg et al. 2001).  No difference in 

QCa was found between wildtype and ashen β-cells (Fig. 3.1E).  We also examined voltage 

activation relationships for the Ca current, using 100 ms depolarizing pulses from the holding 

potential (-70 mV) to voltages between -70 mV and +50 mV.  Peak current was elicited 

comparably in both wildtype and ashen β-cells at voltages between +20 and +30mV (Fig. 3.2A).  

Important to our investigations was demonstration that isolated ashen β-cells retain sensitivity to 

glucose stimulation equivalent to that observed in β-cells from C3H/He controls. For this 

determination we measured the increase in [Ca2+]i in ashen and control β-cells loaded with Fura-2 

in response to 16.7 mM glucose stimulation.  After a delay which varied from 2-4 min, the Fura-2 

340/380 intensity ratio increased 3- to 5-fold and without significant difference in both C3H/He 

and ashen β-cells in response to glucose (n=6).  Representative glucose-stimulated changes in 

Fura-2 fluorescence are displayed in Figure 3.2B.  Taken together, our results indicate that the 

deficit in vesicle pool refilling of both the IRP and RRP in ashen β-cells results from the absence 

of Rab27a and not altered Ca2+ dynamics or glucose responsiveness.  In addition, as a reduced 
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release of pre-docked vesicles was previously observed in ashen β-cells by TIRF microscopy 

(Kasai et al. 2005), our results suggest that Rab27a normally facilitates vesicle priming.    

Rab27a and Rab3a act in distinct secretion amplifying pathways − In addition to Rab27a, 

isoforms of the small GTPase Rab3 (a/b/c/d) are present on pancreatic β-granules (Tsuboi and 

Fukuda 2006).  Perfused Rab3a-null islets reportedly exhibit a decreased (by 50%) secretory 

response to elevated glucose (16.7 mM), when administered over 1 h (Yaekura et al. 2003).  To 

compare the effects of Rab3 deficiency with that of Rab27a deficiency we measured exocytosis 

from pancreatic β-cells isolated from Rab3a-null mice elicited in response to the voltage 

depolarization protocol outlined in Figure 3.1A. The IRP measured from Rab3a-null β-cells 

(13±3 fF) was comparable to wildtype C57Bl/6 cells (15±2 fF), and was completely refilled after 

a 2 min recovery period (Fig. 3.3 A and B.  Ca2+ influx between these two treatments was not 

significantly different (Fig. 3.3C).  In response to 500 ms step depolarizations, the RRP secretory 

responses exhibited similar kinetics in both Rab3a-/- and C57Bl/6 control β-cells (Rab3a-/-, 

1/τ=0.30±0.06 s-1; C57Bl/6, 1/τ=0.35±0.06 s-1).  However, the initial size of the RRP in Rab3a-

null β-cells was substantially (27±8%) smaller than C57Bl/6 cells, a deficit which was not 

observed in ashen β-cells (Fig. 3.1A, 1B).  Also in contrast to ashen β-cells, the Rab3a-null cells 

demonstrated full recovery of the RRP over the 2 min period as indicated by responses to the 

second stimulus train (Fig. 3.3A, 3.3B).  These results indicate that while Rab3a is more 

important for initial RRP size, Rab27a is a rate-limiting step in IRP and RRP refilling.  This 

difference indicates that Rab27a and Rab3a have certain functionally distinct roles in the final 

signaling pathways governing insulin secretion.    

Glucose-dependent vesicle priming in ashen β-cells − As established by multiple studies 

of single vesicle release, glucose possesses the ability to potently increase insulin secretion from 

pancreatic β-cells through increased priming of insulin granules into the functionally identified 

granule pools (Wan et al. 2004; Yang and Gillis 2004).  We therefore next determined the effects 
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of a >10 min pre-incubation in 16.7 mM glucose on the IRP and RRP pool size in β-cells from 

ashen and background control mice.  Figure 3.4A presents the averaged capacitance responses 

following glucose treatment using the stimulation protocol of Figure 3.1A.   This treatment 

resulted in a 28±6% increase in QCa as measured by a 15 ms depolarization measured prior to the 

ΔCm5 and ΔCm8 stimulus train.  Two principal differences in secretion were observed between 

ashen cells incubated in 5 mM (Fig. 3.1A, 1D) and 16.7 mM glucose (Figs. 3.4A, 3.4B).  First, 

the rate of secretion was dramatically increased by 16.7 mM glucose, as measured by an increase 

in the rate constant from 1/τ=0.63±0.09 s-1 to 1/τ=1.36±0.07 s-1 measured across the ΔCm8.  

Secondly, although the magnitude of the IRP was unaffected by increasing glucose to 16.7 mM, 

the IRP measured after a second stimulus train completely recovered in ashen cells incubated in 

16.7 mM glucose (Figs. 3.4A, 3.4B), whereas those in 5 mM glucose exhibited a ~70% deficit 

using the same stimulation protocol (Fig. 3.1A, D).   However, this ‘rescue’ was limited to the 

IRP, as refilling of the RRP after 2 min remained incomplete (by 42±7% and 30±7%, 

respectively), and was comparable in both 5 mM and 16.7 mM glucose.  Thus, our results 

indicate that at high concentration glucose maintains a Rab27a-independent mechanism for 

increasing the rate of β-granules movement from the RRP into the IRP, while the glucose-

induced priming into the RRP continues to be limited by the absence of Rab27a.  

cAMP-dependent vesicle priming and vesicle pool refilling in ashen β-cells − As a 

second messenger, cAMP stimulates exocytosis for a given Ca2+ influx from release-ready β-cell 

vesicle pools (Jones et al. 1986; Ammala et al. 1993; Renstrom et al. 1997; Wan et al. 2004; 

Yang and Gillis 2004).  To determine the role of Rab27a in the cAMP pathway we next compared 

secretory responses (IRP and RRP size and rate of refilling) from ashen and wildtype β-cells 

using the stimulation protocol depicted in Figure 3.1A.  As shown in Figures 3.5A and 3.5B 

inclusion of 100 μM cAMP in the recording pipette solution resulted in an increase in the size of 

the initial IRP and RRP response that was statistically equivalent for wildtype (C3H/He) and 
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Rab27a-null β-cells.  The secretory response from C3H/He and ashen β-cells recorded in the 

absence of exogenously added cAMP are redisplayed from Figure 3.1A for comparison.  Notably, 

the presence of added cAMP the ΔCm5 elicited stepwise increases in membrane capacitance that 

continued throughout the series of step depolarizations, suggesting that the ΔCm5 response may 

have included contribution from the RRP.  As an alternative strategy, the size of the IRP was 

evaluated using analysis of the first two 50 ms pulses of ΔCm5.  Figure 3.5B shows that cAMP 

induced a ~300% increase in the IRP size to 18±3 fF in wildtype and 23±4 fF in ashen β-cells.  

By comparison, the RRP increased ~40% to 185±16 fF in wildtype and 190±17 fF in ashen β-

cells.  In part, the increase in secretory response may be attributable to an observed effect of 

cAMP to slow Ca2+-current inactivation in both wildtype and ashen β-cells (Fig. 3.5C).  Of 

importance, ashen and wildtype β-cell responses evoked in response to the second stimulus train 

were found to be equivalent to the first secretory response when cAMP was present (Fig. 3.5A, 

5B), demonstrating that the IRP and RRP are capable of complete refilling in the absence of 

Rab27a when cAMP signaling pathways are activated.  Inclusion of cAMP in the recording 

pipette was also observed to result in a decrease in the rate of capacitance increase in ashen β-

cells during the ΔCm8 of the first stimulus train.  The rate constant (1/τ) of secretion without 

cAMP was 0.64±0.09 s-1 while in its presence it was 0.40±0.07 s-1.  The reduction in the rate of 

capacitance increase in ashen β-cells with cAMP resulted in a rate approximately equivalent to 

C3/He cells in the presence (0.43±0.05 s-1) of 100 μM cAMP.  Thus, activation of cAMP 

signaling pathways is able to circumvent the rate-limiting effects of Rab27a on secretion.   

 The relative contribution of cAMP effector pathways differ in wildtype and ashen β-cells 

− As the addition of cAMP eliminated the secretory deficit observed in ashen β-cells (Fig. 3.5), it 

suggested that one or more cAMP effectors facilitates priming by acting in exocytotic signaling 

pathways parallel to or downstream of Rab27a.  Protein kinase A (PKA) is one such effector that 

directly binds cAMP and strongly modulates Ca2+-triggered exocytosis in pancreatic β-cells 
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(Gillis and Misler 1992; Ammala et al. 1993; Ammala et al. 1994; Wan et al. 2004; Yang and 

Gillis 2004).  We, therefore, next determined the effects of PKA on cAMP-potentiated (100 μM) 

insulin secretion and vesicle pool refilling in ashen β-cells by modifying the pipette solution to 

include 500 μM Rp-cAMP, which inactivates PKA (Renstrom et al. 1997; Wan et al. 2004; Yang 

and Gillis 2004).  As shown in Figure 3.6A and 3.6B, the capacitance responses to the initial set 

of ΔCm5 and ΔCm8 stimulus depolarizations (i.e., the IRP and RRP) in the presence of cAMP and 

Rp-cAMP remained equivalent to that in cells treated with cAMP alone (c.f., Figs. 3.5A and 

3.5B).  These results suggest that the initial enhancement of secretion by cAMP is largely 

facilitated by PKA-independent pathways.  By comparison, the capacitance increases to 

application of the second pulse train after a 2 min recovery period demonstrated that while 

refilling of the IRP remained PKA-independent, refilling of the RRP in both wildtype and ashen 

β-cells was strongly PKA-dependent (Fig. 3.5B).  Notably, this second pulse train elicited a 

122±12 fF response in C3H/He cells treated with cAMP and Rp-cAMP (Fig. 3.6), a response that 

was nearly identical to wildtype cells in the absence of cAMP (Fig. 3.1; 114±14 fF).  This 

comparison indicates that within a 2 min time period, PKA-dependent pathways comprise almost 

all (>90%) of cAMP actions to refill the RRP in C3H/He cells.   Surprisingly, in ashen β-cells 

treated with cAMP/Rp-cAMP the second pulse train elicited a greater response (Fig. 3.6; 104±12 

fF) than ashen cells in the absence of cAMP (Fig. 3.1; 75±14 fF), potentially indicating that 

cAMP-independent pathways are upregulated in the absence of Rab27a.  Collectively, these 

experiments argue for considerable PKA-independent actions downstream of Rab27a.  

Contribution of Epac2 to cAMP facilitation of secretion in ashen β-cells − The 

experiments described above indicate glucose-dependent deficits in pool refilling occur in ashen 

β-cells (Figs. 3.1 and 3.3). In addition, we demonstrated above that cAMP-dependent pathways 

remain potent secretory activators in ashen β-cells, particularly those independent of PKA.  These 

pathways are capable of increasing the RRP size, but are insufficient (i.e., require PKA action) to 
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increase the rate of pool refilling following its depletion (Fig. 3.6).  In pancreatic β-cells, PKA-

independent effects of cAMP have been reported, in part, to involve activation of Epac2 

(exchange protein directly activated by cAMP).  This Epac2 pathway can be selectively activated 

by pharmacologic ESCAs (Epac selective cAMP analogues; here, 8-pCPT-2’-O-Me-cAMP) 

(Kang et al. 2003; Holz et al. 2008).  Therefore, to determine the contribution of Epac2 to PKA-

independent actions of cAMP in ashen β-cells we measured capacitance increases to ΔCm5 and 

ΔCm8 when 100 μM ESCA was included in the pipette solution.  As shown in Fig. 3.7, the IRP 

(17±3 fF) and RRP size (185±22 fF) measured in response to application of the initial series of 

depolarizing steps were similar to wildtype or ashen cells treated with cAMP (Fig. 3.5) or cAMP 

and Rp-cAMP (Fig. 3.6).   This results shows that Epac2 is directly responsible for the PKA-

independent boost in the IRP and RRP observed by evaluation of the first induction of pool 

depletion.  By comparison, evaluation of refilling of the pools by application of a second stimulus 

series demonstrated that the IRP recovered completely while the RRP recovered to only ~80% of 

its initial size.  Thus, the majority of PKA-independent actions in ashen β-cells utilize Epac2, 

while PKA action is responsible for most of cAMP actions on pool refilling. 

 

Discussion 

The targeting and docking of secretory granules to the plasma membrane involves the 

activity of Rab-GTPases.  Yet, the specific functional sites that Rab proteins act in the exocytotic 

pathway to mediate their actions, as well as the molecular complexes that assemble and 

disassemble to perform their functions, remain ill defined.   In this study we have used a 

functional analysis of secretion to identify specific steps in the final stages of insulin secretion 

where Rab27a acts.  The experiments compared secretory responses from ashen β-cells (which 

lack Rab27a protein) and Rab3a-/- β-cells with appropriate background control β-cells.  Multiple 

sites of Rab27a action were identified including regulation of the rate of refilling of specific 
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readily-releasable granule pools.  In addition, we identify a role for Rab27a that limits the rate of 

granule fusion from these pools with the plasma membrane.  Moreover, we find that these 

functions are unique to Rab27a, as Rab3a, which is also present on insulin secretory granules, did 

not exert regulation at these steps.  Both the deficit in pool refilling in the ashen β-cells, as well 

as the increased rate of pool depletion were not observed in the presence of cAMP, owing largely 

to PKA-dependent pathways.  Collectively, our results suggest that glucose-dependent 

enhancement of insulin secretion involves priming pathways that utilize Rab27a while, by 

comparison, receptor-mediated cAMP-dependent pathways that amplify secretory responses work 

primarily downstream of, or in parallel to, Rab27a.  

 

What are the sites of Rab27a action in the pancreatic β-cell secretory pathway?  

 We have used stimulus-induced changes in membrane capacitance as a time resolved 

measurement of insulin release from the readily-releasable pool (RRP) of insulin granules (~60 

granules), and its kinetically-distinct subset of ~10 Ca2+ channel-associated immediately-

releasable granules (IRP) (Barg et al. 2001; Wan et al. 2004; Yang and Gillis 2004).  The 

functional significance of this in situ measurement is that in vivo, IRP and RRP release are 

believed to account for first-phase insulin secretion (via KATP channel-dependent pathways), 

while the sustained second-phase release requires their refilling from a reserve pool (involving 

KATP channel-independent pathways) (Eliasson et al. 1996; Barg et al. 2001; Barg et al. 2002; 

Olofsson et al. 2002; Straub and Sharp 2002).  Notably, the rate of secretion using membrane 

depolarization to induce Ca2+ influx is artificially high (~75 granules s-1) (Kanno et al. 2004), at 

least ~300-fold faster than glucose-stimulated first-phase release (~0.25 granules s-1) (Bratanova-

Tochkova et al. 2002; Straub and Sharp 2002), thereby allowing us to completely deplete both the 

IRP and RRP, and examine refilling processes in a shortened time-frame.  Using this approach, 
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we were able to define multiple rate-limiting sites of Rab27a action in the vesicle secretory 

pathway. 

A remarkable finding of our study was that following depletion, the refilling of the RRP 

and IRP was incomplete even after a 2 min recovery in Rab27a-null ashen β-cells, compared with 

complete recovery seen in background control (C3H/He) cells.  This result is highly significant, 

as a previous study suggests that the RRP recovers with a time constant of 31 s, and only 60 s is 

required for complete recovery (Gromada et al. 1999).  The currently available literature on 

Rab27a, which has been largely derived from ashen mice, suggests three possible sites of Rab27a 

action in the secretory pathway which could potentially explain this phenomenon:  granule 

recruitment, docking, and priming.  The role of Rab27a in recruitment is evidenced by the failure 

of melanosomes to target to the PM, accumulating around the nucleus in ashen melanocytes 

because a Rab27a-MyRIP-myosin Va tripartite complex is required for their transfer from 

microtubules to actin filaments (Fukuda et al. 2002; Strom et al. 2002; Waselle et al. 2003).  

Rab27a is also known to participate in granule docking.  In cytotoxic T-cells (CTLs) derived from 

ashen mice, EM analysis has revealed that lytic granules polarize correctly to the immunological 

synapse (i.e., recruitment processes are functional), but the CTLs are unable to secrete granzyme 

A or hexoaminidase because the lytic granules stop short of docking (Stinchcombe et al. 2001).  

However, recruitment/docking seem unlikely to completely account for the Rab27a-dependent 

secretory deficit we find in ashen β-cells, since EM analysis has shown that the granule density 

at/near the PM (within 500 nm) is nearly identical in unstimulated Rab27a-null and C3H/He β-

cells (Kasai et al. 2005), and is not affected by RNAi directed against Rab27a (Waselle et al. 

2003).  We additionally demonstrated that functionally, the initial secretory responses between 

ashen and control β-cells were similar, yielding a ~10 fF IRP (~6 granules) and a ~115 fF  RRP 

(~68 granules), which is comparable to control responses reported in prior studies.    



 131

In addition to potential roles at recruitment or docking steps, we propose that Rab27a 

participates in glucose-dependent priming pathways in pancreatic β-cells.  The hypothesis that 

Rab27a participates in priming was suggested by a dramatically reduced release of pre-docked 

granules seen in the TIRFM field following glucose stimulation in ashen β-cells (Kasai et al. 

2005).  That priming of granules occurs in β-cells was originally suggested by quantitative 

comparisons between EM ultrastructural analysis and membrane capacitance measurements.  

That is, out of the ~10-13,000 granules in the β-cell, ~600 (~5% in total) are docked at the plasma 

membrane and yet only ~60 granules (~0.5% in total) comprise the RRP (Dean 1973; Renstrom 

et al. 1997; Bratanova-Tochkova et al. 2002; Olofsson et al. 2002).  The conversion of 

reserve/docked granules into readily- and immediately-releasable granules, requiring priming, is 

believed to be a biochemical process with the rate and extent of priming dependent on time, 

temperature, [Ca2+]i, [ATP]i, and importantly, glucose concentration (Grodsky 1972; Grodsky 

1972; Gromada et al. 1999; Barg et al. 2002; Yang and Gillis 2004).  Although a number of 

readily-releasable granules have been found by TIRFM to be released without an extended 

docking step (a.k.a. restless newcomer) during first phase-secretion under glucose stimulation 

(Shibasaki et al. 2007), this population is far less affected by the absence of Rab27a than the 

docked pool (Kasai et al. 2005).  We have found additionally that movement from the RRP into 

the IRP is strongly dependent on Rab27a at 5 mM glucose, but independent of Rab27a when 

extracellular glucose is raised to 16.7 mM.  Coincident with this glucose-dependent bypass of 

Rab27a action, the rate of RRP emptying in ashen cells also increases by ~2-fold upon raising 

extracellular glucose (ashen/5 mM glucose, 1/τ=0.63±0.09 s-1; ashen/16.7 mM glucose, 

1/τ=1.36±0.07 s-1).     

 

The role of Rab27a effectors in glucose and Rab27a-dependent priming  
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Both the glucose-dependent deficit in granule pool refilling and the increased rate of RRP 

depletion we find in ashen β-cells are consistent with the known properties of Rab27a effector 

interactions in priming.  For example, reduction of the Rab 3/27a effector Noc2 by RNAi 

decreases insulin secretion from INS-1 β-cells.  In vitro, Noc2 has been reported to bind the 

essential priming factor Munc13 (Cheviet et al. 2004).  Another principal Rab27a effector is 

Slp4a/granuphilin (Fukuda 2005).  Rab27a-dependent pool refilling could also be explained, in 

part, by the finding that β-cells deficient in either Rab27a (Kasai et al. 2005) or Slp4a (Gomi et 

al. 2005) have reductions in the number of insulin granules docked to the plasma membrane, 

although the defect is substantially larger in Slp4a-null β-cells as measured by EM.  Consistently, 

overexpression of Slp4a in neuroendocrine PC12 cells significantly increases the number of 

vesicles docked prior to stimulation (Tsuboi and Fukuda 2006).  Although the docking of β-

granules to the plasma membrane is strongly facilitated by Rab27a and Slp4a, these vesicles may 

be forced into an inactive and unprimed state since secretion is strongly inhibited by Slp4a 

overexpression (Coppola et al. 2002; Torii et al. 2002), and because Slp4a interacts strongly with 

only the closed and SNARE-pairing inactive Munc18/syntaxin complex (Coppola et al. 2002; 

Torii et al. 2002; Gomi et al. 2005; Tsuboi and Fukuda 2006).  This biochemical state could 

explain the Rab27a-dependent clamp on granule release absent in ashen β-cells.  Indeed, the 

clamp may be released upon stimulation, since Rab27a is activated and interacts with effectors 

only in the GTP bound state, and GTP hydrolysis is known to accompany stimulation (Kondo et 

al. 2006). 

 

The interplay of Rab27a and Rab3a in priming pathways   

Islets isolated from either Rab27a-null (Kasai et al. 2005) or Rab3a-null (Yaekura et al. 

2003) animals are reported to exhibit glucose intolerance as well as a ~50% defect in glucose-

stimulated insulin secretion, although these approaches preclude identification of specific granule 
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pools affected or quantitative analysis on refilling rates of specific granule pools.  Our results 

identify the site of the Rab27a-dependent secretion deficit as a glucose-dependent defect in IRP 

and RRP refilling, yet as we see no initial deficit in the RRP size, it is surprising that Rab27a-null 

animals are glucose intolerant (Kasai et al. 2005).  Notably, the functionally defined Rab27a 

deficits in secretion were not observed in Rab3a-null β-cells, suggesting that the two molecules 

do not function redundantly in pancreatic β-cells.  This is an important determination when one 

considers that some redundancy exists in Rab27/Rab3 effector interactions.  For example, 

rabphilin and Noc2, which were first characterized as Rab3a effectors (Kotake et al. 1997; 

Haynes et al. 2001), also function in concert with Rab27a (Cheviet et al. 2004; Fukuda et al. 

2004).  Slp4a, however, is believed to form an endogenous complex only with Rab27a based on 

its high affinity interaction (Mahoney et al. 2006), despite its interaction with Rab3a in vitro 

(Coppola et al. 2002).  Moreover, the Munc13-1 binding protein RIM (Betz et al. 2001) only 

binds to Rab3a (Fukuda 2005).  The situation in other cell types may be different.  For example, 

in PC12 cells, RNAi knockdown of Rab27a and Rab3a has an additive effect to reduce secretion 

(Tsuboi and Fukuda 2006).  It seems more likely, though, that Rab3a is redundant with the other 

three isoforms present on β-granules (i.e., Rab a/b/c/d) (Iezzi et al. 1999).  Deletion of all four 

Rab3 isoforms in mice (which is lethal owing to respiratory defects) resulted in only a ~30% 

decrease in evoked secretion from hippocampal neurons (Schluter et al. 2004; Schluter et al. 

2006), suggesting Rab3a is redundant with Rab3 b, c, and d, at least for synaptic transmission.   

 

Rab27a and amplifying pathways of secretion 

cAMP is a powerful potentiator of insulin secretion (Holst and Gromada 2004), via its 

contribution to both the initial size and the rate of refilling of multiple secretory granule pools 

(Gromada et al. 1998; Yang et al. 2002; Wan et al. 2004; Yang and Gillis 2004; Kwan and 

Gaisano 2005).  The effects of cAMP to augment secretion are furthermore additive with those 
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seen under conditions of elevated glucose (Wan et al. 2004; Yang and Gillis 2004), suggesting 

that at least some glucose and cAMP signaling intermediates act in independent pathways.  We 

have found that the actions of cAMP have two principal effects independent of the 

glucose/Rab27a-dependent pathways on pool size and refilling.  First, cAMP can quickly enhance 

(in <3 min) the initial IRP and RRP magnitude in ashen β-cells to an equivalent extent as in 

control β-cells.  Second, cAMP can obviate the Rab27a-dependent deficit in pool refilling seen in 

the ashen cells.   The intracellular mediators of these cAMP effects are separable into PKA-

independent and PKA-dependent pathways, respectively.   

Our results indicate that cAMP-mediated refilling of the RRP is strongly dependent on 

PKA, since Rp-cAMP completely blocks the ability of cAMP to refill the RRP in both wildtype 

and ashen β-cells.  Consequently, we find no Rab27a-dependence of PKA action.  Interestingly, 

we found that Rp-cAMP has no effect in limiting the initial enhancement of the IRP and RRP by 

cAMP.  This is surprising, since previous reports using the same inhibitor describe a partial 

(Rosengren et al. 2002) or complete block (Wan et al. 2004; Yang and Gillis 2004) of an initial 

cAMP-induced enhancement of depolarization-induced exocytosis.  Perhaps the inhibition by Rp-

cAMP lags behind cAMP activation, in spite of the high Rp-cAMP concentration we used in the 

patch pipette.  On the other hand, it may be that the activity of PKA is only evident after 

stimulation, during the refilling of the IRP and RRP (i.e., the observed initial boost in RRP size 

prior to its depletion is likely to be mediated by PKA-independent pathways).  Renstrom and 

colleagues (Renstrom et al. 1997) previously reported that neither Rp-cAMP nor PKI (PKA 

inhibitory peptide) affected cAMP potentiation of granule release evoked by a single 500 ms 

depolarizing pulse, but when additional pulses are applied at 1 Hz over tens of seconds, where 

RRP refilling processes would predominate, the effects of cAMP to enhance secretion are 

severely reduced by PKA inhibition.  Consistent with this latter hypothesis, we found that direct 

activation of Epac2 in ashen cells with the ESCA 8-pCPT-2’-O-Me-cAMP increased the initial 
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RRP size (closely mimicking the treatment of ashen cells with cAMP/Rp-cAMP), but failed to 

support complete refilling of the RRP.  

By fitting the time course of RRP depletion, which occurred during closely spaced 

repetitive depolarizing steps, to a single exponential, and comparing the results between ashen 

and control β-cells, we have discovered that Rab27a exerts a previously unknown rate-limiting 

action on vesicle release.  The results establish a ~2-fold faster pool depletion in ashen β-cells 

than in wildtype β-cells incubated in 5 mM glucose (ashen, 1/τ=0.63±0.09 s-1; C3H/He, 

1/τ=0.32±0.06 s-1), that is further enhanced in 16.7 mM glucose (1/τ=1.36±0.07 s-1).  A role for 

Rab27a action immediately proximal to secretion is evidenced by a corresponding hydrolysis of 

Rab-GTP upon stimulation (Kondo et al. 2006).  This regulatory effect of Rab27a on rate of pool 

depletion is not recapitulated by deletion of Rab3a (Rab3a-/-, 1/τ=0.30±0.06 s-1; C57Bl/6, 

1/τ=0.35±0.06 s-1).   Rab27a control over vesicle pool depletion is, however, bypassed by the 

actions of cAMP (ashen/cAMP, 1/τ=0.40±0.07 s-1; C3H/He/cAMP, 1/τ=0.43±0.05 s-1).   These 

results support a convergence of cAMP and glucose-dependent priming pathways proximal to 

secretion.  

 Several distinct molecular mediators can be postulated for the effect of cAMP effect on 

priming of insulin granules.  One possibility is activation of the small GTPase Rap1 by Epac2, 

which serves as a GEF (Shibasaki et al. 2007).  Epac2 also directly binds the Rab3a effector 

molecules Munc13-1 and Rim2, which serve as vesicle priming factors (Fujimoto et al. 2002; 

Shibasaki et al. 2004; Kwan et al. 2007).  This mechanism is influenced by PKA-dependent 

processes, owing to direct phosphorylation of Rim2 (Lonart et al. 2003) as well as the SNARE 

protein SNAP25 (Hepp et al. 2002), although these events have not been directly correlated with 

enhanced secretion.  Further studies probing Rab3 and other small GTPase (e.g., Rap1, RalA 

(Lopez et al. 2008), etc.) pathways may address these possibilities.  
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Summary  

Interactions between Rab27a-GTPase and its effectors on secretory granule membrane are 

believed to act in concert with SNAREs on the plasma membrane to facilitate docking and 

secretion.  In this study we have investigated the mechanisms by which insulin secretion is 

regulated by Rab27a in mouse pancreatic β-cells, focusing specifically on the glucose- and 

cAMP-dependent priming pathways.  Our results indicate that Rab27a is a central effector upon 

which glucose-dependent β-cell signaling pathways converge to regulate refilling of and rate of 

release from specific releasable pools of secretory granules.   Moreover, Rab27a and Rab3a 

appear not to be redundant in their actions.  Finally, cAMP amplification of insulin secretion acts 

primarily downstream of or independent of Rab27a, suggesting Rab27a is a critical regulator of 

glucose-induced secretion and an important mediator of both first and second phase of glucose 

stimulated insulin secretion. 
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Figure 3.1.  Ashen mice exhibit kinetic defects in refilling of the IRP and RRP.  A, Mouse 
pancreatic β-cells under whole cell voltage clamp were depolarized from a holding potential of -
70 mV to +20 mV to elicit exocytosis of β-granules.  The stimulus train consisted of five 50-ms 
depolarizations (ΔCm5) to exhaust the IRP, which was immediately followed by eight 500-ms 
depolarizations (ΔCm8) to stimulate release from the RRP.  The inter-pulse interval was 100 ms.  
The entire stimulus train was repeated twice for each experiment, allowing 2 min between trains 
for vesicle pool recovery.  A 15 ms test depolarization was given 2 min prior to the first stimulus 
train to measure the properties of ICa.  B, Averaged capacitance increases measured from wildtype 
(C3H/He) (dark red, light red) and ashen β-cells (dark blue, light blue) in response to the pulse 
train in A.  C,  Averaged membrane conductance measured from wildtype (C3H/He) (red) and 
ashen (blue) β-cells during the first stimulus train in (B).  D, Averaged capacitance increases 
measured after ΔCm5 (IRP) or ΔCm8 (RRP) from cells in (B).  The IRP was also estimated using 
the equation S/(1-R2), where S is the sum of the first two capacitance responses and R is the ratio 
of the first two responses (2-pulse) (Gillis et al. 1996).  Cells were selected for analysis only 
when the capacitance increase following the first depolarizing pulse was greater than 60% of the 
capacitance increase following the second depolarizing pulse of ΔCm5.  E,  Averaged leak-
subtracted ICa measured during a 15 ms depolarization given 30 s prior to the stimulatory pulses 
in B.  The bar graph displays integrated current (QCa) normalized to cell size.  *, p<0.05; **, 
p<0.01; ***, p<0.001.  Bars, means ± SEM.  Number of observations (β-cell recordings) is 
indicated above each averaged trace.  
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Figure 3.2.  Comparison of ashen and wildtype β-cell voltage-gated calcium influx and of 
intracellular Ca2+ responses to glucose stimulation.  A, current-voltage relationship of ICa in 
control C3H/He or ashen β-cells measured in response to 100 ms step depolarizations applied at 1 
Hz from a holding potential of -70 mV.  B, Changes in intracellular Ca2+ measured from single 
wildtype C3H/He (red) and ashen (blue) β-cells loaded with Fura-2 in response to 16.7 mM 
glucose.  Representative traces are shown, n=6. 
 



 139

 
 
Figure 3.3.  Measurement of IRP and RRP pool sizes and refilling in Rab3a-null β-cells. A, 
Averaged capacitance changes measured from background control (C57) (dark red, light red) and 
Rab3a-/- β-cells (dark blue, light blue) in response to the pulse protocol described in Fig. 3.1A.  B, 
Averaged capacitance increases measured after ΔCm5 (IRP) or ΔCm8 (RRP) from cells in A.  C,  
Averaged leak-subtracted ICa measured during a 15 ms depolarization given 30 s prior to the 
stimulatory pulses in A.  The bar graph displays integrated current (QCa) normalized to cell size.  
*, p<0.05; **, p<0.01; ***, p<0.001.  Bars, means ± SEM. 
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Figure 3.4.  Glucose-dependent increases in priming of the RRP are deficient in ashen β-
cells.  A, Averaged capacitance changes measured from ashen β-cells (dark green, light green) 
incubated in 16.7 mM glucose for >10 min.  The stimulus protocol is detailed in Fig. 3.1A.  B, 
Averaged capacitance increases measured after ΔCm5 (IRP) or ΔCm8 (RRP) from cells in A.  C,  
Averaged leak-subtracted ICa measured during a 15 ms depolarization given 30 s prior to the 
stimulatory pulses in A.  The bar graph displays integrated current (QCa) normalized to cell size.  
*, p<0.05; **, p<0.01; ***, p<0.001.  Bars, means ± SEM. 
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Figure 3.5.  Effects of cAMP on evoked changes in membrane capacitance in  ashen β-cells.  
A, Averaged capacitance increases measured in response to 100 μM cAMP from wildtype 
(C3H/He) (dark brown, light brown) and ashen β-cells (dark purple, light purple) in response to 
the pulse train in Fig. 3.1A.  Capacitance changes from control untreated cells are redisplayed 
from Fig. 3.1B for comparison.  B, Averaged capacitance increases measured following ΔCm5 or 
ΔCm8 from cells in A.  The IRP was analyzed by the 2-pulse procedure described in Fig. 3.1D.  
C,  Averaged leak-subtracted ICa measured during a 15 ms depolarization given 30 s prior to the 
stimulatory pulses in A.  The bar graph displays integrated current (QCa) normalized to cell size.  
*, p<0.05; **, p<0.01; ***, p<0.001.  Bars, means ± SEM. 
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Figure 3.6.  A PKA-dependent step downstream of Rab27a facilitates RRP pool refilling.  A, 
Averaged capacitance increases recorded from wildtype (C3H/He) (dark red, light red) and ashen 
β-cells (dark blue, light blue) with 100 μM cAMP and 500 μM Rp-CAMP (PKA inhibitor) in the 
pipette soluion.  Cells were stimulated by two pulse trains 2 min apart as described in Fig. 3.1A.  
B, Averaged capacitance increases measured following ΔCm5 or ΔCm8 from cells in A.  The IRP 
was analyzed by the 2-pulse procedure as described in Fig. 3.1D.  C,  Averaged leak-subtracted 
ICa measured during a 15 ms depolarization given 30 s prior to the stimulatory pulses in A.  The 
bar graph displays integrated current (QCa) normalized to cell size. ICa and QCa from cells treated 
with cAMP are redisplayed from Fig. 3.4C. *, p<0.05; **, p<0.01; ***, p<0.001.  Bars, means ± 
SEM.
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Figure 3.7.  Effects of Epac2 activation on IRP and RRP size and refilling in ashen β-cells.  
A, Averaged capacitance changes measured from ashen β-cells (dark purple, light purple) in the 
presence of 100 μM 8-pCPT-2’-O-Me-cAMP (ESCA) in response to the pulse protocol described 
in Fig. 3.1A.  B, Averaged capacitance increases measured after ΔCm5 (IRP) or ΔCm8 (RRP) 
from cells in A.  C,  Averaged leak-subtracted ICa measured during a 15 ms depolarization given 
30 s prior to the stimulatory pulses in A.  The bar graph displays integrated current (QCa) 
normalized to cell size.  *, p<0.05; **, p<0.01; ***, p<0.001.  Bars, means ± SEM. 
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CHAPTER IV 

 

Discussion 

The purpose of the investigations forming this dissertation was to provide information on 

the sites of Munc18c and Rab27a action in vesicle docking and priming in two tissues which 

exhibit exocytotic defects in the diabetic state, adipocytes and pancreatic β-cells.  In this section I 

will summarize the experimental results that address the Specific Aims identified in the 

Introduction, highlighting their significance within the broader literature.  In doing so, I will 

describe the features identified for each molecule that contribute to temporal regulation of 

exocytotic events, as both molecules were studied in the context of regulated exocytotic events.  

Finally, I will describe the major limitations of each chapter’s results, and propose future studies 

to forward progress in the field. 

 

Significance of the Specific Aims addressed in Chapters II and III 

 In our initial characterization of the molecular requirements for the Munc18c-syntaxin4 

interaction, we found using mutational analysis that multiple binding states for Munc18c exist 

depending on the conformation of syntaxin4.  This result rectified apparent inconsistencies in the 

model for Munc18c action proposed in past literature.  Long established models of Munc18 

action proposed that Munc18-syntaxin binding interactions were eliminated upon formation of 

SNARE complexes, thereby indicating that Munc18s interacted only with closed conformations 

of syntaxin (Dulubova et al. 1999; Misura et al. 2000).  More recently, Munc18c, was shown to 
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bind SNARE complexes in vitro (Widberg et al. 2003), and biochemical analysis suggested that 

the N-terminus of syntaxin4 could support Munc18c binding (Latham et al. 2006).  Our data 

tested this interaction scenario in an in situ situation, and the results strongly agree with the latter 

model.    

  Supporting the interpretation of multiple Munc18c binding states was the preparation of 

a constitutively open mutant of syntaxin4 (L173A/E174A; LE).  This mutant was found by an 

intermolecular FRET assay in situ to interact with Munc18c to a similar extent as with wildtype 

syntaxin4.  The nature of Munc18c-syntaxin4LE interaction required the N-terminus of syntaxin4, 

as demonstrated by point mutants of syntaxin4LE (D3R and I233A) that eliminated interaction 

with Munc18c.  During completion of our Munc18c research, a Munc18a-Q-SNARE complex 

was suggested to serve as a vesicle docking platform in chromaffin cell plasma membranes (Zilly 

et al. 2006). We, therefore, searched for such an analogous complex for Munc18c.  Our results 

demonstrated the existence of a Munc18c-syntaxin4LE-SNAP23 complex using 

immunoprecipitation in HEK293 cells.  Supporting this result was a novel optical assay in which 

a cytosolic mutant of GFP-SNAP23 was protected from cytosolic photobleach through binding to 

a Munc18c-syntaxin4LE complex, but not the Munc18c-syntaxin4WT complex, at the PM.   These 

studies highlight the role of Munc18c, as outlined in Specific Aim 1, as a syntaxin chaperone that 

initially regulates syntaxin-SNARE interactions.   

The investigations associated with Specific Aim 2 extended our analysis of the binding 

modes between Munc18c and syntaxin4 to determine whether Munc18c control over syntaxin4 

conformation affects the competency of GLUT4 vesicle docking.  We showed that 3T3L1 

adipocytes expressing Munc18c together with syntaxin4LE, but not syntaxin4WT, syntaxin4D3R (a 

mutant that eliminates Munc18c binding to the syntaxin4 N-terminus), or syntaxin4I233A (a mutant 

that eliminates Munc18c binding to both closed and open forms of syntaxin4), is sufficient for 

GLUT4 vesicle docking to the PM.  To our knowledge, this is the first evidence demonstrating a 

positive role for Munc18c in GSV trafficking.  This is particularly significant as our studies, 
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together with recent studies of the neuronal homologue Munc18a (Dulubova et al. 2007; 

Khvotchev et al. 2007; Shen et al. 2007), now have agreement with older studies of Sec1p in 

yeast (Carr et al. 1999; Scott et al. 2004) showing that SM proteins can facilitate secretion.  

Collectively, these results support a consensus model of SM interactions with exocytotic 

syntaxins in which multiple binding and functional states are necessary to maintain temporal 

regulation of exocytosis.  

These studies furthermore support the following sequence of events in the docking, 

priming, and fusion of GSVs with the PM.  Following vesicle transport to the plasma membrane, 

Munc18c binding to closed syntaxin4 puts a clamp on vesicle docking and priming, by preventing 

syntaxin4 entry into SNARE complexes.  As signaled by insulin, priming factors subsequently 

assist the opening of syntaxin4, transitioning Munc18c to an N-terminal binding interaction with 

the open conformation of syntaxin4.  Exposure of the syntaxin4 SNARE domain supports the 

formation of Q-SNARE complexes with SNAP23, and the resulting binary complex serves as an 

acceptor for VAMP2 on the vesicle, towards completion of priming which is ultimately necessary 

to provide the force necessary for GSV fusion.   

What then, is the direct stimulus for priming reactions and SNARE complex assembly? 

Numerous experiments now indicate that Rab/Rab effector/Munc18/syntaxin interactions 

comprise the end-stage events in exocytosis, which include the processes of vesicle docking, 

priming, and fusion.  First, it was discovered in yeast that the loss of Rab GTPase (Ypt1) in ER-

to-Golgi trafficking can be bypassed by the SM protein Sly1, suggesting that Rab and SM 

proteins function in the same pathways (Peng and Gallwitz 2002).  Second, biochemical 

interactions between Rab effector proteins and the SM-syntaxin complex have been reported in 

vitro (Torii et al. 2002; Fukuda 2003).  Most recently, a direct protein-protein interaction between 

Rab3a and Munc18a has been reported in neuroendocrine PC12 cells (Graham et al. 2008).   

Finally, in mammals, genetic ablation of Rab GTPases, a subset of their effectors (e.g., Slp4a, 

rabphilin), and SM proteins exhibit very similar defects, principally reported as defects in vesicle 
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docking and priming (Voets et al. 2001; Weimer et al. 2003; Gomi et al. 2005; Kasai et al. 2005; 

Korteweg et al. 2005; Deak et al. 2006).  

Of significant interest to this work, a marked deficit in both first and second phase insulin 

secretion was evident during glucose stimulation in islets isolated from Rab27a-null ashen mice, 

resulting in glucose intolerant animals (Kasai et al. 2005).  In response to a single meal, ~5% of 

the ~13,000 β-granules are released during two biochemically separate periods.  First phase 

secretion (i.e., KATP-channel dependent) depends on exocytosis of readily- and immediately-

releasable granules that are fully primed (~50 to 60 granules) (Barg et al. 2001; Olofsson et al. 

2002), while the second phase (i.e., KATP-channel independent) relies on transition of non-primed 

granules to a fully-primed state as well and recruitment of granules to the PM region for 

exocytosis (Eliasson et al. 1997; Kanno et al. 2004).  From the initial studies of ashen β-cells, it 

was unclear whether absence of Rab27a resulted in a limited readily-releasable pool size or the 

replenishment of that pool as the islets were continuously exposed to stimulatory concentrations 

of glucose, or both.  Thus, the initial goal of Specific Aim 3 was to characterize the kinetic 

parameters of vesicle exocytosis that differed in Rab27a-null β-cells from background matched 

control β-cells.  To accomplish this we used patch-clamp measurements of membrane 

capacitance changes in response to a stimulation protocol that could simultaneously assay the size 

as well as refilling competence of the functionally distinct β-granule pools (i.e., the IRP and 

RRP).  Membrane capacitance measurements are independent of morphological characterizations 

of the secretory pathways (e.g., docking as assayed by TIRFM or EM), allowing us to isolate the 

sites of Rab27a action in the exocytotic pathway based discretely on Rab27a function.   

Measurements of membrane capacitance changes do, however, represent a net measurement of 

both exocytotic and endocytotic activity.  As endocytosis is kinetically slower that exocytosis, the 

results using our brief stimulation protocol are predominated by exocytotic activity.   
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We have identified the principal defect in ashen β-cells as the inability to replenish both 

the IRP and RRP.  Notably, the initial size of both pools was comparable to that measured in 

control β-cells in our experiments, and by others (Eliasson et al. 1997; Barg et al. 2001).  This 

result indicates the Rab27a-dependent deficit is time-dependent, and reflective of Rab27a 

working in conjunction with other unknown mechanisms to refill the pools (i.e., Rab27a is not 

strictly required).  The deficit in ashen cells with respect to the RRP cannot be offset by elevated 

glucose-stimulation, as it persists even as glucose was elevated from mildly (5 mM) to strongly 

(16.7 mM) stimulatory concentrations.  By comparison, our results demonstrated that high 

glucose concentrations can obviate Rab27a for priming into the IRP.  In considering the 

mechanism for this response, there are several possible signaling intermediates/pathways that 

have been proposed to account for the dose-dependent glucose augmentation of secretion, 

including long chain acyl-CoA (Prentki 1996; Prentki and Corkey 1996), nucleotides (Henquin 

2000), and protein kinases (PKA, PKC, and AMPK) (Nesher et al. 2002).  We investigated the 

cAMP/PKA-dependent priming pathway and its interactions/requirements with Rab27a regulated 

pathways.   

The secondary goal of Specific Aim 3 was to provide missing information on the specific 

signaling pathways responsible for Rab27a activation.  In addition to glucose-dependent 

pathways, cAMP-dependent pathways strongly augment secretion (Ammala et al. 1993; Gromada 

et al. 1998; Yang et al. 2002; Wan et al. 2004; Yang and Gillis 2004; Kwan and Gaisano 2005).   

Most of effects of cAMP can be attributed to the direct binding of either protein kinase A (PKA) 

or Epac2 (exchange protein directly activated by cAMP) (Ozaki et al. 2000).  Both PKA and 

Epac2 have proximal effects on β-cells via regulation of ion channel activity, thereby increasing 

Ca2+ influx (Ammala et al. 1993; Kang et al. 2001; Shibasaki et al. 2004).  Consistently, we 

measured a significant retardation in the ICa inactivation kinetics, increasing the net Ca2+ influx by 

~20% in response to direct activation of both pathways.  However, up to 80% of the effects of 
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cAMP on exocytosis are believed to be downstream of Ca2+, through direct interaction with the 

secretory machinery (Ammala et al. 1993).  Yet, no prior studies had examined whether these 

distal cAMP actions are upstream, downstream, or parallel to Rab27a.   

As Rab27a is known to participate in such diverse steps in membrane trafficking as 

transport (Hume et al. 2001; Wu et al. 2002), docking/tethering (Stinchcombe et al. 2001; Gomi 

et al. 2005; Kasai et al. 2005), and priming (Kasai et al. 2005), it seems plausible that Rab27a is 

inherent to cAMP-dependent, as well as glucose-dependent, processes.  Yet, we found two 

principal effects of cAMP that are not affected by the absence of Rab27a in ashen β-cells.  First, 

both the IRP and RRP amplitude and refilling rate could be augmented through direct activation 

of Epac2, in the absence of Rab27a.  Second, the ability of the IRP and RRP to refill in both 

ashen and wildtype β-cells is strongly dependent on PKA-dependent processes.  Therefore, as it 

has been reported that the actions of glucose and cAMP to augment secretion are additive (Wan et 

al. 2004; Yang and Gillis 2004), we now know that cAMP actions on the final stages of the 

exocytotic pathway happen independent of or downstream of Rab27a.  As discussed in a 

subsequent section, Rab3 GTPases may be possible mediators of cAMP-dependent effects.  

  

Limitations and Future Directions of Chapter II Results 

The overall goal of our experiments in adipocytes was to produce a detailed functional 

map of the protein-protein interactions that are required to dock GLUT4 vesicles to the PM, and 

assist in their priming.  We have made significant progress towards this goal.  Our main finding 

was that the priming factor Munc18c, through binding to the open conformation of syntaxin4, 

promotes GLUT4 vesicle docking in 3T3L1 adipocytes.  Still unclear are the critical proteins 

linking the vesicle and PM.  Until recently, the identities of the Rab proteins involved in GLUT4 

trafficking were unknown.  Particularly, Rab10 appears important to the process, since 

overexpression of a Rab10 mutant defective in GTP hydrolysis increases basal surface GLUT4 
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and Rab10 knockdown inhibits the rate of exocytosis (Sano et al. 2007).  Rab 2A, 8A, and 14 

have also been shown to interact with PI3K-dependent Rab-GAP AS160 (Miinea et al. 2005), but 

no functional effects of the Rab molecules has been identified.  Therefore, in contrast to the 

situation in β-cells described in this work, in which the Rab27a and Rab3 effectors in insulin 

secretion have been identified (e.g., Slp4a, Noc2, and rabphilin), very little information exists on 

the Rab effectors in adipocytes.  Future studies, using the techniques described below, may 

address this discrepancy.   

Perhaps the central limitation of our GSV study is that our correlations between the 

distinct conformational states of syntaxin4 and functional effects on the GLUT4 translocation 

pathways were performed on fixed cells with limited optical resolution of the PM afforded by 

confocal microscopy.  The use of dynamic FRET measurements in combination with TIRF (total 

internal reflection fluorescence) microscopy, which was not previously accessible, is currently 

being developed as an ideal tool to address this issue.  TIRF microscopy utilizes an evanescent 

wave to visualize between 100-250 nm of the cell proximal to the PM, allowing examination of 

both GSV docking and fusion events at the PM.  Recently, the application of TIRF microscopy in 

adipocytes has revealed a previously undiscovered insulin-regulated step in GSV 

docking/priming (Bai et al. 2007; Huang et al. 2007).  Based on our findings, we propose that this 

step is likely to involve PI3K- and Akt2-dependent activation of Munc18c, although this 

hypothesis has not been tested.  In addition to TIRFM, we are currently using FRET to directly 

report the CFP-Rab27a and CFP-Rab3a interactions with cYFP-Slp4a, as well as cYFP-Slp4a 

interaction with CFP-syntaxin4 in β-cells.  This same system can be utilized in adipocytes as a 

companion to TIRFM.  A potential hindrance to this idea is our discovery that the use of N-

terminally labeled syntaxin (1 or 4), which clearly permits GSV docking in adipocytes, is mildly 

inhibitory in hGH secretion assays.  This will require the design of an alternative to our 

Munc18c-syntaxin4 FRET-based assay appropriate to adipocytes.  With the joining of TIRF and 
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FRET technologies, the objective of these studies will be to produce a real-time spatial map of the 

vesicle-PM protein-protein interactions underlying insulin-stimulated GSV docking and fusion.     

 

Limitations and Future Directions of Chapter III Results 

We used membrane capacitance measurements to monitor insulin secretion from single 

pancreatic β-cells to functionally test for sites of Rab27a action on specific functional vesicle 

pools.  With currently available technology, this electrophysiologic approach yields a 

substantially better time resolution than optical or immunological measurements of insulin 

secretion and simultaneously provides an integrated readout of β-cell secretion augmentation 

pathways.  One caveat of our β-cell electrophysiology study is the assertion that single pancreatic 

β-cells behave the same as intact islets. Several studies support this hypothesis.  First, insulin 

secretion measured in situ from both single β-cells and pancreatic islets is biphasic, as observed 

in peripheral blood in vivo (Satin 2000; Dahlgren et al. 2005; Dahlgren et al. 2005; Nunemaker et 

al. 2005; Nunemaker et al. 2006).  Second, a similar pattern of electrical oscillations elicited in 

response to glucose is observed in intact islets and single β-cells (Gopel et al. 1999).  Third, these 

action potentials give rise to oscillations in intracellular Ca2+ (Satin 2000; Dahlgren et al. 2005; 

Dahlgren et al. 2005; Nunemaker et al. 2005; Nunemaker et al. 2006).  Still unclear is whether 

the synchronization of insulin secretion between islets seen in vivo and in situ extends to the 

single cell level.  Of course, our measurements of membrane capacitance require voltage clamp of 

the β-cell membrane potential.  While this procedure departs from glucose-stimulated insulin 

secretion, control over Ca2+ influx was necessary to facilitate strong stimulation of the β-cells to 

completely deplete the IRP and RRP, allowing us to monitor for rate-limiting steps in their 

refilling.   

We have reported a significant glucose-dependent secretory defect in Rab27a-mediated 

RRP refilling in ashen β-cells that does not exist in Rab3a-deficient cells.  An important question 
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remaining is whether Rab27a and Rab3a are functionally redundant.  Our results indicate that 

Rab27a is almost certainly not redundant, probably because the closely related Rab27b isoform is 

not present in pancreatic β-cells.  In fact, the defects in vesicle trafficking in ashen mice have 

been shown to only exist in cells where one Rab27 isoform is present.  These cell types include 

Rab27a-dependent defects in melanosomes, cytotoxic T-lymphocytes, and pancreatic β-cells, 

which underlie the albinism, immunodeficiency, and glucose intolerance in ashen mice 

(Stinchcombe et al. 2001; Tolmachova et al. 2004). 

Whether Rab3a is redundant with the other Rab3 isoforms is still a matter of debate.  All 

four isoforms are present on the same insulin secretory granules (Regazzi et al. 1996; Iezzi et al. 

1999).  Rab3a-null islets are reported to exhibit a ~50% defect in glucose-stimulated insulin 

secretion, suggesting that Rab3a is not redundant with other Rab proteins (Yaekura et al. 2003).  

Yet, we measured only a small deficit in the RRP size in Rab3a-/- β-cells, which seems to be too 

small account for the defect seen in intact islets.  Comparatively, deletion of all four Rab3 

isoforms (which is lethal owing to respiratory defects) in studies of hippocampal neurons resulted 

in only a ~30% decrease in evoked secretion (Schluter et al. 2004; Schluter et al. 2006), 

suggesting Rab3a is redundant with Rab3 b, c, and d, at least for synaptic transmission.  

However, the situation in hippocampal neurons may not be analogous to the condition in β-cells, 

as no defects in vesicle docking or priming were discovered (Geppert et al. 1994).   

The potential for redundancy between Rab27 and Rab3, and amongst the Rab3 isoforms, 

makes it difficult to determine whether Rab27a and Rab3a have overlapping roles within the 

glucose- and cAMP-dependent priming pathways.  Our results indicate that cAMP bypasses 

Rab27a-dependent actions in pool refilling, suggesting that Rab27a acts independently of the 

cAMP-dependent priming pathway.  However, an alternative interpretation is that Rab3 isoforms 

are compensating for the Rab27a deficiency, and that Rab27a normally exerts an overlapping 

function with Rab3 in the cAMP-dependent pathway.  If the latter is true, future experiments 
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might focus on eliminating the contribution of multiple Rab isoforms to secretion simultaneously, 

allowing the isolation of particular priming pathways.  For example, adenoviral expression of the 

unique Rab-specific GDI might prevent the Rab3 and Rab27a cycling necessary for function 

(Takai et al. 2001; van Weering et al. 2007).  Alternatively, knockdown of the GEF specific for 

Rab3 and Rab27a (known as Rab3GEP; Figueiredo et al. 2008) could further reduce the normally 

slow Rab cycle (Becker et al. 1991; Kondo et al. 2006) by inactivating both Rab3 and Rab27a.  

In fact, deletion of the GEF for Rab3 and Rab27 in C. elegans, AEX-3 (Iwasaki and Toyonaga 

2000), has a much more severe phenotype than elimination of either Rab protein alone (Mahoney 

et al. 2006).  Unfortunately, no GEF is known to act exclusively upon Rab27a, although a more 

highly-specific GEF for Rab3 (GRAB) has been shown to activate Rab3a (Luo et al. 2001).  

However, two putative Rab27a GAPs have been identified (EPI64 and FLJ13130/Rab27a-GAPβ) 

(Itoh and Fukuda 2006; Itoh et al. 2006), which upon overexpression, may be effective to 

specifically reduce the activity of Rab27a by functionally eliminating its effector interactions.  

This same strategy could be employed to assess the contribution of other small GTPases thought 

to act in the cAMP pathway.  A third potential target is the small GTPase Rap1, which has been 

implicated in the cAMP-induced increases in vesicle priming downstream of its GEF Epac2 

(Ozaki et al. 2000; Shibasaki et al. 2007).  These future studies may shed new light on the 

function of Rab27a and Rab3a as they act to fine-tune glucose-stimulated insulin release. 

 

Future Studies:  using technology to understand the heterogeneous causes of glucose 

intolerance and the diabetic state  

Type 2 diabetes mellitus accounts for between 80-90% of all diabetes in most countries 

(Gerich 1998; King et al. 1998).  However, this disorder presents in a highly heterogeneous 

fashion, as 5-10% of patients have maturity-onset diabetes of youth (MODY) (Fajans 1989), and 

another 5-10% acquire diabetes secondary to rare genetic disorders (Moller and Flier 1991; 

Taylor 1992).   Unfortunately, the etiology of the remaining ~80% of cases remains further 
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divided by the relative strength of genetic (polygenic) and environmental (acquired) factors 

(Hamman 1992; Kahn 1994; Bouchard 1995; Turner et al. 1995) as well as the quantitative 

contribution of insulin resistance and impaired insulin secretion (Gerich 1998).  It is therefore 

imperative to test how these phenotypes display at the tissue and cellular level. 

It is important to point out that the approaches used in this dissertation, particularly the 

use of FRET to study protein-protein interactions, and electrophysiologic studies of insulin 

secretion, provide nearly unparalleled spatial and temporal resolution of vesicle/granule 

movements in situ.  Clearly the critical next step in the evolution of controlling the diabetic state 

is the application of these technologies to compare between normal physiologic processes and 

models of the diabetic state that accurately reflect the heterogeneity of type 2 diabetes 

presentations and treatments.  These models should encompass:  (1) mouse genetic models of the 

identified diabetes susceptibility genes which differ between populations (e.g., NIDDM1 (Hanis 

et al. 1996) in Mexican Americans is different from NIDDM2 (Mahtani et al. 1996) found in 

Finnish families), (2) studies of cell secretory function in both insulin-secreting and insulin-

sensitive tissues in response to changes in newly discovered adipose-derived hormones (e.g., 

leptin, adiponectin, resistin, etc.) as well as circulating factors known to affect insulin secretion or 

activity (e.g., circulating free fatty acids), and (3) studies of pharmacologic activators of insulin 

secretion, to identify their specific sites of action and potential side effects (e.g., Liraglutide, 

Exenatide/Byetta and other GLP-1 analogs that act to increase pancreatic β-cell insulin secretion 

and decrease pancreatic α-cell glucagons secretion).   

For each of these three genetic or pharmacologic manipulations, information desired is 

the specific steps at which membrane trafficking is disrupted or accelerated.  Therefore, it would 

be useful to adapt the techniques we describe to monitor the functional output of granule/vesicle 

movement to the surface:  i.e., the IRP, RRP, and HCSP size and refilling can be monitored 

electrophysiologically in β-cells; optical measurements of labeled GLUT4 can be used to follow 
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the Golgi- or endosomally-derived GSV pools in adipocytes and skeletal muscle, as well as their 

fusion with the PM.  Apart from the cell’s net functional secretory capacity, morphological 

analysis of vesicle number, size and location (by EM, for example) can be combined with TIRFM 

analysis of the kinetics of granule movements near the PM to additionally screen for aberrations 

in vesicle translocation, docking and fusion.  Upstream of fusion, the direct triggers for 

exocytosis can be monitored.  For example, specifically in pancreatic β-cells, current clamp 

experiments can be used to determine whether specific pharmacologic manipulations alter 

electrical activity (including the action potential), and simultaneous loading of cells with Fura-2 

can serve as a monitor of intracellular Ca2+ handling. Comparatively, as stimulus-secretion 

coupling in adipocytes is mediated specifically through insulin-receptor pathways (i.e., 

independent of action potentials and Ca2+), our knowledge of real-time changes in protein-protein 

interactions at critical nodes of the pathway can potentially be advanced by the creation of novel 

FRET pairs to monitor specific signaling pathways: e.g., PI3K/Akt2, an early-stage node at which 

the insulin-IR pathway diverges; Akt2/AS160, to monitor Akt2 movement to the PM as it 

activates AS160 GAP activity; or Rab10/Munc18c, a putative interaction which may prove useful 

to assess vesicle docking/priming events.  In summary, the use of genetic approaches to pursue 

specific molecules controlling glucose homeostasis as pharmacological targets can be combined 

with the technology employed in this dissertation to provide the added benefit of understanding 

the likely functional outcome of such manipulations. 

  

Conclusion 

When taken together, the results of the investigations forming this dissertation support a 

role for Munc18c and Rab27a in controlling both the timing and magnitude of vesicle docking 

and priming at the plasma membrane, thereby acting as crucial regulators in the regulated 

exocytotic pathways in glucose regulatory tissues.  It is our hope that information gleaned from 

this work can assist in mitigating the diabetes epidemic worldwide.  
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